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Abstract

A clutter suppression scheme for high frequency (HF) radar is presented in this
thesis. The HF radar has been developed for coastal surveillance and the remote
sensing of the ocean. When the HF electromagnetic waves propagate over the
ocean, the backscatter from the ocean surface has well defined frequencies, known

as “Bragg” frequencies, shifted from the radar frequency. One of the characteri:

of the HF backscatter is the high level of ocean clutter which hampers target
detection. It is desirable to suppress the ocean clutter before target detection
operation. The proposed scheme is developed based on the recognition of the time-

varying behaviour of the ocean clutter that can be simply characterized by two

d f: Julated st

signals with their centre frequencies
equal to the “Bragg” frequencies. The scheme consists of two parts. First, a time-
varying technique referred to as Hankel rank reduction method is used to estimate
the instantaneous frequencies of the clutter signals. The method states that a
Hankel matrix of a time series data consisting of a finite number of sinusoids can
be approximated to, via Singular Value Decomposition (SVD), a lower rank matrix
defined by the finite number of the principal singular values, even if the frequencies
of the sinusoids are varying slowly with time. The instantancous frequencies are
estimated from those principal singular values. The use of SVD is to decompose
the Hankel matrix into a signal and a noise vector subspace. The signal subspace is
identified by the largest singular values. Second, a process in which the frequency
component of the clutter signals is removed from the reduced rank Hankel matrix
instantaneously is developed to suppress the ocean clutter. Subsequently, another
reduced rank Hankel matrix is constructed from which the target signal can be
extracted.

The performance of the scheme has been evaluated on computer-synthesized



data and on some real data collected from a recently developed HF radar. The
results from both cases showed that the instantaneous frequencies of the ocean
clutter signals and the target signal were properly tracked by the Hankel rank
reduction method and that a substantial level of the ocean clutter, in the range of
20 10 50 dB, could be suppressed by the scheme proposed.
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Chapter 1

Introduction

1.1 Problem Statement

High frequency (HF) radar systems have been developed for coastal surveillance
and the remote sensing of the ocean, e.g. detection of ships and monitoring the

sea iti The HF ic waves in the band of 3-30 MHz

propagate over the ocean surface in groundwave mode. The high conductivity of
the sea water results in low propagation loss of the groundwave and hence allows
long-range (over the horizon) target detection. Echoes from the sea surface and
for any surface targets are received by the radar system. One of the characteristics
of the sea echo, known as the ocean clutter, is its high level energy. Although
these ocean clutter signals have been realized to be a good source of information
on the ocean conditions, such as wave height, wind direction and etc., they become
the unwanted signals as far as target detection is concerned because they will ob-
scure the required target signals, particularly when the target’s Doppler frequency
(a frequency shifted from the transmitted frequency of the radar) falls close to

the clutter’s Doppler Doppler frequency to separate the

target from the ocean clutter will not be possible except by additional signal pro-
cessing. Thus, it is desirable to suppress the clutter as much as possible before

the target detection operation. The objective of this thesis is to develop a clutter




suppression scheme for HF radar.

1.2 Brief Background Review

In order to suppress the ocean clutter in the HF radar, it is important to understand
the behaviour of the clutter signal first and then specific signal processing technique
can be developed based on the clutter’s characteristics. In 1955, Crombie [1] first
observed that the two dominant peaks displayed by the ocean clutter in the Doppler
spectrum were due to the scattering from two sets of ocean waves whose wavclength
equals half the radar wavelength approaching and receding from the radar. The
scattering from these two sets of waves is similar to that from a diflraction grating

which is imes described as the Bragg-scatter, by analogy to the Bragg-scatter

mode for the X-ray diffraction by crystals [2]. Thus, the Doppler frequencies of
this ocean clutter ate also known as the “Bragg” frequencies. In addition to those
two dominant first-order peaks, there are some smaller and more complex high-

order The th ical ions of the ocean clutter were derived by

others in more recent years [3, 4, 5, 6]. An average Doppler spectrum of the first-

and second-ord ing can be d from the
Recent work by Khan [7] has demonstrated that the ocean clutter has a time-
varying behaviour that can be modelled by two narrowband time-varying signals
and tracked by time-varying signal processing techniques. This time-varying model
treats the ocean clutter as two moving targets in addition to any other potential
targets during target detection. Thus, that poses a problem in suppressing two
moving targets among the other targets. The traditional way of suppressing radar
clutter, referred to as the moving target indicator (MTI) filter, is not applicable to
this problem because the ocean clutter has nonzero Doppler frequency while the

MTI assumes that the clutter is stationary and has zero Doppler frequency [8].



As the radar clutter in reality is rather non-stationary, adaptive filter theory
provides a popular way of dealing with the problem. Gibson and Haykin (] pro-
posed an adaptive clutter suppression technique in 1983. The technique is based
on the use of an adaptive autoregressive (AR) modelling of the radar clutter along
with the Least Mean Square (LMS) adaptation algorithm. It is assumed that the
clutter signals can be modelled quite closely by a relatively low order AR process.
That means the clutter signal is modelled as the output of an all-pole filter having
a white noise source to its input. The technique also assumes that the target and
the clutter have generally different Doppler spectra where the clutter’s spectrum
tends to be diffused as compared to that of the target. This technique worked well
when dealing with the clutter such as weather, ground and ice pellet encountered
by air traffic surveillanceradar. All these clutter phenomena appear to havea wide
spread Doppler spectrum. However, the ocean clutter in HF radar is observed to
have a similar Doppler spectrum as that of the target, i.e. of narrow spectral
widthe. In this case, the clutter components are not likely to be suppressed.

A similar approach has been used by Hou [10] in 1984. In this clutter suppres-
sion technique, Maximum Entropy Method (MEM) which is a spectral analysis
method of the AR process is used to model the clutter of interest. A predeter-
mined model of the clutter is assumed to be available and adaptively updated to
obtain an optimum estimate of the clutter. The updating process of the clutter
stops when a target is detected. The model of the clutter is then subtracted from

the received signal.

Another typeof clutter ion scheme was d by Zhang and Haykin
(11] in the same year. This scheme makes use of the idea of noise cancellers in which
the data samples from two adjacent range cells are used as references when the
data samples from the range cell of interest is processed. Here, it is assumed that

no target is present in those two adjacent cells except clutter. The suppression of

3



the radar clutter is achieved by subtracting the data of the two adjacent cells from
the one being processed.

A common point is observed among the method presented by Zhang and Haykin
[11] and the AR modelling clutter suppression methods. They assume that a pre-
determined clutter model can be obtained from the range cell which has nothing
but only the clutter, and then the model is adaptively updated. llowever, the
ocean clutler is not stationary. The characteristic of the ocean clutter may vary
from one range cell to another. It will be difficult to have a predetermined occan
clutter model to begin with. Therefore, an ultimate solution to the clutter sup-
pression problem would utilize models for the clutter and the target in each range
cell simultaneously and then identify the clutter by its properties. The clutter
is suppressed by subtracting effects attributed to clutter by the madel from the
received signal. Since the ocean clutter is found to have time-varying frequencies,

the clutter suppression scheme proposed in this thesis is based on the use of a

time-vatying freq tracking technique to track the fi ies of the ocean
clutter as well as those of any other targets. The ocean clutier is then suppressed

by removing its corresponding freq p from the received signal.

1.3 Scope of the thesis

A new technique, based on the use of a time-varying frequency tracking method
referred to as the Hankel rank reduction method, to selectively remove the ocean
clutter components from the radar data is proposed in this thesis. The method
(12] shows that a Hankel matrix of time series data containing a finite number of
narrowband time-varying sinusoids can be approximated by a matrix whose rank
is equal to the finite number of the principal singular values given by the Singular

Value De ition (SVD). The ies of the sinusoids are estimated from




those principal singular values. This attribute linked with the time-varying ocean
clutter model suggests that for an ocean range cell containing  single target, the
Hankel matrix would contain only three principal singular values - one correspond-
ing to the target. signal and the other two corresponding to the well known “Bragg”
clutter signals. This assumption is valid for ocean range cells with dimensions un-
der one kilometer. (There is a common practice that the ships usually keep a
certain distance away from each other on thesea.) For larger range cells, one just
needs to increase the number of the singular values without affecting the analysis

or signi ly i ing the it | burden. The reason why the Hankel

matrix is utilized in the method is that the linear prediction porperty is found in
the structure of the matrix. Each entry of the matrix can be expressed as the sum

of a weighted linear combination of the rest of the data along the row of the matrix.

The linear prediction is a basis for the frequency estimation of the sinusoidal signal.
Tow the linear prediction is used to estimate the sinusoidal frequency is discussed
in Chapter 4. The SVD is used to decompose the Hankel matrix into a signal and
a noise vector subspace. The signal subspace is associated with the finite number
of the dominant singular values. By approximating the Hankel matrix to a matrix
defined by the signal subspace, the effect. of noise can be substantially reduced,
By use of the Hankel rank reduction method, the frequencies of the clutter
signals can be tracked or the signal parameters of the ocean clutter signals can be

estimated. A process is then developed to suppress the clutter signals by removing

their estimated frequency components from the received data. The performance of
the proposed scheme is tested on both the computer-synthesized and the real HF
data which is collected from a recently developed HF groundwave radar located
at Cape Race, Newfoundland, Canada. Tt should be pointed out that the above

evaluation is an off-line testing.



1.4

Organization of the Thesis

The thesis is organized in the following way:

Chapler 2 presents a brief description of the background of IIF radar and the

time-domain model of the ocecan clutter signals.

Chapler 3 reviews some techniques of tracking lime-varying frequencies of

the sinusoids.

Chapter 4 is a background review of the frequency estimation of station-
ary sine waves because it forms the basis of the method Lo deal with non-

stationary (time-varying) sine waves.

Chapler 5 describes details on the proposed clutter suppression method in
this thesis including the method used to estimale the instantancous frequen-
cies of the occan clutter signals and the procedures to remove the ocean

clutter from the received signal.

Chapler 6 presents the results obtained by using both the computer-synthesized

and the real HF radar data.

and some for future work.

Chapter 7 contains



Chapter 2

Introduction to High Frequency
(HF) Radar

High frequency (HF) radar, using the groundwave mode of propagation, has been

tablibed ags hodology for the ocean environment [13, 14, 15].

The high conductivity of sea-water accounts for the low propagation loss of the
ground wave mode and allows long ranges (over the horizon) to be achieved with
modest transmitter power. The detection of targets such as ships, icebergs and
sea-ice, and ocean environmental monitoring of waves, currents and winds are some

of the applications for the HF d radar. Moreover, this technology can

fill some gaps in the radar coverage presently available with microwave radars.
For example, surface based mictowave radar is limited to line-ofsight detection
and cannot detect targets over the horizon. Also, due to the multipath reflection
effects, detection of low altitude targets is very difficult with microwave radar. In
the following sections, other aspects of HF radar are discussed. The discussion
includes: a brief review of the operating theory of HF radar; an overview of some
HF radar systems; the ocean clutter in HF radar and the time-domain model of

ocean clutter signals.



2.1 Brief Review of Operating Theory of HF
Radar

In the backscatter HF radar system, the transmitler and the receiver can either be

at thesame site ic)or d by som 1l dist. (bistatic). Gen-
erally, a vertically polarized antenna is utilized to radiate electromagnetic waves
of frequencies in the band of 3-30 M Hz that propagates over the sca surface. If a
target lies along the path, a reflected signal will be captured by the receiver via the
same path taken by the transmitted signal. The backscatter from the target has a
frequency shift proportional to its radial velocity. Such frequency shift, known as
the Doppler frequency, provides a means for target discrimination and is given by
2

fi= s (2.1)
where f; is the Doppler frequency; V, is the radial velocity of the target; and A,
is the wavelength of the transmitted signal. The derivation of Eq. (2.1) is shown
in Appendix A. In addition to the detection of a target, the backseatter HF radar
can also provide information on the target’s range from the time delay between
the transmitted and the received signals.

For an HF groundwave radar, longrange target detection requires

duty cycle of the transmitter waveform [16]. Thus, the frequency modulated con-
tinuous wave (FMCW) waveform is commonly used in [IF radar. In an FMCW
radar, a continuous frequency-swept signal with a bandwidth, W, is transmitted.
This sweep bandwidth determines the desired range resolution as AR = c¢/(2W).
The target range is measured as the instantancous frequency difference hetween
the transmitted and reccived waveforms. The FMCW has a 100 percent duty cycle
and it is ideal for the bistatic configuration but not for the monostatic operation.

One problem with the FMCW form in the i ion is the dif-

ficulty in isolating the receiver from the transmitter. The receiver suffers from

8



the transmitter induced noise. Thus, an interrupted FMCW waveform, namely
FMICW, is implemented in order to overcome the problem. The FMCW wave-
form is simply gated on and off with a well defined sequence. The sequence disables

the transmission while the receiver is on.

2.2 Overview of Some HF Radar Systems

In recognizing the unique advantages of HF radar as compared to the microwave
radar, countries like the United States, the United Kingdom and Canada have
been doing extensive work on HF radar, using both groundwave and skywave
propagation, for the past 30 years. In the Uniled States, research and development
of HF radar began in the early 1940s. Naval Research Laboratory (NRL) was one
of the pioneer institutions to design and conduct experiments with HF radar.
MADRE was an experimental HF skywave radar designed by NRL and was first
put into operation in 1961 [14]. It had a target-detection capability up to 4000 km.
Its antenna had a dimension of 98 meters (m) wide by 43 m high and consisted of
twenty corner reflector elements arranged in two rows of ten elements each. The
radar generally operated with an average power from 5 to 50 KW. In 1970, the
Office of Naval Research/SRI International developed another HF skywave over
the horizon (OTH) radar, namely the Wide Aperture Research Facility (WARF),
for detecting and tracking ships at ranges of 2000 km or more at sea [17]. WARF

p a linear frequency-modulated conti (FMCW) waveform and
transmitted 1 MW average effective radiation power. Reflection signals from the
ocean were received by a 2.55 km broadside array of vertical monopole element
pairs. The said systems have a considerably huge physical size and high cost.
A small transportable system with a broad beam scanning characteristic, called

CODAR (Coastal Ocean Dynamic Applications Radar), was developed later in



the 70’s. The concepts of CODAR were originated from the National Oceanic
and Atmospheric Adminstration’s (NOA A) Wave Propagation Laboratory for the
measurement of ocean surface currents from the coast or the offshore platforms.

In the United Kingdom, the University of Birmingham in iation with other

organizations have also done significant work on HF OTH radar. An experimental

HF groundwave radar was designed to transmit | KW peak power frequency-

dul

dinterrupted conti (FMICW) signal viaa 6-30 MHz vertically
polarized logarithmic periodic dipole array. The receiving antenna consists of two
nested broadside arrays with 15 vertical loop elements each [18]. The system has
been used for remote sensing of ocean waves and currents.

In Canada, the CODAR system has been used as remote sensor for the northern
oceans where exploration and transportation activities take place [19]. lcebergs are
considered as a significant hazard to the ships and construction such as offshore
platforms in those areas. The ability of long range (over the horizon) detection
demonstrated by HF radar would reduce the chance of possible collisions between
the icebergs and the ships or any other constructions at sca.

Recently, an FMICW groundwave radar system has been built at Cape Race,
Newfoundland, by Northern Radar Systems Ltd. in association with the Centre for
Cold Ocean Resource Engineering (C-CORE), Memorial University of Newfound-
land, for the purpose of ocean surveillance including the detection and the tracking
of vessels and icebergs, plus the measurement of sea-state and currents [13]. The
radar operates at a centre frequency of 6.75 MHz along with a sweep bandwidth of

375 kHz and is designed to detect and track ships at a distance up to 400 km, with

arange resolution of 400 m. The itter and the receiver are located at the
same site (a monostatic configuration). The transmit antenna is an off-the-shelf
log periodic array with an average transmit power of 2.5 KW and covers over a

120 degree sector of the ocean with an average nominal beamwidth of 3.5 degree.
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The receiving antenna consists of an array of 40 quarter wavelength height broad-
band elements which are equally spaced a distance of half wavelength. The total
distance taken by the receiving antenna is about 880 m. The clutter suppression
scheme proposed in this thesis will be tested using the data collected from this

radar.
2.3 Ocean Clutter in HFF Radar

In HF radar, the backscatter from the ocean surface, namely the ocean clutter,
appears at well defined frequencies shifted from the transmitted frequency of the
radar. Crombie [1] first observed this effect and attributed the dominant com-
ponent of the return energy to the back-scattering from the ocean waves having
a wavelength half the radar wavelength. Two sets of such ocean waves, moving
radially to and away from the radar site, behave as diffraction gratings and cause
constructive interference of the scattering returns. As shown in Fig. 2.1, these

“Bragg” scattering returns exhibit two distinct Doppler frequencies corresponding

to the ch istic velocity of jon of the two sets of ocean waves, These
frequencies are given by
(2.2)

where f,. are the Doppler frequencies of the ocean clutter signals; f, is the radar
carrier frequency; g is the acceleration due to the gravity and ¢ is the speed of
light. Equation (2.2) is derived from Eq. (2.1) with the velocity of the ocean
wave, v = (gho/2m)"/%, where the ocean wavelength, A, equals half the radar
wavelength, A, i.e. A = /2. The Doppler spectrum of the ocean clutter in

Fig. 2.1 is observed by an HF d radar ing at a of 25.4

MHz. In addition to the dominant “Bragg” scattering returns, a smaller and more

complicated feature of the HF radar spectrurn is referred to as the “second-order”

1



scattering. As the name implies, this portion of the Doppler spectrum has been
modelled as double scattering from two ocean wave components, which match half
the radar wavelength after vector addition aiong the radar beam direction [20, 21].
Also, part of this second-order comes from a single scatter from second-order ocean
waves produced by nonlinear wave-wave interaction.

The Doppler spectrum of the ocean clutter can qualitatively show some prop-
erties of the ocean waves. If the wind blows towards the shore, the dominant peak
at the plus side of the Doppler spectrum will exhibit a noticeable higher magni-
tude level than the one at the minus side. Opposite scenario will be seen if the
wind blows away from the coast. In general, the direction of the wind can be de-
duced from the ratio of the amplitude of the dominant peaks. As the speed of the
wind increases, the encrgy in the ocean wave spectrum increases. The peak in the
spectrum moves to the lower frequencies, then the amplitude of the second-order
Doppler spectrum increases which results in a close frequency separation between
the first- and the second-order scattering [15].

Barrick [3, 4] first derived theoretical expressions for the first- and the second-
order HF scattering from the ocean surface using Rice's [22] perturbation tech-
nique which has been used to study the problems of scattering from random and
slightly rough surface. The ocean surface is modelled as a three dimensional ran-
dom surface governed by a Fourier series expansion over time as well as space.
The surface Fourier cocfficients are treated as random variables [3). Average first-
and second-order backscattered Doppler spectra could then be derived from Bar-
rick’s theoretical model of HF sea echo. Crombie’s experimental observation was
confirmed by Barrick's theoretical model for the first-order scattering.

Another theoretical analysis of HF scattering from an ocean surface was carried

out by Srivastava [5] using an alternate approach based on Walsh’s [21] general

for the ing from a time i iant rough surface described by a
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set of two vector integral equations in a two-dimensional spatial Fourier transform
domain. Srivastava has also derived average first- and second-order backscattered
Doppler spectra of the ocean clutter. Both Barrick’s and Srivastava’s derivations
had the same result in the first-order scattering but differed in the second-crder
where the first author’s result contained only one term while the latter contained
three. The first term, interpreted as the occurrence of a double ocean wave in-
teraction with the radar wave, is almost the same in both cases [5]. The two
additional second-order terms which are significant for iceberg detection when the
radar is used on the ship or platform may be neglected if the radar is located on
the coast [19]. Both findings established a fundamental model of ocean clutter and

the model of the d-ord ing enables infc ion on the ocean, such

as wave height, to be extracted.
2.3.1 Time-Domain Model for Ocean Clutter Signals

Knowing the average first- and second-order Doppler spectra of the ocean clutter
may not be sufficient to distinguish the ocean clutter from the potential targets.
This is because Doppler frequency discrimination may become ineffective when the

target exhibits a Doppler frequency close to the “Bragg” frequencies. Also, target

detection is a continuous process where it is preferable to know the i

behaviour of the ocean clutter. Therefore, the time domain characteristic of the
ocean clutter would possibly provide a means which could be used to separate
the ocean clutter from the targets. The spectrum of Fig. 2.1 suggests that fairly
broadband processes are responsible for the ocean clutter. However, Khan [7}
has shown that the ocean clutter can be simply modelled by two narrowband
signals, with time-varying frequencies, centered about the two “Bragg” frequencies

described in Eq. (2.2). The time variation of the two narrowband clutter signals,

1 Tulated

as two inds dent angle

as shown in Fig. 2.2, can be i



components. It is noticed that the instantaneous frequencies of the clutter signals
fluctuate around the centre frequencies of £0.51 Hz as obtained from Eq. (2.2).
It is demonstrated that the spectrum of such an angle modulated signals agrees
closely with the spectrum of HF radar data and accounts for the characteristics
corresponding to both the well known first- and second-order scattering peaks.

Thus, pre-processing operations on HF radar data, before target detection, can
simply be specified as the estimation of the of the two

“Bragg” signals centered about their average frequencies given by Eq. (2.2). The

b 1 1

clutter signals can be

so that the bility to detect a

target is enhanced.
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Chapter 3

Some Time-varying Frequency
Tracking Techniques

It has been shown in Chapter 2 that the ocean clutter has a time-varying charac-

teristic and can be modelled as two band fi lulated sinusoidal

signals which can be tracked by time-varying signal processing techniques. The
proposed clutter suppression scheme in this thesis is based on the use of a time-
varying frequency tracking technique. Thus, in the following sections, a general
review of some time-varying frequency tracking methods is presented. One of them
is selected to be the basis of the clutter suppression scheme presented in this thesis.
The decision is made based on the analytical comparison of the methods rather

than the actual experimental results.
3.1 Adaptive Linear Prediction Filter

In 1975, Griffiths (23] d an adaptive technique to track the i

frequencies of a signal which has a narrow-band, time-varying spectrum. The
method makes use of a linear prediction-error filter (PEF) derived from the prop-
erty of linear prediction. It is used to estimate the instantaneous frequencies of
the signal by computing the power spectrum from the filter coefficients which are

updated continuously by the Least Mean Square (LMS) gradient adaptation algo-
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rithm when a new data sample is obtained.

In the process of linear prediction-error filtering, a predicted value, Z(k), of the

input at time k is given as a linear combination of the previous values.
L
(k) = Y giz(k 1) (3.1)
i=1
where g; are the Lth order prediction filter coefficients. An output error sequence,
€(k), of the filter is produced by subtracting the predicted value from the actual
input.
e(k) = (k) — (k) (3.2)
A minimum mean-square error, E[¢3(k)], is produced by a set of optimum filter
coefficients, g7, 93, , g3 The power spectrum of the PEF for a stationary process

is given by
- E[E(k)lmin

"~ 1= TE o7 exp(—ju)?
For a perfectly predictable input signal, S.(w) in Eq. (3.3) will be equal to 0 for

Sz(w) (3.3)
w # w; and 0/0 when w = w;. A modified power spectrum of PEF is defined by
Griffiths to locate the frequency of narrowband input signals,

1
11 = Xk g7 exp(—jwi) 2

Q:(w) and S (w) differ by a numerator scale factor. The advantage of having

Q:=(w) = (3.4)

Qz(w) over S:(w) is to replace the 0/0 indeterminacy inherent with narrowband
spectra by the computationally tractable limit of 1/0. If the signal is time-varying,
the instantaneous power spectrum estimate will be given by

1
o 91 (k) expl—jwis]l?
The PEF coefficients are determined directly from the data sample by the

Qz(w, k) = (3.5)

-

following relationship that is derived from the LMS algorithm,
Gk +1) = G(K) + plo(k) X (k = 1) = X(k = 1) X7 (k = 1)G(k)] (3.6)
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where y is a scalar proportionality constant which regulates the iteration step size,

and
91(k)
G(k) = ngk) 3.7)
alk)
z(k—-1)
X(k—1)= ’“’:2) (38)
alk— L)
The above technique is basically a parametric estimation method in which the
signal the prediction filter coeffici are esti d i I

and then used to compute the instantaneous power spectrum. Unlike other tech-
niques, the data samples are directly used in this technique to calculate the filter

coefficients and no autocorrelation function is involved.



3.2 Eigenstructure Updating Method

In 1988, DeGroat and Roberts [24] presented another technique to track time-
varying frequencies of narrow-band signals, based on the use of weighted linear
prediction along with rank-one updating of the eigenvalue decomposition (EVD)
of an estimated data covariance matrix. The idea behind this method is that the

o g i

of an

matrix is to identify signal
and noise subspaces in the data vector space. Each subspace is characterized

by a set of eigenvector/eigenvalue pairs. In the case of high SNR, the signal

subspace is distinguished by the larger ej| lues as d to those iated
with the noise subspace. However, as the SNR decreases, the signal subspace
becomes perturbed. The eigenvalues of the signal subspace do not appear to be
quite distinguishable from the noise subspace. A signal subspace pre-processing
is introduced. The noise in the signal is identified and suppressed by zeroing its
corresponding eigenvalues before the tracking of the frequencies is done. This
pre-processing technique can also reduce the computational load by means of rank
reduction of the covariance matrix. The method by DeGroat and Roberts is briefly
discussed below.

If the signal is stationary, the covariance matrix of a data sequence z(n) which

is d of r sinusoid plus white noise, based on an L-by-L

Toeplitz matrix, can be written as
1& 7
R==Y za] (3.9)
LS

where z; = [z(i) 2(i+1)++ z(i+L—1)]T and T denotes the transpose of a matrix.
In the case of a non-stationary process, a time-varying estimate of the kth

covariance matrix is given as
k
Ri=(1-0)Y o zial (3.10)
=t
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where a is a memory factor, 0 < @ < 1, and it is used to de-emphasize old data as

new data is received, The estimated covariance matrix is recursively updated as
Ripr =Ry — (1 - a)zipizly, (3.11)

with the recursion initialized as Ry = 2,27, The EVD is used to reduce the rank

of Ry and to suppress noise as well. EVD of Ry is given by
R =QDQ" (3.12)

where D = diag[M, A, -+, Ar] contains the eigenvalues of Ry in the order of
M 2 M2 2+, Az and Q is an orthogonal matrix containing the corresponding

eigenvectors. However, a new Ry can be i d by setting the ci

8
Ar41 through Az to zero in D. This noise suppression process is done cach time
when the covariance matrix is updated.

With each updated covariance matrix, the instantaneous frequencics are esti-
mated using weighted linear prediction (LP) filter. The weighted LP cquations at

the kth update in the matrix form is given below.

af R~ —r] (3.13)

gt = LB} (3.14)
where g7 is a 1-by-L column vector of LP coefficients; R; is the kth estimated co-
variance matrix; rf is the estimated covariance vector; and R}, is the pseudo-inverse
of Ry. The instantaneous frequency is then obtained from the angular locations of
the zeros (on the unit circle on the z plane) of the denominator polynomial in the

transfer function of the LP filter, that is form the roots of
L
G(z) =1+  qli) =0 (3.15)
i=l
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The eigenstructure updating method is also a parametric estimation technique
with a signal pre-processing which can reduce a certain level of noise. The instan-
taneous frequencies of the sinusoids are estimated from the LP coefficients.

21




3.3 Hankel Rank Reduction Method

DiMonte and Arun [12] d another technique to track the instant

fr of d h referred to as the Hankel rank reduction

method. The technique utilizes the property that a Hankel matrix (data matrix)
constructed directly from a time series data containing a finite number of sinusoids
can be approximated by the Singular Value Decomposition (SVD) to a matrix of
rank equal to the number of principal singular values, even when the frequencies
of the sinusoids are slowly varying with time; and then the instantaneous frequen-
cies of the sinusoids can be estimated from those principal singular values. The
frequency estimation is associated with the property of linear prediction which is
observed in the characteristic of the Hankel matrix. The data in the matrix can
simply be expressed as the sum of a weighted linear combination of the other data
along the row of the matrix. The weighted coefficients are used to esiimate the
signal’s frequency. The discussion on how the signal’s frequency is estimated from
the weighted coefficients is detailed in Chapter 4. The SVD plays here a similar
role as the EVD. It decomposes the Hankel matrix into a signal and a noise vector
subspace. Then the Hankel matrix is approximated by the signal subspace de-
fined by the dominant singular values. This method is implemented in the clutter
suppression scheme proposed in this thesis after the following consideration. (The
derivation of the method is described in Chapter 5).

The eigenstructure updating method by DeGroat and Roberts works quite sim-
ilarly to the adaptive linear prediction method by Griffiths - both of them using
linear prediction-error filtering as the basis to estimate the sinusoids’ frequencies,
except that in the latter the eigenstructure updating method involves a signal

pre-processing which identifies the signal and noise subspaces before the actual

fi imation is performed. The ad of having the p
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is that certain level of noise suppression can be achieved. Therefore, the eigen-
structure updating method will perform better than the adaptive linear prediction
method in the case of low signal-to-noise ratio (SNR).

Both the eigenstructure updating method and the Hankel rank reduction method
have a signal pre-processing step to suppress the effect of noise in a different fash-
ion. The SVD in the latter method decomposes the Hankel matrix of entire data
record into the signal and the noise subspaces at one time. That gives better noise
suppression than the way of having multiple EVD's of the localized covariance ma-
trices which are updated at every instant through [12]. The methodology seems to
be robust if the process involves one single SVD rather than many EVD's. Also, it
is more computationally advantageous to have a single SVD operation than multi-
ple EVD’s. With regard to simplicity, the Hankel rank reduction method involves
less mathematical steps. Finally, the selection of appropriate memory factor, a,
in the eigenstructure updating method imposes a trade-off between temporal res-
olution and noise suppression [12]. Therefore, the Hankel rank reduction method
is selected to be used in the proposed clutter suppression scheme to estimate the
instantaneous frequencies of the ocean clutter signals from which the clutter com-

ponents can be identified and suppressed.



Chapter 4

Frequency Estimation of
Stationary Sine Waves

Based on the inherent time-varying characteristic of the ocean clutter in IIF radar,
the Hankel rank reduction method which is a time-varying signal processing tech-
nique, is utilized in the clutter suppression scheme proposed in this thesis to track
the clutter signal’s frequencies and then to suppress them. Before discussing the
G

hwhil

it is to review the back-

time-varying fi tracking
ground of the frequency estimation of the stationary sine waves since it forms the
basis for the method to deal with the non-stationary (time-varying) process. In

this chapter, the main focus is on the d hodology for estimating the

frequencies of the sine waves by parametric modelling. In other words, it is pos-
sible to fit a model to the process and then to determine the parameters of the
model from which the sinusoidal frequencies can be obtained [25]. The method is
referred to as the autoregressive (AR) or linear prediction modelling. In addition

to the common transfer-function representation approach used for the model-based

spectral estimation method, the stat iabl ion approach is also de-
scribed here as it was used in the Hankel rank reduction method. It is found that

both approaches yield the same result. The estimation of the sinusoidal fi

in both noiseless and noisy cases will be discussed.
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4.1 Noiseless Case

A sampled signal, y(k), composed of M complex sinusoids with no noise present

is represented by the following equation,

M

cexp(juwik), k=1,2,--+,N (4.1)

where ¢; is the amplitude; w; is the angular frequency of the ith complex sinusoid
and N is the number of data samples. The angular frequencies of the complex

sinusoids are assumed to be invariant with time and they can be estimated by

the ive (AR) process (modelling) or linear iction method in which
y(k) is given by a linear combination of its past values and an additive white noise

signal, w(k), with zero mean.

y(k) = = 3 aiy(k — i) + w(k) (42)

where a;,i = 1,2,:++, L, are known as the AR coefficients and L is the order of
the AR process. That means the signal, y(k), is modelled as the output of an AR
process whose input is a white noise source. The z-domain transfer function of the

AR process is

1
H(z) = o) (4.3)
where
L
Az) =1+ aiz™ (4.4)
i=1

The AR process is closely related to the linear prediction-error filtering when oper-

ating on the fi imation of the stationary sine waves. Their relationship
is depicted in Fig. 4.1. The prediction-error filter is an all-zero filter with an im-
pulse response of a finite duration whereas the inverse filter in the AR model is an
all-pole filter with an impulse response of an infinite duration (26]. The zeros of

the transfer function of the prediction-error filter are located at exactly the same
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Figure 4.1: (a) an AR process, (b) a linear prediction-error flter

positions (inside the unit circle on the z plane) as the poles of the transfer func-
tion of the inverse filter of the AR model. This assures the stability of the filters
because in the s domain (s = ¢ + jw), H(s) is considered stable if the poles are
located in the left hand side of the s plane and, for z = e*, the left half s plane is
mapped into the unit circle. H(s) is considered marginally stable if the poles are
on the imaginary axis of the s plane where o = 0.

It was first shown in the Prony’s method described by Hilderbrand [27] that
in a noiseless condition, the angular frequencies of the complex sinusoids can be
obtained from the angular locations of the roots of an Mth order polynomial A(z)
on the unit circle on the z plane. The roots lying on the unit circle are mapped
onto the imaginary axis of the s plane (s = jw) where the system is marginally
stable. However, in the practical situation, L can be greater than or equal to
M. Tufts and K (28, 29] have d d that under the inequality,

M < L < (N = M/2), the polynomial A(z) has M roots on the unit circle on the
2 plane with their angular locations ding to the angular fi ies of

the M sinusoids in the signal, and the (L — M) extraneous roots are uniformly

26



distributed along the circumference inside the unit circle. The property that the
roots of the polynomial A(z) on the unit circle (|z| = 1) determine the angular
frequencies of the sinusoids can be shown by the following observations.

Consider a system of prediction equations in matrix form used to determine

the coefficients, «;,i =1,2,..., L

y(L)  y(L+1) - y() a y(L+1)
y(L+1)  yL) - w(?) a y(L+2)
. : . L =- . (4.5)
YN=1) yN=2) - y(N-1) | e YN)
or
Yja=b (4.6)
Rearrange Eq. (4.6)
¥y =[lvy] ()
and
a'=[La,0, 0" (4.8)
Therefore,
Ya'=0 (4.9)

Y isa (N — L)-by-(L+1) Toeplitz matrix formed from a forward linear prediction,
ie y(k) = =T, ay(k-i),i =1,2,---, M, and it has arank of M. (Therank of a
matrixis defined as the number of rows or columns which are linearly independent.)

To see this, an M-by-1 sinusoidal column vector is defined as follows:
fi= (et et BT =10 M (4.10)

It is observed that any row of Y; can be written as a linear combination of the M
independent vectors in f;. Thus, the rank of Y} is M as long as ¥ has at least M

rows. The null space of Y; has a dimension of L +1— M. Since o’ lies in the null
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space of Y;, the inner product of f; and a' is zero [29]. That is,
1+ae™ fape® 4o fage™ =0, i=12--- .M (.11)

and this equation is recognized as the transfer function of the prediction-error filter
and evaluated on the unit circle at z = e™,i = 1,2,---, M. Then the polynomial
A(z) has roots, on the unit circle, that determine the sinusoidal frequencies [28].

Not only can the signal, y(k), be predicted from forward linear prediction, but

it can also be predicted from backward linear prediction. A system of prediction
from backward linear prediction is obtained to determine the coeffici
aj,i=1,2,+, [, as below:
v'(2) v'(3) ey L) [ u(1)
v(3) v'(4) oy (L42) | | @ v'(2)
" % : == (a2
y(N=L+1) y"(N=L+2) --- y(N) ay v(N-1)
or
Yia=b (4.13)
Rearrange Eq. (4.12) to
Y,a' =0 (4.14)
where
=[] (4.15)

Y, isa (N — L)-by-(L + 1) Hankel matrix in which the N data samples, y(k), are
complex conjugated because y(k) is complex valued. (+ denotes complex conju-
gate). Y, also has a rank of M which can be seen from the previous observation
in Y} Similarly, the polynomial A(z) has roots of e/,i = 1,2,---, M.
Transfer-function representation has been widely used in model-based spectral
estimation methods. This approach as used above demonstrated that the param-

eters or coefficients of an AR model could be utilized to determine the sinusoidal
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frequencies. The state variable representation however is an alternative approach
to analyze a linear system [30]. It will be shown that this approach can also be
used to describe the AR model, and then the AR parameters are determined to
give the sinusoidal fi ies. In general, a discrete-time system is d

by a set of state variable equations:
z(k + 1) = Az(k) + Bu(k) (4.16)
y(k) = Cz(k) + Du(k) (4.17)
where z(k) is the state vector describing the system at the kth instant; y(k) is the

output vector; v(k) is the input vector; A, B, C and D are the matrices determined

from the constants of the system [31]. Consider a second order AR process,
y(k) = —ary(k — 1) - azy(k - 2) + w(k) (4.18)
Define the first state variable
za(k) = —ayy(k—1) — agy(k — 2) (4.19)
Combine Eq. (4.18) and Eq. (4.19) to get
y(k) = 2(8) + (k) (4.20)
From Eq. (4.19), increasing k by 1 gives
zy(k + 1) = —ayy(k) —aay(k — 1) (4.21)
Select a seconc tate variable
zy(k) = —azy(k - 1) (4.22)
Substitute Eq. (4.22) into Eq. (4.21), it can be written as
2y(k+1) = zi(k) - ary(k)
= zy(k) — ai(za(k) + w(k))
= z,(k) = ayzz(k) - ayw(k) (4.23)
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From Eq. (4.22), increasing k by 1 gives
n(k+1) = —axy(k)
= —0y(za(k) + wik))
= —ayza(k) — agu(k) (4.24)
Equation (4.23) and Eq. (4.24) may be combined in matrix form as
2k +1) 0 —az | [ m(k) -
[263]=[2 =)[z@]«[m]we v
From Eq. (4.20) and Eq. (4.25), the AR process is now represented by the following

state variable equations:

2(k+1) = Az(k) + Bu(k) (1.26)
y(k) = Cz(k) + Dw(k) (4.27)
where
0 ~ —a:
A=[l _::]-B=[_,.’] =[0,1,D=[1] (4.28)

The derivation of a simple second order AR process in terms of stale variable
representation can also be extended to a general L order AR process where the

matrices A, B,C and D are as follows.

000 ..00 -a —a
100 .. 00 —ag, —QL-y
010 .. 00 —azg —a
A=|. .. .. . |,B=| . (1.29)
000 .. 10 —a a5
000 .01 -q e
and
c=[000 .. 01],0=(] (4.30)
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where A, B, and C are the constant matrices with the size of L-by-L, L-by-1 and
1-by-LL, respectively.

Consider the sampled signal, y(k), in Eq. (4.1) again. Without the presence of
noise, the signal is exactly predictable as a linear combination of its past samples

and the prediction error is zero. Ce y(k) can be adequately modelled

as the output of an AR process of the order L = M with zero input, ie. w(k) =

0, or simply as the output of an oscillator [30]
M
y(k) = =3 ay(k — 1) (4.31)
=

In the state variable representation, the signal, y(k), is described by the following
set of equations:

z(k +1) = Fz(k) (4.32)

(k) = ha(k) (4.33)

where z(k) is an M-by-1 state vector. F and h are the M-by-M and 1-by-M state

malrices in the form of A and C given in Eq. (4.29) and Eq. (4.30), respectively.

It will be shown that the eigenvalues of F are exactly the same as the roots of the

M order polynomial A(z). (The ej lues and the eige of a matrix are

discussed in Appendix B). The angles of the eij will give the

of the sinusoids. If F' can be esti d, then the sinusoidal fi ies will be

determined from the angles of the eigenvalues of F.
Now consider an (N — L +1)-by-L Hankel matrix constructed directly from the
sampled signal, y(k), where L > M and N » L.

(1) ¥(2) (L)
(2) ¥(3) s y(L+1)
z ) ) . (430
YN -L+1) y(N=L+2) o y(N)
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In terms of state variables, H can be written in the following form using Eq. (1.32)

and Eq. (4.33).

ha(1) he@) - ha(L)
ha(2) h2(@) e he(L41)
" ha(3) he(4) o he(L+2)
he(N—L+1) ha(N—L+2) - hx(N)
ha(l) he(®) - ha(L)
hFz(l)  AFE@) - hFa(l)
RF(l)  hFiR@) . hFi(l) .
REN-Lz(l) RFN-Lz(3) - hPN-Ly(L)
H i bé tactoriaed as
b
P
2
o= | M), e, 2@, o e )
hEN-L
- ox (1.36)

The matrix © is known as the observability matrix and X is the state vector
matrix. It is noticed that matrix © has only M columns and X has only M rows.
It means that the rank of H cannot be greater than M. If there arc M distinct
sinusoidal frequencies, H will have a rank of M even though the sizc of If is greater
than M-by-M.

F can be determined from ©. If © is partitioned into two matrices, ©; having
rows from the first one to the second last and ©, having rows from the second one
to the last one, then a relationship between F', ©; and ©; will be observed. That
is,

0,F =0, (4.37)
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where

h hF
hF hF?
2 3
o =| " | .e=| F (4.39)
A -

Since Eq. (4.37) is overdetermined, F can be solved by the least square method as
F=60le, (4.39)

where ©f = (070,)-'0T. 0T is the transpose of ©; and (©7©,)~! is the inverse

of (876,). The e of F are determined by (see Appendix B for the
computation of the eigenvalues of a matrix)
A0 0 .00 -ay
I =2 0 .. 0 0 -—ays
0 1 =\ . 00 =-ayos
det| . . . : B Y (4.40)

00 0 .1 -2 =-a
0 0 0 .0 1 —ag-X

where A is a scalar parameter. The resultant equation of Eq. (4.40) is simplified

in the following form.
Mg 2=t LM p i fay =0 (4.41)

This equation is called the characteristic equation of the matrix F, and its roots are
the eigenvalues of matrix F. Recall the characteristic polynomial in the transfer

function of the M order AR process,

M
Alz) =1+ aiz" (4.42)
=]
A(z) = 0 can be rewritten in the following form:
Mpa M p oMby =0 (4.43)
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‘With reference to Eq. (4.41) and Eq. (4.43), it is shown that the eigenvalues of
F are exactly the same as the roots of the polynomial A(z). Hence, the angular
frequencies of the complex sinusoids can be determined from the angles of the
eigenvalues of ' which are in the form of (e/,6%2,...,e7) on the wnit circle

on the z plane.



4.2 Noisy Case

It has been shown in the noiseless case that the Hankel matrix H exhibits a low
rank property, and the rank is equal to the number of complex sinusoids in the
signal. However,in the practical situation, the signal is always corrupted by noise.
Therefore, the low rank property of H will no longer hold. In fact, H tends to
have a full rank.

The Singular Value Decomposition (SVD) has been recognized as a numerical
tool for displaying closeness to low rank of a matrix [30] (see Appendix B), and its
structure and numerical detail can be utilized to suppress noise as well. The SVD
of any rectangular matrix, such as the Hankel matrix H in Eq. (4.34), takes the

following form,
H = USVT

L
= Yowof (4.44)

i=l
where Sis a L-by-L diagonal matrix. Its diagonal elements, known as the singular
values of H, are arranged as oy 202 =+ 2 op 20Mm41 2+ - 20, 2 0; 4;and
v; are the corresponding left and right singular vectors which are the eigenvectors
of the matrices HHT and HT H, respectively. Similarly, the singular values are
the squate roots of the eigenvalues of the matrices HHT or HT H (see Appendix
B for the definition of the SVD of a matrix). It can be shown that above a certain
signal-to-noise (SNR) threshold, a data matrix H is decomposed into two vector
subspaces. One is the signal subspace spanned by the left and the right singular
vectors associated with the M largest singular values, and the other is the noise
subspace spanned by the remaining (L — M) singular values. Thus H can be

rearranged as

H=(t, u,)(sul gl)(“;;)r (4.45)
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where Sy isan M-by-M diagonal matrix containing the M principal singular values;
Ui and V; contain the corresponding left and right singular vectors. S, has the
remaining (L — M) smaller singular values associated with the left and the right
singular vectors in U and V3. If there is no noise, the (L — M) singular values will
be zero. Thus the rank of H is determined by the M principal singular valucs. A
significant break will be observed beween the singular values, o and oar4s, when
the SNR is above a certain threshold level. Then H can be approximated by the

M principal components as

H >~ USVT
M
= Youl (1.16)
=
Rearrange Eq. (4.46)
H=U,8"s}*v] (1.47)

Comparing Eq. (4.47) and Eq. (4.36), the observability martix © can be identified
as U117 [30]. Using the relationship between F and © derived as in Eq. (4.37),
F can be determined and the angular frequencies of the complex sinusoids can be
estimated from the angles of the eigenvalues of F.

The SVD can be used to decompose a Hankel matrix (data matrix) of a signal
containing a finite number of sinusoids plus noise into a signal and a noise vector
subspaces provided that the noise level is not very high. The Hankel matrix s then
approximated as detailed above, by a reduced order Hankel matrix conforming to
the signal subspace defined by the finite dominant singular values. This lower rank
Hankel matrix gives estimate for the frequencies of the sinusoids contained in the
state matrix F.

A procedure, based on the SVD, was developed by Eckart and Young in 1936
to find the best lower rank approximation to a given matrix 32, 33]. First of all,

let the rank of H be L, and let y(M) be the set of all (N = L + 1)-by-L matrices
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of rank M < L. Then for all matrices G in y(M),
I8 - B < |1H -Gl (1.49)

where H =USVT and § is obtained from the matrix S by setting all except the
M largest singular values to zero. The matrix norm of Eq. (4.48) is the Frobenius
form,

1 - G| = tracel(H — G)"(H - G)] (4.49)
where the trace of a matrix is defined as the sum of the matrix’s diagonal elements
and the asterisk, «, stands for complex conjugate transpose of a matrix. Thus /

will be the best imation of H if the condition of Eq. (4.48) is satisfied.

The frequencies of stationary sine waves can be estimated by the parametric

delling. The i delling can be realized by both the transfer-function

representation and the state-variable ion. Although the estimation of

the sinusoidal frequencies obtained from the model parameters are presented by the
two representations in a different way, i.e. the zeros of the denominator polynomial
of the transfer function for the AR model and the eigenvalues of the state matrix
F, the resulls are the same. Moreover, the SVD can serve to reduce the data space
to a dimensionally smaller signal space and the effect of noise can be substantailly
suppressed.
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Chapter 5

The Clutter Suppression Scheme

As mentioned in Chapter 2, ocean clutter in HF radar can be viewed as two
narrowband frequency-modulated sinusoidal signals, with their centre frequencies
given by Eq. (2.2). Based on this time-varying model of the occan clutter presented

in Khan’s recent work (7], a clutter suppression scheme is developed Lo selectivel

suppress the clutter components from the received radar signal. The instantancous
frequencies of the clutter signals can be tracked by a lime-varying signal processing
technique, namely Hankel rank reduction method, and the clutter signals can then

be identified from their centre frequencies which almost agree with the average

values of their i fi ies. The clutter ion scheme proposed
in this thesis involves two steps. The first one is to estimate the instantancous
frequencies of the ocean clutter signals by applying the Hankel rank reduction
method, and the other one is to remove the signal power associated with the clutter
signals from the time series data so that the resultant data samples will be clutter
free. The derivation of the Hankel rank reduction method and the procedures to

suppress the clutter signals will be discussed in detail in this chapter.



5.1 Hankel Rank Reduction Method

The Hankel rank reduction method presented by DiMonte and Arun [12] utilizes
the property that a Hankel matrix constructed directly from a time series con-
taining a finite number of sinusoids can be approximated by a lower rank matrix
characterized by the principal singular values obtained from the Singular Value

Decomposition (SVD), even if the sinusoidal frequencies are varying slowly with

f

time. The i are then esti d from those principal sin-
gular values. The derivation of the method is shown in the following sections.

Given a sampled signal, y(k), dof r superimposed real-valued sinusoids

whose frequencies are assumed to be varying slowly with time,
y(k) = Ay cos(di(k)) + Az cos(¢a(k)) +-+ -+ Ap cos($. (k) k = 1,2,3,- -+, N (5.1)

where N is the total number of data samples. A;,i=1,2,:,r, are the amplitudes

of the sinusoids. The instantaneous frequency of each sinusoid is defined as

wilk) = [$ilk) = gi(k=1)], i=1,2 7 (5.2)

where the sampling period is assumed to be unity. A Hankel matrix constructed

directly from the data samples has a size of (N — L + 1)-by-L, where L is of the

order of 3r [12]; and N> L.

y(1) 2) e y(L)

u(2) u(3) seoul+1)
. ; k (5.3)

YN=LH1) y(N=L+2) - y(N)

In the previous chapter, it has been proved that H has a rank of 2r (note that

cos(@(k)) = 1/2(e’**) +¢~7#(¥))) when the sinusoidal frequencies are invariant with

time and the data sequence is noiseless. However, if the frequencies are changing

with time, H will be of full rank. DiMonte and Arun (12] have demonstrated

39



that if the frequencies of the signals change sufficiently slowly over a period of L
data samples, the rank of H will be close to 2r. This claim can be shown by the
related approach used for the stationary sine waves in Chapter 4. The sampled
signal, y(k), can also be modelled as the output of the special AR process with
zero input, or simply as the output of an oscillator. The model is governed by the

following two state variable equations,
2(k + 1) = F(k)=(k) (5.4)

y(k) = hz(k) (5.5)
where z(k) is a 2r-by-1 state vector; F(k) is known as the instantaneous state
feedback matrix with a size of 2r-by-2r. The F' matrix is now no longer constant.
Since F is a frequency dependent matrix, it will change with time as the sinusoidal
frequencies are time-varying. h is the 1-by-2r output vector. The instantancous
frequencies of the sinusoids will be given by the angles of the eigenvalues of F(k).
The cigenvalues of F(k) are in the form of ex#i(¥) § = 1,2, ... r. The relation-
ship to the signal parameters can be explicitly shown in the diagonal canonical

representation of the system where

F(k)= diagle™i (k) g=ien(kh1) gientkt) gmionlkt) . giwr (k) ojur(ki)]

(5.6)
b= [Ay Ay, Agy Ay, - -+, Any Ar] (5.7)
2(0) = [e940), e=3#100), ¢i43(0) g=i#2(0) ... I#0) =it O (5.8)

From Eq. (5.4) and Eq. (5.5) , H in Eq. (5.3) can be rewritten as

ha(l) ha(2) o ha(L)
ha(2) ha(3) o ha(L)

ho(N =L+1) he(N —L42) - ha(N)
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ha(1) ha(2) ha(L)
hF()z(1)  hF(2)z(2) hF(L)z(L)
= | AFQ)F@)2(1) RF@)F(B)2(2) - RF(L)F(L+1)z(L) | (59)

If the ies are changing si slowly with time, the state feedback

matrix F(k) can be considered approximately constant over the period of L time
instants. Such being the case, along each row of H, the sinusoidal frequencies are
assumed to be invariant with time. As a result, the feedback matrices F(x - 1),
F(k+2),-,F(k+ L), k=0,1,2,-+ can be approximated by its mean value in
the L time instants, that is F(k +d),d = (L + 1)/2. Then H will be close to the
following form.

ha(1) hz(2) hz(L)

hF(d)z(1) hF(d)z(2) - hF(d)a(L)
H = | hF(@)F(d+1)2(1) hF(dF(d+1)z(2) - AF(d)F(d+1)a(L)

L

h

hF(d)
WRA)F(d+1) | [2(1), 2(2), =@3),+, (L) ]

ox (5.10)

Because © has only 2r columns and X has only 2r rows, the rank of H will not
be greater than 2r. It can be shown that if the r instantaneous frequencies are
different for at least 2r time instants, the factors © and X are full rank, and hence
H has rank of 2r [12]. However, the global change in the frequencies in the data
can affect the approximation of matrix H to the lower rank matrix.

In the case of stationary sine waves, their frequencies can be estimated from
the angles of the eigenvalues of F. Similarly, for non-stationary sine waves, their

1 from: the eigenvalues of F(K).

f 1

can also be

When the sinusoidal frequencies are time-varying, the Hankel matrix H is full
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rank. The Singular Value Decomposition (SVD) is used to obtain a low rank
approximation of H from which an estimate of the observability matrix © in (5.10)
can be identified. Hence, it is possible to determine (k) from ©. The SVD of the
Hankel matrix H is expressed as

H = USV”
L

(5.11)

i

where S = diagloy,07,+-+,01] and 0y 2 03 2 -+ 02, 2 2041+ -+ 01, 2 0 are known
as the singular values of H. u; and v; are the corresponding left and right singular
vectors. It can be shown that if the sinusoidal frequencies are changing slowly with
time and the noise level is not very high, then there will be 2r principal singular
values which represent most power of the signal and the rest of the (£, —2r) singular

values will be small and close to zero. Thus H can be rewritten as

T
H= (U, U,)(SU‘ SD,)(&) (5.12)

where S; = diagloy, 05,02 and S = diaglossr, 0242, 1 a1). Uy and Vi
contain the left and the right singular vectors corresponding to the 2r principal
singular values whereas Uz and V; consist of the left and the right singular vectors
associated with the remaining (L — 2r) singular values. If o3, 3> 72,41, then it will

lead to a good approximation of H defined by the 2r dominant singular values, i.c.

H ~ USVT
2r
= Yowa! (5.13)
=
Rearranging Eq. (5.13) gives
H=U,8}"s1*vT (5.14)

By comparing Eq. (5.10) and Eq. (5.14), © = U, 5}/ isidentified as an estimate

of © and X = S/2V7 is an estimate of X. © consists of the state feedback matrices
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F(k) whose eigenvalues determine the i of the sinusoids.

F(k) can be estimated by two steps. First, & is partitioned into a number of small
matrices in which the number of rows in each small matrix equals d, the mean

value in the L time instants.
&4 = rows from k to (d+k) of 6,k=1,2,3,-- (5.15)

Second, from Eq. (5.10), a relationship between F(k) and the partitioned matrices

64 is observed as follows.
OLF(d + k) 2 Opyr k= 1,2,3,- -+ (5.16)
or

O,F(d+1)

I
@

OF(d+2) = O,
65F(d+3) = &4

(5.17)

The least square method can be used to solve for F(d + k) because the system
of lincar cquations in Eq. (5.16) is overdetermined (34]; and the i

frequencies of the sinusoids at time (d + k + 1) are then determined by computing
the angles of the eigenvalues of F(d + k).

From the above, it is shown that based on the assumption that the sinusoidal
frequencies are slowly varying with time such that they can be considered approx-
imately constant over a small fraction of time interval, i.e. L time instants in this
case, a Hankel matrix constructed directly from the data samples can be approxi-
mated by another matrix whose lower rank equals the number of dominant singular
values given by the SVD. The instantaneous frequencies of the sinusoids are esti-

mated by the related approach used for the stationary sine waves except that the
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observability matrix © is partitioned into several smaller matrices. Those small

matrices the i ly constant sinusoidal fi ies which are

regarded as the i over that lar short time interval.
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5.2 Suppression of Ocean Clutter Signals

The time-varying frequencies in the Khan [7) model for the “Bragg” phenomenon
in radar-sensed ocean clutter can be estimated or tracked through the Hankel
data matrix rank reduction method. If a signal’s frequency can be tracked in-
stantaneously, it will be possible to have the signal suppressed or filtered. Since
the instantaneous frequencies of the sinusoids are obtained from the angles of the
cigenvalues of F(k), the eigenvalue corresponding to each sinusoid can be regarded
as the power of the signal. Thus, a reverse process is developed in such a way that
any singular signal, particularly the ocean clutter signal, can be suppressed with-
out affecting the other signals if its associated eigenvalue is removed from F(k).
Alter a new F(k) is calculated, a new partitioned @new; and a new Onew can be

4 dingly. Ce ly, a new Hankel matrix, Hnew, will be recon-

structed from Onew. The derivation of the signal suppression process is described
below.

The ei lue d ition of the i feedback matrices F'(k) can

be represented by

F(k)v(k) = Mk)v(k) (5.18)
where A(k) are the eigenvalues of F(k) in the form of diag[M, Az, As, - -+, Az/]; and
v(k) is the corresponding eigenvectors. So as to suppress the clutter signals, the
eigenvalues of the signals whose angular positions on the unit circle determine the

sinusoids’ i are first identified by the “Bragg” fi

and then are zeroed. The new matrix F(k) is computed by the following equation.
Frew(k) = (new(k)v(k)v'(K) (5.19)

where Anew(k) is the same as A(K) except that the eigenvalues of the clutter

signal are zero. v'(k) is the inverse of v(k). Once the new F(k)'s are obtained,
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it is possible to estimate the new partitioned matrices énewk using the following
relationship.
Onewyyy = OxFnew(d+k), k=1,23,. (5.20)
As a result, a new Gnew can be obtained by concatenating the &newy's into one
matrix, and a new estimated Hankel matrix can therefore be constructed by the
relationship of
Hrnew = &newX (5.21)
By inspection of the structure of the Hankel matrix, it will be possible to estimate

a new time series data, §(k), from the new Hankel matrix. For example,

i1) = H(,1)
92) = (H(1,2)+ H21)/2
93) = (H(1,3)+ H(2,2)+ H(3,1))/3

(5.22)

The new time series data is the one with the clutter components suppressed.
From the above, it has been shown that the first part of the proposed clutter

suppression scheme employs the Hankel rank reduction method, a time-varying

£

tracking techni to track the fr ies of all signals including the
ocean clutter and the targets. After identifying the ocean clutter signals from
their “Bragg” frequencies, a signal suppression process is derived to remove the
signal power of the ocean clutter given as the eigenvalue of the F(k) matrix in-
stantaneously. A reverse but similar process used for estimating the instantaneous
frequencies is developed to recreate another reduced rank Hankel matrix from

which a data sequence containing only the target signal can be extracted.
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Chapter 6

Computer Analysis and
Simulation '

The perf f the clutter ion scheme d in this thesis is tested

on both the computer-synthesized and the real HF radar data. In both cases, the
received signal from each ocean range cell contains only a single target in addition

to the ocean clutter. The size of the range cells in this HF radar is 400 m.

6.1 Computer Simulations and Results

Recently, a HF g d radar, operating at a centre i of 6.75 MHz, has
been built at Cape Race, Newfoundland, Canada. According to Eq. (2.2) and Eq.

(2.1), the “Bragg” clutter signals would have Doppler frequencies at approximately
£0.265 Hz and a characteristic propagation speed of about 5.9 metres per second
(m/s). Tosimulate the ocean clutter signals, two narrowband frequency-modulated

sinusoidal signals were synthesized and specified as follows:

s1(t) = explidi(t)] (6.1)
sa(t) = explja(t) (6.2)

where
¢1(t) = 27 fit + By cos(2m frmit + 61) (6.3)
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a(t) = 27 fot + 02 + By cos(27 frnst) (6.4)

where fi and f, are the center frequencies of the “Bragg” clutter signals and

are set to be 0.245 Hz and —0.275 Hz, respectively; By, fm1, Bz and fumg are

the of the freq; dulation and their values are selected to be
0.625, 0.08, 0.775 and 0.065, respectively to attain a close approximation to the
narrowband characteristic of the ocean clutter signals; 6, and 0, are some arbitrary
phases used to differentiate these two similar signals. The amplitudes of both
signals are assumed to be unity. The simulated “Bragg” frequencies are set to
be slightly deviated from the theoretical values (+0.265 Hz) because in reality,
the ocean surface currents have effects on the “Bragg" frequencies and cause a
small offset between the actual and the theorelical values. The frequencies of the
simulated clutter signals were made to fluctuate within the range of +£0.05 Hz
about the center frequencies. This means that the ocean clutter signal would have
maximum frequencies of 0.295 Hz and -0.225 Hz; and minimum frequencies of 0.195

Hz and -0.325 Hz, respectively. The i fi ics, fir and fi, of 3y(1)

and s5(1) are defined as the derivatives of their phases with respect to time and

are as expressed below.

falt) = %
= 20fy = By2n fo Sn(2n Sl + 01) (6:5)
and
ity = 2
= 2rfy ~ Ba2r fruasin(27 frmal) (6.6)

In discrete time representation,

ai(k) = explig(k)]
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(k) = expligs(k)]
Ja(k) = (6u(k) = ik = 1))/T,
falk) = (3a(k) = g2k~ 1))/T, (6.7)

where k refers to the kth sampling instant. A sampling rate of T, = 0.5 second and
a data length of 128 samples were used in the simulation. The computer program of
the proposed clutter suppression scheme written in MATLAB language is shown in
Appendix C. The inputs to the program are the number of columns in the Hankel
matrix and the sampling time. The output of the program is the target signal with
the ocean clutter suppressed. The program is written based on the specifications
of the HF radar built at Cape Race. Some changes in the program’s parameters
such as the centre frequency of the radar signal may be needed if it is used on a
different HF radar system.

6.1.1 Test I

In this test, the proposition that the Hankel matrix H could be approximated
to a lower rank matrix by means of Singular Value Decomposition (SVD) was
verified under various signal-to-noise ratios (SNR) where the Guassian white noise
with zero mean was introduced. The selection of the Guassian white noise for the
simulation is based on the Central Limit Theorem. Three SNR's were considered.
They were SNR = oo (noiseless), SNR = 20 dB and SNR = 10 dB. First of all, a
quick check was done to confirm that the rank of H is determined by the number of
the principal singular values which correspond to the number of complex sinusoids
whose angular frequencies are time invariant in the received signal in a noiseless
condition. Let the received signal, y(k), consist of two stationary sine waves with

constant frequencies, f; and f.

y(k) = exp[j(2x fik)] + exp[i(2x /ok)], k=1,2,---,128 (6.8)
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Singular Value | SNR = oo | SNR = 20 dB [ SNR =10 dB
oy 22.0124 22.0276 22.1969
a2z 16.4261 16.4469 16.6740
a3 0 0.8030 3.8125
(a)
Singular Value [ SNR = oo [ SNR = 20 dB [SNR = 10 dB
a1 217.6287 21.7624 27.8828
a2 21.8801 22.0022 22,1511
a3 0 0.7946 3.4650
o4 0 0.7522 3.2832
g5 0 0.7120 3.2391
(b)

Table 6.1: The singular values of H consisting of stationary sine waves at SNR =
00,20 dB and 10dB: (a) L=3,(b) L=5

The singular values of H of two different sizes, in which the number of columns
of H, L, equals 3 and 5 as examples, at three different noise levels, are shown in
Table 6.1 (see Appendix B for the computation of the singular values of a matrix).

From Table 6.1, it is noticed that there are only two nonzero singular values
corresponding to the number of complex sinusoids in the ideal situation where no
noise is present, and the other singular values are zero regardless of the size of H.
This indicates that H has a rank of 2. With noise introduced, the Hankel matrix
H is perturbed. The two largest singular values represent most of the signal power
while the remaining ones are no longer nonzero and represent the noise.

If the sinusoidal frequencies are time-varying, /f will be full rank even with-
out the presence of noise. The received signal now contains the two frequency-
modulated signals, s,(k) and s3(k), as specified in Eq. (6.7). Table 6.2 contains
the singular values of H at three different SNR’s with examplesof L = 3 and L =
5.
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Singular Valuc | SNR = oo | SNR = 20 dB | SNR = 10 dB |
o 21.9756 21.8466 22.0128
A 16.3891 16.3180 16.5076
o3 1.3874 1.4936 5.0166
(a)
Singular Value | SNR = oo | SNR = 20 dB | SNR = 10 dB
o 27.1652 27.1028 27.9537
7 21.8362 21.8028 22.5112
7 4.9003 4.9540 6.2166
e 1.5755 1.3088 37730
s 0.1583 0.7901 32318
(b)

Table 6.2: The singular values of H consisting of time-varying sine waves at SNR.
=00,20dBand 10dB: (a) L=3,(b) L=5

Again, all the singular values in Table 6.2 are nonzero and that indicates H
being full rank. Although H is full rank, it is quite clear that there are still
two dominant singular values corresponding to the sinusoids. As the noise level
increases, the gap between o, and o3 gets closer because more noise is distributed
among those less dominant singular values. This effect can be seen in both Tables
6.1 and 6.2. At very low SNR, it is noticeable that the above proposition will
produce quite significant errors. It will be difficult to distinguish between the
signal and the noise subspaces because the singular values are not split into two
distinctive groups. Thus, an acceptable and useful low rank approximation of H
will depend on where the SNR threshold level is set. As far as the simulation is
concerned, SNR = 10 dB is considered as the worst case. This 10 dB threshold

level is quite ive of the real situations but it does not include some

special cases such as when one of the “Bragg” peaks is driven into the noise floor

by sustained winds along the beam. Further work is needed for those cases.
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6.1.2 Test IT

The estimation of the i fi ies of the sinusoids was evaluated in
this test. A single sinusoid with time-varying frequency, s;(t), as given in Eq. (6.1),
was first used to test the Hankel rank reduction method. Fig. 6.1 shows the actual
and the estimated instantaneous frequencies of s;(t) in a noiseless environment.

The form of the estimated instantaneous frequencies are mapped onto the actual

one given by Eq. (6.5). The slight diffe in their amplitudes can be d

for by the ion that the fi ies are considered imately constant
over a certain period of time. This assumption is valid only if the frequencies
are changing significantly slowly with time. The clutter signals can be identified

by their “Bragg” fi ies which would i agree with the average

values of the instantaneous frequencies. Similarly, the average values of the close
estimated instantaneons frequencies can be utilized to identily the clutter signals.
Two noisy cases, at SNR = 20 dB and SNR = 10 dB, were then considered. The
estimated instantaneous frequencies of s (t) in both noisy environments are shown
in Fig. 6.2 and Fig. 6.3. Although the amplitude of the estimated instantancous
frequencies in both noisy cases were distorted, their forms were preserved even
in the worst case, i.e. SNR = 10 dB (see Fig. 6.3). An average value of the
instantaneous frequencies near to the “Bragg” frequencics could be obtained. It
should be pointed out that the original frequency in the above Figures is computed
from Eq. (6.5).

6.1.3 Test III

In addition to the simulated clutter signals, a third sinusoidal signal, sa(t), re-
garded as a single target with a constant Doppler frequency of 0.5 Hz moving
towards the radar site at a velocity of 11.1 m/s, was added. The number of data

samples used in this test is also 128. Fig. 6.4 shows the power density spectrum
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of the received signal that contains s;(K), sa(k) and ss(t). The power spectrum
was computed by fast Fourier transform (FFT). To suppress the clutter signals,
the instantaneous frequencies of the clutter signals were first tracked by using the
Hankel reduction method and were then identified. Another reduced rank Hankel
matrix with the frequency components of the clutter signals removed was con-
structed by the procedures discussed in section 5.2 and a new time series data was
estimated. Fig. 6.5 compares the power spectra of the original received signal and
the one with the clutter signals suppressed in a noiseless case. About 20 to 30 dB
clutter level were suppressed. Subsequently, noise was taken into consideration in
the testing process. The resultant power spectra of the signal before and after the
clutter suppression process in the noisy cases at SNR = 20 dB and SNR = 10 dB
are shown in Fig. 6.6 and Fig. 6.7, respectively. In both Figures, a level of 10 to
20 dB clutter was suppressed.

There is always a limit as to how close two frequencies can be so that they
can be resolved by the frequency estimation method. In this clutter suppression
scheme, the limit of the closeness between the Doppler frequency of the target and

the “Bragg” frequencies of the ocean clutter where the target signal will not be

affected during the clutter fon process was examined. It is
found that if the target's Doppler frequency has a space of less than 0.09 Hz from
that of the ocean clutter, the scheme has difficulty in tracking the frequencies of the
ocean clutter signals as well as the target signal. The experiment was conducted
in such a way that the target’s Doppler frequency was varied to be close to the
“Bragg” frequencies until the scheme failed to track both frequencies properly.
This experimentally found value, 0.09 Hz, is close to the modulation frequency,
fm1 = 0.08 Hz. This suggests that if the target’s Doppler frequency is very close
to the second-order scattering peaks, which can be interpreted as the contribution

from the modulation frequency in the clutter signal, then the suppression process
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will be affected.
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6.2 Real HF Radar Data Testing

Computer simulations have shown that a substantial level of the clutter signals can
be suppressed by the proposed clutter suppression scheme. Now, real HF radar
data will be used to examine the scheme’s performance. A single ship which was
moving at various velocities away from the radar site was detected. The ship's

was i itored by the radar. The echoes from the ocean

consisted of three sinusoidal signals - one ding to the ship and the other

two corresponding to the ocean clutter signals. The signal received from each range
cell has 512 data samples at a sweeping rate of 0.601 second. The data samples
are complex-valued. During the testing process, the 512 samples were divided into
4 segments which represent four different periods of the recorded time so that the
mmovement of the target within each range cell could be examined along the time
of observation. Therefore, there were 128 san.ples used in each test run. It is
preferable to have the whole data record divided into more shorter segments so
that the target’s movement can be better monitored. However, too short data
record may not provide adequate Doppler resolution for target discrimination. In
this test, a data record of 128 samples was found to be short enough to provide
sufficient Doppler resolution.

Two test trials were conducted to track the locations of the ship at differ-
ent ranges. Also, owing to the fact that the longer the distance, the higher the
propagation loss will be, different reflection signal strengths result. Therefore, the
capability of the clutter suppression scheme to deal with two different target sig-
nal strengths were tested in those two trials. The Doppler spectrum from each
data segment of the range cells was obtained simply by using a FFT, and it was
uscd to detect the ship and to estimate its radial velocity. The tests described in

the following sections compare the signals before and after the clutter suppression
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process in the frequency domain and the time domain at different ranges. In the
frequency domain, the energy of the reflected signal from the ship will be shown
as the power spectrum whereas the time series of the ship signal will be expressed
by the value of its real part (note that the radar data is complex-valued). The
real part and the imaginary part of the ship signal are similar except for the phase
shift, and the time series behaviour of the signal can be sufficiently shown by the
values of its real part alone. In each test case, data from three adjacent range cells
were investigated simultaneously because it would help locate the correct position
of the target by looking at the relative magnitudes of the return energy of the
target among those adjacent range cells. In reality, the clutter suppression process
is continuous; but this is not an on-line testing. Three range cells are selected only

for the purpose of testing.
6.2.1 Test Case I

At time 15:18:05, the ship was observed at the ranges of 70.4 km, 70.8 km and 71.2
km by means of Doppler detection. Fig. 6.8 (a) to (d) show the Doppler spectra of
four different segments of the data record before and after the clutter suppression
process at the range of 70.4 km. In Fig. 6.8 (a), three peaks are noticed. The one
in the middle represents the reflection signal from the ship, and the other two arc
from the ocean clutter with a characteristic propagation speed of about 5.96 m/s
or a Doppler frequency of about = 0.265 Hz. This result agrees with that in the
simulation. The ship has a negative radial velocity of about 3 m/s as inferred from
the Doppler spectra. The negative sign indicates that the ship was moving away
from the radar site. It is noted that not only the first-order but also the second-
order scattering from the ocean surface were suppressed. This result confirmed that
the ocean clutter can be closely modelled by two narrowband frequency-modulated

sinusoidal signals. Among the four power spectra in Fig. 6.8, a progressive decrease
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in the magnitudes of the target's energy was observed whereas the magnitude of
the clutter’s energy stayed almost the same throughout the whole data length.
The target signal appeared to have magnitudes of about 1 dB, -7 dB, -10 dB and
-12 dB in those four segments, respectively. This scenario showed that the target
was moving towards farther range cells. Moreover, the average radial velocity of
the target among those four segments was slightly different.

The data from the range of 70.8 km was tested next. The resultant power
spectra of the four data segments with and without the clutter signals are depicted
in Fig. 6.9 (a) to (d). The magnitudes of the target’s energy in all four segments
exhibited a relatively higher level than those at range 70.4 km. This implics that
the target was likely at range 70.8 km rather than at range 70.4 km during some
times of observation. The movement of the target could be described by the
magnitudes of its return energy. The magnitude of the target's return energy
in the second segment (see Fig. 6.9 (b)) displayed a maximum in relation to the
other three. It means that the target was at the range of 70.8 km around sometime
during the second quarter of the recorded time.

A similar test was run on the data from the range of 71.2 km. A progressive
increase in the magnitudes of the target’s return energy was shown among the
power spectra of the four data segments as in Fig. 6.10 (a) to (d). A maximum
magnitude appeared in the last one segment (Fig. 6.10 (d)). The plots demon-
strated that the target was moving into range 712 km during the last quarter of

b ial level of clutter ion is noticed among these

the recorded time. A
three tests, and is approximately quantificd in Table 6.3. An average relative level
of 30 dB clutter suppression is obtained.

The real part of the time series of the raw radar data including the target and
the clutter signals collected from range 70.4 km is shown in Fig. 6.11 (a). A fine

sine wave representing the target signal extracted from the raw radar data is shown
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Data Segment
1128 129:256 257:384 385:512
Range (km) | —foe | +foe | —Jor | +Soe | =Joe | +foe | —Joe | +Joe
704 20 30 30 | 40 | 35 40 40 [ 45
708 2 30 20 | 30 | 20 25 25 | 35
712 2 | 40 [ 25 [30 [ 2 [ 30 ] 25 | 30
Table 6.3: A summary of the relative i jon of the clutter suppression (in

dB) in the range cells: 70.4 km, 70.8 km and 71.2 km at four different periods of
the observation time (where =+, are the “Bragg” frequencies)
in Fig. 6.11 (b). A progressive decrease in the magnitude of the larget's return
energy is also observed in that Figure. Fig. 6.12 (a) and (b) compare the time
series of the target signal with and without the ocean clutter at the range of 70.8
km. At this range cell, the sine wave of the return signal from the target, as shown
in Fig. 6.12 (b), appeared to be stronger as compared to that at range 70.4 km
and persisted for a quite long period of time. The comparison between the time
series of the target signal with and without the ocean clutter at range 71.2 km are
depicted in Fig. 6.13 (s) and (b). The sine wave of the target in Fig. 6.13 (b)
showed a progressive increase in its amplitude and had a maximum at nearly the
last quatter of the recorded time. Comparing the lime series of the target signal
among those three range cells leads to the conclusion that the ship was at the
range of 70.8 km during most of the recorded time and was leaving the range cell
of 70.8 km and heading lowards the range cell of 71.2 km during the last quarter
of the time. The interpretation of the plots of the ship’s movement bears a good
agreement with the available but limited ground-truthing data [35).

In this test case, a good quality target signal was successfully extracted from
the received radar data. Table 6.4 presents a summary of the relative magnitudes
of the return energy of the ship's signal in the above three range cells at different

periods of the observation time.
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Data Segment
Range (km) | 1:128 | 129:256 | 257:384 | 385:512
1 8

7 -10 -12
70.8 4 5 -1 3
71.2 -12 -2 2 6

Table 6.4: A summary of the relative magnitudes of the return energy from the
ship (in dB) in the range cells: 70.4 km, 70.8 km and 71.2 km at four different
periods of the observation time
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6.2.2 Test Case II

At time 16:24:56, the ship was detected at the ranges of 88.4 km, 88.8 km and
89.2 km. As the ship was at farther distances, its return signal was expected to be
weaker. AL the range of 88.4 km. the ship had a negative radial velocity of about
7.5 m/s. Since the ship was moving at a faster speed than in the previous case,
a fairly quick progressive fading of the ship target’s signal was observed in the
Doppler spectra as shown in Fig. 6.14 (a) to (d). In Fig. 6.14 (a), three dominant
peaks are noticed. The two peaks at velocities of about & 5.9 m/s represent the
return signals from the ocean waves. The third one at velocity of about -7.5 m/s
indicates backscatter from the ship. The magnitude of the target return energy
is smaller overall compared to the previous cases. The data from the next range
cell, i.c. 88.8 km, in Fig. 6.15 (a) to (d) presents similar Doppler spectra but with
stronger signal energy. Fig. 6.15 (a) displays a maximum magmtude of the target
signal’s energy while Fig. 6.15 (d) shows no target signal. The target observed
in the last range cell, 89.2 km, . libits the strongest signal level as compared to
those in the other two cells. This can be seen from the Doppler spectra in Fig.
6.16 (a) to (d).

‘The power spectra of the data record provide a means of analyzing the move-
ment of a target. A similar analysis can be done by looking at the time series of
the target signal. Also the time series will provide a better indication of the ship’s
location during the time of observation. Since there is not much target signal in
the data record from the range of 88.4 km, only a very short duration of sine wave
is seen in Fig. 6.17 (b) where Fig. 6.17 (a) is the time series of the original data.
The time series of the target signal at the range of 88.8 km shown in Fig. 6.18 (b)
gives a better sine wave as compared to that at range 88.4 km, and the original

time series is shown in Fig. 6.18 (a). According to the ship’s speed, it would
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Data Segment
[ 1128 120:256 | 257:381 | 385512 |
Range (km) | —fo | +/o —zé. +oe _2{)“ tHoc | —Joc [ +oe

z 20 | 30 35 10 | 25 [ 40
888 25 | 35 | 30 | 35 | 30 | 50 | 10 | 10
892 35 | 30 | 25 [ 40 [ 35 | 40 | 40 | 10

Table 6.5: A summary of the relative quantification of the clutter don (in

dB) in the range cells: 88.4 km, 88.8 km and 89.2 km at four different periods of
the observation time (where + f,; are the “Bragg” frequencies)
take about 53.3 seconds for the ship to travel across a range cell of width 400 m.
The time series of the ship signal at range 89.2 km in Fig. 6.19 (b) shows a quite
steady sine wave, without much amplitude variation, for 50 to 60 seconds and a
rather complex time series that contains the ocean clutter and the target signals is
illustrated in Fig. 6.19 (a). This shows that the time series of the target signal can
be used as an alternative to analyze the target's movement. The correct position
of the ship is found to be at the range of 89.2 km during the time of observation.
Again, the ground-truthing data agrees with the results inferred from the plots.
In this test case, although the return signal of the ship appeared to be weaker
because of the farther distance when compared Lo the previous cases, the clutter
suppression scheme worked well and extracted a good quality target signal from
the received data. Moreover, the ocean clutter was suppressed again by an average
relative level of 33 dB as observed from Table 6.5. Table 6.6 contains a summary
of the relative magnitudes of the return energy from the ship in the above three

range cells.

6.3 Discussion

From both simulations and real HF data testing, it is demonstrated that the pro-
posed clutter suppression scheme is capable of tracking the frequencies of the ocean
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Data Segment
Range (km) | 11128 | 120:256 | 257:384 | 385:512

88.4 -22 -28 -30 -29
88.8 -12 -2 -26 -35

89.2

-2 -15 -26 -26

Table 6.6: A summary of the relative magnitudes of the return energy from the
ship (in dB) in the range cells: 88.4 km, 88.8 km and 89.2 km at four different
periods of the observation time

clutter signals and the target signal and then selectively suppressing the ocean
clutter. Good quality target signal is extracted from the dominant ocean clutter
environment. Moreover, the time-varying model of the ocean clutter is verified.

As compared to other adaptive clutter i hni this tect

seems to be simpler in terms of operational steps. In other techniques, it is nec-

essary to select a kind of ad i Igorithm and an i g

factor. Also, it is quite common that other techniques only model the clutter

signals. In this technique, the clutter signals and the target signal are modelled

simultaneously in terms of their f ies. No ad ion algorithm or any con-
vergence factor is required in this technique. However, the choice of the number
of columns in the Hankel matrix depends upon several factors such as the rate of
change in the frequency, the number of sinusoids present in the received data and
the amplitude of the sinusoids. Due to the non-stationarity of the ocean clutter,
there is no unique number of columns suitable for all the situations. During the
real data testing, the choice of the number of columns varied from 7 to 11. The
technique does have a limition of resolving the frequencies of two very closely-

spaced sinusoids. A possible solution to overcome this limitation is suggested in

Chapter 7. Last, the SVD utilized in this technique enhances the signal-t

ratio. This effect can be seen in the power spectrum plots of the ship signal when
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Chapter 7

Conclusions and
Recommendations

A clutter jon technique for high frequency (HF) radar has been consid-

ered. The radar clutter here refers to the HF scattering from the ocean surface,
namely ocean clutter. The approach taken by the technique proposed is based
on the recognition of the inherent time-varying behaviour in ocean clutter. It
has been shown that ocean clutter can be adequately modelled as two narrow-
band angle-modulated signals. A time-varying signal processing method, Hankel

was then impl d to track the i ies of

rank
the clutter signals. Two simulated ocean clutter signals were generated to exam-
ine the tracking capability of the method. Under different signal-to-noise-ratios
(SNR's), a close estimate of the instantaneous frequencies of the clutter signals

was obtained. The average values of the instantaneous frequencies are close to the

M it has been d d that a Hankel matrix

“Bragg” f
formed directly from time series data, composed of a finite number of sinusoids,
can be approximated by a reduced rank matrix characterized by the finite number
of principal singular values obtained from the SVD. This approximation is held
even when the sinusoidal frequencies are varying slowly with time. The sinusoidal

frequencies are estimated from those principal singular values,



The clutter signals are d

by ing their ding frequency
components from the reduced rank Hankel matrix. As a result, another reduced
rank Hankel matrix is created from which a new time series is extracted. The
estimated time series will contain only the target signal and noise of a level in-
sufficient to disturb target identification. In addition to the two simulated clutter

signals, a target signal was d to test the i fc of the

proposed technique. This was further examined using the real HF data. The re.
sults from both cases revealed that the ocean clutter signals and the target signal
could be tracked properly in terms of their frequencies. Also, a substzntial level
of ocean clutter, in the range of 20 to 50 dB, could be suppressed, permitting
the extraction of a good quality target signal. Unlike some other adaptive clutter
suppression schemes, this proposed technique can model the ocean clutter signals
and the target signal simultaneously without any adaptation algorithm and con-
vergence factor, and is simple to use. No prior information on the ocean clutter is
required.

Estimation of the frequencies of two very closely spaced sinusoids used to be

a difficult problem in signal ing. In this technique, it was experimentall

found that, if the expected Doppler frequency of a target had a space less than 0.09
Hz from the “Bragg” scattering frequencies, the scheme had difficulty in tracking
both the ocean clutter and the target. However, the worst situation could happen
when the target signal is masked by the ocean clutter where the Doppler frequency
of the target coincides with that of the ocean clutter. One solution can prevent this
situation from happening. As stated in Eq. (2.1) and Eq. (2.2), both the Doppler
frequency of a target signal and the “Bragg” frequency of the ocean clutter are
different functions of radar centre frequency. Thus, by periodically altering the
radar centre frequency, the target and the ocean clutter can be separated in terms

of their Doppler ies, and estimating the fi ies of two ly close
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sinusoids would be unnecessary.

The proposed clutter suppression scheme is developed to

a general
algorithm to selectively suppress the ocean clutter. The program of the scheme is
written in MATLAB language because it is easy to use and many well developed
routines are available. The scheme is not fully implemented yet. The following
recommendations are suggested to improve the scheme's performance and compat-

ibility.

o The Hankel rank reduction method works based on the condition that the
sinusoidal frequency has to be varying slowly with time. Further work is
needed to monitor the rate of change in frequency so as to assure that the

method gives good estimates of the frequencies.

o The flexibility of the scheme applicable to range cells of any size can be
enhanced by further work on determining the exact number of sinusoids
(targets) in each range cell. This will be necessary for automatic processing

operation.

The routine used in MATLAB to solve the SVD problem is general. In terms
of implementation, the running time of the program can be improved using
some specific fast routines to solve the SVD problem and some high level

programming languages.
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Appendix A
Doppler Effect

Consider a radar with a frequency of f = 1/Ty, where Tp is the period of the
transmitted wave, and a target moving at a constant radial speed, v, towards the
radar site. At time ¢ = o, the target is at range R = Ro. It is assumed that at
that time a peak or crest of the wave is emerging from the radar’s antenna. At
time t = o + Ty, the next crest of the wave (point B in Figure A.1) is emerging at
this time. Let the target’s range be R = R;. The time, At, necessary for point A

on the wave to travel from the radar to the target is

A= ("‘"—C"A“ (A1)
or
_ R
A= (A2)

where c is the speed of the light. The time necessary for point A to return to the

radar is again At. Thus point A returns to the radar at time,

2Ry

h=tor 2 (A3)
Similarly, point B returns to the radar at time,
2R
t=to+To+ o (A4
The period of the received wave, T, is t — t; or
0 _ 2(Ro - R)
1= 1, 2] (A5)
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Figure A.1: Target geometry and transmitted and received waveforms for Doppler
effect derivation (J. L. Eaves and E. K. Reedy: Principles of Modern Radar, 1987)

Since vTo = Ro— Ry

in terms of the received frequency,

(A.6)

T
= /1+v/c

1—v/e A7

For most cases of interest, v/c € l;and 1/(1—2z) = 14+z+2" +-ifz <1

Thus
o fL+v/)(l+v/et v/ +10)
= f(1+2/c+20%/E++1)
~ f(1+20/c)
= 42/ (A8)
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Therefore, the received wave has been shifted in frequency from the transmitted

wave by the amount of f4 =2v/\. f is the Doppler frequency shift.
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Appendix B

Eigenvalues, Eigenvectors and
Singular Value Decomposition of
a Matrix

B.1 Eigenvalues and Eigenvectors of a Matrix

Given an n-by-n matrix A,

@i G2 cc G
621 Gp - G
= g ‘ (B.1)
@Gn1 G2 “** Oan
By a linear transformation,
Arz=)z (B.2)

where A is a known real square matrix of order n-by-n; z is an unknown column
vector and A is a scalar parameter. Since A is a constant, the vector z has special
significance in which it is left invariant in direction by the transformation A. To

show this, Eq. (B.2) is rewritten as

(Az=)z) = 0
(A=A)z =0 (B3)
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where I is the n-by-n identity matrix. Equation (B.3) has a nontrival solution =
if and only if
det|A— M| =0 (B.4)

Equation (B.4) can be written explicitly as

an—A @z ot G
G =X o+ G
det|A—A|=]| . i . |=0 (B.5)
am Gzttt Gpn— A
or
A= (an+an+ e+ aum)A" 4+ (=1)"A] =0 (B.6)

where |A] is the determinant of A. Equation (B.6) is called the characteristic
equation of the matrix A. The roots of Eq. (B.6) are called the eigenvalues of
matrix A. Corresponding to each eigenvalue, there exists a ncnzero column vector
z that satisfies Eq. (B.3). z; is the eigenvector (column) corresponding to the
eigenvalue ;. An eigenvalue may have many eigenvectors but an eigenvector can

correspond to only one eigenvalue.
B.2 Singular Value Decomposition of a Matrix

Given an m-by-n matrix B where m > n. B can be represented in the form of
B=USVT (B.7)

where S = diagloy, 03, , 0] and in the order of 0y 2 03 2 -+ 2 03 and U and
V are unitary. Equation (B.7) is referred to as the Singular Value Decomposition

(SVD) of the martix B. Then
VI(BTB)V =5 e®™" (B.8)

and
UT(BBT)U =8 e R™em (B9)
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where the columns of U (V/, respectively) are viewed as vectors that constitute an
orthonormal eigenbasis of BBT in ®™™ (of BTB in R™", respectively). Thus, a
SVD of the matrix B can be obtained by solving the eigenvalue-eigenvector problem

for the matrices BB and BT B, whose eigenvalues are in §? = diag[o?, 3, ,0%).



A ppendix C

The Computer Program of the
Clutter Suppression Scheme
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111 £231111313331
$4%% The Clutter Suppression Scheme $%%%
TLUERRTRAILEL L4444

“ L:ad the input data

yi
y = %0002 (1:128) ;

1% Construct the Hankel matrix "

mput('The number of columns in the Hankel matrix: /)

= length [$2H % the data length of y

= N- L 1; % number of rows in the Hankel matrix

mmze

for = 1:R,
for i= 1:L,
H(1,3) =y(i+i-1);
end
end

4% Rank reduction and estimation of the observability matrix
N "the(:a" and state vectar matrix "X
mber of complex sinusoids in
w s, v1 = svd(ﬂ) ; Y smguxu Value Decomposition ot vum
THETA = U*s qrt (S
thetail iR, 1: H) - THETA(I R,1:M);
nv(sqrt(s) '-sqzt(snusqrt(S) TRS) RV}

%% Compute the time-dependent state matrix "F" from the

1t observability matrix "theta", and then estimate the

tz uf\ssgntanews frequencies from the angles of the eigenvalues
=}

mpm—_("me sampling time: ')
ans

d = tix((L+1)/2) Fi 3 mean value of each row in "H"
20 = N-L-d % number of estimates
or k =

1:ne,
thetal(1:d+1,1:M) = theta(k:dtk, 1:M);
theta2(1:d+1,1:M) = theta (k+l:d+k+l,1:M);
F = inv(thetal’sthetal)*thetal’ *theta2;

% eigenvectors and axgsnvalues of "F"
[evtr,eval] = eig(F);

fr in Hertz (Hz)
wl (k) = angle(eval(1,1))/(2%pi*ts);
w2 (k) = angle(eval(2,2))/(2*pi*ts);
w3 (k) = angle(eval(3,3))/(2*pi*ts);

end



%% Suppr

mwl = mean(wl);

mw2 = mean(w2) ;

mwl = mean(w3) ;

theta_new = THETA; % initialization of the new observability
% matrix "theta_new"

s the clutter signals
average value of the instantaneous
frequencies

o

) = theta(k:d+k,1:M);
theta2(1:d+1,1:M) = theta(k+l:dtk+1,1:M);
E= xnv(thatul"tnetal) 'thetal"thetaz,
(evtr,eval] = eig(F);

eval_new = eval;

% identify the clutter signals by the 'Bragq" frequencies
if (mwl>=,2601 & mwl<=.2699) | (MW1>=-.2699 & mwl<=-.2601),
eval new(1l,1) = 0.0;

xf (mw2>=.2601 & mw2<= 2695) | (mw2>=-.2699 & mw2<=-.2601),
eval new(2,2) = 0.0

lf (mw3>=, 2601 & me('-ZuSQ) | (mw3>=-.2699 & mwi<=-.2601),
eval_new(3,3) = 0.
d

t estimate new "F" and "theta"

F new = (evtrteval neu)ﬂnv(evtr) 3

theta2_new = theta! new;

dtheca Tiew (K+1: d+k+1 17M) = theta2_new(l:d+l,1:M);
en

%t Construct a new Hankel matrix "H_new"
_new = theta_ new*X;

%% Extract a new time series data from "H_new"

p =0;
for 1'= 1:N
{neu(l) = 0;
T1l<L,
cl=1;
for ro = 1:1
y_new(l) =K |_new(ro,cl)+y_new(l);

cl = cl-1
en
w(l) Ly neu(lill,
alseu 1 >= =L+1,
or ro =

'L
y new(l) = H_new(ro+p,L-ro+1)+y_new(l);
p =
(1) =y new(l) /L
elsexf 1 > N-L+T
tor ro = 1-L+1:N-L+1,
y_new(l) = H nsu(ru,c1)+y new(l);
cl' = cl-1;
en
y__neu(l) = y_new(l)/(N-1+1);
nd



“ Plec the power specttum of "y" and "y_new"
2; number of zero padding

Y _new = fft(y new,Nl1);
Y_new = fftshxft(\! new) ;
My_new = Y new.*conj(Y_new);
£ = 2%(-(NT/2-1): (N1/2T)/N1;
Vel = (1/2)'f'(3~10“(8))/(5 75%10%(6)); % radial velocity
for pos = 200:250, lace figure legends
tx1(pos) = -70;
i txz(pos) = -75;

n

pos = 200:250;

My dB = 10%10glO(My);
Hy_neu_da = 10!10q10(Hy_new);

axTs( 2 1o
plot(Vel,My dB,Vel,My new_dB,Vel(pos), £x1 (pos) , /=, Vel (pos) , £x2(pOs) /==
text (Vel(258) ,«:x1(zso)',' TORIGINAL SPECTRUM';

text (Vel(250),tx2(250),’ ESTIMATED SPECTRUM')

xlabel (‘VELOCITY (m/s)’),ylabel(/POWER SPECTRUM dB')

axis;
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