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ABSTRACT

The formulation and impl ion of a ighted upwind-based control

volume finite element method (CVFEM) for steady. two-dimensional, viscous com-
pressible internal flows is reported in this thesis. In the development of this method.

a CVFEM for steady, quasi di ional, viscous flows was also

d. The d method is a col shock capturing formulation.

Polygonal control volumes are constructed around each node in the finite-element
mesh, and discretized forms of the governing equations are obtained by deriving al-
gebraic approximations to integral conservation equations for each control volume.

The proposed methods are formulated using the velocity components, pressure,

and as the di d iables: density is from an

of state. Linear i lation is applied to and diffused scalars, and a mass

weighted upwind function is applied to the convected scalars. An interpolation

function i ing a pseud locity and a p gradient is used to represent

mass conserving velocities; this allows the development of a colocated method valid

for ible flows. The di: ized forms of the i ions are solved
using an iterative algorithm. In this algorithm, li ized forms of the d
and inui i are solved in a segregated manner by using a

tridiagonal matrix algorithm.

The d quasi and two-di ional CVFEM's are applied to several
inviscid and viscous compressible fluid flow probl and the soluti d
are pared with th ical ical, and experi I results ilable in

the literature. This comparison shows that the proposed CVFEM’s can generate

that are in with the d physical behaviour of some com-



pressible flows and with the available results. The results suggest further research

is required in the and enh of the ighted interpolation
functions currently used, however, as the shock smearing in the proposed method

is excessive. and the accuracy of solution is not satisfactory.
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Chapter 1

Introduction

1.1 Aims and Motivation of the Thesis

The primary purpose of this thesis is to develop a mass-weighted upwind-based
Control Volume Finite Element Method (CVFEM) for steady, two-dimensional,

viscous compressible internal fAuid flow problems. The method will be valid for

b from sub to ic flow speeds.

use over a wide range of Mach
The proposed method is the result of an effort to enhance the capabilities of some
of the earlier CVFEM’s [1]-[13] developed for two-dimensional compressible and/or
incompressible flows. The proposed CVFEM is developed from the works of Hookey
[9] and Saabas [10]. The secondary goal of this thesis is to test the “mass weighted”
interpolation function proposed by Schneider and Raw [11] and implemented later
by Saabas [10] in the context of compressible flows.

The computer simulation of the flows of interest requires: (1) a mathematical
model of the physical problem, which in its general form, includes partial differential
equations and boundary conditions that govern the distribution of the unknown
dependent variables in the region of interest; (2) a numerical method for the solution

of the mathematical model in regular- and i lar-shaped calculation d

and (3) a impl ion of the ical method. The mathematical



model in conjunction with a given numerical solution procedure is referred to as
a numerical model. In this thesis. emphasis is placed on the development of a

1 solution ‘ The ical model used is not new. Briefly.

it assumes the fluid is an ideal gas that is compressible and Newtonian. and the

two-dimensional Navier-Stokes i and the inuity ion govern the
motion of the fluid.

The CVFEM proposed in this thesis employs three-node triangular elements to
discretize two-dimensional calculation domains. Each element is further discretized
in such a way that upon assembly of all elements, control volumes are formed

d

around each node in the ion domain. El t-b: functions
for the dependent variables and the subdomain-type Method of Weighted Residu-
als (MWR) is used to derive algebraic approximations to the governing equations.

In conventional finite element methods (FEM’s), the Galerkin method of weighted

residuals is used, where the weighting and inter are equivalent.
In CVFEM's, however, for each node in the calculation domain, the weighting func-
tion is set equal to one over a suitably chosen control volume associated with the
node, and zero elsewhere. Control volume finite element methods for fluid flow and

heat transfer, therefore, involve the imposition of physical conservation principles

on finite control volumes in the calculation domain. which makes them amenable

to easy physical interp ion, and their i satisfy global conservation re-
quirements, even for coarse grids.

The proposed method is restricted to the solution of steady two-dimensional
flows, however, its basic formulation can be extended to unsteady flows using the
procedures described in [14]. In addition, extensions to three-dimensional problems
can be performed by incorporating the ideas from the CVFEM proposed by Saabas
[10]. In the formulation of the proposed CVFEM, the fluid is assumed to be a



perfect gas with constant specific heat. Although realistic compressible flows are
usually turbulent. the proposed CVFEM has been developed in the context of the

well understood physical behaviour of laminar Newtonian fluid flows. mainly to

facili the fc lation. impl ion, and testing of the proposed method.

The CVFEM's in [1]-[13] are conservative!: their formulations ensure conserva-
tion of the appropriate scalar variables over contiguous and non-overlapping control
volumes, and consistent calculation of fluxes across the boundaries of the control
volumes, which together ensure conservation of the appropriate dependent variables
over the control volume and the calculation domain [22]. The proposed CVFEM,
which is an extension of those in [1]-[13], is also conservative. In addition, it may

be classified as a shock ing or i hod: all di: inuities, such as

shocks, are automatically captured by the method, but these discontinuities are
smeared over several grid points. Discontinuous or extremely rapid changes in the

dependent variables are i d by finite gradi The degree of smearing

induced depends on the manner in which the integral conservation is enforced, and
the type of interpolation functions used. Shock capturing methods are in contrast

to shock fitting methods, where shocks are treated as internal boundaries in the

calculation domain, and are, therefore, maintained as sharp di inuities: the

Rankine-Hugoniot relations [16] and satisfaction of flow ibility conditi

are used to determine conditions across the shock. In shock fitting methods, the
presence of shocks must be known a priori, however, shock capturing methods do
not require such k ledge, as all di inuities within the flow field are auto-

11 d. The ible flow CVFEM proposed by Hookey [9] was

also a shock capturing method, but employed adaptive grids to reduce the physical

'Those finite-difference schemes which maintain the discretized version of the i
statement exactly (except for round-off errors) for any mesh size over an arbitrary finite region
containing any number of grid points are said to have the conservative property [30].



of shocks ink to such hods. The d CVFEM

to address problems experienced at i ible outflow b. d when using

the CVFEM of Hookey [9]. The interpolation schemes used by Saabas [10] were

successful in avoiding these difficulties in a colocated CVFEM for incompressible
flow. The proposed CVFEM will, therefore, attempt to incorporate the successful
portion of both CVFEM'’s into one method.

Since the proposed numerical method was developed in a CVFEM context, no

review will be given to the other for or incom-
pressible fluid flow, for le the hods developed in the context of finite-
difference hods (FDM’s), finite-vol hods (FVM’s), and finite-element

methods (FEM’s). A rather thorough review of these methods can be found in [9].

1.2 A Review of CVFEM’s

Control volume finite element methods offer a combination of the geometric flexi-
bility of finite element methods and the ease of physical interpretation associated
with finite volume methods. The formulation of a CVFEM involves the following
steps [4]:

1. Di ization of the calculation domain into el and a further dis-

cretization into control volumes associated with the nodes of each element.

™

. Prescription of appropriate element-based interpolation functions for the de-

pendent variables.

3. Derivation of di izati i which are algebraic approximations

to the governing di ial i The subd in method of weigh
residuals is used to derive algebraic forms of the integral conservation equation

for each control volume.



4. An element by element Ly of the di

5. Prescription of a procedure to solve the resulting discretization equations.

The main features that distinguish the CVFEM'’s that have been developed for
the simulation of fluid flow problems are the type of discretization, interpolation.
and solution techniques employed. The choice of interpolation function is influenced
by the domain discretization employed, as only certain functions are applicable

to the desired equal-order (or col d) di ization. The following subsections

review the CVFEM's that have been developed for the simulation of incompressible
and/or compressible fluid flows, and the types of interpolation schemes used in these

methods.
1.2.1 CVFEM'’s for Fluid Flow Problems

It has been demonstrated by Patankar [14] that an unrealistic and checkerboard
numerical solution can result when a linear interpolation scheme is used for pres-

are also d in the di ization of the inuity

sure. Similar
equation if both velocity and density are interpolated linearly [9]. In the proposed
method, density is calculated using the equation of state and is expressed in terms

of pressure. To avoid listic soluti special ions are necessary if a

colocated storage scheme is to be used.
One way to avoid such difficulties in orthogonal grid FDM’s is the use of stag-
gered grids to store velocity components and pressure at different locations in the

calculation domain [14]. An ad ge of grid ing is that are

stored at the faces of the momentum control volumes, which ensures that pressures
at adjacent, not alternate, nodes are used to evaluate the pressure gradients in the
momentum equations. Similarly, checkerboard density and velocity fields would

be prevented due to the staggered storage [9]. The limitations of this staggered



storage are that two different families of control volumes are used for the momen-
tum and continuity equations, and mass conservation is not strictly satisfied over
the momentum control volumes. Further, two different control volume sets lead
to tedious and complicated bookkeeping. and these difficulties are compounded in
three-dimensional flow problems.

An unequal-order CVFEM for i ible lows was by Baliga

and Patankar [1]. In this method, the domain is first discretized by six-node tri-

angular el These ! " are then divided into four three-node

“subelements” by joining the midpoints each side of a macroelement. Pressure is
stored at the vertices of the macroelements, and velocity is stored at the vertices
of all subelements, which results in an unequal-order scheme that avoids pressure
harmonics in the solution. A mixed order interpolation scheme is applied to this
formulation in which pressure is interpolated linearly in the macroelements, and
the velocity components are interpolated by flow-oriented upwind type functions
within the subelements. Polygonal control volumes used to discretize the continu-
ity equation are constructed around the vertices of the macroelements, while those

used to di ize the ions are constructed around the vertices of

the subelements. This formulation has been used in conjunction with SIMPLE,

SIMPLER, and SIMPLEC (2, 6, 8] solution il Several di: ages are

d with this ion, because of the use of two types of elements and

control volumes: (1) mass conservation is not strictly satisfied over the momentum
control volumes and the velocities at the vertices of the macroelements do not ex-
plicitly enter the discretized continuity equation; (2) the discretized equation for
pressure is quite different from that of the other dependent variables and a sepa-
rate equation solver is required; (3) the two different control volume sets lead to

tedious and complicated bookkeeping, and these difficulties would be compounded



in three-dimensions; (4) excessively fine grids for velocity, and thus an expensive
computation, are needed in problems with relatively large pressure gradients since
the velocity discretization is finer than the pressure discretization in this method;
and (5) given an equal number of velocity nodes, an equal-order discretization
would provide a much better approximation of boundary irregularities than this
unequal-order formulation.

To ci the bl iated with the qual-order storage meth-

ods, Prakash and Patankar [3] introduced a CVFEM using an equal-order velocity-
pressure interpolation, where pressure and velocity nodes are colocated. Within
each element, the velocity components (when treated as transported scalars) are
interpolated using flow-oriented (FLO) upwind functions (without source term ef-
fects), and the pressure is interpolated linearly. The mass flow field is obtained from
linear interpolation of a pseudo-velocity field and pressure. The domain discretiza-

tion again involves the formation of polygonal control volumes about each node in

the calculation domain. The velocities in the inuity ion are interpolated
by using a modified form of the discretized momentum equation derived for that
control volume. The velocity at each node is split into two parts: one is a func-
tion of the nodal velocities and any volumetric source term (excluding the pressure
gradient); and the other is related to the appropriate pressure gradient over that
control volume. Consequently, at each node within the domain, a pseudo-velocity
field and a pressure coefficient can be defined. These two values are then interpo-
lated linearly within each element, to provide an interpolation scheme for the ‘mass
conserving’ velocities. When interpolating the ‘mass conserving’ velocities within

an element, the element pressure gradient is used in conjunction with a pressure

flici In this way, ious h ics in the pressure field, commonly encoun-

tered in early equal-order FEM’s are avoided. A SIMPLER type algorithm is used



to solve the resulting discretization equations. This method has been extended to
three-dimensions by LeDain Muir and Baliga [15].

In an attempt to refine his previous equal-order method. Prakash [4] proposed a
second method. Here, the interpolation of velocity within an element is performed
using flow-oriented upwind type functions that include the effects of pressure gradi-

ents and other source terms in the stream direction (FLOS). The same interpolation

function is used to derive algebrai i ions to both the and con-

tinuity equations. It is the explicit inclusion of the appropriate pressure gradients in
the velocity interpolation functions that prevents the appearance of spurious oscil-
lations of velocity and pressure. Pressure is interpolated linearly. But convergence

difficulties have been reported by Prakash [4] when a SIMPLEC solution scheme is

applied to solve the di i and inuity equations.

Hookey and Baliga [7, 8] modified the interpolation function of Prakash [4] to
include source term effects in directions parallel and normal to the mean flow within
each element. Furthermore, they introduced a SIMPLEC type solution algorithm
in which they derived very complete pressure-correction equations [9]. The result-
ing pressure-correction equation, however, involved up to twenty-five neighbour-
ing nodes in two-dimensional problems, and this would make extensions to three-

dimensional problems impractical. In [9], Hookey successfully reduced the number

of neighbouring nodes in the di i i The i ighbouring
nodes for two-dimensional problems was reduced to eight for both pressure and
velocity equations. This method was, therefore, better suited for three-dimensional

for i The di ized and inui ions were solved in

a coupled manner using a Coupled Equation Line Solver (CELS). The CELS solves
the coupled equations simultaneously along a grid line in the calculation domain,

and iteratively improves the overall solution by successively sweeping the domain



line by line, in alternating directions, until a desired level of convergence is obtained
[9].

In [11]-[13], Schneider and Raw have also proposed an equal-order colocated
CVFEM. Based on quadrilateral elements rather than triangular elements. this
CVFEM also uses different interpolation functions: linear interpolation is applied
to the diffusion terms, a MAss Weighted (MAW) upwind scheme is used for con-
vection terms, and the convection terms in the momentum equations explicitly
include the pressure gradients to couple the velocity and pressure fields to prohibit
harmonic pressure fields. The use of triangular elements is believed to be more
efficient for irregular-shaped domains and adaptive grid methods, because triangu-
lar elements allow more freedom in the placement of nodes within the calculation

domain. Schneider and Raw used a direct banded solver for the solution of the al-

gebraic di: izati ions of two-di ional problems. In th:
the cost of such a solution method is prohibitive.

Combining a modified version of the MAW upwind scheme in triangular ele-
ments with the use of a pseudo-velocity field and the pressure gradient to define
‘mass conserving’ velocities, Saabas [10] developed an equal-order CVFEM for the
simulation of three-dimensional turbulent incompressible fluid flow. This method
overcomes the problems with outflow boundaries inherent with the method devel-
oped by Hookey [9], and forms the basis for the CVFEM developed in this thesis

for the simulation of compressible flows.

1.2.2 Interpolation Schemes

As discussed in the previous subsection, there are some basic considerations involved
in the solution of fluid flow problems to prevent spurious solutions in colocated

CVFEM’s. The equal-order CVFEM’s that have been developed have used some
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form of coupling between pressure and velocity, usually at the interpolation function

levels. to prevent solution h ics. The ! of iate i lati
functions must also consider the following: (1) p ion of i fici
in the di ized i (2) minimization of false diffusion that arises due to

locally one-dimensional upwinding; and (3) suitable coupling between velocity and

pressure to permit col d hods. This sub i i the interpolation
functions used in the previous CVFEM’s, and presents the interpolation functions
used in the proposed CVFEM.

Linear interpolation was applied successfully in early FDM's for heat transfer
problems. But it gave physically unrealistic oscillatory solutions for convection-
diffusion problems when the grid Peclet number was greater than two [14]. This
difficulty occurred, because linear interpolation of the convection term gave rise

to i fici in the di izati ions and this led to divergence.

Attempts to overcome this difficulty led to the devel, of upwind difference

schemes [9].
In the CVFEM’s of Baliga et al. [1]-[10], the dependent variables are inter-

polated by flow-oriented upwind type functi These functi: limi the
oscillatory solutions that occur with linear interpolation of convection terms, and
provide a more realistic approximation of the physical behaviour of the dependent
variable within an element. To reduce false diffusion, which may be incurred when
locally one-dimensional upwinding is used, the interpolation functions are defined
with respect to a locally flow-oriented co-ordinate system specific to each element.
These functions are derived by solving a simplified version of the appropriate gov-
erning equation within the element, written in terms of flow-oriented coordinates.
In [4], a source term was included in the interpolation function to provide for a

source-related variation of the d variable in a direction parallel to the lo-




cal flow direction. In [6, 7, 8], this source-related term was modified to account for
a source influence in directions both parallel and normal to the local flow direction.
The inclusion of this source term was shown to improve the quality of solution in
convection-diffusion problems involving sources [6, 7].

It was found that formulations that included source effects, especially the pres-

for the convected scalar,

sure gradient, in the el t-based inter

allow for equal-order colocated formulations in flow problems [6, 7]. Thus, this ap-

proach appears attractive: the same interpolation function can be used for velocities

in the and inui i and spurious oscillations of the pressure

or velocity fields can be avoided.
It is not necessary, however, to use the same interpolation functions in both

and i It may actually be disadvantageous to do

so. The basic philosophy when developing an interpolation function should be to

choose the i and physicall ingful, type of interpolation for the

terms in which the interpolated scalar appears. This was done in Prakash and
Patankar (3], where the velocity was interpolated using an upwind scheme for the
convective term, and a linear scheme for the diffusion and ‘extra viscous terms’,
and the ‘mass conserving’ velocity was linearly interpolated by a pseudo-velocity
and pressure gradient.

In the context of quadrilateral elements, Schneider and Raw [11] introduced a

positi fhici pwinding d in which the coeffici that arise due to

the algebraic approximation of the convection fluxes are assured to be positive at
an elemental level, and hence at a control volume level. In [12], an upwinding for-
mulation was presented that was similar in form to the positive coefficient scheme,
however, the directionality of the flow was more closely approximated, reducing

false diffusion, but allowing for the appearance of some negative coefficients. For



the problems tested. it was found that the itude of the neg
were such that they did not pose any difficulties. The effects of diffusion, both par-
allel and normal to the mean flow direction, and source terms, were also explicitly

accounted for in the interpolation function for the convected scalar. In this method.

were d in the interpol

for velocities at

the pressure
an elemental level, this interpolation scheme allowed for the development of an

I-ord 1 d ion for i ible flow

q!

In the context of triangular elements, Prakash [5] introduced the donor-cell
CVFEM scheme as a means of ensuring positive coefficients. This approach stated
that the value of a dependent variable convected out of a control volume must
be the value of the dependent variable at the node within the control volume.

Although it positive coeffici this h takes little account of

the directionality of the flow, and takes no account of the effects of diffusion and

source terms on the interpolation of the convected scalar. The positive influence

flicient scheme d by Schneider and Raw [11] is a more attractive approach
to eliminate negative coefficients, even though it involves more computations.
In this thesis the MAW scheme developed by Saabas [10] will be used for the first

and i

time in the development of a CVFEM applied to
flows. This interpolation will permit the development of a colocated method, and
should eliminate the outflow difficulties in the CVFEM of Hookey [9] when it is

used to solve purely incompressible flow problems.

1.3 Key Features in the Formulation of the Pro-
posed CVFEM

For reasons of economy and simplicity, many ideas used in the proposed two-

dimensional CVFEM were first tested in a quasi di ional formulation. The
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derivation of both the one- and two-dimensional CVFEM's are presented in chap-
ters 2 and 3. respectively. To avoid repetition, the key features in both formulations
are discussed in this section. The topics included here are as follows: (1) choice of
the dependent variables; (2) the necessity of special procedures for the colocated
methods; (3) appropriate upwinding of the dependent variables; (4) linearization
procedures for the governing equations; (5) physical boundary conditions and their

numerical implementation; and (6) the solution methods used.

1.3.1 Dependent Variables

The proposed CVFEM’s are based on the so-called primitive variables, i.e. the veloc-
ity components (u,v), temperature (T'), and pressure (p). The continuity equation
is used as an equation for pressure, the momentum equations are used to solve for

the velocity the energy ion is solved for temperature, and density

is calculated from an equation of state.

1.3.2 Colocated Dependent Variable Storage

A colocated storage is applied to all the d d iables in the

CVFEM. To prevent spurious harmonic solutions the flow-oriented upwind type
function proposed by Prakash and Patankar [3]. in which the mass flow field in
each element is determined from linear interpolation of pseudo-velocity and pressure
fields, is employed. The use of the pseudo-velocity and pressure in the discretiza-

tion of the inui ion provi the necessary

between velocity
and pressure. This method was formulated in the context of the SIMPLER solu-

tion algorithm [14]. Saabas [10] employed a similar method to colocated dependent

variable storage in a three-di ional i ible CVFEM.



1.3.3 Upwinding of the Dependent Variables

The MAW scheme first introduced by Schneider and Raw [11] and later imple-
mented by Saabas [10] in the context of a triangular element CVFEM, is used as
the interpolation formula for the convected scalars in this thesis. As previously
mentioned, the evaluation of the MAW scheme in the context of compressible flows

is a secondary goal of this thesis.
1.3.4 Linearization Procedures

In CVFEM'’s, the discretized forms of the governing equations are obtained by

for ing suitable algebraic approximati of integral conservation statements

applied to control volumes constructed around each node in the calculation domain.
In steady state problems, the conservation of a particular scalar variable requires
a balance between the net transport of this variable out of the control volume by
convection and diffusion fluxes, and the net generation of the variable within the

volume. Volume integration of source terms is used to determine net generation,

and net transport is evaluated from the i ion of ion-diffusion fluxes
over the surface of the control volume. These fluxes must be linearized in an
appropriate manner with regard to the dependent variables in order to obtain the

discretized equations. The solution to a fluid flow problem is obtained using an

iterative procedure in which li ized di; izati i are solved during
each iteration. The scheme used to linearize the mass flux is discussed in this

section.

The derivation of the di ized form of the inui ion involves inte-
gration of the mass flux, p#, over the faces of a control volume. For compressible
flows, the mass flux is nonlinear, and if it is linearized using densities from a previ-

ous iteration and treating velocity as the current unknown, convergence difficulties
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could arise. In the steady acceleration of a supersonic flow through a diverging duct.
when the density is initially assumed constant throughout the duct, the velocity
would decrease to satisfy mass conservation. The decreased velocity would cause
pressure to increase through momentum considerations. The increased pressure
would lead to an increased density, when the equation of state is used to update

into the inui ion further reduces the

density, which when
velocity. This numerical behaviour is opposite to that of the physical flow. and
causes divergence.

lable vel. and

Linearization of the mass flux can also be achieved using
treating density implicitly, or as the current unknown. This approach, however, is
viable only at high supersonic flow speeds, where changes in velocity become negligi-
ble. For a steady decelerating subsonic flow through a diverging duct, if the velocity
is initially assumed to be constant throughout the duct, density would decrease to
satisfy mass conservation. This change in density would cause pressure to decrease,
through the equation of state, and when this decreased pressure is substituted into
the momentum equations the velocity would increase. The increased velocity, when

d into the inui ion, would further decrease density, and this

hysicall listic behaviour i until divergence.

To overcome these difficulties, a linearization that takes into account the roles of
both density and velocity in the satisfaction of mass conservation has to be formu-
lated. This is accomplished by recognizing the dual role of pressure in compressible
flows: it acts on both velocity and density, through momentum and state equa-
tions, respectively, to ensure mass conservation. A suitable formulation involves a

full Newton-Raphson linearization of the mass flux, g:

- (L1)

@u
Qe

g=5+
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ey ., " 2 Lo -, . ;.
where, 9 is linearized with respect to velocity, ¢ is linearized with respect to density.

and § is evaluated from available values of both density and velocity.

1.3.5 Boundary Conditions

The necessary boundary conditions for a numerical solution of a fluid flow prob-
lem are discussed in this section. Further details on the implementation of these
boundary conditions will be given in later chapters.

The boundary conditions applied to compressible flows depend upon the type of

flow, subsonic or supersonic, that exists at the boundary in question. In this subsec-

ditions for inviscid sub and ic flows are

tion, boundary

first, and then the boundary conditions for viscous flows will be presented.
Inviscid Subsonic Flows

At subsonic inflow boundaries, the velocity components, u, v, pressure, p, and
temperature, T, are all specified. To define the mass entering the calculation domain
it is necessary to specify the pressure, which, along with the specified temperature,
is used to determine the density at inlet. This specified density, the inlet geometry,

and the ified velocities together d ine the inlet mass flow.

In subsonic inviscid flows, the influence of pressure is elliptic, as a pressure
disturbance will eventually be felt everywhere in the calculation domain. The
proposed numerical method accounts for this elliptic behaviour by interpolating
pressure linearly. With this elliptic treatment, a downstream boundary condition
for pressure becomes necessary. In the proposed method, the static pressure at
outflow boundaries is specified.

The proposed method has been developed for viscous compressible flows, how-
aver, it may be used to solve for inviscid flows by setting viscosity equal to zero. At

so.id boundaries, a tangency condition is demanded by defining the dot product of



the velocity vector and a unit normal to the wall to be zero:
F-A=0 (1.2)

At outflow boundaries, to ensure that no diffusive effects are encountered. the

diffusion transport of momentum and energy is effectively set equal to zero using:
Vo-7a=0 (1.3)

where ¢ is a general scalar dependent variable.

Inviscid Supersonic Flows

In supersonic flows, as in flows, the ification of the inlet mass flow

rate is required, and this is done by specifying u, v, p, and T at inflow boundaries.

Inviscid supersonic flows are hyperbolic, and outflow boundary conditions are

not physicall d into the calcul domain, th no

boundary conditions are applied or needed at outflow boundaries. To allow so-
lutions for inviscid flows with the proposed viscous CVFEM., the gradients of u, v,

and T are set to zero at outflow boundaries using Eq. (1.3).
Viscous Compressible Flows

Viscous flows always have elliptic influences due to the presence of the viscous
terms, however, the boundary conditions are very similar to those used for inviscid
flows, except that the no-slip condition is always used on solid walls. Wall bound-
ary conditions for the energy equation are either the fixed temperature value or
adiabatic type, Eq. (1.3). Inflow boundary conditions are the same as for inviscid
flows, but the elliptic behaviour that is now present requires special treatment at

outflow boundaries. This special treatment is the same as that used in the solution
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of inviscid flows with the proposed viscous flow CVFEM: it involves the specifica-
tion of zero diffusion at the outflow boundary for velocity and temperature, using

Eq. (1.3).
1.3.6 Solution of the Discretized Equations

In the proposed CVFEM, a coupled set of nonlinear algebraic equations for velocity,

pressure, and temperature are obtained as approximati of the di
integral conservation i The Li ities in the i are resolved
by Picard i ion, in which the coeffici in these ions are eval d using

the most recent field values. A segregated solution method is used, rather than
a coupled method, to solve the final algebraic equations. The segregated solution
method is believed to have the following advantages: (1) less storage is required,
as coefficients do not have to be stored simultaneously; and (2) the advancement
in the solutions of each dependent variable do not have to be matched in each
iteration. With regard to the second point, it is not necessary to solve for all the
dependent variables to the same level of convergence in each iteration, emphasis
can be placed on the solution of the pressure field in order to ensure that mass
conservation is enforced more completely at each iteration. As the momentum
equations are inherently nonlinear, and are solved through an iterative process, it

exactly in each

is not necessary to solve the inally linear

iteration. More detail about the solution procedures will be given in a later chapter.

1.4 Summary

The main ideas and motivations behind the development of the proposed CVFEM

were presented in this chapter. The derivation of a CVFEM for quasi-one-dimensional

CVFEM is presented in Chapter 2, the f lation of a two-di ional CVFEM



-~

is discussed in Chapter 3, and the testing of the proposed CVFEM formulations is

presented in Chapter 4.



Chapter 2

Formulation of the Proposed
Quasi-One-Dimensional CVFEM

2.1 Introduction

The main purpose of this thesis is to formulate and implement a CVFEM for

steady, two-dii ional, viscous ible fluid flows. For reasons of econ-

omy and simplicity, however, many ideas were initially tested in the context of

di ional probls The following topics will be used to present the

q

for ion of the di ional CVFEM in this chapter: (1) definition of the

governing equations; (2) domain discretization details; (3) derivation of control

volume integral conservation i (4) i ion of el t-based interpo-
lation functions for the dependent variables; and (5) derivation of discretized forms

of the conservation ions and boundary

2.2 Governing Equations

The governing differential equations for steady, quasi-one-dimensional, viscous com-

pressible flow of a perfect gas through a duct of variable area, w, are:

20



Continuity:

d—(ﬁwu) =0 (2.1)
Momentum:
dp  d du " ld ( d
— (pwuu) = EE-‘-E(W#E) +5 w+§g (ydz(uw)) (2.2)
Energy:
d d (k dT ST 1 dp
E(pqu) == (c—,wﬂ) + w: + ; (qu) (2.3)
State:
P
=57 (2.4)

where u is the velocity, p is the pressure, p is the density, x is the dynamic viscosity,
T is the absolute temperature, k is the thermal conductivity, ¢, is the specific heat at
constant pressure. R is the gas constant, and S* and ST are the volumetric source,
or generation, terms for the momentum and energy equation, respectively. The

proposed CVFEM is formulated for variable fluid properties, but ¢, was assumed

constant mainly to keep the energy ion relatively i d. It should
be noted that, if required, the viscous dissipation term may be included in S7.

These differential equations may be cast in the following conservative forms [9]:

dJ

== Sw (23)
dg _
Z=0 (2.6)

where, J is the bined ion-diffusi; S is a source term, and g
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is the mass flow, pwu. Equation (2.5) the ion when:

- du o g 9, 1d( d T
J—pwuu—uwa i §=8 dz+3wdr(“dz(uu)) (2.7)

and the energy equation when:
.
J=pw‘uT—£w£ : s=sT=5_+id_”
% G Gdz

Applying the appropriate conservation principle to a control volume V. which is

(28)

fixed in space, integral forms of Egs. (2.5) and (2.6) can be obtained:

aJ

/wzdx = /VSwdz (2.9)
dg

/avir—dz = @ (2.10)

where @V is the surface of the control volume, and V' is the volume of the control

volume.

2.3 Domain Discretization

In the proposed equal-order one-dimensional CVFEM. the calculation domain is
discretized by a distribution of nodes in the z direction, and all dependent variables
are stored at all of the nodes. The variation in the area of the duct is approximated
by a piecewise linear curve. Control volume (cv) faces are placed midway between
the nodes in the calculation domain. A sample discretization of a variable area
duct is illustrated in Fig. 2.1, with the duct shape shown by the solid line.
Piecewise linear approximation of the duct boundary does not provide as ac-
curate a formulation as would result if the functional representation of the actual
duct was used to define the area variation of the control volume. The linear area
variation used here was chosen for its simplicity and generality, and also to be con-

sistent with the proposed two-dimensional CVFEM, in which boundary surfaces



are approximated with piecewise linear curves. The placement of control volume
faces midway between nodes was also chosen for simplicity. The control volumes
employed fill the entire calculation domain, do not overlap, and their boundaries
do not coincide with nodes, except at the domain boundary. These characteristics

help to formulate a CVFEM that possesses the conservative property [30].

2.4 Integral Conservation Equations for a Con-
trol Volume

With reference to the control volume surrounding node i in Fig. 2.1, Egs. (2.9) and
(2.10) can be written as:

Similar contributions from other
elements associated with node ¢

Jo—/ Swdz + (
v
( Boundary contributions, ) —o @.11)

if applicable

@ Similar contributions from other )
o

elements associated with node ¢

Boundary contributions, | _ .
( if applicable ) = 212)

Where the subscript 0 indicates the centroid of the element 1-2, which by definition

is the position of the control volume face.

2.5 Interpolation Functions

To derive algebraic approximations to the integral conservation equations, interpo-
lation functions for the fluid properties, sources, duct area, and dependent variables

must first be defined. The functions used in this thesis are described in this section.



2.5.1 Interpolation of y, k, ¢, and S

Values of y, k and ¢, are supplied at the centroid of each element, and these cen-
troidal values are assumed to prevail over the corresponding element. The source

terms. S* and S7, in the and energy i respectively, are lin-

earized using Taylor’s expansion [14]. if required. and expressed as follows:

S* = 5% + Stue (2.13)
55 = ST +5TTa (2.14)
where S, terms ind, dent of the ipted variable, and S, pro-
vides for a linear di d of S on the cor ding variable. The values of

Se and S, are calculated at the centroid of each element, and assumed to prevail
within the element. The average of the appropriate dependent variable, used in the
linearized source term, is assumed to be the arithmetic mean of the corresponding

values at the two nodes of the element.
2.5.2 Interpolation of Area
The variable area of a duct, w, is interpolated linearly within an element:
W = GuT + by (2.15)

this results in a piecewise linear approximation to the duct shape, as shown by the
dashed lines in Fig. 2.1. The coefficients a,, and b,, in Eq. 2.15 are defined by the

duct areas at the two nodes of the element, and the z coordinates of the nodes.

2.5.3 Interpolation of Pressure

Within an element, the pressure is interpolated linearly:

P=aa+b, (2.16)



The coefficients a, and b, in Eq. (2.16) are defined by the nodal pressures and z
coordinates. as shown in Appendix A. Using Eq. (2.16). and the derivations in
Appendix A, the pressure gradient can be expressed as follows:

dp _Ph—p (2.17)

dz I —Iz

Since a, is constant within an element, (—dp/dz) can be included in S¥. Eq. (2.13).
2.5.4 Interpolation of Velocity

In the proposed CVFEM, different functions are used to interpolate velocity in the
convection and diffusion terms in Eq. (2.1), and in a mass conserving velocity used

to evaluate the mass flow term pwu.

Interpolation of a C d ity

The MAW interpolation scheme [10] is used to evaluate velocity when it is a con-
ected scalar. In the context of this one-dimensional CVFEM, the MAW scheme
reduces to a pure upwind scheme, therefore, the value of the convected velocity on

the cv face is simply the value of velocity at the upwind node.
i ou>0 u = (2.18)
if 4, <0, 4 = Uy

The MAW scheme will be discussed in Chapter 3.

Interpolation of Mass Conserving Velocity

The mass conserving velocity, ™, which is used in the mass flow, pwu, is interpo-
lated by assuming a linear variation of a pseudo-velocity, %, and pressure coefficient,

d*. The mass conserving velocity can be written as follows for each node within

dp
& —d? (E) (2.19)

the domain:




where the subscript, e. on the pressure gradient indicates that the elemental pres-

sure gradient is being used. The pseudo-velocity and pressure coefficients are eval-

uated from the di ized form of the mc i If one divides the

discretized momentum equation for node i, Eq. 2.27. by the coefficient multiplying
u;, then %; is the sum of all terms on the R.H.S. of the equation, except for the
pressure terms, divided by this coefficient; the pressure coefficient d¥ is the volume
of the control volume divided by the u; coefficient.

The pseudo-velocities, i;, and the pressure coefficients, df, are known at the
nodal points. In order to determine the values of these quantities on the control
volume faces within an element, linear interpolation of the nodal values is used:

@ =azz + bg (2.20)
df =ayz + by (2.21)
The evaluation of the #; and d¥ terms will be discussed in Section 2.6.3.

Interpolation of a Diffused Velocity

‘When velocity is treated as a diffused scalar, for example in the viscous term of Eq.
(2.2). it is interpolated linearly within an element.

2.5.5 Interpolation of Temperature

Temperature is interpolated in a similar manner to velocity. In convection terms,
it is interpolated using the MAW, or pure upwind scheme:
if >0, T, =T, (2.22)

if <0, T, = Tiny

and in diffusion terms, the is interpolated linearly:

T =arz + br (2:23)
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2.6 Derivation of the Discretized Equations

To obtain algebraic approximations of the integral conservation equations for a
control volume. Egs. (2.9) and (2.10). the element contributions to Egs. (2.11) and

(2.12) are derived and bled in an iate manner. Algeb:

tions of the boundary ibutions are then eval d, if applicable, and added to

the element contributions. The procedures involved in deriving algebraic approx-
imations of the control volume integral conservation equation and the boundary

conditions are described in this section.

2.6.1 Momentum Equation

Within each element, the bined ion-diffusi t, Eq. (2.7), is
evaluated at the control volume face, or centroid of the element, indicated by sub-
script 0. Substitution of the velocity interpolation functions into Eq. (2.7), and

evaluating the expression at the control volume face gives:

_ Hwo _ _bwo 5
o= ((pwu)o + Il) W (2.24)
Rearranging J, in terms of the nodal velocities gives the following:
Jo = cuuy + caup (2.25)
Integration of the source term over the volume enclosed by the element is given by:

d
/ Sudz = Suoly + dyyuy + digtiy + voly 2 (2.26)
voly dz

Detailed derivations of the coefficients ¢y, ¢z, di; and dy2 in Egs. (2.25) and (2.26)
are included in Appendix B.
Expressions similar to Eq. (2.25) can be derived for the integrated flux across

the control volume face in each element, and when these expressions are added,



appropriately, with the volume integrated source, Eq. (2.26), and any applicable
boundary contribution, the discretized form of the integral equation representing

conservation of is leted. The Iti ion can be cast in the

following form for a node i:
afu; = Y akun + b'pi + Y bipn + (2.27)
n 0

where the summation is over the two nodes that neighbour node i in Fig. 2.1. The

assembly of Eq. (2.27) is demonstrated in Appendix C.

2.6.2 Energy Equation

The integral equation representing conservation of energy is discretized in a similar

manner to the i with the dy ic viscosity, u, replaced by
k/cp, and S, replaced by Sr. The integration of the convection-diffusion flux at the

control volume face in an element, and the volume integration of the source term

is described in Appendix B. The Iting algebraic i ion of the integral

conservation equation can be written in the following form:
T =Y of T, + 67 (2.28)
n
The assembly of Eq. (2.28) is described in Appendix C.

2.6.3 Continuity Equation
Introduction

The di ization of the inuil ion will be di: d in this section. The

approach taken here is to use particular forms of the discretized momentum equa-
tion, Eq. (2.27), to define two new nodal fields which will be used in the prescrip-

tion of suitable interpolation functions for the mass conserving velocities. Equation



(2.27) can be rearranged as follows:

B = Zn:u: +a (312/3:“.)3"' (2.29)
af a

In this expression, (8p/dz;) is the average of the pressure gradient acting over a

control volume centered at node i of volume AV'. Defining &, and d¥ as:

. _ Zajun + ¢
T X (2.30
i o )
= &Y (2.31)
a?

then Eq. (2.29) can be rewritten as:

173 (2.32)

W= b

Similar expressions can be written for each node in the computational domain. It

should be noted that the pseudo-velocity, i;, and the pressure coefficient, d¥, fields

should be eval: d before the di: ized ion is und laxed as
will be considered in section 3.7.1. Furthermore, the Dirichlet boundary conditions

(if any) are i d into the pseud locity fields

on the velocity D

as follows: at the points where the velocity is specified, the appropriate &, is set

equal to the specified velocity, and the corresponding df is set equal to zero. In this

way, the velocity information il on the b dary is i d directly
into the di ized ion for inuity
When the inui ion is di: ized, the mass flow is linearized with

respect to density, p, and velocity, u:

y

§=0+9-9 (2.33)

where J is linearized with respect to velocity, 5" is linearized with respect to den-

sity, and § is determined from available values of density and velocity. To generate



an algebraic approximation to the control volume mass conservation equation. Eq.
(2.10), it is necessary to evaluate the mass flowing across the control volume face

in each element. These approximate expressions for the mass flows are then assem-

bled in an appropriate manner to give the final di: i form of the inuity

The following subsecti briefly i how each of the terms in Eq.

(2.33) is evaluated at the control volume face in an element, indicated by subscript

0. This di: ion uses the it e in Fig. 2.1.

Algebraic Approximation of 9o

The mass conserving velocity, Eq. (2.19), is used to evaluate the velocity in the 9o
term. Linear interpolation is used to evaluate the pseudo-velocity and the pressure
coefficient at the control volume face, and the algebraic approximation of 9o can

be defined as follows:

3o = (o (10— i 22 (234)

where py is evaluated explicitly using the MAW scheme.
Algebraic Approximation of %

To evaluate J, the equation of state, Eq. (2.4), is used implicitly to define the
mass flow rate, and the resulting expression is evaluated at a control volume face
as follows:

- Wolo

9 = B b (2.35)

In the proposed CVFEM, the density is interpolated in an upwind manner, by

pwinding both the and pressure in this equation. The value of ug

in Eq. (2.35) is the linearly interpolated mass conserving velocity at the control

volume face.
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Algebraic Approximation of Eo

The ining term to be i d in Eq. (2.33) is 50. which is evaluated with

ilable densities and

90 = powou (2.36)

where pg and ug are interpolated linearly.

Ci 1 Algebraic Approxi: ion of the Linearized Mass Flow

The complete form of the algebraic approximation of the mass flowing across a
control volume face is assembled by adding Eqgs. (2.34), (2.35) and (2.36). The

resulting expression can be written in terms of the nodal pressures:
9% =Eip+Exp+ Bo (2.37)

where the complete derivation of Ey, E, and B is included in Appendix B.

Final Form of the Di: ized C

Expressions similar to Eq. (2.37) can be derived for the control volume faces in the

two elements which make contributions to the control volume for node i. When

these ex ions are added appropriately, along with any boundary contributions.
the discretized form of the integral mass conservation statement for a control volume

is leted. The It ion can be cast in the following form:

afpi =3 ahpa+ 1} (2.38)
=

where the summation is over the two nodes neighbouring node i in Fig. 2.1. The

assembly of Eq. (2.38) is demonstrated in Appendix C.



2.6.4 Boundary Conditions

During the discussion of the discretized forms of the governing equations, mention

was made of the addition of applicable boundary contri If a node is within

the calculation domain, no boundary contributions are required. and the equation

as derived from the element contributions alone is 1 For the nodes on

inflow and outflow b ies of a quasi di ional domain, the i
flux out of the domain, across the domain boundary, must be calculated and added

to the di i i The following subsections describe the evaluation of

this integrated flux, and the i ion of licable boundary diti

Specified Value Boundary

The ified value b dary dition is very easy to apply. When the value of a

dependent scalar at node i, ¢;, is to be given a specified value, @pe. the discretized
equation for node i is written in the following trivial form:
@i = Ospec (2.39)
This equation is implemented in the context of the discretized equations by setting
all calculated coefficients equal to zero, and then redefining:
=1 5 @& =dsc (2.40)

in the di energy

This procedure is used to overwrite

and continuity equations to specify boundary values of u, T, and p, respectively.
Inflow and Outflow Boundaries

At inflow and outflow boundaries, if the value of ¢ is not specified, the gradient of

@ is set equal to zero at the boundary:

(2.41)

B&
1
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This i ffectively sets the diffusion transport equal to zero at the boundary.

A convective flux will exist across inflow and outflow boundaries, however. and

this flux must be added appropriately to the di: i to

their bly. In this quasi di formulation the nodal value of ¢ is

assumed to prevail over the area at that node, therefore, the specification of inflow

and outflow boundaries is quite simple.

To lete the of the and energy ions at
inflow and outflow boundaries, the flux across the boundary has to be incorporated
into these equations. The integrated flux of ¢ out of the control volume across a
boundary surface at node i is defined as (p;u;w;)®:, where u; is directed out of the

lation domain, therefore, the di: d ion can be by adding

(piusw;) to af. At inflow boundaries, the velocity is directed into the control

volume, therefore, the mass flow into the domain is subtracted from af.

The ion of the di ized form of the inui ion is
in a different manner, because of the linearization of the mass flow, Eq. (2.33). A
detailed derivation is given in Appendix B. As shown in Appendix B. the mass
flow out of the domain at node i can be cast in terms of the boundary pressure, p;,

and its neighbouring nodal pressure. p;_,:

G = Elpi+EL pia + F} (2.42)
where E?, EP_, and F? are defined in Appendix B. To the discretized
form of the inui ion, the coeffici in Eq. (2.42) should be added to

the coefficients in Eq. (2.38) as follows:
o = ol +EP (2.43)
=a) - E? (2.44)

o =8-F (2.45)



v
where, the index n in Eq. (2.44) is equal to i — 1 in this case.

2.7 Solution of the Discretized Equations

The discretized form of the governing equations derived in the previous section for

quasi i ional fluid Aow bl i a set of
equations for velocity, pressure, and temperature. The nonlinearities in the equa-

tions are handled with an iterative i p in which co-

in the inally linear di are i from availabls

values of the required variables. The steps used in the iterative solution algorithm
for the one-dimensional CVFEM are similar to those used in the two-dimensional
method described in Chapter 3: they will be discussed in detail in Section 3.7. To
promote convergence of the solution algorithm, the discretized equations are also

under-relaxed, as described in Section 3.7.1

2.8 Conclusion

The formulation of a CVFEM valid for steady, quasi-one-dimensional viscous com-
pressible flows has been presented in this chapter. The formulation of a two-

| CVFEM developed as an ion of this work is presented in Chapter

3. Some results d by the di ional CVFEM are d in Chapter
4.
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Figure 2.1: Discretization of a variable area duct by the proposed one-dimensional
CVFEM.



Chapter 3

Formulation of the Proposed
Two-Dimensional CVFEM

3.1 Introduction

The formulation of a CVFEM for steady, viscous, two-dimensional compressible
fluid flows is presented in this chapter. The presentation is divided into sections
devoted to the following topics: (1) definition of the governing equations; (2) do-
main discretization details; (3) derivation of control volume integral conservation

(4) ification of el t-based interpolation functions for the depen-

dent variables; (5) derivation of the discretized forms of the conservation equations
and boundary conditions; and (6) the algorithm used to solve the discretized equa-

tions.

3.2 Governing Equations

The partial differential equations governing steady, two-dimensional, viscous com-
pressible flow of a perfect gas are the following [25]:
Continuity:

2 a
a—z(pu) + a—y(/m) =0 (3.1)

36
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z-momentum:

o+ By = -2+ 2 (W) 2 () v @2
10 (ou), 8 (0v) 20 (o
* 35z \Maz) Ty \*az) T30z Moy

y-momentum:

o) + 2 (o)

i
|

&l I
+

Flo

i

Liks

Energy:

2ty 4 Ly = 2 (RIL) L 2 (ROT) o
s gyen = 5 (G3) +m () < o9

State:

o=t (3.3)
where u and v are the velocity components in the z and y directions, respectively,
p is the pressure, p is the density, p is the dynamic viscosity, T is the absolute tem-
perature, k is the thermal conductivity, c, is the specific heat at constant pressure,
& is the viscous dissipation term, and S*, S*, and ST are the volumetric source, or
generation, terms for the appropriate equation. The proposed CVFEM is formu-

lated to account for variable fluid properties, but ¢, was assumed constant to keep

the energy i ively

These partial differential equations may be cast in the following conservative

forms (9):
V-J = 8§ (3.6)
Vg =0 (3.7
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where, J is the combined convection-diffusion flux vector, S is a source term, and

g is the mass flux vector pi. ion (3.6) the
when:
J = pz?u«p_u (3.8)
s = (3.9)
the y-momentum equation when:
J = pov—-pVu (3.10)

F = ,m‘r—cf’\?’r 3.12)
ST 1(. 8 o
s -C—p-+;(u$+u5-v)+—‘b (3.13)

where
Q:u[?(g—;)’+z(%)2+(g—;+gy_u)’ -(%*%)] (3.14)

Applying the iate conservation to a control volume V, which

is fixed in space, integral forms of Eqgs. (3.6) and (3.7) can be obtained:

/ J-fids = /SdV (3.15)
av v
fids = 0 (3.16)

o
[

v

where 8V is the surface of the control volume, and 7 is the unit outward vector

normal to the differential area ds.
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3.3 Domain Discretization

The proposed equal-order CVFEM uses three-node triangular elements, and all
dependent variables are stored at all of the nodes in the domain. The domain
is discretized with a line-by-line structured mesh, and triangles are constructed

by drawing a diagonal in each of the quadrilaterals formed by the intersection of

the grid lines resulting from this domain di ization. The di ization of a

representative irregularly shaped calculation domain is illustrated in Fig. 3.1. An

a of using tri It is that they do not require isoparametric

transformations, which are needed by general quadrilateral elements.

Once the calculation domain is discretized with the triangular elements, polyg-
onal control volumes are constructed around each node in the calculation domain,
by joining the centroid of each element with the midpoints on the corresponding
sides. An irregularly shaped calculation domain discretized by triangular elements
is shown in Fig. 3.1a; and the polygonal control volumes are shown by dashed lines
in Fig. 3.1b. These polygonal control volumes have the following characteristics:
(1) they do not overlap; (2) collectively they fill the entire calculation domain; (3)
their boundaries do not involve interelement edges; and (4) they can be used with
any triangulation. These characteristics facilitate the formulation of a CVFEM
that possesses the conservative property [14].

As stated previously, the di ization scheme emp the nodes in

a line-by-line pattern. Such an arrangement of the nodes greatly facilitates the

ly of the coeffici in the and permits solution of

these i with i ive line-by-line solvers.
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3.4 Integral Conservation Equations for a Con-
trol Volume

Using the control volumes defined in the previous section. the integral conservation
equations, Egs. (3.15) and (3.16), can be specified for a control volume as follows.
With reference to the polygonal control volume associated with a typical node 1
within the calculation domain, either an internal node as in Fig. 3.2a, or a boundary

node as in Fig. 3.2b. Egs. (3.15) and (3.16) can be cast in the following forms:

[/”"'i.ﬁ,ds—/g"’i-ﬁ,ds—/vsw] (3.17)

+ [ similar ibutions from other el iated with node 1 |

+ [ boundary contributions, if applicable | = 0

[[,M’f-ﬁgds-/:mf-ﬁads] (3.18)

+ [ similar ibutions from other el i with node 1 |

+ [ boundary contributions, if applicable] = 0

where M, and M; are midpoints on the sides of the element, and O is the cen-
troid of the element. The control volumes in this two-dimensional formulation are
assumed to be of unit depth, therefore, the surface and volume integrals in Egs.
(3.17) and (3.18) reduce to line and area integrals, respectively. The forms of the
conservation equations expressed by Eqgs. (3.17) and (3.18) emphasize that they

may be d in an els t-by-el t manner.

3.5 Interpolation Functions

The interpolation functi for the d variables and fluid properties that

appear in the integral conservation equations, Eqs. (3.17) and (3.18), are described



in this section.
3.5.1 Interpolation of yu, k, ¢,, and S

Values of g, k and ¢,, are supplied at the centroid of each element and these

centroidal values are assumed to prevail over the corresponding element. The source

terms, S*. S¥ and S7 in the z-. y tum and energy i respectively,

are linearized using Taylor’s expansion [14], if required, and expressed as follows:

S§¥ =S¢+ Spu (3.19)
=5 +5v (3.20)
ST = ST+ 8IT (3.21)
where S, terms ind d of the sup: ipted variable, and S, pro-
vides for a linear d ds of S on the ding variable. The values of S,

and S, are evaluated at the centroid of each element, and these values are assumed

to prevail within the element.
3.5.2 Interpolation of Pressure
Within an element, the pressure is interpolated linearly:

P=apT +by+c (3.22)
where the coefficients ap, b, and ¢, in Eq. (3.22) are defined by the nodal values of
pressure, and the corresponding nodal .y co-ordinates. The derivation of these co-
efficients is presented in Appendix D. Using the coefficient definitions in Appendix

D, the pressure gradients can be expressed as follows:

9
9z
al
3y

(3.23)

(3.24)




3.5.3 Interpolation of Velocities
Interpolation of a Convected Velocity
When velocity is treated as a convected scalar, for example in the convection terms
in the momentum equation, it is interpolated using the MAss Weighted (MAW)
scheme.

On each of the three control volume faces (denoted by the index k) of Fig. 3.3.
a value of the convected scalar that is assumed to prevail over that face can be
defined. This is the integration point value, and it is given the symbol & for the
general scalar dependent variable, ¢. The MAW scheme uses the mass flow rates

(rh) across each control volume surface to define integration point values, where,
e = /k P - figds (3.25)

Thus the mass flow rate across a particular control volume surface within an element
is taken as positive when the velocity vector at the integration point is in the same
direction as the assumed normal to the surface.

The following rules can be used to determine ¢f for the element shown in Fig.

3.3.

Control volume surface 1

If >0 6 = fo5 + (1— f)@s

where f = min [maz (;—'fo) ,1] (3.26)

If iy <0 65 = fé5 + (1— f)®,

where f = min [mn:z (;"1—:0) , 1] (3.27)



Control volume surface 2

If my >0 05 = fof + (1— )8,

where f = min [maz (ﬂu) . 1] (3.28)
ma

If na <0 05 = fof + (1- f)®;

whiere: F i [ma:r (%0)1} (3.29)
2

Control volume surface 3

If s >0 65 = fof + (1~ /)%

whete = min [maz (%n) 4 1] (3.30)

If iy <0 6 = fof + (1 f)d,

where f = min [maz (2—20)1] (331)

In these equations, @ is a nodal value, and ¢ is an integration point value.
As shown in Appendix D, Egs. (3.26) to (3.31) result in a matrix equation for

0§, which can be simplified to the following equation:
3
o =Y CCro; (3.32)
=1

where. the CC¥ are coefficients calculated from the nodal values of ¢, and mass
ratio, f.

The interpolation of a convected velocity on a control volume face & can therefore
be written as follows.

3
ue =Y CCku, (3.33)

j=1



Interpolation of a Mass Conserving Velocity

The mass conserving velocities, u™ and v™. are interpolated by assuming a linear
variation of the corresponding pseudo-velocity. & or ¢. and pressure coefficient. d*
or d”. used in conjunction with the local elemental pressure gradient. Consequently,

the expression of mass conserving velocity can be written at each node within an

element:
——— ]
u® = d:‘(az)g (3.34)
= i-,.-d;’(@) (3.35)
%),

The subscript, e, on the pressure gradient indicates that the elemental pressure
gradient, and not the average pressure gradient over the control volume surrounding

and df will be

dt H

the node in question, is being used. The evaluation of @;, ¥;,
described in Section 3.6.3.

The pseudo-velocities, #; and 9;, and the pressure coefficients, d¥ and d?, are

i
known at the nodes. In order to determine the values of these quantities at the
integration points on the control volume faces within the elements, a linear inter-

polation of the nodal values, is used:

& =azz + by +ca (3.36)
d* = agz + bjy + ¢y (3.37)
b =a;T+by+cs (3.38)

&’ = ajz + bjy + c (3.39)



Interpolation of a Diffused Velocity
When velocity is treated as a diffused scalar, for example in the viscous terms of
the momentum equation, it is interpolated linearly within an element.
u=a“c + by + c* (3.40)
v=a'z + b0y +c (3.41)
where the interpolation coefficients are defined by the nodal velocities, and the
geometry of the element, as discussed in Appendix D
3.5.4 Interpolation of Temperature

The temperature, T, is interpolated in a similar manner to the velocity. When
temperature is a convected scalar, the MAW scheme is used. When temperature
appears in a diffusion term or a source term, it is interpolated linearly within an

element.

3.5.5 Interpolation of Density
In the proposed CVFEM, density is interpolated by the MAW scheme, therefore,
the following expression can be written for density:
3
pe =3 CCkp; (3.42)
j=t
where the nodal density is evaluated using the equation of state for an ideal gas,
and the CC‘;t terms are calculated from available nodal values of p and mass ratio

£
3.6 Derivation of the Discretized Equations

To obtain algebraic approximations of the integral conservation equations for a con-

trol volume, Egs. (3.15) and (3.16), approximations of the element contributions



to Egs. (3.17) and (3.18) are derived and assembled in an appropriate manner.
Algebraic approximations of the boundary contributions are then derived. if appli-
cable. and added to the element ibuti These imations and bly

procedures are discussed in this section.

3.6.1 z-Momentum Equation

of the i iffusion flux across a control volume face

Within each element, the combined convection-diffusion transport of z-momentum.
Eq. (3.8), is evaluated at the control volume face. With reference to Fig. 3.3, for
the subcontrol volume around node 3, the combined convection-diffusion transport
term should be evaluated on the control volume faces 1 and 2 (indicated in Fig. 3.3
by 7, and 71,).

The integrated flux of z-momentum across a control volume face k is expressed

in the following manner:
Mo My M
[ J~ﬁkds=/ m?wﬁgds—/ uVu- eds (3.43)
s o o

The MAW interpolation scheme is used to interpolate u in the convection term,
and linear interpolation is used to evaluate the gradient of u in the diffusion term.
Using Simpson’s Rule, the integral in Eq. (3.43) can be rewritten in terms of the

nodal velocities, as follows:

Me _ 3
/ J-fieds = 3 Cru; (3.44)
° =t
where a ivation of Cf is d in Appendix E.
The element ibution to the volume i ion of the source term for the

control volume around node 3 is given by:

3
[ SV = S22+ 53V — V2 Y. Dipi+ S, (3.45)
; =



where V2 is the volume of the subcontrol volume, and S%, represents the integral of

extra viscous terms over the subcontrol volume. V2, in the z-momentum equation.

Final form of the di ized ion for

Expressions similar to Eq. (3.44) can be derived for the integrated convection-
diffusion flux across each of the control volume faces in an element. When these

are added iately with similar expressions from other elements

which make a contribution to the control volume surrounding a node i, along with

the licable boundary ibutions and integrated source terms, Eq. (3.45), the

algebraic approximation of the integral conservation equation for a control volume,

Eq. (3.17), is obtained. The resulting di: i Z-! ion can be

cast in the following form:
atu; = Y akun + bipi + Y bipn + € (3.46)
n n

where the summation is taken over all the nodes neighbouring node i. The complete
assembly of Eq. (3.46) is discussed in Appendix F, with reference to Figs. 3.4 and
3.5. The maximum number of neighbour nodes will be the eight nodes surrounding

node i, j in Fig. 3.5.
Final form of the discretized equation for y-momentum

As described in Appendix F, the bly of the di ized y

is performed in the same manner as for the discretized z-momentum equation, Eq.

(3.46). The final form of the di ized ion can be written as

follows:
af; = Y akva + b + Y bipa + € (3.47)
" "

The assembly of Eq. (3.47) is presented in Appendix F.
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3.6.2 Energy Equation

The d used in the di: ization of the z- equations are also

used to derive the algebraic approximation of the energy equation. The derivations
are altered by replacing the viscosity, p, with k/c,. and the source term with the
appropriate source term for the energy equation. Eq. (3.13).

The integral of the combined convection-diffusion flux across a control face can

be written for the energy equation as follows:
Me -
/ Jofieds = 3 CATy (3.48)
o =1
The integration of the source term in the energy equation gives:
v 3 3
s =% (sz +5TT, + tow 3 DEpi + 0 > Dl + éc) (3.49)
=1 =1

A complete derivation of Egs. (3.48) and (3.49) is given in Appendix E.
Expressions similar to Eq. (3.48) are derived for all flux integrals that contribute
to the control volume conservation equation for a node i. These contributions
are added, along with any boundary contributions and the volume integration of
the appropriate source term, to obtain an algebraic approximation of the energy

equation. This discretized energy equation may be written in the following form:
af T; = Y ol T, + e (3.50)
"
The assembly procedure for Eq. (3.30) is described in Appendix F.

3.6.3 Continuity Equation

As discussed in Chapter 2, the mass flux, § , is linearized with respect to density,

p, and velocity, 7:
(3.51)

@
[}
@
+
ey
|
Qoy



where ; is linearized with respect to velocity, 5 is linearized with respect to density
and § is determined from available values of density and velocity. To provide
an algebraic approximation of the integral form of the control volume continuity
equation, Eq. (3.16), it is necessary to integrate the mass flux across each of the
control volume faces in an element. These integrated mass fluxes are then added
appropriately to obtain the element contribution to the control volume integral
mass conservation equation. The integral of the mass flux across a control volume

face k may be expressed as:

Integrated mass flux across | _ /M* G- e d
control volume face k Tl GRES

Me M o M 5
:/ "g-ﬁkds+/ lg-ﬁkds—/ G- feds (352)
A s s

Similar to the method presented in Section 2.6.3, the approach taken here is to
use particular forms of the discretized momentum equations, Egs. (3.46) and (3.47).
to define four new nodal fields, which will be used in the prescription of suitable
interpolation functions for the mass conserving velocities. Equations (3.46) and
(3.47) can be rearranged as follows:

_ Tnatu, + et (0p/0z)AV
B af a

(3.33)

i

_ Zaanvn +ef _ (Op/0y)AV
- ay ay

v (3.54)

In these two expressions, (9p/8z;) and (8p/dy;) are the average of the pressure
gradient acting over the control volume, of volume AV, for node i. Defining the

pseudo-velocities, #; and ;, as:

- Tt t el (3.55)

@,
i s
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v v
b= TG tel (3.56)

a;

and the pressure coefficients di* and d¥:

AV g
df = o (3.57)
dl = A"V (3.38)

a;

Eqgs. (3.53) and (3.54) can be rewritten as:

iyt 2, (3.59)
9z;
.

v = —d} o (3.60)

Similar expressions can be written for each node in the computational domain.

It should be noted that the fc lae used in the following i for the

mass conserving velocities are Egs. (3.34) and (3.35), where the elemental pressure
gradients are used instead of average control volume pressure gradients. This is to
facilitate the inclusion of the nodal pressures in the discretized form of the mass
flux. If the control volume averaged pressure gradient was employed, the number
of pressure nodes included in the mass flux would become unwieldy.

A complete derivation of the three integrals in Eq. (3.52) is presented in Ap-
pendix E. The final result of this integration is the following expression for the
integration of the mass flux across a control volume face k:

/DM* G figds = ZsjEfp) +F* (3.61)
J=l
where the coefficients E¥ and F* are defined in Appendix E.

Expressions similar to Eq. (3.61) can be derived for the mass flow rate across all

three control volume faces in an element. When these expressions are added appro-

priately with similar expressions from other elements which make a contribution to



the control volume surrounding a node i, along with the applicable boundary con-
tributions, the algebraic approximation of the integral mass conservation equation
for a control volume is formed. The resulting equation can be cast in the following

form:

dp =3 dipatel (3.62)

where the summation is taken over all the nodes neighbouring node i. The
assembly of Eq. (3.62), and the neighbouring nodes that are involved in the equation
are discussed in Appendix F.

3.6.4 Boundary Conditions
Introduction

Thus far in this section, mention has been made of applicable boundary contri-
butions to be added to the discretized equations. If the node under consideration
is located within the calculation domain, no boundary contributions are present.

and the i ion of the di ized ions is 1 For nodes located

on boundaries. however, the discretized equations are incomplete unless the flux
across the boundary is included. For example, in Fig. 3.2b, the flux across the side

of element 123, from 1 to Mj, must be ified to the ibution of

element 123 to the control volume surrounding node 1. The transport of a scalar

dependent variable, @, out of the control volume from 1 to M3 can be specified as:

Integrated flux of ¢ out of o
( control volume side 1 to M3 | — /; s (363)

where i is the outward unit normal vector to the element side ds. The equations
in this subsection are written for a general scalar dependent variable, ¢, however,
they may be interpreted as equations for the other dependent variables, u, v, T', and

p, where indicated. The derivation of i il i of the
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boundary conditions and the incorporation of these boundary contributions into

the discretized equations are described in the following subsections.
Specified value boundary

The specified value boundary condition is the simplest to apply; when the value of
@; is to be given a specific value, @, the discretized equation for node i is written
in the following trivial form:

0 = Oupec (3.64)
This equation can be obtained by suitably overwriting the z-y-momentum, energy,
or continuity equations, to specify u, v, T, or p, respectively. It is implemented

in the licable discretized ion equal to

by setting all
zero, and defining:

=1 ; € = Pupe (3.65)
where ¢ can be replaced by u, v, T, or p as required.
Specified flux boundary

This boundary condition is used when the flux, of the quantity of interest, across
a boundary is specified. If the specified flux out of the control volume is denoted
by g, then Eq. (3.63) can be written as:

M3 M3
/ J-fds = / qds (3.66)
1 1

where, ¢ may be a constant or a function that can be integrated in closed form.

X

‘When ¢ is available only at the nodes. then linear interpolation is used between the
nodes, and the integral of Eq. (3.66) is written as:
My My
/. J-fids = /‘ qds = Asi_u, (3q1 + @)/4 (3.67)
where Asj_g, is the length of the side of the element from node 1 to position Ms,

in Fig. 3.2b.



Outflow boundaries

If the dependent variable is not specified. the diffusion transport is made equal to
zero at outflow boundaries by setting the dot product of the gradient of ¢ and the

outward unit normal vector to the boundary, 7, equal to zero:
Vo i =0 (3.68)

This boundary condition is used to disconnect the calculation domain from external
influences across outflow boundaries. There will, however, be a convective flux

across outflow boundaries. This flux is integrated as follows:

Integral of convective flux of ¢ _ /M3 o o

( across control volume side 1 to Mz | ~ /i vid-nds (269)
In the proposed CVFEM, an algebraic approximation of this integral is obtained
by assuming that ¢; prevails over the control volume for node i. The mass flow rate

out of the control volume:

( Integral mass flux out of ) M3 (3.70)

control volume side 1 to Mz ) ~ /i % fids

is approximated by assuming linear interpolation for p, u, and v between two nodes

on the boundary, such as nodes 1 and 2 in Fig. 3.2b.

To the i ion of the energy, and general convection-

diffusion equations at outflow boundaries, the integrated convection flux across the
boundary has to be incorporated into the forms of the discretized equations that
have been obtained from element contributions alone. This is done by adding the
integrated mass flux, Eq. (3.70), to the appropriate coefficient for ¢;, where ¢ is
replaced by u, v, or T for the appropriate equation.

The letion of the di: ized inui ion at outflow boundaries

requires special treatment due to the linearization imposed on the mass flux, Eq.



(3.51). The integral of the 3 term at the boundary is evaluated using linear inter-
polation of available densities and velocities in Eq. (3.70). This integrated mass

flux is then added to the constant term in the di: ized form of the inuity

d form element ibutions alone. The § term is integrated over

the boundary, by assuming that the pressure, velocity, and temperature at node i

prevail over the control volume side:

M3 @A .
[] §.fds = p ( o L\Sx._,\,{;) (371)

The term in brackets is then added to the coefficient multiplying p;. The § term
is integrated by assuming density and velocity at node i prevail over the control
volume edge:

My 2
9-fids = w; (pinzAs1-sn) + Vi (PinyAsi_sg) (3.72)

where n; and n, are the z,y components of fi. Substituting the mass conserving
velocity formulae Egs. (3.34) and (3.35) for u; and v;, and writing the above equation

in terms of nodal pressures:

Mz T
9-ids = (%pinzAsi-sr + UipiNyASi-as) (3.73)

3
~ 3 (d2Din.Asi_a + dEDin.Asiv) ps
J=1
The first bracketed term is subtracted from the constant term in the discretized

form of the continuity equation, and the second bracketed term is added to the

appropriate coefficients multiplying p;.
Tangency condition

Flow tangency conditions are applied to inviscid flows over a surface using the

following equation:

(3.74)

&
EN
I

=}



where 7 is a normal to the surface. In the proposed CVFEM, this boundary condi-
tion is imposed by specifying that one velocity component is equal to the product
of the surface slope and the other velocity component: the specified value bound-
ary condition, Eq. (3.64), is used to overwrite the coefficients in the appropriate
discretized momentum equation, such that the constant term in this equation is
equal to the product. The other velocity component is solved with no-flow, zero

diffusion boundary conditions, thus no boundary contributions or modifications are

necessary to lete the di: ized i ined from internal element con-
tributions. Since one velocity component is held fixed during the solution of the

i ized and inui i the update of the fixed velocity

component lags that of the calculated velocity. After solution of the discretized mo-

mentum and inui i however, is rei d by reevaluating

the product of the surface slope and the newly calculated velocity component.

3.6.5 Summary

The derivation of the discretized forms of the integral conservation equations for
mass, momentum, and energy were presented in this section. The result is a set
of nonlinear algebraic equations which are solved using the procedures discussed in

the next section.

3.7 Solution of the Discretized Equations

In the proposed method, a set of nonli; Igebrais ions for velocity,

and ure are i as approximati of the integral conservation of

momentum, mass, and energy, respectively. The nonlinearities in the equations

are handled by an iterative i bstitution p d in which

are eval d in each i ion with best available values. The overall solution



procedure employs the following series of steps:

1

o

w

e

o

o

b

w

3.7.

The

. Guess the pressure field, p, velocity field, u and v. and temperature field. T'.

. Evaluate the nodal values of density using available field values of pressure

and temperature in the equation of state, Eq. (3.5)

. Determine the coeffici in the di d momentum i Eqgs. (3.46)

and (3.47).

. Calculate the pseudo-velocity fields for the z- and y-momentum equations

using Eqs. (3.55) to (3.58). Apply the appropriate boundary conditions to i,

¥, d¥ and d¥.
Calculate the fhici in the di: ized inui i Eq. (3.61).
Apply the iate boundary diti and solve the discretized conti-

nuity equation set using a tridiagonal matrix algorithm (TDMA).

Use the pressures calculated in step (5) to the

equations, Egs. (3.46) and (3.47).

Apply the required boundary conditions, if needed, under-relax the momen-
tum equations (see Section 3.7.1), and solve the discretized forms of the z-,y-

momentum equations separately using a TDMA.
Return to step (2) and repeat the algorithm to convergence.
.1 Relaxation of the Discretized Equations

discretized equations that are solved in the above solution algorithm are non-

linear and strongly coupled. The nonlinearities are handled by the iterative na-

ture

of the algorithm, wherein the coefficients are evaluated in each iteration with
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best available estimates of the required vari The solution algorithm does not

as Li ities may be so strong that they may cause co-

4
efficients and the solution to oscillate or diverge. This problem is controlled in the
proposed CVFEM by using the implicit under-relaxation techniques of Patankar
[14].

To und lax the ion, Eq. (3.46), it is first written as fol-

lows:
w = (Satun + bipc+ Stion + o) /ot @.73)
0 "
The value of u; from a previous iteration, u}, can then be added to both sides of

Eq. (3.75), and the resulting equation may be rewritten as follows:
o= + [(Z ahun + bipi + 3 b4pa + e:‘) [at - u:] (3.76)
o n

where the new bracketed term represents the change in u; between two successive
iterations. The magnitude of this change may become so large that it could cause
divergence. To control the rate of change in the solution between iterations, a

relaxation term, a, is included in Eq. (3.76) as follows:
u o= ul + 0y [(20:& +b'p + ) bipa + e:‘) [a¥ - u:] (3.77)

When a, is greater than zero, but less than one, the equation is under-relaxed, and
changes in u; between iterations are reduced, thus promoting convergence. The
smaller the magnitude of e, the smaller the corresponding changes in u,. Equation
(3.77) can be rewritten in a form similar to Eq. (3.46):

L u u u e )%y

u; = ajun + 0Fpi + Y bipn + € + (1 — o) —u; (3.78)

Qu n n oy
A comparison of Eq. (3.78) with Eq. (3.46), shows that the coefficient multiplying
dified

u; has been and a new licit], I d term has been added to the




right hand side. When convergence is reached. u; = u;, and Eq. (3.78) reduces to
Eq. (3.46).

A similar method is used in the proposed CVFEM to under-relax the y-momentum

and energy i using the a, and ar, respectively. The continuity
equation is not relaxed, as this would imply mass source or sink terms in the dis-
cretized equation. The optimum values of o, @y, and or which ensure the fastest
convergence of the solution algorithm may be problem dependent, therefore, they
have to be determined by testing several values in the context of the particular

problem of interest.

3.8 Conclusion

This chapter has presented the formulation of a CVFEM developed for the solution

of steady, two-di: ional, viscous ible fluid flow problems. Results gener-

ated by this method in the solution of several ple flow

are p

in the next chapter, and conclusions from this work are discussed in Chapter 5



7
L]
s
4
3
2
L
4
J=1
1 23 &%
P ASIAY N
r VU AN\
Pl
4 A 4 N
¥ IAVASEANR AN RAN D!
<A TAT T 1N
r % ‘,-‘
4 4 N
<
AR AN N S
4 4 \"1
AN N
S
4 - -‘
v 4 __-
Figure 3.1: Di of an irregular-shaped calcul

domain by the pro-

posed two-dimensional CVFEM: (a) three-node triangular elements; and (b) polyg-

onal control volumes.



w

and related 1 (a) an

Figure 3.2: Details of the domain di
internal node; and (b) a boundary node.



61

riangular element-

Figure 33 A typical three-node U



quad=1

type=1

quad =t

type=2

quad=1

type=1

!
quad=2 M3
M, -\\44 <

[
“

type

M, M, quad =2 -

Figure 3.4: Types of elements used in the discretization equation.



8-
. = 7/
(i-1,j+1) \\ (i.jel) 7
*
\
>\\
// \\
- N
~_
X
\
\
\
AY
(i-1.) 4 G.j)
-
N // ~o L
bl X
/ \
7/ \
7/ \
& \
&
(il j1) (i)

(i*l L j+l)

(i+l,j)

(i+l,j-1)

Figure 3.5: The node cluster involved in the discretization equation for a node (i,j)-



Chapter 4

Results

4.1 Introduction

The main goal of this thesis is the formulation and implementation of a MAW-based

CVFEM for steady, two-di ional, viscous ible fluid flows. During the
course of this work, CVFEM’s for quasi di ional and two-di ional fluid
flow probl were developed. The formulation of the di ional CVFEM

was presented in Chapter 2, and the two-dimensional CVFEM was described in

Chapter 3. To 1 the bilities and limitati of these methods, they
were applied to several test problems, and the results generated are presented in
this chapter. The one-dimensional CVFEM was tested in the context of several
steady. quasi-one-dimensional, inviscid fluid flow problems. The performance of

the two-di; ional CVFEM was eval d in the context of four inviscid and one

viscous flow problems.
The remainder of this chapter is divided into two sections. In Section 4.2, the

one-di ional test ! are and the CVFEM results are compared

with theoretical solutions. In Section 4.3, the two-dimensional test problems are
described, and the CVFEM results are compared with experimental or numerical

data available in the literature.
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4.2 Quasi-One-Dimensional Test Problems
4.2.1 Introduction

The one-dimensional CVFEM was tested in the context of several steady quasi-
one-dimensional inviscid fluid flow problems. The two most interesting problems
are presented here. The first problem simulates shock-free continuous accelera-
tion through a converging-diverging nozzle, and the second problem simulates a
converging-diverging nozzle flow with a shock.

The duct geometry used in these problems is shown in Fig. 4.1. For both

bl the results d by the CVFEM are compared with theoretical

results obtained from isentropic flow and normal shock relations [16].
The proposed CVFEM has been formulated to solve the following set of gov-

erning equations:

Continuity:
d
7z lpwu) = 0 (£1)
Momentum:
g AR SRS () Ltdr.d J
E(pwuu) = Sl + s (uwit) +S*w+ 3% (udz(uw)) (4.2)
Energy:
d d (k_dT ST 1 dp
E(pqu) = (sz) + w: + a (uwz) (4.3)
State:
P
= == 4.4
P= 7T (4.4)

These equations govern the steady flow of a viscous fluid through a variable area
duct. The proposed CVFEM may be used to solve for inviscid, non-conducting,

fluid flows when the viscosity and thermal conductivity in Eqs. (4.2) and (4.3) are



set equal to zero. The governing equations then become the Euler and energy
equations for an inviscid, non-conducting flow.

The initial distributions of the d dent variables th h the calculation

domains were determined from the theoretical solution to each problem. In these
problems, the duct geometry and the flow conditions at the duct inlet were specified.
This information was used in the isentropic flow and normal shock relations [16]
to determine the theoretical solution to the problem. To determine the initial

distributions for the CVFEM solutions, a linear variation in pressure was assumed

between the ified inflow and th ical outflow and the e

within the duct was set to the inflow boundary temperature. These pressure and
temperature distributions were then used to calculate the density field, which, along
with the specified inflow Mach number and the available duct geometry, allowed the
specification of a velocity field which maintained mass conservation. This method
was used to specify the initial conditions for both problems.

The convergence of the solution generated by the CVFEM was monitored by
checking the relative change in the values of the dependent variables between iter-

ations:
im. - o
e |

iabl

(4.3)

where o could the d

u, p, or T. The asterisk in Eq.
(4.5) indicates a value available from a previous iteration, and the overbar indicates
a normalizing value, taken as the inlet velocity, pressure, and temperature for €},
€, and €7, respectively. Iterations in the solution algorithm were terminated when
the maximum of €/, €?, and €7 was less then 10~°. The relaxation parameters used

in the problems presented in this section were a, = ar = 0.5.
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4.2.2 Shock-Free Flow through a Converging-Diverging Noz-
zle

Thei i il 1 ing flow of an inviscid fluid through a converging-

nozzle is i i in this ion. The problem is illustrated schemat-

ging
ically in Fig. 4.1. A subsonic flow at Mach number M, static pressure p,. and
temperature T} enters the converging part of the nozzle and accelerates to sonic
conditions at the nozzle throat. After passing through the throat, the flow continues

to accelerate supersonically in the diverging portion of the nozzle, to 2 maximum

outlet Mach number M,, at pressure p, and T;. The ional
area of the nozzle varies smoothly from inlet to outlet, and is given by the following

relations:

Bl

Sl +(h,‘hﬂ.)(l-%)z <L (46)
41:—L)z
L.

Bl

= ha + (ha —h.,.)( #>L 9

where, hy is the height of the nozzle throat, or minimum cross-sectional area of
the nozzle, h; and h; are the duct heights at the inlet and outlet, respectively, and
L and L, are the lengths of the converging and diverging portions of the nozzle,
respectively.

For continuously accelerating flow to exist in the nozzle, the inflow boundary
conditions, and the ratio of inlet and throat areas, have to be defined such that
a subsonic flow enters the converging part of the nozzle and accelerates to sonic

conditions at the nozzle throat. In the diverging portion of the nozzle, the flow will

tinue to it ically when the pressure at the outflow boundary is

equal to, or less than, that required to permit a
from the nozzle throat. When this condition on outlet pressure is met, the exit

Mach number, M, is determined by the ratio of throat and exit flow areas.



68

The problem considered here is that of shock-free nozzle flow, therefore. the
flow at the outflow boundary is supersonic, and no outflow boundary conditions
are required. At the inflow boundary, p, T}, and M,, are held fixed using specified
value boundary conditions. The geometry of the nozzle used in this problem was
designed to accelerate a Mach 0.3 flow to Mach 2, through a throat height of

3 x 1072m. The geometry and flow ions were ined from the i

flow relations [16] to give:

L =0.1m pr = 100kPa p, = 13.6039kPa

L, =01m M, =03 M, =20

hy = 6.105 x 1072m T, = 300K (4.8)
hey = 3% 107%m

hy = 5.0625 x 10~2m
Results were generated on six grids with uniform distributions of 25, 51, 101, 201,
301, and 401 nodes. In each of these grids, a node was always placed at the nozzle
throat. The distributions of M, p/pg, and T/T; from both numerical and theoret-
ical solutions are shown in Figs. 4.2 and 4.3. The pressure and temperature are

normalized with respect to the ion pressure and ively

The solutions generated on all of the grids are in good agreement with the theo-

retical solution in the subsonic portion of the flow. The increased accuracy obtained

with higher grid ion b quite in the ic portion of the
flow. The largest error in the flow variables occurs in the outflow Mach number,
M,. The calculated values of Mz, Macuc, generated on each of the grids, and the
percentage error in this value when compared with the theoretical value of 2.0, are
reported in Table 4.1.

The percentage error reduces by a factor of approximately one half when the
grid spacing is halved. The values of Myqic generated on the 101, 201, and 401

node grids were used in the following equation:

Manum = Macate + C(Az)" (4.9)
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to determine the order of accuracy of the proposed CVFEM. In Eq. (4.9). Manum is
the calculated value of M, that would be expected in a grid independent solution.
and n is the order of accuracy of the method based on the grid size, Az. Solving for

n and Mapum. gives values of 0.9848 and 1.9999. respectively. This means that the

proposed di ional CVFEM is first-ords . This is an d re-

sult, because M Ass Weighted (MAW) interpolation reduces to an upwinding scheme

in di ional flows, and upwinding is r ized as being first-order accurate

when viewed as a truncation of a Taylor's series expansion.

Calculated values for the throat Mach number, M, and the percentage error
when it is compared with the theoretical value of 1.0, are also included in Table
4.1. As can be seen from this table, the numerical M,, is never 1.0, however, it
increases from a value of 0.9778 on the 25 node grid, for an error of -2.22%, to a
value of 0.9936 on the 401 node grid, for an error of -0.64%. It should be noted that
for all grids, the Mach number at the first node past the throat is always slightly

larger than 1.0.

4.2.3 Converging-Diverging Nozzle Flow with a Normal
Shock

Inviscid flow through a converging-diverging nozzle, with a normal shock in the
divergent part of the nozzle, is considered in this subsection. The problem is il-
lustrated schematically in Fig. 4.1. The subsonic flow at Mach number M, static
pressure p;, and temperature T, enters the duct and accelerates to sonic condi-
tions at the nozzle throat. In the divergent portion of the duct, the flow begins to
accelerate supersonically, however, the outlet static pressure, ps, is specified such

that it will not permit continuous supersonic acceleration. Due to this imposed



outlet pressure, a normal shock is generated in the nozzle. After the shock, the
flow decelerates subsonically to Ma. ps, and T at the nozzle exit.

The flow through a converging-diverging nozzle is shock-free when the back
pressure at the nozzle outlet is equal to. or less than. that required for continuous
supersonic acceleration in the divergent part of the nozzle. If the back pressure
is higher than this value, a shock will be generated in the divergent portion of
the nozzle, and the flow decelerates subsonically after the shock. The position and
strength of this shock are determined from the nozzle geometry and the value of the
outlet pressure. If the back pressure is high enough, the shock propagates upstream
until the throat, and beyond this condition the nozzle acts as a conventional venturi

tube [16]. In this problem, the geometry and inflow conditions of the nozzle are the

same as those given in Section 4.2.2, for a nozzle designed for shock-fi 1

from Mach 0.3 to Mach 2.0. A shock was specified to occur at Mach 1.5, and the
duct geometry, inlet conditions, and pre-shock Mach number (M = 1.5) were
used in the isentropic flow and normal shock relations [16] to generate a theoretical

solution for the flow through the nozzle:

L=01m p = 100kPa Mgk = 15

L. =01m T, = 300K Zoe = 0.15062m

By = 6.105x 1072m M, = 0.3 M,y = 0.70109 (4.10)
ha = 3x 107m P2 = 88.3127kPa

hy = 5.0625 x 1072m M, = 0.40672
where Mpx and My, are the pre- and post-shock Mach numbers, respectively, and
Z,nk is the position at which the shock occurs. To simulate this problem numerically,
the inlet conditions M), p,, and T} were held fixed using specified value boundary
conditions. The flow aft of the shock is subsonic, so a pressure must be specified at
the outflow boundary. This pressure was fixed at the theoretical value required to
generate a shock at Mach 1.5. This problem was simulated on three uniform grids

consisting of 51, 101, and 401 nodes.



The variation of M, p/po, and T/T, along the nozzle for the numerical and
theoretical [16] solutions are illustrated in Fig. 4.4. The stagnation pressure and
temperature used to normalize the static pressure and temperature in these figures
are the values of pg and Tp at the inflow boundary. As shown in Fig. 4.4. all
CVFEM solutions capture the shock in the divergent portion of the nozzle and
the subsonic deceleration aft of the shock. The shock is smeared over several grid
points, however, as illustrated by the finite gradients of M. p/po. and T/T; across
the shock. The degree of smearing is reduced, and the resolution of the shock is
improved, with an increase in the number of nodes.

Results from the CVFEM solutions are reported in Table 4.2. The values of
M kg, the maximum Mach number prior to the shock, and the percentage error in
this value compared with the theoretical M,xx of 1.5, are recorded in this table.
The position of Mk, Tshk, compared with the theoretical location of the shock,
Zsne = 0.15062rm. is also included. As shown in Table 4.2, the maximum value of
M nx was underestimated by all three CVFEM solutions, with the maximum value
of 1.4446 obtained on the 401 node mesh, for an error of -3.69%. The position of
My is also underestimated by the CVFEM solution, with the best estimate from
the 401 node mesh in error by -2.74%. This underestimation of M and Tenk
is due to the smearing of steep gradients inherent in the CVFEM due to the use
of upwind interpolation. In Table 4.2, the smearing of the shock is measured by
the distance Az,ue, which is defined as the distance from the position of Mux to
the position at which the Mach number is equal to, or less than, the theoretical
post-shock Mach number, Maz = 0.70109, while Ny is defined as the number of
nodes included in this distance. As should be expected, the degree of smearing is
reduced on the finer mesh, to a minimum of 0.0065m, even though the number of

nodes within the shock increases to a maximum of 13. Smearing of the shock can
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be significantly reduced with the use of adaptive grids [9], but the application of
such grids was outside the scope of this thesis.

4.2.4 Summary

The problems presented in this section have demonstrated that the proposed one-

dimensional CVFEM can lutions to i ic and i ic, invis-

cid, nos ducti ible fluid flow probl that are in good agreement

with theoretical solutions. The method has been found to be first-order accurate

in the problems solved.

4.3 Two-Dimensional Test Problems

4.3.1 Introduction

The results generated by the proposed two-dimensional CVFEM in the solution
of five compressible flow problems are presented in this section. The problems

presented here include: (1) inviscid subsonic, transonic, and supersonic flow through

a channel with a circular arc bump on one wall; (2) inviscid flow through a two-

planar converging-diverging nozzle; and (3) the interaction of a shock

with a laminar boundary layer on a flat plate. The solutions generated by the

proposed CVFEM are compared with numerical and experimental data available
in the literature.

The proposed CVFEM has been formulated to solve the following set of equa-

tions:
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Continuity:
3 il
32 (Pe) + 3—y(ﬂv) = (4.11)
I-momentum:
2 8, . dp 88w\ 8(du
E(W")+5(m") = *a—z("az)*'ay (“ay) + 5% (412)
L Loy (o) 20 (o
35z \"az) T oy \*az) T35z Moy
y—momentum:
3 El _ op 8w\, 9 (&
L+ Ziow = -Z 4 Z(up2)+ 2 (u5t) + 5 @iy
L Lo o (o) 20 (0
35y \May) "oz \ay) " 39y Moz
Energy:
3 9 _ 8 (keT 3 (koT 2
i T) * gyleT) = 5(55) A (%3y) *s
Lo, ony
5 (uar +uay) + c,q) (4.14)
State:
P 5
p= 5 (4.15)

Although the proposed method has been developed to solve viscous flow prob-
lems, it was also tested in the context of some inviscid flow problems. There are
very few laminar viscous compressible flow problems, that have been used for test-

ing numerical methods, reported in the literature. The inviscid low problems used

here have been impl d by other h and they the effec-

tiveness of the proposed CVFEM in the simulation of some important features of
compressible Aows.

inviscid, ducting, com-

The equations governing steady, t

pressible fluid flow are obtained from Egs. (4.11) to (4.15) by setting the dynamic



viscosity, p, and the thermal conductivity. k. equal to zero.

ZT-momentum:

3 a _ o
5(;mu) + @(puu) = + S5 (4.16)
y-momentum:
a 3 _ op
a—I(puv) + a(pvv) ke +5v (4.17)
Energy:
a P ST 1, o
B—I(PUT) ¥ @(VUT) iy + = (u§+va—y) (4.18)

Equations (4.16) and (4.17) are referred to as the Euler equations. The continuity
and state equations are unmodified.

In all problems presented in this section, the convergence of the iterative solution
algorithm was monitored using Eq. (4.5). In this equation, the changes in the values
of u, v, and p at each node in the calculation domain, between successive iterations
of the solution algorithm, were normalized with respect to inlet u velocity for € and
€?, and inlet static pressure for /. The iterations in the solution algorithm were
terminated when the maximum of all ¢; values was less than 10~°. In the problems

d here, the €} was the slowest to reach the convergence criteria.

The ing subsecti describe the probl solved, and the solutions gen-

erated by the proposed CVFEM are compared with available numerical or experi-

mental data.

4.3.2 Inviscid Flow through a Channel with a Circular Arc
Bump

Introduction

The simulation of inviscid flow through a channel with a circular arc bump on

one wall has become a standard test problem to validate numerical methods for

compressible flow. The problem is illustrated schematically in Fig. 4.5. A flow
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at Mach number M, static pressure p;, and temperature T}, enters a channel of
length 3L and height L. A circular arc bump of height kg and chord L is centered
on the bottom wall of the channel. The height of the bump is defined in terms of
a percentage of the chord length. The flow exits the duct at Mach number M,
static pressure p,, and temperature 7;. Problems involving subsonic, transonic.
and supersonic flows through the channel have been solved.

The equations used to simulate this problem were the Euler equations, Egs.
(4.16) and (4.17), the energy equation, Eq. (4.18), the continuity equation, Eq.
(4.11), and the equation of state, Eq. (4.15). The boundary conditions used were
specified value at inlet and tangency at the walls. In the application of the tangency
boundary condition, the singularities at the leading and trailing edges of the bump
had to be taken into account. To correctly simulate the shape of the bump at the
leading edge, the v velocity was set such that the flow vector was parallel with the
slope of the bump. At the trailing edge, however, the v velocity was set equal to
zero in order to provide tangency with the channel wall. It is not possible to ensure
tangency with both the channel wall and the surface of the bump, so the proposed
treatment is a compromise. This treatment is not symmetric, and it leads to some

in one of the probl di d below. At the inflow

¥ ry of the
of all test problems with this geometry, the inlet static pressure, temperature, and
Mach number were fixed. At the outflow of the subsonic and transonic flow test
problems, the flow was subsonic, therefore, the outflow static pressure was set to a
fixed value. In the problems solved here, the inlet and outlet static pressures were
defined to be equivalent. For the supersonic flow problems no outflow boundary
conditions were required.

In the definition of the initial flow conditions for each problem, the pressure,

temperature, and velocity specified at inlet were assumed to prevail throughout the



duct. During the solution of the problems, the relaxation parameters a,. a,. and

ar were assigned values of 0.3.

Numerical results to these 1 have been d by several
for example Ni [18] and Eidelman et al. [19]. The resuits obtained in [18] and [19]
were used to eval the solutions from the p d CVFEM. Ni [18] used an

explicit second-order accurate FVM, incorporating multigrid solution techniques.
on a 65x17 node grid having 33 nodes concentrated over the bump. Eidelman et al.
[19] used first- and second-order accurate Godunov FDM's on grids of unspecified
resolution. The results generated by the CVFEM of Hookey [9] on a 61 x 21 node
uniform grid are also used for comparison.

The proposed CVFEM was used with two different grids, as shown in Fig. 4.6,

to generate solutions to each of the three idered. Each grid isted
of 61x21 nodes or 2400 elements. An initial or ‘uniform’ grid was generated by
specifying a uniform distribution of nodes around the boundary of the calculation
domain, and using transfinite interpolation 23] to generate the internal mesh. The
second grid concentrated nodes near the bottom surface of the duct and near the
bump as shown in Fig. 4.6b.

In the discussion of the results generated by the proposed CVFEM. the distri-
butions of M, p/py, and T/T; along the top and bottom walls of the channel are
compared with the data of Ni (18], Eidelman et al. [19] and Hookey [9]. Plots of the
isoMach lines are also included to validate the physical features of the calculated

flow.
Subsonic Flow

In the simulation of inviscid subsonic flow through the channel, the inlet Mach

number was set equal to 0.3, and the height of the bump was defined as 10% of the



chord. In this problem, the singularities at the leading and trailing edges of the
bump generate pressure disturbances that propagate up and downstream to provide
a smooth change in Mach number. The flow accelerates over the forward part of the
bump, due to the decrease in flow area. to a maximum velocity over the center of
the bump. The flow then decelerates on the aft portion of the bump. Since the flow
remains subsonic and is inviscid, there should be no dissipative losses, therefore,
the flow should return to the inlet Mach number at outlet. Dissipative losses would
manifest themselves as a reduction in stagnation pressure of the flow, and since the
static pressures at inlet and outlet are equivalent, this would lead to an outlet Mach
number less than 0.5. The difference between M; and M, illustrates the degree of
pressure recovery in the solution.

The following geometry and flow conditions were used in the simulation of this

problem:
L =01m p = 100kPa p, = 100kPa
hg = 0.0lm T, = 300K (4.19)
My =035

The Mach number distributions along the upper and lower walls of the channel are
shown in Fig. 4.7, and the isoMach lines are plotted in Fig. 4.8

The results generated by the proposed CVFEM are compared with those of Ni
[18] and Hookey [9] in Fig.4.7. As shown in this figure. the CVFEM solutions give a
nonsymmetric solution, but this is due to the different boundary conditions applied
at the leading and trailing edges of the bump. The proposed CVFEM underpredicts
the maximum Mach number, with the best result of 0.668 being obtained on grid

2. The i Mach b dicted by Ni [18] and Hookey [9] are 0.694 and

0.680, respectively. The proposed CVFEM also indicates relatively poor pressure
recovery aft of the bump. The isoMach lines in Fig. 4.8 indicate the asymmetry

introduced due to the boundary conditions.



Transonic Flow

In the simulation of inviscid transonic flow through the channel, the inlet Mach
number was set equal to 0.675, and the bump height was specified as 10% of the
chord. For this inflow Mach number and duct geometry, the Mach number of the
flow smoothly reduces to a minimum at the bump leading edge. The flow then
accelerates over the bump to form a supersonic region that is terminated by a
normal shock on the aft portion of the bump. After the shock. the flow recovers
to near inlet conditions. Since a shock is present, the stagnation pressure near the
bottom channel wall reduces, therefore, the outlet Mach number near the bottom
surface is less than the inlet Mach number, because the inlet and outlet static
pressures are equivalent. There is some pressure recovery aft of the shock, however,
as the shock does not extend across the full height of the duct. The reduction in

Mach number at the outlet reflects the loss in stagnation pressure.

The following geometry and flow ditions were ified for this probl
L =01m p1 = 100kPa p, = 100kPa
hs = 0.0Im T, = 300K (4.20)
M, = 0.675

The Mach number distributions along the upper and lower walls of the channel are
plotted in Fig. 4.9 and the isoMach lines are shown in Fig. 4.10

In Fig.4.9, the results generated by the proposed CVFEM are compared with
the FDM results of Eidelman et al. [19] and Hookey [9]. This comparison is not
very favourable for the proposed CVFEM, as the maximum Mach number on the
bump is underpredicted, and the shock is not apparent. The maximum Mach
numbers predicted by the proposed CVFEM are 1.0048 and 1.04 on grids 1 and 2,
respectively. The value predicted by Eidelman et al. is 1.187 and 1.142 is predicted
by Hookey. The location of the maximum Mach number on the upper wall is also

poorly predicted by the proposed CVFEM, as is the pressure recovery aft of the



shock. This poor performance is related to the first-order nature of the mass-
weighted interpolation scheme used in the proposed methods. Both Eidelman et
al. {19} and Hookey [9] use higher order schemes which do not smear variations
in flow properties as much as the proposed method, and both give more accurate
representations of physical flows.

The isoMach plots shown in Fig. 4.10, illustrate the expected asymmetry in the

solution, but the shock is not present.
Supersonic Flow

Inviscid supersonic flow through the channel was simulated using an inlet Mach
number of 1.65 and a bump height of 4% chord length. When the flow through
the channel is subsonic, pressure disturbances generated by the singularities at the
leading and trailing edges of the bump can propagate upstream to provide a smooth
decrease in Mach number. When the flow is supersonic, however, as in this problem,
these disturbances coalesce into oblique shocks. The leading edge shock reflects off

the upper channel wall, and interacts with the trailing edge shock. The leading and

trailing edge, and reflected shocks are K 1 by ion waves
into the flow from the convex surface of the bump. This problem is an interesting
and challenging test of the proposed CVFEM as three shocks and the appropriate
turning of the flow across the shocks, must be captured.

The following geometry and flow conditions were used in the simulation of this

problem:
L=01m p = 100kPa
hg = 0.004m T, = 300K (4.21)
My = 1.65

The Mach number distributions along the upper and lower walls are shown in
Fig. 4.11 and the isoMach lines are plotted in Fig. 4.12.
In Fig. 4.11, the results generated by the proposed CVFEM are compared with



the FDM results of Eidelman et al. [19], and the CVFEM results of Hookey [9]. This
figure ill that the d CVFEM d i the i Mach

number on the lower wall. Also the minimum Mach number, at the location where

the shock is reflected from the upper wall. is i d. Further, the i

of the reflected shock on the lower wall Mach number at the end of the domain
is overestimated. These difficulties are due to the low-order of the interpolation
scheme used in the proposed CVFEM.

The isoMach lines shown in Fig. 4.12 indicate that the proposed CVFEM has
captured the shocks at the leading and trailing edges of the bump, with better
refinement of the shock on grid 2. The shock reflection is rather diffuse, however,
as shown by the coarse spacing of the isoMach lines on the upper wall. The effect

of the coarse mesh aft of the bump is apparent from Fig. 4.12b.

4.3.3 Inviscid Flow through a Planar Converging-Diverging

Nozzle
In this probl the i ion of an inviscid flow from subsonic to
supersonic speeds in a planar converging-diverging nozzle is si d. The prob-

lem is illustrated schematically in Fig. 4.13. Planar or rectangular cross-section
nozzles have been used on the jet engines fitted to high performance aircraft [20].
These nozzles allow variable engine inlet geometry, and thrust vectoring or re-
versing, which permits the design of highly maneuverable planes possessing better
performance characteristics than would be possible with axisymmetric nozzles [20].
A series of tests were performed by NASA to determine the performance of several
nozzle designs, and the experimental data from one of these tests is used to check
the results produced by the proposed CVFEM. The nozzle simulated is the B2
nozzle reported by Mason et al. [20]. With reference to Fig. 4.13, which shows the
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bottom half of the nozzle, the B2 nozzle has the following dimensions:

he = 1.37 x 10m @ = 22.33° hy = 352 x10*m
L 8 x1072m 3 = 11.24° hy = 246 x 1072m (4.22)
L. =578x%x102%m r.=274x10%m

A smooth transition from the contoured throat to the straight duct walls gives
inlet and outlet duct half-heights. h; and hj, of 3.52 x10~?m and 2.46 x 10~?m.
respectively. The ratios of these duct heights gives a ratio of inlet stagnation
pressure to outlet static pressure of 8.813 [16]. When the NASA test conditions of

300K for inlet stagnation temperature, and 101.3kPa for outlet static pressure are

used with the duct geometry in the i ic flow ions [16], the following flow
conditions are obtained:

p1 = 859.772kPa pu =
T\ = 296.8K Tin
M; = 0.23257 My =

The calculation domain used in this simulation was the half of the nozzle shown in

471.633kPa p, = 101.3kPa
250K T, 61K (4.23)
M, = 2.07635

Fig. 4.13. This domain was discretized with the two grids shown in Fig. 4.14. These
grids consisted of 31 x 11, and 61 x 21 nodes, or 600, and 2400 elements, respectively.

They were generated using a uniform distribution of nodes on the boundaries of

the domain, and finite i lation [23] to ine the internal mesh.
The initial flow conditions in the nozzle were determined by interpolation of the
results of the isentropic analysis, Eq. (4.23). The static pressure and temperature
were assumed to vary linearly from the inlet to the throat, and then from the
throat to the outlet boundary. The density field was calculated from the specified
distribution of pressure and temperature. Using the given inlet Mach number, duct
geometry, and density field, a u velocity field that maintained mass conservation
was calculated. The v velocity was then defined such that the velocity vector was
everywhere tangent to the local grid lines. To maintain a constant Mach number

across the inlet, it was necessary to determine u and v based on the angle the grid



lines made with the inlet plane of the duct. therefore. u and v were non-constant
along the nozzle entrance.

The boundary conditions used in this problem were specified static pressure,
temperature, and velocity at the inlet. and specified static pressure at the outlet.
Tangency conditions were applied at the duct wall and the symmetry plane. The
initial and boundary conditions imply that the fluid entering the duct is not parallel
with the z axis. It was found that the inflow had to be oriented in this manner to

provide tangency at the duct wall, otherwise the sharp turning of the flow just after

in the

entering the nozzle, and the ill
in this vicinity, led to convergence difficulties. Furthermore, this provides a realis-
tic simulation of the physical problem, as the subsonic inlet would allow pressure
disturbances caused by the flow turning to propagate upstream, and generate a
smooth turning of the flow as it enters the duct.

Figures 4.15 and 4.16 show the variation in the ratio of static pressure to inlet

stagnation pressure along the lower duct wall, and the symmetry plane, respectively.

In these figures, the two CVFEM solutions are d with the i I data
of Mason et al. [19]. The experimental pressure data was recorded along the center-

line of the lower duct wall, and the centerline of the duct endwall. The nozzle tested

in [19] had a ! ion with a width of 10.12 x 10~?m. The
plots in Figs. 4.15 and 4.16 show that the results generated on the 31 x 11 and
61 x 21 node grids are in good agreement with the experimental data, with the
finer grid providing the expected better accuracy.

The isoMach lines generated from the CVFEM solutions are shown in Fig. 4.17.
This figure illustrates that for the two CVFEM solutions the Mach number at the
wall reaches a value of one before the throat, and the flow at the centerline becomes

sonic just after the throat, as in a physical nozzle flow [17]. The isoMach lines aft



of the throat also demonstrate the correct physical behaviour when compared with
interferograms in [16]. A comparison of Figs. 4.17a and 4.17b illustrate that the
61 x 21 node grid provides the smoothest variation of Mach number across the

nozzle cross-section.
4.3.4 Shock-Laminar Boundary Layer Interaction

The simulation of an incident shock interacting with a laminar boundary layer is
a severe test of a numerical method. The physical behaviour of a boundary layer
in the presence of a shock is shown schematically in Fig. 4.18. In the absence of a
boundary layer, a shock is reflected from a flat plate as an oblique shock of equal
turning angle [16]. The pressure increase across a shock, however, causes a bound-
ary layer to thicken in the vicinity of the shock incidence. The resulting pressure
disturbance propagates upstream in the subsonic portion of the boundary layer,
which leads to smearing of the pressure increase across the shock, and upstream
thickening of the boundary layer. This thickening can generate compression waves
that coalesce to form a reflected shock originating upstream of the incident shock.
The actual origin of the reflected shock depends on the degree of streamline cur-
vature induced by the incident shock. The incident and reflected shocks are nearly
coincident only for a weak incident shock. As the shock enters the boundary layer,
the changing Mach number of the flow causes it to bend, and it terminates at
the sonic line [16]. This bending generates compression waves which coalesce into
another reflected shock. After passing through the incident and reflected shock
system, the flow external to the boundary layer attains a higher pressure than that

of the flow within the layer. This pressure differential causes the flow to turn to-

wards the wall and ion waves which into the

and weaken the reflected shocks [16]. If the difference between the freestream and
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boundary layer pressures is sufficient. the flow is turned so strongly towards the wall
that the consequent realignment of the flow at the wall generates compression waves
and another reflected shock. The degree of boundary laver thickening and the com-
plexity of the reflected shock structure are strongly dependent upon the strength
of the incident shock. If the shock is of sufficient strength the boundary laver will
separate. The most complex shock structures occur with strong shock-boundary

layer interactions.

Hakkinen et al. [21] d i al studies of the interaction of oblique
shocks with laminar boundary layers on a flat plate. Several experiments were
performed at different incident shock positions, oblique shock angles, and stagnation
pressures. Data reported in [21] includes the distribution of skin friction coefficient,
cy, and static to stagnation pressure ratio on the surface of the plate. This data
was recorded at various values of p,/p,, the ratio of outlet to inlet static pressures,
where p, was measured aft of the incident and reflected shock system, and shock
Reynolds numbers, Re,xk, based on freestream conditions before the shock and the
point of incidence of the shock, zgnk.

The oblique shock angle, 8, is not reported in [21], however, it can be determined
by an iterative method based on satisfying the required static pressure rise, p,/p1,
assuming that the incident shock is reflected as an oblique shock having equal
turning angle [9]. The case simulated here corresponds to a pressure ratio po/p; =
1.2, and a shock Reynolds number, Regu. of 2.84 x 10°%. The incident point of the
shock, Zsae, is 4.8768 x 10~2m [21], and the inlet Mach number, M; = 2.0, allows

! ification of the variables defining this problem [9]:

Tk = 4.8768 x 107?m p, = 12.9399kPa

Regx = 284x10° 6 = 31.3471°
P2/p = 1.20 ¢ = 1005.6J/kg/K (4.29)
M, = 20 Pr =072

T, = 293K
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The value of ¢, was evaluated at 293K. The dynamic viscosity, g, was determined

from the Sutherland-law approximation [25]:

- .5 383K T A2 -
4 = 1.716 x 10~kg/m/s m) (ﬁ) (4.25)

The grid used to simulate this problem has to be very fine near the plate,
in order to properly resolve the behaviour of the boundary laver. The laminar
boundary layer for a compressible adiabatic Mach 2 flow over a flat plate thickens
with distance from the leading edge. z. as [9]:

7z

5= ®ea

(4.26)

which gives a boundary layer thickness at the incident shock location. d,uk, of only
6.406 x 10™*m. In [27], results were generated on a 32 x 32 node grid that extended
26% of ek in front of the plate, and 56% of T,k aft of the incident point. In [26],
results were generated using a domain extending of z,¢ upstream of the plate, and
50% downstream of the incident point. A uniform distribution of nodes in the =

di ion was loyed. In the y direction, the domain was split into two sections.

one corresponding to a stretched fine mesh within the boundary layer, and the
other to a uniform coarse mesh in the freestream; 16 nodes were placed in each
section. The fine mesh had a thickness of approximately 2.5 times the boundary
layer thickness ;. The height of the coarse mesh was specified such that the total
height of the domain was approximately 14 times the height of the fine mesh. In the
CVFEM of Hookey [9] this problem was simulated on a 61 x 41 mesh with a total
of 24 nodes placed within the fine mesh region and 17 in the freestream section.
Meshes consisting of 121 x 81 and 61 x 41 nodes, as shown in Fig. 4.14, were
used in the simulation of this problem. The calculation domain extended from
z/Tse = —0.5, to z/z,x = 1.5 as shown in Fig. 4.20. The domain was divided

into two sections, as in [9, 26, 27, with coarse and fine sections to accommodate



the freestream and boundary layer, respectively. As in [9] the thickness of the fine
mesh was chosen to be approximately 36;. or 2.34 x 10~%m, while the height of the
coarse mesh was chosen to give a total domain height of approximately 334. or
2.525 x 10~2m. For the 121 x 81 grid, a total of 47 nodes were placed within the
fine mesh region and 34 in the freestream section, while the 61 x 41 grid employed
24 nodes in the fine mesh region and 17 nodes in the freestream section. The grids
within each section were stretched to concentrate points near the plate, and then to
provide a smooth transition from fine to coarse meshes. These grids were stretched
using the following power law equation [9]:
: n

Y = Yo + Ymas (]J:'_LI) (4.27)
where yo is the height at which the section begins, yma: is the height of the ap-
propriate section, jma is the number of nodes in that section, and j varies from
1 tO jmaz- For the grids used here, n was assigned values of 1.3 in the fine and
coarse meshes. A uniform distribution of nodes in the z direction was used in both
meshes.

The equations solved in the simulation of this problem were the continuity,
Navier-Stokes, energy, and state equations, Egs. (4.11) to (4.13). Due to the large
variation in element size, the coefficient matrices of the discretized equations were
not diagonally dominant, and this required the use of heavy under-relaxation to
promote convergence. The data reported in this thesis was obtained with oy, a,
and ar assigned the value of 0.3.

The boundary conditions applied to this problem were specified velocity, static
pressure, and temperature on the inflow boundary, and the top boundary of the
calculation domain. At the inlet plane the Mach number, pressure, and temperature

were assigned the values of My, p;, and T} in Eq. (4.24): the v velocity component



was set equal to zero and the u velocity component was determined from M; and
T,. The u and v velocity components were set equal to zero on the plate to provide
a no slip boundary condition. Between the inlet plane and the leading edge of the
plate. symmetry conditions were applied on the lower boundary, that is v = 0,
and no-flow, no-diffusion for u. At the supersonic outflow boundary, no boundary
conditions were specified.

A shock was imposed on the boundary layer by altering the boundary conditions
on the upper domain boundary. These conditions were determined from the normal
shock relations [16], assuming that the shock angle was 31.3471°. The post-shock
conditions, indicated by subscript y, are [9]:

u, = 674.43m/s p, = 14.1857kPa

y = —19.37Tm/s T, = 300.8K (4.28)

,

These values were specified along the top of the calculation domain, at and after
the origin of the oblique incident shock, as shown in Fig. 4.20.

The results generated by the proposed CVFEM are compared with the exper-
imental data of Hakkinen et al. [21] and the numerical results of Hookey [9]. The
distribution of the static pressure ratio, p/p,, and skin friction, ¢y, along the surface
of the plate are shown in Figs. 4.21 and 4.22, respectively.

The pressure ratio, p/py, calculated from the outlet and inlet static pressures
in the calculation domain, was 1.1995 for the 121 x 81 grid which is in excellent

with the i | value of 1.2 [21]. The computed gradient of pres-

sure across the incident and reflected shock system is less steep than that occurring
in the experimental data. The relative smearing of the pressure rise in the CVFEM
solutions compared to the experimental data is quite evident. At the origin of

the incident shock, the boundary itil were ified to give a

change in conditions across the shock. As the shock propagated into the calculation



domain. it was smeared over several nodes, and i) d by finite

The experimental data ill the and ion of the

pressure disturbance within the boundary layer [16]. This region is larger in the
CVFEM solutions, because the shock is smeared by the numerical method. and it
is no longer a discontinuity when it hits the boundary layer. In comparison with
the results of Hookey. the proposed CVFEM appears to have shifted the pressure
rise downstream from the physical location, i.e. the physical location of the shock
interaction is better predicted by the CVFEM in [9].

The smearing of the shock is responsible for the poor agreement between the
experimental and numerical values of ¢;. Although both CVFEM solutions show
a decrease in ¢y near the shock system, which indicates a slowing of the flow near
the plate, and consequent thickening of the boundary layer, the decrease is not as
large as in the experimental data or that in the CVFEM simulation in [9]. The
experimental data shows a large decrease in ¢y, to a minimum of 3.48 x 10~*, while
the corresponding value from the 121 x 81 grid is 8.8263 x 10, and 9.9812 x 10~*
is for the 61 x 41 grid. The minimum value of ¢; predicted by the CVFEM in [9] is
6.6647 x 107 on a 61 x 41 grid. Before and after the shock system, the numerical
values of ¢y are in good agreement with the experimental data. It appears that the
lower-order interpolation scheme used in this thesis is not capable of predicting the
appropriate extent of the shock-boundary layer interaction. The previous method
described in (9], which used a higher-order interpolation scheme appears to better

predict this behaviour, and suggests that it should be revisited.
Summary

The results presented in this section have shown that the proposed method is capa-

ble of simulating compressible viscous flows, but its accuracy is severely limited by
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the low-order mass-weighted interpolation scheme that was employed. This scheme
offers ease of implementation and derivation when compared with the previous
CVFEM of Hookey [9]. The higher-order interpolation used in [9] leads to a more
complex implementation, but it gives better solutions. This research indicated that
the method in [9] should be revisited, in an attempt to reduce the difficulties in

convergence that have arisen with that method.



N JlIter | My | % error in M | Mocaie | % error in My
25 | 131 [0.9778 -2.22 1.7819 -10.9
51 | 238 | 0.9842 -1.58 1.8904 -5.48
101 | 434 [0.9882 -1.18 1.9439 -2.80
201 | 804 | 0.9912 -0.88 1.9716 -1.42
301 | 1158 [ 0.9927 -0.73 1.9809 -0.96
401 | 1502 | 0.9936 -0.64 1.9856 -0.72

Table 4.1: Shock-free flow through a converging-diverging nozzle: Accuracy of the
predicted throat and outlet Mach numbers.

N [ Iter | Mk | % error in Max | ZTsak | % €ITOT D Zynk | AZenk | Vonk
51 | 980 | 1.1313 -24.58 0.1280 -15.02 0.0320 8
101 | 1137 | 1.2942 -13.72 0.1360 -9.71 0.02 10
401 | 4190 | 1.4446 -3.69 0.1465 -2.74 0.0065 | 13

Table 4.2: Converging-diverging nozzle flow with a shock: Predicted values of M,
the position, and the thickness of the shock.
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Figure 4.1: Problem
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distribution of M, p/po, and T/Tp.
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Figure 4.5: Two-dimensional inviscid flow through a channel with a circular arc

bump: problem schematic.
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Figure 4.7: Subsonic inviscid flow through a channel with a circular arc bump:
distribution of Mach number on the upper and lower walls of the channel.



(b)

Figure 4.8: Subsonic inviscid flow through a channel with a circular arc bump:
isoMach lines generated on (a) grid 1, and (b) grid 2.
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Figure 4.9: Transonic inviscid flow through a channel with a circular arc bump:
distribution of Mach number on the upper and lower walls of the channel.
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Figure 4.10: Transonic inviscid flow through a channel with a circular arc bump:
isoMach lines generated on (a) grid 1, and (b) grid 2.
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Figure 4.11: Supersonic inviscid flow through a channel with a circular arc bump:
distribution of Mach number on the upper and lower walls of the channel.
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Figure 4.12: Supersonic inviscid flow through a channel with a circular arc bump:
isoMach lines generated on (a) grid 1, and (b) grid 2.



Figure 4.13: Inviscid flow through a planar converging-diverging nozzle: problem
schematic.
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Figure 4.14: Inviscid flow through a planar converging-diverging nozzle: (a) 31x11
node grid, and (b) 61x21 node grid.
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Figure 4.15: Inviscid flow through a planar converging-diverging nozzle: distribu-
tion of static to stagnation pressure ratio, p/po, along the lower wall of the nozzle.
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Figure 4.16: Inviscid flow through a planar converging-diverging nozzle: distribu-
tion of static to stagnation pressure ratio, p/po, along the symmetry plane of the
nozzle.
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Figure 4.17: Inviscid flow through a planar converging-diverging nozzle: isoMach
lines generated on (a) 31x11 node grid, and (b) 61x21 node grid.



Figure 4.18: Schematic representation of the interaction of an incident shock with
a laminar boundary layer [9].
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(a)

Figure 4.19: Shock-laminar b dary layer i jon: (a) 61x41 node grid; and
(b) 121x81 node grid.
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Figure 4.20: Shock-laminar boundary layer interaction: problem schematic.
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Figure 4.21: Shock-laminar boundary layer interaction: variation of the static pres-
sure ratio, p/py, along the surface of the flat plate.
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Figure 4.22: Shock-laminar boundary layer interaction: variation of the skin friction
coefficient, ¢y, along the surface of the flat plate.



Chapter 5

Conclusion

5.1 Contributions Of The Thesis

The for ion and impl ion of two col d CVFEM’s for steady, quasi-
one- and 1, viscous ible fluid flow have been re-
ported in this thesis. The d CVFEM's ically capture all shocks

within the calculation domain: the change in flow conditions across a shock is
smeared over several nodes, however, resulting in finite gradient approximations of
the essentially discontinuous physical change in flow conditions across a shock.
The proposed CVFEM's were formulated to solve the continuity. Navier-Stokes,
energy, and state equations for a perfect gas. Tu.se methods can account for vari-

able Auid properties, such as dynamic viscosity and thermal conductivity, however,

in order to keep the source terms in the energy i ively

the specific heat, c,, was assumed constant. The so-called primitive variables, ve-

locity pressure and were used as the dependent variable
set in the formulation of the proposed CVFEM's.
The MAss Weighted (MAW) scheme of upwind interpolation, used in the inter-

polation of convective terms, was modified for its ication in

with three control volume faces. A pseudo-velocity field was defined to incorporate

113
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the pressure gradients in the interpolation of ‘mass conserving’ velocities to prevent
the oscillatory solution fields that may arise with colocation of dependent variable
storage locations [14].

The proposed CVFEM's were applied to several test problems, and the so-
lutions generated were compared with theoretical, experimental, and numerical

results available in the literature. The one-dimensional CVFEM generated solu-

tions in very good agreement with t i i of q
inviscid flow problems. The shock capturing ability of the proposed method was
demonstrated in the simulation of a flow through a converging-diverging nozzle
with a shock in the divergent portion of the nozzle. The method was shown to be
first-order accurate at the high element Reynolds numbers encountered in the flow
problems solved.

The two-dimensional CVFEM was used to solve four inviscid and one viscous
flow problems. The results generated by the proposed CVFEM did not compare
favourably with other numerical simulations. In particular, the low (first) order
interpolation implicit in the MAW scheme was responsible for poor prediction of
shock strength and position, and pressure recovery. This would indicate that the
higher-order interpolation used by Hookey [9] or another higher-order interpolation

scheme should be employed to improve the accuracy of the CVFEM prediction.

5.2 Proposed Extensions Of This Work

The d lati ided a simpler impl ion to the method pro-

posed by Hookey [9], and the use of ‘mass conserving’ velocities helped to eliminate
some convergence difficulties inherent to that method when it was applied to the
solution of flow problems with fluids of constant densities. The MAW interpola-

tion was found to be i y for ible flow Future work
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should on the impl ion and ion of higher-order interpo-
lation functions, in concert with the use of mass-conserving velocities. to develop
a method that is at least as accurate as that in [9] but simpler to implement, and

more stable.
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Appendix A

Interpolation Functions for the
Proposed One-Dimensional
CVFEM

A.1 Interpolation of Pressure

In the proposed one-dimensional CVFEM, the pressure is interpolated linearly
within an element:
P=ayz+b, (A1)

Substitution of the nodal values:
p=p at =1 (A2)
p=p2 at =13

into Eq. (A.1), and solving for a, and b, gives:

b —p2
= 2R A
- (A3
by = ZPiT2 + PaTy (A4)
I — Ty

The pressure gradient, dp/dz, is given by Eq. (A.3).

A.2 Interpolation of Area

In the proposed CVFEM, the variable area of a duct, w, is interpolated linearly
within an element:
W = yT + by (A.5)
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where a,, and b, are defined by similar expressions to Egs. (A.3) and (A.4), for a,
and b,.

A.3 Interpolation of Velocity

The mass weighted (MAW) interpolation scheme is used in the proposed CVFEM.
in which upwind interpolation is used to interpolate velocity and temperature when
they are convected scalars, and linear interpolation is used for velocity and temper-
ature in diffusion terms. Linear interpolation is also used for the mass conserving
velocities.

A.3.1 Interpolation of a Convected Scalar

In the one-dimensional case, the MAW interpolation reduces to a pure upwind
scheme. Defining ¢ and i + 1 as two nodes of an element, and o as the CV face, the
upwind scheme can be expressed as follows:

if u>0, u = uy (A.6)

if wi<0, u = iy

This scheme is also applied to temperature by replacing u by T in Eq. (A.6).

A.3.2 Interpolation of a Diffused Scalar
Velocity is interpolated linearly in diffusion terms. and other terms where a gradient
of velocity is required:

U= ayT + by (A7)
where the coefficients a, and b, are evaluated in a similar manner to a, and b, in
Eqgs. (A.3) and (A.4). Temperature is also interpolated by a similar linear function
in diffusion terms.

A.3.3 Interpolation of Mass Conserving Velocity

The mass conserving velocity is interpolated by linear interpolation of a pseudo
velocity, @, and a pressure coefficient, d*. If the CV face is placed midway between
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the nodes of an element. the mass conserving velocity at control volume face. u™,
can be written as follows:

di +di., dp
3 &z &8)

where. dp/dz is evaluated using Eq. (A.3).

A.4 Interpolation of Density

In the proposed CVFEM, the density is interpolated by an equation of state written
in terms of a linear function of pressure. In this thesis, the equation of state for an
ideal gas is used: 5

P=pF (A.9)
The interpolated density is upwinded by upwinding both the pressure and tem-
perature that appear in Eq. (A.9). It should be noted that pressure is upwinded
only when it is being used to interpolated density: in all other terms pressure is

interpolated linearly.



Appendix B

Integration of Fluxes in the
Proposed One-Dimensional
CVFEM

B.1 Introduction

In Chapter 2, the governing 1 for steady, qi 1, viscous
compressible flow through a duct of variable area, w, were written in the following
conservative forms:

dJ

= = Sw (B.1)

dg

o =0 (B.2)
where, J is the combined convection-diffusion transport, S is the source term, and
g is the mass flow, pwu. Equation (B.1) the ion when:

e gt =g By 1 dfd
J = pwuu Hwo= S=5" dx+3wdz (pdz(uw)) (B.3)

the energy equation when:

k . _ ST udp
J—-P‘qu—c—pwd—I- 1 5-—31‘~:+;:E (B.4)

Applying the appropriate conservation principle to a control volume V', which
is fixed in space, integral forms of Eqs. (B.1) and (B.2) can be obtained:

/W:I—sz = [Swas (B.5)
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dg ,
/;VF;E'E =0 (B.6)

where @V is the surface of the control volume, and V' is the volume of the control
volume.
With reference to the control volume constructed around node i in Fig. 2.1. Egs.
(B.5) and (B.6) are cast in the following forms in Chapter 2:
Similar contributions from other =
Jo = /V Pz =5 ( elements associated with node i ) B

Boundary contributions, \| _ 0
if applicable -

4 Similar contributions from other (B38)
% elements associated with node i *

Boundary contributions,
( if applicable ) =0

To derive the element contributions to the discretized forms of the integral
conservation equations, the integrated fluxes across the control volume face in each
element must be evaluated. The algebraic approximation of these terms is described
in the following three i first the bined convection-diffusion transport
terms in the ion are i d; then the i d flux of energy
is described: and finally the approximation of the mass flow across the control
volume face is derived. All nomenclature used in this Appendix refers to that
shown in Fig. 2.1. The ! bly of the di i forms of the governing
equations will be discussed in Appendix C.

B.2 Momentum Equation

In the proposed one-dimensional CVFEM, the convected velocity term is upwinded.
The diffused velocity, which occurs in the pwdu/dz term, and velocity gradients
that appear in the viscous terms, and the source term are evaluated using linear
interpolation. The following derivations are based on the assumption of flow in the
positive z-direction, as shown in Fig. 2.1.

Using upwinding, Eq. (A.6), in the convection term, and linear interpolation,
Eq. (A.7) in the diffusion terms, the interpolated convection-diffusion flux of z-



momentum at a control volume face, J§. can be written as follows:

_ Hwo _ _pwo
Jo = ((wo + 22 )y - B, (®9)

where wg = (wy + w2)/2. and (pwu),. is interpolated linearly from available values.
Rearranging J§ in terms of nodal velocities gives the following:

Jo = cuuy + cup (B.10)
where
pwy pwo
- . e PN .11
ca = (pwu)o + e c2 — (B.11)

The integral of the source term, S. over the portion of the control volume (cv)
about node 1 which is contributed by element 1-2 (see Fig. 2.1) is written as follows:

/ Sz SEolydiiu # i F ool L (B.12)
voly dr
where
. _ Swy — 3wy
du = Syuoh—pgr— (B.13)
5wy — 3wy
dip = e 0N B.14
12 =) (B.14)

Element 1-2 also makes a contribution to the cv surrounding node 2. The
integral of the source term, S, over this portion of the cv associated with node 2
is written as follows:

/ Side ol dny g o (B.15)
voly dz
where
Swo — 3wy
dn = p—0—o——"— B.16
2 B =) (B.16)
Swg — 3w,

dn = Stvoly—u (B17)

6(z2 — 1)
The volume terms, vol; and vol,, in Egs. (B.12) and (B.15), respectively, are
defined as follows:
voly = (w + wo)Az/4 ; woly = (w2 + wo)Az/4 (B.18)
and
wo = (w1 + wy)/2 (B.19)
where linear interpolation has been used for the area, w, and Az is the distance
between the nodes.



B.3 Energy Equation

Temperature is interpolated in a similar manner to velocity. and the integration
of the convection-diffusion flux over a cv face can be evaluated using the same
procedure, and written in terms of the nodal temperatures as follows:

Jo =T +C T, (B.20)

where i i
&= —— . G=-— B.21
1 = (pwu)o + ) 2 T (B.21)

The integration of the source term over the element 1-2 can be written in the
following form:

/ Srwdz = iL (Sf+u.£) voly + ngual,
vol -9 dz. c

1 dp 87
+ ; (SCT +u1§) voly + éT;valg (B.22)
where. the pressure gradient is evaluated using Eq. (A.3) and vol; and vol, are
defined in Eq. (B.18).
B.4 Continuity Equation

B.4.1 Introduction

In the proposed CVFEM, the mass flow rate across a control volume face, go, is
linearized with respect to density and velocity:

90 = Jo+90+390 (B.23)

where § is linearized with respect to velocity, 7 is linearized with respect to density,
and § is determined from available values of density and velocity. The algebraic
approximation of the 59, 50, and 50 terms is described in the following subsections.

B.4.2 Algebraic Approximation of 90

In the proposed CVFEM, the upwinded velocity is used to linearize the mass flow
rate, and the mass conserving velocity formula is used to calculate this upwinded



velocity:

= - P2 — P
9o = (pw)o ('ll —d— ::) (B:24)
where pq is interpolated linearly using available pressure and temperature values in
the equation of state. wy is defined in Eq. (B.19). This equation may be written as

follows:
5 (pw)ody = (pw)o df

= e + (pw)o iy (B.23)

B.4.3 Algebraic Approximation of 50
The linearization with respect to pg is performed by upwinding the density through

inding both the and in the ion of state. Writing
this expression in terms of pressure gives the following:
s Wolg
9 = Jp Pt (B.26)

where g is calculated linearly from the nodal values of mass conserving velocity.

B.4.4 Algebraic Approximation of 9

The ;u term is calculated using available values of p, w, and mass conserving velocity
m

ugt.

B.4.5 Complete Algebraic Approximation of the Linearized

Mass Flow
Using the results from the last three sub i the 1 imation of
the linearized mass flow can be written in terms of p, and p, as follows:
g = JGo+90+3
= Eipr+Exp+ By (B.27)
where
_ lpw)odt  woug
E = e + RT, (B.28)
E, = _{pw)odi (B.29)
I3 —1I)

By = (pw)o (@ —ug) (B.30)



B.4.6 Outflow Boundary Condition for the Continuity Equa-
tion

The outflow boundary condition in the inuil ion is treated diffe

than the outflow boundaries of the other equations due to the linearization of the
mass flow rate. The mass outflow at boundary node i. g;, is written as follows:

G =3+ 8 +4 (B.31)

«
where, g, is evaluated with the known density, and treating the mass conserving
velocity as an unknown. Using the pseud locity, @, and pressur ficil dy,

9, is written as follows:

(B.32)

The !‘h term is evaluated using the available mass conserving velocity, uf*, and
unknown density, which is calculated using the equation of state:

5= wiur 2
Gi= wall g (B.33)

The 5, term is evaluated using the known nodal values of p; and ul*:
bi= powiul (8.34)

The boundary outflow, g;, can be written in terms of the nodal pressures p; and
Pi-1:

g = Elpi+ B} pia + F} (B.35)
where,
PO, (B.36)
Ty — Tioy
ax

o EV (B.37)

-1

+
F = pawi (@ — u]") (B.38)




Appendix C

Assembly of the Discretized
Conservation Equations in the
Proposed One-Dimensional
CVFEM

C.1 Introduction

The methods used in the d one-di ional CVFEM to i the
integrated flux across the control volume face in an element, and the volume in-

tegration of the appropriate source terms, were presented in Appendix B. These
integrated fluxes and source-related terms are used to compile the discretized forms
of the integral conservation equatxons for a control volume. The compilation of the

final forms of the di ized is 1 in this Appendix. This dis-
cussion is separaced into three sections devoted to the assembly of the momentum,
energy, and i pectively. All 1 refers to that

shown in Fig. 2.1.

C.1.1 Assembly of the Momentum Equation

The integrated convection-diffusion flux across the control volume face in an element
is i i by the following ion in Appendix B:

Jy = cuuy + coup (C.1)

The volume integration of the source term over an element is given by:
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dj
/W‘Suda: = Stvoly + dyuy + dyauz + voly £

+ Sgvoly + dayuy + dasus + voly % (C2)
The assembly of the final discretized form of the momentum equation is done
in an element-by-element manner. Visiting each element in turn. the coefficients
in Eq. (C.1) and (C.2) are evaluated. These terms can be lumped into coefficients
multiplying the appropriate dependent variable as follows:
For node ():

A = A ta—du (C.3)
Loy = Ly-e+de (C4)
d)
A = AD + S voly — voly ﬁ (€.5)
For node (i +1):

Afiey = Ay — 2 —d2 (C6)

Auirny = Afgey ta +dn (c.7)

dj
Ay = ALy + SEvols — voly 32 (CE)
The coefficients appear on both sides of these i because ibution

will also be made from another element, and previous contributions must be main-
tained. The contribution to the coefficient A4S, is the portion of the net transport
of momentum out of the control volume surrounding node i. associated with u,
in the element (i, + 1). The Af, coefficient is evaluated from the net transport
of momentum into the control volume for node i. The volume integrated source-
related terms, including the pressure gradient, are then added to the appropriate
A similar p dure is used to eval the i at node 7 + 1.

‘When the coeffici have been eval i and bled for every node in the
calculation domain, the final form of the discretized momentum equation is written
as follows:

A ue = Ay vy + Ay ve-n + AT (C9)
This equation can be rewritten in the following convenient form:

atu = Y atu, + b (C.10)
o



where the summation is over the two neighbour nodes of node i, as shown in Fig.
2.1. This discretized form of the momentum equation involves three nodal velocities.

C.2 Assembly of the Energy Equation

In Appendix B the integrated convection-diffusion flux of energy across a control
volume face is approximated by the following expression:

JF =CT+CT (C.11)
The volume integration of the source term over the element is written as follows:

s’r
/ Srwdz = L (s{ + u.@) voly + 22 T voly
vol c dz [

ST
g 2 (s{ +uy Q) voly + =2 T, vol, (C.12)
B dz %

Equations (C.11) and (C.12) for the energy equation are similar to Eqs. (C.1)
and (C.2) for the i herefore, the discretized energy i
d i A

can be assembled in the same manner as the

description of the di will not be d, only the resulting co-
efficients are presented.
For node (i):
g
Ay = Afp+Ci— :’j voly (C.13)
At = Aty -G (C.14)
qem = gqem +l ST voly + ugy vol, o (C.15)
“T() Aty + o, | See ety A
For node (i +1):
ST
Afary = Afay —C2— fvalz (C.16)
ATy = Ay +Cr (C.17)
3 dj
Ay = A+ (51 voly + ugis1y voly E") (C.18)
‘When these i have been bled for every element in a calculation

domain, the final form of the discretized energy equation for each node is obtained:

Afp Ty = Ay Tusen) + A Tu-n + AT (C.19)



This equation may be rewritten in the following compact form:

ofT, =3 arTa + 67 (C.20)
where the summation is over the two neighbouring nodes of node i. in Fig. 2.1.
therefore. Eq. (C.20) involves three temperature nodes.
C.3 Assembly of the Continuity Equation

In A dix B, the algebrai imation of the mass flow rate across a control
volume face is written in terms of the nodal pressures as follows:

9 = En +90+ 50
= El;m+Eip+B (C21)
The di i inui ion can be bled in the same manner as the
di ized i Since the b, is similar, only the

resulting coefficients are presented.
For node (i):

A5y = ASy+E (C.22)
Ay = Ay —E2 (C.23)
AR = A - Bo (C.249)
For node (i + 1):
Ay = Lpy-E2 (C.25)
sy = Ay + B (C.26)
ATy = AT+ B (can

When these coefficients have been evaluated for every element in the calculation
domain, the final form of the discretized continuity equation is obtained as follows:

ALy Py = Ap Pasn + A Py + A0 (C.28)
The above ion can be i in the following pact form:
= Z"aﬂp,. + 8 (C.29)

where the summation is over the two nodes neighbouring node 7 in Fig. 2.1, there-
fore, Eq. (C.29) will involve three nodal pressures.



Appendix D

Interpolation Functions for the
Proposed Two-Dimensional
CVFEM

D.1 Interpolation of Pressure

In the proposed two-dimensional CVFEM, pressure is interpolated linearly within
an element:
P=az+by+c (D.1)
Substitution of the nodal values:
p=p a z=z andy=y (D-2)
=p at =17 and y=y,

=ps at z=z3and y=u

into Eq. (D.1) p the following set of si linear algebraic equations:

P = aTitb+ 6 (D3)
P2 = @GpZa+ a4+
Ps = apZ3 +bpys + ¢
Using Cramer’s Rule to solve these equations results in the following expressions
for the coefficients a,, by, and c,:
1
% = 5= ((v2 —y3)p1 + (us — vi)p2 + (11 — )ps) (D.4)
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L =
b ((z2 = z3)p1 + (z3 — T1)p2 + (71 — 22)p3) (D.3)
1
& = 52 ((z2ys — Tay2)p1 + (Zay1 — T1y3)p2 + (T1y2 — Tay1)ps)  (D.6)
where
det = z1ys + Toys + Tay1 — Y1T2 — YoTs — Y31 (D.7)
Defining the following variables:
zmuly = 7, —z3 ymul = y2 —ys zTymuly = Tays — I3z
zmuly = 23—z ymuly = y3 -y  TYmuly = I3y — D1y (D.8)

Tmuly = 11— 12 ymulz = y1—y2 zymulz = T1y2 — Tyt

allows the expressions for the coefficients to be rewritten more compactly as:
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aQ = E;ymul,p‘- (D.9)
13

b = ‘EZ‘IT’”‘I-F!‘ (D.10)
1

G = EZzymul,p, (D.11)

Furthermore, if variables DF and DY are defined:
Df = ymul;/det ; D! = —zmul,/det (D.12)

then the pressure gradients may expressed in the following compact forms:

ap 3
3 = »= i (D.13)
oz % E
ap 3
P o b=5Dip (D.14)
dy % ;

D.2 Interpolation of a Convected Scalar

In the proposed CVFEM, the MAss Weighted interpolation (MAW) scheme is used
to interpolate convected scalars, e.g. the z and y components of velocity in the
momentum equations, and temperature in the energy equation. The following
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derivations are for the general scalar dependent variable ¢, and all nomenclature is
defined in Fig. 3.3. It is necessary to integrate the convective flux across the three
control volume faces in an element. This integration is performed by assuming an
integration point value on face k. of, prevails over the control volume face. The
following rules can be used to determine & for the element shown in Fig. 3.3.

Control volume surface 1

If >0 of = fof + (1— f)ds (D.13)

where f = min [ma:t (220) .1] (D.16)
3

If m, <0 o = fo§ + (1— f)®2 (D.17)

where F = iR [maz (%,o) ,1} (D.18)
1

Control volume surface 2

Iy >0 65 = fo5 + (1— ), (D.19)

where F = R [mux (%‘O).l] (D.20)
2

If my <0 o5 = fof + (1- f)®s (D.21)

Wit o [maz (%,o) ,1] (D.22)

Control volume surface 3

If m3 >0 @5 = fof + (1 —_f)d’; (D.23)

where f = min [muz (%,0) i 1] (D.24)
3

If g <0 6§ = f6f + (1- (D.25)

where P [maz (:‘T’.o) ,1] (D.26)
3

The h, terms are the integrated mass flow rate across the appropriate control

volume face:
Ty = /k pil- fig ds (D.27)



therefore, the rn; term is positive when the velocity vector at the integration point
is in the same direction as the assumed normal to the surface. The integration in
Eq. (D.27) is performed using linear interpolation for p and @.

In Egs. (D.16) to (D.26), ® represents the nodal value of @, and o represents
the integration point values. Using Egs. (D.16) to (D.26). the following system of
equations may be obtained:

ay ai ay e bu b2 by @
an an ax 85 ¢ = |bu b by @, (D.28)
a3z azx asx o5 by by bsg @3

This can be written as:
[Alsxs {67321 = [Blaxs {2}51 (D-29)

Multiplying both sides of the above equation by the inverse of [A], the integration
point values can be determined as:

{%ham1 = [CClaxs {@}aq (D-30)
which may be rewritten as follows:

3
o = Y ccte, (D.31)

3=t

D.3 Interpolation of a Diffused Scalar

In the proposed CVFEM, the diffused scalars are interpolated linearly within an ele-
ment. These scalars are, therefore, interpolated using function similar to Eq. (D.1),
and Egs. (D.9) to (D.11) define the interpolation function coefficients with the
substitution of the appropriate dependent variable for the pressure, p.

D.4 Interpolation of Mass Conserving Velocity

In di izing the mc i the d velocity wand v
are interpolated using the MAW scheme. Different interpolation functions are used
for the ‘mass conserving’ velocities which appear in the continuity equation and in
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the mass flux terms, g7 - 77, in the momentum and energy equations. In the mass
flux terms, the velocity components are interpolated by assuming a linear variation
of the pseudo-velocities, & and &, and pressure coefficients. dj and dj, used in
conjunction with the local element pressure gradient. The following expressions
define the ‘mass conserving’ velocities, 4" and v[*, at each node within an element:

ut = —dy (%) (D.32)
=i (%) (D.33)

The subscript, e, on the pressure gradient indicates that the element pressure gra-
dient, and not the average pressure gradient over the control volume surrounding
the node in question, is being used.

The pseudo-velocities and the pressure coefficients are known at the nodes. In
order to determine the values of these quantities at the integration points on the
control volume faces within the elements (see Fig. 3.3), a linear interpolation of the
nodal values is used:

= ayT + buy +cu

dy =ajz + by +ci (D.34)
h=azr+by+o
dy =azz + by +cj (D.35)

The coefficients in the above equations can be determined in the same manner as
that used in Section D.1 for pressure.

D.5 Interpolation of Density

In the proposed CVFEM, the density is interpolated using the MAW scheme, there-
fore, the density at the integration point on face k can be written as follows:

3
5= 3 CCtpy (D.36)
j=1

where the CC coefficients are defined as shown in Section D.2.



Appendix E

Integrated Fluxes in the Proposed
Two-Dimensional CVFEM

E.1 Introduction

In Chapter 3, the governing at for steady, two-di ional, viscous com-
pressible flows were written in the following conservative forms:

v-J =5 (E.1)
V-§g =0 (E.2)
where, J is the combined convection-diffusion flux vector, S is the source term, and
§ is the mass flux vector pi. Equation (E.1) the
when:
J = piu— yﬁu (E3)

—gu 2o 10 LOuN .0 [ oY 200y
= oz t35z (ﬂaz) ® dy (pa:c) 30z (“ay) (E8)
the y momentum equation when:
J = piv—pVv (E.5)
19 29 ( du
s = o Bin (h) & 05) im (5)  ®9

the energy equation when:

J = puT—;VT (E.7)
_ ST 1/ 38 8\, 1
s = T () 8



and other conservation equations when:
J=pi6-TVe : S=25° (E.9)

Applying the appropriate conservation principle to a control volume V', which is
fixed in space, integral forms of Eqs. (E.1) and (E.2) can be obtained:

/aVJ-nds - /sz (E.10)

/3 G-iids = 0 (E.11)

where 9V is the surface of the control volume, and 7 is unit outward vector normal
to the differential area ds. -

With reference to the polygonal control volume associated with a typical node

1 within the calculation domain, either an internal node or a boundary node as
shown in Fig. 3.2, Egs. (E.10) and (E.11) can be cast in the following forms:

[/au'i-ﬁzds—/amJ‘»ﬁads—/vsw] (E12)

+ [ similar contributions from other elements associated with node 1 ]

+ [ boundary contributions, if applicable | = 0

Mz M3
[/ g'-ﬁgds—/ g'-fi;ds] (E.13)

+ [ similar contributions from other elements associated with node 1 ]

+ [ boundary contributions, if applicable] = 0

To derive the element contributions to the control volume integral conservation
equations, it is necessary to integrate the appropriate fluxes across the three control
volume faces in an element. The procedures used in the proposed method to perform
these integrations are described in this appendix. This di ion is  in two

sections: first the derivations for the convection-diffusion equation of scalar ¢ are

discussed; then the necessary al for the mc and energy
are described; and finally, the integrals involved in the continuity equation are
d. All 1 used in this dix is defined in Fig. 3.3. The

assembly of the discretized forms of these equations will be discussed in Appendix
B



E.2 Convection-Diffusion Equation for Scalar ¢

The convection-diffusion flux of ¢ is defined by Eq. (E.9). The integrated flux of ¢
across a control volume face k is expressed in the following manner:

Integrated flux across \ _ [ -
( control volume face & ) = /,; J-Teds (E.14)

Substitution of Eq. (E.9) into this equation gives:
Me M Me
[ Tedds = [ pio-iieds = [ 00 ficds (E15)
o 8 o

Using the MAW scheme in the convection terms and linear interpolation in the
diffusion term, the integrated flux across control volume face k can be written as
follows:
M - 3

/ﬂ J-fieds = m* ];cc,‘.‘ 6; As* — T (Ang + Bny )k As* (E.16)
In Eq. (E.16), m* is the mass flow rate across control volume face k, which is evalu-
ated using ‘mass conserving’ velocities, as shown in Section D.4. The coefficients A
and B arise from the linear interpolation of ¢ in the diffusion term, and are defined
by Egs. (D.9) and (D.10) when p; is replaced by #;. The components of the unit
normal to face k, 7ix are defined as follows:

= BTl o oo Bl (E17)
where zj, y; afe the co-ordinates of side midpoint, Mk, and As* is the length of
control volume face k.
The integration in Eq. (E.16) can be rewritten in the following simple form:

Me 3
[T ds = yCho; (E.18)
° j=1
where:
Ck = m*CCk — T (Dink + Dinf) As* (E.19)

and the DF and Dj terms are defined in Eq. (D.12).
The source term in Eq. (E.9) is linearized, and takes the following form for a
subcontrol volume surrounding node i:

S =50+50; (E20)



where the value of @; is assumed to prevail over the subcontrol volume associated
with node i. while S, and S, are evaluated at the centroid of an element. and these
values are assumed to prevail over all subcontrol volumes within an element. The
source term integration in Eq. (E.9) is simply:

/‘1 Sdv = S2V:+S20,V; (E21)

where V is the volume of the subcontrol volume within the element around node

E.3 Modifications for the Momentum and
Energy Equations
E.3.1 Modifications for the Momentum Equations

The i 4 ion-diffusion flux of across control volume face
k can be written in the same form as Eq. (E.18) when the diffusion coefficient, I,
is replaced by the dynamic viscosity, p, as follows:

My 3
( et S “‘“) = ["Tmds =2 chy (€2
¢ =t

control volume face k

where

CF = m*CC* — i (Dink + Dinf) As* (E23)
The integral of the source term over the subcontrol volume in the element around
node i, Eq. (E.4) can be written as follows:

3
fsav = stvi+ spuvi - v 3. Djp + % (E24)

where SY%, represents the integration of the extra viscous terms over the subcontrol
volume V; and has the following form for the z-momentum equation:

X JETAR S -

V;EV‘(

Stis
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_ [ (%0
- /;»;-3(3:1-'-81]) oy

= L=
= /;V: 3 (@unz + ayny) ds

where a,.b,,a, and b, are the coefficients from the linearization of velocity compo-
nents u and v that have the following formula:
3 3
a, =Y Dfw; : b, =3 Dlu
= i=t
3 3
a, =Y D : b =3 Din (E.26)
= i=1
With the reference to Fig. 3.2a, the elemental contribution of the integration of
extra viscous terms, S%,, for the control volume around node 1 may be written as

follows:
s, = S48
= /avg %(a.,n, + ayny) ds
= g (a.,,ni + a,,n;) Ast + % (aunz + lz.,n:,) As? (E.27)
where
§3 = g(auni +ayn3) As* (E.28)
st= g (aun? + ) A® (E.29)

For the y-momentum equation, the integrated convection-diffusion flux across
a control volume face k is defined by Eqgs. (E.22) and (E.23). The source term
integration is defined as follows:

3
[, Sav = SV Syuvi - ViY Dipi+ St (E30)
o =1
where S, are the extra viscous terms in the y-momentum equation, and this term
is evaluated the same way as in z-momentum equation.
E.3.2 Modifications for the Energy Equations

For the energy equation, the diffusion coefficient, T, is replaced by k/cp, and the
integral of the convection-diffusion flux across a control volume face k within an



143

element can be written as follows:

Integrated flux across | _ [ = _ = R,
( control volume face k ) =) D= ,_Z‘C’T’ (3]

where

1

k
CE = m*CC¥ - P (Dznk + Dink) As* (E.32)

The integration of the source term in the energy equation gives:

T, ap dp -
/ Sdv = / (S Lrnd F v—ay i @) A% (E.33)
where

du o v ou\® 2(ouw o)’
=pul2(= 2 gt S St O £
¢ “[ (az) * (ay) Hag) - B+R) (54
Using linear interpolation of u and v to evaluate ®. and linear interpolation for
pressure, Eq. (E.33) can be rewritten as:

/ Sdv = =2 (5T+5TT+ uMZD‘p, +v¢.,ED i + B ) (E.35)
where
+up + +uy +
ey uy '-;2 uz A Ut Us (E.36)
& = u [2a§ 282+ (ay + ba)? — ;(rz,‘ 4 b,,)’] (E.37)

and a,,a,. etc. are defined in equation E.26.

E.4 Continuity Equation

E.4.1 Introduction

In the proposed CVFEM, the mass flux, § = p@. is linearized with respect to
density and velocity:
g=9+9-9 (E.38)

§=pm (E.39)



§ is linearized with respect to density:
§=p™ (E.10)

and § is determined from available values of density and velocity:

@oy

= p™ (E41)

where variables with a superscript * are known or calculated from available values.
This linearized mass flux is integrated over a control volume face k, to give:

Integrated mass flux across | _ [Me . _
( control volume face k ) = /‘, g-fkds (E42)

M < My § Me 5
= fieds + A di— - Aeds
/; 9 - ds /; 9 feds /o 9-
The algebraic approximation to the integrals in Eq. (E.42) are described in the
following subsections.
E.4.2 Integration of §

The integration of 3 has the form:

M3 My
/ g-fgds = /. P (u™nz +v™ny) ds (E43)
Substitution of Egs. (D.32) and (D.33) into the above integral gives:
Me =
/° §-feds
My
=[5 [ &P+ - &2m] (E44)

Writing the integral in terms of nodal pressures:

fM'E Apds = /M' P (iin; + my) ds + /M' o> (~dzD¥ny — dgDin;) p; ds
o o ° =1
(E.45)
Using the MAW interpolation scheme for p* and linear interpolation for the remain-
ing variables, the integral is evaluated using Simpson’s Rule.



E.4.3 Integration of§

The integration of 3 takes the form:
Me 7 M
/ §-fieds = / p(u™n, + v™"ny) ds (E.46)
o o
In the proposed method. the density is interpolated by the equation of state. there-
fore. this term is in effect linearized with respect to pressure, and is evaluated as
follows:

3
p=3 CCR (ﬂ) (E47)
= T
The integral in Eq. (E.46) may be written in terms of nodal pressures as follows:
My 3 M 3 CcC*
/ G- fids = / o5 [(u""n,«-u""n,)n(?L) p,-ds] (E48)
o °  j=1 J

Using linear interpolation for u™* and v™*, Eqs. (D.32) and (D.33), with avail-
able pressures included in the pressure gradients in these equations, the integral in
Eq. (E.48) is evaluated using Simpson’s Rule.

E.4.4 Integration of g
Using available values in all terms, the integration of 3 can be written as follows:
My 5 My
/ “§-fiads = / " " (™ ng +v™ny) ds (E49)

Applying MAW interpolation for density, and linear interpolation for the mass
conserving velocities, the integral can be evaluated by Simpson’s Rule.

E.4.5 Integration of §

S izing the last three sut i the integral of the mass flux through control
volume face k can be cast in the following form:
M
/ “§-fieds = Efp; + F* (E.50)
o
where
M 5 . cck
Ef = / [p' (~dsD¥ny — dyDin.) + (W™ ne + o™ n,,)R( T,l)] ds
M
F* o= [T (@ uwm)ne+ (6 - o) my)ds (E51)
o

and the integrals in Eq. (E.51) are evaluated using Simpson’s Rule.



Appendix F

Assembly of the Discretized
Conservation Equations in the
Proposed Two-Dimensional
CVFEM

F.1 Introduction

The methods used to integrate the fluxes of mass, momentum, and energy across
the three control volume faces in an element were described in Appendix E. Inte-
gration of the appropriate source terms was also discussed. These integrated fluxes
and source terms are used to compile the complete discretized forms of the integral
conservation equations for a control volume. The appropriate compilation of the
final forms of the is d in this A dix. This dis-
cussion will be presented in three sections: the first section describes the assembly
of the discretized forms of the z- and y-momentum equations; the second section

and the third section focuses

on the of the energy

on the ilation of the i
In the bly of the di ized i fe is made to the nomen-
clature in Figs. 3.4 and 3.5. The polygonal control volume constructed around an
internal node (3, j) in a calculation domain, and all of the elements that are asso-
ciated with this control volume are shown in Fig. 3.5. Figure 3.4 shows the four
types of elements that are used in Fig. 3.5, with their corresponding node number-
ing schemes. These four elements result from the two possible orientations of the
diagonal. In these figures, the number of a control volume face is indicated by the

=
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normal vectors. And these normal vectors are used in the integration of the fluxes
described in Appendix E.

F.2  Assembly of the Momentum Equations

F.2.1 z-Momentum Equation

For the z-momentum equation, the integral of the flux across a control volume face
k within an element is written as follows in Appendix E:
Integrated flux across \ _ [ - _ X
( control volume face k ) - /. J-fads = ;C’]u, (-1}
and the element contribution to the volume integration of the source for the control
volume around node 1 is given by:

V; 3
%deV=?(S;‘+S;‘u|—§Df ‘-)+sg+s: (F.2)

where V, is the volume of the element, which is three times of the volume of sub-
control volume associate with node 1, V,!.

The bly of the final di ized form of the ion is done
in an element-by-element manner. When each element is considered separately, the
appropriate Cf terms are derived for each node, j, and control volume face, k: this
gives nine Cf terms per element. With reference to the node labeling in Fig. 3.5,
new coefficients can be defined in each element that simplify the assembly of the
control volume integral conservation equation.

With respect to the type 1 and quad 1 element in Fig. 3.4, the following coef-
ficients can be evaluated when node 1 is node (i, j), node 2 is node (i + 1, j), and
node 3 is node (i + 1,7 +1):

With respect to node (i, j):

&
Alig) = Ay +CE-Cl - S35 (F.3)
Ay = A +C3-C (F.4)
Al = AUy +C3-C3 (F.5)

3 Ve
Al = Ay +(S2 - Zl Dipm) 7 +S;+ S (F-6)



The coefficients appear on both sides of these i because contril
will also be made from other elements. and previous contributions must be main-
tained. The source-related terms are added to the appropriate coefficients to com-
plete the assembly for node (i.j) in the type 1 and quad 1 element of Fig. 3.4.
Similar d are used to ble the i at the other nodes in the
element. c
With respect to node (i + 1. j):

Ve .
Ay = Aoy + Cc3-C3— 5:? (F.7T)
Alirry) = ey + Cc3-C3 (F.8)
Airry) = Ay +CI - CF (F.9)

3 ‘rg
Aty = Ay + (52— X Dopm) 5 + 50+ S, (F.10)
m=1

With respect to node (i + 1,7+ 1):

ve

Aiergey = Arryeny +C3 = c3 -5 3 (F.11)
Asigen = Aferyan +CT - C (F.12)
Alrigen = Nsgen + ci-c (F.13)

3 ‘.z
Aergen = Aoy + (52 - z:l D,‘,.pm)? +Sl+82  (Fay)

The contribution to the coefficient A5, ;. is the portion of the net transport of
zr-momentum out of the control volume surrounding node (i + 1.7 + 1). associated
with u3 in Fig. 3.4 or %4141 in Fig. 3.5: this is calculated from the difference
between the amount transported out over control volume face 1 in Fig. 3.4. C3, less
the amount transported in over face 2, C} The other coefficients are determined
by the transport of z-momentum in over control volume face 2 less the amount
transported out over face 1, in Fig. 3.4: the portion associated with u, is added to
A1 +1) and the portion associated with u, is added to AJF,, ;.4)-

For the type 2 and quad 1 element of Fig. 3.4, the following coefficients can be
evaluated when node 1 is node (i, j), node 2 is node (i + 1,j + 1), and node 3 is
node (i,j +1):

With respect to node (i, j):

Ve =
Ay = K+ CI-C-5F (F.15)



Al = L, +G-C3
A =AY, +Ci-C}

n
(i)

3 Vg
Ay = ALy + (S = X Drpm) 5 + S0+ S
=

With respect to node (i + 1.j +1):
v
Apergen = Aurgen +C3-C3 S,‘?‘
Alrrgen = sy +C3 = C3
Alrrgen = AGergey +Cl-C}

3 v
Arioen = Nleigen + (5 - Zl Dfan)T! +5,+58)
=

With respect to node (z,j + 1):

v
Alig+n = Algg+n +C3-Ci- 5:?‘
Agey = Algey +CE - C}
Aligey = Algen +C3 = C3

3 v—l
Al = Aoy + (52 - Z;D;h)'3—+5.'. +5%
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(F.16)
(F.17)

(F.18)

(F.19)
(F.20)
(F21)

(F.22)

(F.23)
(F.24)
(F.25)

(F.26)

For the type 1 and quad 2 element in Fig. 3.4, the following coefficients can be
evaluated when node 1 is node (i + 1,j), node 2 is node (i,j + 1), and node 3 is

node (i,7):

With respect to node (i + 1, 7):
Loy =
Al = Ll +C3-C}
Alrrg) = L + G - CF

3 v,
ATy = Ay + (52— 3 Dipm) g + 52+ 52
=

With respect to node (i, j + 1):
Ve
Ay = A + G -Ci - 5;'3"
Aligen = Alfigay +CL=CF
Asigen = Auggen + Cci-C3

3 Ve
Al = Alyen + (52 - Zl D’,,.pm)y +SL+S3

(F27)
(F.28)
(F.29)

(F.30)

(F.31)
(F.32)
(F.33)

(F.34)



With respect to node (i, j):
Ve

L) = K + G =G - 53

Ay = Lep+Ci-C
Aoy = W +C -G

3
Ay = ATy + (52— Zl Drpm
m=

)%4—5,:1'-5,3

(F.35)
(F.36)
(F.37)

(F.38)

For the type 2 and quad 2 element of Fig. 3.4, the following coefficients can be
evaluated when node 1 is node (i + 1, j), node 2 is node (i + 1,7 + 1). and node 3

is node (i, +1):
With respect to node (i + 1, j):

Ay = Ay + c-c
Ay = Ay +C3-C

V.
Aporg) = Ay +CI - C = 5:3i

3 v
Ay = Al +(SE = X Dopm) 3 + S+ S8
m=1 3

With respect to node (i + 1,7 + 1):

3 _ ot
Alsrgeny = Nrgey T2 - C =S5

Alirrgen = Arrgsn +C3 - C3
Aty = dgergen +Ci-C}

Ve
3

(F.39)
(F.40)
(F.41)

(F.42)

(F.13)
(F.44)
(F.45)

3
Ve
Aoy = Al ey + (57— > D:um)? +SL+S%  (F46)
m=1

With respect to node (3,7 + 1):

Ve

Ajeny = Alije +CI - CE-Sp 2

Aigen = Aligen + ci-c}
Aligny = Aligen +C: = Cy

3

3 V.
ATy = AT+ (SE- 3 D:;Pm)é +5,+5%
m=t

When these coefficil have been eval d and

in the calculation domain, the final form of the di:

(F47)
(F.48)
(F.49)

(F.50)

bled for every element




for each node is obtained as follows:

ALptin = -ﬁ(m“(n—u) + AL Uit1a+1)
Al tg+n + A ) Ui-t+n
Aot + Ay si-1-y
Antea-n + Ay Ueri-n

An

+ o+ o+ o+

(F.51)

Comparison of this equation with Fig. 3.5 shows that all of the nodes neighbouring
node (i, j) make a contribution to the discretization equation. Equation (F.51) may
be written in the following compact form:

fu; = Y alun + bf (F.52)

"
where the summation is over the eight nodes that are neighbouring node %, or (¢, ),
in Fig. 3.5. The discretized ion involves nine u velocity nodes.
Equation (F.51) includes the i number of neighb flici for nodes

with less connections, the appropriate coefficients will have value zero.

F.2.2 y-Momentum Equation

As discussed in Appendix E, the C¥ terms multiplying the nodal velocities in the
expression for the integrated flux across a control volume face, Eq. (F.1), are iden-
tical for both the z- and y-momentum equations. This similarity is used during

the 1 ion of the d method by setting the appropriate

fici in the di ized y ion equal to those evaluated for
the ion. The i which do not need to be reevaluated
are AS, A7e, A7, A7Y, AY, A3¥, Aj and Aj®. The coefficients containing source
or pressure gradxem terms, which are unique to the y-momentum equation, must
be d. These coeffici are ified using the same procedures as for the

z-momentum equation, and are given by the following expressions. For the type 1
quad 1 element of Fig. 3.4, the following coefficients must be evaluated:
With respect to node (i, j):

Ve
3

con con v _ v Ve 2,6 "
AT = AT (S - Dﬁ_p,,.)? +S7+5; (F.54)

m=1

Ay = Al +CE-CF - (F.53)



With respect to node (i + 1, j):
ey = Hgory +C3-Ci — 5:%
A = A+ (57 = 3 Dhom) 24 5141
With respect to node (i +1,j + 1):
Alirrgay = Algagey +C1 —C3 — 5:%

3 v
Ageny = gy +(S7 - ZI D'mp,,,)?‘ +S,+5:
m=

152

(F38)

For the type 2 and quad 1 element of Fig. 3.4, the following coefficients must

be evaluated:
With respect to node (i, j):

= V.
L = Aep +CI-Cl-S53
3 V.
Ay = AT+ (-2 D#.Pm)f +55+5;
m=t
With respect to node (i + 1,7 +1):
Ve
Afargen) = Afgargen + ci-c3- 5:?
3 L 74
Afgen = gy + (ST = Y Dipa)= + 5, + 53
m=t 3
With respect to node (i,j + 1):
w Ve
s ?‘
con con . Yo, gi
Afen = ey + (52— Z: Dipn) 3 + S, + 5]

Algen = A +C3-Ci -

(F.59)

(F.60)

(F61)

(F.62)

(F.63)

(F.64)

For the type 1 and quad 2 element of Fig. 3.4, the following coefficients must

be evaluated:
With respect to node (i + 1, j):
. Ve
Alirrg) = Ay + c-ci- 5:'35

2 A
ATng = ATun +(ST-X Drpm)3 + S;+S;
=

(F.63)

(F.66)
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With respect to node (i.j + 1):

Lo = Ao +CE =G - Sy (F.6)
Ay = ATy + 5T - 3 Dpp F 4514 ST Fo)
With respect to node (i. j): "
Ay = Ay +Ci -G = 52% (F.69)
Ay = A+ (G 23:‘ D,y,,pm)% + S+ 82 (F.70)
=

For the type 2 and quad 2 element of Fig. 3.4, the following coefficients must
be evaluated:
With respect to node (i + 1, j):

Ay = Ay +C1 - C - s;,'%i (F.71)
A = Ay (S - ’gj_:‘ D%m)% +52453 (F.72)

With respect to node (i + 1,7 + 1): )
Abisgey = ey +C3 -G = 5:"/35 (F.73)

3 v N
ATy = Al FSE- Y D%.Pm)—; +5, 4+  (F74)
m=1

With respect to node (z,j + 1):

Ve .
Ay = ASuay +C5 —CE — S5 (F.75)
3 .
Aoy = Ay +(S2 - Z DY pm)—=+ St + 52 (F.76)
m=1
When these i have been and for every element
in the calculation domain, the final form of the di ized y i

for each node is obtained as follows:
Ay Vi) = Ay Vst + Al Yerrgen
Ay Ve+n) + A V140
Ay Va-1a) + Al Ve-1i-1)
L) Ueg-1) + A Yerri-n
A (F.77)

+ o+ o+ o+



Equation (F.77) may be written in the following compact form:
afv; = ) aju, + b} (F.78)

where the summation is over the eight nodes that are neighbouring node i. or (i. j).
in Fig. 3.5. The di i v ion involves a i of nine v

velocity nodes.

F.3 Assembly of the Energy Equation

As di in A dix E, the i C¥ are identical for any

{iffusi i In the impl ion of the d method, these
coefficients are set equal to those eval d for z- and y i The
coefficients which do not need to be reevaluated are A%, A7®, A, AP, Af, A, A%

and Af. The coefficients concerning source or pressure gradient terms, which are
ifed

unique to the energy ion, must be eval d. These coeffici are

using the same procedures as for the z- and y-momentum equations, and are given
by the following expressions: for the type 1 quad 1 element of Fig. 3.4.
With respect to node (i, j):

Ve -
Ay = Ay +CI-Ci - S,Tf (F.79)
V. 3 3
A = AT+ 5 (53‘*"- Y Dipm+vew Y. Dibm +‘I>=)
m=1 m=1
(F.80)
With respect to node (z + 1, j):
< < Ve
Atsrg) = ATgsrg) +C; -C3- ST? (F.81)

AT = Aa + 3 3, (S + Uy Z Drpm + Vaw Z Dpm + @ )
(F.82)

With respect to node (i + 1,7 + 1):

Ve
Afgergen = Argey +C = C3 =5 3 (F.83)

Afrgsn = A + 3 3, (5 + Uay z Dipm + Vay Z DY.pm + @, )
(F.84)



For the type 2 and quad 1 element of Fig. 3.4, the following coefficients must
be evaluated:
With respect to node (i. j):
Ve

Ay = Ay +CE-Ci = Sr—' (F.85)
Af = 4(,_‘,,+z(s +u.,2 DZpm + Vaw ZD’,,_p,,.+dS)
(F.86)
With respect to node (i + 1.5 +1):
Ve
Aergey = Aegen + G - Cp — S;,r? (F.87)
V. 3 3
AFgey = AfTen + 3 (ScT +Uav 3 DiPm + Vaw 3 D¥pm +¢c)
& m=1 m=1
(F.88)
With respect to node (i, j + 1):
v
Afgey = Aoy +C5 —C5 = ST?‘ (F.89)
ATy = A+ 7 3, (S + Uy 2 Dipm + Vay Z D,pm + @, )
(F.90)

For the type 1 and quad 2 element of Fig. 3.4, the following coefficients must
be evaluated:
With respect to node (i + 1, 5):

< Ve
Aty = Fang +CL-CL =S, = » 3 (F.91)
Ve 3
AT = AT+ 30 (53“« 3. Drpm +vew 3 Dipm +4’=)
m=1 m=1
(F.92)

With respect to node (3,7 + 1):
Ve
Afgey = Afgen +C3 = Ci =5 % ’3 (F.93)

3
ALy = AT+ ﬁ (sf + Uay mzﬂ DZ pm + Vaw mz=:l D¥pn + @:)
(F.94)



With respect to node (i.j):
Ve
Ay = Ay +C3 - ST (F.95)
ATH = AT+ 3= 3¢, (S + Uay Z D7pm + Vax Z Dj.pm +¢,)
(F.96)
For the type 2 and quad 2 element of Fig. 3.4. the following coefficients must
be evaluated:
With respect to node (i + 1, j):

Ve
Afirg) = g +C1 — ct- S;r?' (F.97)
v 3 3
At = AT + é (53 + Uay 2-:1 Dipm + Vau Z_,“ D¥pm + d>,)
(F.98)
With respect to node (i + 1,5 + 1):
Ve
Abargey = Afpagen +C3—Ci =S = 3 (F.99)
AR = Ao + 32 (5 + Uay Z Dipm + Vay Z Dipm + @ )
(F.100)
‘With respect to node (7,7 + 1):
Ve
Afeny = Aoy +Ci = Ci = 5:':; (F.101)
V. 3 3
Aoy = ATy + 35 (Sf +Uav 3 Db+ vaw ) DiPm +¢e)
Cp m=1 m=1
(F.102)
When these coeffici have been eval d and d for every element in

the calculation domain, the final form of the discretized energy equation for each
node is obtained as follows:
AranTen = Aran T + A Terigen
Afa g Tiag+n + ATy Ta-1+1)
AR Ti-1) + Afig Te-15-1)
A Teo-u + A Testg-n
AT (F.103)

+ o+ o+ o+



Equation (F.103) may be written in the following compact form:
ofT, = Yol T, + 87 (F.104)
"
where the summation is over the eight nodes that are neighbouring node i, or (i, j),

in Fig. 3.5. The discretized energy equation, therefore. involves nine temperature

nodes.

F.4 Assembly of the Continuity Equation

In Appendix E, the mass flowing across a control volume face & within an element
is written as follows:
Integrated flux across | _ [Me . _ S £
( control volume face k ) - /«; g-figds = EE’ 5+ F (F105)

Equation (F.105) for the continuity equation is similar in form to Eq. (F.1) for the
i heref the di ized form of the i i

may be assembled in the same manner as the
Since the assembly procedure is similar, only the

e T o

here.

‘With respect to the type 1 and quad 1 element in Fig. 3.4, the following coef-
ficients can be evaluated when node 1 is node (i. 7). node 2 is node (i + 1, j), and
node 3 is node (i + 1,5 + 1):

With respect to node (z, j):

A = A+ EL - B (F.106)
As) = Aeg + B3 - B} (F.107)
A = A + B3 - E§ (F.108)
AT = AT+ PP - F? (F.109)
With respect to node (i + 1, j):
Ay = Ay + B2 - B} (F.110)
Ay = Ay + BS - B3 (F.111)
Ay = Ay + EL - B} (F.112)

Ay = A+ F - F° (F.113)



With respect to node (i + 1,7+ 1):

3 2

Aiargsn = Aprrgeny + B — B3
2 1

Apirrgen = Apergen + E2 - By
2 L

Ay = ey + BT - By

2 1
ALy = Ay T - F

158

(F.114)
(F.115)
(F.116)
(F.117)

For the type 2 and quad 1 element of Fig. 3.4, the following coefficients can be
evaluated when node 1 is node (4, j), node 2 is node (i + 1,j + 1), and node 3 is

node (3,5 +1):
With respect to node (3, j):

Aa = Gup + B - B
Ahg = Gy + B - B3
Lo = Lup + B - B3
AT = A+ F* - F?

With respect to node (Z + 1, j + 1):

Airgen = Aergey + B3 — By
L 3

Airrgen = Aprrgey + Bz — E3
= 1 3

Alisrgrn = Blaren + B — By

s 3
A ey = A + F - F

With respect to node (7,7 + 1):

A€ o < 1 2
Ay = gy + B3 — B3
e = Loy + Ef - B
- 2
Lrn = gy + B3 - By

ARy = Al + PP - F'

(F.118)
(F.119)
(F.120)
(F.121)

(F.122)
(F.123)
(F.124)
(F.125)

(F.126)
(F.127)
(F.128)
(F.129)

For the type 1 and quad 2 element in Fig. 3.4, the following coefficients can be
evaluated when node 1 is node (¢ + 1, j), node 2 is node (3,j + 1), and node 3 is

node (3, j):

With respect to node (i + 1,j):

A = Agery + BL — B

(F.130)



gnw 3_p2
Ay = Aptiap + B2 - B}
w '3 2
Aisry) = Aprrgy + B3 — E3
— 3 _ 2
Ay = AT+ - F

With respect to node (. j + 1):

4 -
Agen =
Blogen =
Ay =

3 _ gl
A+ E2-E;
A ey +EL-E}
Apjen + E}-E}

1 3
ATy = Ay +F - F

With respect to node (3, j):

gy =
Ay =
Ay =
AT =

Agup + B3 - B3
Ay + BT - BY
AN+ EI-E;
o+ F2— F'

159

(F.131)
(F.132)
(F.133)

(F.134)
(F.135)
(F.136)
(F.137)

(F.138)
(F.139)
(F.140)
(F.141)

For the type 2 and quad 2 element of Fig. 3.4, the following coefficients can be
evaluated when node 1 is node (i + 1, j), node 2 is node (i + 1, j + 1), and node 3

is node (i, + 1):
With respect to node (i + 1, j):

Airrg) =
Airrg) =

n =
ADK{'I-J) -

A:(--—u) + EII - Ef

3 2
A+ B2 - E2
A:(‘Lu) 7+ Eg s E:f

3 2
Ay = AT +F - F

With respect to node (i +1,j +1):

Arigen =

1L 3
Airrgeny = Aprrgey + B3 — B3
Aergen + By - BY

1 3
Ay = AT +F - F

s -
Apirigry =

P

Arigen + B3 — B3

(F.142)
(F.143)
(F.144)
(F.145)

(F.146)
(F.147)
(F.148)
(F.149)



iov

With respect to node (¢,7 + 1):

Anigeny = Apgen +Ej—E} (F.150)
ey = Koyen +EL - B (F.151)
Aagen = Apag+n +E}-E; (F.152)
Ay = ATy + PP - F! (F.153)
When these fici have been 1 i and bled for every element

in the calculation domain, the final form of the discretized continuity equation for
each node is obtained as follows:

ALa)Pes) = AapPa+id) + ApGyPGe1a+n)
Ag)Pea+n) + Al jPGa-15+1)
AigP-1) T AR Pl-15-0)
Api)Pag-n + A i) Plir1-1)
AT (F.154)

+ o+ o+ 4+

Comparison of Eq. (F.154) with Fig. 3.5 shows that all of the nodes neighbouring
node (%, ) make a ibution to the di: izati i Equation (F.154)
may be written in the following compact form:

atp = Yalp, + (F.155)

where the summation is over the elght nodm that are neighbouring node ¢, or (3, j),
in Fig. 3.5. The di ized herefc involves nine pressure
nodes. Equation (F.154) includes the i number of neighb ffici

for nodes with less connections, the appropriate coefficients will have value zero.
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