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Abstract

Estimation of sccond order wave loading on offshore structures has attracted
recent attention in research. This thesis presents the results of an expoeri-
mental :lu(ly carried out to quantify second order wave forces on a vert|
cylinder in a wave tank. The initial part of this thesis is directed towards
formulating and analyzing the wave field prosent in the laboratory. These
results formed part of the input for further studies on wave forces. Due to
the physical limitations of the wave tank, it was found that several waves co-
exist with the progressive wave of interest in the tank. An analysis procedure
was developed using a Fast Fourier Transform techuique and a least squares
curve fitting method to separate the wave of interest from the side effects and
identify its principal paramet ral side effects
process. Wave forces on a vertical cylinder Lo second order were theoretically
formulated from a literature survey. Analysis of the meas
the wave tank involved using a fast fourier transform to identify the fi
second order force components. Towards the end of the stud,
that the proposed formulations for the total wave field in the tank and the
wave forces on a cylinder were adequate. There exist many phenomena in
a wave tank whose effects on measurements requires further research. It is
emphasized that systematic experimental studies of higher order waves form
an important part of offshore rescarch development.
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Chapter 1

Introduction

Estimation of Huid loading is an intermediate step in an offshore structural
design. The final result is usually the response of or the stresses incuced in
the structure. On the aspect of wave loading, presence of random seas and
a spectrum of wave heights and lengths calls for a probabilistic estimate
of the design wave conditions. The forces arising due to the design wave
are modelled by empirical or semi-empirical formulae, where the waves and
wawe forces are generally considered linear in nature.

Apart from design wave conditions, low probability extreme wave con-
ditions occur, which are important for the design of structural foundations
and also design against structural overloading. Modelling of extreme or
steep waves was done using a nonlinear wave theory, but the loading was
nevertheless estimated by the same empirical formulae. Though it ap-

11

peared y lack of

v of better force models

macle this an engineering practice. With a factor of safety of 30% included



in the design, most offshore structures survived beyond their stipulated life-
time. Search for better force models in the recent past has led to well-
developed theories for wave forces on offshore structures. Development in
theoretical and analytical studies has been substantiated by very few exper-
imental studies.

Simulating real seas in a laboratory is inherently complicated by the vari-
ability and randomness of the seas and, by the scaling barrier which exists
between the viscous flow conditions prevailing in reality and those attained
in the laboratory. Empirieal corrections are employed for this flow difference
and experimental results are extrapolated for design. Apart from these fun-
damental problems, several side effects arise in a wave tank which can affect
the results of experiments. Many of these effects are usually considered neg-
ligible during a first order wave force estimation, because of their relatively
small magnitude. At the second order of analysis, two major problem arcas

are:

1. Second order effects due to the equipments nsed (generator, heach ete. )

have to be quantified and this arca of research is still not well developed.

2. Many side cffects neglected previously might be significant hecanse

second order measuremerts are small quantitics.

The present study began with a survey of literature for any new develop-

ments in the two arcas listed above. Modelling of the wave field formed

©



a pre-requisite for a study of wave forces on offshore structures. Regular
waves with relative depth of 0.137 < h/A < 0971 and wave steepness of
0.0044 < H/A < 0.0474 were considered in the experiments. First and sec-
ond order wave ficlds in a wave tank were formulated and the amplitudes
of various wave components were estimated using a fast fourier transform
and a least squares analysis. Several second order effects were quantified.
The forces on & vertical cylindrical pile was considered in the second part
of the experiments. Sccond order wave forces were formulated based on
a literature survey. Experiments were conducted for two cylinder diame-
ters with the diffraction parameter (D/A) varying over 0.0066 to 0.0704.
Results were fitted into the formulated model and analysed.

Shortcomings of the study were analysed in the light of available results
found in the literature for systematic second order experimental studies, Tt

was expected that the present research would serve towards the following:
o Formulate a strategy for separating first and second order effects in a
laboratory and wherever possible, identify the individual components.

o Highlight on difficulties and provide jons for future second

order experimental studics.
This thesis has been organised into two parts. The first part explains
the wave form experiments, the literature review and theories that formed

the basis for the procedure of i and for the di ion of re-

sults. The second part is composed of the wave force formulation backed
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by the literature review. Experiments and analysis of results are followed

by di and conclusi Additional details are in four ap-

pendices following the last chapter on general conclusions and suggestions

for future research.



Part I

‘Wave Propagation: Theory
and Experiments



Chapter 2

Background and Literature
Review

Waves gencrated in a laboratory are contaminated by several waves created

due to the physical limitations involved in the apparatus wsed. “These waves

together form a combined wave field whose characteristics vary down the
flume. To climinate these side effects, one can cither procure more accurate
and refined apparatus or separate the side effects from the lotal wave field.

The latter route can be implemented by the following three steps:

. Anticipating the significant side effects, createa model of the total wave

field.

I

Measure the total wave field, which would involve measuring the vari-

ation of wave characteristics down the flume,

. Fit the measured values into the devcloped model, quantify the side

=

effects and also explain the discrepancies if any.
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This part of the thesis presents a literature survey and the theoretical
background required for creating a model of the wave field upto second order.

The experiments carried out at the MUN wave tank facility to measure the

total wave field are then explained followed by a discussion of the results of
fitting the measured values into the developed model,
Most. of the research in wave hydrodynamics originally began with a pure

progressive wave. The progressive wave theories are solutions to the bound-

ary problem of a gravity wave travelling in an ideal fluid domain, sub-
jeet to cortain initial and boundary conditions. Each theory is distinct in
its range of applicability in terms of water depth, wave steepness etc. The
classiaal wave theory of Stokes (1817) involved the perturbation approach.
In this method, solutions to an order of accuracy are obtained by using the
resultsof the preceding order. The first order solution in wave sieepness is ob-
tained hy formulating the problem with linearized bonndary conditions viz.,

the lincar wave theory. The solution upto the second order in wave steep-

is obtained by a more precise definition of the problem and utilizing
the first order solution, (Stokes, 1847 see also Dean and Dalrymple, 1984.)

For a sinusoidal free surface, this theory predicts that the velocity potential

would be with time and hori | distance and would decay

hyperbolically with depth. Further developments of the theory has been in

extending the solution upto higher orders, Skjelbreia and Hendrickson



(1960). Stokes formalism was found to be more applicable in decp waters
thus creating a necessity for shallow water wave theories. The shallow
water wave theory developed by Korteweg and DeVries (1895) expresses
the wave profile in terms of a Jacobian elliptic integral ‘en’. The Stream
function theory by Dean (1965) is based on a numerical iteration technique
to get the best fit to the boundary conditions. Further details on these and
other theories can be found in Dean and Dalrymple (1084), Sarpkaya and
Isaacson (1981) and the Shore Protection Manual (1984).

Chakrabarti (1080b) conducted a series of i over a wide range
of water depths and wave steepnesses in an effort to evaluate the relative
validity of various theories. While the linear theory and third order Stokes
theory gave better fits to the measured wave lengths, the irregular stream
function theory gave a better fit to the measured wave profiles. Dean (1974)
was involved in establishing a basis for sclection of a wave theory, given n
set of wave conditions. Analytical studies revealed that deep water waves
were well represented by higher order Stokes theories, shallow water waves
by the first order cnoidal theory and the stream function theory provided
an overall good validity. The stream function theory also showed good
correlation with published data, thus Dean (1974) concluded that stream
function theory was best suited or design purposes.

The range of applicability of various theories has heen well discussed

in the Shore Protection Manual (1984). Fig. (2.1) reproduced from the



manual is a plot of two parameters, the depth parameter £/gT? and the
steepness parameter /{/gT?. The applicability of Stokes theory is restricted
by the so-called Ursell parameter (cf. 3.2). Bt ond an Ursell value of 26, the
theoretical Stokes form develops a secondary wave crest due to the largeness

of the

cond order term compared to the first order term thus restricting

the application of this theory to transitional and deep waters.
Laboratory generation of progressive waves is different as opposed to the

pure progr

sive wave problem because of the vicinity of the generating

surface. No flow acrg

s the generating surface is an additional condition the

flow has to satisfy in this problem. Havelock (1929) was concerned with the
problem of foreed waves due to a sinusoidally oscillating forcing surface, the

piston type generator, His

solution, based on linear wave theory showed an
additional term i the velocity potential which decayed exponentially
with distance from the wave gencrator. Ursell et al. (1960) have obtained

expr

fons for the amplitude ratio of both piston and paddle 1ype generators.

Results of experiments seemed to correspond well with the theoretical

vesults. However for steeper waves, the theory was found to over-predict the

results by as much as 10%. Experiments on plunger type wave makers

comdueted by Ellix and Arumugam (1984) and also Ellix (1984) showed that

the existing theory overestimated by as much as 20 %. Poor correla-



tion at lower frequencies was attributed to leakage around the wedge type
plunger. Chen (1978) has done experiments at the MUN wave tank facility
to verify the linear wave generator theory for the piston type generator
installed in the tank. Two water depths of 3.0 ft and 4.5 ft in wave condi-
tions 0.059 < 2/ < 0.6977 and 0.0012 < H/\ < 0.1 were considered. The
results showed a heavy scatter to the order of 50%. The explanations given
were too general and did not serve to explain fully as to why the generator

did not follow the linear generator theory even in the linear wave ranges. In

this context, later work by Muggeridge and Murray (1081) showed that the
same generator followed the linear theory for a wide range of experimental
conditions, 0.058 < h/A < 0.548 and 0.0012 < H/) < 0.1 at a constant wa-
ter depth of 1 m. The apparent discrepancies among these two researchers’
results were inexplicable.

Second order wave generator theories have been proposed following
Stokes second order theory by some researchers, (Fontanet, 1961; Mad-
sen, 1970 1971; Daugaard, 1972; Fli-k and Guza 1980) but none has been
widely accepted. Solving for the generator boundary condition at the scc-
ond order, these theories indicated the generation of a second harmo ¢ free
wave at twice the wave frequency. This wave was considered parasitic as it
travelled over the second order incident wave. Expressions for the free wave
amplitude were varied among these theories. Detailed discussions on the

second order wave generator theories are done in seetion 3.3 of this thesis.



Experimental work based on these theories have been reported. Buhr
Hansen and Svendsen (1974) have analysed the beating phenomenon be-

tween seeond order incident wave and the free ave generated by the wave

Experiments have been carried out to measure the amplitude of

m
the free wave at various wave stecpnesses and relative depths. Record was
taken from a wave probe travelling down the lume and a band pass fil-
ter was used to remove the first order signal from the output. Results for
the free wave amplitude were in partial agreement with theories of Mad-
sen, Fontanet and Daugaard, One important outcome of Buhr Hansen and

Svendsen’s work was that the authors were successful in reducing the free

wave amplitude by a non sinusoidal motion to the generator, based on the
fact that the free wave was a linear wave with respect to its amplitude, as
had been suggested by Madsen (1971). Ellix and Arumugam (1984) and
also Ellix (1984) were concerned with the second order generator theory
for a plunger Lype generator. From a wave probe placed at distinct loca-
tions down the flume, records were taken and analysed using a Fast Fourier
Transform (FFT) and a least squares curve fitting technique. The authors
showed that the free wave amplitude was as much as three to four times
the sccond order Stokes wave amplitude. No theoretical comparisons were

made because no theories were available for plunger type wave makers.



Waves generated at one end of a wave tank has to be absorbed by an
energy dissipating beach at the other end. All beaches absorb most of the
energy and reflect the rest. Beach reflection is an intriguing area of research
and to date no theories are available to estimate the reflected wave amplitude
and its dependency on various incident wave parameters. Each wave tank
has to be calibrated to estimate the amount of reflection from the beach.
This is often represented by the reflection cocfficient which is a ratio of the
amplitudes of the reflected wave and the incident wave. Goda and Suzuki
(1976) have presented a technique for estimating the incident and reflected
wave heights from two time records taken simultaneously from two wave
probes located at less than a wavelength apart. Experiments were done
both for regular and irregular waves. The effects of location and distance
between probes were discussed. Ellix and Arumugam (1984) and also Ellix
(1984) as part of their experiments have estimated the first order reflection

coefficient of the beach in their wave flume to be about 5% or less. However,

the reflection coefficient at second order was as high as 40-50%, which was
puzzling to the authors. Chen (1978) has used seven wave probes spaced 21t

d and incident waves, Ile

apart to measure the beat pattern due to refl
noted that the reflection coefficient at the MUN wave tank facility was in the
order of 10% at 3ft and 4.5ft water depths.

loss of

Waves travelling in the vicinity of stationary surfaces exper
g



encrgy due to friction at these surfaces. This is called wave attenuation.
Attenuation of two - dimensional waves in a channel of finite width was
first treated by Biéscl (1949) and later by Hunt (1952). They defined an

at i flicient which was of two one due

to bottom friction and another due to side wall friction. Chen (1978) as
part of his experiments found that the attenuation factors at the MUN
wave tank were in the order of 107* thus causing negligible reduction to
the wave amplitudes.

The above literature survey was focussed on understanding the wave
ficlds existing in a laboratory. Second order Stokes theory was found suit-
able for the experiments as most of the second order generator theories were
valid in that range. Following any one particular generator theory was not
possible. But certain common results of these theories were used. Beach
reflection was an inevitable part of these experiients. It was proposed to
split the refiection effects into first and second order. Other side effects in

the tank were generally 1 small and neglected

13
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Chapter 3

Theoretical Development

All waves and associated phenomena can be obtained as solutions to a
basic boundary value problem with general boundary and/or initial con-
ditions. Wave and wave generator theories are solutions to this problem,
with the appropriate boundary conditions applied. We begin this chapter
by presenting the fundamental problem. Second order Stokes theory is in-
troduced as a solution to this problem. First and second order generator
theories are successively discussed. The chapter concludes with a second

order formulation for the total wave field in a laboratory.

3.1 The boundary value problem

The boundary value problem of interest is a two-dimensional gravity wave
travelling on the frce surface of a fluid (water), involving the following

assumptions:
o The fluid (water) is incompressible and inviscid

15



® Zero surface tension

o The flow is irrotational and acyclic
o No underlying current exists

* Waves are of permanent form

o The pressure is constant and assumed to be equal to zero on the free

surface
o Gravity is the only body force
o The bottom is smooth and horizontal.

The representative \'iagram of the flow with the chosen axes are shown in
Fig. (3.1). The origin of the coordinate axes is on the free surface, with
positive @ in the direction of wave propagation and positive = pointing
upwards. The water depth is denoted by h.

Assuming the validity of the above assumptions (Lamb, 1932; Wehansen
and Laitone, 1960), the velocity of flow can be considered to be the gradient
of a scalar namely the velocity potential ¢(z,z,¢). This potential satisfies
the two-dimensional Laplace equation

8¢ 2%

= = 0 3.1)

in the fluid domain. The boundary conditions applicable over this domain

are (Dean and Dalrymple, 1984; Sarpkaya and Isaacson, 1981)

16
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Lo

@

. No flow across any solid boundary ()

A-0+2-=0 ons, (3.2)

where i1 is the unit vector normal to the solid surface, 7' is the velocity
of the boundary and @¢/dn is the velocity component of the flow

normal to the body.

The spatial periodicity is the requirement that the potential at any

location « repeats itself at ¢ + A, where \ is the wavelength. Thus
B(z,5,t) = $z+Az,t) (3.3)
Periodicity with respect to time means
Bz 2t) = B(z,2,t+T) (3.4)
where 7 is the wave period.

The kinematic free surface boundary condition states that the water
particle once in the free surface continue to remain with the surface.
This means that

——— = (3.5)
must be satisfied on the free surface represented by z = 5(z,t) which

is not known d priori and where 7 is a function of z and ¢ only.

The dynamic free surface boundary condition arises from the law

of conservation of momentum, utilizing the fact that the pressure is

17



constant at the surface. This leads to

%, g[(%)i + (Z—f)’] Fa=f @)

to be satisfied on = = n(=,t). f(2) is a function of time only and

which is usually included in ¢, (Sarpkaya and Isaacson, 1981)

-3

. A radiation condition implying that the wave system generated by n

body is an outgoing one.

Since the free surface is an impermeable boundary, the kinematic free sur-
face condition can be included in the no flow condition, Eq. (3.2). For easy
computation, the kinematic and dynamic free surface conditions are usually
combined to give a single free surface boundary condition, (Sarpkaya and

Isaacson, 1981).

3.2 Second order Stokes theory

Progressive wave theories are solutions to the boundary valuc problem with
the bottom as the only impermeable surface. The representative dingram
of the coordinate system is given in Fig. (3.1). One of the classical methods
used to solve the two-dimensional progressive wave problem is the pertur-

bation approach where the variables of flow are developed ns a power series

of a p

parameter. ing Stokes (1847), this perturbation

parameter (¢) is the wave steepness. Accordingly, ¢ and y are written as
b= e + €+ oo (3.7)

18



no=en + m+ - (3.8)
for some functions ¢;i(z,z,t),i = 1,2,-+- and ni(z,t),i = 1,2,--. The free
surface boundary conditions contain non-linear terms which are evaluated
at a variable limit, = = 7. In order to be applicable at z = 0, they are

expanded in the form of a Taylor's series about z = 0. Say given
fz) =0 onz=ry,

Taylor's expansion of f(z) about z = 0 implies that for small 7 we can
write
af
He) + g = 0 onz=0

the above fons in the fund 1 ions of flow,

and collecting terms of order €, the first order problem is described by

) Pé 5
Tt =0 (3
O
a—f =0 onz=—h (3.10)
0 onz=0 (3.11)
) S
m o= g(m) onz=0 (3.12)

Eq. (3.10) is the no flow condition for the progressive wave, the flat bottom

being the only solid boundary in the vicinity of the flow.
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Collecting the terms of order €2, the second order problem is deseribed

by
‘?;‘;‘ + % =0 (3.13)
% =0 onz=—h (3.14)
3¢ 3¢, 3[4, ¢
2 :
—% [(%) + (%) ] on z = 0(3.16)
- lfen,, 24
it = o T Moo

1[(aa\* | (94:\}
+E{(a_zl) +(a_:‘) on z =0 (3.16)

Expressions for the velocity potential and the free surface to second
order of a progressive wave propagating in the positive x-dircction are ob-
tained by solving the above problems. Assuming a sinusoidal free surface,
they are given in dimensional forms by, (Sarpkaya and Isaacson, 1981; Dean
and Dalrymple, 1984; Stokes, 1847)

Hy cosh k(h +2z)
2w  coshkh

¢ = sin (kz —wt) +

H\* cosh2k(h+z2)
(3)« =

53 sinh® kh

wie

sin 2(kz — wt) (3.17)
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}7)1— cos (kr —wt) +

25 Lh(2 2k
(g) keoshbh(2 b eosh2bh) o (o)

4 sinh® kh
where H, the wave height is twice the first order amplitude @, and h is the
water depth. k the first order wave number is equal to 27 /A, where ). is
the first order wave fength. w is the angular velocity of the wave and is
related to the first order wave period (T) as 27/T. The linear dispersion

relationship "wolds good upto the second order and is given by
w? = gk tanh kh (3.19)

Results of Stokes theory upto first order coincides with the classical
linenr theory (Dean and Dalrymple, 1984). The second order terms are
functions of H? and are usually one order of magnitude less than ihe first

order terms. Limitations regarding the validity of this theory arises due to:
1. Couvergence of the power series used
2. Development of a secondary wave crest in shauow waters.

It can be shown (Dean and Dalrymple, 1084) that an Ursell parameter
defined by
NH
=22
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determines the range of validity of Stokes theory. In order to satisfy the
above mentioned considerations. it is required that (Dean and Dalrymple,
1984)

Ur< §”1 ~26 (3.20)
The straight line with Ur = 26 is shown in Fig. (2.1) and limits the

applicability of this theory to transitional and decp water ranges.

3.3 Theories for piston type wave maker

A piston type wave maker is a vertical flap that translates normal to its

surface. Activated hy ically or ically, the wave maker displaces

water while in motion causing waves. For the boundary value problem of
two-dimensional wave generation, Eqs. (3.1) - (3.6) hold good. The no flow
condition has to be satisfied at the bottom, Eqs. (3.10) and (3.14) and on
the generator surface. If the equation of motion of the generator is given
by

&(t) = osinwt (3.21)

the no-flow condition on the generator surface takes the form

kg st D 0 onz=§ (3.22)

az

S = 2y is the so-called stroke length of the wave maker. The representative
diagram for the two dimensional wave generation problem is given in Fig.

(3.2).



A linear solution to the above problem upto first order was proposed

as a bination of a single f ive wave and an infinite number of

standing waves, (Havelock, 1020; see also Ursell et al, 1960). According to
this theory, the velocity potential is given as:
¢ = bocoshk(h+ 2)sin(kz — wt) + (3.23)
+ coswt bae cos ka(h + 2) (3.24)
=

where the wave numbers k and &, satisfy the relationships

w? = gktanhkh (3.25)
w? = gk, tan kah (3.26)
The amplitudes by and b, are obtained as:
o
/ Eoweoshk(h + 2)dz
PR o i (3.27)
3 2 .
k/_hcosh Kb+ 2)dz
H
/ Ewcos kn(h + 2)dz
by = Ao (3.28)

L-,./_: cos? ky(h + 2)dz
Thenilation Between Ehe Tiight of W progressive wivennd by is obtainsd
by evaluating the free surface elevation far from the generator surface as
%“—’ cosh kh = %
The ratio of the wave height to stroke length for the piston type generator
was given by Ursell et al (1960) as:

a _ tanhkh

i (3.29)
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where ny is the ratio of group speed to celerity of the progressive wave given

1 2k}
n|=-[1+ - ]

as

2 [*7 sinh2kh
The exponential amplitude standing waves decay rapidly with distance from
the wave maker. It has been shown that within two or three water depths
away from the generating surface, most of the standing wave terms are
negligible, (Ursell et al, 1960; Dean and Dalrymple, 1984).

Second order theories for the wave generation problem have been pro-
posed, but none has been accepted widely. A theory by Fontanet,(1961) is
applicable to piston-type wave makers, but was found to be cumbersome,
Madsen, (1970,1971) employed an expansion similar to the Stokes pertur-
bation technique to develop a simple theory for piston type wave makers.
The author has used a perturbation expansion for the piston motion in the
form,

E=e+ ot (3.30)
where £ and & repres&;nted the first and second order piston motious re-
spectively. The first order solution of this theory is similar to the classical
solution discussed previously. In second order, this theory reveals, similar
to Fontanet (1961), the existence of a second harmonic free wave in addi-
tion to the Stokes second order progressive wave. The amplitnde of the free

wave is given by this theory as
an =3

1 /H\? 1 3 ny\ tanh kh
z(‘z‘) htanhkh (4sinh=kh' ) n; e
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where n, is analogous to n, of Eq. (3.29) and is given by

(3.32)

1 26k
n1=$[1+ ol ]

sinh 2xh
x is the wave number of the free wave and satisfies the dispersion relation
{Madsen, 1970; 1971)
4w? = g tran kh (3.33)
Limitations on the applicability of Madsen’s theory follows the usual lim-
itations of sccond order Stokes theory. A drawback of Madsen’s theory is
that the value of aj, rapidly drops to zero with increasing kA because of
the negative term in the expression.
The theory by Flick and Guza,(1980) was developed to include a variety
of wave maker configurations. This theory resorts to a more exact sclution
by including the lowest order standing waves into the second order solution.

The amplitude of the free wave is given as
azs = = coshnh(B] + D)P*

where B, and D, are integrals over depth of certain algebraically compli-
cated functions.
A few results common to all these theories, which have been assumed

in the course of the present work are as follows:

@ The second order wave field consists of a Second nrder Stokes pro-

gressive wave and a second harmonic free wave.
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o The free wave behaves like a linear wave and travels at twice the
first order frequency. It satisfies the dispersion relation given by Eq.
(3.33).

o The standing waves are virtually negligible a few water depths away

from the generator.

3.4 The total wave field

The total wave field in the laboratory was expected to consist apart from the

desired progressive wave, ibuti due to refl from the beach

and due to free wave effects. Effects of the beach were not theoretically
quantified, but it was expected that a wave arising due to the reflection of
the incident wave will be present in the tank. This wave would be of the
same frequency as the incident wave and travel in a direction opposite to
it. Yet another reflected wave of similar qualities was found to arise due to
the reflection of the free wave. ! The total wave field in a wave flume was

thus assumed as a linear superposition of the following waves
o First order Stokes wave with amplitude a; and wave number k
® Second order Stokes wave with amplitude @, and wave number 2k

® Second order free wave with amplitude az; and wave number &

11t was initially assumed that this reflected wave would be negligible. During the course
of experiments, a beat pattern corresponding to this wave was found superimposed over
other beat patterns. Hence a re-formulation had to be effected.
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o First order reflected wave with amplitude ag and wave number &
o Second order reflected wave with amplitude ayr and wave number x.
This is represented mathematically as,

Motal = @ cos(ke — wt) + az cos2(ka — wt) +

+az cos(Kz — 2wt + 6) + apcos(kz + wt+ «) +

+atazp cos(KT + 2wt + 7) (3.34)

where a8, arc the phases of the corresponding waves with respect to the

first order Stokes wave. Rewriting the total wave field as:
Niotal = M cos(wt + 6,) + 1z cos(2wt + 6;)
we obtain the following expressions.

w = b+ ah+ 2mag cos(2ke + a) (3.35)

7 = aj+aly + adyp + 2araz cos((x — 2k)z + 8) +

+2azap cos((k + 2k)x + ¥) + 2anazn cos(2z + v +613.36)

1o
=



i - al'Cmn[nlsinl::c—nnsin(k::+:\r)
=

ay cos kz + ar cos(kz + a), (331

agsin2kz + agsin(sz + §) = agnsin(sz +7)
— }
b = aschn [a, con 3 & e SoR(wz + 8) % i coslee T4Y) 0

Both the first and second order amplitudes, i and y; can be seen to be
functions of the horizontal distance, z down the flume. This is referred to

as the beat pattern arising due to a superposition of two or more waves.
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Chapter 4

Experimental setup and
procedure

The wave tank located at the Faculty of Engincering, MUN is a steel roin-
forced structure with inner dimensions of 58.27m x 4.57m x 3.01m. One
of the side walls is glass panclled at various depths for viewing purposes. A
piston type wave generator is installed at one end of the tauk as shown in
Fig. (4.1). The generator is driven by a hydraulic actuator with a capability
of 48.8KN force over a 0.25m stroke. Electronic control for the waveboard is
provided from a control room through an MTS closed loop servo-controlled
system with error detection and compensation applied through a LVDT feed-
back loop. The board has a maximum span of 0.58m and is expected to re-
spond well to command signals in a frequency range of 0.35Hz - 1.3Hz. Both
the frequency and span can be set manually by means of connters which have

an accuracy upto the second decimal. The waveboard has a watertight




teflon seal along its sides and bottom and no leakage behind the board had
been observed or reported to date. Wave filter plates affixed to the front of
the board serve to reduce the cross oscillations in the tank.

At the other end of the tank is located a parabolic beach. The beach
is constructed out of three modules as shown in Fig. (4.2). The basic
structure is steel, topped by wooden grids and three layers of net to ubsorb
energy cfficiently. A gap of one foot between the beach and the bottom of
tank allows a free flow of water under the beach for maintenance purposes.
A towing carriage runs on rails parallel to the length of the tank. The
carriage control system emits 10,000 pulses for every 1.0m travelled. The
horizontal distance moved by the carriage can be estimated by tracking
the number of pulses emitted using a frequency counter installed for this
purpose.

A schematic diagram of the sctup used for these experiments is shown in
Fig. (4.3). A resistance type wave probe was used during the experiments
to measure instantaneous wave surface elevations. This probe operated on
the principle that variation of the conductivity of the wires would linearly
depend on the level of water in between them, provided the ambient tem-
perature remained constant. The wave monitor hosted an amplifier and a
Wheatstone network. The probe was connected to the Wheatstone bridge
in the monitor. Since the variations in the bridge voltage due to variations

in the probe resistance were small, it was necessary for the signal to be
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amplified. The amplified signal was then recorded on magnetic tapes by an
8 channel FM recorder.

On-line data processing was not preferred for the present study as there
was a need to store analog data for re-analysis purposes. Digitisation of
the analog data was performed using a work station dalu acquisition and
control device called Keithley System 570. Specifications of this system are
shown in Table (4.1). The required input parameters for the digitisation
program were: name of the output file, sampling rate, length of recordl and
the number of channels of input. The length of record was usually two cy-

cles and the rate was d ined based on the i of 64

samples per wave period.! Commands were issued through a desktop com-
puter and the data stored as files in the VAX/VMS 8530 computer through
the Remote access facility (RAF) available on the VAX/VMS system.
Calibration tests for the wave probe were conducted before the exper-
iments to evaluate the relation between the water level and the resistance
of the probe. These tests were conducted by manually raising and lowering
the probe and noting the corresponding outputs from the wave monitor.
Since the probes were sensitive to temperature fluctuations, it was neces-

sary to calibrate the probes every day of the experiments. A record of the

thus esti d is shown in Table (4.2) for all the days
when experiments were conducted. Fig. (4.4) shows the calibration data
1For efficient functioning of the FFT algorithm, it was required that the total samples

be a power of 2. It was decided that 64 samples per wave period would be optimal for the
present purpose.
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for a particular day and a least squares straight line through the data. The
slope of the line gave the value of the calibration constant,

The problem at hand was to estimate the individual wave parameters,
given the total wave field. The approach adopted in the present study was
to obtain wave surface data at discrete locations down the tank. From these
time signals, the frequency components at first and second order were anal-

ysed. Curves corresponding to Bqs. (3.35) and (3.36) were fitted to these

components and, the amplitudes of interest were discerned. The experimen-

tal procedure for this approach was:

Sel the [requency and span of the wave generator.

Select number of locations and distance between them. k

.

Allow sufficient time for the wave field in the tank to attain steady

state,

Place the probe at the first location, record data over three cycles.
® Mlove on to the next location.
o Clear all locations, prepare for next run.

The data thus obtained was recorded, digitised and stored sequentially as

computer files. Each file was coded by a four digit number, the first two




digits indicating the run number and the last two showed the location from
which the data was taken. The number and distance between locations
depended on the wave lengths of the beat patterns present. It was ensured
that atleast five locations were present within the smallest beat wave length.
The first location (designated as location zero) was fixed at 20m away from
the mean position of the generator.

Analysis of the data was performed by a program called ANALYS, de-
veloped for this purpose. A flow chart of this program is shown in Fig, (4.5)
and the source code is provided in Appendix A. Inputs to the program were
the sampled data at every location and the parameters characterising the
run like the frequency, distance between locations, number of locations,
interval within which the wave numbers of beat patterns lic ete. Conver-
sion of the sampled data into the frequency domain was performed by a
fast fourier transform subroutine called F2TRF of the IMSL/MATH library
available within the VAX/VMS system. This program utilised the data for
one wave cycle and evaluated the amplitudes of various cosine and sine
components of the data. Amplitudes of first and second order were thus
obtained at every location. Appendix B explains the working of a standard
fast fourier transform. A subroutine LSSIN was used to fit a least squares
sine curves to these amplitudes, with the wave number being an unknown.

Basically it perf d the following
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« From the variation of amplitudes down the flume, LSSIN identified
the wave number of the beat patterns within a user-specified interval

by an optimizati to minimise the least squared error in

the fitted curve.

o At the optimal wave number a curve was fitted and the amplitudes

and mean values of the beats were evaluated.

o From these values, the amplitudes of individual waves were
using Eqs. (3.35) and (3.36).

Appendix C explains the working of the subroutine LSSIN. In the equa-
tion for the total first order amplitude (3.35), there existed only one beat
pattern, So the working of the program was straight forward. In the
second order equation (3.36) however, there existed three beat patterns.
The procedure followed in ANALYS in this case was to fit a curve to the
predominant pattern (the curve with number x — 2k). This was then sub-
tracted from the amplitudes to obtain data for the remaining patterns. To
wminimise distortions caused due to the subtraction, the amplitudes were
interpolated using splines to get a smooth curve. Subtraction of the fitted
curve from the interpolated curve was then effective. The data available
after subtraction was fitted with the next predominant curve.

Essentially the available data ssas fitted into the formulated model to
evaluate the desired quantities, These were then compared with available

theories to check the validity of the model.
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Table 4.1

System 570 Specifications

General
Supplied software
Host computer configuration

Standard channel capacity
Analog input

Analog output

Digital input

Digital output

Power requirements

SOFT500 extensions to BASICA

IBM pc, XT, AT COMPAC pc, COMPAC
Deskpro 286 with atleast 256K bytes

of RAM

32 single-ended or 16 differential
2
16

16
5V at 2amp max. from host

Analog input

Instrumentation amplifier
Programmable gain amplifier
A/D converter full scale ranges

X1, X10, X100, switch selectable

X1, X2, X5, X10, software selectable
£10V, £5V, £2.5V, 0 to 10V, 0 to 5V,
switch selectable

Resolution 12 bits (1 part in 4096)
Max. sample rate 31.4K samples per sec.
Digital Output

Channel capacity
Output range

16 non-isolated
TTL compatible, low true

Drive bili 10 TTL loads, 20mA sink @ 0.5V

Accessories and options

AIM6 Strain gage and RTD analog input module

DaDiSP [ Data Acquisition and Signal Processing
software package

DaDiSP II Extended Digital Signal Processing

software package
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Table 4.2 Record of wave probe calibration factors

"~ Dateof  Calibration
Experiment _Factor V/m

Feb 12 5.99
Feb 15 6.30
Feb 16 6.41
Mar 02 6.29
Mar 03 6.06
Mar 04 6.13
Mar 07 6.82
Mar 08 7.06
Mar 09 6.98



Figure (4.2) Beach configuration
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Figure 4.5 First order analysis flow chart for wave experimeats
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Chapter 5

Discussion of results

The experiments were designed to cover a range of parameters where Stokes
second order theory would be valid. It was also important. that third order
effects be low in this range, as no third order wave generator theory was
available. Further, the range was also subject 1o limitations of the apparatus
used. ‘The piston type generator was stroke limited at lower frequencies and
power limited at higher frequencies. Tt was found to perform satisfactorily for

frequencies of .35 - 1.31z. Considering all these factors, a set of 28 points

were chosen in Fig. (21). The runs were composed of seven frequencies

and four steepnesses at every frequency. These values and those of certain

characterising parameters are given in Table (5.1). A constant water depth
of 1.0m was maintained throughout.
Sample wave forms (time history of the free surface elevation) are shown

in Figs, (5.1) to (5.5) as a plot of time vs surface clevation. Figures are



arranged according to the order of locations from where the data was taken.
The time scale used depended on the sampling rate, which in turn was
dependent on the frequency of the wave. Free surface clevation as shown is
uncalibrated. The total wave amplitude can be seen to vary along the flume.
The variation of the first and second order amplitudes is shown in Figs.
(5.6) and (5.7) which are intermediate outcomes of the program ANALYS.
First and second order mean square amplitudes at various locations are
evaluated using a FFT and plotted as points in these figures. Least squares
fits, corresponding to Eqs. (3.35) and (3.36) are also plotted. The proximity
of the points to the curve shows that the model used for the wave field
matches well with the actual field. Corrclation was generally good for all
the runs even at the second order, where the measured quantitics are small
(for example the mean squared amplitude in Fig. (5.7) is of the order of

0.025 sq.cm.) Discrepancies still existed which were possibly due to
o Other unknown and unaccounted effects

o Practical difficulties in exactly positioning a location. As was men-
tioned before, movement from onc location to the next was by a car-
riage, with the help of a frequency counter. Precise movement to a
location would be practically impossible though efforts were directed
towards achicving that. This cffect could be significant on waves of

smaller wavelength.



5.1 First order results

The first order results from the program ANALYS consisted of the first
order wave number, amplitudes of the first order Stokes wave and the first
order reflected wave and the phase of the reflected wave with respect to
the incident wave. Results are nondimensionalised and presented in Figs.
(5.8) throngh (5.11). Fig. (5.8) is a plot of the relative depth parameter
kh experiment versus theory. The graph is intended to show the efficiency
of the golden section optimization technique to estimate the optimal wave
number whicl would suit the data. Fig, (5.8) shows that the experimental
kh differs from the theoretical kh by a margin of 10%. Further improvement
of this technique is possible. To check whether the wave generator followed
the lincar generator theory, the wave height(H) to stroke length(S) ratio
was plotted against kh in Fig. (5.9). The curve of Fig. (5.9) is a plot of Eq.
(3.29) and the dots are the results from ANALYS. A scatter to the order
of 20% is evident. This is not unprecedented. Chen (1978) reported of a
similar scatter at approximately the same water depth. His explanations

is seatter were general. In the present study, the author expzcts two

ible sources of this scatter.
o Presence of secondary reflected waves at the first order.

o Tmperfections in the wave generator control system.
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1f the reflection from a beach is high, secondary reflected waves are created
due to the reflection of the primary reflected waves at the generator surface.

This effect is usually small if the primary reflected wave

s from the beach are
small. Ifa secondary reflected wave were to be present, it would be impossible

Lo separate it out from the primary incident wave becanse both of thom would

be of the same frequency. Depending on the phase differcace, these waves

interfere constructively or destructively. Comparison of the results of Fig,

enl.

(5.9) with the reflection cocfficients plotted in Fig.

5.10) shows 1o app

correlation. There arc cases where the reflection coeflicient is high but scatter

in Fig. (5.9) low and vice versa. On the second aspect of the wave gencrator

control system, four possible sources of errors are:
o imperfections in knob control
o voltage setting for maximum stroke of the board
o variation of generator efficiency with depth

o temporal variation of board movement due to poor seating of the teflon

scal.

Manual errors in knob control for span setting to the extent of 5

possible. The voltage selting for m

cimum stroke of the generator i

g parameter for the conrol sy

em. Small changes in this parameter

can occur over the course of time. il not chee

lly. The
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amount of error will however, be small. The generator was designed for an
optimal depth of 1.8m. Lower depth can result in a bigger stroke than re-

quired because of reduced hydrostatic load. Improper seating of the teflon

seal around the board was noticed in the carly stages of the experiment
and rectified. The scatter in Fig. (5.9) could have had contributions from
all these four sources.

First order reflection cocfficients defined by
R =2 x 100%
w

are plotted in Fig. (5.10) versus the relative depth parameter kh. Beach
mechanisms are still a subject of study and hence it is possible that R
could depend on any parameter. The graph shows a considerable scatter
varying over 10 - 60%. The main source of this high reflection was the
one foot gap between the beach and the tank floor. The author was also
informed that the beach was designed for an optimal depth of 1.8m. So
at a water depth of 1.0m, the reflection coefficients are likely to be higher
than optimum. More intriguing than the reflection coefficient is the phase
at which a wave is reflected from a beach. Fig. (5.11) shows a plot of the
phase difference between the reflected wave and the incident wave, a vs kh.
Results are widespread from —27 to 0. In all cases, a is negative, indicating
that the reflected wave lags behind the incident wave. Apart from that, r.o

conclusions scem possible.



5.2 Second order results
Expected results for second order were:
o Free wave number, &
o Second order Stokes wave amplitude, az
¢ Second harmonic free wave amplitude, a,;
o Phase difference between the free wave and incident wave, §
o Second order reflected wave, azn

o Phase difference between the second order reflected wave and the

incident wave, ¥

Figs. (5.12) through (5.15) are plots of the Stokes amplitude ratio, a,/a,
versus kh. This would be a test on the validity of Stokes theory over the
range of testing. Each plot is for one of the four different steepnesses, char-
acterised by the parameter, H/¢T?. Fig. (5.12) shows that at the lowest
steepness, where a; is typically of the order of 0.01a;, experimental results
are quite close to theory. This was the first indication of the efficiency of
the algorithm behind ANALYS. Though the obtained values of a; were con-
siderably different from expected (see Fig. (5.9)), it did not scem to have
affected the amplitude ratios. Results are higher than theory in Fig. (5.12)

but the difference narrows down with increasing steepness. This is because
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the second order quantities become comparatively bigger thus enabling a
better measurement. within the scope of the instruments used. A local high
in Fig. (5.13) at a kh of 3.0 was inexplicable. At a H/gT? of 0.003, the
theory line almost corresponds to the mean curve, if drawn through the
points. A drawback of Stokes theory is reflected in Fig. (5.15). As can be
n in Fig. (2.1), waves with H/gT? = 0.005 almost fallin the Stokes third

order theory range. In and around this value, second order theory predicts
a higher value for the sccond order wave amplitude, causing a secondary
crest to appear in the primary wave trough, (Dean and Dalrymple, 1084).
This would be even more conspicuous at lower £k or higher Ur. Fig. (5.15)
demonstrates this effect, with experimental points lying below theory at
lower kh values. Overall, results for Stokes amplitude ratio are satisfying
and demonstrate the efficiency of the analysis strategy.

Results for the free wave number are plotted in Fig. (5.16). The free
wave number ratio can be defined based on the dispersion relationships,
Eqs. (3.19) and (3.33) as:

& _ tanhkh

4k~ tanhxh

The ratio tends to 1 as water gets deeper.  Experi 1

results can be seen to be close to theory, scatter in the order of 10%. In this
context, significantly higher free wave celerities than theory were reported
by Buhr Hansen and Svendsen (1974) and Ellix (1984). These authors

attributed part of the variation to the mass transport velocity effects in the
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tank. Relation between celerity and wave steepness was also discussed in
Buhr Hansen and Svendsen (1974). Compared to these authors’ results,
scatter in Fig. (5.16) seems small. Further improvements are possible by
rcSning the precision parameters of ANALYS. Fig. (5.17) is a plot of the
free wave amplitude ratio azn/a; vs kh. Theoretical curves of Daugaard
(1972), Fontanet (1961) and Madsen (1970, 1971) are also shown in the
figure. The theories of Fontanet and Daugaard show that the free wave
amplitude ratio converges to 0.4 at deep water whereas the present study
indicates considerably higher values of the ratio at around 0.8. Results for
this ratio by Buhr Hansen and Svendsen (1974) also showed variations from
theories but the results were generally less than 0.6. Their results showed
two depressionsin az/az, at h/A = 0.15 (kk = 0.942) and h/A = 0.45 (kh =
2.827) where the former was more pronounced and consistent. A similar
depression around kh = 1.0 can be seen in Fig. (5.17). A second drop in the

ratio occurs beyond kh = 6.0 which were not noticed by Buhr Hansen and

Svendsen (1974) as their i were restricted to a kh of 4.0. While
the theories used for comparison are in doubt, a quantitatively nnknown

second order effect is expected to have contributed to these vari:

ations.
The free wave phase angle shown in Fig. (5.18) shows n heavy scatter
and precludes any conclusion to be drawn. One intriguing aspect was to
determine whether the second order reflection resembles first order. Tt hins

been reported by Ellix (1984) that second order coefficients npto 50% were
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measured which compared with 5 - 6% at the first order. Fig. (5.19) is
a plot of second order reflection coefficients plotted against k. Values of
this cocfficient ranges from 5 - 100%. This range is higher than that of
the first order reflection coefficient. It is felt that apart from the mere
reflection of the incident free wave, the reflected wave at second order can
also have contributions from the nonlinear processes associated with the
breaking of the first order incident wave at the beach. This also explains the
diserepancy in the results obtained by Ellix (1984) mentioned previously.
The phase angle of the second order reflected wave plotted in Fig. (5.20)

shows similar to Fig. (5.11) large scatter and no trends.

5.3 Conclusions

The results of the wave experiments are promising from the point of view

of implementing a novel strategy of analysing the wave field in a wave tank.

Some from these experiments are:

1. The total wave field formulation upto second order adequately repre-

sents the actual wave field present in a wave tank.

2. The golden scction optimization technique used to evaluate wave

numbers of beat patterns is accurate to +£10%.

3. The wave generator performance was found to deviate from linear

generator theory predictions by as much as 20%. This is very likely
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due to control system imperfections.

L

First and second order reflections exhibit similaritics, with most of

the values lying in the range of 5 - 60%.

ol

The proximity of the experimental results with theory for the Stokes
wave amplitude ratio, az/a; indicates that the strategy employed in

the analysis program served its purpose.

»

‘Within the range of testing done, second order Stokes theory ade-

quately represents the progressive wave.

The free wave behaves like a linear wave and satisfies the linear dis-

persion relation, Eq. (3.33).

o

. Results for free wave amplitude ratio arc considerably higher than
theory. Contributions could be from the inadequacy of existing the-

ories and from unknown effects in the tank.

©

. Phase differences of reflected and frce waves are widely scattered and

no trends are observed.

Recommendations for further research are included as part of the last chap-

ter in this thesis.



Table 5.1 Parameters of experimental runs
Run| f H k [h/gT*[H/gT*|[ Ur
sec™! [ em | m™!
1 0.4 4.287|0.900 | 6.981 | 0.0007 | 2.090
2| 05| 2.744|1.206 | 5.210 | 0.0007 [ 0.745
3 0.6 | 1.906 | 1.579 | 3.979 | 0.0007 | 0.302
4 0.9 | 0.847|3.272| 1.920 | 0.0007 | 0.031
5 1.0 | 0.686 | 4.031 | 1.559 | 0.0007 | 0.017
6 1.1| 0.567 | 4.875| 1.289 | 0.0007 | 0.009
7 12| 0.476 | 5.801 | 1.083 | 0.0007 | 0.006
8 0.4 6.125(0.900 | 6.981 ( 0.0010 | 2.986
9 0.5 | 3.920 | 1.206 [ '5.210 | 0.0010 | 1.065
10 0.6 | 2.722|1.579 | 3.979 | 0.0010 | 0.431
1 09| 1.210|3.272| 1.920 | 0.0010 | 0.045
12 1.0 | 0.980 | 4.031| 1.559 | 0.0010 ( 0.024
13 1.1 0.810 | 4.875| 1.289 | 0.0010 [ 0.014
14| 1.2 0.681 5801 1.083 | 0.0010 [ 0.008
15| 0.4 |18.375 | 0.900 | 6.981 | 0.0030 | 8.958
1 0.5 | 11.760 | 1.206 | 5.210 | 0.0030 | 3.194
17 0.6 | 8.167|1.579 | 3.979 | 0.0030 | 1.293
18 0.9 | 3.630)3.272 | 1.920 | 0.0030 | 0.134
19 1.0 | 2.940 | 4.031 | 1.559 | 0.0030 [ 0.071
20 1.1| 2.430 | 4.875| 1.289 | 0.0030 [ 0.040
21 1.2 | 2.042|5.801| 1.083 | 0.0030 | 0.024
2 0.4 | 30.625 | 0.900 | 6.981 | 0.0050 | 14.930
23 0.5 | 19.600 | 1.206 | 5.210 | 0.0050 | 5.324
24 0.6 | 13.611 | 1.579 | 3.979 | v.0050 | 2.155
25| 09| 6.049|3.272| 1.920| 0.0050 | 0.223
26 1.0 | 4.900 (4.031| 1.559 | 0.0050 | 0.119
27 11| 4.050 | 4.875| 1.289 | 0.0050 | 0.067
28| 12| 3.403)5.801| 1.083] 0.0050 | 0.040
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Figure 5.1 Sample wave form graphs: f = 1.0Hz, H/¢T? = 0.001; Location zero
(20m away from the wave board mean position).
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Figure 5.2 Sample wave form graphs: f = 1.0Hz, H/¢T* = 0.001; Location one
(0.2m from location zero).
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Figure 5.3 Sample wave form graphs: f = 1.0Hz, H/gT? = 0.001; Location two
(0.4m from location zero).
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Figure 5.4 Sample wave form graphs: f = 1.0Hz, H/gT? = 0.001; Location three

(0.6m from location

zero).
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Figure 5.5 Sample wave form graphs: £ = 1.0Hz, H/gT? = 0.001; Location four
(0.8m from location zero).
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Part IT

Wave Forces: Theoretical
Formulation and Experiments



Chapter 6

Background and Literature
Review

Estimation of hydrodynamic loading on vertical cylinders had for long been

accomplished using Morison's equation. which was proposed by Morison et
al (1950). This cquation is composed of two parts inertia and drag and, each
component cont ains an unknown coefficient. C,, and Cy the inertia and drag

ively. Efforts to evaluate these coefficients in the labora-

tory have shown a wide seatter in data and conclusions are varied among

researchers, (Sarpkaya and laacson. 1981: Wiegel. 1961). Further devel-

s o this equation were also attempted.  Vugts (1979) has broadly

wd formmlations of wave forees and possible interactions with a struc-

ture's response. With a view that linear formulations more often satisfy
engineering requirements Vagts (1979) has emphasized on the usefulness of

problems where the

e probabilistic and spectral techuiques. In nonli

maximum foree is 1o be estimated, use of a higher order theory would



be sufficient. If an actual sea state is to be formulated non-linearly, Vugts

(1979) indicated the i of a i istent and formal

description of the problem. Sarpkaya and Isaacson (1981, section 3.8.3)
have reviewed experimental studies on the hydrodynamic coefficients and
their parametric dependency on the Keulegan - Carpenter number (KC)
and Reynold’s number (Re) (chapter 9 of this thesis gives the definition
of these numbers). The authors have mentioned the significunce of Sarp-
kaya's parameter 3 (chapter 9) in interpreting data. They have also refined
and presented the results of Sarpkaya obtained previously from experiments
done with smooth and roughened cylinders in a U - shaped vertical water
tunnsl. These results showed that Cy, increased with KC' beyond 15 for all
B. A reverse trend was noted for Cy.

Lighthill (1979, 1986) had sct out to desctibe current techuiques for es-
timating wave loadi~g on offshore structures. While outlining the energy
and momentum approaches to Morison's cquation, the author was skepti-
cal about fitting all wave loading results within the frumework of Morison’s

equation. Significant second order potential flow for

were the quadrat

force associated with the nonlinear free surface condition, the dynamic pres-
sure force and the waterline force, both resulting from the linear potential,
Lighthill (1979) also showed that it was possible to evaluate all these terms
from the computed solutions to the linear problem.

Chakrabarti et al (1976) have conducted force experiments on a 3.0 in.



eylinder placed vertically in small amplitude waves of periods between 1.0

5 see al a constant water depth of 3.0 m. His results showed that at

low K€, (', was of Lhe order of 3.5. Wide scatter in Cy was attributed to

the s

nallness of the drag term in the total force. Further experiments were

done on 1.5 in, and 3.0 in. diameter cylinders by Chakrabarti (1980a) for
a KO range of 0.0 - 85.0. The coeflicients were computed from Morison's
equation using Stream function theory to represent water particle kinematics,

These experiments showed that for low KC, Crn was high, assuming values

upto 2.5, For KC in the range of 10.0 to 70.0, Cy; remained in between

1.0 - L5 decreasing gradually beyond KC' = 70.0. Cq was found to be as

low i ing and taking a maximum of 1.75 at KC
approsimately equal 1o 10.0 and remaining around 1.5 beyond that. Chen
(1978) hanl done wave foree experiments at the MUN wave tank facility on

a 6 in. bottom fised cylinder in wave conditions 0.059 < /A < 0.6977

and 0.0012 < [I/\ < 0.1, Two sirain gage bridges were used to estimate

{he longitudinal and transverse overturning moments on the cylinder. The

estimated values of (*,, varied from 0.675 to 1.22 and vales of Cy varied

from 0307 to 7.8 tor a KC range of 0.69 to 11.83.
The work of Lighthill (1079) had been used by many rescarchers in

their  analys Demirbilek  and Gaston (1985) have used Lighthill's

approach to modify the lnear diffraction theory and Morison's equation to

include second order forees. Their formulation showed better correlation



with previously established data than linear diffraction theory. Ellix (1984)
had proposed a second order wave force formulation for a vertical slender

cylinder in a laboratory environment. He included forces due to the second

order Stokes wave, i lerati i d dynamic ps r
and also due to reflected waves from the beach and free waves generated
by the wave maker. His experiments were conducted in a 20.0 m long, 0.75
m wide tank at a constant water depth of 0.5 ni. The wave amplitudes
varied between 15 - 40 mm. Results for Cy, and Cy werce in general agree-
ment with the results of Sarpkaya (Sarpkaya and Isaacson, 1981 section
3.8.3) and Chakrabarti (1980a). Scatter in C,, data was explained as due
to its dependence on Re. For second order forces, results were heavily scat-
tered and no explanations were possible. Use of equivalent coefficients also
showed heavy scatter. Results were found to be better in cases where free
wave activity was low. Ellix and Arumugam (1985) have used the data of
Ellix (1984) and have attempted to quantitatively analyse the so - called
Lighthill forces. Results for inertia forces showed considerable scatier which
was explained as due to free wave. The drag force results were even more
scattered which was possibly due to inertia dominated loading.

Other second order force formulations have also been reported. Isancson
(1979) has arrived at a second order equation for the inertia force acting on a
body in an unsteady non - uniform flow of an inviscid fluid. The forces thus

calculated were smaller than those obtained by the linear approach. The



anthor has introduced a second order inertia force function for comparison
of varions approaches. Madsen (1986) had arrived at a different result for
the same problem where the forces estimated were greater than the linear
foree. These two appronches are discussed in chapter T of this thesis.

Diffraction forces are generally considered negligible as far as slender

eylinders are concerned. The linear diffraction theory by MacCamy and
Fuchs (1954) had been used to cstimate the forces on & cylinder of diame-
ter comparable to the wave length of the incident wave, Hunt and Baddour
(1981) have included second order diffraction effects in their computation
of maximum horizontal force on a vertical cylinder under a non linear pro-
gressive wave in doep water. Their results showed that for large cylinders,
the maximi force would be greater than that predicted by linear theory.
The foree on a slender eylinder obtained as a limiting case also wa. higher
than linear predictions. Eatock Taylor and Hung (1987) have uctempted to
provide a complete solution for second order diffraction forces on a vertical
eylinder in regular waves, Their results showed the significance of the forces
due to second order seattered potential and that the pressures due to this
potential were significant compared to first order pressures. The quadratic
forees similar to Lighthill (1079) have also been evaluated.

The above literature survey was focussed on obtaining insight into a
complete second order force analysis. Available information was used to

construct a suitable force formulation for a vertical surface piercing cylinder
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fur the present study. Experiments were then conduted on eylinders in

wave environments in the following range:
0.0066 < % < 0.0704

0137 < ]—i <0971
0.0044 < % < 0.04738

and the total force on the test cylinders were measured. The experimental
results for first and second order were obtained from a fourier analysis.
Results of first order were used to evaluate the hydrodynamic cocflicients
of the cylinders. At sccond order, the measured results were fitted into the
formulated model and the efficiency of the model studied. Chapter 7 of
this thesis presents the theoretical formulation adopted in the study. The
experimental and analysis procedures are mentioned in chapter 8, to be

followed by a chapter on results and conclusions.



Chapter 7

Theoretical development

Wave forees expericneed by a verti

inder are

surface piercing circular cy

treated in this chapter. Ilerein considered is a flow of a real fluid. The

exlinder is assumed 1o be shender so that diffraction effects are negligible and

rigid so that hydroelastic elfects are negligible, The repr

sentative diagram
of the flow with chosen coordinate system and evlinder position is shown in

Fig. (7.1).

7.1 Force equation in a real flow

A real fluid flow is theoretically treated as made of two components: i)
ferotational flow and #i) vortex flow. (Lighthill. 1979). The irrotational flow
satisfies the instantancous boundary conditions of the flow and, the vortex
Hlow has all the vorticity associated with the flow and satistic s no boundary

conditions. Lighthill (1979). Fhe foree on a body placed in such a flow along

the diveetion of the low comprises of contributions fram both components,

i
i
i




The irrotational flow forces in the direction of the How can be analysed into

two components, the Froude - Krylov foree and the added mass foree (see for

eg. Dean and Dalrymple, 1981).

he Froude - Keylov foree is cansed by the

pressure gradient of —piu /1 required for the fluid to flow (in the absenee

of the eylinder). The added mass foree is thought of as the rate of change of

T'his

ietic energy of the (hiid retarded by the hod,

written as M,idu/i

where M, is the so - called added mass of the body. The net foree is

given as:

L

V=
T

where C

L4+ M /Y

id Vs the immersed volume of the body,

Vorticity in real flows is created on the surface of a hody due to the

property of viscosity. As fluid thows around a body, 1 wake of rowing length

is formed hehind the body. The kinetic energy per nnit warke longth i

itsell as the drag force on the body, (Lighthill 1979) and is given as
%/ulu"ﬂl

where A is the [rontal area of the body and

an anknown drag coelficient.

Apart from the inline forces discussed above, a flow also e es a trans
verse force on a body. normal 1o the direction of low. Details of Hhis foree
can be oblained from Sarpki

and Isaacson, (1981) and Lamb. (19 In

the following text. the term *foree” is assumed 1o represent only the mline

forces and not the transverse foree on a hody.



Morison et al (1950) produced a formula based on the above princi-
ples for the inline force on a circular, rigid and vertical cylinder in two-
dimensional waves. This foree was made of two components, inertia and
drag with two corresponding cocfficients C,, and Cy. Their equation in
differential form was given as:

df

dz

(7.1)

where the force  © was in the x-direction (the chosen direction of wave
propagation) and D the diameter of the cylinder. The drag force was
related to ulu| to retain its directionality, parallel to u. The expression for
the inertia force in Eq. (7.1) can be generalized in the case of a non uniform
unsteady How by replacing the local derivative of the velocity, du/dt with
the total derivative, Du/Dt as:

daf #D?Du D
o C"'”Tﬁ + Cm?ulul (7.2)

where
Du_0u  Ou  Ou
Dt~ at " or 0=
The two nonlinear terms in Du/Dt are collect ely called convective acceler-
ation. The adopted generalization can be justified by the view that Du/Dt
would be the acceleration experienced by the volume of the body if it were
replaced by the fluid in a non-uniform unsteady flow, (Madsen 1986). Eq.

(7.2

s also the commonly accepted form of Morison’s equation (see for eg.

Dean and Daleyple, 1984).
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The use of Eq. (7.1) to evaluate wave forces on cylinders under various

wave conditions involves using appropriate wave theories for estimating the
water particle kinematics and values for Cy, and Cy from established data.

For force evaluation upto higher orders, Morison’s equation assumes that all

nonlinearities with respect to the fluid velocity are associated with the drag
force only. Recent studies (sce for cg. Lighthill, 1979; 1986) have drawn
attention on additional nonlincar terms arising as part of the irrotational
flow force.

A second order wave force formulation for the present study was con-

structed based on the literature survey. The wave conditions in a wave tank

have been considered in the formulation. It was decided that all force mea-

during experiments would be 1 before refiection from
the beach, as the length of the wave tank was sufficient to achieve this pur-
pose. In the present context the wave field experienced by the test eylinder

is assumed to be of the form (cf. 3.4)

1= a cos(kz —wt) + az cos 2 kz — wt) + ax cos(wr — At +48)  (T.3)

The variables in Eq. (7.3) are defined in section 3.4 of this thesis.

Using Stokes second order theory to represent the water particle kine-

matics of the incident wave, we have the following expressions for the par-

ticle velocities u and w in the z and z - directions respectively and Ju /ot



at the cylinder location zg:

_ wHeoshk(h+z)

cos(kzo—wt)

2% cosh Ok
pwHkcohohhts) o

2 winbkh 6 s kh
(7.4)
WH sinhk(h +3) _ 3 wHk sinh2k(h + 2)
- sin(krg—wt 3(kzo—wt
M=l el T gy Anelkaet)
(75)
o Vk(h +3) 3gkRH? sinh 2k(h + 2) _
o _ sin(krg—wt)+ : U kzo—wt
o= 5 ekl e e hsmhT R 0 Akzo—wt)
(7.6)
The water particle Kinematies associated with the free wave are:
g0ty SO D e ot ) (1)
snh wh
u cosha(h4s)
(5’->n» = awan ™ cos(a, - 20t +6) (7.8)

7.2 Inertia forces on a cylinder

The inertia foree on a vertical, surface piercing, rigid. slender, cireular
evlinder is found by integrating the clementary inertia force given by Eq.
(7.2). over the entire immersed length of the cylinder. This integral is split

fnto two parts, with limits from —h to 0 and 0 to y respectively as
L= 4+ [Mas (7.9)
it dfi= 9 + o i g

The second integral gives rise to the so-called waterline force, Lighthill
(1979). This force has been shown by Lighthill (1979) to be the resultant of

the forees due to transient and hydrostatic pressures acting on the cylinder
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length from 0 to 5. Evaluation of this force can be approximated as (Ellix,

1084)

/"df.:n‘l
o d

where 1 = H/2 cos(kag — wt) for second order evaluation, Consistent npto

om0 (7.10)

forces will be

the second order, the and
evaluated using linear expressions of the water particle kinematics, the irst
terms of Eqgs. (7.4) - (7.0).

Contributions to the inertia force due to the incident wave are:

1. First order force due to the linear part of du/dt, the first term in Eq.

(7.6)

2. Second order force due to the sccond order part of du/at, the second

term of Eq. (7.6)

3. Convective acceleration force of second order using linear expressions

for the water particle kinematics, first terms of Eqs. (7.4) and (7.5)
4. Waterline force of second order using linear expre ssions for u and 1.

Since scattering of the wave by the cylinder is neglected, no diffraction
forces are included. If the above calculations are performed, the inertia

force on the cylinder due to the Stokes wave can be obtained as:



7D? [W’H
F = Cup™p | sinlkao - wt)

3 kH?
PRI

IR (kg —wt
Tieosh 2k 1) " n 2k —et)

sin2(ko — wt)
3

gH% »
ol 5 sin2(keo - wt) (7.11)
The terms of Eq. (7.11) correspond to the four contributions mentioned
previously.
The free wave present in the tank would cause an additional inertia
force on the cylinder at its froquency 2w. The force due to the free wave is

given &

7D* wlan

Fifree = C‘"”T 0s((k = 2k)ao + 8) sin 2( ko — wt) (7.12)

I

Thus the first order inertial loading is assumed solely due to the inci-
dent wave while the sccond order inertial loading considered here consists
of contributions from the incident wave, waterline effects, convective ac-
celerations and the free wave. The sccond order inertia force formulation
presented by Ellix (1984) included apart from the terms discussed above, a
forse due to the dynamic pressure term in the unsteady Bernoulli's equa-

tion, (Ellix, 1984; sce 3.3.2 and 3.3.4). It was felt by the present author that



the dynamic pressure force is inherently present in the generalised Mori-
son’s equation and gives risc to the convective acceleration terms in the
equation. Hence adding the dynamic pressure force to the foree predicted
by the generalised Morison’s equation (7.2) would lead to a redundaney in
the formulation. !

A different formulation of the inertia force neglecting diffraction effects
upto second order has been presented by Isaacson (1979). The author has
used G.LTaylor’s results for the force on a body in steady, non uniform
flow coupled with the force due to an unsteady , non-uniform How in the

absence of the body. The equation for the inertia force on a cylinder in the

x-direction has been obtained as
7D Du

df_ mDiDu n”('zh +ua )+mﬂug el (113)

az 7 Dt oz
Isaacson (1979) has mentioned that for a vertical cylinder, the added masses

in the 2 and y directions, mi; and mg, assume a value pr D?/4 whereas the

vertical added mass, ma3 was given a value zero thus obtaining the result,

et tTas

dfi _ xD (0u  du  wdw
d T\ 20:

(7.14)

While this result differs with the gencralized form of the Morison’s equation,
it can be scen that if the author had adopted an assumption inherent in

!In the derivation of the unsteady Bernoulli’s equation from the N;
tion, the dynamic pressure component Vé?/2 can be seen to ari
acceleration terms of the total acceleration of the fluid, see for eg. Lamb (1932). The
reverse is assumed here that the dynamic pressure is integrated over the cylinder surf
to obtain the convective acceleration terms of Eq. (7.2).
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the generalised Morison’s equation, that the added masses in both in line
and vertical directions were equal to prD?/4, his result would be identical
to the latter.

Madsen (1986) has proposed yet another formulation. He has obtained

an i lution by the force as a series expansion in the
parameter kD/2 and the velocity potential split into two parts, one solely
due to the undisturbed flow and the other due to the flow perturbation
caused by the body. Free surface diffraction effects have been neglected.

The result obtained Ly Madsen for the case of a two - dimensional flow

with body velocities and a 1 value of 2 for Cp, was:

i "_D’ Ou. By 04
=P ot b

33 (7.15)

A
where all derivatives were evaluated at the cylinder axis.

Isnacson (1979) has introduced a second order inertia force function in
the imertia force equation to compare vatious approaches. This function

appropriate to the present study is implicitly given by f(kh) in:

Fu=( p_um*)§ tanh kh(kH)f(kh)sin2(kag —wt)  (7.16)

where Fy is the total second order inertia force. The function f(kh) for-
mulated for various approaches is given in Table 7.1 where Cpn has to be
estimated. When Cy, = 2 the formulations (2) and (3) reduce to the for-

mulas given by Isaacson (1979) and Madsen (1986) respectively.



7.3 Drag forces on a cylinder

The drag force on a vertical surface piercing cylinder is evaluated by inte-
grating the elementary drag force given by Eq. (7.2) over the entire length
of the cylinder. This integration, similar to the inertia force can be split
into two parts, one with limits from —h to 0 and 0 to 7. The second
integral gives rise to the waterline component of the drag force. The first
integral would be simpler to evaluate, if the uJu| term is split into harmonic
components. This can be accomplished using fourier analysis for the case
up << u; where

u = uy cos 0 + uzcos 28

IF 6 has a periodicity of 27, then

2.067 , | 3.34 ;
ulu] = (ﬂuﬂ mu;) cosf+ 220 cos 9 (7.17)
¥ P >
The algebraic details are 1 in Appendix D of this thesis. It can

be seen that the second order amplitude of the velocity contributes to the
first order term of ulu|. The relative magnitude of the u} term increases
with increasing steepness. Apart from a precise harmonisation of the u]u]
expression, inclusion of this term is also consistent with = sccond order
formulation. The left and right hand sides of Eq. (7.17) are plotted in
Figs. (D.2) and (D.3) in Appendix D. The significance of the uf term in
the first order is that this also leads to a reduction in the drag cocfficient.

If the velocity is represcnted using Stokes theory, then uy and u, would
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be the amplitudes of the cos(kzo — wt) and cos2(kzo — wt) respectively in
Eq. (74). If & free wave is present, the second order particle velocity in

the combined wave field will have an amplitude

3 cohk(h43) . cosha(h+z) o
s e e eoe(( < 2kJean+ 0)

(7.18)

where uz would again be the amplitude associated with cos 2(kzo — wt).

It can be seen that cos((x — 2k)zo + 6) in the equation arises due to the

approximate couversion of cos(xo — 2wt + 8) to cos 2(kze — wt).
Integration of the drag force may now be performed. The components

of the drag force are:
1. At frequency w, due to the cosf term in Eq. (7.17)
2. At frequency 2w, due to the cos20 term in Eq. (7.17)
3. Waterline force at 2w using linear expressions for u and 7.

It is important to note that the free wave makes no individual contribution,
as it is coupled in the expression for uy in Eq. (7.18). Neglecting free wave
effects temporarily (the second term of Eq. (7.18)), and representing u;
and up using Stokes theory, integration over depth can be performed to
obtain the total drag force as

2.667w?H?(sinh 2kh + 2kh)
16k sinh? kh

Fi = 0.5pCiD { cos(hko — wt)
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13349 9 wH'k(sinhdkh +4kh)
w1024 sinh® kh

cos( kg — wt)

2 H3(cosh 2kh + 2
4.461 w*H3(cosh 2kh + 2) cos (ko — wt)

= 16sh' kh
H® (gk\*18 8 "
+5 (:) [a-»;;ms.(m—m)] (7.19)

The last term is the contribution duc to the waterline effect.
Including the free wave in the wave ficld, the drag force expression tukes

on the form:

R 2.667w2H?(sinh 2kh + 2kh)
0.5pCaD — w 16k sinh? kh

adyw? cos?((k — 2k)zo + 6)
e el ot k)

il 2k, 1Y

+ ST sinh 2kh + 2kh)

4 JoPHank cos((x = 2K)z0 +6)

4sinh” khsinhsh
¢ si N 2kh - 2k . 1 2k,
« (nsinhihcosh2kh - 2k coshrhsinh 2| wt)
K% — 4k?
4461 [ WH® . i
+ {m(smh 3kh + 3sinh k)



w?Hagy(k sinh nh cosh kh + ksinh kh cosh k)
sinh kh sinh <h(x? — K7)

}cos'_’(krn ot}
HT ( ) [67r » s—coso(m—uz)] (7.20)

The free wave thus contributes to two additional terms in the first order

drag force and one extra term in the second order drag force.
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Table 7.1 Formulation of the second order inertia force function f(kh).

Author Fe
1. | Generalised Morison's | =Sa— [3 cothkh + 1sinh 2kh — hh]
equation
2. | Isaacson (1979) saciter [3eoth kh + HUCn sinh 2kh — 1410 k)
3. | Madsen (1986) 2y (3coth kh + 2= sinh 2kh — 141/Cn )
4. | Experimental AT ey — Om 23 cos((k — 2k)zo + 6)

z
-L &)

n(z,t)

LN
= /

Wave Cylinder(z = z0) Beach

g‘enzrnlor h /

Figure 7.1 Representative diagram of the wave flume with the wave generator,
beach and coordinate system.
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Chapter 8

Experiments and Analysis

Experiments were conducted at the MUN wave tank facility to estimate the

total inline wave foree on cylinders of different diameters in varions wave

conditions. The wave tank had dimensions of 58.27m x L57m x 3.04m.
Waves were gencrated by a hydraulically operated piston generator at one
end of the tank and were partially absorbed at the other end by a parabolic

beach. A description of the wave tank is given in chapter -1 of this thesis.

Two cylinders of diameters of 72.5mm (wall thickness = Smm) and 48.9
mm (wall thickness = 3mm) were used during the experiments. ‘The eylinders
were made of aluminium and were 1.40m long, Fig. (8.1). A holder was
constructed which was attached to a stationary carriage on top of the tank,

Fig. (8.1). The test cylinder was connccted to the holder with a foree

transducer plate, by means of bolts. The position of the holder was

adjusted such that the cylinder was equally away from cither side walls, a

precaution expected to reduce the influence of cross tank oscillations.



The hottom of the cylinder was sealed and left unsupported. There was
approximately 1.0cm gap between the cylinder and the bottom of the tank.
The cylinders were initially weighed and their volume estimated. An excess

in was d by ballasting the cylinder with water.

The transducer plate was made of steel with an overall length of 0.52m,
3cm width and 2mm thick as shown in Fig. (8.2). The plate hosted eight
strain gages at two clevations separated by a distance of 20cm. The strain
gages used were the Micro - Measurements EA series of general purpose
constantan strain gages of high precision. Each gage had a resistance of
120 ohms and a gage factor of 2.04 at 24°C. The gages were bonded by a
systematic procedure and water proof coatings were applied on them. Four
gages at the same clevation were connected to a full bridge circuit. An
advantage in using four gages in a full bridge circuit was that the effects
of ambient temperature on the strain measurements were automatically
adjusted. Ench set of four gages was connected to a strain gage conditioner
which housed a Wheatstone bridge network and a signal amplifier. The
amplifier gain was initially set for a certain input voltage range. This range
was in turn decided based on the maximum and minimum voltage expected
from the gages. The output from the conditioner was directly recorded on
an cight channel FM recorder.

The transducer plate acted as a cantilever beam, rigidly supported on

one end and a load on the unsupported end. Let the total wave force




experienced by the cylinder be F and the centroid of its vertical distribution
be k, from the mean free surface. Let it also be that the two bridges were hy
anud h; from the free surface. The strains measured by cach of the gages in

biidge 1 according to clastic beam theory will be

where y, &2, are characteristic parameters of the and material of the

beam. The strains measured by the gages in bridge 2 will he

50 that the difference in strain will be linear in I as
v o
T [T,l(h. —h,)] P (o.1)

Fig. (8.3) shows a calibration chart of the transducer which is a plot of
the difference in strains between the two bridges and the applied load. The
calibration was performed by loading the cylinder with known weights at
different leverage and cvaluating the strain difference between the bridges.
As part of the calibration process, free vibration tests were performed on
the cylinder - transducer setup placed in the wave tank at the desired depth

of 1.0 m. An arbitrary initial displacement was given to the sotup and the

P

response [rom the strain gages were measured and analyzed by the I

These tests revealed that the fundamental frequencies of inders with

5 mm and 48.9 mm were 3.12 Tz and 1.25 Hz respectively.

diameters T:
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‘The procedure of the wave force experiments may now be described. A
constant water depth of 1.0 m was maintained during the experiments. The
frequency of the wave was varied from 0.4 - 1.2 Hz and, the stroke length
of the generator was varied from 0.5% to 59.4% to give rise to the range of
parameters used for the wave experiments. A total of 56 runs were performed,
28 runs for cach cylinder. Since the tank was sufficiently long, all data
acquisition was completed before the first wave front reached the beach. The

effects of the reflected wave were thus avoided. Effects of the free wave were

lowever, inevitable and had to be included in the analysis. A wave probe
was placed in-line with the cylinder to obtain the phase difference between

the wave and foree signals.

The recorded data was digitised using the Keithley system 570 described
in chapter 1. The sampling rate was set at 61 samples per wave period.
The digitised unealibrated data was stored as files in the VAX/VAS $530

computer. Files were coded with four digits, the first two representative of

the

der used and the last two digits indicated the run number. The first

and second order sine and cosine components of the wave force were obtained

from the ealibrated data using a fast fourier transform subroutine explained

in chapter 4. The initial phase information for the FFT was provided from
the wave probe output.
The first order analysis consisted of evaluating the hydrodynamic coeffi-

cients Cy, and g from the measured first order forces. The following formulae

Z



were used, which are obtained from Eqs. (7.11) and (7.19).

5 =D* I
= 1'.4../( —I“T)

Cu=Fiaul (0-5/’D£

where Flyy and Fieey are the first order sine and cosine force components as
cvaluated by the FET. Values of 1, k, w cte. were obtained from the results
of the corresponding wave experiment, discussed in part 1 of this thesis.

In the second order analysis, it was desired to verify the second order
force formulation presented in chapter 7. Second order forces were caleulated
as per formulae (7.13) and (7.22) using the values of C, and Cy oblained
from first order analysis. The measured values were then compared with the
caleulated ones. Another analysis performed was to compare the funetion

J(kh) for various approaches. as mentioned in Table 7.

is given in Fig. (S.1).

A schematic diagram of the force analysis procedure

59



Figure (8.1) Cylinder configuration in the wave tank
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Strains S1(n)n =1,..-64
$2(n)n=1,---64

{ Initial phase FFT i
o gt [ B
Calibration
constants

Ficoe = Slicos = $21con
Flin = Sligin — S214n
Facos = S13con = 522c00

- Fa4in = Slyin = S24in

Ficoss Flain Frcory Fauin
i Fi, kw - l :
'm = Flain/ 7’.";7) | Data A
Ci=Frem/ ( uli ,) Cm» Cd| bank with ‘;il:aus)ated

I -
[

N

Figure (S.4) Schematic diagram of wave force analysis

Subscripts 1 and 2 indicate the order of the force.
Subscripts ‘sin’ and ‘cos’ indicate the component of

the FFT

Notes:
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Chapter 9

Discussion of results

“T'he range of testing for the wave force experiments followed the range of wave
experiments in accordance with the values tabulated in Table 5.1, A value of
0.2 for the cylinder diameter to incident wave length ratio (/) characterises
the diffraction regime. beyond which seatiering of waves hecomes important.
“or the present study. the range of D/ was 0.0066 - 0.0701. Thus seattering
was neglected in the present study. The dimensionless parameters used in

the anal

were

I. Keulegan - Carpenter number defined as

where U, is the amplitude of the water particle velocity at the mean

free surface as predicted by linear theo
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Regnold’s number defined as

Re

UnD/v

where v is the Kinematie viscosity of water.

Sarp s parameter defined as the ratio of Reynold’s number to Keule-

gan - Carpenter number

#=D/vT

The values of these parameters for all the experimental runs are given in

Table 0.1,

igs. (9.1) and (9.2) show the sample curves of outputs from the strain

gage bridges and the wave probe, The results are presented in an uncalibrated

form so that they could be qualitatively analysed. In Fig. (9.1), KC is low
where the inertia force dominates over drag. This is reflected in the figure

and force curves out of phase by =/2. Fig. (9.2) in contrast

with the wa
i in the high KC range where the drag force is comparable or greater than
the inertia force, thus the force is almost in phase with the wave. The
force spectra corresponding to the above two wave conditions are shown in
Figs. (9.3) and (9.4). where the fundamental frequency of the spectrum
corresponds 1o the first harmonic frequency of the incident wave.

Forces evaluated experimentally for the two cylinders are presented in

Table .1, Values of Figy and Fi, correspond to those of the first and

01
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second order inertia forces. First and second order drag forces are respec-
tively given by Ficos and Fieo. The table is intended to provide the reader
with a quantitative cstimate of the wave forces experienced by cylinders of
the specified dimensions. A maximum inertia force of 4.95 N occurs at the
steepest wave for the 0.0725m diameter cylinder.

The results for the two hy ients are in graphs,

(9.5) and (9.6), plotted against the Keulegan-Carpenter number (KC). A
third and fourth order polynomial least squares fits are also shown in the
graphs. Also shown are the results obtained by Chakrabarti (1980a) and
Sarpkaya (Sarpkaya and Isaacson, 1981; section 3.8). The results of Sarp-
kaya have been plotted for two different values of f, within which most of
the present experimental points lie. These results show that at very low
KC, the values stagger around the theoretical value of 2.0 as opposed to a
higher value of 2.5 by Chakrabarti. The fourth order polynomial fit seem to

follow the trend of Sarpkaya's results. Results for Cy in the low K'C range

are d due to liable drag This arises because of
inertia dominance, also noticed by other researchers, (see for cg. Sarpkaya
and Isaacson, 1981, sec 3.8.3). There is evidence of some scatter at higher
values of KC too, but the polynomial fits to the data points follow the trend
of both Sarpkaya (Sarpkaya and Issacson, 1081) and Chakrabarti (1980).
The ratios of second order to first order force amplitudes are plotted in

Figs. (9.7) and (9.8). It is apparent that the second order forces can he as



much as 80% of the first order forces and thus contribute significantly to
the total loading. In many other cases the ratio is less than 30%. Higher
values oceur in both graphs at low § because steeper waves were generated
only at low frequencies, a limitation of the capacity of the wave generator.

Teul.

A c rison between the d second order forces and the mea-

sured ones are made in Figs. (9.9) - (9.12). Second order forces are calcu-
lated from Eqs. (7.11) and (7.20) using the estimated values of the hydro-
dynamic cocfficients. Graphs show values only uptv 0.3 Newtons. Beyond
that value, points are sparse and data insufficient. Results are classified

into:
i) at low steepness, corresponding to H/gT? = 0.0007 and 0.001;
ii) at high steepness, corresponding to H/gT? = 0.003 and 0.005.

At low steepness, second order effects are low and hence measurement
of second order forces becomes exceedingly difficult and is prone to errors.
Results of Figs. (9.9) and (9.11) attest to that, as measured values of upto
five times the calculated ones are present in the figures. Measured results
become more reliable at higher steepnesses, as can be seen in Figs. (9.10)
and (9.11). The margin of error in these two figures is in the order of
£50%, which may well be regarded as good, as scatter to this order or
more have been reported even for first order measurements (Wiegel, 1064;

also Chakrabarti, 1980).
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In view of the above discussions on first and second order forces, the

following points should be considered while perusing Table 9.1:

o At higher values of K'C (> 4), measured values of the first order drag

force are more reliable than at low KC (< 4).

o At high steepness (corresponding to H/gT? = 0.003 and 0.005), mea-
sured values of the second order forces are more reliable than at low

steepness.

In those runs comprising of low K'C (< 4)and low steepness (H/gT?
= 0.0007, 0.001), it is possible that some values of the second order

forces.are greater than the first order force values.

The second order inertia force function mentioned in Table 7.1 was cal-

culated for the three mentioned hesand deteriined xperimanEdl

These values are plotted in Figs. (9.13) to (0.16). Experimental results were

far higher than the calculated ones at low This was antici 1

based on the results of Figs. (9.9) and (9.11). At higher steepnesses the
points were in the vicinity of of the calculated values and in Fig. (9.11)
the experimental values follow the theoretical trend. The three approaches
for the second order inertia force function differ only marginally. Due to
experimental errors of the same order, it was not possible to ascertain in

definite terms, the best of the three approaches.
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The influence of the free wave on the force measurements requires atten-

n. It was observed by Ellix (1984) and Ellix and Arumugam (1985) that

corrclation of second order force results with theory was very poor when

the free wave activity was high. Such a trend was not observed during the

present study, though measured values of free wave amplitude were generally

higl

her than theoretical predictions, Fig. (5.17). The correction made for the

free wave in entry 4 of Table 7.1 was found to satisfy the requirement.

Many sources of error are possibly due to the physical limitations of the

wave tank. The following are expected to have contributed significantly to

the

scatter in the wave force results, Figs. (9.5) through (9.16):

1. "The sor~ces that contributed to the scatter in the wave height to stroke
length ratio of Fig. (5.9). These include i) human errors in span setting,

if)wave generator control system imperfections.

Round off errors in estimating the force from the measured strains. This
crror arises due Lo the subtraction of two quantities of the same order
of magnitude (the strains from the two bridges), further magnified by a

small quantity (Uhe distance between the bridges) in the denominator,

Eq. (8.1).

. Ripples and disturbances present in the tank. These are created due

10 experiments conducted previously during the day and, take a long



time to die down. When waves of small height are generated, the
forces measured might also include the response of the gages to these
disturbances. This strongly depends on the sensitivity of the tras-

ducer.

-

. The transducer plate was designed to be slender and flexible, so that
small force quantities be sensed. An increased sensitivity on the other
hand leads to small disturbances being recorded along with the de-

sired quantitics.

o

. Effects of cross tank oscillations and other side effects in the tank.

Quantifying these effects is beyond the scope of the present study.

The following conclusions were obtained from the results of the experi-

ments on wave forces:

1. The first order results were within the expected range. Results for
the hydrodynamic coefficients followed the trends of established data.

There was evidence of a scatter in data.

2. Atlow KC, Cp, converged to a value of 2.0, decreased upto KC = 10
and remaining around 1.0 upto KC = 15.
3. At low KC, Cy results were scattered and unreliable. Values in gen-

eral, increased upto K'C = 12 and decreased beyond that.
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Second order forces were found to be significant compared to first or-
der. Second order forces upto 80% of first order were recorded during

experiments.

. Results for second order forces were unreliable at low steepness. This
occurs hecause second order effects are small at low steepness. It is felt
that measuring second order forces below a H/gT? of 0.001 with the

present, setup leads to inaccurate results.

Measured second order forces at high steepness were within 50% of the
calculated forces, This was observed to hold good for both inertia and

drag components.

Theoretical formulation of the second order forces appears to be ad-
equate. Inclusion of quadratic forces following Lighthill (1979) might

lead 1o a better formulation.

. "I + second order inerlia force function is found to be an effective tool
to compare different approaches. Experimental values for this function

showed correlation with calculated values at higher steepnesses.

. A complete comparison of the approaches for second order inertia forces
of Lighthill (1979), Madsen (1986) and Isaacson (1979) was prevented
by experimental errors. But it was observed that all three approaches

closely represented the actual forces.
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Table 9.1  Experimental wave forces and related parameters
D=0.0479m
Run [ KC Re Figin | Fieos | Fasin | Focon
N N N

1] 3.21 | 2672.33|0.4782]0.0312]0.0891 | 0.0993
2| 179 | 1871.75|0.3357 | 0.6557 | 0.0669 | 0.0298
3| 163 | 2037.180.2151|0.7390 | 0.1011 | 0.0247
4| 058 | 1091.98|0.1659 | 0.1944 | 0.0109 | 0.0009
5| 0.55 | 1145.72|0.1654 | 0.1743 | 0.0204 | 0.0095
6| 0.58 | 1332.64 (0.1628 | 0.2705 | 0.0573 | 0.0108
7| 030 738.28 | 0.0750 | 0.0072 | 0.0095 | 0.0130
8| 811 | 6755.88 |0.4600 | 0.3568 | 0.1093 | 0.0507
9| 2.39 | 2488.85|0.4484 | 0.4136 | 0.1883 | 0.0323
10 | 2.25 | 2810.63|0.3720 | 0.7275 | 0.0465 | 0.0490
11| 0.64 | 1205.63 | 0.2802 | 0.3621 | 0.0298 | 0.0313
12| 0.74 | 1549.52 | 0.2327 | 0.3501 | 0.0128 | 0.0162
13| 0.60 [ 1377.710.1660 | 0.3098 | 0.0101 | 0.0259
14| 035 871.19 | 0.0935 | 0.1988 | 0.0068 | 0.0402
15 | 15.83 | 13188.67 | 0.9210 | 1.1472 | 0.2827 | 0.3935
16| 6.35 | 6610.94 | 0.8956 | 0.2926 | 0.2199 | 0.223¢
17| 543 | 6792.42)0.8477 | 0.2439 | 0.1875 | 0.2061
18 | 243 | 4554.16|0.7559 | 0.0862 | 0.1336 | 0.1281
19 | 228 | 4759.48 | 0.5664 | 0.5407 | 0.1202 | 0.0904
20| 2.19 | 5030.79 | 0.5580 | 0.7136 | 0.0971 | 0.0705
21{ 1.23 | 3069.63 | 0.3684 | 0.5215 | 0.0752 | 0.0560
22 | 26.56 | 22129.84 | 2.0650 | 3.4385 | 0.8733 | 0.0960
23 | 12.33 | 12849.49 | 1.0056 | 2.6479 | 0.5220 | 0.9856
24 | 11.62 | 14531.46 | 1.2640 | 2.5281 | 0.5059 | 0.8742
25| 4.04 | 7571.721.2619 | 1.1146 | 0.1977 | 0.6699
26 | 3.26 | 6789.43 |0.7650 | 1.2300 | 0.0595 | 0.1663
27| 246 | 5632.37 | 0.6329 | 1.2060 | 0.0594 | 0.1037
28 | 212 | 5299.310.5516 | 1.1142 | 0.0185 | 0.1033
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Table 9.1 Contd.
D=0.0725m
Run [ KC Re Flin | Ficon | Fasin | Frcon
N N N N
1] 212 4048.97 | 0.7616 | 0.0369 | 0.0225 | 0.0687
2| 1.19 | 2835.97 | 0.6575 | 0.0200 | 0.0698 | 0.0319
3| 1.07 | 3086.63 | 0.5039 | 0.0324 | 0.1063 | 0.0663
4 0.38| 1654.50 | 0.3497 | 0.4480 | 0.0576 | 0.0362
5| 0.36 | 1735.93 | 0.3670 | 0.4227 | 0.0707 | 0.0481
6 0.38 | 2019.14 | 0.2487 | 0.0052 | 0.0364 | 0.0156
7| 0.19 | 1118.60 | 0.1678 | 0.0907 | 0.0436 | 0.0050
8| 5.35 | 10236.14 | 0.8559 | 0.4011 | 0.1434 | 0.1197
9| 1.58 | 3770.97 | 0.7357 | 0.3572 | 0.0559 | 0.0951
10 | 1.48 | 4258.51 | 0.6344 | 0.1582 | 0.0693 | 0.0596
11| 0.42 | 1826.66 | 0.4387 | 0.2129 | 0.0922 | 0.0661
12| 0.49 | 2347.75| 0.4969 | 0.1564 | 0.0310 | 0.0484
13| 0.40 [ 2087.43 | 0.3457 | 0.0166 | 0.0131 | 0.0361
14 0.23 | 1319.97 | 0.2242 | 0.0163 | 0.0245 | 0.0126
15 | 10.45 | 19982.76 | 2.1343 | 3.6861 | 0.4826 | 0.6942
16 | 4.19 | 10016.54 | 1.9500 | 2.1112 | 0.386% | 0.5453
17| 3.59 | 10291.50 | 1.8428 | 1.7827 | 0.2899 | 0.2845
18| 1.60 | 6900.22 | 1.6811 | 1.7127 | 0.1126 | 0.2174
19| 1.51 | 7211.31 | 1.3926 | 1.6396 | 0.0781 | 0.1490
20| 1.45| 7622.37 | 1.1890 | 1.3952 | 0.0740 | 0.1390
21| 0.81| 4650.94 | 0.8601 | 1.1656 | 0.0461 | 0.1294
22| 17.53 | 33529.93 | 4.9485 | 5.8846 | 2.5173 | 2.2124
23 | 8.14 | 19468.85 | 3.9007 | 4.9018 | 2.4803 | 1.7041
24 | 7.67 | 22017.27 | 3.7865 | 3.4307 | 1.7972 | 0.9616
25| 2.67 | 11472.26 | 2.6972 | 2.8319 [ 0.9399 | 0.7364
26 | 2.15 | 10286.97 | 1.7329 | 2.1031 | 0.6694 | 0.3011
27| 1.62 | 8533.87|1.2778 | 1.7120 | 0.3737 | 0.2053
28 | 1.40 | 8029.22 | 1.2374 | 1.3437 | 0.4356 | 0.0361
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Chapter 10

Concluding remarks

This study presented a formulation of the wave field upto second order in

a wave tank. i were by ing the free surface

down the tank. Results were analysed

at
using a fast fourier transform and least squares analyses. Amplitudes of
wave components at first and second order were identified. These results
were used in evaluating the wave forces on a cylinder. Experiments on

cylinders were conducted in similar wave environments and forces measured

by astrain gage force transducer. A theoretical lation of wave forces

was presented based on a literature survey. The force results were fitted in

the formulation and first and second order force results obtained.

11 of ities was identified as an inherent problem in a second
order analyses. Further, the apparatus also exhibited second order effects,
which have not been completely treated in theory. Notwithstanding the

above, the following conclusions were arrived at the end of the present
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study.

©

. The total wave field formulation upto second order in a wave tank

|

=

o

o

comprising of a Stokes wave upto second order, a second order free
wave, a first order and a second order reflected wave was found to

adequately represent the actual wave field in the tank.

The analysis strategy of using a Fast Fourier Transform to separate fre-
quency components, golden section optimization technique to identify
the wave numbers of beat patterns and least squares curve fitting for
the beat patterns was found to be satisfactory. Results wore close to

the expected ones even at low steepnesses.

The [ree wave caused due to a second order effect. of the wave generator
was found to behave like a linear wave satisfying the lincar dispersion

relationship (Eq. 3.33). lts amplitude was found to be co

tently

twice the values predicted by existing theories.

Similarities cxisted between first and second order reflec: an coeffi-
cients. Their phases with respect to the Stokes wave were widely scat-

tered.

The available second order formulations for the wave forces on a vert

slender surface piercing cylinders are adequate.

Results for the hydrodynamic coefficients in general followed the pub-

lished trends, with a certain amount of scatter in Cy results.
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7. Measurements of second order forces at low steepness (H/gT? =
0.0007 and 0.001) were unreliable because the forces were very small

in magnitude.

)

. Results for the sccond order forces at high steepness (H/gT? = 0.003
and 0.005) were within 50% of the calculated values. This demon-

strates the adequacy of the formulation.

=)

Relative comparison of the second order formulations following Lighthill
(1979), Madsen (1986) and Isaacson (1979) was hampered by exper-

imental errors.

During the course of the present study it was found that more research
needs to be done on second order effects in a wave tank and also the phe-
nomena affecting a second order experimental study. The following recom-

mendations and suggestions for future research are cited:

LA 1 lation and i i ion of the wave

ficld in a tank is a prerequisite for any experimental wave force studies.

2. Further research on second order wave generator theories and the

qualities of the second order free wave is urged.

3. Beach reflection forms an intriguing and difficult pl More

attention is required on the theory of beach reflection in a wave tank.
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o

o

Many side effects in a wave tank have affected the experimental results,

which could not be understood qualitatively and quantitat Side

effects in general should not be idered negligible in an

study. Efforts should be directed to eliminate them to the maximum

possible extent.

. It is felt that measuring sccond order wave forces below a wave steep-

ol

»

ness (H/gT?) of 0.001 will lead to inaccurate results with a simple

experimental setup.

Force measuring devices with fine sensitivity and least side effects

should be designed.

The significance of diffraction forces on slender cylinders at second

order requires further experimental research.

. More functions and parameters of comparison for wave forces at second

order are required.
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Appendix A

ANALYS - Source code

DEFINED
ALPHA

A22R
CALIB
DELTA
GAMMA
H

HH
JUMPS
K
KAPPA
K0,K3
NP
POINTS

TKO,TK3
XINT

THIS PROGRAM EVALUATES THE WAVE AMPLITUDES BY FOURIER
‘TRANSFORMS AND LEAST SQUARES ANALYSIS.
IMPORTANT VARIABLES ARE ALPHABETICALLY

HERE:

- REFLECTED WAVE PHASE DIFFERENCE

= REFLECTED WAVE AMPLITUDE

FIRST ORDER STOKES WAVE AMPLITUDE
SECOND ORDER STOKES WAVE AMPLITUDE
FREE WAVE AMPLITUDE

SECOND ORDER REFLECTED WAVE AMPLITUDE
CALIBRATION FACTOR

FREE WAVE PHASE DIFFERENCE

SECOND ORDER REFLECTED WAVE PHASE
WATER DEPTH

WAVE HEIGHT

TOTAL NUMBER OF LOCATIONS

WAVE NUMBER

FREE WAVE NUMBER

USER-SPECIFIED INTERVAL FOR OPTIMAL K
TOTAL INTERPOLATING POINTS FOR SPLINE
NUMBER OF SAMPLES PER WAVE PERIOD
USER-SPECIFIED INTERVAL FOR OPTIMAL KAPPA
DISTANCE BETWEEN LOCATIONS

Qanacaacacacanaaacaacacaacacana

REAL KO,K3,K,KAPPA
INTEGER POINTS,RUN,RUNS

<)
I}



PARAMETER (POINTS=64,IPOINTS=2.0%POINTS+15,X0=20.0)
PARAMETER (NP=50 ,TPOINTS=(2.0/FLOAT(POINTS) )##2)
PARAMETER (PI=3.141592654)

DIMENSION SEQ(POINTS),COEF(POINTS),ORDER1(20),X(20)
DIMENSION ORDER2(20),WFFTR(IPOINTS) ,FFF (NP) ,FFF2(NP)
DIMENSION XS(NP),YS(NP),CSCOEF(4,20) ,BREAK (20)

C FILE FREQ.DAT CONTAINS USER-SPECIFIED PARAMETERS

C FILE ANALYS.DAT CONTAINS DIGITISED DATA FOR ONE CYCLE
C AT ALL LOCATIONS

C FILE ANALYS.OUT CONTAINS THE OUTPUT

OPEN(5,FILE="FREQ.DAT’ ,TYPE=’0LD’)
OPEN(6,FILE=’ANALY.DAT’ ,TYPE="0LD’)
OPEN(10,FILE=’ANALYS.OUT’ ,TYPE=’NEW’)

C INITIALISING FFT ROUTINES
CALL FFTRI(POINTS,WFFTR)

C READING INPUT PARAMETERS
READ(S,*) XINT,KO,K3,TKO,TK3,CALIB, JUMPS

X(1)=0.0

DO §0,I=2,JUMPS

X(I)'X(I -1)+XINT

50 CONTINUE

100 DO 500, JUMP=1,JUMPS
DO 150, I=1 PDI]ITS
READ(6,*
5ED(I)=SE/GALIB

15 CONTINUE

C IDENTIFY FREQUENCY CONTENT (COEF) FROM TIME DATA (SEQ)
CALL F2TRF(POINTS,SEQ,COEF,WFFTR)

C EVALUATE FIRST AND SECOND ORDER COMBINED WAVE AMPLITUDES
C AT ALL LOCATIONS
ORDER1 (JUMP) =TPOINTS#* (COEF (2) **2+COEF (3) **2)
ORDER2 (JUMP) =TPOINTS* (COEF (4) **2+COEF (5) #*2)
500 CONTINUE

INTCEP=
C LSSIN IS THE LEAST SQUARES CURVE FITTING ROUTINE
CALL LSSIN(KO,K3,INTCEP,JUMPS,X,ORDER1,ONEK,SQE, AL,
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4

4
c

c

[
c

c

C

a

c

1 AA,ALPEH)
IF(AI LT.0.)THEN
PRINT*, ’ILL-CDID!TIU!ED DATA AT FIRST ORDER’)
GO TO 100
ENDIF

EVALUATE FIRST ORDER WAVE AMPLITUDES, NUMBERS AND PHASES
A1=0.5%((AI+AA)#+0.5+(ATI-AA)*+0.5)
AR=0.5%((AI+AA)**0.5-(AI~AA)**0.5)
ALPHA=ALPH-ONEK*X0
K=ONEK/2.0
HH=A1%2.

SPLINING OF SECOND ORDER DATA PERFORMED BY THE IMSL ROUTINES
CSINT AND CSVAL

XS(1)=X(1)

SINT=X(JUMPS)/FLOAT (NP)

DO I=2,NP

XS(I)=KS(I 1)+SINT

CALL CS“T(JUHPS X ,0RDER2, BREAK , CSCOEF)

NINTV=JUMPS-1

DO I=1,NP

¥YS(I)=CSVAL(XS(I),NINTV,BREAK,CSCOEF)
0

SPLINING ENDS

EVALUATE THE PREDOMINANT BEAT PATTERN AT SECOND ORDER
(THE ONE WITH NUMBER (KAPPA-2K))
CALL LSSIN(TKO,TK3,INTCEP,NP,XS,YS,TWOK,SQE,B1,B2,DEL)
IF(B1.LT.0.) THEN
PRINT*, ' ILL-CONDITIONED DATA AT SECOND ORDER’)
G0 TO 1000

EVALATE FREE WAVE NUMBER
DELTA=DEL-TWOK*X0
TWOK1=TWOK+4 . *K
TWOK2=TWOK+TWOK1
KAPPA=TWOK+2 . *K

SUBTRACT THE EVALUATED SECOND ORDER BEAT PATTERN FROM

THE TOTAL SECOND ORDER WAVE PATTERN TO EVALUATE THE
NEXT PREDOMINANT PATTERN (WITH NUMBER (KAPPA+2K)

124



DO 600 I=1,NI

FFF(1)=YS (I) B‘ B2*C0S (TWOK*XS (1) +DEL)

CONTINUE

INTCEP=0

CALL ERROR(TWOK1,INTCEP,NP,XS,FFF,SQE,AI,B3,GAMM)
GAMMA=GAMM-TWOK1*X0

C SUBTRACT THE EVALUATED BEAT PATTERN AGAIN TO LASTLY
C EVALUATE THE PATTERN WITH NUMBER 2KAPPA

700

DO 700 I=1,NP

FFF22=B3+C0S (TWOK1+XS (1) +GAMM)

FFF2(1)=FFF (I)-FFF22

CONTINUE

CALL ERROR(TWOK2,INTCEP,NP,XS,FFF2,SQE,AI,B4,DEL)

C EVALUATE ALL SECOND ORDER WAVE AMPLITUDES

701

703

C WRITE
990

-

991

: §
1100

IF((B1+B2-B3-B4) .LT.0.)GO TO 701

A22R=0,5%( (B1+B2+B3+B4)*%0 .5~ (B1+B2-B3-B4) #%0.5)
IF((B1-B2-B3+B4) .LT.0.)THEN
PRINT*,’ILL-CONDITIONED DATA AT SECOND ORDER’)
GO TO 703

ENDIF

A2=0.5%((B1+B2+B3+B4)+%0 .5~ (B1-B2-B3+B4) #*0.5)
IF((B1-B2+B3-B4) .LT.0,)GO TO 990
A22=0.5%((B1+B2+B3+B4) #%0 . 5- (B1~B2+B3-B4) ¥%0.5)

RESULTS IN AN OUTPUT FILE
WRITE(10,991)RUN,K,HH,AR,DELTA, A2 ,KAPPA,BETA,A22,
GAMMA, A22R

FDRMAT(//ZX I2,3X,F5.3,2X,F7.4,3X,F6.4,2X,F7.2,2X,
F643XF632XF722XF6421F772XF64)
STOP

END

[
C SUBROUTINE LSSIN FITS A LEAST SQUARES SINE CURVE WITH
C OPTIMAL WAVE NUMBER TO A GIVEN SET OF POINTS

SUBROUTINE LSSI“(KO K3,INTCEP,JUMPS,X,FF,XK,SQE,
AI,AA,DELTA

DIMENSIDN FF(SO) X(50)

REAL KO,K1,K2

PARAMETER (RHO 61803399 C=1.0-R)



C EVALUATE LEAST SQUARED ERROR AT THE INITIAL WAVE
C NUMBERS K1 AND K2

K1=KO*R+K3#C

CALL ERRDR_(Kl INTCEP,JUMPS,X,FF,SQ1,A1,A2,DEL)
K2=K1*R+K3*

CALL ERRUR(KZ INTCEP, JUMPS,X,FF,SQ2,A1,A2,DEL)

C START NEXT ITERATION
100

IF(SQZ LT.SQ1)THEN

2

SQ1

SQi-SQZ

K2=R*K1+C*K3

CALL ERROR(K2,INTCEP,JUMPS,X,FF,SQ2,A21,A22,DEL1)

$Q2=5Q1

K1=R*K24C*K0

CALL ERROR(K1,INTCEP, JUMPS,X,FF,SQt,A11,A12,DEL2)
ENDIF

C CHECK FOR TOLERANCE

200

IF(ABS(K3-K0) .LE.0.0001)GO TO 200
GO TO 100
IF(SQ1.LT.SQ2)THEN

=K1

ELSE
XK=K2
ENDIF

C FINAL CALL TO ERRO!

R
CALL ERROR(XK,INTCEP, JUMPS,X,FF,SQE,AI,AA,DELTA)
RETURN
END

c
C F
CA
C DI

OR A SPECIFIED WAVE NUMBER SUBROUTINE ERROR FITS
LEAST SQUARES CURVE. THE CURVE TO BE FITTED IS
EFINED BY THE EXTERNAL FUNCTION F

SUBROUTINE ERROR(KN,INTCEP,NOBS,X,FF,SSE,AI,AA,DEL)
DIMENSION A(3),X(50),XX(50)
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PARAMETER (PI=3.141592654)
EXTERNAL F
REAL KN
DO 100,I=1,NCBS
XX(I)=X (I)*KN
100 CONTINUE
NBASIS=2
INT=0

C CALLS IMSL LEAST SQUARES ROUTINE FNLSQ i
CALL FNLSQ(F,INTCEP,NBASIS,NOBS,XX,FF,INT,WEIGHT,A,SSE) i
IF(INTCEP.EQ.0)THEN i
A(3)=A(2) {

AI=A(1)
AR=(A(2)*42+A(3)##2)#%0.5
PHI=ATAN (ABS(A(3))/ABS(A(2)))
IF(A(2) .GT.0.)THEN

IF(A(3) .GT.0.)THEN

DEL=-PHI

ELS|
IF(A(3) .GT.0.)THEN
DEL=PI+PHI
LSE

El
DEL=PI-PHI
ENDIF
ENDIF

RETURN
END

REAL FUHCTIDN F(K XX)
IF(K.EQ.1

F'k'l /K*CDS [¢49)
ELS

F= (1 JRY*K*SIN (XX)
END:

HETURN
END
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Appendix B

The Fast Fourier Transform

A function z(t) can be represented using fourier series as
®
2(1) = a0 +2 Y ansin(2mnt/T) + by cos(2mnt/T) (B.1)
st
where a, and b, are the amplitudes of order n. Using complex notation,
=
2(t) =ap+2 X, D (B.2)
=

where i = /=1 and X, = a, — iby is the complex amplitude. The value

of X, can be found by integrating the function over one period
T »
Xa=1T / a(t)e=i@mT) gy (B.3)
o
If the function z(t) is sampled at a rate of V samples per period, we generate
a discrete time series
{a ) r=0,1,2,-N =1
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The fourier coefficients can be represented using the discrete time series as
N-1

Xoy=1/N'Y z,e~tme/N) (B.4)
=

X, is now called the discrete fourier transform (DFT) of the function x(t),

Newland (1975).

The Fast Fourier Transform (FF'T) is a computer algorithm for caleulating
discrete Fourier transforms. The FFT works by partitioning the full se-
quence {z,} into a number of shorter sequences. The DFTs of the shorter

are and combi

d to give the DFT of the full sequence.

If N is even, {z,} can be partitioned into shorter sequences as

Yr = Tor (B.5)
2 = Torp (B.6)
ro=0,1,2-,(N2-1) (B.7)

The DFT of these two sequences are Y, and Z, where,
1 Mo

Yo = 55 ; yy e R (B.8)
1 Nt i

Zris; = 70 g’ P (B.9)

n = 0,12+ ,(N2-1) (B.10)

The DFT of the original sequence can be obtained from the DFT of the

half sequences as
X =12{ Y. + IN 7.} (B.11)
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If the original number of samples N is a power of 2, then the half se-
quences can themselves be partitioned into quarter sequences and so on,
until eventually the last subsequences have only one term each. In fact a
FFT algorithm works in the reverse way i.e., it starts with the individual

terms and finally estimates the DF'T of the full sequence.
Defining a new complex varinble
W=g-Hn/N)

and using the fact that Y, and Z, are periodic in n and repeat themselves

with period N/2, we obtain the so called computational “butterfly” formu- §

lae, Newland (1975).

Xo = 1AYa + W"Z,) (B.12)
Xgnyz = 1AV — W'Z,) (B.13)
n o= 0,12..,(N2-1) (B.14)

While a direct approach for estimating the DFT would involve N? mul-
tiplications, the FFT requires N log; N multiplications, thus offering an

enormous reduction in computer time.
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Appendix C

Description of the subroutine
LSSIN

LSSIN is a subroutine of the main program ANALY'S of appendix A. This
subroutine performs the task of fitting a sine curve to a given set of data
points, the wave number of the curve being an unknown. If the wave
number is known, the subroutine performs a simple lenst squares curve
fitting operation as follows:
Given a set of data points y;,i =1,2,+:-n, a curve of the form
f(2) = Ao + A coskz + Aysinkz (c.1)
has to be fitted through these points. Define a squared crror as
€l =~ f()) (C2)
To minimize the sum of squared errors with respect to the variables of the
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fit, we require that

(C.3)

This would yield three simultaneous equations in Ag, 4; and 4; from which

the three parameters can be estimated.

If the wave number k in Eq. (C.1) is not known 4 priori and given an
interval within which the expected number lies, LSSIN locates the best
wave number os the one which provides a fit with the minimum ‘least
squared error’. Basically, it assumes T €? as a function of k and identifies
where the function attains a minimum within the interval. Anoptimization

is employed to subdivide the interval effectively to identify the

minimum. Once the best wave number is obtained, a least square fit at
that number is performed to identify the desired amplitudes, Ao, 4; and

A, which are the outputs of the subroutine.

The optimization technique involved in identifying the wave number is
called the golden section search method see for eg. Press et al (1986). Say a
function f(z) is known to attain a minimum (or maximum) within an inter-
val (z0,z1) at z,,. The interval is successively subdivided at z2, z3,++, zn
5o that z, lies close to z,, within an user-specified tolerunce. The strategy
lies in mimimizing the total number of subdivisions n by diminishing the
size of the bracketing interval optimally. This is done as follows (Press et

al, 1986):



G: lly, 2 mini is said to be bracketed by a triplet of points (a,b,c)
if f(b) is less than both f(a) and f(c). a,b,c will be assumed variables in
the present context as they can take on any values from zq to z,. Say a
point z, has to be identified in (a,c). z, would be optimum if it lies in
the larger of the intervals (a, b), (b, ) and be symmetrical with b about the
midpoint of (a,c). This method also stipulates that it would be best if z,
is a fractional distance of 0.38197 from one end of the interval where it
lies (Press et al, 1086). The bracket for the next subdivision will be cither

(a,b,z,) or (b, z,,c) depending upon whether f(b) is greater than f(x,).

The fractions

ogsi07 =150

are called the golden mean or golden scction (Press ct al, 1986). The
method applies these fracti ively and every subdivided interval

is a fraction 0.61803 of the previous interval. To initinlize, (a,c) can be
taken as (zo,z1) and b chosen within the interval based on the golden
ratios. Further details of the golden section search algorithm can be found

in Press et al, (1986).

If the fitted curve contains two sinusoids of different wave numbers, then
LSSIN starts with the predominant sinusoid (to be specified) and identifies

the wave number and amplitudes by the previous procedure, Then the
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input data is splined and the evaluated component is subtracted to obtain
the data for the other sinusoid. The wave number and amplitudes of this
data are then evaluated similarly. A flow chart for the subroutine LSSIN
is shown in Fig. (C.1), for the case of a single sinusoid. The source code is

included in appendix A.
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kv =Rxko+Cxks
ke=Rxky+Cxk
ka=ky

Tk k) h=k
ky = ke
ke=Rxka+Cxk,|

ka=ke
ke=RX ko+C x kq

T <TOL

Output Ao, 41, 4, k

Figwre (C.1) Flow chart for the subroutine LSSIN
Notes: R& C - Golden ratios; R = 0.61803, C = 0.38197.
ka — ki - Dummy wave numbers

TOL - User-specified tolerance.
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Appendix D

Harmonic components of u|y|

Let us consider a general function f made up of two sinusoids as
f= acosf + beos 26 (D.1)
Tho requivenent is to split f|f] ina similar harmonic form. So lek
f1fl = ficos 8 + frcos 260 (D.2)
Using fourier series we can write
1 pr
fi= 2 [T Aiflcostas (D.3)
fi= 2 [ F1flecs26a0 (D.4)
T xh )
To evaluate these functions, we refer to Fig. (D.1) where the functions

acos 8 and f are plotted. At points 8, and 6,, the function f changes sign.

Using this information, the above integrals may be modified as

By 1, 1pp
f._x/‘; 5 mado-’r/" b cosﬂd9+w/h flcosddd  (D.5)
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and an analogous expression for f;. To identify the zero - crossing points
of the function f, we readily note that due to symmetry about 8 = =, we

have 8; = 2r — 6,. To evaluate 6y, we set
acos By +bcos 26, =0 (D.6)
to get the quadratic equation
2bcos? 6y +acos b, —b=0
which can be solved to obtain

cosfy =

(D.7)
and

0 =2 —6, (D.8)

The indefinite integrals for f, and f; pose no complications. They can be

evaluated as

: g
[(acost+ beos26)? costis = “—;’“(3%4-%)5;:.9

ab) . a? + 57 .
()i () e

2
+ (a—;) sin40+(;—0)sin5€ (D.9)
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2
/(ucos6+ beos 26)? cos 26d6 = “Ta + (ab)sin 8

a? | 38%) . ab) .
+ (Z+T)smu+(6)sm39

a?) . ab\ .
+ (ﬁ)sln40+(ﬁ)sm50 (D.10)

Evaluating these integrals at 6, and 6, involves tedious trigonometry. Fur-

ther, two simplifyi need to be
o Assuming b << a,
Va? + 8B :a(l+‘:;b:)

® Since 6; usually lies between 80° — 90 deg, we can relate cos™ 8 to 8

by a straight line as
cos™ 8 = /2 - 1.0076
The results are quite sensitive to these assumptions, so their application

should be delayed as much as possible. The desired results can be obtained

us

67 4 3—-‘:“1:’ (D.11)

=—=a
h=2
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3
_ 4401 b 0.336 5°
3 T a

fa (D.12)

The last term in f, is very small compared to the first terin when b << a.

So it is not included in the present study.

The accuracy of the results can be tested by plotting f|f| and f cos6 +
facos20 together in Figs. (D.2) and (D.3) for different ratios of f; to
fi. The correlation can be observed to improve as this ratio increnses
in magnitude. The linearised function 2.667/7 7 cos 8 usually adopted in
literature is also plotted in these graphs. The figures show that the proposed
harmonization represents the actual function better, particule:ly in the

regions around 6 = 0,7/2.
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Figure (D.1) Cosine functions at f, = 0.2f;.

——  (ficosf + frcos26)|f cos 6 + f,cos 26|
~—=  ficosé
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Amplitude
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Figure (D.2) Harmonic components of f|f|; fy = 0.1,

——  (ficos + fyc0826)|f, cos 6 + f, cos 26]
s  2.667/mf2cos6 + 3.341/7 f2 cos 20
a——r 2.667/mf2cos
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Figure (D.3) Harmonic components of f|f|; f = 0.15f;

—— (ficos8 + frcos26)\f, cosh + f; cos26)]
S 2.007/7f}cos 8+ 3.341/ 3 cos 26
2,667/ 2 cos 6
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