CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author’s Permission)

APPLICATION OF NEURAL NETWORKS IN
ROBOTIC CONTROL
AND DESIGN OF MECHANISMS

By

© RAGHU BALASUBRAMANIAN, B.E.

A thesis submitted to the School of Graduate Studies
in partial fulfillment of the
requirements for the degree of
Master of Engineering
and Applied Science

aculty of Engineering and Applied Sciences
Memorial University of Newfoundland
December 1993

St. John's Newfoundland Canada

H*I National Library B\bhclhequc nationale
of Car du Cana

Acquisitions and

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

295 Wellogion it

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada t{o reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, uo Wallnglon
Otawa, Onian Otiaws (Onta
AONA

e B o

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Nila thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-91636-2

Canadi

Abstract

Neural network has been widely used in various fiekis of robotics. In this work,

the neural network analysis using backpropa

rithm is applicd 1o the inverse

velocity analysis of robotic i s near the sing ity points e for the
tracking error and feasibility of joint velocities. The inverse computations using the
pseudo-inverse of the Jacobian matrix are compared with those obtained by the neural

network analysis. The results illustrated usi

g examples of two well known manipulators
show the advantages of using the present work. A new learning algorithm called LP-
neuro method is then developed to solve neural network problems. [n this algorithm, the
weights are obtained by a combination of Linear Programming having a sparsc coeflicient

ation method. The results are illustrated

matrix and a single variable non-lincar optimi:
by solving three different problems, two of which are useful in the on-line control of

robotic manipulators.

The designs of a function generator and a four-bar mechanism whose coupler
curve passes through nine specified points, have been carried out using neural network
methods. The design problem has been solved using non-linear techniques which yield

Iso digeussed.

a weight matrix in each of the cases. The accuracy of the methods i

Finally, gain parameters required for the trajectory control are evaluated using non- |
optimization method. Neural network is then trained to cvaluate the gain parameters

based on error history of different trajectories

Acknowledgements

I would like 1o express my appreciation and profound gratitude to my advisor

Prof. A.M. Sharan for his patient guidanze and constant support. [am grateful to

Profs. M.J. Hinchey. A.S.J. Swamidas and K. for their valuable

and guidance during the course. T am also thankful to the Dean, Faculty of Engineering
and Applied Science for the financial support during the program. [would also like to
thank our Associate Deans, Dr. J.J. Sharp and Dr. T.R. Chari for their encouragement
extended during my stay in the campus. Finatly, I thank all my fellow graduate students

and friends for their help and moral support during the course of this work.

iii

Contents
Abstract
Acknowledgements
List of Figures
List of Tables
List of Symbols
1 Introduction and Literature Survey
Ll TREROMUGHION svos w0 o winee s 5o swsss o

1.2 Literature Survey

.2.1 Artificial Neural Network Methods

.2.2 Singularity Problems in Roboties

1.2.3 Mechanism Synthesis

1.2.4 Neural Network Control in Robotics

1:3 “Thesis Objectives . suin s g s w5 4 29 o 4 9
2 Neural Network Methods
2.1 TACOQUCHOR & vis winis & wie & winio e 3 giie s w0

2.2 Backpropagation Method L.

2.2.1 Multilayer Neural Network

2.2.2 Feedforward Recall and Frror Backpropagation
KIGOHAAT o womm woam wmr sumw vsamm v ¢

2.2.3 Properties and its Si

10

2.2.4 Application - Singularity Problems in Velocity
Analysis oFROBOIS! woss e s s 4 st & o W

2.2.4.1 Velocity Analysis Using Psucdo-Inverse Method

2.2.4.2 Velocity Analysis Using the Damped
Least Squares Method

2.2.4.3 Velocity Analysis Using Neural Network
Method v

2244 CaseStudy S sisnE W e NS R B

2.2.4.5 Results and Discussion

23 LN MEROd i yns s pe s3 Su@ WnS waR a0y G B
2.3.1 A New Approach - Development of LP-Neuro Method . . .

2.3.1.1 LP-Neuro Method - Type 1

2.4.2 Acceleration Analysis of a Two-link Planar Manipulator

2.4.3 Solution of Torque and Reaction Forces of the
Two-link Manipulatort

2.5 Conclusions

3 Neural Networks in Mechanism Design
3.1 Inroduction S N R TR PR NEN 8
3.2 Implementation of Neural Network in Mechanism Design

3.3.1 Nine-Point Path Problem

46

46

46

51

54

56

62

74

Four-bar Function Geners

3.4 Conclusions . .
4 Neural Network Control in Robotics

+.1 Introduction s g el R B R

4.2 Trajectory Control S G B N GG
4.2.1 Inverse Dynamics of a n-Link Manipulator

4.3 Evaluation of Gain Parameters for Trajectory Control
+.3.1 Procedure to Evaluate Gain Values

4.4 Neural Networks in Trajectory Control ol 'I'wo-Link Manipulators

45Conclusions

5 Conclusions

5.1 Conclusions,

3.2 Future Recommendations of the Work
References
Appendix

A Program LISHOES v scos scoms vame s sovns wrme swwns sie v 5 % 0

88

88

LS80

. R0

01

w0y

109

L3

List of Figures

1.1

2.1

5
S

o
=

o

Application of Neural Network in Robotics . .« ..o oo 2
Applications of Neural Networks 12
A Typical Neural Networko 13
AGHVATON FURCHONE » vom was s o & v 2 2 5 56 0% orews S0as & 15
Representation of Neural Network Layers - Forward Computations 17
Reprsentation of Neural Network Layers - Backpropagation

OFBITOMS: 10 o soommmin o s mone © 60 & om0 450 5 Wi 0 6 00 & W ¥ 9500 v 19

Flow Chart - Backpropagation Method . . .

Movement of Weight Vector (2-D) on the Error Surface 23
Trajectory Used for PUMA-560 Manipulator 32
A Planar Two-Link Manipulator 33
PUMA-560:MERIPMAIOE o on 2 wn 0 sie wicm oms wnes s 3 &8ss woh 35
Variation of the Norm of the Angular Velocity Vector, @], Along

the Trajectory of a PUMA-560 Manipulater 38
Variation of the Angular Velocity, ©,, Along the Trajectory of a
PUMA-S60IManipalator: sass = i b oo 5 Sk W% 9Si 0% bess Wag b i 39
Variation of the Angular Velocit

PUMAESE0 Matpulator:. v v o w5 swmss s oo s v o40
Variation of the Norm of the Cartesian Velocity Vector, || x|,

Along the Trajectory of a PUMA-560 Manipulator 41

Variation of the Norm of the Angular Velocity Vector, |6,
Along the Trajectory of a Two-Link Manipulator

©,. Along the Trajectory of a

Variation of the Angular Velocit;
Two-Link Manipulator

vii

n
o]

s
%

"
o
=t

9

o
o
3

4.3

4.4

Variation of the Angular Velocity, 0., Along the Trajectwy of @
Two-Link Manipulator e , o

Variation of the Norm of the Cartesian Velocity, |5, Along the

Trajectory of a Two-Link Manipulator B W0 Pia o 45
Diagrammatic Representation of the Network - LP-Neuro Method | 48
Flow Chart - LP-Neuro Method 55

Comparison of Values for the Sine Curve (LP, LP-Neuro Method,
BP Method and the Desired Vilues) 3

A Planar Two-Link Manipulator and the
Acceleration Analysis

Variation of 8,, Along the Trajectory - L. 08
Variation of ©;, Along the Trajectoryo uul ... L6
Error Values of f, Acting on Link | . e A S B AT RS R B 08
Error Values of f, ActingonLink 109
Error Values of 7, Actingon Link | 70
Error Values of £ ACng on LINKZ o4 4 e 5 voai 5 i e v gah 71
Error Values of f; Acting on Link 2 W R RS G R 72
Error Values of 7, Acting on Link 2, Y A}
A Four-Bar kiechenism - Nine-Point Path Generation)
A Four-Bar Function Generator L R3
Specifications of the Desired and the Actual «92
Desired Trajectory and the Trajectory Obtained Using Non-Lincar

Optimization Method 94
Desired Tangential Velocity Profile W A R e e B 5 @ 9s
Variation of ©, and ©, Along the Desired Trajectory LK

viii

4.7

4.8

4.9

4.10

Variation of O, and 0, Along the Desired Trajectory . . .
Flow Chart - Trajectory Control Using Non-Linear Optimization Method
Variation of ¢, and ¢, Along the Trajectory,
Variation of ¢, and &, Along the Trajectory,
Variation of k, and k,, Along the Trajectory

Variation of k,, and k,; Along the Trajectory

Flow Chart - Evaluation of Weight Matrix [W] for Trajectory Control
USIHELP-NGUPS. MBI v 10 s st svncs dias svics wesms sodnh v w0

Comparison of Gain Values ky, and ky, Obtained Using Non-Line
Optimization Method and LP-Neuro Method ..o oo oo

n of Gain Values k,, and k,, Obtained Using Non-Linear
tion Method and LP-Neuro Method o000

Desired Trajectory and the Trajectory Obtained Using LP-Neuro Method

.9

100

List of Tables

o
o

"~
b

Link Parameters of PUMA-560 M,

The Iterative Newton

Euler Dynamics Algorithm

Link Parameters of the Two-Link Manipulator

Link Pa

ameters of Four-Bar M m - Nine-Point Path Generation

Coordinates of the Nine-Point Path Probiem - Comparison between the
LP-Neuro Method and Back-propagation Method

Link Lo,nglu for the Function-Generator Mechanism - ‘Three Precision
Points . 2 W ”

Comparison of y Values (Theoretical and LP Neuro Method) - ‘Three
Precision Points i e B N

Link Lenghts for the Function-Generator Mechanism - Eight
Precision Pois -« sea s v o s

Comparison of y Values (Theoretical and LP-Neuro Method) - Eight
Precision POIRtS . . o o oo v v vnvi i v

Various Parameters used for the Trajectory Control

85

85

86

Ko

LY

List of Symbols

{1}.{D}.{0}
i}

1l

Koi-Kpzak
1K, |
IK,]
LoLylo Ly

IWLIV]

veetor
matrix

acceleration of the end effector in the radial diiuction
error in joint position

error in joint velocity

activation function

forces acting on link i

link lengths

Cartesian velocity and acceleration of ith joint respectively
velocity of the end effector in the tangential direction
precision points

Cartesian velocity vector

input, desired, and output vectors respectively
Jacobian matrix

psuedo-inverse of Jacobian matrix

gain parameters

proportional gain matrix

velocity gain matrix

link lengths of four-bar mechanism

weight matrices

xi

eight matrix

for acceleration analysis

[W.] weight matrix for torque analysis

W weight matrix connecting ith and jth layers
XY, coordinates of the nine-point path problem
8, error in the ith layer

] learning factor

0, displacement of ith joint

angular velocity and acceleration of ith joint respectively

A damping factor

o, u; and v; components of singular value decomposed ni:
7 torque acting on link i

0; displacement of ith joint

{6} angular velocity vector

{25 upper feasible limit of angular velocity

<] joint acceleration

Chapter 1
Introduction and Literature Survey

1.1 Introduction

Artificial Intelligence (AD) is applied in diversified fields to achieve faster and

better results. They are useful for achieving i ly fast and app
solutions of certain decision problems that are based on information of diverse criteria.
Lxpert systems, Artificial Neural Networks (ANN), Knowledge-based representations

ete., are examples of different tools used in the application of AI. Robotics is a field that

requires such techniques because robots are often employed to work in hazardous

for human i i and where the ions are
and complicated. In the recent past, ANN have proved quite useful in robotics. Fig. 1.1

shows the various fields in robotics in which ANN is being widely used.

Singularity avoidance, synthesis of mechanisms, finer control of the trajectories
of robotic manipulators are still the topics that require further research. A new technique
which optimizes the efficiency and speed would be of great help because of on-line

computational requirements in the robotics area.

ANN IN ROBOTICS

KINEMATICS

1. Inverse Kinematics -
nonlinear mapping

2. Velocity Calculations

at every instant of time etc.,

Figure 1.1

CONTROL

VISION

1. Position/Trajectory Control
2. Control of Gain parameters
3. Force Control

1. Pattern Recognition
2. Collision Avoidance
3. Sensing and Perception

Application of Neural Network in Robotics

1.2 Literature Survey

1.2.1 Artificial Neural Network Methods

Artificial Neural Networks (ANN) have been studied for more than 30 years. Its
use has increased tremendously in recent years because of the availability of faster and
parallel processors and the basic learning algorithms (Grossberg, 1982; Hopfield, 1982;
Rumelhart and McClelland, 1986; Kohonen, 1988). ANNs also referred as neural
networks in this thesis are being used to accomplish complex functions such as

error ion, information ion, pattern analysis and learning.

Neural network can learn mapping between the input and output space and synthesize

an associative memory that retrieves the appropriate output when presented with an input,

and has the ability to generalize with new inputs. Because of their massively parallel
nature, neural networks can perform computations at very high speed (Fukuda and

Shibata, 1992).

Neural networks have also been used to successfully solve complex problems like
the Travelling salesman problem. It has been observed that neural networks have often
been opportunistic, i.e. the network model is customized to serve the needs of the task

at hand (Kulkarni. 1991). They represent a new approach that is robust and fault-tolerant.

Neural networks require basic algorithms for accomplishing the learning task.

Several algorithms are functional in the present. One such algorithm which is widely used

is ion (BP) i In i i during the learning

phase. the observed outputs are compared with the desired outputs, and the weights are

optimized to minimize the error function. In competitive learning, the w

s are
updated with each new input (Rumelhart and McClelland. 1986). Barmann and Bicgler-

Kong (1992) discuss efficient learning algorithms for neural networks.

Neural networks can perform functional approximations that are beyond the scope

of optimal linear techniques. Gulati et al., (1990) have introduced neural forn 1o

efficiently learn non-linear mapping using a mathematical construct called terminal

attractors.

Neural networks have been found useful in the field of robotics in the recent
times. Forward and inverse displacement analyses of robotic manipulators have heen done
by Nyugen et al. (1990) and Gulati et al., (1990). Neural networks scem (o be o
promising approach to solve non-linear control problems as well (Tabary and Salaun,

1992). Some other interesting applications in the control of robotic manipulators can be

seen in Fukuda et al., 1991; and Akio et al., 1992.

1.2.2 Singularity Problems in Robotics

Inverse kinematics problems of robotic manipulators are always difficult to solve

because of (a) the multiple solutions in the displacement analysis problems, or (b) the

occurrence of singularity points along the trajectorics in the case of velocity analysis. The

singularity problems, which involve the rank deficicncy in the Jacobian Matrix, have been

dealt with by Chiaverni (1992). In this regard, general discussions on pseudo-inverse
solutions can be seen in Lawson and Hanson, 1974, The pseudo-inverse solutions do not
lead to satisfactory performance near the points of singularity because of abrupt changes

in the elements of the joint velocity vector,

Damped-Least Squares method (DLS) approach has been used by many
researchers (Wampler, 1986; Nakamura and Hanafusa, 1986; Maciejewski and Klein,
1989; Wampler and Leifer, 1988; Mayorga et al., 1992). The additional advantage with
this method is that one can set the limit (achievable limit) on the norm of the joint
velocity vector and find the corresponding damping factor, A, which yields the minimum
error. Maciejewski and Klein (1989) also proposed a truncated Singular Value
Decomposition (SVD) solution method which could be used for on-line computations.
Llowever the resulting errors could be more in this method. So far, there has not been
any method which takes into account factors such as the errors as well as the
computational efficiency. Neural networks are known to perform well in those areas

provided a relationship is established between the joint velocity vectors and Cartesian

velocity vectors on an off-line basis. This cil the on-line
requirements of the joint velocity vector, as was done by researchers mentioned earlier

(Maciejewski and Klein, 1989).

1.2.3 Mechanism Synthesis

Synthesis of a mechanism is a means of finding the linkage that will produce the

specified motion. The problem of approximate synthe:

of &t four-har mechanism whose
coupler curve is a planar trajectory was solved by Wampler et al., 2). Solution of
pl it t tory Ived by Wampler et al., (1992). Sol 1

such problems date as early as 1923 and some of the important works are

ven in
Freudenstein and Sandor, 1959: Shigley and Uicker, 1980 Erdman and Sandor, 1984;
Morgan and Wampler, 1989; Subbian and Flugrad, 1989. The use of optimization
technique has been made by Suh and Radcliffe (1978). Angeles etal., (1988), or Akhras
and Angeles (1990) have applied a variable-separation technique and non-lincar

optimization scheme to solve the four-bar path generation problem. |

ai and Lu (1989)
have solved the nine-point path problem using a new continuation method. Wampler et

al., (1992) have solved this problem using a combination of analytical and numerical

tools. Problems where the number of points is greater than nine result in an over-

determined system whose exact solutions are not possible.

The four-bar mechanisms have also been used in the design of function-generators.
Freudenstein (1955) proposed an algebraic formulation for the approximate synthesis of
such a mechanism. Wilde (1982) applied error lincarization techniques o solve this
problem. Other interesting references on such problems

an be seen in (Mohan Rao et

al., 1973; Tinubu and Gupta, 1984; and Liu and Angeles, 1992).

1.2.4 Neural Network Control in Robotics
There has been recent trend within the robotics control literature to apply neural

networks for the control of robotic systems. In many applications reported in the

literature (Gu and Chan, 1989; Fukuda and Shibata, 1990; Helferty and Biswas. 1990:
Jamshidi et al., 1990; Karakasoglu and Sundareshan, 1990; Yamamura et al., 1990) the
process of neural network learning is conducted on-line (i.e. the dynamics of the neural
network is embedded in the closed-loop with the dynamics of the robotic system), yet
there appears to be a lack of studies focussing on the dynamic behavior of the neural

network during learning and/or control when the neural network is used in such context.

Kawato (1990) used feedback error learning to compute the feedforward torques
required for a manipulator to follow a path. The neural network implemented in this
method uses the desired joint pasitions, velocities and accelerations as inputs and adjusts
the network weights using the feedback torque as the error signal to a backpropagation
parameter optimizing algorithm, Yuh (1992) also used a neural network for manipulator
control. He used a "critic" equation, which is a function of the manipulator output error,

1o train the network to directly compute the manipulator input torques.

Asada (1990) used a multilayered feedforward network to learn a non-linear
mapping for compliance control. From the measured forces and torques in an assembly
task he used the network to compute the required velocities, which would allow the

assembly task to be completed.

1.3 Thesis Objectives

We have seen in the last few sections that the neural networks are quite versatile

tools to solve problems in a wide variety of areas. With this in mind. it was thought 10
apply this tool to solve problems in the arcas of mechanism design and robotic control
Based on this, the following are the objectives of this thesis:
1) Development of a new neural network learning algorithm (LP-neuro method)
" which is fast and accurate.
2) Application of neural networks for inverse kinematics of robotic manipulators

near singular configurations and comparison with damped-least squares and

pseudo-inverse methods.

3) Velocity, acceleration and torque analysis of robotic manipulators using neural
networks.

4) Synthesis of mechanisms using neural networks

5) Trajectory control of the robotic manipulators using neural networks.

Chapter 2, briefly reviews the basics of neural networks. Backpropagation
algorithm is introduced here and various factors influencing a neural network are
discussed in this chapter. The significance of solving for weight matrix in neural network
problems using combination of LP and a single variable non-linear optimization routine

is identified here. The validity of the application of backpropagation algorithm is checked

Aninve

by using them near singular ions of robotic
relationship is established between the Cartesian and joint velocities on off-line basis
which reduces on-line computation time. The relative merits and demerits of this method

over i pseudo-i and damped-least squares method are discussed in this

chapter. A new algorithm called LP-neuro method is developed to solve problems using

neural networks.

In Chapter 2, the backpropagation method and the new algorithm called the LP-

neuro method are then applied to solve various mechanism synthesis problems.

ter 4 deals with solution of non-linear or adaptive control problems. Here

the non-linear control problem is solved using LP-neuro method developed in Chapter 2.
Next, the gain values obtained by the non-linear method are then used in the neural
control method where the methodology developed in sections 2.4.1 to 2.4.3 are used.

In this way, the number of training sets required is a lot less than what many other

rescarchers have used.

Finally, in Chapter 5, the contributions of the thesis und recommendations for

luture rescarch are outlined.

Chapter 2
Neural Network Methods

2.1 Introduction

Neural network methods arc widely used in many engineering applications. They
can be thought of as a mathematical ool 10 solve common engineering problems such as
optimization, pattern recognition ete. The newral network indicates the similarity of
modelling network of neurons in the brain. Many lincar and nonlinear neuron models
are connected in the network and information is processed in a parallel distributed
manner. This greatly reduces the computation time. Neural networks have learning and
self-organization capabilities. They adapt to changes in data, learning the characteristics

of the input signal.

Neural networks can be broadly classified into two types:

1) The neural networks that learn and adapt to chang e recurrent

networks or networks.

p perceptron neural nets, Hopfield nets,

Adaptive Resonance Theory (ART) networks fall under this cutegory.

2) Those that do not involve learning and sometimes called feedforward

nets. Outer-prod ative memories and i nets without backward error

10

corrections belong o this type. The most popular neural networks used today are the

Hoplield nets, Kohonen's self-organizing maps. multilayer perceptrons and ART nets.

Some of the operations that neural networks perform are shown in Fig, 2.1, They
are udvantageous in the following situations:

1) Decision-making from a massive amount of data

2) Non-linear mapping

3) Obtaining near-optimal solutions to optimization problem in less time.

2.2 Backpropagation Method

2.2.1 Multilayer Neural Network

A typical neural network is shown in Fig. 2.2, Basic components of a neural
network are:

1) Input and output data sets

2) Weighed connections

3) Processing Elements (PE) or neurons

4) Activation function
“The neural networks that need to be trained are supplied with predefined input and output
data sets in a vector form. Each layer of a neural network consists of several processing

clements.

ch PE in a neural network sums all of its input values and performs a

predefined operation and produces a single output value. PE’s are connected with

NEURAL NETWORK
APPLICATIONS

CLASSIFICATION

PATTERN

RECOGNITION ‘ OPTIMIZATION

NOISE
REMOVAL

CONTROL

Figure 2.1 Applications of Neural Networks

processing
element (PE)

activation functi
activation function, p.eisvivis

output

input Yiges

layer

weighed
connections

Figure 2.2 A Typical Neural Network

weighed connections. Information is stored in a network in the form of we

neural network method the weight matrix is obtained based on the learning proc

based on the input and output information used for that purpose,

Activation functions, also known as squashing functions. perform mapping of P!

ivation functions (shown

infinite domain into a prespecified range. Commonly used a
in Fig. 2.3) are:

1) Linear activation function

2) Step activation function

3) Ramp activation function

4) Si i ivation function or ing function

5) Gaussian function

Neural networks are organized into several layers of PE's which include input layer,
hidden layers and output layer as shown in Fig. 2.2. A feedforward network is one that
has connections which feed information in one direction without any feedback path. 11 a
network has feedback paths, then it is called feedback network. The training of
multilayer neural networks depend on the following factors:

1) The number of layers

2) The number of PE in each layer

3) The amount of data needed for sufficient training.
There are no predefined set of rules available for determining the above factors. Several

techniques are available for the multilayer neural networks to have their connection

f(net,)

(a) Linear activation function (b) Hard limiting function

f(net)) f(net,)

(¢) Threshold function (d) Sigmoidal activation function

Figure 2.3 Activation Functions

15

weights adjusted to learn mapping. The most popular technique is the backprop:

algorithm (Werbos. 1974: Parker. 1982: Rumethart. Hinton, and Williams 1986).

Learning process can be classified into two categorie:

unsupervised learning. Supervised learning monitors the duration of the training and the

error performance etc.. Unsupervised learning incorpora

s no monitoring process and

relies only upon local information during the entire learning process.

Most learning.

techniques are carried out off-line.

2.2.2 Feedforward Recall and Error Backpropagation Algorithm.
In neural network method, one establishes a relationship between the input and the

desired output The matrix i ip between these two vectors are

approximated by using several hidden layers as shown in Fig. 2.4. In this figure, the

relationship between the input vector and the first hidden layer vector is at first expressed

involving a weight matrix whose elements vary between -1 and 1 and are randomly
generated. Similar procedure is adopted for the relationship between two adjacent hidden
layers or the last hidden layer and the output layer. Mathematically, one of these typical

relationships can be written as,

(H), = 1, {0 @n

where {I} is the input vector and {H}, is the first hidden layer.

INPUT ~ HIDDEN OUTPUT DESIRED

LAYER LAYERS LAYER OUTPUT
f(hi)
Xm o |] {o% K{d}
e,
L !
q ! AlOo
¢ A0
s; A|3O
Wh sl Wl 1/2(de—oa)?

Figure 2.4 Representation of Neural Network Layers - Forward Computations

Next, values corresponding to sigmoidal function of cach of the elements of the

vector {H}, are p and are symbolically by 4

Juare (O) in Fig.

2.4,

For example, for a typical element it would be written as

i PR T
A 1+ exp(-ah)

where o is the steepness factor and b, is one of the clements of vector {I1},. This process

is continued until the last hidden layer i.c., cach layer is related to other by a matrix

containing weights, and also, there is

similar relationship written between the last

hidden layer and the output layer.

Defining two vectors {o} and {d} as the vector of output sigmoidal functions and

desired values respectively, we wish to minimize the error E defined by

@3

Each of the summation terms (E,) is represented by triangular (a) symbol in Fig. 2.4.
This error has to be backpropagated using the same weights mentioned above. To do

this, we first write the equation

8y = (-0 (1 -0)0, 2.4

INPUT HIDDEN OUTPUT
LAYER (6,1} LAYERS { by} LAYE]

’ { Gt}

WL (7).

Figure 2.5 Representation of Neural Network Layers - Back-propagation
of Errors

which is represented by a diamond symbol () in Ihe error in the fast hidden

layer element wise is computed using

2.5

§
by = oy (- ; Suwy -1

where y; is the sigmoidal elemental output of the last hidden layer in Fig. 2.4 and w, is
an element of the corresponding (to the right of y) weight matrix. 'This process is
repeated until one computes all the elements of the first hidden layer. The weight matrix
between the output layer and the last hidden layer to be used in the next cycle is

recomputed as
W) = W1+ nid,)" 2.6
where the superscripts refer to the cycle number and y is the learning factor which is

normally assumed between 10 to 10. The relationship for the weight matrix in other

layers is given by

W1 = W1+ n (6,) @D

Finally the weight mawix between the input and the first hidden layer is calculated

using

Wyl = (W) =+ n (8, (0" @8

20

Once these weight matrices are obtained, then for any input vector one has to go
through the forward computations as shown in Fig. 2.4 to obtain the output vector. This
process is continued until the final set of weight matrices are obtained which yield the
desired output values within the accuracy specified. Flowchart for the backpropagation

method is shown in Fig.2.6.

2.2.3 Properties and its Significance
Backpropagation algorithm uses gradient descent technique to adjust the weights

S0 as to minimize the error

aw, = £ @9

where 7 is the step value. The movement of the weight vector in two-dimensional space
can be observed on the error surface shown in Fig. 2.7. The weights of the network to
be trained are typically initialized at small random values. The initialization trongly
affects the ultimate solution. Another factor that affects the convergence is the steepness
factor «, in the sigmoidal activation function given in Eq.(2.2). The effectiveness and

of the error ion learning algorithm depend signi on the

value of the learning constant 9. In general, however, the optimum value of depends
upon the problem being solved and there is no single learning constant suitable for
different training cases. Activation functions with larger steepness factor produces the

same effect as increasing the learning factor. So, the steepness factor is usually taken as

Initialize weights

Present input and desired output I

Calculate actual output of
hidden layers and output layer

Adjust weights according to
Egs.(2.6) to (2.8)

Change the training pattern

Is trairing
pattern over ?

Present new
set of inputs

Increment the number
of iterations

Is convergence
achieved 7

Is number of

Flow Chart - Back-propagation Method
22

NO

NO

Figure 2.6

Initial Error

Error minima

w2

Error (E)

f wl

w1,w2 - weights

Figure 2.7 Movement of Weight Vector (2-D) on the Error Surface

23

1 and the learning factor is adjusted to control the convergence. However, gradient
descent wigorithm suffers from local minimum problem which is a common property of

any nonlinear optimization algorithm,

2.2.4 Application - Singularity Problems in Velocity Analysis of
Robots

‘When a manipulator is in singular configuration, it loses one or more di

freedom in the Cartesian space. Singularities in robotic manipulators may arise due to

the geometrical limitati ints in the ing links) of the i “This

problem can be handled by the use ol redundant manipulators. There are two kinds of!
singularities:
1) Boundary singularities arise due to the geometrical limitations.

2) Interior singularities are due to two or more joint axes lining up.

Redundant manipulators also have singular configurations which have to be cither
avoided or handled. Near singular points, very high joint velocities result if' the Cartesian

velocities have components in the direction in which the arm los

the points at which the Jacobian matrix becomes rank-deficient.

While this problem can be handled using mathematical techniques like pscudo-
inverse methods, yet it has certain limitations. The problems of singularitics can be
tackled at the task planning level itself by carefully designing the trajectory which avoids
singular configuration. On the other hand, if due to wrong task planning or in situations

24

where on-line computations are made and the singularity appears in the trajectory. the
robot control system must be able to pass through them safely. Multiple solutions exist

at singularity points.
2.2.4.1 Velocity Analysis Using Psuedo-Inverse Method
The invesse kinematics for -obotic manipulators is given by (Craig, 1986)
1) = [J]1(6) @10
where {O} represents the joint velocity vector and {X} is the end-effector velocity vector

and [J] is the Jacobian matrix. Therefore, the joint velocity corresponding to a given {}

is given by

01 = 17" (%)

25

10 = [{8 2y

where [J°] is catled the pseudo-inverse of the Jacobian matrix. The hasic idea is w0
minimize the norm [| {x} - [J{O} || since (I does not exist at singular points. [1°] gives

an approximate solution satistying the condition

min | {0 and
[RCIN o

min | (X] - (J] (€)1

Near the singular points, [J'] is equivalent to [J] ' and pseudo-invers

inds out the exact
solution. Though pseudo-inverse gives exact solution near singular points, they are not
feasible because of very high values of {©}. Hence a compromise is required between
feasibility and exactness in case of inverse Kinematic solution near singular points.
Otherwise, pseudo-inverse solutions result in undesirable continuity leading to high joint

velocity which results in very high oscillations.

2.2.4.2 Velocity Analysis Using the Damped Least Squares Mcthod

Damped Least Squares (DLS) method has been proposed by sevi
to solve inverse kinematics problems. In this method, one writes the relation between

{6} and {x} as

©) = (V1711 « A]! 11 1 2414

26

In order o realistically achieve the desired joint velocity values, one must modify the
above equation to suit the highest achievable limit of the manipulator in terms of angular

velocities. In other words, we have to minimize the expression

Min [{i} - []{O}F + A (O} Beld)
where X is known as the damping factor. {0}]| is the norm of the joint velocity and the
term | {x} - [J1{O} | accounts for the minimization of the tracking error or exactness of

the solution and N || {6} |1* takes care of the feasibility of the solution. It is equivalent

1o solving a minimization problem,

Min [(&) - [J]{©} |
subject to constraint (2.16)

110} <6,

where O,,,, is practical limit on manipulators joint velocity. An appropriate value of
damping factor, A, will give the desired solution. Damping factor, . is computed using

(Macicjewski and Klein (1989))

O I = HOPP = Y [P @17
i=1

where %" = {u}" {%} and r is the rank of the matrix and o, {v,} and {u} are obtained

27

from Singular Value Decomposition (SVD) of the Jacobian matrix [J]. To express

Eq.(2.17) in a simple manner one can write

4
, [N
16,0 . 2.8
8,
where ipt * rep the maxil allowable value for that particular joint. At
first, one evaluates
116, - okl G (2.19)

max |
and then using Eqs.(2.18) and (2.19) and using a nonlinear optimization technique, finds

the value of A which would minimize the function

x'o, X0, X0, o g
=" 8l 8 & =m0, 171
ol + A ol + a2 o+ a2

(2.20)
The optimal value of N is then substituted in the following equation to get the damped

joint velocity vector

%) = 2 ey uvnu) (%) @21

Unfortunately, both these methods, i.c., the pscudo-inverse as well as the DLS are,

28

expensive in terms of computations, and not suitable for on-line tasks. It is important 0
select an appropriate value of damping factor, . A low value of N minimizes the
tracking error and gives rise to undesirable high joint velocities. A high value of N
accounts for the robustness but leads to low tracking accuracy (Chiaverni, 1992). The

term g,/ (0} + A?) far away from singular points, becomes (as A - 0)

- i 2.22)
9
DLS solution two main limitations of pseudo-inverse solution near
singular confi ions namely the di inuity and infeasible high joint velocities. But
SVD i are it pensive and error ise is high. In

theory, it is possible to calculate the damping factor N at each of the points along the
trajectory (near singular points) but an optimal value of X, if chosen for all the points

would minimize the computational burden.

2.2.4.3 Velocity Analysis Using Neural Network Method
A single layer neural network is capable enough to learn the relationship between
the Cartesian and joint velocities near singular configurations. This is a highly non-linear

mapping where joint velocities increase at a higher rate.

Considering the fact that in the real-time control problems one has to keep in mind

29

both. the errors (displacement. velocity, force ete.). as well as the computational
efficiency (real-time computations): therefore. in the present work, the relationship

between the Cartesian velocity and the joint velocity vectors was established on off-line

basis using the neural networks over a segment of a trajectory. ircumvents the on-

line computational requirements of the joint velocity vector, as was done by researchers
(Maciejewski and Klein, 1989) mentioned sarlier in Chapter 1. In their method, the
calculations were required to be done on a point by point basis but which results in the
slowing down of the actual task. The additional benefit of the neural network method is

that one can achieve better accuracy also.

The input vector is the Cartesian velocity vector and the output vector is the joint
velocity vector. The training is performed on either side of the singularity point (Sharan
and Balasubramanian, 1993). The following points are kept in mind while performing the
training:

1) Maintain the joint velocities close to the upper feasible limit near the singular

point.

2) A smooth transition curve of joint velocities is required on cither side off

singularity points.

3) Minimize the errors between the actual and achievable joint velociti

4) Have optimal number of training tasks to achieve the non-lincar mapping.

2.2.4.4 Case Study

To illustrate the theory developed so far, the task of moving the end effector along
a trajectory consisting of a scgment of a circle and a radial line is shown in Fig. 2.8.
The point of singularity was the point B in this figure. While performing the task a
constant tangential velocity along the radial path was desired. This task was performed
using (a) A planar two degrees of freedom (DOF) manipulator (b) PUMA-560
manipulator. These are typical manipulators widely used by various researchers in the

ficld of robotics.

Two-Li ipulat
A simple two-link manipulator is shown in Fig. 2.9. The velocity relationships
between joint velocity and the Cartesian velocity for this manipulator is given by
(j] Ui Jip éx
y u In| |6,

.23

where x and y are coordinates of the path followed by the end-effector expressed in

universal frame. The inverse of the Jacobian is written as

1 bey bsi @2

Libs, |-hey - bey -bsy - bsy,

vt

31

.Radial

%iélig,;i\lar * Trajectory

Circular
Trajectory A

X

Figure 2.8 Trajectory Used for PUMA-560 Manipulator

32

Y

Figure 2.9 A Planar Two-Link Manipulator

33

where ¢, = cost;:

in(d, + 0.): and ¢, = costd, + 0.
Here. 6, and 0, are the joint angles of the manipulator and |, and 1, are the link lengths.

One can find from the above equation, the singularity arises when s

00 =0 i
when as the arm stretches outward and both joint rates go to infinity. The two-link
manipulator is moving its tip at a constant tangential velocity of 0.03 my/s. The link
lengths used were I, = 0.4 m and 1, = 0.2 m; the radius of the circle was 0.07 m and

the damping factor A obtained from nonlinear optimization routine was 0.0077.

PUMA-560 Manipulator
The forward kinematic relationship between Cartesian coordinates and joint

coordinates for a PUMA-560 manipulator (shown in Fig. 2.10) is given by

X, = 06y~ Sy + @ - dy
Yo = @550 — dissy +oapsiey - dyg

d

4C23

=
o
5

a5

The link parameters for this manipulator are shown in Table 2.1. While performing the
task, the desired tangential velocity along the circular path for PUMA-560 was 0.5 m/s
and it was the same velocity along the radial path also. The maximum achicvable limit

6,4, for each of the manipulators was taken to be 25 rad/s.

Figure 2.10 PUMA-560 Manipulator

35

Table 2.1 Link Parameters of PUMA-560 Manipulator

Link i o 6; H; D;
(degrees) (degrees) (m) (m)
1 0 0, 0 0
2 90 6, 0.4318 0
3 0 [0.02032 0.127
4 -90 A 0 0.4318

36

2.2.4.5 Results and Discussion

At first a PUMA-560 manipulator is considered. The {©} vector was obtained
using Fgs. (2.11) or (2.12) depending upon the proximity of the point to the point of
singularity. The results obtained are shown in Figs.2.11 to 2.14. Similarly, the results
for damped least squares method using Eq.(2.21) are also shown in these figures. It is
quite clear here that the required values near the point of singularity are high and not

because this mani has a maxil 161 equal to 25 rad/s. For the

neural network analysis, the input and the output values for the learning phase were
specified in accordance with Egs. (2.11) or the maximum limits over the trajectory.

Alter this, the weight matrix [W] which relates {x} and {6} as

151 = [W118) @26
was obtained using Egs. (2.1) to (2.8). The results are shown in Figs. 2.11t0 2.14. In
all these figures, the results obtained by neural network analysis are far more accurate
than those obtained by the DLS method i.e. the neural network method gives the norm
values much closer to the values given by Eqgs. (2.11) and (2.12) than the DLS method.
Secondly, the error in | x| (to the right of point B) in Fig.2.14 in the case of neural
network method, is due to the maximum achievable limit and not due to the method
itsell. In addition, as mentioned earlier. the DLS method requires much more on-line
computations. These facts were further confirmed in the case of two-link manipulator
as shown in Fig.2.9. The results in this case are shown in Figs. 2.15 to 2.18. The

trajectory in this case was the same as used earlier.

a1

i
=
-

—— EQS.(2.11) & (2.12)
= —— NEURAL
S - DAMPED

12.02 18.03 24.04 30.05 36.06 42.07 48.08 54.09 60. 10

TRAJECTORY A
TRAJECTORY C

%
B

0.00 6.01

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00
DISTANCE ALONG THE TRAJECTORY (mm)
Figure 2.11 Variation of the Norm of the Angular Velocity Vector, 6], Along
the Trajectory of a PUMA-560 Manipulator

38

=)
0
a 8
L
8 —— EQS.(2.11) & (.12
0 TRAJECTORY A —— NEURAL
“ 8 =~ DAMPED
Mg, .
s 7
o TRAJECTORY C
D
3
< @
=}
c e
=4 .
8 =
g3
« 5
3¢
z
T 4
Q
3]
&
&
8
«
&

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

DISTANCE ALONG THE TRAJECTORY (mm)

Figure 2.12 Variation of the Angular Velocity, ©,, Along the Trajectory of a
PUMA-560 Manipulator

39

—+— EGS.Q2.11) & (2.12)

b (rod/s)
10.54 16.72 22.90 29.08 35.26 41.44 47.62 53.80

: —a— NEURAL

= —x— DAMPED

o

-l

w 4

>

o«

g

5
[0

g °
< TRAJECTORY R TRAJECTORY C
M
0 I-——I——I—I—I—J
o
8
© B
;

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

DISTANCE RLONG THE TRAJECTORY (mm)

Figure 2.13 Variation of the Angular Velocity, ©,, Along the Trajectory of a
PUMA-560 Manipulator

40

x 10"

Ix
1.40 2.20 3.00 3.80 4.80 5.40 6.20 7.00

NORM

-1.00 -0.20 0.80

—e— EQS. (2.11) & (2.12)
—— NEURAL
—=— DAMPED

TRAJECTORY A TRAJECTORY C

0.00 0.50 1.00 1,50 2.00 2.50 3.00 3.50 4.00

DISTANCE ALONG THE TRAJECTORY (mm)

Figure 2.14 Variation of the Norm of the Cartesian Velocity Vector, ||,

Along the Trajectory of a PUMA-560 Manipulator

41

o
™
<
o
@
™
w0
~N
e —— EGS.@2.11) & 2.12)
@ - NeuRAL
<]~ oampeD
(=]
-
= (o
=
o
w
= o
- o
o
2 o
2 TRAJECTORY C
S TRAJECTORY A
~
O |
o B
£
g
o
5
Q
8
by

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

DISTANCE ALONG THE TRAJECTORY (mm)

Figure 2.15 Variation of the Norm of the Angular Velocity Vector, |6,
Along the Trajectory of a Two-Link Manipulator

42

x 107

-13.70-11.70-9.70 -7.70 -5.70 -3.70 -1.70 0.30 2.30 4.30 6.30

TRAJECTORY A

ANGULAR VELOCITY 8, (rad/s)

—— EQS.Q.11) & (2.12)
—— NEURAL
—x- DAMPED

TRAJECTORY C

0.00 0.50 1.00 1,50 2.00 2.50 3.00 3.50 4.00

DISTANCE ALONG THE T3AJECTORY (mm)

Figure 2.16 Variation of the Angular Velocity, ©,, Along the Trajectory of a

Two-Link Manipulator

43

o
o
<
(=]
2]
+ 8
=3
L] .
o
3
o
> %
N 0n
'g ~N
o
s e
S
< N —— EQS.(2.11) & (2.12)
2 —— NEURAL
r 8| - DAMPED
8 %
o 2
>
o
o
c &
-4 1
3
z 8
I} TRAJECTORY C
o
o
. | —
<
3 TRAJECTORY A
S
0

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

DISTANCE ALONG THE TRAJECTORY (mm)

Figure 2.17 Variation of the Angular Velocity, ©,, Along the Trajectory of a
Two-Link Manipulator

44

TRAJECTORY A

x 10°

NORM [k
10.50 14.00 17.50 21.00 24.50 28.00 31.50 35.00

0.00 3.50 7.00

TRAJECTORY C

—=— EGS.2.11) & 2.12)
—— NEURAL
—»— DAMPED

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

DISTANCE ALONG THE TRAJECTORY (mm)

Figure 2.18 Variation of the Norm of the Cartesian Velocity, |x[f, Along the
Trajectory of a Two-Link Manipulator

45

2.3 LP-Neuro Method

2.3.1 A New Approach - Development of LP-Neuro Method

As discussed carlier. a method 10 trade-off the accuracy and computational
efficiency. is sought. A new method called LP-neuro method (Balasubramanian and
Sharan, 1993) is developed in this section which utilizes the faster convergence property
of linear programming; this result in better error minimization. The architecture of this
method is similar to the feed forward error backpropagation neural network except that

a single layer is enough. The activation function used in this case is a linear activation

function with slope m and intercept ¢, A nonlinear curve is approximated by several
linear curves of different slopes and intercepts. The error minimization objective function
has weights and intercepts as linear variables and the slope as non-linear variables which

is solved using Hookes and Jeeves method.

2.3.1.1 LP-Neuro Method - Type 1
In the neural network method (as used in Sec. 2.2.4.3), the input {1} and desired

output {D} vectors are related by the equation

(D} = WL} il

However, due to errors, one obtains a veetor {O} instead of {D}. The weight

matrix [W] which relates the input and output vector in that cas

is given by

46

hy Wiy Wy = Wy 4

h. Way Woy = W, i
(H) - (O R T k2 3 (2.28)
hy Wi Wy Wi (A

The LP-neuro method is diagrammatically explained in Fig. 2.19. The functional

relationship between {H} and {O} can be written as

o = f) =4 (2.29)

and

(o) = pmin 230

‘The element o; is shown by a square symbol (0) in Fig. 2.19 and h; are the elements of
vector {H}. This is similar to the sigmoidal functional relationship used in

backpropagation method, where one uses the equation

1
= fh) = ——— 31
o =B 1+ exp(-h) @3

One of the ways to obtain the set of weight matrices with minimum error would be by

47

Figure 2.19 Diagrammatic Representation of the Network - LP-Neuro Method

48

writing a cost function E in the following form:
Minimize £ = (d, - 0) + (dy - 0 + ... +(d, - 0)
or
Minimize E = (dy + dy + o +d) - (W iy + o+ wyiy)
Subject to
Wi b+ Wy o+ Wy = d
W+ Wy bk W = d, @32)
where d, are the elements of the desired output vector {D} in Eq. (2.27), and w; are the

4. (2.32) has (j*k) weights and they can be collected in a single dimensional

weights.

array or a vector as

W” wl
(wy = (el @.33)
W]Ir ‘V/"

This vector {W} contains j*k unknowns. Since these can take positive or negative
values, each of these can be replaced by two positive variables (a requirement for
solving linear programming). For example, one can write W, = v, - v, , W, = v; - v, etc.

Substituting w; in terms of v,. one can rewrite the Eq. (2.32) as

49

Minimize E = (d, + d; + .. +d) - Gy - iy +

B A I N
[RONEIE SRS 3 N ORI S S V)
Subject to
[Al{V} = {D} (2.3
“The details of the coefficient matrix [A] can be shown as
Al =

iy ~i, iy -iy =i, <, 0 0 00000 -0000000
0000000 i

iy <y~ 0 0 00000

000O0O0C0O0O0OCO0O0O000O0

(2.35)
Just like {W}, one can also write
)
b/
TR (2.36)
Var
Vi

50

“The matrix [A] contains a number of zeroes in a given row. Here the non-zero elements
oceur together and only once in a given row. It is well known that the optimal cost
function for such problems, involving sparsity, can be obtained much more quickly

(McCormick, 1990) as compared to a case where [A] is a dense matrix.

2.3.1.2 LP-Neuro Method - Type 2:
Further refinements on the above method can be made by replacing the activation

function given in Eq. (2.29) by another function given by

j(hl) = mhy + [(.37

In [q.(2.37) each variable h, has a corresponding scalar m; and a constant ¢, The new

relationship corresponding to Eq. (2.30) will be
(01 = MW -+ (C) @38
where [M] = diagonal slope matrix, which has scalar m; as its diagonal elements.
A similar activation function for the output side can be written as
(S} =[NMID) + (G) 2:39)

where [N] is a diagonal matris. The matrices [N] and {G} are analogous to [M] and {C}

(2.38). The new formulation using Egs. (2.38) and (2.39) will be

51

Minimize E, = [NJ{D} + {G} - IMI[WI{l} - {C}
subject to
IMIIWI{1} + {C} = [NI{D} + {G}
or in the scalar form. it can be rewritten as

Minimize E; = nd, + ndy + ... + nd, - mydwyip + wdy o+ wii)-mgd

Wyly + Wals + b Wyl - Wi o widy i kg

gt tog -]
subject to

mf{wy i+ Wb oL+ W i) e =d 4o

mfwy B+ Wl + R Wi} te =ad g (2.440)

Again here, the weights w;,, ¢, and g, are replaced by two positive numbers as hefore in

the following manner:

W, = V-V

€ = Vy - V. and

= V- Yy i= 12, (2.41)
B = Vu-Vy

After these substitutions, one arrives at

Minimize E, = nd; + ndy + ... + nd - my(iyv, - vy + vy - vy k) mylivy, -

Vo F oo)+ MyCiVagey - Vi o) F MGt e - Vo) + V- Ve -

52

Vg + Voo

Subject o

mii,vi-iva -l va) F Vg cVa = ad V- Ve
moi Ve i hiVas ¥ s Va bt Vas Ve =0 + V- v
mAiVay -t V) F VoV = 0d F Vg - Yy 2.42)

‘This equation can be written in the standard LP notation as,

Minimize B, = nd, + ndy + .ok ad - myGyyy - v iy - vy +) +

iV s+)+ I - s) + I -)

F Vg Vgt Vg F Ve
subject to
IA{V} = {D}

where the coefficient matrix [A] is given by

wi, mj, mi, mi 1111 0 0 00 00000 0 O 00 0 00 00
O 0 00 0 00 00my mi mi-mi1-l-11 0 0 00 0 00 0O

0 0 o0 w0000 o 00 0000 m oom

(2.43)
In the above equation, d, are the desired values and i, are the input values; v;, v,

and v, are the unknown variables and so are m, and n,. The problem shown in Eq.

53

(2.42) is non-linear because of the oceurrence of product terms such as my, .. ete.
However, if this problem is combined with another multi-variable optimization problem

containing all m, only. then the problem involving the remaining variables can be solved

by the linear programming method. Since, the number of variables far exceed the

number of constraints, it would be better to solve for m; using non-linear optimization

and the remaining variables which include weights, by lincar method. s method

clearly differs from others because, for the majority of the les (other than m), the

lincar method yields faster convergence as compared to totally non-linear method. The

additional advantage in the linear method is that one can exploit the sparsity m [A] matrix
in Eq. (2.35). For example, if the iterative values of my are obtained from the non-linear
method, and substituted in Eq. (2.42), then the resulting problem becomes linear and can

be solved using the Revised Simplex Mcthod (Siddal, 1982). The actual flow chart of

the combined method is shown in Fig.2.20. In fact, one can auempt to solve using a

single m value instead of j different m; values and check fer convergence. 1f resul
satisfactory, then the problem can be reduced to single variable non-linear optimization

problem followed by linear programming.

2.4 Applications of the LP-Neure Method

2.4.1 Function Generation

Approximating a sine curve has been a test for non-linear mapping carricd out by

several researchers. The non-linear mapping of a sine curve using backpropag

54

INPUT NEW

SET OF DATA

CALL NON-LINEAR OPTIMIZATION
PROGRAM

CALL LP ROUTINE i
[AKV} = (D} DATA

MINIMIZE OBJECTIVE

FUNCTION WITH ASSUMED [M]
‘TO GET WEIGHTS AS {V}

ASSEMBLE (V]
TO FORM M

1S
CONVERGENCE
ACHIEVED ?

CALCULATE
DESIRED
OUTPUT P()g;AMETERS

Figure 2.20 Flow Chart - LP-Neuro Method

55

described in (Zurada. 1992). The sine curve tken is

¥ = aSintbx) (240

where a = 0.8and b = #. The same example was taken here for the case study. Instead
of using several bias terms as done in Zurada (1992). a different approach was followed
in the present work. To do this. 21 points along the sine curve in a period were taken
for training. In order to identify this curve. the training was performed on different sine
curves having different values of a and b. In all cases, 21 points were used. After this,
the same number of points for this particular curve was provided as input and
corresponding output was checked on the sine curve. The results using Ly, (2.3 and
Eq. (2.44) are shown in Fig. 2.21. The results in this figure show that in the first
quarter period, the BP method yields slightly better results than the LP method (Eq. 2.33)
but not all through. On the other hand, the LP-ncuro method (Eq. 2.41) is always
accurate and decidedly the method to be used. In view of the above, only the LP-neuro
method and BP method were used in the next two examples. Furthermore, a single value
of m yielded results which were sufficiently accurate. Ilence, the same procedure is

followed in solving the next two examples.

2.4.2 Acceleration Analysis of a Two-link Planar Manipulator

A two-link planar manipulator having revolute joints is shown in Fig.2.22. The
end-effector, P, is made to follow a circular trajectory at a constant tangential velocity,

v,, of magnitude equal to 0.15 m/s. (X,.Y,) represents the global coordinate system and

56

— LP(Eq. 2.34)
- LP-NEURO
0.5} * DESIRED

o BP

=4 " " " .

0 5 10 15 20

POINT NUMBER

Figure 2.21 Comparison of Values for the Sine Curve (LP, LP-Neuro Method
and BP Method and the Desired Values)

57

Desired
Trajectory

Figure 2.22 A Planar Two-Link Manipulator and the Trajectory used for
Acceleration Analysis

58

(x,y) represent the local coordinate frame of the link i and the joint variables. 0, and 0,

represent the rotational displacements.

The joint variables, 0, and 0, are related to the position of the end effector

(Xp..Yy) in Cartesian space through the following equations:

8, = Awan2r,r) + Atan2(/t,r) (2.45)

wherer, =2 Yol n=2X L= Y2+ X2 + 1 -1 st=r2+ 1t}
| l

and

0, = Atan(Y, - Lsin®, , X, - [cosh,) - 0, (2.46)

Differentiating Eqgs. (2.45) and (2.46) with respect to time, we get

{él } _ by - bsyy by r {Xp} (2.47)
6,

heyvhey hen| |,
where 1. 1y are the lengths of links 1 and 2 respectively; ¢, = cosf,; and

¢ = cos(0; + 0,) ete. The acceleration of the tip moving along the circular path in the

radial dircction is given by

(2.48)

59

Resolving the tip acceleration in global coordinate system we get

3 cos(a)
{X"’ R (2,49

sin(a))

Here, one can obtain by differentiating the Eq. (2.49)

X, [t b e
l‘i [l‘.l * [ZCIZ ,1U|:

“heidy = he®, +8) L, +0y)
L0, - hs®, 0 -ls®,0)

0,
. 2.50;
5, [@5

In robotic control, there is a great need for minimization of on-line computations. Rather
than performing numerous computations as shown by Egs. (2.45) t0 (2.50), it is desirable

to find a linear relationship between the vectors given by

60

: r
8, o
_-] X
6,

2 v,
B - W1 (2.51)
= nl"
8, 5

YI"

ébl

on the off-line basis first. The first subscript, i, in 0, represents angular acceleration of

«a particular link. and the second one, j, the point along the trajectory. The acceleration

clements X, ¥, etc., are computed using Eq. (2.49).

In control problems. one needs to know {6}, as the end effector traverses the
trajectory. Usually, on-line computations are done on a point by point basis i.e., one has
1o carry out computations given by Egs. (2.45) to (2.50) at every point. In Eq. (2.51)

above, if we obtain the [W,) on an off-line basis then, one can compute (b} on an on-line

s for any set of points along the trajectory, much more rapidly. For training, circles

61

of different radii were used and in all cases 20 points were selected on ditferent

concentric circles. Figs. (2.23) and (2.2-) show the results obtained by Egs. (2.45) 0

(2.50). The same problem was also donc using the BP method and shown in these

figures. These figures clearly show that one can very successfully use neural netwe .k

concept in general, and LP-neuro method in particular, in arciving at 4 better control

strategy for robotic manipulators. The constant velocity requirement of the end effector

is present in many industrial applications such as welding, painting cte.,

2.4.3 Solution of Torque and Reaction Forces of the Two-link
Manipulater

The iterative Newton-Euler dynamics algorithm (see Table 2.2) has been used

very ively by various The link used in this case are shown

in Table 2.3. Here too, the number of computations is quite large to be performed on an
on-line basis. In this method, kinematic solutions are carricd out on a link by link basis
starting from the base (refer to Fig. 2.22). When all the kinematic computations are

completed, then the dynamic computations start from the outer link to the inner link.

The details can be seen in (Craig, 1986) and arc not mentioned here. Even in this

it would be better to have the following relationship on an off-line b;

62

Table 2.2 The Iterative Newton-Euler Dynamics Algorithm

FORWARD RECURSION

Step 1 {a), = IR {uh, + {3} 6,

Step 20 {a), = (R {ab, + {2} 6, + (R {o}, X {g} O,

Step 3 {ah, = IR ({d,, + fad, X o, o+ {eh, X))
+ {6, ¢ 2 x IR {a), % {2} O,

Step 4: {a}, = fah + {ah, x {8}, + {w} X {a}, X {s},

Swep 52 AR, = m, {a),

Step 6: N}, = U fad, ¢ fwd, % (I, {w))

BACKWARD RECURSION
Swep 7o AR = AR, ¢ R,

Swep 8 {nh, = (Rl {0k, (V) +fs), XU, ¢), % (R, {0

Step 9: o= {2) o= o,

63

Table 2.3 Link Parameters of the Two-Link Manipulator

DETAILS LINK 1 LINK 2 UNITS
LINK LENGTH 0.25 0.16 m
LINK CENTER 0.20 0.14 m
OF GRAVITY
MASS 9.50 5.00 kg

b, (rad/sy)

ANGULAR ACCELERATION

08}
0.6} 1
0.4k 1
BP
02}t DESIRED 4
a , g i
0 4 6 10

Figure 2.23 Variation of 8,, Along the Trajectory

POINT NUMBER

65

ANGULAR ACCELERATION §, , (rad/s?)

L o LP=NEURO
« BP
s — DESIRED

POINT NUMBER

Figure 2.24 Variation of 8,, Along the Trajectory

66

s G
7 8,
v
1 6,
o L @.52)
210,
él
2 a,

In Fig. 2.22, as the end effector P moves along the trajectory, due to the applied torques
(7' and %) by the motors on the respective links, the reactions forces (£, f,' etc..) are
produced. One has to know not only the torques but also these reactions forces at every
point along the trajectory. The computations were carried out for the two-link
manipulator along the shown trajectory. Twenty points were used here to obtain [W,].
Results are shown in Figs. 2.25 10 2.30. 'The results clearly show that the overall error

. tis less than 0.2 % in all the cases obtained by LP-neuro method. Such

an accurate relationship would be of great help for on-line control of such systems. One

can also see in these figures that LP-neuro method yields better results than BP method.

67

(%)

!

ERROR IN

s |
3l - BP i
-+ LP-NEURO
2.5f h
2t 4
1.5+ 1
1k %
| \ -
0 M P
0 5 10 15 20

POINT NUMBER

Figure 2.25 Error Values of f, Acting on Link 1

68

ERROR IN ' (%)

351

3k - BP

+ LP-NEURO

2.5F

2%
1.5F

1F
0.5F

0) il

0 5 10 15 20
POINT NUMBER
Figure 2.26 Error Values of f, Acting on Link 1

69

ERROR IN 7 (%)

0.5}

- B8P

=+ LP-NEURO

Figure 2.27

5 10 15

POINT NUMBER

Error Values of 7, Acting on Link 1

70

20

2

ERROR IN

3.5F i

-+ LP-NEURO
25+ E

05 E

0 5 10 15 20

POINT NUMBER

Figure 2.28 Error Values of f, Acting on Link 2

n

(%)

[

ERROR IN

3.5

25

0.5

L - BP
-+ LP—NEURO
e S S
0 5 10 15 20

POINT NUMBER

Figure 2.29 Error Values of f, Acting on Link 2

ERROR IN 7 (%)

3.5

2.5

0.5

- BP

-+ LP-NEURO

0 5 10 15

POINT NUMBER

Figure 2.30 Error Values of 7, Acting on Link 2

73

20

2.5 Conclusions

In the velocity analysis near singular c ations, 4 math ical relationsh

between the angular velocity and Cartesian velocity vectors was established using the

DLS method and the neural network over a segment of a trajectory. The validity of this

relationship was verified using two numerical examples.

Next in the LP-neuro method. the clements of the weight matrix were formulited

as the unknown variables of the LP problem with equality constraints. “These equations

were then modified such that the coefficient matrix [A] was sparse. In another cas

general linear relationship for the activation function was used and the resulting problem

was soived using a combination of LP and a single variable non-linear optimization

method. The utility of the algorithm developed was illustrated using thre ¢ studies,

two of which had applications in the on-line control of rohotic manipulators.

Based on the work in this chapter, the following conclusions can be drawn

1. The neural network method yields more accurate results than the DLS method.

2. The neural network method established relationship over a segment of

trajectory rather than a point as in the case of the DLS method.

3. The neural network method is more suitable for on-line computations due to
fewer computations required.

4. The results in all cases of the LP-neuro method showed that this method

74

yielded more accurate results than the BP method.
5. The use of LP-neuro method results in faster convergence as compared to BP

method in all cas

75

Chapter 3
Neural Networks in Mechanism Design

3.1 Introduction

In the last chapter, neural network methods were used (o solve velocity analysis

problems of robotic manipulators near the points of singularities and of the nonlincar

of such i in the Cartesian space. Furthermore,

neural networks were also used to establish the relationships for the torque

which could be used on on-line basis.

In this chapter, neural network techniques arc used in the of mechanisms

namely the function gencrators as well as rigid body guidance mechanism involving

coupler curves.

3.2 Implementation of Neural Network in Mechanism
Design
3.3.1 Nine-Point Path Problem

A four-bar mechanism with an added coupler P is shown i Fig. 3.1, L, L, 1,

L, and L, are the link lengths and 0, and « are the angles shown in Fig. The

76

Figure 3.1

P (Xi,Y))

A Four-Bar Mechanism - Nine-Point Path Generation

Ly

objective is 1 lind the nec link parameters for the me

hanism whose coupler point

P passes through a gi

ven set ot nine points, The const

tint imposed here is (hat the link

parameters should satisty the Grashot’s criterion i.c.

the sum of the smallest and the
longest link lengths cannot be greater than the sum of the remaining two link fengths if

there is to be continuous relative rotation between two members.

The input consists of the co-ordinates of a set consisting of nine points and the
output, the link parameters. The coupler point P goes through the nine points when 0, is

varied in steps of 40"

shown in Fig. 3.1. The length of the fixed link 1, was chosen

arbitrarily.

The mechanism is obtained using neural networks by first training it by providing

the input data set

(1 = (v, 3.0

78

and th= output

{o} =

‘The superscript | refers to the first training set and the input and output relationship is

governed by the displacement equation of the mechanism

Ry, = Ry, + R 33

By providing different number of data sets. one obtains the convergent weight matrix

W],

The results obtained by both methods are shown in Tables 3.1 and 3.2. It is quite
clear that the LP-neuro method yields better results but BP method also leads to good

results,

TABLE 3.1: LINK PARAMETERS OF FOUR-BAR MECHANISM -

NINE-POINT PATH GENERATION

LINK LP-NEURO BP METHOD
PARAMETERS METHOD
Ly 106.00 mm 106.00 mm
1; 21.01 mm 20,54 mm
i 104.28 mm 105.62 mm
L, 110.79 mm 111,95 mm
L, 43.04 mm 42.01 mm
0, 53.49" 54.00"
3 15.58" 15.62"

80

‘TABLE 3.2: COORDINATES OF THE NINE-POINT PATH PROBLEM -

COMPARISON BETWEEN THE LP-NEURO METHOD AND BP METHOD

DES LP-NEURO BP LP- BP
METHOD METHOD NEURO

NO. X Y X Y X ¥ ERROR | ERROR
(mm) | (mm) | (mm) [(mm) | (mm) [(mm) | NORM | NORM

1 25.37 | 57.89 [25.29 | 57.98 | 24.31 | 56.80 | 0.1204 1.5133
2 15.60 | 60.52) 15.56 | 60.58 | 14.60 | 59.32 | 0.0721 1.5609
3 265 |54.70 | 2.64 | 54.73 1.94 | 53.53 | 0.0316 1.3680
4 -6.70 | 43.00 | -6.69 | 43.01 | -7.09 | 41.98 | 0.0141 1.0927
5 -8.74 }30.52 | -8.73 | 30.53 | -8.87 | 29.72 | 00141 0.8104
6 2345 | 22.79 | -3.47 | 22.82 | -3.47 | 22.20 | 0.0360 | 0.5903
7. 651 |23.69| 644 | 23.72 6.44 | 23.19 | 0.0761 0.5048
8 17.70 | 33.59 | 17.59 | 33.64 | 17.38 | 32.98 | 0.1208 | 0.6888
9 25.88 | 47.53 | 25.77 | 47.61 | 25.17 | 46.65 | 0.1360 1.1627

81

3.3.2 Four-bar function generator
A typical four-bar function generator is shown in Fig. 3.2, The neural network
method was used to design a four-bar function generator corresponding
v o+ x'§ G3ah

At first, the solutions were abtained for three precision points whose exact solutions were

known (Wilson et al., 1983) and then for eight precision points. The precision points

were calculated by using Chebyshev spacing as follows:

X o= X+ ﬁf[l - cus(jw-fb] Fidianiil (]
N 2 2
where
Ax = nRg
n = number of precision points
« = (180/n) degrees.
The linear relationship between 0 and x is given by
A0
0, =0, + —(x-x (3.0)
) = 0, ¢ - E)
Similarly, we also have
Ad
i, e B a7
b os b 00

Figure 3.2 A Four-Bar Function Generator

The mitial vilues X,,. 0., ¢, as well as Ao, ML Ay and AX are preselected. The ohjective
was 1o find the necessary link parameters (L. Ly. Ly Ly) which would yield accurate

vatues at those precision points selected by using Eq.(3.5).

‘The network was trained using the input vector

= in G9

and the output

toy = i, (3.9

‘The method consisted of the following steps:
1. Select three arbitrary values of x; and a set of values for the link lengths.

2. Obtain 0, corresponding to x, using Eq.(3.6).

TABLE 3.3: LINK LENGTHS FOR THE FUNCTION-GENERATOR MECIANISM -

THREE PRECISION POINTS

LINKS EXACT LP-NEURO
SOLUTION" METHOD

L, (mm) 50.80

L, (mm) 264.16

L, (mm) 65.76

Ly (mm)

* Refer Wilson et al. (1983)

TABLE 3.4: COMPARISON OF y VALUES (T{IEORETICAL AND LP-NEURO

METHOD) - THREE PRECISION POINTS

X Y Y
(THEO.) (LP-NEURO) P-NEU
= WYl ya $100
1.00 1.000 0.999 0.100
2.00 2.828 2.828 0.000
3.00 5.196 5.195 0.019

TABLE 3.5: LINK LF

TABLE 3.6:

THS FOR THE FUNCTION-GENERATOR MECHANISM -

EIGHT PRECISION POINTS

LINKS LP-NEURO
METHOD
L, (mm) 50.80
L, (mm) 230.50
L, (mm) 56.642
L, (mm) 222.50

COMPARISON OF y VALUES (THEORETICAL AND LP-NEURO

METHOD) - EIGHT PRECISION POINTS

NO. x Y Y % ERROR
(THEO.) (LP-NEURO) (LP-NEURO)
= (YuYipHyq *100
1 1.019 1.029 1.029 0.000
2 1.169 1.264 1.261 0.237
3 1.445 1.7137 1.715 1.266
4 1.805 2.425 2.368 2.350
5 2,195 3.252 3.170 2.521
o 2555 4.084 4.011 1.811
7 2.831 4.763 4.719 0.923
8 2981 5.144 5.122 0.427

86

Sulve for o, corresponding o ¢ using displacement anmalysis of a tour bar
mechanism.

4. Obuin y, using Eq.(3.7).

The results obtained tor the link lengths of four-bar function generator for the

three and eight preci

sion points are given in Tables 3.3 1 3.6 Tables

and 3.0 show
the errors in y values in function generators. It is quite clear from these tables, that the

neural network can be sucy

stully used (o design function gene

ors. Only the 1.P-neuro

method was used here because it yiclded better results than the BP method carlier.

3.4 Conclusions

The present work deals with the use of new technigues in the solution of design

problems of different mechanisms. The set of weights which establishes the line

relationship were obtained using two non-linear methods. Based on the work in this
chapter the following conclusions can be drawn:

1. The LP-neuro method yields better results than the BP method.

2. One can successfully use the neural network technique to salve the

meclianism design problems.

87

Chapter 4
Neural Network Control in Robotics

4.1 Introduction
Much effort has been devoted 1o develop efficient procedures for real-time

computation of manipulator dynamic equations. Recursive algorithms like Newton-Euler

algorithm are now being used to achieve substantial improvement in terms ol

computational efficiency. In inverse dynamic calculations, the joint accelerations are
affected not only by the computed torques but also by the disturbances such as Coulomb
and viscous friction and modelling errors. The dynamic equations of a robotic
manipulator form a complex, non-linear multivariable system. Computations are done

at cach point along the trajectory. wiich in turn reduce the overall speed of the

movement of the manipulator,

In this chapter, an effort has been made to improve the computational need, by
providing the gain parameters required to control the desired trajectory of a simple planar
two-link manipulator using neural networks. Learning is based on input parameters like

positional parameters {O}, error in position values {e}, error in joint velocity values {é}

ete. Asetof

n parameters namely position gain values &, and velocity gain values &,

is identificd using the LP-ncuro method. Then the weights obtained are used in the on-

88

line trajectory control

4.2 Trajectory Control

An independent Proportional-Plus-Derivative (PD) Control scheme is used 1o

control the movement of the manipulator. While PD schemes are adequate in most

control i there is ing i.c. the end-cifector could go beyond the

specified position before actually settling down. Overshooting is quite undesirable.
because in order to eliminate overshooting, an integrator is used which introduces
damping and causes the end-effector to move slowly through a number of intermediate

set points, thus considerably delaying the completion of the task, and the quality of the

displacement etc. The controller design can thus become more sophisticated on account

of the involvement of non-linear system dynamics.

4.2.1 Inverse Dynamics of a n-Link Manipulator

The dynamic equation of an n-link manipulator in matrix form is writien as

It} = [M@)] (8] + (@8} + (GO)) el
where
[M(©)] is the mass matrix
{V(0.0)} s the vector containing centrifugal and coriolis terms
{G(O)} is the vector containing gravity terms

In the case of a simple planar two-link manipulator shown in Fig. 2.9, the matrices

89

invalved are:

* 20 4,m,

L{m, ~ my Iim, ~ I|I:m:r;] 4.0
M) = J -

Iim, - Llmgc,

-mlls.0 -2 :
ml 15,07 - 2myl,1,5.8,0, - @.3)

{V0.0)}

myyge,, + (m+my)l g, (4.4)

GO
Ll mlge,y

The quations are derived using the Newton-Euler algorithm (shown in Table 2.2)

based on the following assumptions:
1. All mass exists as a point mass at the distal end of the link.

2. Inertial tensor written at the center of mass for cach link is the zero matrix.

3. There are no forces acting on the end-effector.

The idea of inverse dynamics is to seck a non-linear feedback control law

T = f00), “.5)

which when substituted in Eq.(4.1), results in a lincar closed loop system. It is quite

difficult or i ible to find control for general i systems. Since

IM(©)] is invertible, we may solve for joint aceeleration {0} of the manipukor as

101 = M {Is] - (@) - (G by
To achieve control. a finite difference scheme where {0} and {0} are expressed in terms

of {0} mentioned above. is used. This is discussed later in Section 4.3.1.

4.3 Evaluation of Gain Parameters for Trajectory
Control

In a PD control scheme, the torque equation is given by

fr .l = 1K lel ~ (K] 1é) (L]

where {¢} = {O,(t+1)} - {O,(0} and

{¢} = {0,a+ D)} - (6,3

From Fig. 4.1, the following observations can be drawn:

1. The kinematic parameters with the subscript represent the desired values on
the trajectory. These values are computed based on Table 2.2, The subscript a refers (o
the actual values of the kinematic parameters obtained by solving the control equations
which involve the finite difference scheme and the relevant equations are 1iqg.(4.10),(4.11)

and (4.12) mentioned in Section 4.3.1.

2. It should be noted that the red values using Table 2.2 can be computed ol1-
line based on the trajectory planning. On the other hand, the actual values and the errors

etc., have to be computed on-line. One should try to minimize the on-line computations

91

O DESIRED TRAJECTORY
X ACTUAL TRAJECTORY

0u(t +3), 0a(t + 3)

Oa(t +3),6a(t +)

Ba(t +2),6a(t +2)
04t + 2), 04t +2)

Ot 4 1), 0a(t + 1) X 0u(t+1),0,(t+1)

04(t), 0a(t) X 0a(t)dat)

Figure 4.1 Specifications of the Desired and the Actual Trajectory

92

to increase the spe

ed with which the sk is performed.

30 (K} and [K(] are diagonal matrices with diagonal elements consisting of

position gain &, and velocit n &, value:

spectively. Mathematically, they

writlen
as
Al

- and |K,)

(R

The use of a single value respectively for the entire trajectory for &, and &, may

not be able to produce torques to follow the desired trajectory. The tra

ectory control can

be achieved by evaluating the set of gain parameters for the entire trajectory using non-

linear optimization method (ihe optimal control method) as described in the Section 4.3,

on a point by point basis. This requires the gain values to be different for cach point
along the trajectory of the manipulator. The objective of the optimal control is 0
minimize the errors in joint positions and joint velocities between the actual values and

the desired values, based on the gain variables [Kj] and [K,] as discussed below.

4.3.1. Evaluation of Gain Values Using Non-Linear Optimization
Method

A simple planar two-link manipulator having two revolute joints shown in Fig.2.9
was considered. The trajectory ir.colved with associated velocity profile are shown in

Figs. 4.2 and 4.3 respectively. In Fig.4.3, the end effector accelerates from point A o

93

Y (m)

0.333

0.331

0.329

0.327

0.325

0.323

0.321

0.319

0317

D%,
c
——*— NL OPTIM.
ke d ——0— DESIRED
w8
A
t t + + t
0.28 0.205 03 0.305 0.31 0.315 0.32
X (m)

'd Trajectory and the Trajectory Obtained Using Non-Linear
Optimization Method

94

TANGENTIAL VELOCITY, v, (m/s)

0.12+

0.1r

0.02

K

) Stage Il \

Stage |

5 10 15 20 25

POINTS ALONG THE TRAJECTORY

Figure 4.3 Desired Tangential Velocity Profile

95

30

Table 4.1 Various Parameters used for the Trajectory Control

Link 1 Link 2
Link Lengths (m) 0.3 0.2
Mass (kg) 4.0 3.0
Radius of the Circle (m) 0.05
Maximum Tangential Velocity 0.15

v,, (m/s)

Initial Position Gain Values

Ky = 100.5; ki, = 200.10;

Initial Velocity Gain Values

ki = 50.6; k, = 80.8;

Step value in time, At (s)

0.01

Initial Position (rad)

0, = 1.1469; ©, = -0.9228;

point B (Stage D) and then traverses along the trajectory at constant tangential velocity v,

with 0.15 m/s (Stage D) to C and then decelerat

es 10 zero speed at D (Stage HD. The

various parameters used in the trajectory control are shown in Table 4.1. The ion

of 6,.8,.0, and 6. of the desired trajectory are shown in

- 4.4 and 4.5 respectively.
The various steps involved (shown in Fig.4.6) are:
1. Note the link parameters like lengths, mass ete., (refer to Table 4.1).

2. Calculate the coordinates of the desired circular trajectory using (shown in

Fig.2.22 with the specifications ©, = 45,0, = 0" r = 0,05 m) a single variable rv. The

transformation matrices used were:

con@) -sin@) 017 feos@y) -sin0) 0 4] feost -sinew 0 @y 1] p

x
¥ sin@) cos0p 0 0| [sin@2) et 0 0] [unem cnen 0 0 0
0 0 0 00 0 o1) o
1 0 0 01 o 0 o 0 [1

1.9
3. Calculate the joint parameters such as {O(0)} and the joint velocity vector
{©,()} and joint accelcration {6(t)} for the desired trajectory using Fgs.(2.23) and (2.50)
(corresponding to each point on the velocity profile). It can be done ofi iso. Note
the initial joint position {©,(t=0)} and joint velocities {0,(i=0)} of the manipulator, and
compute {e} and {¢} (shown in Figs. 4.7 and 4.8) mentioned in q.(4.7).
4. Compute the torque {r.} based on the error in joint position {e} and joint
velocity {€} using the Eq.(4.7). Substitute the torque in the dynamic equation, Iq.(4.6),

and evaluate the joint acceleration {O(t)} using the expression:

97

(rad)

9,

(rad)

0,

1.240

-0.820

-0.930

-0.840

-0.950

-0.960

-0.870

-0.980

-0.990

1 5 9 13 17 21 25
POINTS ALONG THE TRAJECTORY

o @

1 9 13 17 21 25

POINTS ALONG THE TRAJECTORY

(b)
Figure 4.4 Variation of (a) 0, and (b) 0, Along the Desired Trajectory

98

0.500

0.400

(rad/s)

0.300

o,
3y

0.200

0.100

0.000 ; - - “+
1 5 9 13 17 21

POINTS ALONG THE TRAJECTORY
(@)

-0.200

-0.300

(rad/s)

-0.400

6,

1 5 9 13 17 21
POINTS ALONG THE TRAJECTORY

(b)
Figure 4.5 Variation of (a) 0, and (b) O, Along the Desired Trajectory

9

25

| Step 1 i
p 1:Read link parameters
|

Y

‘ Step 2: Find xy coordinates of the required trajoctory ‘

;

Step 3: Find joint angle, Cartesian velocity
and joint velocity of the required profile

i

Step 4: Evaluate torque and in turn joint
acceleration based on error in
joint position and joint velocity

l

Step 5: Use integration technique to cvaluate
Jjoint velocity and position at the
next time step.

l

Step 6: Use non-lincar oplimization technique to
cvaluate the gain values which would minimize
the error in position and velocity at
the next time step

Record the gain valucs

Figure 4.6 Flow Chart - Trajectory Control Using Non-Linear Optimization Method

(rad)

€

(rad)

€

8.00E-03 -

5.00E-03

-

4.00E-03
3.00E-03 T X /
2.00E-03 Ve

1.00E-03

0.00E+00

POINTS ALONG THE TRAJECTORY
(a)
1.00E-03

1 5 9 13 17 2

0.00E+00

P
+1.00E-03
-2.00€-03 N\
-3.00E-03 "

-4.00E-03

-5.00E-03

-8.00E-03

1 5 2 13 17 2
POINTS ALONG THE TRAJECTORY

(b)
Figure 4.7 Variation of (a) ¢, and (b) ¢, Along the Trajectory

101

25

(rad/s)

€

(rad/s)

€

8.00E-02

8.00E-02

4.00E-02

2.00E-02

0.00E+00

-2.00E-02 -

-4.00E-02 -

®
Xy
Xy
e S

-8.00E-02

8.00E-02

6.00E-02

4.00E-02

2.00E-02

0.00E+00

-2.00E-02

-4.00E-02

—

13 17 21 25

POINTS ALONG THE TRAJECTORY
(€]

-
X

oo
-

e

/

—x—%

S
LT

-8.00E-02

5 9 17
POINTS ALONG THE TRAJECTORY

13 21 25

(b)
Figure 4.8 Variation of (a) ¢, and (b) ¢, Along the Trajectory

102

(8,01 = MO [Hr,) - {HOMNO,M] - (G@m] 10
5. Having calculated the joint accelerations. numerically integrate forward in steps
of time At and obtain {©,(t+ 1)} and {©,(t+ 1} using Newmark-g scheme. The equations

involved are:
10,¢+0} = (0,0} + [(1 - B) (B, + B (B+D)] Ar H1D

10,(t+D)) = (8,0} + B (6,(0) + (05 ~ @) (B,0] + « (B¢ D] Ar?

(1.12)
where o and 3 are known constants (a = 0.5 and 3 = 0.001 were used in the present
problem). The calculation of &°(t+1) involves the following steps:

(a) Write an equation similar to Eq.(4.10) where the subscript a is replaced by
at time t+ 1. This can be mathematically expressed as:

18°+)} = (MO [{t') = (MOL+1O 1)) - (GO0 IN1]
(4.13)

where

{r'} = KI{ 002 -00h} « [KI{O0 - O}
“.14)
The computation of {&°(t+1)} involves the quantitics known at this step. There is no
iteration required here.

6. The gain values are evaluated using non-linear optimization routine that would

103

minimize | O,6+1) - O,a+1)] and [0,a+1) - O+ 1) . Obtain [K,] and [K,] using

the THookes and Jeeves method (Rao, 1978) explained below:

Define
ko
w - Kyz @.15)
k. E
Ky
and

FEXD = {8,t+1) - ©1+1)} + {O,¢+1) - =1} (4.16)

The objective function can be mathematically written as

Uaxy - FXD - ﬁl"‘gf”(gn @in
where {X} is the design vector and
k constraints are represented as g, and
H(g,) is the Heavyside unit step function defined so that
H(g) = 1 forg, =0 or
H(g) = 0 forg, < 0 4.18)
In i.q.(4.17), P, are large penalty constants which are positive because the present
problem is a minimization problem. Next, one needs to solve for the minimum of
U({X}) using the Hookes and Jeeves method and the step-by-step procedure for a design

vector {X} having n components is mentioned below:

104

(1) Start with an initial estimate of the design vecior

i 10)

u,i=12....n

(if) Set temporary base point {Y,,} = {X,}

(iii) Start the exploratory move by perturbing one design variable at a time in
order to find the improved value of tie objective function. Set:

Y, s agfu} irU = Udy, b A

5,
{ht < U Uy,)

-av{uy WU = UQY,) - Av{uh
) = < U=U4y, b
< U= UGY, A inh

(4.20)

() = {¥,) iU =udy, D) < min@.U)
In this way, all the design variables x, are perturbed and the improved position
{Y\,} found.
(iv) If the point {Y, .} is not different from {X,}, reduce the step lengths Ax,; set
i = 1and go to step (iii). If {Y,,} is different from {X,} obtain the new base

point as

105

Hoab = (0} @20
(vy Find the pauern direction {S} using
S} = {X.) - {X} (4.22)

Find the point {Y,.,,} as

i) = Xd =2 45 @23)
Find X", the optimum step length in the direction {S} and use A" in Eq.(4.23).
(vi) Set k = k+1, U, = U{Y,,}) and i = 1; repeat step (iii). If at the end of
step (iii), U({Y,,}) < U(X,) use the new base point as {X,.,} = {Y,,} and go
to step (v). If UQY,D) >= U{X D), set {X,,,} = {X\} and reduce step
lengths; set k = k+1 and go to step (it
(vii) The process is terminated if the step lengths become less than e, a very small

quantity.

These gain values when substituted in Eq.(4.7) would result in the desired torque.

3 10 6 were repeated for the entire trajectory and a set of gain values was

abtained. The objective here was to have the position control primarily. The results in

Fig.4.2 show that this objective was realized very well. The gain values for this

trajectory are shown in Figs. 4.9 and 4.10 and the gain values change quite significantly

along the trajectory. This is because the matrices [M©)], (V(e,é)} etc., undergo

continuous change from position to position which also includes the changes in the

velocity vector.

106

K,

2000

-2000

-4000

-8000

-8000

-10000

-12000

-14000

2000

1000

-1000

-2000

-3000

-4000

-—u -
et a—at LR A B A A

5 9 13 17 21 25

POINTS ALONG THE TRAJECTORY
(a)

5 9 13 17 21 25
POINTS ALONG THE TRAJECTORY
b,

(b)
Figure 4.9 Variation of (a) k,, and (b) k,, Along the Trajectory

107

1800

1500
1200

—

800

—n—u—a— 8— 8!
£ 600 | /

300

gy

1 5 g 13 17 21 25
POINTS ALONG THE TRAJECTORY
1500 8)

ey

LR [————
> -

-1500

-4500

-8000 -

-7500

1 5 9 13 17 21 25
POINTS ALONG THE TRAJECTORY

(b)
Figure 4.10 Variation of (a) k,, and (b) k,, Along the Trajectory

108

4.4 Neural Networks in Trajectory Control of Two-Link
Manipulators

Neural network method has been widely used in many control applications, 11
neuro method was found to be very effective in the mechanical design problems which
was discussed in Chapter 3. It would be quite beneficial to have a weight matrix which
relates the input vector

{1} = {0,.0,.0,.0,.¢ 08,8, ()
and the output vector

(0} = {kpkpkar kil «

25)

Several sets of {I} and {O} can be computed by starting with different initial conditions,

but the same trajectory as shown in T 4.2and 4.3, Then the weight nu

rix |W] can

be obtained from these sets of {I} and {O} in accordance with the descriptions in Chapter
2. ‘The problem of trajectory control computationally becomes a tot simpler now with
the known weights [W]. The steps involved in obtaining the weight matrix as shown in
Fig.4.11 are as follows:

Step 1: Let the end-effector be at some initial position having coordinates (x.y).

Step 2: Use non-linear optimization method to evaluate gain values off-line for

different trajectories.

Step 3: Note the input and output parameters for various trajectorics,

Step 4: Compute [W] using the LP-neuro method.

Step 5: Use [W] on-line to evaluate the gain values (ky, ki, ete ,) as shown in

Figs. 4.12 and 4.13. Here, the weight matrix relates the input and output veetors

109

initial position having coordinates (x,y) i

I__‘

Step 2: Use non-linear optimization method to
cvaluate the gain values

__k Stcp 1:Let the end-cffector be at some
i

Step 3: Note the input and outpu’. parameters
for various trajectories

\

-

Is the training
pattern over 7

Step 4: Use LP-neuro method to
cvaluate the weight matrix [W]

Record the

weight matrix

Figure 4.11 Flow Chart - Evaluation of Weight Matrix [W] for Trajectory Control
Using LP-Neuro Method

110

3000 S

o G Omgmtfmy 0000000000
-3000
000
F

9000 = At

— NLOPTIM.

12000 LP-NEURO
-15000

1 5 9 13 17 21 25
POINTS ALONG THE TRAJECTORY
2000 (a) .
1000
%
[/
& -1000
2000 —
—#— NLOPTIM.
-3000 —o— LP-NEURO
-4000 =
1 5] 13 17 2 2

POINTS ALONG THE TRAJECTORY

(b)
Figure 4.12 Comparison of Gain Values (a) k,; and (b) k,, Obtained Using Non-Linear
Optimization Method and LP-Neuro Method

a8

K,

Figure 4,13 Comp:

1500

1200

—*— NL OPTIM.
—9%— LP-NEURO

1 5 9 13 17 21 25

POINTS ALONG THE TRAJECTORY
(a)

0 - s g e A O B s

P

-1500

-4500

~—%—— NL OPTIM.

-8000 —0— LP-NEURO

1 5 9 13 17 21 25
POINTS ALONG THE TRAJECTORY

(
on of Gain Values (a) k,, and (b) k,, Obtained Using Non-Linear

Optimization Method and L?-Neuro Method

112

O\
knl
Ky .20)
o=
Ky €
k‘: e,
4
é

The results corresponding to the steps mentioned above, carried out for the trajectory of
a two-link manipulator, are shown in Fig. 4.14. These results clearly show the

applicability of neural network method for on-line control of robotic manipulators.

4.5 Conclusions

Based on this work, the following conclusions can be drawn:

1. The non-linear controi method yields accurate results.

2. LP-neuro method yields sufficiently accurate weight matrices for on-line

control of robotic manipulators.

113

0.328 T T T T T T T
®
R
0326 9 g
&
&«

0.324 b
i -4
E
> o LP-neuro &

0.3221 1

X
x Desired
X
0.32- % 1
3
3
&
0318 . . . \ . . xo
0.306 0.308 0.81 0.312 0.314 0.316 0.318
X (m)

Figure 4.14 Desired Trajectory and the Trajectory Obtained Using LP-Neuro Method

114

Chapter 5
Conclusions

In this work, at first a new neural network learning algorithm called the LP-Neuro
method for obtaining the weights was developed. The problems in the design of
mechanisms were solved using this method and the backpropagation method. After this,
the gain values were obtained by optimal control technique in the case of robotic
manipulators. These gain values were then used to compute the weights for the on-tine

control problems,

5.1 Conclusions

Based on this work, the following conclusions can be drawn:

1. Neural network method can be used in the velocity analysis of robotic

near singular i by ishing a

relationship between the angular velocity and Cartesian velocity vectors.

2. In the inverse velocity analysis near singular configurations, the neural network
method yielded more accurate results than the DLS method.
3. The ncural network method established relationship over a segment of @

trajectory rather than a point as in the case of the DLS method.

115

4. A new algorithm called LLP-neuro method was developed in which elements of
the weight matrix were formulated as the unknown variables of the LP problem.
5. The use of LP-neuro method resulted in faster convergence as compared to BP
method in all cases.

6. One can successlully use the neural network technique to solve the
mechanism design problems.

7. The non-lincar optimization method was found successful in evaluating the set
of gain values for the manipulator to follow the desired trajectory.

8. LP-neuro method can be used to evaluate the weight matrix [W] that can be

used in the on-line control of robotic manipulators.

5.2 Future Recommendations of the Work
Future research work can be pursued on the following topics:

1. LP-ncuro method can be extended to many applications in the on-line control
ol robotic manipulators.

2. Efficient techniques like Karmarkar's algorithm can be applied in Linear
Programming for faster convergence for problems involving large number of
design variables.

3. 1t may be possible that the Optimal Control Method can be used in the on-line
control of manipulators having more degrees of freedom if computations are done

on parallel processors.

116

4. The neural network method

an also be used to solve problems involving

friction and other inities in the trajectories of robotic

17

REFERENCES

Akhras, R., and Angeles, J., 1990, "t
of Planar Linkages for R:gul Body Guidance", Mechanisms alul Mm:hme Themy. Vol.2s,
No.l, pp.97-118.

Akio, 1., Takeshi, F., and Shigeru, 0 I992, "A Neural Network Compensator for
Uncertainities of Robolic i EEE Tr on Industrial Electronics,
Vol.39, No.6, pp.565-569.

Angeles, J., Alizivatos, A., and Akhras, R., 1988, "An Unconstrained Non-Linear
Method for Optimization of RRRR Planar Palh Generation", Mechanisms and Machine
Theory, Vol. 23, No.5, pp.343-353.

Asada, H., 1990, "ludchmg and Learmng of Comphance Using Neural Nets:
ion and G of ", Proc. IEEE Int. Conf. on
Robotics and Automation”, Vol.2, pp']237-12444

Baba, N., 1989, " A New Approach for Finding the Global Minimum of Error Function
of Newral Networks", Neural Nerworks, Vol.2, pp.367-373.

Ihhsulmnmman R., and Sharan, A.M., 1993, "LP-Neuro Method - A New Approach
ng Neural Network Problems®, /ni. Simulation/WNN/ANN Conference, San

Barmann, F., and Bicgler-Konig, F., 1992, "On a Class of Efficient Learning Algorithms
for Neural Networks", Neural Nenworks, Vol.5, pp.139-142.

I992, "Inverse lefercnual Kinematics of Robotic Manipulators at Singular
Co , IEEI i Conference on Robotics and

v
and N
Automation, Tutorial M1, Nice, Fi rance pp-2.1-2.9.

Craig, J.C., 1986, tion 1o Robotics - hanics & Control, Addison-Wesley
Publishing Company, Massachusetts.

Deo, A.S.. and Walker, LD., 1992, "Robot Subtask Performance with Singularity
Robustness using Optimal Damped Least-Squares”, Proc. Jof the 1992 IEEE International
Conf. on Robotics and Automation, Nice, France, Vol.1, pp.434-441.

1s

Erdman, A.G.
Vols. 1&.

and Sandor. G.N., 1984, Mechanism Desiy
Prentice-Hall, Englewood Cliffs, New Jersey.

:Analvsis and Svathesis,

Francisco, J.A.. 1990. "Multilayer Back Propagation Network for Learning the Forward
and Inverse Kinematics Equations", Proc. Im. Joint Conf. on Neural Networks,

Washington,.C., pp.11.319-11.321.

in, F.. 1955, "App
the ASME, Vol.77, pp.853-861.

ir-Bar Linl

Synthesis of I ", Transaciions of

Freudenstein, F., and Sandor, G.N., 1959,
Means of a Programmed Digital Computer", ASME Journal of
Series B, Vol.81, pp.159-168.

ing Mechanism by
Engineering for Industry,

Fukuda, T., Shibata, T., Kosuge, K., 1991, "M -uromorphic Sensing and Control -
Applications to Position, Force and Impact Control for Robotic Manipulators”, Proc. of
the 30th Conf. on Decision and Control, Brighton, England, pp. 162-167.

Fukuda, T., and Shibata, ., 1992, “Theory and Applications of’ Neural Networks for
Industrial Control Systems", Transactions on Industrial Electronics, Vol. 39, No.6,
pp.472-487.

Grossberg, G., 1982, Sudies of Mind and Brain: Newral Principles of Learning.
Perceprion, Development, Cognition and Motor Control, Boston, MA,

Gu, Y. and Chan, J.W.M., 1989, "On design of Non-lincar Robotic Contiol
Neural Networks", Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, C
Massachusetts, pp.200-205.

stem with
Sambridge,

Sulati, S., Barhen, J., and I[yengar, S.S., 1990, "Computational Neural Learning
Formalisms for Manipulator Inverse Kinematics”, NASA Conference on Space
Teleroborics, Washington, Vol. 1, pp.333-342.

Guo, J., and Cherkassky, V., 1989, "A Solution to the Inverse Kinematic Problem in
Robotics using Neural Network Processing", Proc. Int. Joint Conf. on Neural Networks,
Washington, D.C., pp.11.299-11.304.

Hecht-Nielsen, R., 1990, Newrocomputing, —Addison-Wesley — Publishing Co.,
Massachusetts.

Helferty, J.J., and Biswas, S., 1990, "Neuromorphic Control as &
Regulator", Proc. 5th IEEE Int. Symp. on Imtelligent Control, Phi ja, 1 ylvania,
pp.506-511.

119

Hopficld, J.J., 1982, "Neural Networks and Physical Systems with Emergent Collective
Computational Abilities”, Proc. Nat. Acad. Sci., U.S.A, Vol.79, pp.2554-2558.

Jain, 1., 1988, Computer-Aided Kinematic and Dynamic Analyses of Flexible Spatial
Mmupulamn of Arbitrary Architecrure, M.Eng. Thesis, Memorial University of
St.John's, N Canada.

Jamshidi, M., Horne, B., and Vadice, N., 1990, A Neural Network-Based Controller
for a Two-Link Robot", Proc. 2%h Conference on Decision and Control, Honolulu,
Hawaii, pp.3256-3257.

Karakasoglu, A. and Sundareshan, M.K., 1990, "Decentralized Variable Structure
Control of Robotic i Neural G i Algorithms", Proc. 29h
Conference on Decision and control, Honolulu, Hawaii, pp.3258-3259.

K iannis,N.B., and A.N., 1992, "Fast Learning Algorithms for
Neural Networks", IEEE Transactions on circuits and Systems, Vol.39, No.7, pp.453-
473,

Kawato, M., 1990, "Computational Schemes and Neural Network Models for Formation
and Control of Multi-joint Arm Trajectory", Neural Networks for Control, The MIT
Press, London, pp.197-228.

Kohonen, T., 1988, "An Introduction to Neural Computing”, Neural Networks, Vol.1,
No.1, pp.3-16.

Kulkarni, A.D., 1991, "Solving ll-Posed Problems with Artificial Neural Networks”,
Newral Nerworks, Vol.4, pp.477-484.

Lawson, C.L., and Hanson, R.J., 1974, Solving Least Squares Problems, Prentice Hall
Inc., Englewood Cliffs, New Jersey.

Liu, Z., and Angeles, J., 1992, “Least-Square Optimization of Planar and Spherical
Four-Bar Function Generator Under Mobility Constraints”, ASME J. of Mechanical
Design, Vol. 114, pp.569-573.

Macicjewski, A.A., and Klein, C.A., 1989, * The Singular Value Decomposition:
Computation and Applications to Robotics", The International Journal of Robotics
Research, Vol.8, No.6, pp.63-79.

Mayorga, R.V., Wong, A.K.C., and Milano, N., 1992, "A Fast Least Squares Solution
lo M.uupuh(or Inverse Kinematics and Singularities Prevention”, Proc. [JEEE
¢ on i Robots and Systems, Raleigh, NC.

120

McCormick. S.T., 1990, "Making Sparse Matrices Sparser: Computational Resulis”,
Mathematical Programming, Vol. 49, pp.91-111,

Mohan Rao, A.V., Sandor, G.N.. I\uhh. D., and Soni, A.H., 1973, "Closed Form
Synthesis of Spatial Function Gi N for the Maxi Number of
Precision Points", ASME J. of Engineering for Industry, Vol.95, pp.725-736.

Morgan, A.P., and Wampler, C.W., 1989, "Solving a Four-Bar Design Problem U
Continuation", Advances in Design Automation - 1989; Mechanical Svstems Anal)
Design and Slmululmu B.Ravani, ed.; ASME DE- Vol.19-3, pp.409-416.

Nakamura, Y., and Hanafusa, H., 1986, "Inverse Kinematic Solutions With Singularity
Robustness for Robot Manipulator Control", Journal of Dynamic Systems. Measurement
and Control, Vol.108, pp.163-171.

Nguyen, L., Patel, R.V., and Khorasani, K., 1990, "Neural Network Architectures for
the Forward Kinematics Problem in Robotics", Proc. Joint IEEE International Newral
Nerwork Conf., Sandiego, California , pp.393-399.

Rao, S.S., 1970, Optimization Theory and Applications, McGraw-Hill, New York.

Rumelhart, D.E., and McClelland, J.L., 1986, Parallel Distributed Processing, MYT
Press, Massachusetts, Vols. 1 and 2.

Sharan, A.M., and Balasubramanian, R., 1993, "Neural Network Method for Inverse
Kinematics Near Singular Configurations", OMAE 93 Conference, Scotland.

Shigley, J.E., and Uicker, J.J., 1980, Theory of Machines and Mechanisms, McGraw-
Hill, New York.

Siddal, J.N., 1982, Oprimal Engincering Design - Priaciples and Applications, Marcel
Dekker Inc., New York.

Simpson, P.1., 1990, Artificial Neural Systems: Foundations, Paradigms, Applications
and Implementation, Pergamon Press, New York,

Subbian, T., and Flugrad, D.R., 1989, “Four-Bar Path Generation Synthesis by a
Continuation method", Advances in Design Automation - 1989; Mechanical Systems
Analysis, Design and Simulation, B.Ravani, ed.; ASME DE- Vol.19-3, pp.425-432.

Suh, C.H., and Radcliffe, C.W., 1978, Kinematics and Mechanisms Design, Robert L.
Kricger Publishing Co., Malabar, Florida.

Tabary, G., and Salaun, ., 1992, "Control of a Redundant Articulated System by Neural

Networks™, Newral Networks. Vol.3, pp.305-311.

Tinubu, S.0., and Gupta, K.C., 1984, ‘Oplunal Symhusls ul Function Gunnmlurs
without the Branch Defect”, ASME J. of and in
Design, Vol. 106, pp.348-354.

Tsai, L.W., and Lu, J.J., 1989, "Coupler-Point-Curve Synthesis Using Homotopy
Mcthods®, Advances in Design Automation - 1989; Mechanical Systems Analysis, Design
and Simudation, B.Ravani, ¢d.; ASME DE- Vol.19-3, pp.417-424.

Wampler, C.W., and Leifer, L.J., I988 "Applications of Damped Least-Squares
Methods to Resolved-Rate and Resol ion Control of Mani ", Journal
of Dynamic Systems, Measurement uml Control, Vol.110, pp.31-38.

Wampler, C.W., 1986, "Manipulator Inverse Kinematic Solutions Based on Vector
Formulations and Damped Least-Squares Method", 1EEE Transactions on Systems, Man
and Cybernetics,

Vol.16, No. 1, pp.93-101.

Wampler, C.W., Morgan, A.P., and Sommese, A.J., 1992, "Complete Solution of the
Nine-Point Path Synthesis Problem for Four-Bar Linkages", J. of Mechanical Design,
Trans. ASME, Voi. 114, pp.153-159.

Wasserman, P.D.. 1989, Neural Computing Theory and Practice, Van Nostrand
Reinhold, Nework.

Wilde, D.J., 1982, “Error Linearization in the Least-Squares Design of Function
Generating Mechanisins®, ASME J. of Mechanical Design, Vol.104, pp.881-884.

Y:m\.mmm A.A., Sideris, A., Ji, C., and Psaltis, D., 1990, “Neural Network Control
ink M.\mrmhml \ Proc. 29ih Conf. on Decision and Control, Honolulu,

Yuh, J., 1992, "On Neural Net C llers for Robotic i + Proc. dth Int.
Symp. on Robotics and Manufacturing, pp.757-762.

Zurada, LML, 1992, Introduction o Arnificial Neural Systems, West Publishing
Company, New York.

122

Appendix A: Program Listings
(Al programs are “vritten by the author)

A.1 Velocity Analysis near Singular Points

The Damped Least squarcs method, Psuedo-inverse method are implemented in
the velocity analysis in this section. d output training vectors are obtained
and the backpropagation algorithm is used to train the neural network. The
carried out for a planar two-link manipulator (A. 1. 1) as well as PUMA-560
(A.1.2).

ipulitor

A.2 Acceleration Analysis of a Two-Link Manipulator

Acceleration analysis of a two-link manipulator are carricd out and the neural
network using backpropagation and LP-neuro method are used to train the network. The
program LP-Neuro automatically forms coefTicient matrix [A] as well as the objective
function according to Eq.(2.42).

A.3 Torque Analysis of a Two-Link Manipulator

Torque analysis is carried out using LP-neuro method as well as backpropa,
method.

A.4 Nine-point Path Problem

LP-neuro method is used to train the network to design the four-bar mechanism
based on several input-output training pattern.

A.5 Design of Four-Bar Function Generator

LP-neuro algorithm is again used to train the network to design a four-bar
function generator.

A.6 Trajectory control of a Two-Link Manipulator

Variable gain values are obtained using a non-linear optimization routine and 1.1
neuro method is used to predict gain values based on error history in position and joint
velocity. The weight matrix is used on-line to identily gain values for the required
trajectory.

In general OPTIVAR - optimi

tion library routine in (Siddall, 1982) is widely
used for linear stk e G

methods.

A.1 VELOCITY ANALYSIS NEAR SINGULAR POINTNS

NOTE: FOLLOWING ARE THE LIST OF FORTRAN CODES USED:
‘THESE CODES DO NOT BELONG TO A SINGLE FORTRAN
PROGRAM.

ALl Case 1: A Planar Two-link

Step 1: Find the necessary cartesian coordinates, joint
displacements, joint velocities of the desired trajectory.

Step 2: Prepare a database of input and output vector
and train the neural network restraining the
maximum joint velocity.

Step 3: Compare the joint velocity values obtained
by the neural network method with the joint velocities
obtained by psuedo-inverse method and SVD calculations.

c PROT2.FOR
C TO FIND THE CARTESIAN COORDINATES OF THE
C DESIRED TRAJECTORY
C STRAIGHT LINE PART OF THE TRAJECTORY
C TWO D.O.F - PLANAR TWO LINK MANIPULATOR
IMPLICIT REAL*8(A-H,0-Z)
INTRINSIC DATAN2D,DCOSD,DSIND
DIMENSION R(3,3),XP(3),X(3),DT(3), VDT(3)
OPEN(1, FILE = 'PROT2.DAT’ , STA' OLD")
OPEN(2, FILE = 'XY.MAT’, STATUS = 'NEW')
OPEN(Q3, FILE = 'VEL.MAT', STATUS = 'NEW')
OPEN(4, FILE = 'PHL.MAT’, STATUS = 'NEW')
OPEN(S, FILE = 'SLOPE.MAT’, STATUS = 'NEW’)
OPEN(6, FILE = 'PFDIST.MAT", STATUS = 'NEW')
OPEN(7, FILE = "DIST.MAT", STATUS ='NEW’)
&
READ(1,9VEL
READ(1,*)RADIUS
READ(1,*)ORANG
READ(l,9ITER
READ(1,STAR2
READ(1,%)STEP2
XO = 0.530D0 * DCOSD(ORANG)
YO = 0.530D0 * DSIND(ORANG)
c

DO 110 NO = 1,ITER

A2

120

110

40
30

R(1,1) = DCOSD(ORANG)
-DSIND(ORANG)
X0

DSIND(ORANG)

DCOSD(ORANG)
YO
0.0D0
0.0D0
1.0D0
Xp(l) = (RAD(US STAR2)
XP(2)
XP(3) = 1. 0
DIST = DIST + STEP2

'WRITE(7,*)DIST
WRITE(4,*)STAR2

CALL RMATVEC(R,XP,X)
WRITE(2,%)X(1),X(2)

DT(l) = VEL
DT(2) = 0.0D0

DT(3) = 0.0D0

CALL RMATVEC(R,DT,VDT)
WRITE(3,*)VDT(1),VDT(2)
DO 1201 = 1,3

(V]
DO lZOI =13
R(1,J) = 0.0D0
CONTINUE
STAR2 = STAR2 + STEP2

CONTINUE
'WRITE(6,*)DIST
STOP

END

SUBROUTINE RMATVEC(A,B,C)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(3,3),B(3),C(3)
DO301=1,3

C(D) = 0. ODO

DO40J =

cm = + A(L)) * BU)
CONTINUE

CONTINUE

A3

anononn

RETURN
END

PROTI.FOR:

TO FIND THE CARTESIAN COORDINATES OF THE
DESIRED TRAJECTORY

ARC PART OF THE PROJECTORY

TWO D.O.F - PLANAR TWO LINK MANIPULATOR
IMPLICIT REAL*8(A-H,0-Z)

INTRINSIC DATAN2D,DCOSD,DSIND

DIMENSION R(3,3),XP(3),X(3),DT(3),VDT(3)

OPEN(1, FILE =
OPEN(2, FILE =
OPEN(3, FILE =
OPEN(4, FILE =
OPEN(S, FILE =
OPEN(6, FILI
OPEN(7, FILE =

'PROT1.DAT’ , STATUS = 'OLD’)
'XY.MAT’, STATUS = 'NEW')
'VEL.MAT’, STATUS = 'NEW')
'PHL.MAT’, STATUS = 'NEW’)
'SLOPE.MAT", STATUS = 'NEW’)
'PFDIST.MAT", STATUS = 'OLD")
'DIST.MAT", STATUS = "NEW’)

PI = 3.141592654D0

READ(1,*)VEL

READ(1,*)RADIUS
READ(1,*)ORANG

READ(1,*)ITER

READ(1,*)STAR1

READ(1,*)STEPL
READ(6,*)PFD
X

0 = 0.530D0 * DCOSD(ORANG)
YO = 0.530D0 * DSIND(ORANG)

DO 10 NO = 1,ITER
R(1,1) = DCOSD(ORANG)
R(1,2) = -DSIND(ORANG)

R(1,3) = XO

R(2,1) = DSIND(ORANG)
R(2,2) = DCOSD(ORANG)

R(23) = YO

R@,1) = 0.0D0
R(3,2) = 0.0D0
R(,3) = 1.0D0

XP(l) = RADIUS * DCOSD(STARI)

XP(2)
XP(3) = 1.0D0

RADIUS * DSIND(STARI)

20

[eEoNe!

DIST = (PI/180.0D0)*(STEP1)*RADIUS*REAL(NO) + PFD
WRITE(4,*)STARI

'WRITE(7,*)DIST

CALL RMATVEC(R,XP,X)

WRITE(2,%)X(1),X(2)

PR1 = XP(2)

PR2 = -XP(1)

ANG = DATAN2D(PR2,PRI)

WRITE(5,*)ANG
DT(1) = VEL * DCOSD(ANG)
DT(2) = VEL * DSIND(ANG)
DT(3) = 0.0D0

CALL RMATVEC(R,DT,VDT)
WRITE(3, ¥ VDT(1),VDT(2)
DO201 =13

XP(I) = 0.0D0

X(1) = 0.0D0

DO20J = 1,3

P/J) = 0.0D0

CONTINUE

STARI = STARI + STEP1
CONTINUE

STOP
END

ANGFIND.FOR:
TO FIND THE JOINT DISPLACEMENTS
FOR A TWO DOF PLANAR MANIPULATOR
IMPLICIT REAL*$(A-H,0-Z)
INTRINSIC DATAN2D
OPEN(l, FILE = 'ANGFIND.DAT", STATUS = 'OLD")
OPEN(2, FIL) 'XY.MAT' , STATUS = 'OLD")
OPEN(3, FILI 'THETA.MAT’, STATUS = 'NEW')
OPEN(4, FILE = 'ANOTHETA.MAT',STATUS = 'NEW’)

READ(1,*)RLI,RL2
READ(1,*)ITER

DO 10 NO = 1,ITER
READ(2,%)X0,YO

T = 0.0D0
RJ =2.*YO *RLI
RI = 2. * XO *RLI

AS

RK = YO*YO + XO*XO + RLI*RLI - RL2*RL2
= (RI*RJ) + (RI * RI) - (RK*RK)

ALPHAI = DATAN2D(RJ,RI)+DATAN2D(DSQRT(T),RK)

ALPHA2 = DATAN2D(RJ,RI) +DATAN2D(-DSQRT(T),RK)

BETAl = DATAN2D((YO-RLI*DSIND(ALPHAL)),

% (XO-RLI*DCOSD(ALPHAL1)))-ALPHA1

BETA2 = DATAN2D((YO-RL1*DSIND(ALPHA?2)),

% (XO-RL1*DCOSD(ALPHA2)))-ALPHA2

*

*

WRITE(3,*) ALPHAI,BETAL
WRITE(4,*)ALPHA1,BETA1
WRITE(4,*)ALPHA2,BETA2
WRITE(4,*)

CONTINUE

STOP

END

TO FIND JOINT VELOCITY

INVERSE KINEMATICS FOR TWO D.O.F PLANAR MANIPULATOR
IMPLICIT REAL*8(A-H,0-Z)

INTRINSIC DATAN2D,DCOSD,DSIND

DIMENSION VEL(2), THETA(2),RJ(2,2),RIINV(2,2), TDOT(Z)
OPEN(!, FILE = 'TDTFIND.DAT’, STATUS = 'OLD’)
OPEN(2, FILI 'THETA.MAT’, STATUS = 'OLD")
OPEN(3, FILI 'VEL.MAT’, STATUS = 'OLD")

OPEN(4, FILI 'DETER.MAT’, STATUS = 'NEW')
OPEN(S, FILI 'THETADT.MAT’, STATUS = 'NEW’)
OPEN(6, FILE = 'JACOBIAN.MAT’, STATUS = 'NEW’)

READ(I,%RLI,RL2
READ(I,*)ITER

DO 10 NO = 1,ITER

READ(2,*)THETA(1), THETA(2)

READ(3,*)VEL(1),VEL(2)

RJ(1,1) = -RLI*DSIND(THETA(1)) - RL2*DSIND(THETA(1) +
THETA(2)

RI(1,2) = -RL2*DSIND(THETA(1) + THETA(2))

RI(2,1) = RLI*DCOSD(THETA(1)) + RL2*DCOSD(THETA(1) +
THETA(2))

RI(2,2) = RL2*DCOSD(THETA(1) + THETA(2))

DOIST = 1,2

WRITE(6,*)(RI(IL1),JI=1,2)

CONTINUE

DETER = RLI*RL2*DSIND(THETA(2))

A.6

30
10

aa

WRITE(4,*)DETER
RIINV(1,1) = RJ(2,2)/DETER
RIINV(1,2) = -RI(1,2)/DETER
RIINV(2,1) = -RJ(2,1)/DETER
RIINV(2,2) = RI(1,1)/DETER
CALL RMATVEC(RJINV,VEL,TDOT)
WRITE(S, 9 TDOT(1), TDOT(2)
DO20I =12

VEL(I) = 0.0D0

THETA(I) = 0.0D0

TDOT() = 0.6D0

1,2

RI(LJ) = 0.0D0

RIINV(L,J) = 0.0D0
CONTINUE

CONTINUE

CONTINUE

STOP

END

MAX.FOR

TO FIND THE MAXIMUM AND MINIMUM AF JOINT VELOCITIES

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION TDOT!(100), TDOT2(100)

OPEN(1, FILE= 'THETADT.MAT’, STATUS="OLD’)
OPEN(2, FILE= 'SDOT.MAT", STATUS="NEW’)
READ(*,*)NO

DO 101 = 1, NO

READ(1,*TDOTI(1), TDOT2()

CONTINUE

CALL MINMAX(TDOT1,SMALL!,PLARGEI,NO)
CALL MINMAX(TDOT2,SMALL2,PLARGE2,NO)
DO201 = 1,NO

SDOT! = (TDOTI(l) - SMALL1)/(PLARGEI - SMALLI)
SDOT2 = (TDOT2(I) - SMALL2)/(PLARGE2 - SMALL2)
WRITE(2,*)SDOT1,SDOT2

CONTINUE

STOP

END

SUBROUTINE MINMAX(A,B,C,NO)
IMPLICIT REAL*3(A-H,0-Z)
DIMENSION A(100)

A7

[eXoNoNoKe!

®

INITIALIZE THE SMALLEST AND LARGEST AS THE FIRST ENTRY
SMALL = A(l)
PLARGE = A(l)
SEARCH THE REST OF THE ARRAY FOR BETTER VALUES
DO 100 I = 2,NO
IF(A().LT.SMALL) THEN
SMALL = A(D)
ELSE
IF (A(I).GT.PLARGE) THEN
PLARGE = A(l)
ENDIF
ENDIF
CONTINUE
B = SMALL
C = PLARGE
RETURN
END

NURAL.FOR
A NEURAL NET PROGRAM (BACK PROPOGATION ALGORITHM)

VELOCITY ANALYSIS OF TWO-LINK MANIPULATOR

IMPLICIT REAL*8(A-H,0-Z)

INTRINSIC DEXP

DIMENSION V(20,20),W(20,20)

DIMENSION XDOT(100), YDOT(100),ZDOT(100)
DIMENSION TDOT1(100), TDOT2(100), TDOT3(100)
DIMENSION DTDOT1(100),DTDOT2(100), DTDOT3(100)
DIMENSION RI(100),RM(100),RO(100)

DIMENSION
FRM(100),FRO(100),FTDOT1(100), FTDOT2(100), FTDOT3(100)
DIMENSION FRMD(100),FROD(100)

DIMENSION EOS(100),EMS(100)

OPEN(l, FILE="NURAL.DAT’, STATUS="OLD")
OPEN(3, FILE="VEL.MAT', STATUS="OLD’)
OPEN(4, FILE="ALPHA.MAT', STATUS="NEW")
OPEN(S, FILE="BETA.MAT’, STATUS='NEW")

ENTER NO. OF INPUT,MIDDLE AND OUTPUT LAYER NEURONS
READ(1,*)INNO

READ(I,*)MIDNO

READ(1,)NOUTNO

ENTER NO. OF INPUT TRAINING DATAS

A8

o000 a o

aanaag

20

o ocaog

70

READ(1,*)NODATA

ENTER NO. OF ITERATIONS
READ(1,ITER

ENTER THE LEARNING RATE
READ(1,*)ETA

READ THE TRAINING INPUT VALUES & THEIR CORRESPONDING
OUTPUT VALUES

DO 101 = 1,NODATA

READ(2,%)TDOT1(I), TDOT2(I)

READ(3,*)XDOT(1), YDOT(I)

FTDOTI(I) = (1.0D0/(1.0D0 + DEXP(-TDOTI(1))))

FTDOT2(I) = (1.0D0/(1.0D0 + DEXP(-TDOT2(1))))

CONTINUE

RANDOM NUMBER GENERATION FOR INITIAL INPUT AND
OUTPUT WEIGHT MATRICES

SEED FOR RANDOM NUMBER GENERATOR
ISEED = 23148

JSEED = 32124

DO 201 = 1,MIDNO

DO 207 = 1,INNO

RV = RAN(ISEED)*2.0D0 - 1.0D0
V(1) = RV

CONTINUE

DO 301 = 1,NOUTNO

DO 30J = 1,MIDNO

RW = RAN(USEED)*2.0D0 - 1.0D0
CONTINUE

TRAINING STARTS HERE

DO 40 NO = L,ITER

DO 50 KD = 1,NODATA
RI(1) = XDOT(KD)
RI(2) = YDOT(KD)

DO 60 KR = 1,MIDNO

FRM(KR) = (1.0D0/(1.0D0 + DEXP(-RM(KR))))

A9

coog

100

120
1o

210
200

230
220

310

FRMD(KR) = FRM(KR)*(1.0D0 - FRM(KR))
CONTINUE

DO 80 KR = 1,NOUTNO

RO(KR) = 0.0D0

DO 90 KP = 1,MIDNO

RO(KR) = RO(KR) + W(KR,KP)*FRM(KP)
CONTINUE

FRO(KR) = (1.0D0/(1.0D0 + DEXP(-RO(KR))))
FROD(KR) = FRO(KR)*(1.0D0 - FRO(KR))
CONTINUE

ERROR UPDATE

DO 100J = 1,MIDNO

EMS(J) = 0.0D0

CONTINUE

EOS(1) = FTDOTI(KD) - FRO(1)

EOS(2) = FTDOT2(KD) - FRO(2)

DO 110 IE = 1,NOUTNO

DO 120 JE = 1,MIDNO

EMS(JE) = EMS(JE) + EOS(IE)*FROD(IE)*W(IE,JE)
CONTINUE

CONTINUE

WEIGHT UPDATE

DO 200 IRT = 1,NOUTNO

DO 210 JRT = 1,MIDNO

W(IRT,JRT) = W(IRT,JRT) + ETA*EOS(IRT)*FROD(IRT)*FRM(JRT)
CONTINUE

CONTINUE
DO 220 IRT = 1,MIDNO
DO 230 JRT = 1,INNO

V(IRT,JRT) = V(IRT,JRT) + ETA*EMS(IRT)*FRMD(IRT)*RIJRT)
CONTINUE
CONTINUE

DO 3001 = 1,MIDNO

RM() = 0.0D0

DO 310J = 1,INNO

RM() = RM() + V(LI*RI()

CONTINUE

FRM(I) = (1.0D0 /(1.0D0 + DEXP(-RM(D)))
CONTINUE

A.10

DO 3201 = 1,NOUTNO

RO(D) = 0.0DO0

DO 330J = 1,MIDNO

RO() = RO(I) + W(I,J)*FRM(J)
330 CONTINUE
320 CONTINUE

C FINAL OUTPUT AT THE END OF EACH ITERATION

DTDOTI(KD) = RO(1)
DTDOT2(KD) = RO(2)
CONTINUE
CONTINUE

COMPARISON OF NEURAL AND ACTUAL OUTPUT

naoazy

DO 500 IT = 1,NODATA

WRITE(4,DTDOTI(IT), TDOTI(IT)

WRITE(S,*)DTDOT2(IT), TDOT2(IT)
500 CONTINUE

STOP

END

REBAK.FOR
C TO FIND THE MAGNITUDE OF THE ERROR
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION TDOTI(100), TDOT2{100)
DIMENSION DTDOT!(100),DTDOT2(100)
OPEN(1, FILE= 'THETADT.MAT’, STATUS="0LD")
OPEN(3, FILE= 'ALPHA.MAT", STATUS='0LD")
OPEN(4, FILE= 'BETA.MAT’, STATUS ='OLD")
OPEN(6, FILE= 'REBAK.MAT', STATUS="NEW")
OPEN(7, FILE= 'RERR.MAT’, STATUS="NEW")
READ(*,NO
DO 101 = 1, NO
READ(!,TDOTI(1), TDOT2(I)
READ(3,)DTDOTI(1)
READ(4,DTDOT2(I)
10 CONTINUE
CALL MINMAX(TDOT1,SMALL!,PLARGE],NO)
CALL MINMAX(TDC I'2,SMALL2,PLARGE2,NO)
DO 201 = 1,NO
SDOT! = DTDOTI()*(PLARGE! - SMALLI) + SMALLI
SDOT2 = DTDOT2(I)*(PLARGE2 - SMALL2) + SMALL2

o

A.ll

aano

20

nno

an

WRITE(6,*)SDOT!,SDOT2

‘TO FIND OUT THE MAGNITUDE OF ERROR
UPP = TDOTI(I) - SDOTI

VPP = TDOT2(I) - SDOT2

ERR = SQRT(UPP*UPP + VPP*VPP)
WRITE(7,*)ERR

CONTINUE

STOP

END

PSUD.FOR
PSEUDO-INVERSE SOLUTION OF A TWO-LINK MANIPULATOR
NEAR SINGULARITIES

IMPLICIT REAL*8(A-H,0-2)

PARAMETER (NRA=2,NCA=2,LDA =NRA,LDGINV =NCA)
DIMENSION A(LDA,NCA),AINV(LDGINV,NRA)

DIMENSION V(2),PST(2)

OPEN(1, FILE = 'JACOBIAN.MAT', STATUS = 'OLD')

OPEN(2, FILE = 'VEL.MAT', STATUS = 'OLD’)

OPEN(3, FILE = 'PSTETA.MAT’, STATUS = 'NEW")
WRITE(*,*)’'NO OF DATAS 7'

READ(*ITER

DO 10 NO = 1,ITER

DO 201 = I,NRA

READ(1,*)(A(L,J),J=1,NCA)

CONTINUE

READ(2,*)V(1),V(2)

TOL = 10.0 *¥ AMACH(4)

CALLING IMSL ROUTINE FOR PSUEDO-INVERSE

CALL DLSGRR(NRA,NCA,A,LDA,TOL,IRANK,AINV,LDGINV)
CALL RMATVEC(AINV,V,PST)

WRITE(3,*)PST(1),PST(2)

CONTINUE

STOP

END

1YO.FOR
COMPARISON OF THE VALUES AND PRINTING THE RESULTS
IMPLICIT REAL*8(A-H,0-Z)
INTRINSIC DSQRT
DIMENSION ALPHA(2),BETA(2),GAMMA(2)
OPEN(1, FILE = 'THETADT.MAT’, STATUS = 'OLD")

A2

OPEN(2, FILE = 'REBAK.MAT", STATUS = 'OLD")
OPEN(S, FILE = "PSTETA.MAT' STATUS = 'OLD")
OPEN(3, FILE = 'SNORM.MAT', STATUS = 'NEW")
OPEN(4, FILE = 'PHLMAT', STATUS = 'OLD")
WRITE(*,*)'ITERATIONS ? '

READ(*,*)ITER

DO 10 NO = L,ITER

READ(1,*)ALPHA(1),BETA(l)
READ(2,*)ALPHA(2),BETA(2)
READ(5,*)GAMMA(1),GAMMA(2)

READ(4,*)PHI

TSQP = DSQRT(ALPHA(1)*ALPHA(1) + BETA(1)*BETA(1))
SQP = DSQRT(ALPHA(2)*ALPHA(2)+BETA(2)*BETA(2))
PERT = DSQRT(GAMMA(1)*GAMMA(1)+GCAMMA(2)*GAMMA(2))
WRITE(3,*)TSQP,SQP,PERT

CONTINUE

STOP

END

Case 2; Puma-560 Manipulator

Step 1: Find the necessary cartesian coordinates, joint
displacements, joint velocities of the desired trajectory.

Step 2: Prepare a database of input and output vector
and train the neural network restraining the
maximum joint velocity.

Step 3: Compare the joint velocity values obtained
by the neural network method with the joint velocities
obtained by psuedo-inverse method and SVD calculations.

IMPLICIT REAL*8(A-H,0-2)
OPEN(UNIT=1,FILE="RANG.MAT' ,STATUS="NEW")
'WRITE(*,*)'NO. OF DATAS’

READ(*,*)NO

'WRITE(*,*)'INITIAL THETA3 7'

READ(*,%)T3

'WRITE(*,*)'INCREMENTAL THETA3 7
READ(*,*)DELT

T1 = 0.0D0

T2 = -1.90843D0

10

anoan

DO 101 = 1,NO

T3 = T3 + DELT
WRITE(1,*)T1,T2,T3
CONTINUE

STOP

END

TO GENERATE CARTESIAN COORDINATES
FOR THE CIRCULAR TRAJECTORY

IMPLICIT REAL*8(A-H,0-Z)

INTRINSIC DSIND,DCOSD

EXTERNAL DMURRV

DIMENSION TRA(4,4),P3(4),XYZ(4)
OPEN(UNIT=1,FILE="RANG.MAT",STATUS ="OLD")
OPEN(UNIT =2,FILE="PUMA.DAT',STATUS ='OLD")
OPEN(UNIT=3,FILE="COORD.MAT',STATUS ='NEW")
READ(2,*)A2,A3,D3,D4

WRITE(*,*)'NO OF DATAS ? '

READ(*,*)ITER

DO 101 = 1,ITER

READ(1,%T1,T2,T3

Cl = DCOSD(T1)

C2 = DCOSD(T2)

S2 = DSIND(T2)

€23 = DCOSD(T2+T3)

523 = DSIND(T2+T3)
TRA(1,1) = C1*C23

TRA(1,2) = -C1*523

TRA(1,3) = -S1

TRA(1.4) = CI*A2*C2 - S1*D3
TRAQ,1) = SI*C23

TRA(2,2) = -S1*823

TRA(2,3) 1

TRA(2,4) = SI*A2*C2 + C1*D3
TRAG,1) = -523

TRAG,2) = -C23

TRA(3,3)

TRA@4,1) =
TRA(4,2) = 0.0D0
TRA(4,3) = 0.0D0

Al4

nnno

anoon

TRA(4,4) = 1.0D0
3

P3@4) =
CALL DMURRV(4,4,TRA 4,4,P3,1,4,XYZ)
WRITE(3,%)XYZ(1),XYZ(2),XYZ(3)
CONTINUE

STOP

END

A PROGRAM FOR GENERATING THE CARTESIAN VELOCITIES

FOR A PUMA-560 MANIPULATOR

IMPLICIT REAL*8(A-H,0-Z)

INTRINSIC DATAN2D,DSIND,DCOSD
OPEN(UNIT=1,FILE='PUMA.DAT" STATUS ="OLD")
OPEN(UNIT=3,FILE="PUMAVEL.MAT",STATUS ='NEW")
OPEN(UNIT=4,FILE="COORD.MAT" ,STATUS ="'OLD")
READ(1,%)A2,A3,D3,D4

WRITE(*,*'NO OF DATAS ?'

READ(*,*)NO

VELOCITY = 0.03D0

DO 101 = I,NO

READ(4,%)X,Y,Z

SLI = A2-X

SL2=12

SLOPE = DATAN2D(SL1,SL2)

VX = VELOCITY * DCOSD(SLOPE)

VY = 0.
VZ = VELOCITY * DCOSD(270.0D0+SLOPE)
WRITE@3,*)VX,VY,VZ

CONTINUE

STOP

END

A PROGRAM FOR GENERATING THE CARTESIAN VELOCITIES FOR

A PUMA-560 MANIPULATOR

IMPLICIT REAL*8(A-H,0-Z)

ano

INTRINSIC DATAN2D,DSIND,DCOSD
DIMENSION RJ(3,3),VEL(3), THDT(3),RIINV(3,3)
DIMENSION FTHDT(3)
OPEN(UNIT=1,FILE='PUMA.DAT",STATUS="0LD")

3 RANG.MAT",STATUS="0LD")
PUMAVEL.MAT",STATUS="OLD")
TDOT.HAT' STATUS ="NEW")
OPEN(UNIT=6,FILE="DETER.MAT",STATUS ="NEW")
READ(1,*)A2,A3,D3,D4
WRITE(*,*)'NO OF DATAS ?*

READ(*,*)NO
DO 431 = 1,NO
READ(2,%T1,T2,T3
1 = DSIND(T1)
DSIND(T2)
DCOSD(T1)
C2 = DCOSD(T2)
€23 = DCOSD(T2+T3)
§23 = DSIND(T2+T3)
RI(1,1) = -A3*S1%C23 + D4*S1%523- A2*C2*S1 - DI*C1
RI(1,2) = -A3*C1%523 - D4*C1*C23 - A2*S2*C1
RI(1,3) = -A3*C1*523 - D4*C1*C23

RJ(2,1) = A3*CI*C23 - D4*C1*823 + A2*C2*Cl - D3*S1
RJ(2,2) = -A3*S1*523 - D4*S1*C23 - A2*52*S]

RJ(2,3) = -A3*S1*$23 - D4*S1*C23

RIG3,1) .0D0

RJ(3,2) = -A3*C23 + D4*S523 - A2*C2
RJ(3,3) = -A3*C23 + D4*S23

COMPUTE THE DETERMINANT OF JACOBIAN

XT1 = RI(2,2)*RJ(3,3) - RJ(3,2)*RJ(2,3)
= RI2,1)*RI(3,3) - RI(3,1)*RI(2,3)
XT3 = RI(2,1)*RI(3,2) - RI(3,1)*RI(2,2)
DETER = RIJ(I1,1)*XT1 - RI(1,2)*XT2 + RI(1,3)*XT3
WRITE(6,*)DETER
CALL DLINRG(3,RJ,3,RJINV,3)
READ(3.*)VEL(1),VEL(2),VEL(3)
CALL DMURRV(3,3,RJINV,3,3,VEL,1,3,FTHDT)
WRITE(S,*)FTHDT(1), FTHDT(2),FTHDT(3)
DO SO INK = 1,3
DO 50 JNK = 1,3
RI(INK,JNK) = 0.0D0
RJINV(INK,JNK) = 0.0D0

A.l6

50
43

[eXeNoNel

CONTINUE
CONTINUE
STOP

END

IMPLICIT REAL*8(A-H,0-2)

DIMENSION TDOT(100), TDOT2(100), TDOT3(100)
OPEN(UNIT=1,FILE="TDOT.MAT" STATUS="0LD")
OPEN(UNIT=2,FILE="SDOT.MAT",STATUS ='NEW')
READ(*,*)NO

DO 10T = 1, NO
READ(1,*TDOT! (1), TDOT2(1), TDOT3(I)

CONTINUE

CALL MINMAX(TDOT2,SMALL2,PLARGE2,NO)
CALL MINMAX(TDOT3,SMALL3,PLARGE3,NO)
DO201 = I,NO

SDOT1 = (TDOT!(I) - SMALLI)/(PLARGE! - SMALLI)
SDOT2 = (TDOT2(I) - SMALL2)/(PLARGE2 - SMALL2)
SDOT3 = (TDOT3(I) - SMALL3)/(PLARGE3 - SMALL3)
WRITE(2,*)SDOT1,SDOT2,SDOT3

CONTINUE

STOP

END

A NEURAL NET PROGRAM (BACK-PROPAGATION ALGORITHM)

VELOCITY ANALYSIS OF PUMA-560 MANIPULATOR

IMPLICIT REAL*8(A-H,0-Z)

INTRINSIC DEXP

DIMENSION V(20,20), W(20,20)

DIMENSION XDOT(100), YDOT(100),ZDOT(100)
DIMENSION TDOTI(100), TDOT2(100), TDOT3(100)
DIMENSION DTDOTI(100),DTDOT2(100),DTDOT3(100)
DIMENSION RI(100),RM(100),RO(100)

DIMENSION
FRM(100),FRO(100),FTDOT1(100), FTDOT2(100), FTDOT3(100)
DIMENSION FRMD(100),FROD(100)

DIMENSION EOS(IOO) EMS(100)
="RAKO.DAT',STATUS="0OLD")
DOT.MAT’,STATUS="OLD")
UMAVEL.MAT’,STATUS="0LD")
OPEN(UNIT=4,FILE="ALPHA.MAT’,STATUS ="NEW')

AT

a0 o o 0

anacnaz

20

aoayg

OPEN(UNIT=5,FILE="BETA.MAT',STATUS="NEW")
OPEN(UNIT=6,FILE="GAMMA.MAT' ,STATUS ="NEW")

ENTER NO. OF INPUT,MIDDLE AND OUTPUT LAYER NEURONS
READ(1, *)INNO

READ(1,*)MIDNO

READ(1,*)NOUTNO

ENTER NO. OF INPUT TRAINING DATAS

READ(1,*)NODATA

ENTER NO. OF ITERATIONS

READ(1,*)ITER

ENTER THE LEARNING RATE

READ(1,*)ETA

READ THE TRAINING INPUT VALUES & THEIR CORRESPONDING
OUTPUT VALUES

DO 101 = 1,NODATA
READ(2,)TDOTI(I), TDOT2(I), TDOT3(I)
READ(3,*)XDOT(1), YDOT(I), ZDOT(I)

FTDOTI(I) = (1.0D0/(1.0D0 + DEXP(-TDOTI(1))))
FTDOT2(I) = (1.0D0/(1.0D0 + DEXP(-TDOT2(D)))
FTDOT3(I) = (1.0D0/(1.0D0 + DEXP(-TDOT3(1))))
CONTINUE

RANDOM NUMBER GENERATION FOR INITIAL INPUT AND
OUTPUT WEIGHT MATRICES

SEED FOR RANDOM NUMBER GENERATOR
ISEED = 23148

JSEED = 32124

DO 201 = [,MIDNO

DO 20J = L,INNO

RV = RAN(ISEED)*2.0D0 - 1.0D0
V(,J)) = RV

CONTINUE

DO 301 = |,NOUTNO

DO 30J = 1,MIDNO

RW = RAN(JSEED)*2.600 - 1.0DO
CONTINUE

TRAINING STARTS HERE

DO 40 NO = L,ITER

70

90

aaaog

120
110

210
200

DO 50 KD = 1,NODATA

RI(1) = XDOT(KD)

RIQ) = YDOT(KD)

RI(3) = ZDOT(KD)

DO 60 KR = 1,MIDNO

RM(KR) = 0.0D0

DO 70 KP = 1,INNO

RM(KR) = RM(KR) + V(KR,KP)*RI(KP)
CONTINUE

FRM(KR) = (1.0D0/(1.0D0 + DEXP(-RM(KR))))
FRMD(KR) = FRM(KR)*(1.0D0 - FRM(KR))

CONTINUE
DO 80 KR = 1,NOUTNO
RO(KR) = 0.0D0

DO 90 KP = 1,MIDNO

RO(KR) = RO(KR) + W(KR,KP)*FRM(KP)
CONTINUE

FRO(KR) = (1.0D0/(1.0D0 + DEXP(-RO(KR))))
FROD(KR) = FRO(KR)*(1.0D0 - FRO(KR))
CONTINUE

ERROR UPDATE

DO 100 = ,MIDNO

EMS(J) = 0.0D0

CONTINUE

EOS(1) = FTDOTI(KD) - FRO(1)
EOS(2) = FTDOT2(KD) - FRO(2)
EOS(3) = FTDOT3(KD) - FRO(3)
DO 110 IE = 1,NOUTNO

DO 120 JE = 1,MIDNO
EMS(IE) = EMS(E) + EOS(IE)*FROD(IE)*W(IE,JE)
CONTINUE

CONTINUE

‘WEIGHT UPDATE

DO 200 IRT = 1,NOUTNO

DO 210 JRT = 1,MIDNO

W(RT,JRT) = W(IRT,JRT) + ETA*EOS(IRT)*FROD(IRT)*FRM(JRT)
CONTINUE

CONTINUE

DO 220 IRT = 1,MIDNO

230
220

310

300

330
320

50
40

500

DO 230 JRT = 1,INNO

V(IRT,JRT) = V(IRT,JRT) + ETA*EMS(IRT)*FRMD(IRT)*RI(JRT)
CONTINUE

CONTINUE

DO 3001 = 1,MIDNO
RM(I) = 0.0D0

DO 3101 = 1,INNO

RM(I) = RM()) + V({,J)*RI()

CONTINUE

FRM(I) = (1.0D0 /(1.0D0 + DEXP(-RM())))
CONTINUE

DO 3201 = 1,NOUTNO

RO(I) = 0.0D0

DO 33011 = 1,MIDNO

RO(I) = RO(I) + W(IJ)*FRM()
CONTINUE

CONTINUE

FINAL OUTPUT AT THE END OF EACH ITERATION

DTDOT!(KD) = RO(J)

DTDOT2(KD) = RO(2)
DTDOT3(KD) = RO(3)
CONTINUE
CONTINUE

COMPARISON OF NEURAL AND ACTUAL OUTPUT

DO 500 IT = 1,NODATA
WRITE(4,*)DTDOTI(IT), TDOT1(IT)
'WRITE(S,*)DTDOT2(IT), TDOT2(IT)
WRITE(6,*)DTDOT3(IT), TDOT3(IT)
CONTINUE

STOP

END

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION TDOT1(100), TDOT2(100), TDOT3(100)
DIMENSION DTDOT1(100), DTDOT2(100),DTDOT3(100)
OPEN(UNIT=1,FILE="TDOT.MAT’,STATUS="0OLD’)
OPEN(UNT LFILE="ALPHA.MAT',STATUS="OLD")
OPEN(UNIT=4,FILE="BETA.MAT' ,STATUS="0OLD")

A20

20

[sXoNoNe]

OPEN(UNIT=5,FILE="GAMMA.MAT" STATUS="OLD")
OPEN(UNIT=6,FILE="REBAK.MAT",STATUS ='"NEW")
OPEN(UNIT=7,FILE="RERR.MAT',STATUS ='NEW")
READ(*,*)NO

DO 101 =1, NO

READ(1,*TDOTI(I), TDOT2(I), TDOT3(i)
READ(3,*)DTDOTI(I)

READ(4,*)DTDOT2(I)

READ(S,*)DTDOT3(I)

CONTINUE

CALL MINMAX(TDOT2,SMALL2,PLARGE2,NO)

CALL MINMAX(TDOT3,SMALL3,PLARGE3,NO)
DO201 = I,NO

SDOT2 TDOT2(I)*(PLARGE2 - SMALL2) + SMALL2
SDOT3 = DTDOT3()*(PLARGE3 - SMALL3) + SMALL3
WRITE(6,%)SDOT1,SDOT2,SDOT3

TO FIND OUT THE MAGNITUDE OF ERROR

UPP = TDOT1(I) - SDOT!

VPP = TDOT2(I) - SDOT2

WPP = TDOT3(I) - SDOT3

ERR = SQRT(UPP*UPP + VPP*VPP + WPP*WPP)
WRITE(7,*)ERR

CONTINUE

STOP

END

A SIMPLE PROGRAM FOR CHECKING THE CARTESIAN VELOCITIES
FOR A PUMA-560 MANIPULATOR

IMPLICIT REAL*§(A-H,0-2)
INTRINSIC DATAN2D,DSIND,DCOSD
DIMENSION RI(3,3),VEL(3), THDT(3),RJINV(3,3)
DIMENSION FTHDT(3),TDOT(3),0VEL(3),0TDOT(3)
OPEN(UNIT=1, FILEs‘PUMA DAT’,STATUS=

OPEN(UNI
OPEN(UNT
OPEN(UNT VDOT.MAT’ ,STATUS ="NEW")
OPEN(UNT TDOT.MAT',STATUS ="0LD")

OPEN(UNIT=10,FILE="'0OVDOT.MAT",STATUS ='NEW’)
READ(1,*)A2,A3,D3,D4

WRITE(*,*)'NO OF DATAS 7"

READ(*,*)NO

DO 431 = 1,NO

naonaacna »

READ(2,)T1,T2,T3
1 = DSIND(T1)

DCOSD(T1)
C2 = DCOSD(T2)

€23 = DCOSD(T2+T3)

523 = DSIND(T2+T3)

AI*S1*C23 + D4*S1*$23- A2*C2%S1 - D3*CL
A3*C1#§23 - D4*C1#C23 - A2*S2*Cl

A3*C1*523 - D4*C1*C23

RI(2,1) = A3*C1*C23 - D4*CI*S23 + A2*C2*CI - D3"S1
A3S1%§23 - D4*S1*C23 - A2*S2*S1

A3*S1%523 - D4*S1*C23

.0D0

A3*C23 + Da*$23 - A2*C2

RI(3,3) = -A3*C23 + D4*s23

READ(7,*)TDOT(1), TDOT(2), TDOT(3)
READ(9,*)OTDOT(1),0TDOT(2),0TDOT(3)

CALL DMURRV(3,3,RJ,3,3,TDOT, 1,3,VEL)

CALL DMURRV(3,3,RJ,3,3,0TDOT, 1,3,0VEL)

WRITE(8, *)VEL(1), VEL(2), VEL(3)
WRITE(10,)OVEL(1),0VEL(2),OVEL(3)

SS = SQRT(VEL(1)*VEL(1)+VEL(2)*VEL(2)+VEL(3)*VEL(3))
PS = SQRT(OVEL(1)*OVEL(1)+OVEL(2)*OVEL(2)+OVEL(3)*OVEL(3))
PRINT *,SS,PS

DO 50 INK = 1,3

DO 50INK = 1,3

RI(INK,INK) = 0.0D0

CONTINUE

CONTINUE

STOP

END

ACCELERATION ANALYSIS OF A TWO-LINK MANIPULATOR

ACCELERATION ANALYSIS OF A TWO-LINK
PLANAR MANIPULATOR

STEPS FOLLOWED :

B —

L. FIND OUT THE CO-ORDINATES OF THE CIRCULAR

A22

Lo NoNoRoNoNoNoNoRoRoNoNel

PATH

. FOR THE GIVEN COORDINATES FIND OUT THE JOINT
VARIABLES TH_KI AND TH_K2

RESOLVE TANGENTIAL VELOCITY V_T IN THE GLOBAL

COORDINATE SYSTEM

EVALUATE THE ROTATION RATES THDT_KI AND THDT_K2

USING JACOBIAN MATRIX

RESOLVE ACCELERATION A_P IN THE GLOBAL C.§

. FIND OUT THE JOINT ACCELERATIONS THDDT_KI AND
THDDT_K2

w N

>

aw

STEP 1: FIND THE COORDINATES OF THE CIRCULAR
TRAJECTORY

IMPLICIT REAL*8(A-H,0-Z)

INTRINSIC DSIND,DCOSD,DATAN2D

REAL*8 TR1(4,4), TR2(4,4), TR3(4,4), XY(4),PV(4), TR4(4,4)
REAL*8 TR5(4,4)

OPEN(!, FILE = 'LINK.DET’, STATUS = "OLD")
OPEN(2, FILE = 'XY.MAT', STATUS = 'NEW')
READ(1,9)RL1,RL2

READ(1,)ST

READ(1,*)NPOINT

STEP ANGLE FOR COORDINATE GENERATION
READ(1,*)STANG

RADIUS

READ(1,)RD

CALL TRANS(45.0,0.0,0.0,0.0,TR1)

CALL TRANS(0.0,RL1,0.0,0.0,TR2)

CALL MATMAT(TRI,TR2,TR3,4,4,4)

PHI = ST

DO 1001 = 1,NPOINT

CALL TRANS(PHI,0.1,0.0,0.0,TR4)

CALL MATMAT(TR3, TR4,TRS 4,4,4)

PV(4) = 1.0D0

CALL MATVEC(TRS,PV,XY,4,4)
WRITE(2,9XY(1),XY(2)

PHI = PHI + STANG
CONTINUE

STOP
END

A23

SUBROUTINE MATVEC(A,B,C,M,N)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 A(4,4),B(4),C(4)
DO 12001 = I,M
C(1) = 0.0D0
DO 1200J = 1,N
C(l) = C(1) + A(1,))*B())
1200 CONTINUE
RETURN
END

SUBROUTINE MATMAT(A,B,C,M,N,L)

IMPLICIT REAL*$(A-H,0-Z)

REAL*8 A(4,4),B(4,4),C(4,4)

DO 13001 = 1,M

DO 1300J = 1,N

c(1,J) = 0.0D0

DO 300K = I,L

c@)) = C(1LY) + ALK)*B(K.J)
1300 CONTINUE

RETURN

END

SUBROUTINE ROTZ(ANG,RZ)
IMPLICIT REAL*8(A-H,0-2)
INTRINSIC DSIND,DCOSD,DATAN2D
REAL*8 RZ(3,3)

RZ(1,1) = DCOSD(ANG)

RZ(1,2) = -DSIND(ANG)

RZ(1,3) = 0.0D0

RZ(2,1) = DSIND(ANG)

RZ(2,2) = DCOSD(ANG)

RZ(2,3) = 0.0D0
RZ(3,1) = 0.0D0
RZ(3,2) = 0.0D0
RZ(3,3) = 1.0D0
RETURN
END

SUBROUTINE TRANS(ANG,PX,PY,PZ,TR)
IMPLICIT REAL*8(A-H,0-Z)

INTRINSIC DSIND,DCOSD,DATAN2D
REAL*8 TR(4,4)

A24

[sReNoNel

TR(1,1) = DCOSD(ANG)

TR(1,2)

TR(1,3)

TR(1,4)

TR(2,1) = DSIND(ANG)
TR(2,2) = DCOSD(ANG)
TR(2,3) = 0.0D0
TR(2,4) = PY
TR(3,1) = 0.0D0
TR(3,2) = 0.0D0
TR(3,3) = 1.0D0
TR(3,4) = 0.0D0
TR(4,1) = 0.0D0
TR(4,2) = 0.0D0

TR@4,3) = 0.0D0
TR(4,4) = 1.0D0
RETURN

END

STEP 2: FIND THE JOINT COORDINATES FOR THE
CIRCULAR TRAJECTORY

IMPLICIT REAL*8(A-H,0-Z)

INTRINSIC DSIND,DCOSD,DATAN2D,DSQRT
REAL*8 THET(4)

OPEN(1, FILE = 'LINK.DET', STATUS = 'OLD")
OPEN(2, FILE = 'XY.MAT’, STATUS = 'OLD")
OPEN(3, FILE = "THET.MAT', STATUS = 'NEW")
READ(1,9RL1,RL2

READ(1,%)ST

READ(1,*)NPOINT

STEP ANGLE FOR COORDINATE GENERATION
READ(1,%)STANG

DO2001 = I,NPOINT

READ(2,%)XP,YP

RJJ = 2.0D0 * YP * RLI

RII = 2.0D0 * XP * RLI

RKK = XP*XP + YP*YP + RLI*RLI - RL2*RL2
RTT = RIJ*RIJ + RIPRI - RKK*RKK

THET(1) = DATAM2D(RIJ,RII) + DATAN2D(DSQRT(RTT),RKK)
PARI = YP - RL!*DSIND(THET(1))

PAR2 = XP - RLI*DCOSD(THET(1))

THET(2) = DATAN2D(PARI,PAR2) - THET(1)

A25

200

aenn

300

naooon

WRITE(3,* THET(1), THET(2)
CONTINUE

STOP

END

STEP 3: RESOLVE TANGENTIAL VELOCITY V_T IN THE
GLOBAL COORDINATE SYSTEM

IMPLICIT REAL*8(A-H,0-2)
INTRINSIC DSIND,DCOSD,DATAN2D
REAL*8 XY(2),VP(3),RZZA(3,3),VPG(3)
OPEN(l, FILE = 'LINK.DET', STATUS
OPEN(2, FILE = 'VTRES.DAT', STATUS
OPEN(3, FILE = 'XY.MAT', STATUS = 'OLD")
OPEN(4, FILE = 'VPG.MAT', STATUS = 'NEW’)
READ(1,%RLI,RL2

READ(1,%)ST

READ(1,*)NPOINT

STEP ANGLE FOR COORDINATE GENERATION
READ(1,%STANG

READ(2,%)V_T,XC,YC,RAD

DO 3001 = 1,NPOINT

READ(3,%)XY(1),XY(2)

PKL = XY(2)-YC

PKK = XY(1)-XC

ALPH = DATAN2D(PKL,PKK)

VP(l) = V_T*DCOSD(90.0D0+ALPH)

VP(2) = V_T*DCOSD(ALPH)

VP(3) = 1.0D0

WRITE(4,%)VP(1),VP(2)

CONTINUE

STOP

END

STEP 4: EVALUATE THE ROTATION RATES THDT K1 AND THDT K2

USING JACOBIAN MATRIX

IMPLICIT REAL*8(A-H,0-2)
INTRINSIC DSIND,DCOSD,DATAN2D
REAL*8 THET(2),VPG(2),THDT(2),RINV(2,2)

A.26

anonoo

OPEN(l, FILE =
OPEN(2, FILE

‘LINK.DET", STATUS = 'OLD")
'THET.MAT’, STATUS = 'OLD")
OPEN(3, FILE = 'VPG.MAT', STATUS = 'OLD")
OPEN(4, FILE = 'THDT.MAT', STATUS = 'NEW")
READ(1,*RLI,RL2

READ(1,)ST

READ(1,)NPOINT

STEP ANGLE FOR COORDINATE GENERATION
READ(1,*)STANG

DO 400 I = 1,NPOINT

READ(2,*THET(1), THET(2)
READ(3,*)VPG(1),VPG(2)

UTI1 = -RLI*DSIND(THET(1)) - RL2*DSIND(THET(1)+THET(2))
UTI2 = -RL2*DSIND(THET(1)+ THET(2))

UT2! = RLI*DCOSD(THET(1)) + RL2*DCOSD(THET(1)+THET(2))
UT22 = RL2*DCOSD(THET(1)+THET(2))

DET = UTI1*UT22 - UT21*UTI2

RINV(1,1) = UT22/DET

-UTI2/DET

-UT2!/DET

RINV(2,2) = UTI/DET

CALL MATVEC(RINV, VPG, THDT, 2,2)
WRITE(4,*THDT(1), THDT(2)

CONTINUE

STOP

END

STEP 5: RESOLVE ACCELERATION A_P IN THE GLOBAL
COORDINATE SYSTEM

IMPLICIT REAL*8(A-H,0-Z)

INTRINSIC DSIND,DCOSD,DATAN2D

REAL*8 XY(2),AP(3),RZAP(3,3),APG(3),bp(2)
OPEN(1, FILE = 'LINK.DET’, STATUS = 'OLD")
OPEN(2, FILE = 'VTRES.DAT', STATUS = 'OLD")
OPENG, FILE = 'XY.MAT’, STATUS = 'OLD")
OPEN(4, FILE = 'APG.MAT", STATUS = 'NEW’)
READ(I,%RL1,RL2

READ(I,9ST

READ(1,“)NPOINT

STEP ANGLE FOR COORDINATE GENERATION
READ(I,STANG

READ(2,9V_T,XC,YC,RAD

A27

oo

®

R

DO 300 I = |,NPOINT
READ(3,)XY(1),XY(2)

PKK = XY(2)-YC

PKL = XY(1)-XC

ALPH = DATAN2D(PKK,PKL)

AP(1) = (-(V_T*V_T)/RAD)*DCOSD(ALPH)
AP(2) = (-(V_T*V_T)/RAD)*DSIND(ALPH)
AP(3) = 1.0D0

WRITE(4,*) AP(1),AP(2)

CONTINUE

STOP

END

STEP 6: FIND OUT THE JOINT ACCELERATIONS THDDT_K1 AND
THDDT K2

IMPLICIT REAL*8(A-H,0-Z)

INTRINSIC DSIND,DCOSD,DATAN2D

REAL*8 THET(2),VPG(2),THDT(2),RINV(2,2),THDDT(2)
REAL*8 APG(2),AXT(2),PXT(2),PT1(2,2)

OPEN(l, FILE = 'LINK.DET’, STATUS = 'OLD’)

OPEN(2, FIL) 'THET.MAT’, STATUS = 'OLD’)
OPEN(3, FILI 'VPG.MAT', STATUS = 'CLD")
OPEN(4, FILI 'THDT.MAT’, STATUS = 'OLD’")
OPEN(7, FILI 'APG.MAT’, STATUS = 'OLD’)

OPEN(8, FILE = 'THDDT.MAT', STATUS = 'NEW")
READ(I,%RLI,RL2

READ(1,9ST

READ(1,¥)NPOINT

STEP ANGLE FOR COORDINATE GENERATION
READ(1,%)STANG

DO 400 I = 1,NPOINT

READ(2,% THET(1), THET(2)
READ(3,)VPG(1),VPG(2)

READ(4,*THDT(1), THDT(2)
READ(7,%)APG(1),APG(2)

PTI(1,1) = -RL1*DCOSD(THET(1))*THDT(1)

- RL2*DCOSD(THET(1)+THET(2))*(THDT(1) + THDT(2))
PTI(1,2) = -RL2*DCOSD(THET(1)+THET(2))*(THDT(1)+THDT(2))
PTI(2,1) = -RLI*DSIND(THET(1))*THDT(1)

- RL2*DSIND(THET(1)+ THET())(THDT(l) + THDT(2))
PTI(2,2) = -RL2*DSIND(THET(1)+THET(2))*(THDT(1)+THDT(2))

A28

anoo

CALL MATVEC(PTI, THDT,AXT.2,2)

PXT(1) = APG(l) - AXT(l)

PXT(2) = APG(2) - AXT(2)

UTI1 = -RLI*DSIND(THET(1)) - RL2*DSIND(THET(1)+ THET(2))
UTI2 = -RL2*DSIND(THET(1)+THET(2))

UT21 = RLI*DCOSD(THET(1)) + RL2*DCOSD(THET(1)+THET(2))
UT22 = RL2*DCOSD(THET(1)+THET(2))

DET = UTI1*UT22 - UT21*UTI2

RINV(2,2) = UT11/DET

CALL MATVEC(RINV,PXT,THDDT,2,2)
'WRITE(8,*)THDDT(1), THDDT(2)
CONTINUE

STOP

END

(AR
GENERATION OF [C] MATRIX FOR LINEAR PROGRAMMING
R

DIMENSION X1(23),X2(23),X3(23), X4(23),X5(23)
DIMENSION X6(23),X7(23),X8(23),X9(23),X10(23)
DIMENSION A(1,1100),Y(23)

OPEN(1, FILE = 'ALPGa.IN', STATUS = 'OLD")
OPEN(2, FILE = *CLPGa.OUT’, STATUS = 'NEW")
DO 141 = 1,23

READ(1,%X1(I)

CONTINUE

DO 151 =1,23

READ(1,%X2(I)

CONTINUE

DO 161 = 1,23

READ(1,)X3(I)

CONTINUE

DO 171 =123

READ(1,*)X4(1)

CONTINUE

DO 181 = 1,23

READ(1,%)X5(I)

CONTINUE

DO 191 =123

READ(1,%)X6(1)

CONTINUE

20

21

22

23

=

80

310

320

330

340

100
1050

DO201 =123
READ(1,")X7(1)
CONTINUE
DO211=123
READ(1,*)X8(1)
CONTINUE
DO221 =123
READ(1,*)X9(1)
CONTINUE
DO231=123
READ(1,*)X10(1)
CONTINUE
DO 44K =123
Y(K) = XI(K) + X2(K) + X3(K) + X4(K) + X5(K) + X6(K) + X7(K)
+ X8(K) + X9(K) + X10(K)
CONTINUE
NS =1
NT = 46
CONTINUE
IF(NT.GT.1100) GOTO 100
MT = |
DO 310 = NS,NT,2
A(LD) = Y(MT)
MT = MT + |
CONTINUE

T = 1|
DO 3201 = NS+1,NT,2
A(LD) = -Y(MT)
MT = MT + 1
CONTINUE
DO 330 I = NT+1,NT+4
A(LD) = 10.0
CONTINUE
DO 340 I = NT+2,NT+3
A(LLD = -10.0
CONTINUE

CONTINUE

CONTINUE
WRITE(2,*)(A(1,3),J = 1,1100)
STOP

END

on0n0non

884

196

B

LPNEURO.FOR
LP-NEURO METHOD SUBROUTINE

A LP APPROACH FOR NEURAL NETWORKS

DIMENSION YX(1), YXSTRT(1), RMAX(1),RMIN(1),PHI(1),PSI(1)

DIMENSION YW(150),ZX(1100),ZA(220, 1100),ZB(220),ZC(1 100)

DIMENSION ZAP(220,1100),ZCP(1100), ZBP(220), ZW(50000)

DIMENSION BBW(22,23),BBC(22),BBD(22),ZTOB(23)

COMMON

/SEEK/IDATA, IPRINT,NSHOT,NTEST, MAXM,F,G,TOL,ZERO,
R,REDUCE

COMMON /BL1/ZC,ZX,ZW,ZAP,ZCP,ZBP

COMMON /BL3/ZB

COMMON /BL2/MZ,NZ,NUTS,NT,NI,NOUT,NOI

COMMON /FAL/ZTOB

COMMON /ANT/ZA

OPEN(2, FILE = 'BLPGA.OUT’, STATUS = 'OLD")

OPEN(3, FILE = 'CLPGA.OUT’, STATUS = 'OLD")

OPEN(14, FILE = 'LIN.DAT', STATUS = 'OLD")

OPEN(15, FILE = 'KARLDAT", STATUS = 'OLD")

OPEN(8, FILE = "OBI.MAT", STATUS = 'NEW")

OPEN(10, FILE ='FWT.MAT", STATUS = 'NEW’)

READ(14,9MZ

READ(14,)NZ

READ(14,NUTS

READ(14,*)NT,NI

READ(14,)NOUT,NOI

DO884 I =123

READ(15,%)ZTOB(I)

CONTINUE

MAXM = 10

CALL ALPG

DO 196 I = |,MZ

READ(2,%)ZB(I)

CONTINUE

READ(3,%)(ZC(I),1 = 1,N2)

NY =1

NCONS = 0

NEQUS = 0

NPENAL =

IDATA =0

DATA RMAX/10.0/

=R

DATA RMIN/-10.0/

DATA YXSTRT/0.611/

NOISE = |

CALL

SEEK(NY,NCONS,NEQUS,NPENAL,RMAX,RMIN, YXSTRT, YX, YU,PHI,
PSI,NVIOL,YW)

CALL ANSWER(YU,YX,PHI,PSI,NY,NCONS,NEQUS)

WRITE(*,*)'DO YOU WISH TO CONTINUE ?’

WRITE(*,*)’1: YES'

WRITE(*,*)'2: NO *

READ(*,*)NDEC

IF(NDEC.EQ.1) THEN

GOTO 1

ELSE

END IF

STOP

END

SUBROUTINE UREAL(YX,YU)

DIMENSION YX(1), YXSTRT(1),RMAX(1),RMIN(1),PHI(1),PSI(1)
DIMENSION YW(150),ZX(1100),ZA(220,1100),ZB(220),ZC(1100)
DIMENSION ZAP(220,1100),ZBP(220),ZCP(1100)

DIMENSION ZW(50000),ZTOB(22)

DIMENSION BBW(22,23),BBC(22),BBD(22),D(2)

DIMENSION SAK(4),RT3(22)

COMMON /BL1/ZC,ZX,ZW,ZAP,ZCP,ZBP

COMMON /BL3/ZB

COMMON /BL2/MZ,NZ,NUTS,NT,NI,NOUT,NOI

COMMON /SIMPLE/NSTOP,IDATA,NNDEX

COMMON /PAKS/BBW,BBC,BBD

COMMON /FAL/ZTOB

COMMON /ANT/ZA

COMMON /DEPUT/D,RMX,RMN

3
1,MZ

DO30J = I,NZ

IF(J.GT.(50*KR)) THEN

KR = KR + |

END IF
IF((J.GE.(1+50*(KR-1))).AND.(J.LT.(47+50*(KR-1)))) THEN
ZAP(L)) = YX(1)*ZA(L,J)

A.32

30
20

40

50

70
65

80
75

ELSE

ZAP(L)) = ZA(L))

END IF

CONTINUE

CONTINUE

SQM = 0.0

DO 401 = I,MZ

ZBP(I) = YX(1)*ZB()

SQM = SQM + ZB(])
CONTINUE

KR = 1

DO 507 = 1,NZ
IF(J.GT.(SO*KR)) THEN

KR = KR + |

END IF

IF(.GE.(1 + SO*(KR-1))).AND.(I.LT.(47+50%(KR-1)))) THEN
ZCP() = YX(1)*2C()

ELSE

ZCPQ) = ZCQ)

END IF

CONTINUE

CALL SIMPLE(NZ,MZ,ZAP,ZBP,ZCP,ZX,ZU,ZW)
CALL WASS(ZX,BBW,BBC,BBD)

YTL = 0.0
YT2 = 0.0
YT3 = 0.0

DO 55 NM = 1,46,2

DO 60 MM = NM,1100,50

PRINT *,YX(1),ZC(NM),ZX(MM)

YTI = YX(1)*(ZC(NM)*ZX(MM)) + YTI
CONTINUE

CONTINUE

DO 65 NM = 2,46,2

DO 70 MM = NM,1100,50

YT2 = YX(1)*(ZC(NM)*ZX(MM)) + YT2
CONTINUE

CONTINUE

DO 75 NM = 47,50

DO 80 MM = NM,1100,50

YT3 = (ZC(NM)*ZX(MM)) + YT3
CONTINUE

CONTINUE

YT4 = YX(1)*SQM

CALL RMIXD(BBW,BBC,BBD,YX,ZTOB,RT3)

A33

433

= (YTl + YT2 + YT3 - YT4)**2
WRITE(*,*)'SLOPE IS",YX(1)
WRITE(*,*)'SEEK OBIECTIVE FUNCTION IS',YU
IF (NSW.EQ.1) THEN
STOP
END IF
IF(YU.LT.(2.0E-4)) THEN
CALL RMIXD(BBW,BBC,BBD, YX,ZTOB,RT3)
WRITE(18,%)'LAST ITERATION'
WRITE(18,)(RT3(JK),JK=1,22)
NSW = 1
ELSE
END IF
RETURN
END

SUBROUTINE CONST(YX,NCONS,PHI)
DIMENSION PHI(1),D(2), YX(1)
COMMON /DEPUT/D,RMX,RMN
PRINT *,’SEEK ITERATIONS',NOISE
NOISE = NOISE + |

RETURN

END

SUBROUTINE EQUAL(YX,PSI,NEQUS)
DIMENSION YX(1),PSI(1)

RETURN

END

SUBROUTINE W4 SS(ZX,BBW,BBC,BBD)
DIMENSION ZX(1100),BBW(22,23),BBC(22),BBD(22)
ND = |

RAMYA
BBW(L,J) = RAMYA

ND = ND +2

CONTINUE

BBC(I) = ZX(ND) - ZX(ND + 1)
ND = ND + 2

BBD(l) = ZX(ND) ZX(ND + 1)
ND = ND +

432 CONTINUE
RETURN
END

SUBROUTINE RMIXD(RBW,BBC,BBD, YX,ZTOB,RT3)
DIMENSION YX(1),CBC(22),CBD(22),RT1(22),RT2(22),RT3(22)
DIMENSION ZTOB(23),BBW(22,23),BBC(22),BBD(22)

DO 23391 = 1,22

CBC() = 0.0

CBD(I) = 0.0

RTI(D) = 0.0
RT2(1
RT3() = 0.0

2339 CONTINUE
CALL RMATMUL(BBW,ZTOB,RT1,22,23)
DO 23401 = 1,22
CBC(D) = (1.0/YX(1))*BBC(I)

CBD(D) = (1.0/YX(1))*BBD(I)

2340 CONTINUE
CALL RMATADD(RT!,CBC,RT2,22)
CALL RMATSUB(RT2,CBD,RT3,22)
WRITE(18,%)(RT3(/K),JK=1,22)

RETURN
END

SUBROUTINE RMATMUL(A,B,C,M,N)
DIMENSION A(M,N),B(N),C(M)
DO 44301 =
C(= 0.0
DO 4440 J =
cMm =cq + A(I J)*B(J)
4440 CONTINUE
4430 CONTINUE
RETURN
END

SUBROUTINE RMATADD(A,B,C,M)
DIMENSION A(M),B(M),C(M)
DO 42561 = I,M
c() = AQ) + B(D)
4256 CONTINUE
RETURN
END

A35

4169

714
780

710

720

730

740

7100
1050

SUBROUTINE RMATSUB(A,B,C,M)
DIMENSION A(M),B(M),C(M)

DO 4169 I = I,M

C() = A() - B()

CONTINUE

RETURN

END

SUBROUTINE ALPG

GENERATION OF [A] MATRIX FOR LINEAR PROGRAMMING
DIMENSION X(23),ZA(220,1100)

COMMON /ANT/ZA

OPEN(17, FILE = 'ALPGA.IN’, STATUS = 'OLD’)

DO 1050 NI = 1,220,22

KNI = NI
NS =1
NT = 46

DO7141 =123
READ(17,%)X(I)
CONTINUE

CONTINUE
IF(NT.GT.1100) GOTO 7100
MT = 1

DO 710 I = NS,NT,2
ZA(KNLI) = X(MT)

MT = MT + 1
CONTINUE
MT =

DO 720 1 = NS+1,NT,2
ZA(KNLI) = -X(MT)
MT = MT + |
CONTINUE

DO 730 I = NT+1,NT+4
ZA(KNL]D) = 1.0
CONTINUE

DO 740 I = NT+2,NT+3
ZA(KNL]) = -1.0
CONTINUE

KNI = KNI + |

CONTINUE
CONTINUE

A.36

RETURN
END

Backpropagation Method - Multilayer Neural Network

=
PROGRAM DESCRIPTION:

THIS PROGRAM ALLOWS A USER TO BUILD A GENERALIZED
DELTA RULE NET FOR SUPERVISED LEARNING. USER CAN SPECIFY THE
NUMBER OF INPUT & OUTPUT UNITS, NUMBER OF HIDDEN LAYERS AND
NUMBER OF UNITS IN EACH HIDDEN LAYER. AFTER THE NET IS BUIL
LEARNING TAKES PLACE IN THE NET WITH A GIVEN SET OF TRAINING
SAMPLES. USER SPECIFIES VALUES OF THE LEARNING RATE ETA, THE
MOMENTUM RATE ALPHA, MAXIMUM TOLERANCE ERRORS AND MAXIMUM
NUMBER OF ITERATIONS.

AFTER LEARNING, ALL THE INFORMATION RELEVANT TO THE
STRUCTURE OF THE NET, INCLUDING WEIGHTS AND THRESHOLDS ARI
STORED IN FILES.

OUTPUTS CAN BE GENERATED FOR NEW PATTERNS BY READING
FROM FILE AND BY RECONSTRUCTING THE NET.

TRAINING SET SAMPLES AND ADDITIONAL SAMPLES FOR PROCESSING ARE
STORED IN FILES,

*x)

#include <stdio.h>

#include <math.h>

#include <ctype.h>

#include <curses.h>

#ifndef VAX /* for declaration of calloc() on PC or compatible */
#include <malloc.h>

#endif

/* define constants used throughout functions %
#define NMXUNIT 50 /* max no. of units in a layer (50) *
#define NMXHLR 5 /* max no. of hidden layers (5) *

#define NMXOATTR 50 /* max no. of output features (50) L
#define NMXINP 200 /* max no. of input samples (200) *

A3

#define NMXIATTR 50 /* max no. of input features (50) */
#define SEXIT 3 /= exit successfully ki

#define RESTRT 2 /* restart */
#define FEXIT 1 /* exit in failure *
#define CONTNE 0 /* continue calculation */

/* Data base : declarations of variables */

float eta; /** learning rate)

float alpha; /** momentum rate *x/
float err_curr; /** normalized system error **/
float maxe; /** max allowed system error **/
float maxep; /** max allowed patter error **/
float *wtptr[NMXHLR +1J;

float *outptr[NMXHLR+2];

float *errptr([NMXHLR +2];

float *delw[NMXHLR +1];

float targetNMXINP][NMXOATTR];

float inputfNMXINP][NMXIATTR], ep[NMXINP];
float outpt[NMXINP][NMXOATTR];

int nunitftNMXHLR+2], nhlayer, ninput, ninattr, noutattr;
int result, cnt, cnt_num;

int nsnew, nsold;

char task_name[20];

FILE *fpl, *fp2, *fp3, *fopen(), *foutt;

int fplotl0;

/* random numoer generator
(computer independent) */

long randseed = 568731L;
int random()

randseed = 15625L * randseed + 22221L;
return((randsesd > > 16) & Ox7FFF);
/* allocate dynamic storage for the set */
void init()
{

int lenl, len2, i, k;
float *pl, *p2, *p3, *p4;

nunit[nhlayer+2] = 0;

for (i=0; i <(nhlayer + 2); i++) {
lenl += (nunit[i] + 1) * nunitfi+1];
len2 += nunitfi] + 1;

}

1* weights */
pl=(float *) cailoc(lenl+1,sizeof(float));
/* output */
p2=(float *) calloc(len2+1,sizeof(float));
* errors ¥/

p3=(float *) calloc(len2+ 1 ,sizeof(float));
/* delw %
p4=(float *) calloc(len! +1,sizeof(float));

/* set up initial pointers */
wiptr[0] = pl;
outptr[0] = p2;
errptr{0] = p3;
delwl0] = p4;

1* set up the rest of pointers */

for (i=1; i < (nhlayer + 1); i++) {
wiptr(i] = wtptr[i-1] + nunit[i] * (nunitfi-1} + 1);
delw[i] = delw(i-1] + nunit(i] * (nunit(i-1] + 1);

}

for (i=1; i < (nhlayer + 2); i++) {
outptr[i] = outptr[i-1] + nunitfi-1] + 1;
errptr[i] = errptr{i-1] + nunit[i-1] + 1;

/* set up threshold outputs */
for (i=0; i < nhlayer + 1; i++) {
*outptr[i] + nunit(i]) = 1.0;

/* initialize weights with random
numbers between -1.0 and +1.0 */
void initwt()

int i, j;

A.39

for (i=0; j < nhiayer + I; j++)
for (i=0; i < (nunitfi] + 1) * nunitfj + 1]; i++) {
*(wiptr(j] + i) = (random() / pow(2.0,15.0))*2.0 - 1.0;
*(delw(j] + i) = 0.0;

/* specify architecture of net and
values of learning parameters */
void set_up()

int iy

eta = 0.9;
printf("\nMomentum rate eta (default = 0.9)2: ");
scanf(" %f", &eta);

alpha = 0.7;
printf("\nLearning rate alpha (default = 0.7)?
scanf("%f", &alpha);

maxe = 0.01; maxep = 0.001;
printf("\nMax total error (default = 0.01)?:
scanf(" %f", &maxe);

printf("\nMax individual error (default = 0.001)?: ");
scanf("%f", &maxep);

cnt_num = 1000;
printf("\nMax number of iterations (default = 1000)?: ");
scanf("%d", &cnt_numy);

printf("\nNumber of hidden layers?: ");
scanf("%d", &nhlayer);

for (i=0; i < nhlayer; i++) {
printf("\n\tNumber of units for hidden layer %d?: ", i+1);
scanf(" %d", &nunit[i+1]);

printf("\nCreate crror file? (Enter I for yes, 0 for no) : ");
scanf(" %d", &fplot10);

printf("\nExecution starts ");
printf(" -- if many iterations specified, go out for coffee...\n");

A.40

nunit[nhlayer+ 1] = noutattr;
nunit[0] = ninattr;

/* read file for net architecture and learning
parameters. File name has suffix _v.dat */
void dread(char *taskname)
{

int i,j,c;
char var_file_name[20];

strepy(var_file_name, taskname);
strcat(var_file_name, "_v.dat");
if ((fpl = fopen(var_file_name, "r"))

perror("\n Cannot open data file ");
exit(0);

fscanf(fpl, "%d %d%d %f%f%d %d", &ninput, &noutattr, &ninattr,
&eta, &alpha, &nhlayer, &cnt_num);
for (i=0; i < nhlayer + 2; i++)
fscanf(fpl "%d", &numl[l]),

if (c=fclose(fp1)) != 0
printf(*\nFile %s cannot be closed; error %d ",
var_file_name, c);

}

/* read file containing weights and thresholds
and thresholds. File name has suffix _w.dat */

void wtread(char *taskname)

int ij,c;
char wt_file_name[20];

strepy(wt_file_name, vaskname);
strcat(wt_file_name, "_w.dat");
if ((fp2 = fapen(wt f]e _name, "r")) =

NULL)

perror("\n Cannot open data file ");
exit(0);

(or(i 0;i < nhlayer + 1; i++) {
or (1=0; j < (nunitfi] + 1) * nunili + 1]; j++) {
(scanf((pl "%, (wiptr[il+j));

}
if (¢ = fclose(fp2)) != 0)

printf("\n File %sf cannot be closed; error %d ",
wt_file_name, c);

}

/* create file for net architecture and learning
parameters. File name has suffix _v.dat */

void dwrite(char *taskname)
int i,j,c;
char var_file_name[20];
strepy(var_file_name, taskname);

streat(var_file_name, "_v.dat");
if ((fpl = fopen(var_| file >_name, "w+")) == NULL)
{

perror(" Cannot open data file);
exit(0);

}
fprintf(fpl, "%u %u %u %f %f %u %u\n", ninput, noutattr,
ninattr, eta, alpha, nhlayer, cnt_num);

for (i=0; i < nhlayer + 2; i++) {
fprintf(fpl, "%d ", nunit[i]);
fprintf(fpl, “\n%d %f\n", cnt, err_curr);
for (i=0; i < ninput; i++)
for =0; j < noutattr; j+ +)

fprintf(fpl, "%f ", outp![i][j]);
fprintf(fpl, "\n");
}

if ((c=fclose(fpl)) != 0)
printf("\nFile %s cannot be closed; error %d ",
var_file_name, c);

}

/* create file for saving weights and thresholds
learned from training. File name has suffix
_w.dat ¥/

void wtwrite(char *taskname)

int i,j,c.k
char wt_file_name[20];

strepy(wt_file_name, taskname);
strcat(wt_file_name, _w.dat");

if ((fp2 = fopen(wt_file_name, "w+")) == NULL)

perror("\nCannot open data file ");
exit(0);

;i < nhlayer + 1; i++)
5§ < (ounitfi] + 1) * nunitli + 17; j++) {
8

=0;
fprintf(fp2, "\n");

fprintf(fp2, "%f ", *(wiptr(i] + j));
k++;

}
if ((c=fclose(fp2)) ! = 0)
printf("\nFile %s cannot be closed; error %d ",
wt_file .name, c);

}

/* bottom_up calculation of net for input
- *l

pattern i
void forward(int i)

int m,n,p,offset;

float net;
/* input level output calculation */

for (m=0; m < ninaltr; m++)
*(outptr[0]+m) = inputfi}[m};

/* hidden & output layer output calculation */

; m < nhlayer + 2; m++) {
; n < nunitfm]; n++) {
net = 0.0;
for (p=0; p < nunitfm-1] + 1; p++) {
offset = (nunit[m-1] + 1) * n + p;
net += *(wtptr[m-1] + offset) *
(*(outptr[m-1] + p));

*(outptr[m]+n) = (2.0 / (1.0 + exp(-net)))-1.0;
}

for (n=! < nunit[nhlayer + 1; n++)
outpt[i][n] = *(outptr[nhlayer + 1] + n);

/* sevenal conditions are checked to see
whether learning should terminate */

int introspective(int nfrom, int nto)

int i, flag;
int kke;
/¥ initscr();
move(10,40);
refresh();
printf(" %d",cnt); */
/* reached max. iteration */
if (ent > = cnt_num) return(FEXIT);

/* error for each pattern small enough? */

nfrom; (i < nto) && (flag == 1); i-++) {
if (ep[i] <= maxep) nsnew++;
else flag = 0;

A4

}
if (flag

1) return (SEXIT);

/* system total error small enough? */
if (err_curr < = maxe) return (SEXIT);
return(CONTNE):

/* threshold is treated as weight of link from
a virtual node whose output value is unity */
int rumelhart(int from_snum, int to_snum)

int i,j,k,m,n,p,offset,index;
float out;
char *err_file = “criter.dat";

result = CONTNE;

if (fplot10)
if ((fp3 = fopen(err_file, "w")) == NULL)
{

perror("\nCannot open error file ");
exit(0);

}

do {

err_curr = 0.0;

/* for each pattern */

for (i=from_snum; i < to_snum; i++) {

forward(i); /* bottom_up calculation */

/* top_down error propagation */
1* output_..vel error */
for (m=0; m < nunil[nhlayer + 1J; m++) {
out = *(outptr[nhlayer + 1] + m);
*(errptr{nhlayer + 1] + m) = (target{i][m] - out) *
0.5 * (1 - out*out);

/* hidden & input layer errors */
for (m=nhlayer + I;m >= 1; m-) {
for (n=0; n < nunitlm-1]+1; n++) {

*(errptr[m-1] + n) = 0.0;

A.45

for (p=0; p < nunit[m}; p++) {
offset = (nunitfm-1] + 1) *p + n;
*(delw[m-1]+offset) = eta * (*(errptr[m]+p))
* (*(outptr[m-1] + n))
+ alpha * (*(delw[m-1] + offset));
*(errptr[m-1]+n) += *(errptr[m] + p)
* (*(wtptr[m-1] + offset));

}
*(errptr[m-1] + n) = *(errptr{m-1] + n) *
(1 - *(outptr{m-1] + n)
* (*(outptr{m-1] + m));

/* weight changes */
for (n=1; m < nhlayer + 2; m++) {
for (1=0; n < nunitfm}; n++) {
for (p=0; p < nunitfm-1] + I; p++) {
offset = (nunitfm-1] + 1) *n + p;
*(wiptr[m-1] + offset) + = *(delw[m-1] + offset);

\:n < nunit[nhlayer + 13; m++) {
ep[i] += fabs((target[i](m] -
*(outptr[nhlayer+1] + m)));

err_curr += epfi] * epli];
/* normalized system error */
err_curr = 0.5 * err_curr / ninput;

/** save errors in file to draw the
system error with plot10 L
if (fplot10)
fprintf(fp3, "%1d, %2.9f\n", cnt, err_curr);
cnt++;
/* check condition for terminating learning */
result = introspective(from_snum, to_snum);
} while (result == CONTNE); /* end of long do-while */

/* update output with changed weights */

A.46

for (i=from_snum; i < to_snum; i++) forward(i):

< nhlayer + 1;i++) {

< nunitfi+13; j++)

printf("\n\nWeights between unit %d of layer %d",
i JD;
printf(" and units of layer %d\n", i);
for (k=0; k < nunitfi]; k++)
printf(" %f", *(wtptr[i] + index++));
printf("\n Threshold of unit %d of layer %d is %",
j, i+ 1, *(wiptr[i] + index++));

;i < ninput; i++)
; j < noutattr; j++)
pnntf("\n\n sample %d output %d = %f target %d = %f",
i, j, outptfi][j].j,target(i)i]); */
printf("\n\nTotal number of iterations is %d", cnt);
printf("\nNormalized system error is %f\n\n\n", err_curr);
return(result);

}

/* read in the input data file specified
by user during interactive session */
void user_session()

int i,j,showdata;
char fnam[20], dtype[20];
FILE *fp;

printf("\n Start of learning session");

/* for task with name task_name, input
data file of the task is automatically
set to be task_name.dat by program */

printf("\n Enter the task name : ");
scanf(" %s", task_name);

printf(*\n Hov' many features in input pattern?
scanf(" %d", &ninattr);

printf("\n How many output units?:
scanf(" %d", &noutattr);

printf("\n Total number of input samples?:
scanf(" %d", &ninput);

strepy(fnam, task_name);
strcat(fnam, ".dat");

printf("\n Input file name is %s \n", fnam);
if ((fp = fopen(fnam, "r")) == NULL)

printf(“\nFile %s does not exist", fnam);
exit(0);

}

printf("\n Do you want to look at data just read? (Y/N): ");
scanf(" %s", dtype);
showdata = ((dtype[0] == "y') || (dtype[0] == "Y"));
for (i=0; i < ninput; i++) {
for (j=0; j < ninattr; j++) {
fscanf(fp, " %", &input[il[i]);
if (showdata) printf(" %f ", input[il(j]);

for (j=0; j < noutattr; j++) {
fscanf(fp, "%f". &target[i][j]);
if (showdata) printf(" %f\n", target(i][j]);
}
if (i = fclose(fp)) != 0)

print{("\nFile %s cannot be closed; error %d ", fnam, i);
exit(0);
}

/* main body of learning */
void leaming()
{

int result;
user_session();
set_up();
init();

A48

do {

initwt();

result = rumelhart(0,ninput);
} while (result == RESTRT);

if (result == FEXIT)
{

printf("\n Max number of iterations reached, but failed");
printf("\n to decrease system error sufficiently...\n");

dwrite(task_name);
wiwrite(iask_name);

}

/* main body of output generation */
void output_generation()
{

int i,m,nsample;

char ans[10];

char dfile[20];

foutt = fopen("tqnur.mat","w");

/*1f task is already in the memory, data files
for task do not need to be read in. But, if it
is a new task, data files should be read in to
reconstruct the net. */

printf("\nGeneration of outputs for a new pattern");
printf("\n\t Present task name is %s", task_name;
printf("\n\t Work on a different task? (Y or N): ");
scanf(" %s", ans);

x(f ((ansf0]=="y’) || (ans[0]=="Y"))

printf("\n\t Please enter the task name: ");
scanf(" %s", task_name);
dread(task_name);

init();

wtread(task_name);

/* input data for output gencration
are created b4

printf(*\nEnter file name for patterns to be processed:

scanf(" %s", dfile);

if ((fpl =fopen(dfile, "r"j) == NULL)

{

perror(" Cannot open dfile ");
exit(0);
!

printf("\nEnter number of patterns for processing: ");
scanf(" %d", &nsample);

for (i=0; i < nsample; i++)
for (m=0; m < ninattr; m++)
fscanf(fpl, "%f", &input[i][m]);

/* output generation calculation starts */
for (i=0; i < nsample; i++)

forward(i);

(m=0; m < noutattr; m++)
fprintf(foutt,"\n %f",
*(outptr[nhlayer + 1] + m));
fprintf(foutt,"");

printf("\nOutputs have been generated ");

if ((i=fclose(fp1)) ! = 0)
printf("\nFile %s cannot be closed; error %d", dfile, i);

/ MAIN
void main()

char select[20], cont[10];

strepy(task_name, "FxsRskakry s
do {
printf("\n**Select L(earning) or O(utput generation)**\n");
do {

scanf ("%s", sclect);
switch (select[0}) {
case ‘o’
case 'O’: output_generation();
5
case '
case "L': learning();

break;
default : printf("\n Please answer");

A.50

printf(" learning or output generation ");
break;

}
} while ((select[0] != '0") && (select[0] != 'O")
&& (select[0] != 'I") && (select[0] != "L')):
printf("\nDo you want to continue? ");
scanf(" %s", cont]
} while ((cont[0]

y") 1 (cont[0] == "Y");

rint \nlt is all finished.
pnm(("\nGocd bye...\n\n\n

NINE-POINT PATH PROBLEM

A PROGRAM FOR SOLVING FOUR BAR MECHANISM

DIMENSION TLI(10),TL2(10),TL3(10), TL4(10)

DIMENSION TTH(10), TAL(10)

OPEN(l, FILE = 'FBOUT.MAT", STATUS = 'OLD")

OPEN(2, FILE = 'FBINP.MAT", STATUS = 'NEW")

OPEN(3, FILE = 'GTT.DAT’, STATUS = 'NEW’)

= 106.0

DO 101 = 1,10

READ(1,*TL1(I),TL2(1), TL3(1), TL4(1), TTH(I), TAL(1)

CONTINUE

D0201 = 1,10

DO30J =19

PRT = TTH(I) + 40.0%(FLOAT()-1.0)

DBI = TLO*COSD(180.0) + TLI()*COSD(PRT)

DB2 = TLO*SIND(180.0) + TLI(I)*SIND(PRT)

QLA = SQRT(DBI**2 + DB2**2)

OL4 = ATAN2D(DB2,DBI)

T21 = OLA + ACOSD((QLA**2 + TL2(1)**2 - TL3(1)**2)/
% (2.0%QLA*TL2())

T22 = OL4 - ACOSD((QLA**2 + TL2(1)**2 - TLI()**2)/
% (2.0%QLA*TL2()))

T31 = OLA + ACOSD((QLA**2 - TL2(1)**2 + TL3(1)**2)/
% (2.0%QLA*TL2))

T32 = OLA - ACOSD((QLA**2 - TL2(1)**2 + TLI(1)**2)/
% (2.0%QLA*TLD))

T2 = T21 - 180.0

PX = TLI()*COSD(PRT) + TLA(1)*COSD(T2 + TAL(D))

PY = TLI(*SIND(PRT) + TLA()*SIND(T2 + TAL(I))

A5l

30

aanonn

[eXeNe}

WRITE(2,*)PX/100.
WRITE(3,*)PX/100.
WRITE(3,*)PY/100.
WRITE(2,*)PY/100.
CONTINUE
WRITE(3,%TL1(1)/100.0
WRITE(3,*)TL2(1)/1000.0
WRITE(3,*)TL3(1)/1000.0
WRITE(3,%) TLA(1)/100.0
WRITE(3,*)TTH(1)/100.0
WRITE(3,*)TAL(1)/100.0
CONTINUE

STOP

END

DESIGN OF FOUR-BAR FUNCTION GENERATOR

GENERATION OF y VALUES

GIVEN LINK LENGTHS, AND CHOOSING x ARBITRARILY

CALCULATE THETA AND THEN SOLVE A FOUR BAR MECHANISM

CALCULATE PHI AND THEN SOLVING FOR y

DIMENSION X(8),TH(8),PHI(8), Y(8)
READ(1,*)RL1,RL3,(TH(),I=1,8)

SOLVE FOUR-BAR MECHANISM FOR PHI VALUES

DO201 = 1,8

BX = RLO*COSD(180.0) + RLI*COSD(180 - TH(I))
BY = RLO*SIND(180.0) + RLI*SIND(180 - TH(I))
BPS = SQRT(BX*BX + BY*BY)

ABPS = ATAN2D(BY,BX) - 180.0

YID = ACOSD((BPS**2 + RL3**2 - RL2**2)/(2.0*BPS*RL3))
PHI() = -(ABPS + YJD)

CONTINUE

DO251 =18

Y(1) = (PHI(l) - PHIO)*(RANY/RANPHI) + YO
CONTINUE

WRITE(3,*)(Y(1),1=1,8)

CONTINUE

467

468

469

474

STOP
END

PROGRAM ANSCHK

DIMENSION RT3(11)

DIMENSION X(8), TH(8),PTI(8),Y(8)

OPENQI , FILE = 'LETAx.DAT", STATUS = 'OLD")
OPEN(22, FILE = 'RT33.DAT’, STATUS = 'OLD")
OPEN(23, FILE = "WANT.MAT", STATUS = 'NEW")
READ(21,*)RANX,RANY
READ(21,*)RANTH,RANPHI
READ(21,*)THO,PHIO, THF, PHF

READ(21,%X0,Y0

READ(21,%)RLO

DO 111 = 1,11

READ(22,RT3(I)

CONTINUE

RLI = RT3(1)

RL2 = RT3(2)

RL3 = RT3(3)

DO 4671 = 1,8

TH(I) = RT3(1+3)

CONTINUE

DO 4681 = 1,8

X(1) = (TH(I) - THO)*(RANX/RANTH) -+ X0
WRITE(23,%)X(D)

CONTINUE

SOLVE FOUR-BAR MECHANISM FOR PHI VALUES

DO 4691 = 1,8

BX = RLO*COSD(180.0) + RLI*COSD(I80 - TH(I))
BY = RLO*SIND(180.0) + RLI*SIND(I80 - TH(I))
BPS = SQRT(BX*BX + BY*BY)

ABPS = ATAN2D(BY,BX) - 180.0

YID = ACOSD((BPS**2 + RL3**2 - RL2**2)/(2.0*BPS*RL3))
PTI(I) = -(ABPS + YJD)

CONTINUE

DO 4741 = 1,8

Y(D) = (PTI(I) - PHIO)*(RANY/RANPHI) + YO
WRITE(23,%)Y(I)

¢ .NTINUE

S.0P

aaanaa »

in

TRAJECTORY CONTROL OF A TWO-LINK MANIPULATOR

POSITION CONTROL OF A TWO-LINK MANIPULATOR

NOTE : ALL ANGLES IN RADIANS
ALL LENGTHS IN M

DIMENSION $(50),UVEL(50)

DIMENSION TRI(4,4),TR2(4,4), TR3(4,4),PV(4), TR4(4,4)
DIMENSION TR5(4,4),XY (4)

COMMON /LINKD/ RL1,RL2,ST

COMMON /XYC/ X(50),Y(50),1

COMMON /XCC/ XC,YC,V_T

COMMON /VELP/ VX(50),VY(50)

COMMON /RMASS/ RM1,RM2

COMMON /CONP1/ THCP1,THCP2,THDCP1,THDCP2
COMMON /CONP2/ RKD(4),DELT

COMMON /RMINP/

TH_DEI1(50),TH_DE2(50), THD_DEI(50), THD_DE2(50)

COMMON /RMINQ/ TXX(2,1),TH_CP1(50), TH_CP2(50), THD_CP1(50)

COMMON /RMINR/ THD_CP2(50)

COMMON /VAND/ VVEL(50)

COMMON /XCNN/ XCN(50), YCN(50)

COMMON /VXNN/ VXN(50),VYN(50)

COMMON /PKK/ PK1(50),PK2(50),PK3(50),PK4(50)

OPEN(l, FILE = 'VELP.DAT’, STATUS = 'OLD")

OPEN(2, FILE = 'XY.MAT’, STATUS = 'UNKNOWN’)
OPEN(9, FILE = 'CONT.PAR’, STATUS = 'OLD’)
OPEN(20,FILE = 'VD.MAT"', STATUS = 'UNKNOWN")
OPEN(17,FILE = 'TH_D.MAT', STATUS = 'UNKNOWN")
OPEN(I8,FILE = 'THD_D.MAT', STATUS = 'UNKNOWN")
OPEN(19,FILE = 'THDD_D.MAT", STATUS = 'UNKNOWN’)
OPEN(22,FILE = 'XCYC.MAT’, STATUS = 'UNKNOWN’)
OPEN(4S,FILE = 'VCWC.MAT', STATUS = 'UNKNOWN’)
OPEN(23,FILE = 'NORM.MAT’, STATUS = 'UNKNOWN’)
OPEN(10,FILE = 'ERROR.MAT',STATUS = 'UNKNOWN’)
OPEN(16,FILE = 'GAIN.MAT', STATUS = 'UNKNOWN')

A.54

[e¥¢e)

a o a o o

[eXe]

DO 11 =1,50

WRITE(*,*)

CONTINUE

WRITE(*,*)'POSITION CONTROL OF TWO LINK MANIPULATOR'
WRITE(*,*)

LINK LENGTHS

READ(1,%RLI,RL2

MASS

READ(1,)RM1,RM2

READ(1,*)ST

RADIUS

READ(1,)RAD

NO OF POINTS

READ(1,9TIME

READil,)NTIME

REQUIRED TANGENTIAL VELOCITY AND ACCELERATION FOR THE
PROFILE

READ(I,V_T,ACC

COORDINATES OF THE CENTER OF THE CIRCLE
READ(1,XC,YC

INITIAL POSITION

READ(9,*)THCP1, THCP2

INITIAL JOINT VELOCITY
READ(9,THDCP1,THDCP2

INITIAL GAIN VALUES
READ(9,RKD(1),RKD(2),RKD(3),RKD(4)
TIME STEP

READ(9,))DELT

CALL TRANS(0.785398,0.0,0.0,0.0, TR 1)
CALL TRANS(0.0,RL1,0.0,0.0,TR2)

CALL RMATMAT(TRI,TR2,TR3,4,4,4)

PHI = ST

STIME = 0.01

GENERATING HE REQUIRED VELOCITY PROFILE AND
EVALUATING THE DISTANCE TRAVELLED
DO 101 = 1,28

IF(L.LE.9) THEN

TIME = STIME*[

ACCELERATION PROFILE

(1) = 0.50*ACCH(TIME)**2

WRITE(51,%)S(I)

VVEL(I) = SQRT(2.0ACC*S(1))

V_T = VVEL(l)

ELSE IF((1.GT.9).AND. (I.LT.20)) THEN

A.55

a0

CONSTANT TANGENTIAL VELOCITY PROFILE
RLP = §(9)

TIME = STIME*(I-9)

VVEL(I) = 0.15

V_T =0.15

S(1) = RLP + V_T*TIME

WRITE(S1,%)S(1)

ELSE

DECELERATION PROFILE

RLP = $(19)

TIME = STIME*(I-19)

SSG = 0.1S0*TIME - 0.50%(ACC)* (TIME)**2

(1) = RLP + SSG

WRITE(51,)5(I)

VVFL(I) = SQRT(0. 150%*2 - 2.0*ACC*SSG)
= VVEL())

ERD IF

STANG = S(I)/RAD

WRITE(20,%)STANG

PHI = ST + STANG

EVALUATING COORDINATES OF THE TRAJECTORY IN GLOBAL

FRAME
CALL TRANS(PHI,0.1,0.0,0.0,TR4)
CALL RMATMAT(TR3,TR4,TRS,4,4,4)
PV(1) = RAD

PV(2)
PV(3)
PV(4) = 1.00

CALL RMATVEC(TRS,PV,XY,4,4)
X() = XY(1)

Y() = XY(2)
WRITE(2,)X(1),Y(1)

CALL THETA_FIND

CALL CART_VEL

CALL THDT_FIND

CONTINUE

DO201 = [,27

CALL TRAJ_CONT

CONTINUE

DO 241 =127
WRITE(10,%TH_CP1(I)
WRITE(10,TH_CP2(1)
WRITE(10,THD_CPI()
WRITE(10,THD_CP2(I)

A.56

aann

WRITE(10,TH_DEI(1+1) - TH_CPI(])
WRITE(10,TH_DE2(1+1) - TH_CP2(])
WRITE(10,%THD_DE1(1+1) - THD_CPi(I)
WRITE(10,THD_DE2(I+1) - THD_CP2(I)
WRITE(17,TH_CP1(1), TH_CP2(1)
WRITE(18,%THD_CP1(I), THD_CP2(I)
WRITE(22,) XCN{I+1), YCN(I+ 1)
WRITE(23, 9SQRT((X(I+1) - XCN(I+ 1) **2+(Y(I+1) -

% YCN(I+1)**2)

WRITE(45,)VXN(), VYN(I)
WRITE(20,)SQRT(VXN(1)**2+VYN(1)**2)
WRITE(19,*THDD_CPI(1), THDD_CP2(I)
W