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Abstract

Neural network has been widely used in various rich,is Ill' robotics . l uthis work,

the neural network analys is using.hac kpmpagalilll1 algll rilhm is applied III the inverse

velocity analysis o f robotic manipulators ncar the sin);!,u l;lrity POilllS ;lcClIlllllinl! tor rlw

tr ac king erro r and feasibility of joint veloc ities , The inverse computations IIsill!! 11Il'

pseudo-inverse of the Jacobian matrix arc compared with those IIht:lilWd h~ the neural

network anal ysis . The results illustrurcd using e xample s of Iwu we ll known nmmpul.uors

show the advantages o f using the present wor k. i\ new 1c;lrning alglll'ilhm callcd 1.1'

neuro method is then developed tn solve neural network problems lnrhis algl,rilhlll . thL'

weights are obtained by a combinationof Linea r I'rngral1lll1illghav ing ;1sjxlrs, ':llCffit:il'l1t

ma tr ix and a single variable non-linear np thuizatiuu me thod . The results ar c dlus tral\'d

by solving three d iffe rent pro blems. two of which arc usefu l in the on-fine \olll r" l III

robotic manipulators.

The designs of a function genenuor and a four-bar mechani sm whose l,:oupkl

curve passes through nine spe cified points, have been carried out usillg neural netwOl'k

methods. The design problem hasbeen solved using non-linear techniques which yield

a weight ma tr ix in each of the cases. The :ll.;CUr<ICY of the mcthuds is also discussed

Finally, gain parameters required for the trajectoryuuurul arcevaluated usi ng rumlinear

optimization method. Neural network is then trained to evaluate uic gain pnuunctcrs

based on error history o f different rrajc ctoncs
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Chapter 1
Introduction and Literature Survey

1.1 Intr oduction

Aniflcial Intelligence (AI) is applied in di versified fields to achieve faster and

better results. They are useful for achieving computationally fast and approxi mate

solutions of cert ain decisio n probl ems that arc based on inform ation of diverse criter ia.

Expert sys tems, Artificia l Neural Networks (ANN), Knowledge-based representa tions

CIC .. arc exa mples of ulffe renr tools used in the applicat ion of AI. Robotics is a field that

requires such techniques because robots are often employed to work in hazardous

environments impossible for hum an interactions, and where the calculations are numerous

and complicate d. In the recent past, ANN have proved quite usefu l in robo tics. Fig. 1. 1

shows the var ious fields in robo tics in which ANN is being widely used,

Singularity avoidance. synthesis of mechanisms, finer contro l of the trajectories

orrobotic manipula tors are still the topics that require further research, A new techniq ue

which optimizes the efficiency and speed would be of gre at help because of on-line

cnmputariunal requirement s in the robotics area .



ANN IN ROBOTICS

t.fnverse xlnemaues 
nonlinearmapping

2. Velocity Calculations
at every instant of fime ete.,

I. PosilionITrajcetory Conlrol
2. Control of Galn parameters
3. ForceControl

I. PatternRecognition
:20 Collision Avoidance
3. Sensing and Perception

Figure 1.1 Application of Neura l Network in Robolicl:



J. 2 Liter atu re Survey

1.2 .1 Artifi cial Neural Network Methods

Artifi cial Neural Networks (A NN) have been studied for more than 30 years . Its

usc has increased tremendously in recent years because of the availability of fas ter and

pa ra lk:1proce ssors anrJ the basic learn ing algorithms (Grossberg . 1982; Hopfield . 1982:

Ru mclhart and McClelland. 1986; Kchonen. 1988). ANNs also referred as neural

ne tworks in this thesis arc being used to accomplish complex funct ions such as

generalization. error correction. informationreconstruction, pattern analysis andlearning.

Neur al networ k can learn mapping between the input and output space a nd synthesize

an associative memory that retrieves the approp riate output when presented with an input.

and 11:15 the ability to genera lize with new inJK!IS. Because of their mass ively parallel

n ature, neural nctwmks t an pcrfonn computations al very high speed (Fukuda and

Sh ibata. 1992).

Neura l networks have also been used 10 success fully solve complex problems like

the Travelling salesman problem. It has been observed that neu ra l networks have oflen

bee n uppnn unistic . i.e. the network model is customized to serve the need s of the task

al hard (Kulka rni. 19( 1). They represe nt a new approach that is ro bust and faulr-tole mm.

Neural networks requi re basic algorithms for accomplishing the learning task.

Se VCTll1algo rithms arc functional in the present. One such algorithm which is widely used

is backpropagarton (OP) algorithm. In backpropagaricn algor ithm . during the learn ing



phase . tbe observed outputs arc cumparcd with the desired ouquus. a nd the wei ghts arc

optimized to minim ize the error function. In comrcunvc leaming. the wciglus arc

upda ted with each new input (Rumelhnn ,md t\kClelland.. 191\(1). Hanuann and Biegler ·

Kong (19 92) d iscuss efficient learning algori thms fur neuralnetworks.

Neural networ ks can per for m functiona l approxinnuious Ihilt M C beyondthe scope

of op tima l linear techniques . Gul ati ct ul. . (1990) have introducedneural formalism I I I

efficie ntly learn non-linear mapping usmg a marhcmauc ul cons truct called terminal

attractc rs.

Neural networ ks have been found usefu l in the field of rob oucs ill the recent

times. Forward and inve rse displacem ent analyses ofroboric nuunpu tutors have hecn doue

by Ny ugen ct al. (1990) and Gulat i et al.. ( 1990). Ne ural network s see m In he :1

prom ising approach to solve non-linear con trol problems as wen [Tabary aud Snlnnn,

1992) . Some other lnteresung applicat ions in the comro t of mhutic manipulators can he

seen in Fukuda er at.. 1991 ; and Ak io ct aI. , 1992 .

1.2.2 Singularity Problems in Robotics

Inverse kinematic s problem s of robotic manipulato rs arc always difficult hi solve

because of (a) the multiple solutions in the displacement analysts problems. or (bJ the

occurre nce of singularity points along the trajec tories in the case of velocit y nnal ysis. The

singularity problem s, whic h involve the rank de ficiency in the Jacobia n Matrix, have been



de,th with hy Chiaverni (] 992, . In this regard. general discussions on pseudo-inverse

soluuons can he seen in Lawson and Hanson. 1974. The pseudo-inverse solutions do not

lead to satisfactory performance ncar the points of singularity because of abrupt changes

in the clements of the joint velocity vector.

Damped-Least Squares method (DLS) approach has heen used by many

researchers (Wamp ler. 1986; Nakamura and Hanatusa, 1986; Maciejewski and Klein.

1989; Wampler and Leifer . 1988; Mayorga ct al. , 1992). The additiona l advantage with

this method is that one can set the limit (achievable limit) on the norm of the joint

velocit y vector and li nd the correspond ing damping factm, A. which yields the minimum

Maciejewski and Klein (1989) also proposed a truncated Singular Value

Decomposition (SVO) solution method which could be used for on-line computat ions.

However the resulting errors could be more in this method. So far. there has not been

any me thod wh ich takes into account factors such as the errors as well as the

computational efficiency. Neural networks are known to perform well in those areas

provided a relat ionship is established betwee n the joint velocity vectors and Cartesian

Veloci ty vectors on an off-line basis. Thi s c ircumvents the on-l ine computational

requirements of the jo int velocity vector, as was done by researchers mentioned earlier

(Maciejewski and Klein, 1989).

1.2.3 Mechan ism Synthesis

Synthesis of a mechanism is ;1 means of finding the linkage that will produce the



specifie d motion. The problem of approx imate symhesls of a four-hal' mechanism II"h,,,,,'

coupler curve is a planar trajectory was solved by Wampler cr :11. . l l l)t)2). SOhLl i" 1L .,1

such problems date as catt y as 1923 and some of the important works arc given ill

Preudensretn and Sandor. 1959: Shigle y and Vicker. 1980; Erdman and Sall\lm . l'm-l ;

Morgan and Wampler. 1989: Subbinn lind Flugrud. 1989. The usc Ilf tlJltillliz;llil' lI

technique has been made by Suh and Radcliffe (1978). Angeles ct :11. . (198M), I ll' Akhr,ls

and Angeles (1990) have applied a variable-separation technique and uon-Hncar

optimi zation scheme to solve the four -bar path generation problem. Tsni anti I.u t llJl-NI

have solved the nine-point path problem using a new connuuauon method . Wampler cr

al. , (1992) have solved this problem using a cnmblnation or unnlytical and mnncrtcut

tools. Problems where the number of points is greater IIm11 nine result in all over

determined system whose exact solu rlons an: not possible.

The four-bar mechanisms have also been used in the design of Iunctnm-gcncrarnrs.

Preu uenstetn (1955) proposed an algebraic Iormulanon for the nppruxhuurc symncs!s 01

such a mechanism. Wilde ( 982) applied er ror linearization techniques 10 solve rhts

problem. Other interesting references on such problems cnn he seen ill (Mnlmn 1{,lll cl

al. , 1973; Tinub u and Gupta, 1984; and Liu and Angeles. 1992).

1.2.4 Neural Network Control in Robotics

There has been recent trend w ithin the robotics control literature to apply neural

networks for the control of robot ic systems. in many applications reported in the



literature (Gu anti Chan. 1989; Fukuda and Shibata, 1990: Helferty and Biswas. 1990:

Jamshidi ct al.. 1990; Karakasoglu anti Sundareshan. 1990: Yamamura er al., 1990) lilt:

pw<:css of neural network learning is conducted on-line (i.e . the dynamics of the neural

network is embedded in the closed-loop with the dynamics of the robotic system), yet

there appears to be a lack of studies focussing on the dynamic behavior of the neural

network during learning and/or control when the neural network is used in such co ntext.

Kawaiu (1990) used feedback error learning to compute the feedforward torques

required fo r a manipulator to follow a path. The neural network implemented in this

method uses the desired joint positions. velocities and acce lerations as inputs and adjusts

the network weights using the feedback torque as the error signal to a backpropagation

parameter optimizing algorithm. Yuh ( 1992) also used a neural network for manipulator

control. He used a "critic" equation, which is a function of the manipulator output erro r,

10 train the network to directly compute the manipulator input torques.

Asada (l 990) used a multilayered feedfcrward network to learn a non-linear

m:lpping fo r compliance control. From the measured forces and torques in an assembly

lask he used the network to compute the requ ired velocities, which would aIJow the

assembly task 10 be completed.

1.3 Th esis Objectives

We have seen in the last few sect ions that the neura l networks are quite ver satile



tools to solve problems in a wide varicty \11' arc;ls. With this in mind. i, W;IS tl" ,u~h l h'

apply this 10011(\ solve problems in Ihe areas of mechanism u.:si~n anll nllll,t;e l;nntn'l.

Based on this, tbe following arc the:objec tives ,If this thesis :

I) Development of OJ new neural nl:lw(lfL: learning.atgoruhm lLlI-I\l.·Utll tncth<lo.1 l

which is Iasr and accurate.

2) Application of neural retworks for inverse kinem.l lK.:S til"tllhtllie lIl;lllil'ul;lltirs

near singular configuralion.s and comparison with damrell-Icasl SIIU;lrcS ;1[\\1

pseudo-inverse melhods.

3) Velocity. acceleration anll torque analysis of ruhlllic numipuhuors Llsing.nctnul

networks.

4) Synthesis of mechanisms using neural networks

5) Trajectory control of lhe robotic manipulators using neural networks.

Chapter 2. briefly reviews the basics of 1ll.'Ur.J1 nclWtJl"ks. Ib :kpmpag;llillll

algorithm is introduced here and various factors inllueneing a neu r al networ k arc

discussed in this chapter. Thesignificance of solving for weighl matrix in neural netwurk

problems using combination of LP and a single variable non-linear uptimi/.atiu!I mUline

is identified here. Thevalidity of the applicationof backpropagation algorithm is chec ked

by using them near singularconfigurations of robotic manipulators. An inverse kinematic

relationship is established between the Cartesian and joint veloc ities on off-line basis

which reduces on-line computation time. The relative menu afkldemerits of this mcthud

over conventional pseudo-inverse and damped-least squares method arc discussed in this



chapter . 1\ new algorithm called Lr.nc uru method is developed to solve problems using

neural networks.

In Chap ter .", the backpropagatlon method and the new algorithm called the LP 

Ileum method arc then applied to solve various mechanism synthesis problems.

Chap ter 4 deals with solution of non-linear or adaptive control problems. Here

the non-linear control problem is solved using LP-neuro method developed in Chapter 2.

Next. the gain values obtained by the non-linear method are then used in the neural

control method where the methodology developed in sections 2.4.1 to 2.4. 3 arc used .

In this way, the number of training sets required is a 101 less than what many othe r

researchers have used .

Finally . in Chapter 5. the contributions of the thesis and recommendations fo r

future research arc outlined.



Chapter 2
Neural Network Methods

2.1 Introdu ction

Neural network methods arc widelyused in many cl1gillLocrillg ;lpplic;lIillllS. 'lhcy

can be th ought o f a s a math cuuuicu l tool to solve COm 1l10 1l c nl,\lnccr inJ; pw hk ms SUd 1:IS

optim izat ion. pattern recognition ere . The m!lIml ,,('twork inuic:llc s ,h l,: slm ilo,rity lit

mode lli ng. netwo rk o f neuro ns in the brain . Many {incar :lUd lIUnli llC<lr neuruu mlll,ld s

are co nnec ted in the network a nd infonna llOlI is proc essed in 11 para llel Ji slr ihutcJ

manner. This grea tly n:tluccs the computation lime . Neural nclwtJrb have Ie:.m ill),: :llIJ

self-org a nizatio n c apa bilities. They adapt to c hanges in Uilt" . kam ing the dWlu,;lcrislK:s

of the inpu t signal.

Neu ral network s ca n be bro ad ly clcss lfl..xl inm tW II types:

l} The ncur al networ ks thai learn and ,.d a pt to cha nges :1I"e c:llk J rec urrent

networks or backprcpagation networks. Muhiluyer pcrccpeun neural nets. Ilupfid u nels,

Adapt ive Resonance Theory (ART ) networks fall und e r this category .

2) T hose that du no t involve lea rn ing a nd sometimes called fced torwa rd

nets. Outer-product associative memories and multilayer nels without backward error

10



~orr~'t; li ll l l~ belong10this type. The most popular neural networks used tmlay are the

llupfielt.! nets Kohoncn's sell-organizing maps. multilayer pcrceptrons a n~ ART nets.

Some ofthe opcrauorsrhmneuralnetworksperformarc shown in Fig. 2.1.They

arc a~valll"g~'t)US in the following situations:

I ) Dccision-nnklng froma massive amount of data

2) NOli-linear mapping

3) Obtainingnear-optimal solutions to optimizationproblem in I~ time.

2.2 Backpropagation Method

2.2.1 Multilayer Neural Network

A typic,11neuralnetwork is shownin Fig. 2.2. Basiccomponentsof a neural

network arc:

I ) luput aliI.!11lIlpuldamsets

3) Processing Etemens (PE) or neurons

4) Activation function

'lhcncural networksthat needto be trained are supplied with predefined inputandoutput

t.!;lla scts in a vector furru. Each layer ofa neural retwork conssrs of several processing

clements. EachPE in a neural network sums all of its input values and performs a

rn.:tldim:d operation and produces a single output value. rE's arc connected with

I I
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Figure 2. 1 Applications or Neural Networks
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Figure 2.2 A Typical Neural Network
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weighed connections. lnfunuation is stored in a network ill rbc tonn nl" II'cighlS. In

neural network method the weight matrix is obtained based I 'll till· k arning.l'fllccss i.c ..

based on the input and output information used for that purpose.

Activation functions, also known as squashing.functkms. pcrlilTll1l1laplling of 1'1':\

infinite domain into a prespccined range. Commonty USl.'1J activation runcuons (shown

in Fig. 2,3) are:

l) Linear activation [unction

2) Step activation function

3) Ramp activation function

4) Sigmoidal activation function or squashing function

5) Gaussian function

Neural networks are organized into several layers of PE's which include input layer.

hidden layers and output layer as shown in Fig. 2.2. I\. fccdforward network is one llmt

has connections which feed information in om: direction without any feedback path. II"a

network has feedback paths, then it is called feedback network. The traiuing III

multilayer neural networks depend on the following factors:

1) The number of layers

2) The number of PE in each layer

3) The amount of data needed for sufficient training.

There are no predefined set of rules available for (Jclcrminingthe ab ove Iactors. Several

techniques are available for the multilayer neural networks to have their connection

14



(a) Linear activation function (b) Hard limiting function

f(nel,) (netJ

f~ f
(c) Threshold function (d) Sigmoidal activation function

Figure 2.3 Activation Functions
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weights adjusted to learn mapping. Till' most popular technique Is till' bal.:kpr\II'a~;ll i \ll1

algorithm twertos. 197.J: Parker. 198:!; Rumelhan. lIill1011, a11l1Williams IlJS6).

Learning process can be clnssif'ied into two categories: supervised learning :lnd

unsupervised learning. Supervisedlearning monitors the durathm uf the training and the

error performance etc.. Unsupervised learning incorporates nu mtl ll i tor in~ pTllI:ess and

relies only upon local information during the entire learning process, Most learning

techniques are carried out off-line.

2.2.2 Feedforward Recall and Error Backpropagation Algorithm.

In neural network method, one establishes a relationship between the input andthe

desired output parameters. The matrix relationship between these two Vl'l.:l!1 rs arc

approximated by using several hidden layers as shown in rig , 2A . In this figure, the

relationship between the input vector and the first hidden layer vector is ,II tlrst cxrrc s.~l.:d

involving a weight matrix whose elements vary between - I and I and arc randomly

generated. Similar procedure is adopted for the relationship between two adjacent hidden

layers or the last hidden layer and the output layer. Mathematically. one of these typical

relationships can be written as.

(2 . 1)

where {I} is the input vector and {H}, is the first hidden layer.

16
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Figure 2.4 Representation of Neural Network Layers - Forward Computations

17



vector {H}, are computed and an: symbolically represented by a slluan: (0) ill Fi~ . ~A .

For example. for a typical d ement it wllulJ he written as

where a is the steepness factor and h, is one otthc clements orvector (II },. This process

is continued until the last hidden layer i.c .. each layer is related to tither hy a manix

containing weights. and also. there is a sim ilar relationship written between the lasl

hidden layer and the output layer.

Defining two vector- {a} and {d} <IS the vector of (lUirut.~ i!lmn ida l fuucrlons and

des ired values respectively. we wish to minimize the error E defined hy

N

E " ~ ~ (d1 - oi

Each of the summation terms (E,) is represented by triangular Itt.) symhol in Fig. 2.4

This error has to he backpropagatcd using the same wcights mentioned above . To do

this. we first write the equat ion

18
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which is represented l\y ,Idial\lllnd symbo l ( ,» in Fi~ , 2.5. Fhcerror in the lasl hidden

layer eleme nt wise is computed using

,
I).v v, (I - Yj ) f; 8 ,,1 I"V j ~ I •...~I

where Yj is the sigmoidal elemental output of the last hidden layer in Fig, 2.-1and \\'~, is

an eleme nt of the corresponding (to the righ t of y,) weight matrix. This process i.,

repeat ed until one computes all the clem ents o f the first hidden layer. The weight matrix

between the output layer and the last hidden layer III he llSL1..I ill the next cycle is

recomputed as

(2 .6)

where the superscr ipts refe r 10 the cycle number and II is the learning Iacnrrwhich is

norma lly as sumed between 10-) to 10. The relationship fur the weigh t matrix ill other

layers is g iven by

(2.7 )

Finally the weight matrix betwee n the input and the first hidden layer is calculated

using

( 2.K)

20



r.rnccthcflC weight matricesan: obtained, then for any input ' "eCIOr one:has to go

lhrnugh the forward c!.Imputalions as shown in Fig . 2.4 10obtain theOUtput vector . This

pml.:e~~ is continued until the final set of weight matrices are obtained which yield the

tlesirt.-dnutput values within the:accuracy specifietl. Flowchart for the backpropagation

method is shown in Fig.2.6.

2.2.3 Properties and its Significance

Backpropagation algorithm uses gradient descent technique to adjust the weights

so ,IS to minimize the error

(2,9)

where 'I is the step value. The movement of the weight vector in two-dimensional space

can IlCobserved on the error surface shown in Fig.. 2.7. The weigbts of the network 10

he lraiOl.'lI an: typically initialized at small random values. The initialization : trongly

affects the ultimate solution. Al10lher factor tha t affects the convergence is the steepness

factor Q. in the sigmoidal activation function given in Eq.(2.2). Theeffectiveness and

convergence of the error backpropagation learning algorithm depend significantly on the

value of the learning constant 'I . In general, however. the optimum value of II depend s

upon the pr oblem bt'ing solved and there is no single learning constant suitable for

d ifferent training cases. Activation functions with larger steepness factor produces the

same effect as increas ing the learning factor. So. the steepness factor is usually taken as

21
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Figure 2.7 Movement or Weight v ector (2-D) on Ihe Error Surface
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t and the learning factor is adjusted to control the convergence. llnwcver, gl';l,lkll1

descent t:gorithm surfers nom localminimum probrcm which is :1c\1111nl<l1l Ilrllpcrl~' of

any nonlinear optimization algorithm.

2.2.4 Appllcaticn > Singular ity Problems in Velocity AlIld)'sis 01'
Robots

When a manipulator is in singular configuration. it loscs one or more degrees of

freedom in the Cartesian space. Singularities in robotic manipulators may urtsc due III

the geometrical limitations (constraints in thc connecting links) of the manipulators. This

problem can be handled by the use or redundant manlpulnrors. There nrc two kimls of

singularities:

I) Boundary singularities arise due to the gccmctricnl limitations.

2) Interior singularities are due to two or more joint axes lining up.

Redundant manipulators also have singular contigurarionxwhich have til he either

avoided or handled. Near singular points. very high joint velocities result if theCartesian

velocities have components in the direction in which {he arm loses muhlfiry . I'lu:se arc

the points at which the Jacobian matrix becomes rank-deficient.

While this problem can be handh..'<!using mnthcmnticnltechniques like pseudo-

inverse methods. yet i{ has certa in limitations. The problems of singularities can he

tackled at the task planning level itself hy carefully designing the trajectory which 'lvoids

singular configuration. On the other hand, if due to wrong task planning or in situations

24



where on-line I:lIll1pUlatiCins an: made and jhe singularity appea rs in the trajectory. Ih..:

ruhllll: llntm i sys tem must he able III pass throug h them safely . Multiple solutions exrsr

at singularity poin ts.

2.2A . 1 Velocity Analysts Using Psuedo- tnverse Method

The inverse kinematics for -obouc manipulators is given by (Craig. 1986)

Iii • [1 ) le i (2. 10)

where 10 } represe nts the joint velocity vector and Ix} is the end-effector velocity vector

H/uJ PI is the Jacobian matrix . Therefore , the joint velocity corresponding (0 a given {x}

i .~ give n hy

Ie ) 11r' Ii i

zs



[./ '] I·q l ~ .l ~l

where [1' I is c :.l~ kd the pseudo-inverse of the Jacobian matri x. '1'111: b:ISi..: idea is h>

minim ize the norm II{x} - [ll{a } ~ since ul' docs not ex ist :1' siugul ar poims . IJ ' I ~ i \c' s

an appro ximate solut ion satisfying the condit ion

min i \81 i and

min t te! - [ J I lSI I
12 l.ll

Near the singular points, [J"] is equivalent to [111 ami psuudn-inverse finds I ll ll the cx;"':l

solution. Though pseudo-inverse gives exact solution ncar singular points. they arl' Ilul

feasible because of very high values of {O}. lienee " compromise is required hC[WCCIl

feasibility !lOU exactness in case of inverse kinematic solution ncar singular points.

Otherwise, pseudo-inverse solutions result in undesirable continuity Ic:tlling III hi~h joint

velocity whieh results in very high oscitlations.

2.2.4.2 Velocity Analysis Using the Damped Least SllUllres :'\letlwll

Damped Least Squares (DLS) method hasbeen proposed hy several resean:hers

to solve inverse kinematics problems. In this mcrhrd. nne writes the relation between

{e } and{x} as

[[J )' I I I ' . ' [I] I J I J IT I.il

26
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In order In re<llislic<llly achieve the desired jo int velocity values. one must modify the

abuve equation to suit the highest achievable limit of the manipulator in terms of angular

Velocities. In other words, we haw 10 minimize the express ion

Min I li l - IlJ le ll ' • 1-' I le i " (2. 15)

when: h is known as the damping factor. ~ Ie} ~ is the norm of the joint velocity and the

term ~ {x} • PH0 } U accounts for the minimizat ion of the tracking error or exactness of

the s olution ,lnl! h~ ~ Ie} II! lakes care of the feasibility of the solution. It is equivalen t

10 solving a minimization proble m.

Mi' Q lx/ - 111 18 / '
subject to constraint (2. 16)

where On.... is practical limit on manipulators joint velocity. An appropriate value of

damping rector. h, will give the desired solution. Damping factor. >.., is computed using

lMaciejcwski;ll1 u Klcin(l989»

(2 .17)

where x," == {U,}T{x] and r is the rank of the matrix and ai' {v,} and {u;}are obtained

27



from Singular Value Decomposition lSVO) lit"the Jacobian matrix [J]. 1\, express

Eq.(2. l7) in a simple manner one call write

e;

I em..I " e~

e;
where superscnpr » represents the maximumullownhlc vutuc lor that puruculnr joint. AI

first , one evaluates

l2.1lJ)

and then using Eqs.(2. 18) and (2.19) and using a nonlinear optimization technique . Ilndx

the value of>' which would minimize the function

C!.20 )

The optimal value of ~ is then substituted in the loll owing equat ion to gCI the damped

joi n! veloc ity vector

Ie''', f2 .21J

Unfctrunarely, both these methods. i.e . . the pseudo-inverse as well as the IJLS nre,

28



expensive in terms of computations, and not suitable for on-line tasks. It is important to

select nn appropriate value of damping ractcr. A. A low value of A minimizes the

tracking crror and gives rise to undesirable high joi n! velocit ies. A high value of ~

accounts for the robustness but leads to low tracking accuracy (Chiaverni, 1992). The

term 0, I (o,~ + AI) far away from singular points. becomes (as ~ -. 0)

__0,_, _ •

0; + ),.2 OJ
(2,22)

DLS sotutfon overcomes two main limitations of pseudo-inverse solution near

singular configurations namely the d iscontinuity and infeasible high jo int velocities. But

SVD calcuhuions are computationally expensive and error compromise is high. In

theory, it is possible 10 calculate the damping factor A at each of the points along the

trajectory (ncar singular points) but an optimal value of ~ , if chosen for all the points

would minimize the computational burden.

2.2.4 .3 Velocity Analysis Using Neural Network Method

A single layer neural network is capable enough 10 [earn the relationship between

the Cartesian and joint velocities near singular configurations. This is a highly non-linear

m:lpr ing where joint velocities increase at a higher rate.

Considering the fact that in the real-time control problems one has to keep in mind

29



both, the errors (displacement. vclocity. force ere.. l. as well ;IS the I.:l l lll l ll 11:l t itl ll ' i1

efficienc y (rea l-lime computations): therefore . in the present work, the relationship

between the Cartesian velocity and the joint velocity vectors was established 11n 1I11-liue

basis using the neural networks over a segment ora trajectory. This circumvent s the Oll 

line computational requirements or the joint veloc ity vector. as was done by researchers

(Maciejewski and Klein. 1989) mentioned earlier in Chapter 1. In their metluxl. thl'

calculat ions were required to be done on <I point hy point basis hut which results in the

slowing down of the actual task. The addi tional benefit of the neural networ k method is

that one can achieve better accuracy also ,

The inpu t vector is the Cartesian velocity vector :llld the output vector is the joint

velocity vector. The training is performed on either side of the siugulnrtty point tShar;ll1

and Balasubramanian. 1993). The followi ng points arc kept ill mind while performing the

train ing:

1) Maintain the joint velocities close to the upper fensiblc limit ncar the singular

point.

2) A smooth transition curve of joint velocities is required on either side of

singularity points.

3) Minimize the errors between the actual and achievable joint veloci ties.

4) Have optimal numher of training tasks \0 achieve the non-linear mapping.

30



2.2.4 .4 Case Stud y

To illustrate the theory developed so far. the task of moving the end effec tor along

a trajectory consisting of a segment of a circ le and a radial line is shown in Fig. 2.8.

The point of singu larity was the point B in this figure . While perfo rming the task a

consta nt t.mge ntial velocity along the rad ial pathwas desired . This task was performed

using (a) A planar two degrees of freedom (ooF) manipulator (b) P UMA-S60

manipulator. These are typical manipu lators widely used by various researche rs in the

licld af robotics.

A Plana r Two-! ink Manipulator

A simnle two-link manipulator is shown in Fig . 2 .9. The velocity relat ionships

betwee n joint velocity and the Cartesian velocity for this manipulator is given by

(2.23)

where x and y arc coordinates of the path followed by the end-effector expressed in

universal frame. The inverse o f the Jacobian is written as

[1]" (2.24)
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Figure 2.8 Trajectory Used for PUMA~S60 Manipulator
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Figure 2.9 A Planar Two-Link Manipulator
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Here. 61 and 0l are the joint angles of the manipulntnr and II and I: an: the link lengths.

One can find from the above equation. the singularity llriSCS when s: = (l (1/: = 0) t.c.

when as the ann stretches outward and both joint rates go to infinity. The two-link

manipulator is moving its tip at a cons tant tangential velocity of 0.03 m/s. The link

lengths used were II = 0.4 m and 11 ": 0.2 m:the radius of the circle was 0 .07 IIIaml

the damping factor h obtained from nonlinear optimization routine WOlSn.0077 .

PUMA-560 Manipulator

The forward kinematic relationship between Cartesian courdiuatcs and joint

coordinates for a PUMA·560 manipulator (shown in Fig. 2. 10) is given hy

x. a 3c tcZ3
- d~C IS23 a 2c lc2

- d ]St

Y. a]s lc 21 - d~s ls2 3 . a 2s l e2 - d3c l
a .lSI

Z. -a~2J - d4c2J a~2

The link parameters for this manipulator arc shown in Table 2.1. While perfor ming the

task. the desired tangential velocity along the circular path for PUMA-560 was 0.5 m/s

and it was the same velocity along the radial path also . The maximum achievable Hnur

o,.... for each of the manipulators was taken 10 be 25 radts.
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Figure 1.10 PUMA·S60 Manipulator
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Table 2 .1 Link Parameters of PUMA·560 Manipulator

Link i a, B, H, D,

(degrees) (degrees) (m) (111 )

1 0 B. 0 0

2 -90 e, 0.4318 0

3 0 e, 0.02032 0. 127

4 -90 e. 0 0.43 18
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2.2.4.5 Result.. a nd Di'iCU~'iion

At Flrst a I· UMA·560 manipulator is conside red. The {€I} vector was obtained

u 'ii n~ Eqs. r2. JJ) or (2.12) depending upon the proximity of the point to !he point of

singularity. The results obtained arc sbownin Figs .2. 11 to 2.14. Similarly. the results

fur damped least squares method using F..q .(2.2t ) are also shown in these figures. II is

qu ite clear here that the required values near the poi nt of singularity are high and nOI

achievable beca use this manipulator has a maximum I €II equal to 25 rad!s. For the

neuml network analysis. the input :1Or.! the output values for the learning phase were

specified in accordance with Eqs. (2.11) or the maximum limits over the trajectory.

Al'ler this, the weight matrix (W I which relates [x] and {€I} as

Iii ' (WI l SI (2.26)

was tlhtairk.'tl using Eqs. (2.1) to (2.8). The results are shewn in Figs. 2.1 t to 2. 14. In

at ttbe sc figures. the results oh(ained by neural network analysis are far more accurate

than uo se obtained hy till: DL.Smethod i.e . the neural network method gives the noon

values much closer to the values given by Eqs. (2.11) and (2.12) than the DLS method.

Sr..ocondly. the error in I xI (to the right of point B) in Fig.2.14 in the case of neural

nelWtm.: method. is due to I~ maximum achievable limit and not due to the method

ilsclf. In adduio n. as mentioned earlier. the DL.S method requires much more on-line

computations. These facts were further confirmed in the case of two-link manipulator

as shown in Fig.2 .9 . The results in this case are shown in Figs. 2.15 to 2.18 . The

t mj~l' l ury in this case was tilt:same as used earlier.
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