STATICS AND DYNAMICS OF A TENSION LEG PLATFORM IN INTACT AND TETHER DAMAGE CONDITIONS

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

MANAS KUMAR DEB
STATICS AND DYNAMICS OF A TENSION LEG PLATFORM
IN
INTACT AND TETHER DAMAGE CONDITIONS

by

Manas Kumar Deb, B.Tech.(Hons.)

A Thesis submitted to the School of Graduate Studies
in partial fulfilment of the requirements
for the degree of
Master of Engineering

Faculty of Engineering and Applied Science
Memorial University of Newfoundland
November, 1986

St. John's Newfoundland Canada
Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission.

L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.
Abstract

The aim of the present investigation is to study the static and dynamic behaviour of a tension leg platform in the intact condition and after partial or total loss of tether at any corner. The exercise involves formulating the statics and dynamics of column stabilised structures with taut moorings and implementing the same in appropriate computer softwares. Formulations are also made to calculate the equilibrium tensions after a loss of tether.

The computer program for hydrostatics is capable of generating the standard hydrostatic information as well as locating the equilibrium configuration of the floating body under a given set of external static loads. This is used to assess the statical stability of the tension leg platform in damaged cases and compare the same with its various other configurations.

Under the category of hydrodynamic analysis, two major types of approaches, namely 'frequency domain' and 'time domain' are employed. In the frequency domain approach, wave amplitudes and all displacements are assumed to be small.
Also, integration of the hydrodynamic forces is carried out over the mean wetted surface of the body. The wave excitation forces are calculated via a 'Morison type' formula and an iterative scheme is adopted to handle the nonlinear drag term. This analysis is used to compute the 'response amplitude operators' (RAOs) in intact and damaged conditions. Significant responses are also computed using these RAOs and Pierson-Moskowitz wave spectra for chosen wind speeds. In the time domain analysis, though assumptions similar to frequency domain analysis are made regarding the incident wave. However, no restriction is put on the motion of the body. The excitation and the reactive forces are calculated over the instantaneous wetted surface and at the displaced position. Nonlinear equations of motion are integrated using Adam's method. This analysis is used to obtain time-series data of motion and tension responses in order to study the variation of steady state amplitudes in intact and damaged conditions as well as transients following a loss of tether.

A special study of the occurrence of Mathieu type dynamic instability in tension leg platforms is also undertaken. A formulation to calculate unstable combinations of wave height and frequency is developed based on Floquet theory for periodic systems. The effect of various pertinent
parameters including loss of tether on instability is also investigated.

Furthermore, a 1:100 scale model of a representative tension leg platform is designed and fabricated. Experiments are conducted in regular and irregular waves in both intact and damaged configurations and the experimental observations are compared with those predicted by the theoretical models.

It is seen that a complete loss of tether at any corner can reduce the statical stability of a tension leg platform drastically. A loss of tether, in general, is found to increase the platform motions in vertical planes as well as the static and dynamic tensions in the remaining intact tethers. Total loss of tether at one corner induces snap loads in one or more corners. Depending on the wave height and frequency, these snap loads could be high enough to trigger further tether failures. With regard to Mathieu type dynamic instability, even a 25% loss of total axial stiffness of the tethers is seen to have insignificant effect on the occurrence of such instability.
ACKNOWLEDGEMENT

The author wishes to express his heart-felt gratitude to Dr. M. Booton for his supervision, support and encouragement during the entire course of the present work. The author is also obligated to Dr. J.S. Pawlowski for his valuable suggestions and helpful discussions in connection with this thesis work.

The author is indebted to Dr. F.A. Aldrich, Dean of Graduate Studies for awarding a university fellowship for the duration of this work. Sincere thanks are due to Dr. G.R. Peters, Dean of Engineering and Applied Science and to Dr. T.R. Chari, Associate Dean of Engineering and Applied Science for their encouragement.

The author wishes to extend his deep appreciation to the staff of model fabrication shop, machine shop, welding shop, structures laboratory and fluids laboratory for their help and suggestions during the fabrication and instrumentation of the model tension leg platform and to MSRL for the underwater work during the installation of the model in the wave tank. Special thanks are due to Mr. H.
Mesh, Mr. B. Wilkie, Mr. M. Sullivan and Mr. A. Kuoczora for their help in conducting the experiments and in analysing the experimental data and to Mrs. M. Brown in typing this thesis. Fellow graduate students are also remembered for their help and companionship.

Finally, the author wishes to sincerely thank his parents and wife for their love and encouragement, to whom this work is dedicated.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>THE TENSION LEG PLATFORM</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>THESIS OBJECTIVES AND RESEARCH PLAN</td>
<td>11</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>LITERATURE REVIEW</td>
<td>14</td>
</tr>
<tr>
<td>CHAPTER 5</td>
<td>MODEL SCALE SIMULATION OF TLP</td>
<td>21</td>
</tr>
<tr>
<td>5.1</td>
<td>General</td>
<td>21</td>
</tr>
<tr>
<td>5.2</td>
<td>Development of Modelling Laws</td>
<td>22</td>
</tr>
<tr>
<td>5.3</td>
<td>Fabrication of the Physical Model</td>
<td>23</td>
</tr>
<tr>
<td>5.4</td>
<td>Experimental Determination of the Model Characteristics</td>
<td>26</td>
</tr>
<tr>
<td>5.5</td>
<td>Experimental Arrangement</td>
<td>29</td>
</tr>
<tr>
<td>5.6</td>
<td>Instrumentation and Data Acquisition</td>
<td>31</td>
</tr>
<tr>
<td>5.7</td>
<td>Test Summary</td>
<td>33</td>
</tr>
<tr>
<td>5.8</td>
<td>Data Analysis</td>
<td>36</td>
</tr>
<tr>
<td>CHAPTER 6</td>
<td>STATIC EQUILIBRIUM AFTER LOSS OF TETHER</td>
<td>39</td>
</tr>
<tr>
<td>CHAPTER 7</td>
<td>HYDROSTATIC ANALYSIS</td>
<td>44</td>
</tr>
<tr>
<td>7.1</td>
<td>General</td>
<td>44</td>
</tr>
<tr>
<td>7.2</td>
<td>Statical Stability of TLPs</td>
<td>45</td>
</tr>
<tr>
<td>7.3</td>
<td>Assessment of stability</td>
<td>47</td>
</tr>
<tr>
<td>7.4</td>
<td>The Hydrostatic Formulation</td>
<td>50</td>
</tr>
<tr>
<td>7.5</td>
<td>Hydrostatic Experiments</td>
<td>54</td>
</tr>
<tr>
<td>7.6</td>
<td>Results</td>
<td>54</td>
</tr>
<tr>
<td>CHAPTER 8</td>
<td>HYDRODYNAMIC ANALYSIS</td>
<td>57</td>
</tr>
<tr>
<td>8.1</td>
<td>General</td>
<td>57</td>
</tr>
<tr>
<td>8.2</td>
<td>Time Domain Simulation of a TLP</td>
<td>58</td>
</tr>
<tr>
<td>8.3</td>
<td>Frequency Domain Analysis</td>
<td>69</td>
</tr>
<tr>
<td>8.4</td>
<td>Spectral Analysis</td>
<td>73</td>
</tr>
<tr>
<td>8.5</td>
<td>Results</td>
<td>75</td>
</tr>
<tr>
<td>Chapter</td>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>9</td>
<td>Unstable Motions of TLP</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>General</td>
<td>84</td>
</tr>
<tr>
<td>9.2</td>
<td>Equations of Motion and Instability Phenomenon</td>
<td>85</td>
</tr>
<tr>
<td>9.3</td>
<td>Evaluation of Stability and Floquet Theory</td>
<td>87</td>
</tr>
<tr>
<td>9.4</td>
<td>Unstable Motion of the Simplified TLP</td>
<td>91</td>
</tr>
<tr>
<td>9.5</td>
<td>Unstable Motion of a Tension Leg Platform</td>
<td>93</td>
</tr>
<tr>
<td>9.6</td>
<td>Experimental Verification of Unstable Motion</td>
<td>96</td>
</tr>
<tr>
<td>10</td>
<td>Discussion and Concluding Remarks</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>General</td>
<td>98</td>
</tr>
<tr>
<td>10.2</td>
<td>Observations</td>
<td>100</td>
</tr>
<tr>
<td>10.3</td>
<td>Recommendations</td>
<td>103</td>
</tr>
<tr>
<td>References</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>Tables</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Figures</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Appendix A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listing of 'EQUILIB'</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>Appendix B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listing of 'HYDROSTATICS'</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>Appendix C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listing of 'TIME_DOMAIN'</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>Appendix D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listing of 'FREQ_DOMAIN'</td>
<td>241</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Comparison of some key features of Hutton TLP with other alternatives</td>
<td>114</td>
</tr>
<tr>
<td>2.1</td>
<td>Key particulars of Hutton TLP</td>
<td>115</td>
</tr>
<tr>
<td>3.1</td>
<td>Key plan of major research activities</td>
<td>116</td>
</tr>
<tr>
<td>5.1</td>
<td>List of relevant parameters and dimensionless numbers</td>
<td>117</td>
</tr>
<tr>
<td>5.2</td>
<td>Some scaling relations</td>
<td>118</td>
</tr>
<tr>
<td>5.3</td>
<td>Key particulars of the 'example TLP'</td>
<td>119</td>
</tr>
<tr>
<td>7.1</td>
<td>Key information for stability assessment of the example TLP</td>
<td>120</td>
</tr>
<tr>
<td>8.1</td>
<td>Comparison of theoretical and experimental significant (3rd highest) tension double amplitudes</td>
<td>121</td>
</tr>
<tr>
<td>8.2a</td>
<td>Comparison of theory and experiment for tensions in intact and damaged conditions (wave ht.=20m, period=21.9sec, heading=0°)</td>
<td>122</td>
</tr>
<tr>
<td>8.2b</td>
<td>Comparison of theory and experiment for tensions in intact and damaged conditions (wave ht.=20m, period=21.9sec, heading=45°)</td>
<td>123</td>
</tr>
<tr>
<td>8.3</td>
<td>Computed tension responses for the example TLP by 'TIME DOMAIN' (wave ht.=20m, period=12sec)</td>
<td>124</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Cost comparison of TLP with jacket structures</td>
<td>126</td>
</tr>
<tr>
<td>1.2</td>
<td>Typical TLP natural periods against sea spectra</td>
<td>127</td>
</tr>
<tr>
<td>1.3</td>
<td>'Triton': The first TLP</td>
<td>128</td>
</tr>
<tr>
<td>2.1</td>
<td>A perspective of the Hutton TLP</td>
<td>129</td>
</tr>
<tr>
<td>5.1a</td>
<td>Main dimensions of the 'example TLP': Elevation</td>
<td>130</td>
</tr>
<tr>
<td>5.1b</td>
<td>Main dimensions of the 'example TLP': Plan</td>
<td>131</td>
</tr>
<tr>
<td>5.2</td>
<td>1:100 model of the example TLP</td>
<td>132</td>
</tr>
<tr>
<td>5.3</td>
<td>'Tilting platform'</td>
<td>133</td>
</tr>
<tr>
<td>5.4</td>
<td>Elevation, plan and cross section of the wave tank at Memorial University</td>
<td>134</td>
</tr>
<tr>
<td>5.5</td>
<td>Schematic of the TLP model installation in the wave tank</td>
<td>135</td>
</tr>
<tr>
<td>5.6</td>
<td>Instrumentation of model mooring system</td>
<td>136</td>
</tr>
<tr>
<td>5.7</td>
<td>Components of model mooring system</td>
<td>137</td>
</tr>
<tr>
<td>5.8</td>
<td>Model TLP in waves</td>
<td>138</td>
</tr>
<tr>
<td>5.9</td>
<td>Block diagram of TLP model instrumentation and data acquisition systems</td>
<td>139</td>
</tr>
<tr>
<td>6.1</td>
<td>Skeleton diagram of TLP showing tether stiffness idealization</td>
<td>140</td>
</tr>
<tr>
<td>6.2</td>
<td>Static equilibrium tensions after tether loss at corner # 1</td>
<td>141</td>
</tr>
<tr>
<td>7.1</td>
<td>Definition diagram for hydrostatics</td>
<td>142</td>
</tr>
<tr>
<td>NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>7.2</td>
<td>Various TLP configurations for static stability analysis</td>
<td>143</td>
</tr>
<tr>
<td>7.3</td>
<td>A statical stability diagram</td>
<td>144</td>
</tr>
<tr>
<td>7.4</td>
<td>Flow chart for 'HYDROSTATICS'</td>
<td>145</td>
</tr>
<tr>
<td>7.5</td>
<td>Statical stability diagram : Case 1</td>
<td>146</td>
</tr>
<tr>
<td>7.6</td>
<td>Statical stability diagram : Case 2</td>
<td>147</td>
</tr>
<tr>
<td>7.7</td>
<td>Statical stability diagram : Case 3</td>
<td>148</td>
</tr>
<tr>
<td>7.8</td>
<td>'Admissible shifts' of CG for various TLP configurations</td>
<td>149</td>
</tr>
<tr>
<td>8.1a</td>
<td>TLP coordinate systems for hydrodynamic analysis</td>
<td>150</td>
</tr>
<tr>
<td>8.1b</td>
<td>The six degrees of freedom of a floating body</td>
<td>151</td>
</tr>
<tr>
<td>8.2</td>
<td>Flow chart for 'TIME_DOMAIN'</td>
<td>152</td>
</tr>
<tr>
<td>8.3</td>
<td>Flow chart for 'FREQ_DOMAIN'</td>
<td>153</td>
</tr>
<tr>
<td>8.4a</td>
<td>Comparison of surge motion calculated using 'FREQ_DOMAIN' and the results from Lyons et al. (1983)</td>
<td>154</td>
</tr>
<tr>
<td>8.4b</td>
<td>Comparison of tether tension calculated using 'FREQ_DOMAIN' and the results from Lyons et al. (1983)</td>
<td>155</td>
</tr>
<tr>
<td>8.4b</td>
<td>Comparison of tether tension calculated using 'FREQ_DOMAIN' and the results from Lyons et al. (1983) (contd.)</td>
<td>156</td>
</tr>
<tr>
<td>8.5</td>
<td>Surge RAO in intact and damaged (50% loss of tether at # 1) cases, (0° heading)</td>
<td>157</td>
</tr>
<tr>
<td>8.6</td>
<td>Heave RAO in intact and damaged cases (0° heading)</td>
<td>158</td>
</tr>
<tr>
<td>8.7</td>
<td>Pitch/roll RAO in intact and damaged cases (0° heading)</td>
<td>159</td>
</tr>
<tr>
<td>8.8</td>
<td>Tension RAO in intact and damaged cases (0° heading) : Corners # 1 and # 4</td>
<td>160</td>
</tr>
<tr>
<td>NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>8.9</td>
<td>Tension RAO in intact and damaged cases (0° heading) : Corners # 2 and # 3</td>
<td>161</td>
</tr>
<tr>
<td>8.10</td>
<td>Surge/sway RAO in intact and damaged (50% loss of tether at # 1) cases (45° heading)</td>
<td>162</td>
</tr>
<tr>
<td>8.11</td>
<td>Heave RAO in intact and damaged cases (45° heading)</td>
<td>163</td>
</tr>
<tr>
<td>8.12</td>
<td>Roll/pitch RAO in intact and damaged cases (45° heading)</td>
<td>164</td>
</tr>
<tr>
<td>8.13</td>
<td>Tension RAO in intact and damaged cases (45° heading) : Corner # 1</td>
<td>165</td>
</tr>
<tr>
<td>8.14</td>
<td>Tension RAO in intact and damaged cases (45° heading) : Corners # 2 and # 4</td>
<td>166</td>
</tr>
<tr>
<td>8.15</td>
<td>Tension RAO in intact and damaged cases (45° heading) : Corner # 3</td>
<td>167</td>
</tr>
<tr>
<td>8.16</td>
<td>Time records from irregular sea test : Intact case (0° heading)</td>
<td>168</td>
</tr>
<tr>
<td>8.17</td>
<td>Time records from irregular sea test : 50% loss of tether at # 1 (0° heading)</td>
<td>169</td>
</tr>
<tr>
<td>8.18</td>
<td>Time records from irregular sea test : 100% loss of tether at # 1 (0° heading)</td>
<td>170</td>
</tr>
<tr>
<td>8.19</td>
<td>Time records from irregular sea test : Intact case (45° heading)</td>
<td>171</td>
</tr>
<tr>
<td>8.20</td>
<td>Time records from irregular sea test : 50% loss of tether at # 1 (45° heading)</td>
<td>172</td>
</tr>
<tr>
<td>8.21</td>
<td>Time records from irregular sea test : 100% loss of tether at # 1 (45° heading)</td>
<td>173</td>
</tr>
<tr>
<td>8.22</td>
<td>A typical Pierson-Moskowitz spectrum (wind speed=20m/sec) derived from wave time history</td>
<td>174</td>
</tr>
<tr>
<td>8.23</td>
<td>Tension spectra : Intact Case (0° heading)</td>
<td>175</td>
</tr>
<tr>
<td>8.24</td>
<td>Tension Spectra : 50% tether loss at # 1 (0° heading)</td>
<td>176</td>
</tr>
<tr>
<td>NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>8.25</td>
<td>Tension spectra : Intact Case (45° heading)</td>
<td>177</td>
</tr>
<tr>
<td>8.26</td>
<td>Tension Spectra : 50% tether loss at # 1 (45° heading)</td>
<td>178</td>
</tr>
<tr>
<td>8.27a</td>
<td>Tether breakage instants</td>
<td>179</td>
</tr>
<tr>
<td>8.27b</td>
<td>Definition of response parameters used for comparison</td>
<td>179</td>
</tr>
<tr>
<td>8.28a</td>
<td>Computed motion responses : 50% tether loss at # 1 (0° heading)</td>
<td>180</td>
</tr>
<tr>
<td>8.28b</td>
<td>Computed tension responses : 50% tether loss at # 1 (0° heading)</td>
<td>181</td>
</tr>
<tr>
<td>8.29</td>
<td>Experimental tension responses : 50% tether loss at # 1 (0° heading)</td>
<td>182</td>
</tr>
<tr>
<td>8.30a</td>
<td>Computed motion responses : 100% tether loss at # 1 (0° heading)</td>
<td>183</td>
</tr>
<tr>
<td>8.30b</td>
<td>Computed tension responses : 100% tether loss at # 1 (0° heading)</td>
<td>184</td>
</tr>
<tr>
<td>8.31</td>
<td>Experimental tension responses : 100% tether loss at # 1 (0° heading)</td>
<td>185</td>
</tr>
<tr>
<td>8.32a</td>
<td>Computed motion responses : 50% tether loss at # 1 (45° heading)</td>
<td>186</td>
</tr>
<tr>
<td>8.32b</td>
<td>Computed tension responses : 50% tether loss at # 1 (45° heading)</td>
<td>187</td>
</tr>
<tr>
<td>8.33</td>
<td>Experimental tension responses : 50% tether loss at # 1 (45° heading)</td>
<td>188</td>
</tr>
<tr>
<td>8.34a</td>
<td>Computed motion responses : 100% tether loss at # 1 (45° heading)</td>
<td>189</td>
</tr>
<tr>
<td>8.34b</td>
<td>Computed tension responses : 100% tether loss at # 1 (45° heading)</td>
<td>190</td>
</tr>
<tr>
<td>8.35</td>
<td>Experimental tension responses : 100% tether loss at # 1 (45° heading)</td>
<td>191</td>
</tr>
<tr>
<td>9.1</td>
<td>Typical unstable time periods</td>
<td>192</td>
</tr>
<tr>
<td>NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>9.2</td>
<td>Simplified model of a tension leg structure</td>
<td>193</td>
</tr>
<tr>
<td>9.3</td>
<td>Flow chart for the evaluation of the stability boundary</td>
<td>194</td>
</tr>
<tr>
<td>9.4</td>
<td>Stability boundaries with different pretensions</td>
<td>195</td>
</tr>
<tr>
<td>9.5</td>
<td>Stability boundaries with different damping coefficients</td>
<td>196</td>
</tr>
<tr>
<td>9.6</td>
<td>Sway time history (stable case)</td>
<td>197</td>
</tr>
<tr>
<td>9.7</td>
<td>Sway time history (unstable case)</td>
<td>198</td>
</tr>
<tr>
<td>9.8</td>
<td>Phase plane plot of sway motion (stable case)</td>
<td>199</td>
</tr>
<tr>
<td>9.9</td>
<td>Phase plane plot of sway motion (unstable case)</td>
<td>200</td>
</tr>
<tr>
<td>9.10</td>
<td>Surge/sway and yaw stability boundary for the example TLP</td>
<td>201</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION

The escalation in the size of conventional drilling platforms for deeper waters and more severe environments could make much of the oil discovered in such areas remain unrecovered. Many innovative designs that have evolved in the last two decades aim to provide economically viable solutions to this problem.

Among the conventional oil production facilities, steel jacket or concrete gravity type in fixed structures and floating platforms such as semi-submersibles are the most popular. Fixed structures offer the best working conditions since they provide a stable platform from which to work. Unfortunately, the natural periods of oscillation for these structures increase with water depth and get into the 'high energy content zone' of the sea energy spectrum, making the structures vulnerable to high dynamic stresses due to environmental loads. This may be avoided by providing extra stiffening and thus keeping the natural periods down, but this solution makes the structure very heavy and
uneconomical. Floating units with soft moorings, on the other hand, are economically viable for greater water depths but fail to remain adequately stable during heavy weather conditions. Therefore, a lot of down-time becomes unavoidable.

'Compliant platforms' emerged as suitable alternatives for deep water applications where the platform natural periods are outside the high energy zone of the sea energy spectrum. These have options of restricting motions in certain desired degrees of freedom while moving 'compliantly' with the external loads in the others. A 'tension leg platform' (TLP), alternatively known as 'tethered buoyant platform' (TBP) is one such compliant structure that, in recent years, has received a great deal of attention from oil companies and researchers. Its suitability in deep water applications in terms of cost against fixed jacket structures is demonstrated in Fig. 1.1 (Dunn, 1979). Fig. 1.2 shows the typical TLP natural periods as compared to typical sea energy spectrums.

A TLP is a positively buoyant unit that is kept in position at a location by the help of a set of taut moorings. The tension in these moorings balance the difference in buoyancy and weight. The static pretension may
typically be in the order of 25 to 30 per cent of the total displacement of the platform. The mooring elements have very high axial stiffness due to which motions in the vertical planes i.e. heave, roll and pitch are severely suppressed. The platform, however, would exhibit large excursions in the horizontal plane i.e. in surge, sway and yaw modes, thus absorbing the wave energy through the gained momentum.

The first design of such a structure was produced by the pioneering English engineer, A.F. Daniel, some twenty five years ago; his platform was named 'Triton' shown in Fig. 1.3. In order to obtain better performances, the TLP configuration has undergone a lot of modifications since the time of Triton. The present day TLP is a column stabilised structure appearing somewhat like the familiar semi-submersible rig with much bigger columns pulled down to the seabed by vertical taut moorings. To date the only TLP in operation is the one in Hutton field in North Sea. As a concept, a TLP is intended to be used at water depths greater than 600 feet, but the Hutton TLP is deployed in a water depth of only about 485 feet since the sponsors felt that the cost of the TLP for that location would not be higher than conventional jacket structure and also a better knowledge about TLP behaviours was necessary before it could be selected for deeper waters. Table 1.1 (Ellers, 1982)
offers a brief comparison of certain relevant aspects between the Hutton TLP and a few other types of offshore production facilities.

The superior performance and elegance of TLPs depend largely on the performance of the taut moorings or the so-called 'tethers' (alternatively known as 'tension legs' or 'tendons'). Thus, quite justifiably, tethers themselves have received a good share of the total research work devoted to TLPs. Damage to one or more tethers may have rather undesirable effects on the overall performance of TLP and to the well being of the rest of the tethers. The main thrust of this thesis is to investigate these effects through theoretical and experimental means since not much is reported in the published literature on this particular topic.

Chapter 2 offers a description of a tension leg platform. Thesis objectives and research plan are given in Chapter 3. A brief review of relevant published literature is provided in Chapter 4. Details of model scale simulation of a TLP at Memorial University of Newfoundland, St. John's, Canada, given in Chapter 5, include development of modelling laws, description of the model, experimental arrangements and instrumentations, test program and data analysis etc. A
procedure to calculate the equilibrium tensions after a loss of tether is developed and illustrated in Chapter 6. Hydrostatic and hydrodynamic analyses are described in Chapter 7 and Chapter 8, respectively. Both frequency domain and time domain approaches are discussed under hydrodynamic analysis. Chapter 9 gives the details of the investigations on Mathieu type dynamic instability of TLPs.

In accordance with the convention followed in this thesis, theoretical and experimental results are discussed in every chapter, as applicable. A summary of observations, however, is presented in Chapter 10. Additionally, general comments on the present study, recommendations for future research etc., as realized by the author, are also included in this chapter. The text of the thesis is followed by a list of references, and tables and figures. Four appendices are also provided which give the source listings of some of the computer codes developed during this thesis work. All the input variables required to create the input files and the computed output variables are described in the header information of each program. Additionally, the input data are also reproduced on the output in a convenient form.
Chapter 2

THE TENSION LEG PLATFORM

A tension leg platform is a floating production unit where buoyancy exceeds its weight. It is held down by means of a few clusters of tethers. The tension that balances the difference in buoyancy and the weight keeps these tethers taut at all times.

The main buoyant unit of the structure is the 'hull', which, unlike semi-submersibles has larger vertical columns and relatively smaller horizontal pontoons. This hull, on the upper side, bears the production facilities and on the lower side is connected to the tethers. The platform is constrained to move in vertical planes by providing very high axial stiffness to the tethers. It is, of course, compliant in the horizontal modes.

Since the TLP is a relatively new concept, a brief description of its various components and their functions may be of help for the reader to appreciate the complexities and the problems associated with such a structure. This will probably be best achieved by choosing
the Hutton TLP as a representative TLP. Fig. 2.1 shows a perspective view of this TLP while the main particulars are given in Table 2.1.

The Hutton TLP has a six-column configuration. The column tops are connected by a box deck structure which is essentially a grillage of deep plate girders. The bottom of the column is connected by rectangular pontoons thus increasing the overall rigidity of the platform. The columns and the pontoons are of stiffened plate construction.

A mooring compartment is housed in each corner column where the top ends of the tethers are secured. The mooring equipment, including the load block, is placed on the mooring flat. The tension load on the load block is passed onto the mooring flat and the body of the hull through the locking collar of the tension adjustment assembly and a cross load bearing (CLB). The mooring compartments are located in the 'double-wall' portion of the columns. The double-wall construction extends over the splash zone and thus, besides protecting the mooring equipments, helps improve 'flooding damage control'.

The lower ends of the tethers are fixed to the anchor templates which are in turn piled onto the sea floor. The
bottom end of each tether has an anchor connector for attaching itself to the template. This connector is activated by the force of gravity. It can be disconnected by hydraulic devices remotely operated from the deck.

Both ends of the tethers have elastomeric flex-joints which allow free rotation up to 18.5 degrees.

The hull and the decks are fabricated separately and mated in shallow water. The assembled hull is towed to the offshore site and installed with the help of the mooring system.

The tether system installation is carried out in calm weather. The platform is temporarily moored with the help of an eight-point catenary mooring. High strength steel tubulars, which make up the tether elements, are stored in the mooring compartment. First, a single tether in each column is assembled and lowered to be 'stabbed' into the already installed anchor templates on the sea floor. Once the locking of the bottom ends is achieved, the platform is pulled down by hydraulic jacks. The remaining tethers are now installed and the platform brought to its operating draught by combined deballasting and pulling down on the tethers by hydraulic jacks. The platform is now in the 'TLP
mode'. The load cells in each corner continuously monitor the tether tensions and these values are used to adjust onboard load distribution.

TLPs are regarded as better performing platforms than many other designs for a number of reasons. It can be very suitably deployed in deep water. Since it can be moved from one location to the other fairly easily, it is expected to be useful in developing marginal fields. For use in deeper water (within a certain range) only the extra lengths of tethers would be necessary thus keeping the deployment cost low.

While the TLPs are expected to be one of the most popular offshore structures in the near future, concern regarding their operation has been expressed by industry and researchers. TLPs are highly sensitive to the weight onboard and its distribution. Because of the presence of tethers, coupled dynamic analysis is often required. In order to bear the extra loads arising out of the tether tensions, the structural arrangements tend to become more complicated. Tethers are very critical structural members subjected to high stresses and fatigue loads. Additionally, various nonlinear phenomena are of relevance in case of TLPs. In
particular, response to second order forces and dynamic instability may be mentioned.

Although a considerable amount of knowledge has been gained regarding the behaviour of TLPs, much is yet left to be understood so that efficient and reliable design philosophies may be established so that the operability and safety of the structure may be assured.
Chapter 3

THESIS OBJECTIVES AND RESEARCH PLAN

It must be appreciated at this point that the presence of highly tensioned tethers with large axial stiffness in a TLP is the major reason why it behaves so differently than other floating structures. It is therefore imperative that attention is given to analyses of situations with total or partial loss of tethers at one or more corners. Such losses may occur due to failure of anchors, failure of locking arrangements, breakage of tether tubulars or similar reasons. It would then become necessary to remove the damaged tethers for repair or replacement. Damage to columns also deserve adequate attention but provided that the safety of the water-tight hull is not at stake, such damages may be much less fatal than a sizeable loss of tethers. Tether loss is likely to affect the stability and the responses of the platform and may induce higher loads in the remaining active tethers as well as the riser strings. Sudden loss of tethers may initiate high transient loadings that may trigger progressive damage of the rest of the tethers.
It may be mentioned here that no detailed and comprehensive study of TLP behaviour following a sizeable tether loss is yet reported in published literature. The primary objective of this thesis is to study the changes in static and dynamic behaviour of an example TLP in 'intact' and 'loss-of-tether' (hereafter also referred to as 'damaged') conditions through both theoretical and experimental investigations. In brief, the scope of the present thesis work may be described as:

1. Develop/adopt formulations necessary for hydrostatic and hydrodynamic investigations.

2. Develop computer software for hydrostatic and hydrodynamic computations.

3. Analyze the chosen TLP for evaluation of stability characteristics and motion and tension responses in intact and tether damage conditions.

4. Design and conduct model-scale experiments to obtain data for comparison with the theoretical findings.

In addition, a special study is also undertaken to analyse the Mathieu type dynamic instability peculiar to
structures such as TLPs. Table 3.1 lays out the key plan of the major research activities.
Chapter 4

LITERATURE REVIEW

The two major systems that interact closely to portray the overall behaviour of a TLP are namely its main buoyancy unit (the hull) and its moorings (the tethers). To obtain a complete information on the responses of one of these systems, knowledge of responses of the other becomes a pre-requisite. Thus the response analysis becomes nonlinear and iterative in nature although depending on the type of information sought, simplifications compatible to current engineering practice are often made to obtain practical solution to the problem. Previous experiences with analysis of floating bodies, semi-submersibles and other compliant structures have provided the required basis for much of the techniques being employed for analysis of TLPs.

In most analytical models for evaluation of overall response of TLP, the hull is regarded as a rigid body while the tethers are modelled as elastic members. The hull and the tethers may be excited by waves and currents. Additionally, the above water portion of the hull would also experience wind loads. In order to obtain the responses, standard form of equations of
motion are used which are essentially the generalised force balance equations.

Three main approaches, all amenable to only numerical schemes of solution for real life applications, may be identified in connection with computation of the hydrodynamic loading. The first approach requires the fluid flow to be solved on the boundary of interest in order that the pressure distribution can be calculated. The forces and moments are then found by proper integration of this pressure. This is done by obtaining solution to the classical Laplace Equation in 'ideal fluid' domain, subject to the prevailing boundary conditions. The theory is classical but the computational difficulties that arise when a practical structure has to be considered have been circumvented only in recent years. A particular scheme of solution called the 'three-dimensional source-sink distribution technique' has been suggested, amongst others, by Faltinsen and Michelson (1974).

The above approach, though mathematically rigorous, has many disadvantages. The formulation is quite involved and the typical computation time is very long, particularly in cases where iterative methods are to be used. Often handling of very large matrices becomes necessary thus imposing limitations on the size and/or shape of the body to be analysed. Also the effect of viscous drag cannot be taken into account thus leading to
inaccurate estimation of forces on relatively slender bodies. An alternate approach which relies on semi-emperical relations or simpler strip theory formulations is often employed to evaluate the hydrodynamic loadings on three dimensional bodies. This approach is particularly advantageous in handling structures as space frames but also introduces errors due to the simplistic assumptions used.

Estimation of hydrodynamic forces on a slender pile by semi-emperical relation was first proposed by Morison et al. (1951). Under the second category, the present day formulations for estimation of forces on tubulars of floating structures are essentially derived or intuitively extended from the original Morison equation. The work of Burke (1970), Paulling and Horton (1970), Hooft (1971), Kim and Chou (1973) are typical examples of the use of this approach. In order that the total force on a structure may be computed from the forces calculated on its component members, the hydrodynamic interactions among them is ignored. The forces on individual members thus may be added vectorially to yield the total force on the structure. This assembly is what has been termed as 'hydrodynamic synthesis' (Paulling, 1985). It may be noted that in this approach the viscous drag effects are also included via semi-emperical relations while diffraction effects are neglected. Discussion on
the use and applicability of this method may be found in Sarpkaya, 1981.

The third approach aims to combine both the above approaches by applying the first one to larger members and the second one to the relatively slender members. This is expected to yield improved results, see for example Standing (1979), Garrison (1983) etc. As the merits of both the approaches are merged into one, the inherent demerits of each one of them also become a part of the combined method. A comparison of results obtained via various approaches is given by Paulling (1981).

The tethers provide restoring forces to the platform and thus are included in the equations of motion. The earliest work on TLP responses reported by Paulling and Horton (1970) provided a linearized model for frequency domain analysis. In this work, the tethers are taken as linear springs with only axial stiffness. Computed results matched fairly well with some experimental data.

A time domain analysis was used by Paulling (1977) to evaluate responses of a TLP where a few nonlinear effects such as (i) nonlinear terms in the rotational equations of motion, (ii) nonlinear drag force, (iii) integration of the hydrodynamic forces over the instantaneous wetted surface and (iv) position
dependent tether tensions for calculation of restoring forces were included. This model is capable of providing both steady state and transient solutions.

Effect of various other related phenomena such as 'inertia relief', 'draw-down forces', etc. on TLP responses are studied in the analysis by Kirk and Etok (1979). TLPs are treated as coupled systems by implicitly including the tether dynamics in the response analysis by Patel and Lynch (1983). Amongst the second order loadings, the effect of drift has been calculated by authors such as Burns (1983). Kareem and Dalton (1982) and Haritos (1985) have computed the typical loads due to constant and time-varying wind flows and have shown the importance of the inclusion of such effects in the overall TLP dynamics.

The general motion and tension responses have also been evaluated by experimental means and correlated with the theoretical predictions. Some of this work is described by Faltinsen et al. (1974), Rowe et al. (1979), Lyons et al. (1983), Dunsire and Owen (1984), Dillingham (1984).

Rainey (1977) has demonstrated the possible occurrence of Mathieu type dynamic instability in TLP response at critical wave frequencies. In this work a 'feedback system' analogy has been used. Analytical methods for determination of such critical
regimes of wave loading have been suggested by Richardson (1979), Patel and Jefferys (1981), Yoneya and Yoshida (1982), Paulling (1982), Conceição and Neves (1983) etc. A numerical method based on Floquet theory ready adaptable to computer applications has been described by Deb and Booton (1986a) and Deb and Booton (1986b). A report by Rowe and Jackson (1980) describes experiments conducted to observe unstable TLP responses in model scale.

In normal situations a TLP has an equal amount of tether stiffness at all corners. Loss of stiffness and equilibrium tension redistribution would take place if any of these tendons were to fail, and would influence the responses of a TLP. In spite of its indisputable significance, detailed analysis of TLPs in tether-loss conditions is rare in published literature. Static tension redistribution after a complete loss of tendons at one corner was noted during an experiment by Sebastini et al. (1981). The effect of small losses of tether stiffness on the overall characteristics has been described by Booton et al. (1986). The impact of a sudden loss of all the tendons at one corner on the tensions in rest of the tendons is briefly reported by Sekita and Sakai (1984). Indication of simulations carried out by CONOCO to obtain similar information for the Hutton TLP are given in a short state-of-the-art report by Schamaun and Sannum (1985).
The complex and often contradicting design requirements of a TLP have demanded ongoing attention by researchers. Investigations related to design and development and applications of various analysis to guide the design procedures of a TLP are found in the research of Godfrey (1976), Roren et al. (1977), Capanoglu (1979), Perrett and Webb (1980), Chou et al. (1980), Tian et al. (1981), Ellers (1982), Ellis (1982), Karşan et al. (1982), Mercier et al. (1982), Chou et al. (1983), Faulkner et al. (1983), Patel and Witz (1985) etc. For general references on dynamic analysis of the TLP and its tether system, the work of Albrecht et al. (1978), Asford and Wood (1978), Denise and Heaf (1979), Gie and de Boom (1981), Stiatnsen and Chen (1981), Hudspeth and Leonard (1982), Yoneya and Yoshida (1982), Jefferys and Patel (1982), Agarwal and Spanos (1983), de Boom et al. (1983), Teigen (1983), Paulling (1986) etc. may be mentioned.
Chapter 5

MODEL SCALE SIMULATION OF TLP

5.1 General:

The tension leg platform is a relatively new concept and, as a system, highly complex. In spite of efforts made by various researchers, quite a few aspects regarding its response to environmental loads are not completely understood. Quite often the analytical methods have to sacrifice rigor in order to be computationally efficient and thus bear the possibility of yielding inaccurate results. Some times enough is not known to adequately describe a phenomenon by analytical means. Hence, in an effort to gain confidence in theoretical predictions made or to better understand some of the complex phenomena involved, a number of TLP model tests have already been undertaken. In the present research, model scale tests are primarily designed to provide the following:

(1) experimental data from statical stability and steady state motion response tests to cross check computer
codes developed for hydrostatic and hydrodynamic calculations.

(ii) observations of certain types of behaviour of a TLP such as transient and steady state responses following loss of tether, and dynamic instability phenomenon at critical wave frequencies.

The above can be achieved by a 'dynamically similar' scaled model of a representative TLP prototype.

5.2 Development of Modelling Laws:

In order to be able to reproduce prototype phenomena in a model scale simulation or to project back the findings from the model tests to prototype size, the design of the model and the experimental conditions must conform to a set of mathematical relations which may be termed as 'modelling laws'. For the purpose of delineating the key parameters, the TLP system under investigation may be broken up as:

\[\text{TLP}_{\text{system}} = \text{TLP}_{\text{hull}} + \text{Tethers} + \text{Waves} \]

The relevant parameters have been identified and listed in Table 5.1. The dimensionless numbers are derived from
this list by using the 'matrix method' described by Deb and Deb (1986) and are given at the bottom of Table 5.1. Since, for proper modelling these ratios must be kept constant for both model and prototype, these can also be used to form mathematical relations between prototype and model parameters. Scaling relations that evolved out of such an exercise are presented in Table 5.2.

The design of the model and the test environment are now accomplished using the scaling guidelines already derived. It may be noted that since both Froude Number and Reynolds Number similarities cannot be maintained simultaneously if water is used in the wave tank (see for example Sharp, 1981), the latter is omitted on the grounds that the flow around the model would be turbulent and that the inaccuracies in the reproduction of the viscous effects would not significantly alter the experimental results. Even though serious concerns regarding this dissimilarity have been raised, such a practice, due to lack of any suitable alternative, appears to be the only practical solution to the problem.

5.3. Fabrication of the Physical Model:
The main aim of this research being a study of certain overall behaviours of TLP, the prototype particulars are chosen such that they are representative of a feasible TLP and not necessarily correspond to any particular TLP design. Fig. 5.1a and Fig. 5.1b show the main dimensions of the chosen TLP in elevation and plan; main particulars are given in Table 5.3. This platform hereafter is also referred to as the 'example TLP'.

It is a well known fact that matching of various parameters in a scaled model becomes progressively more difficult as the size of the model gets smaller. However, the upper limit of the size of the model may be limited by the available testing facilities and the cost involved. Due to such restrictions the model scale simulation in this study has been done at 1:100 scale. The model dimensions are calculated from the prototype using the relations in Table 5.2.

The task of modelling the integrated TLP system is divided into two major groups, namely the hull and the mooring systems.

The rigid hull of the model TLP is made out of clear perspex ('plexiglass'). The geometry could be easily scaled
down as far as the outer dimensions are concerned. Fixed lead ballasts are used to scale mass and inertia properties. Fig. 5.2 offers a view of the model after assembly. The columns are made out of 6" and 4" dia tubes, the larger ones being at the corners. 4" dia tubes are used to form the pontoons. The cross deck and the derrick are made of 1/8" perspex sheets. Flat bar stiffeners are provided between decks on the diagonals and on the sides to achieve high rigidity. The joints are glued together using chloroform. Perspex plugs with 'O'-rings are used to close the bottom ends of the corner columns. A 1/4" dia steel threaded rod runs through each corner column whose bottom end is screwed down to the plug. These rods pierce through the upper deck of the model and through a steel 'handling frame' placed on top of the upper deck. The handling frame is held down in place by means of locking nuts on the threaded rods. The model hull is watertight up to the bottom of the upper deck and all its members are interconnected. Watertightness is checked by filling the model with water. The lead ballast weights are casted in the form of annular disks and held in place around the threaded rods by means of nuts and washer plates.

In the present study, platform behaviour and representative tension response are seen as the topics of
major interest. For the sake of simplicity, only the axial stiffness and equilibrium tension similarity for the tethers are modelled since these, among all the tether properties, have the maximum influence on the overall TLP behaviour. While scaling the stiffness and the tension, the combined effect of the tether cluster at each corner is considered. One 'equivalent' tether per corner with scaled properties is provided except for corner # 1 where two identical model tethers equally share the scaled tether at that corner. The reason for putting two tethers at corner # 1 is to make the simulations of different amount of tether loss (viz. 50% and 100% loss at # 1) possible. The tether is modelled by using a nylon coated high strength steel cable in combination with a spring at one end. The steel cable has very high axial stiffness and it is the spring that provides the required tether stiffness in the axial direction. The active tether length is maintained in accordance with the scaling laws.

5.4 Experimental Determination of Model Characteristics:

Although the key properties of the model such as mass, vertical centre of gravity (VCG), mass moments of inertia etc. are calculated from the dimensions and the weight of each component member of the model, experimental
verification of some of these properties is deemed necessary.

The gross weight of the model is confirmed by weighing it on a balance at an accuracy level of 10 grams. To check the VCG, an inclining experiment is done with the model in free-float condition. An external heeling moment \(M_h \) is applied by shifting a known weight on the deck of the model. The resulting inclination \(\phi \) is measured using a 'Spectron L210 Two Axis Electrolytic Level Sensor' and a 'Brul and Kjaer 1526 Digital Display'. At small angles of inclination, the metacentric height \(GM \) is found from:

\[
GM = \frac{M_h}{W \sin(\phi)} \quad (5.1)
\]

where,

\(W \) = weight of the model

The VCG is now determined from:

\[
VCG = VCB + BM - GM \quad (5.2)
\]

where,

\(VCB \) = vertical centre of buoyancy

\(BM \) = metacentric radius
Both VCB and EM are calculated from the hydrostatic information of the model generated by the computer program 'HYDROSTATICS' (described in section 7.4).

To establish the radii of gyration, a 'tilting platform' shown in Fig. 573 is used. First the adjustable distance between the knife edges and the table is set equal to the model VCG. The heights of the counter weights are adjusted such that the VCG of the tilting platform is brought in line with the line of the knife edges. The assembled model is placed at the centre of the table. The model radius of gyration about any axis is found by measuring the time periods of oscillation of the empty platform and the model and the platform together about the axis of interest using (McDuff and Curreri, 1958):

\[k^2 = \frac{I}{m} = \frac{(I_{p+m} - I_p)}{m} \]
\[= \sum K_{id_i^2} \frac{(T_{p+m}^2 - T_p^2)}{4\pi^2m} \]
(5.3)

where,

- \(k \) = radius of gyration
- \(I \) = mass moment of inertia of the model
- \(I_{p+m} \) = mass moment of inertia of the platform and the model
\[I_p = \text{mass moment of inertia of the platform} \]
\[m = \text{mass of the model} \]
\[K_i = \text{spring constant of the } i\text{th spring} \]
\[d_i = \text{distance of the } i\text{th spring from the centre of the platform} \]
\[T_{p+m} = \text{time period of oscillation of platform and model} \]
\[T_p = \text{time period of oscillation of platform} \]

The time periods are found from the central period of the power spectrum of analog output of a 'Bruel and Kjaer 8306 Accelerometer' placed on the platform. This power spectrum is obtained after Fourier analysis of the accelerometer output by an 'HP 5420B Digital Signal Analyser'.

Attempts were made to verify the natural periods of oscillation of the model after it is placed in the wave tank in tethered configuration. The model was given an initial push such that it oscillates in the desired degree of freedom. The period of oscillation can be then found from a similar Fourier analysis of the motion record. With the available accuracy levels of the equipments being used, only the natural periods in surge, sway and yaw modes could be measured.
5.5 Experimental Arrangement:

The TLP experiments are carried out in a 58.27 m (length) x 4.57 m (width) x 3.04 m (depth) wave tank facility at Memorial University, St. John's, Canada (see Muggeridge and Murray, 1981 for details of the tank). The waves are generated by an MTS servo-hydraulic piston type wave board. Schematic plan and cross section of the tank are shown in Fig. 5.4.

The model with the correct amount of ballast is placed in the wave tank with its orientation coinciding with the desired wave heading. The model is held in place by its mooring system. Fig. 5.5 shows a schematic of this arrangement. The tethers are connected to the bottom of the corner columns of the model by means of eye bolts. The tethers run vertically downwards to the 'A' pulleys which are bolted to a steel frame rigidly fixed on the tank floor. Tethers are taken around these pulleys and passed through the 'B' pulleys and then continued vertically upwards to connect them to the 'load cell - turn-buckle - spring' unit of the mooring system located above water level. Detail 'X' of Fig. 5.5 shows a schematic of this arrangement. The 'ring type' load cell is used to read out the line tension, the
turn-buckle to make small tension adjustments and the spring to provide the required axial stiffness of the tether. The tethers are continued beyond the springs and passed over the 'C' pulleys. Known weights are hung from the free ends of the tethers. This arrangement helps set the line tensions close to the desired values. Finer adjustments are carried out with turn-buckles, once the tops of the tethers are clamped. Fig. 5.6 shows the above-water portion of the mooring system and Fig. 5.7 displays some of the items used in it. Fig. 5.8 shows the TLP model in waves. Underwater installations needed to set up the experiments were accomplished with the help of surface divers.

5.6 Instrumentation and Data Acquisition:

Data acquired during experiments are of three major types viz. (i) wave data, (ii) platform motion data and (iii) tether tension data. A block diagram of the instrumentation and data recording scheme is given in Fig. 5.9.

For measurement of the wave profiles, the 'primary wave probe', a standard twin wire linear resistance type probe is placed about 1.5 metres upstream of the model on the tank centre line. Another probe of similar specifications is
placed by the side of the model at a distance of about 1.5 metres from the tank centre line. This 'secondary' probe is used for back up and special reference purposes. The probes are calibrated prior to start of experiments after any reasonably long break to eliminate error due to water temperature differential. The output from the probes are recorded as analog signals on an eight channel, six speed 'HP 3968A Instrumentation Tape Recorder' capable of FM recording over a bandwidth of 0 to 5 KHz and/or direct recording of signals upto 64 KHz.

The platform motion data are acquired through a SElSPOT (SELective SPOT recognition) system manufactured by Selective Electronic Company (SELCOM) of Sweden. This optical-electronic device is capable of three dimensional position measurement of 30 points defined by infrared Light Emitting Diodes (LEDs). The LEDs are pulsed sequentially which are recorded via two mutually orthogonal electronic cameras. A pulse rate of one per every 3.2 ms allows a maximum sample rate of 312.5 frames a second. The cameras provide digitized output of the angular displacements of each LED from its focal plane. This information, and the known positions of the cameras (obtained by survey with respect to the tank coordinates) and the LEDs (obtained by survey and cross checked by SElSPOT output), enables one to
compute the motions in six degrees of freedom of a given point on the model by means of suitable software. A minimum of three non-collinear LEDs are necessary for such analysis. The SELSPOT system is capable of yielding translation and rotational accuracies in the order of 0.2 cm and 0.2 degrees, respectively.

The measurement of tension in each line is carried out using previously calibrated strain gauge outputs of the load cell in that line. The strain gauge outputs are amplified through a ten channel 'Vishay Instruments 2100 Strain Gauge Conditioner and Amplifier System' before they are recorded on the previously mentioned FM recorder. The load cells are taken out of the mooring system from time to time to check the calibration. On line monitoring of the tensions is done with the help of digital multimeters connected to the strain gauge amplifier.

All runs of the test are video recorded for reference at a later date.

5.7 Test Summary:

The entire test program may be divided under two major heads e.g. (i) statics and (ii) dynamics.
In statics, the experiments carried out are:

- inclining experiments in free-float condition to determine the VCG.
- statical stability experiments in tethered condition with complete loss of tether at corner #1 to obtain righting moments as a function of heel angle.

Under dynamics category two types of observations are made e.g. (i) steady state response and (ii) transient response.

Steady state motion and tension responses are measured for three distinct cases namely (i) intact, (ii) 50% loss of stiffness at corner #1 i.e. one model tether inactive at #1 and (iii) 100% loss of stiffness at corner #1 i.e. both the model tethers inactive at #1. For tests in regular waves, prototype wave period is varied from 8.0 sec to 24.0 sec at an increment of 2.0 sec; for each frequency prototype wave height is varied from 5.0 m to 20.0 m at increments of 5.0 m each. Tests have also been conducted in irregular waves for the intact and damaged cases. Pierson-Moskowitz spectra for fully developed sea corresponding to prototype wind speeds of 30.0 m/sec and 20.0 m/sec are used to generate the wave profiles.
It may be mentioned here that the water depth, the wave periods and the wave heights are set to their scaled values (as may be found from Table 5.2) during the tests.

Transients in motion and tension responses are observed after sudden loss of 50% and 100% tether stiffness at #1. These are simulated by releasing the top clamp of one or two tether(s) simultaneously with the help of an electromagnetic device that could be triggered remotely and at a predetermined time. Output from the secondary wave probe is viewed on an oscilloscope and a trigger is set after a desired length of time. This oscilloscope is connected to a 'relay circuit' which activates the electro-magnetic release mechanism. Thus the failures could be simulated at different parts of the wave form. Since it is found difficult to perform such runs at various combinations of wave period and height it is decided that only one combination be chosen and that experimental observation be compared with theoretical predictions for that case. Accordingly such tests are done at a prototype wave period of 21.9 sec and wave height of 20.0 m.

Dynamic instabilities are another kind of transient response. Few runs are devoted to verification of predicted
occurrence of Mathieu type unstable motion of a TLP. At a critical combination of wave period and wave height, the model is pushed by hand to induce some motion in the unstable degree of freedom under investigation. If this motion grows with time, the model is regarded to be exhibiting unstable motion at the test wave period and wave height combination.

5.8 Data Analysis:

As mentioned in section 5.6, motion data are recorded in digitized form while wave and tensions measurements are recorded as analog signals. Over a selected 'time window', common for all the records for a particular run, average double amplitudes, maximums, minimums etc. are computed using in-house software (Little, 1985) with the help of an IBM PC (XT) for motion data and a HP 86 computer in conjunction with a HP 5420B Digital Signal Analyser for wave and tension data. Typically a time interval of 0 to 20 seconds is used for such computations. 'Response Amplitude Operators' (RAOs) are found by dividing the double amplitude of a particular response by the corresponding double amplitude of wave. A wave height of 10 m is used for the RAO computations.
While data recording by SELSPOT system is found to be satisfactory for horizontal translations such as surge and sway, motions in vertical planes i.e. heave, pitch and roll are found to be small to be recorded with sufficient reliability owing to the accuracy levels of the measuring system. These data, therefore, are not used for any further analysis.

Standard Fourier analysis is done on the wave and tension records from the irregular sea tests to compute response spectra and transfer functions (i.e. the RAOS). Analog data from the FM Recorder is digitized using a HP 5466B Analog to Digital Converter at a sampling frequency of 50 Hz. The digitized data is then transferred to a VAX 8800 computer for further analysis. In an attempt to reduce the noise content of the signals, they are passed through a 'low-pass pulse type' filter of 4 Hz upper cutoff. The wave and tension spectra are then obtained from Fourier transformation of the filtered time records. The transfer functions are obtained from the standard 'cross-spectral' analysis. Although experiments are conducted using PM spectra for wind speeds 20 m/sec and 30 m/sec, records obtained for the latter spectrum are dropped from all frequency domain analysis because of frequent occurrence of breaking waves and under-deck slamming.
It may be mentioned here that unless otherwise indicated, all the experimental data presented are to be regarded as those corresponding to the 'example TLP' scaled to prototype size.
Chapter 6

STATIC EQUILIBRIUM AFTER LOSS OF TETHER

If a certain number of tethers are damaged at any corner of a TLP such that they are rendered inactive, we may say that the platform has suffered a tether loss at that corner. A 'loss of stiffness' at that corner is a direct consequence of tether loss. This would cause the platform to move into a new equilibrium configuration causing a redistribution of the resulting total pretension. To find the static equilibrium tension at each corner the new displacements at the corners must be determined. It may be readily seen that the problem is statically indeterminate since the number of unknowns are in excess of the number of independent force/moment equilibrium equations. A method is developed here to compute the equilibrium displacements (and therefore, the tensions) and is described in the following.

Fig. 6.1 shows a skeleton diagram of a TLP with linear springs at the corners to represent the axial stiffnesses \(K_1, K_2 \) etc. of the tethers. Let \(d_1, d_2 \) etc. be the new equilibrium displacements corresponding to the springs \(K_1, K_2 \) etc., and let \(z_d \) be the Z-distance of a datum from which
these displacements are measured. Now the static equilibrium equations are written as:

\[\sum F_z = 0, \text{ i.e.} \]
\[K_1d_1 + K_2d_2 + K_3d_3 + K_4d_4 = T_p + \Delta B \]
\[\sum M_x = 0, \text{ i.e.} \]
\[K_1d_1y_1 + K_2d_2y_2 - K_3d_3y_3 - K_4d_4y_4 = \Delta M_x \] \((6,1) \)
\[\sum M_y = 0, \text{ i.e.} \]
\[K_1d_1x_1 - K_2d_2x_2 - K_3d_3x_3 + K_4d_4x_4 = -\Delta M_y \]

where,

- \(T_p = \) total pretension
- \(\Delta B = \) change in buoyancy
- \(\Delta M_x, \Delta M_y = \) resultant hydrostatic moments about \(X \) and \(Y \) axes
- \(X_1, Y_1 \text{ etc.} = X \) and \(Y \text{ coordinates of the tether tops at corners # 1 etc.} \)

It may be pointed out that the hydrostatic stiffness in the vertical direction arising out of the waterplane area of the columns is typically a small percentage (about 2 to 4) of the total axial stiffness of the tethers. Thus, even if there is a large change in tension at any corner, the resulting vertical movement would cause insignificant change in buoyancy. Also these displacements would be so small
compared to the lengthwise dimensions of TLP hull that they would only cause very small inclinations (typically a complete loss of tether at one corner would tilt the hull by about 0.1 degrees) thus making the resulting hydrostatic moments to be insignificant. There is, however, a marked redistribution of the total pretension.

According to the reasonings given in the proceeding, ΔB, ΔM_x and ΔM_y may be assumed to be zero. Also if the platform weight remains unchanged, the total pretension would remain unaltered after the tether loss. Now if we assume that the springs are attached to a rigid frame we can write the following identity from the Z coordinate of the crossing point of the diagonals #1-#3 and #2-#4:

\[
\frac{Z_d + d_1 + Z_d + d_3}{2} = \frac{Z_d + d_2 + Z_d + d_4}{2}
\]

or,

\[
d_1 + d_3 = d_2 + d_4
\]

or,

\[
d_4 = d_1 - d_2 + d_3
\]

(6.2)

Letting ΔB, ΔM_x and ΔM_y to zero and substituting for d_4 from equation (6.2) in equation (6.1) and rewriting in matrix form, we obtain:
Now, for any given pretension and stiffness values, the equilibrium displacements \(d_1, d_2 \) etc. can be easily calculated by multiplying the r.h.s. with the inverse of the coefficient matrix. Once these are known, \(d_4 \) can be calculated from equation (6.2). The various equilibrium tensions \(T_1, T_2 \) etc. would then be found as:

\[
T_1 = K_1 d_1 \\
T_2 = K_2 d_2 \quad \text{etc.} \quad (6.4)
\]

For illustration purposes a TLP with \(T_p = 1.44 \times 10^8 \) N and intact axial stiffness/corner = \(7.6 \times 10^7 \) N/m is chosen. The stiffness at corner \# 1 is reduced in steps. The resulting tension redistribution, keeping \(T_p \) constant, is calculated via a computer program 'EQUILIB' (listed in Appendix 'A') based on the above-mentioned method and graphically represented in Fig. 6.2. It may be noticed that as the platform tips towards corner \# 3 due to tether loss at \# 1, the tension decreases at both the corners; at \# 1 due to reduced stiffness and at \# 3 due to reduced displacement. The tension lost from \# 1 and \# 3 is picked up
by the tethers on the opposite diagonal i.e. #2-#4 where an increase in tension takes place. If T_p, ΔM_x and ΔM_y are to be taken as nonzero values, an iterative scheme would have to be employed where for every trial solution of the equilibrium displacements, these quantities would have to be evaluated by hydrostatics software and fed back as inputs till desired level of convergence is achieved. In such a case, the equilibrium tensions at #1 and #3 would cease to be equal (as seen in Fig. 6.2), but the difference would still be very small.

A TLP is very weight sensitive and the distribution of loads on-board is carefully matched with the current tension distribution. Knowledge of equilibrium tensions with any given combination of stiffnesses is, therefore, of much relevance. Besides, these values are also needed to assure safety of the tethers, as input data for various dynamic analyses etc.
Chapter 7

HYDROSTATIC ANALYSIS

7.1 General:

A floating body (also referred to as 'vessel') must be 'hydrostatically stable' to be seaworthy. The ability of a vessel to counteract the resultant external force or moment is its measure of stability, and when these loads are applied statically the body responds according to its hydrostatic properties. Referring to Fig. 7.1 we can see that when the body tilts about any particular axis, the centre of gravity (C.G.) and the centre of buoyancy (C.B.) cease to remain on the same vertical line thus generating a resultant moment in the plane that contains these two points. The component of this resultant moment that opposes the external moment is what is known as the 'righting moment'. A floating body would keep on listing until the righting moment equals the external one. Statical stability analysis essentially aims to quantify the ability of a vessel to generate this righting moment.
7.2 Static Stability of TLPs:

For a free floating body, the stability characteristics at any given inclination of the body with respect to the water plane depends on the geometry of the buoyant volume and the distribution of weight or in other words on the relative disposition of C.G. and C.B. A TLP in free-float modes displays stability characteristics similar to semi-submersibles. In operational mode, however, it derives high restoring moments from its tethers due to their high axial stiffness. The restoring moments due to tethers are in fact so high that if the tethers were to remain intact and the major hull were to remain watertight, the statical stability of TLP would be well in excess of what may be regarded as safe. In what follows, attempts are made to investigate the effect of tether loss on the statical stability of TLP. Fig. 7.2 gives a schematic representation of the major TLP configurations that may be of interest in the context of stability assessment. The first three are examples from free-float configurations where buoyancy equals the weight always. The fourth one shows the TLP in operational draught with complete loss of tethers at one corner, say #1. It may be immediately realised that the high rigidity of TLP in intact operational condition is now lost and the platform would easily tilt towards corner #3 if an external moment
such as that caused by wind load is applied in the vertical plane containing # 1 and # 3. Tethers at # 3 would also lose tension and go slack as the TLP stoops towards # 3. Tether stiffnesses being very high, vertical movement of the hull would be very small. Thus the platform would virtually rotate about a space fixed axis passing through the top of tethers at # 2 and # 4. Any change in buoyancy will cause proportional change in the tensions in # 2 and # 4. Should there be such an emergency (possibly caused by blow-outs etc.) such that it has to switch to free-float mode at once, the tethers would have to be suddenly disconnected before any change in ballast/on-board weights could be brought about. This 'emergency disconnect' configuration, which can be viewed as a case of 100% tether loss at all corners or as a special free-floating case, is what is depicted in the fifth schematic. In the present chapter, configuration with operational draught and 100% loss of tether at # 1 will be studied in greater detail and its statical stability status will be compared with some of the other configurations.

For brevity only three out of the five configurations shown in Fig. 7.2 will be analysed. Out of the first three configurations, a careful inspection of some pertinent parameters such as draught, displacement, location of the vertical centre of gravity (VCG) etc. would indicate that
the third one should be analysed most critically. Hence, the cases that would be considered here are (i) TLP at operational draught with complete loss of tether at corner # 1 (Case 1), (ii) TLP immediately after 'emergency disconnect' (Case 2) and (iii) TLP in 'post-mating' draught (Case 3). Information regarding the exact displacements, weight, VCG etc. of most of these configurations is not adequate in published literature since such data are regarded as 'proprietary'. Judicious estimations are, therefore, done to make the analysis realistic. The geometry of the hull considered here is the same as that described in Chapter 5 (also see Table 5.3 and Figs. 5.1A and 5.1B). Other pertinent parameters for the three cases are listed in Table 7.1.

7.3 Assessment of Stability:

In the usual methods of assessment of stability, the initial metacentric height is required to be positive. Some classification societies also provide a stipulated value for the minimum initial metacentric height. The righting moment as a function of heel angle (usually about the axis where the righting moments are the least) is another yard stick. The external moment due to wind etc. is superimposed on a plot of righting moment and heel angle (see Fig. 7.3). The
resulting plot is the well known 'stability diagram'. The 'first intercept' is the angle where the external moment equals the righting moment and the 'down-flooding angle' is the angle beyond which the vessel would experience progressive flooding and is likely to capsize. For the vessel to successfully resist the external load, the first intercept must have to be smaller than the down-flooding angle. If we take a ratio of the areas under the righting moment curve and the external heeling moment curve upto the 'down-flooding angle', the higher the ratio the higher is the ability of the vessel to work against the external moment. Most maritime authorities require that this ratio be at least equal to 1.3. This is also referred to as the 'dynamic stability criterion'. This reserve, as indicated by the 30% extra area is expected to take care of the dynamic effects of the external loads.

The above-mentioned procedures are commonly used in practice, although they are perhaps not the best way of assessing statical stability. The usefulness and applicability of such nominal rules, particularly to non-ship-shape floating structures, have been reviewed and questioned (see Pawlowski and Deb, 1986, Martinovich and Praught, 1986). These rules always refer to the the upright configuration of the vessel, whereas quite often a shift of
weight on-board may have significant effect on the righting moment. Besides, such methods do not provide any basis for comparison of statical stabilities of different vessels or the same vessel at different configurations. Also, no clear guidance is available as to how such rules may be applied to TLPs. A new method of assessment of stability of floating structures, proposed by Pawlowski (1985) and Pawlowski and Deb (1986), aims to circumvent such drawbacks of the existing methods. The vulnerability of a given floating body to exceed the desired limit of one or a combination of few pertinent parameters influencing the stability of the vessel is taken as the rationale in this approach. At a given displacement and VCG, the maximum allowable lateral shift of C.G. is taken as a measure of the degree of such vulnerability.

The new approach can also be applied to statical stability evaluation purposes by setting the pertinent parameters such that they relate to the stability diagram. This may be easily done by choosing the already described area ratio as the pertinent parameter and a value of this ratio may be chosen as the limit. The allowable lateral shifts of C.G. may now be evaluated over a range of VCG such that any further shift of C.G. would make the vessel incapable of meeting the specified area ratio. The
magnitudes of these 'shifts' can be used to ensure safety or to make comparisons.

7.4 The Hydrostatic Formulation:

Refering to Fig. 7.1 we see that if the weight and the CG is known then the total buoyancy force and the CB have to be known in order to calculate the righting moment from:

\[
\text{Righting Moment} = M_B - M_W \tag{7.1}
\]

where, \(M_B\) and \(M_W\) are the moments due to buoyancy and weight forces about a common point of reference.

In case the tethers are active, moments due to tensions about the same point, with proper signs, must be included in equation (7.1) to obtain the effective righting moment.

Let \(P\) be the centroid of an elemental patch of area \(dA\) on the surface of the floating body shown in Fig. 7.1. Let \(\mathbf{R} = (R_1, R_2, R_3)^T\) be the position vector of \(P\), and \(\mathbf{n} = (n_1, n_2, n_3)^T\) be the outwardly normal vector to the surface at \(P\) with respect to a global frame of reference \(O123\). The elemental hydrostatic force \(d\mathbf{F}\) is then calculated as:

...
\[dF = - \rho_w g h \, dA \, \hat{n} \quad (7.2) \]

where,
\[\rho_w = \text{mass density of water} \]
\[g = \text{acceleration due to gravity} \]
\[h = \text{depth of } P \text{ below water surface.} \]

Integration of \(dF \) over the entire immersed surface would yield the total hydrostatic force \(\mathbf{F} = \{F_1, F_2, F_3\}^T \). For a free floating body, \(F_3 \) is the only non-zero component of \(\mathbf{F} \) which is the total buoyancy force. \(F_3 \) can also be found as:

\[F_3 = \int_S dF_3 = - \int_S \rho_w g h \, \hat{n} \cdot \hat{e}_3 \, dA \quad (7.3) \]

where, \(S \) is the immersed surface and \(\hat{e}_3 \) is the unit vector corresponding to \(z \)-axis.

The coordinates of \(CB \) i.e. \(CB_1, \, CB_2 \) and \(CB_3 \) can be found as:

\[CB_1 = -\int_S R_1 dF_3 / F_3 \]
\[CB_2 = -\int_S R_2 dF_3 / F_3 \]
\[CB_3 = -\int_S hdF_3 / 2F_3 \quad (7.4) \]
It may be necessary to compute the righting moments for heel angles about an axis that is coplanar to 01-02 plane but makes an angle (\(\theta\)) with 01-axis. As the body is heeled about this 'heel axis' (01'-axis), there may arise unbalanced moment about a 'trim axis' (02'-axis), perpendicular to the heel axis. This would lead to a natural hydrostatic equilibrium 'trim angle'. In order to compute the force or moments in the global system, vectors in the primed system must be first converted to their corresponding representations in 0123. This can be done as follows.

Let \(\vec{a}\) be a vector in 0123 which undergoes rotations \(\phi\) (heel angle) and \(\varphi\) (trim angle) measured in the primed system (\(\theta\) being the angle between 0-1 and 0-1' axis) and attains a new vector configuration \(\vec{a}'\), then the representations of \(\vec{a}'\) in the non-primed system can be found from (see Pawlowski, 1985):

\[
\begin{align*}
(\vec{a}') &= [R](\vec{a}) \\
\text{where, } R &= \text{the resultant tensor of rotation and is given as:} \\
\end{align*}
\]

\[
R = R_2 \cdot R_1
\]
The components of the tensor R_1 are:

$$R_1(1,1) = e_1^2 + (1 - e_1^2) C$$
$$R_1(1,2) = e_1 e_2 - e_1 e_2 C$$
$$R_1(1,3) = e_2 S$$
$$R_1(2,1) = e_2 e_1 - e_2 e_1 C$$
$$R_1(2,2) = e_2^2 + (1 - e_2^2) C$$
$$R_1(2,3) = -e_1 S$$
$$R_1(3,1) = -e_2 S$$
$$R_1(3,2) = e_1 S$$
$$R_1(3,3) = C$$

where,

$e_1 = \cos \theta$
$e_2 = \sin \theta$
$C = \cos \phi$
$S = \sin \phi$

In order to obtain the components of R_2, same expressions as in case of R_1 are used with θ and ϕ replaced by $\theta + 90^\circ$ and ξ, respectively.

The choice of global system and the heel axis may vary from problem to problem.
Based on the above-mentioned theory, a computer program 'HYDROSTATICS' is developed (listed in appendix 'B') to generate righting moment as a function of given heel angle. The output of this program is used for the stability assessments. Fig. 7.4 presents a flow chart for 'HYDROSTATICS'.

7.5 Hydrostatic Experiments:

A typical output of 'HYDROSTATIC' for a GVA-4000 semisubmersible has been compared with values determined from model tests (Stone, 1986) and the agreement is found to be satisfactory.

Righting moments are also measured by shifting weight on deck and noting the resulting heel angle for the present TLP model for Case 1. The experimental values, plotted in Fig. 7.5 show good agreement with the calculated values.

7.6 Results:

'HYDROSTATICS' is used to compute the righting moments of the example TLP for the three cases already described (see section 7.3 and Table 7.1 for details). The wind speed is taken equal to 100 knots in all cases. Calculations are
repeated for heel axis rotated by 0 and 45 degrees with respect to the 01-axis (i.e. about the centre line and about the diagonal, #2 - #4, if #1 is taken as the damaged corner). In all three cases the heel axis at 45 degrees to the 01-axis is found to yield a smaller area under the righting moment curve. This axis is, therefore, used for statical stability assessment. The corresponding stability diagrams showing the righting moment and wind heeling moment curves for these three cases are given in Fig. 7.5 through Fig. 7.7. The righting moment curves correspond the VCGs given in Table 7.1.

It is seen from the stability diagrams that all the cases satisfy the usual stability criteria, that is, the initial GM is positive since the righting moment curves have positive slopes at 0 degree heel and also the area ratios are greater than 1.3. The new procedure already described is now employed to indicate the vulnerability of each case to loss of adequate stability. In order to do so, for each case, righting moment data are generated over a range of VCGs (from 30.0 m to 40.0 m) for different amount of lateral shifts of the CG in the direction of list at these VCGs. The ratio of the areas under the righting moment curve and the wind moment is calculated for each combination of VCG and lateral shift. Limiting values of shift at every VCG are
found by setting the minimum area ratio to a value of 1.3.
The limiting values, termed as 'admissible shifts', are plotted in Fig. 7.8. As mentioned before, at a given VCG any further lateral shift of CG than what is admissible, would result in inadequate reserve of statical stability. Consequently, the vessel would be susceptible to loss of stability and capsize.

It may be readily seen from Fig. 7.8 that at the assumed operating levels of VCGs, all three cases, including the tethered configuration with tether loss at # 1, appear more or less comparable in terms of their vulnerability to loss of adequate stability. In general, small values of admissible shifts indicate that great caution must be exercised while shifting any weight on-board. The worst of these cases, however, is Case 2 where at operating VCG even a shift of CG as small as 0.4m may render the platform unsafe. Case 1, however, may appear to be marginally safer than the others, increase in tension in the active tethers (i.e. #2 and #4) due to the combined effect of loss of tensions in #1 and #3 and increase in buoyancy with heel angle may be of harmful consequence. For case 1, typical increase in tensions at the active corners are also shown in Fig. 7.5.
Chapter 8

HYDRODYNAMIC ANALYSIS

8.1 General:

Evaluation of the hydrodynamic force field and computation of motion response of the body exposed to this force field constitute the essentials of the problem of hydrodynamic analysis. Typically the total force field would include (i) fluid excitation forces i.e. those due to wave, current etc., (ii) restoring forces i.e. hydrostatic and mooring forces, (iii) damping forces and (iv) inertia forces. With regard to response evaluation, elastic responses of the body surface are assumed to be sufficiently small so that the immersed portion of the body may be taken as rigid. The equations of motion then are essentially the generalised force balance equations in Newtonian mechanics. These equations may be solved in time or frequency domain to obtain the various responses and their time derivatives. In time domain analysis, motion of the body is described by the instantaneous equilibrium configuration while in frequency domain analysis, amplitudes and phases of the three
translational (viz. surge, sway and heave) and the three rotational (viz. roll, pitch and yaw) displacements are used to define the body motion. Frequency domain analysis is inexpensive with respect to computation time but requires the equations of motion to be linear. Spectral analyses, therefore, are often handled via frequency domain approach. Time domain solution schemes, although consume remarkably high computation time, are capable of admitting nonlinear phenomena relatively easily.

8.2 Time Domain Simulation of a TLP:

The problem of the time domain simulation of a TLP is quite similar to that of a free floating body except for the inclusion of restoring forces due its taut tethers. In general terms, the task involves (i) formulation of the kinematics of the rigid body i.e. transformations of displacements and their derivatives between a fixed and a moving frame of reference, (ii) computation of the excitation and the reactive forces and (iii) solution of the equations of motion. Examples of such formulations as applied to TLPs can be found in the work of Paulling (1986), Paulling (1975), Paulling (1971), Natvig and Pendered (1979), Faltinsen et al. (1982) etc. The basic equations used here to describe the rigid body motion, given in
Pawlowski, 1985 are outlined as follows.

The definition diagram in Fig 8.1a shows the space fixed axis system $O_{1}X_{2}X_{3}$ attached to the waterline (for the sake of convenience) and the body fixed axis system $O_{1}'X_{2}'X_{3}'$ with its origin coinciding with the centre of gravity of the body. The translations and the successive rotations of the primed reference with respect to the non-primed reference are given by X_{i} ($i=1,2,3$) and η_{i} ($i=1,2,3$), respectively. Rotational motions about the centre of gravity of the body are described by the angular velocities ω_{i} ($i=1,2,3$) about the axes $O_{1}'X_{i}'$ ($i=1,2,3$). The equations of motion are then written as:

$$[M] X_{G} = F \quad (8.1)$$
$$[J] \dot{\omega} + \omega \times [J] \omega = \Gamma' \quad (8.2)$$

where,

$[M] =$ Mass matrix for the platform

$[J] =$ Inertia matrix for the platform about C.G. with respect to primed axes

$F =$ Force vector in non-primed axes

$\Gamma' =$ Moment vector about C.G. in primed system

$X_{G} =$ Position vector of centre of gravity with respect to non-primed axes
\[\dot{\mathbf{v}} = \mathbf{a} \]

\[\mathbf{a} = \mathbf{a}' \]

Also, the various kinematic relations for an arbitrary point \(P \) on the body (ref Fig. 8.1a) are given by the following vector equations:

\[\mathbf{x}_p = \mathbf{x}_G + \mathbf{a} \]

\[\mathbf{x}_p = \mathbf{x}_G + \mathbf{a}' \]

\[\mathbf{x}_p = \mathbf{x}_G + \mathbf{a} \]

\[\mathbf{x}_p = \mathbf{x}_G + \mathbf{a}' \]
\[x_p = x_G + \omega \wedge (x_p - x_G) + \omega \wedge (\omega \wedge (x_p - x_G)) \]

where,

\(x_p \) = Instantaneous position vector of \(P \)
\(\vec{a}_p \) = Radius vector of \(P \) (see Fig. 8.1a)

The angles \(\eta_i \) are found from the equation:

\[\omega = [B] \eta \] \hspace{1cm} (8.6)

where,

\[[B] = \begin{bmatrix} c_2 & 0 & -c_1 s_2 \\ 0 & 1 & s_1 \\ s_2 & 0 & c_1 c_2 \end{bmatrix} \]

and \(c_1 = \cos \eta_i, s_1 = \sin \eta_i \)

The above equations are now rewritten as a system of 21 first order differential equations as:

\[x = v \] \hspace{1cm} (3 equations)
\[v = [M]^{-1} \vec{F} \] \hspace{1cm} (3 equations)
\[\omega = [J]^{-1} (\vec{\Gamma}' - \omega \wedge [J] \omega) \] \hspace{1cm} (3 equations) \hspace{1cm} (8.7)
\[[R] = [R][\omega \wedge I] \] \hspace{1cm} (9 equations)
\[\eta = [B]^{-1} \omega \] \hspace{1cm} (3 equations)
The system of equations in (8.7) may now be solved by a suitable predictor-corrector type 'differential equation solver' based on techniques such as Adam's method, Runge-Kutta etc. (see Paulling, 1971). Several iterations at any time step may be necessary in order to achieve convergence of the state variables when nonlinearities are present. In the present analysis, a standard IMSL (1984) routine called 'DGEAR' has been used to integrate equations (8.7).

Fig. 8.1b shows the commonly referred six degrees of freedom of a floating body.

Having established the equations of motion, the force field needs to be calculated from a suitable method. For the sake of computational efficiency, the philosophy of 'hydrodynamic synthesis' is adopted in the present analysis. Morison's equation (Morison et al., 1950) is applied to calculate the hydrodynamic loading, with the assumption that the platform may be represented as a space-frame assembly of slender cylindrical members which are 'hydrodynamically isolated' from each other. According to this formulation, the total fluid force on any member consists of (i) pressure in the undisturbed flow field, to be integrated over the wetted surface, (ii) inertial force proportional to relative acceleration between fluid and the cylinder, to be
integrated over the length of the members and (iii) drag force proportional to the square of the relative velocity also to be integrated over the length of the members. The pressure force is given as a sum of two components i.e. \(p_s \), the static part and \(p_d \), the dynamic part. If the members are regarded as slender then the total force on the structure may be expressed in the form (Hooft, 1971):

\[
F_n = \int p_s \, n \, ds + \int p_d \, n \, ds_1 + \rho_w A_m \int [C_m \, a_{fn} - C_m \, x_n] \, dl + 0.5 \rho_w C_d \int v_{rn} \, |v_{rn}| \, dl \quad (8.8)
\]

where,
- \(n \) = Normal vector in the inward direction on the member surface
- \(\rho_w \) = Mass density of water
- \(D_m \) = Member diameter
- \(A_m = \pi D_m^2 / 4 \)
- \(C_m \) = Added mass coefficient
- \(C_d \) = Quadratic drag coefficient
- \(a_{fn} \) = Fluid acceleration normal to the member
- \(x_n \) = Component of body acceleration normal to the member
- \(v_{rn} \) = Component of the local relative velocity between the fluid and the member \((v_{fn} - x_n)\), normal to the member.
ds = Elemental member surface

d_{sl} = Elemental flat surface such as bottom of cylinders etc.

dl = Elemental member length

The assumptions inherent in the above formulation also require that the members are slender in comparison with the incident wave length such that the fluid flow is not disturbed and also that diffraction effects are insignificant. Also, since the hydrodynamic interaction between members is ignored, the total force on the structure can be found by summing the forces on all the component members.

The surface elevation and the basic fluid flow parameters such as particle velocity and accelerations and the pressure are calculated from the incident wave potential, \(\phi \), which in accordance with Airy's small amplitude wave theory may be written as (Sarpkaya and Issacson, 1981):

\[
\phi = \left(\omega H \cosh(ks) \sin(k\xi - \omega t) \right) / \left(2k \cosh(kd) \right) \tag{8.9}
\]

where,

\(\omega = \) Wave angular frequency
\[H = \text{Wave height} \]
\[k = \text{Wave number} \]
\[d = \text{Water depth} \]
\[s = d + z; \text{ 'z' is the vertical distance of a point in fluid from the mean water level, z is measured positive from the waterline upwards} \]
\[\zeta = \text{Wave coordinate} \]
\[= x_1 \cos \theta + x_2 \sin \theta; \theta \text{ is the wave heading angle} \]
\[t = \text{Time} \]

The wave number is given by the 'dispersion relation' as:

\[\omega^2 = gk \tanh (kd) \] \hspace{1cm} (8.10)

where,
\[g = \text{Acceleration due to gravity.} \]

The relations given in (8.9) and (8.10); for the case of deep water (i.e. \(kd > \pi \)), take the forms:

\[\zeta = \omega H e^{kz} \sin (k\xi - \omega t) / 2k \] \hspace{1cm} (8.11)
\[\omega^2 = gk \] \hspace{1cm} (8.12)

The instantaneous surface elevation of the wave, \(\zeta \)
corresponding to the above potential is:

\[\zeta = H \cos (k\xi - \omega t) / 2 \quad (8.13) \]

The required fluid flow parameters are found from:

\[v_i = \frac{\partial \Phi}{\partial x_i} \]
\[a_i = \frac{\partial v_i}{\partial t} \]
\[p_s = -\rho_w g z \quad (8.14) \]
\[p_n = -\rho_w \frac{\partial \Phi}{\partial t} \quad (from \ linearized \ Bernoulli's \ equation) \]

To find the component of velocity \(v \) normal to a member (denoted by \(v_n \)), the following relation is used (Chakraverti et al., 1975):

\[v_n = \mathbf{n} \wedge (v \wedge \mathbf{n}) \quad (8.15) \]

where,

\(\mathbf{n} \) = Unit vector of the centre line of the member.

The normal component of acceleration or any other vector can also be found by a relation similar to equation 8.15.
The static pressure \(p_s \) in equation (8.14) i.e. \(\rho gz \), on integration yields the hydrostatic reactive force. In the case of a TLP, additional restoring forces arise out of the reactions from the tethers. In the present analysis, the tethers are represented by linear springs with a 'spring constant' equal to the axial stiffness of the tethers. If \(\delta T_i \) is the instantaneous elongation of the \(j \)th tether top, \(j \)th the tether reaction, \(F_{Tj} \), is then given as:

\[
F_{Tj} = K_{Tj} \delta T_j \mathbf{n}_{Tj} \quad (8.16)
\]

where,

\(K_{Tj} \) = Spring constant of the \(j \)th tether

\(\mathbf{n}_{Tj} \) = Unit vector of the \(j \)th tether (ref Fig. 8.1a)

Thus the total force \(F \) in the non-primed system can be written as:

\[
F = F_h + F_T \quad (8.17)
\]

The moment \(\mathbf{L}' \) in the body fixed system can be found from:

\[
\mathbf{L}' = \int \mathbf{L}' \wedge dF' \quad (8.18)
\]
where,
\[F' = \text{Position vector of a point} \]
\[dF' = \text{Differential force at the above point}. \]

The forces calculated as above include the following nonlinearities:

(i) nonlinearity arising due to integration over instantaneous wetted surface
(ii) inclusion of the nonlinear terms in the rotational equations of motion
(iii) quadratic drag force
(iv) position dependent restoring forces.

\(F \) is evaluated at every time step, more than once if iterations are required for convergence, and equations (8.7) are solved to obtain the state variables at that step. A computer program named 'TIME_DOMAIN' (listed in Appendix C) has been developed based on the formulation described in the preceding, which has been used to generate various response time histories for the example TLP. In order to minimize the initial transients a 'half cosine' function is multiplied to the wave amplitude. The form of this ramp function is given as (Paulling, 1977):
\[
(1 - \cos \pi t / T_0) / 2; \quad t < T_0
\] \tag{8.19}

where,

\[T_0 = \text{Time length over which the function is applied.} \]

8.3 Frequency Domain Analysis:

In frequency domain analysis an approach very similar to that described in the preceding section is utilized. In such an analysis the equations to be solved must be linear. Therefore, additional assumptions are made which are listed below:

(i) The displacements and the angles are assumed to be small.

(ii) The nonlinear term in the rotational equation of motion is considered to be small and hence dropped.

(iii) The integration of the forces are carried out over the mean wetted surface.

(iv) Linear hydrostatic stiffnesses are assumed.

(v) The mooring stiffness matrix is constructed on the basis of mean pretension of the tethers corresponding to the static equilibrium configuration and small displacement assumptions.
The presence of the quadratic drag term poses an obstacle in frequency domain analysis because of its nonlinear nature. This term may be linearized by the 'equivalent drag' concept (Pauling, 1985) as follows:

\[C_{dl}V_{rn} = \frac{8C_d |V_{rn}| V_{rn}}{3\pi} \]

(8.19)

where,

\(C_{dl} \) = Equivalent linear drag coefficient
\(V_{rn} \) = Amplitude of \(V_{rn} \)

The forces are calculated by the Morison equation approach already discussed in the previous section.

Collecting all the response dependent terms on the left hand side and the wave excitation terms on the right hand side, the equations (8.1) and (8.2) are combined and rewritten in a matrix form as:

\[
[[M] + [M_a]](\delta) + [C](\delta) + [[K_h] + [K_T]](\delta) = (F_w) \]

(8.20)

where,

\([M] \) = Generalised physical mass matrix
\([M_a] \) = Generalised added mass matrix
\([C] \) = Damping matrix
71

\[[K_h] = \text{Hydrostatic stiffness matrix} \]
\[[K_T] = \text{Mooring stiffness matrix} \]
\[\{F_w\} = \text{Generalised wave excitation force vector} \]
\[\{\delta\} = \text{Generalised displacement vector of the centre of gravity.} \]

The hydrostatic and mooring stiffness matrices are constructed according to formulations described in Chou et al. (1983).

The solution of equation (8.20) yields the required amplitudes and the relative phases of the motion in six degrees of freedom. In this case, the equation is written in a complex form (see Hooft, 1971). Accordingly, excitation force vector can be written in the complex form as:

\[\{F_w\} = \{F_{waj} e^{i\omega t + i\sigma_j}\}; \quad j = 1, 2, \ldots, 6 \quad (8.21) \]

where,

\(F_{waj} = \text{Amplitude of the excitation force} \)
\[= (F_{WRj}^2 + F_{WIj}^2)^{1/2} \]
\(F_{WRj} = \text{Force term proportional to } \cos(\omega t) \text{ (real part)} \)
\(F_{WIj} = \text{Force term proportional to } \sin(\omega t) \text{ (imaginary part)} \)
\(\sigma_j = \text{Phase difference} = \tan^{-1} (F_{WIj}/F_{WRj}) \)
i = \sqrt{-1}.

If a steady state solution (δ_j) of equation (8.20) is assumed which is written in complex form with obvious notations as:

$$
(\delta_j) = (\delta_{aj} e^{i\omega t + i\phi_j})
$$

where,

$$
\phi_j = \text{Phase difference}
$$

then the complex equations of motion can be written as:

$$
[-\omega^2([M]+[M_a]) + ([K_h]+[K_T]) + i\omega[C]](\delta) = (F_W) \quad (8.23)
$$

In the present analysis, equation (8.23) is solved by a standard IMSL routine, 'LEQ2C', capable of obtaining solution of a general system of complex linear equations to find the amplitudes and the phases of the various displacements. Since, the amplitude of the normal component the local relative velocity, V_{rn}, is not known before the solution is found, iterative computations are necessary to solve equation (8.23). A computer program named 'FREQ_DOMAIN' has been developed (listed in Appendix D) and
used to calculate responses of the example TLP.

Once the responses of the centre of gravity are known, the tether tension amplitudes T_{aj} are calculated as follows (ref. Chou et al., 1983):

$$T_{aj} = K_j (|\mathbf{G}_1 + \mathbf{G}_2 \cdot (X_{T1j} - X_G) + X_{T1j} - X_{T2j}| - |X_{T1j} - X_{T2j}|)$$ \hspace{1cm} (8.24)

where,

- K_j = Axial stiffness of the jth tether
- \mathbf{G}_1 = Translational displacement vector of the CG
- \mathbf{G}_2 = Rotational displacement vector of the CG
- X_G = Position vector of the CG
- X_{T1j} = Position vector of tether top end of jth tether
- X_{T2j} = Position vector of tether bottom end of jth tether

8.4. Spectral Analysis:

In an actual seaway, the waves do not occur at an isolated frequency and height combination; instead, a realistic sea has irregular elevation with no set pattern of wave length, height or period. Irregular sea behaviour, however, is often defined by its direction and energy
content over a range of frequency band. One such popularly practised concept is to employ an irregular sea in a two-dimensional seaway, a long crested sea that can be produced in a wave tank.

Significant motion response calculations in irregular seas are based on spectral theory which describes how regular wave elements combine to produce irregular sea pattern and how each component affects the behaviour of the floating body (ref. Bhattacharya, 1978). The underlying principle, of course, rests on the validity of linear superposition of the body responses to harmonic (sinusoidal) components of the irregular sea.

Frequency domain approach is usually used for spectral analysis. Significant response is calculated from:

$$R_{j1/3} = 4.0 \left(\int_0^\infty S_{Rj}(\omega) \, d\omega \right)^{1/2}$$

(8.25)

where,

- $R_{j1/3}$ = Significant amplitude (1/3 rd highest) of the jth response
- $S_{Rj}(\omega)$ = Spectrum of the jth response

The response spectrum is found from the relation:
\[S_{Rj}(\omega) = RAO_j(\omega)^2 S(\omega) \]

(8.26)

where,

\(RAO_j(\omega) \) = Response Amplitude Operator (RAO) of the jth response i.e. response to wave of unit amplitude

\(S(\omega) \) = Sea wave energy density spectrum defining the sea state.

The RAOs are computed by the program 'FREQ_DOMAIN'. It may be noted here that the equations (8.25) and (8.26) are also applied to tension responses.

8.5 Results:

In the context of dynamics of an offshore structure, the type of responses commonly calculated are those caused by regular and irregular wave excitations. In the case of regular waves, steady state amplitudes are computed as a function of wave frequency while, for irregular waves, significant response amplitudes corresponding a given sea energy spectrum are of relevance. Transient responses are also of interest when a sudden change of a pertinent system parameter occurs.
For systems that possess input-output linearity, frequency domain analysis may be considered as an efficient tool for the prediction of steady state response amplitudes. A frequency domain analysis is faster with regard to computation time and thus very convenient for parametric studies. Since linearity is assumed, the response amplitudes are usually presented in the form of 'Response Amplitude Operators' or RAOs which are essentially the responses caused by a wave of unit amplitude at a given frequency. In the case of TLPs, even though significant nonlinearities exist, RAOs are often calculated in the hope of obtaining some idea of the responses due to small amplitude waves.

C_d depends on Reynolds number and Keulegan Carpenter number and C_m varies with frequency. But often for computational ease, constant values of C_d and C_m are used. In the present study, for the calculation of wave loading, C_d and C_m have been taken as 1.0 and 1.0, respectively. Surge and tension RAOS are computed via the program 'FREQ_DOMAIN' for a TLP described by Lyons et al. (1983) and compared with the published results in Figs. 8.4a and 8.4b. For the example TLP, motion and tension RAOS are presented in Fig. 8.5 through Fig. 8.9 for 0 degree heading and in Fig. 8.10 through Fig. 8.15 for 45 degree heading. Only intact (shown in full line) and 50% tether loss at # 1
(shown in broken line) are presented since a 100% loss of tether at any corner is found to cause significant nonlinear responses thus introducing obvious contradiction to the basic assumptions of frequency domain analysis.

Following the same logic of calculation of RAOs from the experimentally obtained time series data, RAOs are also calculated from the time series data generated by the program 'TIME_DOMAIN'. Once again, consistent with the experimental data analysis, a wave height of 10 m is used for such calculations.

In the case of surge and sway, tether loss appears to have insignificant effect on the response amplitude. Results from time domain analysis and regular sea experiments, plotted in Fig. 8.5 and Fig. 8.10 support this observation. This may be expected as the total pretension, which has the largest influence on surge/sway motion, remains practically unchanged in the tether damaged configurations. Calculated surge and sway RAOs, which are known to be quite insensitive to the choice of hydrodynamic coefficients (see Lyons et al., 1983), are found to be in good agreement with the experimental observations.

As far as motions in vertical planes are concerned,
increase in RAOS is always noted (also see Booton et al. for similar observations). In the case of a 0° heading, asymmetric distribution of tether stiffness and static equilibrium tensions is expected to introduce cross motions in sway, roll and yaw modes. Such cross motions are also reflected in frequency domain analysis; for 50% loss of stiffness at #1 an insignificant sway as compared to surge amplitudes is predicted while the roll motion, as shown in Fig. 8.7, is found to be quite substantial.

Tension RAOS from regular and irregular sea experiments and from 'TIME_DOMAIN' are plotted for corner #1 in Fig. 8.8 and Fig. 8.13. Such variations may be regarded as typical. Due to the scatter observed, experimental and 'TIME_DOMAIN' data are presented only for the intact cases. It is seen that the tether RAOS computed by 'FREQ_DOMAIN' do not match very well with those found from experiments or 'TIME_DOMAIN'. Correlation is particularly poor for wave frequencies greater than 0.8 rad/sec or so. RAOS from 'TIME_DOMAIN', on the other hand, portray a trend closer to what is observed from the experiments but still the numerical values are not always very close. Besides experimental errors, the difference may be attributed to the inability to correctly estimate the hydrodynamic forces by Morison type formula (ref. Lyons et al., 1983, Paulling,
1981) resulting in erroneous estimation of motions, particularly those in vertical planes which in turn affect the tension calculations. Additionally, in the case of frequency domain analysis, assumptions regarding linearity are likely to cause further errors in the computed results.

Inspecting the frequency domain results, it may be inferred that for 0° heading, following a tether loss at #1, the tension RAOs at #1, #2 and #4 increase while those at #3 decrease. The difference is significant for both #1 and #4 while #2 and #3 experience only a mild variation in magnitudes. For 45° heading, tension RAOs increase at all the corners. It may clarified here that, for #1, although tension RAOs in damaged cases appear to be less than those for intact cases in the diagrams presented, the tension is borne only by the remaining 50% of the initial tether cluster at that corner; and these tethers, in effect, suffer an increased variation in tension.

Fig. 8.16 through Fig. 8.21 present the time records of waves and tensions from the irregular tests. The waves correspond to a Pierson-Moskowitz spectrum with wind speed equal to 20 m/sec. A typical wave energy spectrum from the experimental data is shown in Fig. 8.22. In Figs. 8.23 through 8.26 tension spectra obtained from Fourier
transformation of the experimental time series data (shown in full line) are presented along with the corresponding theoretical spectra (shown in broken line) superimposed on them. The theoretical spectra are derived by multiplying the wave spectrum by the square of the RAOs obtained from 'FREQ_DOMAIN'. Once again mismatch between experimentally observed and theoretically calculated values is prominent, particularly at higher frequencies. Significant tension double amplitudes (1/3 rd highest) calculated from the areas under the spectra and the actual time records are compared in Table 8.1. Inspite of the mismatch, significant tension amplitudes are predicted reasonably close by the theoretical calculations which is due to a cancellation of error effect i.e. the extra spectral density predicted by theory at lower frequencies gets nullified by the absence of the same at higher frequencies. Such spectral analysis necessarily employs the linearity assumptions. The cases corresponding to 100% loss of tether are; therefore, not analysed by such a technique since prominent snap loads are evident from the time records.

Apart from being able to accommodate nonlinearities and large displacement kinematics, time domain domain simulations are also capable of reproducing certain transient responses of relevant interest. In the present
context, transient responses following a sudden loss of tether are simulated by the program 'TIME_DOMAIN' by simply proportionally reducing the axial stiffness at the designated corner from a desired time step onwards. In general, transient responses are influenced by the magnitudes of the state variables immediately preceding the initiation of such phenomena. While attempting to study the transients following a tether loss, an obvious question that would arise is regarding the instant at which the tether breakage should be simulated so that the transients are the highest. To tackle this problem, tether breakage simulation experiments are repeated such that the breakage points are spread over one cycle of the tension wave-form at the affected corner (as indicated in Fig. 8.27a). A variation not exceeding 10% in transient tension amplitudes is noted due to choice of breakage instant while the highest values occurred when the damage took place at the peak of the tension response at the affected corner. This may be attributed to the fact that under such a circumstance, the amount of tension released from the tethers at the affected corner, into the system is the highest, causing the maximum increase of tension in the remaining intact tethers. Time series data from 'TIME_DOMAIN' and experiments corresponding to highest transients are presented in Figs. 8.29a through 8.35 for 50% and 100% loss of tether at # 1 for 0 degree and
45 degree heading. A regular wave of 21.9 sec period and 20.0 m height is chosen for these case studies. For each combination, theoretically predicted motion and tension responses are presented followed by tension responses from the experiments.

Once again, increase in motion responses except for surge/ sway is noted. Cross motions due to asymmetric stiffness distribution resulting from the damage can be seen for 0 degree heading. It may noted here that a small amount of yaw developed due to such asymmetry was not predicted in the frequency domain analysis. Tension responses also increase except for a slight reduction at # 3 for 0 degree heading case.

Steady state tensions, before and after the loss as well as transient tensions immediately following the loss are found from theoretical and experimental time records and compared in Tables 8.2a and 8.2b. The quantities compared are defined in Fig. 8.27b. For intact and 50% loss cases, steady state tension responses calculated from 'FREQ_DOMAIN' are also included in these tables. It can be seen that between time domain analysis and the experiments, a better match exists for transient responses than the steady state amplitudes. This may be due to the fact that the transient
responses take place fast enough not to be largely influenced by the hydrodynamic forces. Discrepancies in steady state amplitudes are due to inaccuracies in estimation of hydrodynamic forces, exclusion of various nonlinear effects such as wave ride-up on columns, second order effects, experimental error etc.

Similar calculations are also performed with a wave of 12 sec period and 20.0 m height and the tensions are tabulated in Table 8.3 for a 100% loss case. It may noted that at this frequency, complete loss of tether introduces snap loads (with magnitudes about 4 to 5 times that of the static pretension) at all corners.

From the above case studies, a quartering sea (i.e. 45° heading) appears to cause higher tension loads as compared to head sea (i.e. 0° heading).
Chapter 9

UNSTABLE MOTIONS OF TLP

9.1 General:

In the case of a compliant floating structure such as a TLP, motion in a particular mode can influence the motion in another mode through time varying changes in the stiffness of the system. Most often, the motions in the vertical planes significantly affect the motions in the horizontal plane. This may lead to unstable motions of the structure, resulting in large response amplitudes at certain combinations of wave frequency and wave height. During the design stage, these unstable zones should be estimated to ensure that they do not coincide with the design wave parameters. Fig. 9.1 shows the zone of unstable time periods as compared to typical wave spectrum.

In this chapter, a brief review of previous work relating to the investigation of such instabilities of TLPs is presented. A procedure to establish the stability boundary for a given TLP, based on Floquet Theory
(Leipholztz, 1970) for periodic systems, is developed. This procedure is first illustrated using a simplified tension leg structure. Only the effect of heave on sway motion is considered in this case and the stability boundaries are established. Furthermore, the approach is extended to the general coupled equations of motion of a TLP.

9.2 Equations of Motion and Instability Phenomena:

Let us consider the simplified model of a tension leg structure shown in Fig. 9.2 where a positively buoyant unit is anchored to the sea-bed by means of a taut mooring cable. Let us assume that the structure is subjected to the action of a regular planar wave progressing in the positive O_{X_1} (surge) direction so that there is no wave excitation in the O_{X_2} (sway) direction: Under first order approximations, the equations of motion in heave and sway, respectively, can be written as:

$$M_3 \ddot{\delta}_3 + C_{d3} |\dot{\delta}_3| \dot{\delta}_3 + K_3 \delta_3 = F_3(t) \quad (9.1)$$

$$M_2 \ddot{\delta}_2 + C_{d2} |\dot{\delta}_2| \dot{\delta}_2 + K_2 \delta_2 = 0 \quad (9.2)$$

where,

$$M_3, M_2 = \text{Virtual masses in heave and sway, respectively}$$
\(C_{d3}, C_{d2} = \) Nonlinear drag coefficients in heave and sway, respectively

\[K_3 = \text{Stiffness coeff. in heave} = (g\rho_w A_{wp} + EA/L) \] (9.3)

\[K_2 = \text{Stiffness coeff. in sway (first order approx.)} = (T_p + (EA/L)\dot{h}_3(t))/L \] (9.4)

\(A_{wp} = \) Water plane area
\(g = \) Accln. due to gravity
\(\rho_w = \) Mass density of water
\(A = \) Cross sectional area of the cable
\(L = \) Length of the cable
\(\delta_3, \delta_2 = \) Heave and sway motions, respectively
\(\dot{\delta}_3 = \) Denotes derivation with respect to time

\[F_3(t) = \text{Wave excited heave force} \]

It is the inclusion of the time dependent stiffness coefficient \((EA/L)\delta_3(t)\) in equation (9.4) that results in the well known Mathieu type dynamic instability causing subharmonic resonances in sway. (See for example Rainey (1977), Patel and Jefferys (1981), Conceicao et al. (1983) etc.) Whenever the forcing frequency (wave excitation frequency) is about twice the natural frequency in sway, \(\omega_s\), (equal to \((T_p/M_2L)^{1/2}\) in this case). Here, the non-conservative restoring force resulting from heave motion inputs energy into the otherwise undisturbed sway mode and whenever the rate of energy input is higher than the
dissipation by the damping force, instability occurs. In this case, therefore, if instability exists, a perturbation given to the equilibrium solution \(\delta_2(0) = 0 \) and \(\dot{\delta}_2(0) = 0 \) would cause the solution to grow with time (i.e. move outwardly from the origin of the phase plane \(\delta_2 - \dot{\delta}_2 \)) even though there is no wave excitation in \(OX_2 \) direction.

9.3 Evaluation of Stability and Floquet Theory:

Having formulated the equations of motion, a particular method has to be selected to investigate possible unstable regimes for the system, preferably in terms of some of the key parameters pertaining to the external excitation (say wave height and frequency in this case). Various methods have been used to estimate the stability boundaries and unstable motion amplitudes of systems such as equation (9.2) (see Rainey 1977, Richardson 1979, Patel and Jefferys 1981, Paulling 1982, Conceicao et al. 1983 etc.). One method is to reduce the given equation to the standard Mathieu or Hill's form (with proper substitutions to cater to the drag term when drag is considered). The stability boundaries can then be evaluated by comparing the coefficients of the reduced equation and those of the standard form (since the stability boundaries are available for the standard form in mathematics texts). Another way to locate instability is
through the analogy of these systems to 'feed-back' systems (Rainey, 1977). Unstable solutions have also been obtained from energy considerations (Patel and Jefferys, 1981) and from characteristic equations of the motion amplitudes (Yoneya and Yoshida, 1982).

In certain applications, analytical or semi-analytical means for evaluation of stability may appear cumbersome and complicated. To take advantage of the presently available high speed computers, a numerical method is developed here, based on Floquet theory for non-stationary systems describable by 'n' first order differential equations with periodic coefficients (Deb and Booton 1986a, Leipholtz 1970), to estimate the stability boundaries on a 'wave height-frequency' grid. The underlying theory and the working procedures are described as follows.

Let a general system described by 'n' linear first order differential equations be written as:

\[\dot{y} = [P(t)] y \quad (9.5) \]

where,

\[[P(t+T)] = [P(t)], \ T \ \text{is the fundamental period} \quad (9.6a) \]

\[y(0) = y_0 \quad (9.6b) \]
Linearity of equation (9.5) allows one to write the general solution in terms of the 'fundamental matrix' \([\Phi] \) as:

\[
y(t) = [\Phi(t)] y_0
\]

(9.7)

where, \([\Phi] = [P(t)][\Phi] \); \([\Phi(0)] = I \)

(9.8)

\([\Phi(t)] \) is an \(n \times n \) square matrix containing \(n \) linearly independent solutions of equation (9.5) corresponding to \(n \) linearly independent initial conditions.

Because of the periodicity of \([P(t)] \), it is sufficient to examine the properties of the solution over one period.

Letting \(M = [\Phi(t)] \), the stability condition may be stated on the basis of Floquet theory as:

"If the \(n \) eigenvalues \(\rho_r = \rho_r e^{i\theta} \), \(r = 1, \ldots, n \) of \(M \) are distinct, let \(\bar{\rho} = \max (\rho_r) \). Then the origin of the equation (9.5) is (i) asymptotically stable if \(\bar{\rho} < 1 \); (ii) unstable if \(\bar{\rho} > 1 \) and critically stable if \(\bar{\rho} = 1 \)."
If the 'n' solutions of \(\phi(t) \) are not available in closed form, the usual procedure would be to solve \([\dot{\phi}] = [P(t)]\phi, [\phi(0)] = [I]\) numerically up to time \(t = T \) so that the matrix \(M \) can be constructed.

Equation (9.2) can be expressed as a system of two first order differential equations. These equations are linearised in order to investigate the stability relative to the equilibrium position corresponding to \(\delta_2(0)=0 \) and \(\dot{\delta}_2(0)=0 \). The linearisation of the quadratic drag term is accomplished as follows (Ref Paulling, 1985):

\[
C_{d2}|\delta_2|\dot{\delta}_2 = C_{d12}\dot{\delta}_2
\]

where,

\[
C_{d12} = \text{Linearised drag coefficient} = 3C_{d2}|\delta_2|/3\pi \quad \text{and} \quad |\delta_2| \text{ is the amplitude of } \dot{\delta}_2.
\]

A flow-chart, shown in Fig. 9.3 may be used to implement the method mentioned above for evaluation of the stability boundaries for the simplified model. Once the boundary is established, the actual motion can then be computed by directly integrating the nonlinear equations of motion for the chosen pair of wave height and frequency. It should be noted that the expression for heave motion, in
this case, is based on steady state conditions i.e. \(\delta_3(t) \) is the particular solution of equation (9.1) assuming that the transient component of the heave motion has essentially decayed to zero.

9.4 Unstable Motion of the Simplified TLP:

In order to illustrate the method discussed in the foregoing, the stability boundaries are evaluated for the simplified TLP shown in Fig. 9.2 (the pertinent data of the platform is also included in the figure) using the algorithm given in Fig. 9.3. The hydrodynamic coefficients and the wave excitation force are calculated with the program 'FREQ_DOMAIN' described in Chapter 8. Pretension and damping are known to play a significant role in the occurrence of such instabilities (see Rainey 1977, Yoneya and Yoshida 1982, Pauling 1982, Deb and Booton 1986a). To observe these effects, three different pretensions viz. 0.5 x \(10^8 \) N, 1.0 x \(10^8 \) N and 1.5 x \(10^8 \) N are considered while the displacement is maintained constant at 45000 m\(^3\). The resulting stability boundaries are presented in Fig. 9.4. It may be noted that as the pretension is increased the unstable zone moves closer towards wave frequencies. For a pretension of 1.0 x \(10^8 \) N at 45000 m\(^3\) displacement, damping is varied by varying \(C_d \) and the effect on the stability boundary is shown in
Fig. 9.5. It can be seen that increase in damping results in shrinkage of the unstable zone.

Having identified the unstable zones, responses can now be found by directly integrating the nonlinear equations of motion. Fig. 9.6 shows a typical stable state in sway where δ_2, triggered by the initial conditions $\delta_2(0)=0$ and $\delta_2(0)=1$ dies out with time while Fig. 9.7 shows the plot of a typical unstable motion for the same initial conditions where the motion grows with time. Fig. 9.8 is $\delta_2-\delta_2$ phase plane plot corresponding to the case in Fig. 9.6 and signifies asymptotic stability about the origin; Fig. 9.9 presents the phase plane plots for unstable motion for two different damping values (one of which correspond to the case in Fig. 9.7). It can be seen from this plot that eventhough the motion is unstable at the origin, owing to the dissipation of energy by the nonlinear damping term, it attains a 'limit cycle' where the bounds of the motion are heavily dependent on damping.

The effect of tether loss on the unstable zone is also studied by reducing the stiffness. Up to 25% loss of total stiffness is considered (corresponding to complete tether loss at any one corner), but no significant variation is noticed in the boundaries in the practical range of wave
height and frequencies. This may be attributed to the fact that while EA/L decreases, the heave motion $\delta_3(t)$ also increases thus keeping the product $(EA/L)\delta_3(t)$ more or less unaltered.

9.5 Unstable Motion of a Tension Leg Platform:

In the previous example only two degrees of freedom (viz. heave and sway) are considered. In general, a TLP would have more than one tension leg where the motion of the top of tether would alter the lateral stiffnesses rather than just the heave motion. If δ_i ($i = 1, 2, \ldots, 6$) denote the translations and rotations about the Ox_1, Ox_2 and Ox_3 axes respectively, then the motion of any jth tether top $z_j(t)$ can be described, under the first-order approximation, as a function of δ_3, δ_4 and δ_5 and the tether top coordinates. Furthermore, more than one lateral motion may exhibit instability and these degrees of freedom may be coupled. For example, in a particular case where the wave is progressing in the positive Ox_1 direction and the unstable zone has to be investigated in sway and yaw, the procedure to be followed may be outlined as follows:

1. Choose the starting combination of wave frequency and wave height.
2. Form the general equations of motions as:

\[[M]\dddot{\delta} + [C]\dot{\delta} + [K]\delta = (F) \]

(9.9)

where,

- \([M] \) = Virtual mass matrix
- \([C] \) = Damping matrix
- \([K] \) = Hydrostatic + Mooring stiffness matrix with constant coefficients
- \((F) \) = Wave excitation force vector
- \(\delta \) = Displacement vector \((\delta_1, \delta_2, \ldots, \delta_6)^T\)

3. Solve equation (9.9) to obtain steady state solution for \(\delta \):

4. Construct the functions \(z_j(t), \ j = 1, 2, \ldots, m \) where 'm' is the total number of tethers:

\[z_j(t) = \delta_3(t) - (r_{1j} - r_{G1})\delta_5(t) + (r_{2j} - r_{G2})\delta_4(t) \]

(9.10)

where,

- \(\delta_j(t) \) = instantaneous displacement of CG in the ith degree of freedom
- \(r_{1j}, r_{2j} = OX_1 \) and \(OX_2 \) coordinates of the jth tether top
\(r_{G1}, r_{G2} \) = \(\mathbf{O}X_1 \) and \(\mathbf{O}X_2 \) coordinates of \(\mathbf{CG} \)

5. Construct the time dependent stiffness terms in sway and yaw as:

\[
K_{\text{sway}}(t) = \sum_j \left[\left(\frac{EA}{L^2} \right) z_j(t) \right]_j \\
K_{\text{yaw}}(t) = \sum_j \left[\left(\frac{EA}{L^2} \right) z_j(t)R^2 \right]_j
\]

(9.11a)

(9.11b)

where, \(R^2_j = (r_{1j} - r_{G1})^2 + (r_{2j} - r_{G2})^2 \)

6. Extract the corresponding rows and columns for sway and yaw from equations of motion in sway and yaw as:

\[
[M]'\{\delta\}' + [C]'\{\delta\}' + \left[[K]' + [K(t)] \right]\{\delta\}' = \{F\}'
\]

(9.12)

where, \([M]', [C]', [K]', [F]'\) are reduced matrices, \(\{\delta\}' = (\delta_2, \delta_6)^T\) and \([K(t)]\) is:

\[
\begin{bmatrix}
K_{\text{sway}}(t) & 0 \\
0 & K_{\text{yaw}}(t)
\end{bmatrix}
\]

Also note that \(\{F\}' = (0, 0)^T\) in this case.

7. Rewrite equation (9.12) in the form of equation (9.5).
8. Check for instability of this system according to the method already described in section 9.3.

9. Choose next wave frequency and wave height combination.

10. Go back to step 2.

The stability boundary in sway and yaw for the example TLP (pertinent details given in Table 5.3) is computed and the unstable zone is shown in Fig. 9.10. It may be noted that in the example under consideration, because of symmetry, stability boundaries in surge and sway would be identical. For evaluation of the response, any nonlinear time domain analysis may be employed for a given combination of wave frequency, wave height and initial conditions.

9.6 Experimental Verification of Unstable Motion:

The occurrence of unstable motion for the example TLP is verified during the model scale experiment. The model, under the excitation of a regular planar wave 'critical frequency and height' (i.e. as may be found in the unstable zone indicated in Fig. 9.10), is given an initial perturbation in the likely unstable degree of freedom. If
the motion amplitude grows with time, the motion is regarded as unstable. With the available wave tank facility, only yaw instability could be verified. The combinations for which unstable yaw has been observed are indicated in Fig. 9.10. Difficulties existed in observing the unstable motion for a considerable length of time owing to contamination of the incident wave by the reflected waves.
Chapter 10

DISCUSSION AND CONCLUDING REMARKS

10.1 General:

The work completed in the course of the present study may be briefly summarised as follows:

(i) Review of statical stability concepts for floating bodies.

(ii) Review of theoretical and experimental work relating to TLP dynamics in intact and tether damage conditions.

(iii) Review of theoretical and experimental work relating to Mathieu type instability of TLPs.

(iv) Formulation and calculation of equilibrium tensions for a TLP with unequal stiffness of the tethers.

(v) Development of software for hydrostatic calculations.

(vi) Evaluation of statical stability of TLP in intact and damaged cases with the application of a new concept in stability assessment of floating structures.

(vii) Development of computer software for frequency
domain and nonlinear, large displacement time domain analysis of TLPs.

(viii) Deterministic and spectral analysis of TLP in frequency domain for intact and damaged configurations.

(ix) Deterministic time domain analysis of TLP in intact and damaged configurations to find steady state and transient responses.

(x) Development of algorithm based on Floquet theory for Mathieu type instability analysis and application of the same for TLPs.

(xi) Design and fabrication of a 1:100 scale model of an example TLP.

(xii) Experimental verification of the various responses predicted by the above theoretical models.

Under the prevailing constraints of time, facility and availability of input data, the effect of tether loss on the static and dynamic behaviour of a TLP has been studied. Eventhough the combinations of input parameters chosen for various analysis and experiments may at times appear hypothetical from the viewpoint of a regular design procedure, an understanding of the following aspects has been substantiated:

(i) Capability and reliability of some of the popular
methods of static and dynamic analysis applicable to TLPs.

(ii) General trend of variations in static and dynamic behaviour of a TLP between intact and tether damage cases.

10.2 Observations:

The major observations that evolve out of the study conducted here may be identified as follows:

(i) The loss of tether at one corner decreases the static equilibrium tensions at the affected corner and the corner diagonally opposite to this corner while the tensions at the remaining corners increase. Even though the tension as a whole decreases at the affected corner, the tension per unit tether increases because after a certain amount of loss, a proportional number of tethers is considered to be inactive. It is seen that when a corner suffers 100\% tether loss, the tethers in the opposite corner becomes slack, if no change in the buoyancy force and moments are considered. Even if the effects due to a change in buoyancy force and moments are included, the opposite tether would have such low static tension that it may be considered to be slack for all practical purposes.

(ii) Classical approaches of evaluation of statical stability are found inadequate in certain respects when
applied to unconventional structures such as TLPs. A new approach is therefore used to measure and compare the statical stability of the example TLP in various configurations. Absence of any guidance by the regulatory authorities regarding such calculations with particular application to TLPs is also noted.

(iii) Complete loss of tether at one corner causes drastic reduction in statical stability of TLP rendering its stability characteristics comparable to its free-floating configurations. An 'emergency disconnect' situation, which may be viewed as complete loss of tether at all corners is found to have a very low measure of statical stability. These analyses indicate that any manipulation of on-board weight distribution should be made with great caution after a substantial tether loss. Also, at large angles of heel, additional increase in tension are caused in the intact tethers due to increase in buoyancy.

(iv) Frequency domain analysis, even though incapable of handling nonlinear effects and predicting the trend of responses correctly over the entire practical range of wave frequencies (note similar observations by Lyons et al., 1983), is found to be very convenient from the view point of parametric studies and spectral analysis.

(v) Time domain simulation, in spite of remarkably high consumption time, seems to model the TLP behaviour in a
better fashion. The formulations used to calculate hydrodynamic loadings, however, must be more accurate in order to better predict the responses.

(vi) In general, loss of tether at any corner causes both the motion and tension responses to increase. Surge motion is found to be rather insensitive to tether loss when the total pretension remains more or less constant. The increases, however, are a function of the amount and location of loss, wave frequency, height and heading. From the limited number of studies conducted here, it is seen that a total loss of tether at any corner is likely to induce snap loads at one or more corners which may be as high as four to five times the normal static pretension in the tethers (note similar observations by Sekita and Sakai, 1984). At smaller levels of tether loss, even though the chances of snap loads are reduced, the tension in the remaining tethers in the affected corner may increase significantly thus increasing the chances of further failure at that corner.

(vii) For the cases studied, a loss of tether at any corner occurring at the peak of tension variation at that corner is seen to cause the highest transient tension responses in the remaining intact tethers. Also, a quartering sea is found to induce higher tension loads as compared to a head sea.
(viii) Cross motions are set up whenever the tether loss introduces asymmetric distribution of stiffness with respect to the direction of wave propagation.

(ix) The regime of Mathieu type instability of TLP is heavily dependent upon the lateral stiffness and damping of the system rather than the axial stiffness of the tethers; even a 25% loss of total axial stiffness does not alter the unstable zones significantly.

Since neither the chosen TLP nor the input parameters for the various case studies correspond to any particular established design, more precise remarks about the damaged responses of a TLP are not attempted. The need and relevance of such a study, however, is recognised.

8.3 Recommendations:

As a logical consequence of this study, the following may be recommended for future research:

(i) Calculations may be performed with better theoretical models for evaluation of hydrodynamic loadings.
(ii) Similar studies may be conducted with coupled tether dynamics.
(iii) The effect of forces due to wind, current,
second order wave loadings etc. may be investigated.

(iv) Similar analysis and experimentation may be carried out in conjunction with flooding damage in the columns.

(v) Further experimentation may be conducted with more sophisticated instrumentation and calibrated models so that even small variation in responses can be identified more accurately and reliably.

(vi) Research may be conducted to find a better way to present data from analyses such that they can be directly and conveniently used for design purposes.
REFERENCES

Dillingham, J.T., "Recent experience in model-scale simulation of tension leg 'platforms', Marine Technology, April 1984, pp. 186-200.

Hooft, J.P., "A mathematical method of determining hydrodynamically induced forces on a semisubmersible",

Little, L., "Hardware and software modifications to equipment at MUN wave tank", Memorial University of Newfoundland, St. John's, Canada, 1985.

Stiansen, S.G. and Chen, H.H., "Computational methods for predicting motions and dynamic loads of tension-leg

Table 1.1: Comparison of some key features of Hutton TLP with other alternatives

<table>
<thead>
<tr>
<th></th>
<th>STATFJORD B</th>
<th>MAGNUS</th>
<th>HUTTON</th>
<th>BLOCK 818 (MISSISSIPPI CANYON)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>NORTH BEA (NORWAY)</td>
<td>NORTH BEA (U.K.)</td>
<td>NORTH BEA (U.K.)</td>
<td>GULF OF MEXICO (U.S.)</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>CONCRETE GRAVITY</td>
<td>STEEL JACKET AND PILING</td>
<td>TENSION LEG</td>
<td>GUYED TOWER</td>
</tr>
<tr>
<td>TYPE</td>
<td>FIXED</td>
<td>FIXED</td>
<td>COMPLIANT</td>
<td>COMPLIANT</td>
</tr>
<tr>
<td>WATER DEPTH (FEET)</td>
<td>472</td>
<td>611</td>
<td>485</td>
<td>1,000</td>
</tr>
<tr>
<td>100-YEAR WAVE (FEET)</td>
<td>100</td>
<td>102</td>
<td>98</td>
<td>72</td>
</tr>
<tr>
<td>PRODUCTION (BARRELS PER DAY)</td>
<td>150,000</td>
<td>120,000</td>
<td>110,000</td>
<td>25,000</td>
</tr>
<tr>
<td>INITIAL PRODUCTION (YEAR)</td>
<td>1982</td>
<td>1983</td>
<td>1984</td>
<td>1984</td>
</tr>
<tr>
<td>MAXIMUM DECK OFFSET (FEET)</td>
<td><3</td>
<td>4</td>
<td>79</td>
<td>39</td>
</tr>
<tr>
<td>APPROXIMATE TOTAL COST (BILLIONS)</td>
<td>$1.8</td>
<td>$2.6</td>
<td>$1.3</td>
<td>$8</td>
</tr>
<tr>
<td>COST PER BARREL-DAY</td>
<td>$12,000</td>
<td>$21,700</td>
<td>$11,800</td>
<td>$32,000</td>
</tr>
<tr>
<td>PROJECT MANAGEMENT</td>
<td>MOBIL</td>
<td>BRITISH PETROLEUM</td>
<td>CONOCO</td>
<td>EXXON</td>
</tr>
</tbody>
</table>
Table 2.1 Key Particulars of Hutton TLP
(ref. Ellis et al., 1982)

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Between Column Centres</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td>78.00 m</td>
<td>95.70 m</td>
</tr>
<tr>
<td>BREADTH</td>
<td>74.00 m</td>
<td>91.70 m</td>
</tr>
<tr>
<td>HEIGHT</td>
<td>57.70 m</td>
<td>11.25 m</td>
</tr>
<tr>
<td>DRAUGHT</td>
<td>32.00 m L.A.T.</td>
<td></td>
</tr>
<tr>
<td>FREEBOARD</td>
<td>24.50 m L.A.T.</td>
<td></td>
</tr>
<tr>
<td>WATERPLANE</td>
<td>1324.00 m²</td>
<td></td>
</tr>
<tr>
<td>COLUMNS</td>
<td>17.70 m Dia</td>
<td></td>
</tr>
<tr>
<td>PONTOONS</td>
<td>10.80 m</td>
<td></td>
</tr>
<tr>
<td>DISPLACEMENT</td>
<td>61500 Tonne</td>
<td></td>
</tr>
<tr>
<td>TOTAL WEIGHT</td>
<td>48500 Tonne</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- L.A.T.: Load Acting Through
- Dia: Diameter
- Approx.: Approximated
- 4 Corners: Four corners
- 2 Centres: Two centres
- Operating: In operation
- Keel to Main Deck
- Main Deck to Weather Deck
- Height
- Width
- Corner Radius
Table 3.1 Key Plan of Major Research Activities

<table>
<thead>
<tr>
<th>THEORETICAL</th>
<th>EXPERIMENTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>General</td>
</tr>
<tr>
<td>T.1. Literature review.</td>
<td>E.1. Design and fabricate a 1:100 scale model of TLP.</td>
</tr>
<tr>
<td>Statics</td>
<td>Statics</td>
</tr>
<tr>
<td>T.2. Hydrostatics of floating bodies formulation and development of computer software.</td>
<td>E.2. Determine the mass/inertia properties of the model.</td>
</tr>
<tr>
<td>T.3. Choose intact and tether damage configurations and evaluate stability characteristics.</td>
<td>E.3. Design and fabricate the mooring system.</td>
</tr>
<tr>
<td>Dynamics</td>
<td>Dynamics</td>
</tr>
<tr>
<td>a) Frequency domain</td>
<td>a) Frequency Domain</td>
</tr>
<tr>
<td>T.5. Calculate motion and tension RAOs in intact and tether damage cases.</td>
<td>E.7. Compute motion and tension RAOs from regular wave tests and compare with T.5.</td>
</tr>
<tr>
<td>b) Time domain</td>
<td>b) Time domain</td>
</tr>
<tr>
<td>T.9. Note transient responses immediately following tether damage</td>
<td>Special Study</td>
</tr>
<tr>
<td>Special Study</td>
<td>E.11. Observe if unstable motion develops from an initial perturbation at critical combinations of wave height and frequency - compare the observations with T.10.</td>
</tr>
<tr>
<td>T.10. Mathieu type instability formulate and develop computer software; evaluate unstable zones and study effect of tether loss on such instabilities.</td>
<td></td>
</tr>
</tbody>
</table>
Table 5.1 List of Relevant Parameters and Dimensionless Numbers

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbols</th>
<th>Dimensions in L, T & M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hull Subsystem:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Characteristic Length</td>
<td>l</td>
<td>L</td>
</tr>
<tr>
<td>Lumped Mass</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Lumped Mass Moment of Inertia</td>
<td>I_{ij}</td>
<td>ML^2</td>
</tr>
<tr>
<td>Tether Subsystem:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axial Stiffness</td>
<td>k</td>
<td>MT^{-2}</td>
</tr>
<tr>
<td>Tether length</td>
<td>L_T</td>
<td>L</td>
</tr>
<tr>
<td>Wave Subsystem:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>ρ_w</td>
<td>ML^{-3}</td>
</tr>
<tr>
<td>Viscosity</td>
<td>μ</td>
<td>$ML^{-1}T^{-1}$</td>
</tr>
<tr>
<td>Acceleration due to Gravity</td>
<td>g</td>
<td>LT^{-2}</td>
</tr>
<tr>
<td>Water Depth</td>
<td>D</td>
<td>L</td>
</tr>
<tr>
<td>Wave Height</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>Wave Period</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>General:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical Time</td>
<td>t</td>
<td>T</td>
</tr>
<tr>
<td>Typical linear displacements</td>
<td>d</td>
<td>L</td>
</tr>
<tr>
<td>Typical Angular Displacements</td>
<td>θ</td>
<td></td>
</tr>
<tr>
<td>Typical Linear Velocity</td>
<td>V</td>
<td>LT^{-1}</td>
</tr>
<tr>
<td>Typical Angular Velocity</td>
<td>w</td>
<td>T^{-1}</td>
</tr>
<tr>
<td>Typical Linear Acceleration</td>
<td>a</td>
<td>LT^{-2}</td>
</tr>
<tr>
<td>Typical Angular Acceleration</td>
<td>α</td>
<td>T^{-2}</td>
</tr>
<tr>
<td>Typical Force or Reaction</td>
<td>F</td>
<td>MLT^{-2}</td>
</tr>
</tbody>
</table>

Note: Acceleration due to gravity is to remain the same in model and prototype.

Dimensionless Numbers

\[
\frac{1}{L}, \frac{M}{(\rho_w L^3)}, \frac{I}{(\rho_w L^5)}, \frac{k}{(\rho_w g L^2)}, \frac{L_T}{L}, \frac{\mu}{(\rho_w g^{1/2} L^{3/2})}, \frac{D}{L}, \frac{H}{L}, \frac{(T g^{1/2})}{L^{1/2}}, \frac{(tg^{1/2})}{L^{1/2}}, \frac{d}{L}, \frac{\theta}{V/(g^{1/2} L^{1/2})},
\]
\[
\frac{(wg^{1/2})}{L^{1/2}}, \frac{a}{g}, \frac{(aL)}{g}, \frac{F}{(\rho_w g L^3)}
\]
Table 5.2 Some Scaling Relations

<table>
<thead>
<tr>
<th>Scale Factor</th>
<th>Typical Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric Scale Factor (L_p/L_m = r) (say)</td>
<td></td>
</tr>
<tr>
<td>Characteristic Length Scale</td>
<td>(l_p/l_m = r)</td>
</tr>
<tr>
<td>Mass Scale</td>
<td>(m_p/m_m = r^3) *</td>
</tr>
<tr>
<td>Mass Moment of Inertia Scale</td>
<td>(I_p/I_m = r^5) *</td>
</tr>
<tr>
<td>Tether Axial Stiffness Scale</td>
<td>(k_p/k_m = r^2) *</td>
</tr>
<tr>
<td>Tether Length Scale</td>
<td>(L_{tp}/L_{tm} = r)</td>
</tr>
<tr>
<td>Water Depth Scale</td>
<td>(D_p/D_m = r)</td>
</tr>
<tr>
<td>Wave Height Scale</td>
<td>(H_p/H_m = r)</td>
</tr>
<tr>
<td>Wave Period Scale</td>
<td>(T_p/T_m = r^{1/2})</td>
</tr>
<tr>
<td>Typical Time Scale</td>
<td>(t_p/t_m = r^{1/2})</td>
</tr>
<tr>
<td>Typical Linear Displacement Scale</td>
<td>(d_p/d_m = r)</td>
</tr>
<tr>
<td>Typical Angular Displacement Scale</td>
<td>(\theta_p/\theta_m = 1)</td>
</tr>
<tr>
<td>Typical Linear Velocity Scale</td>
<td>(v_p/v_m = r^{1/2})</td>
</tr>
<tr>
<td>Typical Angular Velocity Scale</td>
<td>(\omega_p/\omega_m = r^{1/2})</td>
</tr>
<tr>
<td>Typical Linear Accln. Scale</td>
<td>(a_p/a_m = 1)</td>
</tr>
<tr>
<td>Typical Angular Accln. Scale</td>
<td>(\alpha_p/\alpha_m = 1/r)</td>
</tr>
<tr>
<td>Typical Force or Reaction Scale</td>
<td>(F_p/F_m = r^3) *</td>
</tr>
</tbody>
</table>

Notes:

1. Suffices 'p' and 'm' indicate that of the prototype and that of the model, respectively.

2. '*' indicates that in case prototype and model water densities are different then the scaling ratio has to be multiplied by \(\rho_{wp}/\rho_{wm} \).
Table 5.3 Key Particulars of Example TLP

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td>Between Column Centres</td>
<td>70.00 m</td>
</tr>
<tr>
<td>BREADTH</td>
<td>Between Column Centres</td>
<td>70.00 m</td>
</tr>
<tr>
<td>HEIGHT</td>
<td>Upto Weather Dk.</td>
<td>65.00 m</td>
</tr>
<tr>
<td>COLUMNS</td>
<td>4 Corners</td>
<td>15.24 m Dia</td>
</tr>
<tr>
<td></td>
<td>4 Centres</td>
<td>10.16 m Dia</td>
</tr>
<tr>
<td>PONTIIONS</td>
<td>4 Numbers</td>
<td>10.16 m Dia</td>
</tr>
<tr>
<td>DRAUGHT</td>
<td>Operating</td>
<td>35.00 m</td>
</tr>
<tr>
<td>VCG</td>
<td>Operating</td>
<td>38.00 m</td>
</tr>
<tr>
<td>TOTAL DISPL.</td>
<td>Operating</td>
<td>49680 Tonnes</td>
</tr>
<tr>
<td>TOTAL WEIGHT</td>
<td>Operating</td>
<td>35000 Tonnes</td>
</tr>
<tr>
<td>TOTAL STATIC PRETENSION</td>
<td>Operating</td>
<td>14680 Tonnes</td>
</tr>
<tr>
<td>TETHER AXIAL STIFFNESS</td>
<td>Per. Corner</td>
<td>7.6 *10^7 N/m</td>
</tr>
<tr>
<td>RADIUS OF GYRATION</td>
<td>R_{11}</td>
<td>36.00 m</td>
</tr>
<tr>
<td></td>
<td>R_{22}</td>
<td>36.00 m</td>
</tr>
<tr>
<td></td>
<td>R_{33}</td>
<td>41.20 m</td>
</tr>
<tr>
<td>NATURAL PERIODS</td>
<td>Surge</td>
<td>51.61 sec</td>
</tr>
<tr>
<td></td>
<td>Sway</td>
<td>51.61 sec</td>
</tr>
<tr>
<td></td>
<td>Heave</td>
<td>2.76 sec</td>
</tr>
<tr>
<td></td>
<td>Roll</td>
<td>2.98 sec</td>
</tr>
<tr>
<td></td>
<td>Pitch</td>
<td>2.98 sec</td>
</tr>
<tr>
<td></td>
<td>Yaw</td>
<td>43.90 sec</td>
</tr>
</tbody>
</table>
Table 7.1 Key Information for Stability Assessment of the Example TLP

<table>
<thead>
<tr>
<th>Cases</th>
<th>Draft (m)</th>
<th>Displ. (T)</th>
<th>VCG (m)*</th>
<th>ϕ (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case # 1: Operational Draught with 100% tether loss at corner # 1</td>
<td>35.0</td>
<td>49680</td>
<td>38.0</td>
<td>31.0</td>
</tr>
<tr>
<td>Case # 2: Emergency disconnect</td>
<td>21.0</td>
<td>35000</td>
<td>38.0</td>
<td>40.0</td>
</tr>
<tr>
<td>Case # 3: Post-mating</td>
<td>29.5</td>
<td>44000</td>
<td>33.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

* VCGs are measured from the base of the hull upwards.

Note: 1. The force due to wind F_w is calculated as (ref Bureau Veritas, 1975):

$$F_w = \sum dF_w = \sum C_w \rho_{wind} V_{wind}^2 d\alpha_p$$

where, $\rho_{wind} =$ Mass density of air

$V_{wind} =$ Wind velocity

$C_w =$ A coefficient

$d\alpha_p =$ Elemental area perp. to wind

2. Moment due to wind is calculated as:

$$M_{wind} = F_{wind} h_{wind}$$

where, h_{wind} is the distance between the point of action of wind force and the point of rotation.
Table 8.1 Comparison of Theoretical and Experimental Significant (1/3 rd Highest) Tension Double Amplitudes

'PM Spectrum : Classical Form'
Wind Speed = 20 m/sec

<table>
<thead>
<tr>
<th>Wave Heading = 0 Degrees</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension in $\times 10^7$ N</td>
<td># 1</td>
<td># 2</td>
<td># 3</td>
<td># 4</td>
</tr>
<tr>
<td>Intact Case</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Spectrum</td>
<td>1.079</td>
<td>1.075</td>
<td>1.075</td>
<td>1.079</td>
</tr>
<tr>
<td>Experimental Spectrum</td>
<td>1.053</td>
<td>1.267</td>
<td>1.274</td>
<td>1.164</td>
</tr>
<tr>
<td>Time Record</td>
<td>1.261</td>
<td>1.275</td>
<td>1.307</td>
<td>1.183</td>
</tr>
<tr>
<td>50% Loss at # 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Spectrum</td>
<td>0.808</td>
<td>1.083</td>
<td>1.106</td>
<td>1.325</td>
</tr>
<tr>
<td>Experimental Spectrum</td>
<td>1.029</td>
<td>1.320</td>
<td>1.296</td>
<td>1.649</td>
</tr>
<tr>
<td>Time Record</td>
<td>1.100</td>
<td>1.432</td>
<td>1.372</td>
<td>1.703</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wave Heading = 45 Degrees</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact Case</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Spectrum</td>
<td>1.467</td>
<td>0.649</td>
<td>1.684</td>
<td>0.649</td>
</tr>
<tr>
<td>Experimental Spectrum</td>
<td>1.332</td>
<td>0.584</td>
<td>2.101</td>
<td>0.712</td>
</tr>
<tr>
<td>Time Record</td>
<td>1.476</td>
<td>0.642</td>
<td>2.121</td>
<td>0.787</td>
</tr>
<tr>
<td>50% Loss at # 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Spectrum</td>
<td>1.096</td>
<td>0.764</td>
<td>1.709</td>
<td>0.764</td>
</tr>
<tr>
<td>Experimental Spectrum</td>
<td>1.175</td>
<td>0.679</td>
<td>2.355</td>
<td>0.835</td>
</tr>
<tr>
<td>Time Record</td>
<td>1.278</td>
<td>0.776</td>
<td>2.581</td>
<td>0.912</td>
</tr>
</tbody>
</table>
Table 8.2a Comparison of Theory and Experiment for Tensions in Intact and Damaged Conditions

<table>
<thead>
<tr>
<th>Tension *10^7 N</th>
<th># 1</th>
<th># 2</th>
<th># 3</th>
<th># 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact Case:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1: 'TIME_DOMAIN'</td>
<td>1.936</td>
<td>1.969</td>
<td>1.969</td>
<td>1.936</td>
</tr>
<tr>
<td>Experiment</td>
<td>2.352</td>
<td>2.366</td>
<td>2.382</td>
<td>2.502</td>
</tr>
<tr>
<td>'FREQ_DOMAIN'</td>
<td>2.270</td>
<td>2.211</td>
<td>2.211</td>
<td>2.270</td>
</tr>
<tr>
<td>50% Loss at # 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2: 'TIME_DOMAIN'</td>
<td>4.688</td>
<td>5.678</td>
<td>4.484</td>
<td>5.993</td>
</tr>
<tr>
<td>Experiment</td>
<td>4.701</td>
<td>5.998</td>
<td>5.006</td>
<td>6.053</td>
</tr>
<tr>
<td>'FREQ_DOMAIN'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A3: 'TIME_DOMAIN'</td>
<td>1.399</td>
<td>2.770</td>
<td>1.629</td>
<td>2.812</td>
</tr>
<tr>
<td>Experiment</td>
<td>0.903</td>
<td>2.195</td>
<td>1.505</td>
<td>2.412</td>
</tr>
<tr>
<td>'FREQ_DOMAIN'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A4: 'TIME_DOMAIN'</td>
<td>1.622</td>
<td>2.639</td>
<td>1.589</td>
<td>2.817</td>
</tr>
<tr>
<td>Experiment</td>
<td>1.954</td>
<td>2.807</td>
<td>2.219</td>
<td>3.087</td>
</tr>
<tr>
<td>'FREQ_DOMAIN'</td>
<td>1.488</td>
<td>2.272</td>
<td>2.178</td>
<td>2.723</td>
</tr>
<tr>
<td>100% Loss at # 1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2: 'TIME DOMAIN'</td>
<td>0.0</td>
<td>10.293</td>
<td>5.534</td>
<td>11.001</td>
</tr>
<tr>
<td>Experiment</td>
<td>0.0</td>
<td>10.766</td>
<td>6.136</td>
<td>11.074</td>
</tr>
<tr>
<td>'FREQ_DOMAIN'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A3: 'TIME_DOMAIN'</td>
<td>0.0</td>
<td>2.712</td>
<td>0.0</td>
<td>2.922</td>
</tr>
<tr>
<td>Experiment</td>
<td>0.0</td>
<td>3.445</td>
<td>0.0</td>
<td>2.574</td>
</tr>
<tr>
<td>'FREQ_DOMAIN'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A4: 'TIME_DOMAIN'</td>
<td>0.0</td>
<td>5.283</td>
<td>3.231*</td>
<td>5.246</td>
</tr>
<tr>
<td>Experiment</td>
<td>0.0</td>
<td>5.469</td>
<td>3.656*</td>
<td>5.437</td>
</tr>
</tbody>
</table>

* : Indicates snap load
Table 8.2b Comparison of Theory and Experiment for Tensions in Intact and Damaged Conditions

Wave Height = 20.0 m, Period = 21.9 sec, Heading = 45°

<table>
<thead>
<tr>
<th>Tension *10^7 N</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact Case:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1: TIME DOMAIN'</td>
<td>1.819</td>
<td>1.627</td>
<td>1.963</td>
<td>1.627</td>
</tr>
<tr>
<td>Experiment</td>
<td>2.289</td>
<td>2.598</td>
<td>2.980</td>
<td>2.662</td>
</tr>
<tr>
<td>FREQ DOMAIN'</td>
<td>2.778</td>
<td>1.203</td>
<td>2.712</td>
<td>1.203</td>
</tr>
<tr>
<td>50% Loss at #1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2: TIME DOMAIN'</td>
<td>4.685</td>
<td>5.987</td>
<td>4.926</td>
<td>5.987</td>
</tr>
<tr>
<td>Experiment</td>
<td>4.669</td>
<td>5.184</td>
<td>5.124</td>
<td>6.293</td>
</tr>
<tr>
<td>FREQ DOMAIN'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A3: TIME DOMAIN'</td>
<td>1.442</td>
<td>2.641</td>
<td>1.528</td>
<td>2.641</td>
</tr>
<tr>
<td>Experiment</td>
<td>1.528</td>
<td>2.203</td>
<td>1.417</td>
<td>2.105</td>
</tr>
<tr>
<td>FREQ DOMAIN'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A4: TIME DOMAIN'</td>
<td>1.506</td>
<td>1.976</td>
<td>1.937</td>
<td>1.976</td>
</tr>
<tr>
<td>Experiment</td>
<td>1.961</td>
<td>3.269</td>
<td>3.206</td>
<td>3.325</td>
</tr>
<tr>
<td>FREQ DOMAIN'</td>
<td>1.813</td>
<td>1.569</td>
<td>2.715</td>
<td>1.569</td>
</tr>
<tr>
<td>100% Loss at #1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2: TIME DOMAIN'</td>
<td>0.0</td>
<td>10.750</td>
<td>4.912</td>
<td>11.755</td>
</tr>
<tr>
<td>Experiment</td>
<td>0.0</td>
<td>11.128</td>
<td>6.889</td>
<td>11.077</td>
</tr>
<tr>
<td>FREQ DOMAIN'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A3: TIME DOMAIN'</td>
<td>0.0</td>
<td>2.014</td>
<td>0.0</td>
<td>2.014</td>
</tr>
<tr>
<td>Experiment</td>
<td>0.0</td>
<td>2.161</td>
<td>0.0</td>
<td>2.199</td>
</tr>
<tr>
<td>FREQ DOMAIN'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A4: TIME DOMAIN'</td>
<td>0.0</td>
<td>5.158</td>
<td>5.199*</td>
<td>5.158</td>
</tr>
<tr>
<td>Experiment</td>
<td>0.0</td>
<td>5.973</td>
<td>6.944*</td>
<td>6.319</td>
</tr>
</tbody>
</table>

"**" : Indicates snap load
Table 8.3: Computed Tension Responses for the Example TLP by 'TIME_DOMAIN'

Wave Height = 20.0 m, Period = 12.0 sec

100 % Loss at Corner # 1

Wave Heading = 0 Degrees

<table>
<thead>
<tr>
<th>Tension $\times 10^7$ N</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1.915</td>
<td>2.289</td>
<td>2.289</td>
<td>1.915</td>
</tr>
<tr>
<td>A2</td>
<td>0.0</td>
<td>12.355</td>
<td>9.328</td>
<td>13.456</td>
</tr>
<tr>
<td>A3</td>
<td>0.0</td>
<td>0.09</td>
<td>0.0</td>
<td>0.568</td>
</tr>
<tr>
<td>A4</td>
<td>0.0</td>
<td>6.289*</td>
<td>11.833*</td>
<td>16.431*</td>
</tr>
</tbody>
</table>

Wave Heading = 45 Degrees

<table>
<thead>
<tr>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2.097</td>
<td>1.214</td>
<td>2.458</td>
</tr>
<tr>
<td>A2</td>
<td>0.0</td>
<td>18.269</td>
<td>14.928</td>
</tr>
<tr>
<td>A3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>A4</td>
<td>0.0</td>
<td>20.114*</td>
<td>15.182*</td>
</tr>
</tbody>
</table>

'*': Indicates snap load
FIG. 1.1 COST COMPARISON OF TLP WITH JACKET STRUCTURES
FIG. 1.2 TYPICAL TLP NATURAL PERIODS AGAINST
(A) GULF OF MEXICO SEA SPECTRUM AND
(B) NORTH SEA SPECTRUM
FIG. 1.3 'TRITON': THE FIRST TLP
FIG. 2.1 A PERSPECTIVE OF THE HUTTON TLP
FIG. 5.1A MAIN DIMENSIONS OF THE 'EXAMPLE TLP': ELEVATION

- 6.0m
- 65.0m
- 9.75m
- 70.0m
- 10.16m
- 15.24m
- 15.24m
FIG. 5.1B MAIN DIMENSIONS OF THE 'EXAMPLE TLP' : PLAN
Fig. 5.2 1:100 MODEL OF THE EXAMPLE TLP
FIG. 5.3 'TILTING PLATFORM'
FIG. 5.4 ELEVATION, PLAN AND CROSS-SECTION OF THE WAVE TANK AT MEMORIAL UNIVERSITY.

NOTE: All dimensions in meters.
FIG. 5.5 SCHEMATIC OF THE TLP MODEL INSTALLATION IN THE WAVE TANK
Fig. 5.6 INSTRUMENTATION OF MODEL MOORING SYSTEM
Fig. 5.7 COMPONENTS OF MODEL MOORING SYSTEM
Fig. 5.8 TLP MODEL IN WAVES
FIG. 5.9 BLOCK DIAGRAM OF TLP MODEL INSTRUMENTATION AND DATA ACQUISITION SYSTEMS
Fig. 6.1 Skeleton diagram of TLP showing tether stiffness idealisation.
Fig. 6.2 Static equilibrium tensions after tether loss at corner #1.
FIG. 7.1 DEFINITION DIAGRAM FOR HYDROSTATICS

RIGHTING MOMENT = M_B - M_W
FIG. 7.2 VARIOUS TLP CONFIGURATIONS FOR STATIC STABILITY ANALYSIS
FIG. 7.3 A STATICAL STABILITY DIAGRAM

\[\text{AREA RATIO} = \frac{B+C}{A+B} \geq 1.3 \]
READ BODY GEOMETRY: DATA ON ELEMENTS AND LOCAL COORDINATE SYSTEMS
READ WEIGHT AND COORDINATES OF THE CG
READ DRAFT, POINT OF ROTATION AND ROTATION ANGLES

GENERATE ELEMENTAL SURFACES, COORDINATES OF THEIR CENTROIDS AND THE NORMAL VECTORS AT THE CENTROIDS IN LOCAL COORDINATE SYS.

TRANSFORM ALL VECTORS TO GLOBAL REFERENCE

CALCULATE EFFECT OF ROTATION ON THE VECTORS

IS THE Z-COORDINATE OF THE CENTROID OUT OF WATER?

NO

CALCULATE BUOYANCY FORCE AND MOMENTS

VECTORIALLY SUM FORCE AND MOMENTS

HAVE ALL THE SURFACES BEEN COVERED?

YES

HAVE ALL THE ELEMENTS BEEN COVERED?

YES

CALCULATE COORDINATES OF CB

CALCULATE RIGHTING MOMENT

STOP

FIG. 7.4 FLOW CHART FOR 'HYDROSTATICS'
Fig. 7.5 Statical Stability Diagram: Case 1
FIG. 7.6 STATICAL STABILITY DIAGRAM: CASE 2
CASE 3

FIG. 7.7 STATICAL STABILITY DIAGRAM : CASE 3
FIG. 7.8 'ADMISSIBLE SHIFTS' OF CG FOR VARIOUS TLP CONFIGURATIONS
FIG. 8.1A TLP COORDINATE SYSTEMS FOR HYDRODYNAMIC ANALYSIS
Fig. 8.1b: The six degrees of freedom of a floating body.
READ BODY GEOMETRY, MASS DATA
READ TETHER COORD., STIFFNESSES
READ C_d, C_m
READ WAVE HT., FREQ. & HEADING
READ NO. STEPS, STEP LENGTH
READ TOLERANCE
READ INITIAL CONDITIONS

TIME = 0.0

CALC. INERTIAL, DRAG AND
BUOYANCY FORCES ON
INDIVIDUAL ELEMENT

A

HAVE ALL THE ELEMENTS
BEEN COVERED ?

YES

B

CAL. PRESSURE FORCE
ON THE FLAT SURFACES

HAVE ALL THE SURFACES
BEEN COVERED ?

YES

B

CAL. TETHER REACTIONS

SUM ALL FORCES AND FORM
EQUATIONS OF MOTION

INTÉGRATE EQUATIONS
OF MOTION

MODIFY STATE
VARIABLES

IS THE ERROR TOLERABLE ?

YES

A

INCREMENT TIME

HAVE ALL THE TIME STEPS
BEEN COVERED ?

YES

STOP

FIG. 8.2 FLOW CHART FOR 'TIME_DOMAIN'
FIG. 8.3 FLOW CHART FOR 'FREQ_DOMAIN'
Fig. 8.4A Comparison of surge motion calculated using 'Freq. Domain' and the results from Lyons et al. (1983).

EXP: RANDOM WAVES
- PROGRNAS:
 - UCL PRESENT
 - \(\theta = 45° \)

EXP: REGULAR WAVES
- PROGRNAS:
 - UCL PRESENT
 - \(\theta = 0° \)

FREQUENCY (RAD/SEC)
SURGE RAO (m/m)
Fig. 8.4b. Comparison of tether tensions calculated using "Freq_DonaM" and the results from Lyons et al. (1985) (contd.)
Fig. 8.5 Surge RAO in intact and damage (50% loss of tether at #1) cases (0° heading)
FIG. 8.6 HEAVE RAO IN INTACT AND DAMAGED CASES
(0° HEADING)
FIG. 8.7 PITCH/ROLL RAO IN INTACT AND DAMAGED CASES (0° HEADING)
Fig. 8.8 Tension RAO in intact and damaged cases

(0° heading): Corners #1 and #4
Fig. 8.9 Tension RAO in intact and damaged cases
(0° heading): Corners #2 and #3
FIG. 8.10 SURGE/SMAY_RAO IN INTACT AND DAMAGED (50% LOSS OF TETHER AT # 1) CASES (45° HEADING)
FIG. 8.11 HEAVE RAO IN INTACT AND DAMAGED CASES (45° HEADING)
FIG. 8.12 ROLL/PITCH RAO IN INTACT AND DAMAGED CASES (45° HEADING)
FIG. 8.13 TENSION RAO IN INTACT AND DAMAGED CASES (45° HEADING) : CORNER # 1
FIG. 8.14 TENSION RAO IN INTACT AND DAMAGED CASES (45° HEADING): CORNER #2 AND #4
FIG. 8.15 TENSION RAO IN INTACT AND DAMAGED CASES
(45° HEADING) : CORNER # 3
FIG. 8.16 TIME RECORDS FROM IRREG. SEA TEST : INTACT CASE (0° HEADING)
FIG. 8.17 TIME RECORDS FROM IRREG. SEA TEST: 50% LOSS OF TETHER AT # 1 (0° HEADING)
FIG. 8.19 TIME RECORDS FROM IRREG. SEA TEST : INTACT CASE (45° HEADING)
FIG. 8.21 TIME RECORDS FROM IRREG. SEA TEST: 100% LOSS OF TETHER AT # 1 (45° HEADING)
FIG. 8.22 A TYPICAL PIERSON-MOSKOWITZ WAVE ENERGY SPECTRUM (WIND SPEED = 20 M/SEC), DERIVED FROM THE WAVE TIME HISTORY
Fig. 8.23 Tension Spectra: Intact Case (0° Heading)
Fig. 8.24 Tension Spectra: 50% Tether Loss at #1 (0° heading)
FIG. 8.25 TENSION SPECTRA: INTACT CASE (45° HEADING)
FIG. 8.26 TENSION SPECTRA: 50% TETHER LOSS AT # 1
(45° HEADING)

THEORETICAL

EXPERIMENTAL
FIG. 8.27A TETHER BREAKAGE INSTANTS

FIG. 8.27B DEFINITION OF RESPONSE PARAMETERS USED FOR COMPARISONS
FIG. 8.29 EXPERIMENTAL TENSION RESPONSES: 50% TETHER LOSS AT # 1 (0° HEADING)
FIG. 8.31 EXPERIMENTAL TENSION RESPONSES: 100% TETHER LOSS AT #1 (0° HEADING)
FIG. 8.33 EXPERIMENTAL TENSION RESPONSES: 50% TETHER LOSS AT #1 (45° HEADING)
Fig. 9.1 TYPICAL UNSTABLE TIME PERIODS

- High Energy Content
- Mathieu Type Instability
- Surge, Sway, Yaw
- Heave, Pitch, Roll
- Sea State Energy
- Time Period
Fig. 9.2 SIMPLIFIED MODEL OF A TENSION LEG STRUCTURE
Fig. 9.3 FLOW CHART FOR EVALUATION OF THE STABILITY BOUNDARY
Fig. 9.4 STABILITY BOUNDARIES OF A TLP WITH DIFF. PRETENSIONS

\[\text{TP} = 1.0 \times 10^8 \, \text{N} \]
\[2 \omega_b = 0.26 \, \text{RAD/s} \]

\[\text{TP} = 0.5 \times 10^8 \, \text{N} \]
\[2 \omega_b = 0.14 \, \text{RAD/s} \]

\(\text{DISP} = 45,000 \, \text{m}^3 \)
\(C_{d_y} = 1.0 \times 10^5 \, \text{N/(m}^2/\text{s}^2) \)
Fig. 9.5 STABILITY BOUNDARIES OF A TLP WITH DIFF. DAMPING COEFF.

Sway Unstable

- $C_{d_y} = 1.5 \times 10^6 \text{ N/(m}²\text{s}²)$
- $C_{d_y} = 1.0 \times 10^6 \text{ N/(m}²\text{s}²)$
- $C_{d_y} = 0.5 \times 10^6 \text{ N/(m}²\text{s}²)$

Disp. = 45,000 m$³$
$T_p = 1.0 \times 10^8 \text{ N}$
$2\omega_s = 0.208 \text{ RAD/S}$
HT = 15.0 m, WAVE FREQ = 0.3 RAD/s
$C_{dy} = 1.0 \times 10^8$ N/(m²/s²)

Fig. 9.6 SWAY TIME HISTORY (STABLE CASE)
Fig. 9.7 SWAY TIME HISTORY (UNSTABLE CASE)
Fig. 9.8 PHASE PLANE PLOT OF SWAY MOTION (STABLE CASE)
Fig. 9.9 PHASE PLANE PLOT OF SWAY MOTION (UNSTABLE CASE)

HT = 15.0 m, WAVE FREQ = 0.208 RAD/s

$C_{d_y} = 1.0 \times 10^6 \text{ N/(m}^2\text{/s}^2\text{)}$

$C_{d_y} = 1.5 \times 10^6 \text{ N/(m}^2\text{/s}^2\text{)}$
FIG. 9.10 SURGE/SWAY AND YAW STABILITY BOUNDARY FOR THE 'EXAMPLE TLP'
APPENDIX A:
LISTING OF 'EQUILIB'
PROGRAM "EQUILIB": CALCULATES EQUILIBRIUM POSITION/
TENSIONS OF A TLP FOR A GIVEN SET OF TETHER STIFFNESS
AND TOTAL PRETENSION

INPUT FILE NAME: 'EQUILIB.DAT'
INPUT VARIABLES:
PRETEN
PRETEN = TOTAL STATIC PRETENSION
'AK(I),X(I),Y(I)'
AK(I) = AXIAL STIFFNESS AT THE Ith CORNER
X(I) & Y(I) = X & Y COORDINATES OF THE Ith CORNER

OUTPUT FILE NAME: 'EQUILIB.OUT'

COMPUTED OUTPUT VARIABLES:

DELTA(I) = EQUILIBRIUM DISPLACEMENT AT THE Ith CORNER
TENS(I) = EQUILIBRIUM TENSION AT THE Ith CORNER

REQUIRED LIBRARY ROUTINES: IMSL ROUTINE 'L-INVF'

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION STF(3,3),STFINV(3,3),WKAREA(18),F(3)
DIMENSION AK(4),X(4),Y(4),TENS(4),DELTA(4)

OPEN I/O FILES

OPEN (UNIT=1,FILE='EQUILIB.DAT',TYPE='OLD')
OPEN (UNIT=2,FILE='EQUILIB.OUT',TYPE='NEW')

READ(1,*) PRETEN
DO 1 I=1,4
 READ(1,*) AK(I),X(I),Y(I)
 X(I)=DABS(X(I))
 1

Y(I)=DABS(Y(I))
CONTINUE

CREATING THE STIFFNESS MATRIX STF(.)

STF(1,1)=AK(1)+AK(4)
STF(1,2)=AK(2)-AK(4)
STF(1,3)=AK(3)+AK(4)
STF(2,1)=AK(1)*Y(1)-AK(4)*Y(4)
STF(2,2)=AK(2)*Y(2)+AK(4)*Y(4)
STF(2,3)=-AK(3)*Y(3)-AK(4)*Y(4)
STF(3,1)=AK(1)*X(1)+AK(4)*X(4)
STF(3,2)=-AK(2)*X(2)-AK(4)*X(4)
STF(3,3)=-AK(3)*X(3)+AK(4)*X(4)

CREATING THE LOAD VECTOR F(.)

F(1)=PRETEN
F(2)=0.0
F(3)=0.0
F(4)=0.0

INVERTING STF(.)

N=3
IA=3
IDGT=4
CALL LINV2F(STF,N,IA,STFINV,IDGT,WKAREA,IER)

SOLVING FOR THE EQUILIBRIUM DISPLACEMENTS AND TENSIONS, "DELTA" AND "TENS" RESPECTIVELY

WRITE(2,1000)
1000 FORMAT(/'LEG #',6X,'STIFFNESS (N/M)',4X,'DELTA (M)',4X,'TENSION (N)'/)
 DO 200 I=1,3
 DO 200 J=1,4
 DELTA(I)=DELTA(I)+STFINV(I,J)*F(J)
 DELTA(I)=STFINV(I,1)*F(1)
 200 CONTINUE
 DELTA(4)=DELTA(1)+DELTA(2)+DELTA(3)
 DO 300 I=1,4
 TENS(I)=AK(I)*DELTA(I)

WRITE (2, 2000) I, AK(I), DELTA(I), TENS(I)
2000 FORMAT (10X, I5, 6X, E10.4, 6X, F10.7, 6X, E10.4)
300 CONTINUE
STOP
END
APPENDIX B:
LISTING OF 'HYDROSTATICS'
PROGRAM "HYDROSTATICS" : HYDROSTATIC PROGRAM INCORPORATING
EQUILIBRIUM TRIM CALCULATIONS; COMPUTES BUOYANCY, CENTRE
OF BUOYANCY AND THE RIGHTING MOMENT FOR A GIVEN GEOMETRY.
DRAFT AND MASS DISTRIBUTION

INPUT FILE NAME : 'HYDROSTATICS.PILOT'

INPUT VARIABLES :-

'IDISP,ITRIM,ITRM,TRIM,IWB'

IDISP = DISPL: ITERATION OPTION (=0 : NO & =1 : YES)
ITRIM = TRIM ITERATION OPTION (=0 : NO & =1 : YES)
ITRM = FIXED TRIM OPTION (=0 : NO & =1 : YES;
 IF 'YES' THEN "ITRIM" HAS TO BE 0)
TRIM = GIVEN FIXED TRIM ANGLE (deg) FOR ITRM=1.
 OTHERWISE INPUT 0.0
IWB = 0 IF WEIGHT IS NOT EQUAL TO BUOYANCY AND
 1 IF WEIGHT IS EQUAL TO BUOYANCY

** IF (IWB.EQ.0) THEN

'WT,RHO'

WT = WEIGHT IN m
RHO = MASS DENSITY OF WATER IN Kg/cu.m

'DRAFTI,PTROT,THETA1'

DRAFTI = INITIAL DRAFT IN m
PTROT = DISTANCE OF POINT OF ROTATION ON THE
 Z AXIS IN m
THETA1 = ROTATION OF 'HEEL AXIS' ON THE
 WATERPLANE IN degrees

'NLIST,SLIST1,DLIST1'

NLIST = NUMBER OF LIST (OR HEEL) ANGLES
SLIST1 = STARTING LIST ANGLE IN degrees.
DLIST1 = SPECIFIED LIST INCREMENT IN degrees

'DTRIM,DDRAFT,ERRVOL,ERRCB'

DTRIM = SPECIFIED INCREMENTAL TRIM ANGLE (deg)
DDRAFT = SPECIFIED INCREMENTAL DRAFT (m)
ERRVOL = SPECIFIED ERROR TOLERANCE IN VOLUME
 CALCULATION (cu.m) ; REQUIRED FOR EQUILIBRIUM
 WATERLINE CALCULATION
ERRCB = SPECIFIED ERROR TOLERANCE ON CENTRE OF
 BUOYANCY CALCULATION (m) ; REQUIRED FOR
 EQUILIBRIUM TRIM CALCULATION
INPUT FILE NAME: 'HYDROSTATIC.DAT'

INPUT VARIABLES:

'NCYL, NRECT'
NCYL = NUMBER OF CYLINDRICAL SURFACES
NRECT = NUMBER OF RECTANGULAR SURFACES

** FOR EVERY CYLINDER PROVIDE:
'(XC1(I, J), J=1, 3), (XC2(I, J), J=1, 3), DIA(I), (NC(I, J), J=1, 4)'

XC1 & XC2 = COORDINATES OF THE ENDS OF THE CYLINDER (m)
DIA = DIAMETER OF THE CYLINDER (m)
NC(I, 1) = NUMBER OF VERTICAL DIVISIONS ON THE CYLINDER
NC(I, 2) = NUMBER OF HORIZONTAL DIVISIONS ON THE CYLINDER
NC(I, 3) = NUMBER SECTORS ON THE ENDS OF THE CYLINDER
NC(I, 4) = NUMBER CIRCULAR DIVISIONS ON THE ENDS OF THE CYLINDER

'XCLMN(I, J), J=1, 3), (YCLMN(I, J), J=1, 3), (ZCLMN(I, J), J=1, 3)'

XCLMN = DIRECTION COSINES OF LOCAL X AXIS
YCLMN = DIRECTION COSINES OF LOCAL Y AXIS
ZCLMN = DIRECTION COSINES OF LOCAL Z AXIS

** FOR EVERY RECTANGULAR SURFACE PROVIDE:
'(XR(I, J), J=1, 3), XLENG(I),YLENG(I), (NR(I, J), J=1, 2)'

XR = COORDINATES OF THE CENTROID OF THE RECTANGULAR SURFACE (m)
XLENG &YLENG = LENGTH OF THE SIDES OF THE RECTANGLE PARALLEL TO X & Y AXES, RESPECTIVELY
NR(I, 1) = NUMBER OF DIVISIONS PARALLEL TO X AXIS
NR(I, 2) = NUMBER OF DIVISIONS PARALLEL TO Y AXIS

'XRMLN(I, J), J=1, 3), (YRMLN(I, J), J=1, 3), (ZRLMN(I, J), J=1, 3)'

XRMLN = DIRECTION COSINES OF LOCAL X AXIS
YRMLN = DIRECTION COSINES OF LOCAL Y AXIS
ZRLMN = DIRECTION COSINES OF LOCAL Z AXIS

OUTPUT FILE NAME: 'HYDROSTATICS.OUT'

COMPUTED OUTPUT VARIABLES:

REQVOL = VOLUME CORRESPONDING TO INITIAL DRAFT (cu.m)
CB = COORDINATES OF THE CENTRE OF BUOYANCY IN FOR THE INITIAL CONFIGURATION (m)
GZ = RIGHTING ARM (IF IWB=1) IN m OR MOMENT
 (IF IWB=0) IN N-m
T2 = EQUILIBRIUM TRIM ANGLE (degrees)

REQUIRED LIBRARY Routines: None

GENERAL NOTES:

1. THE ORIGINAL RIG COORDINATE SYSTEM IS ALWAYS
 CONVERTED TO A PARALLEL ORTHOGONAL SYSTEM WHOSE ORIGIN IS
 ON THE ORIGINAL RIG SYSTEM Z-AXIS AT DISTANCE "PTROT"
 FROM THE ORIGIN; THUS IN THE OUTPUT THE 'Z' COORDINATES
 OF 'CB' & 'CG' ARE EXPRESSED w.r.t. THE SHIFTED SYSTEM
2. THE VERTICAL CENTRE OF BUOYANCY 'VGB' i.e.
 CB(3) IN THIS CASE IS AS SUCH CALCULATED AS THE VERTICAL
 DISTANCE BELOW THE WATER LINE BUT FINALLY CORRECTED TO
 THE CURRENT RIG SYSTEM i.e. 'ORIGINAL' OR 'SHIFTED TO
 "PTROT" POSITION' LATER ON IN THE SUBROUTINE "HYDRO"
3. IN CASE THE WEIGHT AND BUOYANCY ARE NOT THE
 SAME (IN WHICH CASE THE VARIABLE "IWB" HAS A VALUE 0)
 THEN THE ACTUAL VALUE OF THE WEIGHT (WT) AND THE MASS DENSITY
 OF WATER (RHO) MUST BE GIVEN IN "N" AND "KG/CU.M" RESPECTIVELY.
 AND ON THE OUTPUT INSTEAD OF "GZ" THE VALUE OF NET HYDROSTATIC
 RESTORING MOMENT (RESMOM) WOULD APPEAR.

DIMENSION CB(3)
COMMON/HYD/NCYL, NRECT, XC1(50,3), XC2(50,3), DIA(50),
 XCLMN(50,3), YCLMN(50,3), ZCLMN(50,3), NC(50,4),
 XR(50,3), XLENG(50), YLENG(50), XRLMN(50,3),
 YRLMN(50,3), ZRLMN(50,3), NR(50,2)
COMMON/EQUAL/DRAFTI, DDRAFT, DTRIM, REQVOL, ERRVOL, ERRCB, IDISP,
 ITRIM, R3T(3,3), XCG(3), THETA, TRIM, ITRIM, IWB, WT, RHO

OPEN I/O FILES

OPEN (UNIT=1, FILE='HYDROSTATICS.DAT', TYPE='OLD')
OPEN (UNIT=10, FILE='HYDROSTATICS.PILOT', TYPE='OLD')
C

OPEN(UNIT=11,FILE='HYDROSTATICS.OUT',TYPE='NEW')
C

PI=3.1415927
C

READ DATA FROM "HYDROSTATICS.PILOT"
C

READ (10,*) IDISP,ITERM;ITRM,TRI,ITRMB,ITRMC
WRITE(11,*)'IS WT EQUAL TO BUOYANCY (=1: YES & =0: NO) =', ITRMB
WRITE(11,2030) IF (ITRMB.EQ.0) THEN
READ (10,*) WT,RHO
WRITE(11,*)'GIVEN TOTAL WEIGHT (N) =',WT
WRITE(11,*)'GIVEN MASS DENSITY OF WATER (KG/CU.M) =',RHO
WRITE(11,2030) ELSE
END IF
READ (10,*) DRAFT,PTROT,THETA
READ (10,*) NLST,SLST,DLST
WRITE(11,2010) IDISP,ITRM,ITRM,TRI,ITRMB,PTROT,TRI
WRITE(11,2010) NLST,SLST,DLST
2010 FORMAT(////'6X,'DISPL ITERATION OPTION (=0 : NO & =1 : YES) =',
 6I6X,'TRIM ITERATION OPTION (=0 : NO & =1 : YES) =',6I6X,
 6I6X,'FIXED TRIM OPTION (=0 : NO & =1 : YES)"ITRM" TO BE 0) =',
 6I6X,'GIVEN FIXED TRIM ANGLE (deg) =',F10.6//6X,
 6I6X,'INITIAL DRAFT (m) =',F10.5//6X,
 6I6X,'POINT OF ROTATION ON Z-AXIS ABOVE ORIGIN (m) =',F10.5//6X,
 6I6X,'ROTATION OF X & Y-AXES ON THE WATER PLANE (deg) =',F10.6//6X,
 6I6X,'NO OF LIST ANGLES =',I5//6X,
 6I6X,'STARTING LIST ANGLE (deg) =',F10.5//6X,
 6I6X,'LIST ANGLE INCREMENT (deg) =',F10.6//6X,
 6I6X,'TRI =TRIM+PI/180.0
THETA=THETA1+PI/180.0
SLST=SLST1+PI/180.0
DLST=DLST1+PI/180.0
READ (10,*) DTRIM,DDRAFT,ERRVOL,ERRCB
WRITE(11,*) 'SPECIFIED "DTRIM" (deg) =',DTRIM
WRITE(11,*) 'SPECIFIED "DDRAFT" (m) =',DDRAFT
WRITE(11,*) 'SPECIFIED "ERRVOL" (cu.m) =',ERRVOL
WRITE(11,*) 'SPECIFIED "ERRCB" (m) =',ERRCB
WRITE(11,2030)
2030 FORMAT(/)
WRITE(11,2030) DTRIM=DTRIM+PI/180.0
READ (10,*) (XCG(I),I=1,3)
WRITE(i1,*) 'GIVEN CG(X,Y,Z) IN RIG SYS (m) = ', (XCG(I),I=1,3)

C

REoADING IN PLATFORM GEOMETRY DATA

1100 FORMAT('/' COORD OF CYLINDER ENDS DIA LOCAL XYZ DIVN NOS'/)
1110 FORMAT(F6.2,5(1X,F6.2),1X,F6.2,9(1X,F6.2),1X,4(1X,I3))
1120 FORMAT('// RECT CENTROID COORD X,YLENG LOCAL XYZ DIVN NOS'/)
1130 FORMAT(14(F6.2,1X),2(1X,I3))
READ (1,*), NCYL,NRECT
WRITE (11,2030)
WRITE (11,*) 'NO. OF CYLINDERS = ',NCYL
WRITE (11,*) 'NO. OF RECTANGULAR SURFACES = ',NRECT
WRITE (11,2030)
IF (NCYL.EQ.0) GO TO 10
WRITE (11,1100)
DO 20 I=1,NCYL
READ (1,*), (XC1(I,J),J=1,3), (XC2(I,J),J=1,3), DIA(I),
* (NC(I,J),J=1,4)
READ (1,*), (XCLMN(I,J),J=1,3), (YCLMN(I,J),J=1,3),
* (ZCLMN(I,J),J=1,3)
20 WRITE (11,1110) (XC1(I,J),J=1,3), (XC2(I,J),J=1,3), DIA(I),
* (XCLMN(I,J),J=1,3), (YCLMN(I,J),J=1,3),
* (ZCLMN(I,J),J=1,3), (NC(I,J),J=1,4)
10 IF (NRECT.EQ.0) GO TO 30
WRITE (11,1120)
DO 40 ,I=1,NRECT
READ (1,*), (XR(I,J),J=1,3),XLENG(I),YLENG(I), (NR(I,J),J=1,2)
READ (1,*), (XRLMN(I,J),J=1,3), (YRLMN(I,J),J=1,3),
* (ZRLMN(I,J),J=1,3)
40 WRITE(11,1130) (XR(I,J),J=1,3),XLENG(I),YLENG(I),
* (XRLMN(I,J),J=1,3), (YRLMN(I,J),J=1,3),
* (ZRLMN(I,J),J=1,3), (NR(I,J),J=1,2)

C*************** END OF READ ***********************

C

30 WRITE(11,2030)
CALL HYDRO(0.0,0.0,0.0,0.0,DRAFTI,REQUvl,CH)
WRITE(11,*) 'REQUIRED DISPLACEMENT (cu.m) = ',REQUVL
WRITE(11,*) 'CALC CB(X,Y,Z) IN RIG SYS (m) = ',(CB(I),I=1,3)
WRITE(11,2030)
PRINT*, 'REQUIRED DISPLACEMENT (cu.m) = ',REQUVL
PRINT*, 'CALC CB(X,Y,Z) IN RIG SYS (m) = ',(CB(I),I=1,3)
SHIFT THE ORIGINAL RIG SYSTEM TO "PTROT"

DO 50 I=1,NCYL
XC1(I,3)=XC1(I,3)-PTROT
50
XC2(I,3)=XC2(I,3)-PTROT
DO 60 I=1,NRECT
XR(I,3)=XR(I,3)-PTROT
DRAFTI=DRAFTI-PTROT
XCG(3)=XCG(3)-PTROT
WRITE (11,2030)
WRITE (11,*)' $$'
WRITE (11,2030)
WRITE (11,*)' CURRENT RIG SYSTEM IS THE SYSTEM SHIFTED TO "PTROT"'
WRITE (11,2030)
WRITE (11,*)' $$'
WRITE (11,2030)
CALL ROTATION(R3T,THETA)
DO 3000 I=1,HLIST
ALIST=SLIST+(FLOAT(I-1))*DLIST
T1=ALIST+180.0/PI
PRINT*, ''>'>'>' CALCULATING FOR LIST ANGLE '='T1,'>'>'>'
CALL EQUIL(ALIST)
3000 CONTINUE
STOP

END

SUBROUTINES

SUBROUTINE MATMUL1 (SA,SB,SC)
DIMENSION SA(3,3),SB(3),SC(3)

do 5 I=1,3
5
SC(I)=0.0
K=0
do 10 I=1,3
K=K+1
I. SUBROUTINE KABL2 (SA, SB, SC)

Do 10 J=1,3
SC(K)=SA(I,J)*SB(J)
End

SUBROUTINE MATMUL2 (SA, SB, SC)

DIMENSION SA(3,3), SB(3,3), SC(3,3)

Do 5 I=1,3
Do 5 J=1,3
SC(I, J)=0.0
End
End

SUBROUTINE HYDRO (THETA, ATRIM, ALIST, DFT, VTOT, CB)

DIMENSION CB(3), R(3, 3), P(3), RP(3), PN(3), RPN(3)
COMMON/HYD/NCYL, NRECT, XCl(50, 3), XC2(50, 3), DIA(50),
* XCLMN(50, 3), YCLMN(50, 3), ZCLMN(50, 3), NC(50, 4),
* XR(50, 3), YLENG(50), XLENG(50), XRLMN(50, 3),
* YRLMN(50, 3), ZRLMN(50, 3), NR(50, 2)

PI=3.1415927

CALL RMATRIX (R, THETA, ATRIM, ALIST)
VTOT=0.0
XMOM=0.0
YMOM=0.0
ZMOM=0.0

CALCULATING FOR THE CYLINDERS i.e. THEIR WALLS AND ENDS

IF (NCYL.EQ.0) GO TO 100
Do 10 IC=1,NCYL
AH=SQR((XC2(IC,1)-XC1(IC,1))^2+(XC2(IC,2)-XC1(IC,2))^2,
+ (XC2(IC,3)-XC1(IC,3))^2)

213
DH = AH/FLOAT(NC(IC,2))
DL = PI*DIA(IC)/FLOAT(NC(IC,1))
DB = DIA(IC)/(2.0*NC(IC,4))
DFIC = 2.0*PI/FLOAT(NC(IC,1))
DFI = 2.0*PI/FLOAT(NC(IC,3))
AREAC = DL*DH

DO 20 I = 1, NC(IC,2),
PZ = (FLOAT(I) - 0.5) * DH
DO 30 J = 1, NC(IC,1),
ANG = (FLOAT(J) - 0.5) * DFIC

PNX = COS(ANG)
PNY = SIN(ANG)
PNZ = 0.0

PN(1) = PNX * XCLMN(IC,1) + PNY * YCLMN(IC,1) + PNZ * ZCLMN(IC,1)
PN(2) = PNX * XCLMN(IC,2) + PNY * YCLMN(IC,2) + PNZ * ZCLMN(IC,2)
PN(3) = PNX * XCLMN(IC,3) + PNY * YCLMN(IC,3) + PNZ * ZCLMN(IC,3)

PX = DIA(IC) * COS(ANG) / 2.0
PY = DIA(IC) * SIN(ANG) / 2.0

XC = XC1(IC,1) + ZCLMN(IC,1) * PZ
YC = XC1(IC,2) + ZCLMN(IC,2) * PZ
ZC = XC1(IC,3) + ZCLMN(IC,3) * PZ

P(1) = XC * PX * XCLMN(IC,1) + PY * YCLMN(IC,1)
P(2) = YC * PX * XCLMN(IC,2) + PY * YCLMN(IC,2)
P(3) = ZC * PX * XCLMN(IC,3) + PY * YCLMN(IC,3)

CALL MATMUL1(R,PN,RPN)
CALL MATMUL1(R,P,RP)
IF (RP(3).GT.DFT) GO TO 30
VT0T = VT0T - RP(3) * AREAC * (DFT-RP(3))
XMOM = XMOM - RP(3) * AREAC * (DFT-RP(3)) * RP(1)
YMOM = YMOM - RP(3) * AREAC * (DFT-RP(3)) * RP(2)
ZMOM = ZMOM - RP(3) * AREAC * (DFT-RP(3)) * (DFT-RP(3)) / 2.0
30 CONTINUE
20 CONTINUE

X = XC1(IC,1)
Y = XC1(IC,2)
Z = XC1(IC,3)
PN(1) = -ZCLMN(IC,1)
PN(2) = -ZCLMN(IC,2)
C

DO 40 II=1, 2 ! CALCULATIONS FOR THE CIRCULAR ENDS
DO 50 I=1, NC(IC, 4)
RR=(FLOAT(I)-0.5)*DR
RR1=RR-DR/2.0
RR2=RR+DR/2.0
AREA=PI*(RR2**2-RR1**2)/FLOAT(NC(IC, 3))
DO 60 J=1, NC(IC, 3)
ANG=(FLOAT(J)-0.5)*DF1

PX=RR*COS(ANG)
PY=RR*SIN(ANG)

P(1)=X+PX*XCLMN(IC, 1)+PY*YCLMN(IC, 1)
P(2)=Y+PX*XCLMN(IC, 2)+PY*YCLMN(IC, 2)
P(3)=Z+PX*XCLMN(IC, 3)+PY*YCLMN(IC, 3)

CALL MATMUL1 (R, PN, RP)
CALL MATMUL1 (R, P, RP)
IF (RP(3).GT.DFT) GO TO 60
VTOT=VTOT-RPN(3)*AREA*(DFT-RP(3))
XMOM=XMOM-RPN(3)*AREA*(DFT-RP(3))*RP(1)
YMOM=YMOM-RPN(3)*AREA*(DFT-RP(3))*RP(2)
ZMOM=ZMOM-RPN(3)*AREA*(DFT-RP(3))*DFT-RP(3)/2.0
60 CONTINUE
50 CONTINUE

X=XCL2(IC, 1)
Y=XCL2(IC, 2)
Z=XCL2(IC, 3)
PN(1)=ZCLMN(IC, 1)
PN(2)=ZCLMN(IC, 2)
PN(3)=ZCLMN(IC, 3)
40 CONTINUE
10 CONTINUE

CALCULATING FOR THE RECTANGULAR SURFACES

IF (NRECT.EQ.0) GO TO 110
DO 70 IR=1, NRECT
DX=XLENG(IR)/FLOAT(NR(IR, 1))
DY=YLENG(IR)/FLOAT(NR(IR, 2))
DA=DX*DY

DO 80 I=1, NR(IR, 1)
XX = (FLOAT(I) - 0.5) * DX * XLENG(IR) / 2.0
.YD 90 J = 1, NR(IR, 2)
.YY = (FLOAT(J) - 0.5) * DY * YLENG(IR) / 2.0

.P(1) = XR(IR, 1) + XX * XRLMN(IR, 1) + YY * YRLMN(IR, 1)
.P(2) = XR(IR, 2) + XX * XRLMN(IR, 2) + YY * YRLMN(IR, 2)
.P(3) = XR(IR, 3) + XX * XRLMN(IR, 3) + YY * YRLMN(IR, 3)
.PN(1) = ZRLMN(IR, 1)
.PN(2) = ZRLMN(IR, 2)
.PN(3) = ZRLMN(IR, 3)

CALL MATMUL1(R, PN, RPN)
CALL MATMUL1(R, P, RP)
IF (RP(3), GT, DFT) GO TO 90
.VTOT = VTOT - RPN(3) * DA * (DFT - RP(3))
.XMOM = XMOM - RPN(3) * DA * (DFT - RP(3)) * RP(1)
.YMOM = YMOM - RPN(3) * DA * (DFT - RP(3)) * RP(2)
.ZMOM = ZMOM - RPN(3) * DA * (DFT - RP(3)) * (DFT - RP(3)) / 2.0
90 CONTINUE
80 CONTINUE
70 CONTINUE

CALCULATE THE CENTRE OF BUOYANCY

110 CB(1) = XMOM / VTOT
.CB(2) = YMOM / VTOT
.CB(3) = ZMOM / VTOT

CALCULATE CB(3) w.r.t. THE CURRENT RIG COORD SYSTEM

CB(3) = DFT - CB(3)
RETURN
END

SUBROUTINE EQUIL (ALIST)
DIMENSION CB(3), ROT(3, 3), B(3), G(3), CG(3), ROT1(3, 3)
COMMON/EQUAL, DRAFTI, DDRAFT, DTRIM, REQVOL, ERRVOL, ERRCB, IDISP,
.ITRIM, R3T(3, 3), XCG(3), THETA, TRIMI, ITRM, IWB, WT, RHO

PAI = 3.1415927
GRAV=9.81 ! Accl. due to Gravity in m/sec/sec
DO 5 I=1,3
DO 5 J=1,3
5 ROT1(I,J)=0.0
ROT1(1,1)=1.0
ROT1(2,2)=1.0
ROT1(3,3)=1.0
ITER=0
INDX1=0
INDX2=0
INDX3=0
INDX4=0

C

DTRM=DTRIM
DT=D Draft
D=DRAFT
ATRIM=0.0
IF(ITRM.EQ.1) ATRIM=TRIM

C

10 ITER=ITER+1
PRINT*,">>>>, ITER =',ITER
CALL RMATRIX (ROT, THETA, ATRIM, ALIST)
CALL HYDRO (THETA, ATRIM, ALIST, D, VOL, CB)
ERR1=REQVOL-VOL
IF(IDISP.EQ.0) ERR1=0.0
IF(IDISP.EQ.0) PRINT*, '*** IDISP = 0 ***'
PRINT*, 'ERR1 =', ERR1
IF(ERRVOL.LE.0.0) PRINT*, '*** ERRVOL .LE. 0.0 ***'
IF(ABS(ERR1).LE.ERRVOL) GO TO 40
IF(ERR1.GT.0.0) GO TO 20
IF(INDX1.EQ.1) GO TO 30
D=D-2*DT
GO TO 10
20 D=D+DT
INDX1=1
GO TO 10
30 D=D-2*DT
DT=DT/2.
GO TO 10
40 CONTINUE ! end of const. displ. check
C

PRINT*, 'DISPL. SATISFACTORY : PROCEED FOR EQUILIB TRIM'
DT=D Draft
INDX1=0
CG(1) = XCG(1)
CG(2) = XCG(2)
CG(3) = XCG(3)
CALL MATMUL1 (RO2T, CG, G)
CALL MATMUL1 (ROT1, CB, B)
.CALL MATMUL1 (ROT1, CB, B)

ERR2 = XCG(1) - CB(1) ! ERR2 = CGX - CBX in the yawed coordinate
IF (ITRIM .EQ. 0) ERR2 = 0.0
IF (ITRIM .EQ. 0) PRINT*, ' *** ITRIM = 0 ***
PRINT*, 'ERR2 = ', ERR2
IF (ERRCB .LE. 0.0) PRINT*, ' *** ERRCB .LE. 0.0 ***
IF (ABS(ERR2) .LE. ERRCB) GO TO 70
IF (ERR2 .GT. 0.0) GO TO 60
IF (INDEX2 .EQ. 1) GO TO 60
ATRIM = ATRIM - DTRM * 2.0
GO TO 10
50
ATRIM = ATRIM + DTRM
INDEX2 = 1
GO TO 10
60
ATRIM = ATRIM - DTRM
DTRM = DTRM / 2.0
GO TO 10
70
CONTINUE! end of trim iterations for the given list angle
C
PRINT*, 'TRIM ADJUSTMENT SATISFACTORY : PROCEED TO NEXT LIST'
WRITE(11, 2020)
WRITE(11, 2020)
2020 FORMAT(/)
T1 = ALIST * 180. / PAI
T2 = ATRIM * 180. / PAI
WRITE(11, *) ' >>> LIST ANGLE (DEG) = ', T1
WRITE(11, *) ' ADJUSTED DRAFT (m) = ', D
WRITE(11, *) ' ADJUSTED DISPLACEMENT (cu.m) = ', VOL
WRITE(11, *) 'RESULTANT EQUILIBR. TRIM ANGLE (DEG) = ', T2
WRITE(11, 2020)
WRITE(11, *) 'CG(X,Y,Z) = ', CG(1), CG(2), CG(3) ! in the yawed
WRITE(11, *) 'CB(X,Y,Z) = ', CB(1), CB(2), CB(3) ! coordinate system
WRITE(11, 2020)
GZ = CG(2) - CB(2)
RESMOM = CG(2) * WT - CB(2) * VOL * RHO * GRAV
IF (ALIST .LT. 0.0) GZ = -GZ
IF (ALIST .LT. 0.0) RESMOM = -RESMOM
IF (IWB .EQ. 0) THEN
SUBROUTINE RMATRIX (R, THETA, ATRIM, ALIST)

DIMENSION R1(3,3), R2(3,3), R(3,3)

PI = 3.1415927

E1 = COS(THETA)
E2 = SIN(THETA)
C = COS(ATRIM)
S = SIN(ATRIM)

R1(1,1) = E1 * E1 + (1.0 - E1 * E1) * C
R1(1,2) = E1 * E2 - E1 * E2 * C
R1(1,3) = E2 * S
R1(2,1) = E2 * E1 - E2 * E1 * C
R1(2,2) = E2 * E2 + (1.0 - E2 * E2) * C
R1(2,3) = -E1 * S
R1(3,1) = E2 * S
R1(3,2) = E1 * S
R1(3,3) = C

E1 = COS(PAI/2.0 + THETA)
E2 = SIN(PAI/2.0 + THETA)
C = COS(ATRIM)
S = SIN(ATRIM)

R2(1,1) = E1 * E1 + (1.0 - E1 * E1) * C
R2(1,2) = E1 * E2 - E1 * E2 * C
R2(1,3) = E2 * S
R2(2,1) = E2 * E1 - E2 * E1 * C
R2(2,2) = E2 * E2 + (1.0 - E2 * E2) * C
R2(2,3) = -E1 * S
R2(3,1) = -E2 * S
R2(3,2) = E1 * S
SUBROUTINE "ROTATION" ; CALCULATES THE [R3] TRANSPOSE
THE GIVEN ROTATION OF THE ARBITRARY VECTOR ON THE WATER
PLANE ABOUT WHICH "LIST" IS APPLIED. THE MATRIX [R3T]
IN THE MAIN$ AND SUBROUTINE "HYDRO" IS USED TO PROJECT
THE "CB" AND "CG" VECTORS CALCULATED IN THE CURRENT
RIG SYSTEM ONTO THE SYSTEM YAWED w.r.t. X-AXIS OF THE
CURRENT RIG SYSTEM BY THE AMOUNT "THETA". THE CALCULATION
OF THE RIGHTING ARM "GZ" AND CHECKS MADE FOR EQUILIBRIUM
TRIM ARE DONE COMPARING THESE PROJECTIONS.

SUBROUTINE ROTATION(R,THETA)
DIMENSION R(3,3)

C=COS(THETA)
S=SIN(THETA)
R(1,1)=C
R(1,2)=S
R(1,3)=0.0
R(2,1)=-S
R(2,2)=C
R(2,3)=0.0
R(3,1)=0.0
R(3,2)=0.0
R(3,3)=1.0
RETURN
END
APPENDIX C

LISTING OF 'TIME_DOMAIN'
PROGRAM 'TIME_DOMAIN': PERFORMS TIME DOMAIN SIMULATION
OF A TLP FOR INTACT AND TETHER DAMAGE CONDITIONS

INPUT FILE NAME: 'TIME_DOMAIN.PILOT'

INPUT VARIABLES:

'METH, MITER, INDEX1,'
METH, MITER = IMSL ROUTINE 'DGEAR' PARAMETERS
INDEX1 = CORRESPONDS TO 'INDEX' IN 'DGEAR (=1)

'NCOND'
NCOND = NUMBER OF NONZERO INITIAL CONDITIONS
** FOR EVERY NONZERO INITIAL CONDITION PROVIDE:
'J, Y(J),'
Y(J) = INITIAL VALUE OF THE Jth STATE
 VARIABLE Y(J)

'DRAFT, WT,'
DRAFT = DRAFT OF THE PLATFORM (m)
WT = WEIGHT OF THE PLATFORM (N)

'(CG(I), I=1,3),'
CG = COORDINATES OF THE CENTRE OF GRAVITY (m)

'RXX, RYY, RZZ,'
RXX = RADIUS OF GYRATION ABOUT X-AXIS (m)
RYY = RADIUS OF GYRATION ABOUT Y-AXIS (m)
RZZ = RADIUS OF GYRATION ABOUT Z-AXIS (m)

'CD1, CM,'
CD1 = NONLINEAR DRAG COEFFICIENT
CM = VIRTUAL MASS COEFFICIENT

'NSTEP, STEP1, TOL,'
NSTEP = NUMBER OF TIME STEPS
STEP1 = TIME INTERVAL (sec) FOR RESPONSE OUTPUT
TOL = ERROR TOLERANCE FOR 'DGEAR'

'NTRANS, EXPI,'
NTRANS = NUMBER OF TIME STEPS IN THE BEGINING
OVER WHICH DRAG MAY ARTIFICIALLY INCREASED.
IF DESIRED, TO DAMP THE SYSTEM IN ORDER
TO AVOID INITIAL TRANSIENT
EXPI = INDEX FOR AN EXPONENTIAL MULTIPLIER
USED TO INCREASE DRAG TO DAMP THE
SYSTEM INITIALLY (=0 IF THIS OPTION
IS NOT DESIRED
TO = TIME LENGTH OVER WHICH THE 'HALF COSINE
 FUNCTION IS APPLIED (sec)

FI, W, AMP1
FI = WAVE HEADING (degrees)
W = WAVE FREQUENCY (rad/sec)
AMP1 = WAVE AMPLITUDE (m)

IZETA, IROT
IZETA = 0 IF INTEGRATION IS TO BE CARRIED OUT
 ONLY UPTO THE MEAN WATERLINE AND
 = 1, OTHERWISE
IROT = IF EQUAL TO 0 THEN THE ANGLES ARE TAKEN
 AS VECTORS, 1 OTHERWISE

NTRIG, NT, FACTOR
NTRIG = TIME STEP NUMBER AT WHICH TETHER LOSS
 HAS TO OCCUR
NT = TENSION LEG NUMBER AT WHICH TETHER LOSS
 HAS TO OCCUR
FACTOR = FACTOR BY WHICH THE STIFFNESS OF THE
 AFFECTED TENSION LEG HAS TO BE
 MULTIPLIED AFTER TETHER LOSS

INPUT FILE NAME : "TIME_DOMAIN.DAT"

NCYL
NCYL = NUMBER OF CYLINDERS

** FOR EVERY CYLINDER PROVIDE :**
'(X1(I, J), J=1,3), (X2(I, J), J=1,3), D(I), NDIV(I)'
X1, X2 = COORDINATES OF THE CYLINDER ENDS (m)
D = DIAMETER OF THE CYLINDER (m)
NDIV = NUMBER OF HORIZONTAL SLICES THE CYLINDER
 WOULD HAVE TO BE DIVIDED

NSURF = NUMBER CIRCULAR FLAT SURFACES

** FOR EVERY SURFACE PROVIDE :**
'(XS(I, J), J=1,3), (ANS(I, J), J=1,3), DS(I)'
XS = COORDINATES OF THE CENTRE OF THE FLAT
 SURFACE
ANS = DIRECTION COSINES OF THE NORMAL TO THE
 FLAT SURFACE
DS(I) = DIAMETER (m) OF THE FLAT SURFACE

NTEN = NUMBER OF TENSION LEGS

** FOR EVERY TENSION LEG PROVIDE :**
'(XT1(I, J), J=1,3), (XT2(I, J), J=1,3), AKT(I)'
XT1, XT2 = COORDINATES OF THE ENDS OF THE TETHER
AKT = AXIAL STIFFNESS OF THE TETHER
'NWP' = NUMBER OF CIRCULAR WATERPLANE >0 IF
 LINEAR HYDROSTATIC STIFFNESS ARE DESIRED.
 =0 OTHERWISE

 ** FOR EVERY WATERPLANE PROVIDE
 'XWP(I),YWP(I),DWP(I)' *

XWP, YWP = X AND Y COORDINATES OF THE CENTRE OF
 THE WATERPLANE
DWP = DIAMETER OF THE WATERPLANE

OUTPUT FILES :

'TIME_DOMAIN.OUT' - PRINTS OUT THE INPUT DATA AND
 COMPUTED BUOYANCY AND CB
'SURGE.DAT,SWAY.DAT,HEAVE.DAT,ROLL.DAT,PITCH.DAT,YAW.DAT'
 - MOTION RESPONSES AGAINST A TIME SCALE
'TEN1.DAT,TEN2.DAT,TEN3.DAT,TEN4.DAT'
 - TENSION RESPONSES AT THE FOUR
 CORNERS AGAINST A TIME SCALE

REQUIRED LIBRARY ROUTINES : IMSL ROUTINES 'DGGEAR' AND
 'LINV1F'

IMPLICIT DOUBLE PRECISION (A-H), (O-Z)
DIMENSION WK(1000)

OPEN I/O FILES

OPEN(UNIT=1,FILE='TIME_DOMAIN.DAT',TYPE='OLD')
OPEN(UNIT=3,FILE='TIME_DOMAIN.PILOT',TYPE='OLD')
OPEN(UNIT=4,FILE='TIME_DOMAIN.OUT',TYPE='NEW')
OPEN(UNIT=7,FILE='SURGE.DAT',TYPE='NEW')
OPEN(UNIT=8,FILE='SWAY.DAT',TYPE='NEW')
OPEN(UNIT=9,FILE='HEAVE.DAT',TYPE='NEW')
OPEN(UNIT=10,FILE='ROLL.DAT',TYPE='NEW')
OPEN(UNIT=11,FILE='PITCH.DAT',TYPE='NEW')
OPEN(UNIT=12,FILE='YAW.DAT',TYPE='NEW')
OPEN(UNIT=13,FILE='TEN1.DAT',TYPE='NEW')
OPEN(UNIT=14,FILE='TEN2.DAT',TYPE='NEW')
OPEN(UNIT=15,FILE='TEN3.DAT',TYPE='NEW')
OPEN(UNIT=16,FILE='TEN4.DAT',TYPE='NEW')

READ (3,*) METH, MITER, INDEX1
N = 21
IF (METH.EQ.1) NMETH = N*13
IF (METH.EQ.2) NMETH = N*6
IF (MITER.EQ.0) NMITER = 1
IF (MITER.EQ.2) NMITER = N*(N+1)
IF (MITER.EQ.3) NMITER = N
NWK = 4*N+NMETH+NMITER
PRINT*, N, NWK
CALL SIMUL (WK, NWK)
STOP
END

SUBROUTINE SIMUL (WK, NWK)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER M(60000)
DIMENSION WK(NWK), IWK(21), Y(21)
COMMON/SUBFCN1/CM, CD, ISTEP, NCYL, NSURF, NTEN, WT, PI, W, AK,
* PI, RH0, G, BF, XB, YB, ZB, AMP, IFCN, NWP, BF1, XBI, YBI, ZBI,
* IZET, IROT, NTRIG, NT, FACTOR
COMMON/SUBFCN2/CG(3), X1(50,3), X2(50,3), D(50), NDIV(50),
* AL(50), XS(50,3), ANS(50,3), DS(50), AREA(50), TL(50),
* XT1(50,3), XT2(50,3), AKT(50), AKT1(50), AMASS(6), TEN(50),
* XWP(50), YWP(50), DNP(50), WP(50), WPA(50), WPI(50), FTOT(6)
COMMON/SUBSTD/HSTEP, STEP1
EXTERNAL FCN, FCNJ, MATMUL1, MATMUL2, MATMUL3, CROSS

PI=3.1415927D0
G=9.81D0
RHO=1025.0D0

REWIND 3
READ (3,*) METH, MITER, INDEX1
WRITE (4,4005) METH, MITER, INDEX1

4005 FORMAT ('** DGEAR PARAMETERS ** /
* 5X, 'METH = ', I2, 5X, 'MITER = ', I2, 5X, 'INDEX1 = ', I2, 5X, 'INDEX1 = ', I2, /
PRINT*, 'METH = ', METH, ' MITER = ', MITER
PRINT*, 'INDEX1 = ', INDEX1
READ (3,*) NCOND ! NCOND = 0 if all initial cond. are zero
WRITE (4,*) NCOND = NCOND
IF (NCOND.EQ.0) GO TO 10
WRITE (4,*)' J Y(J) '
DO 20 I=1,NCOND
READ (3,*) J,Y(J)
20 WRITE (4,*) J,Y(J)
10 READ (3,*) DRAFT,WT
WRITE (4,4000)
4000 FORMAT(/)
WRITE (4,*)' DRAFT (m) =",DRAFT
WRITE (4,4000)
READ (3,*) (CG(I),I=1,3)
WRITE (4,4010) (CG(I),I=1,3)
4010 FORMAT(*, CG(X,Y,Z) IN BODY COORD :*,3(F10.3,2X))
READ (1,*) NCYL ! NCYL = No of cylinders
WRITE (4,*)' NO. OF CYLINDERS =",NCYL
WRITE (4,4020)
4020 FORMAT(/ **) CYL COORD ETC. IN SYS FIXED WITH CG ***/
* 4X,'X1','X2','Y1','Y2','Z1','Z2','11X','LENGTH',
* 10X,'DIA','10X,'NDIV'/)
4030 FORMAT (6(F8.3,2X),3X,F10.3,6X,F10.3,6X,I5)
DO 30 I=1,NCYL
READ (1,*) (X1(I,J),J=1,3), (X2(I,J),J=1,3),D(I),NDIV(I)
30 WRITE (4,4030) (X1(I,J),J=1,3), (X2(I,J),J=1,3),AL(I),D(I),NDIV(I)
WRITE (4,4000)
READ (1,*) NSURF '
WRITE (4,*)' NO. OF CIRCULAR SURFACES =",NSURF
IF (NSURF.EQ.0) GO TO 41
WRITE (4,4040)
4040 FORMAT(/ **) SURFACE COORD ETC. IN SYS FIXED WITH CG ***/
* 4X,'X', '9X','Y', '9X', 'Z', '14X', 'NX', '8X', 'NY', '8X', 'NZ', '10X', 'DIA',
* 10X, 'AREA')
4050 FORMAT (3(F8.3,2X),3X,3(F8.5,2X),3X,F10.3,6X,F10.3)
DO 40 I=1,NSURF
READ (1,*) (XS(I,J),J=1,3), (ANS(I,J),J=1,3),DS(I)
40 WRITE (4,4050) (XS(I,J),J=1,3), (ANS(I,J),J=1,3),DS(I),AREA(I)
WRITE (4,4000)
41 READ (1,*) NTEN
WRITE (4,*) ' NO. OF TENSION LEGS = ', NTEN
WRITE (4,4060)
4060 FORMAT (' *** TETHER COORD ETC. IN SYS FIXED WITH CG ***/
 4X,'X1','8X,'Y1','8X,'Z1','8X,'X2','8X,'Y2','8X,'Z2','11X,'LENGTH',
 3X,'STIFFNESS (N/m)**/)
4070 FORMAT (6(F8.3,2X),3X,F10.3,6X,E12.5)
DO 50 I=1,NTEN
READ (1,*) (XT1(I,J), J=1,3), (XT2(I,J), J=1,3), AKT1(I)
TL(I) = DSQRT((XT2(I,1)-XT1(I,1))**2+(XT2(I,2)-XT1(I,2))**2+
 (XT2(I,3)-XT1(I,3))**2)
 AKT(I) = AKT1(I)
DO 55 J=1,3
55 XT1(I,J) = XT1(I,J)-CG(J)
XT2(I,3) = XT2(I,3)-DRAFT
WRITE (4,4070) (XT1(I,J), J=1,3), (XT2(I,J), J=1,3), TL(I), AKT1(I)
READ (1,*) NWP ! NWP = No. of waterplanes for linear
WRITE (4,4000) ! hydstatic calculation
WRITE (4,*) ' NO. OF WATER PLANES = ', NWP
IF (NWP.EQ.0) GO TO 56
WRITE (4,4071)
4071 FORMAT (' *** WATER PLANE COORDINATES ETC IN RIG SYS *** /
 6X,'XWP YWP DWP AWP IWP */)
4072 FORMAT (6(F12.3,2X))
DO 67 I = 1,NWP
READ (1,*) XWP(I),YWP(I),DWP(I)
WPA(I) = PI*DWP(I)**2/4.0DO
WPI(I) = PI*DWP(I)**4/64.0DO
57 WRITE (4,4072) XWP(I),YWP(I),DWP(I),WPA(I),WPI(I)
56 READ (3,*) RXR,RYY,RZZ
WRITE (4,*) ' RXR, RYY, RZZ (m) = ', RXR, RYY, RZZ
WRITE (4,4000)
READ (3,*) CD1,CM
WRITE (4,*) ' CD = ', CD1, ' CM = ', CM
WRITE (4,4000)
READ (3,*) NSTEP,STEP1,TOL
READ (3,*) NTRANS,EXPI ! NTRANS = NO. OF STEP TILL
C C THE EXPONENTIAL DECAY FUNCTION SHOULD BE ACTIVE; EXPI : INDEX
C C READ (3,*) TO
WRITE (4,*) ' NO. OF STEPS = ', NSTEP
WRITE (4,*) ' STEP LENGTH (sec) = ', STEP1
WRITE (4,*) ' PRESCRIBED TOLERANCE = ', TOL
WRITE (4.,*)' NTRANS = ',NTRANS,' EXPI = ',EXPI
WRITE (4.,*)' TO (FOR THE RAMP FUNCTION) = ',TO
READ (3.,*) FI,W,AMP1
READ (3.,*) IZETA,IROT ! If IZETA = 0, then
integration is done only upto mean water line
WRITE (4,4080) FI,W,AMP1,IZETA,IROT
4080 FORMAT (/6X,'WAVE HEADING (deg) = ',F8.4/
* 6X,'WAVE FREQUENCY (rad/sec) = ',F8.6/
* 6X,'WAVE AMPLITUDE (m) = ',F8.4/
* 6X,'IZETA = ',I5,' IROT = ',I5)
READ (3.,*) NTRIG,NT,FACTOR

NTRIG = NUMBER OF STEP WHERE THE TETHER WILL BE DAMAGED
NT = TETHER NUMBER THAT WILL SUFFER DAMAGE
FRAC = FACTOR BY WHICH STIFFNESS AT 'NT' WILL BE MULTIPLIED

** END OF READ **

WRITE (4,4000)
WRITE (4.,*)' NTRIG = ',NTRIG
WRITE (4.,*)' NT = ',NT
WRITE (4.,*)' FACTOR = ',FACTOR
PHASE = PHASE*PI/180.DO
FI = FI*PI/180.DO
AK=W/W/G ! AK : Wave No.

C CONSTRUCT THE PHYSICAL MASS-INERTIA ARRAY *AMASS(6) *
C
AMASS(1)=WT/G
AMASS(2)=AMASS(1)
AMASS(3)=AMASS(1)
AMASS(4)=AMASS(1)*RXX*RXX
AMASS(5)=AMASS(1)*RYY*RYY
AMASS(6)=AMASS(1)*RZZ*RZZ

C CONVERT "CG()" FROM BODY COORD TO WL COORD FOR LATER USE
C
CG(3) = CG(3)-DRAFT
GO TO 782
WRITE (7,*) NSTEP
WRITE (8,*) NSTEP
WRITE (9,*) NSTEP
WRITE (10,*) NSTEP
WRITE (11,*) NSTEP
WRITE (12,*) NSTEP
WRITE (13,*) NSTEP
WRITE (14,*) NSTEP
WRITE (15,*) NSTEP
WRITE (16,*) NSTEP

C
782
N = 21
T = 0.0D0
INDEX = INDEX1
STEP = STEP1
DO 1000 ISTEP = 1, NSTEP

C INCREASE CD TO ARTIFICIALLY DAMP THE SYSTEM TO
C AVOID UNDUE INITIAL TRANSIENTS

C ECD = 1.0 - DFLOAT(ISTEP)/DFLOAT(NTRANS)
IF (ECD.LT.0.0) ECD = 0.0
CD = CD1 + DEXP(EXP1*ECD)

C INTRODUCE "RAMP" FUNCTION : COSINE TYPE

C IF (TO.EQ.0.0) GO TO 60
RAMP = 0.5*(1.0-DCOS(PI*T/TO))

60 IF (T.GT.TO) RAMP = 1.0
AMP = AMP1*RAMP

C IFCN = 0
TEND = T + STEP1

C WRITE (7,*) T, Y(1)
WRITE (8,*) T, Y(2)
WRITE (9,*) T, Y(3)
WRITE (10,*) T, Y(19)
WRITE (11,*) T, Y(20)
WRITE (12,*) T, Y(21)
WRITE (13,*) T, T1, Y(1)
WRITE (14,*) T, T1, Y(2)
WRITE (15,*) T, T1, Y(3)
WRITE (16,*) T, T1, Y(4)

C CALL DOGEAR (N, FCN, FCN1, T, STEP, Y, TEND, TOL, METH, MITER, INDEX,
. INW, WK, IER)
IF (ISTEP.EQ.1) WRITE (4,*) 'TOTAL BUOYANCY AFTER STEP # 1 (N) =',
BF,' CB(X,Y,Z) IN CG COORD :', XB, YB, ZB
PRINT*, 'ISTEP=', ISTEP,' IFCN=', IFCN
IF (IER.GT.128) GO TO 500
GO TO 501
500 WRITE (2,*) ' N = ', N, ' T = ', T, ' TEND = ', TEND, ' TOL = ', TOL.
 ' METH = ', METH, ' MTER = ', MTER, ' ISTEP = ', ISTEP.
 ' IFCN = ', IFCN
PRINT*, 'IER = ', IER, ' N = ', N, ' T = ', T, ' TEND = ', TEND.
 ' TOL = ', TOL, ' METH = ', METH, ' MTER = ', MTER
501 CONTINUE
1000 CONTINUE
RETURN
END

SUBROUTINES

SUBROUTINE FGN (N, T, Y, YP)
IMPLICIT DOUBLE PRECISION (A-H, O-Z)

DIMENSION YP (21), DUMMY1 (3, 3), DUMMY2 (3), R (3, 3), TR (3, 3), XX1 (3),
 XX2 (3), CN (3), ANG (3, 3), RNG (3, 3), ADMAS (3, 3), ADMA1 (3, 3),
 ADJ1 (3, 3), ANTR (3, 3), XPG (3), XPO (3), GBAR (3, 3),
 GBAR1 (3, 3), ADJe (3, 3), ADJ1 (3, 3), ADG (3), FMD (3), AMN1 (3),
 ADMA2 (3, 3), ADJ1 (3, 3), ADMA3 (3, 3), ADJ2 (3, 3), AMN (3),
 AM (3), TM (6, 6), TMNP (6, 6),
 KARTM (6), XSG (3), ANSG (3), ANS0 (3), XSO (3), FP (3), AMPG (3),
 XT1G (3), Y (21),
 XT1 (3), FT (3), AMTG (3), B (3, 3), GFOR (6), RWCG (3),
 BINVW (3), WKARD (3)

COMMON/SUBFCN1/CN, CD, ISTEP, NCGY, NSURF, NTEN, NT, FI, W, A, K,
 PI, RHO, G, BF, XB, YB, ZB, AMP, IFCN, NWP, BF1, XB1, YB1, ZB1,
 IZETA, IROT, NTRIG, NT, FACTOR
COMMON/SUBFCN2/CG (3), X1 (50, 3), X2 (50, 3), D (50), NDIV (60),
 AL (50), XS (50, 3), ANS (50, 3), DS (50), AREA (50), TL (50),
 XT1 (50, 3), XT2 (50, 3), AKT (50), AKT1 (60), AMASS (6), TEN (50),
 XWP (50), YWP (50), DWP (50), WPA (50), WPI (50), FTOT (6)

IFCN = IFCN + 1
4000 FORMAT (/)

SUBROUTINE FGN (N, T, Y, YP)
DO 5 I=1,3
DO 5 J=1,3
ADWA(I, J) = 0.DO
ADJA(I, J) = 0.DO
ADWA2(I, J) = 0.DO
5
ADJA2(I, J) = 0.DO
DO 10 I=1,6
FTOT(I) = 0.DO
10
DO 10 J=1,6
TM(I, J) = 0.DO
BF = 0.DO
XMCW = 0.DO
YMCM = 0.DO
ZMCW = 0.DO
C
C CONSTRUCT ROTATION MATRIX "R(3,3)" & ITS TRANSPOSE "TR(3,3)"
C
IF (IROT.GT.0) THEN
II = 0
DO 11 I=1,3
DO 11 J=1,3
II = II+1
R(I, J) = Y(9+II)
11
TR(J, I) = Y(9+II)
ELSE
DO 12 I=1,3
DO 12 J=1,3
R(I, I) = 1.0DO
12
TR(J, J) = 1.0DO
ENDIF
C
C CONSTRUCT ANGULAR VELOCITY VECTOR "OMEGA(3)"
C
DO 50 I=1,3
50 OMEGA(I) = Y(6+I)
C
DO 1000 IC=1,MCYL ! Member Loop Begins
1000 DO 20 I=1,3
XX1(I) = X1(IC, I)
20
XX2(I) = X2(IC, I)
C
C CALCULATE DIRECTION COSINES "GN(3)" OF THE MEMBER IN GXYZ
C
DO 26 I=1,3
26 GN(I) = (XX2(I)-XX1(I))/AL(IC)
```
DL = AL(IC)/DFLOAT(NDIV(IC))
DVOL = PI*D(IC)*.5*DL/4.0DO
CM1 = RHO*DVOL*CM
CM2 = RHO*DVOL*(CM-1.0DO)

CONSTRUCT [N*] MATRIX : ANG(3,3)

ANG(1,1) = GN(2)*2+GN(3)*2
ANG(1,2) = -GN(1)*GN(2)
ANG(1,3) = -GN(1)*GN(3)
ANG(2,1) = ANG(1,2)
ANG(2,2) = GN(3)*2+GN(1)*2
ANG(2,3) = -GN(2)*GN(3)
ANG(3,1) = ANG(1,3)
ANG(3,2) = ANG(2,3)
ANG(3,3) = GN(1)*2+GN(2)*2

CONSTRUCT MATRICES [ma1] : ADMA1(3,3), [ma] : ADMAE(3,3)
[J] : ADJ(3,3)

CALL MATMUL2 (R,ANG,RNG)
CALL MATMUL2 (RNG,TR,ADMAE)
DO 30 I=1,3
DO 30 J=1,3
30 ADJ(I,J) = RNG(I,J)*CM2
CALL MATMUL2 (ANG,TR,ANGTR)

DO 1500 ID=1,NDIV(IC) ! Slice by slice computation

CALL CALCULATE "XPG(3)" & "XPO(3)" IN GXYZ & OXYZ

DO 35 I=1,3
35 XPG(I) = XX(I)+DFLOAT(ID)-0.6DO)*DL*GN(I)
CALL MATMUL1 (R,XPO,XPO)
DO 40 I=1,3
40 XPO(I) = XPO(I)+Y(I)+CG(I)

CALL WAVE ELEVATION "ZETA" W.R.T. WL

XBAR = XPO(I)*DCOS(FI)+XPO(2)*DSIN(FI)
ARG = -W*TAK*XBAR
ZETA = AMP*DCOS(ARG)
IF (IZETA.EQ.0) ZETA = 0.0
IF (XPO(3).GT.ZETA) GO TO 1500 ! i.e. go to next slice
```
CALC BUOYANCY FORCE "F" AND ITS X & Y MOMENTS

\[BF = BF + DVOL \times RHO \times G \]
\[XMOM = XMOM + DVOL \times RHO \times G \times XPG(1) \]
\[YMOM = YMOM + DVOL \times RHO \times G \times XPG(2) \]
\[ZMOM = ZMOM + DVOL \times RHO \times G \times XPG(3) \]

CONSTRUCT MATRICES "AGBAR1(3,3)" & "AGBAR(3,3)"

\[AGBAR1(1,2) = XPG(3) \]
\[AGBAR1(1,3) = -XPG(2) \]
\[AGBAR1(2,1) = XPG(3) \]
\[AGBAR1(2,3) = XPG(1) \]
\[AGBAR1(3,1) = XPG(2) \]
\[AGBAR1(3,2) = -XPG(1) \]

DO 41 I = 1, 3
DO 41 J = 1, 3
41 AGBAR(I, J) = -AGBAR1(I, J)

CALL MATMUL2 (ADJJ, AGBAR1, ADJ1E)
CALL CROSS (OMEGA, XPG, WCAG)
CALL CROSS (OMEGA, WCAG, WCAG)

CALC WAVE VEL & ACCLN IN OXYZ

\[A = AMP \times DEXP (AK \times XPO(3)) \]

\[VW(1) = W \times A \times DCOS(ARG) \times DCOS(FL) \]
\[VW(2) = W \times A \times DCOS(ARG) \times DSIN(FL) \]
\[VW(3) = W \times A \times DSIN(ARG) \]
\[AW(1) = W \times W \times A \times DSIN(ARG) \times DCOS(FL) \]
\[AW(2) = W \times W \times A \times DSIN(ARG) \times DSIN(FL) \]
\[AW(3) = -W \times W \times A \times DCOS(ARG) \]

CALL MATMUL1 (TR, VW, DUMMY2)
CALL MATMUL1 (ANG, DUMMY2, VWG)

CALC "FN1(3)" & "FN2(3)"

CALL MATMUL1 (ADMAE, AW, FN1)
DO 51 I = 1, 3
51 FN1(I) = FN1(I) + CM1
CALL MATMUL1 (ADJJ, WCAG, FN2)

CALC RELATIVE VEL "VRELG(3)" IN OXYZ
DO 55 I=1,3
55 VELG(I) = Y(I+I)
CALL MATMUL1 (ANG1R, VELG, VRELG)
CALL MATMUL1 (ANG, WCAG, DUMMY2)
DO 60 I=1,3
60 VRELG(I) = VNG(I) - VRELG(I) - DUMMY2(I)
AVRELG = DSQRT(VRELG(I)**2 + VRELG(2)**2 + VRELG(3)**2)
C
C CALC DRAG FORCE *FD* AND ITS MOMENT *AMDG(3)*
C
DO 65 I=1,3
65 DUMMY2(I) = 0.5D0*RHO*CD*IC*DL*AVRELG*VRELG(I)
CALL CROSS (XPG, DUMMY2, AMDG)
CALL MATMUL1 (R, DUMMY2, FD)
C
C CALC MOMENTS *AMN(3)* & *AMN2(3)*
C
CALL MATMUL2 (AGBAR, ANG1R, DUMMY1)
CALL MATMUL1 (DUMMY1, AW, AMN1)
DO 70 I=1,3
70 AMN1(I) = AMN1(I)*CM1
DO 70 J=1,3
70 ADMA1(I,J) = ADMA1(I,J)*ADMAE(I,J)*CM2
ADMA2(I,J) = ADMA2(I,J)*DUMMY1(I,J)*CM2
CALL MATMUL2 (AGBAR, ANG, DUMMY1)
CALL MATMUL2 (DUMMY1, AGBAR1, ADJ2E)
DO 75 I=1,3
75 DO 76 J=1,3
76 ADJ1(I,J) = ADJ1(I,J)+ADJ1E(I,J)
ADJ2(I,J) = ADJ2(I,J)+ADJ2E(I,J)*CM2
CALL MATMUL1 (DUMMY1, WCWAG, AMN2)
DO 80 I=1,3
80 AMN2(I) = AMN2(I)*CM2
DO 85 I=1,3
85 FTOT(I) = FTOT(I)+FN1(I)-FN2(I)+FD(I)
85 FTOT(I+3) = FTOT(I+3)+AMN1(I)-AMN2(I)+AMDG(I)
1500 CONTINUE ! Slice Loop Ends
1000 CONTINUE ! Member Loop Ends
C
C CALC CETNRE OF BUOYANCY
C
IF ((ISTEP+IFCN).EQ.2) THEN
BF1 = BF
WRITE(4,*) ' * * BUOYANCY (N) = ',BF1
XB1 = XWOM/BF1
YB1 = YMOM/BF1
ZB1 = ZMOM/BF1
WRITE (4,*)' ** XB1,YB1,ZB1 (m) W.R.T. CG =',XB1,YB1,ZB1
ELSE
XB = XMOM/BF
YB = YMOM/BF
ZB = ZMOM/BF
END IF
IF (BF.LT.WT) PRINT*, '%% B LESS THAN WT; B =',BF
IF (BF.LT.WT) WRITE(4,*)' %% B LESS THAN WT; B =',BF

CONSTRUCT THE TOTAL MASS-INERTIA MATRIX "TM(6,6)"

DO 90 I=1,3
TM(I,1) = AMASS(I)
DO 90 J=1,3
TM(I,J) = TM(I,J)+ADMA1(I,J)
90 TM(I,J+3) = ADJ1(I,J)
DO 95 I=1,3
TM(I+3,I+3) = AMASS(I+3)
DO 95 J=1,3
TM(I+3,J) = ADMA2(I,J)
95 TM(I+3,J+3) = TM(I+3,J+3)+ADJ2(I,J)
IF (ISTEP+IFCN).EQ.2 THEN
4096 FORMAT (6(E12.5,1X))
WRITE (4,4000)
ELSE
END IF

INVERT "TM(6,6)" TO "TMINV(6,6)"

NTM = 6
ITM = 6
IDGT = 0
CALL LINVIF (TM,NTM,ITM,TMINV,IDGT,WKARTM,IERTM)

CALC PRESSURE FOECE "FP(8)" AND MOMENT "AMPG(3)"
DO 2000 IS=1, NSURF ! Loop for surfaces begins
DO 100 I=1,3
XSG(I) = XS(IS,I) ! These are in OXYZ
100 ANSG(I) = ANS(IS,I)
CALL MATMUL1 (R,XSG,XSO)
CALL MATMUL1 (R,ANSG,ANSO)
DO 105 I=1,3
105 XSO(I) = XSO(I) + Y(I) * CG(I)
XBAR = XSO(1) * DCOS(FI) + XSO(2) * DSIN(FI)
ARG = W*T + AK*XBAR
ZETA = AMP*DCOS(ARG)
IF (IZETA.EQ.0) ZETA = 0.0
IF (XSO(3).GT.ZETA) GO TO 2000 ! i.e. to next surface
DO 110 I=1,3
110 FP(I) = AREA(IS) * RHO*G*AMP*DEXP(AK*XSO(3)) * DCOS(ARG) * ANSO(I)
CALL MATMUL1 (TR,FP,DUMMY2)
CALL CROSS (XSG,DUMMY2,AMPG)
DO 116 I=1,3
116 FTOT(I) = FTOT(I) + FP(I)
FTOT(I+3) = FTOT(I+3) + AMPG(I)
115 CONTINUE
2000 CONTINUE ! Surface Loop Ends

C C CALCULATE FORCE & MOMENT DUE TO TETHER "FT(3)" & "AMTG(3)"
C
DO 2600 IT=1, NTEN ! Tether Loop Begins
C C TRIGGERING LOSS OF STIFFNESS
C
IF (ISTEP.GE.NTRIG) THEN
IF (IT.EQ.NT) AKT(IT) = AKT1(IT) * FACTOR
ELSE
END IF
DO 120 I=1,3
120 XT1G(I) = XT1(IT,I)
CALL MATMUL1 (R,XT1G,XT10)
DO 125 I=1,3
125 XT10(I) = XT10(I) + Y(I) * CG(I)
TLNEW = DSQRT((XT2(IT,1)-XT10(1))**2+(XT2(IT,2)-XT10(2))**2 +
(XT2(IT,3)-XT10(3))**2)
DNL = TLNEW - TL(IT)
IF (DNL.LT.0.0D0) DNL = 0.0D0
TEN(IT) = AKT(IT) * DNL
DO 130 I=1,3
130 FT(I) = TEN(IT) * (XT2(IT,I)-XT10(I))/TLNEW
CALL MATMUL1 (TR, FT, DUMMY2)
CALL CROSS (XTIG, DUMMY2, AMTG)
DO 135 I=1,3
 FTOT(I) = FTOT(I)+FT(I)
 FTOT(I+3) = FTOT(I+3)+AMTG(I)
 CONTINUE ! Tether Loop Ends
135 CONTINUE

INCLUDE HYDROSTATIC FORCES AND MOMENTS IN "FTOT(8)"

IF (NWP.GT.0) THEN
 H33 = 0.0D0
 H44 = 0.0D0
 H55 = 0.0D0
 DO 136 I = 1,NWP
 H33 = H33 + RHO*G*WPA(I)
 H44 = H44 + RHO*G*(WPA(I)*WYP(I)**2 + WPI(I))
 H55 = H55 + RHO*G*(WPA(I)*XWP(I)**2 + WPI(I))
 H44 = H44 + ZB1*BF1
 H55 = H55 + ZB1*BF1
 IF ((ISTEP+IFCN).EQ.2) THEN
 WRITE (4,*): 'H33 (N/M) = ', H33
 WRITE (4,*): 'H44 (N-M) = ', H44
 WRITE (4,*): 'H55 (N-M) = ', H55
 WRITE (4,4000)
 ELSE
 END IF
 FTOT(3) = FTOT(3) + BF1 - WT - H33*Y(3)
 FTOT(4) = FTOT(4) - H44*Y(19)
 FTOT(6) = FTOT(6) - H55*Y(20)
 ELSE
 FTOT(3) = FTOT(3) + BF - WT
 FTOT(4) = FTOT(4) + YMOM
 FTOT(5) = FTOT(5) - XMOM
 END IF

CREATE THE R.H.S. ACCLN VECTOR "GFOR(8)"

CALL MATMUL3 (TMINV, FTOT, GFOR)

CONSTRUCT [R] [MxI] : RWCI(3,3)

DUMMY1(1,2) = -Y(9)
DUMMY1(1,3) = Y(8)
DUMMY1(2,1) = Y(9)
DUMMY1(2,3) = -Y(7)
DUMMY1(3,1) = -Y(8)
DUMMY1(3,2) = Y(7)
CALL MATMUL (R,DUMMY1,RWCI)

CONSTRUCT MATRIX "B(3,3)" & OBTAIN "BINVW(3)"

B(1,1) = DCOS(Y(20))
B(1,3) = -DCOS(Y(19))*DSIN(Y(20))
B(2,2) = 1.000
B(2,3) = DSIN(Y(19))
B(3,1) = DSIN(Y(20))
B(3,3) = DCOS(Y(19))*DCOS(Y(20))

NB = 3
IB = 3
IDGT = 0
CALL LINV1F (B,NB,IB,DUMMY1,IDGT,WKARB,IERB)
CALL MATMUL1 (DUMMY1,OMEGA,BINVW)

WRITE THE SYSTEM 21 ORDY. DIFF. EQNS. FOR "DGEAR"

DO 140 I=1,3
YP(I) = Y(I+3)
YP(I+3) = GFOR(I)
140 YP(I+6) = GFOR(I+3)

YP(10) = RWCI(1,1)
YP(11) = RWCI(1,2)
YP(12) = RWCI(1,3)
YP(13) = RWCI(2,1)
YP(14) = RWCI(2,2)
YP(15) = RWCI(2,3)
YP(16) = RWCI(3,1)
YP(17) = RWCI(3,2)
YP(18) = RWCI(3,3)

DO 145 I=1,3
145 YP(I+18) = BINVW(I)
RETURN
END
SUBROUTINE FCNJ (N, T, Y, PD)
IMPLICIT DOUBLE PRECISION (A-H), (O-Z)
* DIMENSION Y(N), PD(N,N)
RETURN
END

SUBROUTINE MATMUL1 (A, B, C)
IMPLICIT DOUBLE PRECISION (A-H), (O-Z)
DIMENSION A(3,3), B(3), C(3)

DO 5 I=1,3
5 C(I)=0.0DO
K=0
DO 10 I=1,3
K=K+1
DO 10 J=1,3
10 C(K)=C(K)+A(I,J)*B(J)
RETURN
END

SUBROUTINE MATMUL2 (A1, B1, C1)
IMPLICIT DOUBLE PRECISION (A-H), (O-Z)
DIMENSION A1(3,3), B1(3,3), C1(3,3)

DO 5 I1=1,3
DO 5 J1=1,3
5 C1(I1, J1)=0.0D0
DO 10 I1=1,3
DO 10 J1=1,3
10 C1(I1, J1)=C1(I1, J1)+A1(I1, J1)*B1(I1, J1)
RETURN
END

SUBROUTINE MATMUL3 (A2, B2, C2)
IMPLICIT DOUBLE PRECISION (A-H), (O-Z)
DIMENSION A2(6,6), B2(6), C2(6)

K2=0
DO 5 I2=1,6
C2(I2)=0.000
DO 10 I2=1,6
K2=K2+1
DO 10 J2=1,6
10 C2(K2)=C2(K2)+A2(I2, J2)*B2(J2)
RETURN
END

SUBROUTINE CROSS (A,B,C)
IMPLICIT DOUBLE PRECISION (A-H), (O-Z)
DIMENSION A(3), B(3), C(3)

C(1)=A(2)*B(3)-A(3)*B(2)
C(2)=A(3)*B(1)-A(1)*B(3)
C(3)=A(1)*B(2)-A(2)*B(1)
RETURN
END
APPENDIX D:

LISTING OF 'FREQ_DOMAIN'
PROGRAM "FREQ_DOMAIN" : PERFORMS FREQUENCY DOMAIN ANALYSIS
FOR A TENSION LEG PLATFORM

INPUT FILE NAME : 'FREQ.PILOT'

INPUT VARIABLES :

'(CG(I), I=1,3), RHO'
CG = COORDINATES OF THE CENTRE OF GRAVITY (m)
RHO = MASS DENSITY OF WATER (Kg/cu.m)

'DRAFT,W'T'
DRAFT = DRAFT OF THE PLATFORM (m)
WT = WEIGHT OF THE PLATFORM (N)

'RXX,RYY,RZZ'
RXX = RADIUS OF GYRATION ABOUT X-AXIS (m)
RYY = RADIUS OF GYRATION ABOUT Y-AXIS (m)
RZZ = RADIUS OF GYRATION ABOUT Z-AXIS (m)

'CD,CM'
CD = NONLINEAR DRAG COEFFICIENT
CM = VIRTUAL MASS COEFFICIENT

'HED,SW,EW,NW'
HED = WAVE HEADING ANGLE (deg)
SW = STARTING FREQUENCY (rad/sec)
EW = LAST FREQUENCY (rad/sec)
NW = NUMBER OF FREQUENCY STEPS

** FOR EVERY TENSION LEG PROVIDE :
'TP(I)'
TP = EQUILIBRIUM STATIC PRETENSION AT THE
Ith TENSION LEG (N)

'(ERROR(I), I=1,6)'
ERROR(I) = ERROR TOLERANCE FOR THE Ith D.O.F.
REQUIRED FOR ITERATIONS
IERR = IF EQUAL TO 0, THEN NO ITERATION,
1 OTHERWISE

INPUT FILE NAME : 'FREQDAT'

'NCYL'
NCYL = NUMBER OF CYLINDERS

** FOR EVERY CYLINDER PROVIDE :
'(X1(I,J), J=1,3), (X2(I,J), J=1,3), D(I), NDIV(I)'
X1, X2 = COORDINATES OF THE CYLINDER ENDS (m)
D = DIAMETER OF THE CYLINDER (m)
NDIV = NUMBER OF HORIZONTAL SLICES THE CYLINDER
WOULD HAVE TO BE DIVIDED
'NSURF' = NUMBER CIRCULAR FLAT SURFACES

** FOR EVERY SURFACE PROVIDE:
'(XS(I,J),J=1,3),(ANS(I,J),J=1,3),DS(I)'
XS = COORDINATES OF THE CENTRE OF THE FLAT
SURFACE
ANS = DIRECTION COSINES OF THE NORMAL TO THE
FLAT SURFACE
DS = DIAMETER (m) OF THE FLAT SURFACE
'NTEN' = NUMBER OF TENSION LEGS

** FOR EVERY TENSION LEG PROVIDE:
'(XT1(I,J),J=1,3),(XT2(I,J),J=1,3),AKT(I)'
XT1, XT2 = COORDINATES OF THE ENDS OF THE TETHER
AKT = AXIAL STIFFNESS OF THE TETHER

'NWP' = NUMBER OF CIRCULAR WATERPLANES

** FOR EVERY WATERPLANE PROVIDE
'XWP(I),YWP(I),DWP(I)'
XWP, YWP = X AND Y COORDINATES OF THE CENTRE OF
THE WATERPLANE
DWP = DIAMETER OF THE WATERPLANE

NAME OF OUTPUT FILE: 'FREQ.DAT'

COMPUTED OUTPUT VARIABLES

AMA = PHYSICAL MASS/INERTA MATRIX
ADMA = ADDED MASS/INERTA MATRIX
AM = VIRTUAL MASS/INERTA MATRIX
HK = HYDROSTATIC STIFFNESS MATRIX
TK = TETHER STIFFNESS MATRIX
STF = TOTAL STIFFNESS MATRIX
FREQR = NATURAL FREQUENCIES (rad/sec)
FREQHz = NATURAL FREQUENCIES (Hz)
TSEc = NATURAL TIME PERIODS (sec)

** FOR EVERY FREQUENCY THE FOLLOWING ARE COMPUTED
BV = DAMPING MATRIX
FORCE1 = WAVE EXCITATION FORCE RADS
DISP = MOTION RADS
FASE = PHASE OF MOTIONS IN DIFF. D.O.F.
TENRAO = TENSION RADS
REQUIRED LIBRARY ROUTINES: IMSL ROUTINE 'LEQ2C'

IMPLICIT DOUBLE PRECISION (A-H, I-O, Z)

DIMENSION CG(3), X1(50,3), X2(50,3), D(50), NDIV(50),
 AL(50), X6(50,3), ANS(50,3), DS(50), AREA(50),
 XT1(60,3), XT2(60,3), AKT(60), TL(60), TP(60),
 DWP(50), XWP(50), YWP(50), WPA(50), WPI(50), XSS(3),
 ANA(6,6), ADMI(6,6), AM(6,6), XK1(3), XK2(3),
 GN(3), AN(3,3), XP(3), ABAR(3,3), ABA1(3,3),
 AM11(3,3), AM12(3,3), AM21(3,3), AM22(3,3),
 HK(6,6), TK(6,6), STF(6,6), FREQR(6), FREQHZ(6),
 TSEC(6), VELR(6), VELI(6), DFI1(3), DFI2(3),
 DFIN1(3), DFIN2(3), FI1(3), FI2(3), DMIN1(3),
 DMIN2(3), FM11(3), FM12(3), OMEGAR(3), OMEGAI(3),
 VBR(3), VBI(3), WVR(3), WVI(3), VBRN(3), VBIN(3),
 VWRN(3), VWIN(3), DFD1(3), DFD2(3), DFDN1(3),
 DFDN2(3), FD1(3), FD2(3), DMDN1(3), DMDN2(3),
 FMD1(3), FMD2(3), BV11(3,3), BV12(3,3), BV21(3,3),
 BV22(3,3), BV6(6,6), DFP1(3), DFP2(3), FP1(3),
 FP2(3), DMP1(3), DMP2(3), FMP1(3), FMP2(3),
 DISP(6), PHASE(6), FASE(6), ERROR(6), PREV(6)

COMPLEX *16 WA(48), WK(6)

COMPLEX *16 DTLX, DTLY, DTLZ, DTLPC, COM, FORCEx(6), FORCE1(6),
 COEF(6,6), CDISP(6)

CAB(COM) = DSQRT((DREAL(COM)**2 + (DIMAG(COM)**2)

OPEN I/O FILES

OPEN (UNIT=1, FILE='FREQ.DAT', TYPE='OLD')
OPEN (UNIT=3, FILE='FREQ.PILOT', TYPE='OLD')
OPEN (UNIT=4, FILE='FREQ.OUT', TYPE='NEW')

PI = 3.1415927D0
G = 9.81D0
READ (3,*) (CG(I),I=1,3),RHO
READ (3,*) DRAFT,WT
WRITE (4,4000)

4000 FORMAT(/)

4001 FORMAT(/)
WRITE (4,*) ' CGX,Y,Z (m) =' , (CG(I),I=1,3)
WRITE (4,*) ' MASS DENSITY OF WATER (Kg/cu.m) = ',RHO
WRITE (4,*) ' DRAFT (m) = ',DRAFT
WRITE (4,*) ' WEIGHT (N) = ',WT
DRAFT = DRAFT - CG(3)
WRITE (4,4000)
READ (1,*) NCYL
WRITE (4,*) ' NO. OF CYLINDERS = ',NCYL
WRITE (4,4020)

4020 FORMAT(/ ' ** CYLINDER COORD. ETC IN RIG SYSTEM **'/
* 4X,'X1',8X,'Y1',8X,'Z1',8X,'X2',8X,'Y2',8X,'Z2',11X,'LENGTH',
* 10X,'DIA',10X,'NDIV'//)

4030 FORMAT (6(F8.3,2X),3X,F10.3,5X,F10.3,5X,I6)
DO 30 I = 1,NCYL
READ (1,*) (X1(I,J),J=1,3),(X2(I,J),J=1,3),D(I),NDIV(I)
AL(I) = DSQRT((X2(I,1)-X1(I,1))**2 + (X2(I,2)-X1(I,2))**2 +
 (X2(I,3)-X1(I,3))**2)
WRITE (4,4030) (X1(I,J),J=1,3),(X2(I,J),J=1,3),AL(I),D(I),NDIV(I)

DO 30 J = 1,3
X1(I,J) = X1(I,J) - CG(J)
X2(I,J) = X2(I,J) - CG(J)
WRITE (4,4001)
READ (1,*) NSURF
WRITE (4,*) ' NO. OF CIRCULAR SURFACES = ',NSURF
WRITE (4,4040)

4040 FORMAT(/ ' ** PLANE SURFACE COORD. ETC IN RIG SYSTEM **'/
* 4X,'X',9X,'Y',9X,'Z',14X,'NX',8X,'NY',8X,'NZ',10X,'DIA',
* 10X,'AREA'/)

4050 FORMAT (3(F8.3,2X),3X,3(F8.5,2X),3X,F10.3,5X,F10.3)
DO 40 I = 1,NSURF
READ (1,*) (XS(I,J),J=1,3),(ANS(I,J),J=1,3),DS(I)
AREA(I) = PI*DS(I)**2/4.000
WRITE (4,4050) (XS(I,J),J=1,3),(ANS(I,J),J=1,3),DS(I)

AREA(I)

DO 40 J = 1,3
XS(I,J) = XS(I,J) - CG(J)
WRITE (4,4001)
READ (1,*) NTEN
WRITE (4,*) ' NO. OF TENSION LEGS = ',NTEN
WRITE (4,4060)

4060 FORMAT ('** TETHER COORD. ETC IN RIG SYSTEM **'/
* 4X,'X1',8X,'Y1',8X,'Z1',8X,'X2',8X,'Y2',8X,'Z2',11X,
* 'LENGTH',3X,'STIFFNESS (N/m)' '/)
4070 FORMAT (8(F8.3,2X),3X,F10.3,6X,E12.5)
DO 50 I = 1,NTEN
READ (1,*),(XT1(I,J),J=1,3),(XT2(I,J),J=1,3),AKT(I)
TL(I) = DSQRT((XT2(I,1)-XT1(I,1))**2 + (XT2(I,2)-
 XT1(I,2))**2 + (XT2(I,3)-XT1(I,3))**2)
WRITE (4,4070) (XT1(I,J),J=1,3),(XT2(I,J),J=1,3),TL(I),
 AKT(I)
DO 50 J = 1,3
XT1(I,J) = XT1(I,J) - CG(J)
50 XT2(I,J) = XT2(I,J) - CG(J)
WRITE (4,4001)
READ (1,*),NWP
WRITE (4,*),' ND. OF WATER PLANES =',NWP
WRITE (4,4071)
4071 FORMAT ('** WATER PLANE COORD. ETC IN RIG SYSTEM **'/
* XWP YWP DWP AWP IWP')
4072 FORMAT (5(F12.3,2X))
DO 55 I = 1,NWP
READ (1,*),XWP(I),YWP(I),DWP(I)
WPA(I) = PI*DWP(I)**2/4.0DO
WPI(I) = PI*DWP(I)**2/84.0DO
55 WRITE (4,4072) XWP(I),YWP(I),DWP(I),WPA(I),WPI(I)
READ (3,*),RXX,RYY,RZZ
WRITE (4,4001)
WRITE (4,*),' RXX,RYY,RZZ (m) =',RXX,RYY,RZZ
READ (3,*),CD,CM
WRITE (4,4000)
WRITE (4,*),' CD =',CD,' CM =',CM
WRITE (4,4001)
READ (3,*),HED,SW,EW,NW
WRITE (4,4080) HED,SW,EW,NW
4080 FORMAT (' WAVE HEADING (DEG) = ',F10.6/
* START FREQUENCY (RAD/SEC) = ',F10.6/
* END FREQUENCY (RAD/SEC) = ',F10.6/
* NO. OF FREQUENCY STEPS = ',I5//)
HED = HED*PI/180.0DO
WRITE (4,*),' ** EQUILIBRIUM TENSIONS **'
WRITE (4,4000)
TPTOT = 0.0DO
WRITE (4,*),' LEG # TENSION (N)'
DO 60 I = 1,NTEN
READ (3,*) TP(I)
WRITE (4,*) I,TP(I)
TPTOT = TPTOT + TP(I)
WRITE (4,*) ' TOTAL STATIC MEAN PRETENSION (N) = ', TPTOT
WRITE (4,4001)
READ (3,*) (ERROR(I),I=1,6)
WRITE (4,*) '** SPECIFIED ERROR TOLERANCES, 1 THROUGH 6 **'
WRITE (4,4001) (ERROR(I),I=1,6)
FORMAT (6(F10.6,5X))
READ (3,*) IERR
WRITE (4,4000)
WRITE (4,*) ' IERR = ', IERR
WRITE (4,4001)

C** END OF READ***
C
C CONSTRUCT THE PHYSICAL MASS-INERTIA MATRIX AMA(5,6)
C
AMA(1,1) = WT/G
AMA(2,2) = AMA(1,1)
AMA(3,3) = AMA(1,1)
AMA(4,4) = AMA(1,1)*RXX*RXX
AMA(5,5) = AMA(1,1)*RYY*RYY
AMA(6,6) = AMA(1,1)*RZZ*RZZ

CM1 = CM - 1.0D0

C CONSTRUCT ADDRESSED MASS AND STIFFNESS MATRICES viz. ADMA(6,6) AND STF(6,6) AND ALSO CALCULATE BUOYANCY CENTRE OF BUOYANCY
C
DO 1000 IC = 1,NCYL ! Member loop begins
DO 70 I = 1,3
XX1(I) = X1(IC,I)
XX2(I) = X2(IC,I)

C CALCULATE DIRECTION COSINES *GN(3)* IN GXYZ
C
DO 75 I = 1,3
GN(I) = (XX2(I) - XX1(I)) / AL(IC)
DL = AL(IC) / DFLOAT(NDIV(IC))
A = PI*D(IC)**2 / 4.0D0
DVOL = DL*A
DM = RH0*D VOL
DA = RH0*DVOL**2

C
CONSTRUCT [N] MATRIX : \text{AN}(3,3)

\begin{align*}
\text{AN}(1,1) &= GN(2)**2 + GN(3)**2 \\
\text{AN}(1,2) &= -GN(1)*GN(2) \\
\text{AN}(1,3) &= -GN(1)*GN(3) \\
\text{AN}(2,1) &= \text{AN}(1,2) \\
\text{AN}(2,2) &= GN(3)**2 + GN(1)**2 \\
\text{AN}(2,3) &= -GN(2)*GN(3) \\
\text{AN}(3,1) &= \text{AN}(1,3) \\
\text{AN}(3,2) &= \text{AN}(2,3) \\
\text{AN}(3,3) &= GN(1)**2 + GN(2)**2 \\
\end{align*}

DO 1500 ID = 1,NDIV(IC) ! Slice by slice computation

CALCULATE POSITION VECTOR "XP(3)"

DO 80 I = 1,3
XP(I) = XX1(I) + (DFLOAT(ID) - 0.5DO)*DL*GN(I)
IF (XP(3).GT.DRAFT) GO TO 1600 ! to next slice
BF = BF + RHO*G*DVOL ! BF = Buoyancy Force
BXMOM = BXMOM + RHO*G*DVOL*XP(1)
BYMOM = BYMOM + RHO*G*DVOL*XP(2)
BZMOM = BZMOM + RHO*G*DVOL*XP(3)

CONSTRUCT MATRICES "ABAR1(3,3)" AND "ABAR(3,3)"

ABAR1(1,2) = XP(3)
ABAR1(1,3) = -XP(2)
ABAR1(2,1) = -XP(3)
ABAR1(2,3) = XP(1)
ABAR1(3,1) = XP(2) *
ABAR1(3,2) = -XP(1)
DO 90 I = 1,3
DO 90 J = 1,3
ABAR(I,J) = -ABAR1(I,J)

CONSTRUCT THE SUBMATRICES FOR THE ADDED MASS MATRIX

CALL MATMUL2 (AN,ABAR1,AM12)
CALL MATMUL2 (ABAR,AN,AM21)
CALL MATMUL2 (ABAR,AM12,AM22)
DO 100 I = 1,3
DO 100 J = 1,3
AM11(I,J) = DM*CM1*AN(I,J)
AM12(I,J) = DM*CM1*AM12(I,J)
AM21(I,J) = DM*CM1*AM21(I,J)
AM22(I,J) = DM*CM1*AM22(I,J)

CONSTRUCT THE ADDED MASS MATRIX

DO 110 I = 1,3
DO 110 J = 1,3
ADMA(I,J) = ADMA(I,J) + AM11(I,J)
ADMA(I+3,J) = ADMA(I+3,J) + AM21(I,J)
ADMA(I,J+3) = ADMA(I,J+3) + AM12(I,J)
110 CONTINUE ! Slice loop ends
1000 CONTINUE ! Member loop ends

CONSTRUCT TOTAL MASS-INERTIA MATRIX "AM(8,6)"

DO 115 I = 1,6
DO 115 J = 1,6
AM(I,J) = AMA(I,J) + ADMA(I,J)
115 CONTINUE

CALCULATE CENTRE OF BUOYANCY

XB = BMOM/BF
YB = BYMOM/BF
ZB = BZMOM/BF
WRITE (4,*) ' TOTAL BUOYANCY (N) = ', BF
WRITE (4,*) ' CENTER OF BUOYANCY COORDINATES IN RIG SYSTEM
WRITE (4,*) ' XB (m) = ', XB*CG(1)
WRITE (4,*) ' YB (m) = ', YB*CG(2)
WRITE (4,*) ' ZB (m) = ', ZB*CG(3)
WRITE (4,4001)

CONSTRUCT THE HYDROSTATIC STIFFNESS MATRIX "HK(8,8)"

DO 120 I = 1,NWP
HK(3,3) = HK(3,3) + RHO*G*WPA(I)
HK(3,4) = HK(3,4) + RHO*G*WPA(I)*YWP(I)
HK(4,3) = HK(4,3)
HK(3,5) = HK(3,5) + RHO*G*WPA(I)*XWP(I)
HK(5,3) = HK(5,3)
HK(4,5) = HK(4,5) + RHO*G*WPA(I)*XWP(I)*YWP(I)
HK(5,4) = HK(5,4)
HK(4,4) = HK(4,4) + RHO*G*(WPA(I)*YWP(I)**2 + WPI(I))
HK(5,5) = HK(5,5) + RHO*G*(WPA(I)*XWP(I)**2 + WPI(I))
HK(4,4) = HK(4,4) + ZB*BF
CONSTRUCT THE MOORING STIFFNESS MATRIX "\(\text{TK}(6,6) \)"

```
DO 130 I = 1,6
TPL = TP(I)/TL(I)
EAL = AKT(I)
XT = XT1(I,1)
YT = XT1(I,2)
ZT = XT1(I,3)
TK(1,1) = TK(1,1) + TPL
TK(1,6) = TK(1,6) + TPL*2T
TK(5,1) = TK(1,5)
TK(1,6) = TK(1,6) + TPL*YT
TK(6,1) = TK(1,6)
TK(2,2) = TK(1,1)
TK(2,4) = TK(2,4) - TPL*ZT
TK(4,2) = TK(2,4)
TK(2,6) = TK(2,6) + TPL*XT
TK(6,2) = TK(2,6)
TK(3,3) = TK(3,3) - EAL
TK(3,4) = TK(3,4) + EAL*YT
TK(4,3) = TK(3,4)
TK(3,5) = TK(3,5) - EAL*XT
TK(5,3) = TK(3,5)
TK(4,4) = TK(4,4) + EAL*YT*YT + TPL*ZT*ZT
TK(5,5) = TK(5,5) + EAL*XT*XT + TPL*ZT*ZT
TK(6,6) = TK(6,6) + TPL*(XT*XT + YT*YT)
```

CONSTRUCT THE TOTAL STIFFNESS MATRIX "\(\text{STF}(6,6) \)"

```
DO 140 I = 1,6
DO 140 J = 1,6
140 STF(I,J) = HK(I,J) + TK(I,J)
```

WRITE THE CONSTANT COEFFICIENT MATRICES

```
WRITE (4,4001)
4100 FORMAT (1X,6(E12.6,2X))
WRITE (4,*); ** PHYSICAL MASS-INERTIA MATRIX **
WRITE (4,4000)
DO 150 I = 1,6
150 WRITE (4,4100) (AKA(I,J),J=1,6)
WRITE (4,4001)
WRITE (4,*); ** ADDED MASS-INERTIA MATRIX **
```
WRITE (4, 4000)
DO 165 I = 1, 6
156 WRITE (4, 4100) (ADMA(I, J), J=1, 6)
WRITE (4, 4001)
WRITE (4, *)' ** VIRTUAL MASS-INERTIA MATRIX **'
WRITE (4, 4000)
DO 160 I = 1, 6
160 WRITE (4, 4100) (AM(I, J), J=1, 6)
WRITE (4, 4001)
WRITE (4, *)' ** HYDROSTATIC STIFFNESS MATRIX **'
WRITE (4, 4000)
DO 165 I = 1, 6
165 WRITE (4, 4100) (HK(I, J), J=1, 6)
WRITE (4, 4001)
WRITE (4, *)' ** TETHER STIFFNESS MATRIX **'
WRITE (4, 4000)
DO 170 I = 1, 6
170 WRITE (4, 4100) (TK(I, J), J=1, 6)
WRITE (4, 4001)
WRITE (4, *)' ** TOTAL STIFFNESS MATRIX **'
WRITE (4, 4000)
DO 175 I = 1, 6
175 WRITE (4, 4100) (STF(I, J), J=1, 6)
WRITE (4, 4001)

C CALCULATE NATURAL FREQUENCIES AND TIME PERIODS
C
DO 180 I = 1, 6
FREQR(I) = DSQRT(STF(I, I) / AM(I, I))
FREQHZ(I) = FREQR(I) / (2.0DO*PI)
180 TSEC(I) = 1.0DO / FREQHZ(I)
WRITE (4, *)' ** NATURAL FREQUENCIES AND TIME PERIODS **'
WRITE (4, *)' D.O.F. FREQ(RAD/SEC) FREQ(HZ) PERIOD(SEC)'
4110 FORMAT (2X, 15.5X, 3(F10.5, 5X))
DO 190 I = 1, 6
190 WRITE (4, 4110) I, FREQR(I), FREQHZ(I), TSEC(I)
WRITE (4, 4001)
WRITE (4, *)' 0 CALCULATIONS FOR VARIOUS FREQUENCIES 0'
W = SW
• DELW = (EW - SW) / DFLOAT(NW)

DO 2000 IW = 1, NW ! Frequency loop starts
WRITE (4, 4001)
WRITE (4, *)' **'
WRITE (4, *)' FREQUENCY (RAD/SEC) = ', W
WRITE (4,*) '**
AK = W*W / G ! AK = Wave No.
DO 200 I = 1,6
VELR(I) = 0.0DO
VELI(I) = 0.0DO
ITER = 0
200 ITER = ITER + 1
PRINT*, ' W =', W, ' ITER =', ITER
DO 210 I = 1,3
F11(I) = 0.0DO
F12(I) = 0.0DO
F21(I) = 0.0DO
F22(I) = 0.0DO
F1D1(I) = 0.0DO
F1D2(I) = 0.0DO
F2D1(I) = 0.0DO
F2D2(I) = 0.0DO
FP1(I) = 0.0DO
FP2(I) = 0.0DO
DO 211 I = 1,3
DO 211 J = 1,3
210 BV(I,J) = 0.0DO
C
DO 2500 IC = 1,NCYL ! Member loop begins
DO 270 I = 1,3
XX1(I) = X1(IC,I)
270 XX2(I) = X2(IC,I)
C CALCULATE DIRECTION COSINES *GN(3)* IN GXYZ
C
DO 275 I = 1,3
275 GN(I) = (XX2(I) - XX1(I)) / AL(IC)
DL = AL(IC) / DFLOAT(NDIV(IC))
A = PI*D(IC)**2 / 4.0DO
DVOL = DL*A
DM = RHO*DVOL
DA = RHO*D(IC)*DL*0.5DO
C
CONSTRUCT [N] MATRIX : AN(3,3)
C
AN(1,1) = GN(2)**2 + GN(3)**2
AN(1,2) = -GN(1)*GN(2)
AN(1,3) = -GN(1)*GN(3)
AN(2,1) = AN(1,2)
AN(2,2) = GN(3)**2 + GN(1)**2
AN(2,3) = -GN(2)*GN(3)
AN(3,1) = AN(1,3)
AN(3,2) = AN(2,3)
AN(3,3) = GN(1)**2 + GN(2)**2

C DO 3000 ID = 1, NDIV(IC) ! Slice by slice computation
C
C CALCULATE POSITION VECTOR "XP(3)", COORD "ZETA" & "Z"
C
C DO 280 I = 1, 3
280 XP(I) = XX1(I) + (DFLOAT(ID) - 0.5DO)*DL*GN(I)
IF (XP(3).GT.DRAFT) GO TO 3000 ! to next slice
CH = DCOS(HED)
SH = DSIN(HED)
ZETA = XP(1)*CH + XP(2)*SH
Z = XP(3) - DRAFT
CZ = DCOS(AK*ZETA)
SZ = DSIN(AK*ZETA).
C
C CALCULATE INERTIAL FORCE "FI1(3)" (PROPORTIONAL TO SIN\omega) &
"FI2(3)" (PROPORTIONAL TO COS\omega), AND ALSO THE MOMENTS
C
FIC = DM*CM*Z*W1*DEXP(AK*Z)
DFI1(1) = FIC*SZ*CH
DFI1(2) = FIC*SZ*SH
DFI1(3) = -FIC*CZ
DFI2(1) = FIC*CZ*CH
DFI2(2) = FIC*CZ*SH
DFI2(3) = FIC*SZ
C
CALL MATMUL1 (AN,DFI1,DFIN1)
CALL MATMUL1 (AN,DFI2,DFIN2)
C
DO 281 I = 1, 3
281 FI1(I) = FI1(I) + DFIN1(I)
FI2(I) = FI2(I) + DFIN2(I)
C
CALL CROSS (XP,DFIN1,DWIN1)
CALL CROSS (XP,DFIN2,DWIN2)
C
DO 290 I = 1, 3
290 FMI1(I) = FMI1(I) + DWIN1(I)
FMI2(I) = FMI2(I) + DWIN2(I)
C
C CALCULATE DRAG FORCE
C
DO 300 I = 1, 3
OMEGAR(I) = VELR(I+3)
OMEGAI(I) = VELI(I+3)
300 CALL CROSS (OMEGAR, XP, VBR)
CALL CROSS (OMEGAI, XP, VBI)
DO 310 I = 1, 3
VBR(I) = VBR(I) + VELR(I)
VBI(I) = VBI(I) + VELI(I)
310
C
VWR(1) = - W*DEXP(AK*Z)*SZ*CH
VWR(2) = - W*DEXP(AK*Z)*SZ*SH
VWR(3) = W*DEXP(AK*Z)*CZ
VWI(1) = W*DEXP(AK*Z)*CZ*CH
VWI(2) = W*DEXP(AK*Z)*CZ*SH
VWI(3) = W*DEXP(AK*Z)*SZ
C
CALL WATMUL1 (AN, VBR, VBRN)
CALL WATMUL1 (AN, VBI, VBIN)
CALL WATMUL1 (AN, VWR, VWRN)
CALL WATMUL1 (AN, VWI, VWIN)
C
VELWRN = DSQRT(VWRN(1)**2 + VWRN(2)**2 + VWRN(3)**2)
VELWIN = DSQRT(VWIN(1)**2 + VWIN(2)**2 + VWIN(3)**2)
IF (DABS (VELWRN) .LT. 0.00001) GO TO 311
GO TO 312
311 FIW = PI / 2.0DO
IF (VELWRN.LT.0.0DO) FIW = - FIW
IF (VELWIN.LT.0.0DO) FIW = - FIW
GO TO 313
312 FIW = ATAN (VELWIN / VELWRN)
C
313 VELBRN = DSQRT(VBRN(1)**2 + VBRN(2)**2 + VBRN(3)**2)
VELBIN = DSQRT(VBIN(1)**2 + VBIN(2)**2 + VBIN(3)**2)
IF (DABS (VELBRN) .LT. 0.00001DO) GO TO 314
GO TO 315
314 FIB = PI / 2.0DO
IF (VELBRN.LT.0.0DO) FIB = - FIB
IF (VELBIN.LT.0.0DO) FIB = - FIB
GO TO 316
315 FIB = ATAN (VELBIN / VELBRN)
C
316 FI = FIW - FIB
VELWN = DSQRT(VELWRN**2 + VELWIN**2)
VELBN = DSQRT(VELBRN**2 + VELBIN**2)
C

RT = 8.0D0 * DSQRT (VELWN**2 - 2.0D0 * VELWN * VELBN * DCOS (PI) +
 VELBN**2) / (3.0D0 * PI)
IF (ITER.EQ.1) RT = 0.0D0
C

FDC = W * DEXP (AK*Z) * DA * RT * CD
DFD1(1) = FDC * CZ * CH
DFD1(2) = FDC * CZ * SH
DFD1(3) = FDC * SZ
DFD2(1) = - FDC * SZ * CH
DFD2(2) = - FDC * SZ * SH
DFD2(3) = FDC * CZ
C

CALL MATMUL1 (AN, DFD1, DFDN1)
CALL MATMUL1 (AN, DFD2, DFDN2)
C

DO 340 I = 1, 3
FD1(I) = FD1(I) + DFDN1(I)
340
C

CALL CROSS (XP, DFDN1, DMDN1)
CALL CROSS (XP, DFDN2, DMDN2)
C

DO 350 I = 1, 3
FMD1(I) = FMD1(I) + DMDN1(I)
350
C

CONSTRUCT DAMPING MATRIX "BV(0,0)"
C

ABAR1(1, 2) = XP(3)
ABAR1(1, 3) = -XP(2)
ABAR1(2, 1) = -XP(3)
ABAR1(2, 3) = -XP(1)
ABAR1(3, 1) = XP(2)
ABAR1(3, 2) = -XP(1)
DO 360 I = 1, 3
DO 360 J = 1, 3
360 ABAR(I, J) = -ABAR1(I, J)
C

CALL MATMUL2 (AN, ABAR1, BV12)
CALL MATMUL2 (ABAR, AN, BV21)
CALL MATMUL2 (ABAR, BV12, BV22)
C

DO 370 I = 1, 3
DO 370 J = 1, 3
\[BV_{11}(I, J) = DA \cdot CD \cdot RT \cdot AN(I, J) \]
\[BV_{12}(I, J) = DA \cdot CD \cdot RT \cdot BV_{12}(I, J) \]
\[BV_{21}(I, J) = DA \cdot CD \cdot RT \cdot BV_{21}(I, J) \]
\[BV_{22}(I, J) = DA \cdot CD \cdot RT \cdot BV_{22}(I, J) \]

DO 380 I = 1, 3
DO 380 J = 1, 3

\[BV(I, J) = BV(I, J) + BV_{11}(I, J) \]
\[BV(I+3, J+3) = BV(I+3, J+3) + BV_{22}(I, J) \]
\[BV(I+3, J) = BV(I+3, J) + BV_{21}(I, J) \]

380

CONTINUE ! End of slice loop

CONTINUE ! End of member loop

C

CALCULATE PRESSURE FORCE \(\text{"FP}(3)\) \) AND ITS MOMENTS

\[\text{DO 4500 IS} = 1, \text{NSURF} \quad ! \text{Surface loop starts} \]
\[\text{DO 390 I} = 1, 3 \]

390

\[XXS(I) = XS(IS, I) \]

ZETA \[= XXS(1) \cdot \text{DCOS}(HED) + XXS(2) \cdot \text{DSIN}(HED) \]

\[Z = XXS(3) - \text{DRAFT} \]

P1 \[= - RHO \cdot G \cdot \text{DEXP}(AK \cdot Z) \cdot \text{DCOS}(AK \cdot ZETA) \]

P2 \[= RHO \cdot G \cdot \text{DEXP}(AK \cdot Z) \cdot \text{DSIN}(AK \cdot ZETA) \]

\[\text{DO 400 I} = 1, 3 \]

DFP1(I) = P1 \cdot ANS(IS, I)

DFP2(I) = P2 \cdot ANS(IS, I)

400

CALL CROSS (XXS, DFP1, DMP1)

CALL CROSS (XXS, DFP2, DMP2)

410

\[FP1(I) = FP1(I) + DFP1(I) \]

\[FP2(I) = FP2(I) + DFP2(I) \]

CONTINUE ! Surface loop ends

4600

CONSTRUCT THE COMPLEX FORCE ARRAY \(\text{"FORCE}(6)\) \)

WRITE (4, 4001)
\[\text{DO 420 I} = 1, 3 \]

RF = F12(I) + FD2(I) + FP2(I)

CF = F11(I) + FD1(I) + FP1(I)
RM = FMI2(I) + FMD2(I) + FMP2(I)
CM = FMI1(I) + FMD1(I) + FMP1(I)
FORCE(I) = DCMPLX(RF,CF)
FORCE(I+3) = DCMPLX(RM,CM)
FORCE(I) = FORCE(I)
FORCE(I+3) = FORCE(I+3)

CONTINUE

C CONSTRUCT THE COMPLEX COEFF. MATRIX "COEF(6,6)"

DO 430 I = 1,6
DO 430 J = 1,6
RC = -W*W*AM(I,J) + STF(I,J)
C PRINT(", , I,J,", RC = ,RC
CC = W*BV(I,J)
430 COEF(I,J) = DCMPLX(RC,CC)

C SOLVE FOR COPMPLEX MOTIONS "CDISP(6)". CALCULATE AMPLITUDES
C AND PHASES

NN = 6
IA = 6
MM = 1
IJOB = 0
IB = 6
CALL LEQ2C (COEF,NN,IA,FORCE,MM,IB,IJOB,WA,WK,IER)

C DO 440 I = 1,6
CDISP(I) = FORCE(I)
DISP(I) = CAB(CDISP(I))
IF (DABS(DREAL(CDISP(I))) .LT. 0.00001DO) GO TO 431
GO TO 432
431 PHASE(I) = PI / 2.0DO
IF (DREAL(CDISP(I)) .LT. 0.0DO) PHASE(I) = - PHASE(I)
IF (DIMAG(CDISP(I)) .LT. 0.0DO) PHASE(I) = - PHASE(I)
FASE(I) = PHASE(I) * 180.0 / PI
GO TO 440
432 PHASE(I) = ATAN(DIMAG(CDISP(I)) / DREAL(CDISP(I)))
FASE(I) = PHASE(I) * 180.0 / PI
440 CONTINUE
C ERROR CHECK LOOP

IF (IERR.EQ.0) GO TO 444
DO 442 I = 1,6
IF (ERROR(I).LE.0.0) PRINT*, ' XXXX WARNING : ERR.LE.0.0'
442 IF (DABS(DISP(I) - PREV(I)).GT.ERROR(I)) GO TO 443
443 GO TO 444
450 DO 462 I = 1,6
462 PREV(I) = DISP(I)
GO TO 2100

C
WRITE MOTION RAO's AND PHASES

C
444 WRITE (4,4001)
WRITE (4,4001) ** DAMPING MATRIX USED FOR FINAL RESULT **
WRITE (4,4000)
DO 463 I = 1,6
463 WRITE (4,4100) (BV(I,J),J=1,6)
WRITE (4,4001)
WRITE (4,4001) ** FORCE RAO's **
WRITE (4,4000)
WRITE (4,4121) W,(2.0*PI/W)
4121 FORMAT (2X,'FREQUENCY (RAD/SEC) = ',F10.5,' PERIOD (SEC) = ', F10.5/)
WRITE (4,4121) D.O.F. FI1 FI2 FD1 FD2 FP1 FP2 F
4120 FORMAT (2X,I5,3X,7(E12.5X))
DO 464 I = 1,3
464 CONTINUE
WRITE (4,4001)
WRITE (4,4001) ** MOTION RAO's AND PHASES **
WRITE (4,4000)
WRITE (4,4200) (DISP(I),FASE(I),I=1,6)
4200 FORMAT (10X,'SURGE (M) = ',F10.5,EX,'PHASE (DEG) = ',F10.5,10X,'SWAY (M) = ',F10.5,5X,'PHASE (DEG) = ',F10.5/ 10X,'HEAVE (M) = ',F10.5,5X,'PHASE (DEG) = ',F10.5/ 10X,'ROLL (RAD/M) = ',F10.5,5X,'PHASE (DEG) = ',F10.5/ 10X,'PITCH (RAD/M) = ',F10.5,5X,'PHASE (DEG) = ',F10.5/ 10X,'YAW (RAD/M) = ',F10.5,5X,'PHASE (DEG) = ',F10.5/)

C
CALCULATE TENSION RAO's 'TEN'
WRITE (4,*) ' ** TENSION RAOs **'
WRITE (4,4000)
WRITE (4,4121) V, (2.0*PI/W)
FORMAT (',15.2X', 'TENSION RAO (W/V) = ',E12.5,2X)

C
DO 460 IT = 1,NTEN
X T = XTI(IT,1)
Y T = XTI(IT,2)
Z T = XTI(IT,3)
D TLX = CDISP(1) + CDISP(5)*Z T - CDISP(6)*Y T
D TY = CDISP(2) + CDISP(6)*X T - CDISP(4)*Z T
D TLZ = CDISP(3) + CDISP(4)*Y T - CDISP(5)*X T
D TLXR = DREAL(DTLX)
D TLYR = DREAL(DTY)
D TLZR = DREAL(DTLZ)
D TLXI = DIMAG(DTLX)
D TLYI = DIMAG(DTY)
D TLZI = DIMAG(DTLZ)
dtlmax = 0.0d0
delt = 2.0*pi/(W*1000.0)
tt = 0.0d0
do 700 II = 1,1001
swt = dasin(w*tt)
cwt = dcos(w*tt)

dtlt = dsgqt((dtlx*cwt + dtlxw]+cwt)**2 + (dtyr*cwt +
 + dtyw+cwt)**2 + (dtzl*cwt + dtlxi+cwt + tli(it))**2)

dtlit = dtlt - tli(it)
if (dtlt.lt.0.0d0) dtlt = 0.0d0
if (dabs(dtlt).gt.dtlmax) dtlmax = dabs(dtlt)
tt = tt + dtlt
continue

700

continue

tenrao = int(it)*dtlmax

C
WRITE (4,4211) IT, TENRAO
460 CONTINUE
W = W + DELW
2000 CONTINUE
C
STOP
END
C
C
C
C SUMMARY OF SUBROUTINES
C
C
SUBROUTINE MATMUL1 (A,B,C)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(3,3),B(3),C(3)

DO 5 I = 1,3
 C(I) = 0.0 DO
 K = 0
 DO 10 I = 1,3
 K = K + 1
 DO 10 J = 1,3
 C(K) = C(K) + A(I,J) * B(J)
 10 CONTINUE
 RETURN
 END

SUBROUTINE MATMUL2 (A,B,C)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(3,3),B(3,3),C(3,3)

DO 5 I = 1,3
 DO 5 J = 1,3
 C(I,J) = 0.0 DO
 DO 10 I = 1,3
 DO 10 J = 1,3
 DO 10 K = 1,3
 C(I,J) = C(I,J) + A(I,K) * B(K,J)
 10 CONTINUE
 RETURN
 END
 END
 END

SUBROUTINE CROSS (A,B,C)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(3),B(3),C(3)

C(1) = A(2) * B(3) - A(3) * B(2)
C(2) = A(3) * B(1) - A(1) * B(3)
C(3) = A(1) * B(2) - A(2) * B(1)
RETURN
END
SUBROUTINE SUBFASE (RE, AIM, PHIR, PHID)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C

PI = 3.1415927DO
IF (DABS(RE).LT.0.00001DO) GO TO 10
GO TO 20

10 PHIR = PI / 2.0DO
 IF (RE.LT.0.0DO) PHIR = - PHIR
 IF (AIM.LT.0.0DO) PHIR = - PHIR
 PHID = PHIR*180.0DO / PI
 GO TO 30

20 PHIR = ATAN(AIM / RE)
 PHID = PHIR*180.0DO / PI

30 RETURN
END