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Abstract

Voltage instabilityhas emerged as one of the most important areas of concern to modem

power utilities. Once associated with weak power systems and long transmission lines, voltage

instability problems are now acutely felt in highly developed networks. This is because many

utilities are leading their bulk transmission networks to their maximum capacity to avoid the

enormous c .tpital costs of building new lines. In recent years, voltage instability has been

responsiblefor severalsystem collapsesin Europe, Asia and North America.

Voltageinstabilityis concernedwith the ability of a powersystem to maintainacceptable

voltage al all buses in the system under normal loading conditions and after being subjected to a

disturbance. A system enters a state of voltage instability when a disturbance, increase in load

demand,or change in system conditioncausesa progressive anduncontrollabledecline in voltage.

The main reasoncausingvoltage instabilityis the inability of the power system to meet the demand

for reactive power. The other factors contributing to voltage instability are generator reactive

power/voltage control limits, load characteristics, characteristics of static var compensators. and

action of on loadtransformer tap changers .

The study of voltage instability has become an importantarea of research in the field of

power systemcngineering. The main thrustof researchhas been to arrive at an accurate and reliable

indicator of the proximity of a system to voltage collapse. Such an indicator would be useful 10

utilities in operating their systems with maximum economy and security. However. for such

voltage stability indices to betruly useful to utilities froman operationsPoint of view. they should

be implemented en-line in the Energy Management System (EMS). The Energy Management

System has becomea very importanttool in modem power system control and operation and has

versatile capabilities for power system control. analysis and monitoring. The major hurdle in the

on-line implementationof voltage stability indices in an EMS would be the heavy computational

costs involved in terms of time, memory and hardwarecosts. This is because most mcthods for

voltage stability ..nalysisneed repeatedsolutions of power flowsand associatedcalculations. Thus,

for on-line applications. there is a need for tools which can quickly idcntify potentially dangerous

conditions and provide the operator with guidance to steer the system from voltage collapse, Also.



in viewof the large size of modem power networks, it is importantthat the memory requirements

of thecomputationaltoolsbeas lowas possible.

In recent years, there has been considerable interest in the application of Artificial Neural

Networks (ANN) 10 power system problems. Artificial Neural Networks have the ability to

identifyand classify complexrelationships,whichare nonlinear andresult fromlarge mathematical

models.The mainfeature of an ANN is the ability to achievecomplicated input-output mappings

througha learningprocess, withoul explicit programming. Oncean ANN hasbeen trained, it can

classify new data much faster thanwould be possible by solvingthe model analyticaJly. ANNs

have the potentialto play an importantrole in Energy Management Systemsby providing system

operators with a fast and reliable indicationoflhe voltagestabilityof a power system.

This thesis presents the application of ANNs for evaluation of power system voltage

instability. Two popular voltagestability indices are studiedand simulationsare carriedout on the

IEEE 24 Bus system and the 39 Bus New England system. The effect of contingencies on the

voltage stability of the above two systems was investigated. ANN models were designed to

evaluate the voltage stabilityindicesusing the systemparametersavailable from the EMSas inputs.

For the energy margin based voltage stability index, separateANN models were used for each

contingency. However, for the load margin index, a singleANN model which takes into account

the network topology,wasusedto evaluatethe voltage stability. Thissingle ANN model is able 10

evaluatethe voltagestability of a systemunder normaloperating condition(i.e., al1linesin service)

and also in the event of a line outage.Simulationresults are presented on the application of the

above indices to both power systems. The performance of the ANN models are presented, which

compares the predictedaccuracyto the expected value. The thesis also proposes a scheme for

integrating the ANNbasedsysteminto the EMSenvirorunent.
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Chapter 1

Introduction and Literature Survey on Voltage
Collapse Phenomenon

1.0 Introdudion

Traditionally, the primaryconcernofpower system designers and planners has been

ensuring rotor angle (synchronous) stability and thermal loading capabilities. Till the early

eighties, when environmental issues came to the forefront. the expansion of the

transmission anddistribution network was dictated Iltrgely by the load demand. Generation,

transmission and distribution facilities were planned and installed depending on the load

growth.The onlyconstraint system plannersfaced wasto maintain angle stability.The few

blackouts that took place were attributed to transient stability problems. The arrival of fast

protective relays and circuit breakers have helped in part to alleviate this problem. The

transmission and distribution network continued to expand 10 meet the load growth limited

only by the utilities' financial constraints. The"normal" operation of a power system was

definedby its abilityto maintain anglestability.

However, this scenariostarted to changeby the earlyeighties. A host of new issues

came up which have combined to completely alter the way power systems have been

planned and designed. The foremost among these was the general economic depression

which characterisedall major economiesof the world. Utilities no longer had the resources

to build new facilities either for generation, transmission or distribution. Another major

development was the heightened awareness of environmental issues. Environmental issues

became the centre stage of any developmental activity. All new developments, be it

construction of a new generation plant or constructionof a new transmission line, were

examined for theirenvironmental impact. Naturally, this resulted in a severe curtailment of

any new construction of facility,which in normal course would have been approved. The

problem was twofold. On the one hand, utilities were strapped for funds and even if they



could find funds for essential projects. long delays became the order of the day du e to

complicated approval procedures. How ever, all through this period, there was no

appreciable decline in the load growth. Thus. the scenario in the eighties was that of

increasing load and very little expansion of the facilities that existed . Utilities were faced

with the task of squeezing the maximum possib le power through the existing networks.

These new developments brought in their wake, a new set of power systempro blemsw hich

had not been seriously thoughtof or studie d before.

1.1 T he Phenomenon of Voltag e Stability

As a result of the above mentione d situation, system planners and de signers were

now being increasingly faced with a new problem: How to maintain the volta ge profile u

the transmission and d istribution levels to acceptab le values?

1.1.1 The MegaWatt . ro tor angle and Meg aVar . Voltage InteractIon

Ithas been long recognized thatthere isa stro ngcoupling betweenMegaWatt (MW)

and rotor angle and MegaVar(MVAR) and thevo ltage II ). In other words. the availab ility

of MW is dictated by the machine angle whi ch in tum is deci ded by the input to the prim e

movers. Onthe other hand. voltage is related to the MYAR availability at tha t point. In

figure 1.1, E., is the sending end voltage, X is the reactance of the transmissio n line, E,. is

the volt age at the receiving end and ais the power angle or machine angle. r is the current

through the line and Sr is the power in M VA. The relationship between ac tive powe r,

reactive power. sending end voltage. rece iving e nd voltage, system angle and system

reactance is as given by the equations below.

~E,LB jX E,LO

Fig. 1.1 Simple model for calculation of real and reactive power transmission



The rela tionship can bederi vedas foll ows :

Sr= P, +jQr= E, I' (1.1 )

= Er(Elcos li+~~.Sln5-Etf (1.2)

Pr +jQ=¥slna+jE,Er C:'~li -E~ (1.3 )

Pr = ¥Sln li =p.... s .inO (1.4 )

Or = E!E! t~li-E; (1.5)

VoJrage instability can be ascribed to the lack of VAR support needed 10 maintain

the voltage profile at thespecitied valu e. Since voltage collapse occursun der heavy loading

conditions , it may beworth whileto e xplore th e effect o f large load angle on reacti ve powe r

transmission . From the above equation forreac tivepower (eqn 1.5), it may be see n that as

the load angle inc reases the reactive power becomes negative end the transmission line

becomes a drain o n therece ivingend system. Thus, as the real power transferincreases the

re active power requiredfro m both se nding an d receiv ing end system will increase, and at

very heavy loadings, more than one unit MVAR will be required for each additio nal MW

transmitted. An important reason why reactive power transfer shouldbe minimised is the

heavy react ive los ses incurred. Since reactive 10 55 Ispropor tional to 1
2X ! the reactiv e losses

Increase in a non-linearcu rrent squared relatio n. If in an already heavil y loaded system.

there is a loss of a line, th e losses in the remain ing li nes may become very high and the

voltage problem m ay worsen . Thus , it may be seen th at the re active power aVai lability is

o ne of the keyaspects of vo ltagestability .

Reference [I] defi nes voltage stability andvoltage collapse as foll ows:



A power syslem a t a given operating slate and subject /0 a givtndistu rbance is vol/age

srableifvo/tages nearloads approach pit disturbanceequilibriumvalues.

A power system at a give" operating 5/Qre and subject toa givendistu rbanctundergoes

vo/rage collapseif postdisturbance equilibrium valuesarebelow QcceptabLeI~ls.

Thus. voltagecollapseisan ex tremeformof vo ltageinstability. As opposedto angle

instability. the main dynamics involved in voltage co llapseis theload dynamics . Hence

voltagest abilityhas alsobeen called load stab ility{2]. During the period of voltage decay.

otherdynamicsno lessimportantcome intopl ay. These aregene ratorexc itationcontr ol,on

loadtap changers ( OLTCs). staticVat compe nsator (SVC)controls,thermoslatcon trolled

loadsetc . Sinceall the above controls havea lo ngerresponsetim e (of the orderof seconds).

the dynamics are termed as slow dyn amics. T ypically. the responsetime may range from

1(),20secondsto the order of several minutes. We will nowexaminehow voltage stability

can develop in a simpleradial system and show how the various controls listed above

contribute to voltage instability.

L.T.C RES . LOAD

GEN. T QTRIP

I

INDUSTRIALLOA D

Fig. 1.2 Simple radialsystem.

PRIMARY

CAPACIT ORS

-e~
L.T.C !NOL. L OAD



Considerthe radial systemshowninFigure 1.2. whichcon sistsof a generatorfeedingthree

differenttypes ofdistri bution systems througha heavilyloadedtransmission line.

The threediffe renttypesof loads are

I) Type I is dome sticload which is mostly heatingand lightingload and is relatively

high power factor load. This type of load lends to drop with dropin voltage.

2) Type 2 isan industrial loadon a loadlap changer(LTC).Most of the industrial load

com prises of inductionmotors andhence is [ow power factor anddoes notvary much '-'l.I.::'

voltage.

3) Type 3 isan industrial loadnoton LTC.

In thi s heavily loaded system ope rating near its voltage stability limit, a small

increasein loa d (active orreactive), a lo ss ofgeneration or shunt compensation, adrop in

send ingend voltage etc. can bring in volt age insta bility. Assuming thatone of the abo ve

mentioned changeshappen.and tbe receiving end voltagefalls. several mechanisms come

into play. Sinc e residentialloads an:voltage dependent, the active and reactive loadsdro ps

with drop in voltage. The industrial active and reactive loads dominated by induction

motorscbange only by a small amount. Thus,the overall effect may bethe stabilisatio n of

voltage at a value slightlyless than the rated value. The next action is operation of

distributiontransformer tapchangersto re storedistribution voltages. The residentialactive

load willincrease while theindustrialreactiveload willdecrease.The increasing residential

load willoutw eighthe decreaseinreactive loadcau singthe transformerprimaryvoltage to

faJ! further. Th e increased primaryreactive losseswill further drop the transformerprimary

voltage. In this scenario, tlte OLTCs ( on loadtap changer) maybe closeto their limi ts,

primaryvoltage ataround90%anddistributionvoltagesbelow normal. Asvoltage sensitive

controlledloads (residential)ereep back tow ardfull power. primaryand second aryvoltages

will drop further. The Type3 industrialloads, l.e.• without OLTCs will beexposed to the

reduced voltage levels . This greatly increases the stalling of induction motors (stal ling

occurs when load torque is greater than developed torque). When a motor stalls. it will

draw increasingreactive current . bringing down the voltage on lhe bus.This results in a

"cascade"stal lingof other induction motors tesulting ina localisedvoltage coll apse. Since



most large induction motors are controlled by magnetically held comactcrs. the vo ltage

collapse would causemost motors todrop off from thesystem, This IO£S of load will cause

the vo ltageto recover. However, the recovered vo ltagewill again result in the comactor

closing and motorstalling and another collapse, Thus. this lossand recovery of theload can

cause alternate collapseandrecoveryof voltage.The effect of automaticvoltageregulation

(AVR) maybe explained asfollows: As the voltage drops the AVR steps in and increases

the reactive generation . This increases the field current andwhen the current limit is

reached, the excitation limiters come into play and the voltages are allowedto drop. Nearby

generatorsmay pickup thereactiveload, but this may last only for a few minutesif they

too reach their excitation limits.

Thus. fromthe abovediscussion it is clear that voltage stability isessentially"slow"

dynamics and is affected bythe nature and type of load. transformer tap changeraction,

generator AVR control e tc.

To summarise. the various important factors contributing to longterm voltage instab ility

Stressedpower system,l.e., highactiveand reactiveloading due toexcessive load

arline z transtormeroutages.

2) inadequate fastreactivepowerresourcesavailable locally,aggravated by action of

fieldcurrentlimitersofgenerators.

J) loadresponseat lowvoltages.

4) tapchanger's responseto distribution voltage magnitude andprop up loads as

primary voltagescontinue to fall.

l.1. VoltageStablllty· Static or Dynamic?

The above scenario which describes howa voltagecollapsecan evolve in a system

shows that the time frame for a collapse 10 occur can beof the order of minutes depending

onthe responseof the variouscontrolsinvolved.Traditionally, dynamicanalysis asapplied

to angle stability haslimited itself to the generator dynamics duringthe transient phase of

theorder of milliseconds. However, the time framefor voltage stabilityis much larger and



the computatioa requlreeeau, if the gener.alor crjfWllics a« 10 be taken into account for

such • long period of time.wouldbeprohibitive. In view of thelonger time frame involved.

voltagestability has OftCII been viewed as a steady staleproblem suitable for staticanal ysis.

Also. since a majoc factor ill voltage inst4lbi.lity is the availability of reactive power. the

problem is ideal for power flow anaJysis. The static approochcan offer an insightinto the

phenomena and can indeed give an approximate, yet acceptable solution whic h is

comPJlational ly much simpler compared to the d)'namic approach. However. since the

effect of load dependency on voltage is of prime importance in voltage stability; it is

desirable that the static load flow approach be mod ified suitably to incorporate the voltage

dependency on load. This "quasi static" model can give a reasonableaccuracy witho ut a

corresponding increase in computation requirement. Thus, it may be seen that there is a

trade off invol ved in both approaches. and since engineering solutions should be practical

and economi cal and not necessarily ideal. the static approach is widely used by most

utilities today. Thetrad itionalmethods of voltage stability analysis are discussed bel ow.

1..3 T...dlUonaf Methods orVoltage Stability AnalJ'S1s

As me ntioned earlier. the 'slatic' or power flowapproachhas been the mainstay of

voltage stability analysis. The two popular methods which make use of the load flow

approachfor volta.ge stabilityanaJysis are (1) P V CUIYeS(2)Q V curves

1..3.1 P VCu m ':5

It has been shown in References [3-4] lhat if !hereceivingend voltageV is plotted

against the acti ve power P, the resulting curve is a parabola Curves are obtained for

different values of power factor. P Vcurves can be easily generated from the loadflow by

slowly increasi ngtheload indiscrete steps and noti ng thecorresponding changes in voltage.

It is observed that as the load increases the parabolic curve drops down, reaches a 'nose'

point and then turns back toward theorigin. This method can give the steady state load ing

limits which are related 10 voltagestability. A samp le PV curve is shown in figure 1.3 and

can be interpre ted asbelow:



I) In thetop halfof thecurve. thevoltageVdecreases as thereceivingend powerS

increases.Theslopeof the curveis negative in thisregion.

2) Theapex ornose pointis thepoint atwhich the slope reversesdirection. TheX co

ordinate of this power represents the maximum power thatcan theoreticallybe

delivered tothe load.

3) Themaximumpower thatcanbe deliveredto theload is afunctionof the receiving

endvoltage and seriesexternal impedancebetween the sendingendand the load

point.It is equal to V1.j4Z·. whereV I is the voltageof thesendingend. and Zis the

line impedance.

4) jfthe load demandwereto increasebeyondthe maxim umtransfer limit. the amount

of actual load whichcanbe supplied aswell as thereceivingend voltage willboth

decrease. Inother words.beyondthe nose point, the ability\0 supply additional

loadis no nexistent.

Thus. the top hal f ofthe curvecan bereferredto as the stable region and thebottompart as

the unstableregion. Thus. it isreasonableto say that forevery load. the tophalfof thecurve

represents the high voltage or feasible solution. and the bottom half the low voltage or

fictitious solution. Oneof the major problemsin generating the PV curve is that theload

flowsimulation willdiverge near the nose point.This is due to the fact that under heavy

loading conditions theJacobiantends toward singularity and the loadflowsolutionsare no

longer reliable. Therefore, specialprogramsarerequired\0 overcomethis problem.
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Fig. 1.3 Sample P V Curve

1.3.2 Q V Curves

The procedurefor obtaining theQ V CUIVeS is similar to that for P Vcurves outlined

above. Th e curves are ob tained by a series o f power flow simulations. Q V curves plot

voltageat a busagainstthe reactive powerat the same bus. In the Q V curve. voltage ison

theX axis and lhe reactive powerQ onthe Y axis (Fig. 1.4). The main advantages oro v

curves are asfollows:

" Since voltagesecurity is closely related to theavailabilityof reactive power, the Q V

curve gives the reactive pow er margin at the lest bus . Thereactive power margin is the

MVARdistance from Iheoperatingpoint to the bottomof thecurve.

" Thecharacteristicsof bus shunt reactivecompensation canbe plotted directlyon the Q V

curve.1be operating point is lhe intersection of the Q V characteristic andthe reactive

compensationcharacteristic.

Thus.Q V cu rves which also provideseveralme ansof detennining theproximityof

an operating point to voltage collapse have become quite popular withutilities in analysing

voltagestability[5] .
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Rg. 1.4 Sample Q Vcurv es

I A Reunt Indd en ts of Volta ; 1Collapo;e[1)

TIle recent interest in thephenomenon of voltage collapse has beentriggeredby

severalincidentsof massive power failuresin severalpower systems throughout the world.

1bese incidentsproved that thelhseatof voltage coUaps,e wasindeed vet)' real andcould DOl

be ignored. The fact worth notingis lhaI: all tbese incidents took place nocin weak and

isolatedsystems, but in well developedand maturesystems. A numberof trendsin system

design and planning haveconlributed10 this situatiOll. Powersystemshave become IlllXe

complex and are be ing operated closer to their capability limits due to economic and

environmental reasons, as discussedearlier. The situation iscomplicaltd furtherby delays

in building new transmission facilities. While these trends have contributed to angle

instability also. it is clearfrom a study of recent incidentsof system failure thatit is voilage

instability that is the major factor inthese failures.
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1.4.1 VollageCollapseonFrtnehSystem

l>eftmber 19,1978

The French systemis a c1ow:ly meshedand interconnected nationalgridcomprising

of both400KV and 220KV transmissioncircuits. On themorningof December 19. a cold

snap resulled in a rapid load rise of 4600 MW between 7 AM and 8 AM. The resulting

increase in power transfer from eastern parts to the Paris metro area kd 10 continuous

voltage deterioration over the next 26 minutes. At apprcxirnetcly 8.20 AM. the voltage on

the 400 KVsystem stabilised at about 350 KV. Within 6 minutes. the heavily loaded 400

KY feeder was trippedby the action of overload relays. This in tum ted to overload tripping

of other400 KV and220 KV lines. Widespread voltage oscillations spread over the entire

Frenchsystem and widespread islandingof the systemtook place.

January 12, 1987

This failure affected the whole western part of !heFrenchsystem. In this incident. three out

of four thcnnaJ units of a majorgenerating station tripped and operators called for gas

turbioes 10 start up. However. before the gas lurbinescould come on line. the fourth unit

tripped on field cverccrrem. Subsequently. nine gener.loting units in another major

generating station aJso tripped. The voltageon \he 400 KV system stabilized at less lhan

300 KY.

The fu'S!. incident. i.e.. on December 19. 1978. was associatedwith rapid load increase,

which in tum causedextremely high active and reactive power losses. It is characterized as

a slow phenomena. theduration of the incident being nearly half an hour.

The second incident is characterizedas relatively fasl. II wasinlneted by sudden unforeseen

loss of generating units. The response of load and OLTCs to the resulting low voltage

contnbuted to funher voltagedeteriorationand collapse.
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Cerreeuv e Action laklEn

EOF(E1ectricite' de France) plans10use on line computalionof voltagccollapseproxi~ty

index . in view of the prn~ive and slow 'Vollage deterioration. which will allowoperators

to take corrective measures. Also, studies have been initialed to improve co-ordination

between automaticvoltageregulation. field current limitations and protections. Automatic

OLTC blocking based on a regional low voltage criterion is being implemented on the

French system.Automatic load shedding is alsobeing lookedinto.

1.4.2 VoltageCollapseon Swedish System

December 17,1 983

In the Swedish system. mos of lhe generatingplants arelocated in the north and the

major load centres in the south. The hydroplants in the northare connected to the load area.'!

in the south by seven 400 KV transmission lines. All lines are series and shunt

compensated. Before tbe collapse. the total load including losseswas 18.000 MW. t.e.iless

than the peakload. Thevoltages. on the network were stable between 400 and405 KV and

systemfrequency was close to SOHL The voltage collapse was Initia ted by the failure ofan

isolator on a 400 KV switchgear at a substation west of Stockholm. This substation feeds

the 220 KV network in the Stockholm area. As a result. two out of seven 400 KV

transmission lines which bring power from north to south tripped. This resulted in high

loading of the remaining five north-south transmission lines as well as a 220 KV line

throu gh Stockholm. Approximately 8 secondsafter the initial ground fault, two 220 KV

lines tripped due10 overloading. After this tripping loadstarted to restoredue to transfonner

load tap changeraction. Approximately SOsecondsafter the initial Iault, another 400 KV

line tripped on overload. The remaining 400 KV lines becameheavily loaded and a cascade

tripping of all these lines between northern and southern Sweden took place. Theloss of the

EHV tic lines isolated southern Sweden from the hydroplanls in the north. Because of the

massive power deficit in the south, oJl generators in South were tripped on overload or

underfrequency,
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Cerrecuve Measures taken

A numberof researchprojectshavebeeninitiatedby theSwedish Power Boardafter

the above incidents. A co-ordinatedcontrol strategyfor transfonner load tap changers.shunt

reactors. shuntcapacitors and otherequipmentgenerating reactivepower in the system has

been designed. Also. since overload tripping of transmission triggered the collapse. the

overloadcharacteristics of the relayswere alsoinvestigated. It wasconcluded that the offset

mho characteristic of distance relays protecting long lines would have to be modified.

Automaticblocking.of OLTCs wasalso investigated.

1.4.3 Voltage Collapse at Tokyo an Jul y 23, 1987

On July 23. 1981. Tokyo experienced unusually hot weather with record high

temperaturesof 36° C to 3~ C. The demand increased at a rate of 400 MWfminute far

higher that the estimatedlevel. The voltageon the 500 KV system graduallydropped to 460

KV, About 13:19. the voltage continued to drop and reached 310 KV (0 .14 p.u.). These

substetlons were trippedby operation of protective relays. It was found that the action of

OLTCs contributedin a major way in acceleratingthe collapse, Thus a combination of

heavy. unexpected load and the response of tap changers and loads contributed in a major

way towards this collapse. One of the heartening aspects of the Tokyo collapse was that

utilities andacademics in Japanstarted serious researchinto the vario us contributingfactors

towardsvoltage collapse.

Correcti ve measures taken

Inview of the Tokyocollapse. a number of measureswereproposed. These include

constructionof a new 1000 MW generation facility. new shunt compensation equipment.

upgrading of demand forecasts. sophisticated controls for OLTCs. Also. power purchases

from neighbouring utilitieswould beencouraged.
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1.5 BrierHi~tory or Researth in the Oeldor VoltageInstability

As discussed earlier, the static or power flow approach is a widely used and

established method for voltage stabilityanalysis. Though the past ten years has seen a lot of

work in this field, some earlier researchers also had contributed a great deal on establishing

a solid foundation. It was Venikov et al.• who in 1975 showed that there is indeed a close

connection between a load flow and steady state stability (6]. They proved thai the change

of sign of the Jacobian of the load low equation is an indicator of the onset of instability.

This work wouldbe made use of by future researchers. In 1978. one of ttl<l rtf'St papers on

voltagecollapse was published by Lachs[71. He analysed in great detail theeffect of heavy

system loading and corresponding reactive losses, transfonner tap changing. generator

reactive capabilityetc. This was probably the first paper which madeuse of the PV curve to

show the relation between system loading and voltage collapse. This paper is valuable in

that for the first time an overall view of the various mechanisms contributing to voltage

collapse was taken. In 1981.Tamura and Iwamotofollowed uponVenikov et a1.'s work and

proposed a methodto detennine multiple load flow solutions [8]. They proposed the use of

optimum multipliers or accelerators to the Newlon-Raphson method. This method also

would be made use of by future researchers. In 1982, Abe et. aJ. showed that load flow can

indeed be used for the analysis of voltage instability [9]. They also proposed a model for

tap changer and also the effect of tap changer operation on load models. In 1983, Tamura

et. nl. showed the relationship between voltage instability and multiple load flow solutions

(WJ. The authors showed that as the system gets more heavily loaded, the number of

solutions decrease and at very high loadings, a pair of 'IeI)' close solutions are obtained.

They also proposeda voltage stability criterion basedon change of sign of the Jacobian and

the number of close solutions. This aspect was not investigated further until recently. In

1983, Palmer et. al. argued from a utilities point of view the importance of reactive power

despatching for maintaining power system voltage security (llJ. They also proposed a

method for scheduling reactive equipment during nonnal and post contingency situations.

Thus, we sec that from the mid seventies to the eighties, an understandingof the voltage

stability phenomena and the relation of the steady state load flow to voltage stability had
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been developed . However, it was not until 1986. that a compreh ensive index for evaluating

the voltage stability of a system was proposed . This and thecurrently avai lable methods will

be discussed in the next section.

1.6 Currently Ava ila ble Methods for Eva luati ng Voltag e Sta bility

There are a number of methods available for evaluating voltage stabilit y from a

static (load flow) point of view. However. the most popular and widely used ones are :

I ) Glavitch 's Method

2) Minimum Singu lar Value Method

3) Energyfunction Method .

1.6.1 Glavit ch's Method

In 1986. Kessel and Glavitch propo sed the first voltage stability index [12]. This

method provides a means to assess voltage stability without actually computing the

ope rating point where the collapse takes place. Glaviteh 's method is essential ly based on a

static or load flow mode. In this method . the load flow program is run several times and

various parameters used to compute voltage stability are taken from this. This method is

origi nally derived from a two bus network where one of the buses is the slack and the other

is a PQbus . A stability indicator~ is derived which varies between zero and one and which

characterises the existence of a voltage solution. The index essentially relates the complex

power S;, elemen ts of bus admittance matrix Viiand voltage Vj in the relation

( 1.6)

For a multibus system, the index has to be calculated for each bus. The maximum value

(closest to one) is an indicator of the proximi ty to power flow divergence . The important

co ndition for stability to beguaranteed is L; < I. The indicator L; is a quantitative measure

for theestimation of the distance of the actual stare of the system to the stabilit y limit. The

local indica tOr I..; permits thedetermination of those nodes from which a coll apse may take
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place. The pattern of indica tors is quite informative of the behaviour of the system, in that

al l nodes belonging to the same critical area show a similar develop ment of the stability

indicator . Experience has shown tha t a threshold of 0.2 can be applied to the critical

indicator. If the indicator of the partic ular node exceeds this value, the area around this

node is critical. When 1..; of a single node or a group of nodes exceeds the value of 0.2, the

s ituation becomes critical. Clustering of indicators means the fonna tion of an area of

s imilar behav iour. When the cluster separa tes from another cluster , the area has a strong

tendency to separa te from the stable areavoltage wise,

Thus, the stability indicator 1.; is able to characterise the load flow solution and the

potential of the system to become unstabl e. This is bound to the load flow mode l and the

assumption of a PQ node, Th e model does not reflect any dynamic behaviour. The indicator

4 is a very strong signal of the dangerous situation, The eval uation (If 1.; is also quite

simple since all required parameters are available from the load flow solutio n.

1.6 .2 Minimum Singular Valu e Method

As far back in 1975, venlkovet al. 16Jhad shown that it is the Jacobian of the load

flow equation that characte rises the steady state stability limits and therefore eigenvalues of

the Jacobian may have a direct bearing on any bifurcation of the equilibrium state, Many

subseque nt researchers have noted the sing ularity of the Jacobian during a voltage collapse .

In 1988, T iranuehit er. al. proposed a global voltage stability index based on the minimum

sing ular val ue of the Jacobian [l3 ). One of the most important aspects to be exami ned when

deriving corrective control measures is the question "how close is the Jacobian to being

slnguler?". Tiranuehit ct el. showed that a measure of the nearness of a matrix A to

singularity is its minimum sing ular value . Hence. the minimum singular value can give a

measure of the nearness to instability or in other words, a 'distance' to collapse . If the

mi nimum singular value is plotted against real power, it is seen that the minimum singular

value is very sensitive to change in load near the steady stale boundary. Onc disadvan tage

(If this method. as pointed out by the authors themselves, is the large CPU lime required for

the computation of the minimu m singular value for large systems. The more important use
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of this index is the relation it providesfor control. If var compensationeither through shunt

capacitors of excitation control is available, this index provides the answer to the problem

of how to distribute the resourcesthroughout the system for maximumbenefit.

At about the same time, Lof, ArnborgandAndersonproposeda similar index,albeit

with some modifications (l4) . They contended that the minimum singular value of a suh

matrix G. of the Jacobian J can be used, where G. describes the effect on the voltage

magnitude of change in reactive power injection in the network. This matrix OJ is

essentially a sub matrix of the Jacobian J with some modifications. They showed that the

minimum singular value of O. is a more reliable static voltage stability index. It is shown

that the power flowJacobian becomes singular when the matrixOJ becomessingular. When

the minimum singular value of theJacobian J and the sub matrix G. areplotted against the

active power. it is seen that it could become difficult to use the minimum singular value of

the Jacobian J to determinehow far the conditionsof the system are deteriorated when the

load is increased. The minimum singular value of J could be dependent on static angle

stability problems at first and hence could be fairly constant before it suddenly starts to

decrease much more rapidly when voltage problems become more dominant. Lof et. al.

contend that the use of the matrix J is appropriate for the construction of a static stability

index when the cause of instabilitycould be either angle or voltageproblems. The minimum

singular value of matrix GJ is a better basis for a static voltage stability index for planning

and system studies.

1.6.3 Energy Function Analysts Methods

Energy functions have long been used in power system angle stability and are now

well established { 1 ~J . They are considered a reliable meansof obtaining thecriticalclearing

time: in large power systems. As mentioned earlier, Tamura et. aI. had shown the

relationship between multiple load flow solutions and voltage instability. They showed that

though a power flow may have a number of solutions. only one solution is an 'operable'

solution or stable equilibrium point. The other solutions are unstable equilibrium points.

These solutions are also called low voltage solutions. Tamura showed that as the load
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increases, the number of low voltage solutions decrease until near the point of collapse a

pair of close solutions are obtained. The Jacobian at this stage approaches singu larity. De

Marco and Overbye [16· 18J defined an energy function (similar to the Lyapunov function),

which relates the system bus voltage magnitu des and phase angles with the property that the

operable solution defines a local minimum of this energy. The energy function shows the

energy difference between the operable solution and the low voltage solution. As the system

load increases and the system moves towards collapse. it is seen that the energy difference

decreases and becomes zero at the poim of collapse . The energy difference between the high

voltage and low voltage solution can give an indication of the systems vulnerability to

voltage collapse. An important aspect of the energy function method is that it shows how

load varia tions can push the system into instability [16-181. YAR limits on generators can

also be incorporated in this function. since the energy function is essentially based on the

load flow solution. The plot of energy measure against load is a valuable indicator of the

proximity of the system to co llapse. Theonly computation requirement is the detennination

of the low voltage solutions, which for large networks may be time consuming. This

approach indeed shows promise of becoming a valuable index if certain other paramet ers

like effect of transfonner tap changer, voltage dependency of loads etc. are taken into

account.

As incidents of voltage instability becom e more common and systems conti nue to

be loaded closer 10 their stability limits, it becomes imperative that system operators be

provided with tools thet can identify potentially dange rous situations leading to voltage

collapse. Voltage stability indices are valuable and powerful tools for system operators in

evaluating the voltage stability of a power system. However, it should be noted that if a

voltage stability index is to be really useful, it should be implemented on • line in an Energy

Management System (EMS). This will allow system operators to continuously mon itor the

voltage stability index of a power system and swiftly react to any conditions that may trigger

a voltage collapse. But, the on-line implemen tation of a voltage stability index. presents

many challenge s. the principal among them bein g the computational burden imposed on the

EMS. This is because most of the voltage stability indices are computation intensive and for
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powersystemsof realistic size, thecomputationalburdenmay use up rneeh of the capability

of lhe EMS.

1.7 App lication or Artifldal Nrura l Neh 'orks

As indicated earlier, perhaps the roes important aspect of a practical voltage

stability index is the computation. effort and hencethe speedof computation involved. This

is becausefor the large,real life powersystems with thousandsof buses. computation speed

becomesa critical factor when an on line calculation of thestability index is required This

on-line response is important so that the operators can take corrective steps if an abnormal

situation is encountered and steer the system away from collapse. All the methods listed

above are computationally intensive, when large systemsare considered. It then becomes

necessary to look at other alternative approaches to minimise computational burden and

responsetime. Artificial neural networks have wide interest in tlK. field of power

engineeringand applications have been reported fromalmost all fieldsof powerengineering

121-23J. The artificialneural network Is essentially a pattern recognition tool. It can be

tnlined to recognisecomplex. non linear relationships between a number of diffm: nt

parameters. Tbe response time of a trained AA'N is extremely fMt, since there are no

complu computations involved. Thus, in situations wherea swiftresponse: is required.asin

the case of power system voltage stability index, an ANN based approachcan prove an

enrecnve alternative to the computationallyintensive alculati on of the index.1be accuracy

of the ANN"s predictions while depending Il'rgely on the qualityof training. has provedto

be quite acceptable for other power system application like load forecasting, dynamic

security analysisand transientstability .

1.8. Slgnlfltanceof Artificial Neural Networks In Modem Power System Control

The modem power system has become very complex and operates under a great

deal of constraints. On the one hand, the gent-i':.!. economicdepression has forced many

utilities to cut backon their expansionand modernisationplans.but on theother hand there

ls no noticeable decline in load growth. Also, the consumer demand for efficiency and
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reliability has never been higher. Environmental and ecological factors have also

contributedto makingthe expansionof power systems a time consumingprocess. Thus,

through the nineties and beyond,the scenario for power system plannersand designers is

grim : they have to maintainvery high standards of systemreliabilityand efficiency with

fewerresourcesto do it.

1.9 The Energy Msnsr:;emenl System

The complexityand sizeof themodem power systemhas given riseto a numberof

problems.These problems can significanUy affectsystemsecurityandefficiency,two of the

most important aspectsof modem powersystems. One of the most important tools for the

power system designer and operator in maintaining a high level of systemsecurity is the

Energy ManagementSystem (EMS).The EMS is an upgradedversionof theSupervisory

Control and Data Acquisition (SCADA)systems which have been in servicefor quite a

long time. In addition to performingroutine control functionsof SCADA. the EMS has

enhancedcapabilitiesfor on-linemonitoring of the power system and performing such tasks

as unit commitment and generationscheduling, optimal power flow, contingencyanalysis,

securityassessment. energy exchangebetween utilities, state estimation. load forecasting

etc. Thus. it can be seen that the EMS is a very important aspect of modempower system

control and operation.The linking of protection. controland other devicesthrough a local

data communications network has enabled the control of entire substations from a central

host computer. The EMS hasmade possible the analysis.control and operationof large

powersystemsfrom a central location and dramatically improved the efficiency. reliability

andco-ordinatedoperationof modempower systems.

1.10 Aim ort he Thesis

One of the majorstumbling blocks to on-line controlof power systemsthrough an

EMS is the heavycomputationalburdenimposed by most power systemanalysissoftware.

Thus. computation speed, which in tum depends on the computer hardwarespecifications.

is the deciding factor, which determines the on-line implementation of power system
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functions. The initial investments required for sophisticated computing equipment are so

high that in mos t cases, utilities are not able to afford them. This prompted researchers to

look at alternatives to raw computing power. As described in the previous section. ANNs

hold out considerable promise as a medium for on-line implementation of many EMS

functions such as transient stability and voltage stability analysis. TIle response of a trained

ANN to an input is extremely fast. and the memory requirement of an ANN based system is

considerably lower than that of a conventional sequential program. Also. since power

system conditions are a result of system loadings which form a pattern. the pattern

recognition ability of ANNs would be a valuable 1001 in identifying the system loading

conditions which can lead to abnonnal system operation. An ANN based system would not

require additional data acquisition equipment and therefore. the overall benefits both from a

standpoint of computing speed, and economy would be considerable. An ANN based

system in conjunction with an expert I fuzzy logic system, will result in the goal of an

intelligent control centre. which C'\J\ result in increased reliability, economy and efficiency

of operation.

TIlls work explores the application of ANNs for assessment of voltage stability of

power systems. Simulations are perfonned on standard lest power systems for two dif ferent

voltage stability indices. and results are presented on the accuracy of the predictions of the

ANN based system for both the indices. An attempt has also been made to map the network

topology in terms of a neuraJ network.

1.11 Thesis Organisation

This thesis consists of seven chapters. Ch apter two presents an overview of art ificial

neural networks and their applications to power systems. Chapter three presents the energy

function based voltage stability index and simulation results on two bus. five bus and

twenty four bus power systems. Chapter four presents an artificial neural network based

energy margin voltage stability indicator. Chapter five includes description of the load

margin based voltage stability index and also simulation results on theNew England 39 bus

system and also the IEEE 24 bus system. Chapter six presents artificial neural network
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based models foc the39 bus system and also the: 24 bus SysICm, one with line outages and

the other without, Tbe chapler also proposesan ANN model which talces into eccocnt the:

network topology. Chapter seven concludes tbe thesis with some suggestions for further

research in this area.
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Chapter 2

Application of Artificial Neural Networks to
Power Systems

2.1 Introduction

Artificial Neural Networks have aroused wide interest in different branches of

engineering. This is because artificial neural networks (ANNs) have several properties

that make them attractive tools in engineeringapplications. The importantpropertiesare

parallel distributed processing, high computalion rates, fault tolerance, and adaptive

capability.The areas in whichANNsare widelyappliedinclude control systems, robotics,

and recently in power system engineering. This chapter presents thebasic concepts of

ANNsand their applicationto powersystemengineering.

2.2 Arllndal Neura l Networks

An artificial neural network can be defined as a highly connected array of

elementary processors or neurons (19-20J. Neurons are linked with other neurons with

interconnects analogo us to the biological synapse. Th is highly connected array of

elementary processors defines the system hardware.

Several neural network algorithms have been proposed. which have enabled

researchers to apply neural networks to a wide range of engineering problems. The neural

network derives its computing power through, first, its massively parallel distributed

structure and, second, its ability 10 learn and therefore generalize. Generalization refers to

the neural network producing reasonable outputs for inputs not encountered during

training. The use of neural networks offers the foHewing useful propcnies and

capabilities :
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I. Nonlinearity : A neuron is basically a nonlinear device. Consequently. a neural

network. made up of a number of neurons is itself nonlinear. Nonlinearity is a highly

useful property, panic ularly, if the system generating the input itself is nonlinear.

2. Input - Output Mapping : The neural network can be trained to recognize me hidden

relationship between the input and output. The relationship between the input parameters

and the output(s) may benonlinear in nature.

3. Adaptivity : Neural Networks have a built-in capab ility to adapt their synaptic weights

to changes in the sorrounding environment. In particular. a neural network trained to

operate in a specific environment can be easily retrained to deal with minor changes in

the operating environment conditions. Examples of adaptive neural networks are the

ARTl . and ART2 algorithms.

4. Fault Tolerance: A neural network, implemented in hardware form, has the potential

to be inherently fault tolerant in the sense that its performance is degraded gracefully

under adverse operating conditions. For example. if a neuron or its connecting links are

damaged. recall of a stored pattern is impaired in quality. However, owing to the

distributed nature of information in the network. the damage has to be extensive before

the overall response of the system is degraded seriously.

5. VLSI tmplernentability : The massively parallel nature of the reural network makes it

potentially fast for the computation of certain tasks. This same feature makes the neural

network ideally suited for implementation using VLSI techniques. The particular virtue of

VLSI is that it provides a means of capturing truly complex behaviour in a highly

heirarchial fashion which makes it possible to usc a neural network as a tool for real time

applications involving pauem recognition. signal processing and control.

6. Uniformity of Analysis and Design : Basically. neural networks enjoy universality as

infonnation processors. This is because the same notation is used in all the domains

involving the application of neural networks. This feature manifests itself in different

ways:

Neurons. in one fonn or another, represent an ingredient common to all neural

networks
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b. This commonality makes it possible to share theories and leami ng algori thms in

different applicatio ns of neural netw orks.

c. Modularnetworks can be built through a seer-cess integration of mod ules.

Though the advantages of neural netw ork are many and varied. it does have some

serious Iimhatanon s, when applied to real wo rld situations, The most serious limitation of

an artificial neural network suucrure seems to be the lack of tools or gu idelines to arrive

at an opt imum neural arch itecture . The size and the number of layers vary with

application and arriving at anoptimum architec ture is often based on the users experience

and intuiti on, Another serious drawback with ANN solutions is the possi bility of local

minima so lutions, Presently, there is no co nclusive way of testing if the network has

indeed settle d down to a global minimum. This would be especial ly true for complex

problems where there may exist co mplex hypcrsurfaces with the associat ed possib ility of

many local minima.

2.2.1 Models of a Neuron

A neuron is an informa tion processing unit that is fundamen tal to the ope ration of

a neural network. There are three basic elements of the neuron mode l, as described

be low:

I. A set of synapses or connecting links, each of which is characterized by a weight or

strength of its own, Specifically, a signal xJ at the input of synapsej connected to neuron

k is multip lied by the synaptic weight Wkj'

2, An adder for summing the input signals, weighted by the respective synapses of the

neuron. Th e operations descri bed here constitute a linear combiner.

3. An activation function for limiting theampli tude of the output of a neu ron,

In mathematical terms , we may descr ibe a neuron k by writing the following pairs of

eq uations :

(2 .1)

""d
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where XI. X2, Xp arc the input signals; w ei , Wu,. • Wkp ar e the

synaptic weights of neuronk, Uk is the linear combineroutput, 9k is the threshold, cp is the

activation functionand Yk is the output signalof the neuron.

Figure 2.1 shows tho:model of a neuron. In the figure,x is the input, w is the connection

weight, I is the summing junction. e is the threshold. cp is the activation function and y.

the output.

" ~

cp, Activation function

x

Fig. 2.1 Non linearmodel ofa neuron.

2.2.2 Types of actlvarlcn functions

The activation function. denoted by cp. defines the output of a neuron in terms of

the activity level at its input. We can identify two basictypes of activation cuuctions :

I. Threshold functions: For this type of activation function. we have

q>(v) = II if v ~ 0

10 if vs 0

Correspondingly. the output of neuronk employing such a threshold functionis expressed

Yk '" I I ifvk ~ 0

{ 0 ifv. < 0
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where Vk is the internal activity level of the neuron; that is,

Vk = fwkJXJ- O,,.,

Figure 2.2 illustrates the threshold function.

Fig. 2.2 Threshold function

(2.3)

2. Sigmoid Function: The sigmoid function is by far the most common form of

activation function usedin theconstruction of artificial neural networks. It is defined as a

strictly increasing function that exhibits smoothness and asymptotic properties. An

example of the sigmoid is the logistic function, defined by

lPk = I+exp~-av) (2.4)

where a is the slope parameter of the sigmoid function. By varying the parameter a, we

obtain sigmoid functions of different slopes. In the limit. as the stope parameter

approaches infinity, the sigmoid function becomes simply a threshold function. Whereas

a threshold function assumes a value of 0 or I, the sigmoid function assumes a

continuous range of values from 0 to I. Figure 2.3 shows the S shaped sigmoid function.
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Fig. 2.3 Sigmoid Function

2.2.3 Network Architectures

The manner in which the neurons are structured is intimately linked with the

learning algorithm used 10 train the network. In general. there are four types of network

architectures [19]:

1. Single-La yer Feed-forward Nelworks

A layeredneuralnetworkis a network of neuronsorganized in the fonn of layers.

In the simplest formof a layered network, we just have an input layer of source nodes that

projects onto an output layerof neuronsbut not vice versa.In other words, this network is

strictly of the feedforwardtype. Such a network is called a single layer network, referring

to the output layer of computational nodes (neurons). In other words. we do not count

the input layer of source nodes,becauseno computationis perfonned there.

Figure 2.4 illustrates the structure of a simple single layernetwork consisting of the input

layer and lhe output layer.

28



Input layer Output layer

Fig. 2.4 Feedforw ard netwo rkwith a single layer

2. Multilayer feedrorward networks

Th e seco nd class of feed forward neural network distinguishes itse lf by the

presence of one or more hidden layers, w hose computation nodes are correspo nding ly

called hidden neu rons or hidden units. The functio n of hid den neuron s is to intervene

between the exte rnal input and the network o utput. By adding oneor m ore hidden layers .

the netw o rk is ab le to ex tract higher order statistic s . for the network acquires a global

perspecti ve desp ite its local connecti vityby virtue o f the extra set of sy napticcon nections

and the e xtra dime nsion of neural interactions. The abilityo f hidden neurons to extrac t

c omplex non linear patte rns is particu larly valuable when the size of the inpu t layer is

large. The source layers o f the input layer of the netw ork supply respective elemen ts o f

the activation patte rn (in put vector) which constitu te the in put signals applied to the

neurons in the sec ond layer (i.e.• the first hidd en laye r) . Theo utput of the second layer are

used as inputs for the third layer. and so on for the re st of the network . The set of output

signals of the neu rons in the output (final) Jayer con stitutes the overal l response of the

network to the ac tivation pattern suppli edby the input layer.

Figure 2.5 illustrates a si mple multil ayer network.consisting of an inp u t layer. a hidden

layer and an output layer.
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Inpu t layer Hi dden Lay er Output layer

Fig.2 .S. Simp le multila yer network topology.

3. Recurrenl Networks

A recurren t neural network dis tinguishes itself from a feedforward neural network

in that it has at least one fe edback loop. For e xample. a recurren t network may con sist of

a single lay er of neu rons with each neuron fee ding its output signal back to the inp uts of

all the o ther neurons. A recurrent network m ay also be of the muhilayered type. with

feedback connections orig inating from both the hidde n units and the output units. Figure

2.6 illustrate s a simple recurrent netw ork cons isting of an input layer. an output layer and

a feedback toop.

feedback loop

6~o=J
Input layer Output layer

Fig.2.6 A simple recurrent network.
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4. Lattice Structure

A lattice consists of a one dimensional, two dimensional or higher dimensional

array of neurons with a corresponding set of source nodes that supply the input signals to

the array; the dimension of the lattice refers to the number of the dimensions of the space

in which the graph lies. A lattice neural network is really a feedforward network with the

output neurons arranged in rows and columns.

2.2.4 Neural Network Algori thms

The most important property of a neural network is its ability to 'learn ' , Learning

may be defin ed as a process by which the free parameters of a neural network are adapted

through a continui ng process of stimulation by the enviro nment in which the network is

embedded. The two main types of learning algorithms are supervised learning and

unsupervised leaming . Supervised learning is performed under the supervi sion of an

external ' teacher'. Unsupervised learning is performedin a self organised manner in that

no external teacher is required to instruct synaptic changes in the network . A popular

example of supervised learn ing is the error back propagation algorithm, while the

Kohonen Network is n good example of the unsupervised learning, Table 2.1 below gives

comparison of the features of different neural network algorithms [19].

In table 2,1 below, the following abbreviations are used:

BPN : Back Propagation Network

BAM : Bi - Directional Associative Memory

CPN : Counter Propagation Network

SOM : Self Organizing Map

STN : Spatio Temporal Network

ART : Adaptive Resonance Theory
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Table 2. 1 Compara tiveperformance of differe nt ANN algorithms

Type or Training Ce nainity Typ< of Domain Ability of Purpose

ANN time to reach input inpu t report ;r

global panem pattern mismatch

minimum occurs

BPN Moder a te No Analng Spa Ual No General

BAM Low No Digital Spa ti al No Gen e ral

Hopfi eld Low No Digital Spa t ial No Gen e ral

CPN Low No Digital Spatial No Gen e ral

SOM Moderate No Ana log Spatial No General

STN Moder a te No A nalog Tem poral No Speech

ART Low Poss ible An alog Spa llal Yes Gen e ral

Bolt zmann Hi gh No D igItal Spatial No Gen eral

Z.3 Bac k Propagatio n Algorilhm

Thede velopme nt of the back propagation ( HP)algori thmre presents a landmark in

neural networks in that it provides a com putational ly efficient method for the training of

multilaye r perce pucns. The basic idea of back pro pagation wasfirst proposed by We rbos

in 1974 (21 ] an d subsequently popularised byRume lhart e t.al, [22 J.

Backpropagation isone of the mos t popular algorithms in use today.Th is is panly

due to Its simp licity, an d applica bility10 a wide variety of engineering prob lems. Back

propagation is ideal for complex pattern matching proble ms. The basic wo rking of the

algori thm can be summarized as follows . The net work learns a predefined se t of input

output example pairs by usinga two pha se propagate-adap t cycle. After an inp ut pattern

has been applie d as a stim ulus to the first layer of network units, it is propagated throug h

each u p per laye r until an output is genera ted. This c utput is thenco mpared to the desire d

output. and an e rror sig nal is co mputed for each o utput un it. The error signals are the n
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trans mitted backward formthe output layer to each node in the intermediate layer that

contributed di rectly to theoutput. However, eac h unit in the intermediate layer receives

only a portio n of the totalerror signal. ro ughly b asedon the relative contrib ution the unit

made to the original output.This process repeats, layer by layer, untileac h node in the

network has received an error signal that describes its rela tive contributio n to the total

erro r. Based on the e rror signal received. connect ionweights are thenupda ted by each

unit to cause the netwo rk toco nvergetow arda s tate that al lowsall the train ing patterns to

be e ncoded.

The significan ce of the process is that, as thene twork trains, the nodes in the

intermediate layers or ganize themselves such th ai diffe rent nodes learn to recognize

diffe rent features of the totalinp ut space , After training, w henpresentedwith anarbitrary

input pattern that is no isyor Inco mplete, the units in mehidden laye rsof the network will

respond with an active output if thenew input con tainsa pattern that resemb le thefea ture

the inid vidual units learned to recognize during training. Conversely, the hidden layer

units have a tendency to inhib it their outp uts if the input pattern does not contain the

feature thallhey were tr ained to recognize .

As the signals propagate through thediffe rent layers of the network . the activity

pattern presen t ateach uppcrlayer can be thought of asa p atternw ith feature s thatcan be

recogn ized by units in the subseq uent la yer.The output patt e · ....nerated can be thought

of as ~ feature map th at prov ides an indication of the presence or absence of many

different feature combinations at the inp ut. The total effec t of this behavio ur is that tbe

BPN provides an effective means of allow inga computer systemto examine dan pattens

that m aybeincomplete or noisy . andto re cognize subtle pa tternsfro m thepartial input
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Fig. 2.7 Typical Architecture of a three layer backpropagation neuralnetwork

Figure 2.7shows thetypical architecture of a three layer BP network.The input layerhas

units from (1•...•••.i.; N); the hidden layer has ( 1 j , L) units. theoutput

layer has (I, k M) units , The inputuni ts disuibute the values to the hidden

layer units.The net input to thej-t h hidden unitis

(2.5)

where w~ isthe weighton the connection fromthe i-fh input unit, and e ~ is a biasterm.

This term is a weight on a connec tion that has its input value always equal to I. Theuse

of the bias term is largely optional. The ' h' superscriptrefers to quantities on the hidde n
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layer. Assuming that the activation of this node is equal to the net input; then, the output

of this node is

(2.6 )

where f represents the function adopted. egosigmoidal . gaussian . linear etc.

The equation s for the ou tput nodes are

net ;' =±, w:Jipj +O:
I·'

(2.7 )

(2.8 )o pk. = J:(net~ )

where the superscri pt '0' refers to quantities on the output laye r.

The e rror at a single o utput unit is defined to be 5p.; = (ypk - opt). where the

subscript 'p' re fers to the p-th training vector, and ' k' refers to the k- th output unit. In thi s

case , Y~k is the desired v.Jue . and opkis the actual o utput from the k-th unit

The various s te ps invol ved in the backpropagation algorithm aresummarized below.

Apply the inpu t vector, x~ '" (:t~h:t~J , ' • •• . . • . .• xpNi to the input uni ts

2. Calcu late the ne t-input values to the hidden layer unit s :

nelpjh = t.W~Xpl+O ~ (2.9 )

3. Calcu la te the outputs fro m the hidden layer :

ipi = f J( nethpJ) (2.10)

4. Move to theoutput layer. Calculate the net- input value s to each unit:

S. Calcu la te Ihe outputs:

Opk = fkO(netpko)
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6. Calculate the erro r terms for theoutput units :

~o = (y~,opk)fko· (netpk.0)

1, Calculate the erro r termsfor the hidden units :

8~ == fi"(fle t~)t8~w;

12.13)

12.14)

It may be noted that the error terms on the hidden units are calculated before the

connection weigh ts to the ourput layer units have been updated .

8. Update the weights on the o utput layer :

w~(t +1)= w~(t)+T1li ~in

9. Update wei ghtson the hidden layer :

w~ (t + 1)= w~(t)+ l1li ~x!

(2.15)

12.(6)

The error term Ep =.!fli~ gives an indicatio n of how well the network is
2 bl

training. When thi s error is acceptably small for each of the training vector pairs. the

training can bediscontinued.

2.4. Impo rtant issu esin ap plying back propag ation algorith m

The im po rtant iss ues to be considered wh ile applyin g the back pro pagation

algorithm are listed below :

" Leaming Rate

e Mcme ntum

" Stopping Criteria

" Initialization

"General ization

" Trafning set size

Eachof these issue s willbe examined below.
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2.4.1 kearnl ng Rale .

The leaming rate, '1 bas a signifICan t effect o n networt perfonnance. Usually, 11

must be a small nu mber o f lhcorder of 0.05 to 0.25, to ensure thai thenetwork willsettle

to a solution. A small val ue of 11 means that the network will have 10 make a large

number of iterations. It is ot'lenpos sible to increase the value of Tlas training proceeds.

Increasing 1\ as th e network error decreases will ofte n help 10 speed coovergence by

increasing the ste p size as lbe erro r reaches a minimu m, but thenetwork may bounce

around too farfro m theac tualminimum value if the learn ing rate gets 100 large.

2.4,2 Momenlum

Another w ay 10 increase the speed of convergence is to use a technique called

momentum . When calculating the weight c hange val ue, Ap W , we add a fraction or the

previous change. This edd ltlnnalterm tends to keep th e weight changes going in the same

direction and hence the term momentum. The weight change equations on the output

layer then become

(2.17)

In equation (2.17 ) above . a is the momentum parameter, and is usually set to a positive

value less wan one.

2.4.3 Stopp ingCdttT'!a

'The back propaga tion algorithm is considered to have converged when the

absolute rate of ch ange in the aven ge squared erro r per epoch is sufficiently small.

Typically , therate of change in the average sq uarede rro r is co nsidereds mallenough if it

lies in the range o f 0.1 to I pereem per epoch. Howev er. it should be noted that there is

a lways a possibility that the network maycon verge to a local mirimum in weight space.

Once a ne twork settles on a minimum, whe ther local or globa l, learning stops. Wilen a

network. reaches an acceptable solu tion, there is no guarantee tbat it has reached the

global min imum. rather that a local one. If the solutio n is acceptable from the error
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standpoint. it does not matte r whether theminimum is g lobal or local. or even if the

training was halted at so me poi nt before a true minimum w as reached .

2.4.4 Initia lization

The first sep in back propagation learning is to ini tialize the network. Wei ghts

should be initialized to small. random values. between ± OJ , A good choice for the

initia l vaiues of the free parameters o f the network can be of tremendo us help i'l a

succes sful ne twork d es ign. The wrong choice o f initia li zation values can lead to a

phenomena cal led prem ature sa turation. This refers to a situation where the instantaneous

sum of square d errors remains almost constant for some period of time during the

learningprocess.

1 4 S GenerallzaJon

In back propagation learning, we typically start wi th a train ing set and usc the

back propagation algori thm to c ompute th e synaptic weights of a mult ilayer pereeprronby

loadin g asman y of the training examples aspossible into the netwo rk. A neural network

is said to generalize we ll when the input -octpcrrelations hi p computed by the network is

correctfoeinputfoUiput patterns never used in crea ting or tr aining the network . A neural

IICtwork that is designed ~o generalize we ll willprod uce a correct input -outpet mapp ing

even when the input is s:ightly different than theexamp les used to train Ute network. The

Back Propagati on network is qu ite good at general izatio n. and this coupled with Its

simplicity is the strongpo int of the algorit hm.

1.4.6 SlzeofTnlnlngset

The ability of a net work to genera lize is influ enced by three factors: the size and

efficie ncy of the training set, the architec ture of the network , and phy sical complexity of

the pro blem at hand. T he size of the tt.uning set will be depen dent on the application

intended and is largely an empiric al value . Experience and ex perimen tation are often the

most impo rtant indicators of a co rne t or righ t trainin g sci size. Also . the number of input
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and output parametersalso influence the training set size. Generally, larger the numberof

inpulloutputparamelm. larger should be thetraining set

1.5 Sel«ltd Applications to PoWtr Systems

Artificialneuralnetworks have been rettntly proposedas an alternative method

fOtsolving certain lr.Iditionai problemsin power systemswheRcoaventionaltcchniques

have nOC achieved tbe desiredspeed.aceuracy,OI'effLciency[2J.2S)

Neural Network appliclllions that have beenproposed in the literature can be

broadlyclassified into three main MeIS. Regression. OassiflCl tion and Combinatorial

Optimiution. Theapplications involving regression includes Transient Stability [26],

Load Forecasting [27J. Synchronous Machine Modelling [28]. and Contingency

Screening (29]. Applications involving classification include Hannonic load

identification, al2J""'\ processing. static securityassessment and faultdiagnO5is (30-3IJ. In

the Meaof combinatorial oplimitation. there is topological observability and capacitor

control. This section provides an overviewof the reported ANN applications to power

systenu.

2.5.1 Transient Stability

Stability of a power system deals with the electromechanical il5Ciliations of

synchronous generators, created.by a disturbance in the power sysem, II is of prime

importance 10 know if the disnarbance will lead to loss of S)'ndtronism. Whenthe

disturbance is small and when the system oscillations followinG the disturbance is

confined to a small regionaround an equilibrium point, concepts of linearizedsystems

analysis can beappliedto determinethestabiUty of the power system. Thisis known as

steady slatestability assessment. However. when the disturbance is large and when the

osclllarcrytrenstents are significanl in rnagnitude, nonlinear system theory or explicit

time domainsimulations have to be used to analyse the system stabilily. The ensuing

analysis is knownas transientstability assessment.
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Transient stability is determined by observing the variation of Ii ( rotor angle ) as a

function of time in the post fault period.The power system is said to be transiently stable

for a given disturbance if the oscillations of all rotor angles damp l'>ut and eventually

sett led down to values within the safe operating constraints of the system. For any

disturbance, the uanstent stability of a power system depends on three basic components :

the magnitude of the disturbance, the durat ion of the disturbance. and the speed of the

protective devices. There exists a critical clearing time (CCf), where if the fault is

cleared before this time, the power system remains stable. However, if the fault is cleared

after the CCT, the power system is likely to beunstable. The CCT is a comptcx function

of pre-fault system conditions, disturbance structure, and the post fault conditions. There

are two commonly used methods for calculating ccr , namely 1) Numerical Integration

and 2) Lyapunov Energy Function method . The first method involves extensive time

domain simulation of the power system while the scope of the second method is limited

by its restrict ive assumptions. Due to the many possible pre-fault operating conditions

and types of faults, computational effort needed to assess the ccr for each of these

scenarios is prohibitive.

2.5.2 Th e Neur al Network Approach 10evaluate CCT [26]

The estimation of CCT can be looked as a regression problem where pre-fault

system parameters are used to predict the CCT for the corresponding fault. A multi

layered perceptron was proposed to be trained using back-propagation to learn a set of

input attributes and the corresponding c cr's for a specified fault under varying operating

conditions [26]. In the ANN approach, the inputs are the individual acceleration energy of

the generators of the system accumulated during the fault, which in tum depends on rotor

angle deviation. the centre of mass and the reduced electrical power output enerators

during the fault. The output of the ANN is the CCT corresponding to the given

contingency under the described inputs. During generation of training data, ccr for the

corresponding input quantities is obtained by repetitive numerical integration of the post

disturbance system equations using different reclosing times. The ccr would correspond
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to the maximum time for rec tcsure after lhc: initial isolation of the line in order to

maintai n synchronous OI'Cration . Reference (26 J reports results which compare the:

perfonnanceof the ANN based ccr predictor with the calculated values. The error in

prediction was accepta ble in most cases .

2.6 Load Forecasting

Forecasting electrical load in a power system with lead limes varying from hou~

to days. has important economi c advantages. The forecasted infonna tion can be used to

aid optimal energy interchange between utilities thereby saving valuable fuel COSlS.

Forecasts also significantly influence importan t decis ions such as dispa tch. unit

commi tment and maintenance scheduling. Most conventional methods used for load

forecasting can be categorized under two approaches. One ueets the load demand as a

time series signal and predicts the load using the differen t time series analysis techniques.

The second method reccgnizes the fact that the load demand is hea vily dependent on

weather variab les. The general problem with the time series approac h incl ude the

inaccuracy of prediction and numerical instability . The main reason for instability is not

consideri ng the weather informa tion whic h is known to have a profound e ffect on load

demand. The conventional regression type approaches use linear or piecewise

representations for the forecasti ng function . The accuracy of this approach is dependent

on the functional relationship between the weather variables and electric load which must

beknown . This approach cannot handle the non stationary temporal relatio nship between

weather variables and load demand .

2.6.1 Neura l Network Approach to Lo ad Forecasting [27]

The ANN approach can co mbine both time series and regress ion approaches to

predict the load demand. A funct ional re lationship between weather variables and electric

load is not needed. Th is is because an ANN can generate this functional relationship by

learning the training data. In other words . the nonlinear mapping betwee n the inputs and

outputs is implicitly embedded in the ANN. The ANN approach propose d in [27J uses
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previousloaddata combinedwithactualandforecasted wearbervariablesas inputs, and

theload demand astheoutput. Some of the weatherparametersconsideredfortraining

aretemperanse. wind speed, humidity/wind chill,rain.snow. rate ofevaporationetc, The

resultsshow that ANNs Ca.1 indeed be trained to predict thc load demand at a much

lower computation costcomparedto conventional techniques.

2.7 ConUngencyScreening{291

Acontingencyin a power system is anabnormal event(such as a fault), which

could be potentially damaging to power systemcomponents. Contingencyscreening is a

relativelyfastand approximate methodof identifying whether acontingencywillresultin

a violation of any of the operating constraints of the power system. Contingency

screening helpsselect a criticalset of potentially damaging events for more accurate

analysis.

Contingency selection in its simplest form, deals with fanning a list of

contingencies which may result in steady statevoltageor thermal limit violations in the

postcontingency power flowcondition.Usually, the DistributionFactor approachandthe

Performance Indexapproach areused for contingency screening. The proposed ANN

approach for contingency screening is based on identifying the contingent branch

overloads. A collection of ANNs aretrained whereeach ANNis dedicatedto a specific

lineoutage.The inputs tothe ANN are Bij andPMi where B;j is thesusceptance between

busesi andj, andp... is thenetactivepower intobusi. Theoutputs are theline flows

anda binaryflagindicatingsecurerinsecure status.

2.8 AlarmProcessing andFaultDiagnosis

The controlcentresof a power system arecontinually interpreting a large number

of alarmsignalsto detenninethe statusof the system componentsand to evaluate the

powersystemoperation.The precess isverycomplexbecauseof twokeyreasons :
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Alarmpatlerns arenOI unique to a givenpower system problem.Same: fault may

manifest in diffm nt alarmsbasedon thecurtent topology and operatingSUlUs ol the

powersystem.

Alarm paltems art likely to be ronwninated "",jtb noise due to rquipmenl

problems,incorredrelaysettlngs.interference e1C-

Expc:n systems have been widely tested for analysing alarm Signals. The

fonnulation of rules however requires precisedt:rmitions of Ihe power sysem and in

opcnllionalgrategieswhich lIl3.ywidely varydcpc:nding00theutililY,

%.8,1 Neunl Nd workApprolch II)Fault Diagnosis [JO.311

The ability of a power s)'5tem operator to diagnose a system problem by

analysinga setof multiple alarmsis a formof panem recognition. Accurateclassification

ornoisyalarmpallems is also a key shortcoming in most of theconventional techniques.

Therefore, ANNswith their abiUtyto clas~ l:i noisy patterns seems tobe a logica]choice

for alarmprocessing. TheANNis alsocapable of associalingdifferent alarmpatterns10

the same systemfault by training the M'N with a set of informalion rich data that

rqwesents different operating scenarios. 1be ANN training set is generated by first

creating • credible set of contingencies and then deriving the possible alarmpatlcms

under eachfault These patterns8Jegenerated by !hettlay protection scberes and power

flowanalysis.. These pallcm5 arelbenusedto traina rrmtti-IayeredpetCtptron using back

propagation, This is oneareain whichthe ANN appc:m to bavegreaI pocenlial due10its

intrinsicnoiserejectionand selflcamingcapabililics.

AppikatiODnf ANNs havebeenreponedin the areasof cootingencyevaluation I

dynamic securityassessmentl2 6J. and control ofDCMotors1J2}• Theabove u:amplcs

show that ANNs hold out great promise in provkling a fast, reliable and accorere

computationtool inpowersystemapplications.

Chapter 4 and Chapter 6 present the application of artificial neural networks for

evaluation of voltage slability of two sample power systems for IWO different voltage

stability indices. On-tine voltage stability analysis is one area where ANNs can help
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improve greatly the efficiency and capability of Energy Management Systems. This is due

10 the fact thai. voltage litabilily analysis is computationally intensive and imposes

enormous burden on tM EMS, if the computation hes 10 bedone on-line. ANNs. by virtue

of their pattern recognition abilities. can eliminat e the enormous computation costs

associa ted with on-line calculation of voltage slability and hence improve considerab ly

the effid en cy, security and eco nomy of operation of power systems,
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Chapter 3

Energy Function Methods for Evaluation of Voltage
Stability

3.1 Introduction

This chapter prov ides an overvie w of the energy function method and the var ious

methods available to determine the multiple load flow solution. The energy function

method is applie d to the evaluation of voltage stability of three sample power systems.

namely a 2 bus system. a 5 bus system and a 24 bus system. The simulations to determine

the lo w voltage solutions and the energy margins for the three sample power systems are

presented .

3.2 Overview of Energy Function Methods .

As explained in Chapter I, the main thrust of research in the field of voltage

stabili ty has been to arr ive al an index or more generally. developing a security mea sure

to quanti fy how "close" a particular operating point is to voltage collapse. The crucial

point in judg ing the effecti veness of the variou s methods is to see whether or not the

"distance" of a given operating point to voltage collapse is physically reasonable and can

provide planners and ope rators with an indicatio n of when corrective action is necessary.

The energy function method is a srartc voltage sta bility assessme nt tool which takes into

accou nt the operating conditio n of the power sys tem, tbe power system parame ters and

the multip le load flow solutions. Before describing the application ofenergy method s for

voltage stability , it would beusefu l to review their application 10 tran sient stability.

3.2.1 Application of energy method to tr ans ien t sta bility (IS)

Energy methods have been success fully applied to the transient stability prob lem,

l.e., the equaJ area criterion . Consider a genera tor connected to an infin ite powe r network .

If the generator is represented by the cl assical model . the dynamic behavior of the

generato r rotor angle can be described by

45



d'O
M djT'" ~ - Pm sin (o-y) (3.1)

where M is the inenia constant

Pi . Pm. and y are constants and 0 is the machi ne ang le.

Integrating equation (3.1) gives

whererois the speed of the generator.

Integrating again. we get

~Mrol l:~ '" P,ot:11+p", cos{o-y) I:~ (3.3)

If the limit s are between the initia l condi tions (0. =&'. (01 = 0 ) and at clear ing (5z = 0.:.
<U2 =0\) then the left hand side of equat ion (3 .3) g ives the kine tic energy of the generator

at fault cleari ng. This is represe nted by area AI in Fig. 3.1. Tak ing the limits between

fault clearing (al =&e. Cll;l "'~) and a\ maximum ang le swing (~=om, o>J '" 0), then the le ft

hand side of equation 3.3 is the negative of the kine tic ene rgy at clearing. It is represented

by the eree A, in Fig. 3.1.

Pre fault
..............-.

clearing
~4=$===I===t===="...~...~...::::...::!...• During fault

0" 0' Om 0"

Fig. 3.1 Illustration of the Eq ual Area Criterion co ncept
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We also note that at 6.. since e, = O. a1llhe kinetic energy which had been present al ~

has now been converted to potential energy. and [he areas in Fig. 3.1 are equal. and hence

the name equal area criterion.

3.2.2 Application or Enftl.)' methods (0 voltage stability .

The energy margin method applies the Lyapunov direct method to determine the

voltage stability at :I. given operating state. The application of the energy funct ion to the

voltage stability problem can bedescribed as follows. Conceptually, the energy fun ction

defines an "energy well" in the voltage space (i.e. state space. with the voltage

magnitudes and angles at all buses as the states). If the system were not subject to any

disturbances, the current operating slate of the system can be thought of as sitting at the

bottom of this well at the stable equilibrium point (SEP). The SEP corresponds to the

high voltage power flow solution. An actual system is always subject to some

disturbances such as those:doe to customer load variations so thar the system never sits

precisely at the SEP. However. usually thesed isturbances can be considered small. so thal

the high voltage power flow solution provides a good approximation to the actual state of

the system. Thecurrent operating point of the power system describes a local minimum

of an energy well. However. due to random load variations, the true instantaneous point

does not stay at the mathematically defined equilibrium point. These small random

variations add a small amou nt of kinetic energy to the system. Under normal operating

conditions, these variations are not of much consequence. However. when the system is

operating under stressed conditions and is in the proK.imity to voltage collapse. the system

state and hence the voltage magnitude is highly sensitive to load changes. Under such

conditions. it may be possible that the random load variations may push the state o ut of

the potenti al well tha t defined its stable operating point. A necessary condition for thi s 10

happen is that it receives energy greater than the potential value of the closest unstable

equilibrium point (UEP I, TIle UEP's correspond to those multiple load flow solutions

which are practical ly " infeasible". i.e.• it is physically impossible for lhe syste m 10
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operate at those points. These unstable equilibrium points correspond to the low voltage

solutions of the power flow equations.

Thus, a low value of energy measure can alert the system operators of an

impending voltage collapse. The energy function defines the height difference of the

potential barrier between the operable solution and the low voltage solution. As the

loading in the system increases, the system is pushed more and more toward the point of

collapse and the height of the potential barrier decreases and the energy margin decreases.

This is commo nly known as the 'energy well concept'. illustrated in Figure 3.2.

UEP

i
Energy

Ii
SEP

Fig. 3.2 Illustration of the energy well concept

In Figure 3.2, the system represented by the ball is initially at the stable equilibrium poi nt

(SEP) . A disturbance pushes the system up the energy well, and if the disturbance is

strong enough, the system may roll up and reach the unstable equilibrium point (UEP).

The differe nce in ener gy levels between the SEP and the UEP is called the energy margin.

The calculation of energy margin is illustrated for a 2 bus. 5 bus and 24 bus system in

Section 3.5. At the point of collapse. the low voltage and high voltage solutions merge

and hence the potentia l barrier or energy margin is zero at that point. Thus, the height of
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the potential barrier as measured by the energy d ifference between the steady state and the

low voltage solution can provide an indicator of the system's vulnerability to voltage

collapse. A low value of energy measure indicates that the potential barrier between the

stable operating point and the unstable operating point is low. i.e.• the system is near the

point of collapse. The energy measure of a power system is a unique value and will vary

from system 10 system depending on the system parameters, operating conditions and the

low voltage solutions .

The energy measure as defined by Overbyeand DeMarco[18] is :

Energy Measure

t~ ! Blilvt !Vj"!cos(a: - a; )+! ~t.8~v/~v/leos«(X : -a ~ )+ t. ~:' ~_pT(a · -a' )

-~~Gl/lv/ ~vJ' lcos (a ; - a~ )(a ; - a ; )+ ~(v/r'~,Gijlv,'~v;lsin(a ; - a ~ ){Vt - V/ )

(3.4)

In equation (3.4), n is the number of buses in the system. Gj) and Bi) are

respectively the real and imaginary parts of the elements of the bus admittance matr ix, Vi

is the bus voltage magnitude, CIt is the bus voltage angle, P is the vector of the real power

into each bus, and Qiis the reactive power into bus i. The subscript s stands for the stable

operating condition and the subscript u stands for the unstable operating conditions or the

low voltage solutions of the power flow equations.

The energy function is thus a vector integration of the real and reactive power

mismatch equations (with the reactive mismatch multiplied by the inverse voltage

magnitude at each bus) between the high voltage power flow solution and a low voltage

power flow solution.

The evaluation of the summation terms in equation (3.4) is straightforward. Since the

equations are sparse, the computa tional cost for calculating these sums are not very high.

For the non-generator buses, the integral tenn can bequite easily evaluated. provided the

reactive load is modeled in the common fonn of eithe r a polynomial or exponent ial
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function of the bus voltage. For example, if the reactive load at bus i is modeled as a

constant component plus a component linearly dependent upon the bus i voltage

magnitude,

Qi=k l+k2V,

then the integral evaluates to

kI ln (~)+ kl (V,U -W)

At the generator buses in the system the voltage magnitude is generally specified. rather

than the reactive power output. If (he generator has reached the excitation limit, the

integral term is approximated by

QI(m(m~).ln(¥)

The procedure for ca lculating the voltage stability index using energy margin method is

summarized below :

Run the base case load flow and obtain the solution

ii) for the same loading condition, obtain the low voltage solutions. Use the

simplified search method [101, for obtaini ng the low voltage solutions. This

procedure is described in detail in sect ion 3.3

iii ) Using both the steady state and low voltage solutio ns and the system parameters,

ca lculate the energy margin.

In step ii of the procedure described, care should be taken to choose the low voltage

solution which results in the lowest energy margin. The next secuo...describes in detail

the procedure for calculating the low voltage solutions.

The relationship between multiple load flow solutio ns and voltage stability has

been investigated extensively by earlier researchers [8J. For an n bus power system. the

maximum number of multiple load flow solutions possible is 2ft-!. It is seen that there is

an inverse relation between the number of load flow solutions and the system loading. As

the system loading increases. the number of load flow solutions is found 10 decrease and

al the point of voltage collapse, the low voltage and high voltage solutions merge into
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e re . Section 3.3.1 ilIuslrates the above fact with respect to a S bus power system. Thus.

the number of low voltage solutions is an indicator or tbe voltage ~a.bility of a power

system.

3.3 LowVoltage Power FlowSofutlons

TIle determination of the appropriate low voltage solutions is of critica l

importance in applying tbe energy function approach. It is imperative that to apply the

energy function approach. the low voltage solutions (UEP's ) should be found with

reasonable computational effort. In this section. the properties of. and . general solution

algorithm for detenni ning the low voltage load flow solutions of power systems will be

examined. The general algorithm or the exhaustive search method is as given below :

I. Obtain the stable operating point power flow solution.

2. Using the quadratic algorithm proposed in (8] and derived below. calculate the low

voltage solution for each load bus assuming that the voltages at all theother buses are

fixed. The steps involved in this are the calculation of starting values of the bus voltages

and substituting this value as tbe voltage guess in the next load flow run. This calculation

is not pcrfonned on buses which are voltage controlled . Denote this voltage as VI- .

The Quadratic algorithm for caleulaticn of slatting values for the computation of low

voltage solutions was first proposed in reference [8J. The algorithm proposes a simple

means of arriving at starti ng values and is given below:

This algorithm gives a closed fonn expression for calculating the two solutions of the

voltage at bus i when all other bus voltages are assumed fixed. Starting with the power

flow equalions at each bus in rectangular coordinates.

PI = t e,(ejGij- fJBlj ) + f.(fjG'1+ej B~ } (3.5)...
Qi= f, fj( ep ij -fJBij) - cl (f j Olj + ejBlj ) (3.6),.,

where PI is thereal powcr at bus i, Qi is the reactive power at bus i, el is the real part of

the voltage at bus l, fl is the imaginary part of the voltage at bus i, G,j and BiJ are

respectively the real and imaginary parts of theelements of the bus admittance matrix.
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Rearranging the terms in equations (3.5) and (3.6),

PI = G;; (elz", fh +eIC+f; 0

Qi=- Bil (e;l + f;2) ... f; C - e; D

where

(3.7)

(3.8)

c,., i :ejGjJ- f j Bij) (3 .9 )
1"1,l" '

0 = t fp ;j - ej B;j ) (3.10)
", I, jol

Multiplying equatio ns (3,7 ) by Bjl (3.8) by Gil

Pi Bli : B;I Gli( ei2... f i
2) +ei a.c» fl s, 0 {3,111

Q;G il= - B;lG ;I (eI2+ fjZ)+f;GiIC - eiGii D (3. 12)

Summing equations (3. t I ) and (3.12 ) and then solving far f; • we get

Pi B;i'" Q; Gn= CI Bd C + f a ;; D+ fl G;j e - el Gil 0 (3.13)

f;=nei+~ (3.14)

u = GilD -BiiC (3.15)
Bi;D + Gi;C

~= P;B;l +Q;Gll (3.16)
B'ID+G;iC

Substituting equation (3. J3 ) into (3.7 ) to eliminate f;, it can be rewritten as

PI = Gil ((I +a,2) eil + 2n~ei ",~zl + e. C + (ae ; + ~)D (3.17)

The two voltage solutions can then be determined by solving for er using the quadratic

formula and then using (3.14) to solve for er. One of the solutions will be the operable

load flow solution vo ltage and the other root will give the starting value.

3. Select either VI"or V.uas initial voltage guesses for the rectangular Newton- Raphson

algorithm. Form all of the possible 2"·m• I combinations of initial voltage guesses with

at least one bus set to its Vlu value (where n is the total number of buses , and m is the

number of PV buses) ,

4. Compute the power flow solutions using the rectang ular Newton- Raphson algorithm

for each o f the i n.ml _ I initial voltage guess permutations.
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The exhaustive search method presents a systematic method of creating a set of initial

voltage guess vectors. However, in order to find a small set of actual solutions, this

algorithm requires tests of 21,-) • I initial voltage guesses. This would be

computationally prohibitive in systems of real istic size.

As an alternative , a "Simplified Search" method is adopted. which reduces

considerably the number of initial guesses required. The simplified search method is

eMCntial ly the same u the exhaustive method, except that rather than forming all of the

2'- ' _1initial voltage guess combinations. only the n-m combinations corresponding 10

the use of Vi~ at a single bus arc calculated. This reduces considerably the comp utational

complexity of the algorithm,

The application of the simplified search method to a sample 5bus power system is

Illusuated InSection 3.3.1

3.3.1 Low Voltag e soluUons for sa mple S bILS power system

A sample 5 bus power system is shown in Fig 3.3.

Fig. 3.3 Sample 5 bus power system

The five bus system shown in Fig. 3.3 has a slack bus. a voltage controlled bus and three

load buses . Thesystem has seven lines. The basecase load flow results for this system are

shown in Table 3.1.
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Table 3. 1 Load flow solution results for 5 bus system.

Bus No. Voltage Vollage Pgen in Qgen in Ploadin Qload in

real part imaginary MW MVAR MW MVAR

(0) part (0

I 1.06 0.00 129.5 - 7.5 0.00 0.00

2 0.9994 -0.036 40.0 -41.5 20 to

3 0.9772 -0.0774 0.0 0.0 4S tS

4 0.973 -0.0825 0.0 0.0 40 S.O

5 0.9614 ·0.0958 0.0 0.0 60 to

Using the Quadratic algorithm describe d ea rlier. the starting values for the voltages at all

the four buses are determined. The start ing values are as given below,

Table 3.2 Start ing Values of voltages for 5 bus syste m

Bus Number Starting Values

for Voltage

2 0.0152+j 0.0102

3 0.0079.J 0.0095

4 0.0051-J 0.0090

5 0.0277-J 0.0468
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The nest step in the formalion of all possible combinations of Ihe solutions as given

below:

The combination of solulio ns poss ible fo r the 5 bus system are

0 00 I

0 01 0

00 I I

o 1 00

o 1 0 I

o I 1 0

o I I I

where 0 denotes the value of the steady state voltag e and 1 denotes the starting value

obtained by using the Quadralic formula and listed in Table 3.2. The load flow program is

now run 7 times. once for each of the above comb inations and the corresponding low

voltage solutions are oblained.

The 7 possible roots of the .sbus system for the base case loading are given be low:

Table 3.3 Low voltage solution correspondi ng to 0 0 0 I

Bus Number Vollage in p.u.

2 0.9776 · J0.21o.t

3 0.7740· J0.1741

4 0.7186 · J0.1776

5 0.0184• j 0.0550
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Table 3.4 Lowvoltage solution corresponding\00 0 I 0

Bus Number Voltage inp.u.

2 0.9588 · J0.2841

3 0.1772 · 10.0866

4 0.0043 . j 0.0298

5 0.5679 . 10.2503

Table 3.5 Low voltagesolutioncorrespondingto0 0 I I

Bus Number vcnegc in p.u.

2 0.9237 · 10.3830

3 0.1693 -10 .1004

4 0.0026 -J0.3680

5 0.0149 · J0.0800

Table 3.6 Low voltage solution corresponding100 I 0 0

Bus Number Voltage inp.u.

2 0.9568 · j 0.2908

3 0.01722 .jo.o319

4 0.1459 • j 0.1131

5 0.6278 • j 0.2788
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T able 3.7 Lowvcnage solu ti on corre sponding (00 I 0 I

B us Num ber Voltage in p.u.

2 0.9119- J UtSl

3 0.0165 - JO~10
4 OAm - JO.Q8S.
5 0.0103 - J 0.0786

Table 3.8 Lowvoltage solutio n corre sponding 100 1 1 0

B us Num be r Voltage in p.u.

2 0••S05• J0.3106

3 0.0171• J0.0493

4 O.OOSO • J0.0490

5 0.5113 • J02118

T ab le 3.9 Lowvolta ge solutio n corresponding to 0 1 I I

Bu s Number Voltage in pou.

2 O.9120-J0.4151

3 0 .0165 - J 0.0470

4 0.0270' a j 0,0859

5 0.0103 • j 0.0786
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This procedure is repeated for different loadin g fact ors of K =2. 3. 4, 4.5 ( K is the

multiple of base case load ing) and the num ber of d istinct solutions obtained for each

loading factor. It is seen that the number of solutions decrease as the loading increases.

The num ber of so lutions obtained for each loading factor is tabulated in Tab le 3.10

below:

Tab le 3.10 Variation of number of roots with increase in load

T he base c ase solut ion.start ingvalues andthe lowvolt agesolutionscorresponding to K=

4.5 are tabulated be low:

Tabl e 3J 1 Loadflow solution for 5 bus system for K= 4.5

Bus Numbe r V oltage ln p.u.

I 1.006+j 0.000

2 0.9787 · j 0.286'

3 0.83 94 • J 0.286'

4 0 .8301• j 0.3071

5 0.8001- j 0.3577
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Table 3.12 Starting valucs fo r K: 4.S for5 bus system

Bus Namber V ollage in p.u.

2 -0 .1055 · j 0.0174

3 0 .0119 · j 0.0543

4 0 .0119· j 0.0473

S 0 .0166 ~ J 0.2486

Table 3.13 Low Yohage solutlon for S bu s system forK = 4 .S

Bus Number V o llage in p.L1.

I 1.006+j 0.0000

2 0 .8810 · j 0.4732

3 0 .47. ' ·j 0.4411

4 0 .4139· J 0.4269

S 0.0733· j 0.2949

3.4 Energy Marg in Computation

This section presents the results of the c omputat ion of energy mar g in for the two

bus. five bus and twenty fou r bus systems, base d on eq uation (3 .4). As seen in section

3.3 . there are a number of co mbinations and the refore. a number of roots are possible for

the 5 bus and 24 bu s systems. If energy margi ns have 10 be calculated for each o f the

co mbinations for every load ing conditio n. the compma tlonel co mplexity will mak e the

meth od infe asible fo r practical imple mentatio n. There fore. the following proced ure is
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adopted for simplification. For the base case loading, the energy margins are calculated

for each of the possible combinat ions of the low voltage solutions. The comb ination

resulting in the lowest energy margin is identified and this comb ination is used in the

computation of energy margins for subsequent loading conditions also. This greatly

reduces the effort required to calculate the energy margins for various system loading

conditions.

Results of simulations carried out to determine the energy margins for a two bus,

five bus and a 24 bus system are presented below :

The two bus system is as shown in Fig. 3.4 below. The power factor of the load is 0.0 and

the voltage VI =1.0 p.u.

V= 1.0 p.u. Z=jO.5 P=O.I p.u

Fig. 3.4 Single line diagram of sample two bus system.

EOWIlY a.•
Marg in

LO«llngFllCIor,K

Fig. 3.5 Variation of energy Margin with loading for 2 bus system.
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Figure 3.5 shows the variation of energy margin with loading for the two bus system . It

can be seen that the energy margin steadily decreases with increase in load. Figure 3.6

shows the variation of energy margin with loading for the 5 bus system shown in Figure

3.3.

,,.,,
as

Enwgy 2.:
Margin 2

I.',
0.'

o

loading Factor ,K

Fig. 3.6 Variation of energy Margin with loading for 5 bus system.

Figure 3.7 shows the 24 bus power system considered for study [34J. Ta ble 3.14 shows

the base case load flow results for the 24 bus system and Table 3.15 shows one low

voltage solution for the base case loading.
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Fig . 3.7 24 BusPower Systemconsidered for study
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Table 3.14 BaseCaseLoad FlowResults for 24 Bus system.

Bus No. V . p.u. Degrees La"" Load Generation Generation

MW MVAR MW MVA R

I 1.0060 0.IlOO 196.166 39.740 280.874 72.107

2 1.0027 ·0.1320 71.804 14.805 62.400 30.496

3 0.9849 -0.1727 92.530 18.510 75.000 58.061

4 1.00 24 ·0.1307 79.949 16.286 62.400 24.970

5 0.9935 0.1670 143.609 28.870 0.0000 126.927

6 0.9400 0.3439 234.659 47.276 66.250 47.975

7 0.9500 0.3200 74.025 14.805 54.250 45.397

8 0.8910 0.4700 246.503 50.227 400.IlOO 1l.021

9 0.8892 0.4787 0..... 0.l1OOO 400.IlOO 60.013

10 0.8448 0.5623 0..... 0.l1OOO 300.000 -6.605

II 0.9914 0.1305 0..... 0.l1OOO 458.500 ·31.955

12 0.9909 0.0778 133.245 27J89 0.000 0.IlOO

IJ 0.9623 ·0.1280 54.7790 11.104 0.000 0.000

14 1.0091 ·0.1340 52.5580 10.364 0.000 0.IlOO

15 1.08 25 ·0.1440 100.674 20.727 0.000 0.IlOO

16 0.9670 -0.1710 126.583 25.909 0.000 0.IlOO

17 0.9769 -0.0480 129.543 26.649 0.000 0.IlOO

18 1.0370 -0.1030 144.349 29.610 0.000 0.000

19 0.9930 0.0280 0."" 0.l1OOO 0.000 0.000

20 0.9750 -0.0144 0."" 0.l1OOO 0.000 0.000

21 0.9083 0.4260 0..... 0.l1OOO 0.000 0.000

22 0.9687 0.2285 133.985 27J89 0.000 0.000

2J 0.9827 0.1619 94.7520 19.247 0.000 0.000

24 0.9549 0.2408 0."" 0.l1OOO 0.000 0.000
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Tab le 3. 15 One low volt age sol ution fer 2 4 bus system base case

Bus Number Voltage RealPart (p.u.) VoltageImag. Part (p.u.)

I 1.0060 0.0000

2 1.0603 -0.2128

3 0.97028 -0 .24 19

• 0.9978 ·0 .2 1193

5 1.0128 0.00666

6 0.9793 0.2 118

7 0.9885 0. 18 08

8 0.9536 0.3476

9 0.9554 0.355 7

10 0.9786 0.445 5

II 0.9624 ·0 .27 13

12 1.0054 -0.0228

13 0.9627 -0.2054

"
1.0084 ·0 .2 137

15 1.0829 ·0 .22 8

16 0.9585 ·0.24 28

17 0.9848 ·0. 127

18 1.0405 ·0.1 82 6

19 1.0036 ·0.0268

20 0.9913 ·0.1084

21 0.9635 0.30 33

22 0.0023\ .0.00693

23 0.6210 ·0. 18 247

2' 0.9850 ·0.\ 2127
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The simulation results showing the variation of energy margin with loading for the 24 bus

system are shown below :

,~
,I
I

' I
,I

1

~
i

1

I
I
1

Loadi ng Faetor,K

Fig. 3.8 Variation of Energy Margin with load for 24 bus system

The above three plots have presented the variation of energy margin with system

loading for three different power systems. It may be realized that the magnitude of energy

margin at a particular loading condition is unique to a system. i.e., a value considered

large for one system may be small for another system. This is because the energy margin

is intimately connected to the low voltage solutions. system parameters and loading

patterns.

3.5 Effect of Contingencies on Energy Margin

The effect of contingencies on the energy margin of the 24 bus system wa.s

studied. Five of the most heavily loaded lines of the 24 bus system were identified and for

each outage, the energy margin was computed. The lines considered for outage are 7 • 21,

6 · 9,8 • 21. 6 - 24, 21 - 10. It was found that the energy margin of the system with a line

outage was considerab ly lower than the one with no line outage . Figures showing the

comparison of energy margins with and without line outages are shown below:
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Fig. 3.9 Comparison of energy margin with line 7-21 out and with no outage

Figure 3.9 shows the compar ison of energy margin with and witho ut a line outage ,

for the different values of system loading. It can be seen thai the energy margin for the

case with a line outage is lower than that with no outage . Since the energy margin is a

direct reflection of the voltage stability of a system, it can be said that a line outage has a

det rimental effec t on the voltage stab ility of a system. The energy margin is reduced due

to a contingency, and thus the system is more prone 10 a voltage collapse .
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Fig. 3. 10 Co mparison of energy margin with line 6 - 9 out and with no outage.

LadlngF8CtOr.K

Fig. 3. 11 Comparison of ene rgy margin with line 8-2 1out and with no outage
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3.6 Summar)'

This chapter has presented the application of the energy function method as a

voltage stability index and looked at the various steps involved in the computation of the

index . The simplified search method to locate the low voltage solutions has been

explained in detail with respect to a 5 bus system. Simulation results for computation of

energy margin have been presented for a 2 bus system. 5 bus system and a 24 bus system.

For the 24 bus system, simulations were repeated considering contingencies also. It was

found that the energy margin is influenced significantly by contingencies and the value is

considerably lower than that without any line outage.

The purpose of any voltage stability index is to serve as a tool for assessing the

voltage stability of a power system. The energy margin based voltage stability index holds

out considerable promise as an accurate index as it takes into account various factors that

critically affect voltage stability of a power system, namely, the unstab le equilibrium

points, the random load disturbances, the system active and reactive loading and the

system parameters. Also, the concept of energy margins is a well proven one, with

successful applicanon in transient stability studies. Thus, this index is an ideal candidate

for implementation in an Energy Management System (EMS). The implementat ion of the

energy margin based voltage stability index in an EMS environment does present some

challenges, the principal one being the computational complexity. The energy margin

method requires the location of thc various low voltage solutions and for large scale

power systems, even the simplified search method will prove to be computationally

prohibitive. This is because for a n bus power system with m voltage controlled buses.

even if the ~, jmpli fied search method is employed, 2n.m power flows would have ro be run

to locate the low voltage solutions. This heavy computational requirement can be a

burden on the capability of the EMS. Therefore, It is imperative that other approaches

should be investigated. which would provide relief from thl: computatio nal burden.

Chapter 4 presents the application of artificial neural networks (ANNs) for evaluation of

energy margins. ANNs offer an intelligent approach 10 evaluation of voltage stability

index and can enhance the capabilities of the EMS.
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Chapter 4

Artifi cial neural networks for voltage sta bility
evaluation

4.. Introduction

Voltage Instability has become an area of serious concern10 system planners and

operators. Even well developed systems have proved susceptible 10vcltege collapse, as

detailed in Chapter I. There is nowa strong case for including voltagestabilitycomputation

software in Energy Management Systems (EMS). In the modem day stressed power system,

which is operating close 10 its voltagestability limits, such an on-line index would alert the

system operator thus enabling corrective action to be taken to avoid a voltage collapse in

the system. Other expected benefits of such an on-line index are improved security and

economyof operation of the system. In fact. an on-line voltage stability index will givethe

system operator a verypowerful1001with which to maintaina high levelof system security.

Dueto the abovecited reasons.it is expected that in thenear future,Energy Management

Systemswillbe equippedwith on - line voltagestability indices.

Tbe computationof the energy margin based voltagestability index was presented

in Chapter 3. It may beseen thatthe method is computationintensive, since repeatedload

flows are required to find tbe lowvoltage solutions, even whenusing the simplifiedsearch

method. In the context of a modem day power system, the on-line detennination of the

voltage stability index imposes signiflCaOt computational burden on theEMS. and woold

require much of the capability of the Energy Managemenl System. Thus. the

implementation of the on-line voltage stability index wouldbeat thecostof other important

functions of the EMS. Hence, there is a need for investigating other approaches to

implement an on-line voltage:stability index.

Artificial Neural Networks (ANNs) appear to be:excellent candidates as a medium

for implementing an on-line vohagestability index. Themain advantagesof an ANN based

on-line voltagestability indexwould be the enonnous savingsachieved in computation time
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and effort. Also, the memory requirement of the ANN based scheme would be substantially

lower than a conventional system. Recently, researchershave started showing interest in the

application of ANNs for voltage stability evaluation [33. 361. The application of an ANN

will make an on-line voltage stability index feasible even for large systems. Artificial

neural networks in comb ination with rule based expert systems can greatly enhance the

overall capability of the EMS by providing "intelligent" solutions to power system

prob lems. Of course , it is important that the problem at hand lends itself to ANN

application by allowing interpolation and extrapol ation to work. This chapter describes the

application of a back propagation (BP) neural network to the evaluation of the energy

margin based voltage stability index.

4.2 Selection of the ANN algor ithm

The main criteria for the selection of the ANN algorithm are simplicity and ease of

implementation, accuracy of predictions, and ease of testing. The back propagation

algornhm (BP) is by far the most popular of the ANN algorithms , especially for power

system applications . The back propagation algorithm does not involve complex fonnulae or

eq uations and hence lends itself to implementation by any standard software. Another

important factor in favor of the BP based ANN is its ability to generalize. By generaliza tion,

it is meant that once the network has been trained on a set of samples, it has the ability of

recognize a new pattern. This ability is especially useful in power system applications, since

the system may undergo changes from time to time, and it would be very difficu lt to train

the network for all possible system conditions. This ability of the BP algorithm to generalize

also enables easy testing of the algorithm. Once the ANN is trained, a new input can be

presen ted to the network and the output compared to the expec ted value. Also. a number of

high quality BP based ANN software packages are available commercially and this enables

easy application of the BP based ANN to a problem. Considering all the above aspects, it

wasdecided to implement the ANN based voltage stability index using the BP algorithm. A

three layer ANN compri sing .1f an input layer , a hidden layer and an output layer was

selected for the implementation.
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4.3 Sf lectJon of lnput h ra mtttrs

Perhaps, the most important aspect of the implementation of an ANN based system

is the selection of the input parameters. The input parameters should be such that they

contain the underlying relationship, albeit, nonline:lf.to the output. In other wonk, the input

parameters should each strongly influence the ompuL Another important consideration,

especially if it is desired to implement theANN based system in an EMS environmern is

that. all the input parametersshould beavailable in theEMS. The main consideration being

that the system operator should get an idea of the voltage stability of the system from the

data readily available in the EMS. Additional data acquisition equipment should DOl be

called for. since this will increase the overall cost of the system. In chapter 3. it has been

shown that the energy margin is influenced by a variety of factors like active and reactive

power of the load, high and low voltage magnitudes. system parameters etc. Taking into

account all the above factors, thefollowing structure was decided upon.

Theinput layer of theANN receivesthe input vector:

u '" tu" UQ. UP\' J with

Up '" [ Pr, Pa, . • • •... •. • . • Pill

UQ = (Q" Q, , Q,l

uP\'''' [V PV1• VPV2 •• • . • • • • • • VpYjl

where p. , Q" are the real power and reactive power at the n-th load bus, and VPVj is the

voltage magni tude at the j-th PV (Generator) bus . For the 24 bus powersystem. show n in

Figure3.7, theinput layer received 64 inputs ( lhe vollages at all PV buses, the active power

generations at all PV buses, theactive and reactive power loads at ail buses). The output

layer of the ANN consisted of one node, i.e., the energy margin. Thus. the neural network is

designed in such a way that it can predict the energy margin for any given system operating

condition. since all the above input parameters are readily available from the Energy

Management System.
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4.4 Training of the Neural Network

This is another important stage in the implementation of the neural network. A

crucial aspect of the training of a neural network is the number of training sets used. The

number of training sets should belarge enough for the network to fonn meaningful patterns.

Also, it is important to include conditions like different loading conditions, different

generations, different values for slack bus and PV buses etc. in the training set. This will

help enhance the generalization ability of the network. For the 24 bus power system. a

number of training sets were generated considering a variety of operating conditions such as

varying load power factor, different voltage magnitudes of the PV buses, different system

loads etc. For each such condition, the loading factor, K , (K is the multiple of the load

with respect to the base case load) was varied from I to the point of divergence of the load

now solution, in discreet steps. Thus, a wide range of operating conditions were selected as

the training input. A total of 175 training sets covering all the above mentioned system

conditions were used for training the network.

Another important aspect of the training of a BP based neural network are the

lraining parameters, namely, the learning rate and the training tolerance. These factors

greatly affect the efficiency of training and also the perfonnance of the network. A low

value of learning rate will result in enonnously large training times, while a very high

learning rate may result in instability. Usually, it is advisable to use a learning rare of 1.0 at

the start of training. After the network has learnt about 80 % of the training facts, the

learning rate can be slightly reduced. It is found that this results in overall reduction of the

total training time. The training tolerancedefines the error permitted in the output during the

training stage. A high value of training tolerance will result in an inaccurate network, but

also will reduce the training time considerably. A low value of training tolerance, while

improving the accuracy, will correspondingly increase the training times. In fact, training

tolerances below a 'threshold ' value will result in the network not training at all. Thus, the

learning rate and training tolerance should be selected judiciously taking into account the

need for accuracy as well as reasonable trainingtimes.
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The software package used was Brainmaker [37], marketed by California Scientific

Software Inc. Brainmaker uses theBackpropagalion algorithm and has many features that

make it user friendly and pennits easy handling and editing of input data. The salient

features of Brainmaker are :

I) The Netmaker Toolbox. which pennits editing of the input data. andconverts it into

a fonn compatible with the Brainmaker package. Netmaker permitsdata to bepresented in

analog form, which is a big advantage as compared to other software packages. Also,

normalization of data is automatically performed by Nctmaker. Additionally, Netmaker has

facilities for specifying data as input, output or irrelevant.

2) Once Netmaker has organized the data imc a Iorm acceptable to Brainmaker, the

file is transferred to Brainmaker. Brainmaker has facilities for specifying the training

parameters such as learning tate, training tolerance and transfer function. Brainmaker

permitschanging of learning rate and training tolerance while training is going on. Various

transfer functions like sigmoid, linear threshold. step function, linear and gaussian are

available in Brainmaker. The number of hidden layers can also be adjusted to meet system

requirements. For example, if the number of inputs are large, it may be useful 10 increase

the number of hidden layers. Thus, this feature enables the user 10 alter the system

architecture based on experience. Brainmaker also creates a test file by taking a specified

percentage of data from the input data file and also periodically tests the network.

In the case of the 24 bus system, the initial learning rate was chosen as 1,0. After

about 80 % of the facts were learnt, the learning rate was changed to 0.9. The above step

was performed for training tolerances of 0.1 and 0.075. The transfer function selected was

sigmoid (Figure 2.2) , which is the most popular one for BP applications. For an ANN

package running on a PC- 486 machine, the training time for a tolerance of 0.1 was 45

minutes, while that for a tolerance of 0,075 was about 70 minutes. Table 4.1 shows one set

of input training data. In Table 4.1, V stands for voltage, PL for active power, QLfor

reactive power, and Po for active power generation. The subscripted numerals indicate the

bus number . The energy margin corresponding to the data in Table 4.1 is 36.081.
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Tab le 4.1 Table showing the input parameters for one set of input training data.

Y, Y, Y, Y, Y, Y, Y, Y, Y" Y"

1.023 1.01 1.022 1.015 I.ooz 1.005 1.015 1.02 1.03 1.00

Pu Pw P" Pu P", Pu p... Pu Puo PUt

0.718 0.925 0.799 1.345 2.346 0.740 2.469 0.800 0.140 0.712

PL12 PLU Pw Pus Pu , PU7 PLiS PU9 P"" Prn
1.332 0.548 0.5%5 1.006 1.Ui5 1.295 1.443 0.891 0.726 0.918

Pu, P, ,, Qu Qu Q" Q... Q... Qu Q... Qu

1.339 0.947 0.387 0.499 0.499 0.775 1.26 0,399 1.33 0.92

Qu o QLII QU2 QU3 QU4 QLlS QU6 (k" QUI QUt

0.718 0.629 0.718 0.295 0.543 0.682 0.689 0.778 OA98 0.124

Quo Quo Quo Q", Pc, Pc, Pc< Pc, PGO Pc,

0.421 0.82 1 0.735 0.519 0.624 0.75 0.6r 0.542 0.50 0.542

Pos Pc, Pmo P Oll

4.00 4.5 3 4.584

4.5 Test Results

After the training of the network, the network was tested on data it had not seen

before. This included system loading at different power factors. different values of loading

factor and PV bus voltage. The tests were conducted on networks trained on tolerances of

0.1 and 0.07S. The test results for both cases are presented below .

Figure 4.1 illustrates the perfonnan ce of the trained ANN for prediction of energy

margins. Input patterns for which the network had not been trained were presented to the

network. trained with tolerances of 0.1 and 0.075 . The predictions of the ANN for both

tolerances are plotted along with [he expected or calculated value of the energy margin . It

may be seen that the predicted value closely matches the expected value. Though the
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network was tested with over 20 test inputs. Figure 4.1 shows only seven sample cases and

the results.

.Ex~etfld

.Tol,r.•o.1

CTo l'r...o.075

Figure 4.1 Neural Network Perfonnance Evaluation

It may be seen that the predicted value of energy margin closely matches the expected value

for both training tolerances . though the tolerance of 0.075 gives more accurate results. Table

4.2 shows some of the important design parameters of the neural network.

Table 4.2 : Design parameters for the NeuraJ Network .

Power System Considered 24 Bus system

Number of layers Three

Number of input parameters 64

Number of outputts) One

Number of training sets 175

Learning Rate 1.0

Transfer Function Sigmoid

Training Tolerance 0.075 and 0.1
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A~ can be seen from Table 4.1. the ANN consisted of an input layer. a hidden layer and an

output layer. 1be input and hidde n layers have identical structures in that the numbe r of

nodes is equal to the number of inputs . Choosing the number of hidden layers is largely a

matter of experience and experimentation. If . after training. the output results indicate that

the A."'lN is not ab le to map the relationships accurate ly, it might be worthwhile to change

the number of hidden layers. For the work reported in this thes is. it was seen that one hidden

layer was adequate to obtain accurate results. The output layer had only one node . i.e.• the

energy margin . To fully apprecia te theeffect of trainin g tolerance on the predictio n accuracy

of a neural network. it is necess ary to co mpare the percentag e error in prediction of the two

toleran ces. Figure 4.2 co mpares the percentage errors in prediction of the network for

toleran ces of 0.1 and 0.075. It is seen that the prediction accuracy of the network trained

with a tolerance of 0.075 is much higher than that trained with a tolerance of 0.1. Though.

this comes at the expense of longer trainin g times. the greatly increased accuracy in the

predictions shoul d compensate for this.

Fig. 4.2 Compari son of percenta ge prediction error for two tolerances
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~.6 ASN models cons idering system contingencies

Chapter 3 described the effect of contingencies on the energy margin of the system.

An attempt has been made to construct an ANN model for evaluating the effect of

contingencies on the energy margin. A separate AI""N is usedto represent each contingency.

The training set for this ANN was generated as follows. A contingency was simulated and

the energy margins corresponding to this contingency condition were calculated for a

variety of system operating conditions such as different power Iectors. different system

loading, different values of PV bus voltages and PV bus generations. The input parameters

were selected to be the active and reactive powers of PV and PQ buses. the voltages at the

PV buses and the generations at the PV buses. Sixty training sets were generated for each

contingency. Five such ANN models were constructed to represent five line outages. The

lines considered for outage are 7 -21, 6 ·9, 8 - 21, 21 • 10,6 - 24. The performance results

for the ANN models are shown in Figures 4.3 to 4.6

I~
1 1 1 1 1 f !
I I I I I I [
I I I I I I ~ ~
I I I I I I I ~
I I I I I I I
I I I I I I I

Fig.4.3 Neural Network Performance considering outage of line 7 • 21
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s_...
Fig.4.4 Neural Network considering outage of line 6 - 9.

ii=I
~

s _...

Fig.4.5 Neural NetworkPerformancewith line 8-21out
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Fig. 4.6 Neu ral network perform ance with line 21 • 10 out.

Tbe above ANNs were designed with a training tolerance of 0.075 . It can be seen

that the prediction accuracy of the A.."lNs are indeed very high. with the predicted value

closely matching the expected value . As observed in Chapter 3. the ene rgy margin is lower

for the system with contingencies. as compared to a system with no outage .

-1.7 Ap plica tio n in a n E:\IS Environment

As mentioned in Chapte r 2. an on-line voltage stabili ty index would bea very useful

tool 10 the system opera tor in avoiding incide nts of voltage collapse . An on-li ne voltage

stability index implemented as part of an Energy Managemen t Sys tem (E.MS). can

complement othe r functions of the EMS like optim al powe r flow. unit commi tmen t.

network control. and make use of (he system parameters already monitored. However. the

main challenge for the implementation of an on-line voltage stability index has been the

com putational complexity involved in (he context of the modem day power system. This is

where ANNs can play an important role in making poss ible an on-line voltage stability

index , withou t the assoc iated computational burden. The ANN based stability index uses

input parameters already monitored by the EMS. and thus does not require additional data

acquis ition equipment. More important ly. ANNs can bring in a different perspective to the
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operation of an EMS in that they can upgrade the " intelligence" of the EMS by virtue of

their inherent properties. By judicious selection of training sets, ANNs can be trained to

recognize virtually any system condition without adding to the computational burden.

Figure 4.7 show s the block diagram of the proposed scheme integrating the ANN

based voltage stability evaluat ion system into the EMS. The Remote Terminal Units

(RTUs) collect the various data from various locations in the power system and relay them

to the Supervisory Control and Data Acquisition system (SCADA). The SCADA takes

various -onnot actions like switching on and off of circuit breakers, transformer taps,

capeckcr banks etc. The SCADA is connected to the Man Machine Interface (MMI), which

allows the operator to interact with the EMS, The ANN based voltage stability evaluator

gets its inputs from the SCADA. The inputs required for the ANN, like .cuve and reactive

power at load points, the power generation, and voltage at the PV buses are readily available

from the SCADA system. The ANN based system, after perfonning the voltage stability

evaluation, alerts the system operator to any potentially dangerous situation, so that

corrective action can be taken.

Figure 4.7 indicates the possible architecture of an ANN based Energy management system.
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RTU

Figure4.7 Block Diagram for integrating ANNbased voltage stability monitor into EMS.

4.8 Summary

Ihis chapter has presented results on the ANN implementation of a system to

evaluate the voltage stability of a power system. The prediction accuracy of the ANN is

quite high and close ly matched the cntculated value. The highest percentage error

encountered was only 7 %, and it is be lieved that this error can be further reduced by

training the network with a larger training set. Also, it is seen that the trai-t ng tolerance
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influences the prediction accuracy to a considerable extent. A lower training tolerance leads

to more accurate results. but comes at the expense of a higher training time.

The input parameters presented to the network are readily available from the EMS,

thus lending this model to easy application in an EMS environment. Theeffect of training

parameters like learning rate and training tolerance on the network performance was

studied. and optimum parameters were selected. ANN models were also implemented for

contingencies, with a separate ANN being used for a contingency. Here too, the ANN

model gave good results in predicting energy margins from system parameters.
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Chapter 5

Application of Load Margin Method for Evaluating
Voltage Instability

S.l lnt rod ucUon

The voltage stability of a power system is intimately connected to the system

loading, and has indeed been called load stability. The power system moves closer towards

instability as Inc loading increases and 31 a paniculnr loading point. it loses stability. The

Jacobian of the load flow equation at this point is singular. Conventional voltage stability

indices have been developed to provide an indicator of the voltage SIOlbility of the system,

based on the system conditions. They typically provide a numerica l value of the index,

which in most case.. in unique 10 a syste m. For example. the index based on the minimum

singular value 113). provides a value based on the singular value deco mposition of the

Jacobian at that operating point. The energy margin met hod provides a value, which is

unique to the system. In both the above cases, it is essential that the operator is aware of the:

significance of the numerical value of the index obtained from the E.\lS. In other word.., it

woold be helpful if the opcratoe has a reasonable amount of expertise In the analysis of

voltage instability. Th is would help the operator ,in appreciating the situation benet.

However, this may not always bepossible and hence there is a need for an index which can

provide a Mega Watt (MW) margin to instability. This wou ld bean extremely useful tool in

an EMS environment. a.s it would give the system operator the load margin the system has

before it moves irrevocably into collapse. This aspect is important from the point of view of

the current trend to keep the user interface of the EMS as simple and direct as possible.

Most currently available voltage stability indices compute the voltage stability by

uniformly increasing the load until the singularity of the Jacobian is reached. Thus. in most

cases, the point of collapse, a." given by these indices, will correspond to the point of

maximum system load ing possible. However, the MW margin obtained from this point

may not be a true indicator. This is because of the fact that the system load need not always

increase uniformly. The d irection or pattern of increase is of gn:at importance in
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where

f( x, p) = g [:] - [~] = 0 (5.1)

x = [~] p = [~]
Here x is the system state vector, and p is the parameter vector whose elements are active

and reactiveload power, and active generator power. Let J. and Jp be the Jacobian matrices

of the vector function fwi th respect to x and p respectively. Fora given parametervector Ph

a system state vector Xi can be obtained by solvingequation (5,1) . Each parameter vector Pi

represents a specific system condition in terms of active and reactive loads, and active

generation. The system reaches its voltagestability critical point if the parametervector P*

und the corresponding system state vectorx' arc such that the power flow Jacobian matrix

J. is singular. LetS denote the hypersurfacc in the N dimensional parameter space such that

J,(x', p*) is sing ular if p* is a point on S.

Given an initial system operating point (xo.Po) • we have to find the parameter

vector p' on S such that the distance between poand p" . k = II' . - p~ , is a local minimum

for thedistancebetween poand S.

Assuming that S is a smooth hypersurface ncar p", a normal vector to this

hypersurface at (x' , P') is given by

q'= ~ 4 (5 .~

where w' is the left eigenvector of J, (X'. p' ) corresponding to the zero eigenvalue. And n'

is normalizedsuch that !Tl ~ = 1. Startingfrom the initial system operating point (xo,Po) • the

system is stressedby incrementally increasing p along a particular direction, Each time I' is

increased, equation(5.\) is solved to obtain the systemstate vector x. And P is continuously

increased along the same direction until, at the voltage stability critical point (x', p' ) the

power-now Jacobian matrix J, becomes singular; that is
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p. = p"+k~ (5.3)

where k is the distance between the initial system operating point (Xo. Po) and the voltage

stabilitycritical point ( x",p') as k =!p •-p~ .

For a given initial system operating point (Xll, ~). P can be increasedalongdifferent

directions. Obviously, the value of k depends on the direction along which p is increased .

The objective is to find the direction of the parameter vector p such that k is the local

minimum.

The followingprocedure determines the vector11' along which thedistancebetween

the initial equilibriumpoint (xo. Po)and the singular point(x", P') is the shortest:

l. Lei nilbe an initial guess for the direction 11' , 110 = I.

2. Stress the system by incrementally increasing p along the direction or n . until J. becomes

singular; that is, detennine kl • P, and Xi so IhMP i = po+ k;Tli is on the surface5.

3. 5CIT\i+l= w; Jp,and 1'1 ;+. 1 = 1.

4. Iterate steps I, 2 and 3 until T\i converges 10a value 11•. Then. p. = po+ k" 11' is the

corresponding equilibrium condition.

The above described procedure is illustratedon a simple2 bus power system shownin Fig,

5.1.

V L-a.

Z=jO.25
@c--+-- - - +_____.

lLO P+jQ

Fig.5.1 A simple radial system

Corresponding to equation 5.1 , we have

[4V'inn-P ] [0]f(x.p)= '"
4Vcoso. -4V1-Q 0

(5.4)
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with

, =[~] and p=[~]

'rte racobtan mamcesare

(5.5)

[

4VCOSa.

J. = -4VslnCX

and

astnc ]
4cosa - 8V

(5.6)

(5.7)

The determinant of J, ls..

det(J.) = 16 Y • 32 y Zcos Ct

On the singularsurface5, det (J.) = 0 , that is,

16 V· 32 V2 cos a = O

or V=_I-
2",,,,

(5.8)

(5.9)

(5. 10)

Equation (5.8) describes the relationship between V and a when l . is singular. From

equations(SA ) and(5.8) , we have the following expressiondescribingthe singularsurface

S in the parameter space :

p2+4Q-4=O

Assumethat the system has the initialconditiongiven below:

P(}=O.8 00 = 0.4 Va =0.8554 fkJ= 13.52ll

Table 5.1 shows the iterative process of finding the point of voltage instability which is

closest to the inilialoperatingcondition.
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Table5.1 Calculationof shortest distance to instability for system in Fig S.t [40}

Iteration Left eigen vector Th' distance 10 P"Q,

~ ; Instability (k j )

1 0.9725 ~ 0.2331 1.0715 1.8430,0.1 500

2 0.6776 ~ 0.7354 0.4173 1.0828, 0.7069

3 0.4869 - 0.8735 0.40ftl 0.9977,0.75 41

4 0.4443 ~ 0.8959 0.4024 0.9788, 0.7605

5 0.4405 ~ 0.8977 0.4016 0.9769,0.7605

6 0.4378 - 0.8991 0.4015 0.9758, 0.7610

Q --+

Fig. 5.2 Singular surface S in the p.Q plane
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the initial operating condition. ThesurfaceS represents the locus of all combinations of P

and Q which result in singularity of the Jacobian. All points below S represent voltage

stable conditions and all points above S represent un:r.table ccndirions, The figure shows

three different directions of load increase. If the load was increasing in the direction shown

by the vector 1'11, the 103dmargin IMW at the singular point . MW at the current operating

point) is quite high. However. if the load direction is given by either ll ~ and fk,. it can be

seen that the singular surface is quite dose and hence the 103dmargin is considerably jesser

than thaI for JlII-Thus. the direction of load increase is an imponant factor in determining

the minimum distanceto collapse.

Knowing the direction of the nearest instability point is of great U'oC to system

operator!', since they can identify dangerous loading trends which may push the system

faster towardscollapse. If the system loadmg is in a direction that will bring on the collapse

quicker than that for a uniform load increase, then the system operators can take immediate

remedial action before the situation becomes critical.

SA General Desertptlon of the procedure

For any system, the general procedure for finding the: minimum distance from an

initialload level Plio Qo10the singular surface5 is 3Sfollows:

I. Increase load from Plio Qo in some direction until an eigenvalue of the Jacobian is

procticallyzero. Theload level Pl, Qt corresponding to this point is the stability limit. This

point lies on or Is extremely close 10 S.

2. For the conditions at PI. QJ. perform modal analysis and delermine the left eigenvector

of the full Jacobian m3trix. The left eigenvector contains elements which provide the

increments of MW and MVAR load for each bus. The eigenvector points in the shortest

direction to singularity, which is therefore normal to S.

3. Go back to the base case load level Pn, Qoand load the system again. but this lime in the

direction given by the left eigenvector found in (2). When S is reached, a new lert

eigenvector is computed.

88



4. Again. we return to the base case Po.Qoand load the system in the direction of the new

eigenvector given in (3) above. This process is repeated until the computed eigenvector

does not change with each new iteration. This process will then have converged.

When it has converged. the so lution gives the minimum vector (P and Q) distance 10

S from Po and Qo.This process can be applied to large systems also. however. S is no longer

a simple locus. but a hypenurface in a parameter of dimension 2N. where N is thenumber

of buses. Tbe shape of the hypersurface is not known. hence this process may find only a

local minimum.

5.S App lica tion to the 39 bus New England System

The above algorithm is implemented in VSTAB. a commercial voltage stability

software package marketed by PowerTech Labs. The work reported in this thesis made use

of the lNS option of VSTAD [41] to determine the nearest instability points for the 39 bus

New England System [41]. which is a very popular system for testing voltage stability

techniques.

The New England 39 bussystem is as mown in Figure 5.3. Theprocedure for compu tation

of the nearest instability point using the ~S optiooof VSTAD is described later in this

section. The procedure invol ves repealed solutions of the load flows as the program

altemplS to find a local or global minimum of the distance to instability. Thus. in most

cases, a number of iterations are required.

Th is section also presents simu lation results on the effect of variation of load on the

load margin of the 39 Bus New England Power System.
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The procedure for findingthe nearest instabilitypointusing VSTADis given below :

1. VSTADrequiresa solved load flow as an input beforeproceeding with the calculations.

Therefore. a solved base caseload flow result of the 39 bus systemwas generated.

2. VSTAB requiresa file with a '".prm extension. which specifies the options required. The

other files required are with e.chc , e.gds, e.ins. and e.mrv which specify the loading

pattern.generation, nearest instability point calculation, and parameters for modalanalysis

respectively.

3. The infonnation about the load margins is contained in the e.out or '".pvt files. These

files contain the load flow results and the PVcurve respectively, for all the iterations.

4. YSTAB, with the nearest instability option, was run for various values of K, the loading

factor.

The program requiresa number of iterationsto arriveat the nearest instability point

for a particular operating point. This is due to the fact that repeatedload flows arc required

for each load direction. Before arrivingat the load direction leadingto the nearest instability

point, the program tries out various directions of load increase. Figure SA shows the load

margin in MW plottedagainst the loading factor, K.

§
L'"

Mergln
tMW)

"

Fig. SA Plotof Load Margin in M'w . against Loading Factor, K
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As mentionedearlier. there is no guarantee that the program willconverge to the global

minimum. The results obtainedmayrepresent a local minimum in the hypcrsurface, as each

time the programattempts to find the minimum distanceto collapse. Also, theshape of the

hypersurface also Influences the valueof the load margin. For the two bus system shown in

Figure 5.1. the shape is almost a straight line. But. for a multi bussystem like the 39 bus

system, the shape can be quite complex and the program attempts 10 find the local

minimums in this complex hypersurfuce, for each loading condition. It may be observed

that there is an apparent contradictionin the figure in that the load marginis more at larger

loads. This is because of the factthat Incprogramis gellingtrappedin a local minimum and

the shape of the hypcrsurface may be such that the local minimums 1lIhigher loadings are

largerthan that at lower loadings.

5.6 Effect of Contingencieson Load Mar gin of IEEE 24 bus system

The IEEE 24 bus system is shown in fig . 5.5 i3S]. The system has 10 generators

and 38 lines. For differentloading conditions, the load margin wasdetermined After thai,

fiveof the most heavilyloadedlines were identified to studythe effect of contingencieson

the load margin. The difference betweenthe systemsshown in Figures5.5 and 3.5 is in the

bus numbering and the basecase loading. The system topology remains the same.

To study the effect of contingencies on the load margin. the following procedure

was adop ted.

I. The inputdata was modifiedto take into account the contingency.

2. The newdata file wasused as input to a load flowprogram and thenew load flow results

obtained.

3. This new load flow resultwas used as input to the VSTABsoftwareand the load margin

determined.

This procedure was repealed for all the five contingencies and the corresponding load

marginsdetermined.

92



Fig. 5.5 IEEE~~ Bus ReliabilityTest System

rahk 5.~ sh~l \' s theload 110\\ results for t!11: [EEE: 4 llus RchahilityTestSystem.
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Table 5.2 Load flow results forIEEE 24 BusSystem.

BU.\ No. voltage vonage Load Load Oererenon Gcnerancn

p.u. Dc,,,,, MW MAR MW MV AR

I 1.006 0 108 12 192 78.53

2 1.023 · 14,559 31.0 20.0 19"" 29.04

3 1.000 · 19.51 13.0 31.0 0 .000 0.000

4 1.022 -1,""45 74.0 15.0 0 .000 0.000

5 J.OI5 0.433 21.0 14.0 0 .000 0.000

6 1.002 8.166 136.0 IZS.O 0.000 0.000

7 1.005 7.625 125.0 25.0 200.0 34.27

8 1.0lS 14.43 131.0 35.0 0 .000 0.000

9 1.020 14.89 135.0 36.0 0 .000 0.000

10 1.030 20.8 1 165.0 40.0 0. 000 0.000

I I 1.000 8.43 0.000 0.000 0 .000 0.000

12 0.9672 .9. 114 0.000 0.000 0 .000 0.000

13 0.9870 · 13.17 165.0 54.0 394.0 0.000

14 1.0122 ·1....3 104.0 39.0 0.000 150.0

15 1.0140 · 15. 18 211.0 64.0 155.0 0.000

16 0.9782 · 18. 14 100.0 20.0 155.0 0.000

17 0.9832 -9.871 0.000 0.000 0 .000 0.000

18 1.0217 ·11.95 233.0 68.0 -100.0 0.000

19 1.006 ·3.6 19 151.0 37.0 0.000 0.000

20 0.9917 ·3.18 128.0 26.0 0.000 0.000

21 1.0199 12.76 0.000 0.000 400 .0 0.000

22 0.9988 7.9 13 0.000 0.000 0.000 0.000

23 1.0004 6.976 0.000 0.000 660 .0 0.000

24 0.963 -0.138 0.000 0.000 0.000 0.000



Table 5.3 showsthe loadings of the linesselected foroutage for basecase loading.

Table 5.3 Loadings of lines selectedforoutage in IEEE 24 bussystem.

Line Line Loading (MW + j

MVAR)

1 - 5 58.85+ j 5.85

1 - 3 45.68+j 6.43

2 - 6 67.03+ j 5.57

2 - 4 67.75 + j n.sz
7 - 8 75.06+ j 29.49

Table 5.4 shows the load margin for outage of each line. Load Margin without contingency

for base case loadwas 387MW.

Table 5.4 Variation of load margin with line outage for base case load.

Line Outaged LoadMargin

1- 5 316MW

1- 3 360 MW

2- 4 313 l\1W

2- 6 163 MW

7- 8 234 MW
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Thus. it is seen that the load margin is affected to a considerable degree by line

outage. This means, that in the event of a line outage. the load m:JIgin available to the

system is reduced and the system may reach the collapse point more quickly. Similar tests

wereconducted on the 24 bus system. but with different system loading conditions. In nil

cases. the load margin after an outage was found to beconsiderably lower than that without

an outage.

5.7 Summa ry

This chapter has presented the detection of the nearest instability point Cor the load

margin fnr the 39 bus New England System and the lEEE 24 bus power system. It can be

seen that the load margin is a useful 1001 for the system operator in identifying potentially

dangerous system conditions. The nearest instability poin t determined need not always

correspond to the global minimum, This is because of the facl that for large systems, the

hypersurface of the singularity locus is quite complex and may be uneven. Simulations

were carried OUI on the IEEE 24 bussystem 10study the effect of contingencies on the load

margin. 1be load margins are considerably reduced in the event of line outage. This has

important implications from the point of view of a system operator, in that the operator has

10 resort to corrective treasures to prevent thesystem from moving closer10 collapse in lhe

event of a contingency. The next chapter will describe the applicll.lion of artificial neural

networksfor evalualing loadmargins.

The i,nplications of knowing minimum load power margins are signifICant. These

margins represent the tNC worst case load increases fOt" system loadability with respect to

voltage collapse. In other words. these margins give the operator the maximum load in MW

the system can take, before sliding into instability. This is as opposed to other voltage

inslability indices, which give only a numerical value of the index. and do not provide any

information on the power margin available, Thus, detennini ng the minimum load margins

can help the operator in taking corrective control actions as soon as the margin reaches a

critical value. This critical value can bebasedon the MW and MVAR reservesavailable in

thc system.
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Chapter 6

Artific ial Neur al Networks for Eva luation of Load
Margins

6.1 Introduct ion

As menti oned in Chapter 5, most of the currently available methods for voltage

stability evaluation compute the voltage stability index by uniformly increasing the load

until the singularity of the Jacobian is reached. Effectively , this means that the point of

collapse given by these indiceswillcorrespond to the point of maximum system loading

possibleassuming that the loads increa.se unifonnly. However, in practice, the system load

does not increase unifo rmly, The utility has very lillie control on the directio n of load

increase. It would be very help ful if the system operators can know the worst case load

increases for system loadebiiity withrespect to voltage collapse. The load margin index

prese nted in C hapter 5 is thus a very useful tool for the system operator since it gives in

MegaWatt term s the max imum load the system can take before sliding into instab ility.

Other voltage stability in dices gi ve nnly a numerical value of the index and do not provid e

any infonnatio n on the power margi n avai lable. The informationon minimum load margin s

available can he lp the operator in taking corrective contro l actions as soon as the loa d

reaches a critical value . This c ritical valu e depend s on the MW and MV AR reserves

avallablein the system.

The computation of load margins was present ed in Chapter 5 . It can be seen that the

method is compu tation intensive since numerous load flows and iterations nrc required

before theprogram convergesto a localor global min imum. Th us the implemen tation of an

on-line load margin index inan E nergyManageme nt System (EMS) e nvironme nt presents a

considerable challenge.

Artificial Neural Networks (ANNs) present the possibility of implementing an on 

line voltage stability index. Chap ter 2 prese nted the application of ANNsto different pow cr

syste m problems like transi ent stabi lityeval uation, load forecasti ng, fault diagnosis etc. An

ANN based on-line vo ltage stabili ty ind ex in an EMS e nvironme nt wou ld result in
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considerable savings in computation time and effort. An ANN basedapproachcan makean

...n-Ilne load margin index feasible evenfor large power systems. This is dueto the fact that

. truined ANN requires very little computation lime or memory. ThisChapter describestwo

neuralnetwork models des igned to evaluate the load margins.

6.2 Selectionor (he ANN algori thm

The different aspects of the selectionof a suitable ANN aJgorithm have been

detailed in Chapter 4. Based on those considerations. it was decided to use the back

propagationalgorithmfor ev aluating loadmargins.

6,3 Selection or Input Parameter s

The selectionof the inputparameters isacrucialaspect in the implementationof an

ANN based system. The input parameters should be such that they should strongly

influence the output and have an underlying relationship to the output. Since the ANN

based load margin index is to be implemented inan EMSenvironment. it is importantthat

all the Input parametersshouldbeavailable in the EMS without theuse of additionaldata

acquisition equipment. In chapter 5 it was seen that the loadmargin was influenced by the

direction and magnitudeof the load increase and also the reactive power generation.Taking

intoaccountthe abovefactors. thefollowing SInlCIUre was decided .

Theinput layerof theANN receives theinput vector :

u ::: [ u P. UQ, Upv 1 with

Up: ( PloP!. . . . . . Pn J

"" '[ Q" Q, Q" J

Upv: [VPVI• VPV2• .• . •• • v PVj I
where Pn•Qnarc the real power load and reactive power load at then-th bus.and Vl'\'j is

the voltage magnitudeat the j-th PV bus. For the 39 bus New England System. the input

layerreceived 60 inputs ( the voltages at all PV buses. the active power generations at all

PVbuses. the MW and MVAR loads atall buses). For the IEEE 24 Bus Reliability System.

theoutput inboth cases is the corresponding load margin.
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6.4 T raining of theNeural Network

The strategy for training a neural network has already been outlined in Chapter 4 .

For the 39 bus powersyste m,anumberof training sets werege nerated considering 3 varie ty

ofoperating conditions, such asvarying load power factor, di fferent voltage magnitudes of

the PV buses, different system loads etc, For each such cond ition, the loading factor, K ,

(loading factor is the multiple of the base case loading) is calculated . A wide range of

operating conditions were selected as the training input. A to tal of 170 training samples

were used as the training set. For the 39 bus system,the initial learning rate was chosen as

1.0. After about 80 %of the facts were leamed, thelearningrate wasred ucedto 0.9.

The BrainmakerPackage, marketed by California Scienti fic Softwareand describe d

inChapter 4, was used10 implement theANN model. For the 39bus system. the sigmo id

transferfunction was used andthe numberof hiddenlayerswas specified asone.

6.5 Test Re.~ults for the 39 Bus NewEng land Pow er System

After the training of the ne twork, the network should be tested on data it hadno t

seen before. This included system loading at different power factors, different values of

loading factor, and PV bu s voltage. Table 6.1shows one such training set, for the New

England 39 Bus system, w hichconsistsof 60 inputs.

In Table 6.1, V represents the voltage at the PV (vo ltage co ntrolled) buses, PL

represents the active power in p.u., QLrepresentsthe reactive powerand Po represents the

active power generationin p.u.The OUlput, Le., the load margin is also specified in p.u. For

thespecific set of input training da ta, the output was 3.98 p.u. 170such input and output

data pairs representing a wide spectrum of syse m operation were used for training the

input.
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Tab le 6.1 On e set of input train ingdata.

v" V~ V" V" V" V" V" V" V" V"

1.0$15 0 .982 0.9831 0.9!f12 1.0123 1.0493 1.0635 I.D27 8 1.0265 1.0 3

Pu P", P" Pu Pr,u PLU PLl6 PU 1 p, ao P U 1

3.2 2 5.00 2.338 5.220 0.085 3.200 3.294 1580 6.80 2.7 4

PU J P,,,, PC" P,,,, P", P UI P,~ Pc" P l J9 Qu

2.475 3 ,(186 224 U9 2.81 2 06 1.835 0.092 11.02 0.0 24

Q", Ql.1 Q u Q UI Q U! QLll Q UI Q"" QU I Q U J

1.84 0.84 1.76 0.880 1.530 0,323 0.300 1.030 1.150 0.784

QUo< Qw Q," Q," Quo QL19 Qu, Qu, PC :t9 Pm .

.Q.922 0 .471 0 .170 0.755 0.276 1.269 0.046 2.50 2.50 5.729

Pan Po» P C34 Pon Po> PGJ1 PO" PCl9

6. 50 6 .320 5 .08 6.50 0.0 5AO 8.30 10.0

Table 6.2 illustrates the structure and im portant design parameters of the AN N, for the 39

Bus System .

Table 6 .2 Importantdesign parametersfor the Neural Network

Powersystem Consid ered 39Bus NewEngl andSystem.

Numberof layers Three

Numberof input parameters 58

Numberof output(s) 1

Numberof training se ts 170

LearningRate 1.0

TransferFunction Sigmoid .

Train ingTolerance 0.1
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Figure 6.1 shows the testing results of the trained ANN. The expected values of the

load margin were obtained by repeated simulations using VSTAB software. Testing of the

network was done with 17 test cases or 10 % of the training sample. for the sake of clarity.

results are shown for only 7 sample cases.

"",,,--------,
...,J.I--._ - - - - - --!

Fig. 6.1 Performance evaluation of neural network.

Figure 6.1 illustrates the comparison of the predicted value of load margin with the

expected value. As can be seen • the predicted value closely matches the expected value.

Figure 6.2 illustrates the percentage error in predicted value of load margin. It is seen that

the maximum percentage error in the predictions is only 3.5 %. whereas a minimum

percentage error of 0.5 % is achieved. Thus. Figures 6.1 and 6.2 indicate that given the

appropriate system parameters. the ANN based system can predict the load margin of a

power system with a high degree of accuracy.
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Fig. 6.2 Neural Network Performance evaluation.

6.6 ANN models to evaluate effect of contingenci es on load margin .

The IEEE 24 Bus system, shown in Figure 5.5 was selected to implement this

model. Chapter 5 presented the effect of contingencies on load margin of the IEEE 24 Bus

system. It was found that contingencies have a considerable effect on the load margin. It is

essential that an on-line voltage stability index be able to evaluate the load margin in the

event of a contingency in the shortest possible time. For large scale power systems, this

would role out standard computation methods, since the computation costs in terms of

speed and economy would be quite high. Artificial neural networks offer an ' intelligent'

solution to this dilemma.

The approach outlined in Section 4.6 of Chapter 4. proposed a separate ANN model

for each contingency, since it did not take the network topology into account. The new

approach proposed in this section for the ANN based model for contingency evaluation is to

include information regarding the network topology in the training set. The detailed

procedure for design of the network is given as follows. Five of the most heavily loaded

lines were selected, as detailed in chapter 5. Each of the five lines was outaged and training

sets created for each of the above ouraged cases, and for one case with all lines in service.

The training sets were created by change of load, change in PV bus values, power factors

etc. The network topology information. in the form of line power flows for each of the five
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lines. was obtained for each such case. Th is line power flow infonnation consisting of

active and reactive powers, was included as additional inputs in the training set. For

example. for the line I· 5, the real and reactive power flow from bus I to bus 5 was

considered. Table 6.3 shows one such trainingset, for the case in wh ich line I - 5 of the

IEEE24 BusSystemis outaged.

In table 6.3 shown below, Y stands for voltage of the PY (voltage controlled) buses. PL

stands for theactive power load, OL for the reactive power load , PUNE and QUNE stand for

tIM: line powerflows, all valuesbe ingin per unit The outaged lines are denoted as follows.

LineI corresponds 10 line I - 5

Line2 corresponds 10line I ·3

Line 3 correspondsto line 2 ·6

Line 4 correspondsto line 2 -4

Line5 corresponds to line 7· 8

For the aboveinput training dataset, theoutput, i.e.• the load marginwas 2.59 p.u.

Table 6.3 Oneset of inputtraining data forline 1· 5 ou taged

v, V, V" V" V" V" V" Vu P" P"

1.005 0.917 1.014 0.9782 1.0217 1.0119 1.004 1.023 1.08 0.97

Pu Pu P", P", Pu Pu P" PLI O PLI 3 PL14

1.8 0.74 0.71 1.36 1.25 1.71 1.75 1.95 2.65 1.94

PLl3 PLl 6 PL18 P LI 9 P"" Qu Qu Qu Qu Q",

3.17 1.0 3.33 1.81 1.28 0.22 0.2 0.37 0,15 0.14

Q" Qco Qu QL' Q LlO Qw Q.... Q Ll5 Q U 6 QLlI

1.28 0.25 0.35 0.36 0.40 0.54 0,39 0.64 0.20 0.68

Cle" Quo PG, Pm Pun Pm, Pm, Pm8 POll Pn1J

0.37 0~6 2.0 3.94 1.55 U S 4.0 ~O 6.6 1.924

P""", QUNE I PU ND Q...." P""", Qu",u P- IlL.... PUND Q UNE3

0.0 0.0 0.3007 0.153 0.822 0.022 0,6703 0.1724 0.7499 0.4974
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Table 6.4 Design p aramete rs forthe NeuralNetwork.

PowerSystem Considered IEEE 24 Bus System.

Numberof layers Three

Nu mberof inputparameters ~O

Number of output(s) I

Numberof training sets 220

Learning Rate 0.1

Tr ansfer Function Sigmoid

Trai ning Tolerance O.07!5

Table 6.4 shows the importantdesign parameters of the neuralnetwork. A fter training the

AN N was testedwith variouscases and the test results aregiven below. It maybe noted

tha t thetest datawas not included aspart of the trainingdata.

The philosophy behind design o f this ANN model wasthat a single ANNshouldbe

capable of evalualing the load margins of a power system under normal ope rating

co nditions as wellas under with line outages. The ANN model introduced in Chapter 4 uses

separate AN N for each contingency. T he model proposed in this section eliminates the

need forhaving several parallel ANNsand hence cangive savings in terms o f training time,

cost and complexity. This has been made possible by including the network topology

information alongwith the training data. Though the proposedmodelhas been trained with

inp ut data for 5 Une outages, it caneasily beextendedfor larger systems.

Figu res 6.3 10 6.8 illustrate the performance of the ANNbased model ineval uatingthe load

marginsin presence of contingencies.
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Fig.6.3 Neural Network Performance Evaluation for line 1- 5 outage .
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Fig.6.4 Neural Network Performance Evaluation for line 1-3 outage
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Fig. 6.5 Neural Network Performance Evaluation for line 2-6 outage .
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Fig.6.6 Neural Network Performance Evaluation for line 2-4 outage.
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Fig.6.7 Neural NetworkPerformance for line 7-8 outage.
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Fig. 6.8 Neural NetworkPerformance evaluation forno lineoutage .
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It canbeseenthat the predicted valueof load margin closelymatches the actual valuefor all

cases, i.e., withcontingenciesand with all lines in service. This shows that a single ANN

model trained with network topology information, can predict load margins for all system

conditions.

6.7 Summary

Asdescribedin Chapter 5. loadmargins arc: a significantpointer to the MWreserves

of a power system and on line monitoringof the load marginscan be very useful. Load

marginsrepresentthe minimum load the system can take before sliding into instability.

Knowing the MW and MVARreserves available, the systemoperator can take corrective

action likesheddingnon essential loud. allocating more MWor MVAR reservesetc. before

the system moves irrevocably into voltage instability. However, calculation of the load

margins is a computationally intensive procedure and involvesrepealed solutions of power

flows until the programconvergesto a localor global minimum. In the context of on-line

implementation of load margin in an EMSenvironment. this can imposea considerable

computation burden. An ANl'ol' basedsystem.on the other hand. will imposea muchlesser

computational burden and is also much quicker. sincerepealediterationsare not required.

This chapter has presented two ANN models. The first. implementedon the 39 Bus New

EnglandSystem. predictsthe loadmargin for the systemundernormal operatingconditions,

i.c, with all lines in service. The second ANN model. implemented on the IEEE 24 Bus

Reliability TestSystem. CUll evaluate the effect of contingencieson loadmargin anda single

model with suitable inputscan be used to predict the load margin of large systemsunder

normal operating conditions as well as under contingencies. Thissingle ANNmodel which

takes into account the network topology. CUll result in significantsavings in computation

costs and eliminate the need for separateneural network models for each contingency. It

may be noted that ull the inputs to the ANN are parameters readily available from the

SCADA, without any need for additional data acquisition equipment. The trained ANN

model, used in conjunction with SCADAand other EMS functions. as outlined in the block

diagramof Figure 4.7, can be a valuable tool to the system operator in maintaining power
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system voltage stability, by offering a fast, economical and intelligent solution, However, it

may be noted that the accuracy of the predictions of the ANN will depend largely on the

effectiveness of the power system software used in generating the training set data. There is

no guarantee that the load margin obtained is a global minimum. since there exists a

possibility of gelling trapped in the several local minima existing in a complex

hypersurface. Ideally, the training set should contain data based on the global minimum

obtained. But, at present there is no way of finding if VSTAB has located a global or local

minimum, This problem should be addressed further in future research into better

mathematical methods 10arrive al a global minimum everyume.
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Chapter 7

Conclusions

7.1 CoptributiOD' of th is rt!tu t b

Human civilization. as we knowit today owesa lot to electrical power. In fact.mostof the

conveniences and lifestyle we take for granted have been made possible due to the reliable and

efficient operationof the modem power system network. However, the rapid industrialization and

modernization of the society has placed a 101of stress on the power system network. Theload levels

are rising, and the consumers are demanding efficiency and reliable supply of power as never

before. But, utilitieshave fewer resources to meet these demands. This in twn has given rise to a

host of new problems hitherto unknown, the most prominent of which is voltage instability. The

interesting aspect of the voltage stability problem is thai even well developed, strong , and

interconnected systems are experiencing this problem. Unless utilities are able to commit huge

resources into building new transmission and generation facilities, this problem will continue to

stay and even worsen and major system collapsesmay bea possibility.

In this scenario. power system operatorshavea vital role to play in ensuring system security

and efficientoperation.The primaryrole of a power system operator is to ensure that the system is

operating in a healthy condition and take corrective action in the event of any abnormality. In

performing this task. the system operator has the help of powerful tools like the Energy

Management System (EMS) . The EMS is a very versatile system which has capabilities for

control. monitoringand analysis of power system conditions. It is expected that in the near future.

EMS will beequipped with capabilities for on-line voltage stability analysis softwarefunctions. so

as to enable thesystem operator 10 take immediate corrective action .

A number of voltage stability indices have been developed by various researchers for the

purpose of quantifyil"l& the voltage instability of a power system. This thesis has studied two

popular voltage stability indicesand presented simulationson test power systems. These indices are

computation intensiveand require repented power flow solutions. For large power systems, this can
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bequite time consumingand heavyinvestmentsin termsof computerhardwarearc requiredif real

time response is desired. This has been the motivation in investigatigatingother 'intelligent'

solutionsto this problem. ArtificialNeuralNetworks(ANNs)have arousedconsiderableinterestas

patternrecognitiontools in solvingvariouspowersystem problems.

The voltage stability indices investigated in this research arc the energy margin approach

and the load marginapproach.TIleenergymarginmethod,takes intoaccount the systemoperating

conditions, the load disturbances, and the multiple solutions of the power flow equations • in

assessing the voltage stability of oJ. power system. Simulations are carried out on the effect of

loadings and contingencieson the energy margin of a 24 Bus Power System. It was found that

contingencies have a detrimental effect on the energy margin and the energy margin was

considerablylower as compared to normal operating conditions. The load margin index give in

Mega Watt terms the maximum load the system can take before sliding into instability. Thus.

determiningthe load margins can help the system operator in taking correctivecontrol actions as

soon as the marginreaches a criticalvalue.This criticalvalue will depend on the MW and MYAR

reserves available in the system. Simulations were carried out on the effect of loadings and

contingencies on the load margins of the 39 Bus New England System and the 24 Bus IEEE

Reliability Test System. It was found that contingencies have a significant effect on the load

marginsand tend10reduce them.

Three ANN models were developed in the course of this research. All three ANN models

were implemented on the back propagation algorithm. The effect of parameters like training

toleranceand learningrate on the accuracyof prediction and the training time were investigated.

One of the mainconsiderations in developing the training sets for all the three ANN models was

thatall trainingparameters should be readily availablefromthe EMS. For the 24 Bus Powersystem

used for investigatingthe energy marginb~d index, an ANN model was developedwhichcould

predict the energy margin from the system operating conditions. The inputs to the ANN were the

active and reactive power, the voltage at the voltage controlled buses, and the active power

generation. SeparateANN models were used for each contingency . The ANN model for (}Ie 39

Bus NewEnglandPowerSystem used the system parameterslikeactiveand reactivepower at load,

voltageat voltagecontrolled buses.and the active power generationto predict the load margin.The

ANN model for the IEEE 24 Bus ReliabilityTest Systemconsiders contingenciesalso, and makes
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use of the network topology infonnation in the fonn ofline power flows, to predict the load margin

for contingencies as well as nonna! operatingconditions.Thus this model eliminates the need to

have separate ANNmodels for each contingency

Test resultson the three ANNshaveshown that ArtificialNeuralNetworkscan predictwith

reasonable accuracy, the voltagestability indexof a power system. The inputsrequiredby the ANN

are system parameters. which are in anycase.available fromthe SCADAsystem. Thus.thereis no

need for additional data acquisition equipment. Also, a single ANN model, trained with network

topology parameters,can predict the voltage stability index of a power system, under normal

operating conditionsas well as under contingencies. This will result in reducedoverall costs and

complexityof implementation. This approach, in principle, can beextended to largersystemstoo.

Thus artificialneuralnetworks can becomea viable tool in the EMS and be of invaluable help 10

the system operator in fast, accurate and intelligent assessment of voltage stability of power

systems. This will enable electric power utilities to operate the system in the most efficient way

with the available resources.

7.1 SUji(gntioDJ for future work

The work reported in this thesis can beextendedin the following areas:

I. The voltage stability indices considered in lhis thesis asswne a constant power load model,

which is O10t always the case with a practical power system. Suitable load models can be

incorporated in the voltage stability indices and this would indicate the influence of the types of

loadson power system voltage stability.

2. Due to the limitations of theneural networksoftware, the present study has used sample test

power systems only. This work can be extended to larger power systems if suitable data can be

obtained from Electric power utilities in North America,

3, Different ArtificialNeuralNetworkalgorithms like Self OrganizingMaps, and Leaming Vector

Quantization can be studied for suitabilityof application to the voltage stability problem. These

algorithms are self-learning and have the potential to be competitive with conventional back

propagation algorithm.
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