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Abstract

Th is thesis investigated the dynam ic characterist ics of a rotat ing shaft by using modal

expe rimental method and an experi mental model has been developed for crack detect ion.

In this study. an imitation crack. which simulates the characteristic of a transverse crack. in

the middle span of a rotating shaf t, is designed and the rotating shaft experiment setup is made

up. Experiments are carried out in diffe rent crack parameters and different size rotors in forwa rd

and backward rotation.

It Is found that the natural frequenc y of the rotating shaft decreases and frequency response

amp litude increases with increasing crack parameter. The maximum difference of natural

frequency between cracked and uncrucked shaft is 14.7%. and the maximum difference of

frequency response amplitude with a crack is 4 times as high as that without crack . It is also

found that the rotating shaft in backward. rotation has lIle sa me vibration response as that in

forward rotation.

The experiment results show that the cri tical speed of the ro tating shaf t is sensitive to cracks.

Therefore. the method may be used in industrial application fo r detection crack in rotating shafts.
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Chapter 1

Introduction

A rotating shaft is an im port an t pan in rotating machinery. such as the shaft in a

gene rator. Due to manufacturing flaws or cyclic loadin g. cracks frequentl y develop in a

rot a ting shaft . If cracks propagate in the shaft. ca tastrophi c failure will occur. Theref ore.

we try to detect these cracks as early as possible.

Th ere are differen t methods 10 inspect cree ks. Moda l ana lysis method s. as one of non

destructive inspection (NO I) methods. has recently become of greater impona nce. In NDI

meth ods. ultrasonic wa ve. X-ray. mag netic-particle. perm eation and electric potent ial

difference CIC. can be: used for detecting crac k under Sialic condition . The acou stic

emi ssion method (Ivanov. (1984). Simmo ns et 01.. [ 1984J and Grabam ct al., (1982)) can

be used for inspect ing crac ks on rotat ing shafts . Yet a set of specific equ ipment is needed

(Zhao. M. and Luc, Z. H.• (1989)) . Moda l analysis method has the advan tages of

sim plicity in instrumentat io n and convenience in testing. Thus. the method is wide ly

employed in crack detect ion in rotating machin ery. Modal ana lysis is defined as the

proc ess of characterizing modal paramete rs (mode shapes. dam ping fact ors and

frequc ncies ) in a system ei ther through analytical or experimental approac h. The



experimenta l moda l approac h will be used in the experiment mentioned in this thesis .

Due to cracks. natural frequencies decrease. mode shape s alter depe nding on the

dama ge mag nitude, unit respo nse amplitude s mal" increase or dec rease depe nding on the

posi tion o f crack. and damping also changes. By comparing the diffe rences of modal

param eters between a crac ked and an uncracked structure. we can de tect cracks in the

tested structure.

The purpose of this study is 10 carry out experimental modal analysis on the uncracked

and crac ked rotat ing shafts supported on elastic bearings and to investigate the

rela tionship between natural frequencies and crac k parameter , Th is study will also pro vide

some useful results for crack detect ion in industrial applications.

In this stud y. an experi mental setup for simulating a crack in a rotat ing shaft has been

designed . Displacement and acceleration sensors are fixed for co llecting vibration

responds. Moda l param eters were estimated and used to formu late re lationships among

modal param eters: name ly. natural frequencie s and damp ing factors. c rack par ameters and

rota ting speed ,



Cbapter2

Literature Review

Fatigue crac king in a rota ting shaft is one of the main reasons of failure. Craa detection

in rotating shafts has received much anention since middle 1970's. Since a crack

infl uences the stiffness of & shaft and the sti ffness infl uences the dy namic behaviour o f

the shaft., modal analysis or vibration monitoring can be employed to det ect crack's

initiation and growth .

2.1 Analytical Approach

Kolzow (1974 ] first po inted. out that the vibrati on monito ring could be useful way in

detecting cracks and Shat o showed the same idea a little later (Wa uer [1990 an.The work

done by Dimaroaonas [1970] and Patelias (l 974] introduced the bending stiffness

description of a rotor crack which is determined from compliance measurements. The

incorporation of the stiffness change caused by • crack into the equation of motion has

been dealt with in sev.raI papers: Gasch [1976J. Henry [1976J • Mayes [1976J and



Dimarogonas [19 76 J.

Gasch [1976J developed a hinge model f'or Laval rotors which is a simply suppo ned.,

massless shaft carryin, a rili d disk in the middl e. in which he replaced the endc:

mechanism by an additional flexib ility and switched it on and off according to whether

the en d:: was closed or open . He discov ere d that resonances wo uld occur as the ra tarional

speed reached 112, 113, ete., of' the shaft bending frequenc ies..

Henry and Okah- Avae [1976] emplo yed the equations of'motion with a shaft section

inertia unequal to tha t of the cracked shaft. and concl uded that there would be resonances

due to che crack when the rotatio nal speed is equal to l In of the first critical speed. They

also found chat the vibration response due to the crack was hardly detectable when the

rotational speed exceeded the fim cri tical speed..

Mayes and Davies [1976J performed a detailed analytical investigation of a turbine

shaft with cracks. Th ey derived a rough analytical estimation of'the crack compl iance

based on energy pri nc iple. Although they considered the non-li near equatio n fer a simple

roto r. they obtained analytical solution by considering an open crack which led to a shaft

with dissim ilar moments of' inerti a in two perpendieuJar directions.

Grabowski et aI [1912] argued that in a shaft of praaital interest the shaft deflection

due to its own weight is orders of magnitude grea1er than the vibntion am plitude.

Therefore. he suggested chat non-lineari ty does noCaffect the shaft response since the

crack opens and closes regul arly with the rotation .

Using che concep t chat a transverse crac k in a structural memb er introd uces local

flexib ility due to the strain energy concentration in the vicini ty of the crac:k tip Wlder



load. Dimorogonas [1983] and Papadopoulo s ee at [1987) derived the complete local

flexibility matrix of a erecked, rotating shaft They observed the loul flexibility of the

shaft and developed an analytical expression for the effect of the crack on the dynam ic

response of the rotor .

Oirr and SchmalhofSt [1987] described the crack more accurately than ethers by a 3

dimensional finite element analy sis and successfully simulated the vibrati on of. cracked

test rotor on the basis of measu red crack shapes.

Qian et al. [1990] derived the element stiffn ess matrix of a beam with a craclc fro m an

integration of stress intensity facto rs and then established a finite element model of a

cracked beam.

Wauer [1990 b) and Collins et aI. [ 199 1] developed a beam- like rotating substructure

in which, the stiffness and damp ing properties of a single crack are accurat ely mod elled.

They also presented a rotating Timoshenko shaft with a single transv erse crack in open

and close situation. The governing equation of motion is derived using the principles of

fracture mechanics and Galerkin 's method . The equations are nonlinear when the crack

is open and linear when the crack is closed. When there is a transition from an open crack

to a closed crack, or vice versa, some of the stiffness and damp ing coefficients change .

The analytical approach has advantages for simulating the dynamical behaviour of a

cracked and rotating shaft However , the approach requires enormous amounts of

computational time and effort. Furthermore, it is not easy to obtain an accurate measure

of the cnck effects using an analyti cal approach . Besides,. the validity of the results

obtained by the analytical approach can be appropriately assessed only by experimental



stUdy. Therefore. experimental approach has been widely used in the investigation of the

addressed problems.

2.2 Experimental Approach

Mayes and navies [1976] introduced some simplification. especial ly in relation to time

periodic step function and showe d the first experim ental results on the dynam ics of a

cracked shaft

Ziebal'1hand Baumgartner [198 I} estab lished their crack:model on the basis of detailed

experimental investigation. They consequen dy formulated the equations of motion in

stationary coordinates and app lied them to practic:al turbine rotors..They. then compared

the anaJytic:al result with the results of a model test. As practical indicators. they

suggested signi ficant peaks in vibration ampli tudes., shifting of natural frequencies.

unstab le vibrations and changes in dccble-Ireq uency vibrati on component

Imam eeaI. [19SS} introduc ed a Histogr ams Signature Analysis Techn ique to reduce

the background noise and elim inate the harmonic:s which exist in an unereeked case.

Based on a J.<fimensional finite element crack: model and an on-line model, a prototype

on-line rotor crack. monitoring system was deve loped and experimentally tested. The

system wu installed and has been operating on a turbin~8eneruor since 1989.

Wen et al. [1992) tesled a simp le experi mental model system in different erack

paramet ets. He found. that th e principal critical speed will decrease with the increase of

crack:depth and there is unstabl e regio n in the vicinity of the principal eritic:aJspeed. His

experimental results are in agreement with that obtained by perturbation and num erical



methods.

Tam ura et al. (1988] , and Liao and Gasch (1992J buill thei r experimental setup co

simulate the traCk's open ine and dosin e . Tamur investigated the region of unstable

vibration of a rotor with • transverse cra ck and found that there is an instability near the

rotational speedof 2IJ of critiw speed in luec crack case. Liao measured accelerations

of the system inst ead of displacements in the super critical speed range.

2.3 Summary

Pre vious studies reviewed above have investia ated the dynam ic characteristi cs of shafts

in static and rotational stat e. Most of th ese studies have studied the changes in natural

frequen cies. mode shap es and damping ratios of the shaft due co cracks using analytical

method . The study pre sented in this thesi s focuses on the changes of natural frequencies

using an experimental meth od.



Chapter 3

Modal Analysis Theo ry

Modal analysis is a process of determ ining medal parameters of a system thro ugh

analytical or experimental approach . Analytical approach is accomplished by using

theo retical method or Finite Element Method (FEM) . The modal param eters. such as

frequencies and mode shapes can be predict ed using these approaches. In the subsequent

sections, both methods, theo retical and fin ite etemen r methods . for modal analytical

approach . will be reviewed, then modal experimental approach will be addressed .

3.1 Analytical Approach

3.1.1 Theoretical Mctbod

In this study, a shaft system is simplified as an uniform simply suppo nc d beam, with

mass in the centre as shown in Figure l . IL In order to show tho analytical approach

sim ply. at first, we consider only the uniform simply supported beun shown in Fiaure

3.1b (ShobUl" 1990).



Figure 3.1a: Uniform simply supported beam wi th mass in centre

Figure 3.1b: Uniform simply S\,Ipportedbeam
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a) Partial D ift"ereadal Equation

In order to determine the differen tial equation for the transverse vibntion in the shaft or

beam. We consider an infinitesimal volume at • ~ce x fro m the end of the shaft as

showu in Fipro 3.1c. The lenith of this infinitesimal volume is assumed m be b. Let

v, v. M. F(x"t) denotes the transverse displacement of the beam,. the shear force.

bendinl moment, and the loading per unit length of the shaft. respectively. Negledina the

rotary inerti a. the sum of the mom en ts about the left end of th e section yields

(3.1)

Taking the limit IS Ox approaches zero , the preceding equation leads to

(3.2)

Th e dynamic equilibri um cond itio n for the transverse vibrati on of the shaft is obtained

by applying Newton 's second law as

(3.3)

Equation 3.3 can be rewritt en after simpl ification as
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(3.4)

Substituting Equation 3.2 into Equation 3.4 yields

The moment can be eliminated from this equation by using me moment displacement

relatio nsh ip. To this end, moment. M= EIzY-, is substituted into Equation 3.S. This leads

to

(3.6)

If E and ~ are assumed to be constant. Equation 3.6 becomes

(3.7)

In the cue of free vibration, F(x, t ) • 0 and accordingly

(3.8)

where c is a constan t defined as
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(l.9)

b) SeparadOd of Variahlu

Equation 3.8 is • fourth-order partial differential equation that governs the free transverse

vibration of the shaft. The solution of this equation can be obtained by usins: the

tedmique of the separation of variables. In this case, we assume a solution in the Conn

(l . IO)

where +(x) is a space--dependent function, and q(t) is • functio n that depends only on

time . Equation 3.10 leads to

(l .II)

(l . 12)

Substituting these equation into Equa tion l . lO, we obtain

(l . l3 )

which implies that

(l.l4)
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where Col is a constant 10 be determ ined. Equ ation 3.14 Iuds 10 the following two

equations:

(3.IS )

The solution of Equation 3.15 is given by

q- Slsm(,)t+Broswt

for Equation 3.16, we assume a solution in the form

t -A.e"'"'

Substituting this assumed solution into Equation 3.16 yields

(3.16)

(3.17)

(3.18)



which can be written as

(J .19)

where

(J.20 )

The roots or Equation 3.19 arc

where i~- l. therefore,the seneraJsolution of Equation 3.16 can be written as

(3.2 1)

which can be rewritten&5

(J .22)

where AI- (AS +A6JI2.

A3- (A.~A1)12·

A2- (A• •As)12
A4-(AS+ iA7)f2

Equation 3,22 can then be rewritten. usinl Euler's formula of the co mplex variables.

(3.23)
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Substitu ting 3.11 and 3.23 into Equation 3.10 yields

*) .(A,sinh'JZ.A,.<:osh~".A,sin~"A,<:os1l.<)x(Blsin"'t.B,cos"'t) () .24)

q Bouudary Condidops

The natural frequen cies DCthe shaft. depend on the boundary condition. In the ease. the

shaft is simply suppo rted at both ends and the boundary conditions are

v (0, t ) - 0,

y (I, t) - O.

which imply that

ol> ( 0 ) -0,

ol> (I ) - 0,

v"(O,I) - O

v"( I, t) - 0

It is clear thac in this case, there are two geometric boundary cond itions that specify

the displacements at the two ends of the shaft and there arc two natural boundary

conditio ns that specify the moments at the ends oelhe shaft..Sub stitutin g these condition s

into Equation 3.23 yields

A6+AS= 0, A6- AS - 0

A,sinh~I.A,.<:osh~I-A,sin~I-A,conII"()

A,sinh~I.A,.<:osh~I.A""~I.A,conII"()

(3.2l)

(3.26)
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The roots of Equation 3.26 are

(3.21)

where n- I, 2, 3, ...

Therefore, we get the natural frequencies

(3.28)

and the correspond ing models of vibration are

(3.29)

When 0=1. we can rewri te Equat ion (3.29) as

(3.30)

where AO is a constant,

The solution for the free vibration of the simply supported shaft can then be written

>'(%;)-E ~.q.-E (C"smwrD.<aSw.t)si.n".r (3.3 1).-1 .-1
When a mass is added at the centre of the shaft shown ill Figure 3.1a. Rayleigh's

method can be used to determine the fundamen tal natural frequency of the system. The

sum of the kinetic energy and strain metBY'of. model remains constant and equal to the
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maximum kinetic energy. Consequently. the conservation of energy leads to

(3 032)

where T· and U are.respecti vely. th e maxi mum kineti c and strain enerKies.

The strain energy is

(3033)

where Q . C. B and I are. respectively, the mess, mai n, volume and length oCthe shaft.

Using Hooke 's law, the stress is given

o -eE (3.34)

(3035)

whe re ¢l{x) is lateral deflection of simply supported shaft shown in Equation (3 .30) .

Substi tuti ng 0 and It into Equa tion (3033), we have

(3 .36)

where I - fyI dA. A is area of cross section.

Therefore. the strain energy is

(3.37)
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The kinetic: energy is

(3.38 )

where Tsand Tmis. respedive.ly, the kinetic energy olthe shaft and i th added mass..

(3.39)

where " is the mass density.

(3.40)

where mi is the jth added mass and «xi) is the value of the amplitu de at the location of

(3.41)

Equating the maxium strain energy to the total maxium kinetic energy of the shaftand

added masses. we have

the equation of frequency beco mes



,
Elf(~H"lJ'd<

y. 0

.ei+'C<)dz.i; m#f,%J
g. J-l

Ulin. Equa!ion (3.30) • the terms in Equation ( 3.43) becomes

10

lUll

Because there is only one mass added in the centre or the shaft in the case. we have

Substitvtina these Ie.nnS. Equation (3.43) becomes



"."
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(3.44 )

where rn, is shaft 's mass . m is added mass and

k"M2m1· -
m,

3.1 .2 Finite Element Method

(3 .4S)

Gen erally, the solutio n of the vibration problems of continuous systems is based on the

assumption that the deformation of the system can be described by a set of assumed

functi ons (Bidkfo rd, 1990 ). By using this approac h. the vibration of the continuous system

wh ich has an infinite number of degrees of freedom is descri bed by a finite number of

ordinary differential equations. This approach can be used in the case of geometrical

shape structure elem ents. However , in a large scale syste m with complex shape structure.

difficultie s may be encountered in defining the assumed shape function .

In order to solve these pro blems, Finite Element Method (FEM ) has been widely used

in the dynami c anal ysis. In FEM. at first. the structure is divided to relatively small
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regions eelled elements which are rigidJy inten::onnecred IJ sele<:ted nodal po ints. The

deformation with in each element can then be descri bed by interpo lating polyn omials . The

coefficients of' these polyno mials are defined in tenns of physical coordinates cal led the

element nodal coordinates that describe the displacements and slopes of selecte d nodal

points on the element Therefore" the disp lacem ent of the element can be expressed by

usin. the separation of variables as the produa of splU'-dependent MetiORS and time-

dependent nod al coord inates. By using the connectivity between elements. the assumed

displacement field can be written in term s of the element shape function an d nodal

coordinates of the Sb"Uetureor shaft. Using the assumed displacement field. the kineti c:IUId

strain energy of each element can bedeveloped. thus defin ing the finite element mass and

stiffness matrix. The energy expression s of the shaft can be ob tained by sum ming the

ene rgy expressio ns of its elements (Shahan a, 1990) . In the case of determining modal

parameters. such as frequenci es. when we get the mass and stiffness matrices. it is easy

to calculate the natura! frequencies by FEM.~ can be considered to consist of four

steps: discretization, interpolation, elemental fonnulation , and assembly and solution of

the finite element equations.

(1) Discfttizatioll

Th is is the first step in the finite element procedure. where the body under exam ination

is divided into elements in such a way that the W'Iknown field variable is adequately

represen ted th rough the body. The shaft is divide d into 11 elements IS shown in Figure

3.2.

( Z ) IIllerpolnoa
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The fin ite element method works by assumi ng a given distri bution of the unknown

variab les through each elements. The equat ions of defining the approximating distribution

is called interpola tion. and can take any mathematical form. (0 practice. it is usually

po lynom ials. Po lynomials are popu lar because they arc easy to formulate and compute.

and in particular their differentiation and integratio n is straightforward to implement on

the computer.

Consider a section of the shaft shown in Figure 3.3. There is no defo rmation along the

shaft axis, and planes normal [ 0 the axis before loading remain normal after deformation .

The slope of the shaft at any sectio n is given by av/dx, and the displacement in the x

direction is found from

U'-Y~

Therefore. the bending strain in the shaft is

(3 .46)

(3 .47)
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TaJrina one element shown in Figure 3.2 . it is developed with two nodes. and requires a

cubic interpo lation function for two reaso ns: Fimly. the element bas foUl boundary

c:onditions (the four depees of freedom) . which demands foW' coefficients in the

~proximatinl f\lnaion.. hi addition. however, to enswe thai: tho element satisfies the

necessary continuity conditions. thai: is deflection and slope continuity at the nodes., the

interpolation function must be of third order. The function is given by

and it must satisfy the boundary conditions:

&lX-O. v - vj and e- iJvl&· oi '

at,, -!.. V -Vj ande -avl&c. -Oj .

The resul ting fout equations can easily be solved to yield

• 3("["J _(28,.8)
.. L' L

(3.48)

(l .49)

When equations 3.49 are substituted back into the original interpo lation function ,
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equation 3.48 can be rearran ged and expresse d as

(3.>0)

(3) I1emeabll FormuiatioD

By means of'the shape function, we can get tho element mass and stiffitess matrix.

The basic method of finite element formulation is Rju and Galerk in method. Galerkin

method attacks the weak fonn (weighted Res idual) altho differential equation directly and

Ritz method uses the energy or functional (calculus of variation) associated with the

differential equation as the basis for the deve lop ment of the finite element model. In this

study . Ritz energy method is employed.

The kinetic energy of the element e is defined as

(3.H)

where V and p are the volume and mass density of the element and

(3.>2)

(3 .53)

Thus. equation 3.51 can be rewritten as

(3 .54)



Furthermore. we get tho element mass matrix .

The strain energy is given by

where a '" Exc

Substituting equation 3.47 into 3.56. we have

where I '" Iy2 dA, and the strain energy is

From equation 3.$2 we can get

Substituting equation 3.59 into equation 3.5S,

28

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)
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(3 .60 )

Minimization of the potential energy then gives the now familia r form of the stiffness

matrix

I

[K '! .![N '1[D][N'1Td;c

whcre [ D]=E I

(4) Assembl y and Sol utio n or the Finite Ele ment Equations

(3 .61)

By using shape function, clement nodal coordinates can be transfonnaed natural

coordinate syste m because complex integration can be transformed as simple numerical

integration. such as Gauss quadrature which can get a high degree of accuracy for

approaching the solution. under the natural coordinate system.

Assembly these element matrix, we have global mass and stiffness matrix

.
(MJ -E(MJ'

r l

(3.62)



Th e free undamped vibra tion is

[K] =~[K]'

[Mlv l'+[K}V=O

30

(3.63)

(3.64 )

As in the case of multi-degree of freedom systems we assume a solution to Equa tion

3.64 in the form

(3 .65)

where B is the vector of ampli tudes. t is time. 00 is the frequen cy, and $ is the phase

angle.

Sub stituting Equation 3.65 into Equation 3.64

{[K]-,,'lMlIB=O (3 .66 )

For this system of equat ions to have a notri vial solution. the detcnninant of the

coefficient matrix must be equal to zero, that is

[K]-,,'lMl =O (3.67)

So far. we get the equation 3.67 and know matri x [K] and [M]. When the boundary

conditions are substituted into the equations. the modal parameters, such as frequencies.

can be caculated.
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As mentioned ear lier. finite element method is an analytica l tool whic h is bei ng used

to predict the modal parameters . In the prese nted study. the general purpose finite

eleme nt program ABAQUS. Version S.4 . deve loped by Hibbin. Karl sso n & Soren sen. Inc.

is used for analyzing moda l parameters.

3. 1.3 Finite Element Model of the Experiment Setup

The experim ent se tup in the study, which will be described dewily in chapter 4, shown

in Figure 3.4. con sists of a uniform simply supported shaft and a roto r in the centre of

the shaft.

The shaft can be desc ribed by beam elements in ABAQUS since this is a effective and

easy way for FEM analysis. and the rotor can be simplified as a mass in the shafc ce nter.

Figure 3.5 illustrates the FEM mode l of the experim ent setup in the stud >:in which the

shaf t is divided into 11 eleme nts by 23 nodes . Acoord ing to the model. a program ron

in AB AQUS is compliled. The result of caculation is compared and shown in chapter S.
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Figure 3.4: Experimental setup
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34

3.2 Ex pe rime ntal Mo dal Ap proach

Experimental modal approach is the: process of determining the moda l parameters of a

linear . time-invarian t system . One of the com mon rea.sonsof experimental modal app roac h

is to validate the result of the analytical approach . If an analytical model does not exi st.

the moda l para meters determined experimentally serve as the model for future eva lua tio ns

such as structural modificat ions. Predominantly. experimental moda l approac h is used to

explain a dynamics pro blem. vibration or acoustic . that is not obvious from intuitio n.

analyti cal models, or similar experience (Al bert, 1993).

The process of determining modal parameters from experi mental data invo lves the

follo wi ng phases: Moda l anal ysis theory; Experimental modal anal ysis method ; Modal

data acquisitio n and Moda l parameter estimation.

3.2 .1 Mod al Analy sis Theory

Moda l analysis theory deals with the dynamics of a structure system. But, die syst em

satisfies three assumptions: the first. the sys tem is linear and that its dynamic respo nse

can be represen ted by a series of second order differential equa tions. The seco nd. the

system is time- invariant. which means that the system parame ters such as the equivalent

mass . stiffness and damp ing ratio are constants instea d of functions of time. The las t. the

sys tem follows Maxw ell-Be tti's reciprocal rela tionsh ips.

Based on the above assumptions. the dynamics of the system is described by transform

relationshi p between different domains. whic h are time. frequency (Fourier). and Laplace

domain. In orde r to unders tand modal analysi s theory easy . the three domains of a syste m
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are briefly reviewed.

( 1) TIme Dom ain ( Impulse Respo nse Func tion )

The genera l mathema tical representation of a single degree of freedo m (SO OF) system

is ex pressed

(3.68)

where M is the mass .

From differential equation theory, the transient response of the SDOF system to a

transient force in Conn of a theore tical impulse. can be assumed to be in the followin g

form :

(3.69)

The characteristic frequencies in this solution. )., and )., are determined from the

differential equation of Equation 3.68. This yields charac teristic frequencies o f the

foll owing form:

(3.70)

The transient response of SDO F can be determined from Equation 3.68. ass umi ng that

the initial conditions ace zero and that the system exci tation ( I) is a unit impulse. The

respo nse of the system X(l) to such a unit impulse is known as the Impulse-respo nse

functi on h( t) of the system. Therefore :
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(3 .1 1)

(3.12 )

where: ar=damping factor; Wr=damped natural frequency.

(1:) F~quenc)' Dom ain (Fftquenl:y. Response Function)

Equation 3.68 is the time -domain representation of the system . An equ ivalent equation of

motion may be determined for the Fourier of frequency (OJ) domai n. This is accomplished

by taking the Fourier transfo rm of Equation 3.68. Thus, Equation 3.68 becomes:

(3 .13)

Equation 3.73 is an equivalent representation of Equation 3.68 in the Fourier domain.

If the system forcing function F(w) and its response x (00) are known. the system

cha racteri stic H(ro) can be calculated . That is the freque ncy-response funct ion:

(3 .14)

The Irequeecy-respc nse function H(w) can be rewritten as a function of the complex

poles by usin g the factored form of the po lynomial equation as follows:

H(.. ) . 11M
(j.. -I.,W.. -I.;)

(3.1S)

Figure 3.6 is an example to illustrate the domain transfonnation (from lime to

frequency domain).
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(3) I.aP-e DoauiD. ( Tnasf'er F\mction)

The equivalent information of equation 3.68 can be presented in the Laplace domain by

way of' Laplace tnnsform. The only significan t difference in the development (:ORcemS

the (act that Fourier tnnsfonn is defined from negative inf'uti ty CO positive infin ity whil.

me Laplace transform is defined from zero to posi tive infi nity with initial conditiOCL n.

development using Laplace transform begins by tak ing tho Laplace transform of equ&lion

3.68. Thus equation 3.68 becom es, assuming zero initial conditions;

(3.76)

There fore. tho transfer functio n can be defined just as the frequ ency·response function

that was defined earlier.

(3.77)

The quantity H(s) is define d as the transfer function of the system. In other words. a

transfer functi on relates tho Lap lace transfo rm of the syst em input to the Laplace

transform of the system respon se . Tho transfe r fun ction can also be written

(3.78)

The transfer function H{s) can be rewritten as

(3.79)
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(4) Tnaderm RtJadoasbipi or Muld ·Dq;rte o( Ftftdoaa Sr_IDS ( MDOt')

Just u in the preceding case (or SDOF. the equivalent infOnnaDon can be presented. for

MDOF . The equation or motion tor a MDOF system., usinS matrix notation. is as Collows:

Impulse -respe ese function:

(3.10)

Frequency.response functio n:

T ransfer function :

N A ...t o
H Gs)·r; = •....!!!..

J1'II ... 1 .r- A., s-),,;

where

t - time variable

5 "'" Laplace variable

COl • frequency variable

p - measured degree of freedom (respo nse)

(3.1 1)

(3.12)

(l .U)
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q - mcasu.red degree of freedom (input)

r - modal vector number

Apq r· residue

1,.- system pole

N - number of modal frequ encies

Apqr• - comp lex conj ugate of Apqr

A.t • - complex conj ugate of At

3.2.2 Experimental Modal Analy'i' Methods

There are four general categories of experimental analysis methods: Sinusoidal input-

output model ; Frequeney-respcn se function; Damped complex expon ential response and

General input-output model (Albert, 1993).

The frequency-r esponse function method is the most commonly used approach for the

estim ation o f modal param eters. Th is method originated as a testing technique as a result

of the use of frequency-response fun ctions in the forced normal mod e excitation method

to determine natural frequencie s and effective number of degrees of freedom. With the

advent oCme com puter. the frequency-response function method became a separate viabl e

techn ique.

rn this method. frequency response funcrions are measur ed using excitation at single

or mul tiple points. The rela tionships between the input F and the repones X or both single

and multiple inputs are shown in equations 3.84 through 3.8' .

Sing le-input relationship:



41

(J .B4)

(3.8S)

Multiple input relationsh ip:

The frequency-response functions are used as input data to algorith ms that estimate

modal param eters using a freque ncy-dom ain model. Throu gh the use of the fast Fourier

transform,. the Fourier transform of the freque ncy-do main mode , the impul se-r esponse

function can be calculated for use in modal parameter estimation algorithms involving

time-domain models.

Sinc:e the Prequency -respc nse Function Method has the adv antages mentioned above.

the method is used in the experimental study.
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3.2.3 Modal Dati. Acquisition

Acquisition of' data deal , with the convertin g of analog signal s into a colTeSpOndin a

sequen ce of dieital values that accuratel y describe the time-v aryina dtaracteri stics of'

inputs to and responses from a system. In the present study . a Keithley 570 data

acquisition system is used.. Once the data is available in digital form. the most common

approach is to transform it from the time domain to the frequency dom ain usinl • fast

Fourier transform .

Dlsc~te FowierTrwasfonn

The Discrete Fourier Transform (OF[) is the basis for the formula tion of any frequency ..

demmn func tion in data acquisition syst ems. In terms of an integral Fouri er transform. fo r

a function to be evaluated. it muse exist for all time in a continuous sense. For the

real istic measuremen t situ ation. data are available in discrete sense ove r a lim ited period..

F igure 3.7 represents the Discrete Fou rier Transform (OFT) concept

Integral Fourier transfo rm :

(l .87)

Inverse Fourier transform :

(l .88)

Discrete Fourier transform :
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Inverse Fourier tnnsfonn :

where

N - btcekslee (power of 2)

.u '"" time spacing

J = frequ ency sp acing Irr

k = O. 1. 2 N- I

N-'
X(f~'I;;«',.)e -p . <WNl...

N-'>ltJ=I; X(f~. -P'<WNl...

(l .B9)

(3.90)

(3.91)

fk- k.r

On the basis of OFT . the pe riodicity and symmetry of the complex factar e-j (2 xJN)kn

can be exploited to increase the effici ency of OFT computations. It is caJled the Fast

Fourie r Transfo nn (FFI1. The FIT algorithm for computing the OFT of a sequence is

the workhorse of digital signal processing (Wowk, (991) . In this study , thcdata collected

by Keithley 5570 in digital form. is transferred as frequency-response function by FFf

usin g the computer sofiware MATLAB, versi on 4.1, wh ich is a technical compu ting

enviro nment for high-performance numeric:computation and visualization.



Figure 3.7: Discrete Fourier transform concept
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Emo..

The accurate measurement oCfrequency-respons e function depends on the reduction of

errors stemming from the digital signal process ing. To take CulladvantA&o DCexperimental

data in the ovUuation of expe rimental procedures and verification of theore tical

approach es. errors. in measurem ent. generally designated noise. must be redu c:ed 10

acceptabl e levels. The general errors arc leakage and aHassing error.

uabce Envr

Leakage error is basically duo to a violation of an assumption of the fast Fourier

transform algorithm; namely that the true signal is periodic:within the sam ple period used

to observe the sample function . When both input and output are totally observable

(transient input with comp letely observed decay outpu t within the sample period) or are

harmo nic functions ol thc rime period of observation T. there will be no contri bution to

the bias error due to leakage. Leakage is probably the most common signal-prceessing

error . The effects of leakage can be only reduced. not c:omplet ely eliminated- Th e error

can be reduced by method or windowing or weighting functions.

Wmdowiac

Windowi ng is a process or multip lying signals by some sort of weighting function. By

applying weight function or a window. leaka&e error can be reduced. There are many

windows. such as Rectangular. Blackman and Hanning in computer software MAl1.AB.

In this study. a Hanning windo w is used.

AvenICinC



4'
AveraainS also reduces leakage error. It is one very useful feature of FFT spectrum

analysis. Averaging is the ability to comb ine time records (blocks of data ) with previous

data to smooth out the display. Since vibration data are not usually stab le; namely, it is

always variable, we use the signal averaging to smooth the spectru m and reduce random

signals.

Avuaginl can be divided into overlap and summation avenging. For periodic

monitoring, it is stro ngly recom mended to do summatio n aven ging (Wawk. 1991). Eight

10 sixtee n averaging arc all that is necessary to get a stable spectrum. In this stUdy.

summation averaging is used to reduce leakage and noise signals.

Ali_siDI En'Or

If that frequency components larger than half of the sampling frequency eecur in the

analog time histo ry . high-frequency signal can fonn false peaks in the frequ ency domain.

This is called aHassing. This is a byproduct of the digitizing proc ess. The solution of

reducing the error is that sampling freque ncy is two rimes as high as the muimum

natural frequency of the syste m; Namely, Fsampling 1::2 Fmax ' In this study , The sampling

frequency is IOOO(Hz) and the natural freque ncy is lower than IOO(Hz). Therefore. this

sampling frequency is high enough to reduce a1iassina error and satisfy the requirement

of the data acqu isition .

3.2.4 Modal Parameters Estimation

Modal parameter estimation is the esrimaue n of narural frequencies, damping factors and

mode shapes fro m the measured data. The measured data can be in relatively raw fonn
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in terms of force and respon.se data in the arne or frequency domain. or in & processed

(onn such as frequency-response functions. Modal parameters estimation carried out in

this study is based upon the measured data being in the frequenc:y-.rcsponse function

Conn. The computer software used to perform the estimatio n is MATLAB (Sianal

Analysis) Version 4.1.

3.2.5 Modal Data. PresentatioD

Mod al paramete rs data obtained fro m experiment and predict ed by finite eleme nt method

are presented in tabular and graphical forms. Therefore , the relatio nship among time,

frequency and amp litude versus frequency are shown clearly , and the peak values of

frequency response function can be compared under the different crack parameters.

3.2.6 Summary

Modal analysis is the process of characterizing modal parameters using either analytical

appro ac:hor experimen tal approach. In this chapte r, the theoretical basis of modal anal ysis

methods is reviewed. and experimental analysis methods are discussed. In this study .

beam elements p rovided by software package ABAQUS. SA version. are used to simulate

the shaft. In the experimental part of this study , frequency respo nse functions obtained

using a softwar e package MATLAB , 4.1 version, is employe d to obtain the modal

parameters ot the rotating shaft system. Other digital signal processing methods are

applied in data acquisition in order to eliminate noise signal and erro l'S,such as averaging

and windowing.
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The result of the analytical study is reported and experimental results are presented in

section 5.2. Funhermore. the comparison of modal parameters is given in section 5.5.
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Chapter 4

Experimental Study

Experime nta l study is an important link of modal ana lysis. and it is a bridge from moda l

theo retica l analysis 10 industria l applicatio ns for crac k detection in rotating shafts .

Experimenta l study makes it possible to gain a direct insight into problems whose

analytical solution is diffic ult [0 obtai n.

In this chap ter. an imitatio n crack. which simulates the characteristic of practical

transverse crack. is designed and a rotating shaft system having such as crack. is made

up_ In order to measure the vibration signal of the system. transducers and data

acquisition instruments are chosen. The general procedures of the experiment is

introduced.

4.1 Experiment Setup

A transverse crack opens and closes. which is also called breath ing, during rotatio n in the

case of horizontal shaft, beca use the shaft is deflected by gravity . When the crack
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direction in the direction of the gravity direction. say the crack is ope n. when the crack

direction is in the opposi te directio n of the gravity , the crack is close d shown in Figure

4. 1. Except for the both cases mentioned above. there are both open and closed sections

co ntinuously varies during the rotation . It is conside red that the flexural rigidity of the

shaft also varies.

In order to inves tiga te the relationship between modal and crack parameters; namely

frequency and crack depth. we need a crack of variable depth that we can open and close

on purpose . However. the transverse cracks of shafts in laboratories are generally small

because the shafts are generally slender . Also it is difficu lt to make diff erent crack depth

and that errors due to making the crack will influence the crack cha racteristics .

[0 this experiment, a large crack is imita ted by the rotor sho wn in Figure 4.2. It is

possible to vary the crac k depth up to a large value and the shaft ca n be safe ly opera ted

in rota tion beca use the crack is not propagated .

The rotor consists of one mass disk . tWO flanges and one shaft. The two flanges are

symmetrically fixed on both sides of the mass disk by eight bolts. If some bolts are

removed symmetrically on the both sides, the removed disk sectio n opens and closes with

the rotatio n of the rotor similar to the behaviour of a crack. The sha ft is suppo rted by

ball bearings and is coupled to a motor by a rubber joint. The experiment setup is show n

in Figu re 3.4.

4.2 Transducer

A transducer is a device for converting the mechan ical motion of vibration into electric
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signal. There are three kinds of transducers: displac ement. velocity and acceleration .

The most common type of displacement transducer is the prox imit y probe shown in

Figure 4.3. which ope rates on the eddy current principle . It set s up a high-frequency

electric field in the gap between the end of probe and the metal surface that is moving.

The proximity probe senses the change in the gap and therefore measures the relative

distance, or displacement between the probe lip and the surface. The proximity probe

measures relati ve displacement. Yet. an accelerometer measure absolutely displacement.

The most common acce leration transducer is the piezoelectric accelerometer.

[0 the experi ment, accelerometers [B&K 4378 and 4379, 1are used . The characte ristics

of the accelerometers is shown in Table 4.1. The untouched proximity probes [MS type

924-30] are also used . The characteristics of the proximity probes are shown in Table

4 .2.



Figure 4.la: Natural coordinate y-z and rotating coordinate il -{
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One bolt removed

Figure 4.2: Simulation crack with variable depth



I Eddy Current

Figure4.3: Principleof the proximity probe in operation
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Table " .11l: Charaa.cristics of Accelerometer [BAK 4311)

P.,...eler Value

Motorial Steel A!SI 316

Sensina Element PieZDeIectric Material PZ2l

Weipt 115 irani

Te mpe rature Range -50 to +2500 C

Reference Sens itivity at 159.2 Hz 23° C

Chuae Sensitivity 31lP ClS

Volta ge Sensitivity 258mVlI

Typ ical Undamped Natural Frequency 13KHz

Capacitance (Inc l.cabl e) 1221 PF

Max. Tran sverse Sensiti vity at JOHz 1.4%

Max. Shock Acceleration 20Kms-2peak



Tabl, 4.1b: Clwaaeri.stia oC Accelerometer (&tX 4379]
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P.....- Val...

Material Sleel AlSI 316

Sensina Element Piezoelectric Material PZ23

Weip t a" &RJn

Tempenrvn llan" ·50 to +Z3O"C

Ilef'ercnce Sensitivi ty It ' 0 Hz 2Jo C

Charge Sensitivity 310PCI,

Voltage Sensitivi ty 248mVla:

Typical Undamp ed Natural Frequency 13KHz

Capacitance (Incl .ctble) 1230 PF

Max.Transverse Sensitivity at 30Hz 0.' %

Max. Shock Accelention 20Kms · 2pcak



Table 4.2.: OwacterisI:ics oCPro ximity Probe [MS 924- 30)

P......... Valuo

Supply Voltage 13.5 to JOVDC

Load Current 12mA max

Output Voltage Range 1 to 9VDC

Output Impedance SO ohm max

Load Resistance . min IK to 22 Kohms

Slew Rate IV/msec

Tem peratu re Drift: %2mVOClmm

Lineari ty :t:O.2SVDC between I and 9 VDC

Te mperature Rang e o to 60° C

Diameter 30mm

Pro tection Class lP67
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4.3 Instrument

In this experimental setup shown in Figure 4.4, the DC motor [Eic:or 4020·22J drives the

shaft:for rotation. In order to supply the direct: current,.28 volt:q;es and 30 amperes to the

motor, a DC power supply made by E&:E Lab. of MUN is used.Meanwhile,.in order to

control the speed. of the motor, a DC variable autotransforme r is used to adjust the motor's

rotati onal spee d. A speed meter [tachmeter 8931] is used to measure the sp eed.. There

were so· 70 rpms diffe rences between measu red speed and real speed of rotation. Thus.

a stroboscope [IRD S17] is used to measure the speed of rotarion. In this case, the

difference is only 2·5 rpm betwee n measu red and real speed. which is accurate enough

for this study. Acce lerometers are mounted on the top of beari ng housing and proximity

probes are fixed near the middle of rotor in horizontal and vertical di rection to pick up

vibratio n sign al as shown in Figure 4.5. The IS voltag es wo rking volts needed by

proximity probes is suppl ied by DC power supply (Model 10611- Measured signals are

fed to the amp lifiers by cables. and amplified by the am plifiers [B&K 2626 and

Sundstrand 504 E). After that. the amp lified signals are fed to Keith ley data acquision

system [KEITlU..EY S570) to be converted into a digi tal signal form . Finally. the

vibrati on signal s in digital form are analyzed in Unix com puter work station by using

computer software MA TLAB 4.1.

in the ex pe rimental setup. an osc illoscope [TEKTRONIX 5441 ] is employed as a signal

monito ring.



All of instrument and devices mention ed above are listed in Table 4.3
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Tabl. 4.3 : Listof Instrument

60

No. Name of InstNment Typo

1 Proximity Probe MS Typo 92' • 30

2 AcuJerometer BA:K Type .31.

3 Accel erometer B~ Type 4]79

, AID Converter Keithley Modd 570

5 Storage Oseillc sccpe Tektronix Model 5441

6 Amplifier Soundmand Typo S04E

7 Amplifier B.tK Type 2626

I Medtanalysis IRD Model 880

9 Stroboscope IRD Model 571

10 Tachometer EMS Type 893 I

II DC Power Supply Model 106\

12 Autotransformer Powemat EMI712

13 De Motor Eicor Model 4]679

I ' Computer EM Pac Model 486

15 Monitor Microscan 4G1ADI
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Figure 4.4: Experimental setup andinstrument



Fisure 4.5 Mounted proximity probes
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4.4 Pmcedun:

In this a:periment" a tnnsverse crack.which opens and doses during rotation. is imitated

by removina those bolts toMeenng the disk and flanges u shown Figur . 4.2. One.

two , three and four bolts are removed symmetrically from every sid. of the disk in tho

experiment" respectively. Th e CBCk depth is expressed by crack parameter colTespondina

to th. number of bolts removed. The enc:k parameter is • non-d.imensional parameter. Th.

crack depth duo to removing different bolts is divided by the diameter oCche disk and the

relation between the crack parameter and the number of removed bolts is shown in Tabl.

4.4

Table 4.4: Crac k parameter

Removed bo lts Crack parameter (crack depth! diameter)

0 0

I 0.0833

2 0.1083

J 0.204 1

4 O.JJJJ
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The proced ure of this experime nt includes four steps. The first. the static deflect ion due

to the self-weig ht of the rotor is measured . Secon d ly, the natural freque ncy of the stat ic

syst em is measured using a hammer excitatio n method. Third. the uncracked shaft is

tested . Next. the cracked shaft is tested in different crac k parameters betwee n 0 .083 and

0 .333. f inally. the cracked shaft in backward rotatio n is tested.

The first step is to test static deflecti on of the ro tor. The static deflectio n of the rotor

is measu red for the horizontal and vertical direct ion respective ly by proxim ity probes .

shown in Figure 4.5. for cne revolution periodic variation from 0" to 360".

The second Step. a single impulse. by hitting the rotor by a rubber hammer. excites the

sta tic shaft system to obtain its natural frequency .

The third step. the rotor is d riven by a Direct Current (DC) electric mo tor. The n. the

DC is adjuste d to reach the speed that we require. At the same time. the stroboscope is

trun ed on mentioned on chapter 4.2. and aimed the nas hlight of strobe at the rotor. After

tha t. the nash rates are chan ged slig htly. once the flash freezes the motion of the roto r.

the speed displa yed on the readou t of the strobe is the speed recorded in the experiment.

Sinc e DC is used to change spee d of rotation. it have to make sure that speed disp layed

on readou t does not change; namely . the current is stable. Then. the vibration signal is

meas ured by using accelerometers at the speed . Arter that, direct current is increased by

adj usting auto transforme r to increase rotating speed, and measure a highe r speed than

before . The range of tested speed is from 300 rpm 10 2000 rpm. which co ver the critical

speed o f the shaft system. since the the meter's power is not high enough o ver 2000 rpm .

The founh step. the proced ure is the same as the third step. But. we would remove
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some bo lts and adjust crack param eters before the measure me nt. The bolts are removed

symmeui caJly on bom sides of the disk .

In the experiment. In ord er to investi gate the modal parameter accura tely. simulating

crack rotor is tested in diffe rent sizes. which are W=S8 (rom) in case I .and W=90 (rom)

in case 2, shown in Figure 4.6b .

The last step. testin crac ked shaft in backward rotation . the procedure is the same as

the third step except that the forward rotation is replaced by backward rotation.



Figure 4.6a : Size of experiment setup (unit: mm)
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4.5 Data Analysis

As mentioned before. the vibration response signals from the transduc ers are con vened

to a dig ital form by Keithley 55 70 . Af ter the digital form data in are collected , the y are

sent to Unix computer works tation for further analysis.

4.5 .1 Frequency

The data analysis consists of three stages. Firstly, these digital signals are run through a

program which averages the data, much of the noise in the signal are remo ved .

Meanwhile . a banning weight function is used to reduce the leakage error . Then. the

vibration response digital signals are transferred from time domain 10 frequency domain

by fast fourier transform which is shown in Figure 3.4. Finally, the measured rotation

speed and frequency respon se amplitude versus the speed are reco rded. Repe ating the

procedure until all those measured signals or data sets at different rotational speed are

analyzed. these figures of vibration response amplitude versus these rotational speed and

versus the rotational frequencies can be drawn as shown in Figure 4.8 and 4.9. From these

graphs. we can find the natural frequency of the shaft system in the experiment setup is

30 Hz in case 1. and 28.33 Hz in case 2.

4.5.2 Damping

Based on these graphs Fig 4.8b and Fig 4.9b. the other graphs. frequency response curves

can be developed . by changing the rotational frequency axis to relative rotational
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frequency axis n Iw (w here : n is rota tion frequency and cc is natura l frequency) . show n

in Figure 4 .10 and Figure 4.11.

Tak ing r=O:!was ho rizo ntal axis and Amplitude JJ as vertical axis, band width method

(Shabana), one of ex peri mental methods for damping evaluatio n, can be used to

determined damping of the syste m. Figu re 4.7 shows the use of this method in evaluating

the damping factor l;. Usi ng the freque ncy response curve, we can draw a hori zon tal line

at dis tance P =(lN2)P..1 from Ihe r-exis. This horizontal line inte rsec ts the frequency

response curve at two points which define Ihe frequencies f. and f t . Th e da mping factor

1;can be determined by equation: ~ = ( f l - rJl2. By means of the bandwidth method .

abtain damping factor l; = 0.032 in the case I .and damp ing facto r l; =0.033 in case

2 are abtained.

:j:

:~
0.0 1.0 :.0 ) .0

Figure 4 .7 Bandwidth method
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Chapter 5

Results and Discussion

ln this chapter. firstly, the relationship between static deflection of the rotor and phase

angle in vertical and horizontal directio n is discussed. Then. the modal parameter,

frequency and damping. is conside red in the uncracked shaft system. After that. the

experiment results dealing with crack parameter are represented. Next. the vibration

response of forward and backward rotation of the shaft are shown. Finally, the modal

parameters of the system with.and without cracks. are compared .

5.1 S tatic Deflection

The deflec tion am plitude of the shaft due to self-weight varies with the variation of

transverse crac k: opening and clos ing in rotation. The stat ic deflection is measured in

horizontal and vertical direction respectively. The measured value represents the static

deflectio n of the uncracked and cracked roto r in one revo lution periodic variation. which

is shown in Figure 5.1. lt can be seen tha t the static deflection increases with increasi ng
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or the crack parameter . In the case of vertical deflection graph. the deflection at phase

angle 180" is the largest because of the fully opened crack section. and the deflectio n at

cr is die smallest due [0 the fully closed crack sect ion. The result is in agreement with

resu lts obtained by Grabowski and Mahren holtz and Ziebarth er at. 0978.)
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Figure5.1: Vertical Deflection

Horizontal deflection

Figure 5.2: Horizontal Deflection
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S.2 Uncracked Shaf t

in order to determine the natural frequency of the shaft system in the experimental setup.

a theoretica l calculation. a finite element method approach and a experimental exciting

evaluatio n are applied. The result is shown in Tabl e 5. 1.

Table 5.1: Natural frequency of the shaft system

Natural frequency (00) Hz

Method Case I Case 2

Theoretical calcu lation 32.3 30

FEM calcu lation 33 3 \

Exciting evaluation 30.5 28.5

Experimental measurement 30 28.33

Then . all bolts ace tightented on the rotor and the vibration response is tested at different

rotational speeds . The amplitu de versus rotational speed curve is show n in Figure 5.2. It

is noted that there is a strong vibration, resonance, at 30 Hz. This means that the natural

frequency of the system is 30 Hz. There is a good agreement with the results obtained

by oth.er ways mentioned above.
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5.3 Cracked Shaft

We measure vibration response at eachcrack parameter shown in Figure 4. 1. Th o results

are shown in Figure 5.3 to 5.5, in case I, and in Figure 5.6 to 5.9 in ease 2. It is found

that the larg er the crack parameter , the lower the natural fr equency is and the biger the

amp litud e versus the frequ ency is.

5.4 Forward and Backward Rotation

B~ that there arc forward and backward rotating shafts in machinery, the vibnrion

response is measured in both rota tional directi on. forward and backward. But we find that

the respo nse in backward rota tion is simi lar to the forwar d rotation. Thus, we show on ly

the ampli tude versus backward rotational speed curve sho wn in Figure 5.4b (caO.204 1 in

case I) .

5.5 Comparison betwe en Uncracked and Crac ked Shaft

We show the vibration response of cracked and untracked shaft system in Figure 4 .1 to

5.9. and Tab le S.J and Table 5.4. When we put ihese figures together. we get Figure 5.10

in case I. and Figure S. l l in case 2. As a result . we can com pare the experimen tal results

of cracked shaft with that of uncracked shaft. We find that the natural frequency

decreases and ampl itude vers us the freque ncy increases with increasing c:ra~k parameter

which are illustra ted in Figures ~U2 and 5.13. There are 78% amplitude differen~e of
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betweea. cradt parameter 0 and 0.0&3 and 440% amp litude difference befween end::

pwamoterO and O.lJJ in case 1. Also there are 41% amplitude difference between crac k

parameters 0 and 0.083 and 14,./. ampl itude difference between crut: parameters 0 to

0.333 in case 1. These differences mean that th, dlanacs of the modal parameter. the

natural frequency. is sensitive to the craclc. Therefore. we are able to use modal method

to detect the existence or cratks in a rotational shaft.

Table S.2: Results comparison (case 1)

Crack Natural Amplitude Am plitude Frequency

parameter frequency CA) differences differences

Ce) " (Hz) CAAJAol CAc.>1"ol

0 30 0.09 0 0

0.0833 28.83 0.16 0.78 0.039

0.1083 27.5 0.29 2.2 0.083

0.2041 25.83 0.41 3.SS 0.139

D.n ]] 25.08 0.49 4.44 0.146
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Table .5.3: Results comparison (case 2)

Cn<:k NaNnI Amplitude Amplitude Frequency

panm_ frequency (Al differences differences

(el '" (Hz ) (lI.A1Aol (lI."""'ol
0 28.33 0.06 0 0

0.0833 27.17 0.125 1.083 0.041

0.1083 26.33 0.14 1.33 0.07 .

0.2041 24.67 0.16 1.67 0.129

0.]]]3 24.11 0.17 1.83 0.147

5.6 Summary

The results of static deflection of the shaft system is presented; the natura.! frequencies

obtainedby differentmethods arecompared; andthe vibrationresponses having crackor

The compuison between cracked and uneraeked shaft system shows bigger amplitude

difference. Therefore, the diff erence can be used to distingu ish wheth er or not there are

cracks in rotating shaft.
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Chapter 6

Conclusion

When there are cracks in a rotating shaft . the modal parame ters : the natural frequency and

dam ping will change. This thesis has investiga ted the relatio nshi p between crack

paramet ers and modal parameters by modal experimental meth od.

In the experimental study , an expe rimencal se tup, in which the crack depth is variable.

is used to simulate a crack in a rotating shaft. The vibration responses are measured in

the range of crack parameter (0 • 0.333).

The conclusions resulted (rom the experiment are:

1. The shaft:system with the variab le imitation crack simulates the charact eristic of the

practical crack ed rotors safely and ade quat ely.

2. The shaft deflection is the largest at phase angle 1800 in where. the crack is fully

opened.

3. The critical speed is sensitive to the crac k and the bigge r the crack parameter is. the

lower the natural frequency is, and the higher the amplitu de versus the frequency is.

4. The backward rotarion of the shaft has the same frequency response curve as the
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forward rotation. Thus, both rotation direction can be ebc sen in cnck detection in rotating

shaft.

S. Mcaswina the acceleration on the rotating shaft by accelometers is benet than

measuring shaft deflection when the stiffness of the base of the testing system is not biB

enough to avoid the rela tive movem ent between the testing system and its base .

6. Presented modal experimental method is simple and convenient. and the results

obtained by it have a good agreem ent with that obtai ned by theoretical and FEM methods .

Therefore. it is confinned thac the method is effecti ve for crack detec tion in rotating

shaft.
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