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The aim of the présent investigation is to study the

static and dynamic behaviour of a.tension leg platform in

the intact condition and after partial or total loss of

tether at any corner. The exercise involves formulating the
statics gnd’ "dynamics of column stabilised st:ructu‘fas with
taut moorings and implementing the same in appropriate
computer softwares. Formulations ave also made to calculate

the equilibrium tensions after a loss of tether.
e bl

The i m for hy es is. capable of
generating the 2 i on—as- well -as

locating ‘the equilibrium configuration of the floating body
under a given set of externfl static loads: This is used to
assess t.h; statical stability of the tension leg platform in
damaged cases and compare the same with its vg:iaus other

configurations.

Under the category of hydrodynamic analysis, two major

types of , namely .' domain' and ‘timé

domain' are employed. In the frequency domain approach, wave

amplitudes and all displ aret to be small.
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Also, i ’on.-of “ehe -3} ic forces is carried out
qver the mean A;letted- surface of the body. The wave
excitation forces are calculated via a 'Morison type'
formula and an iterative scheme is adopted to har}dle the

nonlinear drag term. Thi’ analysis is used to compute the

'teeponee amplitude opetators' (RAOS) in intact and damaged -

conditiane. significant: responses are ulsc computed using
these RAOs /and Pierson-Hoskothz wave speqtta for chosen
wlnd‘ spe'ed‘s.‘ In the tim; domain analysis, thuuql_: assumptions
similar to .triquency 7dmmiﬂn analysis are made regnrding the
incident Have. However, ‘no restriction \is put on the motion
of the l;ody. The excitation and the re‘active forces are
calculated over the instanteneoqs wetted eurface and at the

displeca‘d position. Nonlinear equations. of motion are

obtain time-series data of motion and tension responses in

order to study the variation of steady state m’nplitudes‘ in

intact am_i damaged ‘conditions as wel‘l ag tzeheients
following a loss of tethgr.

v

a speci}l study ct the occurrence of Mathiey typg

dynamic instabilty in tension leg platforms )s algo

~ “iIntegrated using Adam's “method. This Enalysie is used to ¥

undertaken. A formulation to calculate unstable combinations

ot wave height and frequency 1: developed bdked on Floquet
theory for periodic eysteme. ‘rhe effect of wu}ﬂi pertinent




paraneters }ncl\ding loss of tether on

\i‘nstabilitx is also

investigated‘. ' .

Furthermore, a 1:100 scale model of a representative °
tension leg platfom'is designed and fabricated. Experimants
are conducted .in regular and irregular waves ln both intact
and damaged configurations and the experimental\ observations
are cnmpatad with those predicted by the thanreéical models.

s \

It is seen that a \&nplete loss of tether at any corner
can reduce the statical stability of a tension leg platform
drastically. A l'oss of tether, in deneral, is found to
increase the platform motions in vert‘lcal planes as well as

the static and dyn_amic tensions in the remalnlng intact

tethers. Total loss of tether at one corner induces snap
lt.:ads in one or more corners. Depending on the wave height
and frequency, these snap loads could be high .enough tp
t{xqqer further tether failures. With reand to. Hathiel\ typa
dynamic instabiuty, even a 25* loss ©of total axial
stiffness of the tethe!‘s 1s seen to have anignulcant_

effect on the occurrence of such lnstability. .
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Chapter 1
L R U
xmw_cugu‘

. - The escalation in the size of conventional dr_illinq
platforms for deeper waters and more.severe environments
ceuld make much of the oil discovered in such areas remain
unrecovered. Many innovative designs that have evolved in
the _last two decades aim to providé economically viable
solutions to this preblem.

Among the conventional il production facilities, steel
jacket or concrete gravity type in fixed structures and .
floating platforme such as semi-submersibles are ;he most

L N 'p_opular. Fixed structures offer the best working conditions
since they p'rovlde a stable platform from which to work
Unfortunately, the natural periods of oscillation for thea(
structures increase with water dei;th and get into the 'high
energy content 'zone' of the s‘ea]ane_rg_y spect‘xum, making the

PO . structures vulnerable. to high dynamic sttesasg duk to
environmental loads. This may be avoided by providing extra
stiffening and thus kaepir}q the natural periods dowh, but

s

this solution makes the ~structure very heavy and’

Nz
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uneconomical. Floating units with soft moorings, on the
other hand, are eco‘nomic‘ally viable Eo; greater water depths
but fail to remain adequately stable dui‘inq heavy weather
c‘onditicns. Th;refore, a lot of ‘'down-time becomes

unavoidable. |

'compliant platforms' emer‘ged as suitable alternatives
for deep water applications where platform natural
periods are outside’ the high energy zone of the sea energy
spectrun. These have qptions of restricting motions in
certain desired de‘gxees of freedom while mnvinq‘
'compliantly' with the external loads in the others. A
'tension 1leg platform' (TLP), alternatively known as
'tethered buoyant platform' (TBP) is one suc_.h compliant,
structure that, in recent years, has received a great deall
of attention from oil companies and researchers. Its
suitablility in deep v;a/tevr applications in termvat cost
againstvfixéd jacket structures is demonstrated in\ ig. 1.1

(Dunn, 1979). Fig. 1.2 shows the typical TLP natura pericds

/

A TLP is a positively buoyant unit ‘that {s kept in

as compared to typical'sea energ‘y spectrums.

position at a location by the help of a skt of taut
moorings. The "tension in these moorings alance the

difference in buoyancy and weight. The static pretension may

" " /
[ /
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3 ~
typically be in the order of 25 to 30 per cent of the total
displacement of the platform. The mocring“ elements have Véry
- 'high axial stiffness due to vhich motions in the vertical ,
planes i.e. heave, roll and pitch are severély suppressed.
Tl;é'plﬁi:fom, however, wouE exhibit large excursions in the
horizontal plane i.e. in surge, sway and yaw modes, thus
absorbing the wave energy through t);{e gained momentum.
° : g .
The first design’ of such a structure was produced by
the pioneering English engineer, A.F. Daniel, some 'Ewenty
five years-ago; his platform was named 'Tr‘iton‘ shown * in
Fig. 1.3. In order to obtain better performances, the TLP
configuration has. undergorie a lot of modifications since the
time of Triton. The present day TLP is'a colm‘nn stabilised
structgre a.ppearing somewhat 1like the familiar semi-
submersible .rig with much bigger columns pulled down to the
sea bed by vertical taut moorings. To date the only TLP in
operation is the one in Hutton field in North Sea. As a
concept, a TLP is intended to be used at water depths
greater. than 600 feat, bu:thg/ﬂutton TLP is deployed in a
water &epth of only about 485 feet since the sponsors felt
that the cost of the TLP for that location would not be
higher ‘than conventional jacket structur; and also a petter
knowledge about TLP behaviours was necessary betore‘it c_:duld

be sélected‘ for deeper waters. Table "1.1 (Ellers, 1982)
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offers a brief compari€on of . certain relevant aspects

. betveen the Hutton TLP and a few other types of offshore
production facilities. i
o g .

Ti{e superior performance and elegance of TLPs depend
_largsly on the performance of the taut moorings or the so
called ‘'tethers' (alterﬁati‘;ely known ‘as 'tension legs' or
'tendons'). Thué, quite justifiably; tethers themselves have
received a good share oé the total research work devoted to
i‘LPé. Damage to one or more tethers may have rather

undesirable effects on the overall ;;erfpmance of TLP and to

the well being of the rest of the tethers. The main thrust .

of this thesis is to investigate these effécts through
theoretical and experimental means since not much |is
reported in the published literature bn t'his particular
topic.

. cfmapter 2 offers a description of a tension leg
platform. Thesis objgctives and research _plan are given in

Chapter 3. A brief\reviaw of relevant published literature

‘is pro:rided in Chapter 4. Details of model scale simulation X

of a TLP at Memorial University of newtohndlaﬁd, St. John's,

Canada, given in Chapter 5, include development of modellinq,

laws, descripgion of the model, experimental arrangements

and instrumentations, test progran and data analysis etc. A
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procedure to calculate the equilibrium tensions after a loss
of tether is developed and 1J:1ustra:ed in Chapter. 6.
Hydrostatic and hydrodynanic analyses are described in
Chapter 7 and Chapter 8, respectively. Both frequency domain
and t].me domain approaches are discussed under hydrodynamic
analysis. C’haptar 9 gives the details ot the investiqatinns
on Mathieu type(dynamic instability of TLPs.

In * with . the ion ‘followed in’ this

thesis, theoretical and e;rperiment:al reshlts are diséussad
in every chapter, as applicable. A summary of observations,
however, is presented in Chapter 10. Aé'c?it;cnally, general
comments on the present study, recommendations for future

research etc., as realized by the, author, are also included

" in fhis chapter. The text of the thesis is followed by a

list of referénces, and tables and figures. Four appendices

- are also provided which give the source listings of some of

‘the computer codes developed during this thesis work. All

the input variables required to, create the input files and
the computed output variables are described in the header
information of each progran. Addi::lonally,'the input data

are also reproduced on the output in a converiient form.




“Chapter 2

———

;\‘tensiv'an leq platform is a -t_lua}inq production unit
where buoyancy excéeda itd ‘weight. It is held down by means
of a few clusters of tethers. The tension that balances the
difference in buoyancy ana-—/the weight keeps these tethers
taut at all. times. :

TN
-

The main buoyant unit of the structure is the 'hull’,

.which, unlike semi-submersibles has larger vertical columns

and relatively smaller horizontal pontoons. This hull, on

the upper side, bears the production facilities and on the

lower side is to the . The platform is
constrainéd to move in vertici planes by providing very
high axial stiffness to the t&thers. It is,% course,
compliant in the horizontal modes.

Since the TLP is a relatively new concept, a brief

description of its various components and their functions

may . be of help for the reader to apl;reciate the /

complexieties. and the problems associated with such, a
i

structure. This will probably be best achieved by cho g

i
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the Hutton TLP as a representative TLP. Fig. 2.1 shows.a

perspective view of this TLP while the main particulars are-

given in Tabl : -—
- i £ -

The Hutton TLP has a six-column configuration. The'
column tops are connected by a box théture which is
essentially a grillage of deep plate girders. The bottom /vat

the column is by lar thus

increasing the overall rigidity of the/ Platform. The columns
and the pontoons are of stiffened plate cor;structioh. P

A mooring compartment is housed in each corner column
where the top ends of tr:'e _tethers are secured. The moorint;
equipment, . including the 1load block; is placed on the
mooring flat. The) tension load on the load Plock is passed
onto the mooring flat and the body of the hull through the
locking collar of the -tension adjustment ' assembly and a
cross load ' bearing ?CLB). The mooring compartments are
-located in the 'double-wall' pc;rtion of thdcolimms. The
double-wall construction extends over the splash zone and
thus, besides pratecting the mooring equipments, helps

~ improve 'flooding damage control'.

The lower ends of the tet\hers are fixed to the anchor

templates which are in turn piled onto the sea floor. The

[

~_
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bottom end of each tether has an anchor connector for
attaching .itself to the template. This connector is
lafétivated;’)—'i‘y the force of gravity. It can be disconngcted by

hydraul ic {d8Fices remotely operated from the dedk.

e %
Both ends. of the tethers have elastomeri¢ flex-joints
which allow 'free rotation upto 18.5 degrees.
The %ll]. and the decks are fabricated separately and
mated in shallow water. The assenbled hull is towed to the
offshore site and installed with the help of the mooring

system. . A L

The tether system. installation is carried out in calm
weather. The platform is temporarily moored with the help of
an eight-poiﬁt catenary mooring. High strength " steel
tg‘\:lars, which make up the ';ether elements, are stored in
the mao;ing compartment. First, a single tether in each
column is assembled and lowered to be 'stabbed' into the
5lrsady installed anchor templates on the sea floor. Once
the 1‘ockinq of the bgttom ends is achieved, the platform is
pulled down by hydraulic jacks. The remaining tethers are
now installed and the platform brought to its operating
draught by combined deballasting and pulling down on the
tethers by hydraulic jacks. The platforn is now in the 'TLP

/
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mode'. The load cells in each corner continuously monitor
the tether tensions and these values are used to adjust on-

board load distribution.

TLPs are r as better p. ing pl than
mamr cn:her designs for' a number of reasons. It can be very
suitably deployed in deep water. Since it can be moved from
one location to the other fairly easily, it is 5xpectad to

be useful in developing marginal fields. i’or use in deeper

‘water (within a certain rénge) only the extra lengths of

tethiers yould be necessary thus keeping the deployment cost

low. : .

While the TLPs are expected to be one { the most

;pnpullar efféhore structures in the near fyture, concern

regarding their operation has been expressed Hy industry and
researchers. TLPs are highly sensitive to the weiqht’;n-
board. and its distribution. Because of the presence of

t.e_thérs, coupled dynamic anlysis is often required..In order

to bear the extra loads arising out of the tether tensions, -

the structural arrangements tend to become more complic;ted.
T«;thars are’ very critical structural members subjeci‘:ed ';
high stresses .and fatigue loads. Additionally, various
nonlinear' Pphenomena are of relevance in case of TLPs. In

. ‘ "

/




o

instability may be mentioned.

Although a considerable alount of - knowledge has been
gained regarding the .behaviour of TLPS, much is, yet left to
be understood so that efficient and reliable design
philosophies may be established so that the cpernbility' and

safetyw of the structure may be assured.
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o x . Chapter 3 -

.TIV D _RE: CH P!
It must’ be appreciated at this point that the presetice
of highly tensioned tethers with large axial stifness in a
TLP is the ma\jcr reason why it behaves so differently than

other floating str .. It is i ive that

attention is tjiven' to analyses of sit'uatigns with total q:}
~”part1ag 1os; of ‘tethera a;‘. \cn‘e or more ::or;lers. Such losses |
may occur due to :éilure o? 'ancho_rs,. failure of locking
alrranga_n;ents, -b:\eakage ‘of tei:her’ tubulars o’r similar

reasons. It V,lo'ulr

', then ' become necessary to remove the
damaged tethers for repair or réplacement. Damage to co‘luﬁns "
. also deserve adequate a_tﬁenciun but (pf‘ovided that ‘the safety
of thé water-tight hull is not at s(;mce, Such damages may be
mucl‘x les.s fatal éhan a"si_zeabla»loss of tethers. Teé)-!e: loss,’
”is likely to a‘f!ecﬁ"thq stability and the responses of the
plutférnf and may {nduce higher loads in the femaininq active
tethers as well as th’é riser strings. Sudéen loss of Itetheré
may _ini\:iate high transiént loadings that may trigger

progressive damage of the rest of the tethers. %
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" ’ It may be mentioned -here that no detalle;{ .and
- comprehensive study of TLP behaviour folloking a sizeable -
‘tether loss‘is yet reported in Published literat\u‘re, The
primary cbjegtive of this thesis is to study the changes ii\
static and dynamic. behaviour of an .example TLP in. ' intact:
'Land ‘lcés-cf—tether" (hereafter a‘_lso 'referred to as
;'damaged") conditions -‘threuqh- ‘both theoretical’ and Py
. éxpe.riméntal investigai:ions.‘ In brief, the scope of .}:hg N L

\ g pre‘sent iheéis work may be described a$ :
.o X S toy B

. " 1y Developyadopt formulations necessary for hydrostatic
§ : and hydrodynamic investigations. ‘-

2.. Develop computer software for hydrostatic and
il . 2 v o i
. hydrodynamic computaticﬂns’. «

% Analyzé the .chosen TLP for evaluation of. stability

« .hharactéristics -and m'otion: and tension responses in ‘intact
‘and tether damage condit:ions. . ' i )
5 L 5
: i 3 , ! w o

v e . X : . . i i K .
E ¢ 4. Design and conduct model-scale experiments to obtain

datahfc'r. comparison with.'tihe theoretical findings. ‘ r g

“ 2y o ’ # .
. jn addition, a "special study. is’ also undertaken to
: anal,

ﬁf the Mathieu type dynamic instability peculiar to
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structures such as TLPs. Table 3.1 lays out the key plan of
the major research activities.
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Chapter 4

VIEW

The two major systems that interact closely to portray

the overall behaviour of a TLP are namely its main buoyancy unit

(the hull) and its moorings (the tethgrs). To obtain a complete

-
information on the responses of one of these systems, knowledge

"of responses.k of the- other becomes a pre-requisite.” Thus the

response analysis becomes nonlinear and iterative in nature

although depending on the type of information sought,

simplifications compatible to current engineering practide are

often made to obtain practical solution to the problem. Previous

experiences with analysis of floating bodies, semi-submersibles

and other cnmpliént structures have provided the required. basis

for much of the techﬁiques béing employed for analysis of TLPs.

In most analytical models for evaluation of overall

response of TLP, the hull is regarded as a rig»id body while the

tethers are modelled as elastic members. The hull and the tethers

may be excited by waves and currents. Addicmnaily,

water pcrtion ot’ the hull would also experience wind loads.

ordex: to obtain t:he responsas, standard form of equations

e above

In¥

of



. $m conn_ectim; with computation of the hydrodynamic loading. The.
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motion are used which are essentially the generalised force

balande equations.
:

% , Three main approaches; all amenable to only numerical

a
schemes of solution for real life applications, may be identified

first approach requires the fluid flow to be solved on the

boundary of interest in ordei‘ that .the pressure distribution can’

be calculated.. The tcrces and moments are then £ound by proper

i tion of this . This is done by obtaxnmg solution
to the classical Laplace Equation‘ in 'idsa]_. fluid' domain,
subject to the prevailing boundary conditions. The theory is
classical but the computational difficulties that arise when a
practical structure has to be considered have been circumvented
only in recent years. A particular sche;n’d of sSolution called the
'thx:ee-dimens‘ional source-sink distribution technique' has ,been

suggested, amongst others, by Faltinsen and Michelson (1974).

The a\uve > » . though ically-~ri . has
many disadvantages. The formulation is quite involved and* the
typical. computatllon time ‘is very 1long, particularly in cases
where iterative methods are to be used. Often handling of ve:

large matrices becomes necessary thus imposing limitations .on the

_size and/or shape of the body to be analysed. Also the effect of

viscous drag ,cannot be taken into account thus leading to
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inaccurate estimation of forces on relatively slender bodies. An
alternate approach which relies on semi-emperical relations or
simpler strip theory formulations is often employed to evaluate
the hydrodynamic loadings on three dimensional bodies. This
approach is particularly advantageous in handling structures as
space frames but also introduces errors’ due to the simplistic

assumptions used.

Estimation of glydrodynamic forces on a slender pile by
semi-emperical. relation was ‘tirstr proposed by Morison et al.
(1951) . Under the second catvegcry, the present day formulations
for estimation of forces on tubulars of floating structures are
'essentihauy derived or intuitively exténded from the.oriqinal
Morison equation. The work of Burke (1970), Paulling and liortan
(1970) , Hooft (1971), Kim and Chou (1973) are typical examples of
the use of' this approach. ‘In order that the total force on a
structure may'\be computed from the forces calculated on ‘its
comp:nent %a, the "hydrodynamic interactions among them is
ignored. The rces on 1naividua1 members thus may be added
vectorially to yield the total force on the structure. Tilis
assembly is what has been termed as ‘'hydrodynamic synthesis'
(Paulling, 1985). It may be noted that in this approach the

viscous drag effects are also included via semi-empirical

relations. while diffraction effects are neglected. Discussion on
.
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the use and applicability of this method may be found in

Sarpkaya, 1981.

The third approach aims to combine both the above
approaches by applying the first one to larger members and the
second one to the relatively -slender members. This is expeéted té
yield inTpx'ro,ved results, see for exapple Standing (1979), Garrison
(1983) etc.'As the merits of both the approaches are merged into
one, the inherent demerits of each one of them also become a part
of éhs combined method. A comparison of results obtained via

various approaches is given by Paulling (1981).

The tethers px:nvide restoring forc’::Zto\the platform and
thus are included in the equations of mot. . ’l“he’?arlriest work
on TLP responses reported by Paulling and Horton (1970) pr;vided
a lin“rized modpl for frequency domain analysis. In this work,
‘the tethers -are taken as linear springs with only axial
stiffness. c;mputed results matched fairly. well with son‘te
experimental data. : : .

A‘time dom\aln_ analysis was used by Paulling (1977) to
evaluate responses of a TLP where a few nonlinear effects such as
(1) nonlinear terms in the rotational equations of motion, (ii)
nonlinear drag force, ‘(iii) integration of the hydrodynamic

forces over the instantaneous wetted surface and (iv) position

. oL . g
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deper'\dent tether tensions for calculation of restoring forces
were included. This model is capabie of providing both steady
state and transient solutions.

Effect of various other related phenomena such as
'inertia relief', 'draw-down forces', etc. on TLP resp‘onses are
studied in the anal’y\sis' by Kirk and Etok (1979). TLPs are treated
as coupled systems by' implicitly including the tether dynamics in
the response analysis by Patel and -Lynch (1983). Amongst the
second order loadings, the effect of drift has bbeen calculated by

author's such as Burns (1983). Kareem and Dalton (1982) and

' Hariitos (1985) have computed the typical loads due to constant

and time-varying wind flows and have shown the ‘importance of the

inclusion of such effects in the overall TLP dynamics.

The general motion and tension responses have also been
evaluated by experimental- means and correlated with the
theoretical prédietions. Some of this work is described by
Faltinsen et al. (1974), Rowe et al. (1979), Lyons et al. (1983),
Dunsire and Owen (1984), Dillingham (1984). ’

Rainey (:‘197'7.) has demonstrated the possible occurrence of ,
Mathieu type éynamic instability in TLP response at critical wave

frequencies. In this work a 'feed back system' analogy has been

used. Analytical for ination of such critical
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regimes of wave loading have been suggested by Richardson (1979),
Patel and Jefferys (1981), Yoneya and.Yoshida (1.582), Paulling
(198%), conceiGao, and Neves (1983) etc. A numerical method based
on Floquet thedry readily gz;}aptiblg to co;l\putér applicaticnsl has
been described by Deb/ and Booton (1986a) and Deb and Booton
(19865). A 'report y Rowe and Jackson (1980) describes )
experiments conducted ‘to observe unstable TLP responses in model

scale.

' In normal situations a TLP has an equal amount of tether
stiffness at all corners. Loss of stiffness and equilibrium
tension redistribution would take place if any of these tethers
were to fail, and would influence the responses of a TLP. In
spite of its indisputable significance, detailed analysis of TLPs
in tether-loss conditions is rare in published literature. Static
tension redistribution after a cohplete loss of tethers at one
corner was noted during an experiment by Sebastini et al. (1981).
The effect of small ‘losses of ‘tether stiffness on the overall
cha.:racteristics has been described by Booton et al. (1986). The
impact of a sudden loss of all the tethe;rs at one corner on the
tensions in rest of the tethers 715 briefly reported by Sekita and
Sakai (1984). Indication of simulations carried out by CONOCO to
obtain similar information for the Hutton TLP are given in a

short state-of-the-art report by Schamaun and Sannum (1985).
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The co-/p!.ei and often icting design r_amxi

of. a TLP have demanded ongoing attention by researchers.
Investigations related to design and development and applications
of various analysis tc guide the design procedures of a TLP are
found. in the research, of Godfrey (1976), Roren et al. (1977),
capanogla (1979), Perr‘ett and Webb (1980), Chou et al. (1980),
. Tien et al. (1981), Ellers (1982), Ellis (1982), Karsan et al.
(1982), Mercier et al. (1982), Chou'et al. (1983), Faulkner et
al. (1983), Patel and Witz (1985) etc. For general references on
dyhamic analysis of ‘the TLP and its tether system, the wgrk of
.Albrecht et al. (1978), Asforc and Wood (1978), Denise and Heaf
(1979), Gie and de Boom (1981), Stiatnsen and Chen (1981),
Hudspeth and Leonard (1982), Yoneya and Yosr;ida (1982), Jefferys
and Patel (1982), Agarwal and Spanos (1983), de Boom €t  al.
(1983), Teigen (1983), Paulling (1986) etc. may be mentioned.

-



Chapter 5
OD! ALE ST OF TL!
5.1 General :

The tension leg glatﬁom is a relatively new concept
'and, e;s a systen, 'hitjh’ly cumylex. In spite of efforts made
by various researchers, quite a few aspects regardin its
response to. environmental loads are not ;emplh

" understood. Quite often the analytical methods have to
sacrifice rigor in order to be computationally efficient and
thus bear the possibility of yielding inaccurate results.
Some times enough is no_t known to adequately deséribe a
phenomenon by analytical means. Hence, in an ‘effSrt to gain
canfider{ce in theoretical pfedictions made or to better
understand some of the complex phencmena involved, a number
of TLP model 'testg have alrea‘dy bégn undertaken. In the
present research, model scale tests are primarily designed

to provide the following :

L (1) experimental data from statical stability and

steddy state motion response tedts to cross check computer
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codes developed for hydrostatic and h)f(rodynumic
calculations. . ( *
(ii) - observations of certain types of heha\;h;ur of a
TLP such as transient and steady state responses following
loss of tether, and dynamic instability phenomenon at

critical wave frequencies.

The above canf-;. achieved by a 'dynamically shhilar."

scaled model of a repr ive TLP pr ype.
’
5.2 Development of Modelling Laws' : v
In order to be able to r P 3% 2 in

. a model scale simulation or to project back the findings

from the model tests to prototype Asizé, the design of the

model and the experimental conditions must conform to a set

of mathematical relations which may be termed as 'modelling
laws'. .For the puxpdse of delineating fthe key parameters,
-

the TLP system u}u_igr investigation may be broken up as :

TLPgystem = TLPhyll + Tethers + Waves

The relevant parameters have been identified and listed

in Table 5.1. The dimensionless pumbers are derived from
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this list by using the 'matrix method' descrxbed by Deb and
Deb (1986) and are given at the’ bottom of Tablé 5.1. Slnce,
tor proper modell‘ing these ratios must be kept constant for
both model and prototype, these can also be' used to form
mathematical relations between prototype and model
parameters.  Scaling ‘relations that evolved out of such
_exercise are presented h‘il‘able 5.2. =
The design Of ‘the model and’ the 'test environment are’
now accomplished- using the scaling guidelines already
derived. It may be noted that since both Froude Number and
Reynolds \iiver simtlaities Jesnnet. be ‘malntsined
simultaneously if water is used in the wave tank (see for
example Sharp, 1981), the latter is omitted on the grounds
that the flow around the model -would be turbulent end:that
the inaccurdcies in the reproduction of the viscous effects
would not significantly alter the experimental results. Even
. though serious concerhs regarding this dissimilarity have
been x:‘al‘sed’, such a practice, due tc lack of any suitable
alternative, appears to be the only practical solution to
the problem.
-
¥ 5.3. Fabrication of the Physical Model \:




Fhe: malin: almyof Ehimixesearch being: ; study: of ceréain
ovérall behaviours of TLP,. the prototype particulars are
chosen such that they are representative of a feasible TLP
and not necessarily correspond to any particular TLP design.
Fig. 5.l1a and Fig. 5.1b show the main dimensions of the
chogen TLP' in elevation ard plan; main particulars are given
in Table.5.3. This platform heréafter is also referred to as

the 'example TLP'.

Int is a well known fact that matching of various
parameters in a scaled model becomes progressively more
difficult as Ehe size of the model gets smaller. However,
the upper limit of the size of the model may be limited by
the available tes_ting facilities and theé cost 1nvolved: Due '
to such restrictions the model scale simulation in this
study has been done at 1:100 scale. The model dimensions are
calculated from the prototype. using the relaticns in Table
5.2. .. = '

) A 5

The task of modelling the integrated TLP system is
divided into two major groups, namely the hull and the
mooring systems. . =

The rigid hull of the model TLP is made out.of clear
perspex ('ple)&iqlass'.). The geometry could be ausil‘y scaled

. '
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down as far as the outer dimensions are concerned. Fixed
lead ballasts are used to scale mass and'inertia properties.\
Fig. 5.2 offers a view of the model after assembly. The

columns are made out of 6" én_d

" dia tubes, the layger ones

being at the corners. 4" dia.tubes are used to. form the

pontoons: The cross deck and the derkick are.made of 1/8"
perspex sheets." Flat bar étiffﬁqrs are provided. between

de;ks on the diagonals and on the é;Ldes to achieve‘ﬁigh‘

/'rigidif.y. .The joints are glued using chl

Perspex plugs with 'O'-rings are used to close’ the bottom ..

ends of. the corner columns. A 1/4" dia steéi threaded rod

runs through each corner column whose bottom endl is screwed

down to the plug. Thesg rods pierce through the upper deck ’
i

of the model and»through a steel 'handling frame' placed on

top of the upper deck. The handling frame is held down in i

place by means of locking nuts on i:he threaded rdds. The
model hull is watertight up to the bottom of the upper deck

and all its are i Watertight is

checked by filling the model with water. The lead ballast

T\ %
weights are 'cagted' in the on\jm of annular disks and held in

.
place around the threaded rods by means of‘nuts and washer

plates. . N

f '

\ =

B

In the present study, platform. behaviour  and

rep: Y ive tension e are seen as the topics of
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major interest. For the sake of simplicity, only-the axial
stiffness and equilibrium tension similar_ity for the téthers
are ‘-modelled since these, among all t-:he tether properties,
have the maximum influence on the overall TP behaviour.
While scaling, the stiffness and the temian,\the :;onbinad
effect of the tether cluster at each corner is conside;ed.‘
" one ‘equivalent! tether per corner with scaled properties is
ptovided except‘ t;r ‘corner i .1 where two identiﬁa) model
5 t.ef.hers equauy share the scaled tether at that corner. Tha
’ _reason for putting two tethers at /corner # 11s to muke the
‘sxmulatxona ot dittarent amount of tether loss (viz. 50% and
'100* 1oss at ﬂ 1) pnssihle. The tather .. modelled by u-ing
- a nylon caated high strength steel cabie in cemblnatlon with
a spran at- one -ndA The steel cable has vcry high axial
stiffness and h: is 'the spring that provides the required
tether stiffness in the ‘axial direction. The active tather

length is maintained in accordance with the scaling iaws.
5.4 Experimental Determination of Model Characteristics :

Although the key pmper:i,;s of the model such as mass, )
vertical centre of gravity (VCG) ,. mass _moments of ‘inertia
etc. are calculated ‘from the dimeryions and the weight of
each component member ©of the model, experhnentul‘

w
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verification of =some' of these properties {s deened
necessary. :

The gross weight of the model is confirmed by weighing
it on a balance at an accuracy level of 10 q"rams.' To chac)ﬁ
the -VCG, an inclining experiment is done with the model in
free-float condition. An external ‘heeling mcme‘nr (Mp) bis
applied by shifting a known weight‘ on the deck of the model.
The result‘ing inclination (¢) 'i‘s measured using a 'Spectron,
L210 ’I‘wa l’xxis Electrolytic ‘Level Sensor' and a 'Bruel and
Kjaer 1526 Digital Display'. At small angles of inclination,

the metacentric height (GM) is found from :
GM = Mp / W sin(¢) . (5.1)

where,

W = weight of the model

The VCG is now determined from :
VCG = VCB + BM - GM ) g (5.2)
where,

" veB = vertical centre of buoyancy

BM = metacentric radius
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Both VCB and BM are calculated fromw the hydrostatic

information of the model by the
'"HYDROSTATICS' (described in section 7.4).
)
To establish the radii of gyration, a ‘'tilting
platforn' shown in Fig. 5¢3 is used. First the adjustable

‘distance between the knife edges and the table is'set equal

to the model VCG. The heights of the counter weights are

adjusted such that the VCG of the tilting platforn is
brought in 1line with the 1line -of the knife edges. The
nssémhled model is placed at the centre of ghe table. The
model radius qt gyration about any axis is found by
seasuring ‘the time periods of oscillation of the empty
platfon and the model and the platform togather about the

axis of interest using (McDuff and Curreri, 1958) :

¥ = I/8= (ipm - Ip)/m
= ¥ Kydj2 (Tpﬂ,,z'— Tp2)/4x2m (5.3)

‘where,

k = radius of q&ratlon

I = mass moment of inertia of the model

Ipym = mass momment of inertia of the platfon;l and the

model
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Ip = mass moment of inertia of the platform
. n = mass of the model .

Ki = spring constant of the ith spring

dj = distance of the ith spring from the centre of the

platform ) '
Tp+m = time period of oscillation of platform and -
) model ' ’

| Tp = time pﬂiod of oscillation of  platform

The time pericds afe found from the central period of
the power spectrum of analog output of a 'Bruel and Kjaer
8306 Accelérometer' placed on the platform. This power,
spectrum is -obtained after Fourier analysi¢ of the
.ac.:celeromecer output by  an 'HP 5420B Digital Signal

Analyser"'.

Attempts were made to verify th! natural periods of
oscillation of the model after it is placed in the wave tank

in tethered configuration. The model was given an initial

© push such’ that it oscillates in the desired déqree of

freedon. The period of oscillation can be then found from a
similar Four!:er analysis of the motion rec?rd. With the
available accuracy levels of the equipments being us’ed, only
the nuturil periods in surga‘,’ sway and yaw modes could be

maqsurad_.
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5.5 Experimental Arrangement :

The TLP experiments are carried qut in a 58.27 m
(length) x 4.57 m (width) x 3.04 m (depth) wave tank
facility at Memorial University, St. John"s, Canada (see
Muggeridge and Murray, 1981 for details of the tank) . The
waves are generated by an MTS servo-hydraulic piston type
wave- board. s:l;e‘matic plan and cross section of the tank are

shown in Fig. 5.4.

The model with the correct 4amoui1t of ballast is placed
in the wave tank with its orientation coinciding with the
desired wave heading. The model is held in place by its
mooring system. i Fig. 5.5 shows a schematic of this
arrangement. The tethers are ‘connected to the bottom of the
corner to}mns of the model by means of eye bolts. The
tethers run vertically downwards to the 'A' pulleys whl:h
are bolted to a steel frame rigidly fixed on the tank floor.
Tethers are taken around these pulleys and passed through
the 'B' pulleys and t_hen continued vertically upwards to
connect them to the 'load cell - turn-buckle - spring' unit

of the mooring system located above water level. Detail 'X'

of Fig. 5.5 shows a schematic of this The 'ring

type' load cell is used to read out the line tension, the
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turn-buckle to make small tension adjustments and the spring
to provide the required axial stiffness of the tether. The
tethers are continued beyond the springs and passed over the
L2 puuei(s. Known weights are hung from ‘the free ends of
the tethers.' This arrangement helps set the line tensions
close to the desired values. Finer adjustments are carried
out with turn-buckles, once the tops of the tethers are
clamped. - Fig. 5.6 shows the the above-water’ portion of the
mooring system and ‘Fig. 5.7 displays the some of the items
used in it. Fig. 5.8 shows trfe TLP nodel ;n waves.
Underwater installations needed to set up the experiments .
vere accomplished with the hel;z of surface divers. .

5.6 Instrumentation and Data Acquisition :

Data acquired during experiments are. of three ﬁajor
.types viz. (i) wave data, (ii). platforn motion dQata and
(1ii) tether tension data. A block diagram of the
instrm;entatlén and data recording scheme is given in X-“ig.

5.9.

For measurement of the wave profiles,‘ the 'primary'wave
* probe', a standard twin wire linear resistance type probe is
placed about 1.5 metres upstream of the model on the tank

.
centre line. Another probe of similar specifications is
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placed by the side 6f the model at a distance of about 1.5
metres from the tank centre line. This 'secondary' probe is
used for b_ack up a;-»d special reference purposes. The probes
are calibrated prior to start of experiments after any
reasonably long break to eliminate error due to wvater
temperature differential. The output from the probes are
tecord;d as ‘analog signals on an eight channel, six speed

'HP 3968A Ins on Tape , capable of FM

recording over a bandwidth of O to 5 Kiz and/or direct

recording  of signals upto 64 KHz.

The platform motion data are \acquix‘ad through a SELSPOT
(SELective SPOT recognition) system manufactured by
Selective Electronic Company XSELCOM) of Sweden. This
optical-electronic device is capable of three dimensional
position measuremfit of 30 points defined by infrared Light
Emitting Diodes (LEDs). The LEDs are pulsed sequentially
which are recorded via two mitually orthogonal electronic
caméras. A pulse rate of one per every 3.2 ms allows a
naximnﬁ sanple rnci of 312.5 frames a secomi. The cameras
'provide digitized output c-tf the 'anqular displacements of
each LED from its focal plane. This information, and “the
known p&sitiens of the cameras (obtained by survey with
raspeci: to ’tha tank coordinates) and the LEDs (obtained by

survey and cross checked by SELSPOT output), enables one to
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compute the motions in six degrees of Vfraednm of a given
point on the model by means of suitable software. A minimum
of three non-collinear LEDs are necessary for such analysis.
The SELSPOT sytem is capable of yieldinq‘tzanslation and
rotational accuracies oin the order of 0.2 cm and 0.2

degrees, .respecti\(sly.

The measurement of tension in each line is carried out
using previously calibrated strain gauge outputs of the load
cell in that line. The strain gauge outputs are amplified
tf\\rough a ten channel 'Vishay Instruments 2100 Strain Gauge
Conditioner and Amplifier System‘vbetoreA they are recorded
on the previously mentioned FM recorder. The load cells are
taken out of the mooring system from time to time to check
the calibration. On line monitoring of the tensions is done
with the help of digital multimeters connected to the strain

gauge amplifier.

All runs of the test are video recorded for reference

at a later date. 7
5.7 Test Summary : .

The entire test program may be divided under two major.

heads e.g. (i) statics and (ii) dynamics.



In statics, the experiments carried out are :

- inclining experiments in free-float condition to
determine the VCG.

- statical stability- experiments in tethered condition
with complete loss of tether at corner # 1 to obtain
righting moments as a function of heel angle.

. 1

Under d)_ynamics category two cyp‘es of observations are

made e.g. (i) steady state response and (ii) transient

response.

Steady state motion and tension responses are ured
for three distinct cases namely (i) intact, (ii) 50% loss of
stiffness at corner -l 1 i.e. one model tether inactive at #1
and (iii) 100% loss of stiffness at corner # 1 i.e. both the
model tethers inactive at # 1. For tests in regular waves,
prototype Ha;le period is varied from 8.0 sec to 24.0 sec at
an increment of 2.0 sec; for each frequency 'protatype wave

_height is varied from 5.0 m to 20.0 m at increments of 5.0 m

each. Tests have also been conducted in irregular waves for

the intact and cases. Pi itz sp for

fully developed aaa- T ing to pe wind speeds

of 30.0 m/sec and 20.0 m/sec are used to gqnerate the wave

profiles.
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It may be mentioned here that the water depth, thg wave
periods and the wave heights are set to their scaled values

(as may be found from Table 5.2) during the tests.

Trar!sients in motion and i:ensicm responses are observed
“after sudden loss of 50% and 100% tether stiffriess at # 1.
Th_ese are simulated by releasing the top clamp of one.or two
tether(s) simultaneously with the help of an electromagnetic
device that could be triggered remotely and at a
predetermined time. Output from the secondary wave probe is
viewed on an-oscilloscope and a triéger is set after a
desired fength of time. This oscilloscope is, connected to a
'relay circuit' which activates the aleqtro-magnet;{c rele?se
~ mechanism. Thus the failures could be simulated at different
| parts of the wave form Since it is found difficult to
perform such runs at various combinations of wave éerind and
height it is decided that only one combinatilon'ba chosen and
that experimental observation be compared .with theoretical
predictions for c,hl case. Accordingly such tests are done
at a"prototype wave period of 21.9 sec and wave he®ght of
20.0 m. o
P )
Dyr!amic= instabilities are another kind of transient

response. Few runs are devoted to verification of predicted
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octurrence of Mathieu type unstable motion of a TLP. At a
critical combination of wave period and wave height' the
model is pushed by hand to induce some motion: in the
ur;stable degree of freedom under investigation. 1If this
motion grows with time, the model 1is regarded to be
:xhibiting ur;st le motion at the test wave period and wave
height combination. ’

LAY

5.8 Data Analysis : ‘

As mentioned in sectior; 5.6, motion data .are recorded
in digitized form while wave and tensions measurements are
recorded as analog signals. Over a selected 'time window',
common for all the records for a particular run, average
double® amplitudes, maximums, minimums etc. are computed
usi\ng in-~house software (Little, 1985) with the help of an
IBM PC  (XT) for motion data and a HP 86 computer in
conjunction with a HP 5420B Digital Signal Analyser for wave
and tension data., Typically a -time interval.of 0 to 20
secon&s is used for such computations. 'Response Amplitude
Operators' (RAOs) are found by dividing the double mnplituqa
of a "particul‘nr response by the corresponding double
amplitude of wave. Aswave height of 10 m is used for the RAO

computations.

!
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While data rewrding by SELSPOT system is$found to be
.

satisfactory forghorizontal translations such as surge and

sway, motions in vertical planes i.e. heave, pitch and roll

are found to be small to be recorded with suffigient
reltability owing to the accuracy 1levels of -the measuring
systém. These data, therefore, are not used for any further

analysis. E
A

Standard Fourier analysis is done on the wave and
t{ensioﬁ records from the irregular sea tests to compute
response spectra and transfer functions (i.e. the RAOs).
Analog data from the FM Recorder is digitized using a HE
5466B Analog to piéital Converter at a sampling frequency of
50 Hz. The digitized data is then transferred to a VAX 8800
computer for further analysis. In an attempt to reduce the
noise content of the signals, theﬁ are passed through a
'low-pass pulse type' filter of 4 Hz upper cutoff. The wave
and tension spegtra .are ‘then obtained f£rom  Fourier
transformation of the filtered time records. The transfer

functions are obtained from the standard 'cross-spectral'

analysis. Although are using PM

spectra for wind spaeds 20 m/sec and 30 m/sec, records
obtained for the latter spectrum are dropped from all

frequency domain analysis because of tre’que{t occurrence of
iy

breaking waves and under-deck slamming.

/ ‘ o




It may be mentioned here t’:hat unless othervise
indicated, all tfe experimental data presented are to be
regarded as those \corresponding to the 'example TY,;P' scaled
to px-e4:otype si’ze.




Chapter 6

& STATIC .EQUILLEBLQE AFTER 1OSS OF TETHER
R 5
& /

If a certain number. of tethers are damaged ‘at any
ccrnet of TLP such t;h;t they are rendered inactive, We may
say that the platform has sufterei_a tether loss at. that
corner. A 'loss of stiffness' at that .corner is a direct’
consequence of tether 1055. This wnuldiause the platfom to
move into 4 new equilibrlum co iguration causi‘ng a
redistribution of the . resulting total pretension. To .find

the static equilibrium ténsion at each corper the new

aispl at the mustﬂ be ined. It may be
readily seen that the problem is statically indeteFunate
since the number of unknowns’ are in excess of the number ‘of
independent force/moment équilibrium equations. A method is
d:evelopad here to comput@ the eq\;ixibrium displacements (and
t}iereto:e. the tensions)vand.is describ’ed in the following.
Fig. 6.1 shows a skeleton ‘diagram: of a TLP with linear
springs at the :iorners to - represent the axial stlffnesse‘zs

(Ky, Ky etec.) o

equilibrium displ e cor ing to the springs K;,

Kz etc, and let Zd be the Z-dlstance of a datum from which

the tethers. Let d;, d; etc. be’ the new
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these d).splacements are measured. Now the static equiu-brium

equations are written as i

LF, =0, -d.e. . .
Kydy + Kpdp + Kydj + Kgdgq = Tp + 4B . .
LMy =0, i.e. ) . . '
Kidy¥y + Kadz¥p - K3d3¥y - Kqdg¥q = aMy (6.1)
IMy =0, i.e. ) 3
Kyd1Xy - KydgXp - KydyXs. + KgdgXe = -~any 3

where, o E ° -

Tp = total pretension - ©
AB = change in bu‘oyancy .
: AH‘x, My .= resultant hydrt‘astatic moments about X and Y
axes
. X1, ¥; etc. = X and Y_coordinates of, the tether tops at

coxners # 1 etc.

it may be pointed out t’ha,t the hydr.osmic—stiffness in

the vertical. directio}\ a;ising out of the-waterplane hre§ of

7 the columns is typiaaliy a small percentage (about 2 to 4)
’of the t;tal axial stiffness of the tethers. Thus, even Xf‘-
tt{era is a '1afqe change in tension at any éorner, the

resulting vertical movement would cause insignificant _change

in buoyancy. Also these displacements would be so small
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compared to the lengthwise dimensions of TLP hull that they
w.o'uld only cause very small ﬁclinations (typically a
complete loss of tether at one corner would tilt the hull by
about 0.1 degrees) thus making the resulting hydrostatic
moments to be insig.nificant. There is, however, a marked
redistribution of the total pretension.

According to the reasonings given in the preceeding,
4B, My and AMy may be assumed to‘ 'be zero. Also if ‘the
platform weight remains’ unchanged, the total pretension

would remain unaltered after the tether loss. Now if we

assume that the springs are attached to ; rigid frame we can

write the follwing identity from the 2 coordinate of the

crossing point of the diagonals #1-#3 and #2-#4 : -

(Zg+dy +2q+d3 )/2=(12q+dy+ Zq +dg)/2
or, dj + dj =d; + dg_
or, dg =dy - dy+ ds . (6.2)

LettingWB, aMy and aMy to zero and substituting for dg
from equation (6.2) in equation (6.1) and rewriting in

matrix form, we obtain : o ¥ —_—
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Ky+Kg, KK, Wk, a| [p
Ki¥1-KgYq, Ka¥p+KeYq,  -K3¥a3-Kg¥g [{dap= {0 (6.3)

K1X1+KgXg, =KpXp-KgXy, -K3X3+KiXg|[ds o

Now, for any given pretension and stiffness values, ‘the
equilibrium displacements 'd;, d, etc. can be easily
calculated by multiplying the r.h.s. with the inverse ot’the -
coefficient matrix. Once these are known, d4 can be

¥ calculated from equation (6.2). The various lequilibx:ium

tensions T;, T, etc. would then be found as :°

Ty = Kidy

T, = Kpd, etc. (6.4)

For illustration purposes a TLP with Tp = 1.44 x 108 N
and intact axial stiffness/corner = 7.6 x 107 N/m is chosen.
Tixe stiffness at corner # 1 is reduced in steps. The'
resulting tension redistribution, 'keeping Tp constant, ' is
calculated via a camputér program 'EQUILIB' (listed in
Appendix 'A') - based on the abovérmentioned method and
graphically represented in Fig. 6.2. it méy be noticed that
as the platform tips towards corner # 3 due to tether 1osé
at # 1, the tehsion decreases at both the .corners; at #:1
due to reduced stiffness and at # 3 -due to reduced
displacement. The tension lost trom. # 1\ and # 3 is picked up
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by the tethers on.the opposite diagonal i.e. #2-#4 where an
1n;:rea‘sa in tension t’akes place. If Tp, aMy and aMy are to
be taken as nonzero values, an iterative scheme would have
to be employed where for every‘ trial solution of the
equilibrium'displacements, these quantities would have to be
evaluated by hydrostatics software and fed back as inputs
till desired *evel of converge; ce is achieved; In such 30

case, the equlibrium tensions at #1 and #3 would cease to be

.equal (as seen in Fig. 6.2), but the difference would still

be very small.

A TLP is very weight sensitive gnd the distribution of
loads on—boan} is carefully matched with the current tension

distribution. Knowledge of equilibrium tensions with any

given ion of stif is, therefore, of much

relevance. Besides, these values are also needed to assure
safety of the tethers, as input data for various dynamic

I

analyses etc.
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Chapter 7

DRO: YSIS

7.1 General : .

- . . ~

A floating body (also referred to as 'vessel') must be

'hydrostatically stable' to be sea worthy. The ability of a

vessel to counteract the resultant external force or moment -
is its measure of staianity, and when, these loads are
applied statically the body responds according to its
hydrostatic propérties. Referring 'to Fig. 7.1 we can see
that when the body tilts about any particular axis, the
. centre of gravity (C.G.) and the centre of ‘buoyancy (C. B )
cease to rsain on the same vertical line thus generating

resultant moment in the plane that contains these two
pQints. The component of this resultant moment that opposes
‘thg external moment is what is known as the 'righting
moment'. A floating body would keep on listing untill the
righting moment equalg the external one. Statical /stahility
analysis essentially aims to quantify the.abili;:y of a

vessel to generate this righting moment.
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7.2 sta;ical Stability of TLPs K

For a hee floating Hogy, the .stability characteristics

at any given inclination of the body with respect to the

water plane on the (g y of the Y volume
and the distribution of weight or in other words on the
relative disposition of C.G. and C.B. A TLP in free-float
modes displays stability characteristics similar to semi‘-
submersibles.. In operational” mn}ie, however, it derives high
restoring m’:ments from its tethers due to their high axial
stiffness. The restoring moments due to tethers are in fact
so high that if the tethers were to remain intact and the
major hull were to remain watertight, the statical stabilty
of TLP would be well in excess of what may be regarded as
safe. In what .‘tgllc;ws, attempts are made to investigate the’

effect of ‘tethér loss on the sta::ical stability of TLP. Fig.

.7.2 gives a schematic representation of the major TLP

configurations that may be of interest in the.context of
stabilty ‘a essm:rh The first three are exampl_es from free-
noat. . confi urat}{ns where buoyancy equals the 'weight
always. The !r}ﬁ{h one shows the TLP in operational’ draught
with comp]:ete_loss. qt tethers at one cornex", say # 1. It may
be immediately. realised that thefhigh rigidity of TLP in
intact opara’tlonal cundi‘tion is now lost and the platform

would easily tilt towards corner # 3 if an external moment

.
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such as that caused by wind load is applied in the vertical
plar:e containing # 1 and # 3. Tethers at # 3 would also lose-
tension and go slack as the TLP stoops towards # 3; Tether
stifnesses being very high, verticql movement of the hull
would be very small. Thus the platform would virtually
rotate about a space fixtd axis passing through the top of
tethers( at # 2 and # 4. Any change in buoyancy will ce{use
proportional change in’ the tensions . in # 2 and # 4. sho\}li\
there be such an emergency (possibly gaused by blow-outs
etc.) such that it has to switch to free-float mode at once,
the tethers would have tQ be suddenly disconnected be‘;ora
any change in ballast/on-board weights ,;wﬂfri’dbs brought
about. This 'emergency disconnect' configuration, which can
b-e viewed as a case of 100% tether loss at all corners or as
a special® free-floating case, is what is depicted in the

fifth ic. In the , configuration with

operational draught and 100% loss of tether at # 1 will be
studied in greater detail and its statical stability status

will be compared with some of the other ¢onfigurations.

For brevity only three out of the five configurations
shown in Fig. 7.2 will be analysed. Out of the first three
configurations, a careful inspection of some perginent
parameters szﬁ:h as draught, displacement, location of the

vertical centre of gravity (VCG) etc. would indicate that
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the third one should be am‘:lysed most critically. Hence, the
cases - that would be considered here are (i) TLP at'-
operational draught with complete loss of tether at corner #
1 (case 1), (ii} TLP inmediately after 'emergency
disconnect' (Case 2) and (iii) TLP in “post-mating' draught
(Case 3). In!omtion r'egardi}lg the axau.t displacements,
. weight, VCG etc. of most of these configurations is not
adequate in published literature since such data are
regarded as ‘'proprietory'. Judicious‘estlmatiuns are,
therefore, done to make the analysis realistic. The geometry
of the hull considered here is the same as that described in
Chapter 5 (also see Table 5.3 and Figs. 5.1A and 5.1B).

: - —
Other pertinent parameters for the three cases are listed in

i

Table 7.1.

7.3 Assessment CP! Stability :
.

In the usual methods of a;sassment of stability, the
initial metacentric height is required to be positive. Some
. classification nocié\‘tiasv also provide a stipulated value for»
the minimum 1n1:;,(i metacentric height. The righting moment
as a tgrwgn/n‘t heel angle (usually about the axis where
ths.‘riqhtlng moments are the laasc_)o is ar;other yard stick.
The external moment due to wind.etc. is superimposed on a
'plc;e of righting moment and heel angle (see Fig. 7.3). The
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resulting plot is the well known 'stability diagram'. The
'first intercept' is the angle where the external moment
equals the righting moment and the 'down-flooding angle' is
the angle beyond which the vessel would experience
progressive flooding and is 1likely to capsize. For -the
vessel to 'successfully resist the external load, the first
intercept must have to be smaller th;n the down-flooding
angle. If we take a ratio of the n‘mus under the righting
moment curve am} the external heeling moment curve upto the
'down-flooding. An'glé', the higher the ratio the higher is
the abldty, of the vessel to work against the external
moment. Most maritime authorities require that this ratio be
at least equal to 1.3. This is also refered to as the
'dynamic stability criterion'. This reserve, as indicated by
the 30% extra area is expected to take care of the dynamic

effects of the external loads.

The ioned are commonly used in
practice, although they are perhaps not the best way of
assessing stati‘ual stability. The usefulness and
applicabilty of such nominal rules, particularly to non-
ship-shape floating structures, have been reviewed and

questioned (see Pawlowski and. Deb, 1986, Marcinov’tch and

Praught, 1986). These mles'always refer to the the upright '

configuration of the vessel, _whereas quite often a shift of
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weight on-board may l;ave significant effect on the righting
moment. Besides, such methods do not provide any basis for
comparison of statical stabx{ines of different vessels or
the same vessel' ac different configurations. Also, no clear

guidance is available as to how such rules may be applxad to

TLPs. A new method of assessment of stability of floating\

. structures, proposed by Pawlowski (1985) and Pawlowski and

Deb (1986), aims to circumvent suc] drawbacks of the
existing methods. The vulnerablility of a given floating body
to exceed the desired limit of one or a combinatiom™of few
pertinent parameters’intluencing the stability of the vessél
is taken a; the rationale in this approach. At a given
displacement and VCG, the maximum allowable lateral shift o§

c.G. is taken as a measure \of the degree of such

vulnerability.

The. new approach can also be) applied to statical
stability evaluation purposes by setting the pertinent'
paramet_ers such that they relate. to the stabnty' diagram.
This may be easily done by chosing the already descr’ihed
area ratio as the pertinent parameter and a value of this
ratio may be chosen as *thg limit. The allowable laterai
shifts of C.G. may now be evaluated over a ranqé of VCG such
that any further shift of C.G. would make the vessel

incapable of meeting the specified area ratio. The
“
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magnitudes of these 'shifts' can be used to ensure safety or

to make comparisons.

7.4 The Hydrostatic Formulation :
Refeting‘)to Fig. ‘7.1 we see that if the weight and the
CG is known then the total buoyancy force and the CB have to

& S be known ih order to calculate the righting moment from :

Righting Moment = Mp - My . (7.1)
hS
+ where, Mp and M‘s are the moments due to buoyancy and

weight forces about a common point of reference.

g In case the tethers are active, moments due to tensions
about the same ppin‘t, with proper signs, must be included in

equation (7.1) to obtain the effective righting moment.

S Let P be the centroid of an elemental patch of area dA
F >o\'ﬁ‘§he surface of the floating body shown in Fig. 7.1. Let R

»
‘,-'~_ =_{R1, Ry, R3)T be the position vector of P, and §i = (g,
ny, n;)T be the outwardly normal vector to the surface at }’
with respect to a global frame of reference 0123. The

elemental hydrostatic force dF is then calculated as :
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dF = - pygh dA 1 (7;2)
wh{re,
py = mass densl?; of water
g = acceleration due to gravity
. h = depth of P below water surface.
' _ . "
e Integration of dF oveér the entire immersed surfaced
would yield the total hydrostatic force F = (F Fp, FyT.
For a free floating body F3 is the only m%-\zero component
of F which is the. total \bucyancy force. F3 can also be found

as :

Fy = [g dF3 = - [g pygh 0 + &3 dA (7.3)
where, S is the immersed surfacé and €3 is the unit

vector correspgnding to 0-3 axis.

The coordinates of CB i.e. CB;, CBp and CBj can be

" found as :

CBy = -[g R1dF3 / F3
CB, = -fg RpdF3 / Fs3 (7.4)

CB; = -fg hdF3 / 2F3 —
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It may be necessary’ to cohpute \';he righting moments for
he‘el angles about an axis that is coplanar to 01-02 plal:\e
but makes an angle (¢) with Ol-axis. As the body is heeled

about this = 'heel axis' (Ol'-axis), there may arise
unbalance? moment about a 'tfim axis' (02'-axis),
perpendic;xlar to the heel axis. This would lead to a natural
hydrostatic equilibrium ‘'trim angle'. In order to tompute
the force or. moments in the ‘global system, vectors in the
primed system must be first converted to their corresponding

representations in 0123. This can be done as follows.

Let 3@ be a vector in 0123 which undergoes rotati‘ons s
(heel ‘anq‘le) and ¢ (trim angle) measuxled in the primed
system ( 6 being the angle between O-1 and O-1' axis) and
attains a new vector configuration a', ‘then the
representations of a' in the non-primed system can be found

from (see Pawlowski, 1985) : 4
(a'y = (R1(@) (7.5)

where, R is the resultant tensor of rotation and is

given as :

R=R - R (7.6)
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The abmponents of the tensor R; are :

Ry(1,1) = e;2 + (1 - e3?) ¢
Ri(1,2) = e) e; - e ve;_, (-
R1(1,3) =eys . ’
Ri(2,%) =eye; —e; e C

’ Ry(2,2) = e32 + (1 - e32) C
Ri(2,3) ==~ey 5 -

R1(3,1) = -e3 §
R1(3,2)" = GLS
Ry

)y =¢ .

where, . .

ei = cos ¢

ey = sin ¢
_C=cos¢
s = sin ¢

.+ In order to obtain

expressions as in case of Ry

by 6+90° and ¢, respectively.

the .components . of R, same

are used with ¢ and ¢ replaced -»

The choice of global“system and the heel axis may vary

from problem to problem,

.
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Based on the above-mentioned theoﬁ, a computer program
'HYDROSTATICS' is developed (listed in appendix 'B') to

generate righting moment as a functidon of given heel angle.

. The output of this program is used for the stability

. assessments. Fig. 7.4 presernts a flow chart. for

'HYDROSTATICS' . |
i

7.5 Hydrostatic Experiments :

fwe® . e

/ v <
A ‘tyficu output, of 'HYDROSTATIC' for a GVA-4000

with values determined
from médel tlests (Stone, 1986) and the agreement is fuund ‘to
be satis! tory. . . 3

Righting moments are also ‘measured by-shifting weight
.on deck and noting the reéulting heel angle for r.he present
TLP model for case 1. 'x‘he experimental values; plotted in
E‘lg. 7.5 show gnod agreeme.nt with the calculated values.v

/- :

7.6 Results': . 5, &

- v

'HYDROSTATICS' is used to compute the riqhting,moméni:s_ .

of the. example TLP for the three casés already described

‘(see section 7.3 'and Table 7.1 for datails). The wind speed

is taken equal to 100 knots 1n ‘all cades. Calcula(‘.iuns are .
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repeated for heel axis“rotated by 0 and 45 degreés with
respect to the Ol-axis (i.e. about the cemtre line and about
the diagonal, #2 - #4, if #1 is taken as the damaged
corner). In all three cases the heel axis at 45 degreevs»to
the Ol-axis is found to yield a smaller area :xnder the

:1qht1r{g moment curve. This axis is, therefore, used for

statical stability The cor ing stability
vdAiagrams showing the righting moment a_nd wind heeling moment
'z:u.rvea ‘!or these three cases are given in Fig. 7.5 .chx-nugh
Fig..7.7. The righting moment curves gerzespond the vCGs
vqtv‘en in Table 7.1. :

It is seén from the stability diagrams that all the
cases satisfy the usual stability criteria, ' that 1;, ‘t‘he
initial G‘H is posn;.lvu since the righting moment curves have
positive slopes. at 0 degree heel ;nd also the.area ratios
are greater than 1.3. The new procedure already descrige.d is
now employed to indicate the vulnerability of each case to
l'o;s of adequate st‘nhil!.ity. In‘ order tovdo’ so, for ve’ach *
case, righting moment data are generated over a range of
VCGs (from 30.0 m to 40.0 m) for diffgrent amount of lateral
shifts of the CG in the direction of u.se at these VCGs. The
ratio of the areas under the righting mdment curve and the
wind moma{\t is calculated for _each cemhi‘nation of VCG and

lateral shift. Limiting valués of shitti at ev'ery' VCG are
- v %



found by setting the minimum area ratio to a vaiua of 1.3.
The liiniiing values,) terme@ as 'admissible shifts', are
plotted in Fig. 7.8. As mentioned before, at a given VCG any
further lateral shift of CG than what is admissible, would
result in inadequate ‘resérve of’ statical stability.
Con’sequantly, the vessel would he,susc;ptible to loss of

'stability and capsize. .

It may be -readily seen from Fig. 7.8 that a!;._ the
-assumed operatinq levels of VCGs, all three -cases, including
th; tethere_d con‘.ﬁ,iqur.at:ion'witi\ tether loss at # 1, appear.

" more or less jcmpavrabl_e in‘terma of Yheir vulnerabilty to .
loés’ of adequate sta_ﬁinty. >In general, small Values of
admissible shifts indicate that great caution must be
exercised while shifting any weight on-board. The worst of
these cases, however, is Case 2 where at operating VCG even
a shift of CG—g& small as 0.4m may render the platform
unsafe. Case 1, however, may appear to be ma'rginaliy safer
than the others, increase in tefsion in ‘the active cécnez‘s
_(i.e. #2° and ‘Mv) due to the combined effect of loss of.
v._tens"ions in #1 and #3 and increase in buoyancy with .heel
anglé may be of harmful consequence. be case 1, typical
increase in tensions at the active corners at‘s alsq shown in

Fig. 7.5. . ® o
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Chapter 8
N, [C [ALYS.

8.1 Generél :

" :

Evaluation bof the hydrodynamic force field and

on of motion of the body exposed to this
force field constitute the essentials of the problem of
hydrodynamic analysis. Typically the total farc’e field would
include (i) fluid excitation forces i.e. those due to wave,.
current etc:; (ii) restoring forces i%e. hydr:static and
mooring forces, . (iii) damping forces and (iv) inertia
forces. With regard to response evaluation, .elastic
responses of the body éprface are assumed to be sufficiently
small so that the immersed portion of the body may be taken
as rigld. The -eQuations of motion then a{re essentially the
generalised force balance et’;uations in Newtonian mechanics.
These equations may be solved in time or frequency domain to
obtain theé various respones and their time derivatives. In
time domain analysis, motion of the body is descfibed by the
instantaneo® equilibrium configuration while in frequency

domain analysis, amplitudes and phases of the three

\
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translational (viz. surge, sway and heave) and the three
rotational (viz. roll, pitch and yaw) displacements are used

to define the body motion. Frequency domain analysis is

1nexpensi\'re with respect to computation time but requires

the equations of motion to be linear. Spectral analyses,

therefore, are often handled via frequency domain approach.

Time domain solution e although co y’

high computation: time, are capable of admitting nonlinear
phenomena relatively easily. . ) %, .

8.2 Time Domain Simulation of a TLP : &

4 5 +

* The problem of the time domain.simulation of a TLP is .

qult’evsimilar to that of a free floating body except for the
inglusion of restoring fur‘ces due "its taut tethSrs. In
general terms, the task involves (i) ' formulation of the
kinematics of the rigid body i.e. transformations of
displacements and their derivatives between a fixed and a
moving frame of reference, (ii) . ::onputauon of the
excitation and the.reactive forces and (iii) solution of the
equatli.nns of motion. ‘Examples of guch. fomulatlons as
aﬁl;led to TLPs can be toqr;d in the work _or Paulling (1986),
Paulling (1975), Paulling (1971), Natvig ‘a;\d Pendered

(1979), Faltinsen et al. (1982) etc. The basic equations

used here to describe the rigid body motion, gi%le'n in

. e
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Pawlowski, 1985 are outlined as follows. N

The definitiondiagram in Fig 8.la shows the space
fixed -axis system OX1XpX3 attached to the waterline (for the
sake - of ceonvenience) and the body fixed axis system
-0X1'X3'X3' with its origin- coinciding with the centre. of
gravity of the body. The translations and the successive.
rot;tions o’t'the primed reference with respect to the non-
primed raference:ars given by Xy (i=1,2,3) and'nj (i=1,2,3),
respectively. Rotational motions about the centre of gravity
of the body are described by the angular velocities o3
(i=1,2.3) about the axes. OXj' (1=1,2,3). Thé equations of

.
motion are then written ‘as :

M) xg =E ~ L (8.1)
[Fle +wA [T)e=1"' . (8.2)
where, R

[M) = Mass matrix for the platform .

[J) = Inertia matrix for the platform about C.G. with
respect to primed axes ' :

F = Force vector in non-primed- axes

L' = Moment vector about C.G. in primed system

X = Position vector of éentre of gravity with respsc't/__

to non-primed axes e

T s
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‘ = Denotes a time derivative (i.e. d/dt of)

A = Denotes a cross product

The rotation of the primed axes relatjve to the non-

primed axes is given by :

[R] = [Rlfe A L], (8.3)

where,
wAI=| o0 —03 wy [ -
* ' w2 0 =y,
w2 ey O

If a in the non-primed system represents an arbitary
vector a' in the primed system, then they are related by the
rotation matrix [R) as : )

a= [R] a' (8.4)

Also, the various kinematic relaticns for an arbitary
point P on the body (ref Fig. 8.la) are given by the
following vector equations :

Xp = Xg + [R] ap

p = g+ e A (Xp - Xg) ) (8.5)
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Xp = %+ @A (Xp - X) tu A (@A (Xp - Xg))

where,
%p = Insntatneous position vector of P

ap = Radius'vector of P (see Fig. 8.1a)

The angles nj are found from the equation :°

@= [Bl o ) "(8.6)
where, > ' -
B] =| ¢ 0 -C1S; :
B, : 0 1. s
Sz 0 cyC, )

and Cy = Cosnj, Sj = Simgj

The above equations are now rewritten as a system of 21

first order differential equations as

X= Vv . (3 equations)

\ yv=mtE . (3 equations) '
w= (31 (C' - w A [T] w) - (3 equations) L (8.7)
[R] = [R][w A I] (9 equations)

o= [31;1 @ . (J‘< equations)
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The system of equations_ in (8.7) may now be solveﬁ by a -
‘suitable predictor-corrector type ‘d’ifferential equ;tion
solver' Vbased on techniques such as Adanm's method, Runge-
Kutta etc. (see Paulling, 1971). Several iterations at any
time step may be necessary in order to achieve convergence
of the state.variables when nonlinearities are present. In
tixe b?esant analysis,. a standard IMSL (1984) routine called

'DGEAR' has been used to integrate equations (8.7).

Fig. 8.1b shows the commonly referred six degrees of
freedon of a floating body.
Having established the equations of motion, the force
‘field needs to be calculated from a suitable method. For the

sake of computational efficiency,

Morison's ™ equation (Morison et al., 1950) is applied to
)galculate the hydrodynamic loading, with the gssumptlon that
the platform may be represented as a space-frame assembly of
slender cylindrical members which are ‘'hydrodynamically
isolated' from each other. According to this formulation,
the total fluid force on any member consists of (i) pressure
in the undi:sturbed flow field, to be integrated over the
wetted surface, (ii) inertial force proportional to relative

acdéleration between fluid and the cylinder, to be

’ o
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integrated over the length of the mambe;:s and ‘(iii) drag
force proportional to the square of the relative velocity
—atso-to be integrated over the length of the members. The
pressure force is given as a sum of two components i.e. pg,
the static part and pd; the dynamic part. If the members are
regarded as slender then the total force on the structure

may be expressed in the form (Hooft, 1971) :

Fn= [ psnds+ [ pgndsy+ pydy [ [Cpagn -

Cp Xpl 4l + o.spm,»,,,cd J ¥Yrn |¥pn! 61 (8.8)
N ;] N

where, .
n = Normal vector in the inward direction on the member
surface
pw = Mass density of water
Dy = Member diamgter
Ap = «Dp? / 4
Cp = Added mass coefficient
Cgq = Quadratic drag coefticient
afp = Fluid acceleration normal to the member
.+ ¥n = Component of body acceleration normal to the
member
¥yn = Component of the local relative velocity between
the fluid and the member (¥gn - Xp), normal

to the member.
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ds = Elemental member surface
dgy = Elemental flat surface such as bottom of
cylinders etc.

dl = Elemental member length

The assumptions inherent in the above formulation also
require that the nembers are slender in comparison with the
incident wave length such that ti:b fluid flow is not
disturbed and also that diffraction effects are
insignificant. -Also, since t;:e hydrodynamig, interaction
bewteen members is ignored; ‘the total force on the structu;.-e
can be found by summing the forces on all the component

members. - ) ~

The surface elévation and the basic fluid flow
parameters such as particle valocity'gnd accelerations and
the pressure are calculated from the incident wave

potential, ¢, which in accordance with Mry"é small

amplitude wave theory may be wtl‘tten as (sarpkaya and_

Issacson, 1981) : e

"% = (wH cosh(ks) sin(ké - wt)) / (2k cosh(kd)) (8.9)

¢

where,

» = Wave angular frequency



H = Wave height
k = Wave number
d = Water depth ’ 5
s = d+ z; 'z' is the vertical distance of ‘a’ point in
fluid from the mean water level, z is ‘measuted
positive ‘from the waterline upvwards
§ = Wave c90rdinate a

= X; cosf + X; sina/; § is the wave heading angle
t = Time

‘ The wave number is given by th$MPersion relation'

w2 = gk tanh (kd) (8.10)

vhere, .

g = Acceleration due to gravity. %

The relations given in (8.9) and (8.10), for the case

Oof deep water (i.e. kd > =), take the forms :

.0 = ol eKZ gin (k¢ - ot / 2k o (8.11)
L0 w? =gk (8.12)

The instantanequs surface elevation of the wave, [

b v R . ®A 7 .

\. SR

S
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corresponding to the above p‘otentlal is s

¢ =Hcos (ké -wt) /2 . (8.13)

The required fluid flow parameters are found from :

vi =30 /3%y

aj = avj/it

Ps = = pydz > 3 (8.14)
Pa = — sywd®/3t (from linearized Bernoulli's
equation) 3

>

To find the component of velocity v noi—mnl to a member
(denoted by wy), the following relation is used (Chakraverti
et al., 1975) : &

Yn=D A (Y AD - . (8.15)

where,

n = Unit vector of the centre line of the menmber.

The normal component of dpceleration or any other
vector can also be found by a relation similar to equation

8.15. ¢ B
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3 w0 :

Thelutatic pressure 'pg' in equation (8.14) i.e. pgz,

on integration yields the hydrostatic reactiVe force. In the
hse of- a TLP, additional restoring forces arise out of the
reactiors from the tethers. In the present analysis, the

e

tethers are represented by linear springs with a ‘'spring

constant! eq\zalz'i:p the axial stiffness of the tethers. If

.6pi is the instantaneous elongation of the jth tether top,

jth the tether reaction, Ffj, i& then given as :
. E'l‘j = KTjsl-j nry ° Yy . (8.16)

where,
5 -
Kpy = Spring constant of the jth tether
nry = Unit vector of the jth tether (ref Fig. ?.la)
-" Thus the total force E in the non-primed system can be

written as :

E =Fp + Ep : g (8.17)
The moment L' in .the body fixed system can be found

from : -

| .
L' =[x'AdQE ) L (8.18)

- : . /
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e

where,

L' = Position vector of a point

‘* WQE''= Differential force at the abovdnpoint. ,

The forces calcuiatéd as above include - the following
3 . B

nonlinearities B

(i)  nonlinearity arising due to integration over
instantaneoys wetted surface

(ii) inclusion of the nonlinear terms in the rotational
equations of motion

(iii) quadratic drag force

(iv) position dependeht restoring f‘crcés: '

F is evaluated at every time step, more than once if
iterations are required for convergence, and equations (8.7)
are solved to obtain the state variables at that steg.\ A 4
computer program named 'TIME _DOMAIN' (listed in Appendix c)"
has been developed based on the fornulation described in the
preceeding, which has been used to generate various response
ti‘me histories for the example TLP. In order to minhn.iza the
initial transients a 'half cosine' function is multipliéq to
the wave nmpli_tude. The form of this ramp function As given

as (Paulling, 1977) :
A gy 1977) -
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“ (1 - cosrt/Tg) / 2i t<Tg (8.19)

where,

. Tp = Time length over which the function is applied.

8.3 Frequency Domain Analysis ¢

In frequency domain analysis an approach very similar
to that described in the preceeding section is utilized. In
such an analysis the equations to be solved must be linear:
There!ore, additional assumptions are made which are listed
bélow :

. 4 i
(i) The displacements and the angles are assumed to be

small. . .

. ) (ii) The nonlinear term:*n the rotational equation ‘of
*  motion is cénsidered to be small and he‘e dropped.*
(iii) The integration of the forces are carried out
over the mean wetted surface.

. (iv) Lineay hy ‘Fr‘ sti are

(v) The moc‘:tinq stiffness matrix is constructed on the

basis of mean p ion of the | corr ding to

the static equi librium configuration and small displacement

§ assumptiv.;ns.

0
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The presence of the quadratic drag term poses an
obstacle in frequency domain analysis because of its
nonlinear nature. This term may K be linearized by the

‘equivalent drag' concept (Paulling, 1985) as follows :

C4q1¥rn = 8C4|Ven|¥yn / 3« (8.19)

where,

Cq1 = Equivalent linear drag coefficient \
4

Vyn = Amplitude of Vyn

] The ‘forces are calculated by the Morison equation

¥ already di in the previous section.

o Collecting all the response dependent terms on the left
hand side and the wave excitation terms on the right hand

'
side, the equations (8.1) and (8.2) are combired and”

l“rewritten in a matrix form as :
[[(M]+[Ma]](6) + [C](8) + [[Knlt[Kpl1(§) = (Fy)  (8§.20)

where, .
[M) = Generalised physical mass mat;tix
“[Ma] = Generalised added mass m‘ut’rix )
) [c] = Damping muttix
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[Kp] = Hydrostatic stiffness matrix
[Kp] = Mooring stifness matrix

iFw) = Generalised wave excitation force vector

L (§) = Generalised displacement vector of the centre of
gravity.
1 .
- The hydrostatic- and mooring stiffness matrices are

constructed according to formulations described in Chou et

al. (1983).

. The solution of equu’ti;m (8.20) yields the required
uﬂ:plitudes and the felative phases of the motion in six
degrees of fr_eedt}:m\. In this case, the equation is written in.
a complex form (see Hooft, 1971). Accordingly, e?:citaticn

force vector can be written in the complex form as :

®
P {Fy) = (Fyay elottiod); 5 = (8.21)
.
where,
Fyaj = Amplitude of the excitation force
b = (Fypry? + Fyry?) /2 or
/' P‘,Rj = Force term propqztional to cos(wt) (real pait)

Fyrj =' For¢e term proprtional to sin(wt) (imaginary
S
part) N 4
Phase dlfference = tan~l (Fy13/Furj)
1.0

%3

. \‘ . -
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i=/-1.
If a steady state seh.n:ion' (55) of equation (8.20) is
assumed which is wrn:ten.-in complex form with obvious
‘notations as : ’ -

(65) = (653 elotticd) (8.22)

where,
€ = Phase difference

then the complex equations of motion can be written as

[~2TTM)+[Ma)] + [[(Kpl+[Kpl] + 10[C]1(5) = (Fy) (8.23)

In the present analysis, equation (8.23) is solved by a
standard ~iHSL routine, ‘'LEQ2C', capable of }:btaintnq‘
solution of a general system of complex linear ‘eq‘untiané to
find the amplitudes and the phases of the various

displacements. Since, .the amplitude of the normal ‘component

the local relative velocity, Vyn, is not known before the A

-~
solution is found, i ve ons are y to

solve ai:utlon (8.23). A computer program named
'FREQ_DOMAIN' hng been developed (listed in Appendix D) and
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used to calculate responses of the.example TLP.

¢ once the z‘esponsas of the centre of gravity are known, b‘L;‘
f.he tather tension amplitudes Taj are calculated as follows !
o (ref. Chou et al., 1983) : :
s ) Y 8
N Taj = Kjllég1 + fg2h (Xr1j-%6) + Xr1j - Xr2jl -
. N I%r1y - Xr2jl) (8.24)
where, "
Kj = Axial stiffness of the jth tether
_  §g1 = Translational displacement vector of the CG
- 4Gz = Rotational displacement vector of the CG
N . ¥g = Position vector of ',the ce
¥r1j = Position vec_tor' of tether top end of jth tether
B - ¥p2y = Position vector of ‘tether bottom end of jth
® * tether ' : “
¥ 8.4. Spectral Analysis :
. s
. In. an actua‘lvseaway, the waves do not occur at an
) is;:lated frequency . and ﬁaiqht combination; .instead, 'a
realistic sea has irregular elevation with no set puttex‘-n of
')‘ wave 1engt:h%. heiqht:' or period. Irregular sea behaviour,

however, is often defined by its diraction and  energy

‘ 7
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content over a range of frequency band. One such popularly
practised concept is to employ an ‘irregular sea in a two-.
dimensional seaway, a iong cregted sea that can be produced’
in a wave tank.

Significant motion response calculations in irregu‘lar
seas are based on spectral theory' which describes how
regular wave elements combin§ to produce irregular sea
pattern and how each compcnenéiffects thg behavli'our of the
floating body (ref. Bhattacharya, 1978). The underlying
principle, of course, restdy’ on ‘the validity of 1linear
superposition of "the body responses to harmonic (sinusoidal)
components of the 1rregular sea. A

Frequency ddmain approach is usual}y used for spectral

analysis. Significant response i§ calculated from :

.

Rj1/3 = 4.0 ((Jo° SRj(w) du)l/2 : . (8.25)

where,

Ry1/3 = Sigﬁifieans amplitude (1/3 rd highest) of the
jth response "

Sry (@) = Spectrum of the jth response

The response spectrum is found from the relation :




A\

Spj(w) = RRO{T0)2 S(v) . (8.26)
= ’

where, Pl o

RAOj () = Se Amplitude O] (RAO) of the jth

response i.e. response to wave of unit
am;l)litude

S(w) = Sea wave energy dénsity spectrum defining the

sea state. .

The RAOs are computed by the program 'FREQ_DOMAIN'. It
may be noted here that the equations (8.25) [and (8.26) are
also applied tdsztension responses.

e 2
Va‘.s Results : . !

In the context of of dynamics of an-offshore structure,
the type of éesponses commonly calculated are those caused
by requla;' and irregular wave excitations. In the case of
regular waves, steady state ampliﬂtudes are compxlxted as a’

¥ tﬁnction ~0‘! wave t‘;raquer}cy while, for 1rregu19r’ waves,
siéni!icnnt re"spomse‘ ampiitudas corresponding a given sea . -
.energy spectrum rmre £-34 relevunca. Transient respcnses *are
"also of interest when a sudden change of a pertinent system, .

pnrametaz‘ occurs.
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For Y tem that inp P! linearity,
frequency domain analysis may be considered as an efficient:
tool for the prediction of steady state x‘esponse‘ amplitudes.
a frequ'er}cy domain analyéis is faster with regard to
‘computation time and thus very convenient for parametric
studies. Since lirearity is assumed, the response.amplitudes
are usually presented in the form of 'Response Amplitude

Operators' or RAOs which are essentially the responses

caused by a wave of unit amplitude at a given frequency. In,

the case of TLPs, even though significant nonlinearities

exist, RAOs are often calculated in the ‘6pe of obtaining '

some idea of the responses due to small amplitﬁe waves.
Cq depends on Reynolds number and Keulegan Carpenter

number and .C, varies with frequency. But often for
computational ease, constant values of Cq and Cp arve used.
In the present study, for the calculation of wave loading,
Cq and Cp ‘have been taken as 1.0 and 1.0, respectively.
Surge and‘ tension RAOs are computed via the program
'FREQ_DOMAIN' for a TLP described by Lyons et al. (1983) and

' compared with the published results in Figs. 8.4a and 8.4b.

A .
‘For thie example TLP, motion and tension RAOs are presented

in Fig. 8.5 through Fig. 8.9 for 0 degree heading and in

Fig. 8.10 through Fig. 8.15 for 45 degree heading. Only

intact (s}xown in full 1line) apd 50% tether loss at # 1
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(shown in broken line) are presented since a 100% loss of
tether at any corner is found to cause _slqniticant nonlinear
"

thus i ng obvious ction to the

basic assumptions of frequency domain analysis. L’/

- Pollowing the same ‘logic of calculation of RAOs from

-the experimentally obtained time series data, RAOs are also

calculated from the time series data generated by the
px:ogiam 'TIME_DOMAIN'. Once again, consistent with the
‘e)éperimental data analysis, a wave height “of 10 m is used
for such calculations. i

!

In the case of surge and sway, tether loss appears to
have 1nsiqni!1cant.etfect on the response amplitude, Results
from time domain analysis and regular sea experiments ,
plotted in Fig. 8.5 and Fig. 8.10 support this observation.
This may be expected as the total pretension, which has the
largest influence on surge/sway motion, remains prgcu::ally
unchanged in the tether damaged configurations. Calculated
surge and sway RAOs, which are known to be quite .insensitive
to the choice of hy-drndynamic coefficients (see Lyons et
al,, 1983), are found to be in good agreement with .the

experimental observations.

As far as motions in ,vertical planes are concerned,
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increase in RAOs is always noted (also"'see Booton et al. for

similar observations). In -the case of a 0° heading,

asymmetrit distribution ©f tether stiffness and static’

. /
equilibrium tensions is to i cross ti

in sway, roll ax‘\d yaw modes. Such cross motioﬁs are also
reflected in.frequency domain analysis; for 50% loss of
stiffness at # 11 an insignificant sway as compared to surge
amplitudes is erdicteq while the ;011 motion, as shown in

o L3
Fig. 8.7, is fould to be quite substantial.

| - :

Tension RAOs from regular and irreqular sea experl;ents
and from 'TIME_DOMAIN' are plotted for corner # 1 in Fig.
8.8 and Fig. 8.13. Such variations may be regarded as
typical.’ Due to the scatter obsergpd, experimental and
'TIME_DOMAIN' data are presented only for the intact cases.
It is seen that the tether RAOs computed by 'FREQ_DOMAIN' do
not match very well with thése found from experiments or
";‘IHE_DOMAIN".' Correlation is particularly poor for wave
frequencies greater than 0.8 rad/sec or 'so. RAOs from
'TIME_DOMAIN', on the other hand, .purtray a trend closer to
what is observed from the experiments but still ‘the
numerical values are not always very close. 'Besides
experimental errors, the difference may be attributed to the

inability to correctly estimate the hydrodynamic forces b}

" Morison type formula (ref. K Lyons et al., 1983, Paulling,
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1981) resulting in erronaous' estimation of motions,

" purtlcularly those in vertical planes which in turn affect.

the tensicn calculaticns. Addjtionally, in the case of
trequency domain’ analysia, assumptions regarding 1inear1ty_
are likael_y to cause ‘further errers‘in the gaﬁpuéed results.
Inspecting tile frequency domain results, it.may be
inger;'ed that for 0° heading, following a tether loss at #
1, the tan&on RAOs at # 1, # 2 and # 4 increase while thdse
at # 3 decrease. The difference is significant for both # 1
and # 4 while # 2 and # 3 experience omty a mild variation
in magnitudes. For 45° headinq,‘ terision RAOs increasg at all
the corners. It may clarified here that, for # 1, although
tension RAOs in damaged cases appear to be less than those
for intact cases in !_:l}e diagrams presented, the tension is
porne only by the remaining 50% of theé initial tether
cluster at that corner; and these tethers, i/n effect, suffer

an increased variation in tension.

Fig. 8.16 through Fig. 8.21 present the time records of
waves and tensions from the irregular tests. The waves

correspond to a Pierson-Moskowitz ‘spectrum with wind $peed

equal to 20 m/sec. A typic'al wave énergy spectrum from the .

experimentnl data ls/shown in Fig. 8.22. In Figs. 8.23

through 8.26 tension spectra obtained from’ Fourier
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transformation. of the experimental time series data (shown
in full une): are prasenﬁed<along with e corresponding
theoretical spactra (shmm in brnkﬂ line) anperimposed on
them. The theoretical spectra are’de.rived by nultlplylng the

s g‘wned from

exper ntally

wabe spectrum by the squa;

'FREQ_DOMAIN'. Once laga
observed and Eneoréti 1lly calculated valtﬁs is prominent,
particularly at higher flraquenci‘es. siqryiﬂeant tension
g (1/3 rdbhiqi-.e"a:) calculated from the areas
under the spectra' and tfhe actual time records are compared
in Table 8.1. Ins‘pi’te of the mismatch, .significant tension
amplitudes are predicted réasonably close by the theetet{c'ul’
calcnlation's. which is due to a cancellation of error effect
i.e. the extra spectral density predicted by theory at 1oﬁér

frequencies gets nullified by the absence of r.hg/-sama ;t\

2 \
higher fre ies. Such 1 analysis neceaaub{ly
employs the linearity assumptions. The cases cnrreupéndinq
to 100% loss of tether are; thereture, not analysed hy such

a technique since prominent snap loads are evident from the

tim@ records. » < \
. €

Apart from being a.ble to 'q.mmbdate donlinearities ané

large diaplacemené kinematics, -time domain domain

simulations are also capable of reproducing certain .

transient ieéponsaa of relevant interest. In the present i

. R
~
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context, transient responses followimj a sudden loss of

tether are simulated by the prog’ram 'TIME: DOMAIN' by simply

. proportionally .reducing the axial‘Tstiffness at  the

Aesignated corner’ from a desired time step onwards. In
general, transient .responses are ‘influenced by the £
maqni’i:u_des of the s}:a;_ée variables immedigtely pre\éeédiﬁg' \:hg.
initlai.:\i:g of subh phenomen;. wh‘ilé attempting to stugy the
trahsients following a tether loss, an obvious question-that
would arise is requrding the instant at which the tether -
breakaqe should be simulatad so that the transients are the °

hiqhest..’ro tackle this problen, tether breakage simulation

' experiments are repeated such that the brefkagé' points are

spread over one cycle of Vthe tension wave-form at the
affected. corner (as indicated in"‘ Fig. 8.27a). A variation
not' exceeding 10% 1n transient tension amplitudes is noted
due to choice of breakage instant while the ‘highest values
occured whan the damage—took; place at the peak of the
tension response at the affe).;ted corner. This may be
attrihuted to the fact that undei‘ such a circumstance,: the

amount of tensicn released from the tethers at the affected

~ corner, into the system is the highest, causing the maximum

increase of tension in the remaining: intact tethers. Time
series,data from('TIME DOMAIN' and experiments corresponding
to highest transients are presented in Figs. 8.29a thiough

8.35 for 50% and 100% loss of tether at # 1 for 0 degree and

—
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45 degree heading. A :aqular“vfave of 21.9 sec period and

zo'.o.m height is chosen for these case'studiesj(\i‘ol\each
cwbinafion, tha.oretically predicted motion and tension

responses are presentei:l‘ folloWwed by tension réspanse; from

- the experiments. X . -

On;:e again, increase in motinn responses except tot
surge/sway * is neted.’ Cross motiena due to asymnetric
st‘itfnesa/ distribytion resulting trom the damaqe can be seen
for b‘iieqree'lgeuding. It may noted hera. ty;t a small amount
of yaw dav‘alnl:\'ad due to such asymmatry/w/as not predicted in
the frequen;:y' domain analysis. Te‘nsinn responses, also
increase except for a sligh!: reduction at # 3 for 0 degree
heading case. 7

steady‘ .stata tensions, before and after the Q‘I.oss as

well as transient tensions immediately following the loss

are found from theoretical and experimental time records and

5 ¢ 5
compared in Tables 8.2a and 8.2b. The quantities compared

“are defined in Fig. 8.27b. For intact and 50% loss cases,

steady state tension responses calculated from 'FREQ_ DOMAIN'
are also included in these tables. It can- be seen that
between time domain analysis and the experiments, a better

match exists for transient: responses than the steady state

amplitudes.’' This may be due to the fact that the transient
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responses také place fast enough not 'to be largely
influenced by the hydrodynamic forces. Discrepancies in
steady state amplitudes are due to inaccuracies in
estimatigd of\/hydrodynamic forces, exclusion of various
nonlinear effects such as wave ride-up on columns, s;ccnd

order effécts, experimental error etc.

(Sﬁgila: calculations are also performed with a.wave of
12 sec period and 20.0 m height and th§ tensions are
tabulated in Tdble 8.3 for a 100% loss case. It may noted
that &t his frequency, completé loss of tether introduces
snap loads ( with magnitudes about 4 to 5 times that of the

static pretension) at all corners.

From the above case studies; a quartering sea (i.e. 45°

heading) appears to cause. higher tension loads ‘as compared

i

to head sea (i.e. 0° heading). e




Chapter 9
UNSTABLE MOTIONS OF TLP

9.1 General :
” L

i‘n the case of a compliant :J.natin;; structure such as a
TLP, motion in a particular mode ‘can influence the motion-in
another mode through time 'varying changés in the si:i‘tn'ess\nt
éhe system. Most often, _the‘m‘ogions in the vertical planes
significantly affect the _motions in the horizontal pl‘ana.
This may 33::‘1 to pnstakéle Vmotions ot’the‘ structure,
resulting in large raspoﬁse‘ an'nplitudes .at ) certain
combinations -of wave frequency and-‘wave haiéht. During the
design stage, these uristable zones should be gétmted to
ansur: that they do not —coincide with the design wave
parameters. Fig. 9.1 shows the zone of unstable time periods
as compared to typical’wave spectrum.

In this chapter, a brief review of .previous work'
ralaci‘ng to the 1ny’tigation of such 1nstabiutie's of TLP;.
is presented. A procedure to establish the stability

boundary for -a givén TLP‘, based on Floguet Theory

-
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(miphnltz, 1970) for periodic systems, is developed. T‘his
procedure }s first illustrated using a simplified’tension
leg structure. Only the effect of heave on sway motion i '
considered in ;:his ca.se and the stability hqupdar.iea are J

established. Furte the is to the

& Aqeneral coupled equations of motion of a TLP.

9.2 Equations of Motion and Instability Phenomeha :

Let.us consider the simplified model of-a tension leg g
structu‘re shown in Fig. 9.2 where a positively buoyant unit
is ahchored to the sea-bed by means of a tu‘ut mooring cabla,
Let us assume ‘that th structure is subjected éo the action "

of a regular -planar. wave progressing in the positive 0X;
A &

‘(surqe) direction so that there is no wave excitation in the
0X, (sway) direction: Under first order appraxim}stions, the
equations of motion in heave and sway, respectively, can be

written as :

B /
Mad'y + Cq3l83163 + Ka63 = Fa(t) : (9.3)
v Mpb'y +-Capléal62 + Kaip = 0 (9.2) v
where, ~ : ) " ) S

' : M3, My = Virtual masses in heave and sway,'respsctivelx /




. Ca3, Capz = Nonlinear drag coefficients in héave and

K3
Ky =

g9
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sway, respectively

= Stiffness coeff. in heave = (gpyhyp + EA/L) (9.3)

ét:iffness coeff. ir! sway (first order a‘gprdx. 3
(Tp + (EA/L)83{t))/L

Ayp = Water. plane area

- Accln_. due to gr_avity- P

Ay = Mass density of water

v (9.4)

A'= Cross sectional area of the cable

= Length of the cable

63, 63 = Heaverand sway motions, ;'espectiye]:y

* = Denotes derivation with respect to time

F3(t)

=

= Wave excited Neave force

It is: the ipclusian of the time dependent stiffness

coefficient (EA/L)s3(t) in equation (9.4) that results in

the well known Mathieu type dynamic instability éausing

subharmonic resonances in sway.

etc.)

Whenever the

(See. for examplé Rhiney

- —-'(1977), Patel- and Jefferys (1981), Conceicao.et al. (1983)

‘forcing freq\‘lency’ (wave excitation

frequency) is about twice the natural frequency in sway, wg/

.(equal to

(Tp/MpL) 1/2

in. this

case). Here, the non-

conssrvativa restoring farce}rasulting from heave mntlon

* inputs epergy inte the otherwise undi-turbed sway mode and

whenever the ,rate_ of pnargy input _‘i,glligher than the .
. TR | £ 1 £
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dissipation by the damping force,mlnstability occur;. In
this case, therefore, if instability exists, a perturbation
given to the equilibrium solution §2(0)=0 and»&'z(o)no would
cause the solution to grow with time (i.e. move outwardly
from the origin.oi the phase plane §;-55) ‘even though there |

is no wave excitation in OX, direction. %

9.3 Evaluation of Stability and Floguet Theory

Having formulated the equations of iﬂntion, a pi rt‘lcula’r
meth‘ed has to be sélected. to investigate possii:le unstable
regimes for the system, preferably in terms of some of the
key paramsi:ers pertaining to the external excitation (say

wave' height’ and frequency in this case). Various hethods

have been used to estimate the gtability bourndaries and
unst:‘able motion amp‘litudes of systems such as equation (9.2) e
(see Rainey 1977, Richard.scn‘ 1979, ,Patel ar;d Jefterys\.‘vlsu,

Paulling 1982, Conceicao et al. 1983 etc.). One method ‘Qs tb

reduce' the given equat’ion to the standard Mathieu or Hi ‘1'_s

form (with proper subs§itutions to cater to the 4_dtag t%rm .
when drag is considered). The stubi}ity' boundaries ¢an th\e\n
be evaluated by comparing the coefficients of Eha gca&
equation and €hose of the standard’ form (since 'E;ia stability
boundaries are available for the standard Yorm in

mathematics texts). Another way "to locate h\\stability 15




N

through the analogy of these sy ta £ ' sy
(Rainey, 1977). Unstable solutions have a/v{o/hehétained ;

rr‘omAenerqy considerations (Patel and Jeffen—{s, 1981) and-

from characteristic ‘équutions of the motion amplitudes
(Yoneya and Yoshida, 1982)., = :

In _éﬁr{ain applicatiens, analytical or semi-analytical
means for evaluation of stability may appear cumbersome and

cemplicated; Tc take” advantage of the presently available

- 'high s.beed' computers, a numerical method is developed here,’

based ‘on Floquet theory for non-stationary systems

. »
describable by 'n' first order differential equations with
2 2 .

periodic coefficients- (Déb and Booton -1986a;, Leipholtz ~

1970), ‘to estimate the stal boundaries on a ‘'wave

height-frequency' ’'grid. ~The wunderlying theory and the
working procedures }lre,desczibed as follows. _
Let: a general syétém described 'by 'n' linear first
order differential equations be written as :
~

y=[P(t)] Yy ) ) (9.5)

where, . §
[P(t+T)] = ),L)], T is the fundamental p’ériod (9.6a)

_#?n)-zaf’. - | ' /u{v)

-



89 .

Linearity of equatiop (9.5) allows one to write the general

solution in terms of' the 'fundamental matrix' (o] as :

¥(8) = [8(8)] yo (0.7
5 ]

where, [8] = [B(&)1[6]; (@(0)] =1 . (9:8)

[e(t)] is an“n x n' - square matrix_ containing 'n

linearly 1ndspendent soluti . of equatign (9.5)

corresponding tu 'n' linearly |independent initial

conditions.

Because of the periodicity of fP(t)], it is sufficient

to examine the properties of the solution over one period.

)

it

Yetting M =-[#(t)], the stabilityDconditicn may be

stated on the basis of Floquet 'thecry as i

~

“If the 'n' elqenvalues ;x!. = p_r“, r=1 ..., nof M

are distinct, let 7 = max {py). Then the origin of the '
equation (9.5) is (1) asymptotically stable if 7 < I;

(ii) unstable if » > 1 and critically stable if 7 =

I
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If the 'n' solutions of &(t)c are not available in
’ 3 clos;ad form, the usual procedure would be to solve [6] =
- : Lrﬂ(ﬁ)][o], [(#(0)] = {1]) numerically up to time't = T so ‘that

ki the matrix M can be constructed. ’

5 o .

Equation (9.2) can be' expres;ed as a system of two
) 'tirst order diffarent_iél equations. These equations are
linearised in ora{er to. investigate’ "the stabilify relative to
the equi]‘.ibrium- position vcarre'sé:onding to §6(0)=0 and
5'2(0)=D. The linearisation of the: quadratic drag term is
@ccomplished as :ollow{%?aulling, 1985) : gl %

.o

Cazlézléz = carzéz . {/

where,

,Cd12 = Linearised drag coefficient
= 8Cgz1521/3n and |F5] is the amplitude of §5. >

! ) ) A flow-chart, shown Qﬂ’ Fig. 9.3 may be used to

implement the method mentioned above. for evaluat}on of the
i : stability hounda’ries for the simplified model. Once. the
boundary is  established, the actual motion can then be

computed by directly integrating the nonlinear equations of

should be noted that the expression for heave motion, in

| - < B T

-

motion for the chosen pair of wave height and frequency. It N

e
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this case, is based on steady state conditions’ i.e. §5(t) is

. the' particular solution of equation (9.1) assuming that the
by F

transient .component of the heave motion has essentially

decayed to zero.

"9.4 Unstable Motion of the Simplified TLP :

fdragqinq, the sta/bility boundaries are evaluated for the
simplified TLP ‘shown in Fig. 9.2 (the pertinent data‘of the
plattorm is also’ 1nc1uded in the figure) using the algorithm
given in Fig. 9 3. The hyﬂrodynamlc coefficientsy and the
wave excitaion force are calculated with ' the prcqrﬁ
"FREQ_| DOMAIN' described in Chapter 8. Pretension and damp¥hg
<« are _known, to play a significant roles in the occurence of
/ such iné’t:abilities (see Rainey i9‘97, Yoneya and Yoshida
1982, Paulling 1982, Deb and Boo;;n 19§6a) . To ;bserve these
effects, three 'diffarent pr“etens'ions ‘viz. 0.5 x 105" N, 1.0 x

) 10/3/ N and 1.5 x 108 N are ccnéidgéif while the displacement

mair;tained constant at 45000 m3. The resulting stability

'boundaries are presented in Fig. 9.4. It may be noted. that

as the pretension is increased the unstable zone moves

closer wave u ies. For a pr ion of 1.0 x

. 108 N at 45000 m3 displacement, dampihg is varied by varying
Cqi and the effect on the stability boundary is shown in
2 * .

=3 .

K z !
In" order to illustrate the method discussed in the |
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=, Fig. 9.5. It can be seen “that increase in damping results in

shrinkag.e o_t thg unstable zone.

Having identified the unstable zones, responses can now

dmbtions of

7 . be found by directly 3 ng the nonli
motion. Fié. 9.6 shows a typical stable state ila sway where
Feasas z
§3, triggered by the 4nitial conditions §,(0)=0 and §;(0)=1
dles cut uifh time whils Fig. 5.7 shows the”Plot of a
typical unstable motion for the same initial c_onditlon;-
where the motion grows with time. Fig. 9.8 is 62—52 phase
plane plot correspording to the case in -Fig. 9.6 and
signifies asympotic stability about the origin; Fig. 9.9
presents the pl}}u plane p}ots for unstable motion for two
\ & ‘;i;uteremi damping values /(one of which cbrrespo—nd to the'
case in° Fig. 9.7). It can be seen from this plot that
eventhough the motion is unstable at the ,origin, aving‘ to
the dissipation of fnergy by the nonlinagr damping term, it
attains ar"linit cycle' where the bcundsiot the motior are

heavilyv ‘dependent on damping. 5

The effect of tether loss on the unstable zone is also
studied by reduc;.ng.the stiffness. Up’t’o 25% loss of total
stiffness :is considered (corresponding to ccm’plete tether

~ loss at any one corner), but no significant variation is

) . noticed %n the bounda;ies in the brac‘tignl range of  wave -
- i
1

?
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height and frequenciés. This may be attributed to the ‘fact
that while EA/L decreases, the heave motion §3(t) also

f.incrgases- thus kedping the product (EA/L)s3(t) more or lesg .

unaltered.

- " .
9.5 Unstable Motion of \a Teasion Leg Platform : .

N . o8 - .

. In the previous ekamp.e only.two degrees of fraedo;a\
(viz. eave Aand‘ sway) are considered. In genetul, a TLR
would have more than one.t=nsion 1eg where the motion of ‘the
top of tether would alter’ the ’1‘atera1 stirfnas_ses xa,ther
th_amv‘just 'the heave motion. If §; (i-= A2y €Y delﬁote the
translations and' rotations about the 0%y, OX; and OX3 axes
resée;ctivaly, then the motion of any jth tet};e't top 'zy(t)
can be d’es’cribed, under the first-order appr'oximation, as a
€ungtion of &3, 64 and 65 and the tether top cocdinateé
Fuftherm?re, more than one¥ lateral motion may exhibit N
1nsatb11ity and these degrees of freedom may be coupled.\rnr
example, in a particulai case where tHe wave is progressing

in the positive OX; direction and the unstable zone has to

_be investigated in sway and yaw, the procedure to be
; o o

0 :
followed may be outlined as follows :

1. Choose the starting combination of wave frequency
and vave height? :

"
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2. Form thg qeheral equations of lnobio-ns asb:-

" .

m1(8) :{‘.[kcl(i)'f KIG)Y = (F) . TR
where', R e ., . :

. (Mj = Virtual ms; matrix '3 i ( S
[c] =tvxn'rmq:unv.; matrix

N . [K] = Hydroltatic + Moorlng stiffness matrix with
” %

e : T constant coefficients

(FN= wave excitation . force vector - &

() = Displacemant vector (63, 637.-e, 4,;6,'1‘

3

a . .

for (6).. 3 . . 7
i . . > « 5 ’ .
. }D ; e e 7N
- 4. nstruct the ,functicns_,zj (t), .= 1,2,. rk /m where
. v is the total nimber of tethers :
j ; 3 ,

= . 2(t) = 8a(t) - (F1j-rg1)b5(t) + (raj-rga)4(t) . *(9.10)

e . & - where, . '

s4(t) = fnstﬁntanaous displacement‘of CG'in the ith
5 ' X R
« degrae of Ereedom . wg A

o - X1js T2y = OXy and ax2 coordina:es of ‘the.jth tether

top

f 3.. Solve eqution (9.9) to ¥tain steady state solution‘
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rG1, ¥gz = OX and OX, coordinates of CG

5. Construct the time dependent stiff‘ness,tems in sway

and yaw as :

Ksway (t) = T3 [(EA/L2)z5(t)]14 (9.11a)
Kyay(t) = Tj [(BA/L?)24(£)R2]5 | ' (9.11m)

where, R?%j = .(ry§-rg1)? + (rpj-rgz)?
“'6. Extradt the corresponding rows and columns for sway

and yaw from equations of motion in swa;( and’ yaw as @

W10+ (C11 () + LIKIHREIII6) = (F) 7 (9.12)
where, [M]', [C]', [K]',({F)" are reducéd matrices, {5)'.
= (63, 66)T ana [K(t)] is :- "

Ksway (t) o

o “Kyaw(t)

Also note that (F)' (o, 0)T in this case.

7. Rewrite equation (9.12)— in the form .of equation

\ .
(9.5). : @
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=4 . 8. Check for instability of this system according to

the method already described in section 9.3.
9. Choose next wave frequency and wave height

combination.

10. Go back to step 2.
The stability boundary in sway and yaw for the example
TLP (pertinent details given in Table 5.3) is computéd and
the unstable zonme'is shown in Fig. 9.10. It may be noted
that in the example ur;dgr consideration, because of
- symmetry, stability boundaries in surge and sway would be
identical. For evaluation of the response, any nonlinear
time domain analys{_s may be employed for a given combination

of wave frequency, wave height and initial conditions. A

S.G_Experimentaly Verification of Unstable Motion :

e A

The occurrence of unstable motion for the example TLP'

is verified during the model scale:experiment. The model,
under the excitation of a regular plan;r wave 'gritidal
frequency and height' (i.e. as may be fo\ind in“the unstablm
zone indicated in Fig. 9.10), is \qiven an initial
perturbation ‘in the likely unstable degree of freedom. If

]

- _—
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the motion amplitude groys with time , the motion is
regarded as unstable. With the available wave tank facility,
only yaw instability could be verified. The combinations for
which unstable yaw has been observed are indicated in Fig.
9.10. Difficulties eiisted in observing the unstable motion
for a considerable length of time owing to contamination of
the incident wave by the reflected waves. =

£ —

\



- Chapter 10 : N

*10.1 General :
\ = .

The work completad in the course of the present study

may be briefly summarised as follows H

(1) Review of statical stability concepts for floating
bodies.

(ii) Review of ical -and 1 work

relating to TLP dynamies in intac\l: and tether damage
conditions. i ¢

(iid) Review of ' theoretical and exparimental work
relating to Mathieu type instability of TLPs.

(iv) ' Formulation and calcuiatlion of equilibrium
tainsiuns for a TLP with unéqual stiffness of the tethfrs<

(v) : ngelopment of .sotti:ars for hydroétatic
calculations.

(vi) Evaluution of st:qtical ‘stability of TLP én intact
and damaged casos with the npplicution of a new concept in

stability assessment of floating structures.

& (vii) Development of 1 for



transient responses.

" same for TLPs.

99 —~

domain and nonlinear,” large- displacement time domain
analysis of TLPs. B

(viii) Deterministic and spectral analysis of TLP in
frequency domain .ror intact and damaged configurations.

(ix) Deterministic time domain analysis of TLP in
intac‘t and damaged configurations to find- steady state and

(x_) Development of algorithm based on Plgquet theory
for Mathieu type instability.‘annlysis and application of the
' (xi) Design and fabrication of a 1:100 scale modal of
an example TLP. -, '

(xii) Experimental Verifica:’ion of the various

. '
. responses predicted by the above theoretical models.

Under the prevailing constraints of time, facility and

availabilty of input data, the effect of tether_ loss on the

static and dynamic behaviour of a ‘TLP has been studied.

Eventhaugh the combmatians of input pa:ameters Zhosen tor._

various’ analysis and experiments may at times appear
hypothetical from "the view point of a regu?ar design

an . ing of the following ﬁspec_t_:s has

been substantiated : e - /

(i) capability and reliability of some ¢f the popular
’ ‘ /
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methods of static and Gynamic analysis applicable to TLPs.
(11) General trend of variations in static and-dynamic
b“‘ehaviour of a TLP betveen intac€ and tether damage cases.

10.2 Observations : Ao s
The major. cbsérvations that evolve out’ of the “stuay

conducted here may be identified as follows :

(1) Thqe loss of tether at one Vcoyrner ‘dacreasés the
statYc equilibriun tensions at the affected corner and the
. corner diago‘nally opposite to this corner while the tens’lons
at the remaining c_:z;rnsrs increase. Even though the tension
as a whcl’a decreases-at the affected corner, the tension pe;.‘
unit tether increases because after a certain’ amount ‘of
loss, a, proportional number of tethers is considered to be
inactive. It is seen that when a corner suffers 100% tether
loss,.the tethers in the opposite corner becomes slack,—if
no change in the buoyancy force and moments are cons_ider'ed.
Even if the effects ‘due to a change in buoyancy force and
moments are included, the opposite tethér would have such
low static tension that it may be considered to be slack for
all Aptacticu‘l purposes. ' .
. (i1) classical approaches of evaluation of styaticali'

stability are found inadequate in certain respects when
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applied to unconventional structures such as TLPS. A new
approach is therefore used to Vmeasure and compare the
statical stability-of the example TLP in various
configurations. Absence of any guidance by the regulatory
authorities regarding such calculations with particular
application to TLPs is also'noted.

'(iii) Complete loss of tether at one corner causes
drastic) reduction in statical stability of TLP rendex‘ing‘ “its

stability

istic; bl to its free-floating
confiqﬁratiéns. An 'emarqenc)v{ disconnect' situation, which
may be .viewed" as complete loss of tether at . all corners is
found tao have a very low nmeasure of statical stability.

These analyses indicate that’ any manipulation of on-board

weight d@istribution should be made with great caution after

a ‘substantial tether loss. Also, at large angles of heel,
additional increase in tension are caused in the intact
tethers due to increase in buoyancy.

(iv) Frequency domain unalfais, even .though inqapable
of handling nonlinear effects and predicting the trend of
resp‘onSes correctly over the entire practicallfange of wave
fx:aque‘ncias (note similar obsewations 'hy Lyons ‘et al.,
1983), is found to be very convenient from the view point of
;:arame(_*.ric Ftudies an spectral analysis.’

(‘})- Time domain simulation, in spite of remarkably

high consumption time, seems to model the TLP behaviour in a
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better fashion. The formulations .used to calculate

hydrodynanic 1ond1ng'5, hovever, mixst‘ be more accurate in

order to better predict the responses.

(vi) In general, loss of tether at any corner causes

both the motion and tensi r to i Surge
motion is found to be rather insensitive to tether loss when

the. total prétension remains more or less ‘constant. aThe

‘incte‘ases,' however, are a Enctinr_x of the 'amaunt and
location of loss, wave frequency, height and heading. From
the: limltadv nunber of studies conducted here, it is seen
that artut-al loss of ?ether at any corner is like}y to
indice snap loads at one or more ccrners which may be a‘s
high as four to fxve-t].mes the normal static ptetension in

the tethers (note sxmuar observatinns\ by Sekita and Sakai,

1984). At smaller levels of tether loss, even though the. .

chances of snap loads are reduced, the tension in the

remaining : tethers in the affected corner may increase

significantly thus increasing the thang:es of further failure
at that c'orner.

(vil) For the cases studied, a loss of tether at any

corner occurring at the peak of tension variation at that

- c;ax:ner is seen to cause the highest transient tension

responses in the remaining intact !ethers. Also, a

quartering sea is found to induce higher:tenaion loads as

compared to a head sea.
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(viii) Cross motions are set__up' whenever the tether
loss introduces asyﬂn@r}c distribution of stiffness with
respect to the direction of wave propagation.
(ix) . The regime of Mathi<u type instability of TLP is
heavily dependent .upen the lateral stiffness qmd\dnﬂainq of
the system' rather than ltﬂe’—axial. stiffness of the tethers;
. even a 25% 1lgss of t:ot:a]1 axial stiffness does not alter the
unstable zones signifiéantly

_silnce neither thel chosen TLP nor the input parametrs
for the various case studies correspond to any particular
established design, more precise remarks about the damaged

‘responses of .a TLP are not attempted. The need and relevance

of siich a study, however, is recognised.

8.3 Reconmendations : -

As a logical consequl_g of this smﬁA the following

may be recommended for future research :

(1) Calculations may be performed with better
theoretical—nodels for evaluation of hydrodynamic loadings. -
(ii) ‘similar studies may be conducted with coupled

tether dynamics. TR

(ii1) The effect of fortes due to wind,/current,.
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second order wave loadings etc. may be investigated.
(iv)]- similar analysis and experimentation may be
"’carrieg_/luh in conjuctior; with flf:cdinq damage in the
columns. ! ) -

- (v)" Further experimentation may be concducted with,

_. more sophi&ticated instrimentation and calibrated niodels so

—
that even small variatien in responses can be 1d/éntlfxed ®
more accurately and reliably. ’

“(vi) Research may be conducted to find a better way to
X present data frum anplyses such that they cbn be directly
and. conveniently used for design purposes.
< .
A
. .
/ 2
(
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Table 1.1 :
TLP with other alternatives

Comparison of some Key:features of Hutton. -

; sorraono s | maanus %mu e
: . Sairon |
il e e e R e
e | e [shne| e |t
TYPE FIXED FIXED TCOMPLIANT | COMPUIANT
WATER DEPTH (FEET) a2 o L e85 1000
100-YEAR WAVE (FEET) 0 102 ™ n
P eARREE B pAY) 150,000 120000 10000 | 25000
INITIAL PRODUCTION (YEAR). 1982 1983 1984 1984
mmuu‘ ;-Ezsc:(’ OFFSET 55 g ™ »
TETORICOS | g1y e W s
‘COST PER BARREL-DAY $12.000 $21,700 $11.800 $32.000
PROJECT MANAGEMENT vopl. [ BATEH | covoco | Exxon
L
. ‘
.
N
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Table 2.1 Key Particulars of Hutton TLP
. (ref. Ellis et al., 1982)

LENGTH Between Column Centres 78.00 m -
Overall 95.70 m
5 BREADTH : Between Column Centres 74.00 m
: Overall . 91.70 m
.
HEIGHT : Keel to Main Deck 57.70 m
: :  Main Deck to Weather Deck 11.25 m
DRAUGHT ‘' ° : ‘Operating 32.00 m L.}u.’l‘.
FREEBOARD : To Bottom of Weather Deck 24.50 m L.A.T.
WATERPLANE : Area : 1324.00 m? :
! COLUMNS ~ - : 4 Corners 17.70 m Dia
: 2 Centres 14.50 m Dia
PONTOONS : Height 10.80 m
4 ¢ Width . 8.00 m
: Corner Radius - 1.50m _
DISPLACEMENT : Approx. ’ ‘ 61500 Tonne '
TOTAL WEIGHT : With Riser Tension (Approx.) 48500 Tonne
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. -
N Table 3.1 Key Plan of Major Research Activities
THEORETICAL EXPERTMENTAL
General i~ General :
T.1. Licerature review. 4. Design and fabricace a 1:100 scale

Statics :

T. 2, Hydrout:l:lcl of flodting bodies -
formulation and development of
computer software.

. Choose intact and tether damage
configurations and evaluate
stability characteristics. .

T.

W,

‘Dynemics : %

a) Frequency domain :

T.4. Frequency domain Amlylhl-
fornulation and development of

\
computer software

T.5. Calculate motion and tension RAOs
in intact and tether damage cases.

T.6. Perform spectral analysis for
intact and dandge cases. .

B) Time domain :

T.7. Time domain simulation -
formulation and development. of
computer software.

T.8. Evaluate resopnses in intact and "
damage .cases in regular wave.

T.9. Note transient respons

immediately follwing

T.10. Mathieu type instability -
fornulate and devqlop computer
software; evaluate unstable zones
and study effect ‘of tether loss on
such instabilities.

" B.2.

model of TLP.

Determine the mass/inertia
properties of the model.

Design and fabricate the mooring
system.

Set up test arrangements,
instrumentations. and data
recording systems.

~

E.3.

E.4.

Statics :

E.5. Exp.r!.m-ntal verification of
results obtained through compu:e:
softvare.

Dynamics :
a) Frequency Domain :

E.6. Conduct ‘tests in intact and damage,

conditions in regular vaves and

irregular waves.

Compute motion and tension’RAOs

from regular wave tests and

. compare with T.5.

. Compare response spectra in intact]
and damage cases with T.6.

b) Time domain :

E.9. Compare a few specific time
records from regular wave tests
with T.8.

E.10. Simulate sudden‘loss of tether -|
observe the transients and
compare \pith T.9,

E.7.

Special Study :

E.11. Observe if unstable motion
develops. from an initial
perturbation at critical
combinations of' wave height and
frequency - compare the E
observations with T.10.
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L Table 5.1 List of Relevant Parameters
. and Dimensionless Numbers

Parameters - Symbols Dimensions __]
' inL,T& M

Hull Subsystem :
N .
Length L L
Characteristic Length 1 . L
- Lumped Mass M s M2
Lumped Mass Moment of Inertia 145 M2, .
- ‘Tether: Subsystem : ) ¥
Axial Stiffness k MT?
Tether length Lp L
Wave Subsystem : - : - g gy
: Density : ru ML=
Viscosity . w ML~ 11
Acceleration due to Gravity g LT2
_Water Depth D L
Wave Height T s H . L
Wave Period ™ T 3 T
o 2
General :
Typical Time -t T i
Typical linear displacements .d L
Typical Angular Displacements ) = ¢
Typical Linear Velocity v - L}t
Typical Angular Velocity w 1
‘| Typical Linear Accéleration -- a T2
Typical Angular Acceleration B T2 .
Typical Force or Reaction F MLT™2
Note : Acceleration due to gravity is to remain the same in model
. and prototype.
Dimensionless Numbers
1/L, W (py13),- 1/ (pulB) ) K/ (syGL2), La/L, /(pya?/213/2), v/L,
WL, (191/2)/11/2, (tg1/2)/LY/2, a/L, 0, V/(g¥/2L1/2),

| we/2/t/% a/q, (al)/g, F/(pual?) 3
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Table 5.2 Some Scaling Relations

Geometric Scale Factor = Lp/l.m = r (say)
Characteristic Length Scale 1p/1n T
Mass Scale Mp/ My 3 %
Mass Moment of Inertia Scale Ip/In x5 *
Tether Axial stiffness Wale kp/kp r2 x
Tether ‘Length Scale Lyp/Lem & - ¥
.Water Depth Scale Dp/Dm r 4
waye Height Scale Hp/Hp >
Wave Period Scale Tp/Tn rl/2
Typical Time Scale - . tp/tn rl/2
Typical Linear Displacement Scale dp/dm x
T_ypical Angular Displacement Scale 0p/fn
Typical Linear Velocity Scale Vp/V. r1/2
Typical Angular Velocity Scale wp/on rl/‘2
Typical Linear Accln. Scale - ap/aﬁ 1
Typical Angular Accln. Scale ap/an 1/r
Typical Force or Reaction Scale Fp/Fp -~ 'x3 #

Notes

1. Suffices 'p' and 'm' indicate that of the prototype

and that of the model, respectively.

2. '** indicates that in casé prototype and moddl water
densities are different then the scaling ratio

be multiplied by 'pwp/ Pum' -

las to
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Table 5.3 Key Particulafs of Example TLP

.| ienemn : Between Column Centres 70.00 m
BREADTH : Between Column Centres 70.00 m
°| * HEIGHT : Upto Weather Dk. 65.00 m , ,
LUMNS : 4 Corners 15.24 m Dia
i 4 Centres 10.95 m Dia
PONTPONS : 4 Numbers 10.16 m Dia
- GHT : operating L 35.00 m
vcGe . : Operating 38.00'm
¢ # ) ;
TOTAL DISPL. : Operating 49680 Tonnes
. s ; 4 .
5 TOTAL WEIGHT : Operating | 35000 Tonnes
TOTAL STATIC r‘ ¢
— PRETENSION . : Operating 14680 Tonnes
| TETHER axiaL . .
STIFFNESS : Per Corner 7.6 *107 N/m |
RADIUS OF “a ’
GYRATION 1 Ryp 36.00 m
: Rya = 36.00 m
2 : Ra3 41.20 m
NATURAL PERIODS : Surge - 51.61 sec
:  Sway ‘51.61 sec
* Heave 2.76 sec
: Roll 2.98 sec °
: Pitch 2.98 sec
: Yaw 43.90 sec.
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Table 7.1 Key Information for Stability Assessment
'
of the Example TLP

Cases - | prafe (m) Displ. (T) VeG Xm)*| ¢ (“)l'
* Cdse # 1 : y
" . | operational Draught | 35.0 49680 * 38.0 1.0

with 100% :bshu loss . .
at cornmer # 1 "\ N . . .
Case # 2 : N .
Emergency disconnect 21.0 35000 38.0 | 40.0

3 . , : ‘ i
Case # 3 : . 3
Posc-mating 29.5, 44000 . 330 | 35.0

* VCGs are measured from the base of the hull upwards.

L+~ Note : 1. The force due to wind F,, is calculated as (ref
Bureau Veritas, 1975) : —
Fy'= L dFy = T Cy puing V2uine dp ’
where, pying = Mass density of alr -
: Vyind = Wind veloctty
. C, = A-coefficient
dAp = ‘Elemental area perp. to wind

. Moment due to wind i< calculated as : '

Myind = Fuind Duind, .
where, hytng 1s. the distance between the point

~

_of jaction of wind force and. the'point of

rotation. . ’ -
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Table 8.1 Comparison of Theoretical and Experimental
Significant (1/3 rd Highest) Tension
Double Amplitudes :

'PM Spectrum : Classical Form'
Wind Speed = 20 m/sec

Wave Heading = 0 Degrees. *

Tension in *107 N : . $1 #2 43 L]

! Intact case :.

> Theoretical Spectrum 1.079 1.075 1.075 1.079
' Experimental Spectrum 1.053 1.267 1.274 1.164
Time Record ~ 1.261 1.275 1.307 1.183

50% Loss at # 17

Theoretical Spectrum 0.808 ° 1.083 1.106 "1.325
Experimental Spectrum 1.029 1.320 11296 1.649

Time Record 1.100 1.432 1.372 1.703 F

Wave Heading = 45 Degrees

Intact Case :

Theoretical Spectrum 1.467 0.649 1.684 © 0.649

Experimental Spectrum 1.332 0.584 3.101 0.712
Time Record 1.476 0.642 2.121 - 0.787

50% Loss at # 1:

Theoretical Spectrum 1.096 © 0.764 1.709 0.764 i o
Experimental Spectrum 1.175 | 0.679 3.355 0.835 ¢
Time Record 1.278 0.776 2.581 0.912 -
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Table 8.2a Comparison of Theory and Experiment for
Tensions in Intact and .Damaged Conditions =~

- =
Wave Height = 20.0 m, Period = 21.9 sec, Heading = 0°
: \ . ]
Tension *107 N B 2 S LEN #.3 #4
s . . a s :
Intact Case : i '
' Al : s 5 ) o i
'TIME. DOMAIN' - 1.936 . - 1.969 1.969 1.936
. Experiment 2.352 2.366 2.382 2.502°)" .
e *|.*FrEQ_DOMAIN' : 2.270 2.211 2.211, | 2.270
50% loss at # 1: & . “ ~
Z 4 ~
T | a2 © 5 L
w 'TIME _DOMAIN' 4.688 5.678 4.48% 5:993
Experiment & 4.701 .. . 5.998 5.006 6.053
| 'FREQ_DOMAIN' LI - - - -
LN - P 3
TIME _DOMAIN' 1.399 2.770° . 1,629 2.812
Experiment - 0.903 2.195 1.508 2.412 ;
'FREQ_DOMAIN' ° = - = SO °
4 . ~ E
'TIME_DOMAIN' . 1.622 2.639 1.589 - 2.817
ExperIment 1.954 2.807 2.219 3.087
'FREQ_DOMAIN' 1.488 2.272 2178 | 2.723
- 9 e = RS
7 * 100% Ioss at # 1° g ' .
; MAIN' 0.0 10.293  '5.534  11.001
' 0.0" 10.766 6.136 11.074
MAIN' - - - -
. <
« | 'TIME _pomaIN' 0:0 2,712 0.0 2.922
Experiment 3 1~ 0.0 3./445 0.0 2.574° [
'FREQ_DOMAIN' - - - -
A4 : 4 T
. ' TIME_DOMAIN' 0.0 °  5.283 3.231% 5.246
i , ExperIment .0.0 5.469 3.656% - 5.437
'FREQ_DOMAIN' - - - -
. . v -
- TR Indiéates‘snap load : . { -
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‘Table 8.2b Comparison of Theory and Experiment for
Tensions in Intact and Damaged Conditions

Wave ‘Height =,20.0 m, Period ‘= 21.9 sec, Heading = 45°

- Tension *107 N

i

(L

i 42 K b4

Intact Case : o L

AL : .

ITIME oomm' 1.819 + 1.627 1,963 1.627
Experiment 2.289 2.598 2.980 - 2.662
. 'FREQ_DOMAIN' /1.203 2.712 “1.203
*50% foss at 3 £ 0

A2 : g &

'TIME _DOMAIN' 4.685 5.987 4.926 5.987
Experiment 4.669 5.1 5.124 6.293
'mq_nomun' - - - -
'TIHB DOHAIN' . 1.442 2.641 .1.518 2.641
Experiment 1.528 2.203 1.417 2.105
'mq DOMAIN' L= e ‘- -
"rms DOMAIN' 1.506 1:976 1.937 1.976
Experiment 1.961 3.269° 3.206 3.325
'FREQ_DOMAIN' 1.813 1.569 2.715 1.569
100%-Loss at # 1: - .

\ 2
A2 3 by . : .
‘TIME _DOMAIN' 0.0 10.750 4.912 11.755
Experiment 0.0 11.128°° '6.889 11.077
'FREQ_DOMAIN - T - -
A3 : . ..
'TINE _DOMAIN' 0.0 2.014 0.0 ' 2.014
Experiment 0.0 2.161 0.0 2.199
'PREQ DOMATN' T - - -
'TIHE DOMAIN' 0.0 " 5.158 5.199% 5.158"
Expsr‘fmenc d 0.0 5.973 6.944 6.319.
'FREQ_DOMAIN' = =i g = s
: Indicatés shap. Yoad
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‘Tension
Example TLP by 'TIME_DOMAIN'

for the

Wave Height = 20.0 m, Period = 12.0 sec

100 % Loss at Cormer § 1

Wave Heading.= 0 Degrees

Tension *107 N #1 $2 . 4§43 #4
AL 1.915 2.289 2,289 _ 1.915
A2 0.0 12.355  9.328 13.456
a3 0.0 v 0.09 0.0 07568
A4 0.0 6.289%  11.833 16.431*
Wave Heading = 45 Degrees
a1 2.097 1.214 2.458 1.214
A2 0.0 18.269 14.928 18,269
A3 0.0 0.0 0.0 0.0
A4 0.0 20.114*  15.182% . 20.189*

'*! : Indicates snap load -l
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'TRITON' : THE FIRST TLP

F16. 1.3
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F1G, 2.1 A PERSPECTIVE OF THE HUTTON TLP .
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Fig. 5.2 00 MODEL OF THE EXAMPLE TLP
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\IMTEAI. MASS, DAMPING COFRFF.
COEFI

. IN HEAVE & SWAY

'CHANGE INITIAL EONDA :7,(0) = 0, y (0) = 1
NUMERICALLY EVALUATE NEAVE (¢
(y) SIMULTANEOUSLY UPTO TIME = Bk

ML) = 7,1 MZE) = 3 (1)

FIND MAGNITUDES OF THE EIGENVALUES]
&p, OF M)

TIAL COND. 1 7,(0) = 1,7 |

NUMERICALLY EVALUATE HEAVE (1) & SWA'
() SIMULTANEOUSLY UPTO TIME = T

i
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A Sway
“ UNSTABLE
sah B
3 | [ :
z k“}}/, Tpr 81N
g2 ‘ 2wy=026RAD/E
w ' T 10 x10'N
N - 2wy*0.208 RAD/s
- Tpeosxi0*N k
2wy =014 RAD/S
T| oise 45000 m? ) .
g Gayrronet e . i
% o

TS T TRCeT)
FREQUENCY 'AAQD/SEC!
Fig.94 STABILITY BOUNDARIES OF A TLP  WITH DIFF. PRETENSIONS
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SWAY UNSTABLE

i Gy 15210 Nl ‘1 1 luu

FREQUENCY i

. Fig.95 STABILITY BOUNDARIES OF A TLP WITH DIFF. DAMPING GOEFF.

’i; Cq, * 10 10° N/tn/s?) \ll ll ?
r—J 'llml !
";’A 05216 N/(nise?) l ’
3 ‘]|. l[ : l
- A

DISP. » 45,000 m* lll “ i

3 Tprioxio®n |

"] 2uy=0.208 RAo/S v " '}
R s 7 i
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HT=15,0 m, WAVE FREQ = 0.3 RAD/S

Cy® 10x10® N/ed/8)

32.00

15.00  20.00

0,00

- DISPLACEMENT Y (11
G15.00 -8,00

7400

32.00

.00 s0.00 7500  1bo.0a  125.00 13000 175.00 -200.00
ELAPSED TIME (SEC) =10

Flg. 96 SWAY TIME HISTORY (STABLE CASE)
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Cay"10x 10° ‘l{/(mtll.)
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HT =150 m, WAVE FREQ.% 0.3 RAD;

=¢
2
I
'-32.00 -24.00 -16.00 -8. 00 0. 00 - e.00 16.00 24,00
DISPLACEMENT T (1)

Fig.9.8 PHASE PLANE PLOT OF SWAY MOTION (STABLE CASE)
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Fig. 99 PHASE PLANE PLOT OF SWAY MOTION (UNSTABLE CASE)
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SURGE /SWAY AND YAW
UNSTABLE -

18.0F

2wgyqy = 0.24, RAD/S
8.0} \ E

. 0 EXP

6.0

4.0

2.01 i

- " 20yqw =029 RAD/S

0.0

3 L
°Z{° 0.25 . 0.30
\ FREQUENCY (RAD/SEC)

F16, 9,10 SURGE/SWAY AND YAW STABILITY BOUNDARY FOR
THE ‘EXAMPLE TLP'
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PROGRAM *EQUILIB* :, CALCULATES EQUILIBRIUM POSITION/
TENSIONS OF A TLP FOR A GIVEN SET OF TETHER STIFFNESS
AND TOTAL PRETENSION s

fnooocacncacaamaacancaaan

. PREEN
AKX, YD)
AK(D

INPUT FILE HAME : 'EQUILIB.DAT’

INPUT VARIABLES :- —

* PRETEN >~

= TOTAH STATIC PRETENSION

! « = AXIAL STIFFNESS AT THE Ith CORNER
X(D® Y(D)  =X& Y COORDINATES OF THE Tth CORNER

OUTPUT FILE WAME : 'EQUILIB.OUT'
COMPUTED OUTFUT yuﬁm_ss =
i E
DELTA(I) " w-EQUIL.IBRIUM DISPLACEMENT AT THE Ith
* CORNER .

TENS(D) = KQUILIBRIUM TENSION AT THE Ith CORNER

caaa

REQUIRED LIBRARY ROUTINES : IMSL ROUTINE *LINVZF*

\

IMPLICIT REAL*S (A-H,0-Z) X

DIMENSION BTF(3.3),5TFINV(3,3) ,WKAREA(18) ,F (3) -
DIMENSION -AX(4) ,X(4),Y (4),TENS(4) ,DELTA(4)

OPENT 1/0 FILES

c

OPEN (WNIT=t,FILE="EQUILIB.DAT ", TYPE=*0LD')
OPEN (UNIT=2,FILE="EQUILIB.0UT ", TYPE="NEV')

READ(1,+) PRETEN

I=14
READ(1;%) AX(I) .X(D),Y(I)
X (I)=DABS (X(I))
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. Y (1)=DABS({ (1)) T .
— 100 CONTINUE 3 %
c
cnann.nnnunno:on END OF READ L T e T T e T T
e
c CREATING THE STIFFIIESS IMTIIIX ETF( )
c
STF(1, 1)-AI((1)~MI(I)
. . STF(1, 2)=AK(2) -AX(4)
= STF(1, 3)=AK(3) +AX(4) -
STF(2, 1)=AK(1) *Y(1) ~AK (4) +Y (4)
> STF(2, 2)=AK(2) #Y(2) +AK (4) $Y (4)

STF(2, 3)=-AK (3) #Y(3) ~AK(4) #Y (4) :
+  STF(3, 1)=AK(1) #X(1) +AK (4) X (4) ~%' #
STF (3,2)=-AK (2) $X(2) ~AK (4) #X (4)
STF(3, 3)=-AK (3) #X(3) +AK (4) #X (4)

- \
CREATING THE LOAD VECTOR F(,)

aaa

F(#=0.00

INVERTING STF(,)
. »

N=3 -

IA=3 % N

IDCT=4 i

CALL LINVIF(STF,K,IA, STFINV, IDGT, WKAREA, IER)

SULVIHG FOR THE EQUILTBRIUM DISPLACEMENTS AHD TENSIONS,
“DELTA® AND *TENS™ RESFEC‘I'IVELY

c
[+]
c
c
N WRITE(2, 1000)

=— 1000 FORMAT(//10X, "LEG #’, 8X, 'STIFFNESS (HN)' @,/

*DELTA (W)',4X, 'TENSION (¥)*/) . '

Po 200
DO 200 .
. DELTACI)=DELTA (1)+STFINV(I, J) sF(J)
DELTACI)=STFINV(I, 1) #F (1)
200  CONTINUE
- DELTA(4)=DELTA (1)-DELTA (2) +DELTA(3)
DO 300 I=1,4
TENS(I) =AK(I) *DELTA(I)

aa

-
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.

WRITE(2,2000) I,AK(I) ,DELTA(I), TENS(I)
2000  FORMAT(10X, I6,6X,E10.4,6X,F10.7,6X,E10.4)

300 CONTINVE . 5

STOP .

: . Y g, .
- \
N 5 .

AN

x B @
. .
< v
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PROGRAM *HYDROSTATICS® : HYDROSTATIC PROGRAM INCORPORATING
EQUILIBRIUM TRIM CALCULATIONS; COMPUTES BUOYANCY, CENTRE
OF BUOYANCY AND THE RIGHTING MOMENT FOR A GIVEN GEOMETRY,
DRAFT AND ¥AS§ DISTRIBUTION

aaaaaa.

INPUT FILE NAME : 'HYDROSTATICS.PILOT’
INPUT VARIABLES :-

*IDISP, ITRIM, ITRM, TRIMI, IVWB*

CALCULATION (cu.m); REQUIRED FOR EQUILIBRIUM
- WATERLINE CALCULATION
ERRCB -sm:xrmnm-rmmnczulmnr
BUOYANCY CALCULATION (m); REQUIRED FOR
EQUILIBRIUM THIM CALCULATION .
. )

c
.c
c
c
o]
c .
c IDISP = DISPL: ITERATION OPTION (=0
c ITRIM = TRIM ITERATION OPTION (=0 :
c ITRM . = FIXED TRIM OPTION (=0 : NO & =1 : YES;
c R IF *YES’ THEN *ITRIN® HAS TO BE 0)
c TRIMI .. = GIVEN FIXED TRIM ANGLE ‘(deg) FOR ITRM=1,
c : OTHERWISE INPUT 0.0
c B - - =0 IF WEIGHT IS NOT EQUAL TO BUOYANCY AND
c . 1 IF WEIGHT IS EQUAL TO BUOYANCY
c ++ IF (IVB.EQ.0) THEN i
c *WT,RHO* . :
c WT WEIGHT IN N
‘c RHO MASS DENSITY OF WATER IN Kg/cu.m
< G *DRAFTI, PTROT, THETAL * )
-c DRAFTI = INITIAL DRAFT IN m
c PTROT = DISTANCE OF POINT OF ROTATION ou THE
“le Z AXIS IN
c THETAL. ____= ROTATION OF 'HEEL AXIS® ON mz =.
c z _ WATERPLANE IN degrees
_c *NLIST,SLIST1,DLISTL’
c NLIST = NUMBER OF LIST (OR HEEL) ANGLES
c SLIST1 < = BTARTING LIST ANGLE IN degrees.
c DLISTL = SPECIFIED LIST INCREMENT IN degress
c *DTRIM, DDRAFT, ERRVOL, ERRCB*
c ' DTRIM = SPECIFIED INCREMENTAL TRIM ANGLE (deg)
c DDRAFT = SPECIFIED INGREMENTAL DRAFT (m)
c ‘ERRVOL = SPECIFIED ERROR TOLERANCE IN VOLUME
c
c
c
c
c
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' (xce(1),I=1,3)"
XCG = THREE COORDINATES OF THE CENTRE OF GRAVITY
INm

INPUT FILE NAME : 'HYDROSTATIC.DAT®

INPUT VARIABLES: :-

*NCYL, NRECT* :
NeYL = NUMBER 'OF CYLINDRICAL SURFACES
NRECT = NUMBER OF RECTANGULAR SURFACES !

*#+ FOR EVERY CYLINDER PROVIDE :
* (XC1(1,J), J=1,3),'(XC2(I,J) , J=1,3) ,DIA(I), (NC(I,J),J=1,4)"

XC1 & XC2 = COORDINATES OF THE ENDS OF THE CYLINDER (m)
DIA = DIAMETER OF THE CYLINDER' (m) iy
NC(.1) NUMBER OF VERTICAL DIVISIONS ON THE CYLINDER

NC(.2) NUMBER OF HORIZONTAL DIVISIONS ON THE
CYLINDER :

NC(,3) = NUMBER SECTORS ON THE ENDS OF THE CYLINDER

NC(.4) = NUMBER CIRCULAR DIVISIONS ON THE ENDS OF
THE CYLINDER

* (XCLMN (1, ), J=1,3) , (YCLMN(I, J) , J=1,3) , (ZCLMN(I,J) , J=1,3)".

XCLMN = DIRECTION COSINES OF LOCAL X AXIS

YCLMN = DIRECTION COSINES OF LOCAL Y AXIS.

ZCLMN = DIRECTION COSINES' OF LOCAL Z AXIS

++ FOR EVERY RECTANGULAR SURFACE PROVIDE :

* (XR(I,J), J=1,3) ,XLENG(I), YLENG(I) , (NR(I,J) ,J=1,2)*

XR v = COORDINATES OF THE CENTROID OF THE
RECTANGULAR SURFACE (m)

XLENG & YLENG = LENGTH OF THE SIDES OF THE w.'rmcw
PARALLEL TO X & Y AXES, RESPECTIVELY

NR(.1) = NUMBER OF 'DIVISIONS PARALLEL TO X AXIS

NR(,2) - = NUMBER OF DIVISIONS PARALLEL TO Y AXIS

* (XRLMN (T, J) , J=1,3) , (YRLUN(I, J) , J=1,3) , (ZRLMN(I,J) , J=1,3) *

XRLMN = DIRECTION COSINES OF LOCAL X AXIS

YRLMN = DIRECTION COSINES OF LOCAL Y AXIS

ZRLMN = DIRECTION COSINES OF LOCAL Z AXIS

OUTPUT FILE NAME : *HYDROSTATICS.OUT® . 2 )
COMPUTED OUTPUT VARIABLES :- ™ "
REQVOL = VOLUME CORRESPONDING TO INITIAL DRAFT (cu.m)
CB = COORDINATES OF THE CENTRE OF BUOYANCY IN

FOR THE INITIAL CONFIGURATION (@)



aaaa
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GZ = RIGHTIHG ARM (IF IWB=1) IN m OR MOMENT
. (IF IWB=0) IN N-m
T = EQUILIBRIUM TRIM ANGLE (degrees)

aaa

REQUIRED LIBRARY ROUTINES : NONE

aocaoocncanchacaacaacaacacaancacaacaana

GENERAL NOTES :

1. THE ORIGINAL RIG COURDINATE SYSTEM IS ALWAYS.
CONVERTED TO A PARALLEL ORTHOGONAL SYSTEM WHOSE ORIGIN IS
ON THE ORIGINAL RIG SYSTEM Z-AXIS AT DISTANCE °PTROT*
FROM THE ORIGIN; ‘THUS IN THE OUTPUT THE 'Z’ COORDINATES
OF *CB’ & *CG’ ARE EXPRESSED v.r.t. THE SHIFTED SYSTEM

_ 2. THE VERTICAL CENTRE OF BUOYANCY 'VCB® i.e.

CB(3) IN THIS CASE IS AS SUCH. CALCULATED AS THE VERTICAL
DISTANCE BELOW THE WATER LINE BUT FINALLY CORRECTED TO
THE CURRENT RIG SYSTEM i.e. 'ORIGINAL* OR 'SHIFTED TO
*PTROT* POSITION’ LATER ON IN THE SUBROUTINE "HYDRO®

3. IN CASE THE WEIGHT AND BUOYANCY, ARE NOT THE
SAME (IN WHICH CASE THE VARIABLE *INB* HAS A VALUE 0)
THEN THE ACTUAL VALUE OF WEIGHT (NT) AND THE MASS DENSITY
OF WATER (RHO) MUST EE G: IN *N® AND *KG/CU.M* RESPECTIVELY,
AND ON THE OUTPUT INSTEAD OF *GZ® THE VALUE OF NET HYDROSTATIC
RESTORING MOMENT (RESMOM) WOULD APPEAR. ’

a

" DIMENSION CB(3)

..

COMMON/HYD/NGYL , NRECT, XC1 (60, 3) , XC2(50,3) , DIA(60) ,
XCLMN (60, 3) , YCLMN (50, 3) , ZCLMN (60, 3) ,NC(50,4) ,
XR(60,3) , XLENG (60) , YLENG (60) , XRUI'N(SO 3).
§ 'YRLMN (60, 3) , ZRLMN (60, 3) , NR (50, 2)
COMMON/EQUAL/DRAFTI, DDRAFT, DTRIM, REQVOL , ERRVOL, BRRCB, IDISP,
ITRIM,R3T(3,3), XCO(a) THETA, TRINI, ITRM, I¥B, ¥T, LRHO  me

OPEN I/0 FILES

OPEN (UNIT=1, FILE="HYDROSTATICS.DAT’, TYPE="0LD")

: DPEI(UNI1'=10 FILE="HYDROSTATICS.PILOT, TYPE="0LD")
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|
JPEN(_UNIT=11 . FILE="HYDROSTATIG§. ﬂlﬂ"' TYPE="NEW")
¢ p

PI=3.1416927

c READ DATA FROM *HYDROSTATICS.PILOT*

¥ READ (10,%) IDISP, ITRIM; ITRM, TRIMI, INB
WRITE(11,%)'IS WT EQUAL TO BUOYANCY (=1 : YES & =0 : NO) =*,
+ IWB
WRITE(11,2030)
IF (IWB.EQ.0) THEN
READ (10,%) WT,RHO ! Weight (N) & Mass Dln-if.y (Kg/cu.m)
WRITE(11,*) *GIVEN TOTAL WEIGHT (W) =",¥T
VRITE(11,#) 'GIVEN MASS DENSITY OF WATER (KG/CU.M) =',RHO
WRITE(11,2030)
ELSE
END IF
READ (10,%) DRAFTI, P'rmrr THETAL
READ (10,#) NLIST,SLISTL,DLISTL
WRITE(11,2010) IDISP,ITRIM,ITRM, TRIMI,DRAFTI, P'nm'r THETAL,
+ NLIST,SLIST1,DLISTL .
© . 2010 FORMAT(////6X,’DISPL ITERATION OPTION (=0 : YES) =*,
I5/6X, *TRIM ITERATION OPTION (=0 : NO LI6/5X,
*FIXED TRIM OPTION (=0 : NO & =1 : YES >"ITRIN® TO BE 0)
16/6X, *GIVEN FIXED TRIM ANGLE (deg) =',F10.5//6X,
*INITIAL DRAFT (m) =*,F10.5/6X,
*POINT OF ROTATION ON Z-AXIS WBOVE ‘ORIGIN (m) =°,F10.5/6X,
*ROTATION OF X & Y-AXES ON THE WATER PLANE (deg) =',F10.6/6X,
*NO OF LIST ANGLES =',I6/6X,
YSTARTING LIST ANGLE (deg) =’,F10.5/6X,
ANGLE INCREMENT (deg) =',F10.5//)
TRIMI=TRIMI+PI/180.0
THETA=THETA1$P1/180.0
SLIST=SLIST1+P1/180.0'
DLIST=DLIST1+P1/180.0
READ (10,%) DTRIM,DDRAFT,ERRVOL,ERRCB
WRITE(11,%) *DTRIN® (deg) =’,DTRIN
WRITE(11,%) SDDRAFT® (m) =',DDRAFT
WRITE(11,%) °SPECIFIED *ERRVOL® (cu.m) =’,ERRVOL ~
WRITE(11,¢) *SPECIFIED “ERRCB" (m) =’,ERRCB
WRITE(11,2030)
2030  FORMAT(/)
WRITE(11,2030) .
DTRIM=DTRIM+PI/180.0
READ (10,%) (XCG(I),I=1,3)

TR
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3 %
WRITE(i1,#) °GIVEN CG(X,Y,2) IN RIG §YS (m) =’,(XCG(I),I=1,3)

READING ‘IN

PLATFORM GEOMETRY DATA

1100
1110
1120
1130

20

- .

10

40

FORMAT(/*

FORMAT(/*

S

COORD OF CYLINDER ENDS DIA LOCAL XYZ DIVN NOS'/)
FORMAT (F6..2, 6 (1X%F8.2) , 1X,F6.2,9(1X,F6.2) , 1X,4(1X, I3))

g
RECT CENTROID COORD X,YLENG LOCAL XYZ DIVN NOS'/)

FORMAT (14 (F8.2, 1X) , 2(1X, 13))

READ (1,4)

NCYL, NRECT

WRITE (11,2030)
WRITE (11,#) * NO. OF CYLINDERS = ’,NCYL

WRITE (11.%) *

WRITE (11,2030)
IF (NCYL.EQ.0) GO TO 10
WRITE (11,1100)
DO 20 I=1,NCYL
- READ (1, (XC1(I,J),J=1,3),(XC2(1,J),J=1,3) ,DIA(D),

(NC(I,J)., J:

NO. OF RECTANGULAR E/URFAM =" NRECT

READ (1.#) (KCLMN(E,J).J=1,3), (YCLMN(I, D), J=1,3),
(ZCLMN(I,J),J=1,3)

WRITE (11,1110) (XC1(I,J),J=1,3), (xc2(I, J) J=1,3) ,DIA(D),

(XCLN(I, ), J=1,3),, (YCLMN(I,J) , J=1,3) r—
(ZCLMN(I, J) ,J=1,3) , (NC(L,J) , J=1,4)
IF (NRECT:EQ.0) GO TO 30
WRITE (11,1120)
D0 40, I=1, NRECT
READ (1,%) (XR(I,J),J=1,8) XLENG(I),YLENG(I), (NR(I,J),J=1,2)

READ (1,%)

(ZRLMN(L, J),
WRITE(11,1130) OR(I
(XRLMN(T, J)
(ZRLMN(T, J)

(XRLMN(T, J)

1,3)

=1,3), (NR(I, ), J=1,2)

1,3), (YRLMN (I, J),J=1,3),

,J=1,3) , XLENG(I) , YLENG(I),
1,3), (YRLMN(T, J),J=1,3),

30

END OF READ

WRITE (11,2030) p
CALL HYDRO(0.0,0.0,0.0, DRAFTL, REQVOL., CB)
WRITE(11,+) *REQUIRED DISPLACEMENT (cu.m) =*,REQVOL

WRITE(11,#)

*CALC CB(X,Y,Z) IN RIG §Y§ (m)

WRITE (11,2030)

PRINT#, "

 PRINTe,*

. CALC CB(X,Y,2) IN RIG 5Y8 ¢

=*,(CB(D) I=1,3)

“ REQUIRED DISPLACEMENT (cu.m) =",REQVOL

=", (cB(D),I=1,3)



; - 212
! i
c SHIFT THE ORIGINAL RIG SYSTEM TO *PTROT*®
c
DD 50 I=1,NCYL N
XC1(I,3)=XC1(I,3)-PTROT '

80 XC2(I,3)=XC2(I, 3) -PTROT
DO 60 I=1,NRECT
60 XR(I,3)=XR(I,3)-PTROT —_
DRAFTI=DRAFTI-PTROT
. XCG(3)=XCG(3)-PTROT
WRITE (11,2030)
WRITE (11,9)* L
WRITE, (11,2030) & E:
WRITE (11,%)* CURRENT RIG SYSTEM IS THE SYSTEM SHIFTED®
WRITE (11,%)’ TO "PTROT®*’
WRITE (11,2030)
WRITE (11,%)°
WRITE (11,2030)
CALL ROTATION (R3T, THETA)
DO 3000 I=1,MLIST
ALIST=SLIST+ (FLOAT(I-1))*DLIST
T1=ALIST#180.0/PI
PRINT#, *>>>>> CALCULATING FOR LIST ANGLE =’,Ti,'<<<<<’
CALL EQUIL(ALIST)
3000 CONTINUE

STOP
END
¢ ~
c
c
c SUBROUTINES
c
c
c
c
c “
. C .
SUBROUTINE MATMUL1 (SA,8B,8C)
DIMENSION §A(3,3),5B(3),8C(3)
¢ -
do 6 I=1.3
B §C(1)=0.0
K=0
do 10 I=1,3
K=K+1
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do 10 J=1,3

BC(K)=6C(K) +5A(I, J) +6B(J)
return

end 3

~ SUBROUTINE MATMUL2 (SA,SB,SC) :
DIMENSION §A(3,3),5B(3,3),5C(3,3)

a e
§C(I, J)=8C(I,J)+5A(I,K)*5B(K,J)
return
end

SUBROUTINE HYDRO (THETA,ATRIM,ALIST,DFT,VTOT,CB)

DIMENSION CB(3),R(3.3),P(3),RP(3),PN(3),RPN(3)

COMMON/HYD/NCYL , NRECT, XC1 (50, 3) ,XC2 (60, 3) , DIA(69) .’
XCLMN (60, 3) , YCLMN (60, 3) , ZCLMN (60, 3) ,NC(50,4) ,
XR(80, 3) , XLENG (60) , YLENG (60) , XRLMN (50, 3) ,
YRLMN (50, 3) , ZRLMN (50, 3) , KR (50, 2)

PI=3.1416927

CALL RMATRIX (R,THETA,ATRIM,ALIST)
VT0T=0.0

CALCULATING FOR THE CYLINDERS i.e. THEIR WALLS AND ENDS

IF (NCYL.EQ.0) GO TO 100

DO 10 IC=1,NCYL

AH=SQRT((XC2(IC, 1)-XC1(IC, 1)) #42+ (XC2(IC, 2) -XC1 (IC, 2) ) #+2
+(XC2(IC,3) =XC1(IC,3)) #+2) i
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DH=AH/FLOAT (NC(IC,2))
DL=PI+DIA(IC) /FLOAT (NC(IC,1))
DR=DIA(IC)/(2.0#NC(IC,4))
DFIC=2.0+PI/FLOAT(NC(IC.1))
DFI=2.0+PI/FLOAT(NC(IC,3)) ’
AREAC=DL*DH L

DO 20 I=1,NC(IC,2).
PZ=(FLOAT(I)-0.5) *DH

DO 30 J=1,NC(IC,1)
ANG=(FLOAT(J)-0.5) *DFIC

PNX=COS (ANG) ’ .

PNY=SIN(ANG) ‘

PNZ=0.0

PN (1) =PNX*XCLMN (IC, 1) +PNY#YCLMN (IC, 1) +PNZ#ZCLMN (IC 1) ~
PN (2) =PNX+XCLMN (IC, 2) +PNY#+YCLMN (IC, 2) +PN2#2CLMN (IC, 2)

PN(3 MN (IC, 3)+PNY#YCLMN (IC, 3) +PNZ#ZCLMN (IC, 3)
PX=DIA (IC) #COS (ANG) /2.0
PY=DIA(IC) +SIN(ANG) /2.0

XC=XC1(IC, 1) +ZCLUN(IC, 1) #PZ
YC=XC1 (1€, 2) +2CLMN (IC, 2) *PZ
2C=XC1(1C,3) +ZCLMN (IC.3)*PZ

P (1) =XC+PX#XCLMN (IC, 1)°PY'VCLWI(IC I.) . |
P (2)=YC+PX+XCIRIN(IC, 2) +PY+YCLUN (IC, 2) e 3
P (3) =ZC+PX+XCLUN (IC, 3) +PY#YCLMN (IC, 3) -

CALL MATMUL1 (R,PN,RPN) . 8 1
CALL MATWUL1 (R,P,RP) & . |
IF (RP(3).GT.DFT) GO TO 30 |
VTOT=VTOT-RPN (3) *AREAC# (DFT-RP (3) ) ! .
YMOM=XMOU-RPN (3) $AREAC# (DFT-RP (3) ) $RP (1) o
YMOM=YMOM-RPN (3) *AREAC# (DFT-RP (3)) #RP(2) * .
ZMOM=ZMON-RPN (3) 'AR.EAC‘ (DFT-RP(3)) * (DFT-RP(3)) /2.0

CONTINUE 4

CONTINUE

X=XC1(1C,1)

Y=XC1(IC,2) g

2=XC1(IC,3) -l
PN(1)=-ZCLMN(IC,1)

PN(2)=-ZCLMN(IC, 2)
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" PN(3)=-ZCLMN (IC, 3)

DO 40 IT=1,2 ! CALCULATIONS FOR THE CIRCULAR ENDS -
D0 60 I=1,NC(IC.4)

RR=(FLOAT(I)-0.5) +DR

RR1=RR-DR/2.0

RR2=RR+DR/2.0 .

AREA=PI# (RR2#+2-RR1#%2) /FLOAT(NC(IC,3))

DO 60 J=1,NC(IC,3) S
ANG=(FLOAT(J) -0_6) #DFT o

PX=RR+COS (AKG) . ) 7
PY=RR#SIN (ANG) -

P(1)=X+PX#XCLMN (IC, 1) +PY*YCLMN(IC, 1)
P(2) =Y+PX+XCLMN (IC, 2) +PY#YCLMN(IC, 2) s
P(3) 7Z+PX#XCLMN (IC, 3) +PYsYCLMN(IC,3) - . 3 . ]

CALL MATWUL1 (R,PN,RPN) S —
CALL MATWULY (R,P,RF) ° :
IF (RP(3).GT.DFT) GO TO 60 )

VTOT=VTOT-RPN (3) *AREA# (DFT-RP (3))

XMOM=XMOM-RPN (3) *AREA# (DFT-RP (3) ) *RP (1)

YMOM=YMOM-RPN (3) * AREA (DFT-RP (3) ) #RP (2)

. ZMOM=ZMOM-RPN (3) *AREA* (DFT-RP (3)) * (DFT-RP(3)) /2.0

CONTINUE
CONTINUE -

X=xc2(1¢c,1) -

Y¥=XC2(IC.2)

2=XC2(1C.3)" : '
PN(1)=2ZCLMN(IC, 1)

PN(2) =ZCLMN(IC, 2)

PN(3)=ZCLMN(IC, 3)

CONTINUE .

CONTINVE : —

. %
CALEULATING FOR THE RECTANGULAR SURFACES

IF (NRECT.EQ.0) GO TO 110 = * |
D0 70 IR=1,NRECT .
* DX=XLENG(IR) /FLOAT (NR (IR, 1)) -

DY=YLENG (IR) /FLOAT (NR(IR, 2))

DA=DX4DY '

DO 80 I=1,NR(IR,1) 5
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D0 80 J=1, HI\(IR 2)
YY=(FLOAT(J) 0.6) #DY- \’LENG(? )/2.0

XX=(FLOAT(I)-0.5) -ux~x1.£nc(1?'n .0

. P(1J=XR(IR; 1) +XX+XRLMN (IR, 1) +YY+YRLMN (IR, 1)

P (2)=XR (IR, 2) +XX+XRLMN (IR, 2) +YY+YRLMN (IR, 2)
P (3)=XR(IR,3) +XX+XRLUN (IR, 3) +YY+YRLMN (IR, 3)
PN(1)=ZRLMN (IR, 1)
PN(2)=ZRLMN (IR, 2)
PN(3)=ZRLMN (IR, 3)

CALL MATMUL1 (R,PN,RPN) ;
CALL MATMUL1 (R,P,RP)
(RP(3) .GT.DFT) GO TO 90 .
T=VTOT-RPN (3) *DA* (DFT-RP (3)) _ ’ 21T
OM=XMOM-RPN (3) +DA* (DFT-RP (3)) #RP (1)
YMOM=YMOM-RPN (3) +DA# (DFT-RP (3)) RP (2)
ZMOM=ZMOM-RPN (3) +DA* (DFT-RP (3)) + (DFT-RP(3)) /2.0
CONTINUE : :

CONTINUE . -

CONTINUE P4

CALCULATE THE CENTRE UF;UIIYM!CY

CB (1) =XMOM/VTOT

CB(2) =YMOM/VTOT

CB(3)=ZMOM/VTOT

CALCULATE CB(3) w.r.t. THE CURRENT RIG COORD SYSTEM

CB(3)=DFT-CB(3)
RETURN

WD “w.

- SUBROUTINE EQUIL (ALIST)

DIMENSION CB(3),ROT(3,3),B(3),G(3),Ca(3) ,ROT1(3,3)
COMMON/EQUAL/DRAFTI, DDRAFT, DTRIM, REQVOL, ERRVOL , ERRCB, IDISP,
ITRIM,R3T(3,3),XCG(3), THETA, TRIMI, ITRM, IVB, WT,RHO

PAI=3.§416927 . &3
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~ INDX4=0

DTRM=DTRIM
D=DRAFTI "
IF(ITRM.EQ.1) ATRIM=TRIMI

ITER=ITER+1

PRINT, *>>> ITER =',ITER

CALL RMATRIX (ROT,THETA,ATRIM,ALIST)
CALL HYDRO (THETA,ATRIM,ALIST,D,VOL,CB)
ERR1=REQVOL-VOL

IF(IDISP.EQ.0) ERR1=0.0

IF(IDISP.EQ.0) PRINT#,’ ##+ IDISP = 0 ###°

PRINT+, "ERR? =’ ERR1

IF (ERRVOL.LE.0.0) PRINTs,’ ##+ ERRVOL .LE. 0.0 ##+’

IF (ABS (ERR{) .LE.ERRVOL) GO TO 40
IF(ERR1.GT.0.0) GO TO 20

" IF(INDX1.EQ.1) GO TO 30
- D=D-DT*2. .

GO TO 10

D=D+DT . "

INDX1=1

G0 TO 10

D=D-DT

DT=DT/2.

G0 TO 10 .

CONTINUE ! end of const. displ. check

PRINT#, *DISPL. SATISFACTGRY : PROCEED FOR EQUILIB TRIK’

DT=DDRAFT
INDX1=0 o

! Accla. dus to Gravity in m/sec/sec




€G(1)=XCG (1) -
€G(2)=XCG (2) “
€6(3)=XCa (3)
3 CALL MATMUL1 (ROT,CG.G) « _ .-
CALL MATMUL1 (R3T,G.CG) )
CALL MATMUL1 (ROT1,CB.B)
CALL MATMUL1 (R3T,B,CB)

ERR2=CG(1)-CB(1) ! ERR2=CGX-CBX in the yawed coordinate
IF(ITRIM.EQ.0) ERR2=0.0 4
IF(ITRIM.EQ.0) PRINT#,” ##+ ITRIM = 0 ##s’ .
PRINT+, "ERR2 =*,ERR2 . ) r—
. IF (ERRCB.LE.0.0) PRINT#,’ ##% ERRCB .LE. 0.0 #ss* A
“ IF (ABS (ERR2) .LE.ERRCB) GO TO 70
IF (ERR2.GT.0.0) GO TO 60 . . 5

ATRIM=ATRIM-DTRM#2.0
’ GO TO 10 -

60 ATRIM=ATRIM+DTRM
INDX2=1
TGO TO 10 .

60 ATRIN=ATRIM-DTRM
DTRM=DTRM/2.0
GO TO 10 - . L

“70 CONTINUE ' ! end of trim iteratioms for the given list angle

PRINT#, *TRIM ADJUSTMENT SATISFACTORY,: PROCEED TO NEXT LIST’
WRITE(11,2020) - .
WRITE(11,2020)

2020  FORMAT(/)
T1=ALIST#180./PAL °
T2=ATRIM#180./PAT .
WRITE(11,#) *>>>> LIST ANGLE (DEG) =,T1
WRITE(11,4)’ ADJUSTED DRAFT (m) =*,D
WRITE(11,%)' ADJUSTED DISPLACEMENT (cu.m) =*,VOL
WRITE(11, #) *RESULTANT EﬂUILIBRIUII TRIM ANGLE (DEG) =’,T2
WRITE(11,2020)
WRITE(14,#) *CG(X,Y,2)
WRITE(11,)'CB(X.Y.2)
WRITE(11,2020)
-GZ=CG(2)-CB(2) - .
RESMOM=CG (2) #WT-CB (2) *VOL*RHO*GRAV
IF (ALIST.LT.0.0) GZ=-GZ .
IF (ALIST.LT.0.0) RESMOM=-RESMOM

v \\ IF (IVB.EQ.0) THEN

€G(1),06(2),C6(3) 1'in the yuld'
.CB(1) ,CB(2),CB(3) ! coordinate system




] 210 il

‘

' nrrz(xf )" '+ -HYDROSTATIC nammo MOMENT (u-lo =*, RESMOM
nmm )" ¢ RIGHTING ARM GZ (@) =’.GZ N

¥

mmm 2020) -

WRITE(1f)#) *VOL ERROR (cu.m) =*,ERR1,’ CB ERROR (m) =", ERR2
«WRITE(11,+) "NO. OF ITERATIONS USED =*,ITER.

PRINT+, 'LIST ANGLE =*,T1,” TRIM ANGLE =';T2

. PRINTs, *VOL ERROR =*,ERR1,’ CB ERROR =',ERR2
: 0 o
c -0 ,
e ( J
& c \
g c 3 . 2 .
: SUBROUTINE RMATRIX (R,THETA,ATRIM,ALIST) P
DIMEYSION Ri(3,3),R2(3,3) R(3.3) - L
PAI=3. 1416027 N .
c 2 : R4
E1=COS (THETA) : = g
E2=5IN(THETA)
C=COS (ALIST) % .
§=STH(ALIST)
R1(1;1)=E1+E1+(1.0-E1+E1) +C
R1(1,2)=E14E2-E1+E2+C '
R1(1,3)=E2¢8
v -~
R1(3.1)=-E2+8
- : R1(3,2)=E1¢§
R1(3,3)=C
. c . s 3
. - E1=C0S (PA1/2: 0+THETA) —
& . =5IN (PAI/2. 0+THETA) -
.- “C=COS (ATRIN) ___ «
- B=BIN(ATRIN)
- . R2(1,1)=E1SEL+(1. o-sx-zs)-c
s R2(3,2)=E19E2-E14E2eC
1,3)=E2¢8 ' .
L s R2(2,1)=E2+E1-E24E1+C
! " R2(2,2)=E24E2+(X.0-E2¢E2) +C
5 R2(2,3)=-E148 3
R2(3,1)=-E2+§ '

R2(3,2)=E1+8 {
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R2(3,3)=C —

CALL MATMUL2 (R2.R1.R) ’
RETURN -

XD

SUBROUTINE *ROTATION® ; CALCULATES THE (R3] SPOSE
THE TIVEN ROATION OF THE, ARBITARY VECTOR ON THE
PLANE ABDUT II(ICH 'LIST' 16 APPLIED. THE MATRIX [R3T]
IN THE MAINS AND SUGROUTINE:*HYDRO® IS USED TO PROJECT
THE *CB" AND *CG* VECTORS CALCULATED IN THE CURRENT
RIG SYSTEM ONTO THE SYSTEM YAWED w:r.t. X-AXIS OF THE
‘CURRENT RIG SYSTEN BY THE AMOUNT *THETA'. THE CALCULATION
| OF THE RIGHTING ARM ¥GZ* AND CHECKS MADE FOR EQUILIBRIUM
TRIM'ARE DONE COMPARING THESEmPROJECTIONS.

SUBROUTINE ROTATIBN(R,THETA‘)
DIMENSION R(3.3) . . ’

“C0S (THETA) g -
S=STN(THETA), ] :

R(1,1)=C

R(1,2
R(1,3)=
R(2, 1)=~s
R(2,2)=C
R(2,3

R(3,3)=1. 0
RETURN

END




APPENDIX C :
LISTING OF ‘TIME_DOMAIN'
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PROGRAM *TIME DOMAIN® : PERFORMS TIME DOMAIN SIMULATION
OF A TLP FOR INTACT AND TETHER DAMAGE CONDITIONS

aconhoccc0nc0ac0OOQOAQOOOQOOQOOONOOOOOOOOONOOQOQOAONO

*METH, MITER, INDEXL

INPUT FILE NAME : 'TIME DOMAIN.PILOT®

INPUT VARIABLES :-

IMSL ROUTINE °'DGEAR’ PARAMETERS

METH,MITER : ) :

INDEXL = CORRESPONDS TO *INDEX® IN *DGEAR (=1)

*NCOND® ‘ i

NCOND = NUMBER OF NONZERO INITIAL CGNDITIONS

++ FOR EVERY NONZERO INTIAL CORDITION PROVIDE :

PLY()

) ‘= INTIAL VALUE OF THE Jth:STATE
VARIABLE Y(J)

*DRAFT, WT* S

DRAFT = DRAFT OF THE PLATFORM (m) .

WT . WEIGHT OF THE PLATFORM (N)
*(Ca(D),1=1,3) " :
CcG

COORDINATES OF THE CENTRE OF GRAVITY (m)

*RXX,RYY,R2Z*

RIX = RADIUS OF GYRATION ABOUT X-AXIS (n)
RYY = RADIUS OF GYRATION ABOUT Y-AXIS (m)
R2ZZ = RADIUS OF GYRATION .ABQUT Z-AXIS (m)
*cp1,CM"

cp1 = NONLINEAR DRAG COEFFICIENT

ou = VIRTUAL MASS COEFFICIENT

*NSTEP, STEP1, TOL* : . N

NSTEP = NUMBER OF TIME STEPS

STEP1 TME INTERVAL (sec) FOR RESPONSE OUTPUT
TOL. = ERROR TOLERANCE FOR ’DGEAR’

*NTRANS, EXPI* .

NTRANS = NUMBER OF TIME STEPS IN THE BEGINING

OVER WHICH DRAG MAY ARTIFICALLY INCREASED, -
.IF DESIRED, TO DAMP THE SYSTEM IN ORDER
. TO AVOID INITIAL TRANSIENT
EXPI = INDEX FOR AN EXPONENTIAL MULTIPLIER
USED TO INCREASE DRAG TO DAMP THE
SYSTEM INITIALLY (=0 IF THIS OPTION
I8 NOT DESIRED
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'T0° :
0 = TIME LENGTH OVER- WHICH THE ‘HALF COSINE
FUNCTION IS APPLIED (sec)
'FIW, AMPL®
FI JAVE HEADING (degroes)
v WAVE FREQUENCY (rad/sec)
& AP1 = WAVE AMPLITUDE (m)
"IZETA, IROT" L
IZETA = 0 IF INTEGRATION IS TO BE CARRIED OUT
ONLY UPTO THE MEAN WATERLINE AND
= 1, OTHERWIGE
IROT - = IF EQUAL TO 0 THEN m ANGLES ARE TAKEN
. AS VECTORS, 1| OTHERWISE
"NTRIG, "T FACTUR' .
NTRIG = TIME STEP- NUMBER AT WHICH TETHER.LOSS
' HAS T0 OCCUR
' NT % = TENSION LEG NUMBER AT WHICH TETHER LOSS
) HAS T0 OCCUR
FACTOR = FACTOR BY WHICH THE STIFFNESS OF THE J

AFFECTED TENSION LEG HAS T0 BE
MULTIPLIED AFTER TETHER LOSS
il
INPUT FILE NAME : *TIME DOMAIN.DAT”

aoocn0ao0acacocnN0aoQO0QaO000O0N0AONQAOONNAACQAOQAAGAAAGAAGOAaaA

—
NCYL = NUMBER OF CYLINDERS
++ FOR EVERY CYLINDER PROVIDE :
*(XL€T, 3),J=1,3), (X2(1,J), J=1,3) ,D(T) ,NDIV(D)*
X1,%2 = COORDINATES OF THE CYLINDER ENDS (m)
D . = DIAMETER OF THE CYLINDER (m)
f NDIV = NUMBER OF HOMYZONTAL SLICES THE CYLINDER
: WOULD HAVE T0 BE DIVIDED
*NSURF * = NUMBER CIRCULAR FLAT SURFACES
++ FOR EVERY SURFACE PROVIDE :
* (6(I,J),J=1,3), (ANS(I,J) , J=1,3) ,DS(D)*
X8 = COORDINATES OF THE CENTRE OF THE FLAT
SURFACE
K ANS = DIRECTION COSINES OF TRE NORMAL TO THE
. FLAT SURFACE
DS(D) = DIAMETER (m) OF THE FLAT SURFACE
*NTEN® = NUMBER OF TENSION LEGS
*+ FOR EVERY TENSION LEG PROVIDE : .
- v *(XT1(I,3),J=1,3), (XT2(L,J) , J=1,3) , AKT(I) *
XT1,XT2 = COORDINATES OF THE ENDS OF THE ‘TETHER
AXT = AXIAL STIFFNESS OF THE TETHER

N

. “ ‘
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c CINER® . 5
c NWP = NUMBER OF CIRCULAR WATERPLANES >0 IF
c . _ LINEAR HYDROSTATIC STIFFNESS ARE DESIRED,
4 =0 OTHERWISE
c ++ FOR EVERY WATERPLANE PROVIDE
c *XWP (I),YWP (I) ,DWP(I) **
[+ XWP, YWP. = X AND Y COORDINATES OF THE CENTRE OF
c THE WATERPLANE
c DWP = DIAMETER OF THE WATERPLANE
[
c OUTPUT FILES :
c .
[ 'TIME DD\IAIH OUT* - PRINTS QUT THE INPUT DATA AND
[ . COMPUTED BUOYANCY AND CB
c *SURGE . DAT, SWAY. DAT, HEAVE . DAT, ROLL . DAT, PITCH . DAT, YAWW . DAT®
c - MOTION RESPONSES AGAINST A TIME SCALE
c *TEN1 . DAT, TEN2.DAT, TEN3.DAT, TEN4 . DAT"
c - TENSION RESPONSES AT THE FOUR
c CORNERS AGAINST A TIME SCALE
c
c 5
[ REQUIRED LIBRARY ROUTINES : IMSL ROUTINES *DGEAR’ AND .
4 'LINVIF’
c

IMPLICIT DOUBLE PRECISION (A-H), (0-Z)

DIMENSION WK(1000)
c
[+ OPEN I/0 FILES
[+

OPEN (UNIT=1, FILE="TIME DOMAIN.DAT’, TYPE='0LD")
OPEN (UNIT=3, FILE="TIME DOMAIN.PILOT’,TYPE='OLD")

OPEN (UNIT=4, FILE="TIME DOMAIN.OUT’,TYPE="NEW’)

OPEN (UNIT=7, FILE="SURGE.DAT’, TYPE="NEW’)

OPEN (UNIT=8, FILE="SWAY .DAT" , TYPE="NEW')

OPEN (UNIT=9, FILE="HEAVE.DAT’ , TYPE="NEW")

OPEN (UNIT=10, FILE="ROLL.DAT’ , TYPE="NEW’)

OPEN (UNIT=11, FILE='PITCH.DAT* , TYPE="NEW’)

OPEN (UNIT=12, FILE="YAW.DAT"  TYPE="NEN’)

OPEN (UNIT=13, FILE="TEN1.DAT" , TYPE="NEV")

OPEN (UN1T=14 , FILE="TEN2.DAT"; TYPE="NEW')

OPEN (UNIT=16, FILE="TEN3 .DAT" , TYPE="NEW") .
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: DPEN(UHIT=10,FILE='TEIM.DAT‘,TYPE='NEi‘)

- -

- .

READ (3,%) METH,MITER, INDEX1

N =21

IF (METH.EQ.1) NMETH =
IF (METH.EQ.2) NMETH =
IF (MITER.EQ.0) NMITER
IF (MITER.EQ.2) NMITER
IF (MITER.EQ.3) NMITER
NWK = 4sN+NMETH+NMITER

PRINT,* NWK =", NWK
CALL SIMUL (WK,NWK)

STOP

.END "

SUBROUTINE SIMUL (WK,NWK)

IMPLICIT DQUBLE PRECISION (A-H).(0-2)

INTEGER*2 M(60000)

DIMENSION WK(NWK),IVK(21),Y(21)

COMMON/SUBFCN1/CN, CD, ISTEP, NCYL , NSURF , NTEN, WT,FI,W, AK,
PI,RHO,G,BF,XB, YB,ZB, AMP, IFCN, NWP,BF1, XB1, YB1,2B1,

. IZETA, IROT.NTRIG,NT,FACTOR

COMMON/SUBFCN2/CG (3), X1 (60, 3) , X2(60,3) , D(50) , NDIV(50) , .
AL (50) , X5 (60,3) , AN (60, 3), D5 (60) , AREA (50) , TL (60) ,
XT1(50,3) ,XT2(50,3) , AKT (60) , AKT1 (50 , AMASS (8) , TEN (50),
XWP (60) , YWF(60) , DWP (50) , WPA(50) , WPI(50) ,FTOT(6)

COMMON/SUBTSD/NSTEP, STEP1

EXTERNAL FCN,FCNJ,MATWUL1,MATMUL2, MATMUL3, CROSS

PI=3.1416927D0
G=9.81D0
RHO=1025.0D0

REWIND 3

READ (3;%) METH,MITER, INDEX1

VRITE (4,4005) METH,MITER,INDEX1

FORMAT (/* #+ DGEAR PARAMETERS s+ °/

BX, 'METH = ",12,6X, 'MITER = ’,I2,5X, "INDEX{ = *,12/)
PRINT#, "METH =* ,METH, * MITER #' MITER

PRINT+, *INDEX1 =", INDEX1 .

READ (3,%) NCOND | NCOND = 0 if all initial cond. are zero
WRITE (4,%)°  NCOND = *,NCOND
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IF (NCOND.EQ.0) GO TO 10 3 \

WRITE (4,%)° J "y
DO 20 I=1,NCOND
READ (3,#) J,Y(J)
WRITE (4.%) J.Y()
READ (3,#) DRAFT,NT
WRITE (4,4000)
FORMAT (/)
WRITE (4.%)° DRAFT (m) =", DRAFT
WRITE (4,%)" WEIGHT (N) =’.%T -
WRITE (4,4002)
READ (3,%) (CG(I),I=1,3)
WRITE (4,4010) (CG(I),I=1,3) .
FORMAT (* CG(X,Y,Z) IN BODY COORD : *,3(F10.3,2X))
READ (1,#) NCYL ! NCYL = No of cylinders
WRITE (4.%)’ NO. OF CYLINDERS =’ NCYL .
WRITE (4,4020)
FORMAT (/' #+ CYL COORD ETC. IN 5YS FIXED WITH CG '/
4X,'X1°,8X,'Y1",6X,'21° 8X, "X2' BX, *Y2' X, "Z2',11X, "LENGTH',
10X, 'DIA’, 10X, *NDIV'/)
FORMAT (6(F8.3,2X),3X,F10.3, EX,F!.O 3,6%,16)
DO 30 I=1,NCYL
READ (1.#) (X1(I,J),J=1,3), (X2(1,9),J=1,3),D(I) ,NDIV(D)
DO 36 J=1,3
X1(1,J) = X(I, 3)-CG(I)
X2(1,3) = X2(I, J)-Ca(J)
AL(I) = ®SQRT ((X2(I,1)-X1(I, 1))##2+(X2(I,2)-X1(I,2) )2+
. (X2(I,3)-X1(I, 3))#*2)
WRITE (4,4030) (X1(I,J).J=1,3),(x2(I,J),J=1,3) AL(I),D(I),
NDIV(I)
WRITE (4,4000)

IF (NSURF.EQ.0) GO TO 41

WRITE (4,4040)

FORMAT (/® #+ SUREACE COORD ETC. IN SYS FIXED WITH CG #+°/
4x,'X’,9X,°'Y’,9X, '2°, 14X, 'NX" ,6X, 'NY* 8X, "NZ*,10X, *DIA’,

10X, "AREA’)

FORMAT (3(F8.3,2X),3X, 3(F8.5.2X),3X,F10.3,6X,F10.3) =
DO 40 I=1,NSURF

READ (1,%) NSURF ! .
WRITE (4,%)'  NO. OF CIRCULAR SURFACES =*, NSURF
|
\

- READ (1,%) (X8(I,J),J=1,3), (ANS(I,J),J=1,3), DS(I)

DO 46 J=1,3

X8(1,J) = X8(I,J)-CG(J)

AREA(I) = PISDS(I)#+2/4.000 '«

WRITE (4,4060) (X8(I,J),J=1,3),(ANS(I,J),J=1,3),D8 (1) AREA(D) »



4
4080

4070

66

60

4071

4072

67
56

aoa

> { o "

WRITE (4,4000)

READ (1,%) NTEN

WRITE (4.%)° NO. OF TENSION LEGS =’ NTEN

WRITE (4,4060)

FORMAT (' #+ TETHER COORD ETC. IN S¥S FIXED WITH CG #+'/

4X,’X1’,8X,’Y1’ 68X, Z1*,6X, 'X2’,8X, 'Y2’,8X, *Z2’,11X, "LENGTH’,

3X, *STIFFNESS (N/m)’/) z

FORMAT (6(F8.3,2X),3X,F10.3,5X,E12.5)

D0 60 I=1 NTEN

READ (1.%) (XT1(1,J),J=1,3), (XT2(I,J),J=1,3) ,AKT1(I)

TL(I) = DSQRT((XT2(I, 1)-XT1(I, 1))n2~(x1'2(1 2)-)(1'1 (1.2))%#2+
(XT2(X, 3)-XT1(I,3)) #*2)

AKT(I) = AKT1(I)

D0 65 J=1,3

XT1(I,J) = XT1(I,J)-CG(J)

XT2(I,3)-= XT2(I,3)-DRAFT

WRITE (4,4070) (XT1(I,J),J=1.3), (XTZ(I J).J=1,3),TL(D) ,AKT1(D)

READ (1,%) NWP ! NWP = No. of waterplanes for linear

WRITE (4,4000) ! - hydrstatic calculation

WRITE (4,%)’  NO. OF WATER FLANES = ’ NWP .

IF ()l'l’ EQ.0) GO TO &8

WRITE (4,4071)

FORMAT (° #% WATER PLANE CDDRDIIIATES ETC IN RIG SYS *+ */

' XWP YVP DWP AWP IWP'/)

FORMAT (5(F12.3,2X))

D0 67 I = 1,NWP

READ (1,#) XWP(I),YWP(I) DWP(I)

WPA(I) = PI+DWP (I)#+2/4.0D0

WPI(I) = PI+DWP(I)#+4/64.0D0

WRITE (4,4072) XWP(I),YWP(I),DWP(I),WPA(I) A WPI(I)

READ (3,#) RXX,RYY,RZZ

WRITE (4,4)’ RXX,RYY, RZZ (m) =", RXX,RYY,RZZ

WRITE (4,4000)

READ (3,%) CD1,CM

WRITE (4,%)° CD =*,CD1,” =*,CM

WRITE (4,4000) ~

READ (3,#) NSTEP,STEP1,TOL

READ (3,%) NTRANS,EXPI | NTRANS = NO. OF STEP TILL

THE EXPONENTIAL DECAY FUNCTION HOULD Bi! ACTIVE; EXPI : INDEX
~

READ (3,#) TO B

WRITE (4,%)° NO. OF-STEPS =’ NSTEP

WRITE (4,%)° STEP LENGTH (sec) =*,STEP1

WRITE (4,%)° PRESCRIBED TOLERANCE =’,TOL

3
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WRITE (4,%)'  NTRANS =',NTRANS,’ EXPI =, EXPI
WRITE (4,%)'  T0 (FOR THE RAMP FUNCTION) =’,T0
READ (3, ) FL W, AUPY
READ (3,#) IZETA,IROT ! If IZETA = O, then
c integration is done only upto mean water line
WRITE (4,4080) FI,¥,AMP1,IZETA,IROT .
4080 FORMAT (/BX,’WAVE HEADING (deg) ='.F8.4/
+ BX,'WAVE FREQUENCY (rad/
+ BX,’VAVE AWPLITUDE (m) =,F8.4/ ~
+ Bx,’IZETA = °,I5,’ IROT = *,I6)
READ (3, #) NTRIG,NT,FACTOR /,/-\ : o
B
NTRIG = NUMBER OF STEP WHERE THE TETHER WILL BE DAMAGED
NT = TETHER NUMBER THAT WILL SUFFER DAMAGE
FRACT = m.'ngi BY WHICH STIFFNESS AT °NT* WILL BE MULTIPLIED

aacaaa

END OF READ

a

WRITE (4,4000)

WRITE (4.%)' NTRIG = ’,NTRIG
' WRITE (4,%)' NT = lIT
WRITE (4,%)' FACTOR = * ,FACTOR W
PHASE = PHASE+PI/180

FI = FI*PI/;
AK=1+7/G

! AK : ‘Wave“No
Y

¢
¢ CONSTRUCT THE PHYSICAL MASS-INERTIA ARRAY ®AMASS(8) ®
c
AMASS (1) =V1/G
AMASS (2) =AMASS (1)
AMASS (3) =AMASS (1) -
AMASS (4) =AMASS (1) *RIX*RXX
AMASS (5) =AUASS (1) *RYY*RYY =
= AMASS (8) =ANABS (1) +RZZ+R2Z

& o ) 3
c CONVERT *CG()* FROM BODY COORD TO WL COORD FOR LATER USE
c

CG(3) = CG(3)-DRAFT
c GO TO 782
WRITE (7,9%) NSTEP .
WRITE (8,4) NSTEP .
WRITE (9,*) NSTEP '
WRITE (10,%) NSTEP
WRITE (11,%) NSTEP
WRITE (12,) NSTEP




WRITE (13,4) NSTEP .
WRITE (14,%) NSTEP
WRITE (15,+) NSTEP : ¥y
WRITE (16,4) NSTEP

! 782 N=21
: T = 0.D0
INDEX = INDEXL \
= STEPL
DO 1000 ISTEP=1,NSTEP

INCREASE CD' TO ARTIFICIALLY BM@ THE SYSTEM TO
AVOID UNDUE INITIAL TRANSIENTS '

1
aaaa

ECD = 1.0-DFLOAT(ISTEP) /DFLOAT(NTRANS)
~ " IF (ECD.LT.0.0) ECD =
CD = CD1#DEXP (EXPI+ECD)

INTRODUCE *RAMP® FUNCTION :.COSINE TYPE

aaa

IF (T0.EQ.0.0) GO TO 60
. RAWP = 0.54(1.0-DCOS(PI+T/T0))
60  IF (T.GT.TO) RAWP = 1.0
* AP = AUP1RAMP
[ : ~
| IFON =

TEND

0 N
T+STEPL

WRITE (7,%) T,Y(1)
WRITE (8,%) T,Y(2)
WRITE (9,%) T.Y(3)
WRITE (10.%) T.Y(19)
N WRITE (11,4) T,Y(20)
WRITE (12,%) T,Y(21)
WRITE (13:+) T,TEN(1) ,
WRITE (i4,%) T,TEN(2)

‘WRITE (16,%) T.TEN(3) ?
WRITE (16,4) T.TEN(4) -

- .CALL DGEAR (N,FCN,FCNJ,T,STEP,Y, TEND, TOL,METH, MITER, INDEX,
. INK, WK, IER)
IF (ISTEP.EQ.1) WRITE (4, #) *TOTAL BUOYANCY AFTER STEP # 1 (ll) =,
¢ BF,’ CB(XY.Z) IN'CG COORD :'.XB,YB,ZB
PRINTs,* ISTEP =*,ISTEP,’ IFCN =*, IFCN
+ ., IF (IER.GT.128) GO TO 60O

s




=*,T," TTEND =°,TEND,” TOL =*,TOL.
* .MITER, '¢ISTEP =’,ISTEP,

T ='.T,” TEND =" TEND,
. MITER =’ MITER
CONTINUE

CONTINUE
d RETURN -
D
/ ¢
~_ g "
c SUBROUTINES o ‘
b4 b S
- e ?
SUBROUTINE FCN (N, T.¥,YP) ’ ”
TWPLICTT DOUBLE PRECISION CA-H), (0-)
- e
DIMENSION YP (21), DUMNY1(3, 3) ,DUMMY2(3) . R (3,3) . TR(3,3) , XX1(3) .
. XX2(3),GH(3) ,ANG(3, 3) ,RNG (3,3) , ADUAE(3., 3) ,ADA1(3,3) ,
- ADJJ (3,3, ANGTR(3, 3) ,XPG (3) ,XPO (3) AGBAR1(3,3) .
. AGBAR(3,3) , ADJIE(3, 3) ,ADJ1(3,3) , OMEGA(3) ,¥AG (3) ,
. CWCAG (3) , VW (3) | AW €3) , VNG (3), FN1(3) ,FN2(3)  VELG(3) .
. VRELG (2) , AMDG (3}, FD (3), AN (3) | ADMAZ(3, 3)  ADJ2E (3, 2)
. N 1032 (3,3), AMN2(3K, TM(6,8) , THINV (8,6,
. FKARTH(6) , XSG (35, ANSG (3) . ANSO(3) ,X60(3) , FP(3) . AMPG(3) ,
. X116 (3121, ]
» XT10 (3),FT(3) , A4TG (3) ,B(3. 3) ,GFOR(6) ,RWCI(3,3)
. BINVW(3), WKARB(3) B
o c -
COMMON/SUBFCN1/CM, CD, ISTEP , NCYL, NSURF, NTEN,¥T,FT,¥,AK,
. PILRHO,0,BF , XB,YB, ZB, AUP , TFCH,NWP,BF1, XB1,YB1 . ZB1,
M IZETA, IROT, NTRIG,NT , FACTOR ]
coufON/SUBFCN2/cG (3) ,X1 (60, 3),X2(60,3) , D (60) ,NDIV(60) ,
. AL(50) ,¥5(50,3) ,ANS (60, 3) . D5 (60) , AREA(60),TL(60) ,
~ . XT1(50,3),XT2(60,3) , AKT(50) , AKT1 (50) , AMASS(8) . TEN(60) ,
. XWP (50),YWP (50) ,DWP (60) , WPA(E0) , WPI(50) , FTOT(6)
c.
IFCN = IFCN+1
. 4000 FORUAT (/)
' c
c INITIALIZE
c




DO 6 1=1.3 b
DO 6 J=1.3 .
ADMAL(I. J) = 0.DO
ADJI(1,J) =0.DO
ADMAZ(I, J) = 0.D0
6 ADJ2(1,J) =0.D0
DO 10 I=1,4
FTOT(D = 0.00
DO 10 J=1,8
10 TM(). = 0.00
BF = 0.D0
XMOM = 0.D0
YMOM = 0.D0
ZMOM = 0.D0

.c ‘CONSTRUCT ROTATION WATRIX *R(3,3)* & ITS TRANSPOSE *TR(3,3)"

IF (IROT.GT.0) THEN

RCL,J) = Y(9+1I)
11 TR@J,I) = Y(9+II) - —

= DO 12 I=1
=1

s 0 c CONSTRUCT ANGULAR VELOCITY VECTOR "OMEGA(3) *

D0 60 I=1,d
50 OMEGAMD) =.Y(6+I)

DO 1000 IC=1,NCYL ! Member Loop Beginas
§ D0 201113
LD = X416, 1)
20 02D = X361

c CALCULATE DIRECTXON COSINES "GN'(3)* OF THE MEMBER IN GXYZ

DO 26I=1,3 .
6 GN(I) = OXX2(I)-XX1(I)) /AL(IC)

Q




.ancaa

30

aaa

356

40

aao

<

L2232 .
DL = AL (IC)/DFLOAT(NDIV(IC))
DVOL = PIsD(IC) #32¢DL/4.0D0
CM1 = RHO+DVOL*CM
CM2 = RHO*DVOL* (Ci-1.0D0) '

CONSTRUCT [N’] MATRIX : ANG(3.3)

ANG(1, 13\g GN (2) #42+GN (3) 42
ANG(1,2) = -GN (1)*6N(2)
ANG(1,3) = -GN (1)+GN(3)
ANG(2,1) ="ANG(1,2) .
ANG(2,2) = GN(3)#324GN (1)#+2
ANG(2,3) =i-GN (2)+GN(3)
ANG(3,1) = ANG(1,3)

ANG(3,2) = ANG(2,3)

ANG(3,3) = GN(1)#+2+GN (2)#+2

CONSTRUCT MATRICES [mai] : ADMA1(3,3), [ma) : ADMAE(3,3)

[JJ] : ADJI(3.3)

CALL MATMUL2 (R,ANG,RNG)

CALL MATMUL2 (RNG,TR, ADMAE)

DO 30 I=1,3 . >
DO 30 J=1,3

ADJI(I, J) = RNG(L,)) *CM2

CALL MATMUL2 CANG,TR, ANGTR)

DO 1600 ID={,NDIV(IC) | Slice by slice computation

CALCULATE *XPG (3)* & *XPO(3)® IN CXYZ & 0XYZ

DO 36 I=1,3

XPG(I) = XX1(I)+(DFLOAT(ID)-O .6D0) *DLeGN(I)
CALL MATMUL1 (R,XPG,XPO)

DO 40-I=1,3

XPO(E) = XPO(I)+Y(I)+CG(D)

CALC WAVE ELEVATION "ZETA* W.R.T. WL

~XBAR = XP0(1) #DCOS (FI) +XP0(2) #DSIN (FI)

ARG #T+AK*XBAR
ZETA = AMP#DCOS (ARG)
IF (IZETA.EQ.0) ZETA = 0.0

IF (XP0(3).0T.ZETA) GO T0 1600 | i.e. go to next slice
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a
c CALC BUOYANCY FORCE "B® AND ITS X & Y MOMENTS

BF = BF+DVOL#RHO*G :
o XMOM = XMOM+DVOL#RHO#G¥XPG (1)
\ k YMOM = YMOM+DVOL+RHO%G*XPG (2)
ZMOM = ZNOM+DVOLSRHO4G#XPG (3)

¥ . c CONSTRUCT MATRICES "AGBAR1(3,3)" & "AGBAR(3,3)"

AGBAR1(1,2) = XPG(3)
AGBARY(1,3) = -XPG(2)
AGBAR1(2,1) = #XPG(3)
- AGEAR1(2,3) = XPG(1) . ‘
. AGBAR1(3,1), = XPG(2) k.
AGBAR1(3,2) = -XPG(1) = .
DO 41 I=1,3
DO 41 J=1,3 .
41 AGBAR(I,J) = -AGBARL(I,J) ;° S e
* CALL'MATMUL2 (ADJJ,AGBAR1,ADJ1E)
CALL CROBS (OMEGA,XPG,WCAG) -
GALL CROSS (OMEGK, WCAG, NCWCAG) . =

CALC WAVE VEL 2 ACCLN IN OXVZ

aan

A = AUPSDEXP (AKeXPO(2))

\ V(1) = WeADCOS (ARG) #DCOS (FI) .
A*DCOS (ARG) *DSIN (FI) 3

#A*DSIN (ARG) ,
WsWsA+DSIN (ARG) *+DCOS (FI)

W+W+A+DSIN (ARG) *DSIN(FI)

% AW(8) = -WsW+A+DCOS (ARG)

CALL MATMUL1 (TR,VN,DUMY2)
- GALL MATMUL1 (ANG,DUMMYZ,VWNG)

caa

CALC '.Flll ()" a 'Fli; (El) .

CALL MATMUL1 (ADMAE,AW,FN1) !
DO 61 I=1,3 o, v 2
51 FN1(I) = FN1(I)*CNL
= . CALL MATMUL1 (ADJJ,WCWNCAG, FHZ)

a

c . CALC RELATIVE VEL- "VRE.G(S)“'IH GXYZ
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80

aaa

65

aaa

70

76

80

86
1600
1000

aaa
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DO 66 I=1,3',
VELG(I) = Y(3+I)
CALL ‘MATMUL! (ANGTR,VELG,VRELG) & R s
CALL MATMUL1 (ANG,NCAG,DUMMY2)

D0 60 I=1,3

VRELG(I) = VWNG(I)-VRELG (I)-DUMMY2(I) :
AVRELG = DSQRT(VRELG (1) #*2+VRELG (2) ##2+VRELG (3) $+2)

CALC DRAG FORCE "FD’*® AND ITS MOMENT *AMDG(3)*

DO 65 I=1,3

DUMMY2(I) = 0. SDO'RHU‘CD‘D(IC)‘DL.AVRE.G‘VRELG(I)
CALL CROSS (XPG, DUMMY2,AMDG) : .
CALL MATMUL1 (R,DUMMY2,FD)

CALC uuwm‘s PAMNL(3)* & *AMF2(3)*

CALL IMTIGULZ (AGBAR, ANGTR, DUMMY1). *
CALL JATMULL (DUMMY1, AW, Mﬂll)

DO 70 I=1,3

AMN1(I) = AMNI(I)*CM1

DO 70 .
ADMA1(I,J)<= ADMA1(I,J)+ADMAE(I, J)+CM2 E
ADMA2(I,J) = ADMA2(I, J)+DUMMY1 (I, J)+CH2

CALL MATMUL2 (AGBAR,ANG,DUMMY1)

CALL MATMUL2 (DUMMY1,AGBAR1,ADJ2E)

DO 76 I=1,3

DO 76 J=1,3 -
ADJ1(I,J) ="ADJ1(I,J) +ADME(T,J)

ADJ2(I,J) = ADJ2(I,J)+ADJ2E(I,J) »CM2

CALL MATMUL1 (DUWYi WCWCAG, AMN2)

DO 80 I=1,3 {

AMN2(I) = AIIHZ(I)‘CI&

DO 86 I=1,3

FTOT(I) = FTOT(I)+FN1(I)-FN2(I)+FD(I)
FTOT(I+3) = FTOT(I+3)+AMN1 (I)-AMN2(I) 'AIADG(I)
CONTINUE + 1. Blice Loop Ends

CONTINVE ! Mepber Loop Ends

CALC CETNRE OF BUOYANCY

IF ((ISTEP+IFCN) .EQ.2) THEN

BF1 = BF

IRITE(I #)" e BUDYANC’Y ™) =*,BF1
= XMOM/BF1
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YB1 = YMOM/BF1
7B = ZUOM/BF1
WRITE (4,+)’ #¢ YB1,YB1,ZB1 (m) W.R.T. CG =',XB1,YB1,2B1
ELSE

XB = XMOM/BF
YB = YMOM/BF S
ZB = ZMOM/BF

END IF il

IF (BF.LT.WT) PRINT,’ %X B LESS THAN WT; B =
IF (BF.LT.WT) WRITE(4,*)* ¥¥% B LESS THAN WT; B

c .
» c CONSTRUCT THE TOTAL MASS-INERTIA MATRIX *TH(6.6)*
c ’ .

DO 90° I=1,3
TM(I,I) = AMASS(I)
DO 90 J=1,3 .
TM(I,J) = TM(I,J)+ADMAL(I,J)
90 TM(I,J+3) = ADJ1(I,J)
DO 95 I=1,3
TM(I+3,I+3) = AMASS(I+3)
D0 96 J=1,3
TM(I+3,J) = ADMA2(I,J)
96 TM(I+3,J+3) = TM(I+3,J+3)+ADJ2(I,J)
IF ((ISTEP+IFCN) .EQ.2) THEN
4096  FORMAT (8(E12.5,1X))
WRITE . (4,4000)
_WRITE (4,4000)
WRITE (4,#)°  TOTAL MASS-INERTIA MATRIX *
WRITE (4,4000) )
DO 96 I=1,8 . -
98 —WRITE-(4,4098) (TM(I,J),J=1,6)
WRITE (4,4000) . %
7 WRITE (4,4000)
e ELSE
e IF

INVERT *TM(8,8)* TO "TMINV(6,6)*

oaaa

NTM =6 g - .
Im=6 .

IGT = 0 | )

CALL LINVIF (TW,NTM, ITM, THINV, IDGT, WKARTM, IERTM)

c
C: CALC PRESSURE FOECE *FP(8)* AND MOMENT *AMPG(3)*
c : .

fet




100

106

110

116
2000

120

126
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DO 2000 IS=1,NSURF ! Loop for surfaces begins ,
DO 100 I=1,3 Y

XSG (I) = X5(I8,I) ! These are in GXYZ

ANSG(I) = ANS(IS,I)

TALL MATMUL1 (R,XSG,XS0)

CALL MATMYL1 (R,ANSG,ANSO)

DO 106 I=1,3

XS0(I) = X50(I)+Y(I)#Ca(I)

XBAR = X50(1) ~Dcns(r-‘1)oxsom *DSIN(FT)

ARG = -W+T+AK+XBAR

ZETA = AMP*DCOS (ARG)

IF (IZETA.EQ.0) ZETA = ¥

IF (XSO(3).GT.ZETA) GO TO 2000 ! i.e. to mext surface’
DO 110 I=1,3

FP(I) = AREA(IS) *RHO*G#AMP+DEXP (AK#X50 (3)) +DCOS (ARG) #ANSO (I)
CALL MATMUL1 (TR,FP,DUMMY2)

CALL CROSS (XSG,DUMMY2, AMPG)

DO 118 I=1,3 — -
FTOT(I) = FTOT(I)+FP(I)

FTOT(I+3) = FTOT(I+3)+AMPG(I)

CONTINUE

CONTINUE ! Surface Loop Ends
CALCULATE FORCE & MOMENT DUE TO TH'HER *FT(3)* & "AMTG(3)*
DO 2500 IT=1,NTEN ! Tether Loop Begins 8

‘TRIGGERING LOSS OF STIFFNESS

1F (ISTEP.GE.NTRIG) THEN e

IF(IT.EQ.NT) AKT(IT) = AKTi(IT)*FACTOR

ELSE ]

END, IF | ‘ .

D0 120 I=1,3

XT16(D) = XTL(IT.I) ?

CALL MATMUL1 (R,XT1G,XT10) \

D0 126 I=1,3

XT10(I) = XT10(I) +¥(1)+CG(D)

TLNEW = DSQRT((XT2(IT. 1) -XT10 (1)) ##2+ (XT2(IT,2)-XT10(2) Yes2+
(XT2(IT, 3)-XT10(3)) #42)

DTL = TLNEW-TL(IT)

IF, (DTL.LT.0.D0) DTL = 0.D0 .

TEN(IT) = AKT(IT)*DTL

D0 130

FT(D)

N s
TEN (IT) # (XT2(IT, ) -XT10(I) ) / TLNEW
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CALL MATMUL1 (TR,FT,DUMMY2)
CALL CROSS (XT1G,DUMMY2, AMTG)
DO 136 I=1,3
FTOT(D) = FIOT(D+FT(D ¢
136 FTOT(I+3) = FTOT(I+3)+AMTG(I)
2600 - CONTINUE ! Tether Loop Ends

INCLUDE HYDORSTATIC FORCES AND MOMENTS IN *FTOT(6)"

H33 = 0.0D0

H44 = 0.0D0

HE6 = 0.0D0

D0/136 I = 1,NWP

H33'= H33 + RHO+G+WPA(D)

. Ha4 + RHO#G» (WPA(I) #YWP (I) ##2 + WPI(I))
136 HEB + RHO#G# (WPA(I) #XWP (I) ##2 + WPI(I))
» H44 +ZB1+BF1 '

HGE = HE6 + ZB1+4BFL

IF ((ISTEP+IFCN).EQ.2) THEN

WRITE (4.%)°  H33 (N/W) = *,H33 -

WRITE (4,4)"  H44 (N-M) = *,H44

WRITE (4,%)* ~ HGG (N-M) = *,HEG

WRITE (4,4000)

ELSE .

END IF

FTOT(3) = FTOT(3) + BF1 - WT - H33+Y(3)

FTOT(4) = FTOT(4) - H44#Y(19)

FTOT(6) = FTOT(6) - HG6Y(20)

IF (NWP.GT.0) ﬂléll r’

ELSE
FTOT(3) = FTOT(3)+BF-WT
FTOT(4) = FTOT(4)+YMOM
FTOT(6) = FTOT(6)-XMOM
END IF
c
c CREATE THE R.H.S. ACCLN VECTOR "GFOR(6)"
c
' CALL MATMUL3 (TMINV,FTOT,GFOR)
i c
T c CONSTRUCT  [RY [WxI] : RWCI(3,3)
w c

DUMMY1(1,2) = -Y(9)
DUY1(1,3) = Y(8)
DUMMY1(2,1) = Y(9)




DUMMY1(2,3) = -Y(7)
DUMMY1(3,1) = -Y(8)
DUMMY1(3,2) = Y(7)
CALL MATMUL2 (R,DUMMY1,R¥CI)

c 3
[ CONSTRUCT MATRIX "B(3.3)" & OBTAIN *BINVW(3)®
[

B(1,1) = DCOS(Y(20))

B(1,3) = -DCOS(Y(19)) *DSIN(Y(20))
B(2,2) .0D0
B(2,3) = DSIN(Y(19))
“B(3,1) = DSIN(Y(20))
B(3,3) = DCOS (Y(19)) *+DCOS (Y (20))
c
NB =3
B=3
IDGT = 0
CALL LINVIF (B,NB,IB,DUMMY1, IDGT, WKARB, IERB)
CALL MATMUL1 (DUMMY1,OMEGA,BINVR)
c
S, WRITE THE SYSTEM 21 ORDY. DIFF. EQNS. FOR *DGEAR®

“ Do 140 1-1,3
YP(I) = Y(I+3)
YP(I+43) = GFOR(I)
140 YP(I+8) = GFOR(I+3)
[+
YP(10) = RWCI(1,1)
1
(12)
YP(13)
YP(14)
YP (16)
YP (16)
YP(17)
YP(18)

RWCI(3,2)
RWCI(3,3)

[ ]

c
DO 146 I=1,3
146 YP(I+18) = BINVW(I)
RETURN .

END

aacaa
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SUBROUTINE FCNJ (N,T,Y,PD)

TMPLICIT DOUBLE PRECISION (A-H),(0-2)
DIMENSION Y(N),PD(N,N)

RETURN

END

SUBROUTINE MATMUL1 (A.B3C) .
IMPLICIT DOUBLE PRECISION (A-H), (0-2)
DIMENSION A(3,3);B(3),C(3)

Do 6 I=1,3
€(1)=0.0D0
K=0

DO 10 I=1,3
K=K+1

D0 10 J=1,3

C(K)=C(K) +A(T, J) #B(J)
RETURN

END

SUBROUTINE MATMUL2 (A1,B1,€1)
IMPLICIT DOUBLE PRECISION (A-H),(0-2)
DIMENSION A1(3,3),B1(3,3),C1(3,3)

END

SUBROUTINE MATMUL3 (A2,B2,C2)
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IMPLICIT DOUBLE PRECISION (A-H), (0-2)
DIMENSION A2(6,6),B2(6),C2(8)

K2=0

DO § I2=1,6

€2(12)=0.000

DO 10 I21,6

K2=K2+1

DO 10 J2=1,6

€2(K2) =C2 (K2) +A2 (12, J2) $B2(J2)
RETURN ‘

END

SUBROUTINE CROSS (A,B,C)
IMPLICIT DOUBLE PRECISION (A-H), (0-2)
DIMENSION A(3),B(3),C(3)

\
C(1)=A(2) +B(3)-A(3) *B(2)
C(2)=A(3) *B(1)-A(1) +B(3)
C(3)=A(1)*B(2)-A(2)*B(1)
RETURN

END




APPENDIX D :
LISTING OF 'FREQ_DOMAIN'
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\

PROGRAN *FREQ DOMAIN® : PERFORMS FREQUENCY DOMAIN ANALYSIS
FOR A TENSION LEG PLATFORM

caacacacacacacacanc0ccacaaca0aQaaoc0Q0Q0Q0Q0QcoaaNaQ0Q00a0ca000Q000Q

INPUT FILE NAME : 'FREQ.PILOT’
INPUT VARIABLES :-

’(c6(1),1=1,3) ,RHO’

e COORDINATES OF THE CENTRE OF GRAVITY (m)
RHO = MASS DENSITY OF WATER (Kg/cu.m)
*DRAFT, WT* .

DRAFT = DRAFT OF THE PLATFORM (m)

L = WEIGHT OF THE PLATFORM (N)

*RXX, RYY, R2Z* = w®

ROX ='RADIUS OF GYRATION ABOUT X-AXIS (m)
RYY = RADIUS OF GYRATION ABOUT Y-AXIS (m)
R2Z = RADIUS OF GYRATION ABOUT Z-AXIS (m)
*CD, CM*

o = NONLINEAR DRAG COEFFICIENT

oM = VIRTUAL MASS COEFFICIENT

*HED, 6W;EW, NV -

HED = WAVE HEADING ANGLE (deg)

v TARTING FREQUENCY (rad/sec)

EW LAST FREQUENCY (rad/sec)

NW = NUMBER OF FREQUENCY STEPS

++ FOR EVERY TENSION LEG PROVIDE :

TR(D) * )

b1 = EQUILIBRIUM STATIC PRETENSION AT THE

z Ith TENSION LEG (N)
* (ERROR(1),1=1,8) *

ERROR (I) = ERROR TOLERANCE FOR THE Ith D.O.F.;
REQUIRED FOR ITERATIONS

IERR = IF EQUAL TO 0, THEN NO ITERATION,
1 OTHERWISE

INPUT FILE NAME : 'FREQUDAT’

'NCYL® .
NCYL = NUMBER OF CYLINDERS

#+ FOR EVERY CYLINDER PROVIDE :
*(x1(1,9),J=1,3), (x2(I,J),J=1,3) ,D(I) ,NDIV(D) *
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~ig .

X1,X2 = COORDINATES OF THE CYLINDER ENDS (m)

D = DIAMETER OF THE CYLINDER (m)

NDIV = NUMBER OF HORIZONTAL SLICES THE CYLINDER
WUOLD HAVE TO BE DIVIDED  °

*NSURF* = NUMBER CIRCULAR FLAT SURFACES

++ FOR EVERY SURFACE PROVIDE :
*(X8(1,),J=1,3), (ANS(I,J), J=1,3) ,DS(I)*

X8 = COORDINATES OF THE CENTRE OF THE FLAT
SURFACE

ANS = DIRECTION COSINES OF 'I'HE NORMAL TO 'l'HE
FLAT SURFACE

D§ = DIAMETER (m) OF THE FLAT SURFACE

NTEN' = NUMBER OF TENSION LEGS

#+ FOR EVERY TENSION LEG PROVID!
*(XT1(1,J) ,J=1,3) , (XT2(I,J),J=1,3) ,AKT(I)*

XTl XT2 = COORDINATES OF THE mswmx
= AXIAL STIFFNESS OF THE .
‘lllP‘ -
NWP + = NUMBER OF CIRCULAR IATERPLANES .
#% FOR EVERY WATERPLANE PROVIDE "
*XWP (1), YWP(I) ,DVP (D) *
XWP,YWP | = X AND Y COORDINATES OF THE CENTRE OF
THE WATERPLANE
DWP = DL OF THE WATERPLANE .

NAME OF OUTPUT. FILE : ’FREQ.DAT®

COMPUTED OUTPUT VARIABLES

AMA = PHYSICAL IMEB)INERTA MATRIX
ADMA = ADDED MASS/INERTA MATRIX

A = VIRTUAL MASS/INERTA MATRIX

HK *= HYDROSTATIC STIFFNESS MATRIX .
TK = TETHER STIFFNESS MATRIX

STF = TOTAL STIFFNESS MATRIX

FREQR 5 = NATURAL FREQUENCIES (rad/sec)
FREQHZ = NATURAL FREQUENCIES (Hz)

TSEC = NATURAL TIME PERIODS (sec)

#* FOR EVERY FREQUENCY THE FOLLOWING ARE CIJM'PUTED
BV = DAMPING MATRIX

FORCE1 = WAVE EXCITATION FORCE RAOs

DISP = MOTION RAOs

FASE = PHASE OF MOTIONS IN DIFF. D.0.F.
TENRAO = TENSION RAOs .
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REQIURED LIBRARY ROUTINES : IMSL ROUTINE ’LEQ2C’

P I R R N

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION CG(3),X1(50,3),X2(0,3),D(60) ,NDIV(50),"
AL(50)-X8(60,3) , ANS (60, 3) , DS (50) , AREA(60) ,
XT1(60,3),XT2 (60, 3) , AKT(50) , TL (§0) , TP(50) ,
DWP (50) , XWP (50) , YWP (50) , WPA (50) , WPT (50) , X5 (3) ,
AMA(6,8), ADMA(8, 8) , AM(8,8) ,XX1(3), XX2(3) ,
GN(3) ,AN(3,3) ,XP(3) , ABAR(3,3) , ABAR1 (3,3),
AM11(3,3),AM12(3,3) , AM21(3,3) , AM22(3,3),
HK(8,8),TK(8,6),5TF(6,8) , FREQR(8) , FREQHZ (8) ,

——TSEC(8) ,VELR (6) ,VEL] (6) ,DF11(3) ,DF12(3) ,

DFIN1(3) ,DFIN2(3) ,FI1(3) ,FI2(3) ,DMINL(3),
DMINZ(3) ,FMI1(3) ,FMI2(3) , OMEGAR(3) , OMEGAI(3) ,
VBR(3),VBI(3) ,VWR(3) , VWI(3) ,VBRN(3) ,VBIN(3) ..
VWRN (3) ,VWIN(3),DFD1(3) ,DFD2(3),DFDN1(3) .
DFDN2(3) ,FD1 (3),FD2(3) , DMDN1 (3) , DMDN2(3) ,
FUD1(3) ,FMD2(3) ,BV11(3,3) ,BV12(3,3) ,BV21(3,3),
BV22(3,3) sBV(6,6) , DFP1(3),DFP2(3) ,FP1(3) .
FP2(3) ,DVP1 (3) ,DMP2(3) ,FUWP1(3) FUP2(3), >
DISP (6) ,PHASE(6) , FASE (6) , ERROR (6) , PREV (8) ' (’

COMPLEX +18 WA(48) , WK(6)

COMPLEX #18 DTLX,DTLY,DTLZ,DTLPC, COM, FORCE (8) ,FORCE1 (6) ,
COEF (8, 6) , CDISP (8)

\
CAB(COM) = DSQRT((DREAL(COM))##2 + (DIMAG(COM)) ##2)

OPEN 1/0 FILES

-a

OPEN (UNIT=1,FILE="FREQ.DAT’,TYPE="0LD’)
OPEN (UNIT=3,FILE='FREQ.PILOT’, TYPE='OLD')
OPEN (UNIT=4,FILE='FREQ.OUT’,TYPE="NEW’)

PI = 3.14156927D0
G = 9.81D0




4000
4001

4020

-

4030

4040

4050

40

.=

u5

READ (3,%) (CG(I),I=1,3),RHO N

READ (3,%) DRAFT,VT

WRITE (4,4000)

FORMAT (/)

FORMAT(//)

WRITE (47%)* CGX,Y,Z (m) =',(CG(I),I=1,3)

WRITE (4,%)’ * MASS DENSITY OF WATER (Kg/cu.m) = *,RHO

WRITE (4.%)’ DRAFT (m) =',DRAFT

WRITE (4.%)' WEIGHT (W) =',WT

DRAFT = DRAFT - CG(3)

WRITE (4,4000)

READ (1,%) NCYL

WRITE (4.4)' NO. OF CYLINDERS =",NCYL

WRITE (4, 4020)

FORMAT (/* #+ CYLINDER COORD. ETC IN RIG SYSTEM #+'/

4X,’X1°,8X, Y1’ 8X, "Z1°,8X, 'X2’, axl\yz' 8X, *22*, 11X, "LENGTH’ ,

10X, *DIA®, 10X, *NDIV*/) R

FORMAT (6(F8.3,2X),3X,F10.3,6X,F10.3, 6X, 16)

D0,30-T = 1,NCYL

READ'(1,8) (XL(LJ),J=1.3), (X2(I, ), J=1.3),DCD) NDIV(D)

AL(D) = DSWRT({X2(L 1) X1(I.1))++2 + (X2(I.2)-X1(L,2))#+2 +
(X2(1,3)-X1(1,3))#42)

WRITE (4 4030) (X1(I, J) J=1,3), (X2(1,3),J=1,3) ,AL(D) ,D(D),
NDIV(I)

D030 J=1,3

X1(1.J) = X1(L.J) - CG(J)

X2(1,3) = X2(I,J) - cG()

WRITE (4,4001)

READ (1,) NSURF )

WRITE (4,%)° NO. OF CIRCULAR SURFACES =’ NSURF

WRITE (4,4040)

. FORMAT (/* ## PLANE SURFACE COORD. ETC IN RIG SYSTEM #+'/

4X,°X’,9X, "Y', 9X, '2°,14X, "NX* 68X, 'NY’, X, 'NZ*, 10X, 'DIA’,
10X, "AREA’ /)

FORMAT (3(F8.3,2X),3X,3(F8.6,2X),3X,F10.3,6X,F10.3)

DO 40 I = {,NSURF

READ (1,%) (XS(I,J),J=1,3), (ANS(I,J),J=1,3),DS(I)
AREA(I) = PI#DS(I)##2/4.0D0

° WRITE (4,4060) (X8(I,J),J=1,3),(ANS(I,J),J=1,3),DS(I),

AREACD)
D040 J=1.3
XS0 = XL - O v
WRITE (4, 4001)
READ (1,4) NTEN
WRITE (4.9)* NO. OF 'rémmu LEGS =* . NTEN _




4070

60

4071

4072

66

4080

..
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WRITE (4,4080)

FORMAT (* #+ TETHER COORD. ETC IN RIG SYSTEM #s'/

4X,’X1°,6X, *Y1’,8X, "Z1’,8X, X2’ ,8X, 'Y2’ 68X, 72" 11X,

*LENGTH’ , 3X, *STIFFNESS (N/m)’/)

FORMAT (8(F8.3,2X),3X,F10.3,6X,E12.5)

DO 60 I = 1,NTEN

READ (1,%) (XT1(I,J),J=1.3), (XT2(I,J),J=1,3) ,AKT(D)

TL(I) = DSQRT((XT2(I.1)-XT1(I.1))#s2 + (XT2(I.2)-
XT1(I,2))##2 + (XT2(I,3)-XT1(I,3))+2)

WRETE: (4,4070) (XT1(I,J),J=1,3), (XT2(IL,J),J=1,3),TL(D),
AKT(I)

DO 6O J = 1,3 : ¥

XT1(1,J) = XT4(L,J) - C6(D)

. XT2(I,J) = XT2(I,J) - CG(J)

WRITE (4,4001)

READ (1,%) NWP~

WRITE (4,%)' _ND. OF WATER PLANES =,NWP

WRITE (4,4071)

FORMAT (' *# WATER PLANE COORD. ETC IN RIG 5YS #+*/
’ WP DWP AWP WP /)
FORMAT (5(F12.3,2X))

DO 66 I = 1,NWP

READ (1,%) XWP(I), YWP(D),DWP(I)

WPA(I) = PI+DWP(I)##*2/4.0D0 ~
WPI(I) = PI+DWP(I)#++4/64.0D0

WRITE (4,4072) XWP(I),YWP(I),DWP(I) WPA(D), m(n
READ (3,#) RXX,RYY,RZZ

WRITE (4,4001) -

WRITE (4,#)" RXK,RYY,RZZ (m) =*,RXX,RYY,RZZ

READ (3,%) CD,CM

WRITE (4,4000) ;

WRITE (4,%)° CD =°,CD,’  CM =',CM

WRITE (4,4001) /

READ (3,¥) HED,SW,EW,NV 7

WRITE (4,4080) HED,SW,EW,N¥

FORMAT (* WAVE HEADING (DEG) = *,F10.5/

*  START FREQUENCY (RAD/SEC) = ’,F10.5/

* END FREQUENGY (RAD/SEC) = *,F10.5/

* NO. OF FREQUENCY STEPS = *,I6//)

HED = HEDP1/160.0D0

WRITE (4,4)° ++ EQUILIBRIUM TENSIONS #+’

WRITE (4,4000)

TPTOT = 0.0D0 .

WRITE (4,4)° LEG # TENSION (N)’

DO 80 I = 1,NTEN ~
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READ (3,#) TP(I) . ' o
WRITE (4,9 I,TP(I)

TPTOT = TPTOT + TP(I) .

WRITE (4,%)° TOTAL STATIC MEAN PRETENSION (N) =',TPTOT
WRITE (4,4001)

READ (3,%) (ERROR(I),I=1,6)- o

WRITE (4,%)* *+ SPECIFIED ERROR TOLERANCES, { THROUGH 6 ##°
WRITE (4,4081) (ERROR(I),I=1,6) °

FORMAT (6(F10,.6,6X))

READ (3,%) IERR

WRITE (4,4000) .

WRITE (4,%)°. IERR = ’,IERR

WRITE (4,4001) ) /

qnh

a

aaaa

aaa
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* END OF READ

CONSTRUCT THE PHYSICAL MASS-INERTIA MATRIX AMA(S,6)

. N
AMAEL,1) = WT/G ~ ;
AMA(2,2) = AMA(L,1) . 5
AMA(3,3) = AMA(1,1)

AMA(4,4) = AMA(1,1)7RIC$RXX

AMA(5,5) = AMA(1,1) SRYYsRYY

AMA(8,6).= AMA(1,1) #R2Z#RZZ

CM1 = CM - 1.0D0 R e r - -

“« %
CONSTRUCT ‘ADDED MASS AND STIFFNESS MATRICES viz. ADMA(6,6)
AND STF(8,6) AND ALSO CALCULATE BUOYANCY & CENTRE OF BUOYANCY

D0.1000 IC =-1,NCYL * ! Member loop begins . s
D0 70 I =1,3 : . :

KKL(D) = X1(IC,I) ' -~

XX2(I) = X2(IC,I)

. CALCULATE DIRECTION COSINES *GN(3)* IN GXYZ

D076 1={,3

GN(I) = (0(2(I) - XX1()) / AL(IC) -
DL = AL(IC) / DFLOAT(NDIV(IC))

A = PIsD(IC)##2 / 4.0D0

DVOL = DL¥A

DM = RHOSDVOL

DA = RHO#D(IC) $DL#0.5D0
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CONSTRUCT [N] MATRIX : AN(3,3)

AN(1,1) = GN(2)#s2 + GN(3)ss2
AN(1,2) = -GN(1)*GN(2)

-GN N \___/
AN(1.2)

GN(3)##2 * GN(1)#+2
~GN(2) *GN(3)
AN(1,3)

AN(2,3) |

= GN(1)#e2 + GN(2)#+2

DO 1600 ID = 1,NDIV(IC) ! Slice by slice computaion
CALCULATE POSITION VECTOR *XP(3)*

D0BOI=1,3

XP(I), = X1 (D) + (DFLDAT(ID) - 0.5D0) *DL#GN(I)
IF (XP(3).GT.DRAFT) GO TO 1500 ! to next slice’
BF = BF + RHO+GsDVOL ! BF = Buoyancy Forct
BXMOM = BXMOM + RHO#G*DVOL*XP(1) . ;
BYMOM = BYMOM + RHO#G+DVOL#XP(2)

BZMOM = BZMOM + RHO#G+DVOL#XR(3)

CONSTRUCT MATRICES' "ABAR1(3,3)" AND "ABAR(3,3)"

i fe@ 0

© ABAR1(1,3) = -XP(2) _
ABAR1 (2, 1) 3)
ABARL(2,3) = XP(1) . .
ABARI(3;1) = XP(2)* /
ABAR1(3,2) = -XP(1)
DO 90 1

D0 90 J .
ABAR(T; J) -‘ ~ABAR1 (1, J)

- CONTRUCT THE SUBMATRICES FOR THE ADDED MASS MATRIX

*CALL MATMUL2' (;m ABARS AMYZ)
<. *CALL MATMUL2 (ABAR,AN,AM21) .

CALL MATMUL2 (ABAR;AM12, AM22)

D0 100 I'= 1,3

D0 100 J =1,3 <

AM11(T,J) = DeCM1sAN(I, J)

Alnzu .l) nu-clnmz(x )
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AM21(I,J) = DMeCM1sAN21(I,J)
100 AM22(I,J) = DMeCM1#AM22(I,J)

CONSTRUCT THE ADDED MASS MATRIX
.
DO 110 I = 1,3
DO 110 J = 1,3
ADMA(I,J) =-ADMA(L.J) + AM11(I.J)
ADMA(I+3,J+3) = ADMA(I+3,J+3) + AM22(I,J)
ADMA (I+3,J) ~= ADMA(I+3,J) + AM21(I,J)
110 ADMA(I,J+3) = ADMA(I,J+3) + AM12(I.))
1600 CONTINUVE ! Blice loop end
1000 CONTINUE ! Member loop ends

aaa

a

‘c CONSTRUCT TOTAL MASS-INERTIA MATYRIX *AM(6,6)°

DO 116 I
DO 116 J = 1,8 ’
116 AMCIJ) = AMACT,J) + ADMA(L,J)

1,8

CALCULATE CENTRE OF BUOYANCY

caaa

‘XB = BXMOM/BF
3 . YB = BYMOM/BF
‘- 2B = BIMOM/BF
WRITE (4,%)*" TOTAL BUOYANCY (W) =*,BF
WRITE (4,%)° CENTER OF BUOYANCY COORDINATES IN RIG SYS
- WRITE (4,%)° XB (m) XB+CG (1) e
: WRITE (4,%)° YB (m) =*,YB+CG(2) - :
- - - WRITE (4,%)* ZB (@) =',ZB+CG(3) -
WRITE (4.4001)

CONSTRUCT THE HYDROSTATIC STIFFNESS MATRIX *HK(6,6)*

aaa

DO 120 I = 1,NWP

HK(3.3) = HK(3,3) + RHO*GWPA(D)

HK(3,4) = HK(3,4) + RHDSGSWPA(D) #YWP(D

HK(4,3) = HK(3/4) .- g —
HK(3,6) = HX(3,6) + RHOSGHWPA(I) +XWP (1)

HK(6,3) = HK(3,5)

HK(4,6) = HK(4,6) + RHOSGeWPA(L. ‘m(n-mm

HK(6.4) = HK(4.6) -
. - HK(4,4) = HK(4,4) + RHO#Gs (WBA(I)® (I)"ﬂ + WPI(D)
120 HK(6,B) = HK(6,6) + RHO#G# (WPA(I)#XWP (I) #+2 + WPI(I))

% | HK(4,4) = HK(4,4) + ZBVEF
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HK(6,6) = HK(6,B) + ZB#BF .
CONSTRUCT THE MOORIKG STIFFNESS MATRIX ‘JX(6,6)*

DO 130 I = {,RTEN
TPL = TP(I)/TL(I)

EAL = AKT(I)
XT = XT1(I.1)
YT = XT1(1.2)
ZT = XT1(I,3) ) -

TK(1.1) = TK(1,1) + TPL-

TK(1,6) = TK(1,6) + TPL#ZT

TK(6,1) = TK(1,6) '
TK(1,8) = TK(1,6) + TPL#YT

TK(6,1) = TK(1,68) :

TK(2,2) = TK(1.1) : : =
. TK(2,4) = TK(2;4) - TPL#ZT . . ‘)

TK(4,2) =.TK(2,4) < .
TK(2,6) = TK(2,8) + TPL#XT '
- TK(8,2) = TK(2,8) b

TK(3.3) = TK(3.3) +EAL N

TK(3,4) = TK(3,4) + EAL#YT

TK(4,3) = TK(3,4) .
TK(3.6) = TK(3,6) - EALSXT E N

TK(6.3)
TK(4,4) = TK(4,4) + EAL#YTYT + TPLAZT#ZT - -
TK(6,6) = TK(6,5) + EAL#XT#XT + TPLeZT#ZT.
TK(68.6) = TK(6,8) + TPL#(XT+XT + YT+YT)

d

CONSTRUCT THE TPTAL STIFFNESS IMTRI'X *STF(6,6)*

DO 140 I = 1,8
D0.140 J = 1,6
= HK(I,J) + TK(LJ)

STF(1,)

WRITE THE CONSTANT COEFFICIENT MATRICES

WRITE (4,4001) .

FORMAT (1X,6(E12.6,2X)) .

WRITE (4,%)* #+ PHYSICAL MASS-INERTIA MATRIX- #¢°
WRITE (4,4000) 5

DO 160 I = 1,6 - "

WRITE (4,4100) CAMA(I,J),J=1,8)

. WRITE (4,4001)

WRITE (4,%)’ #¢ ADDED MASS-INERTA MATRIX #»'
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160

165

170 -

176

aaa-

180

4110

180

' WRITE (4,4100) (STF(I,J).T:

<

WRITE (4,4000)

DO 166 T = 1,8

WRITE (4.4100) (ADMACI,J),J=1,6)

WRITE (4,4001)

WRITE (4.%)' s+ VIRTUAL MASS-INERTIA MATRIX *+°
WRITE (4, 4000)

DO 160 I = 1,6

WRITE (4,4100) (AM(I.J),J=1.8)

WRITE (4,4001)

WRITE (4,%)’ #+ HYDROSTATIC STIFFNESS WATRIX *»°
WRITE (4, 4000)

DO 165 I =

WRITE (4,4100) (HK(I,J),J=1.8)

* WRITE (4, 4001)

WRITE (4,%)' #+ TETHER STIFFNESS MATRIX =##°
WRITE (4,4000)

DO 170-I =

WRITE (4, 4100) (TK(I, 3),J<1,8)

WRITE (4.400)

WRITE (4,%)' # TOATL STIFFNESS MATRIX %
WRITE (4,4000)

DO 176 I =

.8) s
WRITE (4, 4001)

CALCULATE NATURAL FREQUENCIES AND TIME PERIODS

DO 180 I =1,

FREQR(D) = nsun‘r(mu 1/ MiLD)

FREQHZ(I) = FREQR(I) / (2.0DO#PI) ' -
TSEC(I) = 1.000 / FREQHZ(D) -

WRITE {4, *)* *+ NATURAL FREQUENCIES AND TIME PERIODS #+°
WRITE (4,#)* D.0.F. FREQRAD/SEC)  FREQ(HZ)  PERIOD(SEC)®
FORMAT (2X,16,6X.3(F10.5,60) '
DO 190 I = 1,6

WRITE (4,4110) I,FREQR(I) FREQHZ(I),TSEC(I)

WRITE (4,4001)

WRITE (4,%)’ 0 CALCULATIONS FOR VARIOUS FREQUENCIES 0’
w=g

DELY = (EW - §W) / nn.m'r(m

DO 2000 IW = {,NW | Frequency loop starts
WRITE (4,4001) )
WRITE (4,%)° *

WRITE (4,%)° FREQUENCY (RAD/SEC) =* ¥

251 ’ - TN

J~




200

2100

210

211

270

caaa

276

raaa

WAITE (4,9)°

AK = Well / G ! AK = Vave No.
D0 200 I =

VELR(I) = 0.0DO

VELI(I) = 0.0D0

." ITER =*,ITER

St A
BV(1,3) = 0.0D0
y 1
D0 2600 IC = 1,NCYL ! Member loop begins
DO 270 I =1,3 . .
XK (D) ="X1(IC,T) J

Xx2(I) = X2(IC,I)
CALCULATE DIRECTION COSINES *GN(3)" IN GXYZ

D0 276 L=1,3

GN(I) = (XX2(I) - Xx1(1)) / AL(IC)

DL = AL(IC) / DFLOAT(NDIV(IC)) .

A = PI#D(IC)##2 / 4.0D0

DVOL = DL+A

DM = RHODVOL T e
DA = RHO#D(IC) #DL+0.5D0

CONSTRUCT [N] MATRIX : AN(3.3)

AN(1,1) = GN(2)#+2 + GN(3)#»2
AN(1,2) N (1) %GN(2)

" AN(1,3) = “GN(1)+GN(3)

AN(2,1) = AN(1,2)

T OAN(2,2) = ON(3)#e2 + r.u(l)nz
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AN(2,3) = -GN(2)*GN(3)
AN(3,1) = AN(1,3) ¥
= AN(2,3) ’

AN(3,2) = o

AN(3,3) = GN(1)##2 + GN(2)#s2
c

DO 3000 ID = { ,NDIV(IC) ! Blice by slice computaion
c o
[ CALCULATE POSITION VECTOR *XP(3)*, COORD *ZETA" & *Z*
c +

Db 2801 =1,3

280  XP(I) = XX1(I) + (DFLOAT(ID) - O.5D0) +DL#GN(I)
IF (XP(3).GT.DRAFT) GO TO 3000 ! to next slice
CH = DCOS(HED)
SH = DSIN(HED)
ZETA = XP(1)#CH + XP(2)*SH
Z'= XP(3) ~ DRAFT

'CZ = DCOS(AK#ZETA) -

5Z = DSIN(AK#ZETA).,
c ! oL
o ¢ CALCULATE INERTIAL FORCE 'FI1(3)* (PROPORTIONAL TO SINwt) &
: c *FI2(3)* (PROPORTIONAL TO COSwt) , AND ALSO THE MOMENTS
% : 4 . ’ ki 3
/ FIC = DM*CM#W+N+DEXP (AK*Z) 3
E - : DFI1(1) = FIC#52+CH : .
DFI1(2) = FIC#52+SH
DFI1(3) = - .FIGWCZ
DFI2(1) = FIC*CZ+CH - .
DFI2(2) = FICYCZ+SH z
DFI2(3) = FIC*Z - ; :
¢
3 CALL MATWUL1 (AN,DFIi,DFIN1)
CALL MATMUL1 (AN,DFI2,DFIN2)
¢

DO 281 I = 1,3
FI1(I) = FI1(I) + DFIN(T) " -
281 FI2(D) = FI2(D) + DFIR2(D) ' i,

¢ %
;  CALL- CROBS (XP,DFINi,DMIN1)
CALL CROSS m.DPI!ﬂ.DIINE)
c
: D0 200I=1,3 o~ S
sy FMI1(D) = FMI1(D) + DMIN1(D) s S
20 FUI2(D) = FUI2(D) + DUIN2(D) X
[ v 5
e ¢ CALCULATE DRAG FORCE ) o
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' 310

- 311

312

313

314

316

316

DO 800 I =1,3

OMEGAR(I) = VELR(I+3)
OMEGAI(I) = VELI(I+3)
CALL CROSS (OMEGAR,XP, VER)
CALL CROSS (OMEGAI,XP,VBI)
DO 310 I =1,3

VBR(I) .= VBR(I) + VELRCI)
VBI(D) = VBI(D) + VELI(CI)
VWR{1) = - WeDEXP (AK+Z) #S2+CH
VWR(2) =~ WeDEXP (AKsZ) #52+6H
VWR(3) =" WeDEXP (AK»2)+CZ :
VWI(1) = WeDEXP (AK#2)¢E€Z+CH
VWI(3) = W4DEXP (AK+Z)+CZ4SH
VWI@) =

WHDEXP (AK#2)*SZ s

CALL MATMUL1 (AN, VER,VBRN)
CALL MATMUL1 (AN, VBI,VBIN)
CALL ¥ATMUL1 (AN, VWR,VWRN)
CALL MATMUL1 (AN, VRI,VWIN)

VELWRN = DSQRT(VWRN(1) %2 + VWRN(2) 2 + VWRN (3)+¢2)
VELWIN = DSQRT(VWIN(1) 2 + VWIN(2)#s2 + VNIN(3)442)
IF (DABS(VELWRN) .LT.0.00001) GO TO 311

GO T0 312 *

FIW =PI / 2.000

IF (VELWRN.LT.0.0DO0) FIW = - FIN

IF (VELWIN.LT.0.0DO) RIW = - FIN

GO T0 313-

FIW = ATAN(VELVIN / VELWRN)

VELBRN = DSQRT(VBRN(1) #2 + VBRN(2)#2 + VBRN (3)#+2)
VELBIN = DSQRT(VBIN(1) ##2 + VBIN(2)$%2 + VBIN (3)#+2)
IF (DABS (VELERN) .LT.0.0000100) GO TO 314
GO T0 315

FIB = PI / 2.000

IF (VELBRN.LT.0.0D0) FIB = - FIB

IF (VELBIN.LT.0.0D0) FIB = - FIB

G0 T0 316

- FIB = ATAN(VELBIN / VELBRN)

I = FIN - FIB .
VELWN = DSQRT(VELWRN+#2 + VELWIN#4+2)
VELBN = DSQRT(VELBRN+#2 + VELBIN#42)
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RT = 8.0D0*DSQRT (VELWN##2 - 2.0DO+VELWN*VELBN#DCOS (FI)- + L5

. . VELBN%#2) / (3.0D0+PI)
IF (ITER.EQ.1) RT = 0.0D0

FDC = WeDEXP (AK#Z) *DA*RT+CD
L DFDA(1) = FDC#CZoCH

DFD1(2) FDC*CZsSH
Db1(3) = FOCesZ

DFD2(1) = - FDC#SZ+CH
DFD2(2) = - FDC+SZ+SH
DFD2(3) = FDCSCZ

CALL MATMUL1 (AN,DFD1,DFDN1)
CALL MATMUL1 (AN,DFD2,DFDN2)

D0 340 I =1,3
FD1(I) = FD1(I) + DFDN1(I)
340  FDR(I) = FD2(I) + DFDN2(I)

CALL CROSS (XP,DFDN1,DMDN1)
CALL CROSS (XP.DFDHZ,DHDHZJV

DD 350 I =1,3
FMD1(I) = FMD1(I) + DMDN1(I)
360 FMD2(I) = FMD2(I) + DMDN2(I)

c
c ~ CONSTRUCT DAMPING MATRIX *BV(8,8)*
c

ABAR1(1,2) = XP(3)

ABAR1(1,3) = -XP(2)

ABARL(2,1) = -XP(3) & | -

ABAR1(2,3)"=XP (1) :

ABARL(3,1) = XP(2)

ABARL(3,2) = -XP(1)

D0 360 I =

DO 360 J =
360 ABAR(L,J)

* CALL MATMUL2 ‘(AN,ABAR1,BV12)
CALL MATMUL2 (ABAR,AN,BV21)
CALL MATMUL2 (ABAR,BV12,BV22)’

DO 370 I
DO 370 J

3
1,3




380
3000
2500

.aaa

390

410
4600

aaa
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BV11(I.J) = DASCD*RT#AN(I, J)

BV12(I,J) = DA+CD*RT#BV12(I,J)

BV21(I,J) = DAsCD*RT#BV21.(I,J) =
BV22(I,J) = DAsCD*RT#BV22(I,)) <

D0 380 I=1,3 .

D0 380 J= 1,3

BV(I,J) = BV(L,)) + BVII(I.))
BV(I+3,J+3) = BV(I+3,J+3) + BV22(I,))

BV(I+3,J) = BV(I+3,J) + BV21(L.J)
BV(I, J+3) = BV(I,J+3) + BV12(I,J)

" CONTINUE ! End of elice loop
CONTINUE ! End of member loop

CALCULATE PRESSURE FORCE ®FP(3)" AND ITS MOMENTS

DD 4500 IS = 1, ! Surface loop starts
D0 390 I=1,3
X (I) = XS(18,1)
ZETA = XXS(1) #DCOS (HED) + XO5(2) #DSIN(HED)
2= XX5(3) - DRAFT

P1 = - RHO*G#+DEXP (AK+Z) +DCOS (AK*ZETA)
P2 = RHOVG*DEXP (AK#Z) #DSIN (AK*ZETA)

D0 400I=1,3
DFP1(I) = P1#ANS(IS,I)
DFP2(I) = P2#ANS(IS,I)

CALL CROSS (XXS,DFP1,DMP1)
CALL CROSS (XXS,DFP2,DMP2)

DD 4101I=1,3

FP1(I) = FP1(I) + DFP1(I)

FP2(IY = FP2(I) + DFP2(I)

F¥P1(I) = FMP1(I) + DMP1(I)

FIP2(I) = FMP2(I) + DWP2(I)
CONTINUE ! Surface loop ends

CONSTRUCT THE COMPLEX FORCE ARRAY *FORCE(6)*

WRITE (4,4001)

D0 420 1= 1,3 o
RF = FI2(I) + FD2(I) + FP2(I)

CF = FII(I) + FD1(I) + FP1(I)
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' RM = FUI2(D) + FUD2(D) +FWP2(D)
CMM = FMI1(I) + FMDA(I) + FuP1(I)
FORCE(I) = DCMPLX(RF,CF)
FORCE(I+3) = DCMPLX(RM, CM)
o FORCE{(I) = FORCE(I)
FORCE! (I+3) = FORCE(I+3)
420  CONTINE

c
c CONSTRUCT-THE COMPLEX COEFF. MATRIX ®COEF(6,6)*"
c .
- DD 430 I =1.8
. DO 430 J = 1,8
RC = *AM(I, J) + STF(I,J)
(- PRINTs,” (1J) :: ', LJ.°* RC = ’.RC
CC = WBV(L,J) - \
430  COEF(I,J) = DCMPLX(RC,CC)
—c
c SOLVE FOR COPMLEX MOTIONS *CDISP(6)". CALCULATE AMPLITUDES
c AND PHASES
¢
NN =6
IA=0°
M=
1JOB = 0
B =8

CALL LEQ2C (COEF,NN,IA, FORCE, MM, IB,1JOB, WA, WK, IER)

DO 440 I = 1\5\

CDISP(I) = FORCE(I)

DISP{I) = CAB(CDISP(D)) .

IF _ (DABS (DREAL (CDISP(I))) .LT.0.00001D0) GO TO 431

G0 TO 432 :
431 PHASE(I) =PI / 2.0D0

' IF (DREAL (CDISP(I)).LT.0.0D0) PHASE(I) = - PHASE(I)
IF (DIMAG (DISP(I)).LT.0.0D0) PHASE(I) = - PHASE(I)
" ’ FASE(I) = PHASE(I)#180.0 / PI :
60 TO 440
432 PHASE(I) = ATAN(DIMAG(CDISP(I)) / DREAL(CDISP(D)))
. FASE(I) = PHASE(I)#180.0 / PT

440 CONTINUE

ERROR CHECK LOOP

raaa

- IF (IERR.EQ.0) GO TO 444
DO 4421 =1




T a1z

4120
"y

464 -

4200

...

aaa
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IF (ERROR(I).LE.0.0D0) PRINT#+,’' X%%% VARNING : ERR.LE.0.0’
IF (DABS(DISP (I) - PREV(I)) .GT.ERROR(D)) GO T0 443

GO T0 444

DO 460 I =1,6

VELR(I) = WDREAL(CDISP (D))

VELI(I) = WDIMAG(CDISP(D))

DO 462 I =1,

PREV(I) = DISP(D)

GO T0 2100

WRITE MOTION RAO's AND PHASES

WRITE (4,4001) . \

WRITE (4,%)" *+ DAMPING HATRIX USED FOR FINAL RESULT =+’ 2
WRITE (4,4000) s

DO 463 I=1,6

WRITE (4,4100) (BV(I.J),J=1,8) #

WRITE (4,4001)

WRITE (4,4)" “#+ FORCE RAOs ##’

WRITE (4,4000) - ]

WRITE (4.4121) W,(2.0+P1/¥)

FORUAT (2X, 'FREQUENCY (RAD/SEC) = *,F10.5, PERIOD (G8Q) = ',
F10.5/) !

WRITE (4,4)' D.O.F. FI1 FI2 FD1 FD2 FP1 FP2 F' -
FORMAT (2X,15, 3X,7(E12.5,6X)) : n

DO 464 I = -

WRITE (4,4120) IFI1(I).FI12(1) 01 CI).F02(D).

FP1(D) , FP2(I) , CAB(FORCE1 (1))

WRITE (4,4120) I+3,FMI1(1),FMI2(1) . FuD1(I) ,FD2(I), -
FMPA(T) , FUP2(T) ,CAB (FORCEL (I+3))

CONTINUE : ©
WRITE (4,4001) 5 @ ¢

WRITE (4,%)’ -#+ HOTION RAOs AND PHASES s+’ .
WRIE (4,4000)

WRITE (4,4121) W, (2.0PI/N)

WRITE (4,4200) ((DISP (I) ,FASE(D),I=1,8)

FORMAT (10X, "SURGE (M/M) = *,F10.5, BX, 'PHASE (DEG) =,
F10.5/10X, 'SVAY (/M) = ',F10.5,6X, *PMASE (DEG) = **,F10.5/

10X, "HEAVE (M/M) = °,F10.5,6X, 'PHASE (DEG) = ',F10.6/

10X,’ROLL (RAD/N) = *,F10.5, 5X, 'PHASE (DEG) = ',F10.5/

10X, 'PITCH (RAD/M) = *,F10.5,5X, 'PHASE (DEG) = °,F10.5/

10X,’YAW (RAD/M) = *,F10.5,56X, 'PHASE (BE@) = ',F10.5//)

CALCULATE TENSION RAO”s "TEN®
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WRITE (4,%) ° ++ TENSION RAOs =%’

WITE (4,4000)

WITE (4,4121) ¥, (2.0¢P1/W)

FORMAT (* LEG # : °*,I5,2X,'TENSION RAO (N/M) = ’,E12.5,2X)
\

D0 460 IT = 1,NTEN- .

XT = XTM(IT.1),

YT = XTi(IT.2)

T = XT(IT,3)

DTLX = CDISP(1) + CDISP(6) #ZT - CDISP(B) +YT

DILY = CDISP(2) + CDISP(8) #XT - CDISP(4)+ZT

- DTLZ = CDISP(3) + CDISP(4)-#YT - CDISP(5) #XT

DTLXR = DREAL (DTLX)
DTLYR = DI (QTLY) - i
DTLZR ‘= DREAL (DTLZ). .
DTLXT = DIMAG (DTLX)
DTLYI = DIMAG(DTLY) -
DTLZI = DIMAG(DTLZ) * i
dtlmax = 0.0d0
delt = 2.0%pi/(v+1000.0)
‘6 = 0.040 .
do 700 II = 1,1001
ovt = dein(wett)
ot = dcos (watt)
tltt = deqre ((dtlxrscwt + dtlrisawt)#s2 + (dtlyrecet +
A dtlyifomt) e#2 + (dtlzrecwt + dtlzivewt + t1(1t))ee2)
delt = tlte - t1(ie) -
if (dtlt.1£.0.040) -dtlt = 0.0d0
if (dabs(dtlt).gt.dtlmax) dtlmax = dabs (dtlt)
tt = tt¢ delt : o
continue . N
tenrao = ikt (it)sdtlmax

%

WRITE (4,4211) IT, TENRAQ

CONTINUE

W=W + DELW

CONTINUE | Frequency loop ilEl

STOP
END

re



"

c
¢ .
SUBROUTINE MATMUL1 (A.B.C)
° IMPLICIT DOUBLE PRECISION (A-H.0-2)
DIMENSION A(‘S,S) .B(3),c(3)
c
D06 I=1,3
] c(I) =0.6D0
K=10
2 101= 1,3
T Kk=K+1
D0 10 J = 1,3
1p C(K) = C(K) + ACI,))*B(I)
: RETURN
END
¢
N4
c
SUBROUTINE MATMUL2 (A,B,C)
IMPLICIT DQUBLE Pnséxsmu (A-H, n-z)
DIMENSION A(3,3).B(3,3).C(3.3) ~
¢
06 I=1.3
06 J=1,3
5 C(I, 3 = 0.000 - !
3 D0 10I= 1,3 . d
,b010J= 1,3 .

D0 10K= 1,3
10 C(I.J) = C(LJ) + A(LK)*B(K.J}

 RETURN -

END
¢
c
c

~ SUBROUTINE CRGSS (A.B,C)
* _IMPLICIT DOUBLE PRECISION (A-H,0-2)

DIMENSION A(3),B(3),C08)
B ;

(1) = A(2)#B(3) - AGR)*B(2) )

¢(2) (3)#B(1) - A(1) #B(3) B

C(3) =A(1)#B(2) - A(2)*B(1)
¢ B
c

N

.




c
c
) 10
B w
N ' 20
* 30

281

SUBROUTINE SUBFASE (RE,AIM,PHIR,PHID)

. IMPLICIT DOUBLE PRECISION (A-H,0-Z)

=3. 141502100
IF (DABS(RE) .LT.0.00001D0) GO 'I‘O 10

GO TO 20
PHIR = PI/ 2.0D0
IF (RE.LT.0.0D0) PHIR = - PHIR
IF (AIM.LT.0.0D0) PHIR = - PHIR -
PHID'= PHIR#180.0D0 / PI
GO TO 30
PHIR = ATAN(AIM / RE)
PHID = PHIR*180.0D0 / PI

_ RETURN _ .
END
.
! »
e
s
]
2
,o .
Ve 2
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