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Abstract

This work examines the dynamic forces that are generated in catenary mooring
lines when the top part of the line is subjected to a forcing function, The forcing
function consists of a sinusoidal motion of fixed amplitude but varying frequency
and varying angle in the vertical plane. The effect of changes in the pretension in
the chain is also examined.

Four different areas of response are classified by the response of the line and
the characteristics of the force in the line observed over time. The force in each
area is ined and the mechanism that g these forces is discussed. The
change of these forces with changes in the forcing function at the top end of the
line is also examined.

The model parameters for the catenary mooring system are identificd and
model tests performed. From these model tests it is possible to conclude that large
structures such as oil rigs and large vessels will cause mooring lines to respond in
a range where dynamic forces need not be taken into account. However, smaller
objects such as buoys will suffer significant dynamic forces.
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Chapter 1

Introduction

In the ocean environment there are many forces that act on a moored object. Be-
cause it is difficult to design a system to maintain an object completely stationary
when facing these forces, most mooring systems allow a degree of movement. The
catenary mooring system is the most common system of this type.

The techniques for the static analysis of a catenary mooring are well estab-
lished. However the dynamic analysis can be quite complicated because of the
contributions from pretension, hydrodynamic drag (and related factors such as
vortex shedding), inertial eflects and added mass. Although some analytical mod-
els exist, there is a shorlage of experimental data. This thesis will provide some
dala on the properties of the dynamics of mooring chains.

Some of the previous studies indicate that there are very large dynamic loads
generated in mooring lines. Published data indicate that these loads can reach
a magnitude of ten times that of the static load. At the present time, moorings
are designed based on expected static tension and on previous experience. The
accurate prediction of dynamic loads would improve the selection process.

This thesis describes experiments that will examine the dynamics of catenary



mooring systems. Experiments took place in the Memorial University of New-
foundland wave tank. A support structure on which a motor was mounted was
placed just above the water surface. The motor oscillated a block in a straight
line. One end of the chain was attached to this block through a tension measuring
device.

The motor speed was varied to provide specified excitation frequencies. The
support structure could be tilted allowing the translational oscillations to occur
at different orientations in the vertical plane. The static tension could also be
varied.

The work had several objectives which were composed of two primary objec-
tive and several secondary objectives. These objectives are listed below with the
primary objectives given first. In summary, the objectives of the experiment were

to determine:

1 the magnitude of the dynamic forces present in an oscillating mooring chain

(primary objective),

»

whether the dynamic forces were more prominent in one particular orientation

(primary objective),

©

how the static tension affects the dynamic tension (sccondary objective),

S

if the four conditions that Suhara et al, (1981) identified could be found in the

slack condition (secondary objective),

o

what the model scale effects are; ie how the experiment relates to the ocean

environment (secondaty objective).



To introduce the topic, a brief description of the catenary mooring system
is given in Chapter 2. Past work in this field and related fields is examined in
Chapter 3, followed by the derivation of a dimensionless equation describing an
oscillating mooring chain in Chapter 4. The apparatus and procedure will be

cxamined in Chapter 5. Chapter 6 will discuss the results from this work and

S

Chapter 7 will draw lusions about the i Some

regarding future work will be made in Chapter 8.



Chapter 2

The Catenary Mooring System

The catenary mooring system takes its name from the shape of the curve formed by
the mooring line (the word catenary is from the latin calena or chain). This curve
is characteristic to any line which is suspended from two points and which has a
uniform weight per unit length and negligible bending stiffness. The derivation
of the basic equations for the catenary line is given in Appendix A. The length
of the line from the top to where it touches the bottom is called the scope of the
line. The scope and other terminology relaling to the catenary mooring system is
shown in Figure 2.1,

The catenary mooring system has been traditionally used by ships and other
sea going vessels for several reasons. The system can be easily and compactly
stowed when not in use, it requires little maintenance, it uses simple easily ob-
tainable materials, and in spite of its simplicity, it provides a remarkably effective
way to position a floating object. If the top end of the chain is moved, a restoring
force is created. The restoring force is small at first but increases very rapidly. A
descriptive analysis of the mooring system would be as follows.

If there are no displacing forces on the moored object, the mooring chain will
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Figure 2.1: The Catenary Mooring System

hang in 2 vertical line as shown in Figure 2.2. As soon as the moored object is
displaced, two events will take place. First, some of the chain will be picked up
from the bottom. Second, the chain will start to make an angle with the moored
object away from the vertical. It is a combination of these effects that cause the
chain to apply a restoring force on the moored object.

As chain is picked up off the bottom more weight needs to be supported at the
top. This will show up as an increase in the tension. Also, since the line ma‘es
an angle with the vertical, there will now be a component of force generated in

the hort | direction. This hor 1 force is what the displ

force. To hold the chain against horizontal forces an anchor is used.
The effectiveness of the mooring system can be seen in Figure 2.2. The diagram

is drawn o scale and it shows that as the displacing force increases from 0.2 units
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to 20 units, the actual displacement increases by a factor of about . “The foree
unit in this case is the weight of a length of mooring line equal to the depth of

the water.

F

-
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F is the displocing force

Figure 2.2: A Calenary Mooring System Under Horizontal Loads

Catenary systems can be classified as cither tant or slack. In the slack case
the lower end of the chain is Langent to and touching the hottom. AL this poiut,

there are only horizontal forces in the chain which nmst he res

1 by the anchor

and the friction of the sea bed. In the taut case, the chain is never tangent to

the bottom and stops at the anchor forming an angle with the bobtom. In this

circumstance, the anchor must resist a vertical force as well as a horizontal one.

[n this experiment, the chain is maintained in the slack condition at all times,

The basic equations for the catenary mooring system are given below. There

is no explicit equation for tension and so an iterative technique must be used.

These equations solve for T, and 7, (the horizontal and vertical components of



the tension in terms of: water depth, H; scope, S; and weight per unit length, w.
The derivation for these equations can be found in Appendix A. Other equations
using different input variables can be derived depending on what values you wish

to use as input.

T. = Tcosyp
T, = Tsing =wS (2.1)

_Tcosy L Sw _Tcos!ﬁ
= o cosh (smh Tcusq/;) e (2.2)



Chapter 3

Review of Previous Work

The study of the dynamics of mooring chains has received a great deal of attention,
at least in theoretical developments. Parnell and Hicks (1976) state that over 500
papers have been published that deal with cable dynamics. However they go on
to say that experimental data are limited. Pattison (1974) agrees with this and
states that although analytical models exist, data are scarce.

This review will be divided into four sections. The first will discuss the simple
static problem as it applies in the marine environment. Then, experimental work
will be reviewed, followed by an examination of various numerical and computer
techniques for finding dynamic forces in mooring lines. Finally, a brief review of a
relatively new topic, statistical treatment of dynamic forces in mooring lines, will

be undertaken.

3.1 The Static Problem

A good place to start looking at the dynamics of mooring lines is with the static
problem. The static analysis has been fairly well studied and can be found in

several books on differential calculus (Fox (1950) and Edwards and Penney (1982)



for example.) The basic approach is to solve the geometric cat:tery equations.

One of the earliest and best analysis of catenary problems as they apply to
the ocean environment is given by Collipp et al(1962). They use the geometric
approach to derive the basic catenary equations which are then used to draw up
tables that give properties such as tension, angle the cable makes in the vertical
plane and potential energy in the cable. However the parameter they use for
entry into the tables may, in some cases, be awkward. Their parameter requires
knowing the depth of water, the scope of the cable and the horizontal distance
that the scope covers. The equations shown in Chapter 2 give the same result,
but require just the scope and depth of water.

Because of the non-linear relation between the displacement and restoring
force the use of tables and charts figure prominently in the analysis of mooring
systems. Adams (1969) and Radwan et al (1986) use tables as an aid to the
design of mooring systems. Even today when computers can give exact solutions
the speed and case of use of tables still make them popular.

Along with tables, there was some attempt to linearize the equations. Ogawa
(1984) tried this and used a linearization coefficient matrix to represent line ten-
sions as a linear function of displacement. However, as with all such methods, it

is inaccurate outside certain limits.

The use of ical techni to solve the jons became popular with
the wide spread use of computers. Nielsen (1976) used a Newton-Raphson root
solving algorithm to match restoring forces to external loads. The shape of
the force versus displacement curve lends itself well to solution by the Newton-

Raphson technique.
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A program which solves the static problem of a catenary system has been

written and is included in Appendix B. It uses the equations derived by Collipp

et al (1962) along with a Newton-Raphson algorithm. The results 1 by

this program are identical to those published by Collipp, Borgman and Miller.
3.2 Experimental Work

Some of the earliest thoughts given to designing experiments were directed towards
scale model tests. Collier (1972) attempted to derive scale laws for a moored buoy
in an ocean current by using the governing equations. Constants were introduced

to relate the model and the prototype properties such as mass, force and length.

of these into the governing equations allow a

between the to be d ined. Di ionless numbers were then drawn
up. Collier used a distorted scale to achieve dynamic similarity in his model
laws. While this does have the advantage of avoiding problems that are typical in
hydroclastic models (ie the inability to scale all the relevant parameters), it does
have the disadvantage that the cable oscillatory velocity must be small compared
to the current speed which in the majority of cases is an unrealistic assumption.
Unfortunately, Collier did not do tests using this idea and no record of any tests
with a distorted scale can be found.

Parnell and Hicks (1976) also use the governing equations to derive their di-
mensionless numbers. However their analysis differs from Collier in that they do
not use a distorted scale. They ignore the hydrodynamic force tangent to the
cable by stating that it is small compared to the normal force. The normal force

is d for by a ‘hydrodynamic force * which is the drag coefficient
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for a cylinder multiplied by the ratio of cable length to diameter. Parnell and
Iicks go on to state that it is difficult to scale all the relevant parameters. Their
solution was to do the tests in a fluid with a much higher viscosity than water,
This solution is well known to hydraulic modelers, but it appears that no one has
used this idea to model a catenary.

Experimental examination of the dynamics of mooring cables seems to have
started in the mid 1970's with the work of two projects. Pattison (1974) seems to
have been the first to publish experimental work followed by vaa Sluijis and Blok
(1977) several years later.

Paltison's purpose was to perform experiments on several different kinds of
mooring line material and develop these into a data base for analytical model
validation. The method was to oscillate a slider sinusoidally in the vertical plane
by means of a drive cable attached to a rotating crank arm. The mooring line
was joined to the slider via a two way force dynamometer. Five different mooring
line materials were tested with scope to depth ratios between 1.1 and 1.6 and a
frequency of motion between 0.1 and 2.2 Hz. Dynamic tensions up to 1.2 times
that of the static tension were recorded. Higher loads were recorded but were
ignored as being unrealistic of conditions at sea.

Unfortunately Pattison had some problems with his experiment. He reported
problems with the two way force transducer that he used in his experiments. It
appears that the transducers were coupled and he spent quite a bit of his analysis
trying to decouple the forces. Also, although he reported sinusoidal oscillations,
from the way his equipment was set up he would actually produce motion with

two sinusoidal It would be impossible to say what the effect of the




second component would be without knowing more about his equipment.
van Sluijs and Blok (1977) also preformed similar experiments except that they
oscillated the cable in a horizontal plane. They reported an increase of dynamic

tension with an increase of freq up to a i After this

increasing the frequency caused a decrease in the tension. They also reported
that there was no significant scale error in the dynamic effect. (More will be said
about this in Chapter 6).

In the mid 1980’s there were also two published reports of experimental work.

These were done by van den Boom (1985) and Suhara et al (1981).

van den Boom ducted ill of

involving the h
mooring lines. He does not say if the oscillations were horizontal or vertical
but the impression is that they were horizontal. No scaling parameters for the
experiment were given but it is stated that the scaling was carried out according
to Froude's law of similitude.

It is hard to see how Froude’s law would be applicable in a case like this and
other analysis do not have the Froude number as an important consideration. Thus
it would seem that van den Boom’s attempts at modelling were in error. However,
the experimental results do show the expected rise and drop off in dynamic tension
with increasing frequency of the forcing function.

Suhara et al did their tests with both horizontal and vertical oscillations and
used scope to depth ratios between 2.8 and 8.3. They also used a wide range of
frequencies for the forcing oscillations and several different amplitudes.

One important outcome from their work was the classification of the results by

the means of several di less The static condition is d
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Figure 3.1: Force-time traces for the four conditions

by the ratio wXo/Tyo where w is the weight per unit length, X is the amplitude
of motion of the top part of the chain, and Ty is the static horizontal tension.
The dynamic characteristics are determined by two ratios: 1) Z,,/D, where Z, is
the vertical displacement of the center of gravity of the catenary part and D, is the
diameter of a cylinder with the same volume as the chain, and 2) the ratio Zw?/g
where w is the frequency of the oscillation and g is gravitational acceleration.

Using these they identified four conditions. The first is a quasi-
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static condition where the dynamic tensions can be calculated by the position of
the top end and the static formula. Second is a harmonic oscillation condition.
The third is called a snap condition and shows what happens when the cable goes
taut. The last is a free-fall condition and in it parts of the chain actually fall
until brought up by the rest of the chain generating impact forces. The first two
conditions scem to be what Pattison (1974) recorded.

Since part of this work was to identify these four stages, some time should
be taken here to examine what happens in the four stages. The first stage was

described above and nothing more needs to be said except that the primary contri-

bution to the line tension is from the static pre-tension. In the h
region, the force trace in the time domain appears close to sinusoidal. In this area
the inertial forces of the chain and the fluid properties of added mass and drag
are the primary contributors to the line tension.

In the snap region, a new mechanism come into play. The minimum tension in
the chain, which until this time has been greater than zero, becomes zero (since
a chain cannot support compressive loads, the tension can never be less than
zero). This means that for a brief amount of time, the links of the chain are not
supporting any load. This takes place while the top of the chain is moving in a
direction towards the anchor (in a direction that slackens the chain). When the
direction reverses (so that the top part is now moving in a direction that increases
the tension of the chain), the slackening suddenly stops. This sudden stopping
of the links as they fall generates impact loading. The magnitude of the impact
loads are dependant upon the time that the links had no tension on them. It is

these impact loads that cause the extremely high tensions that are associated with
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dynamic forces. Because of the shape of the catenary and the length of the line,
not all the links take part in this phenomena. However, as the speed of the top
part increases, more and more links come into play and this causes the increasing
impact forces. .

Eventually a time comes where the top is moving so fast that it is able to reach
the end of its run and start, back before the remainder of the chain can respond.
Now, fewer and fewer links are involved and the time the links are allowed to fall,
free of forces in the chain, becomes smaller so the dynamic forces start to decrease.
"This is the frec-fall region characterised by the decrease in the dynamic forces.

Suhara et al (1981) also compared their results to a theoretical prediction
method called the lumped mass method, Agreement was good in conditions 1
and 2 but was significantly off for conditions 3 and 4.

Another paper discussing the derivation of the dimensionless parameters rel-
evant to oscillating mooring lines is by Papazoglou et al(1990). They used the
method of governing equations to derive the important parameters. They also rec-
ognized that for deep water moorings the elasticity of the cable is an important
consideration in the calculation of dynamic forces.

They have proposed a modeling scheme where all parameters except for the
clasticity parameter are met as well as possible and then the elasticity is modelled
with springs.

The idea of using springs to compensate for the inability to correctly model
the scaling parameters is also presented in a report by Faure (1989). Faure used
a set of springs that best simulated the catenary effect and the elasticity of the

missing section as well as compensated for the elasticity of the remaining model.
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Unfortunately no mention of the modelling parameters is made except to say that

line lengths and weights were scaled correctly.

3.3 Numerical Calculations of Mooring Line Dy-
namics

N ical lations of the d ics of mooring lines have been abundant in

the past. Due to i materials, i drag coeflici li
forcing functions and non-linearities due to the nature of the catenary, a purely
analytical approach was impossible. There was some thought given to linearizing
the equations of motion and using other types of analysis such as perturbation
expansions, however these methods were inaccurate outside certain limits. Com-
puter run numerical simulations seemed to provide the best tool for analyzing the
problem.

Computer programs to solve the quasi-static problem are relatively easy to
create and very inexpensive in CPU time to run and these were the first attempt

to solve the problem. However, using the quasi-static approach meant that the

most i were ignored. S i the quasi-static method is
still used but this is usually for a special application (Nakajima (1986)) and, even
so, it can be misleading.

To handle the non-linearities of the system several numerical techniques were
derived. The most powerful of these proved to be some sort of discrete element
technique. There are two main types of discrete element algorithms used to an-

alyze the motions of mooring lines. They are the known as the finite element

method and the lumped mass method and a good review of the two methods is
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given by van den Boom (1985). There have been a large number of schemes for
cither method proposed.

In the finite element method the cable is broken into a number of segments
with a set of assumed behaviour functions. These equations are applied to the
kinematic and dynamic equilibrium equations as well as the equations describing
the material properties.

Johansson (1978) proposed a finite element model with linearly elastic material

properties and a constant drag coefficient. Webster (1981) developed a program

called SEADYN based on the finite element method. SEADYN broke the problem

into two parts, one dealing with the quasi-static solution, the other handling the

dynamic aspects. The program could handle non-linear materials and it attemp
to model fluid forces as well as strumming phenomena. One of the best finite
clement models is that proposed by Hwang (1986). As well as an improved method
of accounting for drag, it was able to handle composite lines (lines where two
or more materials are joined together) and clumped weights. It also used a 3-
dimensional analysis of the line.

The other main method used was the lumped mass method. The lumped
mass method was first proposed by Walton and Polacheck (as reported in van den
Boom (1985) ). It involves the lumping of the mass and the external and internal
forces of the line at a number of discrete points. Equations of equilibrium and
continuity at these points or nodes can be derived and then solved using numerical
methods. Several authors note that the lumped mass method seems to be more
computationally efficient than the finite element method (van den Boom (1985),
Faure (1989)).
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The simplest implementation of the lumped mass method would be to work
with just one node. Suhara et al (1983, 1987) did this and obtained reasonable
results for the smaller frequencies (ie where the dynamic forces were relatively
small). Liu (1973) had more elements in his model but the numerical modelling
of the fluid drag and added mass was poor and the material was assumed to follow
Hooke’s law (except when the chain went into compression).

van den Boom (1985) proposed a lumped mass model which he incorporated
into a program called DYNLIN. He proposed that the fluid loading of a line is
due to the orbital motion of the waves, the current and the motions of the line (it
should be noted that his model neglected the wave motions). His 2-dimensional
model also included sea floor reaction forces. He reported good agreement with
experimental data.

Recently, Faure proposed a model based on van den Boom's model (Faure
(1989)). This model had a better representation of bottom reaction forces and
bottom friction. It also used Morison's equation to calculate the fluid loading on
the lines.

There have also been several attempts to develop computer packages that assist
in the design of whole mooring systems, eg Owen and Linfoot (1976).

All the numerical methods mentioned above needed some values for the var-

hydrod: i e Some i used iousl PR

ious

data where others such as Faure (1989) came up with their own. It should be
mentioned here that the coefficients needed are those that occur in oscillating flu-
ids. While these values are needed for the harmonic oscillating condition, the case

is different for the snap and free-fall conditions. In these cases the chain motion is
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not harmonic so coefficients measured from random oscillation tests such as those
reported by Longoria et al (1991) should be used.

3.4 Statistical Analysis Techniques

With the realization of the cxistence and magnitude of oscillatory forces and the
increased knowledge of metal wear and fatigue, attention was naturally turned
to these effects in mooring lines. Shaw (1989) analyzed the problem using wave
statistics and a mooring line tension transfer function which he obtained from
matching model tests to a numerical simulation. However he was interested in
obtaining a method of calculating the cyclic loading that a mooring line would
experience and not in determining the mooring line’s maximum load.

Sincock and Lalani (1990) were interested in developing guidelines for fatigue
analysis of anchor chains. They state that there are two ways to calculate loads
in the mooring line: the quasi-static approach and a dynamic procedure. They
also go on to talk about some of the design codes in effect for semi-submersibles
and floating production units.

The American Bureau of Shipping and Lloyd’s make no mention of guide-
lines for mooring system and leave the specification up to the owner. The UK’s

guide on offshore installations makes no mention of any specific design method-

ology by which to calculate loads. The Norwegians allow either a quasi-stati

or dynamic analysis. The newly drafted American Petroleum Institute's “Rec-
ommended Practices for Design, Analysis and Maintenance of Catenary Mooring
for Floating Production Systems” does acknowledge the significance of dynamic

loading and recommends a time domain dynamic mooring load analysis.
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A very good review of general techniques for tension response statistics can be
found in Luo (1990). Luo shows that a Gaussian distribution cannot account for
the nonlinearities in the system. He goes on to state that significant improvement
in the tension ranges can be obtained by using the Weibull distribution.

Computer applications of this method are usually written to solve this specific

problem and thus allow more versatility on the part of the person deriving the

equations.




Chapter 4

Dimensionless Analysis of a
Catenary

The first step in developing an experiment is to determine what is to be measured

and the that affect the i Di jonal analysis can show
ways in which the parameters can be grouped together. The dimensionless equa-
tion is derived here for an oscillating catenary system and then the groups in it

are compared to the dimensionless groups found by other experimenters.

4.1 Definition of Physical Parameters

The parameters necessary to describe the system can be divided into three groups.
The first group consists of the quantity to be measured in the experiment. The
sccond group contains the input parameters for the experiment. The last group
holds the parameters describing properties of the system.

In this experiment the quantity that is to be measured is the tension, T, in
the cable. Since the tension is changing along the length of the chain, a position
for the tension measurement must be chosen. The two logical places to measure

tension are at either end of the chain. The tensions at the bottom are of interest

21



22

to those designing anchor systems. In this experiment the forces that the chain
would exert on an object are important so tension is measured at the top.

The input parameters describe the initial conditions of the system and the
forcing function that will move the top end of the chain. The initial conditions
consists of the scope of the chain S, the depth of water H and the angle of
inclination the line of action makes with the water, 8. Although the static tension
or pre-tension is an important consideration it is not included here because it is
set once the scope and depth of water are sct.

To describe the forcing function that acts on the cable end, two parameters
are needed. First, the frequency at which the oscillation occurs, w, is important.
Second the amplitude of the oscillation, R, is important. Since the oscillation is
assumed to be a pure sinusoid, the amplitude can be either a velocity amplitude
or a displacement amplitude. Once one is fixed, the other is set. In this case
displacement is chosen because it gives a better physical understanding of the
model.

The system parameters describe various properties of the physical set up. For
the fluid, the important properties are the viscosity, 1, and the density, p;. For
the cable the descriptive parameters are a measure of the mass of the chain, mc,
and the effective Young’s modulus, E. The measure of the mass of the chain is
defined as the density of the chain material minus the fluid density. Thus m, is
seen to have the same units as density but is modified to account for buoyancy.
E is called the effective Young’s modulus because it is not the Young’s modulus
of the material but the slope of the stress strain curve for the whole chain.

A final property of the chain that must be described is its drag. Suhara et al
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Figure -1.1: Parameters for the catenary mooring system
(1981) used for their parameter the diameter of a cylinder D, having the same

volume as the chain parameter, This quantity is just to give a characteristic length

1. A last physical parameter that must be included is the gravitational

ion, g. Figure .1 shows these variables,
4.2 Derivation of the Dimensionless Equation

Note that under the propertics of the cable, no account was made of the bending
stillness.  This is consistent with the catenary analysis which assumes that the
bending stiffness of the cable is zero,

These parameters form the {unctional relation for the system. To start the
derivation of the functional relation, the tension is assumed to be a function of

the other properties:



T =¢{ps,n,me,E,D,S,H,g,R,w,8}. (4.1)
The quantity 0 is alrcady dimensionless and thus may be left out of the analysis

for now. Including T in the expression on the right hand side of Equation 4.1 and

reordering this expression the following is obtained.

${ps,me,p, E,T,g,w, R,D,H,S} =0 (4.2)

To allow the greatest amount of control in deriving the functional expression,
the method of synthesis with linear proportionalities is used by Sharp (1981).
Either the fluid density or the modified cable density is used to cancel the mass
dimensions where they appear. The parameters that have units of mass in them
are g, E and T. p is divided by p; to get v and E and T are divided by m,. Also,

m, is divided by p;.

¢{u, 'y%,m—l‘,g,w,s, D, 1, n,':—;} =0. (1.3)
Linear proportions are created from the first five parameters v, E/me, T/me,w and
9, the rest already having dimensions of length except for the term m,./p; which
is dimensionless and, like 0, will be left out from the analysis for now. It is noted
that E has the same units as pressure and T is a force. All the possible linear

proportions are listed below.

o () sl
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£\ T\ v*m, 12
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The five parameters should give 10 linear proportions (4 + 3 + 2 + 1) but we
only have 9 because linear praportions can not be formed from the parameters v
and T. From the 9 groups only 4 are needed, however each of the variables must
be chosen at least once and they must all be interrelated.

A little art and instinct is needed here to select appropriate groups although
the groups sclected can be compounded to form any of the non-selected groups.
Iowever a good place to start is to select the term with 7" in it. Since T is the
quantity we are inlcrested in, only one term with it should be selected. We have
a choice of three but the term with T as a ratio of the tension to the weight of
the cable figures prominently in the static analysis. Thus the group (T/m.g)'/*
is chosen.

Also, it would be most useful to have E in terms of properties of the cable so
E/m.g is chosen.

tait )

The forcing freq isan imp ion so it should appear in only

one factor. This gives a choice of selecting one of the following: g/w?, (E/mw)'?,

(v/w)'"? or (T/mw?)'/*. The terms with v and E are eliminated because they
are not as relevant to the experiment as the other two terms.

It is possible that the tesm T/m.w? could prove to be a very useful parameter,
however the other term is selected as g/w? because it is desirable to have T in
only one term.

The last term selected is ¥*/3/¢g"/® and it is chosen to provide the missing

parameter, v. Thus the list of linear proportionalities becomes:
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Now each term is divided by one of the four lengths to make the expression
dimensionless. Again, suitable selections must be made that will allow useful
parameters to be formed. The term v*/2/g'/® is the only term that has both the
fluid viscosity and density, so it would make sense that it should be divided by
the drag parameter, D. The term (T/m.g) nceds to be divided by three lengths
to make it dimensionless. Choosing the terms D?H will give the ratio of tension
to the mass of a length of chain equal to the depth of the water. (Actually, the
term differs from this value by a factor of 7/4, however constants, or lack of them
do not harm the validity of a dimensional analysis.) The term E/m.g needs to
be divided by only one length to make it dimensionless and S is chosen. It would
seem to make sense to have a parameter that contains both the amplitude of
motion and the frequency, so g/w? is divided by R. Finally, the length terms are
made dimensionless to give R/H, S/H and D/S. Also, the 8 term and the m./p,

are reintroduced into the equation to give:

morr =375 (ak) D50} 00

Several of the parameters in this equation are familiar. The tension term and

the ratio S/H are used in the static analysis. The term v*/3/g'/*D is a form

of the Froude-Reynolds number. Also the term R/D is similar to the Keulegan-
Carpenter number.

Parnell and Hicks (1976) gave as their dimensionless parameters: p;/p., T/mgL,

CpL/D, E/p.gL and U?/gL. All the terms except for CpL/D and U2/gL are
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found in cquation 44. CpL/D is not there because of the way that the drag
is defined (Cp is a measure of the drag) and U?/gL is not there because the
experiment is based on the displacement amplitude not the velocity amplitude.
Suhara et al (1981) have as their parameters wX,/To, Zm/ D and Zpw?[g.
The first parameter listed is just a measure of the static tension. The terms Zy/D,
and Z,w?/g can be found in equation 4.4 except that the amplitude of the forcing
function is used instead of Z,, which is the motion of the center of gravity of the

chain. g/w?R is very similar to the o term used by Suhara.
4.2.1 Dimensional Analysis Using a Velocity Amplitude

As was mentioned in the previous section the forcing function can be given in terms

of a velocity amplitude as well as a displ litude. It is i ing to

repeat the dimensional analysis of catenary using this. The equation for tension

is now as shown below.

T = ¢{ps,smc,E, D, S, H,g,V,w,0} (4.5)

The initial part of the analysis is carried out exactly as before. This gives the

equation as shown below.

é{u,mﬁt.m%,g,w.ms,o,u,’:—;}=o. (4.6)

There are now six variables from which linear proportions can be derived. The
six variables should give 15 groups of linear proportions, however no groups can
be made from the combinations v and T and E and V so there are actually only

13 groups. These groups are listed below.
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The same rules are used to select the parameters as before except this time five

groups are needed. Some of the groups are the same as in the previous method and
are still significant parameters so they are sclected again. These are the groups
(T/meg)*/3, (E/m.g) and g/w?. There are still two more groups to select, at least
one of which must contain v and one V. There are two groups that fulfill this
condition and are familiar. These are the group v/V (wlhich can be developed into
a Reynolds number) and the group V?/g (which can be developed into a Froude
number).

To complete the analysis all terms are divided by one of the lengths in the

system to obtain the dimensionless equation below.

T _[VD(E\ g V*SDm
megDTH "”{ ( ch) "@R'Dg’ 'Sy’ "} @n

There are other groups that can be found here that arc familiar. Compounding
the group g/w? with V?/g and taking the square root will give the Keulegan- Car-
penter number. Combining the Reynolds number with the Keulegan-Carpenter
number will produce the frequency parameter, v/w%.

The analysis based on the velocity amplitude gives more of the numbers fami-
lar to hydrodynamics. However this is just because of the way that the forcing
function is defined. It would be equally possible and valid to repeat the analy-

sis using an acceleration amplitude instead of the velocity amplitude but no new



insights would be gained from this exercise.

4.3 Validation of the Model Using the Static
Case

As with many problems in hydrodynamics, it is difficult to prove that the dimen-
sionless cquation derived is indeed valid. However, an expression for the dynamics
of a catenary mooring system must include the parameters for the static system.
Thus, if all the terms that contain information about the dynamics of the system
are set equal to zero, the remaining terms must describe the static situation.

To start, examine equation 4.4. The most obvious terms that contain dynamic
information are the terms involving frequency of the forcing function and the
amplitude of the motions. Thus the term g/w?R is dropped from the equation.
Also since there is no motion, the viscosity of the water is not relevant. The angle
0, the angle that the forcing function acts at is also irrelevant now. The diameter
of the cable was important as a drag parameter as was the ratio m./p; so they
can be removed. The removal of these expressions leaves the following equation

that describes the tension in a static catenary.

e ~#{(5) ) w

Usually the catenary is assumed to have infinite axial stiffness so the term

E/m.gS is ignored but in some cases (as in Collipp et al (1962)) it is included.

Thus the static tension is dependent upon the weight per unit length of chain and
the ratio S/H.

Looking at the catenary equation as shown in Chapter 2, we find that this is
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the case. This is not surprising, since we started with this equation, however if
this had not worked it would have pointed out that there was something wrong

with the theory.

4.4 Selection of the Experimental Parameters

From the functional equation ( ion 4.4) three were chosen to be
the variables in the experiment. These parameters are: T/m.gD*H, g/w?R, and
0 . Several notes should be made at this time explaining why these parameters
were chosen and why others were not.

It might seem inappropriate to include the tension term in this list since that
is what is to be measured, however this is due to the fact that the force that
we actually measure is a combination of the static and dynamic force and one
of the parameters that is varied is the static tension. These two forces could be
separated, however this serves no useful purpose since the dynamic tension that
we are interested in is a combination of both.

Since the system will be operating in water and since the constant g will not
change significantly, there is no need to change the fluid property v. Also, the
material used to make the model chain is steel which is also the most common
material for commercial chains, thus the material property m, does not need to
be changed. This is also true to a certain extent for the Young's modulus of the
chain E. However, as E is defined as the Young’s modulus for the whole chain,
ihe geometry of the chain becomes important. Nonetheless, this was considered a
small effect in shallow waler mooring and thus no attempt was made to model it.

This left the following parameters that were important to the experiment:
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T/megD*H,g/w?R, and 0 . To do a complete analysis of the system, these pa-
rameters would need to be changed, one at a time, while the others remained
constant. However, this soon means that total number of tests needed is too large
to be accommodated. Thus some limits had to be imposed.

From previous work it was found that frequency is the single most important
parameter, thus it must be varied throughout the tests. Also, the experiment
was initially designed to examine response as the forcing function was applied at
various angles. Thus the angle that the line of action makes with the water is
also important. Finally, as mentioned before, the pre-tension in the chain was
changed.

With the experimental parameters selected, the experiment and the necessary

cequipment could be designed.



Chapter 5

Experimental Work

The experimental portion of the work had as its goal the measurcment of tension
at the top end of the chain, while the chain underwent different forcing functions -
with different pre-tensions. Experiments took place between September 26 and

October 31990, in the wave/towing tank at M ial University of Newfoundland.

The wave/towing tank was selected because it provided the largest depth of water

while having sufficient length for the chain to be stretched out.

5.1 Equipment

The main item of equipment needed for the tests was a device that could apply a
forcing function to the top end of the chain at different frequencies and at different
orientations in the vertical plane. The forcing function had to be sinusoidal and
the device also had to be capable of supporting the chain near the water and
attaching to the catwalk. A schematic of the equipment is shown in Figure 5.1.
Since this was a very specialized item of equipment, there was nothing suitable
readily available. Thus the apparatus had to be designed and built. The device

designed was a variation of a scotch yoke. A variable speed electric motor rotated
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Figure 5.1: Overview of equipment for imposing a forcing function on a catenary

mooring system
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Figure 5.2: Side view of the equipment

a disk on which was mounted an cccentric pin. The yoke had a vertical slot in

which the pin would fit. The pin was free to move in the vertical slot but wonld
force the yoke to follow its horizontal motions (see Figure 5.2). Horizontal and

vertical in this description mean parallel and perpendicnlar to the base plate,

The motor selected for the experiment was a 1/3 Hp variable speed clectri
motor. The output shalt was attached to a gear reducer which cansed a d:1

reduction in speed and a consequent 4:1 increase in torque, On the ontput shaft

of the gear reducer was located the rotating disk. The output shalt was supported

by bearings at cach end. The disk was made of steel while the rest of Lhe a

anbly
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was made of aluminum. The reason for using steel was to add inertia to the system.
Since the pretension in the chain would add energy to the system over half the
stroke and subtract energy for the other half, the inertia was needed to smooth the
motion out. The calculation for the force required to move the chain was based
on the classic mechanical design problem of a continuously operating punch.

The block was attached to the front of the yoke and ran on rails. It provided
a support for the two way force transducer and, through it, the chain. Under the
block, a slot was cut in the support plate through which the chain hung.

The support plate was mounted under the catwalk and was free to tilt relative
Lo the water as shown in Figure 5.3. Once at the desired angle it was held in place -
by bolts from the side frame to the mounting frame. It could be placed in one of
six angles: 0, 15, 30, 45, 60, 75, and 90°.

The pivot point of the base plate was located at the center of the line of motion
experienced by the top link of the chain. The reason for this was to make sure
that the motion of the chain for all tests took place about a common center.

Most of the device was made from 3/8 inch aluminum plate although steel was
used in some places like the shaft in the gear reducer and the disk as mentioned
above,

Frequency was changed through the controller on the variable speed motor.
The speed control for the variable speed motor was a simple dial with 10 grad-
uations on it. After the runs, the actual speed was calculated by examining the
accelerometer trace, however during the tests the speed was set to approximately
the desired value through the dial which was calibrated with a strobe light.

Since the design of most of the device was unique, complete technical drawings
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cotwalk 41]4

Figure 5.3: The equipment mounted in place hoth level and tilted



Figure 5.4: Photograph of the equipment

and assembly drawings are given in Appendix C. Overall the performance of the
equipment was very good. Wear was noticed on the pin/yoke interface, however
that was to be expected and the wear during the tests was negligible. The only
improvement that could be made would be to allow either the top rail or the
bottom rail to move and be set in place after the wheels were mounted. This
would allow a better fit in between the rails for the wheels on the yoke and the
block.

Figure 5.4 shows a photograph of the side view of the device. A close up view
of the two way force transducer (described in the next section) is shown in Figure

5.5. The equipment mounted in place is shown in Figure 5.6.
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Serial number 1426469
Charge sensitivity | 315 Pc/g
Voltage Sensitivity | 258 mV/g
Natural Frequency | 13 kliz

Table 5.1: Parameters for the accelerometer

Conlfiguration | Wheatstone Bridge

Type Student EA-06-120LZ-120
Resi 120 © +.03%

Gage factor | 2.05 + 0.5%

Strain limits | 5%

Table 5.2: Parameters for the strain gages

exerled on the driving mechanism (the block) while allowing the top link of the
chain to pivot freely. Since the angle of the top link was not known and always
changed, force had to be measured in two directions which could then be added
vectorially to get the total force.

The two way force transducer measured force both parallel and perpendicular
to the plate. It was made of two sets of thin plates instrumented with strain
gauges. One set was parallel to the support plate and the other was perpendicular
to it (see Figure 5.9). Each set was made of two identical plates with each plate
having two strain gauges fixed in perpendicular directions. Properties of the strain
gauges are shown in Table 5.2. The four strain gauges in each set were connected
in a Wheatstone Bridge configuration. See Figure 5.10 for the circuit diagram.

Each plate was fixed by machine screws to a support at either end. At one

end, the support was fixed to the block through a pivot and at the other end the
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supports from the two transducers were joined together. The pivot connections
allowed the axial forces to be measured without introducing the problems that
bending forces would cause.

The transducer was calibrated by clamping it to a rigid structure and loading
it with known weights. The parallel and the perpendicular transducers were cali-
brated independently, and checks for one set interfering with the other were made.
There was no interference observed and thus it can be concluded that the forces
were decoupled. The data acquisition system was used to check on the linearity
of the voltage-force curve. In general, the correlation coefficient, r, for the trials
was .999 indicaling a good linear fit.

The transd was designed Lo wil a maxi force of 500 N. However,

in actual tests, the force never went above 150 N.
Although for most of the tests the force transducer measured tensile stress,

there were ions when ive forces were i This occurred

when the test apparatus was tilted at 90° as can be seen in Figure 5.11. The

t d ioned well in ion, however in this configuration the top

link put a bending stress on the perpendicular set of plates and this caused an
error in the readings. The error was eliminated by using a small piece of wire to
attach the chain to the force transducer, however this solution was implemented
only after the first run had been made.

The accelerometer was powered by a charge amplifier and the signal from it was
fed into a filter. The strain gauges were connected to a strain gauge conditioner
and amplifier and then also to the same filter. This filter was a lowpass filter

set (o iilter out frequencies above 250 hz. From the filter the signals, one for
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Open link, galvanized stainless steel

fic Gravity 788
per unit lougth 768 Kg/m
TTardness 90 RB

Equivalent Young's Modulus | 29 GPa

Table Properties of the chain
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i
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&
Figure 5.12: The test chain

the accelerometer and two for the force transducer, went to a Keithley analog

Lo digital converter. rom here it went to the 286 PC computer and then was

transferred Lo the VAX 8530 for further ltering and analysis.
5.3 The Test Chain

The chain selected was an open link steel chain. Properties of the chain are found

in Table 5.3 and the dimensions of the chain are shown in Figure
“There was no effort made to model a particular chain since many different kinds

are used. However the modelling laws dictate that the density ratio between the
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working fluid and the mooring line material must be the same in both model and
prototype. Since water is used in both instances (the density difference between
salt water as used in the prototype and fresh as used in the model is negligible
for this experiment) the mooring line material density should also be the same in

model and prototype. This justifies the use of a steel link chain.

5.4 Procedure

As was derived in Chapter 4, the variables to be changed in this experiment
were the pre-tension, and the frequency and angle of the forcing function. The
frequency was very casy to change through the controller of the variable speed
motor. Angle was a little more difficult to change because the base plate had to
be tilted and then fastened in place at the new angle. The pre-tension was the
most difficult to change because it involved moving a 30kg anchor.

With this in mind, the following procedure was followed. The apparatus was
initially set up in a configuration with the base plate level to the water and the
anchor set to give the smallest pre-tension in the chain. The first test was then
run with the lowest frequency, followed by tests with increasing frequencies up
to a maximum. At this point, the angle of the basc plate was changed and
the frequencies run through again. This continued until all the angles were run
through and then the pre-tension was changed.

Frequencies were started initially at 0.5 Hz. and then increased to a maximum
of about 4.0 Hz. Frequencies below 0.5 Hz. were not significant since they were

well into the quasi-static area. Frequencies greater than 4.0 1z, were not used

because the equi scaled ies are not d in nature.
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The start frequency, the cut off frequency and the number of frequencies sam-
pled underwent small changes through out the series of experiments. For example
it was found that under the largest pre-tension condition and at an inclined angle,
the motor could not provide enough torque to produce pure sinusoidal motion at
a frequency of 0.5 Hz. so the tests started at 1 Hz.

‘The equipment was run for about 10 seconds before data recording began to
allow transients to die off. Also, observations were made during the first series
of tests to make sure that neither the equipment nor the catwalk vibrated to a
significnat amount

There were four angles used in this experiment: 0, 30, 60 and 90°, although *
as mentioned before, some problems were found at 90°. There were also three
pre-tensions used: 15N, 20N and 30N.

5.5 Data Analysis

As mentioned before the signals from the accelerometer and the strain gauges
were filtered at 250 Hz. before the A/D converter. After the data were collected,
they were sent to the VAX 8530 computer for further analysis.

The analysis consisted of two stages. First, the signal was run through a
program which applied a moving average with a window of 10 to the data set.
‘This removed much of the random noise in the signal.

However it was observed that there was still some noise in the system. An
examination of the signal revealed that much of this noise was found in the 40 to

90 Hz. range. This is possibly due to the electrical noise from the motor, or the

ical noise (vibrations) from the machinery ing (g gears meshing).
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1t is interesting to note that there was not a significant contribution at the 60 Hz.
frequency; a common frequency for interference. Thus it was decided to filter the
signal again to remove components of higher frequency.

To perform this a Yule-Walker filter was designed. Looking at the signal it
was determined that the significant portion of it was composed of frequencies less
than 25 Hz. for the high frequency tests decreasing to less than 10 Hz. for the
low frequency tests. Consequently, two filters were designed, one that cut out
frequencics of more than 25 Hz. and one that cut out frequencies of more than 15
Hz.

The signal from the lower frequency tests appeared to be noisier than that °
from the high frequency tests. The reason for this is that the force in the small
frequency tests was on the order of a tenth of a Newton and thus the signal output
from the strain gauges was quict weak. For the higher frequency tests the forces
involved went as high as 100 Newtons and effectively drowned out the random
noise.

A graph showing the results from a low frequency test with and without fil-
tering is shown in Figure 5.13. Graphs of the signal versus the frequency for the

two Butterworth filters used are shown in Figure 5.14.
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Chapter 6

Discussion

“The discussion in this chapter will be broken into two parts. The first will look
al the data from the tests and discuss and draw conclusions from this data. The
second section will examine the method and effects of scaling the model tests to

a prototype environment.

6.1 Experimental Work

‘The data from the tests were analyzed and graphs were drawn of force against
time for each run. These graphs are shown in Appendix D. From these graphs
it was possible to find the dynamic force ratio (DFR). The dynamic force ratio
is the ratio of the maximum change in the force (ie from trough to crest) to the
static value. For example, if the static pretension value was 15 N and the force
varied between 10 and 40 N, the DFR would be 2.

Once all the DFR values for the runs were calculated, they were plotted against
the frequency for the three different values of pretension and are shown in Figures
6.1 - 6.3. These graphs enable several conclusions to be drawn.

The four conditions first described by Suhara and discussed in Chapter 4 can
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be scen in these graphs. The quasi-static region starts from zero frequency and
extends to between about 0.6 [z and 1 Hz. with the 0.6 Hz. in the small pre-
tension condition and the | Hz. in the largest pre-tension condition. It should be
noted that the end of the quasi-static condition was arbitrarily taken to occur at

a DFRof 1.2

The nest was the b ic oscillati dition and it extended
from the end of the quasi-static condition to the location at which the slope of
the lines from the DFR versus {requency graphs suddenly increases. This point
was at about 2 Hz. in the three graphs although for the smallest pre-tension, it
was not well defined.

The snap condition was the next region and it was only clearly observed in
the large pre-tension graph. The end point of this region is defined as the point
at which the DFR starts to drop off aud in that graph it ranged from 2 Hz. to
about 2.6 Hz. The medium pre-tension graph starts to show some drop off at
about 3 Hz. but the small pre-tension graph shows no indication of ending the
snap condition.

The last condition is the free fall condition and in this area the DFR starts
to decrease. As mentioned, this is only clearly scen in the large pre-tension test.
"This condition starts at the end of the snap and continues indefinitely.

When these graphs arc observed together, it is easy to see the effect of pre-
tension on the DFR (which is a non-dimensional indication of the force). In the
smallest pre-tension serics, there is little indication of the change in the different
conditions where as in the large pre-tension case, the sections are well defined.

This is due to the scope of chain in each case. As the pre-tension increases,
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the length of chain from top to the contact point with the bottom increases. As
well, the length of chain is in place in more of a horizontal condition, or, more
importantly, in a direction perpendicular to the force of gravity.

The increase in the length of the chain adds more weight to the suspended
portion of the chain. The increase in inertia acts to increase the dynamic forces
in the harmonic oscillation condition. The increase in length/weight acts in the
snap and free fall conditions and causes larger forces to be experienced.

It would appear that the pre-tension in the chain affected not only the magni-
tude of the DFR, but the frequency at which the maximum value was detected.
The three tests show a trend in that at the pre-teusion increases, the frequency
of the maximum DFR decreascs.

The effect of angle on the maximum force can also be observed in these graphs.
In all cases the force from the test at 0° (ie when the slider was moving in the
horizontal plane) was a minimum. It is also observed from the large-pretension
test that the run at angle 90° (ie in the vertical plane) produced significantly lower
force than the other runs. The tests at the two intermediate angles produced by
far the largest dynamic forces.

This is contrary to what has been stated by others. Suhara et al (1981) and
Pattison (1974) felt that the maximum forces were to be found by oscillations
in the vertical plane, while van Sluijs and Blok (1977) stated that horizontal
oscillations induced the major part of the line tensions.

However the results reported here can be supported by looking at how the
chain moves. The maximum motion of the chain will take place when the forcing

function is applied at an angle tangent to that of the upper link when it is in its



free hanging orientation.

The tests involving starting from zero Hz. and increasing to the maximum
also produced interesting results. Some sample results {rom these tests can be
seen in the Figure 6.2. The times taken to reach the different stages were on the
order of one cycle for the harmonic oscillating condition and three to five cycles
Lo reach the snap and frec-fall conditions. From this the following can be said.

First, it is apparent thal no significant transients exist in the system. This is
important because transients could have caused larger initial forces. Second, it
would appear that the chain reacts very quickly to an imposed displacement and
produces the maximum dynamic forces almost immediately. The delay shown in

the graphs is caused mainly by wailing for the motor to get up to speed.

6.2 Scaling the Model

It is important to examine how the modelling of catenary mooring cables applies
in the ocean environment. The first step in this is to examine scale errors.

The term 0 is an angle and thus transforms identically. Geometric similarity
can be achieved and thus the terms R/D, S/H and D/S will be modelled correctly.
Also, since the experiments take place in water and the material is steel, the ratio
me/py will be correct.

The term v*/3/g"/* D accounts for the hydrodynamic properties of the cable. In
this experiment, the Reynolds number based on the diameter of the chain would
be over 10,000 for motions with velocities above about .1 mm/s. This would place
operation of the model well into the turbulent range, thus scaling should not have

much effect on these properties. This is borne out by the results of van Sluijs and
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Blok (1977).

The term E/mgS accounts for elasticity in the cable. Although for deep
water, clasticity is an important parameter, this study is aimed more at waters
with a depth measured in tens of meters rather than hundreds. Thus elasticity
should not have a great influence on the system.

‘This leaves the parameter w?R/g as the most important. This is the ratio
of the acceleration that the top end of the chain will undergo to gravitational
acceleration. From the tests, non-dimensional graphs of the DFR can be made
using this parameter and are shown in Figures 6.5 - 6.7.

It should be noted that there are strict limitations on the use of these graphs.
‘This is due to the fact that the value R was not changed during the tests. In
retrospect it would have been useful to change R during the tests, however this
would have led to time constraints in the experiment.

Nonetheless, it is possible to work with this limitalion. Besides the w?R/g
expression, the only other place that R appears in the dimensionless equation is

in the expression for the di ional litude of motion B/H. This means

that the graphs are valid only for situations with similar R/H values.
To get an idea of what range of frequencies is representative of real ocean data,

some values are examined. A period of 10 sec. would correspond to an w of about

.63 rad/scc. This substituted into the w?/i/g expression and combined with g
would give a value of .04R. Thus, from Figure 6.3a, to get a significant dynamic
force, R would nced to be on the order of 10 meters.

Ten meters is a long stretch and most moored objects that could move 10

meters such as drill rigs and large ships would take more than 10 seconds to do
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s0. Also, because of the limitations on the It/ Il value, this would correspond to
a depth of several hundred meters which would place operation of the cable in
the range where clasticity is important. Thus it would seem that large objects
respond in the range where the quasi- static analysis will suffice.

However, there are smaller objects which require mooring (small fishing boats
and buoys, for example). An example shows that for a given situation with a
similar 12/, significant dynamic forces will occur.

If there is a stretch of wa8Xsimilar R/ H, significant dynamic forces will occur.

If there is a stretch of water 10 km long with an average depth of approximately
15 meters and a wind of 70 km/hour blowing for 1 hour, waves with a period of
3.0 scconds and a significant height of 1 meter will be produced as given in the
US Army Corps of Engincers’ Shore Protection Manual (1984). A can buoy in
this wave field would respond at the same frequency with approximately the same
amplitude of motion. The w®R/g parameter for this scenario is 0.23. From Figure
6.3a, it can be scen that this corresponds to a dynamic amplification factor of
about 1.5.

This example uses the 1/3 significant wave height. However speed up tests
show that the response is very quick, thus in reality a larger R value would be
expected.

Another example comes from the design manual that the Canadian Coast
Guard uses for buoy design. The criteria that they give for the design conditions
of buoys is that the buoy must survive a 2 meter wave with a period of 4 seconds.

This corresponds to a DFR of 2.5.



Chapter 7

Conclusions

This work has demonstrated several properties and led to several observations
from which conclusions can be drawn. These have been discussed in Chapter 6,
however they will be summed up here.

To begin with, the different areas of operation that Suhara first mentioned
have been shown. These areas are frequency dependant and are demonstrated
best in the test with the 30 N pre-tension, however they are seen to a certain
extent in the other tests as well. It is important for the designer to know what
area their structure will operate in as this will give an indication of the dynamic
forces amplification that would be expected.

If the line responds in the quasi-static range, there is no need to include a
safety factor for dynamic forces (although there may be other reasons to use
safety factors that still apply such as the temperature changes found in the North
Atlantic). However, from this work it is shown that it is possible to have dynamic
amplification factors as much as five times the static if the line is forced at a
sufficiently high frequency. It should be noted again here that others have reported
even larger DFR’s (van den Boom (1985), Suhara et al (1981)).
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Also, statements about the effects of different forcing functions can be drawn.
It was shown that the dynamic force increases with increasing pre-tension. It was
also shown that the largest dynamic forces occur at angles between the vertical
and the horizontal.

Finally, several conclusions about scaling the experiments can be shown. It
was concluded that it is theoretically possible to model mooring experiments. The
best parameter for this seems to be the w?R/g factor. This experiment indicated
that for large moored objects, the response of the line places the response in the
quasi-static regime. However with smaller objects such as buoys, dynamic forces
are significant.

The designer must know the environment in which their design is to be placed
and then an idea of the dynamic forces expected and the allowance that should
be made for them can be estimated.



Chapter 8

Recommendations

As a result of this work, recommendations for future work can be drawn. It would
seem that an important extension to the work would be to do more tests with
different R values. Ilowever, alter doing these tests, it is f=It that a different line

of i ion would be more

Having proved that it is possible to scale mooring experiments (both shallow
and deep) ways should be found to improve the realism of the experiments. There
are two ways that this can be done. The first is to add a current Lo the experiments.
There are many situations in the ocean environment where currents exist and are
important to moored objects. Currents could add a strumming phenomena which
could change the dynamic forces. However this would involve running the tests
in an area where there is flowing water and facilities for this are scarce (although
it would be possible to do this work in the flume tank at the Marine Institute in
St. John's).

The second way would be to design a new forcing device that could simulate
the real motion that a moored object would experience. Two possible means exist

for this. The first would be to have a rotating disk on which the mooring line was
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attached. Studies have shown that a moored buoy experiences a nearly circular
trajectory. Force would be measured between the chain and the disk or along the
shaft that runs from the disk. It is anticipated that the measurement of tension
would be the major technical difficulty with this experiment.

Another possible method of simulating motions of moored objects would be
with two actuators. The actuators would be configured much like the two way
force transducer described here. By controlling the actuators, any type of motion
could be simulated. Unfortunately, the equipment involved in this method would
be quite costly.

Nonetheless, it would be of great benefit to be able to know what dynamic
forces would exist, thus avoiding overly conservative or dangerously small safety

factors.



References

Adams, R.B.,. (1969) Analysis of Spread Moorings by Dimensionless Functions,
(I)sl élnmml Offshore Technology Conference, Houston, Texas, Paper Number
TC 1077

Collier, M.L. (1972). Jr. Dynamic Similarity Laws Applied to Cables, Journal
of Hydronautics, Vol. 6, No. 2.

Collipp, B. G. Borgman, and L. E. M:ller, C. K. (1962). A Method for Analyzing
Mooring Line Catenarics, Report B

Edwards, C.H., and D.E. Penney. (195’) Calculus and Analytic Geomelry,
Prenuce-liull lnc Englewood Cliffs, NJ.

Faure, T.D. (1989) Experimental and Numerical investigations of mooring Line
Dynamics, Technical Report TR-HY-029, Hydraulics Laboratory, Division
of Mechanical Engineering, National Research Council Canada.

Fox, C., (1950) Calculus of Variations, Oxford University Press, London.

Hwang, Y.L. (1986) Nonlinear Dynamic Annl)’sls of Mooring Lines, 5th Interna-
tional Symposium of the OMAR, Tokyo.

Johansson, P.I. (1978) Non-lincar Dynamic Response of a Mooring Line, Publi-
cation No. 106-March 1978, Dct Norske Veritas, Ilovik, Norway.

Liu, F C. (1973) Snap Loads in Lifting and Mooring Cable Systems Induced by
urface Wave Conditions, Originator’s Report Number - 1288, Naval CIVII
Engmcenng Laboratory, Port Hueneme, CA 93043.

Longoria, R.G., J.J. Beaman, and R.W. Mlk.sad (1991) Nuu]mmr llydmdy‘
namic Forces in Random O: y Flow, Offsh
Symposium, Trondheim, Norway.

Luo, Y. (1990) Tension Response Sw.lslncs and Fahgue /\lla.lysls of Catenary
Mooring Lines, E Offshore M Nor-
way.

Nakajima, T. (1986) A New Three-Dimensional Quasi-Static Solution for the
Multi-Component Mooring System, 5th International Symposium of the
OMAR, Tokyo.

Nielsen, S.K.R., (1976) Statical Analysis of Mooring Systems. Danish Ship Re-
search Lnbcnlory, Lyngby, Bulletin No. 41,

Owen, D.G. and B.T. Linfoot (1976) The Development of Mathematical Models
of Smf(le—l’omt Mooring Installations. Eighth Offshore Technology Confer-
ence, Huston, Texas.




69

O, Y (1954) Puduanenial Analyis of Decp Sen Mooring Line in Statie
il ‘Applicil Ocean Research, Vol. 6, N

,and M.S. Triantafyllou (1990), Non- linear Ca-
sting in Water, Journal of Sound and Vibration

5. (1976) Scale Modeling of Large Elastic Under-
76-WA/OCE-S, The American Society of Mechanical
7th St.'New York, NY.

of Force Generated by Harmonic O
es in Water, report number SPD 589-01, David
I and Development. Center, Bethesda, MD.

Itadwan.
Moo

i V. Leavitt. (1986) Design Curves for Chain
s, 3ih Inlernational Symposinm’of the OMAE, Tokyo,

Sharp, J.b, (1981) Uydrautic Modelling, Butterworth & Co. Toronto, Canada.

Shiaw, P-K. (1989) Statistics of Mooring-Line Tension in Random Waves, 21st
Annunal Offshore Tec inology Conlerence, llouston, Texas.

Sincack, 1% and M. Lalani. (1990), Developments in Fatigue Design Guidelines
for” Anchor Chains as Mooring Lines, 22nd Anuual Offshore Technology

Conference, Houston, "Texas.

[N i i in The Ilydrodynamic Drag of Roughened
ar (') lm(luu In 13.L.. Miller. Royal Institution of Naval Aichitects.

Suhara, T I\nlum\nn and Watanabe, K.
(1981) Dynamic or & g Mooring Chain, [3th
ol Offshore Iulmuhnu (‘un[t’:eu(‘c‘ Houston, Tecs, . AT5-421,

Stansl
P

liyam, u o, I

na, Y. Koga. (1987) Approximate Analyses
ation of \hmnm, . Research Institute for Applied Mechanics,
yushu Unive

s ML and
Oth Anmial Offshe

J. ok, (1977) ‘The Dynamic Behaviour of Mooring Lines,
 Technology Conference, Houston, Texas.

van den Boow (1985) Dynamic Behaviour of Mooring Lines. Behaviour of Off-
shore Strnctures, Amsterdam,

I‘l\l)\l ADYN Mathematical \Indels Report > \umbcr CR8$2,019,
il b g Laboratory, Port Hi A 9304




70

Appendix A
Derivation of the Catenary Equation

Figure 1 shows a catenary mooring system with the origin of the coordi-
nate system at a point where the slope of the line is 0. At the top end there
is a tension T', which acts at angle ¢ to hold the line in place, and the line
has a uniform mass per unit length of w.

The tension can be broken into components in the z and y direction,
giving the folloving equations:

T, = Tcos$
T, = Tsiny=wS. (1)
At the point (z - y), we have
dy _ _Tsing _ wS
dz —tamb—Tcasw_ Teosth’ @

Differentiating with respect to z, remembering that 7 is a function of =
we get

&y w  dS
& " Teospds’ @
We know from elementary calculus that

s _ dy\*
dz L (dz) .
Substituting the above equation into Equation 4 gives
&y w dy\’
& Ty (dz\' “)
The above is a standard second order differential equation with a standard

method of solution. Let p = dy/dz, then dp/dz = d’y/dz?. Substituting into
Equation 5 and rearranging yields,
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The Cotenory Curve

L b w
Vi+pidz  Tcosy'

Both sides of this equation are integrated to give.

1 w
[7e=t= [ ramgte
A standard table of integrals gives as the solution for the left hand side:

In(p+ vp¥+1) + C\. This is recognized as the hyperbolic function sinh™" p.
Thus,

sinh™' p= +Cy

wz

" Teosy
Since the line has zero slope at the origin, and since p = dy/dz; when

2 =0, p=0. Thus C; =0 and we have

wz

S WD
sinh™'p= Tony"



Solving for p gives:
dy wr
P =sinh Teosy (5)
Integration with respect to z of equation 6 gives:

/dy /smh ‘bdz

os

cuah

y=n ]

\l'
When y = 0, z = 0 and cosh wz/T cos ¢ = 1. Therefore Cy = =T cosip/w .
The equation becomes
T cosyp wz T cosyp
=% coshme’— w ©
It is desired o solve for the term T'cos . Although no explicit formula
can be found, this equation is well behaved and is fairly easy to solve iter-
atively. However the parameters that must be known are z and y. In the
model this would correspond to the horizontal distance from the top of the
chain to where it touches the bottom and the depth of the water. Depending
on the circumstances, it may be easier if the paramelers were the scope of
chain and the depth of water. Thus the equations will be derived terms of §
and y. From before

ds _ dy

Faad | L (d:)

dy _ . wz

i sinh Tty (7)

Combining these two equations gives

ds _ ( 2
- 1+ smh

Using the identity 1 + sinh? u = cosh? u we get




-~

z
iz Teospy’

For the point = = a the following equation for S is obtained.

. wr
§ = Acoslecos¢dz
 [Toosy
- w

Thus for any z |20

sinh s (8)
Rearranging to solve for z and substituting into Equation 9 gives

T cosyp
w

. Sw  Teosyp
coshsinh™! 7oy -~ )

‘Thus 1'cos § can be found from either Equation 7 or 10 depending on
the available information. This, along with Equation 1 provides enough
information to find T' and #.

An alternative method to solving this question is to use an energy ap-
proach. The shape is found that contains the minimum potential energy for
the system. The resulting equations are identical.
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Appendix B
Program for the Static Catenary Analysis

4
C PROGRAM TO ANALYSE THE CATENARY MOORING - BY J.F. CROSS

ccacaaaaaacaa

ANALYSIS FOR THE SLACK CASE

THE PROGRAM SOLVES FOR Z USING A NEWTON-RAPHSON METHOD AND
THEN USES Z TO FIND a/h AND CONSEQUENTLY THE TENSIONS.

SLH = THE VALUE OF (S-L)/h
Z = THE VALUE OF THE Z EQUATION THAT GIVES SLH
EPS = THE LIMITING DIFFERENCE IN THE NEWTON-RAPHSON ANALYSIS
AOVERH = a/h
SBARH = S(BAR)/h
LBARH = L(BAR)/h

a

c
c

c

REAL LBARH

DATA Z,EPS/.1,.000001/
OPEN(UNIT=1,FILE="SLACK.OUT’ ,STATUS="UNKNOKN" )
WRITE(1,100)

WRITE(1,110)

GO THROUGH SLH VALUES BETWEEN .01 AND .99
DO 10 I=1,99
SLH = REAL(I)/100

FIND Z USING A NEWTON-RAPHSON METHOD
CONTINVE
21 = 2 - (FUN(SLH,2)/DFUN(Z))

CHECK TO SEE IF SUCESSIVE 2’S DIFFER BY LESS THAN EPS
IF (ABS(Z-21) .GT. EPS) THEN
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END IF
C IF THE 2'S DIFFER BY LESS THAN EPS THE ROOT IS FOUND SO
C NOW GO ON TO CALCULATE a/h AND THE OTHER EQUATIONS.
AOVERH = 1/(COSH(Z) - 1)
T = 1 + AOVERH
TH = AOVERH
TV = SQRT((1+AOVERH)*#2 - AOVERH##2)
THETA = ACOS(AOVERH/(1+AOVERH))
THETA = THETA*180/3.1415927
SBARH = SINH(Z)/(COSH(Z)-1)
LBARH = SBARH - SLH
Pi= .5#(SBARH - SBARH*AOVERH + AOVERHLBARH -1)
P2= .5¢(SBARH + SBARH*AOVERH + AOVERH*LBARH)
WRITE(1,120) SLH,Z,T,TH,TV,THETA,P1,P2
10 CONTINUE
100  FORMAT(1X,20X,’SLACK CASE TABLE OF VALUES’,/)
110  FORMAT(1X,’(S-L)/H’,4X,'Z’,8X,'T’,8X,'Th’,8X, Tv’,4X, THETA’,
¥ 3X, *Pgrav’ 4%, 'Patz? /)
120 FDRHAT(lX 2X,F4.2,2X,F7.5,2X,F8.2,2X,F8.2,2X,F6.2,2X,F5.2,1X,
F7.3,1X,F10.2)
STOP
END

C FUNCTION FOR FINDING Z FOR SLACK LINES

FUNCTION FUN(SLH,2)

FUN=SLH - (SINH(Z) - Z) /(COSH(2Z) -1)
RETURN

END

C DERIVATIVE OF THE FUNCTION FOR FINDING Z
C:

FUNCTION DFUN(Z)

DFUN= ~((COSH(Z)~1) ##2-SINH(Z)#*(SINH(2)-Z))/((COSH(Z)-1)**2)
RETURN

END

c

C PROGRAM TO ANALYSE THE CATENARY MOORING - BY J.F. CROSS
C ANALYSIS FOR THE TAUT CASE

c
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C  THE PROGRAM ACCEPTS AN S/h RATIO AS DATA. IT THEN CALCULATES
C  THE NINIMUM AND MAXINUM POSSIBLE L/h VALUES. THE VARIABLES
C  ARE CALCULATED AT 30 POINTS BETWEEN THE MAX AND MIN L/h.
C  ALL ROOT SOLVING USE THE NEWTON-RAPHSON METHOD. BECAUSE
C SOME OF THE FUNCTIONS ARE VERY SENSITIVE, DOUBLE PERCISION
C IS USED.
4
c
C SOVERH = S/h
C LOVERH = L/H
c Z = THE VALUE OF THE Z EQUATION
c EPS = THE LIMITING DIFFERENCE IN THE NEWTON-RAPHSON ANALYSIS
C AOVERH = a/h
c LL = LOWER LIMIT FOR L/h
c UL = UPPER LIMIT FOR L/h
c
INPLICIT REAL#8 (A-H,L,0-2)
DATA Z,EPS,I/.1,.0000000000001,0/
DATA S,H/6.0,1.0/
OPEN(UNIT=1,FILE=’TAUT.OUT’ ,STATUS="UNKNOWN')
WRITE(1,100) (S/H)
WRITE(1,110)
c
C FIND THE RANGE FOR THE VARIABLE L/h
SOVERH = S/H

CALL LOWLIN(S,H,LL)

CALL UPLIN(S,H,LU)

RANGE = LU-LL

PLUS = RANGE/31.

C CALCULATE THE VALUES FOR THIS RANGE

DO 10 I=1,30
L = LL 4 REAL(I)PLUS
LOVERH = L/H
CONST = DSQRT((SOVERH)##2 -1.)/LOVERH
CALL SOLVE(CONST,Z)
AOVERH = LOVERH/(2.%2)
XOOVRH = AOVERH«(.5+DLOG((1.+H/S)/(1.-H/S))-Z)
YOOVRH = AOVERH#DCOSH(XOOVRH/AOVERH)
T = 1. + YOOVRH
TH = AOVERH




TV = DSQRT((1+AOVERH)##2 - AOVERH*#2)

THETA = DACOS(AOVERH/(1.+YOOVRH))

THETA = THETA*180/3.14159

RH = AOVERH

WRITE(1,120) SOVERH,LOVERH,T,TH,TV,THETA
10 CONTINUE
100 FORMAT(1X,5X,’TAUT CASE TABLE OF VALUES FOR S/h = ’,F4.1,/)
110  FORMAT(1X,2X,’S/h’,5X,’L/h’,8X,’T’,8X, Th’,8X, 'Tv’,3X,

+ 'THETA’)
120  FORMAT(1X,2X,F4.2,2X,F7.5,2X,F8.4,2X,F8.4,2X,F6.2,2X,F5.2)
STOP
END

C SUBROUTINE LOWLIM - FINDS THE LOWER LIMIT FOR THE VARIABLE L/h
c THE NEWTON-RAPHSON METHOD IS USED TO FIND L/h. THE

c FUNCTION AND ITS DERIVATIVE ARE CALCULATED IN LINE 1
c

SUBROUTILE LOWLIM(S,H,L)
IMPLICIT REAL*8 (A-H,L,0-2)
Zn1.
EPS = 0000000000001
1 Z1 = Z - (H/S-(DCOSH(Z)-1.)/DSINH(Z))
+ /(-1.#((DSINH(Z)##2-DCOSH(Z)*(DCOSH(Z)-1.)) /DSINH(Z)#%2))
IF(DABS(21-Z) .GT. EPS) THEN
ABC = DABS(Z1-2)
zZ=21

L = S+2Z/DSINH(Z)
RETURN

END

C SUBROUTINE UPLIM TO FIND THE UPPER LIMIT OF L/a

SUBROUTINE UPLIM(S,H,L)
IMPLICIT REAL#*8 (A-H,L,0-2)
L = DSQRT(S##2 - Hes2)
RETURN

END

C SUBROUTINE SOLVE - FINDS THE Z FROM THE Z EQUATION



SUBROUTINE SOLVE(C,Z)
IMPLICIT REAL*8 (A-H,L,0-2)
Z=3.0
EPS = ,0000000000001
21 = Z - ((C-DSINK(Z)/Z)/(-1#(DCOSH(Z)#Z-DSINH(Z))/Z¢+2))
IF(DABS(Z1-Z) .GT. EPS) THEN
Ze121
GOTO 1

D IF
L = S#Z/DSINH(Z)
RETURN

END
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Drawings for the Experimental Equipment
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Appendix D

Data from the Experimental Runs
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109

This Appendix contain the force-time traces from the experimental runs. The
data were filtered before being plotled. Information about the run is contained in
the title of the »lot. The first letter refers to the pre-tension in the test line. The
letter A indicates a pre-tension of 15N, B - 20N and C - 30N. The next number
gives information about the angle that the experiment took place with 1 meaning
horizontal and 4 vertical. The next letter S is just used as a spacer. The last two
numbers are the speed on the controller box and gives a relative measure of the
frequency that the experiment took place.
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