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Abstract

Neural network has been widely used in various fiekis of robotics. In this work,

the neural network analysis using backpropa

rithm is applicd 1o the inverse

velocity analysis of robotic i s near the sing ity points e for the
tracking error and feasibility of joint velocities. The inverse computations using the
pseudo-inverse of the Jacobian matrix are compared with those obtained by the neural

network analysis. The results illustrated usi

g examples of two well known manipulators
show the advantages of using the present work. A new learning algorithm called LP-
neuro method is then developed to solve neural network problems. [n this algorithm, the
weights are obtained by a combination of Linear Programming having a sparsc coeflicient

ation method. The results are illustrated

matrix and a single variable non-lincar optimi:
by solving three different problems, two of which are useful in the on-line control of

robotic manipulators.

The designs of a function generator and a four-bar mechanism whose coupler
curve passes through nine specified points, have been carried out using neural network
methods. The design problem has been solved using non-linear techniques which yield

Iso digeussed.

a weight matrix in each of the cases. The accuracy of the methods i

Finally, gain parameters required for the trajectory control are evaluated using non- |
optimization method. Neural network is then trained to cvaluate the gain parameters

based on error history of different trajectories
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Chapter 1
Introduction and Literature Survey

1.1 Introduction

Artificial Intelligence (AD) is applied in diversified fields to achieve faster and

better results.  They are useful for achieving i ly fast and app
solutions of certain decision problems that are based on information of diverse criteria.
Lxpert systems, Artificial Neural Networks (ANN), Knowledge-based representations

ete., are examples of different tools used in the application of AI. Robotics is a field that

requires such techniques because robots are often employed to work in hazardous

for human i i and where the ions are
and complicated. In the recent past, ANN have proved quite useful in robotics. Fig. 1.1

shows the various fields in robotics in which ANN is being widely used.

Singularity avoidance, synthesis of mechanisms, finer control of the trajectories
of robotic manipulators are still the topics that require further research. A new technique
which optimizes the efficiency and speed would be of great help because of on-line

computational requirements in the robotics area.



ANN IN ROBOTICS

KINEMATICS

1. Inverse Kinematics -
nonlinear mapping

2. Velocity Calculations

at every instant of time etc.,

Figure 1.1

CONTROL

VISION

1. Position/Trajectory Control
2. Control of Gain parameters
3. Force Control

1. Pattern Recognition
2. Collision Avoidance
3. Sensing and Perception

Application of Neural Network in Robotics




1.2 Literature Survey

1.2.1 Artificial Neural Network Methods

Artificial Neural Networks (ANN) have been studied for more than 30 years. Its
use has increased tremendously in recent years because of the availability of faster and
parallel processors and the basic learning algorithms (Grossberg, 1982; Hopfield, 1982;
Rumelhart and McClelland, 1986; Kohonen, 1988). ANNs also referred as neural
networks in this thesis are being used to accomplish complex functions such as

error ion, information ion, pattern analysis and learning.

Neural network can learn mapping between the input and output space and synthesize

an associative memory that retrieves the appropriate output when presented with an input,

and has the ability to generalize with new inputs. Because of their massively parallel
nature, neural networks can perform computations at  very high speed (Fukuda and

Shibata, 1992).

Neural networks have also been used to successfully solve complex problems like
the Travelling salesman problem. It has been observed that neural networks have often
been opportunistic, i.e. the network model is customized to serve the needs of the task

at hand (Kulkarni. 1991). They represent a new approach that is robust and fault-tolerant.

Neural networks require basic algorithms for accomplishing the learning task.

Several algorithms are functional in the present. One such algorithm which is widely used

is ion (BP) i In i i during the learning



phase. the observed outputs are compared with the desired outputs, and the weights are

optimized to minimize the error function. In competitive learning, the w

s are
updated with each new input (Rumelhart and McClelland. 1986). Barmann and Bicgler-

Kong (1992) discuss efficient learning algorithms for neural networks.

Neural networks can perform functional approximations that are beyond the scope

of optimal linear techniques. Gulati et al., (1990) have introduced neural forn 1o

efficiently learn non-linear mapping using a mathematical construct called terminal

attractors.

Neural networks have been found useful in the field of robotics in the recent
times. Forward and inverse displacement analyses of robotic manipulators have heen done
by Nyugen et al. (1990) and Gulati et al., (1990). Neural networks scem (o be o
promising approach to solve non-linear control problems as well (Tabary and Salaun,

1992). Some other interesting applications in the control of robotic manipulators can be

seen in Fukuda et al., 1991; and Akio et al., 1992.

1.2.2 Singularity Problems in Robotics

Inverse kinematics problems of robotic manipulators are always difficult to solve

because of (a) the multiple solutions in the displacement analysis problems, or (b) the

occurrence of singularity points along the trajectorics in the case of velocity analysis. The

singularity problems, which involve the rank deficicncy in the Jacobian Matrix, have been



dealt with by Chiaverni (1992). In this regard, general discussions on pseudo-inverse
solutions can be seen in Lawson and Hanson, 1974, The pseudo-inverse solutions do not
lead to satisfactory performance near the points of singularity because of abrupt changes

in the elements of the joint velocity vector,

Damped-Least Squares method (DLS) approach has been used by many
researchers (Wampler, 1986; Nakamura and Hanafusa, 1986; Maciejewski and Klein,
1989; Wampler and Leifer, 1988; Mayorga et al., 1992). The additional advantage with
this method is that one can set the limit (achievable limit) on the norm of the joint
velocity vector and find the corresponding damping factor, A, which yields the minimum
error.  Maciejewski and Klein (1989) also proposed a truncated Singular Value
Decomposition (SVD) solution method which could be used for on-line computations.
Llowever the resulting errors could be more in this method. So far, there has not been
any method which takes into account factors such as the errors as well as the
computational efficiency. Neural networks are known to perform well in those areas

provided a relationship is established between the joint velocity vectors and Cartesian

velocity vectors on an off-line basis. This cil the on-line
requirements of the joint velocity vector, as was done by researchers mentioned earlier

(Maciejewski and Klein, 1989).

1.2.3 Mechanism Synthesis

Synthesis of a mechanism is a means of finding the linkage that will produce the



specified motion. The problem of approximate synthe:

of &t four-har mechanism whose
coupler curve is a planar trajectory was solved by Wampler et al., 2). Solution of
pl it t tory Ived by Wampler et al., (1992). Sol 1

such problems date as early as 1923 and some of the important works are

ven in
Freudenstein and Sandor, 1959: Shigley and Uicker, 1980 Erdman and Sandor, 1984;
Morgan and Wampler, 1989; Subbian and Flugrad, 1989. The use of optimization
technique has been made by Suh and Radcliffe (1978). Angeles etal., (1988), or Akhras
and Angeles (1990) have applied a variable-separation technique and non-lincar

optimization scheme to solve the four-bar path generation problem. |

ai and Lu (1989)
have solved the nine-point path problem using a new continuation method. Wampler et

al., (1992) have solved this problem using a combination of analytical and numerical

tools. Problems where the number of points is greater than nine result in an over-

determined system whose exact solutions are not possible.

The four-bar mechanisms have also been used in the design of function-generators.
Freudenstein (1955) proposed an algebraic formulation for the approximate synthesis of
such a mechanism. Wilde (1982) applied error lincarization techniques o solve this
problem. Other interesting references on such problems

an be seen in (Mohan Rao et

al., 1973; Tinubu and Gupta, 1984; and Liu and Angeles, 1992).

1.2.4 Neural Network Control in Robotics
There has been recent trend within the robotics control literature to apply neural

networks for the control of robotic systems. In many applications reported in the



literature (Gu and Chan, 1989; Fukuda and Shibata, 1990; Helferty and Biswas. 1990:
Jamshidi et al., 1990; Karakasoglu and Sundareshan, 1990; Yamamura et al., 1990) the
process of neural network learning is conducted on-line (i.e. the dynamics of the neural
network is embedded in the closed-loop with the dynamics of the robotic system), yet
there appears to be a lack of studies focussing on the dynamic behavior of the neural

network during learning and/or control when the neural network is used in such context.

Kawato (1990) used feedback error learning to compute the feedforward torques
required for a manipulator to follow a path. The neural network implemented in this
method uses the desired joint pasitions, velocities and accelerations as inputs and adjusts
the network weights using the feedback torque as the error signal to a backpropagation
parameter optimizing algorithm, Yuh (1992) also used a neural network for manipulator
control. He used a "critic" equation, which is a function of the manipulator output error,

1o train the network to directly compute the manipulator input torques.

Asada (1990) used a multilayered feedforward network to learn a non-linear
mapping for compliance control. From the measured forces and torques in an assembly
task he used the network to compute the required velocities, which would allow the

assembly task to be completed.

1.3 Thesis Objectives

We have seen in the last few sections that the neural networks are quite versatile



tools to solve problems in a wide variety of areas. With this in mind. it was thought 10
apply this tool to solve problems in the arcas of mechanism design and robotic control
Based on this, the following are the objectives of this thesis:
1) Development of a new neural network learning algorithm (LP-neuro method)
" which is fast and accurate.
2) Application of neural networks for inverse kinematics of robotic manipulators

near singular configurations and comparison with damped-least squares and

pseudo-inverse methods.

3) Velocity, acceleration and torque analysis of robotic manipulators using neural
networks.

4) Synthesis of mechanisms using neural networks

5) Trajectory control of the robotic manipulators using neural networks.

Chapter 2, briefly reviews the basics of neural networks. Backpropagation
algorithm is introduced here and various factors influencing a neural network are
discussed in this chapter. The significance of solving for weight matrix in neural network
problems using combination of LP and a single variable non-linear optimization routine

is identified here. The validity of the application of backpropagation algorithm is checked

Aninve

by using them near singular ions of robotic
relationship is established between the Cartesian and joint velocities on off-line basis
which reduces on-line computation time. The relative merits and demerits of this method

over i pseudo-i and damped-least squares method are discussed in this




chapter. A new algorithm called LP-neuro method is developed to solve problems using

neural networks.

In Chapter 2, the backpropagation method and the new algorithm called the LP-

neuro method are then applied to solve various mechanism synthesis problems.

ter 4 deals with solution of non-linear or adaptive control problems. Here

the non-linear control problem is solved using LP-neuro method developed in Chapter 2.
Next, the gain values obtained by the non-linear method are then used in the neural
control method where the methodology developed in sections 2.4.1 to 2.4.3 are used.

In this way, the number of training sets required is a lot less than what many other

rescarchers have used.

Finally, in Chapter 5, the contributions of the thesis und recommendations for

luture rescarch are outlined.



Chapter 2
Neural Network Methods

2.1 Introduction

Neural network methods arc widely used in many engineering applications. They
can be thought of as a mathematical ool 10 solve common engineering problems such as
optimization, pattern recognition ete.  The newral network indicates the similarity of
modelling network of neurons in the brain.  Many lincar and nonlinear neuron models
are connected in the network and information is processed in a parallel distributed
manner. This greatly reduces the computation time. Neural networks have learning and
self-organization capabilities. They adapt to changes in data, learning the characteristics

of the input signal.

Neural networks can be broadly classified into two types:

1) The neural networks that learn and adapt to chang e recurrent

networks or networks.

p perceptron neural nets, Hopfield nets,

Adaptive Resonance Theory (ART) networks fall under this cutegory.

2) Those that do not involve learning and sometimes called feedforward

nets. Outer-prod ative memories and i nets without backward error

10



corrections belong o this type. The most popular neural networks used today are the

Hoplield nets, Kohonen's self-organizing maps. multilayer perceptrons and ART nets.

Some of the operations that neural networks perform are shown in Fig, 2.1, They
are udvantageous in the following situations:

1) Decision-making from a massive amount of data

2) Non-linear mapping

3) Obtaining near-optimal solutions to optimization problem in less time.

2.2 Backpropagation Method

2.2.1 Multilayer Neural Network

A typical neural network is shown in Fig. 2.2, Basic components of a neural
network are:

1) Input and output data sets

2) Weighed connections

3) Processing Elements (PE) or neurons

4) Activation function
“The neural networks that need to be trained are supplied with predefined input and output
data sets in a vector form. Each layer of a neural network consists of several processing

clements.

ch PE in a neural network sums all of its input values and performs a

predefined operation and produces a single output value. PE’s are connected with



NEURAL NETWORK
APPLICATIONS

CLASSIFICATION

PATTERN

RECOGNITION ‘ OPTIMIZATION

NOISE
REMOVAL

CONTROL

Figure 2.1  Applications of Neural Networks



processing
element (PE)

activation functi
activation function, p.eisvivis

output

input Yiges

layer

weighed
connections

Figure 2.2 A Typical Neural Network



weighed connections. Information is stored in a network in the form of we

neural network method the weight matrix is obtained based on the learning proc

based on the input and output information used for that purpose,

Activation functions, also known as squashing functions. perform mapping of P!

ivation functions (shown

infinite domain into a prespecified range. Commonly used a
in Fig. 2.3) are:

1) Linear activation function

2) Step activation function

3) Ramp activation function

4) Si i ivation function or ing function

5) Gaussian function

Neural networks are organized into several layers of PE's which include input layer,
hidden layers and output layer as shown in Fig. 2.2. A feedforward network is one that
has connections which feed information in one direction without any feedback path. 11 a
network has feedback paths, then it is called feedback network. The training of
multilayer neural networks depend on the following factors:

1) The number of layers

2) The number of PE in each layer

3) The amount of data needed for sufficient training.
There are no predefined set of rules available for determining the above factors. Several

techniques are available for the multilayer neural networks to have their connection



f(net,)

(a) Linear activation function (b) Hard limiting function

f(net)) f(net,)

(¢) Threshold function (d) Sigmoidal activation function

Figure 2.3  Activation Functions
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weights adjusted to learn mapping. The most popular technique is the backprop:

algorithm (Werbos. 1974: Parker. 1982: Rumethart. Hinton, and Williams 1986).

Learning process can be classified into two categorie:

unsupervised learning. Supervised learning monitors  the duration of the training and the

error performance etc.. Unsupervised learning incorpora

s no monitoring process and

relies only upon local information during the entire learning process.

Most learning.

techniques are carried out off-line.

2.2.2 Feedforward Recall and Error Backpropagation Algorithm.
In neural network method, one establishes a relationship between the input and the

desired output The matrix i ip between these two vectors are

approximated by using several hidden layers as shown in Fig. 2.4. In this figure, the

relationship between the input vector and the first hidden layer vector is at first expressed

involving a weight matrix whose elements vary between -1 and 1 and are randomly
generated. Similar procedure is adopted for the relationship between two adjacent hidden
layers or the last hidden layer and the output layer. Mathematically, one of these typical

relationships can be written as,

(H), = 1, {0 @n

where {I} is the input vector and {H}, is the first hidden layer.



INPUT ~ HIDDEN OUTPUT DESIRED

LAYER LAYERS LAYER OUTPUT
f(hi)
Xm o | ] {o% K{d}
e,
L !
q ! AlOo
¢ A0
s; A|3O
Wh sl Wl 1/2(de—oa)?

Figure 2.4  Representation of Neural Network Layers - Forward Computations



Next, values corresponding to sigmoidal function of cach of the elements of the

vector {H}, are p and are symbolically by 4

Juare (O) in Fig.

2.4,

For example, for a typical element it would be written as

i PR T
A 1+ exp(-ah)

where o is the steepness factor and b, is one of the clements of vector {I1},. This process

is continued until the last hidden layer i.c., cach layer is related to other by a matrix

containing weights, and also, there is

similar relationship written between the last

hidden layer and the output layer.

Defining two vectors {o} and {d} as the vector of output sigmoidal functions and

desired values respectively, we wish to minimize the error E defined by

@3

Each of the summation terms (E,) is represented by triangular (a) symbol in Fig. 2.4.
This error has to be backpropagated using the same weights mentioned above. To do

this, we first write the equation

8y = (-0 (1 -0)0, 2.4



INPUT HIDDEN OUTPUT
LAYER (6,1} LAYERS { by} LAYE]

’ { Gt}

WL (7).

Figure 2.5  Representation of Neural Network Layers - Back-propagation
of Errors



which is represented by a diamond symbol () in Ihe error in the fast hidden

layer element wise is computed using

2.5

§
by = oy (- ; Suwy -1

where y; is the sigmoidal elemental output of the last hidden layer in Fig. 2.4 and w, is
an element of the corresponding (to the right of y) weight matrix. 'This process is
repeated until one computes all the elements of the first hidden layer. The weight matrix
between the output layer and the last hidden layer to be used in the next cycle is

recomputed as
W) = W1+ nid, )" 2.6
where the superscripts refer to the cycle number and y is the learning factor which is

normally assumed between 10 to 10. The relationship for the weight matrix in other

layers is given by

W1 = W1+ n (6, ) @D

Finally the weight mawix between the input and the first hidden layer is calculated

using

Wyl = (W) =+ n (8, (0" @8
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Once these weight matrices are obtained, then for any input vector one has to go
through the forward computations as shown in Fig. 2.4 to obtain the output vector. This
process is continued until the final set of weight matrices are obtained which yield the
desired output values within the accuracy specified. Flowchart for the backpropagation

method is shown in Fig.2.6.

2.2.3 Properties and its Significance
Backpropagation algorithm uses gradient descent technique to adjust the weights

S0 as to minimize the error

aw, = £ @9

where 7 is the step value. The movement of the weight vector in two-dimensional space
can be observed on the error surface shown in Fig. 2.7. The weights of the network to
be trained are typically initialized at small random values. The initialization trongly
affects the ultimate solution. Another factor that affects the convergence is the steepness
factor «, in the sigmoidal activation function given in Eq.(2.2). The effectiveness and

of the error ion learning algorithm depend signi on the

value of the learning constant 9. In general, however, the optimum value of  depends
upon the problem being solved and there is no single learning constant suitable for
different training cases. Activation functions with larger steepness factor produces the

same effect as increasing the learning factor. So, the steepness factor is usually taken as
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Flow Chart - Back-propagation Method
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Figure 2.7 Movement of Weight Vector (2-D) on the Error Surface
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1 and the learning factor is adjusted to control the convergence. However, gradient
descent wigorithm suffers from local minimum problem which is a common property of

any nonlinear optimization algorithm,

2.2.4 Application - Singularity Problems in Velocity Analysis of
Robots

‘When a manipulator is in singular configuration, it loses one or more di

freedom in the Cartesian space. Singularities in robotic manipulators may arise due to

the geometrical limitati ints in the ing links) of the i “This

problem can be handled by the use ol redundant manipulators. There are two kinds of!
singularities:
1) Boundary singularities arise due to the geometrical limitations.

2) Interior singularities are due to two or more joint axes lining up.

Redundant manipulators also have singular configurations which have to be cither
avoided or handled. Near singular points, very high joint velocities result if' the Cartesian

velocities have components in the direction in which the arm los

the points at which the Jacobian matrix becomes rank-deficient.

While this problem can be handled using mathematical techniques like pscudo-
inverse methods, yet it has certain limitations. The problems of singularitics can be
tackled at the task planning level itself by carefully designing the trajectory which avoids
singular configuration. On the other hand, if due to wrong task planning or in situations
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where on-line computations are made and the singularity appears in the trajectory. the
robot control system must be able to pass through them safely. Multiple solutions exist

at singularity points.
2.2.4.1 Velocity Analysis Using Psuedo-Inverse Method
The invesse kinematics for -obotic manipulators is given by (Craig, 1986)
1) = [J]1(6) @10
where {O} represents the joint velocity vector and {X} is the end-effector velocity vector

and [J] is the Jacobian matrix. Therefore, the joint velocity corresponding to a given {}

is given by

01 = 17" (%)
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10 = [ {8 2y

where [J°] is catled the pseudo-inverse of the Jacobian matrix. The hasic idea is w0
minimize the norm [| {x} - [J{O} || since (I does not exist at singular points. [1°] gives

an approximate solution satistying the condition

min | {0 and
[RCIN o

min | (X] - (J] (€)1

Near the singular points, [J'] is equivalent to [J] ' and pseudo-invers

inds out the exact
solution. Though pseudo-inverse gives exact solution near singular points, they are not
feasible because of very high values of {©}. Hence a compromise is required between
feasibility and exactness in case of inverse Kinematic solution near singular points.
Otherwise, pseudo-inverse solutions result in undesirable continuity leading to high joint

velocity which results in very high oscillations.

2.2.4.2 Velocity Analysis Using the Damped Least Squares Mcthod

Damped Least Squares (DLS) method has been proposed by sevi
to solve inverse kinematics problems. In this method, one writes the relation between

{6} and {x} as

©) = (V1711 « A ]! 11 1 2414
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In order o realistically achieve the desired joint velocity values, one must modify the
above equation to suit the highest achievable limit of the manipulator in terms of angular

velocities.  In other words, we have to minimize the expression

Min [{i} - []{O}F + A (O} Beld)
where X is known as the damping factor. {0} ]| is the norm of the joint velocity and the
term | {x} - [J1{O} | accounts for the minimization of the tracking error or exactness of

the solution and N || {6} |1* takes care of the feasibility of the solution. It is equivalent

1o solving a minimization problem,

Min [ (&) - [J]{©} |
subject to constraint (2.16)

110} <6,

where O,,,, is practical limit on manipulators joint velocity. An appropriate value of
damping factor, A, will give the desired solution. Damping factor, . is computed using

(Macicjewski and Klein (1989))

O I = HOPP = Y [P @17
i=1

where %" = {u}" {%} and r is the rank of the matrix and o, {v,} and {u} are obtained
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from Singular Value Decomposition (SVD) of the Jacobian matrix [J].  To express

Eq.(2.17) in a simple manner one can write

4
, [N
16,0 . 2.8
8,
where ipt * rep the maxil allowable value for that particular joint. At
first, one evaluates
116, - okl G (2.19)

max |
and then using Eqs.(2.18) and (2.19) and using a nonlinear optimization technique, finds

the value of A which would minimize the function

x'o, X0, X0, o g
=" 8l 8 & =m0, 171
ol + A ol + a2 o+ a2

(2.20)
The optimal value of N is then substituted in the following equation to get the damped

joint velocity vector

%) = 2 ey uvnu) (%) @21

Unfortunately, both these methods, i.c., the pscudo-inverse as well as the DLS are,

28



expensive in terms of computations, and not suitable for on-line tasks. It is important 0
select an appropriate value of damping factor, . A low value of N minimizes the
tracking error and gives rise to undesirable high joint velocities. A high value of N
accounts for the robustness but leads to low tracking accuracy (Chiaverni, 1992). The

term g,/ (0} + A?) far away from singular points, becomes (as A - 0)

- i 2.22)
9
DLS solution two main limitations of pseudo-inverse solution near
singular confi ions namely the di inuity and infeasible high joint velocities. But
SVD i are it pensive and error ise is high. In

theory, it is possible to calculate the damping factor N at each of the points along the
trajectory (near singular points) but an optimal value of X, if chosen for all the points

would minimize the computational burden.

2.2.4.3 Velocity Analysis Using Neural Network Method
A single layer neural network is capable enough to learn the relationship between
the Cartesian and joint velocities near singular configurations. This is a highly non-linear

mapping where joint velocities increase at a higher rate.

Considering the fact that in the real-time control problems one has to keep in mind
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both. the errors (displacement. velocity, force ete.). as well as the computational
efficiency (real-time computations): therefore. in the present work, the relationship

between the Cartesian velocity and the joint velocity vectors was established on off-line

basis using the neural networks over a segment of a trajectory. ircumvents the on-

line computational requirements of the joint velocity vector, as was done by researchers
(Maciejewski and Klein, 1989) mentioned sarlier in Chapter 1. In their method, the
calculations were required to be done on a point by point basis but which results in the
slowing down of the actual task. The additional benefit of the neural network method is

that one can achieve better accuracy also.

The input vector is the Cartesian velocity vector and the output vector is the joint
velocity vector. The training is performed on either side of the singularity point (Sharan
and Balasubramanian, 1993). The following points are kept in mind while performing the
training:

1) Maintain the joint velocities close to the upper feasible limit near the singular

point.

2) A smooth transition curve of joint velocities is required on cither side off

singularity points.

3) Minimize the errors between the actual and achievable joint velociti

4) Have optimal number of training tasks to achieve the non-lincar mapping.



2.2.4.4 Case Study

To illustrate the theory developed so far, the task of moving the end effector along
a trajectory consisting of a scgment of a circle and a radial line is shown in Fig. 2.8.
The point of singularity was the point B in this figure. While performing the task a
constant tangential velocity along the radial path was desired. This task was performed
using (a) A planar two degrees of freedom (DOF) manipulator (b) PUMA-560
manipulator. These are typical manipulators widely used by various researchers in the

ficld of robotics.

Two-Li ipulat
A simple two-link manipulator is shown in Fig. 2.9. The velocity relationships
between joint velocity and the Cartesian velocity for this manipulator is given by
(j] Ui Jip éx
y u In| |6,

.23

where x and y are coordinates of the path followed by the end-effector expressed in

universal frame. The inverse of the Jacobian is written as

1 bey bsi @2

Libs, |-hey - bey -bsy - bsy,

vt
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X

Figure 2.8  Trajectory Used for PUMA-560 Manipulator
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Y

Figure 2.9 A Planar Two-Link Manipulator
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where ¢, = cost;:

in(d, + 0.): and ¢, = costd, + 0.
Here. 6, and 0, are the joint angles of the manipulator and |, and 1, are the link lengths.

One can find from the above equation, the singularity arises when s

00 =0 i
when as the arm stretches outward and both joint rates go to infinity. The two-link
manipulator is moving its tip at a constant tangential velocity of 0.03 my/s. The link
lengths used were I, = 0.4 m and 1, = 0.2 m; the radius of the circle was 0.07 m and

the damping factor A obtained from nonlinear optimization routine was 0.0077.

PUMA-560 Manipulator
The forward kinematic relationship between Cartesian coordinates and joint

coordinates for a PUMA-560 manipulator (shown in Fig. 2.10) is given by

X, = 06y~ Sy + @ - dy
Yo = @550 — dissy +oapsiey - dyg

d

4C23

=
o
5

a5

The link parameters for this manipulator are shown in Table 2.1. While performing the
task, the desired tangential velocity along the circular path for PUMA-560 was 0.5 m/s
and it was the same velocity along the radial path also. The maximum achicvable limit

6,4, for each of the manipulators was taken to be 25 rad/s.



Figure 2.10 PUMA-560 Manipulator
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Table 2.1 Link Parameters of PUMA-560 Manipulator

Link i o 6; H; D;
(degrees) (degrees) (m) (m)
1 0 0, 0 0
2 90 6, 0.4318 0
3 0 [ 0.02032 0.127
4 -90 A 0 0.4318
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2.2.4.5 Results and Discussion

At first a PUMA-560 manipulator is considered. The {©} vector was obtained
using Fgs. (2.11) or (2.12) depending upon the proximity of the point to the point of
singularity. The results obtained are shown in Figs.2.11 to 2.14. Similarly, the results
for damped least squares method using Eq.(2.21) are also shown in these figures. It is
quite clear here that the required values near the point of singularity are high and not

because this mani has a maxil 161 equal to 25 rad/s. For the

neural network analysis, the input and the output values for the learning phase were
specified in accordance with Egs. (2.11) or the maximum limits over the trajectory.

Alter this, the weight matrix [W] which relates {x} and {6} as

151 = [W118) @26
was obtained using Egs. (2.1) to (2.8). The results are shown in Figs. 2.11t0 2.14. In
all these figures, the results obtained by neural network analysis are far more accurate
than those obtained by the DLS method i.e. the neural network method gives the norm
values much closer to the values given by Eqgs. (2.11) and (2.12) than the DLS method.
Secondly, the error in | x| (to the right of point B) in Fig.2.14 in the case of neural
network method, is due to the maximum achievable limit and not due to the method
itsell. In addition, as mentioned earlier. the DLS method requires much more on-line
computations. These facts were further confirmed in the case of two-link manipulator
as shown in Fig.2.9. The results in this case are shown in Figs. 2.15 to 2.18. The

trajectory in this case was the same as used earlier.

a1
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