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ABSTRACT

A NEURAL NETWORK APPROACH FOR PREDICTING
THE STRUCTURAL BEHAVIOR OF CONCRETE SLABS

Reinforced concrete slabs exhibit complexities in their structural behavior due to the
composite nature of the material and the multitude and variety of factors that affect such
behavior. As such, current methods for the design and analysis of reinforced concrete
slabs are limited in scope and are approximate at best as they must rely on the results of

experimental tests, which are both costly and time-consuming to perform. The research

by this di il igates the use of a branch of artificial intelligence known

as Neural Networks (NN) as a quick and reliable alternative to such experimental testing.

Four neural network models are developed to predict the following aspects of the overall
behavior of a concrete slab: 1) load-deflection behavior; 2) crack pattern at failure; 3)

strain di: ion; and 4) rei ing steel strain distribution. Results from

experimental tests on thirty-four full scale slabs are utilized to develop these four models,

all of the that govern their behavior. The rationale behind and

the details involved are ined for the setup, imple ion and selection of

each optimum neural network model. Results show that the neural network technique can

perform as a sati: y ive to experi testing or detailed calculations to
provide speedy predictions of all four aspects of the structural behavior of concrete slabs.



A comprehensive spreadsheet tool is next created to i all four of the

neural networks. The spreadsheet uses readily available software and can be used by

for i access to the prediction of any or all of the four
aspects of a concrete slab’s behavior given minimal data to describe the slab and the
loading conditions. This tool, combined with the results for the four neural network
models, demonstrates the powerful capabilities and success of neural networks in the
realm of civil and structural engineering in general and reinforced concrete design in
particular. This approach could readily be expanded to include the same predictions for

other structural concrete elements such as beams and shear walls.
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Chapter 1

Introduction

1.1 Neural Networks and Reinforced Concrete Slabs

Reinforced concrete slabs are used today in a variety of applications including building
floor systems, bridge decks, and offshore oil platforms. In these applications, concrete is
selected over other building materials primarily due to the superior formability, durability,

fire resi and i i ilities of i concrete, however, is

and by nature, th itis i or inelastic
behavior. Calculations to predict the structural behavior of concrete slabs are therefore
simplified and approximate at best and most often are formulated from the results of
experimental testing on full or reduced-scale mockups of the slabs. Such tests require
expensive setups and lengthy periods of time are involved in the performance of these

tests.

The structural behavior of reinforced concrete is affected by many factors such as 1)

concrete ies; 2) aggregate ies; 3) rei steel p ies; and 4)



of the element. ical models have been used to

describe aspects of this behavior, but they fall short in considering a large number of

variables si . This thesis investigates the use of Neural Networks (NN) as a

Siminary al e o) . o . 1 it (62 il
prediction of the structural behavior of reinforced concrete slabs. Such predictions could

be utilized by a structural engineer on a preliminary basis to ine the initial

of a particular slab design. Once this suitability was determined, the engineer could then
proceed with further, more traditional methods of design. This will serve to illustrate 1)
the simple manner by which neural networks model the impact of a set of parameters
(inputs) on a set of si i and 2) the powerful leam-by-
example and izati ism that neural use to detect the hidden

relationships linking the inputs to their outputs (Hegazy et al., 1996).

Neural networks are computational models that adopt a training mechanism to extract the
relationships that link a set of causal input parameters to their resulting conclusions. Once
neural networks are trained, they can predict the results for an unknown case (not used in
training) if provided with the input parameters alone. Some characteristics of neural
networks that make them potentially useful for many different types of applications are
(Moselhi et al., 1992):
. Neural networks are organized within a parallel, decentralized structure rather
than the serial i found in i i Asa

result, processing occurs in a rapid manner;



. They have distributed memories; neural network memories are represented by
interconnection weights spread over all of the network’s processing elements;

. They are fault tolerant, that is, they are still functional even after several
elements are and become
. They have the ability to learn-by-example;
. They have the ability to simulate the behavior of systems with limited modeling
effort; and
. They can provide speedy and reasonably accurate solutions in complex,
and subj

1.2 Research Scope and Objectives

The main purpose of this thesis is to develop a set of neural networks to predict the
behavior of rei slabs. The research is applicable for normal

strength, high strength and lightweight concrete slabs subjected to concentrated and
flexural loads.

The objectives of the proposed research can be stated as follows:

1. Identify the detailed factors that govern the structural behavior of concrete slabs.

2. igate the suitability of neural rks for application in the | analysis




domain, particularly in simulating the behavior patterns of structural elements,
3. Develop, train and implement a set of neural networks to predict the structural
behavior of concrete slabs.
4. Compare the results of these neural networks with the results obtained from
experimental tests.

5. Develop a i tool for the analysis of

concrete slabs.

1.3 Research Methodology

The research methodology is as follows: .

1. Evaluate the problem by reviewing the theory and current practices in both neural

and the prediction of rei slab behavior. Examine the

literature to identify past work, both experimental and theoretical.
2. Model the structural behavior of reinforced concrete slabs in four complementary
aspects, each of which lends itself to a neural network: 1) load-deflection behavior

prediction; 2) crack pattern licti 3) strain di ion; and 4)

steel strain dit

3. Select an appropriate neural network software. Then, conduct a preliminary



on the load-deflection neural network to determine the suitability of the

neural network technique for the problem at hand. Experiment with different ways of
modeling the problem to achieve the optimum results.

4. Once a suitable neural network model is selected, repeat the process for the remaining
three neural networks.

5. Incorporate all four neural network models into a single spreadsheet tool to summarize
the research completed.

6. Validate the concepts proposed in the research scope and objectives.

1.4 Thesis Content

Chapter 2 encompasses a literature review of the state-of-the-art efforts related to neural
networks and their use in the design and analysis of reinforced concrete. Traditional

models for the analysis of selected types of reinforced concrete members are first

discussed. The history of neural and their is then

Components of neural networks are defined, and the various neural network paradigms

are briefly described. General uses of neural in civil and
are examined as well as their specific uses in the design of reinforced concrete.

Chapter 3 describes the development of four neural network models to describe the

structural behavior of reinforced concrete slabs. The applicability of neural networks to



the particular problem at hand is discussed as well as the rationale behind the selection of
the i i Details ding model design, inciuding problem
analysis and structuring for each neural network model are then discussed, along with the

development of alternative models for optimal network selection.

Chapter 4 d the i ion of the four neural network models.

Specifics ing data p ion and softw selection are discussed. Details for

training and testing each of the four neural network models are then described.

Chapter 5 discusses the results and observations for all neural network models as well as

providing analysis of the results.

Chapter 6 presents a comprehensive spreadsheet tool that includes the four neural network
modules for the design and analysis of reinforced concrete slabs. Development of the
spreadsheet is described and two sample problems are provided to illustrate the usefulness

of the tool.

Chapter 7 is the thesis conclusion and summary. Prospects for further research as an

extension to the results obtained from this thesis are also discussed.



Chapter 2

Literature Review

2.1 Introduction

This chapter evaluates current research efforts in the area of neural network applications

in ineering. Traditional methods for determining the structural behavior of

slabs are first revi for the purpose of establishing a baseline for
comparison to neural network research in this area. An overall introduction to neural

networks and their history is next presented, along with the various neural network types

to the ineering domain. General civil engineering applications of

neural networks are then briefly surveyed. State of the art research describing the use of

neural rks for the behavior of rei d concrete is then reviewed to
assist in the development of a specific neural network model to predict the structural

behavior of concrete slabs.



2.2 Traditional Models for Predicting Concrete Structural
Behavior

Traditional research efforts in concrete structural analysis that have evolved in the

literature during the past few decades Ily aimed at ping ical models
to predict concrete behavior under different loading conditions. These mathematical
models, however, focused generally upon determining the behavior of individual structural

elements which could not be generalized to describe the behavior of other elements. Also,

the models require the ion of several ions to arrive at predictions for more
than one ing with neural is much simpler because, although a
neural network captures the i i ips in its ion of i

between its nodes, no formal mathematical rules or formula are used or observable within

the model (Garrett et al., 1992).

Examples of some mathematical models which are in existence in the literature for
describing the structural behavior of concrete are described below. These examples have

been chosen as neural have also been developed to model these same behaviors.

These neural networks are described more fully in Section 2.3.

The shear behavior of deep beams subjected to point loads can be simulated by the strut-
and-tie model (Schliach, 1980), which applies a series of equations to define the ultimate

shear forces in the beam. When compared to experimental test results, however, this



mddisoulymewhmthenﬁoofﬂﬂrspmto'bmhdgmislﬁsﬁnn1.04;11
higher values, the model results decline rapidly because deep beam behavior no longer
applies (Schliach, 1980). This same limitation applies to alternate models which exist in
the literature for evaluating the shear strength of deep beams (dePaiva and Siess, 1965;

and A 1968; Smith and Vantsiotis, 1982; and Subedi,

1988). Other models must therefore be applied to predict the structural behavior of

shallower beams.

The behavior of reinforced concrete framed low-rise shearwalls can be predicted with the
truss model theory (Mo and Shiau, 1993). This theory again applies a series of equations
(given concrete and steel material properties) to predict the concrete shear strength, the
shear distortion, the steel strains and the concrete strains. Although this model and others

(Galletly, 1952; Benjamin and Williams, 1957, Hsu and Mo, 1985) do a reasonably

accurate job in predicting the previ values, they, like their counterpart

models for deep beams, are limited because they only apply to low-rise shear walls.

Some research is described in the i for ical models which predict the

punching shear behavior of reinforced concrete siabs. Several models have been
developed that predict the effect of concrete strength on the punching shear capacity of

concrete slabs subjected to concentrated loads for normal strength (Elstner and



Hognestad, 1956 and Moe, 1961) and high strength (Marzouk and Hussein, 1991)

concrete. The Moe equation is as follows:

c

Ve 15(1.0.075d e
® bd Hszsw,//u
Priec

where: v, = nominal shear stress

V, = ultimate shear capacity

b = perimeter of the slab critical section

d  =average effective depth of the slab

¢ = column width

f. = concrete compressive strength

Pp = ultimate flexural load capacity
Marzouk and Hussein (1991) propose that this equation be modified to include the cubic
root of f'. when high strength concrete is used. The Elstner and Hognestad equation is:

P, 2298 _ 0.046

0875udf. - vl’-.p

wt

where: u, = column perimeter

P., = calculated ultimate punching load (

P, = calculated ultimate flexural load
All of these models exhibit reasonably accurate predictions, however, as shown, different
equations apply depending upon the strength of concrete used.

10



Kinnunen and Nylander (1960) also conducted a theoretical analysis for axisymmetric
punching shear, by solving a series of equilibrium and strain compatibility equations. This

model requires ing to fc late a solution, and is time-consuming to
solve. Regan(1980) improved upon this by proposing the ing ion for the

Vo =KKK, (pf )" od(Z. + 7.85d)
where: K. = constant = 0.13 for normal density concrete (SI units)
Ko =1.15 o[4r ecolumn area / (column perimeter)’]"? (SI units)
K. =size effect term = (300/d)" (SI units)
p = reinforcing steel ratio
Z. = perimeter of column
The Canadian code (CSA A23.3-94) requires that the smallest v, resulting from the

ing three ions be used to ine the factored shear resistance of a concrete

slab:

e = (H»%]Olm; or v = (£+02)M§'; or ve = 0444VE

be

where: B. = ratio of long side to short side of concentrated load or reaction area

A = factor to allow for low density concrete

b = resistance factor for concrete

o = 4 for interior columns and 3 for edge columns
bs = perimeter of critical section for shear



It is clear that there is still a wide range of inty for explaining the hing shear

behavior of rei slabs. Each i program has

produced different models for this behavior, according to the characteristics of the
particular slabs used in each experimental testing program. Neural networks could be
used to detect the subtle differences between the different types of slabs, thus eliminating

the initial need for lengthy calculations for each model.

In addition to models for predicting the behavior of reinforced concrete, mathematical
models also exist which describe the structural behavior of plain concrete. For example,
the behavior of plain concrete in biaxial compression can be described by a series of stress-
strain relations (Darwin and Pecknold, 1974; Kupfer and Gerstle, 1973; and Liu et al,,
1972). These equations are applied, in matrix form, to describe a constitutive relationship
in terms of stresses and strains; this relationship is then used in finite element

of the behavior. All three models, when compared to

data, are accurate in rep ing the stress-strain curve for the

concrete. However, the equations are complex and are more easily computed with the
aid of time ing serial i Neural network models developed for

the same application (Wu and Ghaboussi, 1992) are much simpler and easier to use.

For all of the above described mathematical models, several iterations of the following

procedure were necessary (Garrett et al., 1992):



. A material was tested and its behavior observed;

. Some ical relati ip was to explain its observed behavior;

. This mathematical model was used to predict yet untested concrete design and
was checked against results from experiments; and
. The mathematical model was then modified to account for behaviors observed
but unexplained by the model.
Such a process can be both tedious and time-consuming until a successful model is
Neural i this process entirely as the underlying rationale

for explaining the behavior of the model is ignored. In addition, the ability of all of the

above ib ical models to predict concrete structural behavior is
limited for the following reasons:

. One only is d and relationships are dingly i I

. Modeling is complex; and

. Extensive testing on new cases is often not performed and some of the governing

factors of the concrete behavior, particularly subjective criteria, might be
omitted.
It is clear that mathematical models, while usually quite accurate for predicting concrete
structural behavior, are limited to the extent of the specific application for which they are
developed and can not always be generalized to apply to those untested conditions. In

addition, ical models can be and time ing. Neural network

models present the ibility for ci ting both of these probl:

13



23 Neural Networ'ﬁ as a Modeling Tool

2.3.1 History of Neural Networks

Neural networks were first introduced as a concept in the early 1950's after Donald
Hebb, a psychologist who studied the effect of learning on the neurons in the brain,

duced a simplified training ism called Hebb's law (Hebb, 1949). This concept

was then extended by Rosenblatt (1958) with the introduction of the perceptron training
algorithm; this became the first mathematical model suitable for computer simulation. In
accordance with Hebb's law, this procedure viewed biological learning as a dynamic
sensory process which was readily adapted to computer modeling (Hajela and Berke,
1991). Then, in 1969, with the influential publication by Minsky and Pappert of the book,
Perceptrons, all research in neural networks was essentially halted; the book showed that
a single or double layer perceptron network was inadequate for real world problems
(Caudill and Butler, 1990). It wasn't until the 1980's that new architectures, such as the
backpropagation training algorithm (see Section 2.3.1 for a description), were introduced,
and the problems raised in Minsky and Papert's findings were addressed. This gave
engineers (among others) reason to explore neural networks as a fast, simple alternative to

or i test setups.




2.3.2 Neural Network Basics

Neural networks are types of information processing systems whose architectures are

inspired by the structure of biological neural systems (Caudill and Butler, 1990). Unlike

which accepts and processes information in a digital
and serial manner, neural networks actually store data among the individual neurons of the
network; this data is then processed in a parallel manner. Neural networks do not contain

for ing data. Rather, these models are trained to extract

the relationships that link a set of causal input parameters to their resulting conclusions.

Each network is composed of three basic components as illustrated in Figure 2.1: 1) input
neurons or processing elements, which represent the input for the problem, 2) connecting
"axons," which connect input and output neurons and represent the connection weights
that associate the input to the output, and 3) output neurons or processing elements,
which represent the output for the problem. Neural networks can be composed of a

single layer or many layers, ding to the ity of the archi of the network
Multi-layer neural networks may contain one or more middle layers. These middle or
“hidden” layers (see Figure 2.1) consist of neurons with no direct connection to either the
input or the output of the network; rather, they are used to further refine training by

adjusting the connection weights for the network. These connection weights are applied



Hidden

i
if

Input Output
Neurons Neurons

Ny’

(connection weights)

Figure 2.1. Simplified Neural Network Mode!



at the links connecting the inputs to the outputs (axons in Figure 2.1) and they associate
the contribution or effect of each of these inputs on each output.

Training a neural network is accomplished by using a training algorithm that aims at
optimally adjusting these network connection weights; training may be supervised or
unsupervised. Supervised training, on the one hand, occurs when correct solutions are
provided along with the problem description. In the case of unsupervised training, on the
other hand, correct solutions are not provided. Neural networks trained in this manner are

usually capable of self- ization and i dent classification of the input data; that

is, the network itself must decide how it will classify or partition the input data (Caudill

and Butler, 1990).
One commonly used neural network i is the P ion neural network
(Rumelhart et al, 1968). B i ks are training i in which

patterns recognized by the network are associated through the layers, and thus the
information flows in one direction at a time, either forward or backward.
Backpropagation networks require at least three layers in order to work correctly, and
training is conducted in a supervised manner. Training of a backpropagation neural
network occurs in two stages (Caudill and Butler, 1990):

1) The input data pattern generates a forward flow of activation of the neurons from

the input layer, through the hidden layers, and finally to the output layer, and



2) Errors in the output generate a flow of information from the output layer
backward to the input layer. As the errors are propagated backward, the weights
on the connecting "axons" are adjusted, therefore allowing the network to learn.

In addition to the backpropagation neural network, several other forms of neural network

models or i have been i with, each of which has characteristics
which make it appropriate for modeling different prob These include the Perceptron
network (Rosenblatt, 1961), the C ion network (Hecht-Nielson, 1987), the

Boltzmann machine (Hinton and Sejnowski, 1986), the Hopfield network (Hopfield,

1982), the BAM (Bidirectional Associative Memory) archil (Kosko, 1987), and the
ART-2 (Adaptive Resonance Technique) (Carpenter and Grossberg, 1987). Table 2.1
(Moselhi et al., 1992) summarizes these architectures, along with their advantages and

disadvantages.

Recently, have examined the Counterp jon neural network (Adeli and

Park, 1995) for use in 1 ineeril C i were
developed by Hecht-Nielson (1987); they contain a combination of several different neural

network archit and training i as shown in Figure 2.2. In contrast to

backpropagation networks, counterpropagation networks use both supervised and
unsupervised training and therefore can map outputs in a self-organized manner. The
counterpropagation network has been found to converge at a somewhat faster rate than
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Figure 2.2. Counterpropagation Network (Adeli and Park, 1995)
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the ion network, reducing the amount of time it takes to train the

network. However, the errors produced while testing the network are comparable to those
produced by the backpropagation network (Adeli and Park, 1995). Other applications of
the counterpropagation neural network in structural engineering could not be found,
thereby making this architecture an unexplored option for neural network users in

structural engineering.

The fuzzy-ARTMAP technology has also been used to predict plain concrete material
strength.  This form of neural network architecture is a hybrid network that performs
incremental, unsupervised learning of recognition categories and can perform a
multidimensional mapping of space into a one dimensional space (Kasperkiewicz et al.,
1995). This type of neural network, appears to perform successfully, however, like the
counterpropagation network, research for this type of network in structural engineering is

limited. In addition, because this type of network maps many dimensions into one

dimension, it would work more with that ined a great amount

of input variables and only one or two output variables (Kasperkiewicz et al., 1995).

Despite the above-described recent research on alternate neural network architectures,
backpropagation networks are the most widely used networks in civil and structural
engineering. This is primarily because backpropagation neural networks are still the most

simple form of neural network architecture. They also appear to be the most capable of
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learning the association between input and output patterns under a static environment
given adequate training examples (Moselhi et al., 1992). Furthermore, most problems in

civil and structural engineering involve the sort of lictions for which backp:
networks are best suited.
During the past few years, the area of - analysis has ited an i ing use of

neural networks for a wide range of applications. Some of these include the modeling of
initial design processes, the modeling of plain concrete material strength, and the modeling

of rei d concrete l behavior. hers have the d the

potential of using this technique in this domain.

2.3.3 General Applications in Civil Engi ing

Most civil engineering systems are complex and are subject to a wide variety of internal
and external forces (e.g., wave forces, weather conditions, seismic loads, and material
mechanics). Analyzing such systems has been a difficult task and traditional tools that
accurately predict and model the behavior of such systems are limited in scope. This is the

main reason that Artificial Intelligence techniques have i i been i d

with in the civil engineering domain. Among these tools, Neural Networks (NNs) have
been reported as efficient pattern recognition and classification tools that model the cause-
effect relationships of a particular system or problem without exploring the underlying
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rationale used to model the behaviors (Hegazy et al, 1996). Correspondingly, the
usefulness of neural networks as tools for design and decision support in civil engineering

is well d d the [t (e.g., Moselhi et al, 1992). Figure 2.3

summarizes found in the L of applications of neural within civil

engineering in the general realm, in the construction realm, and in the structural analysis

realm.

found in the i of general applications of neural within civil
engineering include a wide array of topics such as:
. Horizontal formwork selection (Hanna and Senouci, 1995)
. Control of structures under dynamic loading (Chen et al., 1995)
. Simple truss design (Kang & Yoon, 1994)
. Structural damage detection (Elkordy et al., 1994)

. Prediction of tower guy p ion (Issa et al., 1992)

. Dynamic analysis of bridges (Chen and Shah, 1992)

- N i ination of (Pratt and lone, 1992)
In addition, neural have been applied to ion, specifically
for equi] i imation and ion trade productivity level

(Moselhi et al., 1992), as well as the assessment of construction risks in the bidding

process (Hegazy,1993). Although none of these examples are directly related to the
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NEURAL NETWORKS IN
CIVIL ENGINEERING
STRUCTURAL
ENGINEERING CONSTRUCTION OTHER
STRUCTURAL DESIGN
OCErS CONTROL OF STRUCTURES N
" EQUIPMENT PRODUCTION DYNAMIC LOADING
— ESTIMATION (Moselhi et al, 1992) (Chen et al. 1995)
e s celu9d NSTRUCTION TRADE SIMPLE TRUSS DESIGN
o N—_—" PRODUCTIVITY (Moselhi et. al, 1992) (Kang & Yoon, 1994)
OF STRUCTURAL DAMAGE
RISKS IN THE PROCESS
(Hegazy, 1993) (Elordy etal. 1994)
VERTICAL FORMWORK SELECTION PREDICTION OF GUY TOWER
(Hanna & Senoacl, 1995) PRETENSION
(ssa e ol 1992)

DYNAMIC ANALYSIS OF BRIDG
1992)

NONDESTRUCTIVE EXAMINATE
OF CONCRETE
(Praz. 199)

Figure 2.3. Examples of Neural Networks in Civil Engineering
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current investigation for predicting the behavior of concrete slabs with neural networks,

they serve to demonstrate the success of neural asan ive to

Igorithmi ion in ini lutions to general civil engineering problems.

2.3.4 General Applications in Structural Analysis

Neural networks are most suitable for applications that have the following features:
. A complex problem with a large number of governing parameters;

. A need for an ive to a i ion of a solution to the

problem; and
. Many examples of the problem are available for accurate training of a neural

network.

Many including those i within analysis, meet the above

criteria. As a result, structural engineers have, in recent years, found increasing interest in
neural networks as an aid for both the design and analysis of structures. The first

of neural as a tool for design was d by
Vanluchene and Sun in 1990. The study demonstrated, through the use of three examples
(a pattern recognition problem, a simple concrete beam design and an analysis of a

rectangular steel plate), the wide range of possible uses for neural networks within the



realm of structural design. Since then, neural networks have been applied to nearly every

facet of structural engineering.

in the [ of ications of neural in | analysis as they

apply to the current investigation can be grouped, as shown in Figure 2.3, into three
categories: 1) models of the structural design process (e.g., Hajela and Berke, 1991;
Messner et al, 1994; and Mukherjee and Deshpande, 1995), 2) models for determining
plain concrete material strength (e.g., Williams et al., 1992, and Kasperkiewicz et al.,
1995) and 3) models for predicting reinforced concrete material behavior (e.g, Wu and

Ghaboussi, 1992; Mo and Lin, 1994; and Goh, 1995).

The first category includes an example of the i ion of a neural
paradigm in automated structural design, where the structural analysis module is replaced

by a neural network model to map load-displacement relationships (Hajela and Berke,

1991). Two i are d: a i i and a

link net, which ally involves i ion of the input data
used in a flat, single-layered network. The report shows only limited success with the
latter architecture, with errors reduced to the range of 3.9% to 5.2% and marginal

increase in learning speed. The i i better, with errors in

the range of 1% to 2%. Because this problem is similar in nature to the problem at hand,

specifically the load-deflection model, the i i ding licabilities of neural
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network architectures is useful for selecting the appropriate architecture for the models of

A second example within the first category the of a p

application to select the most effective structural system for a building given attributes
regarding the project size, budget, etc. (Messner et al., 1994). This paper explores the
rationale for choosing a neural network model over a rule-based expert system model
(another form of artificial intelligence). The ultimate reason for choosing a neural network
is because of the many interrelations between the different project parameters and the lack

of explicit lities between these et al, 1994). This can be

directly related to the current research for determining the structural behavior of concrete
slabs because the input data for these neural networks consists of many different
properties with respect to the concrete slabs whose interrelationships have not exactly

been determined.

Another example involves the modeling of initial design processes using neural networks.

This example (A jee and D 1995) uses i selected design
criteria as input and uses the neural network to determine the size (i.e., depth and width),
reinforcing steel area, cost/m and moment capacity of a reinforced concrete beam. Unlike
the current investigation, however, this model uses mathematically generated data to train

the network, as initial design processes are readily modeled using more traditional
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Ne heless, the neural network model is found to perform

as as ical models. Fi the paper also explores the effect
of damaging connection links on the desired output for the neural network; it is found that
as many as two nodes could be damaged with little effect on the overall performance of

the neural network.

2.3.5 Models for Determining Plain Concrete Material
Strength

From a review of the literature it is found that a limited number of studies have been
conducted on the use of neural networks for predicting concrete strength. The first
example of such research (Williams et al, 1992) utilizes the same neural network

iy ™ ) as is in the current investigation to

determine the structural behavior of concrete slabs. The model utilizes data regarding one
day, three day and seven day compression strengths as inputs for the model to determine
the twenty-eight day compressive strength as output. The study observes reasonable
performance of the neural network as compared to linear regression analysis. It also
determines that, with the limited data used to train the model, the performance of the
network appears to improve with the addition of input variables to the model; five
different models are trained with an increasing number of input variables, and the accuracy

of the network improves with the addition of each input variable.
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The data from this report is extremely useful for the current investigation as it

the suitability of software for a model similar to the proposed

model. However, the model described in the report only addresses plain concrete
(homogeneous) material behavior as opposed to reinforced concrete (composite) material

behavior.

A more recent study addresses the same problem, i.e., prediction of concrete strength,
however a greater number of different variables are selected to model the input for the
problem. Moreover, a different neural network architecture with a different learning
paradigm (the fuzzy-ARTMAP neural network) is selected to model the problem
(Kasperkiewicz et al., 1995). Once again, the network is found to perform satisfactorily,
however, the study warns that satisfactory performance only occurs when the network is
tested with problems containing data within the same domain as the data used to train the

model (see discussion in Section 4.1).

2.3.6 Models for Predicting Reinforced Concrete Material
Behavior

Several studies have been directed at the investigation of the use of neural networks to

predict the behavior of a variety of reinforced concrete elements.
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The first i igati ing the ibility of using neural networks to model

reinforced concrete behavior studied a simple reinforced concrete beam subjected to
bending moment (Vanluchene and Sun, 1990). This study utilized NNICE (Neural

Networks in Civil Engineering), a neural network software package which employs the

back- ion training algorithm. This study used as input only a limited number of
variables to describe the concrete behavior (bending moment applied, reinforcing steel

strength, mpressive strength and rei ing steel ratio) to arrive at an ideal

depth for the beam (the only output for the network). Training and testing was conducted
using randomly chosen patterns obtained from conventional mathematical formulas rather
than data obtained from experimental results. While limited in its scope, this study was the

initial impetus for the use of neural networks in concrete design.

More recently, a study was conducted to analyze framed shearwall behavior using neural
networks (Mo and Lin, 1994). Again, only limited data was utilized as input to describe
the concrete material behavior (concrete compressive strength, steel yield stress,
longitudinal steel ratio and shear strain); the only output parameter was shear stress. Two
study groups were used for training and testing the network; one study group included
results from experimental tests while the other study group included results from
calculations of the truss model theory (described in Section 2.2). Models for both study
groups performed well. The paper suggested that the methods used could be applied to

the behavior of other concrete structures. Also, it found that the effect of the transfer
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functions and learning rules on the network is significant while the effect of the number of
processing elements in the hidden layers on network learning is insignificant (Mo and Lin,

1994).

The feasibility of using neural networks to evaluate the ultimate strength of deep
reinforced concrete beams in shear has also been investigated (Goh, 1995). Again, both
experimental data and data obtained from mathematical calculations were available for
training and testing the network. The study showed that, when compared to conventional
methods (the strut-and-tie model discussed in Section 2.2) for predicting the ultimate

strength, the neural network approach was actually more reliable.

In recent years, researchers have studied the use of neural networks for material modeling.
The major thrust of their research has been aimed toward the development of proper
constitutive relationships for finite element modeling of the material (Ghaboussi et al.,

1991; Wu and Ghab: i, 1992; ian and Raj 1996). Because

concrete is a difficult material to model from a finite element perspective, neural networks

have been i i asan ive to lengthy i ivations of

Like the i igation, these neural were trained using

results from actual experiments conducted on the concrete.
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Ghaboussi, Garrett and Wu originally studied the use of neural networks to predict the
stress and strain behavior of plain concrete (Ghaboussi et al., 1991) and later extended this

study to include the stress and strain behavior of reil d (Wu and Ghab

1992). In the models for plain concrete, the input for the networks included stress and

strain increments, and the output included either stress or strain increments, depending on

whether the neural network was idered to be stres: lled or strai

The models for reinforced concrete included all pertinent data to describe the behavior of
the concrete. The data included the concrete compressive strength and strain and the
cracking strength of the concrete; this information was implicitly included in the stress-
strain material variables through normalization on the principal compressive and tensile
stresses and principle compressive strains (Wu and Ghaboussi, 1992). Also included in

the input data was i i ding the reis ing steel such as yield stress and

reinforcement ratio. Finally, the stress and strain states for two stress increments were
included in the input data. The output data for the reinforced concrete model again
included current stress or strain increment. All neural network models were found to
perform satisfactorily, i.e., they were able to predict stress and strain states with

reasonable accuracy.

Although the outcome of the Ghaboussi, Garrett and Wu models was then utilized in a
finite element model for concrete, these rationale behind the formulation of the neural

network models for these studies was similar to the current investigation. Therefore, the
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content and methods of these studies will be very useful for the current investigation.
However, these studies do not directly conflict with the current investigation as they were
completed for a different purpose. Also, the neural networks were trained using
experimental data from tests conducted on reinforced concrete panels subjected to in-
plane shear in contrast to the reinforced concrete slabs subjected to concentrated and
flexural loads used in the present investigation. Therefore, the information sought in the

current investigation is outside of the training domain for these studies.

A very recent study again adds tuti deling of ete using neural

( b jan and Raj; 1996). However, neural networks are

utilized only to predict one aspect of the stress-strain curve and do not consider concrete

material properties for input. This study is useful as it again shows the success of neural

networks in similar licati to the i igation for p

behavior.

Neural network research for concrete slabs has focused on the initial structural design of
these slabs. The neural network developed by Arslan and Ince (1994), for example, takes
the moment and slab support conditions as inputs to produce only the moment coefficients
needed for slab design. None of such efforts, however, predict the slab’s overall

responses to loading conditions.
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2.3.7 General Neural Network Models for Predicting Crack
Patterns

Limited research has been conducted in using neural networks to model cracks in general.
One application studied the detection and mapping of cracks in eggs (Patel et al., 1994).
This investigation used computer vision to model the picture of a cracked egg using a grid
of pixels. In contrast to the current investigation, the only output of this network
predicted whether the egg was cracked or not; the study did not address the prediction of
the actual pattern of the crack. Like one of the crack pattern neural networks in the

current investigation (NN2a), however, the success or failure of this model was based on a

of correct icti not the actual ical 'y of the model.
24 Summary
In the present study, the use of neural in icting the | behavior of

concrete in slabs is experimented with for several reasons, including:
e Neural network approximations are equally as accurate as other complex mathematical
approximations (Carpenter and Barthelemy, 1993);

e Neural are able to i lutions to new, unseen cases, most accurately

within the training domain (Flood and Kartam, 1994); and
®  An adequate number of training cases will be used to train the network as experimental
results on full-scale slabs were monitored since 1990 (Marzouk and Hussein, 1991).
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This chapter has reviewed the previous work related to neural networks in civil
engineering and structural analysis. While it is apparent that a large amount and variety of
applications of neural networks exists in these fields, there is no single application that has
been used to determine the structural behavior of concrete slabs in particular. However,
all of the previous works described provide significant insight into the development and
modeling of a neural network for the current investigation of the structural behavior of

concrete slabs.
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Chapter 3

Neural Network Model of a Reinforced
Concrete Slab’s Structural Behavior

3.1 Introduction

The structural behavior of reinforced concrete slabs can be quantitatively described in a
number of different ways. In this study, four complementary aspects were chosen to
represent this behavior as they can provide a structural engineer with valuable insight into
the failure mechanism of a concrete slab. These aspects are: 1) load-deflection behavior;

2) final crack pattern i 3) rei ing steel strain di: ion at slab failure; and

4) concrete strain distribution at slab failure. Each aspect lends itself to a neural network,
therefore, four separate neural netwark models have been developed to predict these

aspects.

A structured methodology for neural network application development (Hegazy et al.,

1994) was utilized as an overall framework for developing each neural network. The
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methodology incorporated three main phases as illustrated in Figure 3.1: 1) concept; 2)
design; and 3) implementation. This chapter will focus on the completion of the first two
phases of the model development, while chapter 4 will focus on the final phase, that is, the

implementation phase of model development.

3.2 Neural Network Concept Development

The concept stage, as shown in Figure 3.1, includes two steps that involve selecting the

application then the paradigm for the neural network model. The first step involves

an ication which is ble to neural network modeling. All four of the

proposed neural network modules encompassed by the current study were easily
converted to neural networks as the inputs and outputs for each module were readily

defined, as described below (Section 3.3).

Since a concrete slab behaves differently according to the variety of combinations of
factors that describe the slab, it could be said that the behavior of a concrete slab is
patterned according to its makeup. Therefore, the four neural network applications that
were selected for the current study are pris ly pattern iti For the

second step of the concept phase, the Backpropagation paradigm was selected as the
neural network type suitable for modeling the applications. The principal reason this

architecture was chosen is that, as described in Chapter 2, it is the predominant paradigm
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Figure 3.1. Neural Network Development Methodology
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used in existing analysis lications due to its simplicity and its suitability for

pattern-recognition problems.

3.3 Model Design

The next phase of neural network development is model design, which comprises two
main tasks: 1) problem analysis; and 2) problem structuring. Problem analysis, on the one
hand, is the identification and use of the independent (non-correlated) factors that fully
describe the slab. Problem structuring, on the other hand, entails the representation of
such descriptive factors along with their associated result in the form of inputs and
outputs, as required by the modeling of each individual neural network. Identification of
the input data was conducted simultaneously for all four neural networks (NNs) as the
same data was used to describe all of the reinforced concrete slabs in the study. The

factors which could describe the physical properties of a reinforced concrete slab were

first grouped into four main ies: 1) slab ical di i 2)

3) concrete ies; and 4) reil eel properties. The inputs for

all four NNs were then readily defined from these four categories; boundary and loading
conditions for each slab were also added to the input descriptions. These resulted in a

total of nineteen input factors as described in Table 3.1.

Problem analysis was required on an individual basis for each of the four NNs in order to

determine their outputs. The outputs for all four models were obviously different, as each
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Table 3.1. Description of Input Categories and Factors

1. Slab thickness (mm)
Slab Geometric 2. Slab Depth (mm)
Properties 3. Ratio of Rebar Depth to Slab depth

4. _Slab Span (mm)
A 5. A Type 2 = Granite)
Propertit 6. e Size (mm)
Concrete 7. Concrete Compressive Strength (MPa)

Properties 8. Concrete Tensile Strength (MPa)
9. Concrete Modulus of Elasticity (MPa)
10. Reinforcing Steel Ratio
11. Rebar Size (1=M10; 2=M15)

Reinforcement  12. Rebar Shape (0=Smooth; 1=Deformed)
Steel 13. Rebar Spacing (mm)

Properties 14. Number of Rebar
15. Rebar Yield Strength (MPa) x 10,000
16. Rebar Modulus of Elasticity (MPa) x 10,000
17. Type of Shear Reinforcement (0=None; 1=Hat; 2=U-Shape; 3=W-

Shape)
Loading & 18. Load Type (0=Axial; = Bending; 2=Axial+Bending; 3=Cyclic
y 19, dary Conditions (0=Simply 1=Fixed; 2=Partially Fixed)

Conditi




model was designed to produce separate yet complementary results. In addition, different
ways of problem structuring (the second half of model design) were experimented with for
each NN in order to achieve the optimum network to solve the problem. The resulting

structure for each NN is described in the following paragraphs, with the results and

ponding opti in Chapter 5.

3.3.1 NNI: Load-Deflection Behavior

The load-deflection neural network model was the first model tested in the current study;
the validity of the neural network technique was tested in this original neural network.
For this reason, two separate neural network models were experimented with in detail in
order to arrive at the optimal configuration of the outputs for this model. As shown in

Figure 3.2, the number of inputs and outputs in each network are as follows:

Neural Network 1a: 19 inputs (slab descriptors) and 11 outputs (load-deflection
descriptors). Load-deflection curve in this case is modeled as ten values corresponding to
deflections at each 10% load increment and an eleventh value representing the ultimate

load reached is provided.
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w

Inputs

X1. Aggregate Type (1=Sandstone; 2=Granite)
X2. Aggregate Size (mm)

X3. Load Type (0=Axial, 1= Bending,

2=Axial+Bending; 3=Cyclic)

X4, Slab Thickness (mm)

XS. Slab Depth (mm)

X6. Ratio of Rebar Depth to Slab Depth

X7. Slab Span (mm)

X8, Boundary Conditions (0=Simply

Supported; 1=Fixed; 2=Partially Fixed)

X9. Concrete Comp. Strength (MPa)
X10. Concrete Tensile Strength (MPa)
X11. Concrete Modulus of Elasticity (MPa)
X12. Reinforcing Steel Ratio
X13. Rebar Size (1=M10; 2=M15)
X14. Rebar Shape (0=Smooth; 1=Deformed)
X135, Rebar spacing (mm)

X16. Number of Rebar Layers
X17. Rebar Yield Strength (MPa) x 10,000
X18. Rebar Modulus of Elasticity (MPa) x 10,000
X19. Type of Shear Reinforcement

(0=None; I=Hat; 2=U-Shape, 3=W-Shape)

Outputs
Neural Network 1;
Ol. Defl. at 10% Ult. Load (mm)
02. Defl. at 20% Ult. Load (mm)
03, Defl, at 30% Ult. Load (mm)
O4, Defl, at 40% UL, Load (mm)
05, Defl. at 50% Ult, Load (mm)
06, Defl, at 60% UN. Load (mm)
07. Defl. at 70% UN. Load (mm)
O8. Defl. at 80% Ult. Load (mm)
09, De. at 90% Ult. Load (mm)
010, Defl, at 100% Ult, Load (mm)
O11. Utimate Load (KN)

Neural Network 2:

Ol. Yicld Load (KN)

02, Deflection at Yield (mm)
03, Ultimate Load (KN)

04, Deflection at Ult. Load (mm)

Figure 3.2. Description of L-D Neural Network Inputs and Outputs



Neural Network 1b: 19 inputs (slab descriptors) and 4 outputs (load-deflection
descriptors). Load-deflection curve in this case is modeled as four values corresponding to
aslab’s yield load, deflection at yield, ultimate load, and deflection at ultimate load.

The final configurations for these two models are as shown in Figure 3.2.

3.3.2 NN2: Crack Pattern at Failure

As previously described in Section 3.3, the inputs for this neural network model consisted
of the nineteen factors describing the concrete slab. The selection of the outputs to
describe the final crack pattern for a reinforced concrete slab, however, was a difficult
task; while recognizing patterns of images is an intuitive and simple task for humans, it is a
complex task for computers and requires specialized Al-based modeling. Despite the
modeling difficulties, a concrete slab’s crack pattern provides insight into the failure
mechanism of the slab and its rate of deterioration under loading. The outputs for this
neural network could be modeled in a variety of ways. These varied from exact detailing
of the dimensional location of cracks to less detailed schematic representations. The
detailed model, however, was expected to involve a large size neural network, thus
requiring a larger number of training cases than were available from the experimental
testing. Three schematic models were then proposed as shown in Figure 3.3, and the
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advantages and disadvantages of each model were reviewed. After thorough analysis and
initial experimentation with the three types of models, the third approach was selected due

to its simple ion and its iate proportion of outputs to inputs. A fourth

model, which was designed with a less subjective app! to produce itative results
for the extent of radial and tangential cracking, was also selected for comparison with the
results for the schematic model chosen. The final outputs for the two neural network

models are as shown in Figure 3.4.

3.3.3 Concrete Strain Distribution

An effective indicator of the extent of cracking throughout a concrete slab is the

distribution of the strains hout the slab, that is, if the measured concrete strains are
greater than the crushing strain of concrete (approximately greater than .00035), it can be
assumed that a crack will have occurred at the measured location. Therefore,
representative values for the concrete strain at the edge of the slab, at a midpoint of the
slab and at the column face at failure of the slab would indicate the extent of the cracks
throughout the slab. These values were easily converted to outputs for the first neural
network model for predicting the di ion of the maxi concrete strains throughout

the slab. Again, all nineteen inputs described in Section 3.3 were used in this model.
Originally, prediction of both tangential and radial strain distribution was proposed,
however, only tangential strains were measured along a radius for most of the tested slabs.
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Outputs
Neural Network 1:
O1- Background ( O=none; |=radial; 2=grid; 3=radial + grid)

02- Crack Symmetry (0=assymetrical; [=sym about horiz axis;
2=sym about vert axis; 3= fully symmetrical)

03- Extent of Cracking (0=none; I=upper left quad; 2=UR;
3=LL; 4=LR; 5=all quads)

O4- Location of Tangential Cracks (0=none; 1=upper left
quad; 2=UR; 3=LL; 4=LR; 5=all quads)
05- Failure Mechanism (0=zo tang. cracks; 1=pure punching

shear; 2=ductile punching shear; 3=bending from unbalanced
moment; 4-bending)

(06- Radial Position of Tangential Cracks (O=none; 1=@stub
col; 2=imner 1/3; 3= outer 1/3)

O7- Density of Radial Cracking (0=none; 1=light: 2=heavy UL;
3=heavy UR; 4=heavy LL; 5=heavy LR; 6=all heavy)

08~ Extent of Grid (0=none; |=throughout; 2=within tangential
crack)

Neural Network 2:

01 - Radius of Tangential Cracking (mm)

02 - Extent of Radial Cracking (0=none; 1 = inner third; 2 =
outer third)

Figure 3.4. Description of Crack Pattern Network Outputs
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Thus, one neural network model was developed to predict only the tangential strain
distribution.

A good indicator of the concentration of stresses at the face of the stub column would be
the measured concrete strains at various loads at the column face. This would provide
information regarding any failure that could occur at the slab-column connection, since
this point is the most stressed point on the concrete slab. So, another neural network
model was developed to predict concrete strains at various load increments at the column

face. The final outputs for both concrete strain models are shown in Figure 3. 5.

3.3.4 Reinforcing Steel Strain Distribution

A fourth group of neural network models was developed to predict the distribution of

steel strains the concrete slab. This neural network group was

designed to provide information regarding the extent of yielding of the reinforcing steel.
‘This information is useful because, when the reinforcing steel yields, the full tensile and
compressive loads are carried by the concrete alone; failure of the slab would probably
first occur at this location. One neural network model was constructed; this was designed
to predict the radius of yield for the reinforcing steel only as well as the distribution of the

strains in the rei ing steel along a radius through the slab. The resulting

neural network models are shown in Figure 3.6.
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Outputs

Neural Network 1:

O1- Tangential Concrete Strain at Edge Gauge
02- Tangential Concrete Strain at Mid-Slab Gauge
O3- Tangential Concrete Strain at Column Face

(02- Concrete Strain at Cclumn Face at 50% Ultimate Loas
03- Concrete Strain at Column Face at 75% Ultimate Loas
04- Concrete Strain at Column Face at Ultimate Load
05- Ultimate Load. kN

Figure 3.5. Description of Concrete Strain Network Outputs



Outputs
Ol- Yield radius
O2- Steel Strain at edge strain gauge
(03- Steel strain at mid-slab strain gauge
O4- Steel strain at column face strain gauge

Figure 3.6. Description of Reinforcing Steel Strain Network Outputs
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3.4 Summary

Development of a reliable neural network model is essential for the proper prediction of
results for a problem. Therefore, the appropriate selection of inputs and outputs for each

NN module prop for the iction of the behavior of rei concrete

slabs must be d prior to i ion of the model. This chapter discusses the
selection of these inputs and outputs, along with the reasons for their selection. Chapter 4
will then discuss the implementation of these models, along with the assignment of actual

data to the inputs and outputs developed in this chapter.
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Chapter 4

Computer Implementation of the Neural
Network Models

4.1 Introduction

The implementation phase of neural network model development is comprised of two main
tasks: 1) training data preparation; and 2) training and testing. Once the inputs and outputs
for the four neural network models were defined in the concept and model design phases,
the validity of the neural network concept was then tested by conducting training and
testing on the data for the concrete slabs. This chapter addresses both phases of model

implementation for the four neural networks that were designed in Chapter 3.

4.2 Data Preparation

The basis of neural network modeling is a training mechanism on a group of known

les of p and their soluti Therefore, to develop neural network
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predictive models of a concrete slab’s structural behavior, existing data on some
experimental slabs were used in this study. Over the past ten years, extensive research on

the structural behavior of concrete slabs has been cond d at the M ial University of

Newfoundland including a number of experimental tests on full-scale reinforced concrete

slabs. The research has been d d in several ications (M and Hussein,
1991; Emam et al, 1995, and Jiang, 1994). The experimental tests reported in Marzouk
and Hussein (1991) studied the behavior of seventeen normal and high strength concrete
slabs subjected to concentrated loads applied axially through a stub column. Following
that, additional tests (Emam et al., 1995) were conducted on fourteen reinforced concrete
slabs and column connections subjected to not only axial load but also bending moment.
To further study the effects of shear reinforcement on the slabs’ behavior, Jiang (1994)
conducted supplemental tests on seven high strength concrete slabs. For each siab tested
in these studies, detailed information regarding the factors that describe a concrete slab

and accordingly affect its structural behavior were documented.

A data acquisition system was connected to the test setup of the concrete slabs and was
used to automatically record several data elements during all of the tests. Deflection at the
slab centers was measured at a series of loads using linear variable differential transformer
(LVDT) gauges. Using electrical strain gauges, steel strains were measured at different

points at the surface of the reinforcing steel while concrete strains were measured at the
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compression face of the concrete slab. Cracks were marked during loading and the final

crack patterns were photographed.

The first step in preparation of data involved formulating the load-test results for the
thirty-eight full scale reinforced concrete slabs in the appropriate input and output formats
for each neural network model. Details on how the data was extrapolated for each neural
network are included in Table 4.1. Final crack patterns were not available for all thirty-
three slabs and some of the concrete and reinforcing steel strain gauges were damaged
during testing, so not all of the slabs could be used for training and testing NN 2 through
4. The following analysis of the strain gauge data (both for the concrete and reinforcing
steel) was required. Strain gauge readings were reviewed for consistency; those that
remained at the extremes (near O or 1) throughout the test or that fluctuated significantly
during the course of the test were considered to be unreliable. If strain gauge readings did
not appear reliable, the entire case was removed from the pool of data available for
training and testing the neural networks. The resulting total number of slabs used for
training cases and those that were reserved for later testing of all of the trained neural

networks is shown in Table 4.1.

In order to validate the information content of the training cases used, a simple test was
first conducted on training data for the seventeen slabs used in the Hussein study (1991);

this was completed prior to training NN1 (load-deflection curve). The test examined the
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Table 4.1. Data Extrapolation Methods

etwork 2 Description Method
Data extrapolated
Deflection from plot of load

deflection curve
(produced during
testing)

2 Crack Pattem  Photos of crack 28 7
patterns visually
interpreted

3 Concrete Strain ~ Strain gauge 7 2

4 Steel Strain Strain gauge 9 3
readings




relationship between an input parameter (e.g., concrete compressive strength) and an
output parameter (ultimate load reached), depicted in all of the training cases. These
relationships (or general trends) were established through simple regression analysis and
then d with in this domain. Following this analysis, the
concrete compressive strength exhibited a logical direct relationship with the ultimate load

reached by the slab, and as such, it was concluded that the data was sufficient for initial

training of NN1.

4.3 NeuroShell 2 Software

NeuroShell (1990) is an existing neural network software package which contains all of
the features that are necessary to train and test a neural network. This original version has
been upgraded several times since the original issue. NeuroShell (1990) was used for the

initial training and testing of NN1 (Load-deflecti The i ion was then

transferred to NeuroShell 2, Release 3.0, and the upgraded software was then utilized for
final modeling of the problem and training of all of the networks (NN 1 through 4). The
Windows-based neural network software was chosen for its ease-of-use, speed of training,
and for its host of features that permit user optimization of network training. Some
advantages of NeuroShell 2 include: 1) the ability to import and export data files; 2) the
choice of several different neural network architectures, which allows the user to select the
paradigm most suited to his/her particular application; and 3) visual training, which allows
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the user to evaluate when training is sufficient by viewing the training graphically or by
viewing the network training statistics. Figure 4.1 demonstrates the user-friendly aspect of
NeuroShell 2. For more details regarding the NeuroShell 2 software, the reader is

referred to the NeuroShell 2 User’s Manual (1995).

4.4 Training

After the data for the training cases (Appendix A) was input to the software, training was
completed for all of the neural networks. Originally, for NN1 (load deflection), training
was conducted on the twelve siabs contained in Marzouk and Hussein’s study (1991).
This was done to confirm the suitability of the neural network technique for the problem at
hand. Once this was confirmed, fifteen cases from the remaining two studies were later
added and retraining was conducted. The addition of the results from these tests widened
the domain of concrete slabs included in training, thereby augmenting the ability of the
neural network to generalize the model. The remaining three neural network models
(NN2 through 4) were then trained with all of the training cases available for each model.

The same iterative procedure was utilized for training each of the four neural networks.

Two separate forms of neural network architecture were utilized to train all four neural

network models: the Backpropagation architecture (BP) and the General Regression
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Neural Network (GRNN). These two architectures were selected to assure that the

optimum neural network ion was chosen to train the models.

4.4.1 Backpropagation using NetPerfect

Since training is essentially an iterative process, two simplified approaches were carried
out to arrive at the optimal training level for each neural network using BP. In the first
approach, the “NetPerfect” feature of the software was used where, at predetermined
intervals during training, NeuroShell 2 would test the network on an independent test data
set. If the error on the test set was lower than the previous optimal network, the new
network would be saved; this process would continue until no improvement in the
network occurred. An average error for all training cases would then be computed for
comparison purposes. The TurboProp feature of NeuroShell2 was also used; this method
adjusts network connection weights only after the network encounters an entire set or
epoch of training patterns. By doing this, the network can converge at a faster rate than
when weights are randomly updated without the network seeing an entire set of training

patterns.

58



4.4.2 Backpropagation using Stepwise Training

Stepwise training was next by iy i ing the number of training

epochs (ie., cycles through a complete training set) beyond which the error was
minimized on the training set. This was done because the smaller number of cycles at the
earlier stages exposed the network to less training time and thus the network did not focus
on the training cases. This would result, th ically, in good

of the neural network on any test cases for concrete slabs not previously applied to the
neural network. On the one hand, if training time were not sufficient, this could mean

network On the other hand, if the network were overtrained

(i.e., higher number of cycles since average minimum error), this could occur at the
expense of its generalization performance. Steps of 50, 100, 200 and 1000 cycles beyond
the minimum error were progressively applied as the training time was increased for each
neural network model. Once again, average errors for training cases were computed for

comparison purposes.

4.4.3 General Regression Neural Network

An alternate neural network paradigm, the general regression neural network, was also

applied to all of the NN models. This type of neural network has been shown to perform
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best on models for which there is only a minimal amount of data available to train and test
the model. This architecture was experimented with in this study as there was a limited
number of cases available to train and test some of the neural network models; this
paradigm could theoretically provide lower errors than the more conventionally used

Backpropagation neural network.

4.5 Testing

Once the neural networks were trained, the predicti' ity of the neural

was then checked on an independent test set. In this case, a weighted average of the
errors for the sample and test cases was computed, using a 70% weight on the test cases,
and a 30% weight on the training cases. These weights were randomly chosen to
emphasize a greater weight on the test cases because, it could be assumed that the neural
network would have a greater chance for learning the results for cases previously shown
to it (training cases) and a lower error on these cases would be expected; however, a
lower error for the test cases would indicate greater performance of the network. Once
the results were reviewed, the optimum neural network models were chosen for each
module (those with the lowest weighted error), along with the ideal training method to be



4.6 Summary

Data ion and training/testing are which are used to implement the neural
network model. Several iterations of this process are usually required in order to achieve
optimum results for the model. General details regarding model implementation are
discussed in this chapter, along with a review of the software utilized to accomplish the
training and testing for all of the networks. Chapter 5 addresses the results obtained from
training and testing each of the neural network models, as well as the selection of the ideal

neural network models and training methods utilized for each problem.
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Chapter 5

Results

5.1 Introduction

Results for all of the four neural network modules were produced by the software and
were reviewed on an ongoing basis as each NN was trained and tested. From these
results, the optimum network was selected for each problem in two stages. The first stage
consisted of choosing the ideal training method and network architecture by minimizing
the weighted error for each method and architecture. The ideal step for stepwise training
was first selected and compared with the results produced by the use of the NetPerfect
feature. Then, the results produced using b ion were with the

GRNN model and the optimum architecture (with the lowest weighted error) was

selected. As previ the wei error is an average of the errors for the
sample and test cases, with a 70% weight used on the test cases and a 30% weight on the

training cases. The second stage involved choosing the ideal model for the problem, again
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by minimizing the weighted errors produced for each individual model and by also
evaluating the ability of the network to produce results (for example, load-deflection
curves) i with those by the 1 load tests. The results for the

optimum model for each neural network are tabulated in Appendix B.

5.2 Load-Deflection Behavior

The results produced by stepwise training for NN1a, which predicted the deflection of the
slab at ten different load increments and the ultimate load, and NN1b, which predicted the
yield and uitimate loads and deflections, are plotted in Figure 5.1, showing the training
stages versus the weighted network performance error for each network. As shown,
NN1a performed ideally at the last step (training iterations beyond minimum average error
= 1000), with a weighted error of 16.31%, while NN1b performed ideally at the third step
(training iterations beyond minimum average error = 200), resulting in a weighted error of
15.09%. This illustrates the necessity for conducting stepwise training separately for each
NN, as each NN could produce the minimum error at a different level.

Next, Table 5.1 compares the weighted errors resulting from stepwise training with those
produced by use of the NetPerfect feature. It can be seen from the results for both
networks that the NetPerfect feature trained the networks in the optimum manner.
Although the average error on the training cases was lower at the optimum stepwise

63



Average Absolute Error

50 100 200 1000
# of Epochs since Min Error

Figure 5.1. Stepwise Training of Neural Networks 1a and 1b



Table 5.1. Results for Training Load-Deflection Curve Neural Network

Model Network Training Average Average ‘Weighted
Architecture  Mechanism Error'on  Erroron  Error™ onall
Training Test Cases
Cases Cases
(%) (%) (%)
Backpropagation  NetPerfect* 836 19.72 16.31
NN la: Backpropagation Stepwise** 191 2249 1631
General NA 1.72 13.85 10.22
Regression NN
Backpropagation  NetPerfect 6.87 12.04 10.48
NN 1b: Backpropagation Stepwise 759 1830 15.09
General NA 19.83 2097 20.63
e Segression NN —
* - Auy imization feature of 2

** - Training method by which the number of epochs since minimum error is
sequentially increased until the optimum results are obtained.
+ - Average error = Absolute value of ork - Actual Ou
Actual Output

+E: - Weighted Average Error = (0.3 x Training Error) + (0.7 x Test Error)
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training level for each network, the average error for the independent test cases was much
higher (>22% for NN1a and >18% for NN1b), leading one to conclude that the networks
actually overtrained on the sample cases and may have lost their ability to generalize for
any example presented to the network.

Table 5.1 also compares the weij errors d by the backp: ion NN with
those produced by the GRNN model. While the GRNN version of NN1a showed a lower
average weighted error than the optimum network trained using backpropagation (NN1b),
the ultimate load and deflection predicted by the network fell far short of the actual
ultimate load deflection reached in the experimental tests, as shown in the sample slabs in
Figures 5.2 and 5.3. And, the error produced by the GRNN network for NN1b was in

excess of 20%, the worst for all of the training conducted. Therefore, the usefulness of

the backp i i for this partis neural network was confirmed.
The load-deflection curves by the opti network for each NN architecture
were then plotted against the actual curves by o load- . Sample

load-deflection curves for each NN architecture and training method are shown in Figure
5.2 for NN1a and Figure 5.3 for NN1b. As is shown by these curves, the curves produced
by NN1b (backpropagation/NetPerfect) more closely matched those produced from the
experimental tests. With an overall minimum weighted error of 10.48%, it was

determined that this neural network could be used as a reliable alternative to the costly test
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67



for the iction of the load-deflection curve values, both numerically and

5.3 Crack Pattern at Failure

The accuracy of the crack pattern model was more difficult to interpret as the ability of the
network to produce a correct interpretation of final crack patterns was equally as
important to the final outcome as the network performance error. Thus, the first crack
pattern model, NN2a, which identified the crack shape characteristics in terms of eight
output was first to ine whether it i P the

crack patterns. The errors for training and test sets of this model were computed in two
separate ways. In the first method, a weight from O to 1 was chosen for each output
according to the ability of that output to affect the overall picture of the crack pattern.
These weights were then applied to the error for that output (error computed using the
absolute value of %mugz@x ). Anaverage of all of the weighted errors
was then computed for both training and test cases. As was done in the load-deflection
curve model, a final weight was applied to this average, using a 70% weight on the test
cases, with a 30% weight on the training cases. The final errors are summarized in Table
5.2 for both backpropagation and GRNN models. Using this method for comparing
errors, the second stage of stepwise training (number of cycles since minimum average
error = 100) provided the optimum results, with an average weighted error of 24.8%. As
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Table 5.2. Results for Training Crack Pattern Network (NN2)

Model/ Network Training Average Average Weighted
Error  Architecture  Mechanism Error'on  Erroron  Error™ onall
Method Training Test Cases
Cases Cases
(%) (%) (%)
NN2a: Backpropagation NetPerfect® 19.49 5582 3039
Using Backpropagation  Stepwise** 1474 29.08 24.78
Wid General N/A 11.38 5722 43.46
Error Regression NN
NN2a:  Backpropagation NetPerfect 38.00 83.33 51.60
% of Backpropagation Stepwise 28.57 50.00 43.57
Wrong General NA 19.05 66.67 5238
Pictures _ Regression NN
Backpropagation  NetPerfect 16.33 2336 21.25
NN 2b: Backpropagation Stepwise 2.00 28.07 20.25
General N/A 287 20.03 14.88
M NN
* - Aut i ion feature of N 2
“~Tmmngmethodbywhxchthemnanofepochssmcenmmmmrls
d until the results are obtained.
+ - Average error = Absolute value of (Network Output - Actual Qutput)
Actual Output
++ - Weighted Average Error = (0.3 x Training Error) + (0.7 x Test Error)



can be seen from Table 5.2, this method of training produced a weighted error which was
lower than that produced by training conducted with the use of the NetPerfect feature.
Also, the choice of the backpropagation architecture over the GRNN architecture was
again confirmed, as the GRNN model produced weighted errors in excess of 40%.

In the second method for computing errors, the total number of incorrect pictures of the
crack pattern as a percentage of the overall number of crack patterns was calculated to

the overall i of the model. These errors were then weighted for the

training and test cases as was done in the first method. The second stage of stepwise
training again produced the optimum results, however, with this method of analyzing
errors, 44% of the predicted crack patterns would be incorrect or 56% of the predicted
crack patterns produced the correct pictures. Table 5.2 again summarizes these errors for

all levels of training.

Regardless of the method utilized to evaluate the overall error for the neural network, a
weighted error of either 24.8% or 44% could not be considered accurate enough to
reliably predict a crack pattern for a previously untested concrete slab. Because of these
inaccuracies, a new model, NN2b, was proposed with fewer, more quantitative outputs in
an effort to further minimize the errors. This model, as shown in Figure 3.4, predicted

only the tangential cracking radius and the extent of radial cracking. Although less exact,

this model still produced results ing to an ptabl i ion of
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the final crack pattern formation. Neural networks generally perform better with fewer

outputs to predict, as is by the two load-deflection models. As is indicated by

Table 5.2, the weighted errors for the new NN model (NN2b) were substantially less than
those reflected in the results for NN2a for all forms of training and architecture. With a

weighted error of 14.88%, the general ion neural network p the optimum

results for this model.

Although a sufficient amount of training cases appeared to be available for this network, a
high percentage of the training cases (more than 80%) predicted crack patterns indicative
of failure due to pure or ductile punching shear. As a result, all of the networks appeared
to focus on this type of failure pattern and had difficulty generalizing to other crack
patterns. To illustrate this, Figure 5.4 contains network-produced sample crack patterns
for punching shear failure and flexural failure as compared to the actual crack patterns

The GRNN model is designed to predict outputs around the average for the results in the

training domain. As a result, this form of neural network was more successful than the

more traditi ion model in icting outputs for this particular group of
training and test cases. It is anticipated that, with the addition of further test cases from a

wider training domain (ie., a wider variety of crack patterns), the backpropagation neural
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network would provide better results, thereby further improving the performance of this
model.

5.4 Concrete Strain Distribution

d for each strain di ion model

Separate training and testing was
(NN 3a, which predicted tangential concrete strain distribution at three points along a
radius through the slab, and NN3b, which predicted the concrete strains at the column
face at four load increments). The optimum NN architecture and training method was
then chosen for each model as each was designed to provide mutually exclusive resuits.
Unfortunately, a minimal set of results (nine in total) were available for training and testing
both models as the majority of the strain gauges were damaged after cracks started
forming in the concrete. Table 5.3 summarizes the errors produced during training and
testing for both models. As shown, the errors were quite high for all forms of training and

testing except that conducted using the NetPerfect and TurboProp features; the minimum

ighted errors duced by these were 22.10% for NN3a and 17.26% for

NN3b. When plotted against the results from actual experi tests, these 1

were both able to produce results that followed trends encountered by the actual tests as
is shown by Figures 5.5 and 5.6. It is anticipated that the resuits for both networks could
only improve with the addition of further experimental data for training and testing the
networks.



Table 5.3. Results for Training Concrete Strain Distribution Neural Network (NN3)

Model/ Network Training Average Average Weighted
Error  Architecture  Mechanism Error'on  Erroron  Error™ onall
Method Training Test Cases
Cases Cases
(%) (%) (%)
Backpropagation  NetPerfect® 521 2935 22.10
NN 3a: Backpropagation Stepwise** 7.81 48.02 44.09
General
ion NN N/A 40.72 35.28 36.92
Backpropagation  NetPerfect 1222 19.42 17.26
NN3b: Backpropagation Stepwise 18.90 2642 24.16
General
Ilqru-ion NN N/A 28.69 40.64 37.05
* - Awm ization feature of 2
bl Trlmmgmahodbywh:chthemnﬂnofepochsmcemlmmxmmns
until the results are obtamed.
+ - Average error = Absolute value of
Actual Outpul
+ - ‘Weighted Average Error = (0.3 x Training Error) + (0.7 x Test Error)
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5.5 Steel Strain Distribution

As there was just one model for steel strain distribution, selection of the ideal model only
involved choosing the training method and NN architecture which produced results with
the minimum error for this model. Training and testing for this network again involved a
smaller number of cases than those available for the load-deflection and crack pattern
models (nine training cases and three test cases) as strain gauges were again damaged
during experimental testing, reducing the data available. The neural network, however,
performed well considering this limited amount of available data. Table 5.4 shows the
weighted errors for the results for this model; as shown, the network trained with the
NetPerfect feature provided the optimum results with an average weighted error of
14.52%. The network results as compared to those obtained during experimental testing
for the steel strain distribution through a sample slab in the radial direction is also shown
in Figure 5.7. The network predictions follow the actual results quite closely when plotted.
While an error within this range can not be considered fully accurate, a reasonable
distribution can still be shown and these results can be considered reasonable with respect

1o the complexity of the problem and the limited number of training cases available.
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Table 5.4. Results for Training g Steel Strain Di ion Neural
Network (NN4)
Network Training Average Average Weighted
Architecture Mechanism Error’on Erroron  Error™ onall
Training Test Cases Cases
Cases (%)
(%) (%)
i fect 13.63 1491 14.52
Backpropagation Stepwise 11.69 2128 18.40
General ion NN N/A 22.11 22.58 22.44
* - Aut ization feature of 2
** - Training method by which the number of epochs since minimum error is
ially i i pti results are obtained.
+ - Average error = Absolute value of -
Actual Output

++ - Weighted Average Error = (0.3 x Training Error) + (0.7 x Test Error)
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5.6 Summary

Results for the four neural network models are discussed in this chapter. The combined

tool is in

implementation of these models in a

Chapter 6, and conclusions reached from these results are discussed in Chapter 7.



Chapter 6
Spreadsheet for the Prediction of the

Structural Behavior of Reinforced
Concrete Slabs

6.1 Introduction

This chapter focuses on the ofa which bines the four neural
network models into a comprehensive tool that can be used for the structural analysis of
reinforced concrete slabs. Given the factors that describe the slab, a spreadsheet can be
utilized to predict, through four separate modules, the load-deflection curve, the failure

crack pattern, the strain di jion and the rei ing steel strain di

for the slab. A user-friendly “interface™ sheet guides the operator of the spreadsheet
through the four modules for simple and quick predictions which can then be printed for

further use.
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6.2 Development of the Spreadsheet Model

The dsheet was ped as a Mi ft Excel 5.0 Workbook which interfaces with

the NeuroShell2 software for neural network predictions. The workbook is divided into
seven separate worksheets: an “interface” or main menu sheet, an instructions sheet, an
input data sheet and four output sheets which display: the predicted load-deflection curve,

the predicted crack pattern at failure, the predi concrete ial strain di:

and the predicted strain development at the column face, and the distribution of the

steel strain di: ion in a radial directi The user moves

through the workbook by clicking directly on buttons on the main interface sheet, first by
inputting the nineteen factors which describe the slab on the input data sheet, then by

moving to each output module to view the NN predictions.

The buttons on the spreadsheet were all customized using the Visual Basic recorder
feature of Microsoft Excel 5.0. This feature records the mouse movements of the

programmer to a macro which then si these the button is

activated. The neural network predictions for each module were accessed through a
Dynamic Link Library (DLL), which executes the trained networks within NeuroShell2.
The “CALL” function of Microsoft Excel 5.0 was utilized within cells on the output sheets

to call the procedure in the DLL. A separate cell for each output item would then call the
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“Predict” function of Excel to open and execute the trained neural network. The

following syntax was used in each output cell:

=CALL(“NSHELL2 DLL",“Predict”,“pppp”,“def_path”,input_array, output)

where def_path is the file path for the trained NN, input_array is the array of cells which
contain the input data, and output is the output node number. The “Chart Wizard™ feature
of Excel was then utilized to create graphic representations for the NN predictions for

each module.

An example problem will serve to further illustrate this spreadsheet tool.

6.3 Example Problem using the Spreadsheet

A reinforced concrete slab from the Emam et al. study (1995) is chosen (Slab # M1),
because the results for this slab are known and can be referred to by the reader for
comparison purposes. These results were used to train or test all of the four NNs in the

current investigation.

Figure 6.1 shows the interface sheet that the user sees when the file is executed. The
“Instructions” button can be clicked upon at any time for help in using the spreadsheet, if
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COMPREHENSIVE SPREADSHEET FOR THE PREDICTION OF
THE STRUCTURAL BEHAVIOR OF REINFORCED CONCRETE
SLABS USING NEURAL NETWORKS

Instructions

¢

H
w
z
z
-

A =~ 4 7

v N
NN2
Crack
Pattern

(]
i
gif
i3

Figure 6.1. Interface Sheet for Example Problem
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necessary. The “Input Data™ button is first clicked upon for input of the data; this input
data screen is shown in Figure 6.2. After inputting and/or editing the data, the user is
returned to the interface sheet. The user can then choose any one of the four icons
representing each of the NN modules for prediction of the behavior of this example slab.
Figures 6.3 through 6.6 show each of the screens that are displayed when each of the

buttons is clicked.

The total time spent inputting the data and receiving the results was approximately three
minutes. As can be seen, this spreadsheet provides a very quick method by which one

could estimate several aspects of the structural behavior of reinforced concrete slabs.

6.4 Comparison of Spreadsheet Predictions with Actual Test
Results

The spreadsheet model was next vali by i icti for the ultimate
punching load with actual results for selected tests conducted by Elstner and Hognestad
(1956), Kinunen and Nylander (1960), Regan et al. (1993) and Hallgren (1996).
Representative slabs for each series of tests were chosen and were compared by using the
ratio of the spreadsheet predicted punching load divided by actual punching load. The
results of this comparison are compiled in Tables 6.1 and 6.2; results for the tests used to
train the neural network within the spreadsheet (Marzouk and Hussein, 1991; Emam et al,
1995, and Jiang, 1994) are included in Table 6.3 for comparison.
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Figure 6.2. Input Data Sheet for Example Problem
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LOAD-DEFLECTION CURVE

Load, kN

cBHHAE

O QA

Defl., mm | Load, kN
128 398 Yield
16.0 480 Ultimate

Figure 6.3. Predicted Load-Deflection Curve Sheet for Example Problem

86



CRACK PATTERN PREDICTION

Punching Shear Radius
\ Extent of Radial Cracking*

* 0 - none
1 - 25% through slab
2-50% of slab
3-75% of siab
4 - throughout siab

Figure 6.4. Predicted Crack Pattern Sheet for Example Problem

87



CONCRETE STRAIN DISTRIBUTION

Tangential Strain Distribution
0000 |
=W ¢ Strain @ Column Face ~ 2516.39
£ 2mm | Strain @ Mid Siab 2377.92
;umm- Strain @ Slab Edge 128251
51@5)'
S0 |
Qoo -
Distance From Coiumn Face
trai ibution lumi ce
o, Strain @ 25% Ult. Load 200
«© Strain @ 50% Ult. Load 300
Zx Strain @ 75% Ult. Load 480
% 201 Strain @ UIt. Load 500
kS| Uttimate Load, kN" 480
9!
s =109 * Calculated in NN1 - Losd-Deflection Neurai Network

Figure 6.5 Predicted Concrete Strain Distribution Sheet for Example Problem
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STEEL STRAIN DISTRIBUTION

SR

Distance from coiumn face

Yield radius, mm

Max. steel strain @ col face
Max. steel strain @ mid slab
Max. stee! strain @ slab edge

Figure 6.6 Predicted Steel Strain Distribution Sheet for Example Problem
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As shown, the provi il dictions for the ultimate punching loads
for all of the Elstner and Hognestad (1956) slabs except for slabs B-9 and B-14. Both of
these slabs, however contained a reinforcing steel ratio of 3.0, which was higher than the
reinforcing steel ratio for any of the slabs (Marzouk and Hussein, 1991; Jiang, 1994; and
Eman et al., 1995) used to train the neural network within the spreadsheet (NN1b). The
spreadsheet also provided satisfactory predictions for many of the Kinunen and Nylander
(1960) slabs as well as the Regan et al. (1993) slabs. Again, in the cases for which
predictions exceeded 25% of the actual loads reached (ratio higher than 1.25 or lower
than 75), at least one input parameter was outside or at the boundaries of the range or
domain of the parameters for the slabs used to train the neural network within the
spreadsheet. For example, the ratio for slab # 3390 (Kinunen and Nylander, 1960) was
1.54; for this particular slab, the spacing of the reinforcing steel was 74 mm, which was
just above the minimum spacing (71.4 mm for slab # HS3, Marzouk and Hussein, 1991) of
the slabs used to train NN1b. Finally, rather poor predictions were provided for the
Haligren (1996) slabs; however, the concrete compressive strength for most of these slabs
was well in excess (at least 20 MPa) of the concrete compressive strength for the slabs

used to train the neural network ined within the dsh

were provided for all of the slabs within the Marzouk and Hussein (1991), Jiang (1994)
and Emam et al. (1995) slabs because these were the slabs which were used to train and
test the neural network embedded within the spreadsheet. The results from these

comparisons therefore suggest that the model well when p d
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with slabs within the domain of the slabs used to train the neural networks within the

spreadsheet.

6.5 Summary

This chapter has described the devel and i ion of a model
which can be used by i for preliminary iction of the
behavior of a reinforced concrete slab. The ines the four p

developed neural network models into one simple-to-use tool which can provide

predictions in minutes. The ilities of the dsheet are d through an
example problem, and the accuracy of its predictions with respect to the ultimate punching
load of a slab are established by comparison with the results of four separate series of

tests on rei concrete slabs.




Chapter 7

Summary and Conclusions

7.1 Summary

The i igation under i ion was to evaluate the feasibility of using a

branch of artificial intelligence known as neural networks to predict several aspects of the
structural behavior of reinforced concrete slabs. This technique was examined because, in
previous studies, neural networks have been found to be a quick and reliable alternative to
lengthy experimental testing or detailed calculations. Four separate neural networks
(NN1b: load-deflection; NN2b: crack pattern; NN3a & NN3b: concrete strain distribution;

and NN4: rei ing steel strain distribution) were ped using a variety of models

and training techniques for each network in an attempt to seek the optimum neural
network that could be constructed for the problem under consideration. One neural
network software program, NeuroShell2, was utilized for modeling, training and testing of
all of the neural networks in order to achieve consistency of results for comparison

purposes. All four neural networks were trained and tested using the results from three

series of i | tests at ial University of dland which
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evaluated the behavior of normal and high strength concrete slabs subjected to
concentrated, flexural and cyclic loading conditions. In addition, all four neural networks
considered the same input data, which consisted of a number of variables (grouped under

slab ic di i ies, concrete i i ing steel

properties, and loading and boundary conditions) which could affect the behavior of the
slabs. NN1 predi the load-deflection behavior of reis d concrete slabs in two

‘ways; one model i the jon at ten load i while the other model

predicted the yield and uitimate loads and deflections. Next, NN2 predicted the crack

pattern at failure of the concrete slabs using two The first app:

a schematic representation of the crack pattern whereas the second approach predicted
just two numerical aspects of the final crack pattern. The third neural network, NN3,
predicted the distribution of concrete strains throughout the slab through two versions.
The first version predicted the maximum concrete strain distribution at three points along
a radius of the slab while the second version predicted the concrete strains at the column
face at various load increments. The final neural network, NN4, predicted the distribution

of reinforcing steel strains throughout the concrete slab.

Results from the four neural either individually or i could provide
useful i ion to a engineer ing the iction of the behavior of the
concrete slab. To facilitate access to this i ion, a i tool
was developed which included all four of the neural in one easy d



format. Results could then be obtained for any or all of the four neural network models,
valuable i ion for design or analysis of reinforced concrete

slabs.

72 Conclusions

Based on the neural network modeling, training and testing conducted, the conclusions
reached regarding the use of neural networks to predict the structural behavior of

reinforced concrete slabs are summarized below.

7.2.1 NNI1: Load-Deflection Behavior

The load-deflection neural network model was considered to be the trial model which
would determine the applicability of the neural network technique for the problem at hand.

To this end, the following was determined:

1. The backpropagation technique was the most accurate training algorithm for this
neural network model, confirming previous findings that backpropagation appears to
be the architecture most suited to problems within the civil engineering realm, due to

the simplicity of the architecture.



2. The errors produced were higher for the neural network (NNla) with the greater
number of outputs to predict, leading to the conclusion that neural networks are more
accurate when fewer outputs are predicted. The reason for this may be that, with
fewer ouputs, the connections within the neural network layers would be less
complicated, therefore making it easier for the neural network to determine the correct

connection weights, thus providing a lower error for the problem.

3. The optimum neural network model was able to produce resuits with an overall error

of 10.48%, which can be i a reliable approximation to those either

by i testing or

4. The load-deflection curves produced by the neural network models closely matched

those produced during experimental testing, again confirming the suitability of the
neural network technique as a reliable aiternative to such testing.

7.22 NN2: Crack Pattern at Failure

From the results produced by this neural network, the following conclusions can be

drawn:



1. Mapping crack patterns using binary numbers to indicate the exact locations of cracks
is a complex task which is not suitable for neural network modeling due to the high

number of outputs which are required.

2. The network that predicted the quantitative (analog) outputs, NN2b, produced an
overall error that was substantially less than that produced by the network that
predicted the classified (binary) outputs. This suggests that, for this particular
problem, the neural network models were more accurate for predicting those outputs
which could be quantified rather than classified.

3. The General Regression Neural Network (GRNN) i duced the

results for this model due to the “clustering” of data in the training domain around the
same values. This confirms the suitability of this neural network type for predicting
results for problems where the results are similar for each training case presented to
the network. It is anticipated that, because the backpropagation neural network was
more able to provide better generalization abilities in the other neural network models
for this problem (NN1, NN2 and NN4), this form of architecture could provide
improved results with the addition of training cases with a wider variety of crack

patterns.



7.23 NN3: Concrete Strain Distribution and
NN4: Steel Strain Distribution

Despite the minimum number of cases available for training and testing of both NN3 and

NN4, the neural networks were still able to predict results that differed by 17.26% and

14.52%, respectively from those d during experi: testing. Si NNs 3
and 4 were able to predict strain distribution curves that almost matched those produced

during i testing. The following ions can also be drawn from these

results:

1. Neural networks can, given sparse training data, predict results for cases previously

unknown to the network that generally concur with known results.

2. The i i again provided results with errors that were in the
most acceptable range.
3. As a result of the imps network when further training

data was added to NNI, the addition of training data will most likely improve the

results of these networks in a similar manner.
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7.24 General Conclusions

In summary, the following conclusions can be drawn from the combined results for all four

neural networks:

1. The backpropagation technique is the most reliable form of neural network
architecture for the problem at hand, except when the results for training cases

“cluster” around an average; in this case, the GRNN architecture is most suitable.

2. Neural networks perform best when a minimal number of outputs are predicted by the

model.

3. The neural network models predicted results with the minimum errors when they were
minimal sumber of cases was used to train the neural network model.

4. Neural networks can be used as a reliable alternative to costly experimental testing as

well as lengthy iri i for predicting the behavior of

reinforced concrete slabs.
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5. Simple spreadsheets are powerful tools that can be used to illustrate and summarize

vast amounts of data.

73 Opportunities for Further Research

While the effectiveness of the neural network i has been

demonstrated by the work contained within this thesis, further research could serve to
enhance this effectiveness. For example, the addition of results from a greater number of
reinforced concrete slabs with a wider variety of properties and loading conditions will
most likely serve to further improve the accuracy of the neural network models already
developed. These neural networks could be expanded to predict results for a wider
variety of reinforced concrete structural elements such as beams, columns and shear walls.
From this, a general comprehensive tool for the prediction of the structural behavior of
reinforced concrete could then be developed for general use by structural engineers as a

quick and reliable alternative to existing methods of prediction.
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141

Table A.3.a. Input Data for Crack Pattern Neural Network (NN2) - Training Cases

NN2 Slab Agg d Load 1t d SlabL fo fu E Rebar Rebar 8, Rebar f, E, Shear

Casc# # Type mm Type mm mm c/d mmBC MPa MPa_GPa p Size Shape mm Layers MPa GPa_rebar

Marzouk and Hussein, 1991;

116 1 20 0 120 95 16170 423192842 L5 | 1 71 1 49 200 0
2 1 1 20 0 120 95 16 170 67 3223408 05 | | 214 1 4% 200 0
3 07 1 20 0 120 95 16 170 743553546 12 1 1 88 1 4% 200 0
4 4 1 20 0 120 % L7170 663173387 24 2 1 94 1 490 200 0
S 5 1 20 0 15 95 16170 68 3263428 06 1 1 125 1 4% 200 0
6 6 1 20 0 15 12 13170 70 3363468 09 1 I 125 | 4% 20 0
7 8 1 20 0 150 12 13070 69 3313448 L1 2 1 150 1 4% 200 0
8 9 1 20 0 150 12 13170 743553546 16 2 1 100 1 4% 200 0
9 10 1 20 0 150 12 13070 80 384365 23 2 1 71 1 49 200 0
011 1 2 0 9% 7 21170 703363468 1 1 1 150 1 4% 200 0
mo12 1 2 0 9% 70 21170 753603565 15 1 1 94 1 49 200 0
12213 1 2 0 9% 7 21 170 683263428 2 1 1 71 1 4% 200 0
13 14 1 20 0 120 95 23170 723463507 L5 | L 71 1 4% 200 0
MO15 120 0 120 95 32070 701 3413487 L5 I 1 7L 1 49 200 0
Jiang, 1994:
15 HSIS 2 19 2 150119 21 20 68 3263428 L1 2 1 166 1 4% 200 1|
16 HSI9 2 19 0 150109 23 20 61 2933280 L1 3 1 266 1 49 200 0
17 HS20 2 19 2 150119 21 20 74 3553546 L1 2 1 166 | 4% 200 2
18 HS2L 219 2 150119 21 20 72 3463507 L1 2 1 166 | 4% 200 3
19 HS22 2 19 2 150119 21 20 60 2883262 L1 2 I 166 | 49 200 4
20 HS23 2 19 3 150111 23 20 60 2883262 L1 2 | 166 1 490 200 5
Emam et al,, 1995;
20 M3 2 19 2 150115 22 19 0 43 2072872 05 1 1 170 1 4% 200 0
2 M4 2 19 2 150119 20 19 0 43 2052859 1 2 1 170 1 490 200 0
23 M5 2 19 2 150119 21190 36 174268 1 2 1 170 1 49 200 0
4 M7 2 19 2 150119 2119 0 35 1692661 1 2 1 170 1 49 200 0
25 M9 2 19 2 150125 2190 74 3553546 05 1 1 170 1 4% 200 0
26 M4 2 19 3 150119 21 190 35 1702664 1 2 1 170 1 490 200 0
27 ML 2 19 0 150150 23 19 0 32 1542573 1 2 1 170 1 49 200 0
8 M6 2 19 2 150125 219 0 34 1632626 05 11170 1 490 200 0
Notations: d, ~ 1, = slab thickness, d, slab span, f ’ il B
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Table A.S. Input Data for Concrete Strain Neural Network (NN3a and NN3b) - Training and Test Cases

TRAINING CASES
NN3a NN3b Slab Agg d Load t d ShbL fo fu E Rebar Rebar &, Rebar f, E, Shear
Casc# Case# # Type mm Type mm mm c/d mm BC MPa MPa_GPa_p Size Shape mm Layers MPa GPa_rebar
Marzouk and Hussein, 1991:
1 3 1 20 0 15 95 16 17 0 68 3.26 3428 06 2 o1s 1 49 200 0
1 8 120 0 150120 13 17 0 69 331 3448 11 2 1150 1 4% 200 0
[Emam et al,, 1995:
2 Ml 2 19 0 15015 L7 19 0 32 154 2573 | 2 1170 1 4% 200 0
2 M2 2 19 0 150119 21 19 0 37 1792715 1| 2 117 4% 200 0
3 3 M4 2 19 2 150119 21 19 0 43 205 2859 | 2 1 170 1 4% 200 0
4 4 M5 2 19 2 150119 21 19 0 36 174 2688 1 2 L 170 1 4% 200 0
5 5 M6 2 19 2 150125 2 19 0 34 163 2626 05 | 1 170 1 4% 200 0
6 6 M7 2 19 2 150119 21 19 0 35 169 2661 1 2 1 170 1 4% 200 0
7 M9 2 19 2 150125 2 19 0 74 3553546 05 1 I 170 1 4% 200 0
8 MI0 2 19 2 150119 21 19 0 74 354 3542 1 2 1 170 1 4% 200 0
7 MIl_2 19 3 150125 2 19 0 72 347 3513 | 2 11701 49 200 0
TEST CASES
NN3a NN3a Slab Agg d Load & d ShbL o fa E Rebar Rebar &, Rebar f, E, Shear

Case# Case# # Type mm Type mm mm c¢/d mm BC MPa MPa_GPa__p Size Shape mm_Layers MPa GPa_rebar

1 14 1 20 0 12095 23 17 0 72 346 3507 15 | I 7n I 4% 200 0
[Emam et al., 1995:

Ml 2 19 0 150150 17 19 0 32 154 2573 l 2 a1 490 200 0

1 M2 2 19 0 150119 21 19 0 37 179 2715 2 1 49 200 0

2 MI2 2 19 3 150125 2 19 0 76 3.64 3580 05 1 1170 1 4% 200 0
Notations: d, 1, = alab thickness, d, L= sisb span, G E, = conarde

fo
= steel spacing, 1, = steel yield strengsh, F, = steel modulus of elasicity
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Table A.7. Input Data for Steel Strain Neural Network (NN4) - Training and Test Cases

TRAINING CASES
NN4 Slab Agg d Load & d ShablL fo o E Rebar Rebar &, Rebar f, E, Shear|
Case# W mm mm mm _c/d_mm BC MPa MPa_GPa Size Shape mm_Lay MPa_GPa_rebar
Marzouk and Hussein, 1991:
1 3 1 20 0 12095 16 L7 0 69 331 3448 15 1 1N 1 49 200 o0
2 9 1 20 0 150120 13 L7 O 74 3553546 16 2 o 1 490 200 0
Emam et al., 1995:
3 ML 2 19 0 15015 17 19 0 32 154 2573 | 2 1170 1 4% 20 0
4 MS 2 19 2 150119 21 19 0 36 174 2688 1 2 1170 1 490 200 0
5 M6 2 19 2 150125 2 19 0 34 163 2626 05 | 1170 1 4% 200 0
6 M7 2 19 2 150119 21 19 0 35 169 2661 1 2 1170 1 49 200 0
7 M8 2 19 0 150119 21 19 0 67 322 3411 | 2 1170 1 4% 200 0
8 M3 2 19 3 150125 2 19 0 37 176 2703 0.5 1 L1701 4% 200 0
9 M4 2 19 3 150125 2 19 0 35 170 2664 | 2 1170 1 49 200 0
TEST CASES
NN4 Slab Agg d Load & di SlablL fo fa E Rebar Rebar &, Rebar f, E, Shear|
Case#l_ # mm mm mm _¢/d mm BC MPa MPa_GPa Size S| mm MPa_GPa_rebar|

[Emam et al,, 1995:
1T M 2 19 0
2 M2 19

150 119 2.1
150 125 2
150 125 2

19 0 37 1792705 | 2 1170 1 4% 200 0
19 0 72 3473513 | 2 1170 1 4% 200 0
19 0 7 364 3580 05 1 1170 1 49 200 0

3
3 M2 2 19 3
1

Notations: d,

Y

1. slab span, > B
£,

5



Table A.8. Output Data for Steel Strain Neural Network (NN4) - Training and Test Cases
TRAINING CASES
Yield
NN4 ot Cn Eme
Casc# Slab# mm x10° x10° x107)
[Marzouk and Hussein, 1991
1 3 252 2920 720 330
2 9 344 2990 1850 450
[Emam et al., 1995
3 Ml 350 2850 2750 1250)
7 M5 200 2710 1708 1145
8 M6 425 3650 2730 2090]
9

10 M8 580 5000 3250 2000
14 M3 600 3970 2250 1960
15

NN4 radius, Cemel Soecs Some
Casc # Slab# mm x10”° x10° x107
[Emam et al., 1995

1 M2 385 3230 2030 1700

2 MI1 550 3730 2860 1710

3 Ml12 550 5590 3520 1240)
NS g ™ EX 272021 @ CORITES FBCE; ™ T3AX.
#rain @ mid-slab; Gum= max strain @ slab odge
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