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Abstract

A clurter suppression scheme for high frequency (IIF) radar is presented in thi~

thesis. The Hr rad ar has been developed for cOiL~tal survelllanee and the remote

sensing of the ocean. When the IIF elect romagnetic waves propagate over the

ocean, t he backscatte r from the ocean surface has well defined freque ncies, known

1\.9 "Bragg" frequencies, shifted from the radar frequency. One of the characteristics

of the HF backscatte r is the high level of ocean clut ter which ham pers target

detection. It is desirable to sup press the ocean clut ter before t arge t detec t ion

operat ion. The proposed scheme is developed Lased on the recogni tion of the time ­

varying behaviour of the ocean clutter Lhat can be simply characte rized hy two

narrowband Crequency-modulatcd sinusoidal signals with t heir cent re Ircquenclea

equal to t he ~Bragg" freque ncies. T he scheme consists of two part'!. First, a lime­

varying lechnique referred to as Han kel rank reduction met hod is used to es timat e

the instan taneous freq uencies of the clutt er signals. The method stales t hat a

Hankel mat rix of a lime series da ta consisting of a finite number of sinusoids can

be approximated to, via Singular Value Decomposition (SVD), a lower rank matri x

defined by the finite number of the principal singular values, even if the frc'(lllencic's

of the einuacida are varying slowly with lime. The instantan co ue frequencies are

estimate d from t hose principal singular values. The usc of SVD is to decompose

t he Hankel mat rix into u signal and a noise vector subspace. The signal subspace is

identified by the largest singular values. Second, a process in which the frequency

component of th e clutte r signals is removed from t he reduced rank Hankel matri x

instanta neously is developed to supp ress t he ocean clutte r. Subsequently, another

reduced rank Hankel matr ix is constructed from which t he target signal can be

extracted.

The performance of the scheme ha3 been evaluated on computer-synt hesized



dab. and on ecme real data collected from a recently developed HF radar. The

results from both CMelII _bowed that the instantaneous frequencies or the ocean

clutter signals and the target signal were properly t rACked by the Hankel rank

reduction method and that & substantial levelof the ocean clutter . in the range of

2{) to 50 dB. could be suppressed by the scheme proposed.
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Chapter 1

Introduction

1. 1 Proble m Statemen t

High frequen cy (HF ) radar system s have been developed for coasta l surveillance

and the remote sensing of the ocean, e.g. detect ion of ships and monitoring th e

sea cond itions . T he HF elect romagn et ic waves in the frequ ency ban d of 3·30 MHz

propagate over the oce an sur face in gro undwave mode. The high condu ct ivity of

the sea. water reeult e in low propa gati on lOllS of t he groundwave and hence allows

long·ran~c (over the hori7.on) ta rget detect ion. Echoes from the sea surface and

for an y surface targets are receiv ed by the rada r syste m. One of the charac teristi cs

of the sea echo, known as the ocean clutter, is its high level energy. Although

these ocean d uller signals have been realized to be II. good source of information

on the ocean conditions, such M waveheight , wind direction and etc" they become

the unwanted signals as far as tar get detection is concerned because they will ob­

scure the required ta rget signals , particularly when the tar get' s Doppler frequency

(a frequency shifted from th e tran smitted frequency of the radar) falls do se to

the d utte r's Doppler frequency. Doppler frequency discriminat ion to separat e the

ta rget from tile ocean du tter will not be poeelble except by addi tional signal pro­

cesslng. T hus, it is desirable to suppress the clut ter as much &II possible before

the ta.rget detection operation . T he objective of thi s thesis is to develop a clutter



suppression scheme for HF radar.

1.2 Brief Background Review

In order to suppress the ocean clut ter in the HF rada r, it is import ant to understand

t he behaviour of the clutter signal fint a.ndt hen speclfic elgnal procesairtg technique

can be developed balled on the clutter's characteristics. In 1955, Crombie [I) nrllt

observed tbat the two dominant peaks displayed by th e ocean dutter in t he Doppler

sp ect rum were due to the scatteri ng from two sets of ocean waves whose wavdf'ngth

equals half the rad ar wavelengt h approaching and receding fro m the radar . T he

scattering from these two sets of waves is similar to that from a diffraction graling

which is sometimes described a., the Bragg-scatler, by analogy to the Bragg-scatter

mode for the X-ray diffract ion by crystals (21. Thus, the Do ppler freq uencies of

this ocean eluucr Me also known as t he "Bragg" freq uencies. In addit ion to those

two dominant firs t-order peaks, t he re are some smaller and more co mplex high ­

order components. The t heoretical exp reseions c f the ocean duUer were derived by

ot hers in more recent years [3,4, 5, 61. An average Doppler spectrum of the firsL­

and second-order scattering can be determined from the theoretical expressions .

Recent work by Khan (7J has demonst ra ted that the ocean d uller hall a time­

va rying behavloue t hat can be modelled by two narrowb and time-v a ry ing signals

an d trac ked by ti me-varying signal processing techn iques . T his t ime-var ying model

treats the ocean d ull er as two moving ta rgets in add ition to any ot her pote ntia l

targets duri ng target detection. Thus, that polICS a problem in supp ressing two

moving ta rgets am ong the other ta rgets. T he trad itio nal wa.yo f suppressing radar

clutter, referred to as t he mo ving ta rget indicator (MTI) filte r, is not applicable to

this problem beca use the ocean clut ter hall nonzero Doppler frequency while the

MTI ASsumes that the clutter is sta tionary and has zero Dopp ler frequ ency 18J.



As the rad ar clutter in reality is ra ther non-stationary, adaptive filter theory

provides a popular way of dealing wit h the problem. Gibson an d Haykin [91pro­

posed an ad aptive clutter sup pression technique in 1983. The technique is based

on t he use of an adaptive autoregress ive (AR) modelling of the radar clu t ter along

wit h the Leas t Mean Square ( LMS) adaptation algorithm. It is assumed that t he

clutter signa ls can be modelled quite closely by a relative ly low o rder AR process.

That means t heclutter signal is modelle d as t he outpu t of an al l-pole filter having

a whi te noise source to its inp ut. The technique also ass umes t h at the target and

the clutter have generally diffe rent Doppler spect ra where the cl utter's spectrum

tends to be diffused as compared to that of the target . This technique work ed well

when dealing with the clutter such as weather, ground a nd ice pellet encountered

by a ir traffic surveillance radar . Allthese clutter phenome naappear to have a wide

spread Dopp ler spectrum. However, the ocean clutte r in OF radar is observed to

have a simila r Dopple r spect rum as t hat of the target , i.e. of narrow spectral

widthe. In t his case, t he clutter components a re not likely to be suppressed.

A similar approach has been used by Hou [101 in 1984. In t his clutte r suppres­

sion technique, Maximum Entropy Met hod (MEM) which is a. spectral analysis

met hod of t he AR p rOCCS8 is used to model t he clutter of interest. A predeter ­

mined model or the clutter is assumed to he available a nd adap tively updated to

obtain an optimum estimate of the clutier. The updating process of the clutte r

StOPlI when a target is detect ed . The model of the clutter is then subtrac ted from

the received signal.

Another type of clu tt ersuppression scheme was prese nted by Zhang and Haykin

[l l ] in the seme year. This scheme makes useof the idea of noise cancellers in which

the data samples from two a.d.jacent range cells are used as re ferences when the

data samples from t he range cell of interest is processed. Here, it is assumed tha t

no ta rget is present in those t wo adjacent cells except clutter. The suppression of



the r ad ar d ut te r is eeh leved by aubt rac t.ing the data of th e twoadj ~ellL ce lls from

the o ne being processed .

A common point is o bserved a mong the method presen ted by Zh angan d llaykin

[Ill a nd the A R modelling clu t ter supp ression methods. Th ey eea urnc that a pre­

determin ed clutt er model can b e obtained from the range cell wh ich has nothing

but onl y the cl utter, an d then t he model is adaplively updated. lIowev er, the

ocea n clutte r is not st ationary . The characteris tic of t he ocean c luuc e m ay vary

from one range cell to a nother. It will be difficult to hav e a pred e termined OCCAn

clutter model t o begin with. 'T'herefore , an ult imate so lu tion to the clu tter sup­

pressio n prob lem would utilize models for the clutt er an d the target in each range

cell s im ultaneously an d then iden tity th e clutter by its proper t.les. T he clutte r

is su p pressed by subt r acti ng effe cts attributed to clutter by the model from the

received sign a l. Since the ocean clutte r is round to have tlmc-va rylng freq uencies ,

the clut ter su ppression scheme proposed in t h is thesis is based on the II"" of a.

time-varying frequency tracki ng techn iq ue to t rack the frequen ci es of the ocean

clutter as well as those of any other targets. T he ocean clu tt er is then eu pprnesed

by re moving it s corresp onding frequency compo nenh from the re ceived s ignal.

1.3 Scope of the thesis

A new techn iq ue, base d on th e lise or a time-va rying Frequency tr acking method

referred to as the Hankel rank reducti on method , to selectively rem ove th e ocean

dutte r compo nents from the rad ar da.ta is pro posed in this thee ie. Th e method

[12] Hhows that a Hankel mat r ix of tim e series d ata cont aining a finite number or

nerrewbend t trne-vaey ing sinusoid, can he app roximate d by a ma.tr ix wh ose rank

is eq u al to the finite nu mber or t he principal sin gular valu es give n by the Singula r

Value Decomp osition (SVD). The freq u encieso f the airrnsoids ar e cstimat ed from



those p r-incipal singular va lues. This att ribute linke d with the time-varying ocean

duller model sllggests t hat for a n ocean range cell conta in ing a single target, the

Hankel matri x would con tain only three principal singular valu es - o ne corr espond -

ing to t he target signal a nd theot her two corr espo nd ing to th e well k nown "Bragg~

clut te r sign3111. Th is assu mption is valid for ocean range cells with dimens io ns un-

dcr one kilome ter. (T he re is a commo n practice that t h e ships u sually keep a

certain distance away from each o ther on the sea.} For larger range cells, one just

needs to increase the number of the singu lar values without affecting the analyela

or sign ificantly Inereaslng the computational burd en . The reason w hy the H ankel

matrix is utilized in the method is that t he linear prediction porpe r ty is fo und in

the st ru cture of the matri x. Each entry o f the matrix can be expressed aa t he slim

of a weighted line ar comb inatlon of the rest of the data along the row of the matrix.

The lin ear predicti on is a basis for the Ieeq uency est imation o f the sinusoidal signal.

How the linear pre dictio n is used to estim ate the si nusoidal frequen cy is dis cussed

in Cha p ter 4. The SVD is used to decom p ose the Hankel matrix into a sign a l and

a noise vector sub epece. The sig n al subsp ace is associ ated with th e finite nu mber

of the domi nant singula r values. By approximating the Hankel matrix to a m atrix

defined by the sig nal sub space, the effect of noise can 00 substantially reduced.

By usc of t he Hanke l rank redu ction method , the frequencies of the clu tter

signals can be track cd or the signal parameters of the ocean clutte r signals can be

estim a ted. A p rocess is t he n developed to suppress the clutter sign a ls by removing

their est imated frequency components from the received data. The p er{orm a nce of

the proposed scheme is t est ed on both t he computer-synt hesized and the real HF

data which is collected from II; r e cently develope d HF groundwave radar located

at Cape Race, Newfcuncljand , C anada. It should be poin te d out that the above

uvalua t.ic n is an off-line tCliting.



1.4 Organization of th e The si s

The t hesis is organized in the fo llowing wa y:

• C hapler 2 present s a brief d escription of the backgrou lIIIof III-' radar a nd the

tirn e-dorn nin mod e l of the ocea n d u ll er sign als.

• C hapter 3 reviews some t e chniques of trac king tim e-v arying Iecqucnc tes of

t he sinu eo lds.

• Chaplt r 4 is a back ground review of the frequency cstima t ion of s.t ation­

ary sine waves be ca use it forms the basis o f the method Lo d eal wit h non­

s ta t iona ry (time-va rying) s ine waves.

• Ch apter 5 deecelbes deta ils on the proposed clut te r- suppress ion me t hod in

t his thes is includi ng the method used to es t imate the instan t a.neoua Fr equcn­

d es of t he ocean cluue e s ignals an d the pr ocedur es to rc rriovc the ocean

c l utte r fr om the re ceived s ig nal.

• C haplcrt) presents t he resu l t s obta in ed by usi ng bot h r he com p u ter-sy n t heslzcd

a nd the re al HF rad ar dat a .

• C hapter 7 contain s conclus ion s and some re commendations for future work.



Chapter 2

Introduction to High Frequency
(HF) Radar

Hig h freque n cy (HF) radar, u sing the groundwav e mo de of propagation, haa been

est a.bliehcd as a remote senairag;methodology (or theoc ean enviro nment [ 13, 14, 15 ].

The high conductiv ity of se a -water a ccounts for the low prop agation lou of the

ground wave mode and allow s long r a nges (over the horiaon] to be achieved w ith

modest tra nsmitter power. T he det ection <)f targets such as s h ips, icebergs and

sea- tee, and ocean environmen tal monitoring o f waves, currents an d winds are sorn e

of t he appl ications for the H F groundwave radar. Mo reover, this technology c a n

lill some ga ps in the radar coverage presently ",valla.b le with microwa ve rad a rs.

For examp le, surface based mi crowave rada r is limite d to lin e -of-sight detection

end cannot d etect targets over the horizon. A lso, due to the mullipath reflection

effcch, detection of low altit u de targe ts is ve ry difficu lt with microwave radar. In

the followin g sections , other aspects of HF radar are discussed. The d iscussion

incl udes: a bri ef review or t h e operati ng theo r y of UF radar; an overvie w of so me

IIF radar systems; t he ocean clutter in liP radar and the t ime-domain model of

ocean c1ut te r signa.ls .



2 .1 Brief Review of Operating T heo ry of H F
Radar

In th e beckseat ter HF rada r system , t he lraml miUer a nd the receiver c a n either be

at the same site (monOlltal ic ) Of separatrd by some smAlldistanrn (bi!lt a Lic). Gem­

e rally , a ve rtically polarized AIItenna. is utilized lo r&diA~ l"!cdromagnelic Wll\'(.,

of frequenci es in t he band o f J.30 MHz tha.t propAgatC!ll ove r tbe eee ll;urfuc . If i\

tar get lies along the path, a reflected signal will beca ptu red by the receiver via. t il..

sa me path taken by the t ra nsmitted s ignal. T he hackscattcr fromthe t arget hi\.'1 i\

fre q uency shift pro portional to its rad ial velocity, Such frequency shift, known il.~

t he Doppler frequency, prov idesa m ea ns for t Arget di scrimin at ion and illgiven by

(" , I )

wh er e 11 is theDo ppler fre q uency; V, is the radial velocity o f the ta rg et ; and >'.

is t he wavclcn~h of the t ra nsmitted sigu!. Th e deri vation or Eq . (2. 1) is sho wn

in A ppendix A.ln addition to the detection of a ta rgcl, the hou:h cattcr IIF ra d Ar

ca n alsoprovide informat io n 0 0 t he tar!:et ' s range from the time de lay between

the transmi tted and the rec eived sig nals.

For an HF ground wave ted ar, long-range target detectio n requires maxim um

d ut.y cycle of the t ransmitter wavefo r m (16). T hus, t he frequen cy mod ulated co n­

t inuous wave (FMCWI waveform is common ly used in ifF radar. In an FMCW

ra d ar , a co ntinuous frequen cy-swep t signa.! with I ba ndwidth, W, is t r ansmittcd .

Thi s sweep bandwidth determines the desired range resolution 118t::. R = c/ (2W ).

The target range ill measu red lUI the iMlan t aneous frequency difference between

t he transm itted an d received wavefor ms. The FMCW has a toopercen t duty cycle

an d it is ideal for th e bistatic configu ration but not for the monostatic operat ion .

One problem . ith the FMCW wav e form in the mo mt atic operat ion is the dir·

fic u lt y in iso lating tht· recei ver from the t ransmitte r . The receiver sufTef1 from



the transmitter induced noise. Thu s, an interru pted FMCW waveform, name ly

FMICW, is implemented in order to overcome the problem. The FMCW wave'

form is simply gated on and nITwit h a well defined sequence. The sequence di sables

the t ra nsmission while the receiver is on.

2.2 Overview of So me H F Radar Systems

In recognizing the uniq ue advllntages of HF radar u com pared to the microwave

radar-, co unt ries like th e United Slates, the United Kingdom and Canad a have

been doing ex te nsive work on HF radar. using both groundwave and sky wave

propagation, for the pas t 30 years. In the Unit ed St ates, research And develo p ment

of IIF rad ar began in the ear ly 1940s. Naval Research Lab oratory (NRL) was one

of t he pioneer institutions 10 design and conduct experiments with HP rad ar.

MADRE was an experimental HF skywa ve radar designed by NRL and was first

put into operation in 1961 [141. It had a target-detection capability up to 4000 km.

lts antenna had a dimen sion of 98 mete rs (m ) wide by 43 m high a nd consi st ed of

twenty corner reflector elements arranged in two rows of ten elemen ts eac h. The

rada r gene rally opera ted with an average power from 5 to 50 KW . In 1970 , the

Office o f Naval Resear ch/ SRI Internation al develop ed another UF skywave over

the horizon (OTH) radar, namely the Wide Aperture Research Facili ty (WA RF).

for detect ing and track ing ships at ranges of 2000 km or more at sea 1171. WARF

empl oye d a linear frequency-modulate d co ntinuous-wave (FM CW) waveform and

transmitted I MW aver age effect ive rad iation power. Reflection signal! from the

ocean were recei ved by a 2.55 km broadside array of vertical monopole e lement

pairs. The sa id systern a ha.ve a eonaide rab ly huge phys ical size and high cost.

A smal l tran sp or table syste m with a broad beam scillming characteristic. called

CODA R (Coas t al Ocea n Dynamic Appli ca tions Rad....rl. was devel oped la t er in



the 70's. The concepts of e O DAR we r e origin at ed from the Nat ional On'a uk

and Atmospheric Admi nstrat ion 's (NO A A) Wave Propaga tion Laboratory for the

measu re ment of ocean surface currents from the coast or the offshore plat forma.

In the United Kingdom , t he Univeeet ty ol Birmingham in association with oth..r

organ iz a tions have also done sig nificant work on IIF OTI l radar . An e:{!'l'rilll l'nla l

HF groundwave radar was designed to transm it I K\V peak power Irc qucncy­

modula ted inte rrupted continuo us-wave (FMICW) signa l vie a 6-30 I\IlIz vervirnlly

polarized logarithmic period ic dipole ar ray . The r~eiving anterm a consi~t~ of two

nested brcadstde arrays with 15 vortlcal Ioop cle ments eac h [18J. T he sys te m ha.'1

been u s ed for re mote sensing o f ocean wev cs and currents.

In Canada, the CO DARs yslem has been used <Ill remote senso r for the northern

oceans where expl oration and t ra nsport a.t ion actt vlties la ke plan ' [191. k eh ergs arc

consid e red as a significant haza rd to t h e ships and cons t ructio n such as offshore

platfo r ms in those areas. The ability o f long ra nge (ove r the hori7.on ) ,J.!trd ioll

demonstrated by HF rad ar woul d reduce the ch a nce of possible collisione be tween

the icebergs and the sh ips or an y other constructions .'1t sea.

Recently, an F'MIC W groun dwave radar system haa heen built at Cape !tace .

Newfo u ndland , by Nor t hern Rad ar Systems Ltd . in aesociafiou with the C e ntre for

Cold Ocean Resour ce Engineering (C-C O RE), Memoria l Universi ty of Newfound­

land, for the p u rpose of ocean sur veillan ce including the det ection and tho trac king

of vesse ls and icebergs, plus the measu remen t o f sea-sla t e and currents /131. The

radar operate s a t a cent re freque ncy of 6 .75 MHz along wi th a sweep bandwidth o f

375 k H z and is designed to detect and t rac k ships at a dletance up to 100 km, with

II. range resolution of 400 m. Th e trans m itte r and the receiver arc locat ed ILt the

same s i te (a mono:tat ic configu ration) . The t ra nsmit antenna ill an off-t he-shelf

log pe riodi c array with an ave rage transmit power or 2 ,.') KW and covers over a.

120 degree secto r of the ocean with an a verage nom inal beamwidth of 3.5 degree .

10



The receiving antenna cons ists of an array of 40 quarter wavelength height broad­

ban d elements whi ch are equ ally spaced a distance o f half wav elength . The t o t al

dist ence taken by the receiving an tenna is about 880 m. The clutter suppres sion

scheme proposed in this t heais will be test ed using the data collected from this

rad ar.

2.3 Ocean Clutte r in HF Radar

In flF radar, the backscatter from the ocean surface, namely the ocean clutter,

appeanl at well defin ed frequen cies shifted fro m the t.ransmit.ted frequenc y of the

rad ar. C rombie (I] first obser ved t h is effec t. and attributed the dominant ce rn ­

ponent of the return energy to the back-scattering From the ocean waves ha.v in g

a wavelength half t he radar wavelength. Two sets of such ocean waves, movi n g

radi ally to and away (rom the rada.r elte , behave as d iffra.ction grating s and ca u ee

construct ive inter ference of the ~catteri ng returns. As show n in Fig . 2.1, t he se

"Bragg" scatte ring returns ex hibit t wo distin ct Dopp ler frequen cies eoeeespcndfng

10 the eha rn cterlat !c velocity of propagat ion o f the two sets of ocean .....ave s. These

frequencies are given by

(2.2)

where I""are the Doppler frequencies of the ocean clutter signals; I~ is the radar

carrier fre q uency; 9 ia the acceleration due to the gravity and c is the speed of

light. Eq uation (2. 2) is deelved from Eq. (2.1) wi th the ve locity o f the ocean

wa ve, v = (gAo/ 2:r )1/1, where the ocean wavelen gth , A., eq uals ha lf the rada r

wavelength, A.. l.c . A. = A./2 . The Dopp ler spec t rum o£ the ocean clutter in

F ig. 2.1 is observed by an HF groundwave radar operating at a frequency of 25.4

MH z. In a ddition to the dominant "Bragg" scattering returns , a small e r and morc

com plicated feat ure of the HF radar spectru m is refe rred lo as the "se cond-order"

11



sca tt ering. As the name imp lies, this port io n of the Dopple r apccrrum hM been

m o de lled as double scattering from t wo ocea n wave com ponents, which match half

t he radar wavelength after vector add ition aiong the reder bea m direct ion [20. 2 1].

Also, part o f this sec ond-order cernes from a sin gle scattcr from second-o rder ore,'ln

WAves prod u ced by nonlin"!a r wave-w ave interact ion.

The Do p pler spectrum or the ocean clutter can q ualitat ively show some prop.

er t ies of t he ocean waves. If the wind blows to wards th e shore, the dominant pe ak

at the plus side of the Dopple r spectrum will exhib it a noticeable high er magn i­

t u de level than t he one at the min us side. Dp pcait e scenario will be seen if t.Iu­

wi nd blows away from the CO&'lt. In genera l, t he direct ion of the wind can be d e­

du ced from the ra t io of the amplitude of the dom inant peaks . As the !Ip«d of t he

wind increaaee, the energy in the ocean wave apoetr-um increase s. The- peak in t he

spectrum m oves to the lowe r frequencies, th e n the am plit ud e of the second -order

Do ppler spectrum increases which results in a d ose frequency separa tion between

th e fir~t- a nd the second-orde r ~cattering (15].

Barrick [3,4 ] fir st derived theoret ical ex p ressions for the first- and the seco n d ­

order HF s catl erin g from t he ocean surface using Rice 's 122] pertu rbation tech­

nique which hu b ee n used to study the problems o f scatter ing from ran dom and

sligh tly rough surface . Th e ocean su rface is m odelled as II. t h ree dlme nslcne l ran-

dom eurfece gover ned by a Fourier aeries expansion over t ime as well as spACe.

Th e surfac e Fourier coefficients are t reated as rando m variabl es [31. Av erage first­

an d second-order beckseae t ceed Dop p ler spe c tra cou ld then be derived from E ar -

rick 's theoretical m odel of HF sea.ec ho. Cro mb ie's experimental obse rva tion W AS

co n firmed by Barrick t~ theoretical mo del for t he first-order sc a t tering.

Anothe r theoretica l enalyeie of liP lICatteri ng from an ocean surface W 3.11carried

ou t by Srivastava. [51u ~ ing an alte rnate app roach b ased on Wal~b '8 [21] gener al

formulation for th e scattering from a time inv ariant rough eue fece descr ibed by a

12



set of two vector integral equations in a two-dimensional spati al Fourier transform

domain. Srivastava has also derived average first- and second-order beckeceuered

Doppler spectra of the ocean clutte r. Both Banick's and Srivast ava's derivat ions

had the same result in the first-order scatte ring hut differed in the second-order

where the first author's result contained only one te rm while the latter contained

three. T he first term, inte rpreted as the occurrence of a double ocean wave in­

teraction with the radar wave, is almosr the same in both cases [5J. The two

additional second-order ter ms which are significant for iceberg detection when the

radar is used on the ship or platform may be neglected if the radar is located on

the coast 119). Both findings establis hed a fundamental model of ocean clutte r and

the model of the second-order scattering enab les informat ion on the ocean, such

as wave height , to be ext racted.

2.3 .1 'I'ime-Domain Model for Oce an Clutter Signals

Knowing the average first- and second-order Doppler spectra of the ocean clutter

may not be sufficient to distinguish the ocean clutte r from the potent ial targets.

This is because Doppler frequency discrimination may become ineffective when the

ta rget exhibits a Doppler frequency close to the ~Bragg" frequencies. Also, target

detection is a continuous process where it is preferable to know the instan taneous

behaviour of the ocean clutte r. Therefore, the time domain characterist ic of the

ocean clutter would possibly provide a means which could be used to separate

the ocean clutte r from the targets. The spectrum of Fig. 2.1 suggests tha t fairly

broadband processes are responsible for the ocean dutter. However, Khan (7)

has shown that the ocean clut ter can be simply modelled by two narrowband

signals, with t ime-varying frequencies, centered abut the two "Bragg" frequencies

described in Eq. (2.2). The time variation of the two narrowband clutt er signals,

as shown in Fig. 2.2, can be interpreted as two independent angle modulated

13



components . It i, noticed that t he in,tantaneou' Ireqoencieeof the eluuee signAllI

fluctuate around the centre frequencies of ±O.51 Hz AS obtained from Eq. (2.2).

It is demonst r...ted that the spect rum of such an angle modulated signAb Agr""

closelywith the spectrum of HF rad..u data and accounts for the ch.ua.cteri ~ti"

corTdponding to both the well known first· and second-order sCAttering pt"aks,

Thus, pre-proceu ingo~ration, on HF rM&!'dat&,before tar get detection, ra.n

simply be specified as the estimation of the parameters or the two narrowband

"Bragg" signal, centered About their average Irequcnciee given by Eq, (2.2). T tw

clu tter signals can be subsequently suppressed so lh l\t t he capability to detect a

tar get is enh anced.

14
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Chapter 3

Some Time-varying Frequency
Tracking Techniques

It bas been shown in Chapter 2 that the ocean clutte r has a time-varying cl ll\f/U::­

teristic and can be modelled as two narrowband frequency-modulated lIinUllOi(!,J

signals which can be tr acked by time-varying signal processing techn iques. The

proposed clutt er suppression scheme in thi s thesis is beeed on the use of a t ime-

varying frequency t racking technique. Th us, in the following !leCtio ns, A t(' nMal

review of some time-va rying Ireqoeecy tracking melhodt ill presented . One of them

is selected to be th e basis of the clut ter suppression scheme presented in t hi, thesis.

The decision is made based on the analyti cal comparison of the method, rather

than the actual experiment al results .

3 .1 Adaptive Linear Pred ict ion Filter

In 1975, Griffiths {23]presented an adaptive technique to track the instanla.nCOllS

frequencies of a signal which has a narrow-band, time-varying spectrum. The

met hod makes use of a linear prediction-error filter (PEF) derived from the prop-

erty of linear prediction. It is used to estimate the instan tancolls frequencies of

the signal by computing the power spect rum from the filter coefficients which are

updated continuously by t he Least Mean Square (LMS) grad ient &dapl l.tion II.Igo-
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rith m when a new data sample is obtained .

In the process of linear prediction-error filtering, a predicted value, i (k), of the

input at time k is given as a linear combination of the previous values.

L

irk) ~ ~ g;x(k - i) (3.1)

where gi arc the Lth order prediction filter coefficients. An output error sequence,

t(k) , of the filter is produced by subtract ing the predicted value from the actual

input.

,(k ) ~ x(k) - ilk) (3.2)

A minimum mean-square error, E(t'(k )J, is produced by a set of optimum filter

coefficients, gi,9i, ' " ,gi. The power spectrum of the PEF for a stationary process

is given by

S. (w) = :(" ~k)Jm;"., (3.3)
11 Ei...19j exp( )W ;)j

For a perfect ly predictable input signal, S,,(w) in Eq. (3.3) will be equal to 0 for

w :f:. Wi and % when w = Wi. A modified power spectrum of PEF is defined by

Griflilhs to locate the frequency of narrowband input signals,

(3.4)

Q,,(w) and S,,(w) differ by a numerato r scale factor. The advantage of having

Q,,(w) over S,,(w) is to replace the % indeterminacy inherent with narrowband

spectra by the computat ionally tractable limit of I/O. If the signal is time-varying,

the instantaneous power spectr um estimat e will be given by

Q,,(w,k) = L_l • 1 .
11- Ei",Ogj (k)ex p[-)w( '+II]l'

(3.5)

T he PEF coefficients are determined direct ly from the dat a sample by the

following relationship that is derived from the LMS algorithm,

G(k + I ) ~ G(k) +p(x(k )X(k - 1) - X(k _1)X T(k -! )G(k)1 (3.6)

17



(3.7)

(3.8)

where p is a scalar proportion ality constant which regulates the iterat ion step size,

and

G(k)~ [::lZl ]
gdk)

X (k - l ) = [~::~;l ]
z(k- L)

The above technique is basically a parametric estimation met hod in which the

signal parameters, t he prediction filter coefficients, MC estimated inarantanccuely

and then used to compute the instantaneous power spectrum. Uulike other tech­

niques, the data samples are directly used in th is technique to calculate the filter

coefficients and no autocorrelatio n function is involved.
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3.2 Eigenstructure Updating Method

In 1988, DeGroa t and Rober ts (24) prese nted Another techniqu e to trade time­

va.ryint; Irequenclea of narrow-bend ,i~als. hued on the use of weiSht.cd linear

predict ion along with ran k-one upd ating of t he eigenvalue decompos ition (EVD)

of an estim ated data covarian ce mat rix. The idea behind thi s method is that the

eigenvalue decom pceitio n of All est im ated covari ance matrix is to iden t ify signal

and noise subspaces in the data vecto r apace, Each subspace is characterized

by a set of eigenvect or leig envalue pain . In the cue of high SNR, t he signal

subspace is distinguished by t he larger eigenvalues as compared to those associa ted

with the noise subspace. However , as the SNR dec reases, t he signal subspace

becomes pert urbed . Th e eigenvalues of t he signal subspace do not appell.!' to be

qui te distinguishable from th e noise subspace. A signal subspace pee-processing

i ! int rod uced. T he noise in t he slgnel i! ident ified end suppressed by zeroing ita

corresponding eigenveluee before the t racking of the freq uencies is done. Tbis

pre-p recess ing technique a n also redu ce t he comp utational loa.d by means of rank

red uct ion of the covar iance matrix. Th e meth od by DeGroat and Roberts i! briefty

d iK11!JSCd below.

1£the signal is Btationary. th e covarian ce ma.trix of a da.ta sequence .r(n ) which

is com posed of r sinusoidal components plus white noise, based on an L-by·L

Toeplit z matri x, can be writt en as

(3.9)

where e, = [z (i) .r(i + l) · · . .r(i+ L - 1)}T end T denote s t he transpose of a. mat rix.

In the case of a non-stationary process, a time-varying esti mate of t he kth

covarian ce ma t rix i! given as .
fu = (1 - 0 )~O·-; .ri .rr
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where a is a memory factor, 0 5 a :5 1, and it is used to de-emphasize old da ta ,\11

new data is received. The estimat ed covariance matrix is recursively updated 1\.'

(3.11)

with the recursion initialized all R1 = %'IZ[ . The EVD is used to reduce thc rank

of Ilk and to suppress noise all well. EVD of R~ is given by

(:1.121

where D = diag[Ah .\ ~ " ' " hl contains the eigenvalues of R~ in the order of

AI ;:: A2 ';::: " ', h ; and Q is an orth ogonal mat rix containing the corresponding

eigenvectors. However, a new R~ can be approximated by set ting the clgcovalues

A.+1 through AT, to zero in D. Thi s noise suppression process is clone each time

when the covariance matrix is updated.

With each updated covariance ma trix, t he instantaneous frequencies arc eati-

ma ted using weighted linear prediction (LP) filter . The weighted LP equations at

the kth update in the matrix form is given below.

(3. 13)

(3.14)

where gfill a l -by-L column vector of LP coefficients; R~ ill the kth estimated co­

variance matrix; rf illthe estimated covariance vector ; and R~ is t he peeudo-lnversc

of R~ . Thc insta ntaneous frequency is then obtained (rom the angula r locet lons of

the zeros (on the unit circle on the z plane) of the denominator polynomial in the

t ransfer function of the LP filter , t hat is Iorm the roots of

L
G(z) = I +~g~(i)Z-i =0

20
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The eigenstruct ure updatin~ method i, ab o & p&fametric eatimation tech nique

with & ,i~n~ pee-prceeeieg which an reduce a certain level of noise. The inslan ·

taneou, frequencies of the .inusoid, are estimat ed from the LP coefficients.

21



3.3 Hankel Rank R edu ct ion Method

DiMonte and Arun [121 presented another technique to track the instant aneous

frequencies of superimposed harmonic s, referred to as the Hankel rank reduction

method . The technique utilizes the property that a Hankel mat rix (data matr ix)

const ruct ed directly from a time series data containing a finite number of sinusoid,

can be approximated by the Singular Value Decomposition (SVD) to a matri x of

ran k equal to the number of principal singular values, even when the frequencies

of the sinusoids are slowly varying wit h ti me; and t hen the instantaneous frequen­

cies of the sinusoids can be estimated from those principal singular valuCll. The

frequenc y esti mation is associated with th e property of linear pred iction which is

observed in t he char acteristic of the Hankel matrix. The data in the matrix can

simply be expressed as the sum of a weighted linear combination of t he othe r dat a

along t he row of the ma trix. The weighted coefficients are used to esu me te the

signal's frequency. T he discussion on how the signal's frequency is estimat ed from

t he weighted coefficients is detailed in Chapt er 4. The SVD plays here a similar

role as the EVD . It decomposes the Hankel matrix into a signal and a noise vector

subspace. Then th e Hankel matrix is ap proximated by the signal subspace de­

fined by th e dominant singular values. Th is met hod is implemented in the clutt er

supp ression scheme proposed in this thes is after t he following considerat ion. (The

deri vation of the method is described in Chapter 5).

The eigenst ructure updating meth od by DeGroat and Roberts works qui te elm­

ilar ly to the adap tive linear prediction method by Griffiths - both of them using

linea r predict ion-error filter ing as t he basis to est imate the einuscida' Irequenciea,

except that in the latte r the eigenstructure updat ing method involves a signal

pre-proeesaing which identifies t he signal and noise eubapaces before the actual

frequen cy est imation is performed . The advantag e of having t he pre-process ing
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is that cert ain level of noise suppression can be achieved. T herefore, the eigee­

struct ure updat ing method will perform bett er than the adap tive linear prediction

method in the case of low signal-to-noise ratio (SNR).

Both the eigenst ructure updating met hod and the Hankel rank reduction met hod

have a signal pre-processing step to suppress the effect of noise in a different fash­

ion. T he SVD in the latter method decomposes the Hankel matrix of ent ire data

record into the signal and the noise subspa.cesat one time. That gives bette r noise

supprcssion than the way of having multiple EVO's of the localizedcovariance rna­

t rices which are updated at every instant through [12]. The methodology seems to

be robust if the process involvesone single SVO rather than many EVO's. Also, it

is mere computationally advantageous to have a single SVD operation than multi­

pie EVO's. With regard to simplicity, t he Hankel rank reduction met hod involves

less mathematical steps. Finally, the selection 01 appropriate memory fact or, a,

in the eigenstructure updating method imposes a t rade-off between temporal res­

olution and noise suppression [12}. Therefore, the Hankel rank reduction method

is selected to be used in the proposed clutte r suppression scheme to estimate the

instan taneous frequencies of the ocean clutt er signals from which the clutte r corn­

ponents can be identified and suppressed.
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Chapter 4

Frequency Estimation of
Stationary Sine Waves

Based on the inherent tim e-varyi ng characteristic of the ocean clutter in IW rada r.

the Hankel rank reduction method which is a lime-varying signal processing tech­

nique, is uti lized in th e clutter euppreaeion scheme proposed ill this thesis to track

the clutter signal's frequencies and th en to suppress them. Before disclls!!ing the

tim e-varying frequency tracking technique , it is wort hwhile to review the back­

ground of t he frequency estimatio n of t he stationary sine waves since it forme t he

basis for the method to deal with t he non-sta tionary (time-varying) prcccaa, In

this chapter, the main focus is on the procedure methodology for est imat ing the

frequencies or th e sine waves by parametric modelling. In ol her word s, it i!l pO!l-

aible to fit a model to the process and then to deter mine the parameters of the

model Cram which the sinusoidal frequencies can be obtained [25J. The met hod is

referred to as the autor egressive (AR) or linear prediction modelling. In additio n

to the common tran sfer-function represent ati on approach used Cor the model-based

spect ral est imation method, th e slate-variable represenlation approach is also de-

scribed here as it was used in t he Hankel rank reduct ion method . It is round tha t

both approaches yield the same result. The est imation or the sinusoidal frequencies

in both noiseless and noisy cases will be d iscussed.
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4.1 Noisel ess Case

A sampled signal, 1/(1-), composed of M complex sinusoid, with no noise present

is represent ed by the following equat ion,

"Y(k)=?; c;expUw;k), k=1,2, ·· ·,N (4.1)

where c; is the ampli tude ; Wi is the angula.r frequency of the itb complex sinusoid

and N is the number of data. samples. The angular frequencies of the complex

slnusoida are aeeumed to be invarian t with tim e and th ey can be estim at ed by

th e autoregressive (AR) process (modelling) or linear predict ion meth od t'J. which

y(k} is given by a linear combinat ion of it! past values and an addit ive white noise

signal, w( k), with zero mean .

£

,(k) = - ~a;,(k - i) +w(k) (4.2)

where ai, i = 1,2 , · · ·. L, are known as the AR coefficients and L is the order of

the AR process. Th at means the signal, y(k ), is modelled as t he out put of a n AR

process whose input is a white noise source. The a-domain t ransfer function of the

AR process is

where

H(, ) = A;,)

£

A(,)= l +~a;.-;
;=1

(4.3)

(4.4)

The AR proceee is closely related to the linear prediction -error filtering when oper­

ating on the frequency est ima tion of the st atio nary sine waves. Their relation ship

is depicted in Fig. 4.1. The prediction-error filter is an all-zero filter witb an im-

pulse response of a finite dura tion whereaa th e inverse filter in the AR model is an

all-pole filter with an impulse response of an infinite du rati on [261. The zeros of

t he tran sfer function of the predicricn -errc r filter are located at exactly the sam e
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WHITE NOI S E~ l /' C%1 ~> YCk)

Cal

A (Z)YCk)-1L- ...J~> PREDICTI ON ERROR

Cbl

Figure 4.1: Ca' an AR preeeee, (b) a liDur predictioD~rrotFilla'

po!IitioDI (inside the unit circle on the: plane) AS the pclee of the tranafer Iunc­

tiou of the inverse filter of the AR model. This &Saures the sta.bility of the fillen

because in tbe s domain (.t =a +jw), H(! ) is considered stab le if t he poles are

located in t he lert hand side of the ! plane a.nd, for z =C' , the left han .9 plane is

mapped int o the unit circle. H{..) is considered marginally stab le if the poles a.re

on the imagin ary axis of the .splane where ~ = O.

It waa fint showQ in the Prooy's method described by Hilderbrand 127) t hat

in a ooiseleu condition, the &O.SUlar Irequeccieeof the complex.inulOid. C&O. be

obla.iocdfrom the a.ngularlocationsof the roots of an Mth order poIyoomiaJ A(z)

on the unit circle 00 the z plane. T he roots lying on the unit circle are ma pped

onto t he imagin ary axis of the 3 plane (" = jw) where the system is m&r~naJly

stable. However , in the practical situation, L can be greater than or f!qual to

M. Tuft , and Kumares4l1 128, 29] have demonst rated tha t under the inequality,

M ~ L :S(N - M/2), the polynomial A(.r) h... M rcc te on t he unit circle on the

.r plue ",it b their &DSUlu location.s COJ'TeIlpondins to the ansu1ar frequencis of

the M sinullOids in the siy1al, and the (L - M ) ext raneow roob Uf' uniformly
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dist ributed &loog t he circumference imide th e unit ci rcle. The property that t he

roots of th e polynmni&l A(z ) on the unit circle Hzl = I) determine the ~gula.r

frequencies of the "ir.usoid.. can beshown by th e followiDSobse rvations.

Conside r a sy"it em orprediction equations in ma tri x form used to determine

the coefficients, ·j i . i :::: 1,2• ...• L

[

9(L ) .(L + 1)
. (L + 1) .( L)

• (N ·- I) .(N·- 2)

.(1) ][G' ] ['(£+1)]. (2) G, . (L+2)
. . :::: - .
. . .

.(N - L) G, . (N)

(4.')

}ja :::: 6} (4.6)

Rea.rrange Eq. (4.6)

V; =(blIY/J (4.7)

and

a' :::: !I. a" llJ, . . . •aLf (4.8)

T herelcre,

}ja ' :::: 0 (4.9)

Yi is a (N - L)-by·(L + I ) Toeplit z m atrix formed from a forwar d linear prediction ,

i.e . y(k) = - Et':.1Giy(k-i ). i:::: 1.2. · . · , M, an d it has a rank or M. (T he rank ofa

matrix is defi ned iI3 t he numbe r ol rows or colu mns which nrc linearly independent .)

To see this. an M-by-I sinuso idal column vector is de fined as follows:

/;=[I ,e- j ...'. e-1iw; • • • • ,e-Lj ...;jT, i =1, 2," ', M (4.10)

It is observed that a ny row of Yi can be writt en as a linear com binat ion or the AI

indepe ndent vectors in f" ~ T hus, the rank of Yi is M u long as Y; has at least M

rows. The null space ol Yi has a dimen sion of L +1 - M. Since a'lies in the nu ll
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space or v; t he in ner product or Ii and a' is zero {291. That is,

and this equa tion is recognized allthe tran srer functi on of th e predic tion-error filter

and evaluated on the unit circle at % = eJ"", i =1.2• • . • •M . Th en the polynomial

A{%} has roots. on the unit circle, th at determine the sinu90ida l Ireqaenciee[28).

Not only can the signal. lI{k). bepredicted from forward linear prediction. but

it can also be pred icted from backward linear pred ict ion. A sysre m of predict ion

equations from beckws rd linear predi ction is obtained to determine tile codlici enb,

oi, i = 1,2 " " , I, . as below:

[

, "(2)
, '(3)

, ' (N ': L+ I)

, ' (3)
, '( 4)

y'( N - L + 2) .. .

y'(L + I) ] [ _, ] [ "(I)}, '(1. +2) _, _ _ y'(2) •
. . _ . ( .121
. . .

, '( N ) -L , "(N - I. )

y.a =" (4.13)

Rearrang e Eq. (4.12) to

V;a' =0 (<.14)

where

V; ~1b,IYo J (4.15)

v; is a (N - L)·by·(L +1) Han kel mat rix in which t he N data sam ples, y(k), arc

comple x conjugate d because y(k) is complex valued . (t deno tes complex conju­

gate) . V; also has a rank of M which can be seen from the previous observation

in Yj . Similarly, the polynomial A(z) has roots of eiw', i = 1.2, · .· . M .

Transfer -functi on represent at ion hallbeen widely used in mod el-based spcc.traJ

est imat ion methods. This ap proach as used abo ve demonstrated that th e param­

eters or coefficients of &Il AR model could be ut ilized to determi ne the sinusoida l



frequencies. The st&t.e vu iahle representation however is AD alternative approach

to analyze a linear system [30}. It will be shown that this approach can alsobe

used to describe the AR model, and then the AR parameters are determined to

give the sinu50idal frequencies. In general, a discrete-t ime system is rep resented

by a set of state variable equat ions:

z(H I) ~ Az(k) +B , (k )

V(k) ~ Cz(l) + D, (k)

(' .16)

(' .17)

where .:r(k) is the state vector describing the syste m at the H h instanti y(l') is the

out put vector; v(k ) is the inpu t vector; A,B,C and D are the ma t rices determined

from the constants of the system [311. Consider a second order AR process,

V(k ) ~ - a,v(k - 1) - a,.(k - 2) +w(k ) (4.18)

Define the first stat e variable

.:r2(l' ) = -oly(k - 1) - 42y(k - 2)

Combine Eq. (4.18) and Eq. (4.19) to get

From Eq. (4.19}, increuing l' by 1 gives

Select a seco-ic 'tate variable

Subst itute Eq. (4.22) into Eq. (4.21), it can be writt en IIlI

(4.19)

(' .20)

('.21)

('.22)

z ,(k) - a,v(k )

;tl(l') - 01(%2(1-)+w(k))

%1(1')- 01%2(1') - Glw(1') (4.23)
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FromEq. (4.22), increasing k by 1 givee

z ,(k +1) - a2y(k)

- .,(r ,(k) +w{k»

(·" 2')

Equation (4.23) and Eq. (4.24) may becombined in matrixform as

FromEq. (4.20) and Eq. (4.25), the ARprocess is now represented by the following

stale variable equations:

where

r (k+ I) = Ar(k)+ Bw(k)

, (k) = Cr( k)+ Ow{k)

[
0 - . , ] [-.,]A= I _ " . B = _', . C = IO.II.O = [lj

(1.2G)

(1.27)

(• .28)

The deriva.tion of a simple second order AR process in terms of stale variable

representation can also be extended to a general L orde r AR process where the

matrices A,B ,C And D Arc as follows.

... 0 -" -"
0 - aL_1 - aL_1
0 -aL _2 - a',_2

A= .B =

-" -.,
-" -"

and

C= [ 0 0 0 ... 0 I I·D = IIJ
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where A, 8 , and C are the constant mat rices with the size of L-by-L, L·by-l and

I- by-L, respectively.

Consider the sampled signal, y(k) , in Eq. (4.1) again. Without t he presence of

noise, the signal is exact ly predictable as a linear combinatio n of its past samples

and the prediction error is zero. Consequently, y(k) can he adequately mode lled

as the output of an AR process of the order L = M with zero inpu t , i.e. w(k) =
0, or simply as the out put of an oscillator [3D]

y(k) ~-t.';Y(k-i) (4.31)

In the state variable rep resentat ion , the signal, y(k ), is descr ibed by the following

set of equations:

x( k +1) ~ F'(k)

y(k) ~ h'(k)

(4.32)

(4.33)

where x(k ) is an M-by-l state vector. F and h are the M·by·M and l·by· M state

matrices in the form of A and C given in Eq. (4.29) and Eq, (4.30), respect ively.

It willbe shown that the eigenvalues of F are exactly the same as th e roots of the

M order polynomial A(z). (The eigenvalues and the eigenvectors of a mat rix are

discussed in Appendix B). The angles of the eigenvalues will give th e frequencies

of the sinusoids. If F can be estimated , then the sinusoidal frequencies will be

determined from the angles of the eigenvalues of F .

Now consider an (N - L+1)·by·L Hankel mat rix constructed direc tly from the

sampled signal, y(k), where L > M and N » L.

[

,( I )
y(2)

H ~ ,(N - :L + I)

y(2)
y(3)

yiN - Lt 2)
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In ter ms ol etate verlablee, H can be written in the following form using Eq. (.1.:12)

and Eq. (4.33).

H =

hx(l)
hx(2)
hx(3 )

hx(2)
hx(3)
hx(4)

"x(l,)
hx(L+ 1)
hr( L + 2)

h(N - L+ l ) h:t(N -L+2)

hx( l) hx(2)
hF x(l) hFx (2)
hF2x( l) hF2X(2)

H can be factorized as

hx(N)

hx(L)
hFx(L )
hF2x(L )

(01.35)

H =

h
hF
hF'

[ x(I ), x(2), x(3), . . . • x( L ) I

(-1.:161

The matrix a is known as the ohscrvability matrix and X is the state vector

matrix. It is noticed tha t mat rix a has only M columns lind X has only M rows.

It mea ns that the rank of H cannot be greater tha n M . If t here arc M distinct

sinusoidal frequencies, JJwill have a rank of M even though the size of 1/ is greater

than M- by·M .

F can be determi ned from a. If a is partitioned into two matrices, 8 1 having

rows from the first one to the second last and 8 1 having rows from the second one

to the last one, t hen a relationsh ip between F, 6 1 and 8 1 will be observed. That

(4.31)
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where

h
hF
hF'

hF
hF'
hF'

(4.38)

Since Eq. (4.37) isoverdete rmined, F can be solved by the least square method as

(4.39)

where a~ = (9[el )- ler. a[ is the transpose of e 1and (8 [ 6 1)- 1 is the inverse

of (e[ e .). The eigenvalues of F are de termined by (see Append ix 8 for the

computation of the eigenvaluesof a matrix )

-A 0 0 - aM

1 -A 0 -aM_I

0 1 -A - aM _2

del =0 (4.40)

... 1 - ..\ -a,
o 1 -al -"\

where A is a scalar parameter . The resultant equation of Eq, (4.40) is simplified

in the following form.

(4.41)

This equation is called the characteristicequation of the matrix F, and its roots are

the eigenvalues of matri x F. Recall the characteristic polynomial in the transfer

function of the Ai order AR process,

M
A(z) = 1+~alz- ; = 0

A( z) =0 can be rewritten in the following form:

33

(4.42)

(4.43)



W ith refe rence to Eq. (4. 41 ) and Eq. (4.4 3). it ill . hownthat the ei genvaluC!'S of

F areexa.ctly the sameas the roots of the poIynomi.J A(z ) . Hence, the angul~

frequencies of the complex sinusoids can be determined from the a.ng~ of the

eigenvalues of F w hich are ia the fonn of (eM.ei'-'>, ...•ei..."') on the unit ci rcle

on the z plane.



4.2 Noisy Case

It has been shown in the noiseless case that t he Hankel matrix H exhib its a low

rank properly, and the rank is equal to the number of complex einusoide in the

signal. However, in th e practical situat ion , the signalis always co rrupted by noise.

There fore, t he low ra nk prope rly of H will no longer hold. In fad, H lends to

have a fullrank.

T he Singu lar Value Decompoeition (SVD) b aa been recogni zed as a numerical

tool for displaying closenessto lowrank ora matrix(30) (seeApp endix B ), and its

struc t ure and numerica l detail can be u t ilized t o suppress noise as well. T he SVD

of any recta ngular matrix, suc h as the Hankel matrix H in Eq. (4.34), takes t he

follow ingforrn,

11 = USVT

,
~ .,.; u; v! (4.44)

where S is a £ ·by-L d iagonal m atrix. Its diagonal elem e nts, kno wn as the singular

values of H, a re arranged as O"t ~ 11, ~ ... ~ O"M ~ O'M +t ?:.•• ?: f1[, ~ 0; Uj an d

Pi are thecorrespondi ng left an d right s ingular vectors which are tbe eigenvectors

or the matrices HHT and HTH, respectively. Simila rly, the s ingular val ues are

the sq uare roo ts of the eigenva luesof the mat r ices HH T or HTH (see A ppendix

Bfor the definit ionof t heSVD ora mat rix). It can be shownthat above a certain

signal-to-noise (SNR) threshold, a dat a matrix II is d ecomposed into two vecto r

eubepecee. On e is the signal subspace spanned by the lert and the right singular

vecto rs associated with the M largest s ingular values, and the other is the noise

subspace spanned by the remaining ( L - M ) singula r values. Thus H can be

rearranged as

H=(U,. U,) ( S' 0 ) ( Yo )To 82 Viz
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where 51 isan M ·by.M diagonal matrix containing the M principal singula r valu('si

V, and V, contain the corresponding len and right singular vectors. 52 hl\.'l th e

remaining (L - M) sm aller singu lar values eseociated with the left and the right

singular vectors in V2 and \-S . If there is no noise, the (L-M) singular value will

he zero. Thus the rank of H is determi ned by the M principal singular values. A

signifi.:ant break willbe observed beween the si ngular values, aM and CTM+I . when

the SNR is above a certain th reshold level. Th en H can be approximated by the

AI pri ncipal components as

Rearrang e Eq. (4.46)

H z Uls,vt

"tr r1; U i v[ (<.-t6)

(' .47)

Comparing Eq . (4.47) and Eq. (4.36), theobservability martix e can be ident jflcd

as UtS: n 130]. Using the relat ionship be tween F and e derived as in Eq. (4,37),

F can be determ ined an d the angular frequencies of the complex sinusoids call he

estimated from the angles of t he eigenva luesof F.

The SVDca n be used to decompose a Henkel matrix (data matrix) of 1\ signa l

contain ing a finite number of sinusoids plus noise into a signal and a no ise vector

eubepeceeprovided that the noise level is not very high. The Hankel matrix ie thc n

approximated as detailed above, by a red uced order Hankel mat rix confo rming to

the signal subspace defined by t he finite dominant singular values. This lo wer ran k

Hankel matrix givesest imate for the frequencies of the sinusoida contained in the

state ma lrix F .

A procedure, based on the SVD, was developed by Eckart a.nd Young in 1936

to find the best lower rank approxima tion to a given ma trix [32, 331. F irst of a ll,

let the rank of H be L, and let y(M ) be the set or all (N - L + I )·by-L matrices
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of rank M < L. T hen for &II matrices G in y{M),

UH - HI ,; liB-Gil (4.<8)

where if =U5VT and 5 is obtained from the matrix S by seltin~ all excep t the

At large:.t sin~ulA.r values to zero. The mat rix norm of Eq. (4.48) is t he Frobe nius

form,

IIH - Gil' = ' ''''' ( H - G)"(H - GlJ (4.<9)

where t he trace o f a ma.trix is defined as the sum o r the mat rix's diagonal elements

and the as terisk, . , stands for complex co njugate tr anspose of a ma tri x. Thus if

willbe the best ap proximatio n of H if the condit ion of Eq. (4.48) is satisfied .

The frequencies of stat ionary sine waves can be estimat ed by t he parametric

modellin g. The paramet ric modellingca.n be realized by both the t ransfer-function

representa tion a nd the st ate-varia ble rep resen tat ion. Although the estimat ion of

the sinusoidal freq uencies obt ained fromth e model par ameten are presented by the

two rep resent atio ns in a different way, i.e. t he zeros 0' the denominator polyno mi&l

of the tran sfer fu nction (or the AR model and the eigenvalues or t he sW e m a trix

F, the res ults a fC the same . Moreover, the SVD can serve to reduce th e da.ta s pace

to a.dim e nsionally smalle r si~na1 space and the effec t of noise can be substa nt ailly

suppressed.
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Chapter 5

The Clutter Suppression Scheme

As men tioned in Chapte r 2, ocean d utter in HF radar can be viewed as two

narrowba.nd frequen cy-mod ulated sinuso id al sign a ls, with their cent re Ircqc cn eiee

given by Eq. (2 .2) . Based on this time-va rying model of the ocean clutt er presen ted

in Kha n 's recen t ...rcrk 17), a clut te r supp ress ion sch eme is developed to sd cct ivdy

suppress t he clutter components from the received radar sign;tl. The instan tancolls

frequencies of t he clutte r signiUs can be tracked by a time-varying signal proccs sing

techniqu e, name ly Hankel rank reduction method, &ndthe clutter sign~s can th e'll

be iden t ified (rom their centre frequencies which a1mOllt agree with the aver a,;c

values o f t heir in stantaneous frequ encies. Th e d u t ur IUPPTel!lion scheme propcw!d

in this th esis involves two steps. The first one is lo est imate the insta.ntanco lu

frequen ci es of t he ocean du ller 3i&llals by app ly in& the Hankel rank red uct ion

method, and the other one is to remove t he 3igna.l powerAS!IOCiated wit h the clutt er

3ignal3 from the tim e ser ies data. 50 that the re3ultan l data samples will be clut ter

free. T he deriva tion of the Hankel rank r eduction method and the procedures to

suppress the clutter signals willbe di3CUsscd in d etail in this chaplet.
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5.1 Hankel Rank Reduction Method

The Hanke l rank red uction method p resented by DiMonte and Arue [12J utilize s

the property that a Hankel matrix construct ed direc tly from a time series con ­

taining a fin ite number of sin uscids can beapproxima ted by a lower ra nk mat r ix

cha racterized by the principal singula r values obtained from the Singu lar Value

Decomposit ion (SV D), even if the sinusoidal frequenc ies are varying slowly with

time. The in stanta neous freq uencies are then es timated from t hose prjncipal sin­

gula r values . The derivation of the meth od is s hown in the following sections.

Given a sampled signll.l, y (k), compose dof r superim posed real -valued sinusoid s

whose frequencies ar e assumed to be varying slowly with time ,

where N is the tota l numberofdala sam ples. A ;, i "" 1,2 , ' " ,r, are the a mplitudes

of the siuuso ids. T he instant aneous frequency of each sinusoid is defined M

w,(k) " [¢ ,(k) - ¢;(k- l)J, ; = 1, 2,.. · , r (5.2)

where the sa mpling period is assumed to be uni ty. A Hankel matrix co nstruct ed

direc tly from the data samples has a size of (N - L + I)-byoL, where L is of th e

order of3 r (12jiand N > L.

,( 2)
,(3)

y(N -L+2)

.. . ,( L ) ]

.. . ' (£:+1)

, (N)

(5.3)

In t he previous chapter, it has been proved that H has a ra nk of 2r (note th a t

cos(ljl(k)) = 1 /2(tJ~{IrI +e-.i .{ IrI )) when the einueoidel Irequeneiee are invariant with

time and t he data sequence is noiseles s. However, if the frequencies are changing

wit h time, H will be of full rank. DiMonte and Ar un [12] have dem onstrated
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that if the frequencies of th e signals change su fficiently slowly over a period of L

data samples, the rank of H will be close to 2r . This claim ca n be shown by the

rela ted approac h used for th e stat iona ry sine waves in Chapte r t Th e sampled

signa l, y(k ). can also be modelled as the out put of the special AR process with

zero input , o r simply as the output of an oscill a tor. The model is governed by t he

following two state variable eq uations,

, (k+ I) = F(k ).(k)

y(k) =h'( k )

(5.4)

(5.5)

wher e :r(k) is a 2r-by. \ sta t e vector ; F(k) is known as the instantaneous stat e

feed back matrix wit h a size of 2r.by.2r. The F matri x is now no longer constant.

Since F is a frequency dependent matrix, it will change with time as the sinusoid a l

frequ encies a rc time- varying. h is the 1·by-2r output vector. The inst anta neou s

frequencies o f the einuscide will be given by t he angles of the eigenvalue s of F(k ).

Th e eigenva lues of F( k) are in the form of e:l:i...;(HI) , i =1,2,· · ·, T. Th e relation­

ship to the signal par ameters can be explicitl y shown in the diagonal canonical

represen ta t ion of th e system where

(5.6)

h= IAlt A" A 1, A2, ·· · ,A.. A r ) (5.7)

From Eq. (5.4) and Eq. (5.5 ) , H in Eq . (5.3) can be rewritten a.'!

[

h'( l)
h, (2)

h,(N~L+ 1)

~:m .. ~::~l]

h, (N - L+ 2) . , h, (N)
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[

hx(l )
hF( I)x( l)

= hF(!)~(2)X(I)

hx(2)
hF(2)x(2)

hF(2)F(3)x(2)

... hx(LI ]

.. . hF( L)x(L)

.. . hF(L)F(~ + l)x( L) (5.9)

U the frequencies are changing significantly slowly with time, the state feedback

mat rix F(k) can be considered approximately constant over the period of L time

instants . Such being the case, along each row of H, t he sinusoidal frequencies are

assumed to be invariant with time. As a result, t he feedback ma tr ices F(1.oJ· I).

F(k +2). · · · . F(k + I, ), k = 0, 1, 2,· · · can be approximated by its mean value in

the L time insta nts, that is F( k +d), d = (L +1)/ 2. Then H will be close to the

following form.

r

hx(l) hx(2) .. · hx( L) ]
hF(d)x(!) hF(d)x(2) .. · hF(d)x(L )

II '" . hF(d)F(d +l )x(l ) hF(d)F(d+ l )x(2) .. . hF (d)F(d+ I)x(L)

l : : :

[

hA d) ]
~ hF(d)~(d + I) [ x(I ), x(2), x(3), x(L) I

~ ex (5.10)

Because e has only 2r columns and X has only 2r rows, the rank of H will not

be grea te r than 2r. It can be shown that it the r insta ntaneous frequencies are

different for at least 2r time instan ts, the factors e and X are full rank, and hence

If has rank of 2r [121. However, the global change in the frequencies in the data

can affect the ap proximation of matrix H to the lower rank matri x.

In the case of stat ionary sine waves, t heir frequencies can be estimated from

the angles or the eigenvalues of F. Similarly, for non-stat ionary sine waves, their

instantaneous frequencies can also be determ ined from the eigenvalues of F (k).

When the sinusoidal frequencies are time-varying, the Hankel matr ix H is full
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rank . T he Singular Value Decomposition (SVD) is used to obtain a low rank

approximation of H from which an estimate of the obaervability mat rix e in (5.10)

can be ident ified. Hence, it is possible to dete rmine F (k) from e. The SVD of t he

Hankel mat rix H is expressed as

JI = USVT
,

LCTilJ iV[
ia l

(5.11)

where S = dia9[0'1 .0'~ , · · · .0'~1 and 0'1 ::::: 0'2;::: " ' 0'2<;::: 0'2.+1 •• O'~ ~ 0 are known

MI the singular values of H. \.Ii and V j are the corresponding left and right .~ i ngll iar

vectors. It can be shown tha t if the sinusoidal frequencies are changing slowly with

t ime and the noise level is not very high, then there will be 2r principal singula r

values which represent most power of the signal and t he rest of the (L - 2r ) singular

values will be small and close to zero. Thus II can be rewritten il.3

contain the left and the right singular vecto rs corresponding to the 2r principal

singular values whereas U2 and V~ consist of the left and the right singular vecto rs

aasocieted with the remain ing (L - 2r ) singular values. If 0'2< » O'~'+ I. then it will

lead to a good approx imation of H defined by the 2r domina nt singula r values, i.e.

Rearranging Eq. (5.13) gives

II ~ UI S1~T,.
~O'iUi t{ (5.1:11

(.\ .14)

By comparing Eq. (5.10) and Eq. (5,14), e=UIS: n ieiden tifled as an est imate

of B and X = S:/2~T is an est lmateof X . e consists of the st a te feedback mat rices

42



F(I.:) whose eigenvalues determine the instantaneous frequencies of the sinusoids.

F(I.:)can be estimated by two steps. First , eis partitioned into a numbe r of small

matri ces in which the numbe r of rows in each small mat rix equ als d, th e mean

value in the L time insta nts.

e~ =rOWJ from kto (d + k) of e ,k = 1,2,3" " (5.15)

Second, from Eq. (5.10), a relationshi p between F(k) and the par titioned matrices

e~ is observed as follows.

(5.16)

e,F(d+ I) e,
0~F(d +2) 83

e,F(d+ 3) e.
(5.17)

The least square method ca n be used to solve for F(d + k) because the system

of linear equation s in Eq. (5.16) is overdete rmined [34]; and t he inst antaneous

frequencies or the sinusoids at time (d +k +I) are then determ ined by computing

the angles or the eigenvalues of F(d + k ).

From the above, it is shown that based on the assumption that the sinusoidal

frequencies are slowly varying with time such t hat they can be considered approx­

imately constant over a small fract ion of t ime inter val, i.e. L t ime instants in this

case, a Hankel matrix const ructed directly from the data samp les can be approxi­

mated by another matrix whose lower rank equals t he number of dominant singular

va.lues given by the SVD. The instantaneous frequencies of the sinusoids are eati-

mat ed by t he related app roach used (or the stationary sine waves except t hat the
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observability matrix e is part itioned into several smaller matrices. Those small

mat rices represents the approximately constant sinusoidal frequencies which are

regarded as the instantaneous Irequencieaover tha t particular short time interval.



5.2 Suppression of Ocean Clutter Signals

The tim e-varying frequencies in the Khan [7Jmodel for the "Bragg" phenomenon

in radar-sensed ocean clutter can be est ima ted or tracked through t he Hankel

data matrix rank reduction method. If a signal's frequency can be tracked in­

sta ntaneo usly, it will be possible to have the signal suppressed or filtered. Since

the instantaneous Irequenciee of the einusoids are obtained from the angles of t he

eigenvalues of F(k), the eigenvalue correspo nding to each sinusoid can be regard ed

a3 th e power of the signal. Thu s, II. reverse process is developed in such a way that

any singular signal, parti cular ly the ocean clutt er signal, can be suppressed with­

out affecting t he ot her signals if its associated eigenvalue is removed from F( k).

Arter a new F(k) is calculated , a new partitioned 6n ewk and a.new a new can be

estimated accordingly. Consequently, a new Hankel mat rix, H new, will be recce­

str ucted from a new. The derivat ion of th e signal suppression process is described

below.

The eigenvalue decompc eltion of the insta ntaneous feedback matric es F(k) can

be represented by

F(k) v(k) ='(k)v( k) (' .18)

where ~(k) arc t he eigenvalues of F(k ) in the form of diag [~l , ~, , ~3 , · · · , ~2rlj and

v(k ) is the corresponding eigenvectors . So as to suppress the clutter signals, the

eigenvalues of the signals whose angular positions on the un it circle determine the

sinusoids' instantaneous frequencies are first identified by th e "Bragg" frequencies

and th en are zeroed. The new matrix F(k) is compu ted by t he following equati on.

(' .19)

where ~new(k ) is t he same a.s ~ (k ) except that th e eigenvalues of the clutter

signal are zero. t/' (k ) is the inverse of v(k). Once th e new F(k )'s are obtained ,



it is possible to estimate the new partit ioned mat rices8newk using the following

relationship.

6 newHI =8 kFn ew(d +k), k =1,2,3", (5.20)

As a result , a new anew can be obtained by concate01lting the anew . 's into one

mat rix, and a new estimated Hankel matrix caDtherefore be constructed by the

relat ionship of

Hnew = 8 newX (5.21)

By inspection of the structure of the Hankel matrix, it will be possible to estimate

a new time series data , y(k), from the new Hankel matrix. For example,

;(1) 11(1,1 )

;(2 ) (11(1,2) + 11(2,1 ))/ 2

;(3 ) (H(1 ,3) +H (2,2) +11(3, 1))/3

(5.22)

T he new time series data is the one with the clutter components suppressed.

From the above, it has been shown that the first part of the proposed clutter

suppression scheme employs the Hankel rank reduction method, a time-varying

frequency tracking technique, to track the frequencies or all signals including the

ocean d utter and the ta rgets. Arter ident ifying the ocean clutte r signals from

their "Bragg" frequencies, a signal suppression proccea is derived to remove the

signal power of the ocean clutte r given as the eigenvalue of the F(k ) matrix in­

stantaneously. A reverse but similar process used for estimating the instantan eous

frequencies is developed to recreate another reduced rank Hankel matr ix from

which a data sequence containing only the target signal can be extracted.
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Chapter 6

Computer Analysis and
Simulation

The performance of the clut ter suppression scheme present ed in this th esis is tes ted

on both the computer-synthesized and the real HF radar data. In both cases, the

received signal from each ocean rang e cell cont ain s only a single target in add ition

to the ocean clut ter. T he size of the range cells in this HF radar ill 400 m.

6.1 Comp uter Simula tions and R esults

Recently, a HF groun dwave radar, operat ing at a cent re frequenc y of6.75 MHz, has

been bui lt at Cape Race , Newfoundl and , Canada. According to Eq. (2 .2) and Eq.

(2.1), the "Bragg" clutter signals would have Doppler frequencies at approximately

±O.265 Hz and a characteristic propagation speed of abou t 5.9 metres pe r second

(m /s) . Tosimulale the ocean clutter signals, twonar rowhand freq uen cy-modulated

sinusoidal signal s were synthesized and specified as follows:

(6.1)

(6.2)

where

(6.3)
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(6"' 1

where 11 and 12 are the center frequenci es of the ~Dragg" clutter signals and

are set to be 0.245 Hz and - 0.215 Hz, respectively; 8,. 1m\! 8, and 1"'2 are

t he paramet ers of the frequency modulation and their values IIfC selected to or
0.625,0.08,0.775 and 0.065, respectively to attai n II close app roximation to t he

na rrowband characteristic of the ocea n clutt er eignala; 8\ and 0, are some arbitrary

phasea used to different iate these t wo similar signals. The amplitud es of bot h

signals are assumed to be unity. The simulated ~Bragg" Irequenciea are set to

be slightly deviate d from the theoretical values (± O.26S Hz) because ill reali ty,

t he ocean surface currents have effects on the MB ragg" frequencies and cause a

sma ll offset between the act ual and the theoreti cal valurs. The frequencies of the

simulated clutte r signals were made to fluctuate within the fi\nge of ±0.05 liz

about t he center Irequencies . Th is rneens that the ocean clutte r signal would have

maximum frequencies of 0.295 fl1:and -0.225 flz; and minimum frt'{] U(~ne i cs of O .I !I .'i

Hz and -0.325 Hz, respect ively. The insta ntaneous frequencies. I ii and 1;2.of ., ,( 1)

and 31(1) are defined as the deriva ti ves of their phases with respect to time and

ar e as expre ssed below.

d/>. (,)
---;i/

2lrI I - BI21r f ...l sin(2rI...tl +0d (lj,,'i )

In discrete time representation,

do,(,)
---;i/

211'12 - 812lff"'1~in(21[I...l t) (6.6)
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,,(') oxpfj~(')J

1..(') (~(') - ' ,(' - Ill /T.

1,,(' ) (~(') - " (' - Ill /T. (6.1)

where Ierefers 10 the klh ll&mplin~ inllta.nl . A I&IDplinS rate of T. = 0.5 second and

a. data lengt h ol l28 nmples were used in the simulAtion. The computer program DC

the proposed clutte r suppression scheme written in MATLAB language illshown in

Appendix C. The input! to the program are the number of columns in the Hankel

mat rix and t he sampling time. The out put of the program i . the ta.rget signal with

the ocean clutte r suppressed. The program is writt en based on t he specificatio ns

of the IIF radar built at Cape Race. Some changes in the program's parameters

such as t he centre frequency ort he radar signal may be needed if it is used on a

differen t HF radar system.

6 .1. 1 Test I

In this lest, the proposh ion that the Hankel matrix H could be ap proxima ted

to a lower rank matrix by means of Sin!UJar Value Decomposit ion (SYD) wu

verified under various signal·t.o-noise ratiOll(SNR) where th e Guassian white noise

with zero mean wu introd uced. The selection of the Guassian ",bite noise for the

simulation i, hued on the Cent ral Limit Theorem. Three SNR' s were considered .

They were SNR ;:::; 00 (noiseless), SNR = 20 dB and Sf' R = 10 dB. First of all, a

quick check wu done to confirm that t he rank of }/ iJ dete rmined by the Dumber of

the principal Jjngular values which correspond to the number of complex sinusoid,

whose angular frequencies are tim e invariant in the received signa.! in a nciselee

condit ion. Let the received signal, y(k), consist of two stat ionary sine waves with

constant frequencies, II and /2.

'(' ) = <>pU(2rMll +expU (2rf,')]. • = 1.2. · · · . 128 (6.8)
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Singular Value SNR =00 SNR _ 20 dll SNR _ 10 dB
0'1 22.0124 22.0276 2'1.1969
0'2 16.4261 16.4469 16.6740
0'3 0 0.8030 3.8125

(a)

Sin ulM Value SNR =oc SNR _ 20 dB SNit 10 dB
a, 27.6287 27.7624 27.8828
a, 21.8&11 22.0022 22.1511
a, 0 0.7946 3.4650
a. 0 0.7522 3.2832
a, 0 0.7120 3.2391

(hi

Table 6.1: The singular values or 11consist ing or etet lonary sine waves at SNR =
00, '" dB and 10 dB, (a) L =3, (h) L =5

The singular values or 11or two different sizes, in which t he number or columns

or H, L, equals 3 and 5 as examp les, at thr ee different noise levels, are shown in

Table 6,1 (see Appe ndix B for the computation or the singular values or II. mat rix).

From Table 6.1, it is noticed that t here are only two nonzero singular values

corre sponding to t he number or complex ainusoids in the ideal sit uation where no

noise is present, and the other singular values are zero regardless or the size or /I .

This indica tes tha t H has a rank or 2. With noise introdu ced, the lIankel mat rix

H is perturbed. The two largest singular values represent most or the signal power

while the remain ing ones arc no longer nonzero and represent the noise.

U the sinusoidal frequencies are time- varying, 1/ will be full rank even with­

out the presence of noise. The received signal now contains the two frequency­

modulated signals, ..'ldk)and "2(k), as specified in Eq. (6.7). 'fable 6.2 contain s

the singu lar values of H a1 three different SNR's with examp les or L = 3 and L =
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Singular Value SNR _ 00 SNR 20 dB SNR 10 dB
a 21.9756 21.8466 22.0128
o 16.3891 16.3180 16.5076
o 1.2874 1.4936 5.0166

(a)

Singular Value SNR cc SNR _ 20 dB SNR _ 10 dB

o 27.1652 27.1028 27.9537
o 21.8362 21.8028 22.5712
o 4.9093 4.9MO 6.2166

" 1.5755 1.8088 3.7730

" 0,1.'iS3 0.7001 J.231S

(b)

Table 6.2: The singular values of H consisti ng o( time-varying sine waves at SNR
= 00, 20 dB and 10 dB: (a) L = 3, (b) L = 5

Again, all the singular values in Table 6.2 are nonzero and that indicates H

being Iull rank. Although If is full rank, it is quite clear that th ere are st ill

two dominant singular values corresponding to the sinusoids. As the noise level

increases, t he gap between /72 and 0'3 gels closer because more noise is distr ibute d

amo ng those less dominant singular values. This effect can be seen in both Tab les

6.1 and 6.2. At very low SNR, it is noticeable that the above proposition will

produce quite significant errors. It will be difficult to distinguish between the

signal and the noise subspaces because the singular values are not split into two

distinctive groups. Thus, an acceptable and useful low rank approximation of H

will depend on where the SNR threshold level is set. As (ar as the simulati on is

concerned, SNR = 10 dB is considered all t he worst case. T his 10 dO threshold

level is quite representat ive o( the real situat ions but it does not include some

special cases such as when one ol the "Bragg" peaks is driven into the noise floor

by susta ined winds along the beam. Furt her work is needed for those cases.
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6.1. 2 Test II

The estimation of t he instantaneous frequencies of the sinusoid! WM evaluated in

thi s test, A single sinusoid with time-varying frequency, ~ I ( !) ' as given in Eq. (6.1),

was first used to test the Hankel rank reduct ion method. Fig. 6.1 shows the actual

and the esti mated instantaneous frequencies of 91(l) in a noiseless environment.

The Icrm of the estimated instantaneous frequencies are mapped onlo the actual

one given by Eq. (6.5). The slight difference in their amplitudes can be accounted

for by the assumption that the frequencies are considered approximately constant

over a certain period of time. This assumption is valid only if the frequencies

are changing significantly slowly with time. T he clutter signals can be identified

by their "Bragg" frequencies which would approximately agree with the average

values of the instantaneous frequencies. Similarly, the average valuesof the close

estimated instantaneo'is frequencies can be utilized to ident ify the clutte r ~ i gnal ~.

Two noisy cases, at SNR =20 dB and SNR :: 10 dll , were then considered . The

estimated insta nta neous frequencies of SI(t) in both noisy environments arc shown

in Fig. 6.2 and Fig . 6.3. Although the amplitude of the estimated inst ante necua

frequencies in both noisy cases were distorted, their forms were preserve d even

in the worst case, t.e. SNR = 10 dB (see Fig. 6.3). An average value of the

instantaneous frequencies near to the "Bragg M frequencies could be obtained. It

should be pointed out that the original frequency in the above Figures is comput ed

from Eq. (6.5).

6.1.3 Test III

In addition to the simulated clutter signals, a t hird sinusoidal signal, ".1(1), reo

gerded as a single target with a. constant Doppler frequency of 0.5 li z moving

towar ds the radar site at a velocity of 11.1 mis,was added. T he number of data

samples used in this test is also 128. Fig. 6.4 shows the power dens ity spectru m
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of the received signal that contains "I(k) , "2(k) and "3(t). The power spect rum

was computed by fast Fourier transform (FFT) , To suppress the clutte r signals,

the instantaneous frequencies of the clutter signals were first t racked by using the

Hankel reduction method and were then identified. Another reduced rank Hankel

matrix with the frequency components of the clutter signals removed was con­

strutt ed by the procedures discussed in section 5.2 and a new time series data was

estimated, Fig. 6.5 compa res the power spectra of the original received signal and

the one with the clutte r signals suppressed in a noiseless case. About 20 to 30 dB

clutter level were suppressed. Subsequently, noise was ta ken into consideration in

the testing process. The resultant power spect ra of the signal before and after the

clutte r suppression process in the noisy cases at SNR "" 20 dB and SNR "" 10 dB

arc shown in Fig. 6.6 and Fig. 6,7, respectively. In both Figures, a level of 10 to

20 dB elurtcr WI!.'> suppressed.

There is always a limit as to how close two frequencies can be so that t hey

can be resolved by the frequency estima tion method . In this clutte r suppression

scheme, the limit of the closeness between the Doppler frequency of the target and

the "Bragg" frequencies of the ocean clutte r where the target signal will not be

affected during the clutte r suppression process was examined. It is experimental ly

found that if the target's Doppler frequency bas a space of less than 0.09 Hz from

that of the ocean clutter, the schemehas difficulty in t racking the frequencies of the

ocean clutte r signals as well as the target signal. T he experiment was conducted

in such a way that the ta rget's Doppler frequency was varied to be close to the

"Bragg" frequencies until the scheme failed to track both frequencies properly,

This experimenta lly found value, 0.09 Hz, is close to the modulat ion frequency,

f..1 "" 0,08 Hz. This suggests that if t he target's Doppler frequency is very close

to the second-order scattering peaks, which can be interpreted as the contribution

from the modulation frequency in the clutte r signal, then the suppression process
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willbe affected.
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6 .2 Real H F Radar Dat a Test ing

Computer simulatio ns have shown that a subs tantial level of the clutter signals can

be suppressed by the proposed clutter suppression scheme. Now, rea l HF radar

data will he used to examine the scheme 's performance . A single ship which was

moving at various velocities away from the radar site was detected. The ship's

movement was continuously monito red by the radar. The echoes from the ocean

consisted of three sinusoida l signals. one corresponding to the ship and the other

two corresponding to the ocean clutter signals. The signal receiver! from each range

cell has .')12date samples at a sweeping rete of 0.601 second. The dala samples

arc complex-valued . During the testing process , the 512 samples were div ided into

4 segment s which represent four different periods of the recorded time 90 that the

movement of the target with in each r.\nge cell could be examined along the time

or observation. Therefore, there were 128 san.plea used in each teet run. It is

preferable to have the ",..hole data record divided into more shorte r segments so

that the target's movement can be better monitored. However, too short data

record may not provide adequate Doppler resolution for target discriminatio n. In

this test , a data record of 128 sarnplea was found to be short enough to provide

sufficient Doppler resolution.

Two test trials were conducted to t rack the locations of the sh ip at differ­

ent ranges. Also, owing to the fact that the longer the distance, the higher the

propagation loss will be, different reflection signal streng ths result . T herefore, the

capabil ity of the clutter supp ression scheme to deal with two different target sig­

ual strengths were tested in those two tria ls. The Doppler spectru m from each

data.segment of the range cells was obtained simply by using a FFT , and it was

used to de tect the ship and to estimate its radial velocity. The tests described in

the following sections compare the signals before and after the clutte r suppression
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process in the frequency domain and the time domain at different ranges. III lilt'

frequency domain, the energy of the reflected signal from the ship will he shown

as the power spect rum whereas the time series of the ship signal will be l·xpr(,~~l...l

by the value of its real part (note that t he radar data is complex-valued) . Tilt,

real part and the imaginary part of the ship signal ate similar except for the pha.'\('

shift. and the t ime series behaviour of the signal can be sufficiently shown by till'

values of its real pa rt alone. ln eac h test case, data from three adjacen t rallg(' c,·lIs

were investigated simultaneously because it would help locate the correct po!liticm

of the ta rget by looking at the re lative magnitudes of the return cnr-r~ of the

target among those adjacent range cells. In reality. the clutter suppression process

is cont inuous; but this is not an on-line tcsung. Three range cella are sdc~c t(!(l only

for the purpose of testing,

6 .2.1 Test Case I

At time 15:18:05, t he ship was obse rvedat the rilnges of 70A km, 70,8 km and 71.'l.

km by means of Doppler dete ction. Fig, 6.8 (a) to (d ) show Ulll Doppler spect ra of

four different segments of the data record before and after the clutte r suppression

process at the range or 70.4 km. In Fig. 6.8 (a), three peaks arc not iced. The one

in the mid dle represents the reflection signal from the ship, and the ot her two arc

from the ocean clutte r with a cha rac teristic propagation speed of abou t .';.96 Ill/s

or a Doppler frequency of about ± 0.265 liz . This result agrees with that in the

simulat ion. The ship has a negative radial velocityof about :J m/s as inferred Irom

the Doppler spect ra, The negative sign indicates that the ship was moving aw...y

from the radar site . It is noted tha t not only the first-order but also the second­

order sca tt ering from the ocean su rface were suppressed. This result confirmed that

the ocean clutter can be closely modelled by two narrowband frequency -modu lated

sinusoidal signals. Among the four power spectra in Fig. 6.8, a progressive decrease
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in t he magnitu des of lhe target's ene rgy was observed whereas t he ma g nitude of

the d ull er 's energy stayed almost the same t hroughout t he whole data length.

T he ta rget signal appeared to have m ag nitud es of about 1 dB, -7 dB, - 10 dB an d

-12 dB in tho se four segments , re!lpec ti vely. T his scen ario showed that t he target

wa., moving towards farther range ce lls. Moreover , the average radial velocity of

the target among t hose four segments WlU slightly different .

T he data from the range of 70.8 km waa tested next . T he resultant power

spectra of th e four da ta segme nts wit h and without t he dutter signals are depicted

in Fig . 6.9 (a) to (d) . The magnitudes of the target's energy in all four segments

exhrbited a relative ly higher level than those at range 70A km. This im plies th at

t he target Wall likely at range 70.8 km rather than at range 70.4 km d uri ng some

times of obse rvation. T he movement of the target could be described by the

magnitudes of its return energy. The magn itude of the target 's ret ur n energy

in the second segment (see F ig. 6.9 (b)) displayed a maximum in relation to the

other three . It means that the target was at the range o f 70.8 km arou nd sometime

during the second qua rte r of t he reco rded ti me.

A simila r test was run on the data from t he range of 71.2 k m, A pr ogresaive

increase in the magnitudes of the t a rgcl 's re turn energy was shown a mong t he

powe r spect ra of th e four da til. segments as in Fig. 6. 10 (a) to (d). A maxi mum

magnitude appea red in the last one segment (Fig. 6.10 (d)) . T he plots demon­

st rated that the ta rget was movi ng in t o range 71.2 km dur ing the last qu arter of

the recorded t ime. A substant ial level of clutter suppression is no ticed amon g t hese

three tests , and is approximately quantiAed in Table 6.3. An ave rage relative level

of 30 dO clutter suppress ion is obtained.

T he real part of the time series of t he raw radar da ta includ ing the target an d

t he clutter signals collected from range 70A km is shown in Fig. 6.11 (a). A fine

sine wave represent ing the ta rget signa l extract ed from the raw rad ar data. is shown
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Ran e{km)
70.4
70.8
71.2

1:128
-I. +1.
20 30
25 :'\0
25 40

Data Segment
129:256 257:38·1
I . -t: - t; +1.

30 40 35 ~o

20 30 20 25
25 30 25 :10

3&5:512
I. +1.

40 ·15
25 3.')
25 30

Tabl e 6.3: A summar y of the relative quantification of the clutter euppre sslon ( in
dB) in the range cells: 70.4 km,70.8 km and 71.2 km at four di fferent periOtlli of
the observat ion time (where ±J".are t he WBragg~ frequ encies)

in F ig. 6.11 (h). A progressive decrease in t he magnitude of th e target's n-turu

energy is a lso obser ved in t ha t Figure. Fig. 6.12 (a) anti (ll) compare the t im.:

series of the target signal wit h and without the ocean chrucr at till: rang e of 70.8

km , At this range cell, the sine wave of the ret urn signal from the target, a.~ shown

in Fig. 6.12 (b), app eared to he stronger as compared to tha t at ral1 l/;'~ 70..1kill

and persisted for a quite long period of time. The comparison between the lim..

series of the ta rget signal wit h anti with out the ocean du ller a.t range 71 .~ km il.W

depicted in Fig. 6.13 (a) and (b). Th e sine wave of th e targe t in Flg. 6.I:l (h)

showed a pr ogressive increase in it! am plitude and had a maximum at nearly the

last quarter of the recorded t ime, Co mparing the lime series of the ta rp;ct ~ign il.1

among those three range cells leads to the conclusion that the ahip wa..~ I\t t he

rang e of 70.8 km duri ng mos t of the recorded timeand waaleaving the range cell

of 70.8 km and head ing towards the range cell of 71.2 ktn during the las t quarte r

of the time, The int erp reta t ion of the plots of the .~ h i p ·s movement hea rs a good

agree ment with the available but limited grcund-truthing data (351,

In this test case, a good quality target signal Wa3 successfull y extracted from

the received radar dere. Table 6.4 pre sents a summary of the re lative mag nitude:'!

of th e return energy of the ship's signal in the above three range cells at different

periods of the observation t ime.
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Date Se men t
Range(km ) 1:128 129:256 257:384 385:512

70.4 1 ·7 · 10 · 12
70.8 , 5 -1 3
71.2 ·12 ·2 2 6

Table 6.4: A summa ry of the relat ive magnitudes of the retu rn ene rgy from the
ship (in d B) in th e range cells: 70.4 km, 70.8 km and 71.2 km at four different
per iods of the observation time
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6.2 .2 Test Case II

At t ime 16:2iJ:56, the ship was detected at the ranges of 88.4 km, 88.8 km and

89.2 km. As the ship was at farther dista nces, its retu rn signal was expected to he

weaker. At the range of 88.4 km . the ship had a nega tive radial velocity of about

7.S m/s. Since the ship was moving at a faste r speed than in t he previous case,

a fairly quick progressive fading of the ship target' s signal was observed in t he

Doppler spectra as shown in Fig. 6.14 (a) to (d) . In Fig. 6.14 (3), three dominant

pea ks arc not iced. Th e two peaks at velocit ies of about ± 5.9 mls represent t he

return signa ls from the ocean waves. The thi rd one at velocity of ab ou t -7.5 mls

indicates backscatter from the ship. The magnitude of the target return energy

is smaller overall compared to the previous cases. The date from the next range

cell, Le. 88.8 km, ill Fig. 6.15 (a) to (d) presents similar Doppler spectra but with

st ronger signal energy. Fig. 6.15 (a) displays a maximum magnitude of the target

signal's energy while Fig. 6.15 (d) shows no target signal. The target observed

in the last range cell, 89.2 krn, to, :Iibits the strongest signal level es compared to

those in the other two cells. This call be seen from the Doppler spectra in Fig.

6.16 ('1to (d).

The power spect ra of the data record provide a means of analyzing the move­

ment of a target , A similar analysis can be rlone by looking at the time series of

the ta rget siguxl. Also the time series will provide a better indication of the ship's

locotion during the time of observation, Since there is not much target signal in

the data record from the range of 88,4 km, only a very short duratio n of sine wave

is seen in Fig. 6.17 (b) where Fig. 6.17 (a) is the time series of the original data.

The time series of the target sig!'!al at the range of 88.8 km shown in Fig. 6.18 (b)

gives a better sine wave as compared to that at range 88.4 km, and the original

t ime series is shown in Fig, 6.18 (a). According to the ship's speed, it would
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Data &g meot
1:128 129:256 251:3801 Jg5;512

Range (km) -/~ +/~ I~ +f~ -f~ +/~ I~ +/~

88.' 20 30 25 25 20 .0 25 .0
88.8 25 25 30 25 30 50 ·'0 .0
89.2 25 30 25 . 0 25 .0 ·10 ·10

Ta ble 6.5: A ,ummuy of the relll.tivequant ification of the clu t ter !ll pprMl~ioll (ill
d B) in the range cell,: 88.4 km, 88.8 km and 89.2 km at four diffel"f"ot pt'riocl! n(
the observation time [where ±f« are the "Bragg· frequencies)

take about 53.3 seconds ror the ship to travel acr~9 i\ range {'('lI nf width -100 Ill .

T he time series of the ship signal a t range 89.:.!krn ill Pig. 6.19 (11) !lhows 11.(l" itl'

st eady sine wave, without much amplitud e variation. for 50 to 60 !K'("OIltIH Ami a

ra ther complex t ime series tha t contains the ocean clutte r and the target Siglllll:lis

illu strated in Fig. 6.19 (a). This shows tha.t t he time lICricsof the tougct si~ ll a l cau

be used as an alter nat ive to analyze the ta rget's movement. Thr rorred fXJ!litioll

of the ship is found to beat the ran ge of 89.2 km during the time of observatiou,

Again, the ground-t rut hing data agrees with the rC!llults inferred from the Illots.

In this test case, although the re turn signal of the ship appt'a.red to be weaker

because of the farth er distan ce when compared to the previous CA.'ICS, the du ller

auppreeaic n scheme worked well and extract ed a good quality target signal (rom

the received data. Moreover. t he ocean clutte r WiLl suppressef:! again by an average

relative level of 33 dB All observed from Table 6.S. Tahle 6.6 contains a. summary

of the relati ve magnitudes of the return energy from the ehip in the above three

range cells.

6 .3 Discu ssion

From both simulations and real HF data. test ing, it i. demonstrated tha.t the pro­

posed clutter suppression scheme is capable of tracking the Irequencice of the OCC&1l



Data Segment
Range (km) 1:128 129:256 257,384 385:512

88..1 -22 -28 -30 -29
88.8 -12 -24 -26 -35
89.2 -2 -15 -26 -26

Table 6.6: A summary of the relative magnitudes of the return energy from the
ship (in dB) in the range cells: 88.4 km, 88.8 km and 89.2 km at four different
periods of t he observation time

clutter signals and the target signal and then selectively suppressing the ocean

clutte r. Good quality target signal is extracted from the dominant ocean clutte r

environment. Moreover, the time-varying model of the ocean clutter is verified.

As compared to other adapt ive clutte r suppression techniques, this technique

seems to be simpler in terms of operational steps. In other techniques, it is nee-

cssery to select a kind of adaptation algorithm and an appropriate convergence

factor. Also, it is quite common that other techniques only model the clut ter

signals. In this technique, the clutter signals and the target signal are modelled

simultaneously in terms of their frequencies. No adaptat ion algorithm or any con­

vergence factor is required in this technique. However, the choice of the number

of columns in the Hankel matrix depends upon several factors such as the rate of

change in the frequency, the number of sinusoids present in the received data and

the amplitude of the sinusoids. Due to the non-stationarity of the ocean clutter,

there is no unique number of columns suitable for all the situat ions. During the

real data testing, the choice of the numoer of columns varied from 7 to 11. The

technique does have a limition of resolving the frequencies of two very closely­

spaced sinusoide. A possible solution to overcome this limitat ion is suggested in

Chapte r 7. Last, the SVD utilized in this technique enhances the eignal-to-ncise

ratio. This effect can beseen in the power spectrum plot! of the ship signal when
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compared to those of the raw HF date.
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Chapter 7

Conclusions and
Recommendations

A clutte r suppression techniqu e for high frequency (HF) radar has been consid­

ered . The radar clutter here refers to the HF scattering from the ocean surface,

namely ocean clut ter. The appr oach taken by the technique p roposed is based

on the recognition of the inherent time-varying behaviour in ocean clutter. It

has been shown that ocean clutter can be adequately modelled iI8 two narrow­

band angle-modulated signals. A time- varying signal processing method, Hankel

rank reduct ion, was then implemented to track the instantaneous frequencies of

the clutter signals. Two simulated ocean clutter signals were gene rated to exam ­

ine t he t racking capability of the meth od. Under different signal-to-noise-rati os

(SNR's), a close est imate of t he insran tanecue freque ncies of t he clutter signals

was obtai ned. The average values of the instan taneous frequencies are close to the

~Bragg" frequencies. Moreover, it has been dem onstrated that a Hanke l matrix

formed directly from time series data, composed of a finite number of sinusoids,

ca n be approximated by a reduced rank matrix characterized by the finite number

of princ ipal singular values obtai ned from th e SVD. This app roximation is held

even when the sinusoidal frequencies are varying slowly with time . The sinusoidal

freq uencies are estimated from those pr incipal singular values.
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The clut ter signals are suppressed by removing their corresponding frequency

components from the reduced rank Hankel matrix. As a result, another reduced

rank Hankel matrix is created from which a new time series is ext racted. 'The

estimated time series will contain only the target signal and noise of a level in­

sufficient to disturb target identification. In addition to thc two simulated clutter

signals, a ta rget signal was generated to test the suppression performance of the

proposed technique. This was furth er examined using the real IIF data. The reo

suits from both cases revealed that the ocean clutte r eignela and the targct signal

could be tracked properly in terms of their frequencies. Also, a subsl l.ntial level

of ocean clutt er, in the range of 20 to 50 dB, could be suppressed, permitting

the extra ct ion of a good quality target signal. Unlike some other adaptive c1uttr-r

suppression schemes, this proposed technique can model the ocean clutter signals

and the ta rget signal simultaneously without any adaptation algorithm and con­

vergence factor, and is simple to use. No prior infcemetion on the ocean clutter is

required .

Estimation of the frequencies of two very closely spaced sinusoids used to be

a difficult problem in signal processing. In this technique, it was expe rimentally

found that , if the expected Doppler frequency of a target had a space leaa than 0.09

Hz from the "Bragg" scattering frequencies, the scheme had difficulty in t racking

bot h the ocean clutter and the target. However, the worst situation could happen

when the target signal is masked by the ocean clutter where the Doppler frequency

of the target coincides with that o{the ocean clutte r. One solution can prevent thi!l

sit uatio n from happening. As eteted in Eq . (2.1) and Eq. (2.2) , both the Doppler

frequency of a. target signal and the "Dragg" frequency of the ocean clutt er are

different (unction! of radar centre frequency. Thus, by periodically altering the

radar centre frequency, the target and the ocean clutte r can be separated in terms

of their Doppler frequencies, and estimati ng the frequenciesof two extreme ly c1011C
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sinusoids would be unnecessary.

The proposed clutter suppression scheme is developed to formulate a general

algorithm tc selectively suppress the ocean clutter. The program of the scheme is

written in MATLAB language because it is easy to use and many well developed

routinr..sare available. The scheme is not fully implemented yet. The following

recommendations are suggested to improve the scheme's performance and compat-

ihility,

• The Hankel rank reduct ion method works based on the condition that the

sinusoidal frequency has to be varying slowly with time. Further work is

needed to monitor the rate of change in frequency so as to assure that the

method gives good estimates Qfthe frequencies.

• The flexibility of the scheme applicable to range cells of any size can be

enhanced by further work on determ ining the exact number of sinusoids

(targets) in each range cell. This will be necessary for automatic processing

operation ,

• The routine used in MATLABto solve the SVD problem is general. In terms

of implementation, the running time of the program can be improved using

some specific fast routines to solve the SVD problem and some high level

programming languages.
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Appendix A

Doppler Effect

Consider a radar with a frequency of f = liTo. where To is the period of the

t ransmit ted wave, and a target moving at a constant radial speed, v, towards the

radar site. At time I =1o. the target is at range R = flo , It is assumed tha t at

that tim e a peak or crest of the wave is emerging from the radar 's antenna . At

time! =/0+To. the next crest of the wave (point B in Figure A.I) is emerging at

th is time . Let the target's range be R = RI • The time, At , necessary for point A

all the wave to trav el from t he radar to the target is

At = (Ro: v.6.t) (A.I)

(A.2)

where c is the speed of the light . The t ime necessary (or point A to return to the

radar is again 6t. Thus point A returns to the rada r at t ime,

tl= lo+~
v+v

Similarly, point B retur ns to the radar at time,

12 = to+ To+2.&...
v+ v

The period of the received wave, 7;;, is t2 - t . or
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Figure A.l : Target geometry and tr ansmitted end received wavefomu for Doppler
etred derivation (J . L. Eaves ADdE. K. Reedy: Pri nciples of Modem Radar , 1987)

Since uTo =~ - n,

in terms of the received frequency,

(

T
o

- 2vT,
<+.

r.1- v/ e
°i+u/r:

1

To
/1 +u /c

l -v/r:

(A.6)

(A.7)

For mOlt C&Jt:S of intt:re3t, vIr: < 1; aDd 1/(1 - z ) = 1 + z +:&,2 +... if z < 1.

Thus

( 1(1+. /<)(I+. /<+ . ' /c'+ ,, ·)

1(1+ 2./c+ 2.'/0'+ " .)

1(1+2./c)

1+ 2. /A

9.

(A.8)



T herefore, the received wave has been sb ifted in frequency (rom t he transmitted

wave by t he amou nt of !J.=211/'\ ' Ii is th e Doppler freque ncy shift .
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Appendix B

Eigenvalues, Eigenvectors and
Singular Value Decomposition of
a Matrix

B.i Eigenvalues and Eigenvectors of a M atrix

Given an n-by-n mat rix A,

[
:: : :~ :;: 1

A = •

4 ,, 1 4 .2 • • • a. ..

By a linear t rlUl' formd ion,

Ax::: Ax

(11.1)

(1l.2)

where A is a known real square ma t rix of order A· bY·A; x is an unknown colullin

vec tor and.\ is a scalar parameter. Since)" is a const ant , the vector z hil.'l special

significan ce in which it is left invari ant in direction by t he t ransformat ion A. To

show t his, Eq. (B.2) is rewritt en as

(Ax -h,) ::: 0

(A -A/) z = 0
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where J is the n-by-n identity mat r ix. Equation (B.3) hlllla nontrival solution r

if and only if

detlA- .\11= 0

Equation (D.4) can be writte n explicitly as

I

''' - ~ au .
a 21 021- A •

d,qA- lI t~ : .

ant a n2

a," Ia,"
. =0

ann - >.

(B.4)

(B.S)

>.n _ (a u + a2 2 + '" + lI nn)>.,,- t +...+ (-l )"IAI=0 (B.6)

where IAI is the determinant of A. Equation (B.6) is cal led the characteristic

equa tion of the mat rix A. The roo ts of Eq. (B.6) are called the eigenvalues of

matr ix A. Corresponding to each eigenvalue, there exists a ncnzero column vector

x th at sa L i ~fi('s Eq. (B.3). X, is the eigenvector (column) corresponding to the

eigenvalue ,\;. An eigenvalue may have many eigenvectors but an eigenvector can

correspond to only one eigenvalue.

B.2 Singular Value Decomposition of a Matrix

Given an m-by-n matrix B where m > n. B can be represented in th e form of

B =US yT (8. 7)

where S = diag(0'I ' 0'2,"' , O'bl and in the order or0"1 ~ 0'2~ ••• ~ 0',,; and U and

Y are unitar y. Equation (D.7) is referred to as the Singular Value Decomposition

(SVD) of the martix B. Then

UT(BBT)U ~ S' E!imom
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(B.8)
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where the columns of U (V, respectively) are viewed a9 vectors that constitute an

orthonormal eigenbesle of BBT in !R"'~'" (of BTB in Rn.n> , respectively]. Thus, a

SVD oftbe matrix B can be obtained by solving the eigenvalue-eigenvector problem

for the matrices BST and BTB, whose eigenvalues are in 81 =-diag\u? u~" ' " u~l.
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Appendix C

The Computer Program of the
Clutter Suppression Scheme
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"'tunu,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,''' t The Clutter suppression Scheme un
"",un"""""""""""",,,,,,,
U Loa d the inpu t data
'load Yi
Y. x 0002(1 : 128) ;

n Construct t he HanJcel matr ix "H"
i npu t ( 'The nulllbe r of colulIlns i n t h e Hanke l mat r ix: ' )
L '" ansi
N • length (y); , th e data length of y
R . N-LH ; , numbe r of rows in t he Han kel mat ri x

~o; fl; l :R,

fO~a,;) I ~Ly(i+j_ 1 );
end

end

n Rank reduct ion and estimation ot t he ab ser vabi lit y mat r i x
U "theta" and stat a vector matrix " X"
H • 3; , numb e r ot complex s i nu so ids in y
[U, S .V) • svd IH) ; , Singular Va lue Decompo s i tion of "H"
THETA .. U*sqr t(S) ;

ih;t~ l~~~~~~~){ S) ' ~~~~~ l f~;~~~ ~ S ) ,*S)*V' ;

U Co mput e tll8 time-dependene state matr i x "roo frota the
" observability matrix "th e e a" , and th e n estimate t h e
U instantaneous frequencies from. t h e angles o f t he e igenva l ues
U of ifF"

i npu t ( ' The sa mpling time : ')
ts " anS i
d ., tix(L+l l /2); , mean value of e ach r ow i n "H"
ne .. N-L-d ; 1; number of estima tes
for k ., 1:n8,

theta1(1 :d+1,1 :Ml .. theta(k :d+k.l :H) ;
theta2(I:d+l.1 :H l " theta(k+1 :d+k+1,l :M ) ;
F .. i nv (tll8tal' *thetal l*thetal ' *thet a2 ;

.. e igenvect ors and eigenvalues of "F"
[evtr,evalJ • e iq(F) ;

'EstilDate ins t a nt ane o us f r e quenc y in Hert~ (H.:)
wl(kl • anqle(eval(1,1) ) /(2*pi*ts ) 1

=~~~l : :~;t:~:~:t~~:~ IJ ~~~:~t:~: I ;
end



, i n it ial i zation of the new obs e rvability
, ma trix "thetA_nev"

" Suppre.s the clut ter lIi 9 ns18
mwl • mean (",I) ; , a ve rag e value of t h e i ns t ant ane ous
mw2 • lllea n("'2) ; , f r eque n c i as
mlolJ -mean( W'3);
t h e t a_new. THETA;

tor It - l:ne ,
theta l( l : d+l , l :K) • the t a( k : d+k,l: H) ;
thet a,2(1 : d+ l ,1 :M) - t heta (k+l : d+k+l , l ' H) ;
F - i nv(th e tal ' *t heta l ) *t he t al lt' t heta 2i
[evtr , t!va l ] - eiq (F);
8val_nev - e vt1 ;

" i d e ntit y the c l utter siqna ls by t he i' Braqqll frequencies
i f (mw l >-. 26 0l ' mw1<- .2 699 ) I (mwl >...- . 2 6 99 ' mwl< - - .2601) ,

e va1 new (l ,l ) - 0.0;
end -
if ( mw2>-. 260l ' mw2<- .2699) (lbw2 >- - . 2 6 99 ' mw2<"- .2601 ) ,

e v al new( 2, 2) ... 0 .0 ;
end -
if ( mw3>-.2601 ' mwJ <-.2 ~ 99) (llIw3 >- - . 2 6 99 , mw3<- - .2601) ,

eva l ne w p , J) - 0. 0 ;
end -

, es t imat e new " F" and "thet a"
F new'" (evtr . ev al naw) *in v{evtr) ;
tli a t a2 ne w - thet.r., ne w;

endth et a _new( Jc+l :d +k +l,l: H) • thetoll2_n ew(1 : d +l ,l : H) ;

" Cons truct a naw Hankel lIlatr ix "H new"
" _new - t heta_new*X; -

" Extract a n ew t i ma ser ies da t a trom "M new"
P .. 0; -
for 1 - l I N,

rr"!W~ lL. - 0;
e i - 1 ;
for ro - 1:1,

y new (l ) - M ne w( ro ,c l ) +y ne w (l);
cT - cl - l ; - -

end
y naw( l) - y ne w(l)/ I;

e1s e I t 1 >- L '-1 <- N-L +1,
for r o - I l L ,
eni_neW (l ) • H_neW( ro+p , L- r o+l) +y_new (l ) ;

p • p+l ;
Y new( 1 ) - Y newel) / L;

else!'! 1 > N-L+T
cl • L ;
for r o - 1-L+l :N- L+ l ,

y new ( l ) - H_n e w{r o,cl) +L ne w( l ) ;
cT - c l -l ;

end
end y _neW( l ) • y_naw( l l/ (N- 1+ 1) ;

end



U Plot the power spectrum ot "y" and "y new"
Nl =0 512 ; , number ot z.ero padding

~ : ~i~~~l~~H ) ;
My .. Y. "conj (Y) ;
Y new " ttt(y new ,N l);
Y-new .. fftshift(y naw);
My new " Y new . "coiij (Y new);
t ;;; 2"(-(NI'/2~ 1 ) : (Nl /2TJ /N l;
Ve l = ( 1/2) . f " p " 1 0"'( 8 1l/ ( 6 .7 5 " 10 " (6) l i ' r adi a l ve locity
for pos .. 200 : 250 , \: place figure l e g e nds

txl(pos) .. -70;
t X2(pos) .. - 75;

end
pos = 20 0 :250;
My dB .. 10 "loglO(My) :
My-new dB - 10"log10(My new) ;
axI'S (C=25 25 - 8 0 1 0 ]) ; -
p lot(Vel ,My dB ,ve l ,My new ea . Ve l (po s) ,tx l ( pos ) ,' - " , Ve l (po s) , tX2(pos ) , ' - - '
text( Vel(2515) , tXl (2S0T, I -OR IGINAL S PECTRUM'i
text(Vel(250) ,tx2 (250) ,' ESTIMATED SPECTRUM')
xlabel( 'V ELOCI TY (m/8)') , y lab e l ( ' POWER SPECTRUM dB ')
axis ;
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