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The aim of this project was to find a simple, practical and sufficiently accurate
method for finding the natural frequencies of a propeller shaft assembly. The need for
such methods is felt at the carly design stages when sufficient data about the system
is not available and the need to restrict the cost of analysis is of importance. Due to
these facts it is clear that the methods based on the discretization of the continuum,
which can estimate the natural {requencies accurately may not be advisable to go
in for in the initial stages.

In the class of approximate methods, to which this work belongs, investigations
done so far have crudely modelled the propeller, which was avoided in the present
work. The propeller was considered to be a flexible rotor mounted with blades.

To solve the problem analysis was carried out in three parts. First the blade
was studied for the natural frequencies, mode shapes, static deflections and the
steady state stresses. The blade was assumed to be a cantilever and the results were
cross-checked by a preliminary finite element analysis using beam elements. The
assumption was found Lo be quite valid after doing the finite element analysis using
3-D isoparametric 20 noded elements. For the airfoil blade effects of rotation, shear
deflection, rotary inertia, pitch setting angle were taken into consideration. Second
the shaft-rotor system was studied and the equation for the transverse vibrations
was derived in the complex plane which was solved for the natural frequencics.
Effects of forward and reverse whirl, fixed and simply supported forward hearing
end conditions, tail shaft length variation, rotary inertia and shear deflection were
investigated. Lastly the natural frequencies of the blades and the shaft-rotor system
were coupl.d to give the resultant natural frequency of the propeller shaft assombly.
The hydrodynamic effect has been taken into consideration by incorporating the

added mass effects for the propeller. Two approximations for the natural frequency



of the assembly were arrived at, the zeroth order and the first order. The true value
of the frequency is supposed to lie in between the two limits. Effects due to change
in the number of blades, blade geometry and the shaft parameters on the propeller
shaft assembly were checked for. Agreement between the results obtained from the
present work and with those available in the literature was found to be excellent.

Finite element analysis comparisons also were very satisfactory.
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Chapter 1

INTRODUCTION AND
LITERATURE REVIEW

Propeller shaft is an important part of the ship propulsion system and the recent
failures of the propeller shafts due to fatigue make it imperative to have an accurate
estimate of the propeller shaft natural frequencies early in the design stage to avoid
resonance, which of course is one of the prime factors of fatigue failures. This can
prove useful in the selection of the engine speed and reduction ratios. Modal analysis
not only helps in predicting critical speeds but also in assessing the dynamic stresses
in the propeller blade, which are of equal importance, especially at the blade root.

For the propeller shaft the main exciting force comes from the blade excitations,
which are caused by the non-uniform wake around the ship propeller. There can
be other exciting forces due to mass imbalance, hysteresis damping, fluid friction
in the bearings etc., but such effects have not been found to be of predominant
effect. It is important to note that the propeller exciting forces can be expressed i
a series, whose frequencies bear a ratio of multiples of N to the rotational speed of

the propeller shaft, where N is the number of the blades.
1.1 Scope of the Investigation

The main aim of this project was to find a simple, practical and sufficiently accurate

method for finding the natural frequencies of the propeller shaft, which can prove



quite reliable and handy in the early stages of design and allows for the study of
the effect of propeller shaft geometry on the natural frequencies. The analysis was
«arried out in two parts: first the blade was analyzed and then the shaft-rotor
system. The fundamental frequency of the propeller shaft assembly was estimated

Dby suitably coupling those obtained for the blade and that for the shaft-rotor system.

The natural frequencies of the vibration of a Ision shafting sys-
tem can be accurately predicted using numerical methods such as finite clement
analysis as in Kuo, (1965), Holzer’s scheme or Myklestad-Prohl method as in Toms
and Martin, (1972). The use of such methods usually requires detailed informa-
tion which may not be available at the early stages of design process. In addition,
the cost of using such programs does not warrant their use when we just need an
approximate estimate of the natural frequencies. This clearly highlights the im-
portance of the approximate methods which are by no means complicated and still
are not a compromise in their accuracy. The present work falls in this category
and satisfies the above mentivned qualities besides taking into consideration some
other important characteristics of the propeller shaft which are not available in the
existing literature, like the airfoil cross-sectional area of the blades, considering the

propeller to be a flexible hub mounted with blades.

1.2 Literature Survey

1.2.1 Propeller Shaft Analysis

In the early fifties two well-known approximate methods for determining critical
propeller shaft speeds with respect to lateral vibrations were developed. The first
one was formulated by Panagopulos (1950) wherein the momentum of the rotating
propeller is ignored, whereas Jasper (1952) ignores the shaft mass and considers the
rotor as a thin disc; the rotor is an approximate modelling for the propeller. These
two researchers are considered to be the pioncers in the field of determining the

natural frequencies of the propeller shaft by such approximate approaches.



Beek (1976) in early seventics improved the existing methods by considering the
effects of propeller moment and inertia force, however, the propeller was treated as
a disc. He considers a non-rotating shaft on two supports with an overhung mass.
Starting from the differential equation governing the dynamic behaviour of a beam,
propeller moment and inertia force are applied as boundary conditions at the end
of the overhung beam.

In an attempt to solve the problem of finding the natural frequencies of a pro-
peller shaft Woytowich (1979) employed Dunkerley’s method for this purpose. The
propeller is approximated as a thin disc attached to a massless elastic shaft. An
equation of motion, derived by Den Hartog (1956) giving the whirling natural fre-
quencies of a disc on a rotating shaft is used to get the whirling natural frequencies
of the overhung portion of the propeller shaft. The frequencies of the exciting forces
bear the ratio N to the shaft rotation speed, where N is the number of propeller

blades. For the tail shaft, natural i ies are d from the

conventional Euler-Bernoulli equation. Dunkerley’s formula is used to couple the
two natural frequencies to get the combined natural frequency of the system sim-
ilar work can also be found in Yagoda and Ketchman (1982). In this formulation
Den-Hartog’s equation gives two values for critical speeds one for forward whirl and
another for reverse whirl; it also accounts for the propeller shaft forward bearing
end conditions which can be assumed to be fixed or simply supported. The forward
and reverse whirl correspond respectively to the conditions where the propeller shaft
excitation frequency equals plus or minus times the product of blade number and
rotational speed.

Taddara (1988) treats the whole propeller shaft simultancously and finds the
coupled transverse vibration of the shafting in the horizontal and vertical planes.
The propeller is appropriately modeled as a rotor. The shalt is considered in three
parts: first the rotor is taken wherein the coupled natural frequencies are obtained

by taking into consideration the rotary inertia. The other two parts are the overhung



shaft and the tail shaft. The three segments are linked by the boundary conditions.
In this work the effect of propeller mass on the whirling natural frequencies of the
propeller shaft can be clearly seen; for the shafts having small tail shafts the values
of forward and reverse whirl are found to be distinct unlike for the shafts with long

tail shafts, wherein the tail shaft mass has an overriding effect.
1.2.2 Blade Analysis

As stated before the problem of finding natural frequencies of propeller shaft was
solved by coupling the corresponding natural frequencies of the blades and the shaft.
The blades assumed for the present work are of airfoil section. This problem has
not been dealt with in the existing literature. Subrahmanyam et.al. (1982) used the
Reissner and the potential energy method for the analysis of lateral vibrations of
a rotating blade taking shear deflection and rotary inertia into account; this study
has been done only for beams of uniform cross-sectional area.

Fox (1985) in his work on rotating cantilevers considers a general case of compact
beams wherein the flexural stiffness in the two perpendicular directions are both
finite and of the same order so that the assumption that the flexural vibration
is confined to a single plane is no longer valid. This leads to a pair of coupled
equations of motion which can be decoupled for some special cases of pitch angle or
cross-section; the results obtained for these special cases have been compared with
those available in the literature. The solution of the equations has been carried out
using Galerkin's technique.

More recently, the bending vibrations of a class of rotating heams has been
dealt with by Storti et.al. (1987). The method depends on factoring the fourth-
order differential operator, which appears in the equation of motion, into a pair of
commuting sccond-order operators. These two second-order differential equations

are then solved in terms of hy ic functions. The ization of the

fourth order operator can be achieved only in case of selected blade profile gecometry.



Moreover, the effects of shear deflection and rotary inertia have not been taken into

consideration.



1.3 Description Of The Investigation

The work of this investigation was carried out in stages which serve us in studying

the different aspects of the system. The stages are given as:

1. The modal analysis of the propeller blade. The blade has been idealised
as a non uniform cantilever beam with an airfoil section. The effects
of blade rotation, blade pitch angle setting, shear deflection and rotary
inertia have been taken into consideration while solving for the natural
frequencies and the mode shapes of the blade. The method employed
to solve the problem is based on an improvisation over Galerkin’s tech-
nique. The assumed displacement function is adjusted in iterations till
the extracted eigenvalues become fairly constant in their magnitudes. As
a preliminary check finite element analysis using tapered beam elements

was carried out, which gave very close comparisons.

g

. The analysis of the blade static deflections and stresses.

»

The 3-D finite element analysis of the blade to check the validity of the
assumption of blade as a cantilever beam. 20-noded isoparamateric brick

elements have been employed for the analysis.

-~

. The modal analysis of the shaft-rotor system. The shaft was considered
to consist of a rotor as an overhang with the forward end bearing of vari-
able fixity. The cffects of rotary inertia and shear deflection for the rotor
have been considered. In this type of a system the transverse vibrations
take place in two perpendicular planes and the equation of motion gov-
erning them has been obtained in the complex plane. The critical speeds

obtained thus correspond to the forward and reverse whirl of the shaft.

Lol

After having evaluated the respective frequencies of the two sub-systems
of the propeller shaft, namely the blades and the shaft-rotor system,

an extended Southwell-Dunkerley method given by Endo and Taniguchi,

6
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(1976) is employed to estimate the natural frequencies of the assembly.
For employing this method a criterion has been satisfied, which justifies
the use of this approximation for our system.

For a marine propeller it is necessary to consider added mass and added
‘moment of inertia in the determination of the natural frequencies. How-
ever, the solution of the hydrodynamic problem is beyond the scope of
this work. Recourse to empirical values was made as given by Haddara
(1988), Biooks (1980) and Toms (1972). A sensitivity analysis was car-
ried out to investigate the importance of calculating the added mass of

the propeller accurately.



Chapter 2

BLADE ANALYSIS

2.1 Acceleration Analysis

2.1.1 Introduction

In this section the expressions for acceleration of a point on the shaft center line
and on the blade, in the rotating coordinate system have been derived. The effects
of shaft bending and shaft vibrations have been taken into account. The coordinate

systems fixed to the shaft center line and blade have been described in appendix A
2.1.2  Acceleration of a Point on the Shaft Center Line

The angular velocity of the coordinate system zyz, fixed to the shaft center line,

with respect to the fixed reference frame XY Z,is given asi(refer appendix A)

=l +6j (2.1)

The coordinates of a point on the vibrating shaft center line, which is aligned with
zaxis are given as:
F=ud +o,d (2.2)

where:

p=—2 T (23)

(2.4)



u, = deflection of the shaft center line along X axis, due to vibrations
v, = deflection of the shaft center line along ¥ axis, due to vibrations
dots represent differentiation w.r.t time
After the transformation of coordinate axes and under the assumption:
cosf~ cosp 1
sinfx8,sing ~ ¢
we get:(refer to appendix B)
G = gi+ 65
7= usi+ v, (25)
The velocity of a point on the shaft center line as in Torby (1984) is given as:
Fe it b+ hx 7

The last term appears since the shaft center line has an angular velocity &,

- i E P
UxT =|¢ 6 0{=(vé-ubk
Uy v, 0

(product of two small quantities is negligible).

=i+ b (26)
Fo= ditdj+dixf
= it (27)



2.1.3  Acceleration of a Point on the Blade

As given in the fig 2.1, coordinates of a point on the propeller blade can be written

as:

Tp =Tt Tpo (2.8)

From equation ( 2.5) the coordinates of a point on the shaft center line are:
T = Uit 0,
In the rotating coordinate system it takes the form = w}is + v}jz, such that
W | _[ cost sin0t]f w,
{v; }‘[-sinm cosﬂl]{ % } (29)
where:
u}, = shaft deflections in the z, direction in the rotating frame zy22

v§ = shaft deflections in the y; direction in the rotating frame z3y22;

Q = rotational speed of coordinate frame zay,2;

The coordinates of a point at the blade root are given as:
fo = T4l

= (w2t vija) + Ria

= dit (v, + R)j (2.10)
Consider a point P on the blade at a distance 7 from the blade root, as shown in

fig.2.1. The position vector of P in the blade local coordinate system can be given

as:
Too = Uy + 72 + Whén . (21
using equation ( 2.10) and ( 2.11) in equation ( 2.8) we obtain:

7= whiy+ (0] + R)j2 + wsés + néz + whés (2.12)

10



Figure 2.1: Blade coordinate system



where:
R = hub radius
us = transverse deflection of point P in £ direction
wy = transverse deflection of point P in ¢ direction
e1,ez,e3 = unit vectors of the blade local coordinate frame along £, 7, ¢

respectively.

Equation ( 2.12) gives the absolute displacement of a point on the blade in the ro-
tating coordinate system, which when transformed to blade local coordinate frame,

takes the form: (see appendix B3)
7 = (ugcosy + w)ér + (v + R+ 0)és + (u, sin g + wp)és (2.13)
where % is the pitch setting angle of the blade on the hub.
The angular velocity of the reference frame z;y;2; rotating at @ is given as: ( refer
appendix A)
Gy = di+6j + Qk
Since the coordinate frame fixed to the root of blade has time invariant transforma-

tions R and ¢ from z2y22; reference frame, the angular velocity of £7¢ coordinate

frame is given as: (see appendix B for details)

O3 = di+bj+0k
= e [dcosQtcosy +dsin Qecosy ~ Qsiny]
ez [~sin 0t + G cos

e [$oosQsin ¥ +§sin Qtsinp + 2 cos ] (214)



from equation ( 2.13), we have
o = (i cosy+in)e +0jer+(Esind+in)es + By x 7
= [t cos ¥+ i) = (R+ n)(@cos Q1 + Bsin W) sin y — (v} + R+ 1) cosp] &
+ [} + Quf sin P + wy) sin  + Quj cos P + up) cos ] &
+ (i sin g + )+ (R + n)(Scos -+ Gsin ) cosy — v} + R+ )sing] &
from the above expression, 7, is given as:
Fp = [(#cos¥ +iis) — (R+7)(ScosQt + fsin 1) sinp
—(R+ n)(—@sin Qt + 6 cos ) sin Y — Q) cos ¥]é
+ [3 + Qi sin ¢ + ) sin ¥ + Qi cos ¥ + i) cos Y] &
+{(i, sin ¥ + ) + (R + n)(Scos 0t + fsin 1) cos p
+(R + 7)(~¢sin Qt + 6 cos Q1) cos P — Qi sinP]és

+ax

[its — 0wy sin 3 cos ¥ + uscos?) + (i) — 209, — Q%ul) cos
—(R+ n)(cos Rt + fsin Ot)sin

+2Q(R + n)(sin 0t — 6 cos Q) sin YJé;

+[8 + i + Q2ipsin Y + iy cos Y + i, ~ v~ R—7)] &2

+{y — Q% (us sin P cos Y + wysin®P) + (i, — 204, — Q?u})siny

+(R + )($cos 1t + fsin Q) cos yp
—29(R + n)(sin 1 - § cos 1) cos YJés . (2.15)
= agéy + agé +acés (2.16)

@ = acceleration of a point on the blade along £ axis in the ¢ local coordinate

system of the blade
@, = acceleration of 2 point on the blade along 7 axis in the £n¢ local coordinate
system of the blade

13



@ = acceleration of a point on the blade along { axis in the £n( local coordinate
system of the blade

( for details refer to appendix C )
Equation ( 2.16) gives the expression for absolute acceleration of a point on the

blade at a distance 7 from the blade root.
Using equations ( 2.3),( 2.4)and( 2.9) we have:

B o
deos Rt +dsin0t = ﬁ =0y cos 2t + 1, sin Q1]
8, 217
= T @11
N 9
$sinQt ~feost = gt mvesin 9~ s cos 1]
&,
= -5 (2.18)
using equations ( 2.17) and ( 2.18) in equation ( 2.16) we have:
G = -0 (upcosy + wysiny)siny
+(i, — 20, - Q%)) siny
L.
~(R+1) [W - 2052% cos§ (2.19)

2.2 Equation of Motion
2.2.1 Introduction

In this section the equation of motion of a rotating blade, having a non-uniform
cross-sectional area and moment of inertia, has been derived using Newtonian ap-
proach. The effects of centrifuyal force due to rotation, pitch setting angle, shear
deformation and rotary inertia have been taken into consideration. The propeller
blade has been treated as a cantilever with bending stiffness about the major prin-
ciple axis sufficiently large to ignore bending about this axis. The acceleration of

the blade is considered purely due to blade vibrations and excitations due to the

14



shaft vibrations have been ignored since we are interested in the isolated natural

frequencies of the blade. The blade is assumed to have a vanishing thickness at

the tip ( which simplifies the of boundary itions ) and a.
mass and elastic axes ( doubly symmetric ), so that the torsional coupling can be

eliminated.
2.2.2 Mathematical Formulation

Consider the free-body diagram of a blade element in (7 plane, as given in fig.2.2,
where in the coordinate system £7¢ is rotating with the blade and has its origin at
the blade root. The acceleration of the element is obtained from equation ( 2.19)
after ignoring the shaft displacements due to vibrations, blade deflection along £
axis being very small in magnitude has been neglected.

Equilibrium of forces in the ¢ direction yields:

Veosg—(V +dV)cos¢+ (N +dN)sinf ~ N sin 0 = (mdn){ (2.20)

s dV 9
m{ = -5+ gV sint) (2:21)

Equilbrium of moments in the 77— ¢ plane yields :

¢
(M+dM)=(V+dV)dn =M = plingrs (2:22)
.M
1§ = —=-V 2.23
e T (2:23)
where:
¢

M= Bl (2.24)
{ = - QPwysin?y T (225)
N = pQ%ni* (2.26)
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Figure 2.2: Free body diagram of the blade element



shear force

slope due to bending alone

centrifugal force, (refer to appendix I )

slope due to bending and shear

total virtual mass per unit length of the blade
bending moment

density

area moment of inertia

‘modulus of elasticity

transverse displacement along ¢ axis

hub rotation rate

dots over the variable denote differentiation with respect to time.

LI 1 | TV T [

PEWMNS EI Oz

[

As can be seen in Rao (1086) the shear force V' decreases the slope of the deflection
curve by an angle 7. Now the slope of the deflection curve due to both bending and

shear is given by ¢ — v, hence :

dwy
T =T (227)
shear angle 7 is given as :
v
1= FaG (2.28)
= (6-2m)
V= (¢ &= ) KAG (2.20)
where:
5 shear angle
K shape constant, depending on the cross-section of the clement
A cross-sectional area
G = shear modulus
from equation ( 2.21 ) we have :
& - a dwy a .
- 2 =—— —— [
m{ti, — Qwpsin? 1) % [I(AG(é T )] + (N eia0) (2.30)
since 6 is small
sinf ~tanf =~ %"#
(i — Q?wysin® ) = ~KG[A(¢ — w})) + (Nw})' (2.31)



where a dash over the variable represents differentiation w.r.t. 7.

Substituting ( 2.24 ) and ( 2.29 ) into ( 2.23 ), we get:
= . D, g ( 5%)
” _ 520 2.32)
pld [EI¢)- KGA(o Bn (2.32)
2.2.3 Non-Dimensionalization

For non-dimensionalization w.r.t. space and time variables, we define the following

non-dimemiona&, parameters:
b

z = ==

1

T = O
i =l
1
kv = 1—‘[7 Aln+ R)dn
_ kG
@ = o
& =l
@ = pwn
- A
A=z
. ry
I =5
where :
1 blade length

hub radius

Equations ( 2.31) and ( 2.32 ) can be written in the following non-dimensional
form :

Az Azsin?y = —aA (9= ) + (kn') (2.33)
Té=alid) -aile- Cea

where the boundary conditions are given as:



22'=0 at y=0
TAky=0 at y=1
Equations ( 2.34 ) and ( 2.33 ) are two coupled partial differential equations
in two variables z and ¢. The coefficients of the equations are functiors of the
independent variable y. Since the exact solution of the problem is difficult to obtain,
a numerical technique based on Galerkin's method as explained in Meirovitch (1967)

has been used.
2.2.4 Solution of the Equations

We assume a series solution for the variables z and ¢ in terms of the comparison
functions g and py respectively, where g5 and py satisfy the boundary conditions

of the system.

6= Y peit
=1
using the above expressions in equations ( 2.33 ) and ( 2.34 ) we get :
i - . 2 M
S {-stdaAnainto} = S{-ali -l + G} C39)
=1 =1

and

. :
> {-tin=3 {adnr-aio-do} (230)
= &

Galerkin’s method of weighted residuals states that the error e incorporated in
the above two equations, due to the assumed solution integrated over the domain

should vanish.

/D €qdD =0



and forr=1,2,3--n
dD=0 2.37

fD pr (237)

where the domain D for the present case is the length of the blade varying from 0

tol.
For equation ( 2.35)

e= (et An- Aoyt ali el - ot} (239
k=1
For equation ( 2.36 )
= 2~k Pn-albair +a dn-do} (230)
k=1

using equation ( 2.37 ) we get :
/ Y {—uz Age- A gusin® ¥+ A (e — )} - (knqz)'} ady=0  (240)
k=1
and forr=1,2,3--n

/Z {—w‘. In-an) +a i(m- q’.)} Prdy =0 (241)
k=1
forr=1,2,3-n

Boundary conditions for the blade are :

at
y=0 ¢=0
at
y=1 Aky=0 (242)
On the application of boundary conditions, the above equations take the follow-

ing form:(as explained in appendix D)

- 1 o L] 2
~“22/ Aqqudv—sin’wZ/ Agady
=70 k=0

=) ! e - g [k { ghd 2.43
"'E,./n" ,m—mw—éfo NGy (243)
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forr=1,2,3.-:n

and

n > - B, 1 . L] L.
wsz;/u Ipupedy - fzg'[, Ipphdy— (IE'/‘; Ape(pe—gidy =0 (244)

equations ( 2.43 ) and ( 2.44 ) reduce to the form:
noe, LI
uzZ/ Aqukdy-fsin"bz,/ A grardy
k=170 k=70

5. e wi oy
=-a ) [ Adm-ddir+ Y [ kv (249)

=70 =l
forr=1,23n

and
2 2 1. L] 1 . — B 1 o "
wkE/ Ippedy =€ Z/ Ippdy+ea Z/ Apr(pe—ai)dy  (2.46)
k=170 k=170 =7
forr=1,23.-n
adding the above two equations, we get :

S P - LA 3
E3 L (A graict I prp)dy +sin® Y /o Agrady
k=1 k=1

I
=-q Z/ Alar(p = qt) = pelpe ~ ai)dy
k=172

2. "o
+£2L/ lzr'rpivly+2/ kngrgpdy
=5 k=17

L] 1w n 1
= szZ/ Ippidy + Z/ knalghdy
k=10 k=170

1 o
+a / Alpx= e~ )y (247)



forr=1,2,3--n

from equation ( 2.35 ), we have : (see appendix E )
n A A . sin? g & 1 -
n = — Aqdy+ =3 | Aaqdy
kgl aAd k;l/o Aq A=1/"

ISR o)
k=1 A€ k=1

or
n n n
Y m=AY Pxat+) Pxn (2.48)
k=1 k=1 k=1
where:
A=

Pga =
Pgp = (2.49)
similarly we have:(refer appendix E )
n " n
YH=AY Pria+ ) P (2.50)
k=t k=1 =

where :

i
P o= & ATPA‘A
an
. S 4 o
sin’ A
Prap = By AR L i) -Ap  (281)
a A Aq A
Equation ( 2.47 ) represents n equations for n values of , on adding these n

equations, we get :
® % N nanoa,
iy Z/ [A g+ T pep )y +sin? 9y Ej Agady
r=1k=170 r=1i=1-0
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=tzii/li¢ﬂdv+iik~qﬁfﬁﬂ
=1 k=170 =kl
+a EZ/I Alpe- a)m - 6)ldy (@252)
r=tk=10

On further simplification and application of boundary conditions the above equa-

tions as given in Warikoo and Iladdara (1989) can be written as : (see appendix F).

LI 1. i,
»\Z,E [/o A qr-l;dy+/a I PraPrpdy— tz[] I (PriaPk18 + PmpPrialdy

4 1.
= [ A PuaPia t PuaPiadta | 3 (P + Pradt ]

- a 1 o 1 o
= Z[~ siny / Agady+e / I PrsPrapdy+ | knajgidy
=k & i 9
1.
+ [ A(PsaPun - Paod ~ Pra, + 0] 253)
@
MM]=[K) (254)

Boundary conditions are appiied to the third term on the mass side, which state

that J=0 aty=1andg =0 aty=0( details given in appendix Il ).
2.2.5 Sample Problem

The software developed was used to find the natural frequencies and mode shapes
of two blades having airfoil sections NACA 16-018 and MACA 63; — 018 as shown
in fig. 2.3 and fig. 2.4, wherein the cord ratios for the blades are given in table 2.1.

The blades have been assumed to be of length 2.8m mounted on a hub of diameter
Ldm for a .7m diameter tail shaft. Fig. 2.5 to fig. 2.7 and fig. 2.8 to fig. 2.10 show
the variation of natural frequencies with respect to the hub rotation speed, for these
two blades for the pitch angle settings of 030,45 degrees respectively. The decrease
in the natural frequencies due to shear deformation and rotary inertia can be clearly

seen.
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Table 2.1: Cord lengths at various blade sections

Blade length |_Cord length/Diameter
0
125 .35
25 375
375 387
5 39
625 315
75 333
875 215
937 2
1 0.

%
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Figure 2.5: Variation of natural frequency for NACA 16-018, pitch angle = 0 deg.



NAT. FREQ. (R.PS)

490.00

Y =30°
420,00+ —*—_—__*/
MODE II e
350.00
LEGEND
— WITHOUT SD/RI
280.00
~—o WITH SD/RI
210.00}
MODE I =5
140,00+
70.00
MODE I * S A
0.00! ! 1 L | 1
0.00 5.00 10.00 15.00 2000  25.00

HUB ROTATION (R.PS)

Figure 2.6: Variation of natural frequency for NACA 16-018, pitch angle = 30 deg.
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Variation of natural frequency for NACA 16-018, pitch angle = 45 deg.
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Figure 2.8: Variation of natural frequency for NACA 633 - 018, pitch angle = 0 deg.
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Figure 2.9: Variation of natural frequency for NACA 63 — 018, pitch angle = 30
deg.
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Figure 2.10: Variation of natural frequency for NACA 63; - 018, pitch angle = 45
deg.



2.2.6 Hydrodynamic Effects

As mentioned before, for marine applications of the propeller shaft, hydrodynamic
effects have been taken into consideration by taking into account the added mass
and added moment of incrtia effects of the propeller. The effects were incorporated
by increasing the mass of the propeller blades by a factor of 25% as can be seen
in Taddara (1988). It is worth mentioning here that the formulation presented for
finding the natural frequencies of the propeller blade can take into consideration
any empirical factor assumed for a particular case. To check the sensitivity of this
factor it was observed that a 10% change in this factor results only in a 1% change
in the values of the natural frequencies. This implies that the factor assumed gives

fairly close values for the natural frequencies of propeller blades in water.
2.2.7 Comparisons

The effects of rotary inertia and siiear deflection on the natural frequencies of a
rolating uniform beam have been dealt with by Subrahmanyam, et.al. (1982). On
checking the example given in the paper as a special case for our study, the results
matched quite close as are given in table 2.2. However, the effects of pitch angle
on the natural frequencies as given in the reference were seen to contradict the
results obtained from the analysis of the present work, which was confirmed from
the findings of Storti (1987).

Storti studied the beams of a non-uniform cross-section but the method of solu-
tion has been applied only to a particular class of cross-sections for it gets compli-
cated in the case of arbitary beam profiles. Table 2.3 gives the comparison of the
frequencies with the example taken by Storti, wherein the discrepancy for the first
mode is not more than .5%, which highlights the accuracy of the method investi-
gated in this work, in estimating the natural frequencies and mode shapes of beams,

having non-uniform cross-sectional area.



Table 2.2: Comparison of natural frequencies with the case taken in Subrahmanyam,
1982

Hub Rotation = 540.35rad/sec

Without S.D&R.I With S.D&,
Mode No. | cos’ | Reference | Calculated | Reference | Calculated
1 0 5800.04 | 5776.75 5576.837 | 5710.79
)i 0 35565.0 35573.87 | 33832 32618.07
I 0 99365.6 99391 89677.6 82754.56
I 45 5788.73 5788.16 5746.09 5721.6

I |45 35563.3 35576.43 | 33832.0 32619.98
I 45 99365.6 99393.49 | 89677.6 82755.04

1 seems to be erroneous

Table 2.3: Comparison of natural frequencies with the case taken in Storti, 1987

Hub Rot. st Mode(112) 2nd Mode(11Z)

(HZ) Reference | Calculated | Y%error | Reference | Calculated | %error
5 2415 202.76 5 83 793.62 13

10 242 243.29 5 785.6 794.18 1.0

15 243 244.1 4 87 795.24 1.0

20 244 245.4 5 789.2 796.7 9

25 247.5 246.97 2 795.5 798.58 3




2.3 Mode Shapes

The ith mode shape for the propeller blade is given by:

4
¢ = Y ainde fori=1n~4
k=1
where :
ap(k=1~4) = eigenvector for a given value of i
o = cosfiy — cosh By + o(sinh By — sin Bry)
_ cosBul +cosh Bl
% = Sinful +sinh Gl
5 Mw?
Bi EI
M average total virtual mass per unit length of the blade
I average area moment of inertia of the blade
w = natural frequency of the blade

The mode shapes obtained using the present technique were checked for the case

considered by Storti (1987) and the fig. 2.11 shows their close agreement.

2.4 Preliminary Check Using Finite Element Formu-
lation

For checking the accuracy of the method presented earlier in this chapter, finite
clement analysis of the blade using beam elements was carried out. The analysis

was done using the finite clement analysis package ANSYS.
2.4.1 Element Selection

To accomodate the non-uniform area of the blade, 3-D tapered unsymmetrical beam

elements were used. The blade was discretized into 40 such clements.
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Figure 2.11: Comparison of mode shapes with the case taken in Storti, 1987
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2.4.2 Element Properties
The beam element is defined by two nodes I, J as can be seen in the fig. 2.12. 1
and J represent the nodes at the ends of the element. Six degrees of freedom , three
rotational and three translational, are defined at nodes I and J.

Other parameters that are defined for each clement are :

Area at nodes I and J

. Area moment of inertia at nodes I and J

iii. Shear deflaction constant depending on the cross-section of the ele-

ment.

The computer program is run in two stages, in the first stage it gencrates the
stress stiffness matrix from the nodal forces exerted due the blade rotation. In the
second stage the stress stiffness matrix is used to find the cigenvalues and eigenvec-

tors of the system.

The ison of the natural fr i d with the method presented
in this work with those obtained from beam finite element analysis is shown in Fig.

2.13. The mode shapes given in fig. 2.14 also match well.

2.5 Blade Deflection and Stresses
2.5.1 Introduction

The propeller blades should satisfy the strength requirements to withstand long
periods of arduous service without suffering failure or permanent distortions; also
the deflections under the load should not alter the geometric shape of the blade. At
the same time, propellers should not be excessively strong incurring high weight and

cost and possibly prejudicing good hydrodynamic design. In view of this it becomes

to ds ine blade deflections and stresses. The method presented in
this section for determining the static blade deflections and steady state stresses is

based on the mode

For giving a sufficiently accurate value



Figure 2.12: 3-D tapered heam clement
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Figure 2.13: Comparison of natural frequencies with finite element analysis using
tapered beam elements

39



NON DIMENSIONAL DEFLECTION

3.00

*—* F.EM.
+—o PRESENT WORK

200

1.00

0.00

-1.00

-2.00~

-3.00 L 1 1 1
0.00 0.20 0.40 0.60 0.80 1.00

NON DIMENSIONAL BLADE LENGTH

Figure 2.14: Comparison of mode shapes with finite clement analysis using tapered
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for the displacement the first four mode shapes obtained from the modal analysis

were taken for the summation.
2.5.2 Formulation

We consider the case of a cantilever loaded by a distributed force F(z,t), whose

d the displ.

equation of motion is :

[ETy"(z,t)]" + m(2)j(z,1) = F(z,1) = Pf(z)g(1) (2.55)

E modulus of elasticity
T = area moment of inertia
y transverse displacement

@ spatial coordinate along the length of the blade
m = total virtual mass per unit length of the blade

"and represent differentiation w.r.t. space and time variables respectively
I(z) spatial function of the force

10} time function of the force

P a constant

We assume y to be the sum of the first n modes.

y(z,0) =Y dil@)at) (2.56)
=
where :
¢i = ith mode shape for the blade
¢ = time function associated with ith mode shape

Using in equation( 2.55 ) we have :
.
[ers e

multiplying by ¢; and integrating

n 1 5] i
g /n Elé}"’éﬂ.dt+§ /u méidyiidr = /U PR@)bia(t)de

ol



forj=l~n

using the boundary condition for the cantilever we have :
=y s
3 [ Erotsaie + 5 [ moviice = [ prooe o
i=1 i=l

forj=l~n

The normal modes ¢; and ¢; are known to satisfy the condition of orthogonality

given by :
J 0 for j
ipjdz = 2.58,
[‘ mipydz {m“ T (2.58)
d 0 for j#i
e =
A EI$ldz _{ et (2.59)
using equations ( 2.58 ) and ( 2.59 ), equation ( 2.57 ) takes the form
a0 - 0 a my 0 e 0 6@ h
0 kxn 0 L 0 niyp 0 @al|_| i
0 ) e 0o 0 Tionn G 5
(2.60)
or:
[K){a} + [41}{a} = {F} (261)
where
[ig] = stifness matrix of the cantilever
[M] = mass matrix of the cantilever
{F} = force vector
{g} = displacement vector

In the case of propeller blade, idealized as a cantilever of non-uniform area, the
normal modes we arrive at are approximate and hence the equations ( 2.58 ) and

(259 ) are not satisfied fully.
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This is clear from equation ( 2.54 ) which states that :
[K] = AlM]

where [K] and [M] are the stiffness and the mass matrices of the system respectively
having non zero off-diagonal terms.

Ignoring the off-diagonal elements of [K] and [AM] matrices, which are negligible
as compared to the diagonal elements, we can write an equation for the propeller
blade similar to equation ( 2.60 ). Taking the first four modes into consideration

equation ( 2.60 ) reduces to the following nondimensional form.

ki 0 0 O I mp 0 0 0 G h
0 k2 0 0 Qz+0'"r.'00 @l_)f
0 00 kg 0 |) @ 0 0 myw 0 @ 5
0 0 0 kuy % 0 0 0 my 1 Ja
(2.62)
where :
1
5= e [ fedy=0;
P
e Py
@, = rth nondimensional mode shape of blade
f, = non-dimensional force distribution along the blade length

Upon solving the four equations given by ( 2.62 ) the steady state deflection can

be given as :

where w; is the ith cigenvalue.

Using in cquation ( 2.56 ) the steady state displacement of the blade can be

given as :

=0+ @2+ b3+ uda (2.63)



The maximum bending stress at a section in the blade is given as :
. Ey"%
where :

¥ = @]+ 0]+ ods +adl
T = blade thickness at the section

Fig. 2.15 and fig. 2.16 show the variation of the static deflections and steady
state stresses for the blade NACA 16-018 taken as a sample example in this work.
The pressure distribution assunicd for the study is given in Fig. 2.17.

The formulation derived for the blade deflections and stresses was used to check
these parameters for a 10 feet diameter propeller spinning at 300 r.p.m. with a h.p.
of 18,000 given in Conolly (1960). The experimental values in the reference were
predicted from the on amodel. Blade deflections matched quite close

as given in Fig. 2.18, while as blade stresses at mid-sections compared well and are
given in Table 2.4.
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Table 2.4: Comparison of static blade stresses with the case taken in Conolly, 1960.

Blade length Stress (Pa)
Reference | Calculated
1.115 x 10° | 1.399 x 10°
6.81x 107 | 4.621 x 107
2.23x 107 | 22x 107




Chapter 3

ISOPARAMETRIC FINITE
ELEMENT FORMULATION
OF THE BLADE

3.1 Introduction

In the preceeding chapter formulation for finding the natural frequency of the pro-
peller blade was based on the assumption that the blade can be considered as a
cantilever of varying cross section. Since we are primarily interested in finding the
fundamental mode of vibration the assumption is supposed to be quite valid. To
check this, finite element analysis of the blade was carried out using 20 noded,
serendipity, solid isoparametric elements. The analysis takes into account the in-
crease in the stiffness of the structure due to rotation as well as the added mass of

the propeller. For the e fon, dynamic condensation was carried out

to reduce the C.P.U. time consumed.
3.2 Element Selection

Blade geometry being quite Jit selection of i ic elements was

thought to be appropriate, for the fact that in such elements the generalized coor-
dinates and the generalized displacements are related to the nodal coordinates and

nodal displacements respectively by the same shape function. Twenty noded



element was chosen to give a non linear displacement field, which in turn takes
care of the non linex. geometry as can be seen in Bahree (1987). The degrees of
freedom at the nodes of the element are translational in nature along all the three
axes, hence the element is a C® continuity element. By choosing the degrees of
freedom for displacements at the nodes along all the three axes, we are able to get

the other modes of vibration also, besides that for the transverse deflection. obtained

with the beam fon. The element cl istics are given in Fig. 3.1
3.3 Mathematical Formulation

The chosen element is associated with a local coordinate system €n¢ (shown in Fig
3.1), where in the values of €, y and ¢ vary from -1 to L in the element. The
coordinate system X'V'Z is the global cartesian coordinate system.

The displacement vector at a point in the element, as in Rao (1982). is given by:

v ) =[N)}d) (3.1

w

The global coordinate vector of a point in the element is given as :

=[N{e} (32)

Ne

generalized displacement along global X - axis
generalized displacement along global Y - axis
generalized displacement along global Z - axis
generalized coordinates along global X - axis
generalized coordinates along global Y - axis
generalized coordinates along global i
12dal displacement vector
shape function matrix

= nodal coordinate vector
l-nr gctung the eigenvalues and the ecigenvectors of the system we need to get

the stiffness and the mass matrices of the system.
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Figure 3.1: 3-D. 20 noded isoparametric element



The stiffness of the system consists of two matrices :

1. [k*] the clement stiffness matrix depending on the material properties

and given as :

W)= [ (BBl

(3.3)

2. [k$] the clement stiffness matrix resulting due to the rotation of the blade.

This matrix is called the stress stiffness mari

material properties. This matrix is given as :
500
k) = / 67 [0 s oG
v 00 «
The element mass matrix of the system is given as
[m€] = / [N)TplN)dw
u
where :
(8] strain displacement matrix

volume of the element
density of the material

v
»

[T}

{0} = [G}{4}

{8} = {nruyuevevyvewrwyws}
Oro Tap Tuo

8] = |70 o0 7o

Taro Ty a0

[D) = material property matrix whose expression is given as:

and is independent of the

(3.4)

(3.5



1 0 0 0
R 0 0 0
1-v
1 0 0 0
E(1-v) .
T+o)i-2v) 21=0)
symmetric
1-20
2A1-v)
The cigenvalne equation for the system takes the form :
(K] + & Al (3.6)
where :
Iy = conventional global stiffness matrix of the system
[K5) global stress stiffuess matrix of the system
(A1) global mass matrix of the system
A = is the eigenvaluc,

3.4 Formulation of [N] Matrix

The shape function or the interpolation function matrix for the 20 noded isopara-
metrie solid clement is given as :
N0 0 N, 0 0

N=10 NL. O 0 N, 0
0 0 N0 0 Ay

Ny 0 0
0 Ny 0
0 0 Ny

where ¥y, Ny...Voq are the interpolation functions of the nodes [,2...20 of the cle-

ment, and in the natural coordinate system are given as {refer to Caok, 1987)

Ni= 50 EI0 -+ 1m0 + CGIEE: + i+ €6 =2) for a corner node

and N; = ll“ — EX)(1 4 ymi)(1 4 ¢Gi) for & typical midside node given by
+ +
S

Gi=0.m




From ( 3.1 ) and ( 3.2 ), we Lave

u Ny 0 0 N2 0 0 .. Ng 0 0 5
vy =[0 N 0 0 N 0 .. 0 Ny 0 3.7)
0 -

Nyp 0 0
R )
0 0 Nyp

3.5 Formulation of Strain Displacement Matrix [B]
Matrix [B] relates the strain in the element to the nodal displacements.

{e} = (B}{d} (3.9)
8.5.1 Strain Vector

The strain vector {¢} for a 3D element is given as :
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or

I
vy
w,s

ty+ v

v

+u,

et we

coooo~—

co—~ococo
—oococoo
co-ococo

cococo-—o

c—ocooco

{d =[C)e}

—ococcoce

o—occoo

coo~—

s

0%

(3.10)

from equation ( 3.7 ) it is clear that u is a function of the interpolation functions.

which are given in terms of the natural coordinates £, 1.¢. In order to evaluate {4}

we have to get the derivatives of w.v.w w.r.t. €.7.¢ and then use the Jacobian

transformation.

3.5.2 Jacobian Matrix

From differential calculus :

we can write :

Uy
e

e = ugbet ugly +ugls

ne
y
e

e Ug
Ty Ya
oY

=]

"y
Uy




or

() -l
515

using equation ( 3.11 ) we can write {8} vector as :

where [J]™* =[r]

us My Tafi3 0 0 0 0 0 0
vy Iy I Iy 0 0 0 0 0 0
e Ty Tp Ty 0 0 0 0 0 O
e 0 0 0 Iyl 0 0 0
vy p=f 0 0 0 Ty I'p Tl 0 0 0
v 0 0 0 Iy Tyl 0 0 0
we 0 0 0 0 0 0 Ty Iyp Ty
' 0 0 0 0 0 0 Ty Iy Tp
we 0 0 0 0 0 0 Iy 'y Ty

or
{8} = [4J){8'}
3.5.3 {6} Vector

From equation ( 3.7 ) we have

u = u Ny + uaNa+ usN3 + ..uzoNo
v=0 Ny + 02Nz + vaN3 + ...v20N20
w = w1 My + waN2 + w33 + ...w0N20

Differentiating w.r.t. the natural coordinates, we have :

ug = uNyg+ualNp g+ usNag + .uzoNoog
urN1n + u2Nag + uaNa g + .. u20N20,7
ug = wiNig+ walNag + wgNag +..waoNaog

and soon.
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{8’} vector can thus be written as :

"
ue Me 0 0 Ny 0 0 -
uy Mg O 0 Ny 0 0 )
ug Mg 0 0 Ny 0 0 iy
v¢ 0 Mg O 0 Ny O o
Uy ¢ = 0 Ny O 0 Ny O wy
v 0 Mg 0 0 Ny 0 ;
wg 0 0 Ny 0 0 Nay :
w, 0 0 Ny 0 0 Ny 0
we 0 0 Mg 0 0 My 20

w0
or
(6} = [DS){a) (3.13)
using equations ( 3.10 ), ( 3.12 ) and ( 3.13 ) we can write
{c} = [ClAJ)[DS){a} (3.14)

comparing ( 3.9 ) and ( 3.14 ), we have :
[B] = [CllAJ)[DS)
3.6 Formulation of Element Stiffness Matrix [£°]

As given in the equation ( 3.3 )
&l = [(BIo)BYe
£

= / [BI" (D] Bldzdyd=
since [B] matrix is in terms of the variables £, 7. we can transform the above
expression to £n¢ system as :
)= [ (BTDYBLIdednic
where J = Det [J].

The natural coordinate axes £7¢ vary from -1 to 1 in the element, so [k°] can be

expressed as :
wi= [ [ [ rioispdeanic @15)
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3.6.1 Integration Scheme

To integrate the equation ( 3.15 ) Gauss quadrature procedure was used wherein
two points along each axis are selected as Gauss points. (refer Scarborough 1987).

Since we selected a quadratic interpolation function, the expression for the cle-
ment stiffness matrix is also quadratic. Two Gauss points yield the exact area under
the curve of the form ¢ = a + c£?. We know that a curve ¢ = b€ will integrate to
zero in this kind of integration, as it has equal positive and negative arca about £
axis; hence for a general second degree polynomial ¢ = a + b€ + c€2 (as in our case)
two point Gauss quadrature integeration scheme should give an accurate solution

(refer Cook 1987).

The exp ion is by a ion given as: (sce appendix J )
where :
Wi = weight at the ith Gauss point along § axis.
n = no. of Gauss points chosen along an axis, which in this case is 2 for
all axes.
6s(&:,mj, () = function to be integrated.

3.7 Formulation of Element Mass Matrix [m‘]
From equation ( 3.5 ) we have :
] = [Nl
] [ s
1
23 D WV Wachm (£ mj Ga)
&2

n

il

The integration of the above expression can be done on similar lines as done for

getting the clement stiffness matrix [k¢].



3.8 Formulation of Element Stress Stiffness Matrix [k5]

The element stress stiffness matrix is derived by adding higher - order terms to the
strain - displacement relations. In linear problems only the simplest of the higher -
order terms are used.

Strains can be written as :

{d = {a}+{ne} (3.16)

where {cz,} contains the strain terms linear in the displacement derivatives and
{cvL} contains the higher-order terms.

Strain energy stored in a system, subjected to uniform stresses {ag} can be given

U= / (T {ooldv = /; {0} {co}do + / {enz)T{oo)dv
= Up+Uni (3.17)

[kZ] is produced by stress acting through displacements associated with higher - order
contributions to strain. Accordingly, we extract [k,] from Uyy, ( see appendix K ).

{e} for a three-dimensional element is given as :
e+ %(ui.«i— ok +uwk)
w30 405 )
s+ %(u?, +ok 4 ud)

Uy + U+ (Uetty + 0,00, + wewy)

Dty + (00 + 04w+ )

Wtz (w04, + v0;)




%(uf,+v,’,+wf,)
%(uf,+v,’,+w?,)
Uz
Uy L2 po?su?
S(ul + 0% +v%)
I H st
I o (3.18)
Vet wy (vrty + 020, +wowy)
Vet U,
(Vs + wyws +uyu.)
(wswe + usue +v.02)
comparing equation ( 3.16 ) and ( 3.18 ) we can write :
:
{ene} = 3[QICH} (3.19)
where :
uz 0 0 52 0 0 we 0 O
0 uy, 0 0 v, 0 0 wy, 0
@< 0 v 0 0w 0 0w
“uy we 0 vy, v 0 wy we O
0 uw. uy, 0 v, v, O w, w,
v 0 uzv: 0 v; wy 0 w:
{6} =[G){a)
from equation ( 3.17 ) we have.
1
U = 3 [ (QUGHAT {aubde
1
= 3/ (EHIQ o)
1
= 3@ [6IQ (o)
500
= 1(4}’/[0}’ 0 s 0| {6)de (3.20)
2 v: 00 s -

61



where :
s
[@f5xelooles = [“ ] {8loxs
00s ],

020 Tr0 Tmo
Tz Ty0 Ty
Tw0 Ty:0 00

[shxs =
Noting that {§} = [G]{d}, from equation ( 3.20 ), which relates strain energy to
displacement and stiffness, we can write :

Une = @) @2

where:

s 00
k1= / 6F|o s oGl
" 00s
The element stress stifliess matrix (k] is a symmetric matrix like the conven-
tional stiffness matrix and the global [I';] is obtained by the usual assembly of
element [k¢] matricies.
3.8.1 |[s] Matrix
The stress matrix [s] after simplifications can be written in the following form, in
terms of the known quantities : ( refer to appendix L )
00 Tr Temo
[ = |0 o 7y

Tez0 Ty 00

(uy+vz)G Eey, (ve+wy)G

Eeer (uy+0:)G (vz+wz)G
(4 +wz)G (v wy)G ey,



Qoo
coo
oo
=

[100]

1
=
cqo
Qoo
oqo
coo
coo

<
D)

[o1 0]

=
-
coo
coQ
omo
Qoo
coo
Qoo
oo
se

[oo1]

=
coo
coq
coco
coo
Qo
con
cqe
s

3.9 Solution of The Eigenvalue Problem

After assembling all the clement mass and stiffness matrices into the global form,

we get the following eigenvalue equation for the free vibration analysis :
) nxm {2} ety = MM S 4y = {0}

‘The model under study had 1086 degrees of freedom and hence the size of [A]
and [M] matrices was (1086 x 1086), which was quite large so far as the C.P.U.
time consumed is concerned. Tn order to reduce the size of the matrices, "Dynamic

Condensation” of the system was carried out.
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3.9.1 Dynamic Condensation

In this technique usually known as Guyan Reduction, as given in Guyan (1965),
we retain important degrees of freedom of the system, called "master d.o..” and
the remaining degrees of freedom called "slave d.o.L.” are cither neglected because
of their neglegible influence or obtained in terms of master d.o.f. The criterion for
selection of master d.o.f. is that the ratio /';;/Mi;; should be least for such a d.o.f.
In our case we selected all the degrees of freedom in the z direction of the system
as master d.o.f., since the ratio of the stiffness to the mass in the other two directions
is quite high. The master degrees of freedom numbered 362 and hence we had to
solve the reduced system of [K] and [3] matrices having a size of (362 x 362).

The procedure is described briefly as fo.lows :

Kpm 1 Kms Mmna £ 0
= viv e (3.22)
K § Ea Mom M B
The above system can be partioned into two systems as shown, where :
[ displacement associated with master d.o.f.
E A displacement associated with slave d.o.f.
m = refers to master d.o.f.
s = refers toslave d.o.f.
from (3.22 ) we get:
(Km = Momn)8m + (Kmy = AMpms)ey = 0 (3.23)
(Kom = AM o )Zon + (Kos =AMy )2, = 0 (3.24)

Neglecting Myn and M,,, we get from ( 3.24 ) :

@) = (KNl
Hence :
m I
{ Jz.} = [-[A’;‘]{A‘.mll“’")
= [Tlfem)
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where [17 is the transformation matrix.

Since the total energy of the system is conserved, we have

PE.= {alIR) = el ITIRIT )

3len)IRnl{zn)

1
2

HaT )

L) T T}

1gs 4m 3
= glEal [Mal{in)
the above two equations indicate that the reduced stiffness and mass matrices of the
systom are given as:

BBl = (117 (K](T)

(Ml = (T [A)T] where m < n
Fig. 3.2 shows the close comparison between the natural frequencies obtaired
with this analysis and those computed by assuming the propeller blade to be a

cantilever, as ijven in the previous chapter.
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Chapter 4

FREQUENCY ANALYSIS OF
SHAFT-ROTOR SYSTEM

4.1 Introduction

In this chapter the equation of motion, describing the transverse vibrations, of the
propeller shaft without the blades has been derived using Newtonian approach. The
hub of the propeller has been treated as a flexible rotor and thus the whole shafting
can be considered as a shaft-rotor system. The system has been considered in three
parts: tail shaft, over hang and rotor, as can be scen in Fig. 4.1.

Equations of motion have been derived scparately for the three segments as
can be seen in Haddara (1988). After applying the boundary conditions we get

the characteristic equation of the whale system. For the propulsion shafting under

coupled vibrations in the hori: 1 and vertical planes are

known to occur as a result of propeller v, hearing properties, shaft prop

and shaft unbalance. For this fact equations of motion of the shaft segments in two
perpendicular planes have been derived, which when coupled give the final equation
(see Chivens, 1975). Shear deflection and rotary inertia effects have been considered

for the rotor since it has a larger diameter as compared to the tail shaft.



x

weaBerp onewais ey Jafpdos (1°p sty

pz=o-+

apo|g i3jjadoid = 18

buiioag pus-ijy = gy

bulioa

‘wlo

g Pua-piomiog =g'4
yjbua gny =9
Bubysanp = q

uibuan oys 110y =D
J9j3wpiq Jajladoig = Q
p

= J3jawoiq $40YS =

A I —
=l L S =< |

a8

o

Z
|

K

[



4.2 Formulation of the Rotor Equation

In this section the equation of motion of rotor in the complex plane in a non-
rotating coordinate system has been derived. Since rotary inertia has been taken

into consideration, we first find the angular momentum of the rotor.
4.2.1  Angular Momentum of the Rotor

As found in chapter 2 the angular velocity &, of the coordinate

vstem zy=. with

reference to XY Z, coordinate frame is:

o= bl +ij
= bithj (1)

The angular momentum of the rotor in its local coordinat

s given as

0= baeSsd 4 Iy Qd + bncQuck

J. s ;
o By i
3O+ 30)+ 9

where:

J : _—
lar = 5 = & component of total virtual mass moment of inertia of the rotor

o3
Iz = J = = component of total virtual mass me nent of inertia of the rotor

Iny = % = y component of total virtual mass moment of inertia of the rotor

Q) = ¢ = & component of the angular velocity of the rotor
9y, = 6 = y component of the angular velocity of the rotor
21: = @ = = component of the angular velocity of the rotor
[

slope due to bending moment ix 2= plane

= skene due to bending moment in y= plane

Monment exerted by the rotor on the shaft, as given in Dimarogonas (1983) is given

by :

M =%¢i+' G+ Q) x 1T
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3
0 | =695 - é60dj
J9

i o= %(5+2(lﬁ)i+%(§-mé)j

PG+ 200)i + pl (6 - 206)] = M i + M, j (4.3)
where :

p = density of material

1=

ea moment of inertia ahont a

ameter

4.2.2 Equation of Motion in x: and yz Planes

The free bady diagrams of au elenier

in the £z and = planes are shown in Fig.

where:
V, = shear force along r axis

M, = moment about r axis

shear force along y axis
M, = moment about y axis

displacement along r axis.

v, = displacement along y axis.
Equilibrium of forces in the vertical direction for the two planes yields :
; oV, ..
Vo= (Ve t a—:rl:) = mitydz

V-V, + ‘7'7_"},1;) = midz

or
av,
- 5% = mi, (44)
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Figure 4.2: Free body diagram of the rotor element



"
& Tj = mi,
using equation ( 4.3 ) equilibrium of moments in

—(My + Vadz) + My +d0My =

the two planes yields :

Mydz

= pl(f-204)d:

(Mg +Vydz) - (M + dM,)

[

or
oM,

Vz—T=—pl(.‘7—

2

Modz
pl($+20d)dz

208)

V- Bl 16+ 200)

.

(4.5)

Tie expressions for the shear force and the bending moment in the two planes are

)

given as :
M. = _mg
5 d
V, = -KAG (e+ 2
and
2
M, = EBIg
V. = KAG (o+o"‘
where:

E = modulus of elasticity

G = modulus of elasticily in slear
A = cross-section arca of the element

K = shape factor constant of the beam

(4.8)

(4.9)



Differentiating equations ( 4.3 ) and ( 4.9 ) and using ( 4.4 ), ( 4.5 ) we have:

B L Py
9z ~ TKAG 0z
v,
= ToE tRac e a0
B _ Lo O
9: = KAGd: T 032
a 9*

equations (4.6 ) and ( 4.7 ) yield:

3 3 2
W TS a g —pl (_8_0; & mg_é_)

5 s o~ gzon
W, P _ [P 000
T~ Elgs = goe t o
using equations ( 4.4 ), 4.5), ( 4.10 ) and ( 4.11) in the above equations we get :
e _py [P m 8w | 8w m O,
i 95~ KAGooa| ~ P |7:0e T TAG a0

P, m_Po,
+2001 [-:—,0—‘ + MW] (412)

%, Oy, m w ] [ o, m
oy FEL [' o~ Facow0s| ~*!| om0 t Kac o
Pu, m_Pu,
2% " xac o8 | 1Y
combining equations ( 4.12 ) and ( 4.13 ) and defining w, = u, + iv,, we have :
O, 0%, Elm 0w, ',

9w, A, ) _pIm 0w,
moa T EIGA ~ Tacear = PliEen ~ KA an

+20I9Q

oo pIQm 8w,
Uiy 4 EaG an

B*w, &, E\ 8w, | pY 8w,
noge + B ol (14 57 o+ o

+2ipIQ ("a"" 2 ”""') =0

9:%01 " KG 0P
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4.3 Equations for the Tail Shaft and the Overhang

Portion

As was mentioned before, in the case of the tail shaft and the overhang portion,

effects of shear deflection and rotary inertia, being small, have been ignored, hence

the cquations of motion for these segments arc the conventional Euler-Bernoulli

equation, given as :
P, dw,
et 4 L

where :
my = mass per unit length of shaft
1, = arca moment of inertia of shalt
w, = transverse displacement for the rotor
wy = transverse displacement for the overhang portion

we = transverse displacement for the tail shaft

sial coordinate for the overhang

= = axial coordinate for the tail shaft

The cquations of motion for the propeller shaft assembly are thus given

o',

P 9w,

Py 0w,
g LI')T—/:I(H—

+2iplQ (—

o, P
T

with the boundary conditions :

(4.14)

(1.15)

(4.16)



£ w(0)=0
2. uf(0) ~ kuj(0) = 0
3. w,(0)=0

4. wy(0) = wifa)

o

. wll(0) = wia)

8

wila) =0

~ wr(0) = wy(b)

*

wl(0) = wi(b)

b

w!(0) = (b

10. w(0) = juwf'(b)

1L w!(c)=0
12, w(e) =0
where:

@ = rotor length
b = tail shaft length
¢ = overhang length

= ratio of the shaft and rotor moment of inertias.
4.4 Nondimensionalization

To put the equations of motion in the nondimensional form w.r.t. space and time

variables, we define nondimensional variables:



_w

b=
=i

Y=

where 1 is the total length of the propeller shaft.

Using the above relations equations ( 4.14 ), ( 4.15 ) and ( 4.16 ) take the followinz

form :
6y, EIdYy, E)Q' 'y, P Eu,
2, it Tl SR s} I 4,
el = S ( *+76) Tomoat fe ™o
Pu 3 S| _
+2“’m[1 prrral i
oy, | EI, 0%,
2y Ys Do £ -
G T g =0
2,0% Jt EL &'y _
gl s Be Tl <o

(4.17)

(4.18)

(4.19)

The equations of motion in the non-dimensional form for the system are thus given

ast

LT €_x( 9y 6o 0y,
ek (14 50) ia + S
Py, Q2 By,
2l [12 9:%r ~ KG 070
LA
T2 T =0

76

(4.20)

(4.21)



Py 'w

.‘)7*'('0_;{:
where :
b=

with the boundary conditions :

L u(0)=0

»

%(0) - ky(0) =0

5

wn(0)=0

- %(0) = yi(a)

o

¥(0) = y(a)

»:

wla)=0

+ ¥r(0) = us(b)

o

(0) = y3(8)

©

. ¥/(0) = py(b)

s

. 47(0) = pyg'(b)

Cue)=0

&

”i(e)=0

(41.22)

(4.23)
(1.21)

(4.25)



4.5 Solution of the Equation

We assume a solution for y,, y,, yr in terms of space and time functions as :

PR
b o= e
B = e (4.26)
where :
o=
Ta

7 = root of the spatial function for the rotor
A= root of the spatial function for the shaft
& = non-dimensional eigen value

w = dimensional eigen value

substituting ¥r, ¥s, % in the equations ( 4.20 ), ( 4.21 ) and ( 4.2 ) we have

E\ 2 Q2 .4
g+ (14 37) 7+ e

S WSO e
+2i06 [ﬁl—,qm 8)+ PR )] =0 (427)

and
& gN =0 (4.28)

equation ( 4.27 ) and ( 4.28 ) on simplification take the form :

- »3 -2

(6, BN 260] 6 . &

7'+ | (”m)“ - E,l?}" e (u-—?)-—f—r 0 (429)
A (4.30)

equation (4.29 ) can be represented as ;
N e te=0
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whore ¢
- &2
=g’ [‘* G
.2 2.2
=% [E"’n"’ 1—1]

| KG

5t
=11

Exlro

where - and + sign for ¢ correspond to the forward and the reverse whirl of the shaft
respectively.

The roots of the equation ( 4.20) arc given as:

H
DG -
=2 (-2) Z(2) -
J 2 2 2
we have four values of 1), defined as @, az, ag anc oy where:
v =i az=1m
and

ap = —iny g ==

from equation ( 4.26 ), the solution for y, can be given as :
%o = (AeM® 4 BemMz 4 Ceinr . Demimz) gidr
= R(z,)e""
similarly the solutions for the overhang and tail shaft portions of the shaft are given
respectively as :

¥s = S(x,)e!
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ve = T(z)e™r

where :
R(z1) = Ay sinf + Az cos By + Aasinh By + Aqcosh By
S(z2) = Pysinya2 + Py cosyz + pasinh y2 + Py coshyz
T(z3) = Qsin7s + Q20573+ Qasinh 73 + Qacosh 73
where ¢

Bi=mz i=12

T = ATk
Ay P, Qi(i = 1,...4) = arbitrary constants to be determined from the boundary
conditions.

4.5.1 Application of the Boundary Conditi:

To solve the shaft-rotor system equations ( 4.20 ), ( 4.21 ) and ( 4.22 ) we need to
have twelve boundary conditions, so that we have twelve equations in twelve arbi-
trary constants and the eigen value &. For a consistent solution of the system of
equations we need to solve the characteristic equation of the system which becomes

the eigen value equation for our system.

Boundary Conditions at A :
1) T(@)=0
2) T"0)- KT'(0)=0

Boundary Conditions at B :
3) $(0)=0

1) §(0)=T'(a)
5)  §"(0)=T"(a)
6 T(a)=0
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Boundary Cond;
7)  R(0)=5(b)

8) R(0)=5'(b)

9) R(0)=pS"(b)

10)  R™(0) = puS"(b)
Boundary Conditions at D :
1) R'c)=0

12) R"(c)=0

where:
A = forward end bearing of the tail shaft
B = aft end bearing of the tail shaft
C = shalt rotor junction
D = free end of the rotor
Dash over the variable denotes differentiation w.r.t. the spatial variable.
The boundary condition (1) states that the deflection is zero at forward end bearing,
the boundary condition (2) is written in a general form so that one can deal with
a simple support, a clamped support or a general degree of fixity at this end. The
difference in the natural frequencies for different fixities is evident from fig. 4.3.
Conditions (3), (6) state that the deflection is zero at the simple support B,
while (4) and (5) are the continnity conditions at this support.
Boundary conditions (7) through (10) represent the continuity conditions at the
shaft-rotor junction,
Conditions (11) and (12) state that the bending moment and shear force are
zero at the free end of the rotor.

Using all the boundary conditions we can derive the following characteristic
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equation in the variable w.
(X1 + Xa)W, - 2Xo W2 = 0

where the expressions for X1, Xa, X3, Wy and W; can be found in the appendix M.
Fig. 4.4 shows the difference in the natural freqencies corresponding to the
forward and reverse whirl of the shaft, the difference is distinguishable at shorter

tail shaft lengths where the rotor mass has an overriding effect over that of tail shaft.
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Figure 4.4: Natural frequancy variation due to the varying tail shaft length.
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Chapter 5

COUPLING OF BLADE AND
ROTOR-SHAFT
FREQUENCIES

5.1 Introduction

This chapter gives the formulation for finding the natural frequency of the propeller
shaft system. The assembly was analysed in two independent parts, namely the
blades and the rotor-shaft system. The resultant frequency, for the whole system
was found by coupling the frequencies of these two parts. The method adopted
is based on an extension of Southwell-Dunkerley methods for synthesizing isolated

frequencies as given in Endo and Taniguchi, part 1 (1976).
5.2 Formulation of the Series Synthetic Method

Southwell-Dunkerley methods for the synthesis of the so-called inertia elements and
the so-called restoring clements (shown in Fig. 5.1a and Fig. 5.1b respectively) give

the following expressions for the frequencies.

(5.1)

and

PP=P} 4P} 4..P? (5:2)
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where:

P; = angular frequency of the respective isolated system composed of the mass and
one of the restoring elements.

The series type synthetic method as presented in Endo and Taniguchi (1976) deals

with another pattern of combining restoring elements (Fig. 5.1c). The method

like Southwell-Dunkerley methods is based on Rayleigh's principle and gives the

frequency of the system as

T o o 1 "
= P_,7+ F}+P_j (5.3)

Although equation ( 5.3) is formally similar to equation ( 5.1), the structure
of the present model is different from that used in the so-called inertia synthetic
method. The advantages in this technique are that with the addition of each spring,
the frequency of the system decreases and that different deflection functions must
be assigned to respective restoring elements so that the deflection of the inertia
clement is to be a direct sum of those functions. The fact that with the addition of
restoring element, the total frequency of the system decreases allows us to consider
the effects of shear deflection in the beams by just adding one restoring element

(having the deflection function proportiona; to the shear deflection) in series with

that ding to the bending ion of the beam.

5.3 Criterion for the Application of Series Type Solu-
tion
The expression given in the equation( 5.3), like the other two Southwell-Dunkerley
formulations, predicts a lower limit of the true frequency of the system. In order that
this lower limit be expected to be very close to the true frequency of the composite
system, another condition is demanded in addition to Rayleigh’s principle on which
the previous two methods are based. It is possible to obtain a better approximate
[requency than the lower limit P, by formally expanding the correct frequency in a

power - series in terms of the perturbation parameters f; < 1.
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As a mathematical model of the most general continuous system whose restoring
elements are coupled mainly in series, one may consider a composite system which
can be relaxed into n isolated systems. From Rayleigh's principle the true frequency
P of this system is given as:

P=— = (5.4)
: i#]

L

'J.‘=j.- Silyidx
L

t=m, A yidr

L
b5 = mj; /o viydz

m;; = mass associated with the ith and jth restoring element.

¥ = deflection curve for the ith restoring element.

In the equation ( 5.4) v; of the numerator denotes the potential energy term
related to the respective restoring element, while the denominator is associated
with the kinetic energy where in #;; shows the coupling effect between two deflection
functions (explained in appendix N)

From Rayleigh's principle the following inequalities hold.

uyk

t

=P (i=1~n)

where V; and T; denote the potential and kinetic encrgies of the respective isolated
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systems, which can be obtained by substituting the true deflection function ¥; of
an isolated system into v; and ¢, respectively, in place of y; for the combined state.
Hence P; defines the true frequency of each isolated system.

From Schawarz’s inequalities we have

L L L 2
[, y?dzj; y,?.ug(/o y;yjd.t) (55)

also we have

mim; 2 mjy (5.6)

combining equations ( 5.5) and ( 5.6) we arrive at

()

we define P, givei: in equation ( 5.3) as :

(5:7)




S| E,._‘/_v;,‘_]'
i=|1>i‘. v’ v
e T R L

- (58)
)
=
which yields:
P>P (5.9)

indicating conclusively that the value P, gives a lower limit of the true frequency
for the system.

Our aim now is to minimize the R.ILS. expression of equation ( 5.4 ) so that we
can find an approximate value of the frequency which lies somewhere in between P
and P, which give upper and lower bound solutions respectively.

We define the following quantities

6.-,:%’11(1-‘/;‘—':_'?.;) (hj=1l~ni#])
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using in the equation ( 5.4) we have:

(5.10)

(5.12)

To get the condition of stationarity we take the variation of the functional ¢ and
set it to zero

s6=0 (5.12)

which after certain approximations yields (refer Endo and Taniguchi, 1976)

PP PA1+4,) (5.13)
under the condition that §, <1
where:
6, = perturbation parameter of the power series expansion of P,
.m
=YY
=15

from equations ( 5.9) and ( 5.13) we can safely say that the true frequency P under

consideration lies in the range
(Pa, Pa(1 +.56,)] (5.14)
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where:
P, is called the zeroih order approximate solution for P and Py(1 4 .56,) is called

the first order approximate solution.
5.4 Modelling of the System

The sample propeller shaft considered in this work, consists of five blades. The
propeller shaft assembly can be modelled as shown in Fig. 5.2a, wherein the system
has been relaxed into single degree of freedom isolated sub-systems. The springs

and masses used have the following meaning :

K, = restoring clement jated with shear d ion of shaft

Ky = restoring clement associated with bending deformation of shaft

ks = restoring element i with shear ion of blade

ky = restoring element associated with bending deformation of blade

ky = restoring element associated with axial force in the blade due to the
rotation

M = Inertia element of the shaft

m = inertia element of the blade

At the normal operating speeds of propeller shafts ( upto 300 R.P.M. ) the ef-
fects due to axial force and shear deformation are negligibly small, hence the model
can be put in a simplified form as shown in Fig. 5.2b.

Looking at Fig. 5.2a and the three methods given in scction 5.2 we can clearly see
that the series type synthetic method of analysis is applicable to our system, since
one mass unit is connected to a scries of springs. Fig. 5.2b being a simplified case
of Fig. 5.2a can also be solved by serics type synthesis. In order to distinguish all
the isolated systems in the model, we consider all the combinations of the restoring

elements and inertia ones as given in Fig. 5.3.
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Figure 5.2: Modelling of the propeller shaft assembly
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The natural frequency of these eleven types of isolated systems, given by P,(i ~

11), as given in Endo and Taniguchi, part II (1976), is given as :

1. For an isolated system subjected to bending effect of the beam and having the
distributed mass of the beam. The frequency wy for this case has already been

obtained in chapter 4.

W

For an isolated system subjected to bending effect of the beam and having the

distributed mass of the blade. The frequecy wyy for this case is given as :

ay\’

1 (diy

b (dﬂ) dz
M [ §(z = 1)ydz

2

wip = (5.15)

where:
displ: function of the rotor-shaft system, which can

" be well approximated by that of the tail shaft portion given ss Qs sin Az-+
Q2cos Az + Qasinh Az + Q4 cosh Az ( derived in chapter 4 ).

Qi(i = 1,---4) = constants depending on the rotational speed of the shaft.
Mw?

M= L
L

M, = mass per unit length of the tailshaft.

I, = area moment of inertia of the tailshaft.
E = modulus of elasticity.
= length of the tailshaft.
M = total virtual mass of the blade.
The Dirac-Delta function indicates that the blade is a concentrated mass at
the end of the tail shaft.
Equation ( 5.15) represents the frequencies wy,wyyy -++wy since all the five

blades are identically attached to the shaft.



3. For an isolated system subjected to the bending effect of the blade and having
the distributed mass of the blade. The frequency wy 7 for this case has already
been obtained in chapter 2. Frequencies wy 77 to wx  have the same magnitude

as all the blades are identical.

Referring to expression ( 5.14 ) the zeroth order approximate solution for the

frequency is given by P, where :

The first order approximation is given by Pa(1+.56,) where:

5'=2":i"i:‘

=150

Tor the case of our study only the perturbation parameters &y, 81316 exist,
the rest all vanish as five identical blades have same deflection functions for their

restoring elements.



5.5 Determination of the Critical Speed

The curve shown in fig. 5.4 gives the values of the resultant natural frequency of the
propeller shaft assembly for various values of shaft rotational spends. The critical
speed of the system is the intersection of this curve with the line whose slope equals
the number of blades of the propeller shaft. Equation ( 5.14) was used to give the
limits of the natural frequency for the system considered in the present work, for
different blade numbers. The true value of the natural frequency is supposed to lie
between these limits, as can be seen from fig. 5.5

The formulation was verified by checking the results obtained for the case studied
in Toms and Martin (1972), as can be seen in fig. 5.6.

Woytowich (1979), calculates the natural frequencies of a propeller shaft having
a tail shaft of 228 inches and diameter 11 inches. The results obtained with the ap-
proximate method, presented in the reference, were checked against those computed
using ABS coputer program.
The comparisons for the forward whirl and simply supported forward bearing end
conditions are given in table 5.1, where in it is evident that our approach gives
better results.

As mentioned before the dimensions of the propeller blades and the hub have

not been given in the and the following i relations were used

to get their approximate values.

w = 26D%MWR)(BTF)

where:

[

weight of the blades
developed area per blade
uwr w ltrepdsospebiod
£ D(propeller radins-hub radius)
propeller diameter in inches.
.004

won

D
BTF
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Figure 5.4: Determination of critical speed

98



- —0— Ist ORDER APPROX.
—{F— Oth ORDER APFPROX.

170

140

CRITICAL SPEED(RPM)

110

3 4 5 3
NO. OF PROPELLER BLADES

Figure 5.5: Effect of blade number on the natural frequency of the propeller shaft
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Figure 5.6: Comparisons of natural frequency with the case studied in Toms and
Martin 1972.
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Table 5.1: Comparisons of critical speeds (RPM) with the case studied in Woy-

towich, 1979.

Reference

ABS program

Present work

zeroth order approx. | first order approx.

157.6

170.2

742 |
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Chapter 6

CONCLUSIONS

6.1 Summary of the Present Work

The purpose of this project was to find a method, which can prove to be a handy
and effective tool for determining the natural frequencies of a propeller shaft system.

There are methods which can do the same job and may be more accurate, but need a

lot of i

tial data for giving a solution. Moreover, the solution proves costly because
of the time consumed in lengthy numerical calculations. It can be stated safely that
at the beginning of design we just need to have an idea of the shaft critical speeds
and the approximate and inexpensive methods should prove fairly reliable. This fact
depicts the importance of the class of approximate methods, to which the present

work is an important contribution.

The work i in this i igation takes into i ion some of
the characteristics of the propeller shaft, the importance of which may be felt in
certain conditions of propeller operation or intricate geometry. The modelling of the
propeller as a thin rigid disc, as available in the existing literature, was improved
upon by taking the propeller in its exact form, that is, a flexible hub mounted
with blades. The work was carried out in different stages, first the propeller blades
were analysed and later the shaft-rotor system. The isolated frequencies of the two
systems of the propeller shaft assembly were then coupled using a technique given

by Endo and Taniguchi (1976), for the application of which our system met the
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requirements.

The method developed for getting the eigenvalues and eigenvecicrs for the pro-

peller blade ibrations tases into i ion the airfoil section of the
blade, which was not to be found in the literature, The software developed was ap-
plied to several blade profiles for estimating their natural frequencies and the results
were quite convincing. To obtain the equation of motion for the transverse vibra-
tions the blade was assumed to be a cantilever, which proved to be quite valid after
the analysis was cross checked against the results obtained from 3-D isoparametric
finite element formulation.

In the case of the shaft-rotor assembly the frequencies were obtained by consid-
ering the transverse vibration of the three segments: Tail shaft, Overhang and the
Rotor linked by the boundary conditions.

As is clear from the preceeding sections the method formulated minimizes the
approximations to be made for the solution of natural frequencies of a propeller

shaft system and was seen to give fairly accurate results.
6.2 Conclusions

Based on the investigation carried out, some important conclusions can be drawn.

1. For finding the frequency of ibrati of a pro-
peller blade, the approximation that it can be assumed to be a cantilever

is fairly accurate.

s

For the range of speeds of interest in case of marine propellers, shaft

rotation has a small effect on the natural frequencies.

@

. Increase in the stagger angle decreases the natural frequency of the blade
and 50 do the shear deflection and rotary inertia. The effects due to shear

deflection are more pre-dominant at higher modes.



S

. Obtaining the natural frequencies of a propeller shaft by coupling the
frequencies of the blades and that of the shaft-rotor system seems to be

a satisfactory method since it involves less approximations.

&

The natural frequency of a propeller shaft decreases with the increase
in the tail shaft length. The difference between the forward and reverse
whirling frequencies of a propeller shaft is distinguishable at shorter tail
shaft lengths, since in such a situation the rotor mass has an appreciable

effect.

=

. Increase in the number of blades decreases the natural frequency of the

propeller shaft assembly.

~

. Natural frequency is appreciably affected by the varying fixity of the

forward end bearing of the propeller shaft.
6.3 Limitations and Recommendations

The coupling of the natural frequencies for the two isolated systems still necds some
improvement, since the method is based on approximations. The displacement func-
tion for the shaft-rotor system was taken to be the same as that obtained for the tail
shaft, which gave very close results for the cases where the tail shaft was of relatively
large dimensions. The cases where the tail shaft length is comparable with that of
the rotor and the overhang could not be solved with accuracy. The coupling method
used seems to be very sensitive to the displacement function assumed, because of
its influence over the frequencies for the cross terms. In addition, the dimensions
of the propeller for a given propeller shaft were obtained by approximations since
the existing work assumes the propeller to be a disc and hence does not provide the
actual dimensions for the complete propeller shaft assembly.

The propeller blade is of intricate geometry, factors like the blade rake angle,
angle of twist and the torsional coupling arising in the cases where the center of

mass does not pass through the neutral axis remain to be incorporated in the work,
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Appendix A

ARRANGEMENT OF COORDINATE AXES (FLOW CHART)

Details given on nextpage

STATIONARY ROTATING
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Coordinate Systems

Description

Unit Vectors

XYz
1 h A
zyz
T2 Y2 2
§o M Go
En¢
Xy z

fixed to the undeflected shaft center line

X Y Z rotated about X by an angle ¢

a1y = rotated about yy by an angle 8
rotating at @ about 2, coinciding z
22 2 22, translated by R along yo

& o Co, rotated about 7o by an angle ¥

rotating at Q about Z', coinciding Z

I1JK
ok
ijk

iz ja ko
dedd
e e e

rJ K
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Appendix B

TRANSFORMATION OF COORDINATE AXES

Transformation between zyz and z1312 ¢

£ 4 1 0 1 i
J y=|0 cosg —sing A
K 9 sing cos¢ b

Transformation between 2192, and zyz :

i cosd 0 sind i
hopo= 0 1 0 i
y —sinf 0 cosf k
I cosf 0 sind
J} o= u cosé -sm¢ 0 1 0
K 0 sing cos -sinf 0 cosf
cnse 0 sin8 i
= cosp —singcosh [{ ]
-cos¢s|n8 sing  cospcosh k

100 i
0 1 é i
-0 ¢ k

s
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TRANSFORMATION OF BLADE LOCAL COORDINATE AXES

& cosp 0 sinp | [ @
gl=| o 1 0 @
& —sing 0 costp | | e

i

& =&y cosp+éasin
=&

&

7 o= wlip+ (v + R)j2 + uséy + mér + wis
= ul(éicos + Easing) + (v) + R)é + uséy + néa + weés
= (vjoosp+w)ér + (o) + R+ e+ (ysin e+ wp)és

Gy = di+bj+0k
= (izcos Ut — jz sin Q) + f(izsin Qt + jrcos 1) + Uk
= $loos (e cosp + égsin ) ~ épsin )
+[sin Q1(é cos 9 + e3sin ) + & cos 0]
+0[-é; sing + é3cos ¥)
= e [beostcoss +dsin e cosy ~ Qsing]
ey [~gsint + G coswt]

ey [ con QU siu 9+ dsin s + Qcos ]
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Appendix C

VELOCITY OF A POINT ON THE BLADE

where:

Fp = (#costh+in)ér +9)éa + (U sinyh + p)és
+03 x 7,
o & &
Qaxfp=|Qu Q2
™ T2 T3

Qa1, Qa2, Qs = 2, y, 2 components of s

71,72, 73 = 2, 9, = components of

Gx7 =

€1(Qaa73 — Qaara) = €2(Na173 — Qaar1) + éa(Qair2 = Qazr1)
& [(~@sin 0t + 8 cos Qu)(u}sin ¥+ ws)

~($cos Qsin + fsin Rsin h + R cos $)(v} + R+ 1)]

& [($cos Qe cos g + fsin Rt cos ¥ — Qsin ) (ulsin ¥ + wy)
~($cosQ +sin o + fsin Qtsin -+ @ cos Y)(uf cos ¥ + ws)]
+és [($cos Rt cos + fsin Qe cosy — Rsin¥)(v} + R+ 1)
~(~sin 0t + 0 cos Q) (u cos ¥ + )]
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ignoring the magnitude of smaller terms, we have:

Gaxfp = é[—(R+n)(dcosQsiny+ b sin Qesin g + 2 cos ) — v, cos¢]
—éa[—~Qsin (a, sin g+ wy) — R cos Y(ay cos P + 1))
+&3[(R+ 7)(pcos Dt cos + B sin Qt cos B — sin ) - v} sin Y]
using the above expression in equation C.1 we get :
Fp = &l(ifcos + i) — (R+n)(pcosQt + Gsin ) sin  — (v} + R + 1) cosp]
Eaf) + Q(u sin 9+ wy) sinp + Q) cos P + up) cos P]

(@ sin + wp) + (R +7)(§ cos O + Osin Q) cos  — (v}, + R + n)siny]

13



Q3 x 7y

now

€1 [{~ésin 0t + 6 cos Q}{(i, sin ¥ + 1)

+(R + 7)($cos Rt + Bsin Q) cos P

—Q(v}, + R +7n)sin} — {$cos Qtsiny + Osin Qtsiny + Qeos Y} +
{9+ Q(u} sin P + wp) sin § + Qu} cos Y + up) cos P}

—ex [{cos 2 cos -+ Bsin 0t cos  — Rein ¥} (i sin -+ )
+(R+1)($cos Rt + fsin 0t) cos ¥ — A} + R+ 1) sin ¥}
—{dcosQtsin ¥ + fsin D sin ¥ + N cos Y}{(i} cos ¥ + i)
~(R+7)($cos 0t + sin Q) sin v — A&, + R +7) cos ¥}

+é [{écosmcns\b-l»ésin Qtcos  — Qsin P}

{t} + Q(u} sin ¥ + wp) sin P

+9(u} cos ¥ + up) cosp} — {~dsin Q1 + 6 cos Qe}{(i] cos Y + 1)
~(R+7)(dsin 0 + fsin Qt)siny — Qv} + B + 7) cos v}

&1 [(R+ )(dsin 0t — Gcos Q) siny

{5} + Qx4 + wisin g + uycos P)} cos PR

—&[~Q(v) + R+ 1) - & — dpsin ¥ — iy cos Y] Q2

63 [-0{%] + Q(u} + wssin P + us cos P)} siny

~Q(R +7)($sin 0t — f cos 21) cos Y]
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o=

I

(it cos 1 + iis) = (R+ n)($cos Ot + bsin Q) sin ¢

—(R+ n)(~$sin Qt + 6 cos Qt)Qsin ¢ — Q¥ cos Pléy

+([ + Qi sin 9 + 1) sin 9 + Qi cos Y + 1) cos Y]é2

(i} sin ¢ + @) + (R + n)(eos Qt + bsin A1) cos

+(R + 7)(~dsin Q1 + Beos Q) cos ¥ — Q) sin Y)és

+83 x 7

(il cos Y+ i)

+(R + n) sin $(2Qepsin Ot — 20 cos At — ¢ cos At — fsin Q1)
—0{20} + (u} + wysin  + uy cos )} cos Y]

e[} + (14 Q)i + 2y sin P + iy cos ) — v} + R + 1))
+éa[(iE} sin g + i)

+(R + 1) cos h(—2Qsin Qt + 200 cos Q1 + Gcos Nt + fsin 01)
—Q{24), + Q(u, + wysin 9 + v cos )} sin ]

& [iiy — Q2w sin 9 cos p + upcosy) + (i}, — 205) — Qu}) cosp
~(R +1)($ cos Ot + G sin Q) sin P + 2Q(R + 7)(@sin Qt ~ § cos ) sin w]
ol + il + Q(2up sin 3 + iy cos P+ i, — v} = R— 1))

&3 [y — Q2(upsin 9 cos  + wysin®) + (it — 209} — Q%) sin

+(R +n)($cos Ot + fsin ) cos P — 2R + 7)(sin 1 — f cos Q) cos1/)]
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Appendix D

APPLICATION OF BOUNDARY CONDITIONS TO THE BLADE

a /; " (e - ) iy
[atingiyay

@ / (T pk)pedy

al{A (- )ty - [ Ak - dhaidy]
i
-a [’ Adgi(pk— gy

)

[Har(knap)}s ~ | atkaidy)
- |

- [ knctaidy

allt o b [ Tririas]

0
1 .
- jo Ipip,dy
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Appendix E

n
EXPLICIT EXPRESSION FOR )" p;
k=1

From equation ( 2.35 ), we have :

s P R DS JL A

LlA@ =g = = vl + == Aat 23 A

k=1 1 k=1 1 k=1 =1
Integrating :

. e sin?g & [l e WE A
— = LS e a5k d
E[A (pe = qi)] i Eﬂ[ NG + k§=1 /; Aqudy + 2 g:l /o Aqdy

A e —a 2 i n
Sm o= T—Z[quLHm.n‘bE/ Aqkdu+-€":2/ Aqdy+Y q
= Aai= Aa k=170 ad 0 k=1
= _—z;/ Ag lly+— z[wu
€ Ak=1 =1

n
EXPLICIT EXPRESSION FOR Y
k=1

" oo
(Ape) = ApetApg

. .
(oo (Ap)-Ape
A

% i
Ap) - Api)
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" LE e
Sro= T lAm) -Am (E.1)
=1 =
from equation ( 2.35 ), we have :
o . i
SN Aqe— Agusin? ] = —e YA (p— ab)] + D lknat]’
k=1 k=1 k=1

or
aY(Ap) =AAY gt Asin? Y g+ e S (Adh) + 3 (kwah)
k=1 k=1 =1 =1 k=1

using the expression in ( E.1 ), we have :
Asl

S2g n L
S gt YA g
1 k=1 k=1

n 1 ,\"4 n
.

Yho= T[Tt

k=1 A[“ k=1 8

i 8 S
=Y (kvai +kat) =AY px
€ k=1 k=1

X sin?p & (A
2 ;Zqﬁ- = un-; Lol g
k=1 k=1 k=1 A

n /i n
— Y (kN + kvak) — T Yo me
A€ k=1 A k=t
using equation ( 2.48 ), we have :
n Al i N noeh iy
Yoh o= A g Ty, An),
= “ia = = |
n &t n
1 -
— > (knafl + k’N’l;:)] o= AT Y (APia+ Pxs)
A k=1

Ae k=1

"

Z:qk :1'2": sin’v{)i‘: ™ (A
= X [ b Pl @+ Yy

L =1 L =1 Ex A

s

7. Y oga
b Y + ki) - &Y P
A€ k=1 A k=1

n n
=AY Paia+y Prs
P=1 =
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Appendix F

SIMPLIFIED EIGENVALUE EQUATION

Equation (2.52) can be written as :
M+ M+ My=81+ 52+ 5
Expansion of M, :

won W ol
A E/,, Tomdy =AY 2/0 (AP + Prg)(APica + Prcp)
e =]

n

n
=2y 2/ T[MPxaPrB + PxpPra) + PnPre + A* Pica Pra)

r=1k=1
nonon,
= AEZ/D 1 PxpPrp

r=1k=1

[ Ignoring A? and A? terms, because of their small magnitudc]

Expansion of 5y :

PR I

XX [ Tuptr=a 3 [ FOPuat Pus)APiia+ Prn)
r=1k=170 r=1k=170

=6 Z Z/ TN(PriaPrie + PraPr1a) + P Pras]

r=tk=1

[neglecting A2 term ]
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Expansion of 53 :
LIS
a) Z/ Alppr = (et + i) + 0L akldy
r=1k=170
=a 33 [ Al0Pra + Pas)Pis + Pico)
=i 70
—{(APra + Pra)aj. + 4}(A\Pxa + PxB)} + 4iai]
=a f: 2/‘ A[MPKAPR8 + PrcaPra) + Pis Prs
ralk=170

= A(Pradi + 0:Pra ~ (Prodl + 0. PxB) + dia]

 ignoring A? term]

Substituting in equation ( 2.52 ), we get :
1o .
A _/ AZZ(MIH!y+/ 1YY PraPrady
0 St 0 relk=1
I N
+n'n‘w/ AY Y eady
0 =k
JE N
= tzL I3 Y IMPrisPxis + PmsPria) + PmsPris)
r=1k=1
1 A
+[ v DY dddy
o r=l k=1
Ao b 8 s
+a /a A [AZ S (FrsPra+ PraPxs)+ 33 PrsPis
r=l k= r=lk=1

" a i E
=AY S (Pradh +01Pca) = Y S (Pradk + 6 Pics)
r=1 k=1 r=1 k=1

+ f;i‘m;]

r=lk=1



Rearranging the terms, we have :

Lam 1, mm
A[/]AZquqkdy+/ 1YY PrePisdy
o 1 o r=1k=1

=

n n
—€2 Jo 7Y D (PraPrin + PripPiia)dy
=t

QL WL
-a /0 4 z_: ’\Zl(f’nyl’l\'x + PraPis)dy+

1 a
€ /o A (z > Pradi+ >, 3 a 1’1\',«) (ly]
r=1k=1

r=lk=l

A R i 5, i
S sin’w/ AY D gandy + r;/ I3 PrisPripdy+
0 rmlk=1 0 r=ik=t
: am
+/ kNS Y diakdy
o r=1k=1

B B
+e,/a A 33 (PrePxn - Prad, — ¢,Pxs + qa})dy
p=f=r1
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Appendix G

1
EXPRESSION FOR /ﬂ Agqidy
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1 1
/o Aqdy = /o (A1 + Agy+ Asy® + Aiy®)
{Coshbsy — cosbyy + o sin by — ojsinh byy)

/ Ay(cosh byy - cosbyy + o sinbjy — ;sinh bjy)
+/' Agy(coshbjy — cosbjy + ajsin by ~ o sinh byy)
+j Asy?(coshbyy = cosbyy + asin byy - o5 sinh bjy)

+ j A4y (coshbjy — cos by + o;sin by - oy sinh bjy)

"

—(smh bjy  sinbjy — 5 cos by - o5 sinh by

oy |(sinhbiy _ coshbiy) _ (cosbiy | ysinby
D] [3 ] b,

sinbjy _ycosbyy yeoshbyy _ sinh byy

oy (Tl - LR g (o Sl

b b b; }

gty (4
+A3H%+ sil sinhb,-y}
2 -

—{%é‘cosb,y+({'——§, dinbjy

2

Y
+0, —smby+( =L ) cosbjy
AR - T

—a;

2 N

=4 ;’;) cosh by - ";1;( sinh b,vy}]

+A4 43 sinhb,y _jr 3y sinhbyy _ (y:’sin biy /l 3y=smb,»y)
0 j 0

b b;
— 13 cosb, 13,2
oy (L [ o)

R coshb,
oy (L ('S )|
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2 (sinh by ~ sin by ~ a5 c0sbyy — aysinh bjy)
2

inhbjy eoshh cosbyy
i wu;n Y ;y) ( i, Y

) sin'w_ms_bﬁ o (2eeshbiy
TR b G\

2
+h [{———Lz”““h” Lyl sinhb,y}
cl g
{gmb,ﬁ(g- &)anbyy
2y 2
Y i TR
(g; + %) coshbjy — ﬁsmh bjy}]

3 si) = 2
Psinhby ;{(g P)msl.b,y_ mm}
; 2

b
Y
fsmb’y 3 zzsmb,y+ 2.0 cosbjy
L [ bj

b]

; 2 2\
_%;yscosbjwr 1cm;lz,y+ b—-b— smb,y}

i b
!
f-z :oshb,y+a"’ {—2“““’” (5 +b2,)sinhb,y}]
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,
[)Aqkdy - —(sxnhb,y—slnb,J—o,cosb,J ojcosh by

ysinhbjy  coshbjy cosbiy | ysinbjy
o (gt ) - (s g
5
i -y (ycoshb,-y_ i
b

30;A4] [=2y ¢ 2
| Ay 2ita) [ 2eoitiy L4 2) sinhby| +
) [ 5T

+422 sinh by

+ [— adb’A‘] [— cosby + (E - —) smb,y] + Ay '“s"‘b Y

344] (20 2 Ao,
+ [Agu,»+ T] [ sin by + (0—3— B costiv] - % P cosbsy

34 Y
I A;a,—b—]"J [( bs)cos]lb;y- ;{smhb;y]

s

¥ 1t
/;Aquy = [—,/D Ay
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Appendix H

BOUNDARY CONDITIONS APPLIED TO THE THIRD TERM

ON THE MASS SIDE

B
& [ 1(PraPirn + PmoPiiady

A Ir A
PmaPrip = ql = i—‘PnA)(PmB) = q—Plns = 7 PraPran

sin? Ad+ A'd, [
Pms £ ity ARG B B —sz
o A A 1

Boundary conditions will be applied to the terms appearing with g
17 of- 1.
@ —qqu =Ll wai}o —/n 1 qrqidy|
€ 1.
= -2 / 1 aajdy
€ Jo

[Since T vanishes at y = 1 and g, is zeroat y=0]

also
l ki _ 5212/‘II-N
5 AG WG = & ) 4 ai
_ el kv,
= a P %0k
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Similarily for Prip Pic1a we will get two terms where ¢ and g appear together
and after the application of houndary conditions, their form reduces to ¢, gf with

a change in the sign.

‘2/;PR1APKIB =/1[

k ek
-2 ."qiqhﬂq i '_‘PI\BQr dy
4 A€ Aa

‘€
E]ﬂqu

Similar expression can be obtained for Priy Prip with k and r interchanged in

the above expression,
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Appendix I

EXPRESSION FOR CENTRIFUGAL FORCE EXERTED ON

A ROTATING CANTILEVER

Consider a cantilever of length [ rotating about an axis, at a distance of R from its
root, with an angular velocity @, give in fig. L1
Centrifugal force exerted on an element d7, at a distance of 7 from the root of

the cantilever can be given as :
dN = (pAdn)Q*(R + 1)
Total centrifugal force on the whole cantilever is :
1 | 1
N= / N = / PpAdTQ¥(R + 1) = Q’/ pA(+ R)dn
g g n
Since the cantilever is  blade of airfoil cross section, we write A as
A(m) = Av+ A + A + Aen®
1
N =9 [ (dy+ dyn+ Ao + A+ R)n
o
we define a dimensionless parameter ky as
i
kv =gz [ A+ Rydn

so that

N = 0%kt
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<-ml

|

b= ww—t

Figure L1: Rotating cantilever
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A+ A + Ag 17 + Aa®)(n+ R)dn

1 1
= ,7/ AR+ A+ AsR)n+ (AaRa+ A2)” + (As + AsR)® + Aun*}dn
g

—n?
:;;[A.R(I B
ARy,
+REAR gy 4 20 )
A A AR
=B (B2 o

+ (B4 58) B0 -+ (et A0

405
+?,—4(1 -’

we define non-dimensional constants :
R
Rwp = T
4
An 7
_ A
de = g
Ap = A3
A = Al

1-—
kv = Aulyo(i-3)+ (An + Anlyp) 52D

3
+ (A Aswp) 52

(0 2

1— gt
$ldin e dralino)t - Yy
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Appendix J

(ke

GAUSS QUADRATURE INTEGRATION SCHEME

n

L[ [ o

= ['[' [ etenrdednic
./-l -1J=1

[ [ istencom + e camildean

[}

[ stemcms + ot

(6 M, Q)W + (& . () W2} W)

{61, W1 + (&1 1, )W},

+ {86112, 1)W1 + B(61, 12, C2) W2} 2] Wy

+{$6asm, )W + G2, 72, I} W

+ {9621 )W + (62,72, C2) Wa) Wa] W

= WiWiWig(E1,m, G) + WaWiWad(Er, m, Ga) + WaWaWa g(61, 72, Gi)

+WiWaWad(Ea, 2, (2) + WaWa W1g(6a, my 1) + Wa Wy Wad(E2, 1, Ga)

*

WaWaWi (€2, my G1) + WoWaWWad(€2, 72, G2)

2 9 3
23 Wil Wads (£iamis Ge)

=1 =1 k=1
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Appendix K

RELATION OF [k,] WITH NON-LINEAR STRAINS

Consider a rigid bar of length [, fixed to a spring k, as shown in the Fig. K.1.
Spring k, is constrained to remain horizontal and is initially stretched an amount
y to produce a force F. Load R is applied externally to the rod, so that it gets
deflected by an angle 6.

Assuming the bar to be infinitely stilf in bending, the axial strain for small

displacements is :

€z =€+ €

where :

Strain energy stored in the bar is given as :

2
< ABIE AgEI

== 5 (4+6) +Fley

The terms ¢ and ¢ are quadratic in nodal d.o. but € is quartic, so €% can be

considered neglegible as compared to the first two terms.

U= %é-x-mu
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(a) Initial Position

(b) Final Position

Figure K.1: Transverse force on an axially loaded truss member
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In the matrix notation

{rl):[n.
1 0 -1
_lgr|AEf 0 00
_2{d) L -10 1
00 0

T

cooco

=i

cooco

Hal[w wl

S TERIAE]

oo

-1

v
vz

0
0
0
0

0
=1
o | @

1

from the above expression it is clear that the two matricies in the brackets are the

stiffness matricies for the system. The first 4 x 4 matrix with coefficient 42 is the

conventional stiffness matrix [] for a truss element, the other one associated with

the axial force F' and non-linear strain ¢, is termed as the stress stiffness matrix

(ko]

134



Appendix L

STRESS MATRIX |s]

ls =

Eer (43 +92)G (ust we)G
(uy+v2)G  Bey (vt w,y)G

(uy+w2)G (v:+wy)G Ee::

(uy+0:)G  Eu, (v +w,)G
(4:+w2)G (v:+w,)G Ew,

"

[ Eue  (u3+0:)G (v, +ws)G ]

Euz 00 0 (uy+v:)G 0
(4y+v:)G 0 0|+[0 "B, 0
(va+w)G 0 © 0 (v:+uw,)G 0

00 (u:+w,)G
+[0 0 (v:+w,)G
00 Ew,.

= [EGI{8)ICal + [EG2H8)(CB) + [EGs){8)[Cc]



where :

E 0 0 000O0O0O

[EG)] - |loGoGooo0o00
00 GO0OO0O0GT O0OD0
0GO0G O0O0O0O0D0

[EGY) =|0000 EO0O00O0OQO
0000 O0GUO0GODO
00GO0OO0DO0GU OO0

[EG3) =(00000G 0G0
0000O0O0TGO0OTO E

[ca=[100]

[csl=[0 1 0]

[cl={0 0 1]

The expression of {6} can be obtained from equation ( 3.12 ).
{6} = [AJ][DS){d}
the displacement vector {d} is obtained from the relation:
{F} = [K){d}

where:
[K] = structural stiffness matrix of the system.

[F] = force vector for the system obtained after assembling {f}.
{/} = force vector for an element given by [, N7 f'dv.
J' = cetrifugal force acting on the clement.
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Appendix M

CHARACTERISTIC EQUATION FOR THE SHAFT-ROTOR SYSTEM

From the boundary conditions (11) and (12) in section 4.5 we have

R'c)=0
R"(c)=0

The above two equations lead to the following expression

A1 =143 + Y2 ds
Az = Yada + Pads

where :
® = 7 coshmccosipe+ 3 sin e sinh qe
¥a = y3cosmesinhnye+ 72 cosh presinnae
Ys = 7*cosmesinh g~ coshpiesinnae
Yy o= ’Vy]’ coshmye cos e — 43 sinh nycsin ac
1
7T = =

n
from the boundary conditions (3), (7), (8), (9) and (10) in section 4.5 we have :
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o= é[“*”1“"“"“‘{(1*"’”“’”(1—'»’7’)}] sin Ab
{0 2= 24} b+ (1200 cos 0

Xo = 5[0+ e+ {04000+ (1 =) cos b
=5 {0+ 000+ (1= st b o (1 0] sin 2o

Xy = “%[(1—V7)W3¢:+{(1—u’)w‘+(1+v’71)}]si“h,\b
5 {0 490470} g+ (1] cosh b

L3
A

b1 = (L+w)ocosdb= v {(1+ 121 + (1= 229 sin Ao+ (1 = v} cosh A
=v{(1 = vy +1(1 4 02y} sinh Ao

d2 = = [{(1 4+ + (1= 27%)) cos \b = u(1 + v*)hp sin Ab
+{(1 = )y + (14 7202)} cosh Ab = (1 = ¥2)hp sinh A
- &
* = 4

From the boundary conditions (1, (2), (4) and (5) in section 4.5 we have :

Q=60
Q2=6,Qs
2P = QsW1

"

After further algebraic simplifications we get the ic equation of the form :

(X1 + Xa)Wy = 2X500, =0

where :
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6 = - 2\ sinh Aa + K(cosh Aa — cos z\a)]
v 2)sinAa + k(cosh Aa — cos Aa)

ksinh Aa — ksin \a

b 2Xsin Aa + K(cosh Aa — cos Aa)

Wy = 6 sin Aa + fz(cos Aa + cosh Aa) — sinh Aa

W = 8y cos Aa — Ba(sin Aa + sinh Aa) + cosh Aa

SPECIAL CASES :

(2) Simply supported forward end bearing :

k=0

sinh Aa
b=
6,=0
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Appendix N

COUPLING OF DEFLECTION FUNCTIONS

Referring to Fig (5.3), if we consider a mass m attached to thee springs having
deflection functions 1, y2, ya, the expression for the kinetic energy of the system
can be given as :

m(y + 12 +33)°
m(y} + 3+ 13) +2m(uvz + 193 + ato)

K.E.

non

where :

#;; represents the coupling effect between two deflection functions y and ;.
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Appendix O

COMPUTER PROGRAM FOR FINDING
THE NATURAL FREQUENCIES AND MODE SHAPES
OF A ROTATING PROPELLER BLADE

i



swwkrkx THE PROGRAM FINDS THE NATURAL FREQ. OF A ROTATING BLADE xxkx
swxkioorx HAVING AIRFOIL SECTION, EFFECTS OF STAGGER ANGLE SETTING, %k
w#xkxxxx SHEAR DEFLECTION AND ROTARY INERTIA ARE CONSIDERED. EEK

NOMENCLATURE: -

BBI = EIGEN VALUE INDEX FOR A CANTILEVER
GAUSS POINTS OF INTEGERATION
WEIGHTS AT GAUSS POINTS
AREA OF THE BLADE AT A SECTION
AREA MOMENT OF INERTIA OF THE BLADE AT A SECTION
COEFFICIENTS OF THE CUBIC FIT FOR AREA
COEFFICIENTS OF (HE CUBIC FIT FOR AREA MOMENT OF INERTIA
AVERAGE AREA OF THE BLADE
AVERAGE INERTIA OF THE BLADE
HUB ROTATION IN R.P.S.
PITCH ANGLE SETTING OF THE BLADE ON THE HUB
MASS MATRIX OF THE SYSTEM
STIFFNESS MATRIX OF THE SYSTEM
FUNCTION REPRESENTING MASS OF THE EIGEN VALUE EQUATION
FUNCTION REPRESENTING STIFFNESS OF THE EIGEN VALUE EQUATION
NATURAL FREQUENCY OF THE BLADE IN HZ.
BLADE LENGTH
RADIUS OF THE HUB
DIAMETER OF THE PROPELLER SHAFT
CORD LENGTH OF THE BLADE
CORD LENGTH TO DIAMETER RATIOS
BLADE THICKNESS COORDINATE
BLADE WIDTH COORDINATE
BLADE LENGTH COORDINATE
SHAPE FACTOR OF THE BLADE PROFILE
ITERATIVE INDEX OF THE PROGRAM

cocaacccaacncaccoccO0QcONQOOOAQAAa Aaaaana
a

IMPLICIT REAL#8 (A-H,0-2)
DIHEIISIDN 61(10),G2(10),BB(4),51(4,4) ,52(4,4) ,BBETA(4) ,BETABL(4),
SI(3) ,RPS(6) ,OMEGAN(4) ,BBI(4) |
1 U(10) ,R(10) CA(4 Cs(4)
DOUBLE COMPLEX EVAL(4) ,OMEGA

OPEN(UNIT=6,FILE=’BLADEFREQ.ANS’ ,TYPE="NEW’)
PI=3.1415926

BL=2.8

ROE=7850.

c RCE=7850.%1.25

U(1)=.0744371695
U(2)—.2166976971
3397047841
U(d)- 4325316833
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U(5)=.4869532643
1)=.1477621124
1346333597
R(3)=.1095431813
R(4)=.07472567458
R(5)=.03333567215

D0 11 I=1,5
U(5+1)=-U(D)
R(5+I)=R(I)
11 CONTINUE

CALL AERO(CA,CS,AVAR,AVIN)

DATA BBI/1.875,4.694,7.854,10.995/

c DATA RPS/1. E-OS 5,,10 ,15 20 »25./
DATA RPS/1
DATA PSI/O.

-05,2.,4.,6.
5236 78539/

DO 31 I=1,4

(I,
s2(1, J)=0
31 CONTINUE

WRITE(6,*)’ HUB ROT.(HZ) STG. ANGLE NAT. FREQ.(HZ) EIGEN
1 INDEX *

DO 100 II=:
NSTG-FSI(II)*XEO /P1
WRITE(6,*)” STAGGER ANGLE =’,NSTG

83 CONTINUE

WS=2.*PI*RPS (JJ)
THETA=PSI (II)
ALPHA=(SIN(THETA))*+2

AALPHA=0
ABETA=1.

c
C ITERATION INDEX MM, ITERATIONS NEEDED TO GENERATE REFINED EIGEN
C VALUES FROM THE ASSUMED VALUES FOR A CANTILEVER

4
DO 100 MM=1,4

DO 30 K=1,4

BJ=BB(M)
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CALL QFUNCTION(U,BI,BJ,G1,G11,612,G13,G14,G15,F2,F3,F4,F5,G2,
1 G21,G22,6G23,Ws,ALPHA,CA,CS)

SUM1=0.

SUM2=0.

DO 13 J=1,10
SUM1=(ABETA-AALPHA)*(SUM1+R(J)*G1(J))
SUM2=(ABETA=AALPHA) * (SUM2+R(J)*G2(J))
13 CONTINUE

S1(K,M)=sUi1

S2(K,M)=SUM2

30 CONTINUE

C WRITE(E,*)’ MATRIX ¥
C WRITE(6,1000) ((S1(I, J) J—i 4),I=1,4)

C WRITE(E,*)’ STIFFIIESS MATRIX s
C WRITE(6,1000) ((S2(1,J),J=1,4),I=1,4)

1000 FDRMAT(1X 4G16.8)

CALL EIGEN(S1,S2,EVAL)

DO 29 I=1

OMEGAN(I)=! HS‘EVAL(I)“ 5
FREQN=0MEGAN(I)/(2.#PI)
4

C ADDED MASS EFFECT DUE TO WATER TAKEN CARE BY THE DENSITY
¢ ADJUSTMENT
<

AVM=ROE*AVAR
BBETA(I)=(AVM*OMEGAN(T)**2/(20.6E10%AVIN) ) **.25
BETABL(I)=BBETA(I)*BL

IF(MM.EQ.4) WRITE(6,222)RPS(JJ),PSI(II),freqn,BETABL(I)
BB(I)=BETABL(I)

29 CONTINVE

BB(1)=1.875

100 CONTINUE

222 FORMAT(F11.4,5X,F11.4,5X,F11.4,4X,F11.4)
STOP

END

C

C SUBROUTINE FOR FINDING THE EIGEN VALUES AND EIGEN VECTORS
C OF THE SYSTEM

c

SUBROUTINE EIGEN(B,A,EVAL)
PARAMETER (N=4,LDA=N,LDB=N)
INTEGER I
DOUBLE PRECISION A(LDA,N),AMACH,B(LDB,N) ,BETA(N)
DOUBLE COMPLEX ALPHA(N) ,EVAL(N),EVEC(N N
EXTERNAL AMACH,DGPIRG ,DGVCRG,UMACH ,DHRCRN
CALL DGVCRG(N,A,LDA, B, LDB, ALPHA ,BETA, EVEC, N)

DO 10 I=1,N
IF (BETA(I).NE.O.)THEN
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EVAL(I)=ALPHA(I)/BETA(I)
ELSE
EVAL(I)= AMACH(2)
END IF
10 CONTINUE

C CALL DWRCRN(’EVAL’,
C CALL DWRCRN(’EVEC’,]

s B

C SUBROUTINE FOR FINDING THE MASS AND STIFFNESS OF THE SYSTEM

c

SUBROUTINE QFUNCTION(U,BI,BJ,G1,611,612,G13,G14,G15,F2,F3,F4,F5,
1 G2,621,622,623, WS, ALPHA,CA,CS)

IMPLICIT REAL¥8 (A-H,0-2)

Dimension G1(10),G11(10),612(10),G13(10),G14(10),G15(10),F2(10),
1 F3(10) ,F4(10) ,F5(10),62(10),G21(10) ,622(10) ,G23(10),,U(10),
1 CA(4),Cs(4)

c ROE=7850.%1.25
ROE=7850.
ELAS=20.6E+10
ANUE=.3
PI=3.1415926
BL=2.8

R=.7

RND=R/BL
SHEAR=ELAS/((1.+ANUE)#2.)
AK=1.2

c
C HON DIMENSIONAL COEFFICIENTS OF AREA AND MOMENT OF INERTIA
c

A11=CA(1)/BL##2
A12=CA(2)/BL
A13=CA(3)
A14=CA(4)*BL

S11=CS(1)/BL#+4
512=CS(2) /BL**3
$13=CS(3) /BL##2
514=CS(4) /BL

C1=CA(1)
C2=CA(2)*BL
C3=CA(3)#BL¥*2
C4=CA(4) *BL*v3

c
C GAUSSIAN INTEGERATION, NO. OF GAUSS POINTS=10
c
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DO 200 I=1,10
X=U(I)+.5
EE=X*BL
BIX=BI*X
BJX=BJ*X
A=COS(BIX)
B=SIN(BIX)
C=COSH(BIX)
D=SINH(BIX)
E=COS(BJX)

SI=(C0S(BI)+COSH(BI))/(SIN(BI)+SINH(BI))
$J=(C0S(BJ)+COSH(BJ))/(SIN(BI)+SINH(BJ))

CN1=A11*RND*(1.-X)
CN2=(A11+A12+RND) * (1. ~X*#2)/2.
CN3=(A12+A13%RND) % (1.-X*%3)/3.
CN4=(A13+A14*RND) * (1.~X*x4)/4.
CNB=A14%(1.-X**5) /5,
CN=CN1+CN2+CN3+CN4+CNS

ACN1=-A11+RND
ACN2=-X*(A11+A12*RND)
ACN3=-X»*2#(A12+A13+RND)
ACN4=-X#*»3%(A13+A14%RND)
ACNS=-X=#4*A14
ACN=ACN1+ACN2+ACN3+ACN4+ACNS

G3=(C-A-SI*D+SI*B)*(Y-E-SJ*H+SJ*F)
G4=BIsBJ*(D+B-SI+C+SI*A) » (H+F-SI*Y+SI*E)
G5=(BI#BJ)##2%(C+A-SIsD-CI#B)* (Y+E-SI*H-SI+F)

R=C-A-SIsD+SIsB

R1=BI* (D+B-SI*C+SI#A)
QR2=BI#*2#(C+A-SI*D-SI*B)
QR3=BI##»3%(D-B-SIsC-SI*A)
QK=Y-E-SJ*H+SJ*F

K1=BJ* (H+F-SJ*Y+SJ+E)
K2=BJ*#2# (Y+E-SJ#H-SJ+F)
K3=BJ**3% (H-F-SJ*#Y-SJ*E)
QK4=BJ**4%(Y-E-SJ*H+SJ*F)

AXX=C1+C2#X+C3*X#¥24C4*X %43
AAXX=C2+2. %C3#X+3 . #CaxX##2

AND=A11+A12¢X+A13% X424 A 144X 43
SND=S11+S12¢X+S13% X248 14%X4%3

EN=WS*#2+«ROE+«CN*BL##4
AEN=WS#*2+ROE*ACN#BL#*4

CON1=X#+2/BJ+2./BJ*s3
CON2=X+%2/BJ-2./BI#*3
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CON3=2.#X/BJ*¥2
AQ1=C1*(H-F-SJ*E-SJ*Y)/BJ
AQ21=X*H/BJ-Y/BJ**2
AQ22=-(E/BI**2+X+F/BJ)

AQ2: *(F/BJ**2-X+E/BJ)

Al % (X*Y/BJ-H/BI**2)

AQ2=C2* (AQ21+AQ22+A023+A024)
4Q31=C3+3.%5I%C4/BJ
A

Al

Q32=-CON3*Y+CON1+H

3=AQ31#AQ32

AQ41=-C3+3,%SJ%C4/BJ
24F

AQ4=AQ41%AQ42
51=C3%5J+3. %C4/B]
N3+F-CON2+E
S=AQS51¥AQ52
61=-C3#5J-3. ¥C4/BJ
62=CON1%Y~CON3*H
061%AQ62
4xX**3%H/BJ
C4#Xx#3%F/BJ

9 C4%3IxX¥*3%E/BJ
xS I*X+*3%Y/BJ
—AE1+AQ20A03+AU44AQ5*AQS‘!AQ7¢AUB¢AD9+AD}O

»>??>>>?»
3

ACON1=X##2/BI+2./BI+*3
ACON2=X#*2/BI-2./BI#43
ACON3=2. ¥X/BI#%2

AR1=C1#(D-B-SI#A-SI*C)/BI
AR21=X*+D/BI-C/BI**2
AR22=- (A/BI#%2+X*B/BI)
AR23=SI*(B/BI**2-X*A/BI)
AR24=-ST*(X+C/BI-D/BI*+2)
AR2=C2* (AR21+AR22+AR23+AR24)
AR31=C3+3.#SI*C4/BI
CON3*C+ACON{*D

3:

AR3=AR31*AR32
AR41=-C3+3.*SI*C4/BI
AR42=ACON3*A+ACON2+B
AR4=AR41*AR42

AR61=-C3+SI-3.%C4/31
AR62=ACON1%C-ACON3*D
AR6=AR61*AR62




EFS2=ELAS/(ROE#WS#*2+BL¥#2)
PKA=AQ/ (AXX+EFS1)

PKB1=QK1
PKB2=BL*#2+CN*QK1/(EFS1#AXX)
PKB3=ALPHA¥AQ/ (EFS1#AXX)
PKB=PKB1+PKB2+PKB3

PK1A1=QK/EFS1
PK1A2=-AAXXePKA/AXX
PK1A=PK1A14PK1A2

PK1B1=QK+ALPHA/EFS1
PK1B2=(AAXX*#QK1+AXX*QK2) /AXX
PK1B3=BL##2¢ (CH‘QKZOACH‘QKI)I (AXX*EFS1)
PK1B4=-AAXX+PKB/AX!
FKlB-PK1BI+PK1524PK1339PK154

PRA=AR/ (AXX#EFS1)

PRB1=QR1

PRB2=BL#*2¢CN*QR1/! (EFS 1#AXK)
PRB3=ALPHA®AR/ (EFS1#AXX)
PRB=PRB1+PRB2+PRB3

PR1A1=QR/EFS1
PR1A2=-AAXX+PRA/AXX
PR1A=FR1A1+PR1A2

PR1B1=QR¥ALPHA/EFS1
PR1B2=(AAXX#QR1+AXX*QR2)/AX;

PR1B3=BL##2¢ (CN'QRZ*ACN‘QM) / (AXX*EFS1)
PR1B4=-AAXX*PRB/AXX
PR1B=PR1B1+PR1B2+PR1B3+PR1B4

c

C THIRD TERM ON THE MASS SIDE(AM3) HAS BEEN SPLIT TO APPLY THE
C BOUNDARY CONDITIONS

c

AM31=QK*QReALPHA/ (EFS1#42)
AM32=-QR1sQK1/ (EFS1)

AM33=AAXX#QReQK1/ (AXX+EFS1)
AM34=-BL*#2¢CN=QR1#QK1/ (AXX#EFS1#%2)
AM35=BL#*#2+¢ACN*QR*QK1/ (AXX#EFS1#+2)
AM36=-AAXX*ALPHA#QR*AQ/ (AXXOEFS!)“Z
AM37=~AAXX*QR*QK1/(AXX*EFS1
Anss=-AAxx-BLnazacmqntum/(Axx.zrsﬂuz

AM39A=-AAXX*#PRA/AXX
AA1=ALPHA*QK/EFS1

AA2=QK2

AA3=AAXX#QK1/AXX
AA4=BL*#2+CN+QK2/ (EFS1#AXX)
AAS=BL##2+ACN*QK1/(EFS1#AXX)
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AAG=-AAXX+ALPHA*AQ/ (AXX##2+EFS1)
AAT=-AAXX*QK1/AXX

AA8=-AAXX*¥BL**2%CN*QK1/ (AXX*%2+EFS1)
AM39B=AA1+AA2+AA3+AA4+AAS+AAB+AAT+AAS
AM39=AM39A*AM39B

AM310=QK+QR*ALPHA/ (EFS1##2)
AM311=-QR1*QK1/(EFS1)

AM312=pAXX*QK*QR1/ (AXX#EFS1)
AM313=-BLa*2+CN*QR1*QK1/ (AXX%EFS1#x2)
AM314=BL*#2%ACN*QK*QR1/(AXX+EFS1%%2)
AM315=-AAXX*ALPHA=QK*AR/ (AXX*EFS1) #¥2
AM316=-AAXX*QK*QR1/ (AXX+EFS1)
AM317=-AAXX*BL##2%CN#QK+QR1/ (AXX#EFS1) %2

AM318A=-AAXX=FPKA/AXX
AAA1=ALPHA*QR/EFS1

AAA2=QR2

AAA3=AAXX*QR1/AXX

AAAG=BL¥#2%CN*QR2/ (EFS1#AXX)
AAAS=BL*#2#ACN*QR1/ (EFS1%AXX)
AAAG=-RAXK*ALPHA*AR/ (AXX#*2+EFS1)
AAAT=~AAXX%QR1/AXX
AAAB=-AAXX*BL##2+CN#QR1/ (AXX#*2+EFS1)
AM318B=ARA1+AAA2+AAAS+ARAG+AMAS+ARAB+ARAT +AAAS
AM318=AH318A+AN318B

AM3=- (EFS2*SND) * (AM31+AM;
1 AH39¢AH3104AM311MHS12*AH3130AH3XA*AMSI5+AM31S¢AM317¢AH3£B)

G1A=QK*QR*AND

G1B=SND+PKB*PRB

G1D=-EFS1* (PKA*PRB+PKB*PRA) *AND
G1E=EFS1* (QK1#PRA+QR1#PKA) *AND

G2D3=QK1*QR1
G2D=EFS1*(G2D1+G2D2+G2D3) *AND

WITHOUT SHEAR DEFLECTION AND ROT. INERT. EFFECTS

c
C
C G1(I)=C1A

€ G2(1)=(G2A+G2B+G2C)

WITH SHEAR DEFLECTION AND ROT. INERT. EFFECTS

cao

G1(I)=(G1A+G1B+AM3+G1D+G1E)
G2(I)=(G2A+G2B+G2C+G2D)
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c
c WITH SHEAR DEFLECTION ONLY
C G1(I)=(C1A+AH3+GiD+GIE)

€ G2(I)=(G2A+G2B+G2C+G2D)

200 CONTINUE

RETURN

END

4
C SUBROUTINE FOR FINDING CUBIC FIT
C

SUBROUTINE AERO(CA,CS,AVARLA,AVINER)

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION CD(10),C(10),2C(17),2(170),YC(17),Y¥(170),A(10),5(10),
1 X(10) ,XR(10),T(4,4) ,F(4),G(4) ,AINV(4,4),CA(4),CS(4),
1 AT(4,4)

D=7.
DATA cp/.azs..35,,375..357,.39,.375,333,.275.‘2.0‘/
DATA zc/o 1.25,2.5,5. .1 ;5,10..15.,20.,30..,40.,0..,60..
1770.,80.,90.,
DATA YC/0.,1.938,2. 7oa 5 764,4.548,5.186,6.202,6.996,8.126,
18.782,9.,8.752,7.904,6.298,3.776,2. 122, .18/
=0

D0 15 I=1,10
€(I)=CD(I)*D
DO 15 17

K+l
2(K)=2C(J)*C(I)/100.
Y(K)=(¥C(J)/2.)*C(1)/100.
15 CONTINUE

0
00 17 I=: 1 17
K=K+1
L=11+(J-1)*17
17 CONTINUE

CALL AREASECT(Z,Y,A,S)

CALL MATRICIES(X,A,S,T,F,G)

WRITE(6,*)’RADIAL DIST. AREAS INERTIAS *
AVAREA=0.

AVINER=0.

DO 11 I=1,10

AVAREA=AVAREA+A(I)

AVINER=AVINER+S(I)

WRITE(6,#)X(I),A(I),S(I)

11 CONTINVE

AVAREA=AVAREA/10.
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AVINER=AVINER/10.
CALL SOLUTION(T,F,G,CA,CS)
WRLIE(6,*)’  AREA COEFF. INERTIA COEFF.’

DO 10 I=1,4
WRITE(6,*)CA(I),CS(I)
10 CONTINUE

WRITE(6,%)’ AVERAGE AREA AVERAGE INERTIA’
WRITE(6,*) ,AVAREA,AVINER

RETURN
END

c
C SUBROUTINE FOR FINDING AREA AND AREA MOMENT OF INERTIA
C AT VARIOUS SECTIONS OF THE “LADE

c

SUBROUTINE AREASECT(Z,Y,A,S)
IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION 2(170), ‘{(170) 5(10),A(10)

D0 35 I=1,16

KK2=17%(J-1)+I+1

KK1=17%(J-1)+I

A()=A(T)+2+ 5% (Z(KK2) ~Z(KK1) ) *
(Y(KK2) +Y(KK1))

S(J)-S(J)'Zt((Z(KKZ) Z(KK1))*
CY(KK2)+Y (KK1)) ##3/(3.#8.))

35 cumrnm:

RETURN
END

c
C SUROUTINE FOR FINDING THE MATRICIES NEEDED FOR CURVE FITTING
[

SUBROUTINE MATRICIES(X,A,S,T,F,G)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION X(10),XR(10),A(10),5(10),T(4,4),F(4),G(4)

=2.8
DATA XR/1.E-15,.125,.25,.375,.5,.625,.75,.875,.937,1./
DO 11 I=1,10
X(I)=XR(I)*BL
11 CONTINUE

DO 39 I=1,4
DO 39 J=1,4

T(I,1)=0.
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DO 3
(I, J) T(I J)ox(K)n(bJ-z)
39 CONTIN

C AREA AND MOMENT OF INER. MATRIX F AND G s#sksssrbbkihihkkusn

DO 49 I=1,4
F(I)=0.

)=0.
DO 49 J=1,10
F(I)=F(I)+A(J)*X(I)*#*(I-1)
G(1)=G(I)+S(I)*X(I)**(I-1)
49 CONTINUE
RETURN
END

[4

C SUROUTINE FOR FINDING THE COEFFICIENTS OF AREA AND
C INERTIA POLYNOMIALS

C

SUBROUTINE SOLUTION(T,F,G,CA,CS)
IMPLICIT REAL*8 (A-H,0- Z)

PARAHETER (IPATH=1,LDA=4

REAL T(LDA,LDA), F(l‘l) G(N) CA(HJ CS(N)

CALL DLSLRG(N,T,LDA,F,IPATH,CA)
CALL DLSLRG(N,T,LDA,G,IPATH,CS)

RETURN
END
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Appendix P

COMPUTER PROGRAM FOR FINDING THE NATURAL FREQUENCIES
OF A ROTATING PROPELLER BLADE
USING FINITE ELEMENT ANALYSIS
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THE PROGRAMME COMPUTES THE EIGENVALUES OF A ROTATING CANTILEVER
USING FINITE ELEMENT TECHNIQUE. 3-D 20-NODED ISOPARAMETRIC
ELEMENTS WERE USED. THE EFFECT OF ROTATION IS EXPRESSED IN TERMS
OF A SECONDARY STIFFNESS MATRIX CALLED STRESS STIFFENING MATRIX.
TO DECREASE THE TIME CONSUMED IN EIGENVALUE EXTRACTION

DYNAMIC CONDENSATION HAS BEEN PERFORMED WITH THE MASTER DEGREES
OF FREEDOM AS w WHERE u,v,w ARE THE DEGREES OF FREEDOM AT A NODE.
42 ELEMENTS WITH 362 NODES HAVE BEEN TAKEN.

COORDINATES OF NODES ARE IN METERS

pnoaaancaaaaan

NOMENCLATURE: ~

NFIX FIXED NODES

COORD COQRDINATES OF NODES OF AH ELEHENT

GCOORD GLOBAL COORDINATES OF Ni

SHP SHAPE FUNCTION MATRIX

DSHP DERIVATIVE OF SHAPE FUNCTION MATRIX W.R.T. NATURAL COORD.
EMASS ELEMENT MASS MATRIX

ESTIFF ELEMENT STIFFNESS MATRIX

ESTSTIF ELEMENT STRESS STIFFENING MATRIX

EFORCE ELEMENT FORCE MATRIX

EDISP ELEMENT DISPLACEMENT MATRIX

FVEC FORCE VECTOR FOR ALL 42 ELEMENTS

FV ELEMENTAL FORCE VECTOR

GFORCE GLOBAL FORCE MATRIX

GSTIFF GLOBAL STIFFNESS MATRIX

GMASS GLOBAL MASS MATRIX

GSTR REDUCED STIFFNESS MATRIX

GMASR REDUCED MASS MATRIX

G 9x9 JACOBI MATRIX %9x60 DERIVATIVE SHAPE FUNCTION MATRIX
GALL G FOR ALL 8 GAUSS POINTS

DETALL DETERMINANT OF JACOBI3x3MATRIX AT 8 G.POINTS TO GET VOLUME
VOL VOLUME OF AN ELEMENT

GS21 2x1 PARTITION MATRIX OF GLOBAL STIFFNESS MATRIX

GS22 2x2 PARTITION MATRIX OF GLOBAL STIFFNESS MATRIX

T TRANSFORMATION MATRIX OF ORIG. DISP TO CONDENS. DISP

TT TRANSPCSE OF TRANSFORMATION MATRIX

aonancaacaacaacaanoncaaacaaaaan

IMPLICIT REAL*8 (A-H,0-Z)
PARAMETER(NRA=1086 , NC=724 , NN=36:
DIMENSION NODE(20),X(20),Y(20), 2(20) NFIX(33) ,COORD(3,20),
1 GCOORD(3,362) , nnuuM(as ),
1 SHP(8, 20) DSHP(3,8
1 ESTIFF(60,60), EMASS(SO 60) ,ESTSTIF(60,60) ,
1 EFORCE(60) ,EDISP(60,1
1 FVEC(3,42) ,FV(3) ,GDISF (1086) ,GFORCE(1086) ,
1 GSTIFF(1086,1085) ,GHASS (1086, 1086) ,GSTSTIF(1086,1086) ,
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1 G(S 60) GALL(9,60,8) ,DETALL(8),

1V

1 5521(724 362),0522(724,724) ,GS22INV(724,724) ,T21(724,362) ,
1 T(1086,362) ﬂ(352 1086) , TTS(352 1086), m(sez 1086),

1 GSTR(BG?,SSZ) .GMASR(362,362)

COMPLEX*16 EVAL(362)

COMMON /WORKSP/ RWKSP

REAL RWKSP(6000000)

CALL IWKIN(6000000)
OPEN(UNIT=1,FILE=’MESHBLADE42.INP® ,TYPE="OLD’)
OPEN(UNIT=2,FILE=’NODEBLADE42. INP? ,TYPE="0LD’)
OPEN(UNIT=6,FILE="BLADEFIN.ANS’ ,TYPE=’NEW)

C fixed nodes
DO 274 I=1,33
NFIX(I)=I

274 CONTINUE

[4
C INITIALISATION OF GMASS GSTIFF GDISP GFORCE EDISP matricies
<

DD 500 I=1,1086

500 CONTINUE

DO §25 I=1,362
DO 525 J=1,1086

TT(I,J)=0.
525 CONTINUE
DO 550 I=1,60

EDISP(I,1)=0.
550 CONTINUE

D0 6 I=1,362

READ(1,*)NDNUM(I) ,GCOORD(1,1),GCO0RD(2, 1) ,GCOORD(3, 1)

C WRITE(6,*)NDNUM(I),GCOORD(1,1),GCOORD(2,1),GCOORD(3,I)
6 CONTINUE

CALL SHAPE(SHP,DSHP)

DO 5 NE=1,42

READ(2, #)NELHT
READ(2,*) (NODE(I) , I=1,20)

D071120

K=NODE(I)
COORD(1,I)=GCOORD(1,K)
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COORD(2,1)=GCOORD (2,K)
COORD(3,1)=GCOORD(3,K)
7 CONTINUE

CALL ELVOLUME(COORD,DSHP,VOLUME)
VOL(NE)=VOLUME

5 CONTINUE
CALL FORCE(VOL,FVEC)

REWIND(2)
D0 1500 NE=1,42

READ(2,*)NELHT
READ(2,*) (NODE(I) ,1=1,20)

DO 170 I=1,20
K=NODE(I)
COORD(1,1)=GCOORD(1,K)
COORD(2,1)=GCOORD(2,K)
COORD(3,1)=GCOORD(3,K)
170 CONTINUE

DO 80 I:

FV(I)HFVEC(I NE)

80 CONTINUE

CALL EMASTIF(COORD,SHP,DSHP,ESTIFF,EMASS,FV,EFORCE,GALL,DETALL)

C
C ASSEMBLY  IN THE CONDENSED FORM
C

D0 23 I=1,20

DO 23 IDOF=1,3

IF(IDOF.EQ. 1)IG‘NHONODE(I)'2 1
IF(IDOF.EQ.1)IE=I*3-2
IF(IDOF.EQ.2)IG=NM+NODE(I)*2
IF(IDOF.EQ.2)IE=I*3-1
IF(IDOF.EQ.3)IG=NODE(I)
IF(IDOF.EQ.3)IE=I*3

GFORCE(IG)=GFORCE (IG)+EFORCE(IE)

DO 23 J=1,20

DO 23 JDUF—l 3

IF(JDOF.EQ. 1)JG=NH+NODE(J)‘2 1
IF(JDOF.EQ.1 3-2
IF(JDOF.EQ. 2)16 NH#NDDE(J)H
IF(JDOF.EQ.2)JE=J*3-1
IF(JDOF.EQ.3)JG=NODE(J)
IF(JDOF.EQ.3)JE=J*3
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GSTIFF(IG,JG)=GSTIFF(IG,JG)+ESTIFF(IE, JE)
GMASS(IG,JG)=GMASS(IG,JG)+EMASS(IE, JE)

23 CONTINUE

1500 CONTINUE

c
C BOUNDARY CONDITIONS

c

D0 70 I=1,33
IG1=NFIX(I)
IG2=NM+NFIX(I)#2-1
IG3=NM+NFIX(I)*2
GFORCE(IG1)=0.
GFORCE(IG2)=0.
GFORCE(TG3)=0.

DO 70 NN=1,1086
GSTIFF(IG1,N)=0.0
GSTIFF(IG2,NN)=0.0
GSTIFF(IG3,NN)=0.0
GSTIFF(NN,163)=0.0

GMASS(IG1,NN)=0.0

GMASS(NN,163)=0.0
70 CONTINUE

c
C POSITIVE DEFINITE MATRIX

DD 800 I=1,1086

IF(GSTXFF(X I).EQ.0.0) GSTIFF(I,I)=1E+20

800 Ci

C IMSL SUBROUTINE FINDS THE GDISP FOR A SYMM. LINEAR SYSTEM ##sx

CALL DLSASF(NRA,GSTIFF,NRA,GFORCE,GDISP)

c
c ELEMENT DISP. MATRIX
c

REWIND(2)
DO 1000 NE=1,42

READ(2, *)NELMT
READ(2,#) (NODE(I) ,1=1,20)



DO 17 I=1,20

MM1=NM+NODE(I)#2-1
MM2=NM+NODE(I)#2
MM3=NODE(T)

EDISP(3¢I-2,1)=GDISP(MM1)
EDISP(3¢I-1,1)=GDISP(MM2)
EDISP(3+I,1)=GDISP(MM3)

17 CONTINUE
CALL STRESS(EDISP,GALL,ESTSTIF,DETALL)

DO 231 II=1,20
DO 231 IDOF=1,3

IF(IDOF.EQ. l)XGlIH‘IBDE(IU'z 1
IF(IDOF.EQ.1)IE=:

IF(IDOF.EQ.2. IG-Ilill‘lDE(!I)'Z
IF(IDOF.EQ.2)IE=IIs3-1
IF(IDOF.EQ.3)Iu=NODE(II)
IF(IDOF.EQ.3)IE=II*3

DO 231 JJ=1,20
DO 231 JDOF=1,3

IF(JDOF.EQ. 1) JG=NN+NODE(JJ)#2-1

IF(JDOF.EQ.1)JE=JJs3-2

IF(JDOF.EQ.2) JG=NM+NODE(JJ)*2
=JJe3-1

IF(JDOF.El
GSTSTIF(IG,JG)=GSTSTIF(IG,JG)+ESTSTIF(IE, JE)

231 CONTINUE
1000 CONTINUE

DO 600 IIl 1056

DO 600 J:

GSTIFF(I J)-GSTIFF(I J)+GSTSTIF(I, )
0 CONTI!

DO 700 I=1,108¢
IF(GSTIFF(! I) EQ.0.0) GSTIFF(I,I)=1E+20
700 CONTINUE

DO 62 I=1,724

DO 52 J=1,362
GSZl(I J)lGSTIFF(SGQOI n
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DO 54 I=t, 724
D0 54
Gs22(1,J. GSTIFF(BEZ*X 362+J))
54 CBIITIWE

C
C  CONDENSED MASS AND STIFFNESS MATRICIES

CALL DLINDS(NC,GS22,NC,GS22INV,NC)
CALL MATMUL(GS22INV,GS21,T21,724,724,362)

D0 270 I=1,362
T(I,I)=1.
270 CONTINUE

DO 280 I=1, 724

DO 280 J=1,3

T(I+362, J)--TZi(I 5
280 CONTINUE

DO 290 I=1,362
DD 290 J=1,1086
(T, D=1, 1)
290 CONTINUE

CALL MATHMUL(TT,GSTIFF,TTS,362,1086,1086)
CALL MATMUL(TTS,T,GSTR,362,1086,362)

CALL MATHMUL(TT,GMASS,TTHM,362,1086,1086)
CALL MATMUL(TTM,T,GHASR,362,1086,362)

DO 350 I=1, 362

DO 350 J=1,3

GSTR(I,J)=1. E<z4sss'm(1 )]
350 CONTINUE

DO 750 I=1,362

IF(GSTR(I,I).EQ.0.0) GSTR(I,I)=1E+20
IF(GMASR(I,I).EQ.0.0) GMASR(I,I)=1E-10
750 CONTINUE

CALL EIGEN(GMASR,GSTR,EVAL)

STOP
END

4

SUBROUTINE EIGEN(B,A,EVAL)

PARAMETER (N=362)

DOUBLE PRECISION A(N,N),AMACH, B(N N) ,BETA(N) ,GPIRG,PI
DOUBLE COMPLEX ALPHA(N) EVAL(N) EC(N,N)

EXTERNAL AMACH,GPIRG,GVCRG,UMACH, HRCI\H



CALL DGVCRG(N,A,N,B,N,ALPHA,BETA,EVEC,N)
PI=3.1415926

D0 10 I=1,]

IF(BETA(I).NE.O.) THEN
EVAL(I)=ALPHA(I)/BETA(I)
EVAL(I)=AMACH(2)

END IF

10 CONTINUE

DO 20 I=1,30

WRITE(6,%) EVAL RPS ’,I
WRITE(6,*)EVAL(I)**. 5/(2 *PI)
20 CONTINUE

CALL DWRCRN(’EVEC’,N,N-347,EVEC,N,0)
RETURN

END

SUBRDUTINE EHASTIF(CUURD SHP ,DSHP ,ESTIFF,EMASS,FV,EFORCE,
1 GALL,DETALL)
FRAAER

mmcn‘ REAL¥8 (A-H,0-2)

PARAMETER (NJ=3)

DIMENSION C(6,9),43(9,9),DS(9,60),DSHP(3,8,20) ,SHP(8,20)
17D(6,6),CA (5,93 ,B(6,60) ,BT(60,6) ,BTD (60,6) ,ESTIFE (60, 60),
1 EMASS(60,60) ,COORD(3, 203 ,AJINV(3,3) , AN(3,60) , ANT(60,3) ,
1 BTDB(60,60) ,ANTH(60,60) , ANTNR (60,603 , HT(8) ,ATAC(3,3) ,
1 FV(3),EFORCE(60) ,ANTF (60, 1) ,ESTSTIF(60,60) ,
1 GALL(9,60,8) ,DETALL(8) ,G(9,60)

DATA WT/8%1./
RDE=7850 -

LAS!(i =ANUE)/((1.4ANUE) * (1.=2.*ANUE) )
C)li-AllUE/(i ~ANUE)

CN2=.5%(1.-2. *ANUE)/(1.-ANUE)

¢

4 INITIALIZATION

c

DO 112 I=1,60
EFORCE(I)=0.
ANTF(I,1)=0.
DO 112 J=1,60
EMASS(I,3)=0.
ESTIFF(1,1)=0
BTDB(I, J)=0.
ANTNR(T, 3)=0.
ANTH(T, 3)=0.
112 CONTINUE

DO 116 I=1,9
DO 118 J=1,9
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AJ(1,2)=0.

116 CONTINUE
DO 118 I=1,9
DO 118 J=1,60

DO 122 I=1,6
DO 122 J=1,60

122 CDHTIHUB

DO 111 I=1,6
D0 111 J=1,9
©(1,3)=0.
111 CGITIHUB
36 1=1,3

115 COMTIIIU'E
c(1,1)=1.

D(3,1)=CN1
D(3,2)=CN1

0 1=1,6
D0 30 J=1,6
D(I,J)=COEF#D(I,J)
30 CONTINUE
D0 1000 N=1,8
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DO 120 I=1,3
DO 120 J=1,3
AJAC(I,))=0.

DO 120 K=1,20
SUM=COORD(J,K) *DSHP(I,N,K)
AJAC(I,J)=AJAC(I,J)+SUM
120 CONTINUE

DET=AJAC(1,1)*(AJAC(2,2) *AJAC(3,3) -AJAC(3,2) *AJAC(2,3))-
1 AJAC(1,2)*(AJAC(2,1)*AJAC(3,3)-AJAC(3,1)*AJAC(2,3))+
1 AJAC(1,3)#(AJAC(2,1)*AJAC(3.2)-AJAC(2,2)#AJAC(3, 1))

CALL DLINRG(NJ,AJAC,NJ,AJINV,NJ)

Do 44 I=1 3

DO 4

AJ(I J)IAJINV(I 3
44 CONTIN

DD 15 1~4 6

.6
AJ(I J/=AJIKV(I -3,3-3)
15 CUIITXHUE
BO 2 I

AJ(! J)-AJIHV(I 6,3-6)
20 CONT:

DO 25 I=1,3
DO 25 K=1,20
IT=1+3%(K-1)
DS(I,II)=DSHP(I,N,K)
DS(1+3,11+1)=DSHP(I,N,K)
DS(I+6,11+2)=DSHP(I,N,K)
25 CONTINUE

CALL MATMUL(C,AJ,CAJ,6,9,9)
CALL MATMUL(CAJ,Ds,B,6,9,60)
CALL MATMUL(AJ,DS,G,9,9,60)

m'ALL(n)-DI-.T
nu 331 J-x eo
GALL(T,J,N)=G(I,3)
331 CONTINUE

D0 35 I=1,6

35 CONTINUE

DO 37 I=1,3
DO 37 M=1,20
MM=I+(M-1)+3
AN(I,MM)=SHP(N M)



37 CONTINUE

D0 38 I=1,60
D0 38 J=1,3

38 CONTINUE

CALL MATMUL(BT,D,BTD,60,6,6)

CALL MATHUL(BTD,B,BTDB,60,6,60)
CALL MATMUL (ANT,AN,ANTN,60,3,60)
CALL MATMUL (ANT,FV,ANTF,60,3,1)

DO 39 I=1, 60

D0 39 J=1,6

ANTNR(I, J)=RDE'ANTN(I 3
39 CONTIN

DO 40 I=1,6!
PRF’DET‘“T(N)*ANTF(I 1)
EFORCE(I)=EFURCE(I)'PRF

DO 40 J=1,6
PRST=DET‘HT(I¢)UBTDE(I )
PRMAS=DET#WT (N)#ANTNR(I, J)
ESTIFF(I,J)=ESTIFF(I,J)+PRST
EMASS(I,J)=EMASS(I,J)+PRHAS
40 CONTINUE

1000 CONTINUE

RETURN
END

4
C SUBROUTINE FOR CALCULATING STRESS STIFFENING MATRIX

C
SUBROUTINE STRESS(EDISP,GALL,ESTSTIF,DETALL)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION ESTSTIF(60,60),WT(8),
1 G(9,60),GT(60,9), S(S 9),GTS(60,9) ,GTSG(60,60),
1 EGi(S 9) ,EG2(3,9), MS(S 9), CA(I 3),CB(1, 3) cc(1,3),
1 EG1G(3,60), EG2G(3 60) ] EGSG(S.OD).
1 EBISP(GO.I) ,GP1(3,1),GP2(3,1),GP3(3,1),
1 S1A(3,3),51B(3,3),51€(3,3) ,511(3,3),
1 GALL(9,60,8) ,DETALL(8)

DATA WT/8%1./
ELAS=20.6E10

INUE=.3
GEE=ELAS/ ((1.+ANUE)*2.)

DO 52 I=1,3
DO 52 J=1,9
EG1(1,1)=0.
EG2(I,J)=0.
EG3(I,1)=0.

ot



52 CONTINUE

D0 154 I=1,60
D0 154 J=1,60
ESTSTIF(I,.)=0.
GTSG(I,3)=0.
154 CONTINUE

DO 50 I=1,3

50 CONTINUE
DO 30 I=1,3

30 CONTINUE
DO 58 I=1,9

5 3
58 CONTINUE

EG1(1,1)=ELAS
EG1(2,2)=GEE
EG1(2,4)=GEE
EG1(3,3)=GEE
EG1(3,7)=GEE

EG2(1,2)=GEE
EG2(1,4)=GEE
EG2(2,5)=ELAS
EG2(3,6)=GEE
EG2(3,8)=GEE

EG3(1,3)=GEE

CB(1,1)=0.
CB(1,2)=1.
€B(1,3)=0.

€C(1,1)=0.
€c(1,2)=0.



cc(1,3)=1.
DO 1000 NP=1,8

(1,3
139’ CONTINUE

DO 136 I=1,9
DO 136 J=1,60
GT(J,1)=G(I,J)
136 CONTINUE

CALL MATMUL(EG1,G,EG1G,3,9,60)
CALL MATMUL (EG1G,EDISP GP1,3,60,1)
CALL MATMUL(GP1,CA,S1A,3,1,3
CALL MATMUL(EG2,G,EG2G,3,9,60)
CALL MATMUL(EG2G,EDISP,GP2,3,60,1)
CALL MATMUL(GP2,CB,S18,3,1,3]

3

G

3

CALL MATMUL(EG3,G,EG3G,3,9,60)
CALL MATMUL(EG3G,EDISP,GF3,3,60,1)
CALL MATMUL(GP3,CC,S1C,3,1,3

DO 54 I=1,3

DO 54 J=1,3
S11(1,3)=S1A(I,J)+S1B(1,J)+s1C(1,J)

S(1,3)=511(1,3)
S(1+3,3+3)=511(1,3)
S(1+6,146)=511(1,J)
54 CONTINUE

CALL MATMUL(GT,S,GTS,60,9,9)
CALL MATMUL(GTS,G,GTSG,60,9,60)

DET=DETALL(NP)

Pn=nn-n(w)cu'rs (1,3
ESTSTIF(I, J)=Esrs'm»'(x J)+PR
40 CONTINUE

1000 CONTINUE

RETURN
END

<
¢ subroutine for matrix multiplication

<
SUBROUTINF MATMUL(A,B,C,I,J,K)

s



IMPLICIT REAL#8 (A-H

DIMENSION A(I,J),B(J, K) C(I X)
DO 88 II=1,I

DO 88 KK=1,K

SUM=0.

DO 77 Ji=1,]
SUM=SUM+A(II,J3)*B(JJ,KK)

c
SUBIIOUTIHE SHAPE(SHP,DSHP)

IHPLICIT REAL*8 (A-|
D!HENSXGH zE(2o) m:(zo) zr(:o) F(24) ,SHP(8,20) ,DSHP(3,8,20),

DATA GP/-O .517350269159525.0.577350259159528/

C the NODE numbering has been started for the bottom face with
c 1 at the left front end

DATA ZE/1
1.,0.,-1.,0

DATA EEI 1 L,L.'l .~1..1..1 0=1.,0.,1.,0.,-1.,
10.,1.,0.,-1. 1./

DATA zr/-
11., ~.1~.

1.,71.,-1.,1.,0.
o2,

C for corner nodes 1 2 3 4 5 6 7 8 sessssssnsnnsusssssensansssss

M=0.

DO 4 J=1,2
DO 4 K=1,2
DO 4 L=1,2
M=M+1
F(M)=GP(J)
M=N+1
F(H)-GP(K)
F(H)=GP(I.)

4 CONTINUE
LL=0.

DO 2000 N=1,8
LL=1+(N-1)#3
AZE=F (LL)
AEE=F(LL+1)
AZT=F(LL+2)

DO 55 I=1,8



SHP(N,I)=1./8.%(1.+AZE+ZE(I))#(1.+AEE*EE(I))#(1.4AZT+2T(I))*
1 (AZE#ZE(I)+AEE+EE(I)+AZT+2T(I)-2.)
DSHP(l N,I)=1./8.#ZE(1)¢(1.4AEEsEE(I))+(1.+AZTsZT(I))*
1 (2.+#AZE#ZE(I)+AEE+EE(I)+AZT+2T(I)-1.)
DSHP(2 N, l)'l /8.#EE(1)+(1.+AZT#2ZT(I))*(1.4AZE#ZE(I))*
#AEE+EE(I)+AZT*ZT(I)+AZE+ZE(I)-1.)
DSHP(S N, I) 1./8.4ZT(1)#(1.+AZE#ZE(I))*(1.+AEESEE(T))*
(2 AZTZT(I)+AZE#ZE(I)+AEE+EE(I)-1.)

55 CONTINUE

C for nodes with ZE=0. 10 14 16 12 sessessssssssssassensessssss
DO 99 I1=10,16

IF(I.EQ.10)J2=1

IF(I.EQ.12)J2=1

IF(I.EQ. M)J2-1

SHP(I 12)'1 /4 #(1.-AZE#*2)#(1.+AEE#EE(J2))=(1. +AZT’ZT(.12))

DSHP(1,N,J2) 1 /2.#AZE# (1. +AEE+EE(J2))«(1.+AZT+2T(J2]
./4.%EE(J2)*(1.-AZE##2) (1. 4AZTO2T(.!2))

DSHI;(S N, .12)'1 14.%ZT(.2)*(1.-AZE+*2)+(1. +AEE*EE(J2))

99 CONT!

C for nud.' with EE=0. 9 11 15 13 sssesssssssrssssssssnssrssssss

3:
SHP(N, 13)11 /4.%(1.-AEE*##2)* (1. +AZT+2T(J3))*(1.+AZEsZE(I3))
DSHP(1,N,J3)=1./4.%ZE(J3)*(1.-AEE#*»2)*(1.+AZT*ZT (J3))

Dsl 1,J3)==1./2.AEEs (1.+AZT#ZT(J3))*(1.+AZE#ZE(J3))
nsnr(a N,J3)=1./4. ‘ZT(JB)'(! ~AEE##2)+(1.+AZE+ZE(J3))
CONTINUE

c for Zodes with ZT=0. 17 181920 sesvassssersssssrasrassrases
D0 95 J4=17,20

SHP(N, M)-l T74.%(1.-AZT*#2) (1. +AZESZE(JE)) * (1. +AEESEE(J4))
DSHP(1, N, J4)=1./4. +ZE(J4) #(1.-AZT+2) (1. +AEESEE(J4))
DSHP(2,N,J4)=1./4. ¥EE(J4) (1. ~AZT++2) (1. +AZE*ZE (J4))
DSHP(3,N,J4)=-1./2 . #AZT*(1.+AZE+ZE(J4)) * (1. +AEE*EE(J4))

95 CONTINUE

2000 CONTINUE

RETURN
END

c
SUBROUTINE ELVOLUME(COORD,DSHP,VOLUME)

IMPLICIT REAL#8 (A-~H,0-Z,
DIMENSION COORD(3, 20) DSHP(S 8,20) ,AJAC(3,3) ,HT(8)

DATA WT/8%1./
VOLUME=0.

DO 1000 N=1,8
D0 120 I=1,3



=0
DO 120 K=1
SUM=COORD (3, K) #DSHP (I, N ,K)
AJAC(T,2)=RAJAC(T, 3)+5UM
120 CONTINUE

DET=AJAC(1,1)*(AJAC(2,2) *AJAC(3,3)~AJAC(3,2)*AJAC(2,3)) -
JAC(1,2)*(AJAC(2,1)*AJAC(3,3)-ATJAC(3,1)*ATAC(2,3))+
1 AJAC(1,3)*(AJAC(2,1)*AJAC(3,2)-AJAC(2,2)*AJAC(3,1))
VOLUME=VOLUME+DET#WT ()
1000 CONTINUE

RETURN
END

c
SUBROUTINE FORCE(VOL,FVEC)
c

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION XL(8), FRC(B) FVEC(3,42),VCOL(7) ,VRATIO(7,6),VOL(42),
1 FELM(42),FCOL(7)

DATA XL/O., .14235. .2857,.4285,.5714, .7142,.857,1./

PI=3.1415926

DO § I=1,8
FRC(I)=0.
5 CONTINUE

K=0

DO 10 I=1,7
VCOL(1)=0.
DO 10 J=1,6

K=K+1
VCOL(I)=VCOL(I)+VOL(K)
10 CONTINUE

DO 15 I=1,7

DO 15 J=1,6

K=K+1
VRATIO(I,J)=VOL(K)/VCOL(I)
15 CONTINUE

BL=2.8
A1=,34109902
A4=-4.319239E-2

R=.7
ROE=7850.

s



15.

C Ws: -
C WS=2.+PI*20.

A11=A1/BL##2
A12=A2/BL
A13=A3
A14=A4+BL
RN=R/BL

D0 18 I=1,8

XX=XL(I)

Fi=A11#RNe(1.-XX)
F2=(A11+A120RN) o (1.-XX##2) /2.
F3=(A12+4A13eRN) *(1.-XX*3)/3.
F4=(A13+A149RN) * (1. -XX#+4) /4.
F5=A14%(1.-XX#*5)/5.
FRC(I)=(F14F24F3+4F4+F5) sROE+WSes2+BLa+4
18 CONTINUE

DO 24 I=1,3
24 CONTINUE

20 I=1,7
FCOL(~)=FRC(I)-FRC(I+1)
D0 20 J=1,6
K=K+1
FELM(K)=FCOL(I)*VRATIO(I,J)
FVEC(1,K)=FELM(K) /VOL(K)
20 CONTINUE

END

e




Appendix Q

COMPUTER PROGRAM FOR COMPUTING THE NATURAL FREQUENCY
OF THE ROTOR-SHAFT SYSTEM



w#xxxssx  THE PROGRAM FINDS THE NATURAL WHIRLING FREQ. OF THE
wxxxesex  ROTOR-SHAFT SYSTEM

#*xxesss  ADDED MASS DUE TO UATEK IS TAKEN INTD WATER.
w#xxekks  FORWARD/REVERSE WHIRL FREQ. ARE GOT.

*xwxxsss  SHEAR DEFLECTION EFFECTS HAVE BEEN CONSIDERED

NOMENCLATURE: -

EE1,EE2 ROOTS OF THE EQUATION FOR THE ROTOR
L

CHARACTERISTIC EQUATION
AMS MASS PER UNIT LENGTH OF SHAFT

AMR = MASS PER UNIT LENGTH OF ROTOR

AMOMS = AREA MOMENT OF INERTIA OF SHAFT

AMOMR = AREA MOMENT OF INERTIA OF ROTOR

4,B,C = NON-DIMENSIONAL LENGTH OF SHAFT SEGMENTS

COEFFICIENTS OF THE DISPLACEMENT FUNCTION FOR T.SHAFT

= ROGTS OF THE EQUATION FOR THE TAILSHAFT AND THE OVERHANG

ancnaaacaccaacnaca caaaaaan

DIMENSION RPS(6)

OPEN (UNIT=6,FILE=’SHAFTFREQ.ANS’ ,TYPE=’NEW')
PI=3.1415927

DATA RPS/.1,1.,2.,3.,4.,5./

DO 30 I=1,6
OMEGA=2. *PI:RPS(I)
C FIRST ITERATI

Wl

10 W=W+.01

CALL QFUNCTION(W,FUN,AL,EE{,EE2,0MEGA,Q1,02,03,04,EFS)
IF(ABS(FUN) .EQ.FUN)GD TO 20

GO TO 10

C SECOND ITERATIONkikkkkkshokikbbhhhhsks

20 W=W-.00:

CALL QFUNCTION(W,FUN,AL,EE1,EE2,0MEGA,Q1,02,03,Q4,EFS)
IF(FUN,LT.ABS(FUN))GO TO 100

G0 TO 20

100 WRITE(6,*)OMEGA+W,Q1,02,Q3,Q4,AL

30 CONTINUE

IF(EFS.LT.1.)WRITE(6,*) 'REVERSE WHIRL’
IF(EFS.GT.1.)WRITE(6,*) 'FORWARD WHIRL’

END

c
SUBROUTINE QFUNCTION(W,FUN,AL,EE1,EE2,0MEGA,Q1,0Q2,03,04,EFS)



Cc

PI=3.1415927
ELAS=20.6E10
SHEAR=ELAS/(2.%1.3)
RAD=.35

RROT=2.*RAD
AN=W/OMEGA

A=ALEN/TLEN
B=BLEN/TLEN
C=CLEN/TLEN

c
C FORWARD/REVERSE ~ WHIRL

c
EFS=1.-2./AN

c EFS=1.42./AN
c

c
C SHEAR DEFLECTION EFFECT
Cc

C AK=0.

AK=1./.9
c

Cc
C ADDED MASS DUE TO WATER
c

C ROE=7850.
ROE=7850.%1.25
c

c
C DEGREE OF FIXITY
c

AREA=PI*RAD**2
AROT=PI*RROT#¥2
AMS=ROE*AREA
AMR=ROE*AROT
AMCMS=AREA*RAD**2/4,
AMOMR=AROT*RROT**2/4.

ZETA1=ROE*AMOMR/AMR
ZETAR=ELAS*AMOMR/ (AMR*OMEGA**2+TLEN+*4)
ZETAS=ELAS*AMOMS/ (AMS*OMEGA*#2+TLEN**4)



C1=: ZE\'A1‘“"2'(EFS*AK'ELAS/SHEAR)/(ZETAH'TLEN“D
HEAR-1.)/ZETAR

DISC=(C1%%2-4.#C2)**.5

EE1=((-C14DISC)/2.)#x.5
EE2=((C14DISC)/2.)*%.5
AL=(Wex2/ZETAS) #% .25
ALB=AL+B
=AL*A
SL=SIN(ALB)
CL=COS(ALB)
SHL=SINH(ALB)
CHL=COSH(ALB)

SA=SIN(ALA)
CA=COS(ALA)

SHA=SINH(ALA)
CHA=COSH(ALA)

ALP1=-(2.*AL*SHA+STIF* (CHA-CA))/(2.*AL¥SA+STIF* (CHA-CA))
ALP2=(STIF#*SHA-STIF#SA)/(2.*AL*SA+STIF*(CHA-CA))

W1=ALP1*SA+ALP2* (CA+CHA) -SHA
W2=ALP1+CA-ALP2% (SA+SHA) +CHA

BETA2=EE2+#C

CB=COS(BETA2)

SB=SIN(BETA2)

CHB=COSH(BETA1)
=STNH(BETA1)

GM3=GAM**3
GM2=GAM**2
PH1=GM3*CB*CHB+GM2+SB*SHB
PH2=GM3*CB*SHB+GM2+SB*CHB
PH3=GM2%CB+SHB-GM3*SB*CHB
PH4=GM2#CB*CHB-GM3%SB*SHB

<HANU**2

ANU**2
CN3=1.-(GAM*ANU) *%2

CN4=1, *(GAH*AW) **2

TH1=CN1*PH3*CL-ANU* (CN1#PH1+GAM*CN3) ¥SL+
H )*SHL.

~ANU*

*
TH2=- ((CN1#PH4+CN3) #CL-ANU*CN1+PH2#SL+
1 (CN2%PH4+CN4) +CHL-ANU*CN2+PH2+SHL)

TH3=TH2/TH1




R1=.5%(CN1*PH3*TH3+CN1*PH4+CN3)
R2=,5%ANU ((CN1*PH1+GAM*CN3) *TH3+CN1%PH2)
R3=, 5% (CN2+PH3#TH3+CN2#PH4+CN4)
R4=.5*ANU* ((CN2#PH1+GAM*CN4) *TH3+CN2#PH2)

X1=R1*SL+R2*CL
X2=-R2*SL+R1*CL
X3=R4*CHL-R3*SHL

c
C EIGEN VECTOR CALCULATION
c

Al=1.

A4=A1/ (PHI¥TH3+PH2)
A2=A4* (PH3+TH3+PH4)
A3=TH3%A4

Pi=X1*A4
P2=X2%A4
P3=X3*A4
P4=-p2

03=2.%P2/(ALP1*SIN(ALA) +ALP2% (COS(ALA)+COSH(ALA) )-SINH(ALA))
Q1=ALP1xQ3

Q2=ALP2%Q3

Q4=-Q2

FUN=(X1+4X3) #W1-2. ¥X24H2

RETURN
END
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