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Abstract

This thesis investigated the dynamic characteristics of a rotating shaft by using modal
experimental method and an experimental model has been developed for crack detection.

In this study. an imitation crack. which simulates the characteristic of a transverse crack, in
the middle span of a rotating shaft. is designed and the rotating shaft experiment setup is made
up. Experiments are carried out in different crack parameters and different size rotors in forward

and backward rotation.

It is found that the natural frequency of the rotating shaft and frequency resp

with il ing crack The i i of natural

frequency between cracked and uncracked shaft is 14.7%, and the maximum difference of
frequency response amplitude with a crack is 4 times as high as that without crack. It is also
found that the rotating shaft in backward rotation has the same vibration response as that in
forward rotation.

The experiment results show that the critical speed of the rotating shaft is sensitive to cracks.

Therefore, the method may be used in i for ion crack in rotating shafts.
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Chapter 1
Introduction

A rotating shaft is an important part in rotating machinery, such as the shaft in a
generator. Due to manufacturing flaws or cyclic loading. cracks frequently develop in a
rotating shaft. If cracks propagate in the shaft. catastrophic failure will occur. Therefore,
we try to detect these cracks as early as possible.

There are different methods to inspect cracks. Modal analysis methods. as one of non-

destructive inspection (NDI) methods. has recently become of greater importance. [n NDI

methods, ic wave, X-ray. ic-particle, ion and electric potential
difference etc. can be used for detecting crack under static condition. The acoustic-
emission method (Ivanov, [1984]. Simmons et al., [1984] and Grabam et al.. [1982]) can
be used for inspecting cracks on rotating shafts. Yet a set of specific equipment is needed

(Zhao, M. and Luo, Z. H.. [1989]). Modal analysis method has the advantages of

in i ion and i in testing. Thus, the method is widely
ployed in crack ion in rotating inery. Modal analysis is defined as the
process of izi modal (mode shapes, damping factors and

frequencies) in a system either through ytical or i The
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experimental modal approach will be used in the experiment mentioned in this thesis.
Due to cracks. natural frequencies decrease. mode shapes alter depending on the

damage i unit response i may increase or decrease depending on the

position of crack. and damping also changes. By comparing the differences of modal
parameters between a cracked and an uncracked structure. we can detect cracks in the
tested structure.

The purpose of this study is to carry out experimental modal analysis on the uncracked
and cracked rotating shafts supported on elastic bearings and to investigate the
relationship between natural frequencies and crack parameter. This study will also provide

some useful results for crack ion in i

In this study. an experimental setup for simulating a crack in a rotating shaft has been

Di and i sensors are fixed for collecting vibration

Modal were esti d and used to formulate relationships among

modal parameters: namely, natural frequencies and damping factors, crack parameters and

rotating speed.



Chapter 2

Literature Review

Fatigue cracking in a rotating shaft is one of the main reasons of failure. Crack detection

in rotating shafts has received much attention since middle 1970's. Since a crack

influences the stiffness of a shaft and the stiffness infl the dynamic behaviour of

the shaft, modal analysis or vibrati itoring can be employed to detect crack's

initiation and growth.

2.1 Analytical Approach

Kolzow [1974] first pointed out that the vibration monitoring could be useful way in
detecting cracks and Shato showed the same idea a little later (Wauer [1990 a]). The work
done by Dimarogonas [1970] and Pafelias [1974] introduced the bending stiffness

description of a rotor crack which is d ined from i The

incorporation of the stiffness change caused by a crack into the equation of motion has

been dealt with in several papers: Gasch [1976], Henry [1976] , Mayes [1976] and



Dimarogonas [1976].

Gasch [1976] developed a hinge model for Laval rotors which is a simply supported,
massless shaft carrying a rigid disk in the middle, in which he replaced the crack
mechanism by an additional flexibility and switched it on and off according to whether
the crack was closed or open. He discovered that resonances would occur as the rotational
speed reached 1/2, 1/3, etc., of the shaft bending frequencies.

Henry and Okah-Avae [1976] employed the equations of motion with a shaft section
inertia unequal to that of the cracked shaft, and concluded that there would be resonances
due to the crack when the rotational speed is equal to 1/n of the first critical speed. They
also found that the vibration response due to the crack was hardly detectable when the
rotational speed exceeded the first critical speed.

Mayes and Davies [1976] perfc d a detailed analytical i igation of a turbine

shaft with cracks. They derived a rough analytical estimation of the crack li

based on energy principle. Although they considered the non-linear equation for a simple
rotor, they obtained analytical solution by considering an open crack which led to a shaft
with dissimilar moments of inertia in two perpendicular directions.

Grabowski et al [1982] argued that in a shaft of practical interest the shaft deflection
due to its own weight is orders of magnitude greater than the vibration amplitude.
Therefore, he suggested that non-linearity does not affect the shaft response since the
crack opens and closes regularly with the rotation.

Using the concept that a crack in a member introd local

flexibility due to the strain energy concentration in the vicinity of the crack tip under
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load, Di [1983] and P et al. [1987] derived the complete local

flexibility matrix of a cracked, rotating shaft. They observed the local flexibility of the

shaft and developed an lyti ion for the effect of the crack on the dynamic
response of the rotor.
Dirr and Schmalhorst [1987] described the crack more accurately than others by a 3-

dimensional finite element analysis and i the vibration of a cracked

test rotor on the basis of measured crack shapes.

Qian et al. [1990] derived the element stiffness matrix of a beam with a crack from an
integration of stress intensity factors and then established a finite element model of a
cracked beam.

‘Wauer [1990 b] and Collins et al. [1991] developed a beam-like rotating substructure
in which, the stiffness and damping properties of a single crack are accurately modelled.
They also presented a rotating Timoshenko shaft with a single transverse crack in open
and close situation. The governing equation of motion is derived using the principles of
fracture mechanics and Galerkin's method. The equations are nonlinear when the crack
is open and linear when the crack is closed. When there is a transition from an open crack
1o a closed crack, or vice versa, some of the stiffness and damping coefficients change.

The analytical has for si ing the ical b iour of a

cracked and rotating shaft. However, the approach requires enormous amounts of
computational time and effort. Furthermore, it is not easy to obtain an accurate measure
of the crack effects using an analytical approach. Besides, the validity of the results

obtained by the analytical h can be ap

priately assessed only by experimental
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study. Therefore, experimental approach has been widely used in the investigation of the

addressed problems.

2.2 Experimental Approach

Mayes and Davies [1976] introduced some simpli: i i in relation to time-
periodic step function and showed the first experimental results on the dynamics of a
cracked shaft.

Ziebarth and Baumgartner [1981] established their crack model on the basis of detailed

I i igati They ly fc d the i of motion in

stationary coordinates and applied them to practical turbine rotors. They, then compared

the analytical result with the results of a model test. As practical indicators, they

peaks in vibrati i shifting of natural frequencies,

unstable vibrations and changes in doubl q

Imam et al. [1988] introduced a Hi: ign Analysis Techni to reduce

the d noise and elimi the h ics which exist in an uncracked case.

Based on a 3-dimensional finite element crack model and an on-line model, a prototype
on-line rotor crack monitoring system was developed and experimentally tested. The
system was installed and has been operating on a turbine-generator since 1989.

Wen et al. [1992] tested a simple experimental model system in different crack
parameters. He found, that the principal critical speed will decrease with the increase of
crack depth and there is unstable region in the vicinity of the principal critical speed. His

experimental results are in with that ined by ion and




methods.

Tamura et al. [1988], and Liao and Gasch [1992] built their experimental setup to
simulate the crack's opening and closing. Tamur investigated the region of unstable
vibration of a rotor with a transverse crack and found that there is an instability near the
rotational speed of 2/3 of critical speed in large crack case. Liao measured accelerations

of the system instead of displacements in the super critical speed range.

2.3 Summary

Previous studies reviewed above have i i the dynamic ch: istics of shafts

in static and rotational state. Most of these studies have studied the changes in natural
frequencies, mode shapes and damping ratios of the shaft due to cracks using analytical
method. The study presented in this thesis focuses on the changes of natural frequencies

using an experimental method.



Chapter 3
Modal Analysis Theory

Modal analysis is a process of determining modal parameters of a system through

ytical or i 1} h. Analytical approach is ished by using
theoretical method or Finite Element Method (FEM). The modal parameters, such as
frequencies and mode shapes can be predicted using these approaches. In the subsequent

sections, both methods, theoretical and finite element methods, for modal analytical

will be

h, will be reviewed, then modal

3.1 Analytical Approach

3.1.1 Theoretical Method

In this study, a shaft system is simplified as an uniform simply supported beam, with
mass in the centre as shown in Figure 3.1a. In order to show the analytical approach
simply, at first, we consider only the uniform simply supported beam shown in Figure

3.1b (Shabana, 1990).



Figure 3.1a: Uniform simply supported beam with mass in centre

Figure 3.1b: Uniform simply supported beam
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Figure 3.1c: Moments and shear forces



2) Partial Differential Equation

In order to determine the differential equation for the transverse vibration in the shaft or
beam. We consider an infinitesimal volume at a distance x from the end of the shaft as
shown in Figure 3.1c. The length of this infinitesimal volume is assumed to be 3x. Let
v, V, M, F(x,zt) denotes the transverse displacement of the beam, the shear force,
bending moment, and the loading per unit length of the shaft, respectively. Neglecting the

rotary inertia, the sum of the moments about the left end of the section yields

m;u—u—m- Y (- )1%’--0 @an

Taking the limit as 8x hes zero, the i ion leads to
M
v=2= (32)
ax
The dy ic equilibrium condition for the ibration of the shaft is obtained

by applying Newton's second law as

Mua"'--v-ﬂ'axwoﬂx.x)u (33)

Equation 3.3 can be rewritten after simplification as



Fv__ov,
pAS -5 T 64

3.2 into ion 3.4 yields

Fv__ M
M; ";‘m 3.5)

The moment can be eliminated from this equation by using the moment displacement
relationship. To this end, moment, M= Bzv-, is substituted into Equation 3.5. This leads

to

2y -2 (Eryorsn 9

M e

If E and [, are assumed to be constant, Equation 3.6 becomes

) 61

In the case of free vibration, F(x, t ) = 0 and accordingly

Ko S Y 2 4 (338)

where c is a constant defined as
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pA
b) Separation of Variables
3.8 is a fourth-order partial di i ion that governs the free transverse

vibration of the shaft. The solution of this equation can be obtained by using the

hni of the ion of variables. In this case, we assume a solution in the form

v=4(x)q(9)

(3.10)

where ¢(x) is a space-dependent function, and q(t) is a function that depends only on

time. Equation 3.10 leads to

S0 L4000

4
22280 p-4¥0a0

these equation into 3.10, we obtain

@M =-c* @O

which implies that

0. 80,
q@®) oG

@.11)

(3.12)

(3.13)

(3.14)



where @ is a constant to be determined. Equation 3.14 leads to the following two

equations:

§+o¥q=0

@
#{2fo-
The solution of Equation 3.15 is given by

g=Bsinwt+B,coswt

For Equation 3.16, we assume a solution in the form

$=Ae™

Substituting this assumed solution into Equation 3.16 yields

el

or

2]

(3.15)

(3.16)

@.17)

(3.18)



which can be written as

A-n*=0 (3.19)

where

(3:20)

The roots of Equation 3.19 are
A =1, A =M, Ay=in, Ag=-in
where i=v-1. therefore, the general solution of Equation 3.16 can be written as
GQ)=Ae ¥ e AT oA o @21

which can be rewritten as

¢¢r)-A"“"ﬂ+A '“"—VM,,( n‘m"w +A ’_':;‘_M (3.22)
where  Aj= (As +Ag)2, Ay (Ag-Ag)2
A= (AgHiAp)2, Ag=(AgtiAp2

Equation 3.22 can then be rewritten, using Euler's formula of the complex variables,

$(x)=Asinhnx+A coshnx+A sinnx +Acosnx (3.23)



Substituting 3.17 and 3.23 into Equation 3.10 yields

W3)=(Asinhnx +A4coshnz +A,sinnz +Ag Bsinat+Bcoswr)  (3.24)

C) Boundary Conditions
The natural frequencies of the shaft, depend on the boundary condition. In the case, the
shaft is simply supported at both ends and the boundary conditions are

v(0,t)=0, vi(0,t)=0

v(Lt)=0, vi(Lt)=0
which imply that

$(0)=0, $"(0)=0

¢(1)=0, $"(1)=0

It is clear that in this case, there are two geometric boundary conditions that specify

the displacements at the two ends of the shaft and there are two natural boundary
conditions that specify the moments at the ends of the shaft. Substituting these conditions
into Equation 3.23 yields

AgtAg=0, Ag-Ag=0

Agsinhn/+A coshnl-A sinnl-Agcosni=0 (3.25)
Agsinhnl+A coshnl+Asinnl+A.cosni=0

These equations are satisfied if Ag= Ag=Ag=0 and

Agsinnl=0 ¢26)



The roots of Equation 3.26 are

nl=nx 327

where n=1, 2, 3, ...

Therefore, we get the natural frequencies

(3.28)
and the ding models of vibration are
b,y sinnz 629
‘When n=1, we can rewrite Equation (3.29) as
d=Agsin (30)

where A is a constant.
The solution for the free vibration of the simply supported shaft can then be written

vE) =Y 6,9,=Y (C,sina t+D cosw fsinn G3n
=l a=l

When a mass is added at the centre of the shaft shown in Figure 3.1a, Rayleigh's

method can be used to d ine the fund: | natural of the system. The

sum of the kinetic energy and strain energy of a model remains constant and equal to the



maximum kinetic energy. Consequently, the conservation of energy leads to

(3.32]
T°=U" .
where T and U* are, respectively, the maximum kinetic and strain energies.
The strain energy is
¢ 1
=l 3.33
U {zaea (333)

where o, ¢, B and | are, respectively, the stress, strain, volume and length of the shaft.

Using Hooke's law, the stress is given

o=eE (334)
Fox)
gs-y—&z (335)

where §(x) is lateral deflection of simply supported shaft shown in Equation (3.30).

g and e into Equation (3.33), we have

1 - N |
@)
](?] dx {y’d& (3.36)

where I=fy2 dA, A is area of cross section.

Therefore, the strain energy is

v-E j("’“"]a EED)



The kinetic energy is

T*=T,+T, (338)

where Tand T,jis, respectively, the kinetic energy of the shaft and ih added mass.

Ll 0240 (339)
‘208
where @ is the mass density.
r_--;i o md*x) (.40)
i=l

where m; is the ith added mass and (x;) is the value of the amplitude at the location of

mass.

(341

Equating the maxium strain energy to the total maxium kinetic energy of the shaft and

added masses, we have

_,_, 2 fﬂo’(x)dvz - W)'? f( (342

the equation of frequency becomes
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1
EIf ") e
[}

@ (3.43)

7 =
% ! C’C!)h"}_; mAx)

Using Equation (3.30) , the terms in Equation ( 3.43) becomes

1 1
[P A it B ea P L
° °
] 1
[$de=AR s de-a? L
° ° [] 2
Because there is only one mass added in the centre of the shaft in the case, we have

LTEE

these terms, ion (3.43)
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2Lz
= m"_z(’)‘ (344)
s EAQ’BM,‘
g
2
4 | H (345)
TN 4p

where m, is shaft's mass, m is added mass and

3.1.2 Finite Element Method
Generally, the solution of the vibration problems of continuous systems is based on the

assumption that the deformation of the system can be described by a set of assumed

functions (Bidkford, 1990). By using this app: the vil ion of the i system
which has an infinite number of degrees of freedom is described by a finite number of
ordinary differential equations. This approach can be used in the case of geometrical
shape structure elements. However, in a large scale system with complex shape structure,
difficulties may be encountered in defining the assumed shape function.

In order to solve these problems, Finite Element Method (FEM) has been widely used

in the dynamic analysis. In FEM, at first, the structure is divided to relatively small
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regions called elements which are rigidly interconnected at selected nodal points. The

deformation within each element can then be described by i lati ials. The

coefficients of these polynomials are defined in terms of physical coordinates called the
element nodal coordinates that describe the displacements and slopes of selected nodal
points on the element. Therefore, the displacement of the element can be expressed by
using the separation of variables as the product of space-dependent functions and time-
d dent nodal i By using the ivity between el ts, the d

displacement field can be written in terms of the element shape function and nodal
coordinates of the structure or shaft. Using the assumed displacement field, the kinetic and
strain energy of each element can be developed, thus defining the finite element mass and
stiffness matrix. The energy expressions of the shaft can be obtained by summing the
energy expressions of its elements (Shabana, 1990). In the case of determining modal
parameters, such as frequencies, when we get the mass and stiffness matrices, it is easy
to calculate the natural frequencies by FEM. FEM can be considered to consist of four

and solution of

steps: di: ization, i lati ! 1 fc lation, and
the finite element equations.

(1) Discretization

This is the first step in the finite element procedure, where the body under examination
is divided into elements in such a way that the unknown field varisble is adequately
represented through the body. The shaft is divided into 11 elements as shown in Figure
32.

(2) Interpolation
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The finite element method works by ing a given distribution of the
variables through each elements. The equations of defining the approximating distribution
is called interpolation, and can take any mathematical form. In practice, it is usually

polynomials. Polynomials are popular because they are easy to formulate and compute,

and in particular their dif jation and i ion is strai; ward to i on
the computer.

Consider a section of the shaft shown in Figure 3.3. There is no deformation along the
shaft axis, and planes normal to the axis before loading remain normal after deformation.
The slope of the shaft at any section is given by dv/dx, and the displacement in the x

direction is found from

»
=y (3.46)
u y&

Therefore, the bending strain in the shaft is

e v (347)
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Element

[1]2]3]4]s]e[7]8]s]t0]11] —$*

Node

Y
0‘(1__9_"1 X
vi Vj

Figure 3.2: Element, node and basic element



)

Figure 3.3: Deflection of a shaft
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Taking one element shown in Figure 3.2, it is developed with two nodes, and requires a
cubic interpolation function for two reasons: Firstly, the element has four boundary
conditions (the four degrees of freedom), which demands four coefficients in the
approximating function. In addition, however, to ensure that the element satisfies the

that is deflection and slope inuity at the nodes, the

interpolation function must be of third order. The function is given by
v=a,+a,+ax+az® (3.48)

and it must satisfy the boundary conditions:

atx=0, v=viand@=03v/x=6;.
atx=L, v=y; lnde=3vl&(=0,-.

The resulting four equations can easily be solved to yield
a4

a,=6

30w _(26,+8)
=3 Z

0,207 0% (3.49)
FERT

‘When equations 3.49 are substituted back into the original interpolation function,
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equation 3.48 can be rearranged and expressed as

v=[Nl{y, 8, v, 8}=[Nl(L} (3.50)
(3) Elemental Formulation
By means of the shape function, we can get the element mass and stiffness matrix.
The basic method of finite element formulation is Ritz and Galerkin method. Galerkin
method attacks the weak form (weighted Residual) of the differential equation directly and

Ritz method uses the energy or i lus of variati i with the

differential equation as the basis for the development of the finite element model. In this
study, Ritz energy method is employed.

The kinetic energy of the element e is defined as
el 3.51
A o fvp(v’)’dl’ @3.51)
where V and p are the volume and mass density of the element and
v/=(NLh (.52)
4 '-%(Wf'p[N'l[N’l'Mm (.53)
Thus, equation 3.51 can be rewritten as

4 '-%(m’tu o (3.54)



Furthermore, we get the element mass matrix.

M=[ pINTINIAY
The strain energy is given by
1 _Ef.2
b 5d Efude-Efz dV

where 0 = Exe

Substituting equation 3.47 into 3.56, we have

1
£ { 0"Pdxfy'as

where [ = j'y2 dA, and the strain energy is
1 2
P Kad R
2 o\&?

From equation 3.52 we can get
&V i
= N“Hut

Substituting equation 3.59 into equation 3.58,

28

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)
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1
!
T3 { (7745078 (3.60)

Minimization of the potential energy then gives the now familiar form of the stiffness

matrix
1
[KT=[IN"ADINVdx 351

where [D] =E

(4) Assembly and Solution of the Finite Element Equations

By using shape function, element nodal i can be natural

coordinate system because complex integration can be transformed as simple numerical
integration, such as Gauss quadrature which can get a high degree of accuracy for
approaching the solution, under the natural coordinate system.

Assembly these element matrix, we have global mass and stiffness matrix

Ba-3 ey 662
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n
1] =2 (1.4 (3.63)
e=l
The free undamped vibration is
MY+ [KIv=0 (3.64)

As in the case of multi-degree of freedom systems we assume a solution to Equation

3.64 in the form

v=Bsin(wt+¢) (3.65)
where B is the vector of amplitudes, t is time, ® is the frequency, and ¢ is the phase
angle.

Substituting Equation 3.65 into Equation 3.64
({K1-w[M]}B=0 (3.66)

For this system of equations to have a notrivial solution, the determinant of the

coefficient matrix must be equal to zero, that is

[K1-0¥M]=0 (3.67)
So far, we get the equation 3.67 and know matrix [K] and [M]. When the boundary

are i into the i the modal such as

can be caculated.
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As mentioned earlier, finite element method is an analytical tool which is being used
to predict the modal parameters. In the presented study, the general purpose finite
element program ABAQUS, Version 5.4, developed by Hibbitt, Karlsson & Sorensen. Inc.

is used for analyzing modal parameters.

3.1.3 Finite Element Model of the Experiment Setup

The experiment setup in the study, which will be described detailly in chapter 4, shown
in Figure 3.4, consists of a uniform simply supported shaft and a rotor in the centre of
the shaft.

The shaft can be described by beam elements in ABAQUS since this is a effective and
easy way for FEM analysis, and the rotor can be simplified as a mass in the shaft center.
Figure 3.5 illustrates the FEM model of the experiment setup in the study in which the
shaft is divided into 11 elements by 23 nodes. Acoording to the model, a program run

in ABAQUS is compliled. The result of caculation is compared and shown in chapter 5.
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i =i

Figure 3.4: Experimental setup
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Figure 3.5a: Simplification of experimental setup

Y

} Node number

Element number

Figure 3.5b: FEM model of experimental setup
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3.2 Experimental Modal Approach

Experimental modal approach is the process of determining the modal parameters of a

linear, time-invariant system. One of the f i modal app

is to validate the result of the yti If an ytical model does not exist,
the modal i i serve as the model for future evaluations
such as i i P i i modal is used to

explain a dynamics problem, vibration or acoustic, that is not obvious from intuition,
analytical models, or similar experience (Albert, 1993).

The process of determining modal parameters from experimental data involves the
following phases: Modal analysis theory; Experimental modal analysis method: Modal

data acquisition and Modal parameter estimation.

3.2.1 Modal Analysis Theory

Modal analysis theory deals with the dynamics of a structure system. But, the system
satisfies three assumptions: the first, the system is linear and that its dynamic response
can be represented by a series of second order differential equations. The second, the
system is time-invariant, which means that the system parameters such as the equivalent

mass, stiffness and ing ratio are instead of ions of time. The last, the

system follows Maxwell-Betti's reciprocal relationships.
Based on the above assumptions, the dynamics of the system is described by transform
relationship between different domains, which are time, frequency (Fourier), and Laplace

domain. In order to understand modal analysis theory easy, the three domains of a system
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are briefly reviewed.
(1) Time Domain ( Impuilse Response Function)
The general mathematical representation of a single degree of freedom (SDOF) system
is expressed
MEQ)+Ci0) +Kx()) A0 .68
where M is the mass .
From differential equation theory, the transient response of the SDOF system to a

transient force in form of a theoretical impulse, can be assumed to be in the following

form:

0-Ae*oBe*t a9

The characteristic frequencies in this solution, A, and A, are determined from the

equation of ion 3.68. This yields characteristic frequencies of the

The transient response of SDOF can be ined from Equation 3.68, ing that

following form:

A

the initial conditions are zero and that the system excitation f(t) is a unit impulse. The
response of the system x(t) to such a unit impulse is known as the impulse-response

function h(t) of the system. Therefore:
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h(t)=A¢"‘oA'¢‘:' a.7n
h()=e "‘[Ae"""m .,(-/u.n] 3.72)
where: O ing factor; @y ped natural X
@) Domain (Freq 4 ion)
3.68 is the time-domail ion of the system. An equivalent equation of

motion may be determined for the Fourier of frequency (©) domain. This is accomplished

by taking the Fourier of ion 3.68. Thus, ion 3.68
[-Mw?+jCw +Klx(w)=F(w) 3.73)
3.73 is an equi ion of Equation 3.68 in the Fourier domain.

If the system forcing function F(w) and its response x (@) are known, the system

characteristic H(®) can be calculated. That is the fi P

xw) 1
P () e = A —— 3.74;
) Fo) -Mo*+jCo+K @9

The frequency-response function H(®) can be rewritten as a function of the complex
poles by using the factored form of the polynomial equation as follows:

M

Hw)=————
(o -A)(w-2;)

(3.75)

Figure 3.6 is an example to illustrate the domain transformation (from time to

frequency domain).



(3) Laplace Domain ( Transfer Function)
The equivalent information of equation 3.68 can be presented in the Laplace domain by

way of Laplace transform. The only significant diffe in the

the fact that Fourier transform is defined from negative infinity to positive infinity while

the Laplace transform is defined from zero to positive infinity with initial condition. The

using Laplace sform begins by taking the Laplace transform of equation

3.68. Thus equation 3.68 becomes, assuming zero initial conditions:

[Ms?+Cs+Kx(s)=F(s) 8-79)
Therefore, the transfer function can be defined just as the frequency-response function

that was defined earlier.

1

xs) _
He=*& .1 3.7
&) F(s) Ms*+Cs+K e

The quantity H(s) is defined as the transfer function of the system. In other words, a
transfer function relates the Laplace transform of the system input to the Laplace
transform of the system response. The transfer function can also be written

He— UM

TS (3.78)
M M
The transfer function H(s) can be rewritten as

UM

H)=——"1
(s-2 |)(e' -2 l.)

(3.79)
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Figure 3.6: of domain (case 1, ¢=0.10833 speed=900 rpm)
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(4) Transform Relationships of Multi-Degree of Freedom Systems ( MDOF)

Just as in the preceding case for SDOF, the

can be for
MDOF. The equation of motion for a MDOF system, using matrix notation, is as follows:

[MIGEH+{Cl i+ [KTxb={f G80)
Impulse -response function:
N .
H"(,)=EA~,"’+A’;“" (3.81)
rel
Frequency-response function:
B ()3 + e (X))
el -l ] ©-3, ja-a;
Transfer function:
A .
H (:)- _E_. (3.83)
s-3, s—l
where

t = time variable
s = Laplace variable
@ = frequency variable

p= d degree of ds
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q= degree of freedom(input)
r = modal vector number

qr- residue
A= system pole
N = number of modal frequencies
. =
qur = complex conjugate of qur

lr.= complex conjugate of A

3.2.2 Experimental Modal Analysis Methods

thods: input-

There are four general ies of i analysis

fi

output model; ; Damped ! p ial resp: and

General input-output model (Albert, 1993).

The frequency-response function method is the most commonly used approach for the

of modal This method origi as a testing technique as a result
of the use of frequency-response functions in the forced normal mode excitation method

to ine natural fr ies and effective number of degrees of freedom. With the

advent of the computer, the frequency-response function method became a separate viable

technique.

In this method, fr P! ions are d using excitation at single
or multiple points. The relationships between the input F and the repones X or both single
and multiple inputs are shown in equations 3.84 through 3.85.

Single-input relationship:
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X, H,F, 639

1p|
1lig (3.85)
. tF,
)
Multiple input relationship:
Z H,, cee e HyY '
Hy, 2
. (3.86)
2] et H,,,.......H".w'."'“I

The frequency-response functions are used as input data to algorithms that estimate

modal using a domain model. Through the use of the fast Fourier
fc the Fourier of the freq d in mode, the impulse-response
function can be calculated for use in modal imati i involving

time-domain models.
Since the Frequency-response Function Method has the advantages mentioned above,

the method is used in the experimental study.
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3.2.3 Modal Data Acquisition

Acquisition of data deals with the converting of analog signals into a corresponding

sequence of digital values that describe the ti ying ch. istics of
inputs to and responses from a system. In the present study, a Keithley 570 data
acquisition system is used. Once the data is available in digital form, the most common
approach is to transform it from the time domain to the frequency domain using a fast
Fourier transform.

Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is the basis for the formulation of any frequency-
domain function in data acquisition systems. In terms of an integral Fourier transform, for
a function to be evaluated, it must exist for all time in a continuous sense. For the

realistic ituation, data are available in discrete sense over a limited period.

Figure 3.7 represents the Discrete Fourier Transform (DFT) concept.

Integral Fourier transform :

X(= f x(t)e Pt (3.87)
Inverse Fourier transform :
x()= f X(Pe™f (3.88)

Discrete Fourier transform :



N-1
XG)=Y e )e P
a0

N
xw-z_;z«)e*"“"

Inverse Fourier transform :

x(t, .):E: X(fe RN

where
N = blocksize (power of 2)
T =Nat
at = time spacing

af = frequency spacing 1/T
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(3.89)

391)

On the basis of DFT, the periodicity and symmetry of the complex factor &i(2x/N)kn

can be exploited to increase the efficiency of DFT computations. It is called the Fast

Fourier Transform (FFT). The FFT algorithm for computing the DFT of a sequence is

the workhorse of digital signal processing (Wowk, 1991). In this study, the data collected

by Keithley S570 in digital form, is ferred as

function by FFT

using the computer software MATLAB, version 4.1, which is a technical computing

high i
for high-p numeric



AMPLITUDE

Figure 3.7: Discrete Fourier transform concept
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Emors

The accurate of fi P function depends on the reduction of
errors stemming from the digital signal p ing. To take full ad: of

data in the evaluation of i d and verification of th ical

errors, in 1l i noise, must be reduced to

acceptable levels. The general errors are leakage and aliassing error.

Leakage Error

Leakage error is basically due to a violation of an assumption of the fast Fourier
transform algorithm; namely that the true signal is periodic within the sample period used
to observe the sample function. When both input and output are totally observable
(transient input with completely observed decay output within the sample period) or are
harmonic functions of the time period of observation T, there will be no contribution to
the bias error due to leakage. Leakage is probably the most common signal-processing

error. The effects of leakage can be only reduced, not completely eliminated. The error

can be reduced by method of wil ing or weighting fi
Windowing
Windowing is a process of multiplying signals by some sort of weighting function. By

applying weight function or a window, leakage error can be reduced. There are many

such as R & and Hanning in computer software MATLAB.
In this study, a Hanning window is used.

Averaging
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Averaging also reduces leakage error. It is one very useful feature of FFT spectrum

analysis. Averaging is the ability to combine time records (blocks of data ) with previous

data to smooth out the display. Since vibration data are not usually stable; namely, it is

always variable, we use the signal averaging to smooth the spectrum and reduce random
signals.

Averaging can be divided into overlap and summation averaging. For periodic

monitoring, it is strongly to do i ing (Wowk, 1991). Eight

to sixteen averaging are all that is necessary to get a stable spectrum. In this study,
summation averaging is used to reduce leakage and noise signals.

Aligssing Error

If that frequency components larger than half of the sampling frequency occur in the

analog time history, high-frequency signal can form false peaks in the frequency domain.

This is called aliassing. This is a byproduct of the digitizing process. The solution of
reducing the error is that sampling frequency is two times as high as the maximum
natural frequency of the system; Namely, Fsmp“ngzz Frnax - In this study, The sampling
frequency is 1000(Hz) and the natural frequency is lower than 100(Hz). Therefore, this
sampling frequency is high enough to reduce aliassing error and satisfy the requirement

of the data acquisition.

3.2.4 Modal Parameters Estimation

Modal imation is the estimation of natural ies, damping factors and

mode shapes from the d data. The d data can be in ively raw form
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in terms of force and response data in the time or frequency domain, or in a processed

form such as freq i Modal imation carried out in

this study is based upon the measured data being in the frequency-response function
form. The computer software used to perform the estimation is MATLAB (Signal

Analysis) Version 4.1.

3.2.5 Modal Data Presentation

Modal data obtained from il and dicted by finite element method

are presented in tabular and graphical forms. Therefore, the relationship among time,

fi and litude versus freqs are shown clearly, and the peak values of
frequency response function can be d under the diffe crack

3.2.6 Summary

Modal analysis is the process of ch izing modal using either analytical

or h. In this chapter, the theoretical basis of modal analysis

methods is reviewed, and experimental analysis methods are discussed. In this study,
beam elements provided by software package ABAQUS, 5.4 version, are used to simulate
the shaft. In the experimental part of this study, frequency response functions obtained
using a software package MATLAB, 4.1 version, is employed to obtain the modal
parameters of the rotating shaft system. Other digital signal processing methods are

applied in data acquisition in order to eliminate noise signal and errors, such as averaging

and windowing.
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The result of the analytical study is reported and i results are d in

section 5.2. Furth the ison of modal is given in section 5.5.
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Chapter 4

Experimental Study

study is an i link of modal analysis, and it is a bridge from modal

theoretical analysis to industrial applications for crack detection in rotating shafts.
Experimental study makes it possible to gain a direct insight into problems whose

analytical solution is difficult to obtain.

In this chapter, an imitation crack, which si the istic of p

transverse crack, is designed and a rotating shaft system having such as crack is made
up. In order to measure the vibration signal of the system. transducers and data
acquisition instruments are chosen. The general procedures of the experiment is

introduced.

4.1 Experiment Setup

A transverse crack opens and closes, which is also called breathing, during rotation in the

case of horizontal shaft, because the shaft is deflected by gravity. When the crack
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direction in the direction of the gravity direction, say the crack is open, when the crack
direction is in the opposite direction of the gravity, the crack is closed shown in Figure
4.1. Except for the both cases mentioned above, there are both open and closed sections
continuously varies during the rotation. It is considered that the flexural rigidity of the
shaft also varies.

In order to investigate the relationship between modal and crack parameters; namely
frequency and crack depth, we need a crack of variable depth that we can open and close
on purpose. However, the transverse cracks of shafts in laboratories are generally small
because the shafts are generally slender. Also it is difficuit to make different crack depth

and that errors due to making the crack will influence the crack characteristics.

In this experiment, a large crack is imitated by the rotor shown in Figure 4.2. It is
possible to vary the crack depth up to a large value and the shaft can be safely operated
in rotation because the crack is not propagated.

The rotor consists of one mass disk , two flanges and one shaft. The two flanges are
symmetrically fixed on both sides of the mass disk by eight bolts. If some bolits are
removed symmetrically on the both sides, the removed disk section opens and closes with
the rotation of the rotor similar to the behaviour of a crack. The shaft is supported by
ball bearings and is coupled to a motor by a rubber joint. The experiment setup is shown

in Figure 3.4.

4.2 Transducer

A transducer is a device for converting the mechanical motion of vibration into electric
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signal. There are three kinds of transducers: displacement, velocity and acceleration.

The most type of di: is the proximity probe shown in
Figure 4.3, which operates on the eddy current principle. It sets up a high-frequency
electric field in the gap between the end of probe and the metal surface that is moving.
The proximity probe senses the change in the gap and therefore measures the relative

distance, or displacement between the probe tip and the surface. The proximity probe

relative di Yet, an measure y

The most i is the pit

In the experiment, accelerometers [B&K 4378 and 4379, ] are used. The characteristics
of the accelerometers is shown in Table 4.1. The untouched proximity probes [MS type
924-30] are also used . The characteristics of the proximity probes are shown in Table

42.



€ Crack close Crack Open

Figure 4.1a: Natural coordinate y-z and rotating coordinate 1 -§
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One bolt removed

Figure 4.2: Simulation crack with variable depth
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Rotor

Eddy Current

73

Cable

Rigid Support

Figure 4.3: Principle of the proximity probe in operation
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Table 4.1a: Ch of A [B&K 4378]
Parameter Value
Material Steel AISI 316
Sensing Element Piezoelectric Material PZ23
Weight 175 gram
Temperature Range -50 to +250°C
Reference Sensitivity at 159.2 Hz 23°C
Charge Sensitivity 315PC/g
Voltage Sensitivity 258mV/g
Typical Undamped Natural Frequency 13KHz
Capacitance (Incl.cable) 1221 PF
Max.Transverse Sensitivity at 30 Hz 1.4%

Max. Shock Acceleration

20Kms 2peak




Table 4.1b: Characteristics of Accelerometer [B&K 4379)
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Parameter

Value

Material

Steel AISI 316

Sensing Element

Piezoelectric Material PZ23

Weight 175 gram
Temperature Range -50 to +250°C
Reference Sensitivity at 50 Hz 23°¢

Charge Sensitivity 310PC/g
Voltage Sensitivity 248mV/g
Typical Undamped Natural Frequency 13KHz
Capacitance (Incl.cable) 1250 PF
Max.Transverse Sensitivity at 30 Hz 0.5%

Max. Shock Acceleration

ZOKms'zpuk




Table 4.2: Characteristics of Proximity Probe [MS 924-30]
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Parameter Value

Supply Voltage 13.5 to 30VDC
Load Current 12mA max
Output Voltage Range 1 to SVDC
Output Impedance 50 ohm max
Load Resistance, min 1K to 22 Kohms
Slew Rate 1V/msec
Temperature Drift +2mVoC/mm
Linearity +0.25VDC between | and 9 VDC
Temperature Range 0 to 60°C
Diameter 30mm
Protection Class P67
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4.3 Instrument

In this experimental setup shown in Figure 4.4, the DC motor [Eicor 4020-22] drives the
shaft for rotation. In order to supply the direct current, 28 voltages and 30 amperes to the
motor, a DC power supply made by E&E Lab. of MUN is used. Meanwhile, in order to
control the speed of the motor, a DC variable autotransformer is used to adjust the motor’s
rotational speed. A speed meter [tachmeter 8931] is used to measure the speed. There
were 50- 70 rpms differences between measured speed and real speed of rotation. Thus,
a stroboscope [IRD 517] is used to measure the speed of rotation. In this case, the
difference is only 2-5 rpm between measured and real speed, which is accurate enough
for this study. Accelerometers are mounted on the top of bearing housing and proximity
probes are fixed near the middle of rotor in horizontal and vertical direction to pick up
vibration signal as shown in Figure 4.5. The 15 voltages working volts needed by
proximity probes is supplied by DC power supply [ Model 1061]. Measured signals are
fed to the amplifiers by cables, and amplified by the amplifiers [B&K 2626 and
Sundstrand SO4E]. After that, the amplified signals are fed to Keithley data acquision

system [KEITHLEY S570] to be converted into a digital signal form. Finally, the

vibration signals in digital form are ly in Unix ion by using
computer software MATLAB 4.1.
In the experimental setup, an oscilloscope [TEKTRONIX 5441] is employed as a signal

monitoring.



All of i

and devices

above are listed in Table 4.3
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Table 4.3: List of Instrument

No. Name of Instrument Type

1 Proximity Probe MS Type 924 - 30

2 Accelerometer B&K Type 4378

3 Accelerometer B&K Type 4379

4 A/D Converter Keithley Model 570

s Storage Oscilloscope Tektronix Model 5441
6 Amplifier Soundstrand Type S04E
7 Amplifier B&K Type 2626

8 Mechanalysis IRD Model 880

9 Stroboscope IRD Model 571

10 Tachometer EMS Type 8931

11 DC Power Supply Model 1061

12 Autotransformer Powerstat EM1782

13 DC Motor Eicor Model 43679
14 Computer EM Pac Model 486
15 Monitor Microscan 4G/AD1
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Figure 4.4: Experi ! setup and i
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Figure 4.5 Mounted proximity probes
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4.4 Procedure
In this experiment, a transverse crack, which opens and closes during rotation, is imitated
by removing those bolts connecting the disk and flanges as shown Figure 4.2. One,
two, three and four bolts are removed symmetrically from every side of the disk in the

experiment, respectively. The crack depth is d by crack di

to the number of bolts The crack isa i ional The
crack depth due to removing different bolts is divided by the diameter of the disk and the

relation between the crack parameter and the number of removed bolts is shown in Table

44
Table 4.4: Crack parameter

Removed bolts Crack parameter (crack depth/ diameter)
0 ]

1 0.0833

2 0.1083

3 0.2041

4 0.3333
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The procedure of this experiment includes four steps. The first, the static deflection due

to the self-weight of the rotor is dly, the natural of the static
system is measured using a hammer excitation method. Third, the uncracked shaft is
tested. Next, the cracked shaft is tested in different crack parameters between 0.083 and
0.333. Finally, the cracked shaft in backward rotation is tested.

The first step is to test static deflection of the rotor. The static deflection of the rotor

is for the hori. | and vertical directi pectively by imity probes,
shown in Figure 4.5, for one revolution periodic variation from 0° to 360°.

The second step, a single impulse, by hitting the rotor by a rubber hammer, excites the
static shaft system to obtain its natural frequency.

The third step, the rotor is driven by a Direct Current (DC) electric motor. Then, the
DC is adjusted to reach the speed that we require. At the same time, the stroboscope is
truned on mentioned on chapter 4.2, and aimed the flashlight of strobe at the rotor. After
that, the flash rates are changed slightly, once the flash freezes the motion of the rotor,
the speed displayed on the readout of the strobe is the speed recorded in the experiment.
Since DC is used to change speed of rotation, it have to make sure that speed displayed

on readout does not change; namely, the current is stable. Then, the vibration signal is

by using at the speed. After that, direct current is increased by
adjusting autotransformer to increase rotating speed, and measure a higher speed than
before. The range of tested speed is from 300 rpm to 2000 rpm, which cover the critical
speed of the shaft system, since the the motor’s power is not high enough over 2000 rpm.

The fourth step, the procedure is the same as the third step. But, we would remove
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some bolts and adjust crack before the The bolts are

symmetrically on both sides of the disk.

In the experiment, In order to i igate the modal
crack rotor is tested in different sizes, which are W=58 (mm) in case | ,and W=90 (mm)
in case 2, shown in Figure 4.6b.
The last step, testin cracked shaft in backward rotation, the procedure is the same as

the third step except that the forward rotation is replaced by backward rotation.



.
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Figure 4.6a: Size of experiment setup (unit: mm)




Figure 4.6b: rotor
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Figure 4.6c: Disk and flange
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4.5 Data Analysis

As ioned before, the vibrati signals from the transducers are converted
to a digital form by Keithley S570. After the digital form data in are collected, they are

sent to Unix computer workstation for further analysis.

4.5.1 Frequency

The data analysis consists of three stages. Firstly, these digital signals are run through a
program which averages the data, much of the noise in the signal are removed.
Meanwhile, a hanning weight function is used to reduce the leakage error. Then, the
vibration response digital signals are transferred from time domain to frequency domain
by fast fourier transform which is shown in Figure 3.4. Finally, the measured rotation

speed and frequency response amplitude versus the speed are recorded. Repeating the

until all those signals or data sets at different rotational speed are

analyzed, these figures of vibrati P i versus these ional speed and
versus the rotational frequencies can be drawn as shown in Figure 4.8 and 4.9. From these
graphs, we can find the natural frequency of the shaft system in the experiment setup is

30 Hz in case I, and 28.33 Hz in case 2.

4.5.2 Damping
Based on these graphs Fig 4.8b and Fig 4.9b, the other graphs, frequency response curves

can be developed, by changi the i axis to relative rotational
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frequency axis Q /@ (where: Q is rotation frequency and @ is natural frequency), shown
in Figure 4.10 and Figure 4.11.

Taking r=Q/ as horizontal axis and Amplitude B as vertical axis, bandwidth method

( one of i methods for damping evaluation, can be used to

determined damping of the system. Figure 4.7 shows the use of this method in evaluating

the damping factor §. Using the frequency response curve, we can draw a horizontal line

at distance B =(1/¥2)B,., from the r-axis. This hori line i the

response curve at two points which define the frequencies r, and r,. The damping factor
§ can be determined by equation: & = (r,- r,)/2. By means of the bandwidth method,
abtain damping factor § = 0.032 in the case | ,and damping factor & =0.035 in case

2 are abtained.

Figure 4.7 Bandwidth method
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Figure 4.8a: Speed vs amplitude
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Figure 4.8b: Frequency vs amplitude
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Fig. 4.9a: Speed vs amplitude(case 2)

Crack parameter c=0

Fig. 4.9b: Frequency vs amplitude (case 2)
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Figure 4.10: Amplitude vs relative frequency (case 1)

©=0 (case 2)

Figure 4.11: Amplitude vs relative frequency (case 2)
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Chapter 5

Results and Discussion

In this chapter, firstly, the relationship between static deflection of the rotor and phase

angle in vertical and horizontal direction is discussed. Then, the modal parameter,

freq 'y and d; i is i in the ked shaft system. After that, the

experiment results dealing with crack are d. Next, the
response of forward and backward rotation of the shaft are shown. Finally, the modal

parameters of the system with and without cracks, are compared.

5.1 Static Deflection

The deflection amplitude of the shaft due to self-weight varies with the variation of

transverse crack opening and closing in rotation. The static deflection is measured in

horizontal and vertical direction respectively. The value the static
deflection of the uncracked and cracked rotor in one revolution periodic variation, which

is shown in Figure 5.1. [t can be seen that the static deflection increases with increasing
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of the crack parameter. In the case of vertical deflection graph, the deflection at phase

angle 180° is the largest because of the fully opened crack section. and the deflection at
0° is the smallest due to the fully closed crack section. The result is in agreement with

results obtained by Grabowski and Mahrenholtz and Ziebarth et al. (1978.)
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Figure 5.2: Horizontal Deflection
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5.2 Uncracked Shaft

In order to determine the natural frequency of the shaft system in the experimental setup,
a theoretical calculation, a finite element method approach and a experimental exciting

evaluation are applied. The result is shown in Table 5.1.

Table 5.1: Natural frequency of the shaft system

Natural frequency () Hz
Method Case 1 Case 2
Theoretical calculation 323 30
FEM calculation 33 31
Exciting evaluation 305 285
Experimental measurement 30 2833

Then, all bolts are tightented on the rotor and the vibration response is tested at different

speeds. The i versus i speed curve is shown in Figure 5.2. It

is noted that there is a strong vibration, resonance, at 30 Hz. This means that the natural
frequency of the system is 30 Hz. There is a good agreement with the results obtained

by other ways mentioned above.
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5.3 Cracked Shaft

We ibrati at each crack shown in Figure 4.1. The results
are shown in Figure 5.3 to 5.5, in case 1, and in Figure 5.6 to 5.9 in case 2. It is found
that the larger the crack parameter, the lower the natural frequency is and the bigger the

amplitude versus the frequency is.

5.4 Forward and Backward Rotation

Because that there are forward and backward rotating shafts in machinery, the vibration

is d in both ional direction, forward and backward. But we find that

the response in backward rotation is similar to the forward rotation. Thus, we show only

the i versus back d ional speed curve shown in Figure 5.4b (c=0.2041 in

case 1).

5.5 Comparison between Uncracked and Cracked Shaft

We show the vibration response of cracked and uncracked shaft system in Figure 4.8 to
5.9, and Table 5.3 and Table 5.4. When we put these figures together, we get Figure 5.10
in case 1, and Figure 5.11 in case 2. As a result, we can compare the experimental results

of cracked shaft with that of uncracked shaft. We find that the natural frequency

decreases and amplitude versus the freq i with i ing crack

which are illustrated in Figures 5.12 and 5.13. There are 78% amplitude difference of
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between crack parameter 0 and 0.083 and 440% amplitude difference between crack

parameter 0 and 0.333 in case 1. Also there are 41% amplitude difference between crack
parameters 0 and 0.083 and 147% amplitude difference between crack parameters 0 to
0.333 in case 2. These differences mean that the changes of the modal parameter: the
natural frequency, is sensitive to the crack. Therefore, we are able to use modal method

to detect the existence of cracks in a rotational shaft.

Table 5.2: Results comparison (case 1)

Crack Natural Amplitud Amplitud i
quency (4) i diffe
| (Q) © (H2) (AA/AQ) (Aw/wg)
o 30 0.09 o 0
0.0833 28.83 0.16 0.78 0.039
0.1083 275 029 22 0.083
02041 25.83 0.41 3.55 0.139
03333 25.08 0.49 4.44 0.146
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Table 5.3: Results comparison (case 2)

Crack Natural Ampli Amplitud [Frequency
[parameter frequency (A) differences differences
()  (Hz) (AA/Aq) (Aw/wg)
0 28.33 0.06 0 0

0.0833 27.17 0.125 1.083 0.041
0.1083 26.33 0.14 133 0.071
0.2041 24.67 0.16 167 0.129
0.3333 24.17 0.17 1.83 0.147
5.6 Summary

The results of static deflection of the shaft system is d; the natural freq
btained by different hods are d; and the vibrati having crack or

non-crack are shown.
The comparison between cracked and uncracked shaft system shows bigger amplitude
difference. Therefore, the difference can be used to distinguish whether or not there are

cracks in rotating shaft.
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Chapter 6
Conclusion
‘When there are cracks in a rotating shaft, the modal parameters: the natural frequency and

damping will change. This thesis has investigated the relationship between crack

and modal by modal i method.

In the i | study, an i | setup, in which the crack depth is variable,

is used to simulate a crack in a rotating shaft. The vibration responses are measured in
the range of crack parameter (0 - 0.333).

The conclusions resulted from the experiment are:

1. The shaft system with the variable imitation crack si the ch istic of the
practical cracked rotors safely and adequately.

2. The shaft deflection is the largest at phase angle 180° in where, the crack is fully
opened.

3. The critical speed is sensitive to the crack and the bigger the crack parameter is, the
lower the natural frequency is, and the higher the amplitude versus the frequency is.

4. The backward rotation of the shaft has the same frequency response curve as the
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forward rotation. Thus, both rotation direction can be chosen in crack detection in rotating
shaft.

5. Measuring the acceleration on the rotating shaft by accelometers is better than
measuring shaft deflection when the stiffness of the base of the testing system is not big
enough to avoid the relative movement between the testing system and its base.

6. Presented modal experimental method is simple and convenient, and the results

obtained by it have a good with that obtained by ical and FEM methods.

Therefore, it is confirmed that the method is effective for crack detection in rotating

shaft.
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Figure 5.4: Speed vs amplitude (c=0.1083)
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Figure 5.5a: Speed vs amplitude (c=0.2041)
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Figure 5.5b: Speed vs amplitude (backward rotation)
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