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. tifite aifference scheme: The temperature .gradients. and the therrial

stresses are calculated from the tfansient temperatures optained
. . i )

. distribution and the angle of pre-twist on'the undamped natural ./

i o ABSTRACT . .

The research work carried out in'this thesis deals with the

transient thermal and vibratory analysis of a gas turbine, rotor

\blade. (The design criteria of 'a Xotor blade is suggested after

a:u}qu the combined effects "of the’ vibm:ary and thermal stresses -
& Co 2 '

on the turbine blade. * . . .

The non-linear tions“for the ié

dxstzlbutlon within the airfoil cres=~seccion of the blade are

dezived u:ing the finite examer\; -unalyua. - The non»uneni;y in.

thése equations is due to the’ radiative heav uanafez\ and-also ae

‘to_the va:dation of the mitekial px:opa::ie; at the blude with

tempe:atuxe. Tne non—lineaz difs t1d1 ‘equati A:e t ed |

o the mon-linear algebraic. equations in che time domuin u:inq a

_£rom. Lha.heab_uanéfar analysis., - -———
i
The n\at)xemaﬂcal model for the vibratnry analy:is i:

fnmulated using :3'11d, nadratic, i ietric ﬂmte‘ 1

The stiffness and'mass.matri are 4 E using G: i

quadratute. A dynamic macnx :e,ducuon tachnique is usetlgto

condense the qlabal stiffness ahd maua mat.ti:es of the, blade‘ The

£ree vibration analysis of the blade 15 carried out. \Isinq the N

condensed system matrices. The effects of th transient temperature ¢ o

frequencies of the rotor blade are sfudied. = - ; B g




The vibratory stresses are calculated due to nozzle

@ . .
excitation and tentrifugal forces. The nozzle excitation forces are’

modelled as a series of impulses using the kinematic equations. The
principal stresses-are obtained from the vibratory stress vector and
the design of tha rotor blades is based on the distortion enmerdy

stress. 5 . . e
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY
1.1 Introduction .
The turbines are one of the most' widely used machinery in
power genération or in jet propulsion. For example, the application
. . g Y
ot tuttilneh ta wadd kaown in Ehe ‘areas of iyirosisctcic poves ’

‘generation, steam power generation and in the propulsion of jet

. ; M . 50 . % y
planes: Fig. 1.1 shows the turbine as one of the components in the

aircraft engine. -In this figure the {r is let in through the

, diffuser, is cor ed in two' stages,f and-then the pressire and .
; L e s e s -
= temperature of the 8ir.i3 increaged in a combusfor. Thé air-fuel

3 mixturé is then injected through the nozzles of the gas turbine
. chamber onto the turbine blades. This produces mechanical power
which is_then‘'used to drive the propeller attached to the turbine

. \ shaft. .Fig. 1.2a ZhowsMthe rotor disk-blade assembly and Fig. 1.2b

shows the twisted shape of the blade.

sils votos Sliae, Wlle 15 petaticn, &y igatectel ts s *
= combination of stresses such as thermal, centrifugal and due to, the
. nozzle excitation forges. Hence, a reliable desigy of the blade®
depends ypon a c-{:et-_ﬂ .and Aeiu_iled analysis of thy 9e type of

stresses ‘and this is the intent of the investigatfon in this thesis.
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FIG.1.2a

THE

GAS

TURBINE

DISK-BLADE

ASSEMBLY [2



FIG.1.2b THE TURBINE BLADE [3]
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1.2 The Litérature Survey % - .

1.2.1 The Thermal Stress Analysis

Ever since the inception of a gas turbine engine there has
S . ¢ "
been a considerable amount of interest ih carrying” Gut its heat
. B
‘transfer and thermal stress analyses. However, as the demand on the
.

engine for more power output became the primary factor in its
design, it caused the engine Fo be operated under optimum conditions
of pressure and temperature. Hence, the heat transfer and thermal

stress ann,};xs,smuidge carried out as accurately as possible.

. Some of the more recent advances in-heat transfer can be found in

a8, A

- | ) %
The heat transfer process of the gas turbine blades has been
studied by Maya, et al ‘(6} and Mukherjee [7]. In their work they
considered the heat exchange process at thé surface by convection

; k& :

only. They also calculated the transient thermal stresses; however,
their analyses lack accuracy ih p:edicti;rf of the thermal stresses
and temperature distributions because the radiative heat exchange
mechanism is quite siggificant at the operating temperstures— In
addition, they investigate the stresses only at a few points such as
the leading edge, the trailing edge and at the% of%a cross-

section of the blade and carried out their analyses by assuming that

. the maximum stresses would take place’at one of these points only

‘during.the transient period. The effect of temperature dependent
mechapical properties on thermal stresses in cooled turbine blades
was studigd in [8], The influence of turbine blade airfoil and:root
:nxcknéf variation along the blade, height' on itg thamulﬂ&'!eaa ’

state was studied in [%1 €
: R




~r
Also, an experimental investigation of the thermal stresses in gas
torbine blades was carried out in (10]. The effect of radiative heat

transfer was not included by any of these researchers.

1.2.2 The Vibratory Stress Analysis /

The blade d‘ynamics has been an area of extensive researeh
. i
for a long time. One of theJimportant tasks in the dynamic aralysis

of the rotor blade is to carry out its free vibration analysis. The

’
.dynamic equations of motion of the blade can be arrived at by using

various mathematical techniques. Some of these are based on the

h. The of the blade, as a first approxima-
tion, ca.n be modelled as a tapered beam having a rectangular cross-—
section. ' %

The bending fzequencx:.es for the first three modés of
vibration of tapered cantilever blades having rectangular SEries
section were obtained by Rao and Carnegie (11]. They used the Ritz-
Galerkin method to arrive at the equations of ‘motion. The na\cural
frequency determination due to various boundary nundd’.:ions was
studied by Mabie gyd Rogers by, WieyiiEed the Besse1ts Functlons
in their work. The effect of axial force on_ the frequencies of blades
with ends restrained elastically against rotation was carried out by
Sato (131. He used the Ritz method for his formilation. The free
vibration studies were also carried out by Banerji and Williams [14],
Hutchinson and Z;llma( [15] and vuxh:nxs other xe:e’nrcha:a [16,17).
856 and Chang (18] used the finite slement method to
calculate the blade natural frequencies, however, their nodel vas




appropriate for thin ahd high aspect ratio blades only. Nagarajan
and Alwar [19] analysed the free vibration behawiour of the blade

packet assembly using twenty-noded finite elements. The details of
the.
58 Found in [20-23]. .

ongoing resparch in this field and the latest state-of-art can

Based on this literatyrg survey it was found that the non-
linear transient temperature and thermal stress determination in
case of a turbine blade has not been done so.far. Also, it was

fairly certain that the blade dynamics had not been studied using

y- i tric finite el t The modelling of
nozzle excitation forces using kinematics Wad alsq not been done so

far. . A ¥ 2

1.3 The Objectives of this nvestigation .

The problem under consideration in this thesis is multi-
disciplinary; hence ‘the objectives of this investigaion are
manifold. In order to calculate the state of stress in the blade in
the transient state, extensive studies into the, heat t¥%nsfer and
dynamics of rotor blades have to be carried out. Thus, the
objectives of this investigation can be summarized as:

1. The derivation of the transient temperature dis}::kbution

equations i)

e blade using finite @lement analysis.

2. The determination of temperatures at various points on the
. p .

airfoil cross-section of the blade by solving a non-linear

system of equations. Here, the non-linearity arises due to the




BN

/7
radiative boundary conditions, at the surface of the turbine
blade.

3, To study the free vibration characteristics of the turbine blade

using twenty-noded, curved, i ric finite elements.
1 . To study the dynamic stresses in the-blade dué'to nozate

excitation forces and centrifugal forces.
5. To study the state of stress in the blade due to the combined

effects of thermal and dynamic loading. e

In Chapter 2, the non-linear equations' for the transient

témpexature determination in ‘a turbine blade are derivéd using the
finite dlehent method. The ndn-liness system of differential '
equations are t:ansf?'r"meﬁ into a non-linear system of algebraic
equations in the timg domain by using the c:m}imicqxson £inite ,

difference scheme. The thermal gradients and thermal stresses are
* .

lculdted once the transient -aty are known. — - —

In Chapter 3, a mathematical model for the free vibration

study of a rotor blade is ped. The v d i i
ﬂni:‘e element formulation is used to study the free -
characteristics of the blade. A coordinate cddnction schem isrused
to reduce the dynamic equ;ti.on: 6f motion. The eféec:’sf the
heating of the blade on its natural freguencies is studied in this'
chaptes. Alss, the effect of the varistion of the pro-twist engle
on the natural frequencies is s:udied

Iy Chapter 4, alfeasible heating path for the gas turbine
engine, yhle in accelertion, s used to carry out the ‘thezmal

analysis. The thermal stresses are then calculated for this heating
,




peEh.. ‘THa voiEle)sxeltation farcas Have biewusdeiied as s series
of inpulses using the kinematip’ equatiogs. The sesponse due to
fisEE 16 SKEHESS rorces. B cent rifugal forces 15 useq ts saleulirs
the dynamic stresses in I'.he blade. The occurance of the stress due
to the com.bln:d effects of thermal und dynamic loading has been
studied at vuxiuus Jocations along <he height of-nm blade. The
distortion enargy criteriofis used to galeulate the stresses.
 STREAREIENEE. SHd FeSSISAANEINNS: ¥6% SibNFaH el
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CHRPTER 2 ~
°
THE TRANSIENT THERMAL STRESS ANALYSIS

2.1 .Introduction ' ¥

The efficiency of a turbine is greatly enhanced by using

higher inlet and . Although higher inlet

are desirable from the n point of view, .

r.hey severely increase the thermal loading on the turbine blades and

ahig shermal in the blades.” These

2
thamal :t:e::es are known to peak.dufing acceleration or .
decelezation of the gas turbine enqine. This is becausé, in the

ransient smte, there.is a large diffa:ence of temezatuze ‘between

_various points of the blade. TheI¥fore, one should sl cuisty he

temperatuze distxihution within®the blade as accurately as possible.

\In this work, the heat tranafe: pioblem has been formulated as a two-
atbnatsnal HesE ;£low probflem because it has already T by .
(6] that the thermal gradient along the height of the turbine blade is
negligible during the transient state as compared to the thermal
gradiént along the*airfoil cross-section of t)';esbltada.‘ _The .

mathematical model for the non-linear transient heat transfer

;unalyais 'is formulated using the fipite element method. The boundary:

w1emate. o the blade exchunge heat with the surrounding hot gases by

the convection and radiation précesses. The dnclusion of radiation
. w i .

into this analysis results in a non-linear system of differential
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equations.  These non-linear system of differential equations are

transformed into a non-linear system of algebraic equations in the

time domain using the Crank-Nicolson finite difference schemc.

These non-linear system of alge‘btaic equations are then solved for . i
the nodal temperatures by using an steration technique. Once the

transient nodal temperatures are known, the thermal gradients across

the airfoil eross-section ane the thermal stresses can be calculated.

2.2 The Mathématical Formulation

2.2.1 The Determination

The governing three-dimensional partial differential equation
for" heat flow in any sol.i.d can be written as [24)

2 2 : ’

El T e d ar -
> +x, G+ a=pe §T 2.1

ax a2 :

with the boundary condition :
I PR NP +q#h(T-T =
xoax et ryay by R e bt o -

¢ roem -nh -0 2.2)

The calculus of variations can be used to solve the governing partial
' differential equation, Egn. (2.1), and,its béundary condition, Egn,
(2.2). This can be achieved by minimizing the corresponding” ;
variational functional and solving the resulting system of salgebraic
equations. .

Now, Eqn. (2.1) can be rewritten as

Y 2
T ] T [ T A
SRSk -la - pe - (2.3)

’Byzv zazz ot ¥




The variational functional can be set up by multiplying Eqn.

2.2)

and (2.3) by the first variation of T i.e— 8T and integrating over

the whole domain as

" 42 2
T e
5y = [.k Lr oy o,
J’_ X a2 Y ay?

v

2
*Ry oy

.ae(r‘-r_‘_)].sras .

Eqn. (2.4)_can be zea

B
22?
—[Q-pcg%]]s'rdvv [ g—

.
T ar
""xazl +q+hr-T)

y

=rasged as ¢

3 2,
ar e
al-fxaxl srds—jxxﬁh‘w

2 ¥
« s
.S
o
1%
s

v

Be
2y sras- [x Lorav
ydy vy ¥ a2

v

T Y
75 %y a; as -

+J‘q§1'ds-J‘[u—p,at 8T av
s v

2.4)

E}

% I h(T - 7) 87 ds + f ce - r:)_sr ds (2.5)

3 |

The surface integrals can be transformed into the volume integrals by

using Green's divergence theorem.

Eqn. (2.5) cao be expressed as

Thus the following iptegrals in
e
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Substituting Eqns. (2.6) to (2.8) in Eqn. '(2.5), we get

v o v Z

+IqETdS+I§5(T—Tm)2dS
s

e

-~ s

] dv-‘[u&'rdv+_rpc-——81'dv

(2.1

(2.9)

(2.9)

Rewriting Eqn. (2.9) by removing the variational upe}a:oz 5

from both -sides we get .
' c )
S 2 2
1 ik 1) 91]
. . X’Iz{“x & il ay] * R 32]
' :

_zqw+29c1%:-] av +'_[ qT ds

T 5 ’

- 5
: L L 2”7 ot
- ."I [2 LERRAEES [5- T..’r]] ds
. s, .

(2.10)




where

S, 4is the surface experiencing heat flux

is ghe surfade-éxperiencing convection
and radiation boundary conditions.

For finite element analysis we assume that the temp

continuous ever the whole denbin but it is defined

element. In order to formuldte the finite element

(2.10) we make use of the’following finife element

.
erature T is not
c;v?: an individual
equations from Eqn
equalities:

¥

(2.11a)

of a triangularsfinit

and T . ‘are nodal

where Ty T, x

" element taken in the countez-clockwise sense from node i,
et .
IS ;
\
PI-1= o 3 (2.110)
% 0 X
¥. . . ,
e ;Ne e 7
S R
] 3 L iR 3
, [a”] =2 ')’; B’; ' (2.110)
dy 3y 9y -
C e s .
o F 5 - N_—
" - L REX . ;
{s ) ar [ ] 3 (2.11d)
T
a’ . %
% e
. -t
B 2
ar° © 4@ xE
,and S - [Ni g Nk] (2.11e)
! ! o=
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Since in the present invest Jltion of the transient heat
transter in the turbine blades, there is no heat generation and thers
are no specified heat fluxes, therefore the terms Q and q in Eqn.
are respectively equal to zero. Also, because we 'have modelled our
problen as a two-dimensional heat-flow problem, the term ot in Ean.
(2.10) is equal to zero. Thus, substituting the above Einite element

equalities into Eqn. (2.10) one can express the functional for ai

xe:.{e% (.,e)‘: [B,]T t“e] ] (=) o
SEISTC I

*J;"z—e([“](f)] as
[ . ] (T).,“{g_,z.,s '
j oo (] )" as - _[zm [ e

The fupcticnal x is defined for individual triangular elements. So,

min _ % with respect to the nodal temperature vector, (r‘),

N,
(2.10)

will yield a stationary value of ¥ which will satisfy Eqn. (2.1) and

its boundary condition Eqn. (2.2). - This can be’ expressed as

o ol ay?

a(Ta e q-') + (2.13)

. coat .
S O




where n denotes the total number of elements. N

In order to differentiste Eqn. (2.12) with respect to {1°}

we make use of the following relationships given in [24]: .

PRI ATNSISIC P

LB T @ *
i ‘ AL

a(:e). '\[ﬂ pe® [N.jl(@ [Ne] (7‘ av

' o o) o . o
- v'_;[e L ["] 3t [“] av .' (z.fqb)\
' b,e sehT [“e1 (" }) o= f ¢ [N ('r ) as (2.140)
’B(:e) -!, ror ["e] ("'e) a8 ‘L »z, ["' as (z.:»aa:

2L T ENEN [T (T e

a{:a) ds Ez‘ Toe 98270 . ) “(2.14m)
. 2 N
a(a?) {2 oe T4 [n']. (1-‘) as - ‘s[; oe T"'. [n‘]T as @.149)

ol
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Substitnt{:ng these relationships into Eqn. (2.12) and adding up t

s

he

' -
contributicns of each element as per Eqn. (2(13), we get

0D [ J €1 6] [ee] {.e
e & (L BT B B )
SGEAT :
s A )
+.;[‘e ‘y:e [Ne]T [ue] (Te} ds - 'S[e ner [Ne]T ds
X 2 » 2
o o [T () ) s : o B
) s3 oo
- oe ‘1-: [Ne]T ds] -0 . 42.13)
S :
T X 2 . . ~ : :
The expression for the elemental capacitance matrix [cpe] can be
expressed as [24] L
[cye] -J pc® [N’G]T [Ne] a . - (2.16a)
v® i
The elemental conduction matrix [xe] can be expressed as
» ¥
s T T
. [Ke] -I [B?] [De] [ae] av +I n® [Ne] [Ne] ds  (2.16b)
LV . s3
Tite Forcesvector dis vo convectdon can Herexpressed s .
(2:160)

N
{E‘:) = T w1 [nE]T ds
LI

and the force vector due to radiation can be written as




.

' ('r:) - ,L oe T8 [N']T ds;- L ce [N'] [[u']‘ ('ref] ds (2.16d)

. - 5

ing these i for the 1 4 .into Eqn.

(2.15) and summing up for all the elements we arrive at the following

equation for the global matricls . M

SIS ISRE 2 SR

T for the elemental H [CP"]., [x'], {E:) and (r:) .

for the case of a triangular element are given in Appendix A.

\Frof®pBendix A, one can clearly see that upon assembling >

‘the ‘elemental matrices, the resultant global system of equations,

Bq'n‘ (2.17), is a non-linear, set of partial differential eguations
bécause of the radiation temm which introduces non-linearity in this
system. To ‘solve such a system of equations, one of the ways would

be to transform these equations into a system of non-linear algebraic

using the son finite ai method which is
unconcuuoulxy stable and is widely-used-by researchers. -
Thus™ 'tha first derivative of the nod-l temperature val:r.o:

batween the pilnts using this method in the_ time dmnain canbpe -

" expressed as &

.18 ¢

S Pum™
here At is the time step.

: G’ G
The éxpressions for {1 ): ana. {F )t can also be written as
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and

(2.19)

IR L P
(“' )t S (2.20)

Substitution of Eqns. (2.18), (2.19) and (2.20) into Eqn. (2.17)

results in the following equation <
{
S 0 e - [ (9)
ol [~ T - - |Cp 2
u ac b T2 A
2 . 2
s I[G](G) [e](e) !
b +5 1K « 3 + K LT -
. 2 bt "2 e
2 2 .
1 ( G) 1 ( G 1 (G)
-1 {& + 2 {F + 2 {F
2 Vel A T 2°Vel AT 2 VoAb .
by 2 the
1 (e
+3 F‘}:AE (2.21)
2
-
In the above eqaion, the unknown terms are the nodal temperature

&

vector (TG) and the vectors (FS} and (Ff) at time ¢+ 5F.
other vectors and matrices for the previous time instant are known.
Thus, Eqn. (2.21) can be arranged as

(62 ) () -
S s (TG) a

.Since the npdal temperature vector (TG) and the force vectors

due to convection and radiation at time ¢t - %g are known, Egn. (2.22)

2 ) - K

,
. T
(Es)uﬁ;ﬁ + {sg) At (r‘:}ﬁ% + {s‘z) e 222




1 can be rewritten as

(] + & BT ) - o+ )+ 69

-
A (2:23)
ey

The vector (A)) is known at this stage. On .the right hand

side of Eqn. (2.23) the vectar,sy (E‘G) and (FG) are to be
o At o a
thy b

evaluated using the nodal temperatures at time t + Az—t. One of the
ways to solve Eqn. (2.23).for the nodal temperatures would be by

making use of an iteration scheme. In this scheme, one assumes a nodal

temperature vector {1°) at. time 't + A%, which can be same as the

2
: . A = o At 5
E ” nodal r.empernltu:a vector at time t - 2 and substitute this on the

right hand side of Eqn. (2.23). This' results in the evaluation of

the vectors: {;2) 04 {5} 4. 2t these assumed temperatures. -
ey w7

At this stage Ean. (2.23) reduces to
([KG] ¥ é [‘”’G’]) (TG)HAZE. - ("2) (2.24)

where (A ) is now known.
2 L.
This system of algebraic equationd, Eqn. (2.24), can now be

<
*, . solved for the unknown nodal temperature vector The

6,

calculated nodal temperatures are now compared to the assumed nodal

temperatures and if they do not meet the convergence criteria, then
the' calculated nodal temperature vector becomes the assumed nodal »
temperature vactor for tho noxt itgration. In this way the translnc

nodal temperatures in the ‘airfoil cross-section of the turbine blade™

can'be'determined.




\ 7

Once the transient temperature distribution is known, the

transient di along.the x and y directions can

be calculated by making use of Eqn. (2.11d) for a triangular element.

2.2.2 The Transiest Thermal Stress Determination

The variation of t across the ion of a

blade causes thermal bsr.zesses along the x, y and ‘'z "directions
respectively: It has been established in [6] that all stress
components other than O, are negligible in such situations. The
relationship between o, and the elemental temperature, T, (the
average temperature of the Lhraz-node: of an elemient), can be written

in the form [25]

fzx ar_an® jbsum- an® s
o F ¥ May av
. A A A
o =E [x +y
e c IEKZdAe c Izysze
e © e ©
AT . A
~ _[En/ﬁ an® v
” av <
)ﬂ‘-f—~-am) (2.25
szﬂe av
e

Thls ‘equation can be greréased in the sumation form as




22
. n a o
T A% E(M am AT, x
e=1 e
+x &
3 e o
. I A% Em )
o .
e=1
g e e
Ex A" E(T) a(T) A'r“ Yo
+yg 5 - o(m AT (2.26)

5 o °
B I E(M (y)
c
e=1

In this equation, the modulus :of elasticity, E(T), and the

coefficient of thermal expansion G(T), are evaluated at the average

temperature of the element. AT, ‘for an element is the difference in

o T,, at any instant of time and T initially when there is no stress;

*in other words, the stress is induced in the material due to the rise
in temperature, from the stress free state. In this way the themmal

stress, 0, can be calculated at different-instants of time.

f
2.3 Numerical Example

To illustrate the theory developed in Sectigqn 2.2, the heat
transfer process within'a turbine b_lude'uaa’ studied dn a brade made
of MAR-M200, which is a superalloy of nickel, and widely used in the
manufacturing of airtraft gas tuxb;e blades. A cross-section of
this blade is shown in the Fig. 2.1. In ordar to carry out the
finite element analysis of mxs[sxade, the airfoil cross-section was

divided into 174 linear triangular elements. This discretization was

finer near both the and suction and the

in the nodal was achi by both the mesh size

énd the time increment. A computer program for automatic mesh
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generation for this blade was written in order to carry out the

convergence studies. The convective heat transfer foefficients were

assumed to vary along the Z;/asuze and suction surfaces of the blade
[

and these were obtained fr

7]. In‘addition to the variation of

. the convective heat transfer coefficients along the surface, it was
SVE SSHURRTEYRLERSY VAEYEA VALh SERpITAIR GEtia. SURENGR-: e
4 values for thesg variations were also obtained from (7]. These two "
variations of the convective heat transfer coefficient are shown in
G Figs. 2.2 and 2.3. 1In fhe present an‘alysis‘, all the material
‘properties of the blade such as @, E, ¢, k, etc. were a function of

temperature and were obtained from [26]. Table 2.1 shows the values

of these parameters at different temperatures..

~ 2.4 The Transient Thermal and Thermoelastic Studies of the Turbine

Blade

. .. 2/4.1 The Effect'of the Radiative Heat Flux on the
. 3 -~ ! i
3 ; istribution’ [27

As we have seen earlier, the radiative heat flux includes

terms made up of higher powers of the nodal temperatures, hence its

effect would be quite le at elevated fes. The

effect of including the radiative term can be seen in Fig. 2.4 where . .

the hot gases are maintained at 1143°K (870°C). Hence, the time-

.. temperaturé paths of several points which include the leading edge, &
.. w . .
the trailing edge and one of the inside nodes (the location of these
e ‘nodes are shown in Fig. 2.1) ale shown. The difference in the ' U

temperatiire values, with and without radiatiye-terms, at any instant

of timg can be seen in the Fig. 2.4 This figure clearly shows that
N 0 /
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Table 2.1
.- The Variatjon of the Material Propert Sos of
the Blade with Temperature

(p = 8526 Kg/m®) ¢ .

Température 5 S yield o c K
‘o (pa) (Mpa) (um/m’ k) (37kg) (W/m7k)
21 220 840 1.9 400 12.7
93 215 812 | 12.07° 400 sl
205 215 844 12.07 395 13.5
31s 195 846.3 12.4 420 13.8
425 190 g48.a 12.8 440 15.1
540 185 850 T3t 420 1843
650 175 855 13.5 460 1703
760 170 840 14.0 180 14.0
a0 160 760 14.8 500 21.6
980 145 w | 1s.s 525° 24.9

+
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one ‘has to include the nonlinear radiative term in the Eqn. (2.2).
This figure also shows the variati¥h of AT versus.time. Here, AT
corresponds tr.; the maximum difference in temperature between the
various nodes at a given insr:ant of time. This w‘as obtained by
searching for the maximum and the minimum nodal temperatyres at
given instant of time. The AT curve :ea.c;:es a maxipum value and then
drops down and is an indicator of th_e differential heating process
taking place at various modes. Further signifigance of this curve is,
discusged later on in the Sec. 2.4.3. Furthermore, it is quite clear
in this figure that the surface nodes are affs;gted much more by the
radiation process than the inner nodes. Since it is established here

that radiation plays a very significant role.in the

temperature distribution analygis, hereafter, all further results

include the radiative terms.

2.4.2 The Gradient Distributi across the Airfoil ,
Cross-section of the Turbine Blade (28] E
For the two dimensional variation of temperature, the
N
spatial gradients along the x and y directions were also calculated
at various'instln;:s of time. The study of these gradients give us an
idea of the dynamics of the heat transfer process. The variations of
the gradients in the x-direction along the pressure surface at six »
instants of time are shown in Fig. 2.5. Referring to Figs. 2.1 amd
2.5, one’tan ses thet this gradient changes sign twice /urr/rlgA 2.5)
as we move from the left to the right along the pressure surface.,

The reason for this change of sign can be understood '£rom the Fig.
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2.1 usEIE ALEESLIGR of £BE heat £lux at a polnt “is shown normal

to the pressure—surface. This q can be resolved along the x and .
/] .

y axes as q and q respectively. Te heat flux q  would

correspond to the first term in Eqn. (2.2), and, similarly q, would

correspond £ U sisond EEE. Miieves q, is positive the gradient

ip the x-direction will also be positive; same reasoning holds for the

gradient in the y-direction. Since in the Fig. 2.1, q is along the

normal to the surface, the points which have positive a9 values would

have positive q;adients in the x-direction. Similar would be the
© case for the gradient in the y-direction. This explains the change
in sign for these gradients as we go along the surface of the blade..
~he ngnitatss Bad disectiond of these gradients depend on the
direction ca;ines lx and ly. Therefore, the maximum value of these
gradients would correspond to the points where these direction
- correspondingly reach their maxima. This figure also shows
that this gradient increases in m;nituda with time upto t = 32
seconds and then starts dec;easinq. The peak values of this gradient
shift towards the left on the right hand side of this flguta‘ and to
the right or; the'lefi;ll{nd side Iof this figure. - This i3 because of
" tho finite rate at Which the -heat flux diffuses into the systen. The S .
’ points near the extreme edges u;uld experience the effect first and
this efféct will be experienced by the points removed from the ends
at later stages. An interesting observation can be _n\nda in this '
£igure that the poirit “corresponding to 38% chord length has always
zem gradient. This is because the heat flux q is parallel to the

y-axis here. the W S




[ x . ) 32
The gradients in the y,&ecuon are shown in Fig. 2.5 at
vn:i;us instants 6f time on the pressure surface. All along this
surface these gradiehts are positive bedause the direction cosine zy
is positive. Similar to our earlier disiussion, the magnitudes of

this gradient at a given point on this surface increase upto t = 32

seconds and then decrease. Figs. 2.7 and 2.8 show the gradients '
‘nlnng the mid-section 2-2' (shown in Fig. 2.1). Fig. 2.7 shows that
the x-direction gradients are not severe between 25% and 55% chord
length. Between 0 'and 25% chord length, the gradients are positive
ﬂadic_ntl,ng that heat v entering: along x-axis and negative between
55% and 1_00\ chg:d length indicating that heat is entering the blade
in the na.gauve x-direction. 'In Fig. 2.8 at t = 2 seconds, the
y-‘qzidienta'aze negative for al{ elen‘énts ,L_r:dicatinq that tl:lebheat‘
£lux, q,, is entering from the suction surface, but witn_r_he passage
of time.at elements away from the leading edge this gradient changes
its sign. We also see tHat the global maximm;m value of the gradient
oueuBiiaL % 102 sasonds ‘ats1s%:chosd length. This indicites that
there is a delayed response in the occurance of the peak gradients
between surface nodes and the internal nodes of the blade due to the
effect of the thermal diffusivityl -

The Figs. 2.9 and 2.10 show the gradients in the x ,and y
direstions respactively at the suction surface. ' The regults shown in
these figures are very similar to those discussed eaﬁiz.

Y eThe above discussion deals with the local gradients ot .
various thicknesses of\ the airfoll. But ‘there ie another gradient
canea the overall' grndien: at a pnxticulu :Lme ine:an:. This
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gradient is due to the difference between the maximum and minimum
value of the temperature field across the blade section. It is

related to AT and its significance is discussed in the next sub-

- section.

. 2.4.3 The Thermal Stress Distribution (27)

As discussed in Section 2.2.2, O is the most important

component of the stress vector. These thermal Stresses were LY

calculated using Eqn. (2.26). In this equation T,, “as calculated as

the average of the nodal values of individual elements at °

a time t. The material properties were calculated at this T, The
variations of these normal stresses with time at the leading edge,

s v
the trailing edge and at an internal node B (refer to Fig. 2.1) are

shoun in Fig. 2. 1% These stresses have been normalized with respect
| ] Lo
e yield stress, geial™ - This vield stress is a function of

iy the normalizing values would by for

different elements at a given indtant of time. For example, if the b

elemental temperature at the trailing edge at a given instant of time

is Qifferent from that at the other two locations, then the e
sormalising values of :he yield =:‘ze== ‘for these three locations

wolild be different. It was found that the core of tMe section was-in
B

g, = tension and the outside was urider compression throughout the heating
- period. Here, in this figure, the absolute value of the normalized
.o - .
stresses have been plotted as a function of time. Thus, the stress

" at the locatdon B 'was tensile and the other two were compressive in

i nature. » t
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It is very clear from Fig. 2.11 that the peak value of the
stress at the trailing edge oc:um"az a different instant of time
than that of the leading edge. The absolute magnitude of the peak
stress is larger for the leading edge a‘: compared to the trailing
edge (refer to Fig. 2.11). The results as reported by (7] are
ainilar to those shown here but the calculations do not extend to
include the peak occurence at the leadipg edge (réfer to Fig. 2.12).
“So the maximum stress reported by [7) corresponded to that of the
trailing edge. In fact the calculations should have been extended
to observe the occurence of the pea’k at the leading edge because
magnitude of the stress here is mcdte than that at the trailing edge.
Secondly, in this Fig. 2.11 there is another curve indicating the

- maximum stress at any given instant of time. This maximum stress
curve was obtained by searching for the absolute maximum valus of
o, among all the elements. Ic‘ is quite obvious that any design of
turbine blades based on the thermal stress analysis should be
carried out considering this curve in mind rather than those of the
ledding or trailing edge as suggasted by (6] and (7). 1t should be
sdded here that the maximum stress curve in Fig. 2.11 exceeds the
value of unity, therefore, this heating path would be an infeagible
path. One has to, in this case, modif).[ the Tg‘“ versus time curve
s0 that the maximum stresses remain below the yield stress. throughout
the heating period. . - ' '

This figure also shows the v&ation of . AT versus time. In
this figure.one can a‘e_e_:hac.tha péa)§ stress ocgurs at time t - 88

seconds. At this instant of time a search was.made for the element




FIG.2.12 CALCULATED TEMPERATURE AND -STRESS DISTRIBUTION ~

DURING START .FOR LEADING EDGE, MID-PART AND
TRAILING EDGE [7]
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having the minimum temperature and it was found to be the element
number 72 (the locations of this and som#bther elements are shown in
Fig. 2.1). At this instant of time element numbers 54, 66, 78, 90
and 102 were showing qu‘h values of . Table 2.2 shows r.h‘e parameter
AT* which is the difference of temperature between an element having

% I
very high stress value and the element no. 72. Similarly, s, is the

aist between the of the having high stress
value and element 72. Obviously AT*/s would b‘a the temperature~ \
‘gradient between these centroids. From this table one can sed that )
the maximum value of the gradient occurs between the eléments 78 and
b 7%, A mearoh was carzisd Git to f£ind the element experiencing
maximum O at this instant of timp and it was found to be the elément
. . no. :)B. “This shows that it is possible to find the location of the
element having m.'nd.lmm stress just from the’ transient temperature
analysis of the solid without doing stréss analysis. It is obviously
" understood that the cause of the stress being discussed here is due
to the thermal loading only. . .
_A table similar to Table 2\ _-,y\-nnysed at time t = 104
seconds where the AT curve shown in !'1;. 2.11, reaches the peak
value. The maximum value og gradient AT*/s at this instant of time
was less than at time t = 88 seconds when the stress curve had a
maximum vaiue. Since the calculation of AT*/s for every instant of
% time requires v;xy large nhnd:gr of comp\lti(:.i.nna, it would be halplul’
X ) to roughly have an idea about the instant of time at which the stress
curve will have a peak valhe. This rough approximation can be made .

S from AT versus time c :5.; But the exact instant of time when the
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Table 2.2 \
The Caleulation of dyerall
- b
Gradient of Ele Having High
Stress State (t = *seconds) . )
Element Numbers
54 66 , 78 90 102
atx 106.83 431.28 445.813 | 454.95 1462.36
s 0.005867 | 0.005434 | 0.004955 | 0.005507 | 0.005776
(m) .
Ar+/s 68990.0 | 79360.0 | 89960.0 | 89700.0 | 80050,0




stress will reach the peak value can be known only from AT*/s versus

.time curve.

' t = 88 seconds

The temperature and stress distributions at
% 3

. .

are shown in Figs. 2.13 and 2.14. In the Figh 2.14, the stresses are

high at the leading and trailing edges put the highest stresses occur

at the suction surface on elements shown in the Fig. 2.1.
L

2.5 cConclusion L
In this chapter calculations were carried out to determine

“ i distributi ina

the transient and:

\turbine blade using the non-linear finite element analysis. It was
shown in this chapter that the témperature gradient analyais‘helps in
/' better understanding the dynamics of the heat transfer problem. In
this chapter the thermoelastic analysis was also carried out to
calcllate the maximum thermal stress path. The approximate occurence
©  of the peak thermal stress was estimated from AT versus time Surve.
It is also shown that the instant of time when the peak stress will
occur can be known from the transient temperature apalysis only.
’/ Hove;rer, the magnitude of the peak stress can be knoug only by
carrying. out the ‘thermal stress caicujation. Thus, the following
conclusions can'be drawn !z'qm this chapter: )
4.. The cadiation’ stfectd are quite significant in the transient
‘temperature analysis.
The design of the blades based on thermal analysis shauld be

_carried out using the transient maximum stress curve.
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CHAPTER 3
THE FREE VIBRATION ANALYSIS OF THE TURBINE BLADE

3.1 Introduction
The determination of the undamped o frequencies of a

turbine blade is very important in order to design a blade. There
are two reasons for doing this; the first reason is that during the
start-up the Totor goes through the various blade natural
frequencies until it comes to a constant operating speed and
secondly, the steady state excitation frequencies should not match
with the system natural fzequencies. These system natural
frequencies are known from the free vibration studies. Andther
advantage of determining the natural frequencies I bk fonsasn
obtain the matrix of modal vectors which can then be used in the
transient as well as steady state analyses. = 5

" In this chapter the free vibration analypls is carried out

using curved, solid, C° n ipity",

isoparametric finite elements. This type of element is chosen

because of its versatility'in accurptely-mapping the complex

geometry of the turbine blade. The. geomet, £ the blade can be

described as‘one having airfoil crun»sec{on: being asymmetric and

pre-twisted and having taper along its length. The two sections of
_the blade along its length can be seen in Fig. 3.1. Since the size
* -of the global matrices, .:xainq finite e}émencs, is quite large, a

dynamic matrix reduction scheme has also been used to carry out the
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F16.3.1 THE BLADE AIRFOIL CROSS-SECTIONS
b AT THE *RO0T AND THE TIP.




free vibration analysis. The variation of natural of

the blade with temperature over the entire transient heating period

has also been studied in this' chapter. In addition, the effect of
pre-twist on the natural frequencies HastKL 46 Ben, AEGaLed,

3.2 Mathematical Formulation

3.2.1Vthe I Finite Element Formulation

The most apparent features of isoparametric elements are
that their sides may be curved and that they make use off a special
coordinate aya:‘em (€,m,8) as shown in Fig. 3.2. These features .
can be understood in the following manner:

1. Nodal degrees of freedom, {d}, dictate displacements {u v w} of

a point in the element. This can be symbolically shown as

{:}= m {d} A

2. Nodal local coordinates, {c}, define global coordinates ({x y z}

of a point in th! element. This can be symbolically shown as
N

x
- “
{y}= (N) {c} . (3.2)
z

The matrices ([N] and [N] are gunctions of E;n and £ an
element is isoparametric if for the same node (N] and (N] are
identical. - ' )

The interpolation functions, ), for the twenty-noded

isoparametric element were obtained f£rom {29] and can be expressed as:

7
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Corner Nodes:

3l
=3 1 +§§i)(1 *'\'Ii)“‘cﬁi’(ﬁi"ﬂ‘h‘(Cx'ﬂ l%._i)

o -
Typical Mid-side Node:
N=l<14!;2)<1+|\n)u+cﬁy ' (3.4)
S 'y i .

b

for the, case when &1 =0, 7M; =% and ;L = t1. Here subscript 1
represent the ith node of the Z0-noded element.

In order to evaluate the element stiffness matrix [Rs"] we
need to know the matfix [B°] which relates the strain in the element
to the nodal displacements. sThe matrix [se] can be evaluated in
{he ollowing four steps (3073
1. The strain vector in the global coordinate system can be related

to the derivatives of the displacement field as

u,
x
u,
. e «
. x "
ur
€
: ¥ v, -
e, .
=1y v (3.5)
Y. 4
xy v
sz £ .
v 2 M .
vz - f
N w
. »
where u u, and u roprecents 3., 4 ,nq 28 ¥
L Tt L ax ' dy dz
respectively. The matrfx 9] is given as . 5
. e ;
K
’
g -
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1 o ] ] o o 0
¢ o 0 0o 1 0 o 0o o0
o 0o 0o o 0o 0o 0 0 1
p] = (3.6)
6x9 6 1 0 1 0 0o 0 0 o
6 o 1 0 0 0 1 0 0
fo o o o o 170 1 ol
The vector containing derivatives of the displ t field in

the global coordinaté system can be transformed to the vector
containing derivatives of the displacement field in the local

coordinate system as

vy ug
oy, uen X
u, | ueg g
i R
= 1Q] Ven 13.’{)

 au au
here g, up . and uip zepresent . Gy end Gr

*respectively. The matrik [Q] contains terms of the inverse of

the Jacoblan matrix [J] ‘and can be shown as




-1
33 o 0
F 0 0
21
F v 0 0
3
-1
o o o i
1
@ =|0o o o0 3]
9x9 | a2
-1 -1
o0 0 a1 Va2
o 0o o o o
B
o 0o o o o
o0 0o "0 0
The details regarding (J] are given

(see Eqns. 3.17-3.19

-1
13 7,

-1,
23

-1
33
-1

[ 33

-1
LI
(T

31

later’on

0. 0
0 0
L] 0
.
o o
] 0 (3.8)
0 o
S 3 ~1
T2 Taa
q-l
23
5 ‘
%

in this section

Now, the vector containing

ves of the displ

t field :

in the local coordinaté system can be related to the nodal

displacement vector as’

we ), a4

= 8
PR

o

PN

= (R]

(3.9)
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here the matrix ([R) contains derivatives of the interpolation
functions yith respect to the local coorllinate system and this

matrix can be represented as

" » J -
. N,
1 2
T 0 0 & 0 0 e -
Ny ON, '
. w0 0 om0 0 - - - -
DNl 5"2
_ x ! Ya; v ° T
. - N,
1 2
w0 0 % 0 0 - -T- -
. oN. ¥
a, 2 =
=0 = "0 0o == 0o 0 - - - -| (310
9x60 L on
L an,
e =2 [,
o 5 0 0 g o0 0
N, N,
1 2 I,
o 0zt o \,\o 5 0 y
Coow, - v,
—1 i 2 o ow o
L S L 0.
= 5 anl 9
. 0 0 g 0 .‘o‘ g~ B = = o= |
-~ L . 4

- N
y 4. Finally the [Be] matrix for an element can be expressed as
&
[e] - 1 101 w1 i (3.1

6x60  6x9 9x9 9x60

Once the [ae] matrix is known, the element stiffness matrix

[Ks“] can be evaluated as N

[5%] = ey, ” 1 ttx, v} dx oy (3.12)
v .

e ; 1
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In case of isoparametric finite elements the shape functions, [N,

are defined for the iation of the local system from

41 €™1. Thus E= %1, m =41 and [ =+1. For the isoparametric

formulation the element stiffness matrix can be expressed as

[Kse] - J‘Hrlfllsttymtn"" (0] (BEMTI) 19E, M1 at an af

i 23 S -
gox0 1T M eoxs | exs 6x60 (3.13)

. -
InEqn. (3.13) the material property matrid, jb), €or a

three-dimensional isotropic material can be expressed as

1 v/ (1=v) v/ (1-y) 0 0 0
.
1 vawm o o 0
F 0 0
= E( -
(01 (14v) (1-2v) ¢ - 10 -
¥ BN
synmet rical e 0
1;
70
\
Similarly, the expression for the consistent mass matrix
Gan be written as N
(] - [ 00" o o ax ay oz o .14y
b2 v =
« ; ‘
In case of isopa:a\metxic formulation the consistent mass matrix is
evaluated as : !
o 1 o1 4] T »
P = e emE i gm0y & ana
soxeo 11 e 3x60 (3.15)
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. The shape functidn matrix used in the evaluation of the

& . /

elemental consistent mass matrix [;F} can be expressed as

0 - - -] (3.16)

The Jacobian matrix here relates the derivatives of the displacement
field {u,v,w} with respect to the local coordinate system {&,n,(}
to the derivatives of {u,v,w] with respect to- the global coordinate
system {x,y,z}. The Jacot‘ian matrix is evaluated by making use of

the chain rule of calcylus, for example, »

™

x

(5
&

u
“moaEt

¥

u dy
SEH

y 9t (3.17)

H
o
"

z

|
-~

where w 4is a function of x, y and z. Hence, the Jacobian matrix

(3] can_be.expressed as

9x dy 2z
9% 3% 3 -
71 =|3x I % (3.18)
on an .o )
2x 3y Iz
o L & - ' 5
4
The 1, ©f 31 can'be written as
4 ) : <
-a—;- - ﬁ'”"ﬂe] {x})° BT

T 1x20  _20x1

"

Herd'ithe vector. {x}° contains cartesian coordinates of the 20- noded

element along the x-direction and e =1, 2,7..., 20.. Sinilarly, one

¢an evaluate other elemss of the matrix [J].




where NG = 2 for the case of a 20-noded element, and W , W

‘W, are corresponding weighting functions in the &, N and {

57..

The evaluation of the element stiffness matrix, Eqn. (3.13),
and element mass matri%, Eqn. (3.15), can be achieved by numerically

evaluating the volume integral in these equations. One-of the most

widely used in the elemental -.'n_xus in case
of isoparametric formulation is by making use of Gaussian quadrature
[31). Since in the present investigation a quadratic polynomial s used
to describe each side of the 20-noded element, hence there would be
2 Gauss polata on eschs side of the element. In this way a total of 8
Gauss points within the element -;a:e sufficient to integrate each
element of the matrices [ks"] and [u"].

he final expzessicns for the matrices [xs"] and [Me]

can be written using Gaussian quadrature as

o NG NG NG T -
[xs -2 'z WAAS 8EM,E17 (0 (BEME1 196, ML
=1 4=1 k=1 B )
N . (3.20)
and
o M NG NG . -
- = = WP MDY NG00 1TED
1 §=1 k=l :
2 60x3 3x60 (3.2n

73
k

‘directions respectively.

.- ¢ .
3.2.2 The !‘t!a Vi.bzltion Analysis .
After the elemental matricds [xs ] ana [#] aro evalustes,
thay are afemmed into global m:z‘ice. and the dynamic equation of
> i g

motion is written as




[MG] {v} + [cG] (6} +-[KSG] {0} = {r02%} Ai:}.zz)

T)}e natural frequencies of the undamped turbine blade can be
obtained b; solving the eigenvalue problem,

since the matrices [s°] and [M%] for tnis three-
dimensional problem become very large therefore it is desirable that
a coordinate reduction scheme be used to reduce the size of these
matrices without any significant loss of accuracy.in terms of the
lower modes. One of these schemes is the Guyan's reduction
technique (323

In this dynamic matrix reductfon scheme, ore makes use Of
the ratios of the diagonal terms of the stiffness and hass matrices
by rea¥ranging these in terms of the ratios x‘sulul;, In this #
technique cén:lain deégrees of “freedom are discarded and these are
cilled the slave degrees of freedom. On the other hand the degress
R o are retained in the reduced matrices are called the
masters. The degree of g:eedom‘which has the largest xsii/v'xu ratio
is selected as the first slave. In this,way one can sehrrdnge the

i

inertia and the stiffmess matrices depending upon the number,of

masters and writ¥ the dynamic equation of motion in the form

AR e | [ e

G_(t)

A 1,1
ks 10 ws 1] [u F (6 -
s 1" s 3 | [ Us ] (B ] - ‘
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The reduced system matrices are obtained using the following

equations
=G T G
T 0240
G T G
[KS e ™ W)n\xn [KS ]“Xn Wm (3.24b)
=G T G
[C ]mxm = Whikn [c ]m(n W) 12:282)
=G T G
(F )XNA Wiea (r )rm (3.24a)
where the transformation matrix -[y] is given- as &
f E
. yl = —‘—]—i T 3.25)
. SRS 1T RS )
The variation of the naturyl £ ‘with

temperature can be calculated by upditing the’material property
' g - .

matrix, (D], in Eqn. (3.13) at every time fnstant and thus

calculating the element stiffness matrix, xsa] ., at every time

instant. This [Kse] matrix can then bejaed to solve the
istic and the natural can be
obtained at every time instant. S ’

3.3 Mumerical Example ,

3.3.1 Verification of the F lation and the Comput 133

In order to test our formulation, an' example problem of

the natural of-a cantilever beam

- ‘ X i

was taken up. .The cantilever beam has its boundary conditions as:
~ N e S

one end fixedggnd the other end free. The geometric and material

\

.
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propBrty details of this cantilever beam were:

Length of the beam () = 10,0 cms

Moment of inertia (I_) = 675.0 x 10°° cm'
Modulus of elasticity (E) = 2.11 X 1011 Pa
Area of cross-section (A) = 0.09 cn’
Width (b) = 10.30 cm

Mass density (p) = 7860 Kg/m

The blade was discretized into 36 curved 20-noded isoparametric
finite elements. There were in all 317 nodes therefore 951 degrees .
of freedom. Using the formulation discussed in Section 3.2, the
natural frequencies were ob_za?ried by using the homogenecus part of
the Eqn. (3.22). THe exact values of the natural frequencies were
obtained by solving the Eqn. 3.26) given vbelow, and the values of
the constants, P2, were obtained from (33].

(3.26)

where i xeﬁxasanFs Spe mode.

The results .of the calculation of first five natural
frequencies are shown in the Table 3.1. It can be seen from this
table that the natural frequencies obtained st \sspananatEnd
finite element “formulatioh agree very well with the S— values.
This table also shows the regults obtained by other researchors (341
vig naek Sulsaner Bnexgy Sormiiakion for tiiks partiouine-probien.

' N, \
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Table 3.1 x
A Comparison of the Natural Fregencies of a Cantilever Beam !
FREQUENC! EXACT REISSNER FEM % error | % error
VALUE FORMULATION | (Present Work)| (REISSNER)| (FEM)
(Hz.) (HZ.) (HZ.)
A 3 ) .
I 251.089 248.68 r 252.02 -0.959 +0.37
1T 1573.55 1558.40 o 1577.24 -0.963 | +0.235
III 4405.984 4365.0 4407.58 -0.930 +0.036
v 8633.95 8563.30 8648.41 -0.818 40.167
v 14273.65 14468.00 14389.5 - +1.36 +0.812
/ s
¢ 5
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3.3.2 The Description/and Details of the Turb¥ne Blade
7
The discretization of the turbine blade 'Lnto\{{nite elements

can be -seen in the Fig. 3.3. The height Of the blade was 0.11 m, and

its geometric ‘details, as shown in “Table 3.2, were obtained from (35].

As discussed earlier ll_\ Section 2.3, the material of the blade was
MAR-M200 which is a superalloy of Nickel. The variation of the
material properties of the blade with temperature, as shown in Table
2.1, gere obtained from [261. The angle of twist of this blade can
be obtained as the difference between 0, and 0 Hown in Fig. 3.1,
Flg. 3.3 i only a representstive diagram of the turbine
‘blade and does not take into account pre-twist, asymmetry and taper
“of the blade. This u;\[xa only gives agenoral idea of how the
varidus elements were fitted into the turbine blade.’ A total of 35
elanents were. used to describe theMblade with 7 elements across the
_eross-section and 5 layers along the height. There were 308 rodes,
therefore 924 degrees -of freedon to represent the dynamics of the

system.
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Table

3.2

The Geometric Properties of .the Blade

(R = 0.5m, ® =30°, 8

64

e = 7.5%)
Section | Distance A 1 g
From Root #* Eed
L x10®m | x 20% @)y | x 10% @®) | x10%, @) | (oecreEs)
1, 0.0 2.127 0.3447 0.9489 0.0 .
2 2.5 738 0.3851 0.6717 10.2
3 5.0 1647~ 0.4%27 o 0.5174 ¢ 21.6
4 7.5 1.263 0.5054 0.3097 3.8
s 10.0 1.008 0.4356 0.1543 3.2
6 1.0 0.736 0.3258 0.0858 2.0
¥ <
-
- ¢ "
N
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3.4 A Study of the Und. led Natural F: c. of the Blade
R
3.4.1 The Variation of the Und: d Natural with

Temperature 5

The natural frequencies were obtained by solving the
homogeneous part of the Eqn. (3.22). As the temperature of the
tulbin? blade changed with time (refer to Fig. 2.11), the stiffness
matrix changed and it gesulted in the variation of the natural
frequencies. Thé results obtained during the heatirg process at
various instants of time are shown in the Table 3.3.- In this table,
the first slabaniaaehieai frequencies are shovn. At t equal to 1
second, there 15 no signiticant change in r.h; material I&mperature, -
therefore the frequencies in the first column would beat ordinary
temperatures. Bub as the material gets heated, each of these
frequencies smadecreaamg%\ue to :n;a decrease in the value of the
modulus of elasticity. Clearly there s a very significant change
in the natural frequencies in the transient phase. This fact must
be included’ m the design of the turbomachinery. Once the blade has

reached the steady sthate temperature, then these frequencies would

not change anymore. In summary, to calculate these natural
frequéncies oné has to take into account two types of non-1inearities
ingéhie analysis; the first ‘one arises due to the non-linear radiative
b?ﬁnda:ﬂy.cund;tinns and the second one due to the non-linear *

variations of the material p}?eﬂ:iea of the blade.

a o5




2 * Table 3.3 Ao
The Variation of Natural Frequncies (Hz.) with Time
.; ;The Natural Frequencies After : -
Mode [T D 50 100 120 Tsteady | .
" Nunber | ¢ fsec) (sec) (sec)__| _.(sec) (sec) state
. L N R 618148 | 613.65 | 603.35 | . Sed.se
“Tle, 2081.02 | 2047.43° 1529.53 | 1912.24 1784.95
J, 111 3371.59 3310.57 3230.26 31]6..24 3.094.99 2888.35
v | 4zs0.02 | @109 | 07106 3928.37 | 3900,07 3623.50
% v 715901 | 7040.37 | 6863.78 | 6629.0 | 6588.2 - 6134.51
) . vr s891:03 | 8762.97 | 859289 | d261.50 | 820520 | 7628753
11 |i09s6.95 | 10731.32 10486.71 | 10118.61 | 10054.18 | s365.7
T -|13301.95 | 13110.97 | 12820.29 | 12350.61 | 12280.01 7 11395.4 :
) T 15014.76 | 14777.74: | 14488.4% | 13942727 | 13848.89 | 12861.76
¢ o | x . [1a232.5 | 14011.57 | 13695.39 | 13198.16 | 13128.21 | 32192.42 ]
xx 21803.25 | 21463.58 | 21048.37 | 20250.3 | 201225 | 18680.02
@
' g " s
. . . ¥ .
% ®y i3 v .
i L 1
. H
s ) ) K . o ol N .
v - . 4 .
4 o




. = s .
C oy

3.4.2 The C Reduction Using the Dynamic Matrix Reduction

Scheme

As discussed earlier, it almost becomes a nécessity to

reduce the size of the stiffness and the mass matrices if one uses

- LY
finite element analysis. In order to establish the reduced size of

these matrices, the erzor in the first five Aindamped natural

as the lection. iteria. Fig.d.4 shows the '
pe:vl:er‘w_a‘ge error versus the number of master degrees of freedom. From
this figure one can see that as the number of master degrees of ..
freedom are increased,.the errors reduce for all the modes. The
higher the modej the greater is the rate of convergence. The error
1!_1&:5 th'ﬂn 1% for all the five modes.if 200 nulsl’.exf degrca:.ﬁ'f '

freedom are selected.. Therefore, the reduced system containing 200

mastér degrees of freedom would be adequate to represent the

uncondensed syatem. The presence of large number of master degreest of
freedom can be attributed to the asymmetric and twisted geometry of

the blade. ;

3.4.3 The Effect of Pre-Twist an}:a Natural F: I :

"

£ it omows that the p}a twist angle has a very
significant influence on the natural frequencies of the turbine
blade. The amount of pre-twist can be changed in a turbine blade by °
keopirig the root fixed and then twisting tho blade about an axis®
parallel to the z-direction.and'passing through the geometrical °

centre of the cross-section at the.root. 1In this way, the amount of

pre-twist was'varied and the natural wore
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obtained. The Fig. 3.5 shows the variation of the various modes due
he change in the amount of pre-twist. In thls figure all the

bending modes decrease as the pre-twist angle is increased. The

rate of decrease of these frequencies per degree change in the tuist /‘)\i

addfie is ‘greater for the higher.modes. The torsional modes show just.

the opposite behaviour, i.e. the with the i

in the angle of pre-Mist. ‘Similar results were obtained by othor

researchers [18).

3.5 Conciusion
In this chapter the dynamic,equation i A T—

femun:ed using solid i finite elements.: The

natural frequencies of this system were calculated by taking into

account the effect of the variation of stiffness propert
B

temperature. In order to reduce the size of the system matrices, a
dynamic matrix reduction scheme was used. In addition, the effect
of pre-twist on the nuuxal&req'uencias was also studied. EFrom the

.studies carried out in this chapter, the following conclusions can
= Vg d
be .dn-m: - 5 R

1. (The solid i finite can be 1ly used

to accurately predict the natural frequencies of the xrl:or blade.

2. The blade natural frequenices vary quite significantly during
\ 2
the-transient heating period.
3.‘ The vu:iatlen of the pre-twist nnqle has a significant. lnflusm:a

on the natural freduencies. The' bending natural fréquencies,
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decrease with the' increase in the angle of pre-twist but the
effect is jut the opposite on the torsional modes.
4. The dynamic matrix reduction scheme can be very fruitfully

utilized in the.case of rotor blade:

The study of the transient behaviour of the system is quite
important as stated in the introduction to this chapter.' The

transient behaviour can be analysed easily if the modal

matrices are known. These £ were obtained while

the natural frequencies of the s€em in this chapter. In the next

—
chapter, the dynamic behnviqur of Jthe system under nozzle and

centrifugal force excitati.cn is studied.
.




CHAPTER 4 .-
¢ . .

THE TRANSIENT STRESS ANALYSTS DUE TO

' THE VIBRATORY .AND THERMAL LOADING . . B

4.1 Introduction

In order to get an oyerall view of the state of stress, the
vibratory siveases slgn have to bacatcilated.! ¥hE vantation of B
‘At vn:h;us points due to the temperature change across the ﬂ;:ss
"section of the blade can be calculated from the results of chapter 2.
But, as a first approximation to economize on the CPU time, one can
keep E comstent for the vibratory stresses only and this

approximation has- béen used here. -

4.2  The Mathematical Formulation

4.2.1 The Modelling of Transient Nozzle Excitation Forces

The nozzle a:;ci;ation force on the blade is modelled as a
series of /npulags (refer to Fig..4,1b). As and when the Siade
approaches a. nu:zli “through which t);e‘ gases enter the turbine
chamber, it is impinged ypon by the gases at high pressure. This
n\omen‘tuxy inpihgement of r.m;; gases can be modelled as an impulse v B
excitation. Thus, as the sx;e.ad of the zotor increases, the time

delay between two impuldes on the .turbine blade would decrease.
= i ,
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Fig. 4.1a shows the position of a rotor blade at 0,. It started

from rest with an angular leratd « from its ition'at 0, : .

“he location of the position of the, rotor blade at varicus instants
of time can be known by solving kinematic equations. From this

figure orie can see that the time taken by the blade to move from o, 4 .

E to C will be N = .
. N s £, E
. 2@ - 0,/2) .
o g R (4.2
: “similarly, the blade will be'at D at the instant Co :: o
I 2@ + 6,/2) . .
3 . S 4.2).

z . Therefore the duration (Of the impulse, At; ¢ will be equal to,

= Y ey =ty It should'be borne in mind that © 1is the total anglz

measured countéx-clockwise from o1 to the centre=line of the.

nozzle.

3 R b e » S
| . .
44 +,u(:1 - &y (4.3

The “‘1 4s needed further on in the calculation of transient

" vibxntion response. of the blade dus to centrifugal forces: in the

ytion 4.2.3. Also, the time gap between the. oceurence of any tvo . .
.

S
impulsés will be




where i in Equs. (4.3) and (4.4) represepts the sequential order
% 4 of the impulses. A ) g
Y . 4 - e forces due to gas pressure are diatribute}i along the
. _entire length of the bia.cle. The actual fagnitude of the pressure
distribution would depbnd upon the type and cperating’conditions of -

the turbine. To demonstrate the applicability of the present work,

the values for the magnitude of the height-of the impulse were taken

. ©  from [32]. The existence of the normal modes of thg lightly damped
system is assumed here. ¢
. . ,~\
‘ s .
B 4,2.2 The B Due to Nozzle. Excitation Forces $
.. ; ) Grie 6 itkis conventeri vV G GATGHINEING £H6 sespense aue
to the serles of impulses occuring at various instants lof time would:
be by using the following equation / PR
~ R : Ji
’ B P At - -E ©_ t) 4
i k nk .
q(t) = e sin(w, t) (4ps)
. k 2.1/2 dk. ¥
@1 - .g ;
mk Ay
“ . .
THe Eqn. (4.5) can be used to calculate the responde of each mode by
. decoudling the following equations of ‘motion : .
, PR T
. o {0 ; s .
e [HG] (u) * [cG]‘ (u) + [KSG] (u} - (F(t)G) 'y L e
The for decoupling the equations of motion is|given in
" “Appendix B. In Eqn. (4.5) the subscript k corresporfls to the mada'
Y number. In Fig. 4.1b the dispucemenr. xauponse at any instant of
tine between O, and 02\ can be calculated using Eqn. |(4. 5) and .
the velousty'zeuponsa by differentiating this uqunl.on
" - displacement and the velooiey response values betveen and 0 -




. 4.2.3 The

can be calculated dnu‘ito the occurence of the impulse at O, and

r.ha velocity and tha anplacemen: ‘values at o due to the previous

In :nLa way one can calculate the xe:pone at any instant
"

.imputse.

of time.

i Due to Centrifugal Forces .

‘The centrifigal forces in-the' rotor blade arise due to the

radial location of the element with reference to the axis o Fotation
Of the rotor shaft. If the mass of the element is  m, then the centri-
fu;gal force acting on this mass will be

: \

3 '
- - 4.7
Fien 7 P Cgpor (R +2) - “.m
where R is the radius of the rotor disk and z 4is the distancé

*rom the xoot to the centér of Gxdvity of the element. This Force .

which acts at the center of gravity can be, replaced by eight equiva-.
lent forces each ofWhich act at the corner nodes.

To calculate the e e LD €S GeRESLEIgaE
foxcaa one has to first recognize that these ara time variant

because @ . in Eqn. (4.7Y is % variable and is calculated using

Ean. (4.3). To calcugate the response ong has to decouple the
equations of motion using the matrix of eigenvectors and, this
pxnceduxeiia given in Ap;:endix B. Now the forcing function corres-
ponding to the Eqn. (4.7) will be i

. L .
Fogn = (R * 2)0(a6)" m (4,8)
To calculate the:modal response one has to use the convolution




[

il
dk

-8 @ e (t50))

t
2 . 5
qk(_t) - f (R :d z)(oT)” me sin(mdk(t—‘!))d‘! (4.9)
0

The solution for this equation can be written as [37];

(=g, t)
q ey = BEZ G2 g by e KO -
i T og ak

€0 1) 2 LIy o 2er
. [e 'k nk x - (=1)~ 2! (z)

im0 . r+l
2.2 2 2
[5,,‘ o+ mdk] 2 -1t

=il

[ [

€
!
cos[(ﬂdk‘! = (r + 1) tan [g
0
_ R+ za? Baun
Cax

cos(wyt) e

¥ [0}
- (x4 1) tant [i‘-*]] ] (4.10)

\
4.2.4 The Calculation of Vibratory Stresses e

Once the total response of the turbine blade due to various
excitation forces is known, the strains in each elemént can be .

5 1+
i from the i c finite element formulation as

{v} = 1 (v} (4.11)
6X1 .6%60 60x1 ¥




and the dynamic stresses can then be evaluated as
x N .

F

o “fo} = o1 {v] T . a2
o 6x1  6x6 6x1 y ~

This stress vector can then be used to obtain the principal stresges
. A £ } ’

. ; |
" in each glement of the blade by solving the following cubic equatfon

(381 .
f
<. 5
Sm e t0) st g too,
S { ' U
' {'.‘aa-‘tz -2 -2 %- woo .

Xz yz xz xy' Xy z rd
+2t ot ot -0r? -0l e-g1lyim0 (4.13)
yz Txz Txy T Ox'yz T Oy'xz’ T Tuny :

The roots of Eqn. (4.13) yieid the three principal stresses as o

.G, and .0,. In order to calculate the design stres$ for the safe

. _operation of the turbine blade, various failure theories can be
used. One commonly I:sed theory is the distortion energy theory.
This theory can be used to calculate the design stress (o) from

the principal stresses as .
2 2 ‘ 2.1/2
ey = 6% + (0, - 0 + (63 - 5] (4.14)

. —_—
Thus Oy wolld be a relisble indicator of the state of stress in

each element. : R

4.3 Numerical Example “
. . The discretization of the turbine blagé: into solid isopara-

metric finite elements was the same,as ghown in Fig. 3.3. After

B g . g ;




R T stress analysis in Chapter 2 it was stated .
:)\a’c the T . versus timé curve:was an infeasible’ path because Ehe. .'{7— .;
thermal stresdes in the blade for that patticulax P e Sy O
the yield stregs. ‘This phenomena of high r.hema} stresses, i, : St
zesolved in .the,caae of an actual pusbine by extracting,wik. tida i
in two suqes. Let us assufe that For the 'nnal stage’ the gas
temperatute rises from 400 l: to 876°C and is then maint;lnad at K

* 870°c. ‘'The i e ana- them\al are then

calculated for this T .= versus time curve using’the théory

-
developed in Chapter 2
A

i 3{1 along the periphery of the'rotor), The vgrious sections 'alonq

5 the heith 3t the tuxbLne blade are “shown in the'nppendix G and the'.

computer programmes used £o cdlculate all types of stresses aré
-
8 T 5. . Ao
gfven in the Appendix D. . . g .
3 < . "

4.4 A Study of the Coupled Effects of Thermal and Vibrafory Loads

on_the Tra tresses in the Blade id

Pl 4.4.1 The Thermal Stress Analysis of the Turbine Bladel
The thermal stresses can be calculated once the :en‘\psQn:um

di:t:&butian at any cross-section of the blude is known FO: tha, “
R}
c:o:s-aection shown in the, Fig. 2.1, tho A amuqumon .

o ualculnted using; Eqn‘ (2.22) and once the temperature, ' v
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_ distribution at various elements was known, the thermal stresses

were calculated using Eqn (£ zs) + The veriations of temperatures
and stressés with time are showd in the Fig. 4:2 at soms of the 4

important points of this cross-section.

pne can clearly see in this
=

14
figure that the stresses build up to a maximum value and then ~

decrease as the temperatures of various points on the blade approach

. the gas temperature. The maximum stresses occur at the elemeat - M

num.bet 78, the location of which is shown in Fig. 2.1. The stress’
values in this figure have been normalized with respdct to thkield

stress of the element which itsele _varies as the element temperature :

-cnanges. It should bé added hete. that these stresses will become -

4 &) \, §
negligible when the blade temperature approaches the steady state . 2 &

temperature.' . o . S

- oo .
was dividefi into 35 twenty-noded elements which were arranged in
£ive layerh\as shown in Fig. 3.3. The various other details.of the
e
tu:bine blade etc. are given in ﬂ'able 3.2, §ane the total degrees

of fzeadeﬁox tlﬂs system were 9&4, the Guyan's reduction technique,

-
“was used to reduce the-size of the system matrices. The reduced

N
degrees of freedom were 200 and-the criteria :o: this reduction was

that the change in the first five natural frequencies wad less than

18, 4 o,y y Y 5 o

The value of E used in this section only was 2.0 x 10''

‘and the corresponding first natural fréquency. was 636.01.Hz (3180 RPM). B
- o
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The tramsient vibration résponse was calculated with this value in
mind. Figs. 4.3 to 4.5 show the variations of the nozzle excitation

) stresses along the height of the blade-at the leading edge, trailing

edge and at the element number 78. In the Fig. 4.3 thé maximum

.;cxe_sseg occur close to the tip of the blade and among all the

m‘lxl.lln, the global ;ufxim takes place at 3180 RPM which corresponds *
‘" © . to the first natural fmq'uuncy.\ At half-order excitation ;.e. at
1590 REM the stresses are again quite significant. his figuge also

shows reasopably low value of stresses at 4000 RPM which is the

maximum.operating’ speed for the present analysis)—Similai béhavieur,

as far as the speeds are concerned; can be. seen in Figs. 1.4 and 4.5

+ " algo.~The m¥xikum stresses in :nesa’zuo figures are also nearer to_

the tip than the root. Anong au the genks in these three figures,
o shg maximum peak value of the stress is in PLq. 4.4. The stress
values in these three figures have been normalized with respect to

the global maxima of the Fig. 4.4. .- & g

T . g
In all these three figurés, the stress valies have been
i ° * connected by straight lines and each point corresponds to the

element-joint along the height of the blade. If one desires to krow

the value of stress at any other point then one can calculate this

¥ “valus using polynomial interpolation used Yor this pirticular finite
element. It should be noted in all these figures that the maximum ¢
stress does not _occur at the rootT 1his is because the cross- .
wastional ages of (khe ooy s r;u;nex, “Which is_generally the case,

and the variation of the }:an along the height is bt very regular
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Fig. 4.6 shows the trifigal stress distribution when the

rotor speed reaches 4000 RPM. At this speed the peak value of the
h

/ :
stfess was more than the peak value at other speeds. Among the

“lesding edge, teailing sdge and element nunber 7s, the peak stress

of each oceur, at different distances from the root. From the design

point of view, even in this case the magnit.ude of the stresses are

~ more near the tip than the root. This figure has alao been

normalized with the same valué as that “used in Figs. 4.3 to 4.5,
[ . B i 5 /
. 5

¢ prrects

In'the Section 4.4.1, the stresses due to the thermal

effects were di d ‘and the maximum

* to be.guite signfficant. In the dynamic analysis, the value for
;s X s

the height of the impulse, P, was chosen to be a low value and it

was used just to illustrate the calculation of the transient

stresses. 1In the design of an actual turbine blade, the transient

forces. have to be exactly known, and for this type.of a linear

because of the complicated three-dimensional geomatry of the blade,

Cor 8 :
4.!,'3‘\ The Stress Analysis of the Turbine Bla_'de Due to_the Combined

system the dynamic stresses would be in the same piofortion as thé'

actual Eo:c'F is to P. Therefore, the actual ﬁW\folve -

the summation of all the dtresses first of all at any instant of
time, and then findivg the global maxima of these type of combined

stresses as the fime o 3

stresses were found

To undezacahd the cxitical instnnts of ‘time from the stress

point Of view one should look -at the Figs. 4.2 ¢ 4.6. The ‘rotor

1
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accelerates from rest and at t = 70 seconds the shaft speed is

933.33 ReM. At this instant, (t,, in Fig. 4.2), thé maximum "

~thiermal stresses occur at/element number 78. These stresses

decrease very slowly with-time. The sécond critical event

T (t,, in Fig. 4.2) occurs due to the half-order excitatiod at 1590
R .

RPM (t = 119.25 seconds) . Here the c:it_ical/’point is the trailing

edge. This is due-to the dynamic stresses as shown in.the Fig. 4.4.

The centrifugal stresses, not shown in any of the figures, are very

lov at this speed. e ghemal stress at the trailing édge 1s-also
‘.quite significant. The’ Tm: critical stresses take place at 3180

« RPM (t = 238.5 seuonda) la the rotor goes through the first natural

frequency. The maximum dynamic Stresses shown in Fig. 4.4 are again
< o)

at the trailing edge, In addftiod, the thermal~stresses are also not

- very low. At 4000 RPM the dynamic stresses in Figs. 4.3 to 4.5 are
much lower. The themmal stresses,.however, aredbtill quite high -
— @

(not ‘shown in the figures): However, the peaks of the centrifugal
2 JuRek Kig s
- stresses are significant. If wg compare the magnitudes of the peaks

of the centrifugal ltzas“seu shown in the Fig. 4.6 and the thermal

the 1 st are still much lower. Therefore,

. .
the blade is not under very high stress at 4000 M as compared to

the first critical instaft of time (t ;). From all this discussion
g 2 ; ;
one can see that the thermal stresses are quite important in the

design of the turblnn'bladas. As ‘a-point of clarification it should

be stated agiin that :ha\aynanuc stresses in Figs. 4.3 to 4.5 were

| { P

low becauge the value ot, ( in Fig. l)b was v.ry small. In -c:un! t




operation of the turbomachinery P would be very large, whereas the -

. - ¥
_stresses in-Figs. 4.2 and 4.6 are not affected by the value of P.
. /G

4.5 Conclusion

In this'chapter, the trar R e
~ N ' 3 . .
obtained us#hg a ‘finite element analysis in two-dimensions. The

£inite 'element equations also included the effect of non-linear

variation of properties as well as the non-linear boundary

ditiops. From the aistribution the normal thermal

R . . : o)
. stresses in the z-direction here calculated. To calcilate the

stresses die‘to the pressure and centrifugal s. the three-

dimensional solid finfte elements wery The transient forces =

wgre modélled as a series of impulses ooGurring at instarts of time

‘. which were known by solving ki ic equations. The due y
to these forces we,n; calculated using imodal analysis. The response
values were then used to calculate the dynamic stress vector. The
principal tcesaes La ‘three-dimensions were obtained by ulvin‘g the
cubic equation. The design criteria for the blade was based on the
distortion. energy theory.

Based on the stidy carried out in this chapter, the

following conlusiog can be drawn
1s The maximum value of the thermal stresses occur at the element

number 78 during the transient period.

. 4 ~' =
2. . The peak values of the distortion energy stress, O4r Oecur at the
trailing'edge along the blade and amongst these max:

¢

. the

global maxima takes place close to-the tip.
; | *




- period and must be /:cnuded in the design of rotor blades.

90

- " . o v
. The strésses, O, due to centrifugal forces increase with the

increase in speed.

. .
The thermal stresses are quite significant during the acceleration




CHAPTER 5

CONCLUSIONS AND T

- 5.1 A Brief Di ion About This igation and the Conclusions

The objective of this investigation was to analyse the

srataise, stress in the turbine blade due to the’ coupled etfacts of
- g
. dynamic and thermal leading. 'x'hia was achieved by separately
v - carrying out the heat transfer and vibration analyses of a gas
-

turbine blade and then adding up the effects due to-each. The .

imens’ These’ temperdtures were

finite element analysis in

then used t6 caloulate the thermal gradiBnts and themal stresses in
- thieBlada. ot the tharralsanalysiss the adresisll properties of the
. blads: were a function of its temperature and the coefficient of'
conypetive heat tranafer varied along njel‘ fressire and suction
surfaces 6f the airfoil cross-section of the turbine blade.
- The dynami¢ analysis was carried out using solid,

\ quadratic, “twenty isoy ic finite el ts. A dynamic
iy

coordinate reduction scheme was used to condense the system
- matrices. The effect of a thermal environment on the natural

frequencies of the blade wds studied. Also, the effact of phe-twist

on the blade natural frequenciés was determined. The vibratory

. : ‘
stresgds due to nozzle excitation forces and centrifugal forces were

calchlated. 3 .

transient temperatures in the blade were caltulated using non-linear




K ¢ . 92 S
s 7.7 ‘Based on the :tudi_;s. carried out in this investigation, the
following conclysions, éan be drawn: - ¢ ’ %
o e " 1. The heat transfer pracess within the blade can be studied by :
: ~ 'c{;zrivir:g the equations using n;g non-linear finite aleunt‘l
> TR 3 _ =nalysis. B > - .
. 2 2, fﬂxe‘ effect of radiative heaf transfer is quite-significadt in N

the tramsient temperature -a.;-xyais and sq it should be considersd ™

&3 : . .
v s . ‘for the thermal analysis af a qas cuzbine anqlna .

3. The maxiium thermal stxa:u dceyrs at elamont number 78 at all

g SRR
Lnstanr_s of time izxaspbctlve of the heating. pahh followed by the

inccminq hot gases.’, T
«. e study of the thermal qzadienr.s in the blade help us to
ber.tex undex'azlnd the complex dynamc: of the he-!t transfer
7

process. T ‘ & . 5
5. The solid iscpltlmet.ﬂc finite elements can be succes:iully used
' 5 sciEatety pielios Hhe GRCHEL CrRGaRLeS af tie DoteE Blake, .

- 6. .The blade natural frequencies vary quite significantly during the “Y

¥ N o

- ~  transient heating period. . o \’ 5 ¥ L

: . -
. 7. The dynemic coordinate reduction scheme can be vdry fruitfully

o
ytilized in the c-se of rotor blades. 4

8. 'rh’e)vauauon of the pxe-tlust angle has a siqnificant influence |
on’ the blade natural kequancies The bending natural . -

. s >
wun the incr ‘in the angle of prg-twist

- ' - but the ional nar_uzal' i with the -4 ase te

. _in thé angle of pre-twist. = -
Py
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The gas, Lu:bine engine has to be pre-heated to about 400°C in

" order to umu the thermal stresses to within 50 percent of the

J

yield stress. Otherwise, if the gases heat up the blade from
4 3

rodm temperatuse to 870°C, the thermal stresses would be more

than the yield stress of the blade.

. The kinematic equations can be successfully used to model the

nozzle excitation fozces as a series of impulses.

. The nozzle excited stresses are the highest when the rotor passes

. '
through—the first natural frequency.. .

- The peak values of the nozile excited stress, using aistortion enegy

n:zi:exia, occur at,the trailing edge along-the height of the.

blade. v

. Amongst the various maxima of the dynamic stresses, the global

masxiina ‘takes place ose to the tip.

The distortion energy stresses due to cen:iﬁgqul forces increase

with the increase ip speed.

Besides the dynamic stresses, the thermal stresses are very

ignificant during the leration period and must be included

in the design of rotor blades.

\}

Limitations ‘of the T ion and’

For Future Works

“In the non-linear temperaturé distributidn calculations, the

surrounding gases were assumed to be at a uniform temperature.

Since this i3 not the practiéal case, the presént finite element
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model can be revised to include the non-uniform gas tempem;ure
distribution around the blade.

The creep behaviour of the material of the blade was not taken

into account in the present analysis. This phenomena can be

an interesting area of study for the thermal stress calculation
in future research work.

Evan'thcuqh.the normal thermal tress along the z-direction in
the blade is most significant, a fore rigorous three-dimensional
thermalstress analysis can be carried out in future work.

For the dynamic response calculation only viscous damping as 3
function of zutcx.speec; was considered in this investigation.

But the non-linearity ‘m the damping due to d:y~s:1c:snr\ damping
at the root of the hl.ada, whers it is attached to the rotor 1l
Shourd also be taken into account . )

The: nozle sxcitation forces have been distributed slonds che .
heght of the blade in the x and y directlons and hﬂva\ been
neglegted in the z-direction. But in actudl practice, much more

expérimental wark is req\l&red to p:emcc the mgnuude, d!,zecuon

and location of these pressure forces. *
An interesting problem to work on in future would be to

determine the fahqua life of the turbine blade. L]
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APPENDIX A

THE EXPRESSIONS FOR THE ELEMENTAL MATRICES AND VECTORS FOR THE LINEAR

e 9 TRIANGULAR ELEMENT
. - B \
The shape functions for the linear triangular element are (refer to

‘the Fig. A.1)

o Ny = Le([ap + ;;Bx Fegn. BTk . (x.1)
. 2 Ca g
. L
. \ where 'ai LT R

G

The elemental capacitance matrix can be expressed a

R [ERGE

{A.3)
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This can be written in matrix form by evaluating the volume integral

for unit thickness as

ee? 1 1
[cp’] B F R . *.4
12 ie . ;

The conduction matrix can be expressed as

[ - { [_af]’ SIS { w57 [ as ey

In Equ. (A.5) the surface integral becomes zero if none of

the sides of the triangular element heat by-copvecti

Evaluating the o integrals of Eqn. (A.5) using the volume and area '
coordinates, the expression for the [K°] matrix canbe written as

M K: +|Psby bibj Thby —_—
[x] “uf bbb bb i
bby: bby bb X
. N =
E;— C‘C£ Cicj °1°k <
+ CYCTN T X
a® % S

%% %% %%

210
2.2 0 © T(AL6)
00 0 L ¥

¥ i
Here :l.._H xepzauem;bthe length of the side i-j of the triangle

experiencing heat transfer by convection. .
The force vector due to the convective heat transfer can' be

. . ¥ a
written as
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- o
) e e 2 .
(r ) - f h° T [u ] ds s (A.7)
c e e
. s5 ,
- This vector for the side i-3j of the triangular element can be
written as .
. - -
w1 1
(rz) -‘——:—11 1 ! (A.8)
s 4 5
& =l .

> The ek:ce vector due to radiative heat transfer can be expzessed as

‘ (r} J e n?] as -Ja Je [ne [[ne] {-re)]’» as a9

The vector can now be written for the side ; i-j . of the element
s ; S

sriencidg heat by radiation as , ’
/ \
45 - .
T ce‘L 4 s
{ee} - 1
: _ o
" 7\ — .
o = sri 4 TiTj + 3Tf1§ + zwi'rz + T)
. "0 € Lps” %
o P ik 31-21-2 +o2r.1 4 of A.10
) 730 3 TT TO A 0
: 0
- - ) (
' b ! -
> S




APPENDIX B
S

S

DECOUPLING OF THE EQUATIONS OF MOTION

FOR MODAL ANALYSIS

The equations of motion for a damped system can be expressed

as i
i

b {5)+ ] ) + [T o) - =)

(B.1)

Now, the displacement vector|in the cartesian coordinate system can

be expressed as a linear combination of the natural modes' of the
\

undamped system. Hence,

Yoo (uer} = ) kq(:)) = -

Substituting Eqn. (B.2) into Eqn. (Bal) we obtain

[+ ’m.(;} + [ o &} + €] 0 at - {5}

Premultiplication of Eqn. (8.3) by (¢]7 leads to

pe
K

(B.3)

(;]T [] 1. {a} + 1" %) 1 {a) + @17 h 0 ()

- 017 (=}

(B.4)

This leads to the diagonalization of the global mass, damping and

stiftness nferices respectivelyr” Thus ve obtath

SR [l [x ] -

In this way we decouple the equations of motion and express the

-~ P
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|
P g ;

S = 2 i S
- ent_i:\_@(ﬂtm by individual single degree of “fréedom systems.

if the matrix of is zed
! then instead of Eqn. (B.5), we obtain
i ;
. - N 2 3 :
[ {2} + 280, {2} + & far - (er} @6
. This i can be for the individual modes as @ -
. i < o /
. . a0 Ao, dw -6 a0 oo ®.7f y
. :
e ‘where i represents the mode number.
& ' ’
. _ o
; . . .o
d . =
- 3 &
~ ) »
- . el N 5
~
. ; . .
* . # -




APPENDIX C

[y

THE_TURBINE BLADE AIRFOIL CROSS-SECTIONS

) ~

Hhe SusbiveiElada Fddl & SRR geomst:yfn is
twisted, tapered, asymmetric and Vb WBLUGIEESAT SEoRR=snctioR., Th
this Appendix, the blade p;mfile: at varlous cross-sections from the
oot to the tip are shown. One can get a good idea of the blade

geometry by looking at these cross-sections. : e
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Turbine Blade Airfoil Cross-section at Z=,.0.05m4
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F|g C.6 The Turbme Blade . Airfoil Cross- sechon at 1he
Tnp (z=0.11m)
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- APPENDIX D
. R -
DESCRIPTION AND LISTING OF THE CQMPUTER
- The computer software for thisathesia was developed in the Y v

FORTRAN language and the computations were carried out on the VAX-
8800 digital computer. A ‘listing of all of the computer programs

is given in this A di These

can be by using
su(table input and output data files A number of IMSL aqu;qcinés ®
*are used in these programs for matrix multiplication,. reanspmniion
and invarsiun Iuszatbzoutings nge also Heed in the free vibration

analysis to deternine’ the eigenvalues and eiqenvdcto:s‘ A brief 8,

deacription about each program is given below. . o

.The program MESH génerates the triangula: mesh within an

airfoil cton-sectlon of the blade. The cnoxcunar.es of the airfoil

cross-; section are input, as data for, hnt_h the pressure and suction , , ° ol
surfaces zespecuvaxyl The value of the'y-intercept for any ‘valye / i

of x was achievad by uunq cubic interpolation routine SPLFIT. \

The program TEMPGHMD calculates the trausient temperatures |

and :umpazutu:e qzudi!ent'distzibution within the :\x:bine blade l::us\

5 section. The

material o5 of the blade -
were input as data and the. properties at any value of tempentuxe &

_ were interpolated by ubing the cublcs 1nte:polation routiife SPLEIT.

- The heat fer coefficient En was ‘auo input for both

. ",
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pregsure and suction surfaces respectively. The value of 'h' was
also dependent on the temperature of the blade and this too was fed
as input. A flow chart depictin§ the various steps to be followed
in the program is shown in Fig. D.1. }
The program TSTRESS calculates the thermal stress within

each element after the nodal temperatures are known. Once again the

input data ists of the t material ;:zope:r.ies
of the blade and the use of SPLFIT to interpolate the material
properties o any temperature. - The stisssed aze summed up according
tothale natute ugta; every time increment. ° ]

The program ISO calculates the natural frequencies of the

system matrices using the y i c

finite element f lation. .The shape don for each node and

its derivatives are calculated in the subroutine SHAPE20. These

are then used in the of the o and mass

for each Gauss point within the 20-noded element in the subroutine

. In the smzzh, each of the 20 nodes of thé
20-noded el‘; defined by its local coordinates &, m and {
which are L:lput as data, The shape_functions and their derivatives
are :alc\'llated using these values of &, n and {. In the
ket SERRIGE20, 't eleasntaL BELeLAsas AR HasE RALELISH
for each.Gauss point are of. the order 60X60. The total element
stiffness and mass fatrices are obtain:ad by adding up the stiffness

and mass matrices evaluated-at each Gauss point: A general guidance
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in the of i ametric finite elements was obtained

frgm [39). The effect of temperature on the natural frequencies was
studied by making use of the temperatures achieved at evexy‘time
instant from the program TEMPGRAD. The modulus of elasticity was
evaluated at these temperatures. This caused the stiffness matrix %

to become temperature dependent.

Foe

The program FREQ calculates'the undamped natural
frequéncies of the turbine oo by condensing the global stiffness )
S TR Ty GSIRG RS sayaRYE SR A e ae A
scheme. . This program also calculates the matrix of eigenvectors for
the condensed system. The dynamic equations of motion are decoupled

using the modal matrix. The modal matrix is then mass-
.

- lized. The ies, the.t ion.matrix and the
mag¥-orthonormalized modal matrix are then stofed for further use in

the calculation-of the dynamic response and stresses.

The program Twsirm calculates the transient dynamic

response, and the dynamic (stxessea due to nozzle excitation and

’ centrifugal forces ‘respectively. The program is so structured that

: %}12 dynamic response and stresses due to eithef \)ozie excitation or
centrifugal forces can be determined by - R ——
comment statements. The nojzle excitation forces are distributed

along the height of the bkade in the x and y directions

respectively. The equations of kimematics are used to caléulate

every impulse impinging on the blade in the time domain as the rotor

i _ g . E
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accelerates with an angular accelération of 800 RPM/min.

__ - The vibratory stress vector is calculated by feeding in the

of the nodal displacements at every time instant. This
stans ecear b calculated by the subroutine STRESS20 By makigg use
of the tsoparametric finite element’ zgn,(\;lacxen. The principal
stresses are calculated from this streds yccor and then the

distortion emergy stress is calculated.
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Ce LISTING OF THE PROGRAN ¢+MESHe#
Ce PROGRAM TO GENERATE TRIANGULAR FINITE .ELEMENT
C+ MESE IN BLADE AIRFOIL CROSS-SECTION

116

DIMENSION XT(28),YT(28),YB(31),XB(31)
DIMENSION X(1000),Y(1000%
DIMENSION P(100),Q(100),R(100),5(100),T(100)

DATA

DATA

DATA

DATA

X7/0.0,0.01,0.17,0.51,1.07,1.9,3.05,4.57,6.47,8.73,
+ 11.26,13.9,16.46,18.83,20.96,22.83,24.46,25.87,27.08,
+ 28.11,28.99,29.73,30.33,30.83,31.22,31.51,31.72,31.88/

¥1/12.1,12.81,13.71,14.76,15.94,17.21,18.51,19.76,

+ 20.85,21.66,22,05,21.96,21.41,20.48,19.27,17.88, 18.39,
+ 14.85,13,31,11.82,10.4,0.08,7.89,6.86,5.98,5,27,
+4.36/

T,

XB/0.0,0.11,0.32,0.17,1.19,1.87,2.89,3.64,4.68,5.8, .
+ 6.96,8.14,9.32,10.48,11.68,12.92,14.26,15.69,17.16,18.71"
+ ,20.25,21.76,23.2,24.57,26.85,27.02,28.07,26.97,29.63,

+ 30.33,31.11/

¥B/12.1,11.78,11.27,11-11,11.07,11.13,11.29,11.54,
+ 11.85,12.2,12.57,12.69,13.16,13.35,13.44,13.4,13.2,12.84,
+12.22,11.84,10.69,10.06,9.2,8.33,7.49,6.7,5.67,6.33.4.79,
+4.35,3.78/

COMMON U,X1(28),¥1(28),A1(28),B1(28),C1(28) -
COMMOR ¥,X2(31),¥2(31),A2(31),,B2(31),C2(31)

J C SURFACE OF THE BLADE AIRFOIL CROSS-SECTION

C DATA XT,YT REPRESENT COORDINATES OF' THE SUCTION )

c -
C DATA XB,YB REPRESENT COORDINATES OF THE PRESSURE
C SURPACE OF “TEE BLADE AIRFOIL CROSS-SECTION

D0 1 I=1,28
X1(1)=xT(1) -~




1 YuD=YI(D)

DO 2 I=1,31
2(1)728(1)
2 Y2(D)=YB(D)

. OPEN(UNIT=2,FILE='NODE.DAT’ TYPE='NEV’)
OPEN(UNIT=3,FILE='NKESE.DAT' TYPE="NEV')

U=28
¥=31

2(1)=0.0

¥(1)=12.10

X(108)=31.88

¥(108)=4.36 3
X(100)=31.11

¥(100)=3.78

X(2)=21.88/15.0
DX=31.88/15.0 e

- 11=2
=7
ICOUNT=1 . g

15 DO § I=II,III+1
& X(1)=x(11) 5 =

D0 10 I=I1,III

I0=X(I) .
CALL SPLFIT(U,X1,Y1,A1,B1,C1) \
Y(III+1)=SUCTION(XD)
CALL SPLFIT(V,X2,Y2,A2,82,C2)
Y(II)=PRESSURE(XD)
DY=(Y(III+1)-¥(11))/7.0

L INCsT+1 ‘

IF(1.EQ. (I1))DY=DY/2.0 _ 5

IF(1.EQ. (11#1))DY=DY

IF(1.EQ. (11+2))DY=24DY

IF(I.EQ. (11+3))DYsgeDY

IF(I.EQ. (11+4))DY=DY ; : L4
IF(I.EQ. (I146))DY=DY/2.0




Y(INC)=Y(I)+DY
10 CONTINUE

P11
ICOUNT=ICOURT+1
1I=11+7
III=I1T47
X(II)=X(IP)+DX
IF(ICOUNT,LE. 14)G0 T0 1§
DXX=(X(106)-X(100))/6.0
SL=(Y(108)-Y(100))/(X(106)-] x(mo))
D0 100 I=101,105
=11
X(1)=X(I1)+DXX
100 Y(I)=SL#DXX+Y(I1) h S

1c=1

NF1=8

I1=1

111=6

m=2 -
L=t

NEL=7

DO 103 IM=2,08
103 WRITE(2,93)X(IN),Y(IN),IN

93 FORMAT(10Xy2F10.4, 1
94 FORMAT(I3

3,2X,13,2K,13,2X,F7.4,2X,F7 4, 2X,

+ F7.4,2; 12X,F7.4,2X,F7.4) &
95 FORMAT(17X,F7.4,2X,F7.4,2K,F7.4,2X,F7.4,2X,F7.4
+ ,2X,F7.4)
IE=1

WRITE(3,96)X(1),Y(1),X(§, 1(9) X(7),¥(7)
WRITE(3,96)X(1),Y(1),X(7),¥(7),X(6),Y(6)
WRITE(3,95)X(1),Y(1),X(6),Y(8),X(6),¥(6)
WRITE(3,95)X(1),Y(1),X(6),Y¥(5) . X(4),¥(4)
WRITE(3,96)R(1),Y(1),X(4),¥(4),X(3),Y(3)
WRITE(3BEVX(1),Y(1),X(3),¥(3),X(2),¥(2)

305 CONTINUE




. NF1=NF1+1

. &
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DO 105 I=II,IIT

IT1=1D

1T221D41

IT3=NF141

IT4=NF142 -

WRITE(3,04)XEL, IT1,1T4,1T3,X(IT1), ¥(IT1), x(xm.

1 ¥(IT4),X(IT3),Y(1T3)
MEL=BEL+1 ~
WRITE(3,94)KEL,IT2,IT4,IT1,X(IT2),Y(IT2),X(IT4),
- 1 Y(IT4) X(IT1),Y(IT1) . ®

—NEL=NEL+1

ICOUNT=IN®7
ID=1D+1 -

IC=IC+8
IN=IR+L 7
105 CONTINUE

ID=ID+1
NF1=NF1+1

L=L+1
IF(L.LE.14)GO T0 305 '

STOP . ¢
END

FUNCTION SUCTION(XF)

COMKOW U,X1(28),Y1(28),A1(28),B1(28),C1(28) -
COMMON ¥,X2(31),¥2(31),42(31) ,B2(31),€2(31) N

D0 10 I=1,U - .
IF(X1(1).GT.XF) GO T0 20

10 CONTINUE

20 1=1-1
DX=XF-X1(1)
SUCTION=Y1 (1) +DX# (A1 {T) +DXs (BE(T) #DR9C1(1)))
© WRITE(5,®)YT,A1,B1,C1 L
RETURN - L -
END

FUNCTION PRESSURE(ST)
COMMOX U, n(:s)\‘{i(ng) 41(28) ,B1(28),: c:(:a)




COMMOX W,X2(31), Yz(:m A2(31),B2(31),,C2(31)

DO 100 I=1,¥

IF(X3(1) .6T.ST)GO TO 200
100 CONTINUE

200 I=1-1

DXX=ST-X2(I)

PRESSURE= Yz(x)ouxx‘(n(l)onxx-(az(x)mxx-ci(x)))

RETURR
END
B o
SUBROUTINE SPLFIT(V,X,Y a,c.D
DINENSIOR X(V),Y(V),B(YV), c(v) (V)
VH1=V-1

IF(V.LT.2) RETURK L~
IF(V.LT.3) GO T0 50
D(1)=Xx(2)-X(1) \
c(z) (V(2)-Y(1))/D(1) |

*(O(I-04(D)
C(1+1)=(Y(I+1)-¥(1))/D(1)
c(D=c(I+)-c(1)

10 CORTINUE

c(v)=0.
IF(V.EQ.3) 0“0 15
©(1)=C(3)/(X(4)-X(2))-C(2)/(X(3)-X(1))

C(V)=C(V=1)/ (X(V)-X{V-2))-C(V=2)/(X(V-1)-k(V~3))

€(1)=C(1)*D(1)*+2/(X(4)-X(1))
C(V)=-CON*D(V-1)##2/ (X(V)-X(V-3))
16 DO 20 1=2,V

T=D(I-1)/B(I-1)
B(I)=B(I)-T+D(I-1)
€(I)=C(I)-T+C(I-1)

20 CONTINVE

c(v)=c(V)/B(V)

DD 30 XB=1,VM1 ¥
1=v-ni?
e(n)=(cAn)-1 n(l)vc(zu))/a(n




00 40 121,v1
l(I)-('(lu)-Y(l))/D(X)-D(l)‘(c(lﬂ)oﬂ oc(1))
D(I)=(c(1+1)-¢(1))/D(1)

C(1)=3:ec(1) .

40 CONTINUE

" e)=3.ec(v)

D(V)=D(V-1)

RETURF
50 B(1)=(Y(2)-¥(1))/(x(2)-X(1))
c(1)=0.
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cs
Ce LISTING OF THE PROGRAN ¢*TENPGRADee

Ce PROGRAM TO CALCULATE TRANSIENT TEMPERATURES AND

Ce TEMPERATURE GRADIENTS IN A TURBINE BLADE USING F.E.N.
ce

REAL LENG,LANBDA , ITEHP, COUNT
DIMENSION XX(11),YY(11),XXX(11),YYY(11),XS(11),BS(11)
DINENSION ES(3),ESN1(3,3),EF(3),X(3),Y(3),B(3),C(3) >
DIMENSION D(10000),T(60000),A(60000),G{60000),DXTG(11)
DIMENSION EF1(3),EF2(3),EF3(3),EF4(3),ISIDE(2),XT(8)
DIMENSION CAP(3,3) ESH2(3,3) ,PH(3),AK(3),ESH(3,
DIMENSION XP(11),EP(11),DYTG(11),YT(8)

DATA NCL/1/ 4

DATA XX/21.0,93.0,205.0,316.0, 425 0,540.0,660.0,760.0, .
1 870.0,980.0,1090.0/

:6,13:8,16.1, xsn ﬁ:ﬂouaun

DATA

DATA XXX/21.0,93.0,205.0,315.0,425.0,540.0,660.0,760.0,
1 870.0,980.0,1080.0/.

DATA m/wo.o.woAo.'ses‘o,noﬁ.uo.o.nb.o.«o.o.un.o.
1 500.0,525.0,565.0/

DATA 0.1369,0.2709,0.4059,0.6409,0.6219,0.6769,
.0/

DATA BS/2470.6,1117.65,1176.47,2000.0,2588.23,2941.0,3400.0,
1,2941.0,2823.5,2588.2,2529.0/
DATA XP/0.0,0.0549,0.1359,0.2709,0.3249,0.4059,0.56409,0.67589,
10.8109,0.9459,1.0/
DATA BP/2470.6,1204. 1, 1764.7, 1470.6, 1411.78, 1410.0,1520.4,
1 1847.0,1764.7,1823.5,1825.0/
DATA DXTG/0.0,6.0,10.0,16.0,20.0,25.0,30.0,35.0,40.0,45.0,
1 100.0/ < =~ &
DATA DYTG/303.0,573.0,863.0,1143.0,1143.0,1143.0,1143.0, ~—
11143.0,1143.0,1143.0,1143.0/
\DATA X7/0.0,6.0,12.0,18.0,24.0,30.0,36.0,100.0/
“baTa )r/o.:.o‘M.o.u/n.z.m:e.o.:q.m:v.o.u
¥ Z,34(11), n(u) n(n) B4(11),C4(11)
5(11), 6(11),B5(11),C6(11)
comon v,x2(11), Ya(u) A2(11) ,B2(11),€2(11)
COMNON U,X1(11),¥1(11) ,A1(11),B1(11),C1(11)

& &




COMYON W,X6(11), n(u) A6(11),B6(11),C8(11)
Cﬂl&l S,X7(8),Y7(8),A7(8),87(8) ,C7(8)

c
C AKTEE  THERMALCOND. OF MAT.
cH CONVECTION EEAT TRANSFER anFF
C DELTA TIKE STEP IN SECS.%
c 10 FLUID TEMP. AT PREVIOUS TIME INSTANCE
cm FLUID TEMP. AT CURRENT TIME INSTANCE'
C SIGHA STEFAN BOLTZKANN CQUSTANT
C NCL 0. GF LOADING CA:
c ISIDE SIDE WITH CORVECTION AND RAQ!ATIDI BOUNDARY
C LENG  LENGTH OF THE SIDE
C DATA XX,XXX'  TEMPERATURES .
C DATA YY ' SPECIFIC 'REAT g
C DATA YYY CONDUCTIVITY
CDATA BS CONVECTIVE REAT TRANSFER COEFF. (SUCTION SURFACE)
C-DATA-BP  CONVECTIVE HEAT TRANSFER COEFF.(PRESSURE SURFACE)
C DATA XS CHORD LENGTH RATIO (SUCTION SURFACE) °

‘C DATA XP CHORD LENGTH RATIO (PRESSURE SURFACE)

C DATA'XT,DXTG  TIME -

C DATA YT B/HO RATIO -

C DATA'DYTG  GAS, TEMPERATURE VARIATION
€ ¥
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RHD=8526.0

TENP1=0.0

TOTAL=0.0 .
CHORD=0.3188

DELTAS0.5

EPSI=0.7

SIGHA=5.669E:8

PRO=EPSI#SIGHA .
COUNT=2.0

" OPEN(UNIT=2;FILE= " NESH.DAT' TYPE=0LD')

OPEN(UNIT=3,FILE=*T.DAT’ , TYPE=’NEW') *

Us11
vatt
Q=11
Ze11 :




NE=174
¥BW=16 o

C INITIALIZING DATA

DO § 1=1,11
X2(I)=XXX(1)
5 Y2(1)=YYY(1)

DO 6 I=1,11
X1(D)=XK(1)
6 Y1(D=YY(I)

b0 7 11,11
X6(1)=xS(1)
7 Y5(1)=ES(I)

DO 8 I=1,11
14(I)=1P(1)
8 Y4(1)=8P(I)

D0 9 I=1,11
X6(I)=DXTG(I)
9 Y6(1)=DYTG(I)

D0 4 I=1,8
X7(I)=XT(1)
4 YT(D=YT(I)

JGF=EP
JGSM=JGFe2
JEND=JGSH+NP#NBY

DD 100 I=1,JEND
' 100 A(1)=0.0

}
.

1
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0 110 I=1,IGF p . s
A(1)=303.0 B . o

110 CONTINE -

10 CONTINUE

D0 120 I=JGF+1, JEND # . -
A(1)=0.0 -
120 CONTINUE .

CREAD ELEMENT GROUP DATA

" ‘D0 136 KK=1,NE
READ(2, %) NEL, NS, X(1),¥ &), 1(2), ¥(2),X(3),¥(3), ISTOE(1)
1. ,ISIDE(2) s

D0 302 1=1,3 . . . R
X(1)2X(1)/100.0 § 2
1302 Y(1)=¥(1)/100.0

. 3 B(1)=Y(2)-¥(3)
L B(2)=¥(3)-¥(1) . N \
B(3)=Y(1)-Y(2) . v
€(1)=x(3)-x(2) +
©(2)=X(1)-X(3)
€(3)=x(2)-x(1) s
AR4=ABS ((X(2)#Y(3)+X(3) ¥ (1)+X(1)#Y(2)-X(2)#¥(1)
- - +  =X(3)8Y(2)-1(1)*¥(3)))92.0

ITENP=( CCAQNS(1) ) +A(NS(2))+4(NS(3)))/3.0)~273.0)

IF(ITENP .LE.21 . O) THEN .
k . ARTER=12.7 . : :
® SPEHT=400.0
M - JLSE
CALL SPLFIT(U,X1,Y1,M,B1,01)
v " AKTEH=BKTH(ITENP)
. F CALL SPLFIT(V,X2,Y2,A2,B2,02) g .
. " SPEHTSSPHEAT(ITEMP)
3 WD IF :

1 LANBDA=RHQ#SPERT w i
. PTINE=TINE-DELTA : . s :




A >
IF(TINE . £Q.0.0) THEN
FACT=0.1"

ELSE E
CALL SPLFIT(S,X7,Y7,A7,B7,CT)
FACT-RATIO(TIHE)

END IF

IF(TINE.GT.36.0)FACT=(0.03+TINE/64.0)+0.37
IF(TIME. GT.100.0)FACT=0.4

IF(TINE. LE. 15.0) THEX
TH=(TIME+31 533) +303.0
Tu-((‘rxni:-bsl.n)'a: 533)+303 0,

Tl=1uz o
T0=1143.0
ND IF

IF(TIME.EQ.0.0)T!
IF(TIE: EQ.0.0) T

DO 140.1=1,3
AK(I)=A(HS(I))
140 CONTIHUE -

C CALCULATE: ELEMENT CONDUCTION Aln cAPAcmlcs

C MATRICES AND THE FORCE VECTORS
C.CONVECTION AND RADIATION

DO 150 I=1,3

EF(1)=0.0

PK(I)=0.0

DO 160 J=1,3

ESH(I, :)s(nﬂmos(l)oa(l)onxﬂaoc(l)tc(l))/tm
160 CONTINUE

DO 160 ¥=1,2
IF (ISIDE(I).LE.0)GO T0 160

J=ISIDECT) ’ -

K=J+1
IF(J.EQ. 3)K=1
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LSIG-SOKT((!(I)-X’(J))"L +(Y(X)-Y(3))#e2.)
XBAR=(X(K)+(3))/2.0
CRATIO=XBAR/CEORD

- IF(ISIDE(I) EQ.1)GO TO 161

TF(ISIDE(T).EQ:3)GO T0 152

151 CALL SPLFIT(Q,X5,Y5, A5, BS,| cs)
H=RTCS(CRATIO)
H=HFACT

GO 10163

162 CALL SPLFIT(Z,X4,Y4,A4,84,C4) .

" H=RTCP(CRATIO)

“H=EAFACT

153 HL=HOLENG .

EF(J)=HL#T0/2.0 ‘.

EF(K)=EL*T0/2.0

H=NS(J)

H=NS(X) 4

EF1(J)=PROSLENG (T0##4)/2.0

EF2(K)=PROSLENG*(TO##4)/2.0

EF31a((5%A (K)#04) + (4+A(N) A (N)#43) + (3+A(H) #A (N)
4 ACD)ACN) )H(20A (M) SA() ##3)+(A(N) #94))

EF3(J)=(PRO*LENG/30.0)#(EF31)

EF4{a((59A(H)##4)+ (4+A(K) *A (X)#+3)+ (3eA(K) *A (X)
+ *ACE)*A(N) ) +(20A(H) #A(N)#+3) +(A(X) #+4))

EF4(K)=(PROSLENG/30 . 0)*(EF41)

EF(J)=EF(J)-EF3(J)+EF1(J)
EF (K)=EF (K)-EF4(K) +EF2(K)

ESMN(3,3)=ESK(3,3)+(HL#2)/6.0
ESM(J,K)=ESN(J, x)on./c 0
ESN(K,3)=ESH(J,
ESM(K,K)=ESH(K,} l)’(!l."l)le o

1160 CONTINUE

DP=LANBDA*AR4/48.0 ~
CAP(1,1)=DPe2
CAP(1,2)sDPe1
CAP(1,3)=DP#1
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CAP(2,1)=DPe1
CAP(2,2)sDPe2
CAP(2,3)=DPe1
CAP(3,1)=DP*1
CAP(3,
CAP(3,3)=DPe2

C CALCULATE

EQN. (2.22) USING CRANK-NICOLSON

R.E
¢ FINITE DIFFERENGE sc!m FOR PREVIOUS INSTANT OF TIME

170 1=1,3

170 331,3
ESH1(I,3)=(2.#CAP(X, J) /DELTA) ~ESH(T, J)
170 CONTINVE

DO 180 I=1,3
DO* 180 J=1,3.
PMCI)=PN(I)+(ESMI(T, J)-AI(J))
180 CONTINUE

D0 210 I=1,3
EF(I)=PH(I)+EF(I)
210 CONTINUE

*
D0 130 I:1,3

- II=ES(1)

J5=NP+II
A(35)=A(J5)+EF(I)
IK=1IK+1

130 CONTINUE

REWIND 2

00 300 1=1,JGSK
300 D(1)=A(T)

270 DO 301 I=1,JGF

* A(1)=0.5¢(ACI)+D(D))
301 D(N=A(1) 5
TENP2=0.0

7




+

4

-

ELENENT GROUP DATA & CALCULATE
: EQN. (2,:2) FOR THE NEXT INSTANT INSTANT

DO 436 KK=1,XI ot B
READ(2,*) NEL, ls X(1),7(1),2(2),¥(2),X(3),¥(3) , ISIDE(1) E :
1 ,ISIDE(2) °

DO 303 1=1,3
X(1)=X(1)/100.0
3y 303 Y(I)=Y(I)/100. a T | /

!(1)=\'(2)-V(!) ~
B(2)=Y(3)-¥(1) B
B(3)=Y(1)-Y(2) )

- C(1)=X(3)-X(2) %o
©(2)=X(1)-X(3) X 5 1 . :
¢(3)=Xx(2)-x(1)
n&:us((l(z)nv(:)ox(:a)-v(i)ox(:)ov(z) X(2)*Y(1) -

+ -X(3)#Y(2)-X(1)%¥(3)))*2.0 _ >

ITENP=(((A(NS(1))+A(NS(2))+A(¥S(3)))/3.0)-273.0)

IF(ITEMP.LE.21.0) THEN
AKTEE=12.7 3
SPEHT=400.0 . %

ELSE
CALL SPLFIT(U,X1,Y1,A1,B1,C1)
AKTEE=BKTE(ITENP)

CALL SPLFIT(V,X2,Y2,A2,82,C2)
SPEET=SPEEAT(ITENP)
B IF

. 2 LABDA=RHO#SPERT
PTINE=TINE-DELTA . g
. IF(TIME.RQ.0.O0THEN . i
| FACT=0.1 . ‘
ELSE * / =t
CALL SPLFIT(S,X7,Y7,A7,B7,CT) 2 )

 FACT=RATIO(TINE)
END IF » ? .




. R
IF(TIME.GT.36. 0)FACT=(0.03¢TIME/64.0)+0.37
IF(TIME.GT.100.0)FACT=0.4

IF(TIME.LE.16.0)THEN

TH=(TIME#31.533)+303.0
* T0=((TTHE-DELTA)#31. 533)4303.Q
ELSE N
TH=1143 0, g7
. 10-1143.0 * 3
- END IF .

IF(TIME.EQ.0. og‘rl=3o: .0
IF(TIME.EQ.0.0)T0=303.0

0 450 1=1,3
EF(1)=0.0

D0 450 Js1,3

ESH(T, 3)= (m‘aa-s(I)ns(J)ukTsa-c(t)-c(:))/AM
(SD»CDITIM’E

o D0 460 I=1,2
IF(ISTDE(D) LE.0) GO TO 460

IF(3.EQ.3)k=1
LERG=SQRT((RCK)<K(3))##2.+(1(K) - V(J))"2 )
XBAR= (X(K)+X(3))/2.0

* CRATIO=XBAR/CEORD

IF(ISIDE(1).EQ.1)G0 TO 454
IF(ISIDE(I).EQ.3)60 TO 452

451 CALL SPLFIT(Q,X5,Y5,A5,85,C5)
E=HTCS (CRATIO)
E={¢FACT
G0 70 453
452 CALL SPLFIT(Z,X4,Y4,M,B4,C4) .
- B=HTCP (CRATIO)
= H=B4FACT

453 HL=HeLENG
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EP(J)=HLsTI/2.0 s

EF(K)=HLeT1/2.0
n=1S(3)
N=ES(K)

0SLERG (TH#%4) /2.0

ROSLENGw (THe#4)7/2.0

EF312( (B#A(H) ##4)+ (4%A (R)#A(H) »3)+(3+A (K) *A(H)
+ u(l)“(l))o(2~A(n)u(!)u:)o(A(l)-u))

EF3(3)= (PROSLENG/30,0)» (EF31) *

EF41=(CB#A(K) #%4)+ (4¢A(H) A (H) #%3)+(3A (M) *A (M)
+ A *A(N))+(2¢A ()R (M) #43)+(A(H)#44))

EF4(K)=(PROSLENG/30.,0) » (EF41) u
EF(J)=EF(3)-EF3(J)+EF1(J) N
EF(K)=EF (K)-EF4 (K)+EF2(K) ’

ESH(J3, 3)=ESH(J, 3)+(BL*2.)/6.0
ESH(J,K)=ESH(J,K)+HL/6.0
ESK(T,K)

ESH(K, K)+(EL#2.)/6.0

460° CONTINUE

DP=LAMBDA#AR4/48.0
CAP(1,1)=DPs2 -
CAP(1,2)=DPs1 - .
CAP(1,3)=DPe1
CAP(2,1)=DPst
CAP(2,2)4DPs2
CAP(2,3)=DPs1
CAP(3,1)=DPe1 .
CAP(3,2)=DPs1

. CAP(3,3)=DPe2

D0 470 I=1,3 -
DO 470 J=1,3"

ESH2(I, . *CAP(I,. J)/DBL’u)msx(x n
470 CONTINUE

c lSSdBLS GLOBAL MATRICES
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DO 430 I=1,3

II=KS(I)

IB=NPHIT

A(I5)=A(IS)+EF(T) -

DO 180 J=1,3

33=85(3) -

33=03-11+41 7 .
IF(33)190, 190,200

200 J5=JGSH+(J3-1)$NP+IT -
A(JB)=A(I5)+ESK2(T,]) =
190 CONTINUE

430 CONTINUE

REYIND 2

C SOLUTION OF EQN.(2.24) FOR UNKNOWN NODAL TEMPERATURES
C BY CHOLESKY 'DECOMPOSITION & BACKVARD ~SUBSTITUTION

CALL DECOMP(A(JGSM+1),KP, NBW)
CALL SOLVE(A(JGSM+1),A(JGF+1),A(1) ,NP NBW, NCL)

C JEST FOR CONVERGENCE IN HODAL TEMPERATURES ~

DO 240 T=1,JGF
IFOBS(D(D)-AD) . GE.0,01)G0 TO 25\

240 CONTINUE
GO TO 290
250 CONTINUE

DO 260 I=JGF+1,JERD
260 A(1)=0.0

DO 280 I=JGF+1,JGSK
A(D)=D(1)
280 CONTINUE

GO 10 270
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' 200 cortIEUE -

TIME=TINE+DELTA
IF(TIME.EQ.COUNT)GO TO 1000

GO TO 1001

1000 DO 201 I=1,108
G(1)=A(1)-273.0
201 CONTINUE

1001 REVIND 2 — e R
. ’\

. IF(TIME.EQ.COUNT)GO TO 1002 s . N
G0 TO 1003 4 - . - .

CREAD ELEMENT GROUP DATA & CALCULATE TEMPEMTURE
C GRADIENTS IN X & Y DIRECTIONS

N 1002 DO 202 I=1,¥E '
RS READ (2,)NEL, RS5,X(1),¥(1),%(2),¥(2),X(3), Y(J) ISIDE(1), !sn:s(z) -

- T(D)=CANS(1))+A(AS(2))+A(HS(3)))/3.0-273.0

B8(1)=(¥(2)-Y(3))/100.0
B(2)=(Y(3)-¥(1))/100.0
(¥(1)-Y(2))/100.0
. ¢ . C(1)=(X(3)-X(2))/100.0
* C(2)=(X(1)-X(3))/100.0
€(3)=(X(2)-X(1))/100.0

. xc-((x(x)u(z)u(s))/(a’oscum\n))

E ARZ=ABS((1(2) %¥(3)+X (3)$Y(1)+X (1)#7(2) ~X(2)#Y (1)-K(3) #¥(2) L
-x(l)tv(:)))/:oooa 0

mnx..

cmv=on .

bo 209 J=1,3

GRADX=GRADX+(B(J)*A(NS(J)))/AR2
GRADY=GRADY+(C(J)*A(NS(J)))/AR2

299 CONTINUE - -




STOP

WRITE(3,2233) HEL,T(I) ,TIKE, c.m’unx.mum

2233 FORMAT(I3,2X,F10.4,21,F10.4,2X,F10.4,2X,F16.4,2X,F15.4)
292 COBTINUE

COUNT=COUNT+2

REVIND 2
1003 IF(TINE.LT.200.0)G0 10 10

ERD #

C SUBROUTINE  #44.DECOMP s#+

SUBROUTINE DECOMP(GSM, KP, KBW) .
DIKENSION GSM(NP,NBW)
1061

P
D0 226 I=1,P1
NI=I+NBW-1
1F(MI.GT.¥P)HI=HP
HIsT+1

MK=HBW
IR((NP-I+1).LT.NBY) MK=

D=0

P-1

DO 225 J=H),MJ - 3
MK=HK—1

DO 225 K=1,MK

_ WK=RD+K

226 GSM(J,K)=GSH(J,K)-GSH(I,HL) *GSH(I , NK)/GSM(X, 1)
226 CONTINUE ~ =

RETURK
END

C SUBROUTINE #4# SOLVE ##s
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SUBROUTINE SOLVE(GSK,GF,X,NP,NBV,NCL)
DIMENSION GSM(NP,NBW),GF(NP,NCL) X(NP,NCL)
10=61 .

P

IN=KK
DO 260 I=1,NP1
NISTeNBV-1
IF(NJ.GT.NP) MI=NP
5 ST
Lat
DO 260 J=KJ,MJ
LaLey
260 GF(J,KK)=GF(J,KK)-GSH(I,L)*GF(I,KK) /GSH(T, 0
X(HP,KK)=GF(NP,KK)/GSM(NP,1)
DO 2652 K=1,NP1
I=NP-K <
MIeNBW E
IF((T+NBV-1) .GT.NP) MI=NP-I+1
SUN=0,0. .
DO 251 J=2,H1 N i
Ne143-1 ’
251 ‘SUN=SUM+GIN(T,3) *X (X, KK)
262- X(I,KK)=(GF(I,KK)-SUK)/GSN(1,1)
265 CONTINUE e S
RETURN
END

FUNCTION RATIO(TIN)
CONMON Z,X4(11),Y4(11),44(11),B4(11),C4(41)
COMMON Q,X5(11),Y5(11),A5(11),85(11),C6(11y

" commox v,X2(11),¥2(11),42(11) ,82(11) ,¢2(11)

cONMON U,X1(11),Y1(11),A1(11),B1(11),C1(11)
¥,X6(11),Y6(11),A6(11),B6(11),C6(11)
0¥ S,X7(8),Y7(8),47(8),B7(8),C7(8)
DO 1" Is1,5 i

T IFGT(D.CT.TINGT0 2 ¢

1 CONTINUE

2 11k, '
DXSTIN-XT(D)
n’no-n(x)onx-(A1(x)onxo(l7(x)onx-c1(x))) ;
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RETURN
END

FUNCTION SPHEAT(XF) ~
COMMON Z,X4(11),Y4(11),44(11),B4(11),C4(11)
o CONMON Q,X6(11),Y5(11),A5(11),B5(11),C5(11)
COMMOX .V, X2(11),Y2(11) ,42(11),B2(11),,€2(11)
COMMON U, X4(11),¥1(11),A1(11),B1(11),€1(11)
K * COMMOX W,X8(11),Y6(11),A6(11),86(11),06(11)
CONMOR S, X7(8) ,Y7(8),A7(8),B7(8) ,CR{(8)
D0 10 I=1,V
. IF(X2(1) .GT.XF) GO T0 20
10 CONTINVE
20 1=I-1
¥ DX=XF-X2(I) ”
SPHEAT= n(x)mxo(A:(I)wx-(nz(x)mx-cz(l))) gl
RETURK .
END:

FUNCTION BKTH(XSS) ,

CONNON Z,X4(11), Y4(i1) , 44(11) B4(11),C4(11)

COMMON Q,X5(11),¥5(11),A5(11),B5(11),C5(11)

COMMON V,X2(11),Y2(11),A2(11),B2(11) ,€2(11)

COMMON U,X1(11),Y4(11),A1(11),B1(11),C1(11)

COMMON W,X6(11),Y6(11),A6(11),B6(11),C8(11) . .
COMMON S,X7(8),Y7(8),47(8),B7(8) ,CT(8) —
D0 100 I=1,U

IE(X1(E) .GT.XSS) GO TO 200

. 1bo conrame

~Drx=1ss-x1(n) )
,\(x)onxxo(n(I)mxx-m(x)ouxx-cl(r)))
RETURE . fod

roscrrowfhncs (s
. COMHOR Z,X4(11),Y4(11),A4(31),B4(11) ,C4(11) : v B
k CONMON Q,X6(11),¥5(11),A6(11),B6(11),€5(11)
CONMON V,X2(11),Y2(11),A2(11),B2(11) ,€2(11)
COMMON U,X4(11),Y1(11),41(11),B1(11),C1(11)
COMKON-W,X6(11),Y6(11),46(11),B8(11),€6(11)




COKMON S,X7(8),Y7(8),47(8),87(8),C7(8)
DO 10 I=1,0

IF(X6(1).GT.SUGO TO 20

10 CONTINUE

20 I=I-1
DXXX=SU-X5(I)
ncs-vs(x)onnxo(As(nmul-(asmwxn-cam))
RETURN
EXD

FUNCTION HTCP(PR)
COMMOX Z,X4(11),Y4(11),A4(11),B4(11) ,C4(11)
COMNON Q,X5(11),¥5(11),A5(11),B5(11),C6(11)
COMHMON V,X2(11),Y2(11) ,42(11),B2(11) ,€2(11)
COHKON U,X1(11),¥1(11),A1(11),B1(11),€1(11)
COMMON W,X6(11),Y6(11),A6(11),B6(11),C6(11)
COMMON $,X7(8),Y7(8),A74p) ,B7(8),,C7(8)
DO 100 I=1,
’ IF(x4(1).GT.PR)GO TO 200

100. CONTINUE

~ 200 I=I-1
DZ=PR-X4(I)
m-v&(x)onz-(u(I)onz-(n(uonz-cl(l))) )
RETURN

END
-

~ FUNCTION TTN(T)
= CONNON Z,X4(11), Y4(11),A4(11),B4(11),,CA(11)
- COMMON Q,X5(11),Y5(11),A5(11),B5(11),C5(11)
COMXON V,X2(11),¥2(11),42(11),82(11) ,C2(11)
CONNON U,X1(11),Y1(11),41(11),B1(11),C1(11)
COMMON ¥,X6(11),Y8(11),46(11),B6(11),C6(11)
COMNOW s,X7(8),Y7(8),A7(8),B7(8) ,C7(8)
DO 100 I=1,¥
B IF(X6(1).GT.T)GO TO 200
100 CONTINUE
200 T=I-1
DV=T-X6(I)
'[rl-u(l)opuc(Ae(x)tnwo(u(x)mu-cu(x)))
RETURN
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SUBROUTINE SPLFIT(V,X,Y,8,C,D)

DIMENSION X(V),Y(V),B(V),C(V),D(V) =
VH1=V-1 .
IF(V.LT.2) RETURN
IF(V.LT.3) GO TOWSO" B
D(1)=X(2)-X(1) / .
©(2)=(¥(2)-¥(1))/p(1)

D0 10 I=2,VH3
D(I)=X(I+1)-X(I)
B(1)=2.+(D(I-1)+D(I))
C(I+1)=(Y(I+1)-Y(1))/D(I)
€(1)=C(I+1)-C(I)

10 CONTINUE
B(1)=-D(1)

B(V)=-D(V-1)

c(1)=0.

c(v)=0.

IF(V.EQ.3) GO T0 15

©(1)=C(3)/(X(4)-X(2))-C(3)/(X(3)-X(1))

C(V)=C(V-1)/ (X(V)-X(V-2))-C(V-2) / (X(V-1)-X(V-3)) .
©(1)=C(1)#D(1)++2/(X(4)-X(1)) ; . -

C(V)=-C(V)#D(V-1) #+2/(X(V)-X(V-3))

16 D0 20 1=2,V
T=D(1-1)/8(1-1)

B(I)=B(1)-TeD(I1-1) L
C(1)=C(1)-TeC(1-1) .

20 CONTINVE

c(V)=c(V)/B(V)

(C(X) D(I)*C(1+1))/B(1)
30 CONTINUE
B(V)=(Y(V)-Y(VX1))/D(VK1)+D(VK1) #(C(VK1)+2.+C(V))
DO 40 I=1 1
!(t)!(1(!*!)-Y(I))/D(I)-D(I)‘(C(lﬂ):z (1))
D(I)=(C(I1+1)-c(1))/DII)

€(1)=3.+c(1) 5

40 CONTINUE 7
c(v)=3.c(V) “
D(V)=D(V-1)

RETURN
60 B(1)=(Y(2)-Y(1)¥/(X(2)-X(1))



c(1)=0.
D(1)p0.
8(2)=B(1)
€(2)=0.
p(2)=0.
RETURN

END
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ce
Ce LISTING OF THE PROGRAM #4TSTRESS®*

Ce PROGRAM TO CALCULATE THE THERMAL STRESSES IN
Ce TEE BLADE FRON THE TRANSIENT TEMPERATURE

Ce DISTRIBUTION

s
c ¥ -NO. OF GLOBAL DISPLACEMENTS OR D.0.F.

C¥E NO. OF ELENERTS

C NBW BANDWIDTE &

C ITENP  ELEMENT TEMP. (IRPUT)

€ ELASTIC ELASTIC  MODULUS o o

C PR POISSON’S RATIO

C ALPHA  COEFF. OF THERMAL EXPN

C TENP  INITIAL TENP. x % ’
cT ELEMENT THICKNESS

cor RISE IN TEMPERATURE OF THE ELEMENT

REAL ITENP

DIMENSION NS(6),HD(3),] ssn(a /6) ,EF(6),B(3,6),C(8,3),D(3,3)
DIKENSION STRA(3),STRE(3),ET(3),U(6),A(50000),SIGHA(20000)
DIMERSION AX(10),AY(10),EX(10),EY(10),ISIDE(2),DEL(174)
DIMENSION XYS(6),YYS(6),TENP(174),DT(174),DDT(174),DELTA(174)

DATA AX/0.0,206.0,315.0,426.0,540.0,850.0,760.0,870.0,880.0,
1 1090.0/
DATA AY/0.0000110,0.0000119,0.0000124,0.0000128,0.0000131,
1 0.0000135,0.000014,0.0000148,0.0000158,0.000017/
DATA EX/0.0,93.0,205.0,315.0,425.0,540.0,660.0,760.0,870.0,

DATA EY/220.0E9,215.0E9, 216, 0E9, 195.0E9, 190 OE9, 185. OED,
1 '176.0E9,170.0E9, 160.0E9, 145,089/ -

DATA XYS/21.0,640.0,660.0,760.0,870.0,980.0/,

DATA YYs/uo umu 850.0E+6,865.0E+6,840 .0E+6,760.0E+6,
1 470.0

DATA KCL/1/, mx/o/ TELR/G/

C DATA AX,AY REPRESENT ALFA v/s TEMPERATURE
C DATA EX,EY REPRESENT ; ELASTIC v/» TEMPERATURE
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CDATA XYS,YYS REPRESENT YIELD STRESS v/s TENPERATURE .

BN

% convon P,PX(10),PY(10),AP(10),BP(10),CP(10) -
COMMON Q,QX(10),Q¥(10),4Q(10),8Q¢10),€Q(10)
COMMON V,RX(8),RY(6),AR(8) ,BR(6),CR(8)

OPEN(UNIT=60,FILE='NMESH.DAT’, TYPE="0LD’)
. OPEN(UNIT=70 ,FILE=’STRESS.DAT’ , TYPE="NEV')
OPEN(UNIT=63,FILE=’T.DAT’ TYPE=’0LD’)

T=1.0

C INITIALIZING DATA . _ j

“=p0 1 121,10 y
PX(I)=AX(1) a '
1 PY(I)=AY(I) *

DO 2 I=1,10
> QX(I)ZEX(T) *
2 QY(I)=EY(I)

D0 3 I=1,8
RE(I)=XYS(I)
3 RY(D)=YYS(I)

PR=0.25 Tw

DO 13 I=1,174
13 TENP(1)=303.0

C READ ELENENTAL TRANSIENT TEMPERATURES AND CARRY ;
COUT THE SUNMATION FOR EACH ELEMENT AS IN :
C_EQN. (2.26) ) -

]

\. TB ' :
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" D0.300 KK=1,100
116 READ(63,63)(I,A(I),TINE,I=1,174)
63 FORMAT(I3,2K,F10.4,2X,F10.4)

SUNL:
SU2=0.0
SUM3=0.0 - -
SUN4=0.0, .
SUM5=0.0
SUME=0.0

DO 7 KK=1,NE

114 READ(60,*)NEL,ND,X1,Y1,X2,Y2,X3,Y3, ISIDE

ITEMP=A(NEL)
DT(T)=ITEMP-TEKP(NEL)

$X1=(X1-16.33)/100.0
X2=(X2-15.33)/100.0
X3=(X3-15.33)/100.0
Y1=(Y1-16.0)/100.0
¥2=(¥2-15.0)/100.0 .
Y¥3=(Y3-16.0)/100.0

IF(ITEMP.LE.0.0) THEN
ELASTIC=220.0E+00
ALPEA=0.0000106 . v
ELSE

CALL SPLFIT(Q,QX,QY,AQ,8Q,CQ) \
ELASTICSELAST(ITEMP)
CALL SPLFIT(P,PX,PY,AP,BP,CP)
. ALPHA=ALFA(ITEMP)
END IF

XC=(X1+X2+X3)/3.0
YC=(Y1+Y2+¥3)/3.0

ARR=ABS(: i Y

'SUM1=SUN1+(ALPHASELASTIC®ARR#DT(I))
SUN2=SUN2+ (ARR¥ELASTIC)

SUN3=SUN3+ (ARRYELASTICeALPHASDT(1)#XC)
SUK4=SUN4+(ARRSELASTIC#XC¥#2)

/2.0 .




SUN=SUNS+ (ARRELASTICe ALPRASDT(1)#YC)

SUMG=SUN6+ (ARRSELASTICSYCo#2)
7 CONTINVE

REVIND 60

€ CALCULATE THE THERMAL STRESS IN EACE ELEMENT

DO 45 I=1,¥E

READ(60, #)NEL, ¥D,X1,Y1,X2,Y2,X3,Y3, ISIDE

X1=(X1-16.33)/100.0
X2=(X2-16.33)/100.0 '
X3=(X3-15.33)/100.0
Y¥1=(¥1-16.0)/100.0
¥2=(¥2-16.0)/100.0
¥3=(¥3-16.0)/100.0

XC=(X14X2+X3)/3.0
YC=(Y1+¥24¥3)/3.0
ITEMP=A(NEL)
DT(I)=ITEKP-TENP(NEL)

IF(ITENP.LE.30.0) THEN
ELASTIC=220. 0E+08
ALPEA=0.0000116
YIELD=840.0E+6

ELSE

CALL SPLFIT(Q,QX,QY,AQ,BQ, Dﬂ)
ELASTIC=ELAST (ITEXP.

CALL SPLFIT(V,RX,RY,AR,BR,CR)
YIELD=FUN(ITENP)

CALL SPLFIT(P,PX,PY,AP,BP,CP)
ALPHA=ALFA(ITENP)

EXD IF

IF(DT(I).LT.0.0)THEX

STGHA(T)=SIGHA(T)-(ELASTIC® ((SUN1/SUN2) + (RCHSUN3/SUN)
llt(vc-sws/slme) -(ALPHADT(I))))/Y1

~ELSE

SIGNA(T)=SIGNACT)+(BLASTIC* ((SUN1/SUN2)+(XCeSUN3/SUN4)
1 +(YCHSUNS/SUNG)~ (ALPHASDT(I))))/YIELD




END IF

71 FORMAT(I4,2X,E16.8,2X,E16.8,2K,E16.8)
45 CONTINUE

C LOCATE THE MAX. & MIN. VALUES OF THERMAL,STRESS

SIGHAZ=0.0
SIGHIF=0.0
DO 1111 I=1,§E
IF(SIGHA(T) .GT.SIGNAX)SIGHAX=SIGHA(T)
IF(SIGMA(T) .LT.SIGHIN) SIGNIN=SIGHA(T)
1111 CONTINUE ‘
WRITE(70,1112)SIGHA(1) ,SIGHA(78) ,SIGNA(163) ,SIGHTN,
1 SIGMAX,TIME
*1112 FORMAT(2X,E10.4,2X,E10.4,2X,E10.4,2X,E10.4,21,E10.4,
1 2X,E10.4)

REWIND 60

DO 2233 I=1,174
2233 TEKP(1)=A(I)

300 COFTINUE

200 STOP
END

-
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-

Ce LISTING OF TEE PROGRAN nstn

Ce PROGRAM TO CALCULATE NATURAL FREQUENCIES OF
Ce A TURBINE BLADE USING 20-NODED ISOPARAMETRIC
Ce FINITE ELEMENTS

C IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION CODRD(20,3),STIFF(60,60),DERIV(S,3,20)
DIMENSION SHAPE(8,20),ST(60,60),EMASS(60,60)
DINENSION ¥D(20),X(20),¥(20),2(20),Ks(60) .
DIMENSION GSTIFF(924,924),D(38),GHASS(924,924)
DIMENSION WK(1850),AVK(2),6(2,2),GSTNV(924,924) .~
COMPLEX EV(924),DYN(924,924),2V(1,1)

EQUIVALENCE (GNASS(1),DYN(1))
 FILE='FREQ.DAT’,TYPE='NEN') ™

 FILE=’NESH.DAT’ , TYP!
JFILE='DISP.DAT” TYP!

OPEN(UNT
OPER(UNIT=
OPEN(UNIT=

TVOL=0.0
GSUN=0.0

DO 30 I=1,024 LS 1

DO 30 J=1,924

GMASS(I,1)=0.0 /
30 GSTIFF(I,3)=0.0 . el

C READ ELEENT COORDINATES

DO 20 NELM=1,35
* READ(3,*)HEL
DO 10 I=1,20
READ(3,#)¥D(I),X(I),¥(I),2(1)
10 CONTINUE .

D0 1.J21,3
DO 1 Is1,20




~
IF(J.EQ.1)COORD(I, J)=(X(1))/1000.0
IF(J.EQ.2)COORD(T, ))=(Y(1))/1000.0
IF(J.EQ.3)CO0RD(T, 3)=(2(1))/100.0
1 CONTINVE

C EVALUATE ELEMENT SHAPE FUNCTIONS & THEIR DERIVATIVES
N
CALL SHAPE20(SHAPE,DERIV)

C CALCULATE ELEMENT STIFFNESS & MASS MATRICES a

CALL STIFFMASS20(NEL,COORD /SHAPE,DERIV,STIFF,ENASS,VOL)

C ASSEMBLE ELEMENTAL MATRICES INTO THEIR
C GLOBAL LOCATIONS k& FORM THE SYSTEM MATRICES

DO 7 1=1,20

DO .7 IDOFI '3

IFCIDOFN . EQ. 1)NROWS=ND(1)#3-2

IF(IDOFN.EQ.1)NROVE=I+3-2

IF(IDQFH.EQ.2)NROVS=ND(I)*3-1

IF(IDOFN.EQ.2)NROVE=I#3-1

IF (IDOFK .EQ.3)NROWS=HD(1)+3

IF(IDOFN.EQ. 3)NROVE=I+3

DO 7 J=1,20 )

DO 7 JDOFE=1,3

IF(JDOFN.EQ. 1)NCOLS=HD(3)*3-2

IF(JDOFN.EQ.1)NCOLE=J#3-2

IF(JDOFN.EQ.2)NCOLS=HD(J)#3~1

IF(JDOFN.EQ.2)NCOLE=J*3-1

IF(JDOFN.EQ.3)NCOLS=ND(J)+3

IF(JDOFN.EQ.3)NCOLE=J#3

GSTIFF(NROVS, NCOLS) =GSTIFF(NROWS , NCOLS) +STIFF (NROVE, ICULF)
-

GMASS (WROWS , NCOLS) =GMASS (NROVS, NCOLS)
1 +EMASS(NROVE, COLE) &
7 CONTINVE
TVOL=TVOL4VOL
20 CONTINUE .
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C APPLY BOUNDARY CONDITIONS. AT ROOT OF THE BLADE AT THE
C PROPER ROWS & COLUMNS OF GLOBAL [K]y& [M] MATRICES

DO 200~I=1,38
READ(7,#)D(I)
BROW1=D(1)#3-2 : N
NROW2=D(I)e3-1 K
_NROW3=D(I)*3 . .
OL1=NRON1
NCOL2=NROW2~
NCOL3=NROW3
DO 100 K=1,924
GSTIFF(NRON1,K)=0.0
GSTIFF(NRON2,K)=0.0
GSTIFF(NROW3,K)=0.0
GSTIFF(K,NCOL1)=0.0
GSTIFF(K,NCOL2)=0.0
GSTIFF(K,NCOL3)=0.0
GHASS(HROW1,K)=0.0
GHASS(NROW2,K)=0.0
GMASS (WROW3,K)=0.0
GHASS(K,NCOL1)=0.0
GHASS(K; NCOL2)=0.0
GMASS(K,NCOL3)=0.0
100 CONTINUE

200 CONTINUE

DO 300 I=1,924
DO 300" J=1,924
IF(I.EQ.J.AND.GSTIFF(I,J).EQ.0.0) TREN
GSTIFF(I,3)=1.0E+15
GMASS(T,J)=1.0E-6
ELSE .
G0 TO 300
END IF
300 CONTINE g

C INVERT [X].MATRIX & FORM DYNAMIC MATRIX




- [N

CALL LINVIF(GSTIFF,924,924,GSINV,0,WK,IER)
CALL VNULFF(GSTRV, GNASS, 024,924, 624,024, 924 ,GSTIFF, 024, 1ER)

DO 400 I=1,924
ﬁn 400 3=1,924 Il
YR(T, J)=CHPLX (GSTIFF(1,1))’
qoo CONTINUE

C CALCULATE EIGENVALUES USING DYNAKIC MATRIX

CALL EIGCC(DYN,924,924,0,EV,ZV,1,¥K, IER)

D0 500 I=1,9%4
500 EV(I)=1./(SQRT(EV(I)}*2+3.14159)

VRITE(2,*)(EV(I),I=1,924)

sTOP

END

SUBROUTINE SHAPE20(SHAPE,DERIV)

C IMPLICIT REAL#8 (A-H,0-Z) -

DIMENSION SHAPE(S,20),DERIV(8,3,20), 2,210
DIKENSION SI(20),F1(24),HTA(20) N

DATA F/-0.67 +0,67
DATA -ttt il e
1 4,0.0,1.,0.0,-1./
DATA 1,71, ‘4.1
10.0,1.,0.0,-1,,0.0,1.,0.0/
24.,1.,1. .1 it oabooooo Ly
1.,1.

DATA

C DATA ZTA(1),HTA(1),SI(1) WEPRESENT THE LOCAL COORDINATES
C OF THE FIRST MODE OF THE 20-NODED ELEMENT & SO ON

KK=0
DO 101 K=:
DO 101 J=:

~




DO 101 I=1,2

F1(KK)=F(J)

F1(KK)=F(K)
101 CONTINUE

DO 10 ¥X=1,8
EN1=(RE-1) 0341 .

GZ=F1(NN1)

GH=F1(NN1+1) .

GR=F1(WN1+2)

D0 20 I=1,8 )

SEAPE(HN,1)=(1.0/8. o)c(x 04GZ4ZTA(I))# (1. 0+GHNTA(T)) #(1.0+4GR%
1 SI(1))#(GZZTA(I)+GNNTA(I) +GR¥SI (1)-2.0)

nxnxv(ll 1,1)=2(1./8.0)42TA(T)#(1.04GH+NTA(L) ) » (#CRoSI(I))*

1 (2. o-zn(x)-czml-ln(x)mnnsl(I) 1.0)~

DERIV(NN,2,1)=(1.0/8.0)#NTA(I)*(14GZ+2TA(I))* (1+GReSI(I))*
1 (G"lTl(!)'].0'01'1’!“(;)*55'51(1)-1AD) B

DERIV(NN,3,T)=(1.0/8.0)¢ST(T)#(1.4GZsZTA(I))# (1. +CHNTACT) )+
1 (GZeZTA(I)+GN+NTA(I)+2.0%GR*SI(I)-1.0)

m.iol'rm):

DO’ 30 J=9,12
1)=(1./8.)%(1.0-GRe#2) #(1.46Z62TA(3) ) # (1. mnm(.v))
1,3)=(1,/4.)92TA(J)*(1.0-GRe#2)# (1. +GH*NTA(J)) -
3)=(1./4.)$4TACI) #(1.-GRe+2)(1.42TA(J)*G2)
DERIV(NN,3,3)=(1./2.)GRe (1, 4GZ4ZTA(3) )#(1. +GRNTA(J))

30 CONTINUE

‘Do 40 L=13,16 *:
TF(L.EQ. 16)K=ip

IF(L.EQ.16)K=17 .
* IF(L.EQ.14)K=15 .
IF(L.EQ.13)K=13
SEAPE(NN,K)=(1,/4.)#(1.-GZ#s2)8 (1. ml-rn(l())-(: +GR*SI(K))
DERIV(NN,1,K)=(-1./2.)*6Z+ (1. +NTA(K) $GR) #(1.+SI(K)*GR)
DERIV(NN,2,K)=(1./4.)*NTA(K)#(1.-GZ#+2) » (1.4SI(K) +GR)
DERIV(NN,3,K)=(1./4. )-sx(x)'(A ~GZes2)({. nn(x)ool)

40 CONTINUE




N PPy
DO, 60 K=17,20 -
. IF(K.EQ. 17)L=14
IF(K.EQ.18)L=16 ]
& " IF(K.EQ.19)L=18
IF(K.EQ.20)L=20
SHAPE(NN,L)=(1./4.)¢(1.-GN+#2) (1. +GZ¢ZTA(L))*(1.+SI(L)*GR)
. DERIV(NN,1,L)=(1./4.)#ZTA(L)+(1.0-GN+¢2)+(1.4SI(L)*GR)
DERIV(NN,2,L)=(~1./2.)%GNe(1.+2TA(L)+GZ) *(1.+SI(L)*GR)
DERIV(NN,3,L)=(1. /4. )-sx(v.)-(17 GU#e2)(1.+2ZTA(L) %GZ)
R 50 CONTINUE

10 CONTINUE

RETURE
END

SUBROUTINE s’nmAsszo(vsL COORD , SHAPE, DERIV, STIFF ;
1 EMASS,VOL)

C IMPLICIT REAL®8 (A-H,0-2)

DIMERSION srxn’(ao aa) ESH(60,60) ,B(6,60) , AJACOB(3,3)
DIMENSION AJINV(3,3),DERIV(S,3,20),C00RD(20,3),P(6,0)
DINENSION R(9,60),PQ(6,8),D(8,8),BTD(60,8) ,W(3) ,FWT(8)
g, . DIMENSION TSN(80,3);5K(3,60) ,ENN(60,60) ,EMASS(60, 60)
DIMENSION SRAPE(8,20),BT(60,6),Q(9,9)

DATA ¥/1.0,1.0,1.0/
INTEGER IER -
RHO=8526.0
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' C INITIALIZE ALL MATRICES TO BE ZERO

DO 1 1=1,60
D0 1 J=1,60
ENN(I,3)=0.0 E
EMASS(I,3)=0.0 -
b ESK(1,3)=0.0
1 STIFF(I,0)=0.0
-




VOL=0.0
=0 .

W
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C INTIGRATE AT EACH' GAUSS POINT (2 IE EACH DIRECTION)

.
DO 105 KK=1,2

0106 3J=1,2
DO 105 II=1,2
NX=NN+1

C SET [8] & [J] KATRICES EQUAL'TO ZERD FOR EACH GAUSS POINT

D0 50 6 @ .
DO 5O K=1,60 .
60 8(L,K)=0.0

D0 61 I«1,3 o\

3
B1 AJACOB(I,J)=0.0

C FQRK THE JACOBIAY MATRIX (3] -

D0 62 1s1,3

D0 62 Je1,3

SUK=0.0 g .
D0 53 K=1,20 2
SUM=SUN+DERIV (NN, T,K) *COORD (K, J)

63 CONTINUE

AJACOB(I,J)=SUN

52 CONTINVE -

C CALCULATE THE IKVERSE & TEE DETERMINANT OF [J]

CALL INVERSE(AJACOB,AJINV,DET)




FWT(WN)=DET*W(KK)*W (JJ)¥(IT)

.
C EVALUATE (P),(Q) & [R) AT EACH G.P. TO FORM (8] MATRIX

D0 54 I=1,8

DO 54 J=1,9

54 P(1,))=0.0
P(1,1)=1.0
P(2,6)=1.0
P(3,9)=1.0 o
P(4,2)21.0
P(4,4)=1.0
P(5,3)=1.0
P(5,7)=1.0
P(6,6)=1.0
P(6,8)=1.0

DO 55 11,9
DO 56 J=1,0 5
55 q(1,)=0.0

DO 56 I=1, a

58 q(L N)=AJINV(T, 1)
DO B

Do 59 T,
1=L-8
I=K-8
59 Q(L,N)=AJINV(I, )

4
80 R(I, J)»o o -
DO 81 I=1,3
k=1 - " °
DO 81:J21,20

»




A(1,K)=DERIV(NN,1,3)

61 CONTINUE
DO 62 I=4,8

K=2

00 62 'J=1,20
R(I,K)=DERIV(NN,L,J)
62 CONTINUE

D0 83 I=7,9

K=3

DO 63 J=1,20

LeI-6
R(I,K)=DERIV(NN,L,J)
K=K+

63 CONTINUE

CALL VHULFF(?,0,6,9,9,6,9 79,8, TER)
CALL VMULFF(PQ,R,6,9,60,6,9,8,8,IER) -
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3 CFORM THE MATERIAL _PROPERTY MATRIX [D]

ki

Es2.0E+11

“PR20.25

D0 64 I=1,6

Bo 64 3=1,6

64-0(I, =0

EPR=E# (1, -PR)/((: 4PR)*(1.-2¢PR)) 3
D(1,1)=1.+EPR .
D(1,2)=(PR/(1. ~PK))OEPR

D(1,3)=D(1,2)

0(2,2)=D(1,1)

D(2,3)=D(1,2) - i
D(3,3)=D(1,1)

D(4,4)=EPRe(1.-2¢PR)/(2. *(1.-PR))

"D(5,5)=D(4,4)

D(6,8)=D(4,4)
D(3,1)=D(1,2)
D(3,1)=D(1,3)
1(3,2)=D(2,3)




C FORM TRANSPOSE OF THE [!]‘u?ﬂ‘n\

B(1,7)
65 CONTINUE

C FORM SHAPE FUNCTION MATRIX TO BE USED IN THE
C CALULATION OF THE ELEMENT MASS MATRIX

DO 70 1=1,3 w3 ol
KeI

DO 70 J=1,20 L -
SN(I,K)=SHAPE(NN,J)

KeK+3

70 CONTINVE ° }

flm 71 1=1,3 3
DO 71 J=1,60 - .
TSH(I,1)=5H(1,3) -

71 CONTINUE .

I3

C FORM ELEMENT [K] & [M] MATRICES

~
CALL VNULFF(BT,D, 60,6,6,60,6,BTD, 60, IER)

CALL VMULFF(BTD,B,60,8,60,60,6,ESH,60,IER)
CALL VNULFF(TSH,SN,60,3,60,80,3,ENN,60,XER)

CSUN. UP THE ELEMENTAL (K] & ‘(M] MATRICES AT
C EACH G:P. TO FORY THE TOTAL ELENENTAL [X) & [N]
¢ WATRICES

DO 66 I=1,60 .
DO 66 J=1,60 ot
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.

sn)m.:)-m(n)-m(:.:)osnrr(x.:)
EMASS(T, J)=REQPFVT (NN)*ENN (T, )+EMASS(1,3)
66 CONTINUE

'VOL=VOL+DET*RED -

105 CONTIRUE
RETUAN

- END

SUBROUTINE IWVERSE(A,AJINV,DET)

C INPLICIT REAL*8 (A-§,0-2)

DIMENSION A(3,3),AJINV(3,3)

INTEGER I )
AJINV(1,1)=A(2,2)*A(3,3)-4(3,2)*4(2,3)
AJINV(2,1)=-A(2,1)*A(3,3)+A(3,1)*A(2,3)
AJINV(3,1)=A(2,1) *A(3;2)-4(3,1)04(2,2)
AJINV(1,2)=-A(1,2)*A(3,3) +A(3,2)*A(1,3)
AJINV(2,2)=A(1,1)9A(3,3)-A(3,
AJINV(3,2)=-A(1,1)*A(3,2)+A(3,1)+A(1,2)
AJINV(1,3)=A(1;2)*A(2,3)-A(2,2)*A(1,3)
AJINV(2,3)=-A(1,1)%A(2,3)+A(2,1)#A(1,3)
AJINV(3,3)=A(1,1)*A(2,2)-A(2, 1)*4(1,2)

DET=A(1, 1) *AJINV(1, 1)#+A(1, 2)$AITNV(2, 1)+A(1,3)+AJINV (3, 1)
DO 20 J=1,3
DO 10 1=1,3 -
10 AJINV(I,J)=AJINV(I,J)/DET
20° CONTINUE v
DO 30 I=1,3 .
DO 30 J=1,3
30 CONTINUE
RETURY LA T
END - x
> ‘ E
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Ce LISTING OF THE PROGRAN #+FREQee

Co PROGRAN TO CALCULATE THE NATURAL FREQUENCIES OF
Ce THE BLADE USING GUYAK’S REDUCTION TECHNIQUE AKD
Ce THEN DECOUPLING THE EQUATIONS OF NOTION

C IMPLICIT REAIA8 (A-H,0-2)

REAL MAX § i
DIMENSION COORD(20,3) , STIFF(60,60),DERIV(8,3,20)
DIMENSION SHAPE(8,20) ,ST(60,60) ,ENASS (60,60)
DIMENSION KD(20),K(20) ,¥(20) ,Z(20),KS (60)
DIMENSION D(38),WKAREA (2000)
DIMENSION GKK(024,924) ,GNK(924,924)
REAL GKKINY(200,200) , LAKDA(200,200), .
1 F(924).,Ks5(724,724) ,TEMP8(724, 200) ,KSSINV(724,724)
REAL R(924) , TENP1(924) ,TENP2(924) ,K¥S(200,724) ,T(924,200),
~ . 1-TENP4(200,024) , GKR(200,200),GMR(200,200) , TENP7(924),
1 TEMP3(200,924) , EVR(200/, 200) -
REAL TENP6(200,200) , GHMN(200, 200),EV(200,200) , TT(724,200)
REAL TENP10(200,200) , EME(200, 200),EVV (200,200)

=
I3

COMPLEX ILAMDA(200,200),EIGVAL (200) , EIGVEC(200 , 200)

OPEN (UNIT=2, FILE=IDMASS,DAT ., TYPE=" NEW")
OPEN (UNIT=3, FILE=’NESH .DAT’, TYPE="0LD*)
OPEN (UNIT=7, FILE=’DISP.DAT’ , TYPE='0LD*)
OPEN (UNIT=11 ,FILE='PHI .DAT’ , TYPE='NEW*) * 1
OPEN (UNIT=12, FILE='TRANS.DAT® , TYPE=’ NEN*)

OPEN (UNIT=8, FILE="EIGEN.DAT’ , TYPE='NEW")
TVOL=0.0

GSUM=0.0

D0 30 I=1,924

00 30°J=1,824
GHM(T,1)=0.0
30 GKK(1,7)=0.0

0 20 NELNs1,35
READ (3,+)FEL




‘v

DO 10 I=1,20
READ(3,#)ND(I),X(1),¥(1),2(1)
10 CONTINUE

00,1 J=1,3
D0 1 I=1,20
IF(J.EQ.1)CO0RD(T,J)=(X(1))/1000.0
IF(J.EQ.2)C00RD(I,J)=(¥(1))/1000.0
IF(J.EQ.3)CO0RD(I,3)=(2(1))/100.0
1 CONTINUE

CALL SHAPE20(SHAPE,DERIV)

CALL STIFFNASS20(NEL,COORD,SHAPE,DERIV , STIFF, EMASS, VOL)
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C DIRECT ASSEMBLY OF SYSTEM [K] & [M) MATRICES

D0 7 1=1,20
DO 7 1DOFK=1,3

IP(IDOFN.EQ. 1)NRONS=ND(1)#3-2
1F(IDOFK.EQ. 1) NROVE=1+3-2

IF (IDOFN.EQ.2)NRONS=ND(I)#3-1

IF (IDOFN .EQ.3)NRONS=ND(I)*3.

IF(IDOFN.EQ.3)NRONE=T»3

D0 7 J=1,20

DO 7 JDOFN=1,3

IF (JDOFN.EQ. 1)NCOLS=HD(J) #3-2'

IF(JDOFN.EQ. 1)NCOLE=J#3-2

IF (JDOFN.EQ. 2)NCOLSZND(J) #3-1

1F(IDOFN . EQ. 2)NCOLE=J93: J
IF(JDOFN.EQ.3)HCOLS=HD(J)#3 ‘
IF(JDOFN.EQ.3)COLE=Ja3

GKK(NROWS, NCOLS)=GKK (NROWS , HCOLS) +STIFF (NROWE, NCOLE)
GHH(NROVS, NCOLS) =GHM (NROVS, NCOLS) ENASS (KROVE,, HCOLE)
7 CONTINUE -

20 CONTINUE

C APPLY ‘BOUNDARY CONDITIONS




DO 200 I=1,38
READ(7,#)D(1) v
NROV1=D(I)e3-2
NRAOW2=D (1)#3-1
NROV3=D(I)*3
NCOL1=NROV1
NCOL2=WROV2
NCOL3=NROW3
DO 100 K=1,92¢
. IF(HROW1.EQ.K)GKK(NROW1,K)=0.0
TF(NROV2.EQ.K)GKK(ROV2,K)=0.0
IF(NROWS3. EQ.K)GKK (ROW3,K)=0.0
100 CONTINUE
"200 CONTINUE *

DO 300 I=1,924
DO 300 J=1,92¢
IF((1.EQ.J).AND. (GKK(I,J).EQ.0. 0))1;121

END IF .
300 CONTINUE .
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C  DYNAMIC CONDENSATIOR

c CONDENASTION IS CARRIED OUT FOR NSD=724

C ¥ = TOTAL¥0. OF D.0.F.
C NSD=HO. OF SLAVE D.0.F
C ¥R =HO. OF RETAINED MASTER D.O.F.

l 924

: l’snﬂu
-NSD

C THE CONDENSATION STARTS HERE

DO 2000 II=1,NSD




§ MAX=0,
DO €0 I

=1,
§ - 60 n(x)-amm 1)/GMM(I,I)

g DO 70 I=1,
IF(R(I).GT.NAX) THENR
MAX=R(1)
IMAX=I
ELSE
Go 10 70
ENDIF
70 CTINUE

DO 80 J=1,M0
TEMP1(J

- TEMP2(3)=

80 TEHPT (J)=F(INAX)
DO 90 I=IMAX,H-1

DO 90 J=1,M8

‘, : GKK(I,1)SGKK(I+1,3)
_-80 F(I)=F(I+1),
DO 1000 J=1,00
GMM(N, J)=TENP1(J)
GKK(H,J)=TEHP2(J)
1000 F(N)=TENPT(J)
DO 110 I=1,8H
TEMP1(1)=GNN(I, INAX)
TEMP2(I)=GKK(I, IMAX)
) . 110 conTINGE
_—~" DO 120 J=INAX,¥-1
DO 120 I=1,8K
GMM(1,3)=GNH(I, J+1)
GKK(I,J)=GKK(I,J+1)
120 CONTINUE
% DO 130 X=1,M8
X i . GMM(I,H)=TENPL(I)
GKK(1,X)=TENP2(I)
130 CONTINUE
N=K-1 -
2000 CONTINUE

1]
DO 140 I=1,XSD

'
»




CALL VNULFF(TENP4,T,HR,924, )R, 200, 924,GHR, 200, 1ER)

DO 140 J=1,XsD
140 KSS(I,J)=-1.#GKK(I+NR, J+UR)

DO 1100
DO 1100 J=1,ISD
1100 KMS(I,J3)=GKK(T,J+HR)

"

IDGT:
CALL LINV1F(KSS,NSD,724,KSSINV, IDGT , WKAREA , IER)
CALL VKULFP (KSSINV KNS ,KSD,HSD,NR, 724,200, TEXP8, 724, IER)
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C FORM THE TRANSFORMATION NATRIX [T)

DO 160 I=1,HR
160 T(I,I)=1,

DO 170 J&1,NSD

DO 170 J=1,NR

170 T(I+NR,J)=TEMP8(1,1) 3 /
DD 171 I=1,NSD

DO 171.J=1,HR

171 TI(L,3)=T(I+NR,J)

WRITE(12,998)TT %
WA

_ C FORM THE REDUCED SYSTEM (K] & [X] MATRICES

CALL VKULFH(T,GKK, 924,8R, 924,024,924, TEHP3 , 200, IER)
CALL VNULFF(TEMP3,T,NR,924,3R,200, 924,GKR, 200, IER)
CALL VNULFH(T,GHM,924,HR, 924,924, 924, TENP4 , 200, IER)

C INVERSION OF REDUCED (K] NATRIX .

IDGT =0




s

CALL LINVIF (Gn,yzoo.ﬁkxilv.mﬂ,mm,mn)

C MULTIPLICATION OF GKKINV AND GHN

CALL VMULFF (GKKINV,GMR,
D0 220 I=1,¥

20-220 J=1,X -
220 ILm)A(r .l)=cnPLx(l.AlmA(I m

¥,200,200, LAKDA, 200, TER)

C DETERMINATION OF EIGEN VALUES AND EIGERVECTORS

1J0B° =1 -
CALL EIGCC(ILAMDA,N,200,1J0B,EIGVAL,EIGVEC,200, WKAREA, IER)

WRITE(S ,#)EIGVAL,

D0 310 1=1,200

D0 310 J=1,200

310 EVR(I,J)=REAL(EIGVEC(I, 1))

C NORMALIZING THE EIGERVECTORS

0 320 J=1,200

ZW=EVR(1,])

0,320 I=1,200 . .
BV(I, ) =EVR(T, J)/20

320 COPTINUE o :

CEERE THE REDUCED MASS 'MATRIX IS DIAGONALIZED

L VAGLFN(EV, GHR, 200,200,200, 200,200, TENPS, 200, IER)
“CALL VMULFF(TEMPS,EV,200,200,200,200,200 , G, 200, IER)

VRITE(2;*) (GNMN(I,1),1=1,200) L N
¢ HERE njk ARE
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N DO 400 J=1,200 .
M o SUMM1.0 g
i DO 430 1=1,200 B

430 EVV(I, J)=(SUMN/SQRT (GNHN(J,3)))+EV(I,J)

400 CONTINUE

WRITE(11,998)EVV

998 FORMAT(2X,E12.6,2¢,E12.6,2K, E12.6,2X, E12.6, 21 Ei2.6, u)

11 CONTINUE

STOP
END ’

. . .
R ~ . ’
, .
' )
s “ :
. Lj * o .
\ . 7 »
. ‘




Ell Ce LISTING OF THE PROGRAM ¢sTRANSVIBes
Ce PROGRAM TO CALCULATE THE TRANSIEET RESPONSE
Ce’AND VIBRATORY * STRESSES DUE' TO NOZZLE EXCITATION Y
Ce AND CENTRIFUGAL Fulczs &. THEN DIST. ENERGY STRESS .

. lm. EV(200, 200), T(624,200) ,TT(724,200) .nv(zno)
* REAL EIGEN(200),Q(200) TENP1(260) U(924),51(200),
¢ W REAL 6M(200,200Y;F{924),FC(200),Fa(200),QC(200)
o .. . REAL'QI(200),QvI(200),QF(200) ,QVF(200),RPN(12) -
REAL EVINV(200,200),WK(500000),EVV(200,200)
o REAL TENP2(200),QCF(200),UCF(924) c ' Z
. . REAL DDR1(12),DDR2(12),DDR3(12) ,DDR4(12)

- . CONMON, RPM1(12),DR1(12),A1(12),B1(12),C1(12)
. . COMMO RPN2(12),DR2(12),%2(12),82(12),C2(12)
COMMON RPM3(12),DR3(12),43(12),B3(12),€3(12) f
COMMON RPM4(12),DR4(12),44(12),84(12) ,C4(12) = = . 5

INTEGER IER
wrt
oo DATA IPI/D 0, 100, 0,200.0,400.0,700.0, 100070, 1500.0,
: & 1'2000,0,2600.0,3000.0,3600.0,4000.0/ "
DI % DATA DDR1/0.034,0.0338,0.0284,0.0264,0.01525,0.00948, +
) 1 0.00802,0.007,0,00634,0.0058,0.00538,0. 0050/
3 . DATA DDR2/0.04,0.03872,0.0338,0.03,0.016876,0.01,
{ 1 0.00904, 0. 0082,0.00768,0.00738,0.007,0.00676/
.. DATA DPR3/0.045,0.04,0,037,0.0314,0.01875,0.0109,
1 o.oouu.o.ooua.o.oosn,o.wwe.o;gon:.omon'/
DATA DDR4/0.057,0.05,0.042,0.03727,0.02,0.0121,
1 0.00985,0.00916,0.0088,0.00882,0.00844,0.00832/
T 1 B -

C DATA APN,DDRI REPRESENTS DAWPING RATIO OF ST MODE :
+' CAS A FUNCTION OF ROTOR SPRED & SO OF FOR 1ST 4 MODES

2 #
JFILE='PHI.DAT®,TYPE='OLD’) " 2 J ‘
JFILE=?TRANS.DAT’ , TYPE='0LD’)

© . " oPRN(UNITS
L R .., OPEN(UNITs:
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OPEN(UNIT=9,FILE="IDMASS.DAT* , TYPE="OLD*)

C INITIALIZING DATA

o DO 7 1=1,12 v
) RPH1(I)=RPH(I) % . -
. RPN2(I)=RPH1(I) : . .
+ RPN3(I)=RPN2(I) . L e
RPN4(T)=RPH3(I) i .
DRA(T)=DDR1(1) ¥ , . e 4
DR2(I)=DDR2(I) . & . 3
DR3(I)=DDR3(1) 2 ] B
DR4(1)=DDR4(T) e * 1
7 CONTINUE

2 e D010 I=1,924
D0 10 J=1,200
. 10 T(1,3)=0.0
. » . %
) DO 20 I=1,200 . : N
20 T(I,1)=1.0 . ch

- N C READING IN THE- TRANSFORMATION MATRIX, NATURAL FREQ., ) . * 4
C DIAGONALIZED MASSES AND MATRIX OF NODAL VECTORS d

READ(3,998)TT - ‘ u ol
998 FORMAT(2X,E12.6,2X,E12.6,2X,E12.6,2X,E12.6, 2, E12.6,2K) .
X ) .

DO 30 I=1,72¢ ! o
DO 30 J=1,200
. 30 T(1+200,3)=TT(1,J)

READ(2,998)EV ¥ 5
READ(7,#)EIGEN ) 3 .
" READ(9, ) (GH(I,1),1=1,200) 2 L
. DD f J=1,200
) DO 1 I=1}200 4 :
1 EV(T,J)=EV(I, 3)#(SQRT(ABS(GH(J,2)))) s

DO 2 I=1,200 . /

w55 o
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\ 3 %
J - D0 2 J=1,200 . "
2 BVV(I,3)=EV(I1,]) - ° i
' . :
i & 5
C INVERTING THE KATRIX OF KODAL VECTORS &
GT=0 L4
$ CALL LINV2F(EVV, 200,200, EVINV, IDGT , VK, IER) %
y TINE=0.0 '
3 I3
)
C INPUT KINEMATIC DATA & HEIGET OF THE INPULSE® '
2
. THETAS=26,2693. 1416927/180.
ALFA=2(4000.040.10472)/300.0 -
Px=0Y9p22448.0
PY=-0.0064+48.0
P 0¥=0.0 < L=
. * C DISTRIBUTE ANPLITUDES OF FORCE VECTOR DUE TQ IMPULSE
- C ALONG - THE HEIGHT' OF THE BLADE =
] .
b0 50 J=1,5 .
- READ(8, =) NS1,S2,NS3, ELEN S § o
“NDX1=N51%32 -
¥DX2:X52¢3-2 Y
NDX3eNS3e3-2
WDY1sNS183-1 E ¥ — §
NDY2sNS293-1
. NDY3#NS3w3-1
B F(NDX1)=PXeELEN/3.0+F(NDX1) . '

v F(NDX2)=PX+ELEN/3,0+F(NDX2) -

F(NDX3)=PX#ELEN/3.0+F(NDX3) "

. F(NDY1)=PYeELEN/S. 0+F(NDY1)

& . F(NDY2)=PY#ELEN/3,0+F(NDY2) . .
F(NDY3)=PY¢ELEN/3 . 04F(XDY3)

50 CONTINUE
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g ® ’
C CONDENSE THIS FORCE VECTOR & CONVERT IT INTO
C MODAL COORDINATES . ) B

‘cm-vmﬁ(l‘.r.nu.Qoo.l.nc.na.rc.?oo,ln)

CALL VMULFF(EVINV,FC,200,200,1,200,200,FG,200, 1ER) *
© CALCULATE TRANSIENT vm*m RESPONSE :
TIN=0.0 5 - :
KP=1 :
ICOUNT=1 % .
101 CONTINUE
T1=SQRT(2+ TAETAS/ALFA) " .
T2=SQRT(2¢ (THETAS+(7.5¢3.1416927/180.))/ALFA)
DT=T2-T1 .
DTIMP=T1+(DT/2.)
DDT=DTINP-TIN . .
TIN=DTINP
OM=0+ (ALFA+DDT) & %
THETAS=THETAS+(30.0#3.1415927/180.) d ~
IF(ON.GE. 332.0277)G0 TO 102 E
0 T0 10 .
102 SPEED=0M/0. 10472 ’
CALL SPLFIT(KPM1,DR1,41,B1,C1) '
SI(1)3FV(SPEED)"
CALL- SPLFIT(RPH2,0R2,42,52,2)
SI(2)=FX(SPEED) = |
CALL SPLFIT(RPH3,DR3,A3,B3,C3) &
SI(3)=FY(SPEED)
CALL SPLFIT(RPN4}DR4,A4,B4,C4) P\ | \
SI(4)=FZ(SPEED) ? ’
C CALCULATE ' RESFONSE [DUE TO X0ZZLE EXCITATION 3

S R Sl




++ IFICOUNT.EQ.1)THEN . )
. CALL RESINP(FG,DT,EIGEX,GM,SI,DDT,QI,QVI)
A % ELSE .

! o CALL RESFREE(QI,QVI,DDT,SIEIGEN,QF,QVF)
* CALL RESINP(FG,DT,EIGEN,GX,SI,DDT,Q,QVI)
- I END IF Sk
i | 1
N : DQ 60 I=1,200 i ~
i QI(I)=QI(I)+QF (1) . & -
o . 60 QVI(I)=QVICI)+QVF(I) -
2 .~ TINE=DTINP
] ! '. b -~
» : . C CONVERT NOZZLE 'EXCITATION RESPONSE .INTO CARTESIAR 3§
( C COORDINATES
0 : ; 2
Ny ’ CALL VHULFF(EV,Q1,200,200,1,200,200, TENP1 200, IER)
: . 80 CALL Avlm(\’,fml,'26,2“,1,92!,200.“,'2],Xll)

* CBVALUATE THE NOZZLE EXCITATION STRESSES

’ ©  CALL STRESS(1,U,0M,TIME)

i3 s
C CALCULATE TEE RESPONSE DUE TO CENTRIFUGAL FORCES -

C CALL CENTRIFUGAL(EIGEN,SI,GN,ALFA,DTINP,QCF)

aeaeeree
C CONVERT C.F. RESPONSE INTO CARTESIAN COORDINATES
.4

4 - g N
C CALL VNULFF(EV,QCF,200,200, 1,200,200, TENP2,200, IER) ¢
; (/ ¥R ! © CALL VNULFF(T,TENP2,924,200, 1,924,200, UCF,924, IER)
. A 5 . o




DO 10 I=:

»

GUCALCULATE STRESSES DUE TO C.F.

C CALL STRESS(2;UCF 0N, TINE) f
i ¢

100 douRT=TCOUNTH1
IF(OM.LE.333.09)GO TO 101 ¢

sTOP
EXD

C sessses IHPULSE RESPONSE- CALCULATION sssssusssvare

snnuv‘r:ln RESINP(FG,DT,EIGEN,GH,SI , DTINP, q1,Qv1)
REAL FG(200),S1(200),QI(200) ,QVI(200) ,EIGEN(200)
REAL GN(200,200)

200
=SQRT(1.~(SI(I)##2))
XP(-SI(I)*EIGEN(I)*DTINP)
IN(ASEIGEN (I)+DTINP)
D=COS(A+BIGEN(I)*DTINP)
QI(I)=FG(1)#DT+B+C/(EIGEN(I)*A*GH(I,1))
QVI(I)=(FG(1)*DT)/(EIGEN(I)*A+GH(I,I))

QVI(I)=QVI(I)+((-SI(1)+EIGEN(I)#B+C)+(B+A*EIGEN(1)+D))
~~10 CONTINUE®

END

. G .

SUBROUTINE RESFREE(QX,QVI,DTIMP,ST,EIGEN,QF,QVF) ~
REAL -QI(200),QVI(200),51(200), sm:l(:no) QF(200)
REAL QUF(200) N
50 10 1n1,200 .

A=SQRT(1. - (S1(1)+#2)) A
l-ul’(-sx(l)-zmsl(l)v’DTIHP) .
CaSIN(ASRIGEN(I)*DTIKP) .
D=COS(ASEIGEN(I)+DTINP)
x:(qvx(:)o(sx(x)dur.xl(x)-nx(x)))/(lxusl(x)n)
QF(1)=(BeX+C)+(B+QI(I)*D)

C ##44#sFREE VIBRATION RESPONSE CALCULATION ¢sasvevesve




" 169

QUF(1)=-SI(1)*BIGEN(1) 9B+ (X+CHQI(1)*D)
(!)'W(l)"'(x'l"’“‘l(l"D‘(ﬂl(l)‘l.llﬂ"(l)'c))
10 CONTINUE = - .
* RETURX =
o, ¢ Yo e

C v

4CENTRIFUGAL FORFE . RESPONSE ‘CALCULATION. s+#ssssstss
SUBROUTINE CENTRIFUGAL(EIGEN,ST,GH,ACC, TIME,QCF) . ¥
. DIMENSION EIGEN(200),SI(200),QCF(200),ED(200),GK(200,200)
REAL !"l(,) INTB(2);11(3),12(3) * L
REAL INTH,INT2,INT : >
INTEGER R,R1 ° - :
accLeace 8 =~ g . -
T=TINE

DO 30 I=1,200
(1)=EIGEN(I) #SQRT(1. ~SI(I)*+2)
SI(1)EIGEN(T)
B=ED(I)
C=SQRT(A4#2¢B#92)
ALFA=(ATAN(B/A))+180./3. 14169

IF(TU.EQ.0)TU1=1.0 ) G g &
IF(R.EQ.0)R1=1 : $

IDa(~1)eeR1 . =
IF(R.EQ.0)ID=1

‘n(l)-(ln)-20(('rlu)"(2-!))tsll((l'w-(lﬂ)ﬂu‘l) .
1 +3.14169/180.) D
. IF(K.EQ. I)IX(K)_'H(K)/((C"(Ml))'i) . s
IF(K.NE. 1)T1(K)=I1(K)/(Coo(R+1)) .. d
12(k)=(1D)#2%((TU1)+8(2-R))scOS (B TU-(R41)SALFA) :
1 3,14150/180.)
IF(K,EQ.1)T2(K)=12(X)/((C+# (R+1))#2)




£

.1)1:(:)-12(!)/(cn(lo1).)'
NUE

- . 5
IF(fU.EQ.0)INTA(1)=-EXP(A® (TU-T))$COS(ED(I)#T+3. 14159
1 /180.)#(11(1)+11(2)+11(3))
(TU.EQ.0) INTB(1)=EXP (A (TU-T)) +SIN(ED(I) #T+3. 14169 .
1 /180.)#(12(1)+12(2)+12(3))
IF(TU.EQ.T)INTA(2)=-EXP(A® (TU-T) )+COS(ED(T)#Te3. 14159
T 71./180.)#(I1(1)+11(2)+11(3))
IF(TU.EQ. 'r)xm(z)-xxr(p(w—r))‘sn(ﬁ:u)-r-: 14159/
- kY 1 /180.)+(12(1)412(2)+12(3))
LI . 3 .
. Ic=1C+1 B

=T
IF(IC.EQ.1)GO TO 60

INT1=INTA(2)-INTA(1)
. INT2=INTB(2)-INTB(1) ’ 5 v
¢ INT=INT1+INT2
QCF(1)=((ACCL)++2)#INT/(ED(T)+GH(T, 1))

AN

. .
- SUBROUTINE snss(mxx U, 0k, TIHE) .
C IMPLICIT REAL*8 (A-H, n-§
DINEASION COORD(20,3) ,DERIVI
DINENSION SHAPE(8,20),ST(60,6
DIMENSION -¥D(20),X(20),Y(20)
DIMENSION ESTRESS(6),IBLM(15)

20 ¢

UN(60)

) jls(oo) LU(924)

. ‘ . ¢

LR o OPEN(UNIT=3,FILE=NESH.DAT* , TYPE="0LDY)
-t OPEN(UNIT=7,FILE='DISP.DAT*,TYPE="0LD")\

< 5 ~ OPEN(UNIT=12,FILE="VSTRESS .DAT’ , TYPE="
. , OPEN(UNIT=14,FILE=’CSTRESS.DAT’ , TYPE="NEV

" RAD=V.5 § 5 N

i " .
” ~70.20 NELN=1,35 . S g t
. READ(3, O)IBL . *
DO 10 I=1,2( : 3 & Ny

nnn(s O)ID(I) X(1),¥(1), 2(n) h
1 . N N N




A\, 10 CONTINUVE

C EXTRACTING THE NODAL DISPLACEMENT VECTOR - FOR
C EACH ELEMENT FROM THE GLOBAL DISPLACEMENT VECTOR

< . e
K=t E t

uS(K
¥STK+1)=ND(2)#3-1
¥S(K42)=ND(I)*3
K=K+3 .
21 CONTINUE

D0 22 121,60 -
22 UN(T)=U(ES(I)) o

1m

C MULTIPLY- C.F. RESPONSE WITE (R+Z) FOR EACH ELEMENT

=
IF(INDEX.EQ.2) THER

DO 30 I=1,60

30 UN(I)=UN(I)#(RAD+(2(9))/100.)

ELSE .
40 10 36 > ;
EID IF )

N .-
35 D0 1 31,3 5
DO 1 121,20 .

1IP(J.EQ.1)COORD(T, 1)=(X(1))/1000.0
' “IF(J.EQ.2)CO0RD(T, J)=(Y(1))/1000.0

JIF(J.EQ.3)CO0RD(I, J)=(2(1))/100.0

/1 CONTINUE® .

\ *  IF(ON.GE.333,070)THEN.  ~ % ¥y
\ 70 CALL SHAPE20(SHAPE,DERIV) R :

N 5 o .
CALL STRESS20(INDEX,NEL,UN,COORD,SEAPE, DERIV,ESTRESS).

CALL PRI.ICIPAL(E'K;BSS.DFTRBSS) Ed i *




IF(INDEX.EQ.1)VRITE(12,#)NEL,OM, TINE, DSTRESS
IF(INDEX.EQ. 2)VRITE(14, %) HEL, Dll TINE,DSTRESS ,/

" ELSE .

GO TO 60 -
END IF .

60 CONTINVE

20 CONTINUE

REWIND 3

REWIND 7 .
RETURN

END

o .
SUBROUTINE SHAPE20(SHAPE,DERIV)

C IMPLICIT REAL#8 (A-H,0-2)

DIMENSION SHAPE(8;20) ,DERIV(8,3,20) ,F(ZTA(20)
-DIMENSION SI(20),F1(24),NTA(20)

DATA F/-0.577350269189626, +0. 571350259159620/

DATA ZTA/-1.,+1.,41.,~1, -
©11,,0.0,-1. oni,noﬂ/

DATA NTA/-1.,-1.,1.,1.,-1.,=1.,1.

0.0,1.,0.0/

. 1.,1.,1. 1,00000000

T R B R b

KK=KK+1
F1(KK)=F(1)
“KK=KK#1
F1(KK)=F(J)
KK=KK+1
F1(KK)=F(R)
101 CONTINUE

3 D :
DO 10 NN=1,8 Q
NMe=(RE-1)3+1

172




&
o
\ 173
GZ=F1(NN1) p
GN=F1(NN1+1) o g © ke
GReF(HI142) L.
D0 20 I=1}8

SHAPE(NN,T)=(1.0/8.0)%(1.0+GZ+ZTACI))*(1.0+GReNTA(T))#(1.0+GRs

1 SI(T))*(GZ+ZTA(T) +GNNTA(T) +GR¥ST(1)-2.0)
DERIV(NN,1,1)=(1./8,0)s2TA(1)*(1. om--m(I))-(nax-szu))-

1(2. n-nA(I)mz.ul-m(nocn-sur)-i 0)
DERIV(NE,2,1)=(1.0/8.0)#KTACI)* (14GZeZTA(L) )# (14GRsSI(I))

1 (GN#NTA(I)#2.04GZ#ZTA(I)+GR¥SI(I)~1.0)
DERIV(NN,3,1)=(1.0/8.0)+SI(I)# (1. +GZ$ZTA(1)) (1. +GE+NTA(1))*

1 (Gz-z‘u(x)wnln(x)n occnosx;x) 1.0)
20 CONTINUE -

DO 30 Js8,12
SHAPECH, 3)=(1../4.)%(1.0- mmz)on +GZ2ZTA(3))*(1.+GR+NTA(I))
DERIV(HN,1,3)=(1./4.)#2TACI)*#(1.0-GRe%2)# (1. +GN+NTA(J))
DERIV(HN,2,3)=(1./4.)$MTA(I)#(1.~GRe#2)$(1.4ZTA(3)+GZ) =
DERIV(HN,3,1)=(~1./2.)#GRe (1, 3GZ+ZTA(1) ) #(1 . +G+NTA(J)) -
30° CONTINUE

DO 40 L=13,16 5 . -
IF(L.EQ. 16)K=19 : .
1IF(L.EQ.16)K=17 .
1F(L.EQ. 14)K=15 .

IF(L.EQ.13)K=13

SBAPE(NN,K)=(3./4.)+(1.-G2#+2) (1. +clﬂﬂ(x))0(l +GR*SI(K))

DERIV(NN, 1,K)=(~1./2.)#6Z# (1. +NTA(K)#GN) # (1. +SI(K)+GR)

DERIV(NN,2,K)=(1./4. ) $UTA(K) #(1.-GZs+2)#(1.+SI(K)*GR)
=(1./4.)#SI{K)*(1.-GZ9+2) # (1. +BTA(K) +GN) . b

1

40 CONTINUE'

DO 50 K=17,20 -+
IF(K.EQ.17)L=14 -

IF(K.EQ.18)Ls168

IF(K.EQ.10)L=18 B F .
IF(K.EQ.20)L=20 :
SHAPE(NN,L)=(4./4.)*(1.- -2)-(1 4GZeZTA(L))#(1.4ST(L)4GR)  ~ =
DERIV(NN,1,L)=(1./4.)#2TA(L)#(1,0-GNe*2)#(1.+SI(L)¥GR) [ E
DERIV(NN,2,L)=(-1,/2.)$GN* (1,+ZTA(L)#GZ)*(1.+SI(L) +GR)
DERIV(NN,S,L)=(1./4.)¥SI(L)*(1. ~GNes2)(1. 021!(1.)!!17
50 CONTINUE .

10 CONTINUE .




RETURK
END

SUBROUTINE STRESS20(INDEX,¥EL,UN,COORD,SHAPE,DERIV,SMAX) -

C INPLICIT REAL#8 (A-H,0-2) ~

DINENSION’B(S,60) ,AJACOB(3,3) ,SHAPE(S, 20) , UN(80)

DIMENSION AJINV(3,3),DERIV(S,3,20),C00RD(20,3),P(8,9)

DINERSION R(9,60),PQ(8,9),D(6,¥),BTD(60,6) , AVK(100)
¥(6) ,STRE(S, 8)

DIMENSION Q(9,8),VOL(8),SKAX(6)
INTEGER TER ¥
RHO=8526.0
DO 2 I=1,8

STRATH(T
EPSILON(I)=0.0
2 STRESS(1)=0.0

NE=0
DO 105
DO 105 JI=1,;

DO 106 II=1,2 N
NN=NN+1

3

DO 50 L=1,6
DO 50 K=1,60
50 B(L,K)=0.0

DO 51 I=1,3
DO 51 J=1,3 .
51 AJACDB(I,3)=0.0 3

DO 52 I=1,3
DO 52 J=1,3
SUN=0.0
DD 53 K=1,20
SUM=SUN+DERIV(KN, T ,K)+COORD(K, 3)
53 CONTINUE
AJACOB(I, J)=SUK
CONTINUE

CALL INVERSE(AJACOB,AJINV,DET), "
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