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Abstract

Voltage instability has emerged as one of the most important areas of concern to modem
power utilities. Once associated with weak power systems and long transmission lines, voltage
instability problems are now acutely felt in highly developed networks. This is because many
utilities are Icading their bulk transmission networks to their maximum capacity to avoid the
enormous capital costs of building new lines. In recent years, voltage instability has been
responsible for several system collapses in Europe, Asia and North America.

Voltage instability is concerned with the ability of a power system to maintain acceptable
voltage at all buses in the system under normal loading conditions and after being subjected to a
disturbance. A system enters a state of voltage instability when a disturbance, increase in load
demand, or change in system condition causes a progressive and uncontrollable decline in voltage.
‘The main reason causing voltage instability is the inability of the power system to meet the demand
for reactive power. The other factors contributing to voltage instability are generator reactive

power/voltage control limits, load isti istics of static var and

action of on load transformer tap changers .

The study of voltage instability has become an important area of research in the field of
power system engineering, The main thrust of research has been to arrive at an accurate and reliable
indicator of the proximity of a system to voltage collapse. Such an indicator would be useful to
utilities in operating their systems with maximum economy and security. However, for such
voltage stability indices to be truly useful to utilities from an operations point of view, they should
be implemented on-line in the Energy Management System (EMS). The Energy Management
System has become a very important tool in modern power system control and operation and has
versatile capabilities for power system control, analysis and monitoring. The major hurdle in the
on-line implementation of voltage stability indices in an EMS would be the heavy computational
costs involved in terms of time, memory and hardware costs. This is because most methods for
voltage stability unalysis need repeated solutions of power flows and associated calculations. Thus,
for on-line applications, there is a need for tools which can quickly identify potentially dangerous
conditions and provide the operator with guidance to steer the system from voltage collapse. Also,



in view of the large size of modem power networks, it is important that the memory requirements
of the computational tools be as low as possible.

In recent years, there has been considerable interest in the application of Artificial Neural
Networks (ANN) to power system problems. Artificial Neural Networks have the ability to
identify and classify complex relationships, which are nonlinear and result from large mathematiczi
models. The main feature of an ANN is the ability to achieve complicated input-output mappings
through a learning process, without explicit programming. Once an ANN has been trained, it can
classify new data much faster than would be possible by solving the model analytically. ANNs
have the potential to play an important role in Energy Management Systems by providing system
operators with a fast and reliable indication of the voltage stability of a power system.

This thesis presents the application of ANNs for evaluation of power system voltage
instability. Two popular voltage stability indices are studied and simulations are carried out on the
IEEE 24 Bus system and the 39 Bus New England system. The effect of contingencies on the
voltage stability of the above two systems was investigated. ANN models were designed to
evaluate the voltage stability indices using the system parameters available from the EMS as inputs.
For the energy margin based voltage stability index, separate ANN models were used for each
contingency. However, for the load margin index, a single ANN model which takes into account
the network topology, was used to evaluate the voltage stability. This single ANN model is able to
evaluate the voltage stability of a system under normal operating condition (i.e., all lines in service)
and also in the event of a line outage. Simulation results are presented on the application of the
above indices to both power systems. The performance of the ANN models are presented, which
compares the predicted accuracy to the expected value. The thesis also proposes a scheme for
integrating the ANN based system into the EMS environment.
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Chapter 1

Introduction and Literature Survey on Voltage
Collapse Phenomenon

1.0 Introduction
Traditionally, the primary concern of power system designers and planners has been
ensuring rotor angle (synchronous) stability and thermal loading capabilities. Till the early
eighties, when environmental issues came to the forefront, the expansion of the
transmission and distribution network was dictated largely by the load demand. Generation,
transmission and distribution facilities were planned and installed depending on the load
growth. The only constraint system planners faced was to maintain angle stability. The few
blackouts that took place were attributed to transient stability problems. The arrival of fast
prolccuve relays and circuit breakers have helped in part to alleviate this problem. The
and distribution network inued to expand to meet the load growth limited

only by the utilities' financial constraints. The "normal" operation of a power system was
defined by its ability to maintain angle stability.

However, this scenario started to change by the early eighties. A host of new issues
came up which have combined to completely alter the way power systems have been
planned and designed. The foremost among these was the general economic depression
which characterised all major economies of the world. Utilities no longer had the resources

to build new facilities either for i i or distribution. Another major

p was the heigh of envi issues. Envi issues

became the centre stage of any developmental activity. All new developments, be it

of a new ion plant or ion of a new ission line, were

examined for their environmental impact. Naturally, this resulted in a severe curtailment of
any new construction of facility, which in normal course would have been approved. The
problem was twofold. On the one hand, utilities were strapped for funds and even if they



could find funds for essential projects, long delays became the order of the day due to
complicated approval procedures. However, all through this period, there was no
appreciable decline in the load growth. Thus, the scenario in the eighties was that of
increasing load and very little expansion of the facilities that existed. Utilities were faced
with the task of squeezing the maximum possible power through the existing networks.
These new developments brought in their wake, a new set of power system problems which

had not been seriously thought of or studied before.

1.1 The Phenomenon of Voitage Stability
As a result of the above mentioned situation, system planners and designers were
now being increasingly faced with a new problem: How to maintain the voltage profile at

the and distribution levels to values?

1.1.1 The MegaWatt - rotor angle and MegaVar - Voltage interaction

It has been long recognized that there is a strong coupling between MegaWatt (MW)
and rotor angle and MegaVar (MVAR) and the voltage {1]. In other words, the availability
of MW is dictated by the machine angle which in tumn is decided by the input to the prime
movers. On the other hand, voltage is related to the MVAR availability at that point. In
figure 1.1, E, is the sending end voltage, X is the reactance of the transmission line , E; is
the voltage at the receiving end and § is the power angle or machine angle. [ is the current
through the line and S is the power in MVA. The relationship between active power,
reactive power, sending end voltage, receiving end voltage, system angle and system
reactance is as given by the equations below.

L S§—

E L8 X E£0

Fig. 1.1 Simple model for calculation of real and reactive power transmission



The relationship can be derived as follows :

S=Pe+jQ=E;I' (1.1)
—E [ cos6+)l;.(,sln5— (1.2)
P+ jQ= Jx—-sln8+_|M (1.3)
P= %?smh P,..sind 14

g
Q= E,E cos3-E; L5

X

Voltage instability can be ascribed to the lack of VAR support needed to maintain
the voltage profile at the specified value. Since voltage collapse occurs under heavy loading
conditions, it may be worthwhile to explore the effect of large load angle on reactive power
transmission. From the above equation for reactive power (eqn 1.5), it may be seen that as
the load angle increases the reactive power becomes negative and the transmission line
becomes a drain on the receiving end system. Thus, as the real power transfer increases the
reactive power required from both sending and receiving end system will increase, and at
very heavy loadings, more than one unit MV AR will be required for each additional MW
transmitted. An important reason why reactive power transfer should be minimised is the
heavy reactive losses incurred. Since reactive loss is proportional to X , the reactive losses
increase in a non-linear current squared relation. If in an already heavily loaded system,
there is a loss of a line, the losses in the remaining lines may become very high and the
voltage problem may worsen, Thus, it may be seen that the reactive power availability is
one of the key aspects of voltage stability.

Reference [1] defines voltage stability and voltage collapse as follows:

3



A power system at a given operating state and subject to a given disturbance is voltage
stable if voliages near loads approach pre disturbance equilibrium values.
A power system at a given operating state and subject to a given disturbance undergoes

voltage collapse if post disturbance equilibrivern values are below acceptable levels.

Thus, voltage collapse is an extreme form of voltage instability. As opposed to angle
instability, the main dynamics involved in voltage collapse is the load dynamics. Hence
voltage stability has also been called load stability [2]. During the period of voltage decay,
other dynamics no less important comne into play. These are generator excitation control, on
load tap changers ( OLTCs), static var (SVC) controls, il

loadsetc. Since all the above controls have a longer response time (of the order of seconds),
the dynamics are termed as slow dynamics. Typically, the response time may range from
10-20 seconds to the order of several minutes. We will now examine how voltage stability
can develop in a simple radial system and show how the various controls listed above
contribute to voltage instability.
L-TC RES.LOAD
GEN. TO TRIP
2

@— 3

! —
@—P__ | I PRIMARY
1 l CAPACITORS

LINETO TRIP
%’
INDUSTRIALLOAD 0

LT.C INDL. LOAD

Fig. 1.2 Simple radial system.



Consider the radial system shown in Figure 1.2, which consists of a generator feeding three
different types of distribution systems through a heavily loaded transmission line.

The three different types of loads are

1) Type 1 is domestic load which is mostly heating and lighting load and is relatively
high power factor load. This type of load tends to drop with drop in voltage.

2) Type 2 isan industrial load on a load tap changer (LTC). Most of the industrial load
comprises of induction motors and hence is low power factor and does not vary much ki
voltage,

3) Type 3 is an industrial load not on LTC.

In this heavily loaded system operating near its voltage stability limit, a small
increase in load (active or reactive), a loss of generation or shunt compensation, a drop in
sending end voltage etc. can bring in voltage instability. Assuming that one of the above
mentioned changes happen, and the receiving end voltage falls, several mechanisms come
into play. Since resi ial loads are voltage the active and reactive loads drops

with drop in voltage. The industrial active and reactive loads dominated by induction
motors change only by a small amount. Thus, the overall effect may be the stabilisation of
voltage at a value slightly less than the rated value, The next action is operation of
distribution transformer tap changers to restore distribution voltages. The residential active
load will increase while the industrial reactive load will decrease. The increasing residential
load will outweigh the decrease in reactive load causing the transformer primary voltage to
fall further. The increased primary reactive losses will further drop the transformer primary
voltage. In this scenario, the OLTCs ( on load tap changer) may be close to their limits,
primary voltage at around 90% and distribution voltages below normal. As voltage sensitive
controlled loads (residential) creep back toward full power, primary and secondary voltages
will drop further. The Type 3 industrial loads, i.e., without OLTCs will be exposed to the
reduced voltage levels. This greatly increases the stalling of induction motors (stalling
occurs when load torque is greater than developed torque). When a motor stalls, it will
draw increasing reactive current , bringing down the voltage on the bus. This results in a
"cascade" stalling of other induction motors resulting in a localised voltage collapse. Since

5



most large induction motors are lled by i held the voltage

collapse would cause most motors to drop off from the system. This loss of load will cause
the voltage to recover. However, the recovered voltage will again result in the contactor
closing and motor stalling and another collapse. Thus, this loss and recovery of the load can
cause altemate collapse and recovery of voltage. The effect of automatic voltage regulation
(AVR) may be explained as follows: As the voltage drops the AVR steps in and increases
the reactive generation. This increases the field cument and when the current limit is
reached, the excitation limiters come into play and the voltages are allowed to drop. Nearby
generators may pick up the reactive load, but this may last only for a few minutes if they
too reach their excitation limits.

Thus, from the above discussion it is clear that voltage stability is essentially "slow"
dynamics and is affected by the nature and type of load, transformer tap changer action,
generator AVR control etc,

To summarise, the various important factors contributing to long term voltage instability

are:

1) Stressed power system, i.e., high active and reactive loading due to excessive load
or line / transformer outages.

2) inadequate fast reactive power resources available locally, aggravated by action of

field current limiters of generators.

3) load response at low voltages.

4) p changer's response to distribution voltage itude and prop up loads as

primary voltages continue to fall.

1.2. Voltage Stability- Static or Dynamic?

‘The above scenario which describes how a voltage collapse can evolve in a system
shows that the time frame for a collapse to occur can be of the order of minutes depending
on the response of the various controls involved. Traditionally, dynamic analysis as applied
to angle stability has limited itself to the generator dynamics during the transient phase of
the order of milliseconds. However, the time frame for voltage stability is much larger and

6



the computation requirements, if the generator dynamics are to be taken into account for
such a long period of time, would be prohibitive. In view of the longer time frame involved,
voltage stability has often been viewed as a steady state problem suitable for static analysis.
Also, since a major factor in voltage instability is the availability of reactive power, the
problem is ideal for power flow analysis. The static approach can offer an insight into the
phenomena and can indeed give an approximate, yet acceptable solution which is
computationally much simpler compared to the dynamic approach. However, since the
effect of load dependency on voltage is of prime importance in voltage stability; it is
desirable that the static load flow approach be modified suitably to incorporate the voltage
dependency on load. This "quasi static" model can give a reasonable accuracy without a

increase in it i Thus, it may be seen that there is a
trade off involved in both approaches, and since engineering solutions should be practical
and economical and not necessarily ideal, the static approach is widely used by most
utilities today. The traditional methods of voltage stability analysis are discussed below.

1.3 Traditional Methods of Voltage Stability Analysis

As mentioned earlier, the 'static’ or power flow approach has been the mainstay of
voltage stability analysis. The two popular methods which make use of the load flow
approach for voltage stability analysis are (1)P V curves (2) Q V curves

1.3.1 P V Curves

It has been shown in References [3-4] that if the receiving end voltage V is plotted
against the active power P, the resulting curve is a parabola. Curves are obtained for
different values of power factor. P V curves can be easily generated from the load flow by
slowly increasing the load in discrete steps and noting the corresponding changes in voltage.
It is observed that as the load increases the parabolic curve drops down, reaches a 'nose’
point and then tums back toward the origin. This method can give the steady state loading
limits which are related to voltage stability. A sample PV curve is shown in figure 1.3 and
can be interpreted as below:



) In the top half of the curve, the voltage V decreases as the receiving end power S
increases. The slope of the curve is negative in this region.

2) The apex or nose point is the point at which the slope reverses direction. The X co-
ordinate of this power represents the maximum power that can theoretically be
delivered to the load.

3) ‘The maximum power that can be delivered to the load is a function of the receiving
end voltage and series external impedance betweet the sending end and the load
point. It is equal to VY/4Z', where Vs the voltage of the sendi'ng end, and Zis the
line impedance.

4) If the load demand were to increase beyond the maximum transfer limit, the amount
of actual load which can be supplied as well as the receiving end voltage will both
decrease. In other words, beyond the nose point, the ability to supply additional
load is non existent.

‘Thus, the top half of the curve can be referred to as the stable region and the bottom part as

the unstable region. Thus, it is reasonable to say that for every load, the top half of the curve

represents the high voltage or feasible solution, and the bottom half the low voltage or
fictitious solution. One of the major problems in generating the PV curve is that the load
flow simulation will diverge near the nose point. This is due to the fact that under heavy
loading conditions the Jacobian tends toward singularity and the load flow solutions are no

longer reliable. Therefore, special programs are required to overcome this problem.
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Fig. 1.3 Sample P V Curve

132 Q VCurves

The procedure for obtaining the Q V curves is similar to that for P V curves outlined
above. The curves are obtained by a series of power flow simulations. Q V curves plot
voltage at a bus against the reactive power at the same bus. In the Q V curve, voltage is on
the X axis and the reactive power Q on the Y axis (Fig. 1.4). The main advantages of Q V
curves are as follows:
* Since voltage security is closely related to the availability of reactive power, the Q V'
curve gives the reactive power margin at the test bus. The reactive power margin is the
MVAR distance from the operating point to the bottom of the curve.
* The characteristics of bus shunt reactive compensation can be plotted directly on the Q V'
curve. The operating point is the intersection of the Q V characteristic and the reactive
ccompensation characteristic.

Thus, Q V curves which also provide several means of determining the proximity of
an operating point to voltage collapse have become quite popular with utilities in analysing
voltage stability [51.
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Fig. 1.4 Sample Q V curves

1.4 Recent Incidents of Voltage Collapse [1]

The recent interest in the phenomenon of voltage collapse has been triggered by
several incidents of massive power failures in several power systems throughout the world.
‘These incidents proved that the threat of voltage collapse was indeed very real and could not
be ignored. The fact worth noting is that all these incidents took place not in weak and
isolated systems, but in well developed and mature systems. A number of trends in system
design and planning have contributed to this situation. Power systems have become more
complex and are being operated closer to their capability limits due to economic and
environmental reasons, as discussed earlier. The situation is complicated further by delays
in building new transmission facilities. While these trends have contributed to angle
instability also, it is clear from a study of recent incidents of system failure that it is voltage
instability that is the major factor in these failures.



1.4.1 Voltage Collapse on French System

December 19,1978

The French system is a closely meshed and i national grid
of both 400 KV and 220 KV transmission circuits. On the morning of December 19, a cold
snap resulted in a rapid load rise of 4600 MW between 7 AM and 8 AM. The resuiting
increase in power transfer from eastern parts to the Paris metro area led to continuous

voltage deterioration over the next 26 minutes. At approximately 8,20 AM, the voltage on
the 400 KV system stabilised at about 350 KV. Within 6 minutes, the heavily loaded 400
KV feeder was tripped by the action of overload relays, This in turn led to overload tripping
of other 400 KV and 220 KV lines. Widespread voltage oscillations spread over the entire
French system and widespread islanding of the system took place.

January 12, 1987

This failure affected the whole western part of the French system. In this incident, three out
of four thermal units of a major generating station tripped and operators called for gas
turbines to start up. However, before the gas turbines could come on line, the fourth unit
tripped on field nine ing units in another major
generating station also tripped. The voltage on ihe 400 KV system stabilized at less than
300 KV.

The first incident, i.e., on December 19, 1978, was associated with rapid load increase,
which in tumn caused extremely high active and reactive power losses. It is characterized as

aslow phenomena, the duration of the incident being nearly half an hour.
The second incident is characterized as relatively fast. It was initiated by sudden unforeseen
loss of generating units. The response of load and OLTCs to the resulting low voltage

contributed to further voltage deterioration and collapse.



Corrective Action taken
EDF (Electricite” de France) plans to use on line computation of voltage collapse proximity

index , in view of the progressive and slow voltage deterioration, which will allow operators
to take corrective measures. Also, studies have been initiated to improve co-ordination
between automatic voltage jon, field current limitations and i

OLTC blocking based on a regional low voltage criterion is being implemented on the
French system. Automatic load shedding is also being looked into.

1.4.2 Voltage Collapse on Swedish System
December 27,1983

In the Swedish system, most of the generating plants are located in the north and the
major load centres in the south. The hydroplants in the north are connected to the load areas
in the south by seven 400 KV transmission lines. All lines are series and shunt
compensated. Before the collapse, the total load including losses was 18,000 MW, i.e., less
than the peak load. The voltages, on the network were stable between 400 and 405 KV and
system frequency was close to 50 Hz. The voltage collapse was initiated by the failure of an
isolator on a 400 KV swi ata substation west of Stockholm. This ion feeds
the 220 KV network in the Stockholm area. As a result, two out of seven 400 KV
transmission lines which bring power from north to south tripped. This resulted in high
loading of the ining five - th ission lines as well as a 220 KV line
through Stockholm. Approximately 8 seconds after the initial ground fault, two 220 KV
lines tripped due to overloading. After this tripping load started to restore due to transformer
load tap changer action. Approximately 50 seconds after the initial fault, another 400 KV
line tripped on overload. The remaining 400 KV lines became heavily loaded and a cascade

tripping of all these lines between northern and southern Sweden took place. The loss of the
EHV tie lines isolated southern Sweden from the hydroplants in the north. Because of the
massive power deficit in the south, all generators in South were tripped on overload or

underfrequency.



Corrective Measures taken
A number of research projects have been initiated by the Swedish Power Board after
the above incidents. A dinated control strategy for load tap changers, shunt

reactors, shunt itors and other equij ing reactive power in the system has

been designed. Also, since overload tripping of transmission triggered the collapse, the
overload characteristics of the relays were also investigated. It was concluded that the offset
mho characteristic of distance relays protecting long lines would have to be modified.
Automatic blocking of OLTC's was also investigated.

1.4.3 Voltage Collapse at Tokyo on July 23, 1987

On July 23, 1987, Tokyo experienced unusually hot weather with record high
temperatures of 36° C to 39° C. The demand increased at a rate of 400 MW/ minute far
higher that the estimated level. The voltage on the 500 KV system gradually dropped to 460
KV. About 13:19, the voltage continued to drop and reached 370 KV (0.74 p.u.). These
substations were tripped by operation of protective relays. It was found that the action of
OLTCs contributed in a major way in accelerating the collapse. Thus a combination of
heavy, unexpected load and the response of tap changers and loads contributed in a major
way towards this collapse. One of the heartening aspects of the Tokyo collapse was that
utilities and academics in Japan started serious research into the various contributing factors
towards voltage collapse.
Corrective measures taken

In view of the Tokyo collapse, a number of measures were proposed. These include
construction of a new 1000 MW generation facility, new shunt compensation equipment,
upgrading of demand forecasts, sophisticated controls for OLTC's. Also, power purchases

from neighbouring utilities would be encouraged.



1.5 Brief History of Research in the field of Voltage Instability
As discussed earlier, the static or power flow approach is a widely used and
established method for voltage stability analysis. Though the past ten years has seen a lot of

work in this field, some earlier also had ibuted a great deal on

a solid foundation. It was Venikov et al., who in 1975 showed that there is indeed a close
connection between a load flow and steady state stability [6]. They proved that the change
of sign of the Jacobian of the load low equation is an indicator of the onset of instability.
‘This work would be made use of by futurc researchers. In 1978, one of the first papers on
voltage collapse was published by Lachs[7] . He analysed in great detail the effect of heavy
system loading and corresponding reactive losses, transformer tap changing, generator
reactive capability etc. This was probably the first paper which made use of the PV curve to
show the relation between system loading and voltage collapse. This paper is valuable in
that for the first time an overall view of the various mechanisms contributing to voltage
collapse was taken. In 1981, Tamura and Iwamoto followed upon Venikov et al.’s work and
proposed a method to determine multiple load flow solutions [8]. They proposed the use of

optimum ipliers or to the Newton-Raphson method. This method also
would be made use of by future researchers. In 1982, Abe et. al. showed that load flow can
indeed be used for the analysis of voltage instability [9]. They also proposed a model for
tap changer and also the effect of tap changer operation on load models. In 1983, Tamura
et. al. showed the relationship between voltage instability and multiple load flow solutions
[10]. The authors showed that as the system gets more heavily loaded, the number of
solutions decrease and at very high loadings, a pair of very close solutions are obtained.
They also proposed a voltage stability criterion based on change of sign of the Jacobian and
the number of close solutions. This aspect was not investigated further until recently. In
1983, Palmer et. al. argued from a utilities point of view the importance of reactive power
despatching for maintaining power system voltage security [11]. They also proposed a
method for scheduling reactive equipment during normal and post contingency situations.
Thus, we see that from the mid seventies to the eighties, an understanding of the voltage
stability phenomena and the relation of the steady state load flow to voltage stability had
14



been developed. However, it was not until 1986, that a comprehensive index for evaluating
the voltage stability of a system was proposed. This and the currently available methods will
be discussed in the next section.

1.6 Currently Available Methods for Evaluating Voltage Stability
There are a number of methods available for evaluating voltage stability from a
static (load flow) point of view. However, the most popular and widely used ones are :
1) Glavitch's Method
2) Minimum Singular Value Method
3) Energy function Method.

1.6.1 Glavitch’s Method

In 1986, Kessel and Glavitch proposed the first voltage stability index [12]. This
method provides a means to assess voltage stability without actually computing the
operating point where the collapse takes place. Glavitch 's method is essentially based on a
static or load flow mode. In this method, the load flow program is run several times and
various parameters used to compute voltage stability are taken from this. This method is
originally derived from a two bus network where one of the buses is the slack and the other
is a PQ bus. A stability indicator L; is derived which varies between zero and one and which
characterises the existence of a voltage solution. The index essentially relates the complex

power S;, elements of bus admittance matrix Yj and voltage Vi in the relation

(1.6)

For a multibus system, the index has to be calculated for each bus. The maximum value
(closest to one) is an indicator of the proximity to power flow divergence. The important
condition for stability to be guaranteed is L; < 1. The indicator L; is a quantitative measure
for the estimation of the distance of the actual state of the system to the stability limit. The
local indicator Lj permits the determination of those nodes from which a collapse may take
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place. The pattern of indicators is quite informative of the behaviour of the system, in that
all nodes belonging to the same critical area show a similar development of the stability
indicator. Experience has shown that a threshold of 0.2 can be applied to the critical
indicator. If the indicator of the particular node exceeds this value, the area around this
node is critical. When L; of a single node or a group of nodes exceeds the value of 0.2, the
situation becomes critical. Clustering of indicators means the formation of an area of
similar behaviour. When the cluster separates from another cluster, the area has a strong
tendency to separate from the stable area voltage wise.

Thus, the stability indicator L; is able to characterise the load flow solution and the
potential of the system to become unstable. This is bound to the load flow model and the
assumption of a PQ node. The model does not reflect any dynamic behaviour. The indicator
Li is a very strong signal of the dangerous situation. The evaluation of L is also quite

simple since all required parameters are available from the load flow solution.

1.6.2 Minimum Singular Value Method

As far back in 1975, Venikov et al. [6] had shown that it is the Jacobian of the load
flow equation that characterises the steady state stability limits and therefore eigenvalues of
the Jacobian may have a direct bearing on any bifurcation of the equilibrium state. Many
subsequent researchers have noted the singularity of the Jacobian during a voltage collapse.
In 1988, Tiranuchit et. al. proposed a global voltage stability index based on the minimum
singular value of the Jacotian[13]. One of the most important aspects to be examined when
deriving corrective control measures is the question "how close is the Jacobian to being
singular?". Tiranuchit ct al. showed that a measurc of the neamess of a matrix A to
singularity is its minimum singular value. Hence, the minimum singular value can give a
measure of the nearness to instability or in other words, a ‘distance’ to collapse. If the
minimum singular value is plotted against real power, it is seen that the minimum singular
value is very sensitive to change in load near the steady state boundary. One disadvantage
of this method, as pointed out by the authors themselves, is the large CPU time required for

the computation of the minimum singular value for large systems. The more important use
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of this index is the relation it provides for control. If var compensation either through shunt
capacitors of excitation control is available, this index provides the answer to the problem
of how to distribute the resources throughout the system for maximum benefit.

At about the same time, Lof, Arborg and Anderson proposed a similar index, albeit
with some ifications [14]. They that the mini) singular value of a sub

matrix G; of the Jacobian J can be used, where G, describes the effect on the voltage
magnitude of change in reactive power injection in the network. This matrix G is
essentially a sub matrix of the Jacobian J with some modifications. They showed that the
minimum singular value of G; is a more reliable static voltage stability index. It is shown
that the power flow Jacobian becomes singular when the matrix G, becomes singular. When
the minimum singular value of the Jacobian J and the sub matrix G are plotted against the
active power, it is seen that it could become difficult to use the minimum singular value of
the Jacobian J to determine how far the conditions of the system are deteriorated when the
load is increased. The minimum singular value of J could be dependent on static angle
stability problems at first and hence could be fairly constant before it suddenly starts to
decrease much more rapidly when voltage problems become more dominant. Lof et. al.
contend that the use of the matrix J is appropriate for the construction of a static stability
index when the cause of instability could be either angle or voltage problems. The minimum
singular value of matrix G is a better basis for a static voltage stability index for planning

and system studies.

1.6.3 Energy Function Analysis Methods

Energy functions have long been used in power system angle stability and are now
well established [15]. They are considered a reliable means of obtaining the critical clearing
time in large power systems. As mentioned earlier, Tamura et. al. had shown the
relationship between multiple load flow solutions and voltage instability. They showed that
though a power flow may have a number of solutions, only one solution is an 'operable’
solution or stable equilibrium point. The other solutions are unstable equilibrium points.
These solutions are also called low voltage solutions. Tamura showed that as the load
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increases, the number of low voltage solutions decrease until near the point of collapse a
pair of close solutions are obtained. The Jacobian at this stage approaches singularity. De
Marco and Overbye [16 - 18] defined an energy function (similar to the Lyapunov function),
which relates the system bus voltage magnitudes and phase angles with the property that the
operable solution defines a local minimum of this energy. The energy function shows the
energy difference between the operable solution and the low voltage solution. As the system
load increases and the system moves towards collapse, it is seen that the energy difference
decreases and becomes zero at the point of collapse. The energy difference between the high
voltage and low voltage solution can give an indication of the systems vulnerability to
voltage collapse. An important aspect of the energy function method is that it shows how
load variations can push the system into instability [16-18]. VAR limits on generators can
also be incorporated in this function, since the energy function is essentially based on the
load flow solution. The plot of energy measure against load is a valuable indicator of the

proximity of the system to collapse. The only i i is the

of the low voltage solutions, which for large networks may be time consuming. This
approach indeed shows promise of becoming a valuable index if certain other parameters
like effect of transformer tap changer, voltage dependency of loads etc. are taken into
account.

As incidents of voltage instability become more common and systems continue to
be loaded closer to their stability limits, it becomes imperative that system operators be
provided with tools that can identify potentially dangerous situations leading to voltage
collapse. Voltage stability indices are valuable and powerful tools for system operators in
evaluating the voltage stability of a power system. However, it should be noted that if a
voltage stability index is to be really useful, it should be implemented on - line in an Energy
Management System (EMS). This will allow system operators to continuously monitor the
voltage stability index of a power system and swiftly react to any conditions that may trigger
a voltage collapse. But, the on-line implementation of a voltage stability index presents
many challenges, the principal among them being the computational burden imposed on the

EMS. This is because most of the vollage stability indices are computation intensive and for
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power systems of realistic size, the computational burden may use up much of the capability
of the EMS.

1.7 Application of Artificial Neural Networks

As indicated earlier, perhaps the most important aspect of a practical voltage
stability index is the computation effort and hence the speed of computation involved. This
is because for the large, real life power systems with thousands of buses, computation speed
becomes a critical factor when an on line calculation of the stability index is required. This
on-line response is important so that the operators can take corrective steps if an abnormal
situation is encountered and steer the system away from collapse. All the methods listed

above are computationally intensive, when large systems are considered, It then becomes

necessary to look at other i to minimise i burden and
response time. Artificial neural networks have wide interest in the field of power
engineering and applications have been reported from almost all fields of power engincering
[21-23]. The artificial neural network is essentially a pattemn recognition tool. It can be
trained to recognise complex, non linear relationships between a number of different
parameters. The response time of a trained ANN is extremely fast, since there are no
complex computations involved. Thus, in situations where a swift response is required, as in
the case of power system voltage stability index, an ANN based approach can prove an
altractive ive to the i intensi ion of the index. The accuracy
of the ANN's predictions while depending largely on the quality of training, has proved to
be quite acceptable for other power system application like load forecasting, dynamic

security analysis and transient stability .

1.8. Significance of Artificial Neural Networks in Modern Power System Control
The modem power system has become very complex and operates under a great
deal of constraints. On the one hand, the genes:i economic depression has forced many
utilities to cut back on their expansion and modernisation plans, but on the other hand there
is no noticeable decline in load growth. Also, the consumer demand for efficiency and
19



reliability has never been higher. Environmental and ecological factors have also
contributed to making the expansion of power systems a time consuming process. Thus,
through the nineties and beyond, the scenario for power system planners and designers is
grim : they have to maintain very high standards of system reliability and efficiency with

fewer resources to do it.

19 The Energy Management System

The complexity and size of the modern power system has given rise to a number of
problems. These problems can significantly affect system security and efficiency, two of the
most important aspects of modern power systems. One of the most important tools for the
power system designer and operator in maintaining a high level of system security is the
Energy Management System (EMS). The EMS is an upgraded version of the Supervisory
Control and Data Acquisition (SCADA) systems which have been in service for quite a
long time. In addition to performing routine control functions of SCADA, the EMS has
enhanced capabilities for on-line monitoring of the power system and performing such tasks

as unit i and

optimal power flow, contingency analysis,
security assessment, energy exchange between utilities, state estimation, load forecasting
etc. Thus, it can be seen that the EMS is a very important aspect of modem power system
control and operation. The linking of protection, control and other devices through a local
data communications network has enabled the control of entire substations from a central
host computer. The EMS has made possible the analysis, control and operation of large
power systems from a central location and dramatically improved the efficiency, reliability
and co-ordinated operation of modern power systems.

1.10 Aim of the Thesis

One of the major stumbling blocks to on-line control of power systems through an
EMS is the heavy computational burden imposed by most power system analysis software.
Thus, computation speed, which in tum depends on the computer hardware specifications,

is the deciding factor, which ines the on-line i ion of power system

20



functions. The initial i required for istis i i are so
high that in most cases, utilities are not able to afford them. This prompted researchers to
look at alternatives to raw computing power. As described in the previous section, ANNs
hold out considerable promise as a medium for on-line implementation of many EMS
functions such as transient stability and voltage stability analysis. The response of a trainsd
ANN to an input is extremely fast, and the memory requirement of an ANN based system is
considerably lower than that of a conventional sequential program. Also, since power
system conditions are a result of system loadings which form a pattern, the pattern
recognition ability of ANNs would be a valuable tool in identifying the system loading
conditions which can lead to abnormal system operation. An ANN based system would not
require additional data acquisition equipment and therefore, the overall benefits both from a
standpoint of computing speed, and economy would be considerable. An ANN based
system in conjunction with an expert / fuzzy logic system, will result in the goal of an
intelligent control centre, which can result in increased reliability, economy and efficiency
of operation.

This work explores the application of ANNs for assessment of voltage stability of
power systems. Simulations are performed on standard test power systems for two different
veitage stability indices, and results are presented on the accuracy of the predictions of the
ANN based system for both the indices. An attempt has also been made to map the network

topology in terms of a neural network.

111 Thesis Organisaiion

This thesis consists of seven chapters. Chapter two presents an overview of artificial
neural networks and their applications to power systems. Chapter three presents the energy
function based voltage stability index and simulation results on two bus, five bus and
twenty four bus power systems, Chapter four presents an artificial neural network based
energy margin voltage stability indicator. Chapter five includes description of the load
margin based voltage stability index and also simulation results on the New England 39 bus
system and also the IEEE 24 bus system. Chapter six presents artificial neural network
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based models for the 39 bus system and also the 24 bus system, one with line outages and
the other without. The chapter also proposes an ANN model which takes into account the
network topology. Chapter seven concludes the thesis with some suggestions for further
research in this area.



Chapter 2

Application of Artificial Neural Networks to
Power Systems

2.1 Introduction

Autificial Neural Networks have aroused wide interest in different branches of
engineering. This is because artificial neural networks (ANNS) have several properties
that make them attractive tools in engineering applications. The important properties are
parallel distril ing, high ion rates, fault tolerance, and adaptive

capability. The areas in which ANNS are widely applied include control systems, robotics,
and recently in power system engineering. This chapter presents the basic concepts of
ANNs and their ication to power system

2.2 Artificial Neural Networks

An artificial neural network can be defined as a highly connected array of
elementary processors or neurons [19-20]. Neurons are linked with other neurons with
interconnects analogous to the biological synapse. This highly connected array of
elementary processors defines the system hardware.

Several neural network algorithms have been proposed, which have enabled
researchers to apply neural networks to a wide range of engineering problems. The neural
network derives its computing power through, first, its massively parallel distributed
structure and, second, its ability to learn and therefore generalize. Generalization refers to
the neural network producing reasonable outputs for inputs not encountered during
training. The use of ncural networks offers the follcwing useful properties and

capabilities:
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1. Nonlinearity : A neuron is basically a nonlinear device. Consequently, a neural
network, made up of a number of neurons is itself nonlinear. Nonlinearity is a highly
useful property, particularly, if the system generating the input itself is nonlinear.

2. Input - Output Mapping : The neural network can be trained to recognize the hidden
relationship between the input and output. The relationship between the input parameters
and the output(s) may be nonlinear in nature.

3. Adaptivity : Neural Networks have a built-in capability to adapt their syraptic weights

to changes in the i In i a neural network trained to
operate in a specific environment can be easily retrained to deal with minor changes in
the operating environment conditions. Examples of adaptive neural networks are the
ART1, and ART2 algorithms.

4. Fault Tolerance : A neural network, implemented in hardware form, has the potential
to be inherently fault tolerant in the sense that its performance is degraded gracefully
under adverse operating conditions. For example, if a neuron or its connecting links are
damaged, recall of a stored pattern is impaired in quality. However, owing to the
distributed nature of information in the network, the damage has to be extensive before
the overall response of the system is degraded seriously.

5. VLSI Implementability : The massively parallel nature of the reural network makes it
potentially fast for the computation of certain tasks. This same feature makes the neural
network ideally suited for i ion using VLSI i The particular virtue of

VLSI is that it provides a means of capturing truly complex behaviour in a highly
heirarchial fashion which makes it possible to use a neural network as a tool for real time
applications involving pattern recognition, signal processing and control.

6. Uniformity of Analysis and Design : Basically, neural networks enjoy universality as
information processors. This is because the same notation is used in all the domains
involving the application of neural networks, This feature manifests itself in different
ways:

a.  Neurons, in one form or another, represent an ingredient common to all neural

networks
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b. This commonality makes it possible to share theories and learning algorithms in
different applications of neural networks,
c. Modular networks can be built through a seamless integration of modules.

Though the advantages of neural network are many and varied, it does have some
serious limitatations, when applied to real world situations. The most serious limitation of
an artificial neural network structure seems to be the lack of tools or guidelines to arrive
at an optimum neural architecture. The size and the number of layers vary with
application and arriving at an optimum architecture is often based on the users experience
and intuition. Another serious drawback with ANN solutions is the possibility of local
minima solutions. Presently, there is no conclusive way of testing if the network has

indead settled down to a global minimum. This would be especially true for complex

problems whe e there may exist complex hy with the i ity of

many local minima.

2.2.1 Models of a Neuron
A neuron is an il i ing unit that is to the operation of

a neural network. There are three basic elements of the neuron model, as described
below:

1. A set of synapses or connecting links, each of which is characterized by a weight or
strength of its own. Specifically, a signal x; at the input of synapse j connected to neuron
k is multiplied by the synaptic weight wy;.

2. An adder for summing the input signals, weighted by the respective synapses of the
neuron. The operations described here constitute a linear combiner.

3. Anactivation function for limiting the amplitude of the output of a neuron.

In mathematical terms, we may describe a neuron k by writing the following pairs of

equations :
= iwnx; @.n
=

and



Yie= Q(ug - 6) 2)

where Xi,X2 wnXp are the input signals; Wi, Wiy Wip a(€ the

synaptic weights of neuron k, uy is the linear combiner output, 8y is the threshold, ¢ is the
activation function and yy is the output signal of the neuron.

Figure 2.1 shows the model of a neuron. In the figure, X is the input, w is the connection
weight, £ is the summing junction, 8 is the threshold, ¢ is the activation function and y,
the output.

@, Activation function
y

X2 Output
8, Threshold

Xp

Fig. 2.1 Non linear model of a neuron.

2.2.2 Types of activation functions
The activation function, denoted by @, defines the output of a neuron in terms of
the activity level at its input. We can identify two basic types of activation iunctions :
1. Threshold functions : For this type of activation function, we have
ew)=(1 ifv20
{0 if v O
Correspondingly, the output of neuron k employing such a threshold function is expressed
as:
ye =( 1 ifw20
{0 ifw<O
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where vy is the internal activity level of the neuron; that is,

w = )‘_'ww-e. 23)
-

Figure 2.2 illustrates the threshold function.

Fig. 2.2 Threshold function

2. Sigmoid Function : The sigmoid function is by far the most common form of
activation function used in the construction of artificial neural networks. It is defined as a

strictly increasing function that exhibits and it ies. An

example of the sigmoid is the logistic function, defined by

= TEpem @9

where a is the slope parameter of the sigmoid function. By varying the parameter a, we
obtain sigmoid functions of different slopes. In the limit, as the slope parameter
approaches infinity, the sigmoid function becomes simply a threshold function. Whereas
a threshold function assumes a value of O or 1, the sigmoid function assumes a
continuous range of values from 0 to 1. Figure 2.3 shows the S shaped sigmoid function.
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Fig. 2.3 Sigmoid Function

2.2.3 Network Architectures
The manner in which the neurons are structured is intimately linked with the
learning algorithm used to train the network. In general, there are four types of network

architectures [19]:

1. Single-Layer Feedforward Networks

A layered neural network is a network of neurons organized in the form of layers.
In the simplest form of a layered network, we just have an input layer of source nodes that
projects onto an output layer of neurons but not vice versa. In other words, this network is
strictly of the feedforward type. Such a network is called a single layer network, referring
to the output layer of computational nodes (neurons). In other words, we do not count
the input layer of source nodes, because no computation is performed there.
Figure 2.4 illustrates the structure of a simple single layer network consisting of the input
layer and the output layer.
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Input layer Output layer

O

O

Fig.24 Feedforward network with a single layer

2. Multilayer feedforward networks
The second class of feedforward neural network distinguishes itself by the

presence of one or more hidden layers, whose ion nodes are ly

called hidden neurons or hidden units. The function of hidden neurons is to intervene
between the external input and the network output. By adding one or more hidden layers,
the network is able to extract higher order statistics, for the network acquires a global
perspective despite its local connectivity by virtue of the extra set of synaptic connections
and the extra dimension of neural interactions. The ability of hidden neurons to extract
complex non linear patterns is particularly valuable when the size of the input layer is
large. The source layers of the input layer of the network supply respective elements of
the activation pattern (input vector) which constitute the input signals applied to the
neurons in the second layer (i.e., the first hidden layer). The output of the second layer are
used as inputs for the third layer, and so on for the rest of the network. The set of output
signals of the neurons in the output (final) Jayer constitutes the overall response of the
network to the activation pattern supplied by the input layer.

Figure 2.5 illustrates a simple multilayer network consisting of an input layer, a hidden

layer and an output layer.
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Input layer Hidden Layer Output layer

Fig.2.5. Simple multilayer network topology.

3. Recurrent Networks
A recurrent neural network distingui itself from a neural network

in that it has at least one feedback loop. For example, a recurrent network may consist of
a single layer of neurons with each neuron feeding its output signal back to the inputs of
all the other neurons, A recurrent network may also be of the multilayered type, with
feedback connections originating from both the hidden units and the output units. Figure
2.6 illustrates a simple recurrent network consisting of an input layer, an output layer and
a feedback loop.

feedback loop

—0

Input layer Output layer

Fig.2.6 A simple recurrent network.
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. Lattice icture
A lattice consists of a one di i two di i or higher di

array of neurons with a corresponding set of source nodes that supply the input signals to
the array; the dimension of the lattice refers to the number of the dimensions of the space
in which the graph lies. A lattice neural network is really a feedforward network with the

output neurons arranged in rows and columns.

2.24 Neural Network Algorithms
The most important property of a neural network is its ability to ‘leam’. Learning
may be defined as a process by which the free parameters of a neural network are adapted

through a inuing process of sti ion by the envi in which the network is

embedded. The two main types of leaming algorithms are supervised learning and
unsupervised learning. Supervised learning is performed under the supervision of an
external ‘teacher’. Unsupervised learning is performed in a self organised manner in that
no external teacher is required to instruct synaptic changes in the network. A popular
example of supervised learning is the error back propagation algorithm, while the
Kohonen Network is a good example of the unsupervised leaming. Table 2.1 below gives
comparison of the features of different neural network algorithms [19].

In table 2.1 below, the following abbreviations are used :

BPN : Back Propagation Network

BAM : Bi - Directional Associative Memory

CPN : Counter Propagation Network

SOM : Self Organizing Map

STN : Spatio Temporal Network

ART : Adaptive Resonance Theory
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Table 2.1 Comparative performance of different ANN algorithms

Type of | Training |Certainity | Type  of | Domain Ability  of | Purpose
ANN time to  reach | input input report  if

global pattern pattern mismatch

minimum oceurs
BPN Moderate | No Analog Spatial No General
BAM Low No Digital Spatial No General
Hopfield | Low No Digital Spatial No General
CPN Low No Digital Spatial No General
SOM Moderate | No Analog Spatial No General
STN Moderate |No Analog Temporal | No Speech
ART Low Possible Analog Spatial Yes General
Boltzmann | High No Digital Spatial No General

2.3 Back Propagation Algorithm

The development of the back propagation (BP) algorithm represents a landmark in
neural networks in that it provides a computationally efficient method for the training of
multilayer perceptrons. The basic idea of back propagation was first proposed by Werbos
in 1974 21 ] and sub: 1§ lari: by etal.[22].

Backpropagation is one of the most popular algorithms in use today. This is partly

due to its simplicity, and applicability to a wide variety of engineering problems. Back
propagation is ideal for complex pattern matching problems. The basic working of the
algorithm can be summarized as follows. The network learns a predefined set of input-
output example pairs by using a two phase propagate-adapt cycle. After an input pattern
has been applied as a stimulus to the first layer of network units, it is propagated through
each upper layer until an output is generated. This output is then compared to the desired
output, and an error signal is computed for each output unit. The error signals are then
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transmitted backward form the output layer to each node in the intermediate layer that
contributed directly to the output. However, cach unit in the intermediate layer receives
only a portion of the total error signal, roughly based on the relative contribution the unit
made to the original output. This process repeats, layer by layer, until each node in the
network has received an error signal that describes its relative contribution to the total
error. Based on the error signal received, connection weights are then updated by each
unit to cause the network to converge toward a state that allows all the training patterns to
be encoded.

The significance of the process is that, as the network trains, the nodes in the
intermediate layers organize themselves such that different nodes learn to recognize
different features of the total input space. After training, when presented with an arbitrary
input pattern that is noisy or incomplete, the units in the hidden layers of the network will
respond with an active output if the new input contains a pattern that resemble the feature
the inidvidual units leamed to recognize during training. Conversely, the hidden layer
units have a tendency to inhibit their outputs if the input pattern does not contain the
feature that they were trained to recognize.

As the signals propagate through the different layers of the network, the activity
pattern present at each upper layer can be thought of as a pattem with features that can be
recognized by units in the subsequent layer. The output patte - *=neraled can be thought
of as & feature map that provides an indication of the presence or absence of many
different feature combinations at the input. The total effect of this behaviour is that the
BPN provides an effective means of allowing a computer system to examine data pattens
that may be incomplete or noisy, and to recognize subtle pattems from the partial input
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hidden layer output layer

L M

Fig. 2.7 Typical Architecture of a three layer backpropagation neural network

Figure 2.7 shows the typical architecture of a three layer BP network. The input layer has
.N); the hidden layer has (
..M) units , The input units distribute the values to the hidden

units from (1,..

.L) units, the output

layer has (1
layer units. The net input to the j-th hidden unit is

A L L}
ety = Z'.W""" +90; 2.5)

where ), is the weight on the connection from the i-th input unit, and 6} is a bias term.

This term is a weight on a connection that has its input value always equal to 1. The use

of the bias term is largely optional. The ‘h’ superscript refers to quantities on the hidden
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layer. Assuming that the activation of this node is equal to the net input; then, the output
of this node is

5 o et
iy = f(netl)

2.6)
where f represents the function adopted, eg. sigmoidal, gaussian, linear etc.
The equations for the output nodes are
L
netg, = 3 whi, +03 @7
i
Ok = fi'(nety,) 28)

where the superscript ‘0’ refers to quantities on the output layer.

The error at a single output unit is defined to be 8k = (Yp - Opk), Where the
subscript ‘p’ refers to the p-th training vector, and k' refers to the k-th output unit. In this
case, yp is the desired vidue, and oy is the actual output from the k-th unit.

The various steps involved in the i ithm are ized below.
1. Apply the input vector, X, = ( Xp1,Xp2s+ v+« + oveve xpn)' to the input units
2. Calculate the net-input values to the hidden layer units :
nety = Lwh, +0) 9
i
3 Calculate the outputs from the hidden layer :
iy = f(nety) (2.10)
4. Move to the output layer. Calculate the net-input values to each unit:
nety® = 3w, 467 @i
=
5. Calculate the outputs :
o = fi® (netp” (2.12)

35



6. Calculate the error terms for the output units :

85’ = (Ype- o) B (net”) @13)
y Calculate the error terms for the hidden units :
8% = [/ (net), LA (214

It may be noted that the error terms on the hidden units are calculated before the
connection weights to the output layer units have been updated.
8. Update the weights on the output layer :
wy(t+1)= w:,(r)+n5’;,ip, (2.15)
9. Update weights on the hidden layer :
wh(e+1)= wh()+n8)x, (2.16)

#
The error term Ep = %Z&; gives an indication of how well the network is
i

training. When this error is acceptably small for each of the training vector pairs, the

training can be discontinued.

2.4. Important issues in applying back propagation algorithm
The important issues to be considered while applying the back propagation
algorithm are listed below :
* Learning Rate
* Momentum
* Stopping Criteria
* Initialization
* Generalization
* Training set size

Each of these issues will be examined below.
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24.1 Learning Rate,

The learning rate, 1) has a significant effect on network performance. Usually, i
must be a small number of the order of 0.05 to 0.25, to ensure that the network will settle
to a solution. A small value of | means that the network will have to make a large
number of iterations. It is often possible to increase the value of 1 as training proceeds.
Increasing n as the network error decreases will often help to speed convergence by
increasing the step size as the error reaches a minimum, but the network may bounce
around too far from the actual minimum value if the leaming rate gets too large.

ome!

Another way to increase the speed of convergence is to use a technique called
momentum. When calculating the weight change value, A, w, we add a fraction of the
previous change. This additional term tends to keep the weight changes going in the same
direction and hence the term momentum. The weight change equations on the output
layer then become
wylt+1) = w:,(t)+q5:k iy e, wi(t-1) @17
In equation (2.17 ) above, o is the momentum parameter, and is usually sct to a positive

value less than one.

2.4 Stopping Criteria

The back propagation algorithm is considered to have converged when the
absolute rate of change in the average squared error per epoch is sufficiently small.
Typically, the rate of change in the average squared error is considered small enough if it
lies in the range of 0.1 to 1 percent per epoch. However, it should be noted that there is
always a possibility that the network may converge to a local mirimum in weight space.
Once a network settles on a minimum, whether local or global, learning stops. When a
network reaches an acceptable solution, there is no guarantee that it has reached the
global minimum, rather that a local one. If the solution is acceptable from the error

37



standpoint, it does not matter whether the minimum is global or local, or even if the
training was halted at some point before a true minimum was reached.

24.4 Initialization

The first step in back propagation leaming is to initialize the network. Weights
should be initialized to small, random values, between £ 0.5. A good choice for the
initial vaiues of the free parameters of the network can be of tremendous help in a
successful network design. The wrong choice of initialization values can lead to a
phenomena called premature saturation. This refers to a situation where the instantaneous
sum of squared errors remains almost constant for some period of time during the

learning process.

245 G lizai

In back propagation learning, we typically start with a training set and use the
back propagation algorithm to compute the synaptic weights of a multilayer perceptron by
loading as many of the training examples as possible into the network. A neural network
is said to generalize well when the input -output relationship computed by the network is
correct for input/output patterns never used in creating or training the network. A neural
network that is designed to generalize well will produce a correct input -output mapping
even when the input is siightly different than the examples used to train the network. The
Back Propagation network is quite good at generalization, and this coupled with its
simplicity is the strongpoint of the algorithm.

246 Size of Training set

The ability of a network to generalize is influenced by three factors : the size and
efficiency of the training set, the architecture of the network, and physical complexity of
the problem at hand. The size of the training set will be dependent on the application
intended and is largely an empirical value. Experience and experimentation are often the
most important indicators of a correct or right training set size. Also, the number of input
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and output parameters also influence the training set size. Generally, larger the number of
input/output parameters, larger should be the training set.

25 Selected Applications to Power Systems

Artificial neural networks have been recently proposed as an alternative method
for solving certain traditional problems in power systems where conventional techniques
have not achieved the desired speed, accuracy, or efficiency [23-25]

Neural Network applications that have been proposed in the literature can be
broadly classified into three main areas. ion, Classification and Cc
Optimization, The applications involving regression includes Transient Stability [26],
Load Forecasting [27], Synchronous Machine Modelling [28], and Contingency
Screening  [29].  Applications involving classification include Harmonic load

identification, alarm processing, static security assessment and fault diagnosis [30-31]. In
the area of i imization, there is i ility and capacitor

control. This section provides an overview of the reported ANN applications to power
systems.

25.1 Transient Stability

Stability of a power system deals with the electromechanical oscillations of
synchronous generators, created by a disturbance in the power system. It is of prime
importance to know if the disturbance will lead to loss of synchronism. When the
disturbance is small and when the system oscillations following the disturbance is
confined to a small region around an equilibrium point, concepts of linearized systems
analysis can be applied to determine the stability of the power system. This is known as
steady state stability assessment. However, when the disturbance is large and when the
oscillatory transients are significant in magnitude, nonlinear system theory or explicit
time domain simulations have to be used to analyse the system stability. The ensuing

analysis is known as transient stability assessment.
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Transient stability is determined by observing the variation of § ( rotor angle ) as a
function of time in the post fault period. The power system is said to be transiently stable
for a given disturbance if the oscillations of all rotor angles damp out and eventually
settled down to values within the safe operating constraints of the system. For any
disturbance, the tiansient stability of a power system depends on three basic components :
the magnitude of the disturbance, the duration of the disturbance, and the speed of the
protective devices. There exists a critical clearing time (CCT), where if the fault is
cleared before this time, the power system remains stable. However, if the fault is cleared
after the CCT, the power system is likely to be unstable. The CCT is a complcx function
of pre-fault system conditions, disturbance structure, and the post fault conditions. There
are two commonly used methods for calculating CCT, namely 1) Numerical Integration
and 2) Lyapunov Energy Function method. The first method involves extensive time
domain simulation of the power system while the scope of the second method is limited
by its restrictive assumptions. Due to the many possible pre-fault operating conditions
and types of faults, computational effort needed to assess the CCT for each of these

scenarios is prohibitive.

2.5.2 The Neural Network Approach to evaluate CCT [26]

The estimation of CCT can be looked as a regression problem where pre-fault
system parameters are used to predict the CCT for the corresponding fault. A multi-
layered perceptron was proposed to be trained using back-propagation to learn a set of
input attributes and the corresponding CCT"s for a specified fault under varying operating
conditions [26]. In the ANN approach, the inputs are the individual acceleration energy of
the generators of the system accumulated during the fault, which in turn depends on rotor
angle deviation, the centre of mass and the reduced electrical power output enerators
during the fault. The output of the ANN is the CCT corresponding to the given
contingency under the described inputs. During generation of training data, CCT for the
corresponding input quantities is obtained by repetitive numerical integration of the post-

disturbance system equations using different reclosing times. The CCT would correspond
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to the maximum time for reclosure after the initial isolation of the line in order to
maintain synchronous operation. Reference [26] reports results which compare the
performance of the ANN based CCT predictor with the calculated values. The error in
prediction was acceptable in most cases.

2.6 Load Forecasting
Forecasting electrical load in a power system with lead times varying from hours
to days, has important i The i ion can be used to

aid optimal energy interchange between utilities thereby saving valuable fuel costs.
Forecasts also significantly influence important decisions such as dispatch, unit
i and mai ing. Most i methods used for load

can be ized under two ap One treats the load demand as a
time series signal and predicts the load using the different time series analysis techniques.
The second method reccgnizes the fact that the load demand is heavily dependent on
weather variables. The general problem with the time series approach include the

of iction and ical i ility. The main reason for instability is not
considering the weather information which is known to have a profound effect on load

demand. The it i type use linear or piecewise
representations for the forecasting function. The accuracy of this approach is dependent
on the functional relationship between the weather variables and electric load which must
be known . This approach cannot handle the non stationary temporal relationship between
weather variables and load demand.

2.6.1 Neural Network Approach to Load Forecasting [27]

The ANN approach can combine both time series and regression approaches to
predict the load demand. A functional relationship between weather variables and electric
load is not needed. This is because an ANN can generate this functional relationship by
learning the training data. In other words, the nonlinear mapping between the inputs and
outputs is implicitly embedded in the ANN. The ANN approach proposed in [27] uses
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previous load data combined with actual and forecasted weather variables as inputs, and
the load demand as the output. Some of the weather parameters considered for training
are temperature, wind speed, humidity/wind chill, rain, snow, rate of evaporation etc. The
results show that ANNs can indeed be trained to predict the load demand at a much

lower ion cost compared to ional techniques.

2.7 Contingency Screening [29]

A contingency in a power system is an abnormal event (such as a fault), which
could be potentially damaging to power system components. Contingency screening is a
relatively fast and approximate method of identifying whether a contingency will result in
a violation of any of the operating constraints of the power system. Contingency
screening helps select a critical set of potentially damaging events for more accurate
analysis.

Contingency selection in its simplest form, deals with forming a list of
contingencies which may result in steady state voltage or thermal limit violations in the
post contingency power flow condition. Usually, the Distribution Factor approach and the
Performance Index approach are used for contingency screening. The proposed ANN
approach for contingency screening is based on identifying the contingent branch
overloads. A collection of ANNs are trained where each ANN is dedicated to a specific
line outage. The inputs to the ANN are Byj and Pret; Where B is the susceplance between
buses i and j, and Pr; is the net active power into bus i. The outputs are the line flows

and a binary flag indicating secure/ insecure status.

2.8 Alarm Processing and Fault Diagnosis
The control centres of a power system are continually interpreting a large number
of alarm signals to determine the status of the system components and to evaluate the

power system operation. The process is very complex because of two key reasons :
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1. Alarm patterns are not unique to a given power system problem. Same fault may
‘manifest in different alarms based on the current topology and operating status of the
power system.
2 Alarm patterns are likely to be contaminated with noise due to equipment
problems, incorrect relay settings, interference etc.

Expert systems have been widely tested for analysing alarm signals. The
formulation of rules however requires precise definitions of the power system and its
operational strategies which may widely vary depending on the utility.

28.1 Neural Network Approach to Fault Diagnosis [30-31]

The ability of a power system operator to diagnose a system problem by
analysing a set of multiple alarms is a form of pattern recognition. Accurate classification
of noisy alarm patterns is also a key shortcoming in most of the conventional techniques.
Therefore, ANNs with their ability to classity noisy patterns seems to be a logical choice
for alarm processing. The ANN is also capable of associating different alarm patterns to
the same system fault by training the ANN with a set of information rich data that
represents different operating scenarios. The ANN training set is generated by first
creating a credible set of contingencies and then deriving the possible alarm pattems
under each fault. These patterns are generated by the relay protection schemes and power
flow analysis. These patterns are then used to train a multi-layered perceptron using back
propagation. This is one area in which the ANN appears to have great potential due to its
intrinsic noise rejection and self learning capabiliti

Application of ANNs have been reported in the areas of contingency evaluation ,
dynamic security assessment [26), and control of DC Motors [32] . The above examples

show that ANNs hold out great promise in providing a fast, reliable and accurate

tool in power
Chapter 4 and Chapter 6 present the application of artificial neural networks for
evaluation of voltage stability of two sample power systems for two different voltage
stability indices. On-line voltage stability analysis is one area where ANNs can help
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improve greatly the efficiency and capability of Energy Management Systems. This is due
to the fact that voltage stability analysis is computationally intensive and imposes
enormous burden on the EMS, if the computation has to be done on-line. ANNs, by virtue
of their pattern recognition abilities, can eliminate the enormous computation costs
associated with on-line calculation of voltage stability and hence improve considerably
the efficiency, security and economy of operation of power systems.



Chapter 3

Energy Function Methods for Evaluation of Voltage
Stability

3.1 Introduction

This chapter provides an overview of the energy function method and the various
methods available to determine the multiple load flow solution. The energy function
method is applied to the evaluation of voltage stability of three sample power systems,
namely a 2 bus system, a 5 bus system and a 24 bus system. The simulations to determine
the low voltage solutions and the energy margins for the three sample power systems are

presented.

3.2 Overview of Energy Function Methods .

As explained in Chapter 1, the main thrust of research in the field of voltage
stability has been to arrive at an index or more generally, developing a security measure
to quantify how “close” a particular operating point is to voltage collapse. The crucial
point in judging the effectiveness of the various methods is to see whether or not the
“distance” of a given operating point to voltage collapse is physically reasonable and can
provide planners and operators with an indication of when corrective action is necessary.
The energy function method is a static voltage stability assessment tool which takes into
account the operating condition of the power system, the power system parameters and
the multiple load flow solutions. Before describing the application of energy methods for

voltage stability, it would be useful to review their application to transient stability.

3.2.1 Application of energy method to transient stability [15]

Energy methods have been successfully applied to the transient stability problem,
i.e., the equal area criterion. Consider a generator connected to an infinite power network.
If the generator is represented by the classical model, the dynamic behavior of the
generator rotor angle can be described by
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d .
MF‘?=P‘—P,,,SHI(5—Y) a0
where M is the inertia constant

Pi, Py, and y are constants and 3 is the machine angle.

Integrating cquation (3.1) gives
) dé
=[[P =P sin(d-7)]— %
.[M m—-ddl It f[  ~ P, sin(8-7v)] = dt (3.2)

where @ is the speed of the generator.

Integrating again, we get
%Mm’lﬁ,’: P, 8124P, cos(8-)IE @33

If the limits are between the initial conditions (8 = & , @ =0 ) and at clearing (8, = &,
@, =@ then the left hand side of equation (3.3) gives the kinetic energy of the generator
at fault clearing. This is represented by area A; in Fig. 3.1. Taking the limits between
fault clearing (8; =8, @, = «) and at maximum angle swing (8; =8m, w; =0), then the left
hand side of equation 3.3 is the negative of the kinetic energy at clearing. It is represented
by the area A; in Fig. 3.1.
Pre fault
Y

%

~¥ After fault clearing

During fault

clearing

&' ¥ 8 B 8

§ —

Fig. 3.1 Tllustration of the Equai Area Criterion concept
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We also note that at 8, since i = 0, all the kinetic energy which had been present at 3.
has now been converted to potential energy. and the areas in Fig. 3.1 are equal, and hence
the name equal area criterion.

3.2.2 Application of Energy methods to voltage stability.

The energy margin method applies the Lyapunov direct method to determine the
voltage stability at a given operating state. The application of the energy function to the
voltage stability problem can be described as follows. Conceptually, the energy function
defines an ‘“energy well” in the voltage space (i.c. state space, with the voltage
magnitudes and angles at all buses as the states). If the system were not subject to any
disturbances, the current operating state of the system can be thought of as sitting at the
bottom of this well at the stable equilibium point (SEP). The SEP corresponds to the
high voltage power flow solution. An actual system is always subject to some
disturbances such as those due to customer load variations so that the system never sits
precisely at the SEP. However, usually these disturbances can be considered small, so that
the high voltage power flow solution provides a good approximation to the actual state of
the system. The current operating point of the power system describes a local minimum
of an energy well. However, due to random load variations, the true instantancous point
does not stay at the mathematically defined equilibrium point. These small random
variations add a small amount of kinetic energy to the system. Under normal operating
conditions, these variations are not of much consequence. However, when the system is
operating under stressed conditions and is in the proximity to voltage collapse, the system
state and hence the voltage magnitude is highly sensitive to load changes. Under such
conditions, it may be possible that the random load variations may push the state out of
the potential well that defined its stable operating point. A necessary condition for this to
happen is that it receives energy greater than the potential value of the closest unstable
equilibrium point (UEP ). The UEP's correspond to those multiple load flow solutions
which are practically “ infeasible”, i.e., it is physically impossible for the system to
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operate at those points. These unstable equilibrium points correspond to the low voltage
solutions of the power flow equations.

Thus, a low value of energy measure can alert the system operators of an
impending voltage collapse. The energy function defines the height difference of the
potential barrier between the operable solution and the low voltage solution. As the
loading in the system increases, the system is pushed more and more toward the point of
collapse and the height of the potential barrier decreases and the energy margin decreases.

This is commonly known as the ‘energy well concept’, illustrated in Figure 3.2.

UEP

Energy

SEP

Fig. 3.2 Illustration of the energy well concept

In Figure 3.2, the system represented by the ball is initially at the stable equilibrium point
(SEP) . A disturbance pushes the system up the energy well, and if the disturbance is
strong enough, the system may roll up and reach the unstable equilibrium point (UEP).
The difference in energy levels between the SEP and the UEP is called the energy margin.
The calculation of energy margin is illustrated for a 2 bus, 5 bus and 24 bus system in
Section 3.5. At the point of collapse, the low voltage and high voltage solutions merge
and hence the potential barrier or energy margin is zero at that point. Thus, the height of
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the potential barrier as measured by the energy difference between the steady state and the
low voltage solution can provide an indicator of the system’s vulnerability to voltage
collapse. A low value of energy measure indicates that the potential barrier between the
stable operating point and the unstable operating point is low, i.e., the system is near the
point of collapse. The energy measure of a power system is a unique value and will vary
from system to system depending on the system parameters, operating conditions and the
low voltage solutions .

The energy measure as defined by Overbye and DeMarco[18] is :

Energy Measure

13 38

velv;

cos(a) —a;)+{§§ﬂu[l’,'“v |cos(a7—a;)+iljl'f:,' 2é"—)dx-P'(nn“ -a’)
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In equation (3.4), n is the number of buses in the system, G;j and By are

respectively the real and imaginary parts of the elements of the bus admittance matrix, V;

is the bus voltage magnitude, o is the bus voltage angle, P is the vector of the real power

into each bus, and Q; is the reactive power into bus i. The subscript s stands for the stable

operating condition and the subscript u stands for the unstable operating conditions or the
low voltage solutions of the power flow equations.

The energy function is thus a vector integration of the real and reactive power
mismatch equations (with the reactive mismatch multiplied by the inverse voltage
magnitude at each bus) between the high voltage power flow solution and a low voltage
power flow solution.

The evaluation of the summation terms in equation (3.4) is straightforward. Since the
equations are sparse, the computational cost for calculating these sums are not very high.
For the non-generator buses, the integral term can be quite easily evaluated, provided the

reactive load is modeled in the common form of either a polynomial or exponential
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function of the bus voltage. For example, if the reactive load at bus i is modeled as a

constant plus a linearly upon the bus i voltage
magnitude,
Qi=ki+k Vi

then the integral evaluates to
v
ki ln [—‘1—1-)+ K, (VO -V))

At the generator buses in the system the voltage magnitude is generally specified, rather

than the reactive power output. If the generator has reached the excitation limit, the

integral term is approximated by

Quimraz) * In (TV,:I:-]

The procedure for calculating the voltage stability index using energy margin method is

summarized below :

i) Run the base case load flow and obtain the solution

it) For the same loading condition, obtain the low voltage solutions. Use the
simplified search method [10], for obtaining the low voltage solutions. This
procedure is described in detail in section 3.3

iii)  Using both the steady state and low voltage solutions and the system parameters,

calculate the energy margin.

In step ii of the procedure described, care should be taken to choose the low voltage
solution which results in the lowest energy margin. The next section describes in detail
the procedure for calculating the low voltage solutions.

The relationship between multiple load flow solutions and voltage stability has

been i

ig: ively by earlier [8]. Foran n bus power system, the
maximum number of multiple load flow solutions possible is 2™'. It is seen that there is
an inverse relation between the number of load flow solutions and the system loading. As
the system loading increases, the number of load flow solutions is found to decrease and

at the point of voltage collapse, the low voltage and high voitage solutions merge into
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one. Section 3.3.1 illustrates the above fact with respect to a 5 bus power system. Thus,
the number of low voltage solutions is an indicator of the voltage stability of a power
system.

3.3 Low Voltage Power Flow Solutions

The determination of the appropriate low voltage solutions is of critical
importance in applying the energy function approach. It is imperative that to apply the
energy function approach, the low voltage solutions (UEP’s) should be found with
reasonable computational effort. In this section, the properties of, and, general solution
algorithm for determining the low voltage load flow solutions of power systems will be
examined. The general algorithm or the exhaustive search method is as given below :
1. Obtain the stable operating point power flow solution.
2. Using the quadratic algorithm proposed in [8] and derived below, calculate the low
voltage solution for each load bus assuming that the voltages at all the other buses are
fixed. The steps involved in this are the calculation of starting values of the bus voltages
and substituting this value as the voltage guess in the next load flow run. This calculation
is not performed on buses which are voltage controlled . Denote this voltage as V;".
The Quadratic algorithm for calculation of starting values for the computation of low
voltage solutions was first proposed in reference [8]. The algorithm proposes a simple
means of arriving at starting values and is given below:
This algorithm gives a closed form expression for calculating the two solutions of the
voltage at bus i when all other bus voltages are assumed fixed. Starting with the power
flow equations at each bus in rectangular coordinates.

Pi= Y e(e,Gy—fB)) + f(fG,+¢;B)) (35
W

Q= X fi(eGy~fB) ~¢ (G +eBy)  (36)
I

where P; is the real power at bus i, Q is the reactive power at bus i, ¢ is the real part of
the voltage at bus i, fi is the imaginary part of the voltage at bus i, Gy and By are
respectively the real and imaginary parts of the elements of the bus admittance matrix.
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Rearranging the terms in equations (3.5) and (3.6),
Pi=Gi (e’ +f) +eC+§D
Qi=-Bi(e’ +6)+fC-eD
where

c= 3eG,~£B,)
e

1By
A
D= Y'G,-¢,B,)
Jelijet

Multiplying equations (3.7 ) by B;i (3.8) by Gii

PiBi=BiiGi(e’+£7)+eBi C+ By D
- B Gi (e + ) 4Gy C- ¢, Gy D

Qi Gi
Summing equations (3.11 ) and (3.12 ) and then solving for f; , we get

PiBi+QGi=e;BiC+fiBiD+fiGiC-¢GiD

fi=oei+P

4o GD=BC
B,D+G,C

= B, +QiG,
B,D+G,C

Substituting equation (3.13 ) into (3.7 ) to eliminate f, it can be rewritten as

(€]
(3.8)

(3.9)

(3.10)

(AT}
(3.12)

3.13)
(3.14)

(3.15)

(3.16)

Pi=Gy (1 +0?) e +20Be; +B%) +¢ C+(oe;+B)D  (3.17)

The two voltage solutions can then be determined by solving for e; using the quadratic

formula and then using (3.14) to solve for ;. One of the solutions will be the operable

load flow solution voltage and the other root will give the starting value,

3. Select either V;* or V;" as initial voltage guesses for the rectangular Newton - Raphson

algorithm. Form all of the possible 2™ - 1 combinations of initial voltage guesses with

at least one bus set to its V;" value (where n is the total number of buses, and m is the

number of PV buses).

4. Compute the power flow solutions using the rectangular Newton - Raphson algorithm

for each of the 2™™ - | initial voltage guess permutations.
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The exhaustive search method presents a systematic method of creating a set of initial
voltage guess vectors. However, in order to find a small set of actual solutions, this
algorithm requires tests of 2™™ - 1 initial voltage guesses. This would be
computationally prohibitive in systems of realistic size.

As an alternative, a “Simplified Search” method is adopted. which reduces
considerably the number of initial guesses required. The simplified search method is
essentially the same as the exhaustive method, except that rather than forming all of the
2™ ] initial voltage guess combinations, only the n-m combinations corresponding to
the use of Vi" at a single bus are calculated. This reduces considerably the computational
complexity of the algorithm.

The application of the simplified search method to a sample 5 bus power system is
illustrated in Section 3.3.1

3.3.1 Low Voltage solutions for sample 5 bus power system

A sample 5 bus power system is shown in Fig 3.3.

Fig. 3.3 Sample 5 bus power system
The five bus system shown in Fig. 3.3 has a slack bus, a voltage controlled bus and three

load buses. The system has seven lines. The bas= case load flow results for this system are
shown in Table 3.1.

53



Table 3.1 Load flow solution results for 5 bus system.

Bus No. Voltage Voltage Pgen in Qgenin Pload in Qload in
real part imaginary | MW MVAR MW MVAR
(e) part ()

1 1.06 0.80 129.5 -15 0.00 0.00

2 0.9994 -0.036 400 -41.5 20 10

3 0.9772 -0.0774 0.0 0.0 45 15

4 0.973 -0.0825 0.0 0.0 40 50

5 0.9614 -0.0958 0.0 0.0 60 10

Using the Quadratic algorithm described earlier, the starting values for the voltages at all

the four buses are determined. The starting values are as given below.

Table 3.2 Starting Values of voltages for 5 bus system

Bus Number Starting Values
for Voltage
0.0152 + j 0.0102
0.0079 -j 0.0095
0.0051 -j 0.0090
0.0277 -j 0.0468

al & w0
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The next step in the formation of all possible combinations of the solutions as given
below:

‘The combination of solutions possible for the 5 bus system are

0001

ooi1o0

oot11

o100

o101

0o1rto

0rEL

where 0 denotes the value of the steady state voltage and 1 denotes the starting value
obtained by using the Quadratic formula and listed in Table 3.2. The load flow program is
now run 7 times, once for each of the above combinations and the corresponding low
voltage solutions are obtained.

The 7 possible roots of the 5 bus system for the base case loading are given below:

Table 3.3 Low voltage solution corresponding to 000 1

Bus Number Voltage in p.u.

2 0.9776 - j 0.2104
3 0.7740 - j 0.1741
7 0.7186-§0.1776
5 0.0184 - j 0.0550
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Table 3.4 Low voltage solution corresponding to 00 10

Bus Number Voltage in p.u.

2 0.9588 - j 0.2841
3 0.1772 - j 0.0866
4 0.0043 - j0.0298
5 0.5679 - j 0.2503

Table 3.5 Low voltage solution correspondingto 00 1 1

Bus Number Voltage in p.u.

2 0.9237 - j 0.3830
3 0.1693 - j 0.1004
4 0.0026 - j 0.3680
5 0.0149 - § 0.0800

Table 3.6 Low voltage solution corresponding o 0 1 00

Bus Number Voltage in p.u.

2 0.9568 - j 0.2908
3 0.01722 - j0.0319
4 0.1459 - j0.1131
5 0.6278 - j 0.2788
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Table 3.7 Low voltage solution corresponding t00 1 0 1

Bus Number Voltage in p.u.

2 09119 - j04151
3 0.0165 - j0.0470
4 0.0273 - j 0.0859
5 0.0103 - j 0.0786

Table 3.8 Low voltage solution corresponding to0 1 1 0

Bus Number Voltage in p.u.

2 0.9505 - j 0.3106
3 0.0272 - j 00493
4 0.0080 - j 0.0490
] 05713 - j02718

Table3.9 Low voltage solution corresponding to0 1 1 1

Bus Number Voltage in pu.

2 0.9120 - j 04151
3 0.0165 - j 0.0470
4 0.0270 - j 0.0859
5 0.0103 - j 0.0786




This procedure is repeated for different loading factors of K =2, 3, 4,4.5 (K is the
multiple of base case loading) and the number of distinct solutions obtained for cach
loading factor. It is seen that the number of solutions decrease as the loading increases.

The number of solutions obtained for each loading factor is tabulated in Table 3.10

below:

Table 3.10 Variation of number of roots with increase in load
Roots K =1 K=2 K=3 K=4 K=45
No. of 8 4 4 2

distinct roots

The base case solution, starting values and the low voltage solutions corresponding to K=
4.5 are tabulated below :

Table 3.11 Load flow solution for 5 bus system for K =4.5

Bus Number Voltage in p.u.
1 1.006+ j 0.000
2 0.9787 - j 0.2869
3 0.8394 - j 0.2869
4 0.8301 - j 0.3071
5 0.8001 - j 03577
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Table 3.12 Starting values for K=4.5 for 5 bus system

Bus Number Voliage in p.u.

2 0.1055 - 00174
3 0.0119 - j 0.0543
4 0.0119 - j 0.0473
5 0.0166 - j 0.2486

Table 3.13 Low voltage solution for 5 bus system forK =4.5

Bus Number Voltage in p.u.

1 1.006 + j 0.0000
2 0.8810 - j 04732
3 0.4716 - j 0.4071
4 0.4239 - j 0.4269
5 0.0733 - j 0.2949

3.4 Energy Margin Computation

This section presents the results of the computation of energy margin for the two
bus, five bus and twenty four bus systems, based on equation (3.4). As seen in section
3.3, there are a number of combinations and therefore, a number of roots are possible for
the 5 bus and 24 bus systems. If energy margins have to be calculated for each of the
combinations for every loading condition, the computational complexity will make the
method infeasible for practical implementation. Therefore, the following procedure is
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adopted for simplification. For the base case loading, the energy margins are calculated
for each of the possible combinations of the low voltage solutions. The combination
resulting in the lowest energy margin is identified and this combination is used in the
computation of energy margins for subsequent loading conditions also. This greatly
reduces the effort required to calculate the energy margins for various system loading
conditions.

Results of simulations carried out to determine the energy margins for a two bus,
five bus and a 24 bus system are presented below :
The two bus system is as shown in Fig. 3.4 below. The power factor of the load is 0.0 and

the voltage V; =1.0 p.u.

2 2

V=1.0 p.u. Z=j0.5 P=0.1pu

Fig. 3.4 Single line diagram of sample two bus system.

Energy
Margin

02 03 04 05 06 07 08 09 1
Loading Factor, K

Fig. 3.5 Variation of energy Margin with loading for 2 bus system.



Figure 3.5 shows the variation of energy margin with loading for the two bus system. It
can be seen that the energy margin steadily decreases with increase in load. Figure 3.6
shows the variation of energy margin with loading for the 5 bus system shown in Figure

3:3.

Energy
Margin

1 2 3 4 5
Loading Factor, K

Fig. 3.6 Variation of energy Margin with loading for 5 bus system.
Figure 3.7 shows the 24 bus power system considered for study [34]. Table 3.14 shows

the base case load flow results for the 24 bus system and Table 3.15 shows one low

voltage solution for the base case loading.
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Fig.3.7 24 Bus Power System considered for study
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Table 3.14 Base Case Load Flow Results for 24 Bus system.

BusNo. | V. pu. Degrees Load Load Generation | Generation
Mw MVAR MW MVAR

1 1.0060 0.000 196.166 39.740 280.874 72.107

2 1.0027 -0.1320 71.804 14.805 62.400 30496

3 0.9849 01727 92.530 18510 75.000 58.061

4 1.0024 -0.1307 79.949 16.286 62.400 24970

5 0.9935 0.1670 143.609 28870 0.0000 126.927

6 0.9400 03439 234.659 47276 66.250 41975

7 0.9500 0.3200 74.025 14.805 54.250 45397

8 0.8910 04700 246.503 50227 400.000 12,021

9 0.8892 04787 0.0000 0.0000 400.000 60.013

10 0.8448 | 05623 [0.0000 00000 |300.000 |-6605 |

11 0.9914 0.1305 0.0000 0.0000 458.500 -31.955

12 0.9909 00778 133.245 27.389 0.000 0.000

13 0.9623 -0.1280 54.7790 11104 0.000 0.000

14 1.0091 -0.1340 52.5580 10364 0.000 0.000

15 1.0825 -0.1440 100.674 20727 0.000 0.000

16 0.9670 -0.1710 126.583 25.909 0.000 0.000

17 0.9769 -0.0480 129.543 26.649 0.000 0.000

18 1.0370 -0.1030 144.349 29.610 0.000 0.000

19 0.9930 0.0280 0.0000 0.0000 0.000 0.000

20 0.9750 -0.0144 0.0000 0.0000 0.000 0.000

2t 0.9083 0.4260 0.0000 0.0000 0.000 0.000

2 0.9687 02285 133.985 27.389 0.000 0.000

23 0.9827 0.1619 94.7520 19.47 0.000 0.000

24 0.9549 0.2408 0.0000 0.0000 0.000 0.000
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Table 3.15 One low voltage solution for 24 bus system base case

Bus Number Voltage Real Part (p.u.) Voltage Imag. Part (p.u.)
1 1.0060 0.0000

2 1.0603 -0.2128
3 097028 -0.2419
4 09978 -0.21193
5 1.0128 0.00666
6 0.9793 0.2118

7 0.9885 0.1808

8 0.9536 0.3476
9, 09554 0.3557
10 0.9786 0.4455
11 09624 -0.2713
12 1.0054 -0.0228
13 09627 -0.2054
14 1.0084 -0.2137
15 1.0829 -0.228
16 0.9585 -0.2428
17 0.9848 0.127
18 10405 -0.1826
19 1.0036 +0.0268
20 09913 -0.1084
21 0.9635 0.3033
22 0.00231 0.00693
23 0.6210 -0.18247
24 0.9850 0.12127
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The simulation results showing the variation of energy margin with loading for the 24 bus

system are shown below :

Energy
Margin

1 Y S R 2
Loading Factor, K

Fig. 3.8 Variation of Energy Margin with load for 24 bus system

The above three plots have presented the variation of energy margin with system
loading for three different power systems. It may be realized that the magnitude of energy
margin at a particular loading condition is unique to a system, i.e., a value considered
large for one system may be small for another system. This is because the energy margin
is intimately connected to the low voltage solutions, system parameters and loading

patterns.

3.5 Effect of Contingencies on Energy Margin

The effect of contingencies on the energy margin of the 24 bus system was
studied. Five of the most heavily loaded lines of the 24 bus system were identified and for
each outage, the energy margin was computed. The lines considered for outage are 7 - 21,
6-9,8-21,6-24,21 - 10. It was found that the energy margin of the system with a line
outage was considerably lower than the one with no line outage. Figures showing the

comparison of energy margins with and without line outages are shown below :
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Energy
Margin

1 12 14 16 18 2
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Fig. 3.9 Comparison of energy margin with line 7-21 out and with no outage

Figure 3.9 shows the comparison of energy margin with and without a line outage,
for the different values of system loading. It can be seen that the energy margin for the
case with a line outage is lower than that with no outage. Since the energy margin is a
direct reflection of the voltage stability of a system, it can be said that a line outage has a
detrimental effect on the voltage stability of a system. The energy margin is reduced due

to a contingency, and thus the system is more prone to a voltage collapse.
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Fig. 3.10 Comparison of energy margin with line 6 - 9 out and with no outage.

Energy
Margin 2

1 12 14 16 18 2
Loading Factor,K

Fig. 3.11 Comparison of energy margin with line 8-21 out and with no outage



3.6 Summary

This chapter has presented the application of the energy function method as a
voltage stability index and looked at the various steps involved in the computation of the
index. The simplified search method to locate the low voltage solutions has been
explained in detail with respect to a 5 bus system. Simulation results for computation of
energy margin have been presented for a 2 bus system, 5 bus system and a 24 bus system.
For the 24 bus system, simulations were repeated considering contingencies also. It was

found that the energy margin is i ly by contingencies and the value is

considerably lower than that without any line outage.

The purpose of any voltage stability index is to serve as a tool for assessing the
voltage stability of a power system. The energy margin based voltage stability index holds
out considerable promise as an accurate index as it takes into account various factors that
critically affect voltage stability of a power system, namely, the unstable equilibrium
points, the random load disturbances, the system active and reactive loading and the
system parameters. Also, the concept of energy margins is a well proven one, with
successful application in transient stability studies. Thus, this index is an ideal candidate
for implementation in an Energy Management System (EMS). The implementation of the
encrgy margin based voltage stability index in an EMS environment does present some
challenges, the principal one being the computational complexity. The energy margin
method requires the location of the various low voltage solutions and for large scale
power systems, even the simplified search method will prove to be computationaily
prohibitive. This is because for a n bus power system with m voltage controlled buses,
even if the simplified search method is employed, 2™ power flows would have to be run
to locate the low voltage solutions. This heavy computational requirement can be a
burden on the capability of the EMS. Therefore, it is imperative that other approaches
should be investigated, which would provide relief from the computational burden.
Chapter 4 presents the application of artificial neural networks (ANNs) for evaluation of
energy margins. ANNs offer an intelligent approach to evaluation of voltage stability
index and can enhance the capabilities of the EMS.
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Chapter 4

Artificial neural networks for voltage stability
evaluation

4.1 Introduction

Voltage Instability has become an area of serious concem to system planners and
operators. Even well developed systems have proved susceptible to voltage collapse, as
detailed in Chapter 1. There is now a strong case for including voltage stability computation
software in Energy Management Systems (EMS). In the modern day stressed power system,
which is operating close to its voltage stability limits, such an on-line index would alert the
system operator thus enabling corrective action to be taken to avoid a voltage collapse in
the system. Other expected benefits of such an on-line index are improved security and
economy of operation of the system. In fact, an on-line voltage stability index will give the
system operator a very powerful tool with which to maintain a high level of system security.
Due to the above cited reasons, it is expected that in the near future, Energy Management
Systems will be equipped with on - line voltage stability indices.

The computation of the energy margin based voltage stability index was presented
in Chapter 3. It may be seen that the method is computation intensive, since repeated load
flows are required to find the low voltage solutions, even when using the simplified search
method. In the context of a moden day power system, the on-line determination of the
voltage stability index imposes significant computational burden on the EMS, and would
require much of the capability of the Energy Management System. Thus, the
implementation of the on-line voltage stability index would be at the cost of other important
functions of the EMS. Hence, there is a need for investigating other approaches to
implement an on-line voltage stability index.

Artificial Neural Networks (ANNSs) appear to be excellent candidates as a medium
for implementing an on-line voltage stability index. The main advantages of an ANN based
on-line voltage stability index would be the enormous savings achieved in computation time
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and effort. Also, the memory requirement of the ANN based scheme would be substantially
lower than a conventional system. Recently, researchcrs have started showing interest in the
application of ANNs for voltage stability evaluation [33, 36]. The application of an ANN
will make an on-line voltage stability index feasible even for large systems. Artificial
neural networks in combination with rule based expert systems can greatly enhance the
overall capability of the EMS by providing “intelligent” solutions to power system
problems. Of course, it is important that the problem at hand lends itself to ANN

by allowing i ion and ion to work. This chapter describes the
application of a back propagation (BP) neural network to the evaluation of the energy
margin based voltage stability index.

4.2 Selection of the ANN algorithm
The main criteria for the selection of the ANN algorithm are simplicity and ease of

accuracy of icti and ease of testing. The back propagation
algorichm (BP) is by far the most popular of the ANN algorithms, especially for power
system applications. The back propagation algorithm does not involve complex formulae or
equations and hence lends itself to implementation by any standard software.  Another
important factor in favor of the BP based ANN is its ability to generalize. By generalization,
it is meant that once the network has been trained on a set of samples, it has the ability of
recognize a new pattern. This ability is especially useful in power system applications, since
the system may undergo changes from time to time, and it would be very difficult to train
the network for all possible system conditions. This ability of the BP algorithm to generalize
also enables easy testing of the algorithm. Once the ANN is trained, a new input can be
presented to the network and the output compared to the expected value. Also, a number of
high quality BP based ANN software packages are available commercially and this enables
casy application of the BP based ANN to a problem. Considering all the above aspects, it
was decided to implement the ANN based voltage stability index using the BP algorithm, A
three layer ANN comprising of an input layer, a hidden layer and an oulput layer was

selected for the implementation.
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4.3 Selection of Input Parameters

Perhaps, the most important aspect of the implementation of an ANN based system
is the selection of the input parameters. The input parameters should be such that they
contain the underlying relationship, albeit, nonlinear, to the output. In other words, the input
parameters should each strongly influence the output. Another important consideration,
especially if it is desired to implement the ANN based system in an EMS environment is
that, all the input parameters should be available in the EMS. The main consideration being
that the system operator should get an idea of the voltage stability of the system from the
data readily available in the EMS. Additional data isit i should not be
called for, since this will increase the overall cost of the system. In chapter 3, it has been

shown that the energy margin is influenced by a variety of factors like active and reactive
power of the load, high and low voltage magnitudes, system parameters etc. Taking into
account all the above factors, the following structure was decided upon.

The input layer of the ANN receives the input vector :

{up, ug upy ] with

= [Py Pa 5 veis o sifews s Pd
ug=[Qn Q. ... . Qi
upy=[Vevi, Veva,o - oo ove e Vevil

where Py , Q, are the real power and reactive power at the n-th load bus, and Vapy; is the
voltage magnitude at the j-th PV (Generator) bus. For the 24 bus power system, shown in
Figure 3.7, the input layer received 64 inputs ( the voltages at all PV buses, the active power
generations at all PV buses, the active and reactive power loads at all buses). The output
layer of the ANN consisted of one node, i.c., the energy margin. Thus, the neural network is
designed in such a way that it can predict the energy margin for any given system operating
condition, since all the above input parameters are readily available from the Energy

Management System.
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4.4 Training of the Neural Network

This is another important stage in the implementation of the neural network. A
crucial aspect of the training of a neural network is the number of training sets used. The
number of training sets should be large enough for the network to form meaningful patterns.
Also, it is important to include conditions like different loading conditions, different
generations, different values for slack bus and PV buses etc. in the training set. This will
help enhance the generalization ability of the network. For the 24 bus power system, a
number of training sets were generated considering a variety of operating conditions such as
varying load power factor, different voltage magnitudes of the PV buses, different system
loads etc. For each such condition, the loading factor, K, (K is the multiple of the load
with respect to the base case load) was varied from ! to the point of divergence of the load
flow solution, in discreet steps. Thus, a wide range of operating conditions were selected as
the training input. A total of 175 training sets covering all the above mentioned system
conditions were used for training the network.

Another important aspect of the training of a BP based neural network are the
training parameters, namely, the learning rate and the training tolerance. These factors
greatly affect the efficiency of training and also the performance of the network. A low
value of learning rate will result in enormously large training times, while a very high
learning rate may result in instability. Usually, it is advisable to use a leaming rate of 1.0 at
the start of training. After the network has learnt about 80 % of the training facts, the
learning rate can be slightly reduced. It is found that this results in overall reduction of the
total training time. The training tolerance defines the error permitted in the output during the
training stage. A high value of training tolerance will result in an inaccurate network, but
also will reduce the training time considerably. A low value of training tolerance, while
improving the accuracy, will correspondingly increase the training times, In fact, training
tolerances below a ‘threshold’ value will result in the network not training at all. Thus, the
learning rate and training tolerance should be selected judiciously taking into account the

need for accuracy as well as reasonable training times.

72



The software package used was Brainmaker [37], marketed by California Scientific
Software Inc. Brainmaker uses the Backpropagation algorithm and has many features that
make it user friendly and permits easy handling and editing of input data. The salient
features of Brainmaker are :

1) The Netmaker Toolbox, which permits editing of the input data, and converts it into
a form compatible with the Brainmaker package. Netmaker permits data to be presented in
analog form, which is a big advantage as compared to other software packages. Also,

of data is i by Netmaker. Additi Netmaker has

facilities for specifying data as input, output or irrelevant.
2) Once Netmaker has organized the data into a form acceptable to Brainmaker, the

file is to i has facilities for specifying the training

parameters such as learning rate, training tolerance and transfer function. Brainmaker
permits changing of learning rate and training tolerance while training is going on. Various
transfer functions like sigmoid, linear threshold, step function, linear and gaussian are
available in Brainmaker. The number of hidden layers can also be adjusted to meet system
requirements. For example, if the number of inputs are large, it may be useful to increase
the number of hidden layers. Thus, this feature enables the user to alter the system

hi based on i i also creates a test file by taking a specified

percentage of data from the input data file and also periodically tests the network.

In the case of the 24 bus system, the initial learning rate was chosen as 1.0. After
about 80 % of the facts were learnt, the learning rate was changed to 0.9. The above step
was performed for training tolerances of 0.1 and 0.075. The transfer function selected was
sigmoid (Figure 2.2) , which is the most popular one for BP applications. For an ANN
package running on a PC- 486 machine, the training time for a tolerance of 0.1 was 45
minutes, while that for a tolerance of 0.075 was about 70 minutes. Table 4.1 shows on set
of input training data. In Table 4.1, V stands for voltage, Py, for active power, Q. for
reactive power, and Pg for active power generation. The subscripted numerals indicate the
bus number. The energy margin corresponding to the data in Table 4.1 is 36.081.
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Table 4.1 Table showing the input parameters for one set of input training data.

V2 Vi Vs Vs Vs A2 Vs \ Vie |Vu

1023 | 1.01 | 1.022 | 1015 | 1.002 | 1.005 | 1.015 | 102 |1.03 |1.00

Po |Ps [P |Pus |Ps (P |Pus [Py (Puo |Puu

0718 | 0.925 | 0.799 | 1.345 | 2.346 | 0.740 | 2.469 | 0.800 |0.140 | 0.712

Puz [Pus |Pus |Pus (Pus [Puz |[Pus [Pus |Puo [Pun

1.332 | 0.548 | 0.525 | 1.006 | 1.265 | 1.295 | 1.443 | 0.891 | 0.726 | 0.918

1339 { 0.947 | 0.387 | 0.499 | 0.499 | 0.775 |1.26 | 0.399 | 133 | 092

Quo |Qun |Quz [Qus [Quu |Quis |Qus |Quy [Quis |Qus

0718 | 0.629 | 0.718 | 0.295 | 0.543 | 0.682 | 0.689 | 0.778 | 0.498 | 0.124

Qo [Qua |Quz |Qus [Pez |Pes |Pas |Pos |Pos | Por

0421 | 0.821 | 0.735 | 0.519 | 0.624 | 0.75 |0.627 [ 0.542 | 0.50 | 0.542

P |Pes | Pen |Pon

400 |45 3 4.584

4.5 Test Results

After the training of the network, the network was tested on data it had not seen
before. This included system loading at different power factors, different values of loading
factor and PV bus voltage. The tests were conducted on networks trained on tolerances of
0.1 and 0.075. The test results for both cases are presented below .

Figure 4.1 illustrates the performance of the trained ANN for prediction of energy
margins. Input patters for which the network had not been trained were presented to the
network, trained with tolerances of 0.1 and 0.075. The predictions of the ANN for both
tolerances are plotted along with the expected or calculated value of the energy margin. It
may be seen that the predicted value closely matches the expected value. Though the
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network was tested with over 20 test inputs, Figure 4.1 shows only seven sample cases and

the results.

Energy
Margin 5

e i ) e

1 2 3 4 5 6 7
Case Number

Figure 4.1 Neural Network Performance Evaluation
It may be seen that the predicted value of energy margin closely matches the expected value
for both training tolerances, though the tolerance of 0.075 gives more accurate results. Table

4.2 shows some of the important design parameters of the neural network.

Table 4.2 : Design parameters for the Neural Network.

Power System Considered 24 Bus system
Number of layers Three
Number of input parameters 64

Number of output(s) One

Number of training sets 175

Learning Rate 1.0

Transfer Function Sigmoid
Training Tolerance 0.075 and 0.1
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As can be seen from Table 4.1, the ANN consisted of an input layer, a hidden layer and an
output layer. The input and hidden layers have identical structures in that the number of
nodes is equal to the number of inputs. Choosing the number of hidden layers is largely a
matter of experience and experimentation. If, after training, the output results indicate that
the ANN is not able to map the i i it might be ile to change
the number of hidden layers. For the work reported in this thesis, it was seen that one hidden

layer was adequate to obtain accurate results. The output layer had only one node, i.e., the
energy margin. To fully appreciate the effect of training tolerance on the prediction accuracy

of a neural network, it is necessary to compare the percentage error in prediction of the two

Figure 4.2 the errors in iction of the network for
tolerances of 0.1 and 0.075. It is seen that the prediction accuracy of the network trained
with a tolerance of 0.075 is much higher than that trained with a tolerance of 0.1. Though,
this comes at the expense of longer training times, the greatly increased accuracy in the

predictions should compensate for this.

Fig. 4.2 C

of iction error for two
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4.6 ANN models considering system contingencies

Chapter 3 described the effect of contingencies on the energy margin of the system .
An attempt has been made to construct an ANN model for evaluating the effect of
contingencies on the energy margin. A separate ANN is used to represent each contingency.

The training set for this ANN was d as follows. A i 'y was and

the energy margins ding to this i dition were for a
variety of system operating conditions such as different power factors, different system
loading, different values of PV bus voltages and PV bus generations. The input parameters
were selected to be the active and reactive powers of PV and PQ buses, the voltages at the
PV buses and the generations at the PV buses. Sixty training sets were generated for each
contingency. Five such ANN models were constructed to represent five line outages. The
lines considered for outage are 7 -21, 6 -9, 8 - 21, 21 - 10, 6 - 24. The performance results
for the ANN models are shown in Figures 4.3 to 4.6

0
35
0
2

Energy

Margin 2

o o 3 &

Fig. 4.3 Neural Network Performance considering outage of line 7 - 21
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Fig. 4.4 Neural Network considering outage of line 6 - 9.
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Fig. 4.5 Neural Network Performance with line 8-21 out
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Fig. 4.6 Neural network performance with line 21 - 10 out.

The above ANNs were designed with a training tolerance of 0.075. It can be seen
that the prediction accuracy of the ANNs are indeed very high, with the predicted value
closely matching the expected value. As observed in Chapter 3, the energy margin is lower
for the system with contingencies, as compared to a system with no outage.

4.7 Application in an EMS Environment

As mentioned in Chapter 2, an on-line voltage stability index would be a very useful
tool to the system operator in avoiding incidents of voltage collapse. An on-line voltage
stability index implemented as part of an Energy Management System (EMS), can
complement other functions of the EMS like optimal power flow, unit commitment,
network control, and make use of the system parameters already monitored. However, the
main challenge for the implementation of an on-line voltage stability index has been the
computational complexity involved in the context of the modern day power system. This is
where ANNs can play an important role in making possible an on-line voltage stability
index, without the associated computational burden. The ANN based stability index uses

input parameters already monitored by the EMS, and thus does not require additional data

qr More imp ly, ANNs can bring in a different perspective to the
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operation of an EMS in that they can upgrade the “ intelligence” of the EMS by virtue of
their inherent properties. By judicious selection of training sets, ANNs can be trained to
recognize virtually any system condition without adding to the computational burden.

Figure 4.7 shows the block diagram of the proposed scheme integrating the ANN
based voltage stability evaluation system into the EMS. The Remote Terminal Units
(RTUSs) collect the various data from various locations in the power system and relay them
to the Supervisory Control and Data Acquisition system (SCADA). The SCADA takes
various “ont:ol actions like switching on and off of circuit breakers, transformer taps,
capacitor banks etc. The SCADA is connected to the Man Machine Interface (MMI), which
allows the operator to interact with the EMS, The ANN based voltage stability evaluator
gets its inputs from the SCADA. The inputs required for the ANN, like active and reactive
power at load points, the power generation, and voltage at the PV buses are readily available
from the SCADA system. The ANN based system, after performing the voltage stability
evaluation, alerts the systern operator to any potentially dangerous situation, so that
corrective action can be taken.

Figure 4.7 indicates the possible architecture of an ANN based Energy management system.



ANN FOR VOLTAGE
STABILITY

MAN MACHINE
INTERFACE OPERATOR

CONTROL ACTION

Figure 4.7 Block Diagram for integrating ANN based voltage stability monitor into EMS.

4.8 Summary

This chapter has presented results on the ANN implementation of a system to
evaluate the voltage stability of a power system. The prediction accuracy of the ANN is
quite high and closely matched the calculated value. The highest percentage error
encountered was only 7 %, and it is believed that this error can be further reduced by

training the network with a larger training set. Also, it is seen that the trairing tolerance
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the iction accuracy to a i extent. A lower training tolerance leads

to more accurate results, but comes at the expense of a higher training time,

The input parameters presented to the network are readily available from the EMS,
thus lending this model to easy application in an EMS environment. The effect of training
parameters like learning rate and training tolerance on the network performance was
studied, and optimum parameters were selected. ANN models were also implemented for
contingencies, with a separate ANN being used for a contingency. Here too, the ANN

model gave good results in predicting energy margins from system parameters.
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Chapter 5

Application of Load Margin Method for Evaluating
Voltage Instability

5.1 Introduction

The voltage stability of a power system is intimately connected to the system
loading, and has indeed been called load stability. The power system moves closer towards
instability as the loading increases and at a particular loading point, it loscs stability. The
Jacobian of the load flow equation at this point is singular. Conventional voltage stability
indices have been developed to provide an indicator of the voltage stability of the system,
based on the system conditions. They typically provide a numerical value of the index,
which in most cases in unique to a system. For example, the index based on the minimum
singular value [13], provides a value based on the singular value decomposition of the
Jacobian at that operating point. The energy margin method provides a value, which is
unique to the system. In both the above cases, it is essential that the operator is aware of the
significance of the numerical value of the index obtained from the EMS. In other words, it
would be helpful if the nperator has a reasonable amount of expertise in the analysis of
voltage instability. This would help the operator in appreciating the situation better.
However, this may not always be possible and hence there is a need for an index which can
provide a Mega Watt (MW) margin to instability. This would be an extremely useful tool in
an EMS environment, as it would give the system operator the load margin the system has
beiore it moves irrevocably into collapse. This aspect is important from the point of view of
the current trend to keep the user interface of the EMS as simple and direct as possible.

Most currently available voltage stability indices compute the voltage stability by
uniformly increasing the load until the singularity of the Jacobian is reached. Thus, in most
cases, the point of collapse, as given by these indices, will correspond to the point of
maximum system loading possible. However, the MW margin obtained from this point
may not be a true indicator. This is because of the fact that the system load need not always
increase uniformly. The direction or pattem of increase is of great importance in
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|4 i
fx,p) =g M [Q] =0 5.1

where

A

Here x is the system state vector, and p is the parameter vector whose clements are active
and reactive load power, and active generator power, Let J, and J; be the Jacobian matrices
of the vector function f with respect to x and p respectively. For a given parameter vector p;,
a system state vector x; can be obtained by solving equation (5.1). Each parameter vector p;
represents a specific system' condition in terms of active and reactive loads, and active
generation. The system reaches its voltage stability critical point if the parameter vector p*
and the corresponding system state vector x are such that the power flow Jacobian matrix
Iy is singular. Let S denote the hypersurface in the N dimensional parameter space such that
T p*) is singular if p* is a point on S.

Given an initial system operating point (xo, Po) . we have to find the parameter
vector p' on S such that the distance between ppand p* , k = |p o pnl. is a local minimum
for the distance between po and S.

Assuming that S is a smooth hypersurface near p’, a normal vector to this
hypersurface at (x", p*) is given by

n = wlp 52)

where w” is the left

g of J(x".p") ing to the zero eig Andn’
is normalized such that n { = 1. Starting from the initial system operating point (xo,po) , the
system is stressed by incrementally increasing p along a particular direction. Each time p is
increased, equation (5.1) is solved to obtain the system state vector x. And p is continuously
increased along the same direction until, at the voltage stability critical point (x", p°) the

power-flow Jacobian matrix J becomes singular; that is
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P = po+kn (5.3)
where k is the distance between the initial system operating point (Xo, po) and the voltage
stability critical point ( ", p*) as k =|p « —pd.

For a given initial system operating point (xq, fo), p can be increased along different
directions. Obviously, the value of k depends on the direction along which p is increased.
The objective is to find the direction of the parameter vector p such that k is the local
minimum.

The following procedure determines the vector " along which the distance between
the initial equilibrium point (xo, po) and the singular point (x", p°) is the shortest :

1. Letno be an initial guess for the directionn’, o = 1.

2. Stress the system by incrementally increasing p along the direction of 1, until J, becomes
singular; that is, determine ki , p; and x; so that p ; = pp + k; M is on the surface S.

3. Setmiwi= wilp,and | M| = 1.

4, Tterate steps 1, 2 and 3 until 1; converges to a value 1j-. Then, p* = po + k" 0’ is the
corresponding equilibrium condition.

The above described procedure is illustrated on a simple 2 bus power system shown in Fig.

5.1

il }
Y
O T z=joas ]
120 P+jQ
Fig. 5.1 A simple radial system

Corresponding to equation 5.1 , we have
i 4Vsino.-P 0 54
= 4y cosa-avi-q| = [o &4
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(5.5)

The Jacobian matrices are

[4Vcosm 4sinot :|
Ji=

(5.6)

—4Vsina  4coso—-8V

-1 0
= Lo
) -

The determinant of J is

det(l,) =16 V - 32 V2 cos o (5.8)
On the singular surface S , det (J,) =0, that is,

16V-32Vicos =0

or V= 2(!1150. (5.9)

Equation (5.8) describes the relationship between V and o when J; is singular. From
equations (5.4) and (5.8) , we have the following expression describing the singular surface
S in the parameter space :

P’ +4Q-4=0 (5.10)
Assume that the system has the initial condition given below :
Pp=08 Q=04 Vo=08554 on=13.52°
Table 5.1 shows the iterative process of finding the point of voltage instability which is

closest to the initial operating condition .
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Table 5.1 Calculation of shortest distance to instability for system in Fig 5.1 [40]

Iteration Left eigen vector | The distance to |P;,Q;
m Instability (k;)
1 0.9725 - 0.2331 10725 1.8430, 0.1500
2 0.6776 - 0.7354 | 0.4173 1.0828, 0.7069
3 0.4869 - 0.8735 | 0.4061 0.9977,0.7541
4 0.4443 - 0.8959 0.4024 0.9788, 0.7605
8 0.4405-0.8977 | 0.4016 0.9769, 0.7605
6 0.4378 - 0.8991 0.4015 0.9758, 0.7610
P
_
m
2
s
X
(Po.Q0)
« S
Q ——

Fig. 5.2 Singular surface S in the P-Q plane

87



the initial operating condition. The surface S represents the locus of all combinations of P
and Q which result in singularity of the Jacobian. All points below S represent voltage
stable conditions and all points above S represent unstable conditions. The figure shows
three different directions of load increase. If the load was increasing in the direction shown
by the vector 1, the load margin (MW at the singular point - MW at the current operating
point ) is quite high. However, if the load dircction is given by either 02 and 1, it can be
seen that the singular surface is quite close and hence the load margin is considerably lesser
than that for Ne. Thus, the direction of load increase is an important factor in determining
the minimum distance to collapse.

Knowing the direction of the necarest instability point is of great use to system
operators, since they can identify dangerous loading trends which may push the system
faster towards collapse. If the system loading is in a direction that will bring on the collapse
quicker than that for a uniform load increase, then the system operators can take immediate

remedial action before the situation becomes critical.

5.4 General Description of the procedure

For any system, the general procedure for finding the minimum distance from an
initial load level Pq, Qq to the singular surface S is as follows :
1. Increase load from Py, Qo in some direction until an eigenvalue of the Jacobian is
practically zero. The load level P, Q; comresponding to this point is the stability limit. This
point lies on or is extremely close to S.
2. For the conditions at Py, Qy, perform modal analysis and determine the left cigenvector
of the full Jacobian matrix. The left eigenvector contains elements which provide the
increments of MW and MVAR load for each bus. The eigenvector points in the shortest
direction to singularity, which is therefore normal to S.
3. Go back to the base case load level Py, Qo and load the system again, but this time in the
direction given by the left cigenvector found in (2). When S is reached, a new left

eigenvector is computed.
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4. Again, we retumn to the base case Po,Qo and load the system in the direction of the new
eigenvector given in (3) above. This process is repeated until the computed eigenvector
does not change with each new iteration. This process will then have converged.

‘When it has converged, the solution gives the minimum vector (P and Q) distance to
S from Po and Qo. This process can be applied to large systems also, however, S is no longer
a simple locus, but a hypersurface in a parameter of dimension 2N, where N is the number
of buses. The shape of the hypersurface is not known, hence this process may find only a
local minimum.

5.5 Application to the 39 bus New England System

The above algorithm is implemented in VSTAB, a commercial voltage stability
software package marketed by PowerTech Labs. The work reported in this thesis made use
of the INS option of VSTAB [41] to determine the nearest instability points for the 39 bus
New England System [41], which is a very popular system for testing voltage stability
techniques.
‘The New England 39 bus system is as shown in Figure 5.3. The procedure for computation
of the nearest instability point using the INS option of VSTAB is described later in this
section. The procedure involves repeated solutions of the load flows as the program
attempts to find a local or global minimum of the distance to instability. Thus, in most
cases, a number of iterations are required.

This section also presents simulation results on the effect of variation of load on the
load margin of the 39 Bus New England Power System.
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Fig. 5.3 39 Bus New England Power System [41]
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The procedure for finding the nearest instability point using VSTAB is given below :

1. VSTAB requires a solved load flow as an input before proceeding with the calculations.
Therefore, a solved base case load flow result of the 39 bus system was generated.

2. VSTAB requires a file with a *.prm extension, which specifies the options required. The
other files required are with *.chc , *.gds, *.ins, and *.mrv which specify the loading
pattern, generation, nearest instability point calculation, and parameters for modal analysis
respectively.

3. The information about the load margins is contained in the *.out or *.pvt files. These
files contain the load flow results and the PV curve respectively, for all the iterations.

4. VSTAB, with the nearest instability option, was run for various values of K, the loading
factor.

The program requires a number of iterations to arrive at the nearest instability point
for a particular operating point. This is due to the fact that repeated load flows are required
for each load direction. Before arriving at the load direction leading to the nearest instability
point, the program tries out various directions of load increase. Figure 5.4 shows the load

margin in MW plotted against the loading factor, K.

| 1

800

Margin

1 12 14 18 18 2
Loading Factor, K

Fig. 54 Plot of Load Margin in M.W. against Loading Factor, K
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As mentioned earlier, there is no guarantee that the program will converge to the global
minimum, The results obtained may represent a local minimum in the hypersurface, as each
time the program attempts to find the minimum distance to collapse. Also, the shape of the
hypersurface also influences the value of the load margin, For the two bus system shown in
Figure 5.1, the shape is almost a straight line. But, for a multi bus system like the 39 hus
system, the shape can be quite complex and the program attempts to find the local
minimurms in this complex hypersurface, for each loading condition. It may be observed
that there is an apparent contradiction in the figure in that the load margin is more at larger
loads. This is because of the fact that the program is getting trapped in a local minimum and
the shape of the hypersurface may be such that the local minimums at higher loadings are

larger than that at lower loadings.

5.6 Effect of Contingencies on Load Margin of IEEE 24 bus system

The IEEE 24 bus system is shown in Fig. 5.5 {35]. The system has 10 generators
and 38 lines. For different loading conditions, the load margin was determined. After that,
five of the most heavily loaded lines were identified to study the effect of contingencies on
the load margin . The difference between the systems shown in Figures 5.5 and 3.5 is in the
bus numbering and the base case loading, The system topology remains the same.

To study the effect of contingencies on the load margin, the following procedure
was adopted.
1. The input data was modified to take into account the contingency.
2. The new data file was used as input to a load flow program and the new load flow results
obtained.
3. This new load flow result was used as input to the VSTAB software and the load margin
determined.
This procedure was repeated for all the five contingencies and the corresponding load
margins determined.
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Fig. §5 [EEE 24 Bus Reliability Test System

Table 5.2 show s the load flow results for the [EEE 24 Bus Reliability Test System.



Table 5.2 Load flow results for [EEE 24 Bus System.

Bus No. Voitage | Voltage Load Load Generation | Generation
pu. Degrees | MW MAR MW MVAR
1 1006 0 108 2 192 7853
2 1.023 -14.559 3790 200 1924 29.04
3 1.000 -19.51 130 370 0.000 0.000
4 1022 -14.445 740 150 0.000 0.000
5 1015 0.433 210 14.0 0.000 0.000
6 1002 8.166 136.0 128.0 0.000 0.000
7 1005 7.625 1250 250 2000 3427
8 1015 14.43 1310 350 0.000 0.000
9 1.020 14.89 1350 360 0.000 0.000
10 1.030 20.81 1650 40.0 0.000 0.000
8 1.000 8.43 0.000 0.000 0.000 0.000
12 0.9672 9.174 0.000 0.000 0.000 0.000
13 09870 -13.77 165.0 540 3940 0.000
14 10122 -14.3 1040 39.0 0.000 150.0
Is 1.0140 -15.18 2170 64.0 1550 0.000
16 09782 -18.14 1000 200 1550 0.000
17 09832 -9.877 0.000 0.000 0.000 0.000
18 1.0217 -11.95 2330 68.0 400.0 0.000
19 1.006 -3.619 1510 370 0.000 0.000
20 09917 -3.18 1280 260 0.000 0.000
21 10199 12.76 0.000 0.000 4000 0.000
22 0.9988 7913 0.000 0.000 0.000 0.000
23 1.0004 6.976 0.000 0.000 660.0 0.000
24 0.963 -0.138 0.000 0.000 0.000 0.000
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Table 5.3 shows the loadings of the lines selected for outage for base case loading.

Table 5.3 Loadings of lines selected for outage in IEEE 24 bus system.

Line Line Loading (MW + j
MVAR)
1-5 58.85+j5.85
1-3 45.68 + j 6.43
2-6 67.03 +j5.57
2-4 67.75 + j 11.52
7-8 75.06 + j 29.49

Table 5.4 shows the load margin for outage of each line. Load Margin without contingency
for base case load was 387 MW.

Table 5.4 Variation of load margin with line outage for base case load.

Line Outaged Load Margin
1-5 316 MW
1-3 360 MW
2-4 313 MW
2-6 163 MW
7-8 234 MW
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Thus, it is seen that the load margin is affected to a considerable degree by line
outage. This means, that in the event of a line outage, the load margin available to the
system is reduced and the system may reach the collapse point more quickly. Similar tests
were conducted on the 24 bus system, but with different system loading conditions. In all
cases, the load margin after an outage was found to be considerably lower than that without
an outage.

5.7 Summary

This chapter has presented the detection of the nearest instability point or the load
margin for the 39 bus New England System and the [EEE 24 bus power system. It can be
seen that the load margin is a useful tool for the system operator in identifying potentially
dangerous system conditions. The nearest instability point determined need not always
correspond to the global minimum. This is because of the fact that for large systems, the
hypersurface of the singularity locus is quite complex and may be uneven. Simulations
were carried out on the IEEE 24 bus system to study the effect of contingencies on the load
‘margin. The load margins are considerably reduced in the event of line outage. This has
important implications from the point of view of a system operator, in that the operator has
1o resort to corrective measures to prevent the system from moving closer to collapse in the
event of a contingency. The next chapter will describe the application of artificial neural
networks for evaluating load margins.

The i.nplications of knowing minimum load power margins are significant. These
margins represent the true worst case load increases for system loadability with respect to
voltage collapse. In other words, these margins give the operator the maximum load in MW
the system can take, before sliding into instability. This is as opposed to other voltage
instability indices, which give only a numerical value of the index and do not provide any
information on the power margin available. Thus, determining the minimum load margins
can help the operator in taking corrective control actions as soon as the margin reaches a
critical value. This critical value can be based on the MW and MV AR reserves available in
the system.



Chapter 6

Artificial Neural Networks for Evaluation of Load
Margins

6.1 Introduction

As mentioned in Chapter 5, most of the currently available methods for voltage
stability evaluation compute the voltage stability index by uniformly increasing the load
until the singularity of the Jacobian is reached. Effectively, this means that the point of
collapse given by these indices will correspond to the point of maximum system loading
possible assuming that the loads increase uniformly. However, in practice, the system load
does not increase uniformly. The utility has very little control on the direction of load
increase. It would be very helpful if the system operators can know the worst case load
increases for system loadability with respect to voltage collapse. The load margin index
presented in Chapter 5 is thus a very useful tool for the system operator since it gives in
MegaWatt terms the maximum load the system can take before sliding into instability.
Other voltage stability indices give only a numerical value of the index and do not provide
any information on the power margin available. The information on minimum load margins
available can help the operator in taking corrective control actions as soon as the load
reaches a critical value. This critical value depends on the MW and MVAR reserves
available in the system.

The computation of load margins was presented in Chapter 5. It can be seen that the
method is computation intensive since numerous load flows and iterations are required

before the program converges to a local or global minimum. Thus the implementation of an

on-line load margin index inan Energy System (EMS) i presents a
considerable challenge.

Artificial Neural Networks (ANNs) present the possibility of implementing an on-
line voltage stability index. Chapter 2 presented the application of ANN:s to different power
systemn problemns like transient stability evaluation, load forecasting, fault diagnosis etc. An

ANN based on-line voltage stability index in an EMS environment would result in
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considerable savings in computation time and effort. An ANN based approach can make an
on-line load margin index feasible even for large power systems. This is duc to the fact that
+trained ANN requires very little computation time or memory. This chapter describes two

neural network models designed to evaluate the load margins.

6.2 Selection of the ANN algorithm
The different aspects of the sclection of a suitable ANN algorithm have been
detailed in Chapter 4. Based on those considerations, it was decided to use the back

propagation algorithm for evaluating load margins.

6.3 Selection of Input Parameters

The selection of the input parameters is a crucial aspect in the implementation of an
ANN based system. The input parameters should be such that they should strongly
influence the output and have an underlying relationship to the output. Since the ANN
based load margin index is to be implemented in an EMS environment, it is important that
all the input parameters should be available in the EMS without the use of additional data
acquisition equipment. In chapter 5 it was seen that the load margin was influenced by the
direction and magnitude of the load increase and also the reactive power generation. Taking
into account the above factors, the following structure was decided .

The input layer of the ANN receives the input vector :

u = [up, ug, upy ] with

Up= [PisPrgsaanns Py
U= [QrQueevn. Qnl
upv=[Vevi, Vevz, oo Viy ]

where Pq, Qqare the real power load and reactive power load at the n-th bus, and Vpy; is
the voltage magnitude at the jth PV bus. For the 39 bus New England System, the input
layer received 60 inputs ( the voltages at all PV buses, the active power generations at all
PV buses, the MW and MV AR loads at all buses). For the IEEE 24 Bus Reliability System,

the output in both cases is the corresponding load margin.
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64  Training of the Neural Network

The strategy for training a neural network has already becn outlined in Chapter 4.
For the 39 bus power system, a number of training sets were generated considering a variety
of operating conditions, such as varying load power factor, different voltage magnitudes of
the PV buses, different system loads etc. For each such condition, the loading factor, K,
(loading factor is the multiple of the base case loading) is calculated. A wide range of
operating conditions were selected as the training input. A total of 170 training samples
were used as the training set. For the 39 bus system, the initial leaming rate was chosen as
1.0. After about 80 % of the facts were learned, the learning rate was reduced to 0.9.

The Brainmaker Package, marketed by California Scientific Software and described
in Chapter 4, was used to implement the ANN model. For the 39 bus system, the sigmoid

transfer function was used and the number of hidden layers was specified as one.

65 Test Results for the 39 Bus New England Power System

After the training of the network, the network should be tested on data it had not
seen before. This included system loading at different power factors, different values of
loading factor, and PV bus voltage. Table 6.1 shows one such training set, for the New
England 39 Bus system, which consists of 60 inputs.

In Table 6.1, V represents the voltage at the PV (voltage controlled) buses, Pr.
represents the active power in p.u., Qu represents the reactive power and Pg represents the
active power generation in p.u. The oulput, i.e., the load margin is also specified in p.u. For
the specific set of input training data, the output was 3.98 p.u. 170 such input and output
data pairs representing a wide spectrum of system operation were used for training the

input.
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Table 6.1 One sct of input training data.

Va Vi Va Va Vu Vis Vie Vy Vi Vi
1.0475 | 0.982 09831 | 09972 | 10123 |1.0493 | 10635 | 1.0278 |1.0265 | 1.03
Piy Py Py Py Puz Pus Puis Pus  |Puo | PLa
3.22 5.00 2338 5220 0085 3200 (3294 (1580 |6.80 2.74
Py | Py Puss Puss Py Pus Pixy P P | Qus
2.475 | 3.086 2.4 139 281 206 2835 |0092 |[11.02 |0.024
Qui Qi Qu Qu: [Qus {Que |Qus |Quo |Qua |Quas
1.84 0.84 176 0.880 1530 0323 0300 1030 |1L150 |0.784
Que (Qus [Qus | Qo [Qus | Qus Qut  |Qus  |Pas  |Pa3a
-0.922 | 0472 | 0170 | 0.755 0276 1269 0046 | 250 2.50 5.729
Pa; Pey Pey Poss Poy Pey Poss Poys

6.50 6.320 | 5.08 6.50 00 540 830 10.0

Table 6.2 illustrates the structure and important design parameters of the ANN, for the 39

Bus System.

Table 6.2 Important design purameters for the Neural Network

Power system Considered

39 Bus New England System.

Number of layers Three
Number of input parameters 58
Number of output(s) 1
Number of training sets 170
Learning Rate 10
Transfer Function Sigmoid.
‘Training Tolerance 01




Figure 6.1 shows the testing results of the trained ANN. The expected values of the
load margin were obtained by repeated simulations using VSTAB software. Testing of the
network was done with 17 test cases or 10 % of the training sample, for the sake of clarity,

results are shown for only 7 sample cases.

Fig. 6.1 Performance evaluation of neural network.

Figure 6.1 illustrates the comparison of the predicted value of load margin with the
expected value. As can be seen , the predicted value closely matches the expected value.
Figure 6.2 illustrates the percentage error in predicted value of load margin. It is seen that
the maximum percentage error in the predictions is only 3.5 %, whereas a minimum
percentage error of 0.5 % is achieved. Thus, Figures 6.1 and 6.2 indicate that given the
appropriate system parameters, the ANN based system can predict the load margin of a

power system with a high degree of accuracy.
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Fig. 6.2 Neural Network Performance evaluation.

6.6 ANN models to evaluate effect of contingencies on load margin .
The IEEE 24 Bus system, shown in Figure 5.5 was selected to implement this
model. Chapter 5 the effect of i ies on load margin of the [EEE 24 Bus

system. It was found that contingencies have a considerable effect on the load margin. It is
essential that an on-line voltage stability index be able to evaluate the load margin in the
event of a contingency in the shortest possible time. For large scale power systems, this
would rule out standard computation methods, since the computation costs in terms of
speed and economy would be quite high. Artificial neural networks offer an ‘intelligent’
solution to this dilemma.

The approach outlined in Section 4.6 of Chapter 4, proposed a separate ANN model
for each contingency, since it did not take the network topology into account. The new
approach proposed in this section for the ANN based model for contingency evaluation is to
include information regarding the network topology in the training set. The detailed
procedure for design of the network is given as follows. Five of the most heavily loaded
lines were selected, as detailed in chapter 5. Each of the five lines was outaged and training
sets created for each of the above outaged cases, and for one case with all lines in service.
The training sets were created by change of load, change in PV bus values, power factors

etc. The network topology information, in the form of line power flows for each of the five
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lines, was obtained for each such case. This line power flow information consisting of
active and reactive powers, was included as additional inputs in the training set. For
example, for the line 1- 5, the real and reactive power flow from bus | to bus 5 was
considered. Table 6.3 shows one such training set, for the case in which line 1 - 5 of the
IEEE 24 Bus System is outaged.
In table 6.3 shown below, V stands for voltage of the PV (voltage controlled) buses, P
stands for the active power load, Q for the reactive power load , Pung and Quing stand for
the line power flows, all values being in per unit. The outaged lines are denoted as follows.
Line I comresponds to line 1 -5
Line 2 corresponds to line 1 -3
Line 3 cormesponds to line 2-6
Line 4 comresponds to line 2-4
Line 5 corresponds to line 7- 8

For the above input training data set, the output, i.., the load margin was 2.59 p.u.

Table 6.3 One set of input training data for line 1 - 5 outaged

V2 vy Vi Vis Vie Vig Va Va Puy Py
1.005 0917 1.014 |0.9782 | 1.0217 | 1.0119 | 1.004 1.023 1.08 0.97
Py Pus Pis 273 Py Pig Py Puio Pui3 Puia
18 074 0.71 1.36 1.25 1 175 195 265 194
Pus Pus Pus PLig PLy Qu Qu Qs Qu Qus
3 L0 333 1.81 1.28 022 02 037 015 0.14
Qs Qu Qus Qus Quo | Quis Quus Quis Qus  |Quis
128 0.25 035 0.36 0.40 0.54 039 0.64 0.20 0.68
Qus Qu |Pa Pgy Po1s Poys Pors Pois P Po2s
037 0.26 20 3.94 1.55 155 40 40 6.6 1924
Puver | Quner |Punvez |Qumves |Punves | Quwes |Punes | Quives | Punves | Quines
00 0.0 03007 |0.153 | 0.822 0.022 0.6703 | 0.1724 |0.7499 | 0.4974
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Table 6.4 Design parameters for the Neural Network.

Power System Considered [EEE 24 Bus System.
Number of layers Three

‘Number of input parameters 60

Number of output(s)  §

Number of training sets 220

Leaming Rate 01

Transfer Function Sigmoid

Training Tolerance 0075

Table 6.4 shows the important design parameters of the neural network. After training the
ANN was tested with various cases and the test results are given below. It may be noted
that the test data was not included as part of the training data.

The philosophy behind design of this ANN model was that a single ANN should be
capable of evaluating the load margins of a power system under normal operating
conditions as well as under with line outages. The ANN model introduced in Chapter 4 uses
separate ANN for each contingency. The model proposed in this section eliminates the
need for having several parallel ANNs and hence can give savings in terms of training time,
cost and complexity. This has been made possible by including the network topology
information along with the training data. Though the proposed model has been trained with
input data for 5 line outages, it can easily be extended for larger systems,

Figures 6.3 to 6.8 illustrate the performance of the ANN based model in evaluating the load

margins in presence of contingencies.
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Fig. 6.3 Neural Network Performance Evaluation for line 1- 5 outage.
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Fig.6.4 Neural Network Performance Evaluation for line 1-3 outage



Case No.

Fig. 6.5 Neural Network Performance Evaluation for line 2-6 outage.

Load
Margin
(W)

Fig. 6.6 Neural Network Performance Evaluation for line 2-4 outage.



Load 4o,
Margin
Mw)
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Fig. 6.8 Neural Network Performance evaluation for no line outage.



It can be seen that the predicted value of load margin closely matches the actual value for all
cases, i.e., with contingencies and with all lines in service. This shows that a single ANN
model trained with network topology information, can predict load margins for all system

conditions.

6.7 Summary

As described in Chapter 5, load margins are a significant pointer to the MW reserves
of a power system and on line monitoring of the load margins can be very useful. Load
margins represent the minimum load the system can take before sliding into instability.
Knowing the MW and MVAR reserves available, the system operator can take corrective
action like shedding non essential load, allocating more MW or MVAR reserves etc. before
the system moves irrevocably into voltage instability. However, calculation of the load
‘margins is a computationally intensive procedure and involves repeated solutions of power
flows until the program converges to a local or global minimum. In the context of on-line
implementation of load margin in an EMS environment, this can impose a considerable
computation burden. An ANN based system, on the other hand, will impose a much lesser
computational burden and is also much quicker, since repeated iterations are not required.
This chapter has presented two ANN models. The first, implemented on the 39 Bus New
England System, predicts the load margin for the system under normal operating conditions,
i.e, with all lines in service. The second ANN model, implemented on the IEEE 24 Bus
Reliability Test System, can evaluate the effect of contingencies on load margin and a single
model with suitable inputs can be used to predict the load margin of large systems under
normal operating itions as well as under ies. This single ANN model which

takes into account the network topology, can result in significant savings in computation
costs and climinate the need for separate neural network models for each contingency. It
may be noted that all the inputs to the ANN are parameters readily available from the
SCADA, without any need for additional data acquisition equipment. The trained ANN
model, used in conjunction with SCADA and other EMS functions, as outlined in the block

diagram of Figure 4.7, can be a valuable tool to the system operator in maintaining power
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system voltage stability, by offering a fast, economical and intelligent solution. However, it
may be noted that the accuracy of the predictions of the ANN will depend largely on the
effectiveness of the power system software used in generating the training set data. There is
no guarantee that the load margin obtained is a global minimum, since there exists a
possibility of getting trapped in the several local minima existing in a complex
hypersurface. Ideally, the training set should contain data based on the global minimum
obtairied. But, at present there is no way of finding if VSTAB has located a global or local
minimum. This problem should be addressed further in future research into better
mathematical methods to arrive at a global minimum everytime.



Chapter 7

Conclusions

7.1 Contributions of this research

Human civilization, as we know it today owes a lot to electrical power. In fact, most of the
conveniences and lifestyle we take for granted have been made possible due to the reliable and
efficient operation of the modem power system network. However, the rapid industrialization and
modemization of the society has placed a lot of stress on the power system network. The load levels
are rising, and the consumers are demanding efficiency and reliable supply of power as never
before. But, utilities have fewer resources to meet these demands. This in tumn has given rise to a
host of new problems hitherto unknown, the most prominent of whicii is voltage instability. The
interesting aspect of the voltage stability problem is that even well developed, strong , and

systems are iencing this problem. Unless utilities are able to commit huge
resources into building new transmission and generation facilities, this problem will continue to
stay and even worsen and major system collapses may be a possibility.

In this scenario, power system operators have a vital role to play in ensuring system security
and efficient operation. The primary role of a power system operator is to ensure that the system is
operating in a healthy condition and take corrective action in the event of any abnormality. In
performing this task, the system operator has the help of powerful tools like the Energy
Management System (EMS) . The EMS is a very versatile system which has capabilities for
control, monitoring and analysis of power system conditions. It is expected that in the near future,
EMS will be equipped with capabilities for on-line voltage stability analysis software functions, so
as to enable the system operator to take immediate corrective action .

A number of voltage stability indices have been developed by various researchers for the
purpose of quantifying the voltage instability of a power system. This thesis has studied two
popular voltage stability indices and presented simulations on test power systems. These indices are

computation intensive and require repented power flow solutions. For large power systems, this can
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be quite time consuming and heavy investments in terms of computer hardware are required if real-
time response is desired. This has been the ivation in i igatigating other ‘intellj .
solutions to this problem. Artificial Neural Networks (ANNs) have aroused considerable interest as

pattern recognition tools in solving various power system problems.

The voltage stability indices investigated in this research are the energy margin approach
and the load margin approach. The energy margin method, takes into account the system operating
conditions, the load disturbances, and the multiple solutions of the power flow equations , in
assessing the voltage stability of a power system. Simulations are carried out on the effect of
loadings and contingencies on the energy margin of a 24 Bus Power System. It was found that
contingencies have a detrimental effect on the energy margin and the energy margin was
considerably lower as compared to normal operating conditions. The load margin index give in
Mega Watt terms the maximum load the system can take before sliding into instability. Thus,
determining the load margins can help the system operator in taking corrective control actions as
soon as the margin reaches a critical value. This critical value will depend on the MW and MVAR
reserves available in the system. Simulations were carried out on the effect of loadings and
contingencies on the load margins of the 39 Bus New England System and the 24 Bus IEEE
Reliability Test System. It was found that contingencies have a significant effect on the load
margins and tend to reduce them.

Three ANN models were developed in the course of this research. All three ANN models
were i on the back ion algorithm. The effect of parameters like training

tolerance and learning rate on the accuracy of prediction and the training time were investigated.
One of the main considerations in developing the training sets for all the three ANN models was
that all training parameters should be readily available from the EMS. For the 24 Bus Power system
used for investigating the energy margin based index, an ANN model was developed which could
predict the energy margin from the system operating conditions. The inputs to the ANN were the
active and reactive power, the voltage at the voltage controlled buses, and the active power
generation. Separate ANN models were used for each contingency . The ANN model for the 39
Bus New England Power System used the system parameters like active and reactive power at load,
voltage at voltage controlled buses, and the active power generation to predict the load margin. The
ANN model for the IEEE 24 Bus Reliability Test System considers contingencies also, and makes
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use of the network topology information in the form of line power flows, to predict the load margin
for contingencies as well as normal operating conditions. Thus this model eliminates the need to
have separate ANN models for each contingency

Test results on the three ANNs have shown that Artificial Neural Networks can predict with
reasonable accuracy, the voltage stability index of a power system. The inputs required by the ANN
are system parameters, which are in any case, available from the SCADA system. Thus, there is no
need for additional data acquisition equipment. Also, a single ANN model, trained with network
topology parameters, can predict the voltage stability index of a power system, under normal
operating conditions as well as under contingencies. This will result in reduced overall costs and
complexity of implementation. This approach, in principle, can be extended to larger systems too.
Thus artificial neural networks can become a viable tool in the EMS and be of invaluable help to
the system operator in fast, accurate and intelligent assessment of voltage stability of power
systems. This will enable electric power utilities to operate the system in the most efficient way

with the available resources.

7.2 Suggestions for future work

The work reported in this thesis can be extended in the following areas :
1. The voltage stability indices considered in this thesis assume a constant power load model,
which is not always the case with a practical power system. Suitable load models can be
incorporated in the voltage stability indices and this would indicate the influence of the types of
loads on power system voltage stability.
2. Due to the limitations of the neural network software, the present study has used sample test
power systems only. This work can be extended to larger power systems if suitable data can be
obtained from Electric power utilities in North America.
3. Different Artificial Neural Network algorithms like Self Organizing Maps, and Learning Vector
Quantization can be studied for suitability of application to the voltage stability problem. These
algorithms are self-learning and have the potential to be competitive with conventional back
propagation algorithm.
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