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Abstract

Wave-induced pore pressure and effective stresses in sea beds of -
finite ‘and infinite depth are computed using the Biot theory of
deformation of porous media (1962). The Biot theory is simplified
to a quasi-static case and ':_ms sea bed, response {sydeternined using the .
Papkovich-Neuber technique of the theory of elasticity. The general
theory (Biot, 1962) is compared with the quasi-static theory.

<

The results are used to the depth of 1i and

the depth of "sliding" failure, the latter being investigated via the

Mohr-Coulomp failure criterion.
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INTRODUCTION

The cyclic lond)ng of th& sea floor by ocean waves durlng a storm
can Kave a significant effect on the pore pressures and effective stresses
“wichin the bed. Thé dynamic pore pressures (i.c. pore pressures in
excess of hydrostatic) may attain values which reduce the effective
stresses to zero. In such a case the soil is said to be liquefied and

in fact it behaves as a dense liquid. Another mode of failure may be .

" termed "sliding" failure, in which the effective stresses overcome the '

Sliding failure may be investigated via the.

soil internal friction.

Mohr-Coulomb failure criterion.

. The literature contains several examples of soil failure due to the

. above mechanisms. The most striking example is the failure of two shell

platforns in the Gulf of Mexico during Hurricane Camille of August 1969.
(Bea, 1971). One platform was displaced at the mudline about three.or

four feet from its installed position. The other platforn had fallen on
its side and vas displaced about one hundred feet.opposite to the wave _

direction. Both wells were plugged and abandoned. Several intensive
investigations established without a doubt that soil movements were.the

major contributing factor in these failures. .

Another .example was the failure of a ten foot diameter steel pipeline
..+ in Lake Ontario. Failure has occurred during storms’ Hhu; sections of the
pipe rose and translated laterally, The specific gravity of the pipe is
Tess than the specific gravity of liquefied sand (about 1.75 to 1.80)..
Liquefaction of the sand by storm waves caused Elotation of the pipe

whichvas then translated by current forces.




" viscoelastic model,is also.di

_The stability of‘ the seabed, is-thus an important consideration in
the design of offshore structures. This thesis is addressed to the
deternination of the instantaneous response (i.e. pore pressures and
effective stresses) of a porous deformable seabed under wave loading.
The bed is assumed to be homogeneous, isotropic and of uniform porosity.
Biot's linear theory of poroelastic media (1962) is used to model the
soil.! The development of residual pore pressures due to soil
densification over several loading cycles is not considered here.. From
the instantaneous values of eEfective stress, the depth of liquefaction .
is defernired and the Mohr-Coulomb faifgce critarion is used ko deternine

- v

The problem is solved for

the depth to which "sliding" failure occurs
beds of £inite depth as well as £hr infinite depeh. .

The theory is applicable to/ both sands #ad clays and it is shown
how the general theory (Biot, 1962) may be simplified for the modelling
of sand beds. The simplified theory is a quns'i'-uuic‘ one and it
approximates the Biot theory of three dimensional consolidation

- (Biot, 1941). A solution technique to the equations of the simplified

. theory is' il using the Papkovi solution of the

equilibrium equations of the theory of elasticity.
Following the procedure of Yamamoto (1983) the effects of soil
internal damping is introduced into the Biot theory. An alternative

The seabed
{ (]

by the general dyn*mic—t)uary and the quasi-static ‘theory are compared.
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1. SURVEY OF PREVIOUS WORK

The response of the seabed to vave loading has been investigated by

a number of authors. As pointed out by Fimn et al, (1983) there are two \_

aspects to the problem. Both transient and residual.pore water pressures
are generated in the seabed due to'wate loads. The transient pore

pressures and stresses are the instantaneous !elpulue oE the pore water -

" and seabed ‘to the loading. -Residual pore pressures represent the pore

pressure build-up over several loading cycles, ‘a phenomenon which is

y
dependent on the drainage characteristics of thé seafloor and the duration
and intensity of the loading. Both aspects of the problem have been

examined by researchers.

1.1 Transient response of the seabed. :
Many \mn- have been proposed for the prediction of transient pore

presiures land streases. Putrizm (1949) assumed the soil skeleton_to be

iucowpren‘ible and hydraulically isotropic (i.e. having equal horizental

and vertical permeabilities). He assumed that the flow through the .

porous soil is governed by Darcy's Law a®®that sea-water’
Sleath (1970) added, to this the dssuoption: that the oil skeleton is

hydraulically anisotropic. For the hydraulically isotropic case the

governing equation for the excess (vave-induced) pote pressure p‘}\m'

same for both author

v =0 & AL -

Moshagen and Térus (1975) assumed that the soil skeletdn is rigid and.

ible. The governing

¢ ia compr

non-deformable but that the pore w
\ :

incompressible,
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equation in the case of hydraulic isotropy is
K, ' : .
o 2 _ £ 3
Y—VP-E,SE ) *5 . 1.2)

" where k, is the permeability of the soil, Y is the unit veight of water,

£ is the porosity of the soil, and K' is the apparent bulk modulus of
elasticity of vater. - ) )

The above models do not take into account the deforsation of the
seabed and the coupldng of pore water and soil skeleton. Consequently
they lead toincomplete results in géneral. In 1941 K.A. Biot presented
a general theory of three dimensional consolidation which incorporates

these aspects of the seafloor behaviour. The seabed is modelled as a

porous elastic solid skeleton containing compre: le pore water. It is

assumed that the equilibrius equations of elasticity and Hooke's law are

" valid for the soil skeleton and that the flow of pore water is governed

by Darcy"s Law. The equation for excess pore pressure p-is

k g ‘ =

o £ 3 3k "

AR 2 33 . 0:3),
< &

[where € is the volumetric strain of the soil. This equation has also”

been derived by Verruijt (1969). Yamamoto (1978) was the first to apply

the Biot theory to the present problem and he derived amalytical solutions

eabed and beds of finite thickness. *

for both an infinitely de

Yamamoto obtained excellent correlation between experimental Tesults for

|

sand beds and the Biot theory. Madsen (1978) performed a similar ' .

analysis, also based on Biot's equations, but he considered only hedl‘ of

infinite thickn He also included the effect of hydraulic anisotropy




i e
while assuming soil ho:rnpy, uouever, such an lnumptmn is not
physically consistent, as pomted out hy Biot, and the pnruulnnnc
theory of anisotropic media -(nm:, 1955) ‘must be uged.

An upp:oxmne solution to the problem was developed by Mei (1952)"

and" is ulsn based on Biot's. theory (l9ﬁl). In lhxs model the seabed is

divided into a poroelastic boundary layer near the nudline and an|elastic

sublayer.” Within the bounddry layer ‘there is sighificant relativd move-

ment between the pore water and soil particles, whereas below the boundary

layer the pore water and.solid skeleton move approximately in untsen,
Effective stresses and pore pressures were determined for sand -beds of
infinite and finite deptha.. The results approximate those of Yamamoto®
(1978). . o

Siddharthan and Finn (1979) have also used’the Biot th;cxy (1941)

to iegt pore and ive st Their

_analysis includes the case of uymd soils with hydraulic anisotropy and

variable soil depth. .The Mohr-Coulomb fullu!e. criterion is used to
determine seabed stability, as wds done by Yamamoto (1978).

" As mentioned above, Yamamoto obtained excellent agreement between
experiment and the Biot theory of 1941 for sand beds. For clay beds
however, the theory does mot adequately model the bed response because it
does not include the effects of soil inertia, such effects .being ]
significant for the relatively soft clay beds. In 1962 Biot published a
‘more general theory in which soil inertia is taken into account and a

more complete constitutive relation replaces Hooke's law. We show in

this thesis, however, that the ive relation is

- ery closely by Hooke's law. Yamamoto (1983) has used Biot's theory .

(1962) to determine the response of beds of infinite depth. As suggested

by Stoll and Bryan (1970), he has ‘incorporated the Couloub damping

|
4
|
!
H




values for the elastic hoduli of the soil. The Biot theory of 1962

provides a comprehensive model for the i ion of the i

[

response of the seabed, and|it is used in this ‘thesis.

|

v
1.2 Residual pore pressures. N . »

sérved that when saturated soil‘is subjected to- eyelic

It has been

loading the pore pressure incréases over several ccles. This due o
the fact that permanent shear strains and permanent volume contraction
(densification) occurs after each cycle of loading. A model for the
decernination of these pore pressure increases f(residuals) has been
developed by Seed and Rahwan (1978). , Their model is based on Terzaghi's

,theory of one dimensional consolidation and the governing equation for

excess pore pressure is
k
3 Ko apy | 2e -
et B . 1.6

uhere e is the volumetric strain of the soil due to the above-mentioned
densification phenomenon, and z is the vertical coordinate direction.
This is a sisplified form of equation (1.3) of the Biot theory. It |
should pe noted, however, that the volumetric strain € in (1.3) is due
to elastic deformation at constant density whereas in (1.4) the
volumetric strain e is dup to densification. Zienkiewics et al. (1982)

have a method of i -the effecta of densification

into equation.(1.3). In the Seed-Rahman model an equation’is developed
to relate the strain rate 4e.to the rate of pore pressure dissipation.

ralized the Seed-Rahman method to

Siddharthan-and Finn (1979) have ge:
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include the'effects of changes in.the shear and bulk sodul

" )
7
|
| e
|
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i of the soil




2. e

We will model the soil as a solid, ‘porous, deformable skeleton, the

ume that the submarine soil is

|
pores@eing filled with fluid. We

turated, i.e. the air content is zero or negligible. A’

completely

published by M.A. Biot

linear theory of deformation of such a medium w
sume that the soil is statistically

in 1962 and will be outlined here. We
igotropic and is of uniform porosity. A simplified theory, applicable

only to sand beddywill also be presented.

Notation Conventions
.We will denote the Cartesian coordinates x,y and z by x,, X, and x3
respectively. Subscripts will assume the values 1, 2, 3. A repeated

Latin suffix indicates summation with respect to that suffix over the

range 1, 2, 3 unless othervise specified, e.g. Aj; = Ay + Ay, + Ay,

A comma followed by a Latin suffix indicates partial differentiation
. %A i
= i

with respect to the appropriate coordinate direction, e.g. A

' . -




2.1 of

We let u = (ul',uz,u:,) be the displacement of the solid matrix at
any point; U = (U;,U,,U,) be the displacement of the pore water at any
point; and £ be the porosity of the soil, i.e. the fraction of voids in

a given volume of soil. The vector U is defined in such a way that the

i volune of fluid displaced through unit aréas nommal to the x),x, and x,
axes are £U),fU, and £U, respectively.

We denote by 7;; the total stress components “0f the bulk material.
7y; is an i~direction stress acting on a plane normal to the j-ax

Further we let p be the prgssure of water in the pores. This is called
! the pore pressyre !
The total étress components ;5 may be written'as the sum of stresses

acting on the golid and liquid portions of soil. We consider a plane

area of ao lAA normal to the j-axis, shown schematically in Figure (2.1).
We denota By Fyj the sum of all inter-granular forces acting on the s .
8 in the i direction. The pore pressure p exerts a forcé psA in «
i opposition to the p— inter-granular forces. " Since T;: is the le_l.
@ .- total stress we have the following balance of forces on the area 6A:
i ‘ % u 4 .

SA=F..-psA .. - : . 1
4 ij "R %45 . .

e N
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We define the effective stress components -"ij

£ferent representation may be obtained by defixing

net 1-d1:ecnon stress on the solid area averaged avef the entire area’

! " % o e og5 08 s tha net i-direction force on the “olid area. With this
. defini:ian we find N s % L
A aijéA-Fij-éij(l-f)GAp 9

which simplifies to

R R L@

Eliminating t'; “becween (2.1) and (2.2) gives -

To develop the constitutive equations we assume an equilibrium 1

condition .. .




* gives the work done per unit volume by fluid-solid friction

with the fluid in steady motion.

We denote by W the strain energy per unit volume of soil. For a volumé
2 of soil bounded by a surface I the variation of the strain energy is

equal to the virtual work of the body and surface Eorcds i.e.

{ J (£, Su, + F, 6U)dr, # J [ [ X, éw; da
s B R i,
L Q

/ 2.5)

where £; = o, n are the components of stresses acting on the solid part.'

of an elmen:r. Of surface dI; F; = ~fp §;; n; are the components of stresses
acting on the fluid part of an element of surface dZy n; ate the cpuponents
of the outward unit normal to the surface I; and X, are the :ompn‘nel:r.:! of
a dissipative body force per unit volune due to relative motion betveen
the fluid and solid skeleton. The vector w; is a measure of the relative
displacement between the fluid and solid particles and is defined by

. f(lr’i - “i) " . (2.6)!

The body force X; is defined in such a vay that the product of X; and w;

' We obtain

the relationship between X; and p as follows.

Consider an infinitesimal volume of soil of length dx; in the i
direction and unit area of cross-section normal'to the i-direction. The
force responsible for fluid motion in the i-directionsis . ax, 1(£ « 1)

: : ;




|
|

-
i . . . 3 “ .

Ano sum on i), This force ;E:'. in the pO‘ tive i-direction if the pressure
gradient $2- is negative, and is balanced by the rictional forces -X;

[e% is defined as agting in the positive i-direction). The work done by
St yredsurd Faves ‘t‘lgniA:st friction is .1;51 . .{xi-_s(ui )= g g
(no sum on ). ‘ .

" .

By the definition of X;, this is equal to =X; + (1 * ;lxi)ui (no sum on i)

so thar - o ,
[T @7y
B . : .o
Using (2.3) we.may'write. . '
B k P
LTRR TR X 2 . o
F; = =fpn; " . . (2.8),

Equations (2:5) and (2.8) Eombine to give

o A :
J [ Lsudn - [ I,[(xij +65 fodng ‘5"? + (-f!mj)suj]dt

= .
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“. By the Divergece Theorem We obtain.

[ I L&udn = J J ll(xij_&ui)lj LY (pGHj),j.+Xjﬁ.Hj]¢:iﬂ
% .a e A

where we have used equations.(2.4) and (2.7)y,and the fact that the

-t .lde
by TR,

) .
. (2.10)

iy

. variational synbol & comutes with the differential operator. ~Since the

volume 9 is arbitrary we deduce from (2.10) that

where g = —w,’.
. 1.

-

(2.12)

We should like to comment that the form of the strain energy function

(equation 2.11) is valid whether or not an equilibrium condition exists.

The variable ¢ is called the "increment of fluid content”.

We note that' |

N
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s Seqy -
We substitute this result into (2.11) 'to get & g #
. 6e.. + pé, 2,14
LU TR . y (2.14)
- 3 H .
Thus W = (e, 0 T (2.15)
| : E !

Since W has'a physical meaning: that is independent of the choice of
coordinate axes, it is invariant with respect to all transformatioms of

the axes. “Hence from (2.15) we can deduce that W is a function of the

three ‘strain invariants I, I,, Ij and the parageter , i.e.

W mH, T, I, ©) (z..m)

where‘ Il’ =en t fZZ +e =

4

. PR T I |
T et * o2ty t egtyy Tl t ey ¥ ey

i
'
1
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In order that we have linear stress-strain relations, Wmst be a
quadratic function of the strains ¢;; and the parameter (. Heace W
cannot depend explicitly on Iy, which is of order 3. Therefore:we have

We=W(e, I, :)A (2.18)

We let
1

W= guct - Ly = oot + 1 (2.19)

which is the general form of a quadratic function in ¢, I, andi. The

constants y, H, Cand M will be interpreted later, From (2.19) ve have
8 = (He = C5)8e = 2udl; + (Ce + M)6E 2, (2,20

From (2.17) we substitufe for € and I, into (2.20) and compare vith

equation (2.14) ko obtain the stre

—strain relations as

Ty THes ey ey — 0,

Tpp = He = 2ulegy + e”.)_ -G,




. - -7 - & Toae d

= He'- Zu(eu + ‘21) -c

AEH) . ¢
=" ] . :
i T ; ) - . .
s = Tpp " 2weppy Tyy t ey, Typ ey o 2
& i . |
£ 2 pn-Ce+M . 1
Groo R In condensed notation we have the constitutive equations
s - . d
) T [{CS Zy)c c:!aij + 2“‘ij ; g
H . 1l (2.21) | 3
i p=-Ce + M 3 L. -

We replace the constants H and C.by the constants A and @ defined by

. (2.22)
We can thus rewrite (2.21) in the for . »
T e+ O e ) e {
@.2-

pe-aMe HMT - : ] ‘ 3
: . . i
- .
. S - - ¢

i

% s
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2.2 Inter ion of the Elastic Moduli I

"It is necessary at this stage to gain an appreciation for the meaning
of the elastic moduli 1, H, Cand M (and thus Ac» @), and relate them to
the more familiar elastic moduli. The parsmeter y is easily recognized
by noting £rom (2.21) that

2wy for'id . C

Further from equation (2.1) we see that
i

LS L - -
so'that ', Zuei’. for ¥ ..

Hence )i is th familiar shear modulus of the soil skeleton.
To examine the parameters H, C and M we tlonli.de( the following

theoretical ‘tests on a soil sample (Biot, 1951% Stoll, 1974).

(a) The "jacketed" test. &
'

The saturated soil is placed in an impervious flexible bag and loaded
by an external pressuré p! as shown in Figure(2.2). Pore fluid is free
to flowout of the bag via a tube so'that the induced fluid pressure p_
remains at zero during slow loading.
() The "unjacketed" test. ) i
" An.uncased sample of soil is cospletely, inmersed in fluid which is ¥
subsequently ‘pressur ized with constant pressure p' from an ‘externsl source.

See Figure (2.3). 3 i

In both tests, Tj) = Tp) = Tyy = -p', and TR 0 for i # j.

- e
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; ‘ K= Ho=-gu- N (2.25)

[ g h :

| . * In the“unjacketed" test we have p' = p so that the last of eqiations ;

i P (2.21) becomes ‘ : i
$

‘ : P = —Ce + ML P 4 (2.26)

1 ) . |

- From (2.21) we have .

s 3 -20 -

T, = [0 - 2we - G513 + 2
= €(3H - 4u) - 3Cg
sinf:g Ty = W' ve have——

- @-dwe-cc o (2.2)

In the "jacketed" test, ve let Ky be the bulk fipdulus of the free draining

S e
s0il skeletdn. This is giveg by K, = “E— and from (2.24) ve deduce that =

Hence we have
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.  Combining (2.24) and (2.26) we have

s

ML - Ce = GG - (n-%u):

which gives
4
N e(C -8 +30)
o S
H-C .
# e -

Substituting (2.27) in (2.26) we get

-en(u - 4 + ec?
L H-C

We define A, the "unjacketed compressibility" by

I3

We jlfine Y, the "coefficient of fluid content" as

" From (2.27) and <LFB) ve obeain

.27

(2.30)

@)
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- :
. = (2.32)
. 'i')"
n
We note that by the definition of - (equation 2.12) we have
“ % )
P S -0 )
¢ i 3% Sk ¥ 40 (2.33) -
P
We let K be the bulk modulus of the water and K_ be the bulk modulus
of the soil grains. :
o ’ }
H .
§ U,
I
B ' -
(2.36)
u |
. o
d . . .

Ve note that K, the bulk modulus of the soil grains, is determined from
the "unjacketed” test and is distinct from Ky, the bulk modulus of the
s0il skeleton in free drainage ("jacketed" test).

Using' (2.34) we re-write (2.33) as

11 !
v =t - 1), (2.35)
LK KA

"From (2.29) -and the second of equations (2.34) we have

I (2.36)
T . -
| = .
L :
| s .




A ) - . :

& Al 8 2 . .
-~ Ve solve the three gquations (2.25), (2.30) and (2.32) for#, C and¥ !

~ ‘and then use .(2.35) and '(2.36) to elisitate yand 8!

- f--'y}'a-'(z.zs). . SR

o 2 s . ) .
: . P & i
H Hek + 3w+ (2.25a)
! - =)

Substitweing in (2.30) and (2.32) we have
: . 5
| s 4 .
. A
i, @ i C o 2a2)

(2.30)
. ) .
- E N
Substituting in (2.32a) ve get — <0 e
- a0 - &)
Y S S
8 I .

vhich gives | - e
- L 1= ol '
| ¢ c= —K‘; Y
) YA SN Ky 4

o §

% Sl
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We'now substitute for y and A from (2.35) and (2.36) respectively to get

‘ R (l r\)

L = LA
: X,
where D =K [1 + l(‘E * l)].v

Fron (2,30b), (2.36) and the above expression, for C, we obtain

N

From (2.25a) we have

52
“"}*‘"’T%

Summarising ve have

i
~ &, - K)

D—lb >
Kk - K)

c= n:lt:‘
gt

H-n'.‘b

(2.38)
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1 v
vhere
i X .
-n-x'[1+£(K—£-1)] = ¥
From (2.22) we obtain }_ and a as s S
2
2 [} &K -K) R
* W
! LI i e i : %
T ’ T T
. :
©
.
s
g
S
3 N » .
i -
{
(I -
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2.3 The Constitutive ions Related to Hooke's Law "

From the second of equations (2.23) ve have

. 4
e P
=g (p + aMe) .
: & i
Substituting this into the first of equations (2.23) gives
. A . . .
= - 2 - “t
i Zueij + \sij[(xc aMe = ap] (2.40)
-+ <
: '
Fron (2.38) and (2,39) we find that . . i A
o
* |7 ean “

2, L. L2
A cuHeg w2y

* . _ 5
)\ is the standard Lamé constant of the theory of elasticity. Equation

(2.40) may now be re-written as-

(2.42)

Using (2.1) we write this equation in terms of effective stress:

¥ 5 i . i .
T'yym ey k 8y A +8(1 - adp (2.43)

“The constitutive relations are thus given by equation' (2.43) which differs

from Hooke's law by the term 6i].(1 = a)p.- For most sands and clays the




i
; .
{
|
3 -
b b
0
¢ i
«
‘.
o
i
|
I @
i

to unity (see equation 2.39). Thus the constitutive equation (2.43) is

approximated very closely by Hooke's law, viz

% . i .
L
AFTEE TR . (2.46)
i ‘
. s . C ;
& & 3
' s
y o '
— e R S
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2.4, Models for Energy Dissipation in the Solid . )

The model of a purely elastic matrix saturated with viscous fluid
must be modified in order to include the effects of energy dissipation
in the solid. Such energy dissipation may be due to the relaxation
properties of ths solid under load.oF to intergranular solid Eriction.
Tvo models will be discussed: (a) a linear viscoelastic model; (b) a
non-linear model. We will show that these models lead to very simple
modifications in the constitutive relations already derived, Energy
dissipation due to fluid~solid Ericcéon is :ongidered in Section 2.5.2

(equation 2.74).

(2) Linear Viscoelastic Model

Without loss of generality we consider a one-dimensional linear .
Viscoelastic stress-strain relation
3 .
¢ !
de(r) . (2.45)

a(t) -J 6(t = )=~ dr

where o(t), e(t) are stress and strain respectively at time tv The -
function.G is called the relaxation modulus. We will discuss three
methods of replacing (2.45) by an equivalent relation involving a

complex modulus G.

1
(1) Under sinusoidal loading the étrain history may be represented by

the complex function

et = c el (2.46)
o s N
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. ) - 3
_ where w is the circular frequency of the loading, the real part of the

" funétion denotes the physical strain, and ¢, is constant.

Substituting (2.46) into (2.45) we have

t
ole) = dve | GCe - 06T g

o

- -duc, J GGt ® =M gy i

i.e. - . £ =
oe) = do Jcm:‘“" dn o et ‘

o,

Thus we may write

a(e) = Te) sft) (2.47)
where T(w) = iv | Gme™Man . - . (2.48)
° :
i y. * - S .
_Breaking up the right hand side of equation (2.48) into real and-
imaginary partg ve find '
(2.49)

Tw) = 6'(w) + i6"Ww)

e ——— e e et —ar g =




- - . .
where G'(w) = w, [ G(n) sin(wn) dn

i o

= i - (2,50,

") =w I G(n) cos(wn) dn

°

G'(u) is called the storage modulus and G"(u) is called the loss modulus.

(2) An alternate approach is to take the Laplace transform of (2.45) to
find
’
* X 7 *
o (s) = sG (s) € (s)
. -
where for any function §(t), .the Laplace

(2.51)

transforn £ (s) is defined by

) = J £e) ¢7F ae.

°

(2.52)"

In (2.51) ve have assuzed that c(0) = 0. By replacing s by is in (2.52)

we deduce that
r.'(iui‘,- J oe) eIV% ge

Using equation (2.48) wve obtain

T = ie 6" (iw)

s S S S VN
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. .
- "Hence putting. s = in in (2.51) we have the result i
" (i) = Tw) & (iw) : (2.53) °
i . . . %

(3) The last method is.to take the Fourier transformiof (2.45) and find

. - t i =

A LI®) -J [ Gl - 1) “:) ac| 7IF g T (.6

] \
3 = l ol) ede s the Fourier transform of o(e).
the order of i in (2.54) and using (2.48)  »
ve have '
s
3) = ] J 6(e - o) ) i g g :
] 2 ¢
-t
v . % = s -~
« ’ deln) I Gy e 00+ Dyl g o :
- o 4 ) i
- H . . . :
R : - -
% i e F 7 !
. : _J deto) oiwe B - .
i
% 0 t !
SR e S S T




are quite general.

=32~ '

) defr) ot o : .
T & -
1 @ ! F
e &7 b i | e T g
; R :

Ve assume that e(-=) = 0 8o that the above equation reduces to

3(w) = Glw) 2w ) s g 8 . (2.55)

where £) = | e(r) e dr is the Fourier tramsform of c(t).

2 We note that the same complex modulus G(w) relates stress and: strain
in equations (2.47),(2.53) and (2.55). In each case, however, the stress
.and strain aré interpreted differently. In equation (2.47) they are r.h;
tine dependent stress and strain while in ‘equations (2.53) and (2.55)
they are the Laplace and Fourier transforms respectively. Equation (2.47)

3 ;
is applicable only to sinusoidal loading, but equations (2.53) and (2.55)

(b) A nor

ear_model .
It has been pointed out by Stoll and Bryan (1970) that the elastic
moduli and damping of soils are nearly independent of loading frequency.

strain

To rnode‘l such behaviour we consider a one-dimensional stre:




L= .
relation of the form

e(t)
(0|

o(t) =c

) + ke(e) . (2.56)

where c is a damping constant and k is an elastic modulis; £(t) denotes
the time derivative of c(t). Under sinusoidal loading we represent strain

by the complex form (2.46) and equation (2.56) becomes

pCE) = (k + dc) e(t) . ; (2.57)

- Equation (2.57) suggests that in the case of sinusoidal loading, the '
. " effects of damping may be included by replasing the real elastic modulus
1" K by the complex modulus k defined by
TE = k(L +i6) vhere 8=
S = =4 3
Hence in equation (2.43) we replace y and A" by ¥ and }" respectively. -

2 5
We note that A is related to u via the Poisson's ratio v:

o % (2.58)

2v
-2V

Hence we may write
] (259)

and T = w1+ i6) e s




- 34 -

where & is a damping parameter. Values of § ;nt:_ have been quoted for
narine sediments vary from 0.02 fof small strains to 0.20 For large
strains (Yamamoto, 1983).

Stoll and Bryan (1970) have also suggested the use of constant
complex moduli to model frequency-independent damping, and this method was |
used by Yamamoto (1983). It is uncertain vhether such a model describes

an internally aainp;d system except possibly fdr purely sinusoidal loading.
. Graham (1973) in his sRcattat Favta o materfial damping suggests that
ffora low Evaquency rangs, such ax’that sucoubtefeddin cffebite vav
" loading, a viscoelastic model is adequate.

v




(2.5.1) Hamilton's Principle for an Elastic

'35 - i

2.5 The Equations of Motion
., Before deriving the equations of motion we will establish Hamilton's
principle for an elastic continuum. Although saturated soil is a two

phase material the general principle derived here is still applicable.

The equations of motion for an elastic continuum are (Sokolnikoff,

equation 25,1) .

(2.61)

' |
vhere X; is the body force per unit volume; p ia the density of the

material; u,

; is the displacesent vector at any point; T is the stress

tensor at any point; and t is time.

Consider an arbitrary volume ? bounded by a surface [. For arbitrary

vireual displacesents 8u; ve have

I J J (“ai - ‘ij.i - Xi)Sui =0 . . (2.62)
8

[} ¥

We observe that # S




E - 36 =

; . [J[pge(l.nini)dﬂ-[[]Diiduidn+]J‘pGidﬂidﬂ-
t 2 1 L8 1

-[ J [p;‘;i 6o da+ 3 J J lps(ﬂi&i)dn.
Q2 Q

(2.63)
§ “\-[J[nuiﬂuidn.+5l Vo
. 5 " 2 k

.
e . \;

5 0 I B
R | S

(2.64)

K is called the kinetic energy of the volume 2. From (2.63) we have

|
ol bu, da = oL (@, suddn - 6k
i i 0y ae (o Sugddf =
@ Q 2

Substituting this result into (2.62) we get

i : ] ] J [ % (b 6u;)dn = &k + J [ 1 ((J{j § XD (2.65)
i 2 2 .
i .

Using the fact that

L
il




where we have used the divergence theorem, and vj represents the jth
compogent of the unit normal to the surface I. :

We define the strain energy per unit volume, W, by

M=t bu, . ¢
ij 1,] |
(2.67)

i.e.dW = 1., Se. .
ij “%ij

* as shown in section (2.1).

If the force per unit area acting on the surface I is denoted by Ti’

we have (Sokolnikoff, equation 264.4). -
- e P =~
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=38

Using ghis in (2.65) we have

e - s
[I I“:_:(‘.'i““i)‘“'“*l [Tiﬁuidn-l l [ayan

2. : B

i y: fl ]

-

] Xi 6ui dﬂ.
Q $

We define the potential energy V by

Using (2.70), equation (2.69) becomes .

< o
l']la{;(&isuim-sx-sv E
ﬂ_

-8k =-V)

- 8L

(2.69)

(2.70)

@.n)

i (2.72_)

NSRS S y—

Famstores s
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We integrate equatiop (2.71). with respect to time t, between the

linits t = £, and t = t,-where it is assumed that

Suge,) = Su; () = 0
£, @.73) .
L dt =0

Y

Equation (2.73) 'is.called Hamilton's principle.

This derivation is analogous to that used by Meirovitch (1970) for a

systen of particles. ; \

5 3
(2.5.2), Derivation of Equations of Motion

We consider a volume 2 of soil bounded by a surface L. In keeping
- -

with equation (2.70) we define the potential enérgy V of the volume @ by

ol o e e

i i
oL -J I [x.u,dn . -
i 13 4

i ) &

lere £, are the components of stresses acting on the solid part of an
i 2

(2.74)

velement of surface dI; Fi are the components of stresses acting on the
£1uid part of an element of surface di; X, are the components of a dis-
sipative body Force per wnit volume, due to the relative motion between
the £luid and solid skeleton; and W is the strain eflergy per unit volume.
We do not consider gravity forces,aince we are concerned only with vave-

induced effective stresses and pore pressures.
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The force X, is defined in such a way that the product of X; and
¥; gives the energy dissipated due to fluid-solid El'iéctiom = .

From equations (2.11) and (2.12) we have

Wyt Y e

Integrating (2.75) over the volume 2 we have |

Applying“ the divergence theorem to the first integral on-the right hand

side gives S / .

— R e R



L= - s

where n; is the ith component of the unit outvard normal to the surface L.

Substituting (2.76) into (2.74) we obtain

) Ve ] I Gygugng = pegng - £gug - FUAE
b ]

surface integral on the right hand side of (2.77), I, as

L= [ [ [y =oEp 85 dun; = 'puyn; =
g 5

Ly [ [ [p£(U; - u)dn; = pwyn;Jdi = 0
. T . 3

Hence (2.77) reduces to

3 (2:78)

We define T as the kinetic energy per unit volume at any point in the

medium. It is clear that T is a function of U; and U;. If we use u

w; a8 generalized coordinates ve can write




B - 42~

(2.79)

The total kinetic energy K of the volume 0 is given by

K-J [ [ TdQ (2.80)
: >

The Lagrangian L is defined by
L=K =V (2.81)

and fron Hamilfon's principle we have

oL dt =0 - ' (2.82)

virtual quantities éu; and 6w; are zero at times t = t, and
t =ty .

From equation (2.82) we write

(2.83)

Considering the first term in this integral wve find




[z ¥ ‘Z .
I”[ I ]m,._“.J(H Juanm . o=
4 0 . L o

2
- J IJ I [(— sy +i s e -

k
‘l %
. tz lz .
- [ ] !q E & Guac+ g: & owdelan
e

i S 4 e S .

--.] l J 31 Eﬁﬁn—ﬁwk] "an

,
e ‘[J {- K (aﬁ—)lnk - —- (—)Gv } dt)an
l [ L ) B _

I I l [ (--"—(}-._)a..k l(%)x-.“) dejan

since Sy (6, L= Su(c,) =0,
and  Gue) = by (e) =0 .

Substituting the last equation above into (2.83) we get




@ 5s

} bw, deldn
i

(2.84)

Since the Su; and 6w, are arbitrary ve obtain from (2.84) the Lagrangian®

equations of motiony

9T .
5 o <—“‘—i) (2.85)

(2.86)

a

We assume that the dissipative body force X; is directly proportional to
the variablé “'i' Further, we expect X; to depend on €he fluid viscosity
ne (uiits: kg o' 67!) and.the coefficient of permeability of the soil

k (units: o). Dimensional analysis then leads to

. (2.87) -

which renders (2.86) consistent with Darcy's law. Equation (2.8) is in

fact an extended form of Darcy's 14y with the additional term %

The permeability k, usually described in texts on soil mechanics has

units of ms ! and is related to k by the equation

'




RS v

where g is the acceleration due to gravity.

The kinetic energy per: unit volume, T, is given by

2T . (1 - O, iy + Fog B 4o, (B - 8D - i

(2.88)

where p is the density of the soil grains and p; is the density of the

pore water. The quantity p, has units of density and is an "added mass"

parameter due to the coupling of soil grains and £luid in relative motion.

The value of p, depends on the orientation of the pores in the soil. For

uniform circular pores vith axes parallel 'to the pressure gradient, p,

would . be zero, whereas for an arbitrary orientation of uniforn pores the

theoretical value of o, is 2£0, (Stoll and Bryan, 1970).

v
Fronm (2.8) ve have U = &+

Subsr_inyins for Uy in (2.88) wve get .

2T = ol b + 20w + m

vhere p = (1 - I)D. +19f

fog 4o,

]

From (2.89) we have

(2.89)

(2.90)
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aT . .
35T TP tR Y
i

J
Substituting these equations into (2.85) and (2.86) we have the equations
3

of motion

€.91)
. e g
-p’i-nfh“*nfli*-r (2.92)
where (2.87) has been used. o
From the constitutive equations (2.23) we find &
2z 2@ ::) .+ (A L2 8.0
B3 2@ eu).J ( o ul(c)u su
- -
i.e. : L4
5T 204t O A
and
& 1
eg" (faMe om).i
We substitute these two equations into (2.91) and (2.92) to get
20 o) S Oge ko) owaly 4ol 5 (2.93)




) n
(ate = MG 4 = oghy + @B+t : (2.94)
8

Putciog e;; = %‘“i,j +uj ;) and C = o in (2.93) and (2.90) we have the
-qn:iT- of motjon in the form
.

TR TR (2.9%)

. ng . / B B

Cujdi-fl( -‘Jx-plui#lwlﬂ’rvi / 12.96)
) ..
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3. FORMULATION OF THE PROBLEM

We consider a flat seabed under the loading of sinusoidal v;ves.
‘The problem may be considered two dimensional with x and z axes chosen
as shown in Figure (3.1). Suffixes i and j will take the values 1 and 2,
with 1 referririg to the x direction and 2 referring to the z direction.
The soil bed is of finite depth z_.

In the stress analysis, conditions of plane strain will be assumed.
'For a sinusoidal wave prapngntin§ in the x-direction we may write the
vater surface elevation (above still water level) n(x,t) a3 .

i(x + wt) ]

1k, ) = Re lage G.0

where a, is the wave amplitude, A is the wave number, and u is the
circular frequency of the wave. The positive direction for n(};{
is vertically upwards. It is assumed that the flow above the seabed

(-h <z < 0) is inviscid, incompressible and irrotational. The condition

of irrotationality allows the water velocity components V) and V, to be
N :

expressed in terms of a velocity potential $(x,z,t) as follows: -

Vy=e, s Vyme, ,(3.2)
B i 2

¢ is defined for the range -h 5 z § 0. The equation of continuity requires

that

ve =0 \ - 3.3)
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7 due to gravity.
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(3.4)

where'z = =(z + h), P is the fluid pressure and g is the acceleration
‘At the free surface, z = ~(h + n) so that z =n. Also P = Q at the

free surface. Thus using (3.4) at the free surface we get

© 2 i
| rzV +gn 0 B - (3..5)

:--(h+v|)

where V is the speed e e particles at the free surfl:e.
For'small displacements: of the free surface ve may neglect the ters
in V2, and (3.5) reduces to
13 = : :
e ten=0 . " (3.6)

z=~(h +n)"

Hence we find

P
|
' 130 130
ne-13 -3 (.7)
z = =(h+n)

since n is small.




’ ) .

These approximations are reasonsble if <<1. This eriterion is jus—

%

. tified in the Appendix. The kinesatic free surface condition is

' Vix,2) o § > .8)
z==(h+n) -
. s o
where V = (vl,vz) is the vater particle veloc.lly .ind v is the normal
velocity of the free surface. From (3.2) we have that V = ¥4, and since
*at'the free surface V must be directed alorig the normal to the surface,
we may write .

; _— e

"
E1E

z =-(h + n) z==(h+n) vz = =(h+ n)

- where n denotes the direction normal to the free surfice and A is the

unit normal vector at the free surface.
We assume that n is sufficiently small cospared to L, so that ve
may replace the normal coordinate n by z and the vector & by k, the unit

vector in the z direction; i.e. (3.9) my be vritten

20 - 2 =
v Sk =Rk (3.10)
2 +n  ze-thén)  ze-h. "
arly ve may write - i '
7 L ' [ERTH)
E L T . &
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Using (3.10) and (3.11) in (3.8) ve find
» .o

£ t

z = -h

(3.12)

It will now be convenient to work vith cosplex forss for n and ¢, it being

physidal problem. Thus in lieu of (3.1) we write

:l{t‘i E.) Ei(xx +wt)
Ve assue that ¢ takes the form . - «

Mz =0 @l AEO) T oy 2

From (3.3) ve have .

vhich has the general solution

'
4 (z) = Acosh )z + B sinh. Az -

erstood that the real parts of the complex functions apply to the

(3.14)
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.- ;—“' (4 cosh Ah = B sinh Ah) 3.16)
= From (3.12) we have b
-M sinh \h + ABcosh Ah = —iun, . . 3.17)
Ve solve (3.16) and (3.17) for A and B to get
- 4 i
*ia g 2 v =
A= —2 (cosh I - £ sinh h)
) pYy
= (3.18)°
iag &2 .
3= —% (sinh 2 - o cosh )
Substituting (3.18) into™(3.15) we get
vz e 2 i '
c e (2 “—“ [eosh AGz + h) - §o sinh Az + nl (3.19)

This is consistent with the real forms of velocity potential derived in

standard texts on wave mechanics..

Boundary alue Problem .
The boundary conditions at the mudline are that the vertical
effective stress and horizontal effective shear stress are zero i.e

e
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T Ty tP=0Oatz =0 . . (3.20)

Tzt =0at z=0
xz.

" N ) |
- a o

Further, the wave-induced pore pressure in the’bed at z = 0 must be the
same as the wave-induced pressure at the mudline.’
Putting z = 0 in Bernoulli's equation (3.4) and neglecting the

velocity term we have

a® ;
B =P 3c| .. Hegsh // - g
g z h . o E

The term ;8 h ic pr so that the
d‘r-mic pressure at the mudline is given by -p; ;‘—:. .

z =0t »

Hence

X3
at

P (inbed)'==p, v at z=0 : f " (3.22) ¥

For-a bed of finite depth we require that vertical soil and water

< oo
displacements at the imperméable bedrock underlying the bed, be zero i.e.

at z =z T e

(3.23) -




L (3.25)

For a bed of infinite depth, soil displacements and wave-induced

pore pressure vanish as z + ® i.e.

upay, * 0 ag z-~+o (3.26)

} p+0 as z+e : Yo aan
‘A dispersion relation may be obtained by invoking continuity of
flow into the seabed at the mudline. Considering vertical flow through

unit area of soil at the mudline, we must have

au. 3u
2 2 .
£+ (-0 —5 ac z=0

S

% e tpe, A€ ERO . (3.28)

An approxinate dispersion relation is obtained by assuming that the
v

right e of (3.28) is negligible i.c. 22 = 0 and hence & = 0 at ‘L
z = 0. We then find from equation (3.19) that
Uz ;
canh A = & (3.29)

which is the familiar dispersion relation of linear wave theory.
\
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4. SOLUTION OF EQUATIONS OF MOTION FOR WAVE LOADING

For convenience we record again the equations to be solved, viz.

equations (2.95) and (2.96):

Gy

.2)

As noted in section 3, subscripts i and j take the values 1 and 2 with
1 referring .to the x direction and 2 referring( to the z direction. The
above equations have been solved by Yamamoto (1983) for wave loading
and for comparison purposes we present a different method of solution.

In view of the waveform (3.13) we assume solutions of the form

S, U SOX Fur)
i

4.3
W, = W (z) ei(x +ut)
i

We redark that the use of the notation U;, U, here is-not to be confused

with its use in section 2.

Substituting (4.3) into (4.1) and (4.2) gives the four equations

.0

e . 2
+ DO+ WF + QACC = ~"(pU) + o W)

da“u,
2 2 dF 4 _
ul=x Uz+:l—2-)+ O+ udgp+ €=~ (oly + 0W)) (4.5)




= 5y

. 3 fun
iACF 4 iAMG = -u (pful + mHl) W
iwn
dF a6 2 % £
EEng A G e w e *
where
au ’
F(z) = U + =
aw,
Gz) = W) + = "

We assume that the functions U;(z) and W, (z) take the form’

U.(2) = P, &%
p) 1

sz
Hj(z} Qe

Substituting this into equations (4.4) to (4.7) gives an equation
the forn
3 ) Sy
w ! .
el o
“ .
o o . .
Q, 0 E
where the matrix [A] is given by v

“.6)

.7y

(4.8)

1/
4.9)

of

(4.10)



.

ary
A _wo+ne
E i A
SHYY
‘ 3 <
9,0 + 2,
0y

A

Fumy

- B -

0y

0n 4+ Y-

[v] xpaam

om 4
(4

T

408

3
iy

80
nz + 0,8
- (2 + 70,

M+ Ppevr

oYY

3 -
nNz + UN«
@+ Josa

>
- s
9"+ (T 4 ), - s




- 59 -

For non-trivial solutions pf (4.10) we require that the determinant

of [A] be zero i.e.

l1a1] =0 “.12)

Equation (6:12) is a cubic.in s* and it takes the form

et ras’eaeo (6.13)

where ap "z' ay are complex cunmmu. The six roots of (4.12) may be/

written s), %s), ts, and are, in general} complex. Ve vill take

5,0 55 to be the roots with positive real parts.

Equation (4.9) may now be replacediby .,

(4.14)

o 1 ' . "
The coefficients a, @y, . . . 4, 4" are determined from the governing
equations (4.4) to (4.7), and the boundary conditions. We substitute

(4.14) into cquAtions (4.4) to (4.7) to obtain four equations of the form
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(k) (
Ay .k+A

k) (K
Dy, et Ay ckab

D4

gk+A

3 gy
‘3,“}“"*”2”“ vy
E“(k)‘k”(k)b 3, ‘k,,(k)
k=1
3 OO, Ty SO F 0
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(k)
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M)
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(k)
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(O]
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'(k){ AZI“)' . _«DA'(IL) (]

The coefficients A are obtained from Al .

Az(k), . n‘“‘) respectively by replacing s, by 5
C -8
Since equations (4.15) must hold for all z, the coefficients of e

sz
and e ® must be identically zero for each k, i.c.

‘ r 200,00 A3.(1() 899 ][ s 5
"l(k) nz(k)‘nj(k) 5, ® s |0 (4.16)
Q0 W ¢ ® ¢ “ o o
Lnl(k)_nz(k) 0,0 n‘(k)_ ol -|o
fork=1,2,3 . - .
_Al'(k) Az'(k) A]_‘(“’ AAI(k)— .k' 0

.

5,0 )@ u.,'“" 3,0 ||y, 8 ey
cl-m cz'm c;(k) O] :k' =ls d
b Dz'-(k) n;m D‘.('k)_i :,k' 0

From (4.16) we may expre: , and d, in terms of .k' as

.
km‘k- o :k‘“nk. 4 - ;k(l)‘k (4.18)

for k = 1, 2, 3.

-
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' ' '
Similarly, from (4.17) we determine bk Y and dk in terms of

oyt @
% % " %™ %

A (&N
by = =

4 )

Tfork=1,2, 3.

- Ca Bed of Finite Depth.

By using the constitutive relations (2.23) and equations (4.18) and

(4.19), the boundary conditions (3.20) to (3.25) may be written in the

form %o .
@ '

[cla (4.20)

where
. . o T
a=(a o/By 4 iy vy ) S
=0, ¢, 0, 0,07 £
W
vith . :
uz \
b P = Pgag8(cosh Ah - 3o sinh Ah) - . t(4.21)

The eleménts c;j of the matrix [C] are given by



-6 = ¢

=00, -0+ 0+ 2= O, D) D - we]

e
) Lk
L@ -0eng )
Lk +3
o Wieg "
. N a’ -

.ot “2,k+3 " %

~ J e, = mIAC+ Coey

3,k +3

Sak+3 " %

2,6 " "o e

s KJ¥
s, +ide,

m

= -iC - t‘..k;km'

@ .

@' %

saaec €2) )
- e, 4 e

L \lﬁ(k

@

k=1, 2,3

S 80, -0+ 0+ 2 -0 M) + e -we, @'

k=1,2,3
'

k=1,2,3

k=1,2,3 -

k=1,2,3
e %.22)

@ @
S

k=1,2,3

k=1,2,3

k=1,2,3



Si68 ¥
\ [ '
Equation (4.20) is solved to cbtain the coefficients ﬂ( a k=1, 2,
' ' ' k
3. The coefficients by by, g 6 s dy & (k= 1,2, 3) are then
found from (4.18) and (4.19) and U, (2), Hj(z) (j =1, 2) determined
from (4.14). Pore pressures and effective stresses are now easily

computed from the constitutive relations (2.23). >

Case (b): Bed of Infinite Depth.
o o
In this case ve imediately deduce that a, = b =c, =d, =0

- k
(k= 1, 2, 3) |in ‘order to satisfy boundary conditions (3.26) and (3.27).

Boundary conditions (3.20) to (3.22) result in the equation

(Cla=x =%, s L e

where _

” elamr‘xta are €) o cZ,k' CZ,k/(k =1, 2, 3)-as defined in (4.22).
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S. QUASI—STATIC THEORY FOR SAND BEDS

5.1 Theory ) 5 7
The general theory described in section 2 may be simplified for the

sdaTyilyop GARAIbAdE, BECUSEIONEHe WELEfaas:of sindibiels (s coanezed

to clays, for example) we may neglect the acceleration terms in the

i 5,080 &

equations of motion, viz the terms in i The equations of

motion (2.91) and (2.92) become

(5.1)
(5.2), i

From the constitutive equation in the form (2.42) we have .

+ 0% W, -
B S Ra  § Wy T
Using this in equation (5.1) gives
+ o
g s A+ u)ujhii mop; (5.3)

We will rewrite equation (5.2) in terms of the soil displacement vector

u; (rather than w,). Differentiating (5.2) with respect to x; gives

n
g e
Y

ii

A
_Tf_% @ +Hunc)




where we have used the last of equations (2.23).

* Hence we obtain

K og2, i3, 2 )
“Evp ua;*“a: (5.4)

We have already noted in section (2.3) that for most soils K, >> Kb so

that @ is very close to unity. Also, from (2.38) we have

' "

B2 il JRG0E -
ETR S + (5.5)

Equation (575) is the so-called storage equation derived in a different

way by Verruijt (1969) and Biot (1941). The Biot theory of 1941 is in

fact represented by equation (5.3) with a = 1, and equation (5.5).
We'will solve the system of equations (5.3) and (5.4) subject to

appropriate boundary conditions. For a bed of finite depth z,, ve have



' -
’ [ L (5.6)
b (inbed) = o 2 ar z =0 : 5 3
£ ot
N - Ay
u-uz=0 at z=zo . &
Ay ; : . 6.7
3]
3z 0 at z = z, R B
>
i R
“For an infinite bed we replace the conditions (5,7) by the condition !
that uj,u, and p tend to zero as z goes to infinity i.e. o
. -
uppuyp >0 as z > s (5.8) ;
P
¢
X .
- N iy

i
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5.2 Genéral Solution of ‘the System of Equations (5.3) and (5.4)

As in section 4, subscripts i and j will take the values | and 2.

Equation (5.3) is sytisfied by the function

I up s 4 v g el =Wy N SO T

where

T e - (5.10)
20" +w)
provided that’
3 - R
s
2u(l < V) 12 2 . e 2
Tom Werx@ vl (- wa-we s

Equation (5.9) is the well known Papkovich-Neuber solution of the

equilibriva cquations of the theory of elasticity. ¢ and . are functions

" of x,z and t. Equation (5.11) is in fact the cquilibrius equation (5.3)
written in terms of ¢ and ¥;. The parameter v is Poisson's ratio.

In the theory of linear elasticity any one of the functions ¢, ¥,
¥, may be taken to be zero vithout 1oss of completeness provided that
the coordinate system is chosen in an appropriate vay and 4v 'is not a
positive integer,  (Eubanks and Sternberg, 1956). We will make the ’
same assumption ih the p.:n.cnk case.

We choosce Y 0 and ¥y v Then equations (5.11) become

) 2 2 3] ®
2B 32 (V% +2 9%) ma R (5.12)
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3 2, 2 3
w82 @+ ) - bl -y -0 R (.19

10 J

. ) T

Using (5.9) ve write equation (5.4) in terms of & and_y:

E2 Yap_ 3 2 s .

e pogRea - 20-20 8 (5.15)
A solution to (5.12) and (5.13) is given by

V=0

(5.16)
Ay m B

V4= g : 8
Substituting (5.16), into (5.15) gives

evp aBia L3y ’ (s.17)
vhere x

& -1 *
ok lyay
¢ Wtz
(5.18)
- 2 -1
- 201 - Ly o .
0, = =201 - 2v)alf + 31 | )
N . - .




S

We set

Plx,2,8) = qlx,z,t) + rlxz,t) (5.19)

where q satisfies the homogeneous equation

e X ) (5.20)

We substitute (5.19) into (5.17) and use (5.20) to obtain the following

equation for r:
!

2 ar 3
e V= stta 5 G (5.21)

A solution of (5.21) is given by -
k2 5
T 2 (5.22)
since by the first of equations (5.16), . £

T .
L V(—awal) o, 3z(‘l‘b) [

Thus a solution to (5.17) i-‘ given by (5.19) subject to conditions (5.20)
and (5.22), We note at this point that p is the sum of an hnrmonic‘
function r and a function q ~which satisfies the "heat nqu;dnn" form, !
The wave-induced pore pressure p is thus a combination of the responses

suggested in previous studies (scc equations (1.1) and (1.2)).

o




3

wp &

The above approach provides a general solution to the system of
equations (5.3) and (5.4). The probles reduces to solving the equations

(

w2y -0

(5.23)
2, .
erqE (@t )
where q and r satisfy g
,
evqe g_z } s
" (5.24)
2 .
£ o= 2
'
3 [
. - S
v i
o
E & [}
4

t
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5.3 Solution for Wave Loading *

In view of the complex.wave form (3.13) we assume that the wave-
induced pore pressure is given by
‘

px,2,£) = B(z)el X * 6t)

(5.25)
Since p = q + rve let ,
- Qlx,2,t) = Q(z)elx * vt
\ r(x,z,t) = R(,)ei(hf + wt) oo
To satisfy (5.24) we must have
R = ap ™ 4p, *F
. Q) = Ay u.A-.z T 5 'z

where

an?aatele (5.26)

and the Ai's are congtants. The form of R(z) was deduced from the fact

that r is harmonic.

Combining the above results with (5.19) we have =+

_ b g
pln,t) w0 e ay M M Baa, o 2,1 Ox + we)
% .

(5.27)

LI




ol

The functions ¢ and ¥ must be chosen in accordance with (5.16) and (5.22).

To choose the form of ¢, we note from the last of equations (5.16) and

equation (5.19) that we may decompose ¢ into
44y +o,

where

C 2y, w30
vél e and vez e (5.28)

Applying the operator 92 to the first of,efiations (5.28) and using (5,200 ~——

gives .

BT N I
e 3t Ca v )

i.e.
ATSR S M)
Ve, = oA 4 . (5.29) , .
. .
If we assume that
4 i
i0x + o) ' : ;
' §

4 = o (2)e

equation (5.29) gives




= e

Az Az . -A'z Az
Ol(z) - ble + Bze + hJe + b‘e (5.30)

Fron the second of ejutions (5.28) ve have similarly
4 _ otk

e o

wrieing 4, = 65(2)elO* 9 o ging #
-\z Az .

9,(z) =bze ""+b.ze (5.31)
Gt 6 g d
From (5.30) and (5.31) ve deduce the form of ¢ as

=) o A
$(x,z,t) = [(a) +a,2)e ts (ay + a 2)e ® 4+ - )
page iy 36;l.;]¢i(lx + at) (5.32)

vhere A k = 1,2 ... 6 are constants. Substituting (5.32) and (5.27) ’
into the second of equations (5.16) and equiting ‘coefficients of e %,

iz Az Az
€, e 7, e T we gt

Plic. . (5.33)
—_

2802 - x’hs

3 a -

2us(0) 2 -A’)as
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We choose v = (B~ + pel%yet (% + ut)

which satisfies the first of equations (5.16) and is in accordance with

(5.22).- From (5.22) we Eind™ e —_—

. - (5.34)

Using (5.33) and (5.34), p and ¢ may be expressed in terms of the six
\

constants aj, a5, .+ . .+ 2. Using the constitutive relations we

write the effective stress components in terms of ¢ and y:

T'.j B LT R TR O P 5,27 -

S 2w o2 2 T
1T 1778 + 207 - 201 - 2v)

(5.35)

R T
+5U(l u)nVO

Hence the effective stress i be expressed in terms of the

constants a,, a, ag: The six boundary conditions (5.6) and (5.7)

2

lead to an equation of the form

[A)x =

(5.36)

where .




-

= (8 8y 85, 8, a5y 30"
- L U L TR
: (5.31)
s r *
b= (0, 0, , 0,0,0 .
) L
P, s the amplitule of the pressure wave at the mudline i.e.

!

LB Lo ddOx+wn
TPe Bt Fo© :

'

The expression for P_ is given by equation (4.21).

The clements a; ; of the matrix [A] are given on the following page.




(8c"s) )
s
a.;q_% =G0l n..fof - G0l
Y -
°z,¢ s %a,¢- ”f
o 9 o .
K Y e L0 o
GO 2t = GO
' & TS o
Y- ;00ls

-:3 r - €+ !1+~+ %2y = "Se

°, :Es (v -€+°70 + 14+ !T.u.u

zt 1 ) 5 N,
et Loyt u o ®

[v] xraaeq
v o 3%z 0
% ¢ . %2
e o % 25 o -
2y - 3 zy—
o

?: ~vo, o
xz o z- o
. + 2 — -
T - 0y we - DY x
L1 doe @ 2T, g
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Equation (5.36) is solved for the coefficients a8y . . 2agand

hence the ions ¢ and ¢ are i e pore

pressure p is found from the second of equigy ins"CIN6) and the wave-

"induced effective stress components ©j; are found from (5.35).

For a bed of infinite depth we must have ay = 3, = a, = 0. The
matrix equation (5.36) reduces to
e
.
1, hz My ®i 4 i
4 sy al [afu]o (5.39)
a1 %3 35| | % 5Pc . o F
and this equation is solved for the coefficients ay.a, and .




\
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6. FAILURE ANALYSIS

The sign convention mst comonly used in soil mechanics is that a
- comressive stress is considered positive. Adopting this convention vé
write

' (o) ' 4 .
1j - lij - (6.1)

where 1 . are the vave=indiced effective stress components as coputed

i "
f£rom (2.43) or (5.3), 1i§°’ aré the initial statie effective streas
components, and ?ij are the net cffective stress components.

The sfatic effeccive stresses are ‘given by

(o)
11 [
(6.2) .
RO I
22 "%
o) |
Rggr A0 . )
where v, is the buoyant unit weight of soil and is given by
Y = Year T Peb
(6.3)

= (g =Pl = f)g

where g is the acceleration due to gravity and Yt is the saturated

unit weight of the soil.
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Types of Failure

(a) Liguefaction of Sinds.

¥ien ac least one of the net effective stresses Ty, Ty, is zero or °
negative (tensile) che sand is said to be liquefied and in fact behaves
like a dense liquid. )
()  "Sliding" Failure (Mohr-Coulomb) failure)

When the net effective stress components

are such that the
internal frictional resistance of the soil is exceeded S i plane,
"s1iding" failure is mid tobave occurred. This is investigated using
the Mohr-Coulonb failure Eriterion. '

Figure (6.1) shovs the Nohr cirele corresponding to the state of
stress T;]. at some depth z. Denoting the centre of the circle by (a,0)

_and the radius by r we have.

(6.4)
LG T e

o7 T Fa 12
Figure.(6.1) also shows the failure énvelope which intercepts the t axis
at (0,) and is inclined at an angle 4¢ to the o axis. The angle 4 is
known as the angle of internal friction of the soil, ¢ iscalled the
cohesfon intercept.

The tangent from (0,C) to the circle makes an gngle é vith the o axis.

The angle ¢ will be called the stress angle corresponding to the state of

stress T;.. 3

(.
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A
* E | t.seem smEss
9 o= NORMAL STRESS
FIG.6. THE STRESS ANGLE ¢.
\
PSR | SIS

Fu



By constructing the line OP
" easily shoim that

20

£=asin¢+ccon s ] B (6.5)

N It is cledr from the diagram that "sliding"” failure occurs when. ,

. (R L (6.6
-

Thé angle ¢ is determined by solving equation (6.5). For sands, ¢ = 0

and hence
. 1 . .
! i Sdeus v il
| sin ¢=Ea —.—.—-——m“ T 4G, d ®.7)
£ s TR
. !

The angle ¢ prévides a convenient measure of the "distance" between the
existing stress state in the soil and the failure state, the failure

criterion being (6.6).

5
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7., RESULTS

The vave-induced pore pressure, effective stresses and stress angle

“under a vave crest were computed foi a,fine sand, a coarse sand and a
lay using both the dynamic theory (Biot, 1962) and the quasi-static
thaory duscribed fn section 5. Figures (751) to (7.15).shoy the remits

| for a bed of '£inite depth; figurgs (7.16) to (7.30) show the results for

" a bed of infinite depth. The following data were used (Yamapoto, 1978

and 1983): ] ]
. i 8 . Sand clay‘,
Shear Modulus vuaud roxid 10 x 1*
Dasping paramecer s 0.05 4 0,05
' Poisson's ratio v '0.333 oS
Porosity ) 3 0.3 g 0.4 )
Bulk modulus of grain Kr(ll/nz)” “3.60x16° 360 x 10'°
Bulk modulus of vater K 0/a?)  2.30 x 10° 230 x 10°
Density of soil grains b Ggfa) 2.7 x 107 . 2.65 x 10°°
Density of vater | o lg/a®) 1.0 % 10° 1.0 x 10°
Permeability ke Ca/s) 1.0 x 107 ;f:;‘; 9.81 x 10'7>
( , v e
"Added mass" parameter oo tkefa®) 0.25-£0, 0.25 £,
_*_Seil depth Lozt 2! 25.0
Cohesion intercept ‘(clay) SCN/D) - /) . 12,0 x 10°
\ " : * " Wave Parameters
Wave Period L TCs) 15.0 | 1 1s.0
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| . . i
1 ] N
v Water depth h(m 70.0 50.0 o
Wavelength . CL@ | oa.en 256.456
Wave amplitude aq(m) 12.0 i 12.0 . ¢ .

The value's of the wavelength L were calculated by solving equation
.29).

The following notation has been’used on the graphs:
L . : .

Real(r)/P_ = Normalized wave-induced pore pressure

Acg(®).  ='Tore prasjure phase shift_ «
’ S}{ - R’All (\" - H-ve—xnduned horizontal szecnve stress
k i sz - Real ((“) - Vave-induced vertical ef(ec:ive stress | ;
B ' skz T aReal (1)) = Wave- xnduced ahear stress ;P
DELTA = 6 = Dasping parameter i

The results mere obtained by solving the matrix equations (4.20)
(dynamic theory) and (5.36) (quasi-static theory) for a finite bed; .md
. equations (4.23) (dynamic theory) and (5.39) (quasi-static theory) for

an infinitebed. Required input for the computer program of the dynamic

theory includes the roots of equation (4.13) apd these were obtained

an HSL 3ubroutine on the university's VAX 11/780 computer system. 'The

mattix equations were also solved with the aid of an IMSL subroutine.

In’the case of clay beds, overflbu problems wer due_ta the
4 . ’ - N \
; Large moduli of the paraseters s; and A' and the computef program had to
’ be modified to deal with these probleas, : .

‘As suggested by equations (2.60) and (2.59) the effects of damping

in the Aaiwg-‘ﬁ\zorpnrlnad into the Biot theory by replacing the, |
) . ol
real elastic moduli y and A" by complex moduli i and 1. The value of




the damping parameter é‘v,rng. f£rom 0.02 for very small strains to 0.20

for large strains, and a conservative value of & = 0.05 vas_

both the sand and clay beds (Yamamoto, 1983).
Te results’ indicate the Following: "

" (1) For sand beds under wave Loading there is viu:uﬂy no difference

between the quasi-static and dynamic theories’ except for the shear stregs

. g )
response. However, the magnitude of the shéar stress is ineignificant ,

‘compared to the other stress compnne‘ntl required for the Mohr-Coulomb
failure ‘criterion, and has negligible effect on the depth to which the  ~
s0il fails: This can be seen Erom figures (7-5), (7.10, (7.20) and
(7.25) in which the stress angle variation is the same for both theories.
(2) For clay beds the quasi-static and dynamic theories do not agree.
This suggests that for the soft clay beds the dyfamic terms 5 and G "
the equations of motion are signmificant, so that a quasi-static theory
does not adequately predict the bed reupana‘e. However, there is at present
insufficient experimental data to test this clain, . L
| = >

\The: graphs of stress ingle vs.'depth may be used to deterdine the
80il failure depths by liquefaction or "sliding" failure. For sands the
value of the stress angle Q:ns set at 90° whenever ?;1 50 (tensile), so

that the depth of liquefaction is the -greatest depth for which ¢ = 90°,

The net tical

sed for -

i

- was examined for a coarse sand using the quas:

-

stress 1,, was always positive'(

" 22

The depth to which "sliding" failure occurs is determined from the Mohr-

Coulosb failure criterion (6.6) .

5 5 . 0
The sensitivity of the failure @epths to the folloving parameters

tatic theory: shear
modulus G, Poi

son's ratio v, porosity f, permeability ka(ma-




[ .

o vAvelength L, vave amplitude

o

The £riction angle ¢, vas assused to
be 30°, The results are show in Figures (1.31) to (7.35). No graph

hear mdulul G because the results showéd no change-in .

vas draim £gr the

the, failure depth as G vas chinged from 10’ N/m? to 108 N/a?. Ve observe

that liquefaction depth is far less sensitive to changes in the shove
pntmutuu than "sliding" failure depth. . The grnph for Poisson's ratio

‘(F).guu 7.31) deserves special coment, this being a parameter which may

i - be difficul:,tn i The depth is relatively
H insensitive to the value of v but the "sliding" failure depth is strongly i
dependent on v. For instance, a Poisson's ratio of v = 0.30 gi¥ - r

"uuding" failure d!p{h of 10 m., yhereasv x 0.3) gives a "sliding"

e taxlun dep:h of 6.5 m.

. Wé note that the’failure depths are quite semsitive to the va

M 2 -
v amplitude a_, as is to be expected, vhile changes in porosity, perme-
ability and vavelength have less significant effects on the failure d ?:n-. 'J

winally, in order to examine the effect of the small damping-

, i i 1 ive stresses in a finite coarie i

llnd bed were compuud for the cases § = 0,05 and S = 0. 00 (undlnpad)

and the results lrxllwwn in Figure (7.36), The graphs show no . EA

i apprecisble difference in the stresses for the two cases. R A
SR, TR ¢ s "
e — Lt ‘
\ . ’ :
( p )
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Sz = Wave-induced vertical effective stress
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8. . SUMMARY AND CONCLUSIONS

The scope of the thesis may be summarised as follows: X
(1) A theory of deformation of porous media proposed by Biot in 1962 has

been re-examined and elucidated. This theory is'appropriate as a

continuum model for offshore 'soils.

(2) The relationship between Biot's general constitutive relation and
Hooke's law has been derived. f

(3) Methods of incorporating the effects of soil damping

constitutive relations have been examined. |
(4) A quasi-static theory has been outlined and shown to be closely  *

approximated by the Biot theory of 1981. The responses of seabeds of

Finite and infinite depth predicted by the quasi-static and dynamic
theories have been compared. The results show that the quasi-static
theory provides an excellent model for sand beds but may not be adequate
for clay beds. Some of these results have appeared in the literature
in various forms (Yamamoto, 1978 and 1983; Madsen, 1978), but the
equations and graphs for the finite bed using the dynamic theory, are
new. Further, we have given graphs for all the stresses, some of which
Y e ———

(5) e senaiivity of failure depehs to the following paransters fas
been cxamined: - shear modulus, Poisson's ratio, porosity, permeability,
wavelength, wave amplitude. Of these, the Poisson's ratio and the wav:
amplitude have the greatest effect on failure depths, in particular the
depth of "sliding" failure. In general, the depth of liquefaction is
not as sensitive to the. above pa;‘nmetan as is the "sliding" failure

depth. No graph is shown for shear modulus because changes in this

parameter (for the range considered) had no effect on the failure depth.
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(6) A general solution ique for the
theory has be:n pl:uenud. k The solution technique w:
Papkovich-Neuber method of the theory of elasticity. This method is
considerably less tedious than the solutions presented by Yamamoto
©(1978) and Madsen (1978). Further, thé method is applicable to more

wave loading of the seabed with a body resting

complex problems such
on the bed. Methods of approaching such problems have not previously

appeared in the literature.
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- Appendix

" Criterion for the validity of the of linear wave theory

(Segtion 3, pg. 51). ’ & \ .
From equation (3,1) we have }

n(x,t) = a, Cos(Ax_+ wt) A
. For small displacements of the free-surface we may assume that the B
! speed, V of the watér particles at the free surface is given approximately
by d
Y i Yo
- an
B ‘ ) (A.2)
7 ]
From (A.1) and (A.2) we have :
. v
"V = -aa SinQx + t) “ (.3) 5

5 v

Using. (A.1) and (A.3) we write the expression % v2 + gn oceurring in

equation (3.5) as T o . . ETR
392+ gn = 3 el sin O + 6t) + ga Cos (hx + ur) :
The tern in V2 may be neglected if : 5 !

g 0% - '
g, <mm, o
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o
. In order'to obtain a condition involving wavelength L, we use the

"+ dispersion relation (3.29): .

From (3.29), w? = Ag tagh Ah so that condition (A.4) becomes

1
7 )a, tanh Ah << 1

or, since A = 2L
 siy Z,

wa,
3 o 2zh,
", g tash (T‘) << 1

L
i

%
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