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ABSTRACT |
ABSTRACT

The research carried out in.this work invciveu the

kxnematic and dynamic anal.ysea of the tobotfE 1 manipplatcrs.

" The kinematic analysia includes the displacement anal.ysh of .

the planar and spatial mec‘huniema as’well as the velocity |

and accela:a:lon anulyeea. In the dynamic analyuiu, ‘the

variacion af tha‘ nabutal traquencies and the dynamic
condensation tachn.iques have been utudiad.

| The displacement analysis of the opan and closed-
loop systems have been curiad ‘out using the optimizauon

principles and the modified Newton-Raphson cecpntque. o
' - e

facity and acceleration analyses have been divided into two

categories:' in “the First ofie, "the number of unknowns are
aithet wrenter oF 1686 than' Eives afd'dn, iis sechnd one they -
are equal to three. The first type'is solved using the
modified Newton-Raphson technique-whereas the second type

solved by simultanéous solution of the equations.

To carry out the dynamic analysis, the eqﬁationn of

motion nave been obtained using ‘the finite ela\ent analysis.
-

The system matrlcan ‘for the. robotic manipulatou are also.
dapendent on tha angular velocitiea and angulu aeceleratton.

Several new me:hods of obtaining the matrix of diraccion B

‘cosines' needed’ to represent the oriéntation' of the local axes
3 - ; A A




w .
with respect to ‘the global axés, are discussed. The natural

frequencies as a result Sf the yariation of several design N
- paraméters have been obtained. Finally, a comparative study
. . . on/the two types of dynamic condensa‘f.ion schidmes haveé been ‘

carried out using a machine tooliepindle and a“robotic . -

>
. \ g lpgn_ipul.ator as examples. . 5
5 - . - .
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CHAPTER 1 §
/
~INTRODUCTTON-AND LITERAPURE SURVEY ;
s ™ \

. - 1.1 The Automation and Robotics

A revo].utionary change in factory producticn
techgiques is predicted by the end-of the twentieth century.

Every operation in ‘.’he fact_ory of the future,’ ‘from the

design to ring, assembly, and product "~ e
- inspection would be carried’ out ‘using the machine tools and
5obots aidetvls 13y computers. Thiu new development (the
n.;xtomatié controlled factory) is noth1n§ more than a new
phase ifi the industrial revolution that began in Europe two
A cgnéuries ago and progresseéd through the following stages:
1. The gonucrueticn of simple'; production machines and
mechanizations started in 1770.
© 2. Fixed automatic mechanisms And transfer lines for mass
production came along at the turn of this century. .
’ 3. . Machine tools with simple automatic ‘controls such as
plug-board controllers to perform fi)ged sequence of '
opexat’;cns. and copying machines in which a stylus moves
‘on a master copy . ’
= 4. The intx‘oduction of numerical control (NC) machine tools,

in 1952, opened a new \era in automation. T




. 5. Integration of a minicomputer to drive the machine tools
2 ) (cNe) in 1970.
6. The use of industrial robots for elenenta;y operations
L such as spot weldmg. and assembly in 1970. =
. i e new era oi"(autcmation, which started with the

introduction of NC machine tools, was_undoubtedly stimulated’

by the digital computer. The dig‘is\al technology “and

Som’puters enable the design of more flexible manufacturing A~
st:‘ems (FMS), namely systems which can be adopted by
‘fg'togr.amn;ing to produce or .ass'emble a new product in a short
time. Actu;ily,rflexibility is the key word which '
o characterizes the new era in industrial automation. 'Robot}

and "manuiac.:ti::in'g systems are beco;uing more .and more flexible

, .. with progress in computer technology and programming , - .
techniques. ’
The use of the tcbol:s has led to ‘increased
produccivity and better ae we!.l as consistent quauty in :he
manufacturing environment.‘ The robots are also being uaed in -
the hazardous anvironmer;e; such as nucl.e.a.x reactors’ or )
R under-sea npetaticm; where théy are controlled 'temotavly.. 4 \
P Another example of their usage is in the spray-painting jobs
where they replace human Peing who breath ‘toxic air

presently: ‘In amﬁnu:y, the advantages of using robots can be

stated as follows: ! 5 5




1. Flexibility
2. Higher prot’iuctivit:y
3. Better gquality of products

4. Improved quality of human life by performing

- unf!ellxab].e and haza_zd:;ul jobs.

‘A T3R3 model of a rébot manufactured by the
cinncinati Muacrcn company 15 shown in the Figs. 1. la and
1.1b raupectively. This zobot: can be-used by varying three

l
degrees of freedom which are Ql, 92 and 93 where 91 ia‘ the

rotation about the .baac, whereas 6, and 63 are the rotational -

angles o€ the .u.p‘psrann and forearm zeapactively. 'nm;e

angles atu used to po-ition the gripper or the end effen:tor
at a location in the three dinenuianal space. Once the end
effector is positioned ‘at the point, the nrhntat:ion of the
gripper is controlled by three independent angles which are

shown as pitch, roll and yaw in Fig. l.la.

~ S In the inva:n kinematic ana’lys{.-, the location or

“ the trajectory of tha end effectod is lpeciﬂed and the
p:obl.an is to find the angl.es sl, Py and 93 corresponding to,
" each location of the and effector. Similarly, in the
vcloc%_t.y, Qr the’ acceleration analysis, the velocity or the
nccaiarué'@on of the end effector is specified in the
'cutauianﬂeaco and one has to obtain the respective

qunntitiau in the 0 space. In r.ha dynamic analysis of these

- structures, one has to avaluate_tht‘ system matrices
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corresponding to each location of the end effectar because of
the nonlinear-variatigg. of these matrices as a function of
the location of the ¢jd-effector. Moreovbr, it is well ‘known

[1] that all these matrices are also a function of joint

_ velocities and joint accelerations. Thus, the“.‘aynumic

analysis of- these structures, w‘hi&\ are much more flexible
than the conventional machine tools, is fairly involved.
B . - -

1.2 The Literature survey = - ‘
1.2,1 The-Kinematic Analysis

The displacement, .velocity andlacceleration

—
analyses of planar closed loop mechanisms using several
techniques such as the graphical method, the cdﬁlex algebra
method etc., are discussed in [2-4]. some simp\le spatial
closed loop ‘medhanisma are also solved in these references.
In reference [5],r an iterative techﬁique known as “
'Newton-Raphsor.n technique was uged to solve the planar
-problems. A new technique ca‘!:ed the 4 x 4 matrix technique
was introduced by Uicker et al [6] to solvé: spatial ‘Nosed
luoiw n}echanisms. The main'adva’ntage of this technique lies
in the easier implementation in the r:on:pute‘t progran. Hall -
et al [7) solved spatial closed xooé mechariisns by using
gridlehé optimization technique. For solving the planar and
s;atial open-loop meghgnianu Turic [8] used the 4 x 4 matri‘x

notation and solv%d the inverse kinematics problem using
S

. =
; , ‘ :

k]




A[m\/ ' &

: annlyéh of the links in arm~type ‘devices, was reported in

the modified Newton-Raphson technique where the number of > \

unknowns were more than, the number of equations. Paul [9]

and Ctlaiq' C1i0] der%ed thé equations for'the inverse

\
dlsplacement analysis of some commonly available robotic

manipulations. Some other important research work in this

P
a.raa can be seen in [11-151.; - &
1.2.2 The Dynamic Analysis ¥ 7

> Significant progress has t;‘een made on the dynamic
modeling of rigid fpatial mechanisms and manipulators in
[iﬁ-la]- These investigations include such met‘:hods‘ as screw
cul;:uluu [16], Qual vectors [17] and 4 x 4 matrices [18].

The dynamics of the flexible spatial systems was studied in -

Finite eleflent methods were first applied to
gpatial linkages l;ay Winfrey fzo]. He investigated the
pnqaibla a;lvqntages_ of using the Guyan's red‘uction‘technlque ‘-'
to reduce the size’ of the dynamic system matrices [2‘1]-
Another important - reduction techniq;ie known as Component Mode
Synthes‘h was ysed in [‘22. 23] vhere the dynamics of linkages

was studied. THe fFlexibility and control, in the dynamic

[24]. .Béok and Whitney [25-26] carried out research on the \
linearly distributed dynamics of planar arms via transfer

matrices. Several other researchers hnve’ addressed the
3 G .




£Texible-manipulator dynamics problen by analyzing the(
flexible mechanisms [1, 27-29].: Dubowsky and Gardner [27]
have provided bibliographiesion this type of work. Sunada
’Tl] developed modelling techniques appucabxe to.both, spnul
© . closed loop- mechanisms and manipu].ator arms. Such a
technique assumes a known nominal motion over time about
which the flexible-arm equation are linearized. This
- Vtechnique i oriented towards finite-element ann’lysis to
obtain modal characteristics of the link, which are then
coitbined using a time-varying compatibility matrix. It uses.
the 4 x 4 nmatrices to represent the nominal kinsmgt'ic .
equations and also in the derivation ?E the comp‘atibillty
matri’x. The same technique 1; also used in the Jpresent
investig‘ation. . & % « w ’
Re antly, the nonlinear modal analysis techntg’e
was used by fok [28] to develo&the equations of motion for
" flexible manipulator arms consisting of rotary joints that *
. connect pairs of flexible unks.. Currently, work is being
carried to annlyze ﬁlexible manipulators contalning pnsm/atlc
, and rotary joints using the finite elements by NAganatW{n and

soni [29].

’

1.3 The Objectives of “this’ lnvescigation

‘"since the rohor. nantpulators are mving space

structures whose system matrices are functions of kinematic

-




T . ' 3
. e
' S . 9
. R - -
'plrameterl. tho present work has been divided into two parts;
the first patt is the kinematic analyﬂ.a of theue spuce
! mechanisms, and the second part is “the dynamic analysis. ‘The
; specific objectives ip‘the kinematic and dynamic analyses
% | are: 5 - % g S8
1. . The displacement amplysis of the planar and spatial .
:6 , - closed loap mechanisms using the optimlzution :
principlel. :
".. ‘,‘ # o 2i The dis]ilaee;nent analysis of the p].anar and spatial open .
: i’ "loop mechanisns using the optimization principles.
; 3. The velocity ma’lyaiu of the open loo'p méchanigms.
- . 4. The acceleration _unaly's{s of mé open loop mchanism;.
- . 5. "The deteminntian of the matrix oOf direction cosines. of
. i the spatial Mnkn. '
’ 6. The varigtion of the natural frequenciel of the zobétic
. manipulator as .a tuncuon of ae-an parameters, and
/ * 7..-The comparative study of the dynamic condensation o

technidhes applied to the machine tools and robotic

.mnipul.ators .

In Chlptar 2, the optimlzation principles 'have baen £ ?

used to carry: out the inverse displacement analysis of

the" plannr and spatial closed loop mechanisms at first, und i

o 3 . .
2 s than these techniques have been used to solve the inverse ."’_ 3

problems for the open loop mechln!.sm-. After this, the '

* angular velocities and acceleration of the vnr}nuu joints
B i y N




have been obtained for the specified velocity and
acceleration of the end effector.
The dynamic equations of motions are described in

.
Chapter 3. The system stiffness and .damping matrices are

[functions of angular-velocities and angular accelerations,

the force vector is also a function of the angular velocities

and accelerations.’ To carry out the natural frequency ’

Eompug_.a}.ions,‘ the finite element fpalysis has been used; to

' specify the orientation of the spatial-links, several méthods

of obtaining the matrix ©f direction’cosines is discussed.
Finally, to reduce-the degrees of. frgédom, two dynamic
condensation schemes are used.




CHAPTER 2

THE KINEMATIC AN}\LYSIS OF THE CLOSED AND OPEN LODP MECHAN!SMS

INCLUDING ROBOTIC MANIPULATORS

2.1 Incroﬂuction - P ! .

The x{:botq .are used for weldihg, assembly, painting

Jobaugbter ih the 1 ial énvir While p ing a
job, the end effector is .moved along a 3pecifi:ed trajectory
with a given velocity and acceleration. This reqﬁitea a
con:d;nated movement of the various arms of f.'he.rohot which
are ariven by independently operated motors or drives. Thus,

for every 1ocation of t‘ne end effector. it is necessary to

knw the 8, B and 9 where 9 is the vector having as its
elements, all the kinematic degrees of freedom of t:he_s_ys(:em.l
The determln‘ahtim;. of these vectors is carried out in_‘ﬁhis .
chapter. y The inverse di.spgacement' ‘analysis is carried out '

first and is presented in the next section.

2.2 The Dis lacément Analysis of the Pl}na;

. and sEtIaI Closed Loop MecEanIsma
. - When the path of the points on a link in a given
mechanism lie in a uingla Pkapa or in parallel planes, it is
called n’pl‘annr n}echnnhm,, A vast ma‘jetity of mechanisms in

use today belong to this cntegoty.“ To analyze these
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mechanisms, there are many techniques available in the
tvf;acu:e [2-5].- some of these important techniques are:

1. the graphical method, d

2. the complex algebra method,

© . 3. the .»:gc.:tm: aigebra method, and

» " 4. the Ne‘wtcn-kaphsnn method. -

In the epatial: ciosed 1oop.mechanlgms, the motion
of a given poir:t. may‘ des}:tibe’ a curve that does .ot lie in‘a

! .plane. Even though the convéntional method of enalyzing

.\\ . planar mechnnisms like :the vector method can be extended for

the spatial mechanism, the calculation becomes enormous and
cumbergome, and 'idvariably_ig léada to the use of the digital .
compur.t;.rsv. Hence, ‘the numerical methc;ds are widely used.in

the kinematic analysis of bpgc;ial mech'an:lsms' In this -

.saction, some of the important numerical methods are

discussed with sulcéble exal?nples. Before the numerical

5 : methods a’xe"diﬁcussed, a brief introduction regarding the

a: ' notations used in setting up the spatiai-mnchuniim'

N displacement-equations is desirable and is discussed next.,

2,2.1 + The Hurtenberg-Danavit Nocaticn

Let us conuider the two cooxdinata systens, shown _in

e Fig. 2.1 which_describe the relative position and orientation
of the (i-1)th and ith links in a spatial mechanism. The two

coordinate systems are related by the four coordinate




G=1) th Connection

(i-1) th Link

i th Connection

Fig. 2.1: Hartenberg-Denavit Notation




B

(po's{tion vector from the origin of the (i-1)th frame. The 2

~ o = 14

transformation parameters 0., a;, L; and H; (6]. The z, axis’
represents the rotational axis for each of the individual
Tevolute 'jcinr.a of the mechanism. The x{ axis ‘lies’
perggndicular to the z;_l and z; axes and the perpendicular
1e‘ng’thv between these axes is :ep:esenced'aa L. Hi is the
distance along ziixom xX 1 to. x5 Bi is the :elative
rotation of the x; “axis about the ‘i 1 axia and ay is the

relat ve rotation of the yiand z1 axes about the "4 axis.

Fux the links connected only by revolute joints, 0y is the
only time varying parameter. Similarly, Eo: a link with

prismaéic :sudex joint; H-i would be the only time varying

. 'parameter.

The position vector of any point referenced to the

ith link coordinate system can be described as

- . (F1)

“

where Eg is'a 4 x 1 column w;ector and it represents the

)
position of a point P with respect to the origin of the ith

frame. Similarly, the position vector £ , defines a B

relation bewaen r‘ and £, , can'be “written as ¥

~
~

£io = (1) ’s : (2.2




where [Tt_ll is a 4 x 4 link transformation matrix, and it is

given as
‘ ! 0 .0 - 0 .

Ljcosf, . ‘?m:ex -sin® cosa; sinb;sing,

{1} 1 = |Leine, einé,  cos6icosx, -cose,sina| (2.3) .’

Hy . o sina; cosay

The positibn'vectors in other coordinate’ systems
can be o‘btained by multiplying the appwpriat.e link N e iy o
transformation matrices. If the refererice or the inertial

system is' X ~Y;-Z,, then the inertial posxtion véctor can be

defined as . : 5

© = rwtaer, 200m,%0 el py = rnptd g (2.4)

‘where

. & 2 i
[ry71= [T, ]‘I:’l‘1 10,7 el LTy 1 1(Q05)
Before proceeding further, it is essential to note
some of g.ho'import_’ant properties of this matrix. 'rhis._matrix

is only a time function of 6; and H,,

since L, and a; are i )
always fixed for a giyen_geometry. If a spaéial mechanism v

contains only revolute joints then Hy will also bea . W
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constant, and,so the transformations matrix in this case can

be written as [Ti_l(ei)]. If this matrix is written for a

, small increment. in 8; then we get i 2

.7\

L(o5+a8 )] = ~

L 4

i
[y

1

B

-Lisi‘l‘lei
Ljcosd,

o

o

Ly 505(01+691) cnu(si;ﬂl)

0 0"

-ai‘n(e*fbsi)c.ou‘ sin(e;+60;)sina

- . (2.6)

0o~ 0

-8in6 cosa sine sina,
5 i i - i i

cos86 cosay -cosf l"'"'i
sin a; cos ay
‘0 o
"=-cos@ jcosay couslllna‘ -
3 i

My o Gl . .
-8in0 cosa; . 8in6sina;

] ~0




The first of the two.matrices in the Eqn. (2.7) can be
inmediately !:donglﬂed as the original trans(orl?tioﬁ matrix
evaluated-at 8, and the second matrix can be seen to be the
-first partial derivative of the transformation matrix with

xhnpact to e‘.. Therefore, Eqn. (2.7) can be rewritten as
N L .

i 5 _
[Ty ,(0,+d0,)] = "1 (8 )] + [1-1 pJae,” (2.8)
” 2
’/, The second matrix “ [’l‘i 1] can be obtained using the -~ 4
/ . EKll/ouing simple matrix multip,li‘cltion. % <
= ' B _eek il
o] [ry_,3 = [Q°IlTy_,1 . (2.9a)
-
where, . N .
: o 0. 0 o
. *
= |° i o (2.9b)
o 1 o o
¥ - 0 o o LN
e i
If the time varying parameter was Hy instead of 4, then we
would have 5 ' &
A L I S [ (2.10a)
s . i .
where, 2
. /
; - ~
- ¥
v
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. 1] 0 0 o
R 0 o 0 0
[Xepp] (2.10p)
I o 0 0 0 E
i W -5
1 0 o o

N t
These properties of the 4 x 4 transformation matrix

are very useful in reducing the computations and can be very

easil.y impl d in the : t programs used for the
kinematic analysis’of the planar and spatial mechanisms which

is explained next.

2.2.2 The Mathematical Formulation of the 7 .
Displacement Equation ) %

. In carrying.qut the displacement analysis, several’
iterative techniques have basn.used [7, 30, 31]. ' In these
techniques either Newton-type [31] o Quasi-Newton-type [7]
approach has bea_n,used. In the Newto;'l type procedure an
initial estimate of the desired solbtion vector’is made,
then the Jacobian matrix.is evaluated corresponding to the
initial starting vector and the improved estimate vector is ’
'ca\'culate(;. 1f the improved estimate ve.ctur'm_aets the

convergence ciiteria then the iteration isgtopped, otherwise

" it is continued. Unfor ly, the disad of this \
" method is that if the initial guess of the starting vector s '

nut very close to the tinal \Iectcr then the method fails to
L )¢




direct search methods which if combined with'the penalty.
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converge. On the other hand, if one uses qu‘gui—Newton method
such as the Davidon-Fletcher-Powell method the solution or 7

the multiple-solutions are almost always found. However,

both these are e » where the gradients .
are evaluated-either numetically or unulyf_ically. The
qx'adiem: methods do not always procead smuothly to the
optima. Thus, a denigner involved in the klnematic ana}:ys/la

of complex mechunisms uhould also have some altern o methods :

for the analysis. Ona of, such methods would be usi g/f.he

functions can be a very powerful tool in gnalyzing. mechanisms

with nonlinear constraints [32].. In this. thesis, the planar

four-b 6m and two space isms are. solved using

one of these types of methods called the Hooke and Jeéves

method [33] which is a direct search method. It does not

invblve the evalpation of the gradienf,s. ’Pinauy, the design

of a planar type ism is illustrated which

‘can be used for flan\c-cutting of holes in the plates.

Uung r.he transformation matrix, when appuerl to a

four-bar closed-loop machanism one .can write

R IE RS TR (< A RN S5 . (2.11)
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. where [1] is the identity matrix. Another way of expressing

the equations for a n link clésed loop mechanism is

O
o
Ly By Ly Ln
- L3 @ a . a .o =
R % R, 2|, guees B ) (PO " o=t1)
e 2 e e L
1 i 2 % i n
351 Ha it o g
3 el = fzam)
-

‘where R and P represent revolute and prismatic joints
respectively. When dealing with space mechanisms, the

cylindrical pairs are replaced by revolute and prismatic pair

combinations. Transposing [I] to the left-hand side in Eqn.

(2.11), one can write

<z
q ¥
*
Ir)-[1] =f0] - (2.13)
., whete [T"] is the matrix Y. of all the \tion
matrices. To obtain the unknown angles, one can define the .

objective Eunct!.on'u thé sum of the square of the difference
cl each of the elements of the matrices t'r ] and [x], which

can be mathamacically expressed n
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n n
try; - 1?

i3 (2.14)

F(x) = £ I
- . i=1 3=1

where [x} is The desigp vector having unknown parameters as

oy . its elements. - -

.
- In the design of the mechanisms, if thereyre k

constraints represented as 'qk then’ the objective function\can

jective function ‘can be mathematically written as
\

) m e
_ Ul =R+ T v,g2 H(g,) (2.15)

where H(gk) is the Heavyside unit step function defined so

: " that
D ’ X

H(g, ) { lfgrgklo : z%)
2 g.) = 1
- ————%.— ogorg <4 S

) '

In Eqn. (2.15), Py “are large penalty constants

which are positive because the present problem is a

= minimization problem. Next, one needs to solve for the

b s minimum of U(x) using the Hooke and’ ;7;:,{);- method which {s

be modified to include the constraints. The modifikd \ &

»*
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given in detail in [33,35] and a step-by-step procedure for? a’

design vector {x} having n,components is mentioned. belowt

s " 2

I. 6tart with an: initial estimate of the design vector

. (3

and choose Ax;, i = 1/2, ... n as step lengths in each.of _

the coordinate directions Uy, i=1, 2, %.. 0.

Set temporary base point Y . g

!k.o =X . . A (2.18)

Start the exploratory move by pérturbing one design

variable at a time in‘order to find the improved value of

the objective function. #

set: . * .

&




. . '
Vi, i " Yk, ger0 ¥ (8xg) uy A8 UD 200y ey ¥ (axg) yy)

s - €U =0y 40
» % i
Y, i = Zk.;-l"(nx£)4 uy £ 0 = Ulyy j - “191)‘ (2.19)
. . : g CUTY Ui
° + | . a
i L " ] s g * Y J‘ Ulyy soa4 axgu,)
“ .
w5 ) T .
Y, i " Xk,‘i-l if U= U(yk,i—l) .« mlrll’ (u™, u7)
/"’ - .
i ..
e

In this way, all the design variables x, are perturbed
vand the improved position Y. n found.
Ik, g
. JF & ‘w ‘
+4. If the point Yy is not different from x reduce the
*k,n g, !

N

4 Lo V‘qtep lengths Xx;; set i#l and go to step 3. If Yi,n 48

5 . 5 .
different from x, obtain the new base point as $
P % - F

PR - T gl "Yxn {2.20) .
: " ) .

5. Find the pattern direction § using

8= X4 - g » . (2.21).

Find the point Yk+1,0 88

Yokr,0 T Eyer WA E (2.22)

Find A%, the optimum step length' in the direction s ah

use A* in Eqn. (2.22)
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6. Set k = k+1, uk = U(yko ) and i=1; repeat step 3. If at
the end Of step 3, Uly y ) < U(x ), use the new base
point as X, = ¥;  and go to sfep 5. If Uly xn) ?

e Z ke

U(x ), sec x X and’reduce étep lengths; set k =

K+l
k¥l and go to step 2. : e &

7 The process id terminated if the step lengths bemf less

’than :, a very smal.l quantity.. - kS

v

x s -
2.2.3 Results and Discussion of the Planar

and Spatial Closed Loop Mechanisms
the unknown parameters in three cases:, the first one was the
planar fo;u'-b'ax'. m_e_c_hanism with. dimensions shown in Fig. 2.2
and the other two were two types of seveﬁ-pait mechanisms,
«with dimensfons shown in ’l‘ables 2.1 and 2.2’ respectively.
All of theue mec‘hanisms are shown in Figa. 2.2 to ﬁ

\ The four-bar mechanism was also solved using the

Newton—Raphgon technique, the Davldon—?letchar-?awéll mathod,
and an analyt\ cal method (the aLgepraic method) . 'l'he resultu
obtained are shown.id the Table'2.3: The resuits clearly
indjcate that one'can ‘obtain these resulth with sufficient
ac‘c\iracy by using any of the methcds. The, optimizatlon
methods qanerully converge to t‘ne optimym even if the .

atart;ng vector is not very close £ the final valuc. on the
- .

§ The Hooke and Jeeves method was used to solve for, ..




Fig. 2.2: Four Bar Planar Mechanism (3] = 0.333,
ay = 1.5, a3,="0.9165, a, = 0.833)

~ -
. - \ .
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Fig. 2.3: Seven Degree of Fnedan&inechunum 1
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. *~ . .Table 2.1 , ’ \
. Dimensions,of Space Mechanism I .
R B2 P3 Ry Py Re %
"
L x 0.254m| 2.0 0 4.0 o [3.0 o 5.0
a, degrees| 30 0 55 0 45 o " 60
6, degrees| o o; o (A 0 0 —| ©
Hex .0254q 0 s 0 s o, sq
v
. P
! . -
: .
] . i
-t ) :
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v
“ ]
. Table 2.2 .
Dimensions of §pace Mechanism II ° ¥
R Rz P3 R4 Rg Pe Ry
L x .0254m| O o o 0. 0 [ 0.35
a, degrees| 30 20 o 90 - 90 0 g l8°
o, degregs| o 0, 0 0, [ 0 0.
H x .0254m| O 0 syeb | O [ sg 0
s P
s
‘ N\




Table 2.3

E . Results. of Planar Mechanism

29

Design Variables

METHOD o . A
radian © radian radian radian
Analytical Method’ 5.236 4.5540 3.8940 - 5.1650
(Algebraic Method) . E il ,
Newton-Raphson Method 5.236 4.5540 3 .8940" 5.1650 .
(Gradient Method)
Davidon-F letcher-Pbwell 5.236 4.5537 3.8943 | 5.1655
Method : i
. (Gradient Method) T
Hooke and Jeeves Method (5.236 4.5536 3.8944 5.1653
- (Direct-Search Method) 1 .
. .
& i
-
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other hand, Newton-Raphson technique requires that the
starting vector be close to the optimum value. The ”
Newton-Raphson technique appears to yield better result in

this table because the starting vector was close to the final

vector.

\ The so‘lutic_ms‘iox the two types of seven-pair
mechanisms, "which’ ate.discassed dn [7] and are shown in
Figs. 2.3 and 2.4, were obtaiped_ by t}‘\e direct search 2

_technique and the results a;re shown in Tables 2.4, and 2.5.
The resulta‘ in both these tables indicate that the final
solutions are quite close and that the direct search .

! techniqudl is an alternate _methad of carrying out the
displaééh;.ent analysis of ‘the space mechar'\iams. -

The dimensions of the planar four-bar meghanism
which can ‘be used for flame-cutting a hole on a plate can be
obtained using the optimization method. Fig"."z 5 shows the
location of 9 points w‘h!c‘ﬁ‘ lie on the surface of a hole. A
crank-rocker type of mechanﬁm can be designed such that l:‘he‘
couplern point would pass through these 9 points as the crank
goes through a complete rotation. These points are located ’

_._BLmzy_m_dm_es of the crank angle :otauon xn the
actual operation, the flame-cutting torch wou\ld be mounted at i
the point P. . -

In order to £l the hole & 1y, the

maximum tangential: velocity of the point P was -peciﬂed ‘as

0.0127 m/sec (0.5 inches/sec). ,sinca.thq equation of the




Results of Space Mechanism I

Table 2.4

Design Variables
i ;
METHOD o (Y S3 (A Hg Sy -
radians|radians|(x .0254)m|radians|(x .0254)m|radians|(x .0254)m
Davidon-Fletcher Powell| 0.0 [ 2.618 | -0.211 | 0.785 | -2.660 | 2.520 | -0.118
Method [7] - |
(Gradient Method)
Hooke and Jeeves Method| 0.0 | 2.610 | -0.206 [ 0.799 | -2.709° | 2.514 | -0.112
(Direct-Search Method) . o




Table 2.5

| Results of Space Mechanism II
4 5

[}
Deéign Variables
’K METEGD 0 ) S3 % o | He &
— radians|radians| (x .0254 )m|radians)radian}(x .0265)m|radians
&4
. Davmen-Exaztchar Powell| 0.0 -1.57 0.35 2.1 4.7 0.0 0.0
Method [7 3
N (Gradient Method) 3 [
Hooke and Jeeves Method| 0.0 -1.57 0.35 2.09 | 4.71 -0.76 -0.114
(Direct-Search Method)
x10-6 x10-2
- ; N
7
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Fig. 2.5: Planar Four Bar Mechanism and the Coupler Curve
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closed curve traversed by the point P is not known, the
tangential ve}ocity at any point was approximated by ustng -
“““the following steps:

1.'A cubic spline curve was fitted through all the 9

* points. &

2. At the’point where the tangential velocity was to be
known, tha vélocity ‘of the point P was resolved along a
chexd formed by the pcint under canlidention ‘and a close

° . neighbouring point on this curve.’
In tfe optimization atudy the design vector (x| was
-
+ represented by* ! -~
~ @ : ’ By E
L2 g d
Ly
; {x} - i, (2.23)
it e
S ’
- = a .

and the objective function U which was to be minimized was'

represented as
' '
9
2 B 2
L 1:1 “le cal ~ (Pxi)sp' 4 Myi)cal N (Pyi)np)

. ' (2.24)

.
*The length of the fixed link Ly is chosen arbitrarily.
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The elements of the design vector are shawn in the Fig. 2.5.

In this figure, the curve obtained by usxlnq the optimal

design vector are al.so s‘nwn The curve \obtaimed in the <
- ptesent analysis . is vary close to those talnéd in [4)-

Ngxt, the crank optimum angulai velocity @y was obtained by a
i second optin}izatibn s‘t’udy where ‘the maximum tangential speed

‘vas used as’a congtraint. ‘The maxifum constant crank angulax:

N speed was found to be 0.4456 raa/'sec. The optimal design N

vector {x) for the first optimizatxon obtained as 5

0.912 ‘ &
e 4.723 7

53,430
15.614

.Fig. 2.6 shoys the variation of the tangential velocity as a

L function bf"‘r.he crank .angle. This curve has two maxima

coxrefponding to 88 and 200 degrees. It shouid be added Qe:é .
g tj;he objecr.:.ven of the study in [4] was to deaign a
§ = Z:ur-bnr sigchatiL ek vHOES coupler point P passed through the 9
specifigd points. It dia not involve the’ desj.gn of a
N mechanism f:‘;r flame-cutting, of the nhole. Thar'refore, there
( < vag no Velnci‘.fy"aﬁu"lyaiu carried out in that ‘\‘study.




%ﬁutomaticuuy obtained g,y using a suitable cbjective

2.3 The Displacenment.Analysis of ’Planar
and Spatial Open Loop Mechanisms

In this\eza of high technology, the application of
open loop.mechanisms has réachud almost all areas of
engineering; for example, the design of a robot. .

\ The disflacement” analysis for these' types of ' ; E
une?:lhanésms involves £inding tht joint coordinates of the

mechanism for a given. positio‘n of the end péini <of the

kinematic chain:. In®other words, the location of the end

pofntiis known in both the local as well as the global :

coordlhates and one has to find the possible eolutions of

this probl.sn;. Hence in tfiis section, thw displacement \

analyns' of open loop -mechanisms is éiscuned. o
For analyzin%;open loop 'mechariisms, Turcic [8] used

modified Newton—Raphson te@

the n:odifi‘nd Newton-Raphson te/chnique is illustrated with B

e. In this sectio::, at first &

examples. and then the complek opt}mizuticn technique is -
applied for analyzing the open loop mechantms.- The nain L
advantage of the optimization method is thnt, anonq the

i
possible multipxe solutions, the best solutlon is . C

function.
2 B i -
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2.3.1 The Modif?ehﬂewton-ka hson Technique' B

- > 2
+ _Let us consider a point on'the ith link which can P
3 .
be vect ally r a with to the ith coordinate.
sysem as r; (refer to the Fig. 2.1). The same point if =
referenced from t‘nf/i.nen.ia]. coordinates, can be represented
as.r,® and "these two quantities can be related ast
@ £° =101 1, . (2.25)
=~
where . .
e - .
- $9 1o Yype. 29pp. 3 i
[r,"1 = [r 20T, “307,7°) ... ETy 0 (2.26)
Let - - '
* *
5 I s A (2.27)
- - ~ ‘ -
where *
ot L ¢ 2, * 3. * i .
. .. [Ty 1. = [T (xg DI0T) "%y V10T xg )T we [Ty (% 0]
2.28 '
( ) o

e
Here, xl., '2.' xa' eve Xy are the estimated values of the

generplized coordinates, and




.

(2.29)

-

!
NOKOX

—" 4 A

is the estimated éo-ic’&f the end point, and is also

‘x:onnonly'refarnd to as thg control poirit. when the estimated

* * *
values of the generalized coordinates Xy 1 Xy 4 ee. X5 .are

. used.
" . 3 .
In genéral, for the initial estimates
~ ’,
*
LR . (2.30)

‘m dr A
=i o .
Axj =y (2': 31)

where the summation is taken over all the geheralized-
coordinates. - ¢ °
J\. After rearranging, the Eqn. (2.31) can be written

N

n 3r° &
i o, ., 0o
I gy 8%y =] g (2.32)
« 3= 2%y ks
- R -’f -
E P -




where the right hand side is the error term and ‘reprasenta

the difference between the specified position of a control

point and the actual position obtained u»sing1 the estymates

_ for the generalized coordinates. ’ 2 .
! . Let Ax be defined.as.a vector rep‘resenting the . N
change of the generalized coordinates and x be a vector ’

containing the generalized coordinates of the system as. shown

below: ’ 3

Ax = i ’ «(2.33)

-
s
%

u

where m is the number of generalized coordinates of the

mechanism or the number of degrees of freedom of the . ‘ ’
S 8
mechanism..

N Now Egn. .(2.32) can be rewritten as
e
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ba . %
L
ta; ] 8x = 510 - rio- (2.35)
St D
. . ~
- L. ot ‘
where [- ;i ] is a (4 x m) matrix as shown here L,
. 5 £ -
. i o* o* o* o
4 ¢ oS gt el (2.36)
% o xy 3%, -
" i

It must be noted that both,

four rows corresponding t«
point. Egn. (2.36) can b
‘e
; oio® —_‘\.
- g1 = (00,35, o,
T 3
vhexje' ’
o1 =
4x4
- [p,1 =
. [_Da] '
\ .
" .
- o 1 =

sidgs of the above equation have

ol, X, y, and z coordinates of a

e written as [8]

.

0315% ... [0,05,%1  (2.37) ‘
°

o*

i

1 1.-1 |
iz, tad T1}3™
4x4 - 4xa®-4x4

2 1 24-1
t1,%1 [l [1,%

. (2.38)
tr %1 ra1 [ 17t

vee0
Sk 50

-1
[1,"1 @l [T,
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and [Q] = [QBJ is used as in Egqn. (2.8) if the joint is ¢
revolute or [@] = [Q%1, as in Eqn. (2.9) if the joint is
prismatic. Let
.
I3 N
+ or;° .
al = [a}_( 21 . (2.39) i
-
Since g finlauy converges to 52, Eqn. (2.35) can be -
written as % R : ’
-t } - z . ~
] ax =50 -5, (2.40)
X=E T % ¥
\
where :
‘ .
1= 00,3 (5% 70550 (5,%) e Do) [5%1) (2040
4x4 4x1 . N #
. , R
. . -
In general [A] is not a”}%late matrix. By A
premultiplying both sides own. (2.40) by tal” we get -
. o*
A" a1 (ax) = (a1%(g,° < ;") (2.42)

.

The required increment in the generalized coordinates (ax} is

given as
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{ax} = [(aCA2)7F 0ATD {£® - £} T (2aa3)

The steps to' be followed for the displacement

 #Malysis are:

1. Define thé m ism using the appropriate t on
matrices to describe each joint in t‘ne mechanism. )

2. Define the position of the control point in the l.ocal and

\’ql_oba]. coorqi’nata‘ systems. .
) 3. Make an initial estimate of the generalize.d coordinates

and calculate Ein. us‘ing the transformation matrices.

4. Form the matrix [A{I using Eqns. (2.37) and (2.39).

5. Find Ax using Eqn- (2.43). :

6. ‘Update the - initial estimates of the generalized
ccordinatas as x = x + Ax . i

. 7. Repeat steps 4 to 6 until the quantity, %,° - 51°',‘

. reduces to the value ¢ which is an'allowable errors

N,
2.3.2 The Optimization Method - : 3
. In order to'solve these typea of problems [34], .

’ Lnuuny an estimate of the generalized coordinates xy are

made, where xi is 0, if the connection between (i-1)th and
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ith link is revolute and is By if the connection is : \
prismatic, and'the approximate ‘poaition vector, ’5?. is
calculated as

. - -
. . x* .
Pl A LA . (2.44)
R v
z*] i

.

\(Phere [7,%] e calculated by using tne estimated generalized
coordinates ii and x*, y*-and z* are the approximate position
coordinates of the point r;°. To obtain the unknown values
of the. generalized coordinates, one can define the objective
function as the sum of the squares of the difference betwéen
each element of the vector gs and g;", which can be
matpenatically expressed as

»

F0) = (x - x4 (y - y02 + (2 - 20)? (2.45)

< w

The.minimization of this function F (x)'will give

" the' values of the generalized coordinate x;. This solution

will be any one of the multiple.nolutions that is possible
for the open-loop mechanism. In order to ol‘atui‘n the solytion

that is.closest to the previou_u‘soluc!.on, another objective

function is defined as follows

0 K IS
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- x? (2.46) .

-

where-—g? is the(prevloua value of the vector x and m is the

iy ' total number of generalized coordinates in the system. , Thus,
2 & the final object?ve function is expressed as X

0 ‘) ' : % L

minimize Limit F(a,x) = a F,(x) + Fy(x) (2.47)
a+e

E . where Pl(g) and Fz-(g) are ‘given by Eqns. (2.45) and (?.46)
respectively, and 'a' is a vary large number._."i‘he reason for
using 'a' is that wl;en'the solution approaches the” final '

vector then F) (x) will be a very small number i.e. it will

approag_‘gero whereas F (x) in~this case will not approach
zero. These tyﬁes of p:ob;ams can be solved by the complex

- optimikatipn method also, and this method is discussed next.

& .
2.3.2,1 The Complex Optimization Method

s : ' This method [35] uses a flexible rat‘aar than a
ugia geometric simplex of points. The basic idea in the

. sequential simplex method i# to start with some arbitrary
initial values éor the parameé;ra to be optimized‘.‘

£ The steps invblyed in the optimization are given
O N

- ¥

below:




[ 4
. -
¢ .
a5
. i Sy
(i) Minimize F(x), = (xl., Xyp wven X} 5
_where {x} is a vector of variables Xye Xy, ..‘ﬁn to be
t
optimized subject to
-
A
- ) .
o v
- a, € x; < b.;
i—= i'— i . -3 ¥ J
i=1,2 oy n (2:48)
% g3 (x). 2 0; ,

» ;
(ii) The method requires the use of k > n + 1.
vertices, e;ch of which mu§t satisfy all the imposed
constraints. These vertices ma"y be initially found i)y
Vs’tarting at a point that satisfied all the constraints. The
;emaining k-1 i:cints in the f;rst complex are obtaired by

the use of pseudo-random numbers R; in the relation

xg =a; + Ri(by - a;); i=1,2 ...k 1(2.49)

¢ .
where R; are uniformly distributed over the interval fo,11.

These points satisfy the lower and upper 'bound constraints.
.

If some implicit condtraints are violated, then'‘the trial
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point is moved halfway towards the centroid of t.he/already
accepted pointn.’ The centroid X is given by the expression
/ .
4

1 i
x, == I (2.50).
c "8 4oy

‘ b
" ) :
where x', x2, ... x®-are available feasible vertices.

(1i1) The objective function, F(x) to be minimized
‘

is' evaluated at each vertex and the vertex gv' at which the
function F(x) assumes the largest value is reflected by
’ ~
computing
x*=(1+a) x°-x", witha>1l (2.51)
- .
where 5° is The centroid of jthe remaining vertices and is
calculated from } B2 =l
» *
B =R
©°= 2 oot (2.52)
& i=1. E
b i#v

(iv) If the function value F(x") < F(x") and x* is

. ,
feasible, the point Ev is replaced by 5' and atép,(i’i.) is

. ~
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repeated. If F(x") > F(x”), the overreflection coefficient

is reduced to a/2, and new x* computed and tried. This is

- rep until the dai two ively
# calculated objective function valués is less than g where g =
1075 is a satisfactory value. The c;\:he(details about this

"

method can be seen in [35].

2.3.3 Numerical Examples of Open-Loop Mechanisms » , *

In order to illustrate these techniques two
examplea'are illustrat\ed here.. First example is a planar
problem taken fr‘om [8]. A manipulator with three links was
considered in a plane as shown in Fig. 2.7. For the tip of
the manipulator to reach a specified position, the problem is
€6 deteilig tHe input angles of each link. This problem was
Isolve(i using the modlfledv Newton-Raphson method, and the
complex optimization technique. This problem was sol\;gd by

“the_ﬁrst mgthod in [8]. In the se€cond example, a = . .
three-dimensional problem involving a robiétic mechanism was

solved using ‘these two techntquas‘f An actual indu.:trial
manipulator is shown in Fig. 1.1b.* It is a T,R, model, a six

degrees of freedom robot manufactured by Cincinnati Milacron *

e o [1]. The kinematic model of the robot {byshowp in the Pig.
W.5. e x,, Y, Z, coordiates represent the £b?_&ne_r§ial
( ba\se frame. The relative angles between/links 0,1, and 3
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are .el, 6, and 0, respectively. ,T;ble 2.6 lists the 4 x 4
matrix parameters for em; system. e N
Y This robot:‘\?erfoms a task of welding a squarg ’ .
\ plate of dinensions . 5m'x 0.5 m. The position pbem;
plate with ranpec&. to the‘inertial frime is shown in the' e l
X - Pig. 2.9. - The eocrdina_tau :f somé, of the imgortant - .
+ , . points’ are shown in the Table 2.7. IrLorder to perform the s
- job, the gripper of the robot n'luut; t'.ra.ce the p:oﬂle‘ﬁ of the
plute. Por thu, forty points on the profilé ‘of the plate
» s ware !alected, in., tife position vectgrs of all these fon.y ‘s e
¥, pblnta were known, with uspecr. to the inertial frame.' For '“ ’
+ each vof thsue‘ points.the nominal joint~ angles ’thrcugh*whif:!: b}

T thé robot must be rotated were to be determined.

¢ L c ' N
. 2.3.4 The Results and Discussion of the . X % X

.., Open Loop Hechan!-ma"«" * * Gl

The ,results obtainsd by the modifi.ed Newton-kaphson

.technique and the compl.ex method are shown in che Table 2.8
for the first example. These results indicatheynge the dnax

outcmu o! bof., the methods of solution is almoat the ~ same.

- In tho second examplavt.he inpuf_ angleu for all the t:gree

u.nk- were caluulated when_the ,robot traced the pr;ofu‘ of

5 ” the plutaa 'rho n-ult. obtained are shown ip Table 2. 9 and
. Pigs. 2.10 ¢ 2 12. +Re¥ering to pxg{z‘:’xo, it is ‘Found that
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‘. rable 2.6 .
v Kinematic Parameters of the Robot~
: . R
T
Link :
! - 1 5 2 _ 3 N
6 (degrees) o) o, * 0,
* . \
. L (meters) 0 | 1.0 1.5113
L a ‘(degrees) 90 [} * -0
H (meters) . 0 0 L -
h ut
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Fig. 2.9: Location of the Plate wit.h Respect to the
\ Inertial Coordinate System
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Table 2.7 %"

LY | s \a i
The Coordinatés of Some Important Points on the Plate
s : ¥
- . Coordinates (meters)
Point —
¥ Xo Yo \ Zq
1 2.00 0.25
- 6 2.00 [ d.00
r 11 2.00 -0.25
16 - 2.00 | -0.25
. 2 2.00 -0.25
. 1
26 2.00 0.00
31J<' _ w200 0.25 0.00
36 2.00 0.25 fa 0.25
n . -
™ .
} . &
; 4
1]
' -~
) .
. o sl
» i ‘ -
v

53

S
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‘Table 2.8

Comparison of Modified Newton-Raphson Technigue and Complex Optimization Technique
- .

o
_|No.|The coordinates of Angle ©) Angle &, Angle by
the Point P degrees L ‘degrees’ degrees
(Pig. 2.7). meters . L ’
¥ o Newton- | Complex | Newton- | Complex™ Newton- | Compiex
X, E Y Raphson Method Raphson Method Raphson degress?
1 | 15.403 3.315 57.296 57.296 | -57.296 -57.296 |* -90.000 | -90.000
. ~
K 26.000 - | 0.000 .0.006 « 0.000 - 0.069 0.000 0.034 0.000
3 | 18.385 18.385 44.971 45.034 0.057 -0.051 0.029 +0.034
4 | 23.070 7.070 45.000 “45.000 -45.000 -45.000 '0'.000 0.000
5 17.071 - 1.071 45.000 45.000 -45.000 -45.bDO -90.00 -90.000
Ly : 5 v
e \
\
Y A -
- - \ @




: Table 2.9 ’

The Variation of Input Angles for 1NPoints

Position Coordinate Angles (Degrees) ’ v
© No. (meters) " T 8, o, o3 E
v Ll x ¥ 7 Sk e |
* = + ;
| v 2 0.25 | 0.5 *.57.436 288.929
3 ; 1,
2 2t 0.05 | .0u5 58.2908 |  287.750 |—
) :
3 2 -0.15 | 0.5 58.010 288.142
» ® 5
4 |, 2 - =0.25 0.4 55.870" 287.163
< s % -0.25"| 0.2 *| s1.827 284.834
" .6 2 .| -0.25 0.0 46.662" 284.063
7 2 -0.05 | 0.0 | -1.432 47.418 | 282.912%
by 8 >
. 8 | 2 0.15 | ‘0.0 4.283 47.167 283.295 \.
1 * e R - .
9.| 2 0.25°| 0.1 7.125 49.379 284.256 ¢
| 0] 2 0.25 | 0.3 7.125 | 53.996 | "285.801
< - -
] g
’
) LA N -
; M
. .
. v . - .
- * )
- . : .
5 X . ) sy
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the 1;pue angle remains constant wh.en the gripper traces the

poim‘:s 6-16 and 26-36‘. Moreover, anti—symmetryfiu observed * ’
between points 1-21 and 21-40. Also, the variation of the
angles are abrupt at poirts 6, 16, 26 and 36.° If we refer to
fig.’ 2011, it can be noted that the angle o, reaches a o
m’axim\im at the point 21 and minimum at points 6 and 36.
Here, the vat.iation is symmetrical about. the point 21.
Refering ;o Fig. 2.12, it can be seen that the angle
63 reaches maximum at peints 16 and 26 and has a local
minimum at the point 21.. Thus, it is observed that :_:e most A
significant points on the plate are 6, 16; 21, 26 and 36
where-the angles either go through a maximum or minimup} or
char:ge abruptl{. All these points are ei‘t‘nerv corners or
mid-points of the sides of the square plate. ' h -
| It is essential to note that it is always possible

to get multiple solutions in the displacement analysisd of

open loop mechanisms. As an example, when the

At

three-dimensional robotic ‘manipulator problem was solved
using mpodified Newton-Raphson tec\‘\nique, three different N
solutions were. obtained éepending on'differanf_ starting
vact;rs. These solutions for one of the points on ttls plate
(po\nt_) in Fig. 2.9) are, shown in Table 2.10. ‘Among these
solutions, the second "sol\!tion‘ is better than the other two

because this is closer to the previous configuration of the

robot, i.e. when the end effector was at the 40th point.

-
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- '
= ¥ -
3 .
\ - %
bl
N\
. Table 2.10 )
Multiple Solutions for the Position (2, 0.25, 0.5
on the Pla -
Angles (Degree) g ;
» ; [T 6, e 0y 7
i .
~Solution 1 , ™. 7.125 _330.4‘29 71.078 . i
Solution 2 7.125 57 ;436 ,‘288.929 i
Solution 3 187.125 ~ 209.571 288.929
L ,
";l‘he previous configuration of the robot was
/ 8 = 7.125°, 8y = 53.996", 83 = 285.801° 5
i v - =
- < .
i -
, 5 ®
p! - .
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But, while using complex optimization technique only the best
solutio‘n was obtained. The other two solutiofs were ’/_
elininated because’ of the inclusion of the function F,(x) in
the Eqn. (2.47). Thus, by using complex optimization ..
f_echnj.qug, one can avoid the robot links hav‘i\:g any abrupt >
motion that may give rise to large oscillations, whi:yn
undesirable e‘ffect.
It is clear from the discuusian above that the
. multiple solutions pose a vary difficult problem when the
' modified Newton-Raphson technique is uged.” One has to use
several sf_gn:ing vectors to obtain different uolutibns.\‘l?ot
example, in 'rablg 2.10, the solution 1 was obtained using a
‘starting vector {5.730,°~57.296°, 57.296°}T. It took 0.8
, seconds CPU time on a-VAX 11/785 digital computer. The
. second solution was cbtained in 0.5 seconds. The starting
vector in this case was {7.125°, 53.996°, 285.801°]'. On the
otner hand, e complex mathod. vequired 3 meconds hut it ..
yielded the final solution vector directly. It required 120
objective function 'evuluatia;ns. The reflection factor u:ad
was 1.3. The pardmeter "a" used in the Eqn. (2.47) ' - -

was varied from 103 10

to 107" so that F(x) was minimum.. In
this particular case the times take.n for each of the
soluticons in the Newton-Raphson technique were smaller {hun
the complex method but it should not lead one to infer that

the Newton-Raphson technique is always morg' effiqient than




T =

the complex method. Here, to start with, same start}ng
vector was chosen’ for both the methods. The first solution
was obtained lusJ.ng the Newton—Raphson technique and: then
ancthe/t starting vector had to be given. At this stage, the
CPU time for the second sown depends upon ‘the relative
locution of the uecond starting vector-and the second optima.
If it 1! closer to the’ second opthl\a then the time will be
small ‘othewise it may take much langer tife or gven never

conyerge. The algorithm of the complex method is .such ‘that- -

*~ ba ed on the starting vector and using the- pseado-random *

numbarr it ‘uses several polnts in-the doma:.n in the random
fashion. In this way it’ approaches t-_'he global optima. In
addition, in th‘e',comple);'method when the region near the
optima is found, the final éomplex.cougpses into/the

centroid. Thus, the ocbjective function F)(X) im Egn. (2.45)

‘would have a much smaller value as compared to tHe ones

obtained using the Newton-Raphson technique. In the present
case, F)(X) using: the complex method was of ‘the order of

713 hereas those obtained-using the Newton-Raphson =

10
tachniqud were 1076, ‘Another fact which is vorth mentioning
here is thac any i.mplicu: or explicit constraints can be /
easily )Lindled in the cpf.imi:ation methods Wwhich are gu1¢e
aifficult in either, the modified Newton-Raphson techniqulé or

- . o
in any analytical techniques. In a manufacturindhenvironment
s Y= s \

the constraints such as avoiding obstacles do’otcur, 8o in




such situationg it would be a lot easier .to use the px;lnnt
method. In ;umma:y. the present technique (Fechniques based
- on th_e qumx;;tion principles) has definite advan:agavn over
eithef the modified Negton-Raphson technique or any other
analyucal tachniques due‘to the pon\bla multiple so!unonu

and the occurence of consttaintn in prvcical problem.

2.4 : The Velotit: Anal sis _of the O an Loo Mechunisu o et
- {Robotic Manl u[ato 8]

. B @
© 2.4. 1 The Methods of the Velocit Anal sid -

e vexocity anal}s%ot rootic mnipulaton

w .

consists of det:ermintng the. angular velnlcities, qivg;\, the

‘ d .
‘eloﬂties of the gnipper or the end eftector. In,thig work

p e the velocity analyuis !.u carrlad out by two ‘hods &nd ‘is -
; S % “ %
discussed in Sectians 2.4.2 and 2.4.3. . C,
S . The first methcd uses the modified Newton—kaph-on

icechnique. The reason for using this Sr.enuve t.echnlquu is
that for a given velocity oi.}ha‘ end effector n:x.lnple'

—) P solutiona exist. This 15 because, in these cases, the =~ *°
— ‘numbar of equationsg.are leaa’_thln the number of unknowns- * -

1f, in t‘ne apeci&f case, the numbet of unknowns are 3 then’

" "tle nunber of equatlona will be equal to the number of i

. unknowns am then the exact solution can be found by solving

these equations si‘multam'o(x's'lfﬁ} In all cases, the nd}bor of . [

. -
e -\ . s
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e ] ' ‘ S
“equations are lhreq which are due to the three compdnents of

t.ha velocity of tha end-effeator. # i
X In cha naxt uectiun, Section 2.4.2, the numarlca).
' me(‘.hod is discussed and in the Section 2.4.3, the axuct

uolutian for thq robotie manipulator having three joint

anglau ura obtained by solving the equations simulta: nouuly.

- . S
ye ’ * ) % : ‘ / e
2.4.2 l'hc Modified Newton-Raphson Technique L 5 " ,‘
¢ ot In the Section 2 3.1¢ the displgcement analyais oi
5 a robotic mnlpulator wu carried out using the ‘madiﬂed .

x & Newton-Raphson Techniqua. Recalllng Eqn. (2.4) which defines
Ef.he position vactor -of a go:l.nc with respect to the lnertial
,frame as ‘' . : . - 5

. 4 . .

£ coglerrtig (2.4 )
B » ; .

.
.

" . chc velocity of tﬂe same painﬂ i‘i , is obtained by ‘
dunnnthung this equation with’ raipgc n‘\um. At this
point it nu.t be noted that, [T ] is. J"}'uncuon of x;, x

- Xy« Thegefore, by the chain rule for dif!gnntlntton we
Igets o i B




T . 5 s
 J v " - L
. . £ 4
L4 n otz m - 2
.0 % o . - ¥ < o o
T f{-:l E‘;- *5 Ex _551 Py*3z meix ]
. .
> : - v (2.53) }‘ 5
- iy F
- ’ .
: ~ k X /
whereaw. = I D, k. is the velocity matrix for link i.
I = T ‘

After the displffcement analysis is completed, the

*
r; can be defined as 51° and the above equation is written
as

L : Ju
~ . -
t ‘ 55- 1 ot g™ T (2usaye, f
, 5 LEC = %, r .54)%,
T )
o 2 N - .
But from Eqns. (2.36) and (2.37) " ‘..




R 3
- = s ™ e D .
- . 3 6
. R s X s * -
4 7.,. )
o .
- ?r. -
v AN = F (2.57)
4 - N - ’ .
Vo ’ ; .
g 5 55‘0' ] Fon
¥ The quantity [—5;—] was defined in Eqn. (2.37) and is equal
X 5 = .
to the matrix [A] which was previously used in the o
'dhplacement analysis. The Eqn. (2.56_) now bécomes R -
= . & .
- T Lo . 0
9 § s v £° =[] ¥ T (258
» - ® R = ¢ o W
’htiplylng by [AT] we get Q, ‘ \\
? . ) . a2
. : B - ) *
< 1" £ = [a27CAd 2 (2.59)
' )

. 5 .
So, ‘the angular velocitigs can be obtained using

’

SE TN (SLS) e P L ‘4 (2.60)

) ) B . . v 3
ki A . . .
Referring to the Egni (2.60), the vector (%} .{s the «~

[ ] ¢ . s
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velocity of’ the joint coordinates, i.e. I:he anqulat

-velocities of* t;he links c‘t‘éhe linear va;ocity in case‘oi a
prismatic joint. This can iae—'eusily calculated because the
vector f is thf‘ sfecified velocity of the epd effector, the
other matrlc‘gs -»ix‘\ tqn. (2.60)_have already bean.calcu].aud

while carrying out the displac:ment analyﬂs and can be

stored in the computer memory.

L. ) N s ’ a
2.4.3 The Velocit: lysis of Mechanisms with Three
£ d < = L.

Velocfty analysis Ezr.\a R3 m‘odel robotic
maniphlatb:‘can b{ easily ca_rrfed out analyt‘icn‘lly,_ since the
. number oé unknowr; components of the angular v’elon:'ithn- and
& the number of unea: equattona are equal. The kinematic
mode),aﬁ T3R3 robot is shown in the .Hg. 2.8
The posh.ion of th?end affactor of this mbot can

be given as [36],

i x = 1; cos -ez cos 8, + 13 4:0-(6z + 05) cos 8,
Y=l cos 8, 8in=9, + 15 cos (9, + 03) sin \‘el

z =1, hyno, +1; sin (b, + 6,) (Z,.f'}‘\)

»

; : s . :
Here 1, doa‘k not octur because it is a fictitious link. for

tiating éhn above
'

afhctor can’ be obth&n d by differ:

thh pnruc%u: rabot. Then, .the \Iioclty of the end .

f




' The above form of.'the velogity equation ‘¢an be
> 5

= - N

- equation-with respect to time and it %an be written as

% = - [1, cos e& 8in 0,*+ 15 cos(8, + 8,) sin ‘91} 61
L.
A - oA A
[1z gin'ez cos 6, + 13 -in(ei + 93) cos 91] oy
; . s

: - [1; sin(6, + 0;) cds 6,3 53, o g s
¥ = [1, cos 8, cos 0, + 13 cos(8, + 8,) cos 8,1 8, -{f -

- U1, sin 0, sin 0, + 1, sin(e, + 85) sin o)) o,
" . “»
"-/R; sin(6, + 6,) sin 6,1 8, .

t = [1, cos 6, + 13 cos(6, + 6;)] 32 ‘.- g

Y
' ' + 1, co-(z +0501 0,

T

itten (n the

matrix form as &

1 ) o
P x V12 Vi3 ¢ .

¥ Y22 va3

: Viz Va3 5 A

.") -
.k(l '52 /



where the expregsions for vl‘l' see 12 Vygecan be seen in the

Appendix A‘. Egn. (2.59) can be rewx’ittan as

s N a1
1 : R
5 1. o L] 0>~ 0 1
L]
9 i M2 Vis %
= - . ? " (2.64)
.| var Y22 vy ¥
: .7
9 Va1 32 V33 4l
~:a 5 3
=
" Thus, the veggor 9 can be easily obtai‘rged.
.| B Ty *
N ' 2.5 The Acceleration Analysis Of the Open Loop Mechanisms
(Robotic HunIgu].atora& s
¢ L 2.5.1 The Methods of the Acceleration Analysis
. Similar tosthe velocity nnui’is one can use the .
- . . #
numerical tachnique”u .to obtain the jcins. .accelerations, and
if the number of unknowns are three, then qi; can-obtain thi
» 2 . ) 3
. exact \golution by simult solving th t
. a 3{ ' an_{nu\l\\y uol\v ng ucgalura ion
equations. The two met%, s*before, ake discussed next.
< D) 2 - 2
. LI 2% i . 2
“ 5 T o ~ : .
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accolcrluonl of the end effector 1n tha global coorv-ate

7 -yn.--.

t_fu acceleration of .the end effector becomes [8]

Differentiating Eqn. (2.53) with respect to time,

(2.55)‘

Diff.tcn‘tiatlng the Eqn. (2.53) with respect to ij’ one can

write [8]

4

N

t .
Therefore, . the first term in Eqn. ,(2.65) becomes

¢ .

n at’ "
x
s ot 3" 3-

oy Xy ‘1

~ /

(2.66)

(2.67)

r

’

<

o .
By substituting the value of g,° from Eqn. (2.53), the second

- term of the Eqn: (2.65) becomes,

I
1-1 Yo1 °"j

([DkJET g 4

e 2y
L]

o

(2.68)

e



1 N

lm g - E
~The partial derivati £ (LD, ILT ith t t
par vative of (LD 1[T,"]) wi ‘raspe.c kixj has

been shown to be [8] P N

.

3 ,' ( gy SR T 5 before %y in [';‘01]
&, (o, 10T "1) = [D IIDIET, ) =y v
& . [I’j:J[Dk]l:'l'Q 1 if xy occurs
o \ : P » before 'x, in [Toi]
. . B ) s
(Z.69)
'l“nu;* the linear accelffration can be given as 3

b r ey Tk £l (20
BT Pl nas T L It '

Writing Eqn. (2.70) in the matrix form and-'using Ean. (2.41)
> ;

one can write : . p * L.
N

r L

.omom —
where [DD] = £ & [D] [Dy] %, xj . Multiplying
=1 k=l ,

Eqn. (2.71) by [AlT yields:

" .
€al® £,° = (a7 (A1) x + CA1" (oD £,°

7‘[D)'(J[Dj]‘['l‘oi]_ if x occurs

£,° = (Al x + [00] g,° ' . (yl)"
5




O

Eqn. (2.72) can be 'olv;q‘.for the angular acceleration 5 as

2.5.3 The Acceleration Analysis of Mechanisms
with Three E.graen of Freedom

3 = (1700 a® tE,° - [opd £

’

3

72

(2.73) «

Accolarutlon nna!.yl!.s {ot a’ T3R3 model robetic

-munipulator can also. be e!uuy datived from the velocityl

equations, Eqn. (2.62).

Di.f:e:enti_at!.ng this equation with

respect to time, the acceleration equations-.can be written as

%

X == [1, cos 0, sin 8, + 1; cos(s, +83) sin 8, 8,

e

nj N -
[152 sin 02 cos 91“+ xa sin (02 + 03) cos 91] 8,

[1, sin(e,

2[1, sin 8,

201, t:cn(O2 + 3)3’ .‘ cos 6,1 52 0.)

201 sin 0, .muz +8

‘+ eav)fcon 8,1 65

301 8 93\.

[12 cos o cos azl# 1 't:o-(e f+ 0,) cos (Y 3 e1

a

- [13 col(Oz + K 3) ‘cos .0 it 03

» 3
P [12 cos Bl cos "0, +7‘"3 qp-(Bz ¥ ) cos 0,1 Oz

- o .
sin 8, + 1; sin(e, + ¢;) sin ;] 6, 9,

~



N 73,
7
= [1, cos 8, cos 8 + 13 cos(6, + 8,) 'sin 6,18, f
- [i, sin 0, sin 6] + 1; sin (8, + ;) sin 0,3 8,
. - ‘e - . w ¥
- [15 sin(0, + ;) sin 0,1 0, ) p ) g o8 #

[1, cos. 0, sin 8; + 15 cos(6, + 0,) sif 8,1 6,

o 2
[1, cos 8, sin ) + J.J\;oa(92+ 83) sin 0,1 o,

[1g cos (8, + 05) sin 0,1 0,2

- 2[12 sin 02 cos Bl‘+ 13 s}‘n(ez + ,‘83) cos’ 01] '01 92

2[1; cos(8, + 63) sin 6,1 0,0, ’
7

)

1Lt e
. - 2[1'3 sin(6, + 0,) cos 0,10, 0,
' ’ (2.75)
" 1\4 and | » -
z = -[1, 8in. 0, + 1; sin(Qee+ 0)] 0,% = 1, sin(0, + 9,0, 6,
) A 5 3
'+n[lz cos 6, + 1, f:os(a2 + 93)] 8, N ‘.
C e . : - . L . ‘ -
N - [1, cos(0+ 8301 8 - 15 sin(8, + 6506, 0, R
. J a2 -
" . -="1; sin(8, + 03) 0,
o0 AT " - )
~ s . . (2.76
B o i o "
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3 -
i The above equations can be written in the matrix
a form as b ot
. . 1 1 0 o [ 1
i .
- = M R Ay Ay &1
- - L -
4 8 LETR 7Y LT Azg C (2.77)
4 .
] I
i = Ay Py Pa3 , Paa] [0
. J B Py ol
¢ Since the left hand side of the aquau‘ is known, the =~
Pnngular accelerations are o_btained as A
- \-\ -1
’.
1° 1 (] 0 0 1
T £ . ) B
- % A A Az Az x
b 3 L % 5 E
F . s = : 2 . - (2.78)
o ?‘2 : Ay Ay A3z A3 ¥ \V 2
%3 Ay j Ay Ry By

"l'ha‘axpreui‘on- lf:r A21' ]\22, wan ,_A“ are given 1‘" the

Appendix A. _ & .




2.6 Numerical Examplé

The two techniques for obtaining the velocities ahd
accelerations are 111u;t:a’4£by applying them to a T3R3
model robotic manipulator. If tl;\is robot is subjecte;l to a

task of welding a square plate, the end efféctor moves with

constant acceleration unf.il the required velocity is reached;

then the acceleration’'becomes zero. When the end effector  is
about to finish one sid £ the plate, the vqlocity starts
decreasing with a constaft deceleration. This velocity -
profile shown in Fig. 2.13 is repeated on all the four
sides. i ~ . v

The angular ve{ocity and .acceleration results

"obtained by the modified Newton-Raphson techniqué and the

asaet. sslition Metliod Wers the sips &pa sre: shol i

Figs. 2.14-2.19. Th,"displacement analysis results for this

problem were shown in Figs. 2.10 - 2.12. »The displacement

anAlyuiu resu.:lta showed .abrup® changes or maxima or mlhi.ma ur_
4

tho corner points or the mid-points of the plate. The, ['\

angular velocity results show chiu type of bnhavior not. only

"~ at.the above mentioned pa’lntu but a at. polntu where thé.

end effector velacity undergoen uharp ‘hanges. 'rhe angular

acceleration r:ju/ls’lrﬂ) show a similar patt.ern.

P N
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mechanisms were analyzed. Bot‘n, the Newton-kaphson technique

2.7 Conclusio:
In this c}:aptar, the kinematic analysis of the
closed and Open loop mechanism was carried out. At first, 5

the’ disp‘!.ncemnt ll;g_lylh of the planar and }htee—dimniional

closed loop mechanisms was done -and than the open loop

und tha,optimuat.i.on.pzinciplau wero used to solve the
inveue di-ylac.emant' analyai_s grohlam-. slnce the ‘:obaf_ic
mni@ul#toh-nu open 1éop mechaniums‘, f.he valo‘cit;y and the
acceleration nnalysh was performed for the open loop
methanisms only and in these analy-es the solutions were
obtaineq analytically as. well as by uling the modified

Newton-Raphson technique. Based -on the ‘vo‘rk carried out in

M:Hapte‘r, “the following conclusions can be drawn:
1. The Hooke and Jeeves method ca'n. be. succesfully used to
parforfl the dilplacamt‘analyail‘qf‘ the planar and space .
.cloued loop. mechanisms. . N i
5.. 'mc complex optimizutlon method can yield better solution
as cmnparad to'the modified Newton-Raphson technique for
u‘él.v'l!.ng inverse displacement upaly-is problems involving

the robotic minipulntors.

w

If t‘he open loop mechanisms or robotic manlpulatora ‘have

“three degre: o! frudom then the exact values of thi

angulur velocities and angular accelnrnuona can be P&’\

obtained.



e

The modified, Néwtcn—‘Rapﬁaon technique or other numerical
methods such as the optimiiation principles have to be
usgt{ in situations where the degrees of freé‘dqm are

differint from three, 1n‘space mechanisms or robotic
2 TS s

manipulators. ° — : i \ o

~
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CHAPTER 3 ° "

THE DYNAMIC' ANALYSIS OF THE ROBOTIC MANIPULATORS

3.1 Int“x’od‘uction . %
) : In thi_u i‘nven'ti'gation, th‘e kinematic and dynamic |
Ana}ynis of"t}:e robotic ngan’!.pulatora are carried '_dut by—fint
obtaining the’ ppsitions, ve‘lor‘:ities. and the accelerations of ‘
the various links in Chapte: 2, and this 1n£ormation ia used
to ar.udy the - dynamics of these ‘type of syatems in this
chaptsr‘ In ordinary structures, the sy‘atem dynamic matrices

73
depend upon the 'y and other h “ra‘l porperties of

T its componénts but, in the case 92 robotic manipulators, the
angular orientations, velocities and accelerations also
_contribute towardn these matrices: For example, the
utiffnas\ matrix is expredsed as a sum of three mt:ices, one
of which is the aczuctural stiffness matrix. ‘and the other '
two depand upon the kinematic paramete:s. To -evaluate the.
structural stiffness matrix, ‘the spatial orientation of all
the links have'to be known. Therefore, four new met_hoda of '

’ finding the matrix of. .direction cosines of the local axes are
discussed in the Section 3.2.6. The study of the varsation
ot the nu.uta!. frequencies -due to t-.ho selecuon of the design

parangtau is discussed.in Section 3.3.° Finally, a %

.
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(R )

comparative study of the n /of dynamic ion of

the .systam matrices is carried out 1n1saction 3.4,
< ; :

3.2 Formulation of the Dynamic Eguation of Motion
-3.2.1 Lagrange's Eguaticn . \ ?

The genenl fotm of Lagra‘mge 8 equation for a

system with n indepepdent generallzed coordinates % through

is axpressed as |

KE is the system kinetic energy in terms of the
generalized c'oo:dinates (xj, )\j):
PE is the system potential energy in terms of the

> 'generallzed cooédinates xj, .

Fi is the generalized force.

Now, this Lagrange's equation is u\ntten T“for each individual

link of the robot separately, " 1eavinq the inter-joint

constraint EQrces as unknowns. '




3.2.2 The Link Kinetic Energy: B
The translational kinetic energy of the gth grid .

poim: (node) of the ith 1link is given as

. ) , , s
g come = By DGR 5907 + (2007 = Fmy vy 9y )
/0 (382)

i o ] |
-~ . o — |

| where, my; is the mass of the gth gria polnt of the ith link:

\ ii’g. ygg, i‘;g,qre the absolute velocities qf"th? node with

\ respect to the inertial“frame in the X, Y, and 2, direations -

“"renpeccizely; and_ivig] is the velocity vector of the gth

. \grld point. The rotary inertias of the individual grid
points are neglected since it is a common practice in the
= dase of the dasi_-jn of robotic manipulators [1].
1f ‘the uul;al form of the kine‘tic energy‘,

m{v)"'[v . is used then, the terma that regult from
Lagrange' 8 equations have. the undesirable characteristic t‘har.
the time invariant portions of th'e terms cannot be separated

. from the time-varyix’ng’partl [1]. 1In order to accomplish the
task of writlng them sspa‘rately, the, kinetic energy of the
. link is expressed in, 2 £form slmuar to that proposed by

" uicker [18] which is written as




I i
88«
i 1 It -
T . (KE)j g =5 myg ’r![(vig)lvig) .J (3.3)
v
. where, ’l‘r[~[v.ig)[vigl1‘] = the sum or the ‘r_lilagional terms of >

the square matrix [(vié}(vig}T]'. which-is mathematically

expresses as i - =
: G T X
2 o
g o 0. 0 /o .0 - a
2
o 2 / %y ey
T
. E{visllvigl ] . / ey 5 (3.4)
» [0 zy 22

The total kinetic energy for all the grid points on the ith
/

. link can be given as %
2 o

- 7 NG(i) /NGy T
- (KE); = (KE); /= 5 my . Tri{v v 1 (3.5)

. 17 h 197 g0 2T ig!Vig
/ X

where NG(i) ‘is 7\49_ total number of grid points in the ith
; -

1ink. // ®

3.2.3 ’rha/ Link Potential Energy

/ The potential energy for the ith link associated
d . i
with tHe structural elasticity is given as

Lot o n N
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. . ., NP(i) NP(1)
; O | 33 =1 ;
(PE) " = 3 (g} [ky{p} = 3 i o5 (Kigy)1 Pig Py

L " (3.6)

where -pi .h the elastic diapla_celant which is assumed to‘ be
inal;. when compared to the overall link dimensions Fnd )

(kygy)s is an-element of the stiffness matrix used in the
inite element analysis.

| The .potential energy of the links au-e to

gravitational effects is given as
. 7 i

G § "o
(PE){g = -my (g, f“x’g +g, y‘;g +9, 23 (3.7)

where- - Say

2, (l’z)1g is the potential energy of the gth grid
, pcrint of the.ith link:_e}: the gravity,
:}\-ig is the mass of the gth grid point of the ith

link

Iyt 9 . q -are the acce‘eration colnponem:l of
gtavity. o »

In this work it is ass
.:gl = -9.81 n/uc because the glnbal. x + and Y axes lie in

sumed that 9y g =0 a.nd

the horizontal pluno. x2 . Y3, ' 22 aYc thc ‘inertial .-
dg! Mg 1g.




coordinates of the gth gri

d

pqgggr4n the ith link. As

-before, this expréssion can also be written in terms of the

trace of a.matrix for example,

"be expresaed as

@y = -myg ({5} ol

1]
[N 2

o s

R S
-9.81 m/sec?

(3.10)

@




P ’ .
f’"\ .
Q‘ e, NG(1)

we)§ = - gfl'- L Tr({ri;HG)T) (3.11)

]

- et

The total potential energy is' the sum of the potentfa
enetqiea due to ther elaiticity anc}. the gravity ‘which car be

| @expressed as ¢
DR . TR -

B e (eE) = (eE),® + (2B

e 'l‘hus, “the xinetic and potential energy expressions have been
« obtained in terms of the elastic displacements. pip' which

_are “also known as perturbati.on coordinates [1].

“ .. 3.2.4"%ne Equation of Motion of the ith Link

k The equation of motion of the ith link can be

obtained from Lagrange's eqution as

- B(KE) § 3(KE);  d(PE)y

e a _ &
o e " opy, %Pyq %y,

£14 (3.13)

g =1, 2, ..n’, NP(i)




( . . 92

N
NP(i) = number of perturbation coordinates

= 6 x NG(i) '
By = elastic displacement of a node in the ith
_ - 2 . . " ,

- link
% " »
Substituting the valués for the kinetic and

potential energies in Eqn (3.13) and carrying out the

differentiation, the resulting equation can be written as

il w ’ ) j fis o
’ Nr(i) “ Ne(4) . NR(e) .
oy MepPipt E Fiap Pipt I Kiap Pip = fia
. 5{1 . . ) a=1,2, ..., NP(1)
- . T Gas
where
‘o
- mygp. = T, (L7100 g1m "] C(a.18),
In t.‘h?.s\ equa’tion’ i }
. . .
’ ' NG(1) \
w . - P
Diegl = I Mg lolg,){oigﬁ)‘ . (3.16)

- e




where
logy}
s
" - (o555} -
(o515}
and
{8414}

F o
; = (s},
°

o a3
o
0 = log} »
1

L O

-0
; = (o),

[ ] :

{o4,5) = log16) =

Eqn.- (3.20) <represént rotation along the

* the local axes.

The equations (3.15) to (3.20)

the general form as

© o oo

x

‘m' Ym

--93

(3.17)

(3.18)

(3.19)

(3.20)

and z axes.,

can be written in




simply, replacing f by « we get the terms for {’isu" Here, \
3 s i el

9%

Moyl = {0y} for 8= 1+ 6(g-1) .
= {o) forp =2+ 6(9;1).

’ = [o,} for 8 = 3+ 6(g-1)" At
= {0} for other values of B _

\ \

@ and,B are dummy variables.

In Eqn. (3. 16), '“J. "is the mass of r.he gth grid

po:\.nt of the ith link. o

where

'rhe damping term g, 8" in Eqn. (3.14) is aaﬂn&d

rgpg =T [T 207 M09, 0008, 6.3 ‘(3.2
Shap = Te 1.0 2006 AT1ep 11013089 -22)

1 = r 3 Meaend )3 sen

=0 i

Bj = angular velocity of the jth iink, and

NL = total m‘mbor of links in'the robotic g

j munlpulato}
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The stiffness term, Xyqp im Ban. (3.14), is given as
ﬁ Kiap = (Kigp)y * Kigply + (Rigp)s (3.24)

where

‘("1:9)1 is the u;rek\ 1 ional finige» 1

stiffness matrix term, 'v
NL NL i oot gt .
(gqg)y = T'[jfl. = [TOV][a“a][Uuk]_ o 951, .(3.2_5)‘

- where
[“1 a['r
o, 0 =
v rp 31 "j-l e “t-a. rid 3 2
Coe, “?Si_]_t"'i gt Um ek
= Lz X 1][—¢—]E'A‘k1"1][—j—][1‘ 4 mq
=0 ;,: 5 4ee% b T (3,26a)




where. §, = angular mc’el,encxog"of the jth lipk.

96

Eqn. (3.26) can be further simplified by using the Q matrix »

differentiation concept i in Chapter 2, so we can

write

. k-1 s ]
0y = mg"ntomi_lnom,t_lJ Jekei

tp XL -1 i v :
= [T,*"ICQllT ][q]r_'r__‘_ll k<j<i .- (3.26b)
* ; k-1 . d ’ .
e P 4 @ .
=0 j> i or k> i

The third term in the Eqn. (3.24) is given as
A

e oy L3
(Kygp)5 = 10 521 (LR TS [0 L 25 N C 1))

o

W

- The force term £, is given as




y ki 97
| £ (g)y (807~ (£, + (8 ), (3.28)
y where, ¥ o .

(£4,); is due to the eltarnall’y’ applied forces and

0 s ,:tc:que- including the inter-link joint

cofstraint forces,

\

3 ; ! NL NL i g 2"
o , (Em)‘2 = 'l‘_[jEl kfl ['rn-:![au][uuk] sj 0 . .7(3.29?
- by W 8 . g Ly |
“ ey = ni r OnaragIcu, 1T 69 3
- ial3 = T 121 To Ta Y13 7. -30) .
( . : af“,”' reo- . .
S (ﬁ[" =T oz taen D) (3.31)

To ":alua_n (fu)z, “ﬁ)i and (.ﬁ“)4 one t{ua to evaluate the

" matrices [3,,] and [M; ]. These can be evaluated using the’

. following relationships




NG(1) ' T
L334 = 921 my {9540t Byg) (3.32)
’ NG(1) T %
[ I o5 Pl {o3gqt{al”. (3.33)
whe_te: | ] R ] .
5 Tr
: P s x ) '
. g [big) = s = (3.34).
. ] ¥mdig” :
. (zm)ig Ir
= o N
_1.6‘ the positipn of

is a constant vector r
the gth grid point in the ith link. Thus all the terms in
the Eqn. (3.14) are defined. This equation ¢an be simplified -

based on certain approximations which are explained next.

3.2.5 The si ii'\f ion of the Scalar Equations :
The direct implementation of the scalar Eqn. (»3/.14)
can be extremely difficult due to the iarge amount of
calculations involved. Herce, a very i:mpo'x'tnnt mz;thsmu{ical B
tool called the ‘matels dotiproduct is used to simplify this

equation. ,( P .
¥ ki % ' 3




To begin this ‘simplification, the coefficients of : .-
—
the scalar equation, Eqn. (3.14), are written using the

matrix <ot product notation, which is - w5 . T

migp = T L7, 09, 207 1] = (1m 2" 0m 00 0]
8 S e

" In thls equation, each of the three matrices’ [T i

' . [Jiﬂﬂl and [T ] have been :ewric}:en by cyclically

-pemutnting them which is a valid operation when the trace of —
the product of -these matrices is required. -This equation can

.y
be further simplified by writing ‘

\ 5

(T rele;1700;051] = 16410 09, T (3.3)

where

teyT= rr M1 s ey 1t - - (3.36)

and @ is the notation for matrix ‘dot product. In general, it

can be defined as




- 7 [aletel=tr ((A17(B])

100

(3.37)

Similarly, the damping term can be simplified by writing -

- 1 T
ey = Bel 5, A0S0, 100 1 ]

|
s 13 “

w el (T 2tuy,1%er 1 6
. =1 1y )

[Jupl]

4 st
=Tr ([Di]T[Jhp]] e [DiJO [J“B]A’\ )

\

where

& NL .
[py] = jﬁl‘ 2[cy4] 04

feyyd = [1, M1 0u, )

(3.38)

(3.39)

(3.40)

Using tﬁe same procedure as before, one can write the second

stiffness term as BN g

»

.
\

o NL  NL . _—
(kggpdy = Trl £ 2 [T,7103, 46700, 3 17 040, ]
L3=l k=1 £
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NL NL o IR -~ )
- Tr[(jil x:1 Uy 53" [7570 04 ?k) [3,5] . (3.41)

= 1el0E,1709; 1] = [E;1O 13,00 -

where,
* [‘ NL NL [j,_ ] .. ; ;
~ - [E1= T I’[e () 3.42
_— i jol. k=1 A3k T3 UK ) ;
. g T ° .
. SR P < R TSR I (3.43)

~ 3
The acceleration term in the stiffness matrix can be

expressed as

\ -

N -
(kigp)s = 'l‘r[jil [T, 109, ,530U;41° 841
NL s .
“ S Treiiy b
Tr“j:l [ug 4170771 aj)cahﬁl]

\ : .
= we(1r 3709, 4p1) = [F,1O 13,50

: A

. N
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o
where x N
- oot
CeyF= & [c“]/e. (3.45)
v = 3=1 I
B similarly, the velocity and scoteration dependent force S

.terms are given as E

> . -

# ; NL NL i T . i E:
. (£,05 =1.[ jil I [ 009 o300y 53 37 650, ] = [E{IQLI ] ¢

! N\ (3.46)

3 WL 1. ' T B =
(£0)q = Tr[jilm‘o 109,300, 517 851 = (P 1003, 1 (3.47)
X ’

. Thus, it is obvious that the force terms can be obtained, -

» using the already “defined matrices from Eqns. (3.42) and” s
(3.45). . . ’ ’
The advantages _Df gsxg‘»re‘asing thé coefﬂci‘ents of
the eystem equation in terms of the dot product notation are:
e i) the calculations ax:e considerably reduced and ii) some .

Amportant propositions can be made.




The £irst advantage can be distinctly seen by > g

noting that the calculation of the various terms under the

ion sign W to £inding the dot products
mvomng the fobr matrices [c,), [D,),, £E,] and [F 1 vhich

are same for all the nodes of a given link. The second

v s
advantage can be realized by proving an important proposition

that the terms in the mass matrix are time-invariant and
represent ..the lumped element matrix of the finite element

anhlysis l:echnique; The proof of (.-_‘his. assunption can be $een

n L1l K

’k’ha matrix form' of the simplified scalar equation

can be written as
- q

Tmy 05} + Loy Ty} *’Fk](pi} = {£,) . (38

- At this point one importantcharacteristic of this
equation must be noted. The Eqn. (3.48) is the dynamic
equation ‘Of the ith link in the threerdimensional space. The

force vector “i} contains the unknown interlink joint

constraint forces. These interlink joint—~constraint forces

- can be eliminated by ‘mssenbling all the 1link dymmir_; w

equations. But, before assembling them, each link equation .

nust bﬁ‘writ;en in terms of the global coordinates. For this

purpose, the nass, damping and stiffness -matrices mu’;t be pre




natrix [37] will be discussed in the next section. .

link are traan ormed £rom the local coqrdina?\a system into

“the global cootdinaté system. Representing the local set of

and post multiplied by the matrix of direction cosines, so

that the nodal quantities like the displacements, velocities,

etc. are oriented along -the global coordinate system. Some

of the important -techniques to gbfain this transformagion

3.2.6 The Methods of Obtaining the Matrix of P L B
D:.recr.icn Cosines. of Various, L: nks % . 0 t
Since the robotic manipulator is a space—frama " )
a;.ructnre, one has to deeemim:‘nree direction ; 7
cosines of a.given link to carry out the finipe §lement
Analysis. The method™ cbmo{xly used [38] involves ‘the ube of
the Euler angles and the‘rotat‘io‘n about three separate nxgé.
There are two ways of cax:rying ;ut this process which are ' ’
called Y-Z-X fransformaton and Z-Y-X Transformatidn. I

these transfoxmatxona “the coordinates of a point on a qilen

toordinates by (x_, y., ) and the global by (X,, Y. 20). p
the relationship between these two sets can be written as -

Xy Yo Zgr 11T = [Txy v ‘m';‘)‘r (3.49)°

-~




v

! = 13
[rl = my m2 ™3
T
of L) "3
. 0.y o 0

‘In the Eqn. (3.50), 1,, m, n, represent the direction

6 - i
cosines of %he ‘local x, axis which rotates with the link.

“Similarly 12,-m2, n, “and 13, My, By repesent the direction

coaines of the L and z axes raspect.:l.vely.

The iast column

elemenf_ xB' ‘1 and Z are the componenta of tﬂe positon
»

vector of the origiﬂ ‘of the* link coordinate syacem.

The

local and the global coordinate syatemn are shown in the

Fig. 3.1. From the displacement analvis carrled out in

Chapt.er 2; the ceordinates of the end points, A and B,
The direction

. the link in the 1lobal,uystem are obtained.

cosinea of the x, axis shown 'in thée Fig. 3.1, can.be obtained

by using the equations

of '
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Y, - Y '
B A
m = (3.52)
. 1 Ty
x 3 )
-
." n = (3:53)
) . .
with R i
; , 2 a2 a2 :
Ly =\ (Xg = X)5 + (Yp = Y07 + (25 = 2,) . (3.54)

i

To define the stiffness, inerf.yia gx:opetties etc., the major
and minor axes of the link-should be known because it can be
non-—symmettical in the gsneral case. Therefore, one needs to
+_ have the coordinates of another point P (shown in Fxg. 3.1)
in the global ccordinate system; the restriction on 'the.point
P 1u.hhat it should be in the L A plane.
. In the Y-%-X ‘Transformation, by a successicn of
‘three Euler angle rotations, the global axes are made to
“coinclde with the local axes in the gense. of the directions
and a tnnslntlon is needad to shift from the origin of the
g).obul coox‘dinate system to the l.ocal. coordinate system.
This method .is given in'detvail in the Appendix B and it is a

fairly lengthy one. In this method, the matrix [T] is




obtained as a product of three transformation matrices which

can be mathematically written as f

- Il = [cu][CB][;:yJ (3.55)
) -
where a;  and v hive been used to identify these individual
matrices. The details of these matrices [C_1,. [c,d and [c 1
are given in [38‘_] . i - . .

. The prablem of ﬂ.ndxng the directicn cosines of the

Yo and- Z axes can bé’ ‘solved by four other mathnds whlch are
simplet than ‘thé:one mentioned above. ’l'hese four methods .are
discussed now. i v "

In the first method, instead of using three
rotatlons and a tranulation‘,k one can.make the global axes
coincide with the local axes in one rotation, and one
translation. ' The'translation vector is the sape as before.

In Fig. 3.2a, x'-y'-z' system is obtained by translating

X -Y -Z_ system and then this x'—y'\ system is made to

o o o
coincide with the x -y -z system. This is possible by
defining an axis through the origin of the x'-y'-z' uyuiem.
The process of t‘.gia transformation is shown in ':}L&Pigs._
3.2a and 3.2b. Imagine a point A' on the negatlve pide of

the x' axis which can be totated about a vector S in upace 80

t'hat nfter 0 degrees of rctation, it coincides with the L
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Fig. 3.2a:

Transformations RBllting tha Local and the Glohll
Coordinate Systems .
i
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point A on the X gx/i,a»./ This rotation is shown in the Fig.
3.2b. In this transformation the line A'B coincides with the
line AB after © degrees of rotacion and this transformation

- is along the uurface of a cone. If k . xy and k represent

the direction cosines- of the vector s then this unit vector.s

can be~written as W e

I\V l; X 'i( g
S=kdi+k] ARy . (3.56)

5 ” A Ve
where ’i, j and k are the unit vectors alonq the axes x', y'

and z' respectively. . The coordinates of the point A in the

x'-y'-z' coordinate system can be wElttan s x X Y,-Yjand
Z,-Z;. Similarly, for the point P it will be X=X, Y,-Y, and
Z,-Zy. The coordinates of thesé points, A and P, can always

be calculated in x Y2, SYstem. Since the angle on (t.'he
aami—apex angle of the cone) between s and BA' is. the samé as
S and BA, one can write

/£ —

- % a ~
cos ¢, =8 . BA' = S . BA. (3.57)

/ Here, the "symbol A represents a unit vector.
It should be noted that the coo:dinutea of the

points A' and P' in, the x'-y'-z' system will be the same as

the coordinatea of the painc A and P in the x -ym-z system,
°




\

and these coordinates in the xm—;}m-zm system can be

calculated since their coordinates in the X,=Y,-Z, system are

known now. Therefore, the unit vectors BA, and BA' are

known. Thus, Eqn. (3.57) using the last equality can be
/‘,written aa. ) . '

Ko (Ly, = 1) + Xlmy, = my) = sk, (ny, = ny) (3:58)

When this.process is carried out for-the point P then on
A 4

write . v o ' %
Ky (g = 1) + Xplmi = m) = =k (n o= ) (3.59)

. . \
Solving for ky and k in terms of k, using Eqns. (3.58) and
(3.59), one can express the‘unit yec:& s as

a ~ A
Ked o+ k3 + Kk

~ ' 5
s = %ﬁ (3.60)
+ k, o 3 .

: ~
Thus, the direction.cosines of S are known. The angle on is

calculated from the Fig.‘ (3.2pb), where one can write

Yo :




113 Yol

1 1

5 (A'A) 5 (A'A)
= -Ein%.l_T_=2____ 3 (3.61)
N ! BA sin ¢, ®

.where the angle ¢, is_obtained using Eqn. (3.57) and A'A can
4 < A r f

" be obtained because the coordinates of the points A' and A P
' . are known. The direction cosines of x";‘-ym-zmuystem are
o 4 SbEELEEd ERoN ue atrix equality given by [9]. .
3 11 1.2 ].3 0| _ . &
L] mo my my 0| - - E N
i, n. n 0
1 2 3
Lo o o 1 (3.62) R
kxkxveru&vcoae kykgversa'szi"e kzkxversoﬂiysine o
k k versotk sind Jejrgversotcoss  kk veras-k sing O R
kxkzverse-kysine kykzver58+kxsln9 kzkz.versad-coss o
| o R 0 T oo 1
. - » X
where vers 6 = 1 - cos ©. ;
= j
] This method is much shorter than the method that is

commonly. used now because all that is in;rolved is the

s¥hultaneous solution of Eqns. (3.58) and (3.59) where one




ohtains k., K, in terms of k, and these are substittued in
the-Eqn. (3.60). Thus, this vector about which the rotation
. igfmade, is defined. The next step is the calculaticn of 2
using Eqn. (§.61). After obtaining 0, one can calculate the
dirg‘ction cosines from the Eqn. (3.62).
The second method "can be understood from the Fig.
(3.3). since the coordinates of the points A, B and P are
knowh, the direction cosines of the vectors AB and AP can be ‘
“&16ulated using Eans. (3.51) to (3.54). Since the axis z,
is perpendicular to the plane contalning AB and AP, one can
use these two conditions -by wnting the two equations for, th‘e

unit vectors as mentioned below: L

IS

Z, - AB =13 117;“ m +ngn =0 (3.63)
& e s

o *-

zm.Ap=11+L mp+h P=o (3.64)

. R . ]
where 1P, m_ and "p are the direction cosines of the vector
A . 3
AP. Solving 13 an\d my in terms of n, and using the

relationship
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~ 3
B . z_ = -$3.65)
» 2 2 2
) 13 +my" 4 ny
.
one obtains the unit vector L Then, the unit vector L is
obtained uging . < 5
) % A A A v
RGN o= x e e
o3 N » TR
. = The difection cosines of AB and x -are same. -

Another variation of this method that can be used
is that the angle 6§ shown in the Mq; (3.3) can be
Tcalculated since the vectors AP and AB are defined.
Therefore, the angle between Yo and .g is also deﬁned.
Thus, one cap use the dot products of the unit vectors in the
Ecu_uving way: 3 ~ 5 .

cos (90 - 8) =3 . AP =1, L, +mymy +nyn,  (3.67)

v.«mso-o-fy.?(=1211+m2m1+n2nl (3.68)




—

Solving for 1,, and m, in terms of n, and

2 2
subui_f.utinq in the relation

1, '+ my3 + nyk
Yo T e (3.69)

4

one obtains the direction cosines pof b AN Then, the direc
y S § g

cogigas of the L axis are obtained using the. relationship

: 44 5o

(3.70)

The fourth method can be understood from the
Fig. (3.4). Here, the points P, (X, Y;, Zl)'_PZ(xz’ Yy 2Z,)
and Py(Xj, Y3, Z,) are co-planar.points, and R(X, Y; 2) is
any arbitrary point in this plane. Then, the equation of

this plane ¢an be obtained using the \:elation | h

=
]

- L]
.P 1P3 =0 i (3.71)
. 3 o

In terms of the determinant, this equation can be rewritten

as




<

ZO
3 . .
B Fig. 3.4: . The Co-planar Vectors
t .
) - ’
- 2 - .
A % % %
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(x - %) -y @ -z .
[ (%, —;71) (¥, - ) (z, - 2,) =0  (3.72)
%y = %)) - Yy =) . (25 -2)
X s
This* : inant can be a an !the equation of the

plane can be writtgn in the form
¥ bt
8. X+a, Y+azz=c C - (3:.73)
where a,, a,,.a; and ¢ are functions of the coordinates of
« »
the poihts Pl? P2 and P3 respectively. Introducting a vector

T

* a such that

T+a,T+a,x L (3.79)

A = o . <
then the direétion cosines of the normal to the plane are
given by '

. R}

\

. ' a - a, a,
: "*'T?r . ny=-"?|-, a.n(_lnz--l——r . © (3.75)

For our problem, the points A, B and P in the method 3 !u{be




represented by the points P, P,

method could possibly be the easiest to use.

cosines n_, 'ny

and the di'rection cosines of “the yﬁ axis can be obtained by

taking (:he cross product oE the z and x vectors.

*
and l’3

respectively.
The direction

and n, would correspond to that of the 'i

in using all cne £ive methods, 1nc1uding’l

conventiona] metHod given in [38], the direction cosines of

:‘hu-x -axis are caleulated uuxng the pointl A and B.

the direction coplnes of 'the z0

or ym axis are -obtained next

depending upon the method--séd. there are always two

solutions. Therefore one has to choose the correct solutién

Xp] . 1
Yol = ™
\\
Zp| - n
)

coordifate system is on the right hund side and in the global

and this can be a‘;can@lished' by usirg the relationship
.

; R
* where, the superscript:I tepu‘sentn the first set of

solutions. The. position vector of the po!.m: P in t.he local

Whethers




coordinates, it is on the leit—h_and side. These two vectors
are related by the transformation matrix. Here, the position
vector of the polnt P with respect to the global and the
local axes are known, and the dl:action coainas 1), m and n;
are also known. -One has to uubutitute the Hrst set of
values for the direction cosines of Y and z, axes to check
1€ the Eqn. (3.76) is satisfied. If not, then one has to use
“the sacond sst of the solutions; the direction cosines of
the second set would be 180 degrees apart from the first
set. ) :

Using these direction cosines of the link .
coordinate systeh one can write t.he transformation equation

relating ‘the local and global coordinator for “*he link as

' {py} = [11] (x} (3.17)

In this equation, the elements of the vector {‘x) are parallel
N -

to the global axes. Now, each of these links can be

assembled and the global aquation of motion for the entire

-
structure can be writcen as

. *

MIfu(e)) + [83{w(e)} + [KI(wit)} = (F(e)} (3.78)




1A Eqn. (3.78), the vector {w(t)} contains the nodal

" displacements for the entire structure. The matrices [G] and

[K] are functions of the angular velocities and accelerations
at’all the nodes ad given in Eqns. (3.22) and (3.24). It is
possible to neglect some of these component matrices which is
@iscussed in the next section. It should be added here that
one car:n arrive at the global system of equations, Eqn.
(3.78), also by writing the equations for each of .t.he
elements of the 11;11:5 which is normally done in .the finite
element methods used for the struptural"analysia.

1

3.2.7 The Simplification of the Global Equations ,
_Us{n_ng Ehe WatheiatTeal Approrimation Approximations
The direct implementation of.Eqn. (3.78) is

inwgltd #ha will require large computer memory and CPU

time. The equation can be simplified by e’:'-“iﬂi"/gthf/
absolute values of the dynamic matrices, which are given as

|tM] | =m - (3.79)
i 1G]] = m 0 4+ |[c]|\ . (3.80)
ILK1| =k +m 6% +m 8 (3.81)

where
/
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m is the largest lumped mass of the grid point in

the robot link:

®

is the éeneralized stiffness term:

are the maximum nominal velocities and

©:
@

accelerations obtained in Section 2.5 and 2.6;
- |Ec]l| = absotute value of the viscous damping matrix
+ 22 ¢/ Kn - (3.82)
where,
§{ = percent viscous damping factor.
0y ~
By substituting‘numerical values to these terms that areé

appr@ri:te to a robotic manipulator, we have

m = 175.13 Kg (1.0 1b: sec2/inch)

K = 1.7513 E7 N/m (10° 1b/dnch)
x ® = 1 rad/sec

. 8 =4 rad/sec?

. T = 005 , ' .




124
The above mentioned values are typical for the upperarm of a
T3R3 model, robotic manipu}ator'with v = 1.27 m/sec
(50 inch/sec),, the tool tip velocity. By substitufing these

values into the above equation, Eqns. (3.79) to (3.81), we . *

get L ¢
M| = 175.13 .
|6] = (175.13)(1)2 + 2(0.05) / 1.7513E7 * 175.13
" = 175.13 + 5538.1 .
” ;
= 1.7513E7 + (175.13)(1) +(175&)(4)

IX|
Thlis, it can be seen that, the quantities involving 5 and 8
ar@ small as compared to W¥e other terms in ‘:hesa equations.’
By neglecting these terms, one may incur an error up to 3%.
But ‘this will result in a very large saving of computer time
and memory. Hence, one can neglect these terms and calculate
the remaining terms. These  numerical values:sed were forf the
gripper which gives rigse to the nésc dominant term in the
Bystem matrices. N
Therefore, the simplified equation can be written

as

tMI{w(t)} + [cl{w(e)} + [KI{w(t)} = (F(&)} - /\!’)J
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where .
[M] is the system mass matrix
[c] is the system viscous damping matrix

‘[K] is the structural stiffness matrix

Here, the matrices [M], [C] and [K] are the same as, those -

used in’'the lumped mass finite element analysis. It must be™

noted that, ‘eventhough the terms involving 6 and § were

omitted in the damping and.stiffness coefficients, they

cannot be neglected in the force :vector. An element of the
g

force vector can be written as
i
F(t)=Fl—l>z-F3+P4

n Xy ® mé + mg o B (3.84)

(175.137 (1.516)(1)% - (175.13)(4)

+ (175.13)(-9.81) -

By comparing the other three terms it is obvious that the
-

terms involving @ and % are also dominant and so these terms

cannot be neglected.




In order to clarify the concepts and notations used
in this chapter, the force term is expanded for ond of the

nodes on the forearm in Appendix C.

, The static or dynamic behaviour of the robotic
structures can be analyzed using Eqn. (3.835. 'The natrual
frequencies are important dynam‘ic characteristics of a given .
system and these can be calculated using this equation. In
the next seqticn, these frequencies are calculated and the

variations of these frequencies as a function of several '

design variables is also studied.

3.3 Thl Study of the Variation of the Natural Freguencies of
the Robotic Manipulators Due to Several Design
PaFfameters
3.3.1 The Use of the Natural Fte§uencx Calculations in the
Transient Steady State Analysis

The caléulations of "'.he natural frgguanciea are
quit‘e useful in the d:vaalgn of the mechanical systems because
they represent its overall dynamic characteristics. For
ex;mple, in the design of the blades of an auto cooling fan
[39], these were modelled as rotating beams with tip.masses
and their natural frequencies were calculated fg_p; given set’
of values of the design parameters such as the setting angle
and ‘the tip mass. Then, ‘thena variables were altered and the
natural freque;ciea were correspondingly obtained. From
these res‘u!ts, the acceptable value; of the pa:‘amof.eru, were

3




selected. As another example, in the work carried out in

[40], the design of a milling machine was bgsed on the effect

of the modification of its structural components on the

natural frequencies as well as the mode shapes. Similar

studies on a lathe spindle-workpiece system-were done in = -

[41,421. 8 J . g

' since the natural n"equelﬁi.es depend upon h{e

7 5 inerfia and the stiffness properties of each of the
comgongnts of ;i\e system, it is quite’desirable that in the

\ “design process one should vary the parameters of at least the
most 1mpor(:ant structural componentn and study their effects .
on these frequencies. The natural Erequencies calculatione
can be used in another way in the case of the robotic
structures; these robotic manipulators are moving structures
whose stiffness and inertia matrices vary depending upon the
location of the end effector. ;'hetefgre, one has to
calculate .the elemental and global matrices corresponding to

- each location of the end effector which is moved along a

- specified tra}]ectoiy while the robot is rforming a job. " By
‘suitable mathematital approximations it 2& shown earlier

that one can obtain the inertia matrices as invariant with

respect to the position of t’.ha end effector, i.e. they need- o

not be calculated again and again. With thi‘a approximat{o'n, -

if it is found that for a part_icuiar trajectory the natural

frequencies also do not .change at several wicialy 'spaced ya
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‘

‘points, then one need not calculate the stiffness matrices

AN

‘the robotic structures .

also repeatedly between these points. This way, these
natu_raL frequency calc;xlationu would be guite useful later
on, in the study of the steady state or tnnsie/nc analysis ‘of
), on, the other hand, if it is found
that these natural frequehcxes change very slowly as the end
effector moves along its trajectory then one should compute
these matrices at on’fﬂa certain number of points. Even '
then, 'there would be considerable saving in the computer °CPU
time. " ) :

To use the system dynamic_equation) Eqn. (3.83),
one needs to calculate the matrix of direcdn cosines for
each link and use this matrix for each of the e}ementsl on
this link. The computations of these matrices for thé *

forearm of the robotic manipulator and a spatial link is

explained in detail next.

3.3.2. The Determination of the Matrix of Direction Cosines -
As bstated_ in section 3.2.6, the direction cosines of the
X0 axis, can be calculatéd because the end points of a given
link are known £rom the inverse kinematic'analysis. 1In
addition, the point P is used to define the plana\‘con'talnying
the X and y, axes. These direction cosines, for two

different systems shown [in Figs. 1.1b and 3.5, wvere

calculated. The Table P.1 shows the dimerisions of the /
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-
various links of the robotic manipulator. The reaultn in the

Table 3.2 clearly s‘hw that any of the five methods cag he

--wused to calculate the direction cosine matrix as the results

obtained by all \t.‘heae methods are identical. ‘However, the
methods 3, 4 and 5, considering the already existing npthq?
as methodA, are simpler to use and one does not have to use
translational transformation in these methods because the
coordinates with respect to the Xo—yo_zo syste’m are:

‘sufficient £or the calculations. o

7

,3:3.3. The De endence of the Undamped Natural Fre uenci

+ on the Design Parameters p AN

r The first parameter to be var}em’wfas"t.he mass of

the gripper, and the results of this variation are shown "in
the Table 3. 3. mé results show that the systém is quite
senaitxve to any variationa of the gripper mass. This is
because the gripper is located at the end of the forearm,
$LuBhy; A% 16 GULEE FEE MEGHIANG HGIRE, SONNECELHG KHE GBEAE AT
and the forearm. Therefore, in the design of the xobotlc‘

manipulator one has to be quite careful in the selection of
’

the gripper mass. A
The results of the selection of different materials
for the upper arm and forearm can be an important’ Enctovt in
the «;ae'jign of such systems. In the ccmbin?tion numbers 1 and
2 in the Table 3.4, the natural frequencies are quite clou.‘

- e




Table 3.1

|
|
5 |
The Dimensions of the n&l,bot
|

< g Link\ - 3
& R 2 v“ 3, R
Description " Shoulder. Upper arm Forearm
Angle(Degreés) . 9 8 83
Length . (m) [] 1.016 "~ 1.5113
Cross-Section - "Hollow Hof 10w
& ¥ J Square Circle
outer - 0.1524 b.1524
bimensions (m)
2 -
Inner - 0.1143 .0.1143
Dimensions .(m) :
.
Material.. - Steel Aluminum
f~y ! Alloy
J ‘ s
o~




L

“

Table 3.2

Various“Parameters and the Elements of Direttion Cosine Matrix

Parameters '

. Spatial Link; Fig. 3.5
g

Forearm of & Robotic
Manipulator, Fig. 1.1b

X% Yar 23 ()

X G % (B
B, vp oz (m
(xg)pe (y,)p, (zn)p
1yeemy, 0y
1,5 ml.
131" _31' "3‘

Kyo xy,.\z. B

1

10., 10., 8.5

0.0, 0.0, '
10.,%10., .0

- 4.379, -7.285, 0.0

-0.:606, -0.606, -u.517
. = ;

\ 0.366, 0.366, -0.856
-0.707, 0.707, 0.000

-0.437, 0.559,' 0.704, -2.971
= s

0.543, 0. 068, 0.856
270, 0.25, 0.5
0., 10., 0.0

0.879, 9.944, 0.0

0.964, 0.120,
0.225, 0.096, 0.970

-0.235

0. 139, =0.988, 0.066

=0. 290 0.834, 0.470, 0. 28

o of



P 4 ~ Table 3.3 .

J - i - The Effect ck the Variation of ,tho Gripper Mass on the Natural Frequencies s )

& Mass of the | * . = f Prquen'cle- e ke
: - No. *ipp,’ ~ . (Hertz) . -
i * Kg Pirst |- Secona Thirg Fourth ,| ,Fifth sixth l
¥ 1 25 21.785 22‘.661) 70.805 76.259 | 225.466 | 260.296
! 2 20- 23.500 2a.448 | 72.5m 76.563 | 228.263 | 263.755
¢ A 15 25.738 | 26.729 74.657 77.007" |.232.452 | 268.850 -
4 10 28.751 29770 77.205 | "77.714 | 230.300 | 277.233
5 °s +33.093 34 “oss 79.007 81.086 | 253.027 | 293.864
Y% [ | - 39.994 40.706 82.036~ | 88.125 | 290.806 | 342.667 |
=3 > )

1
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Table 3.4
Effect of the Variat’ien of the Materials of the Links on the Natural Fregencies
» . v % -y
2] A
. Material Freguenci . /
Combination & (Rertz) Y .

& Upper Forearm

No. Amm J| First second}” thifa Fourth Fifth |. sixth |

1 ‘steel Aluminum - 21.755 +22.661 70.805 *76.259 225.466 260.296

»

2 Steel Steel "W 21.674 22.840 70.664 72.619 231.392 259.625
* 3 Aluminum | Steel 14.018 14.768 * 46.358 ° 56.446 213.234. 228.863

4 . Aluminum | Alumirum |, 16.001 16.802 51.016 54.390 - |,7195.854 236.593

1
.
LI
y ¥ g
&
= ~
/ .
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In these combinations, steel has been used as the structural
material for the me,r arm where the bending moment is
higher. The use of-the steel for the forearm does not affect,
the frequencies very much. on, the.’other hand, when aluminum
alloy is used as t\y{;&ctuxax ‘material for the upper arm,
4

the natural frequenéies significantly-decrease owing to the

lower modulus of elaumicy of the aluminum, alloy.

'l'he third parameter vari.ed .was the ratio of the

outer and inner diameteru of the forefm which had a hollow

—

clrcular section. ‘Th% fourth variable,parametet vas the
racio of the lengths of the outer and inner sides of the
square cross !qc“‘on of the upper arm. These results are
shown in the Tables 3.5 and 3.6 Eespecci-vely. In these

cases, the outer dimensions were fixed but the inner

.
significantly. This is an useful information because!

dimensions were varied. The results in these tables show
that the natural: frequencies are not very sensixive to ‘these
variations. o . ¢
The ]:oj"'catl.op of t‘h;e' end effector can be important
in the study of the variation of the natuxal frequencies.
The Table 3.7 shows ;:hat the natural'fr'equencies
co&raaponding to various locations of the end effectar on the
specified trajectory shown in Fig. 2.9, do not change very
ng\ if the
robot is used to perform a welding job where the t:‘ajecmry

is as shown in the Fig. 2.9 then this natural frequency

. LI e




The Effect of
-

the Variation of Do/Dj of the Forearm on the Natural Frequencies
; .

Table 3.5

Y

D, Frequencies
No. D'g . (eria)
- Pi:rst Second Third Fourth Fifth Sixth
1 1.333 21.755 22.661 70.805 76.259 | 225.461 | 260.296
2" 1.5 o| 21.892 |~22.869' 70.240 74.981 | 218.983 | 252.065
3 2.000 - 21.505 22.534 68.653 72.876 | 208.782 | 237.918
4 3.000 20.980 22.013 67.077 71.339 | 201.124 | 227.097
/
5 6.000 2Q.602 21.631 65.968 70.392 196.217 | 220.215
\ .
§ ”
4
N -
"
vi o
F ol
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Table 3.6

The Fffect of the Change in S°/S1 of the Upperarm on the Natural Frequencies

No. ;siz e 4
First Secdnd Third Fourth Fifth Sixth
i 1.333 21.755 " | 22.661 70.805 76.259 | 225.461 | 260.296
2 1.5 22.502 23.379 73.400 79.678 | 230.377 | 262.533
3 2 23.177 24.013 75.311 | 81.863 | 234.874 | 264.148
4 3 23.390 24.206 75.215 81.451 -| 236.149 | 264.323
? 6 23.434 24.434 74.647 80.549 | 236.290 | 264.114

* *
N
. ( )
= L

eLET
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Table 3.7 1
o The Effect of the Gripper Position on the Natural, Fv\requency - ‘
y ‘ s - . T
by Gripper Position’ B Frequencies
~ Coordinates " (Hertz) *
X Y , % | First- Second Third .| Fourth Fifth Sixth
2 21.754 +22.660 , 70.808 76.276 22:6.513 262.130
- - .l 2 ‘21,791 22.717 70.488 . 76.012 226.100 261.965
2 ,.21.754 22.660 | 70.807 76.276 226.513 262.130
2 .866 22.830 69.881 \ 75.503 225.357 261.658
2 -0.25 | ‘0.0 21.905 22.888 69.595 '| 75.260. 225.026 | 261.513 .
2 0.0 0.0 21.944 227945 .69.318° 75.024 224.720 261.376
2 025 | 0.0 | 21.905 ‘| 22.s88 69.595 75.260 [-225.026 | 261.514
" |2 | o.25| o.25 | 2i.ses 22.831 69.882 75.503 | 225.%7 | 261.657 f i
‘" . ‘ .
. a A
N ) . I
3 v ®
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information assures that the dynamic stiffness will be almost
J same all along the trajectory. In fact, the natural
4 frequency variation can serve as an important criteria for
the trajectory .pu‘n;ning of the robotic str.uctura-. It is
quite obvious that when both the upper and forearm extend
parallel to either X, or Y, axis in Pig. 2.9, this system

would have very low natural frequency. These typeu/éf
: /

i:onuguntipnn are undésirable. Therefore, the tr&jectory
should be such that the roboti; structures should hava’
sufficiently high stiffness or the natural frequencies and
the variation of the natural frequencies ahould be a minimum.
1f the natural !‘requa‘nc!.eu do not change very appreciably
then -one can safely assume that éh.e stiffness matrix is
nearly constant over the trajecﬁ)_ﬁbu:{ie the-inertia
matrix is eonn.:mt. Therefore, while urﬁwg out the
transient analysis, or the steady state anuly?‘gliu later on,
the computations would be greatly reduced. Finally, the

natural frequencies of the control system must be mwer\}.han

the natural frequencies of the if.ruccnra [9]; therefore; the
parametric variations study such as in the present work,
would. also’ be he].pzui in the design of the control syscems.
In-the nltuzal frequency calculations the total
number o{ degrees of freedom were 156 and the inartia

mtricn were calculated using the lumped mass approach.

3 \ This wu done b-cuula these lumped type of inertia matrices
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are invariant with position of the end aiﬁev.:tox. Hwe\hﬁ\
the other gatrices have tosbe computed based on the
consistent l‘\atrh formulation. But, the disadvantage in
using the lumped mass approach is that for a given level of
a:cutacy the larger number of degrees of freedom have t.lo be
uuqd as compared to a -ituation where the inertia matrices
arze ca!.culatad using the consistent fo:uulation. In eibhar
of these casau, one can reduce the degree of i:sedom further
by ualng éha dynamtc condensation tochniquen. In the next
section, the use of these condensation techniques where the
system matrices were calculated using the consistent

formulation is ducuued .

3.4 Various Methods for the Martix Size Reduction

b d It was mentioned earlier in th: literature survey
that two methods have been used .tol reduce the size of eadh of
the system matrices in the study of the link dynamics.
However, presently there is no inforlacion available -
regarding the relative effectiveness of thne tuo techniques.
, Therefore,- in the present inva-tigntion a compantivu study

regarding these two techniqueg is carried gut.

3.4.1 The Guyan's Reduction Technigue

In the Guyan's reduction technique [43], the

selection of master degrees of freedom or the retained




degrees of frggdom/jr, and the slave degrees of freedom or
N
- /
fées of £ 4, is carried out by

the di
scanning tie diagonal terms of [M] and [K]. The ith degree

-
of freedom for which ‘Siilnii is largest is selected as the

. first slave. This process is continued. until required number

of slaves are chosen. This ériteria of selection of the
e ion of

slave g of ensures

the lower vibration modes in the condensed system. After the

selection of the slaves the dynamic equation ‘of motion is

represented in the following rearranged form:

”
M- M d we(e) R I wo(e)
@ +
[Mg.1 M543 walt) [C4,d [C4q LA
»
voeo fox k] [weed Foe) e
i b2 4 rd r r (3.85)
[Kg, 1 [Kyq) walt) Falt)

Then, the’transformation matrix [¢] for the matrix size

reduction is expressed as -
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s - (3.86)

- Te1 = 5 ¥ v
[rxagd™ " |

e q

Thus, the dynamic equation of motidnWf the condensed system
&

s i

is written as
'
\

\ P gl (i (01} + [egglfi (01} + IR gl (w (01} = [Egq(t)) ‘
E i g (3.67‘)‘ d

where

MI[e]
- o fc.q) = [417ICILe] ana
[K.q) = (61 IKILe]
cd = &

4 {Pea(®)} = Lo1T(R(O)]

3.4.2- The Component Mode Synthesis
? This is another important technique for reducing

the size of the matrices [22]. The basic procedure involves

separating the cq@:e set of system coordi.natesﬂw(c)l into

a set of interface coordinates {w(t))l and into a set of free /
free coordinates describe the

coordinates (w(t))P, where the




..

N

'
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system's internal degrees of freedom. Hence, Au(t)l can be

written as

;o
N wie)?
{w(e)} =

(3.88)
wie)F

~

‘After partitioning the uyuten ntruetutdl stiffness matrix

[K], the matrix aquatlon governing !:he static behaviou: of

the system is givan as

1 k] ! re)t
nxn nxm
= (3.89)
1 T [w(e)F B(e)F
mxn mxm

-t
- where {F(t)’} and {Ftt)?] represent the forces on the

interface and fpee of P ively.
Condensation is carried out by replacing the large number of
coordinates in the free displacements (w(t)F) with a smaller
set of mdgl coordvinne-. The n::f.ual. free dhpl.a'cenentn
[w(t)F] can be ducrit;ed by adding a vector which is

asgociated with the interface displacements (w(t)l) with a

~




vector which is dependent on a small set of modal

coopdinates. Mathematically, this is written as

(we)FY = (werF}? & fwie)F)M © (3.90)
mx1 mx1 \ 9;_1‘

The {w(t)F}T displacements result from the motion of the

. {w()¥} coordinates when:the forces on the free coordinates
.

are zero, i.e.; ('P(ts‘ } = {0}. solving for {w(t} } in terms-
of (w(-t)'I) in Eqn. (3.89) and redefining this term as
P}I

{w(t) produces

{we)F)T = kTP 1 e  a {wie) (3.91)
mx1 mxm mxn nxl

The {w(t)¥}! deformations are synchesx;éd £rom the stiffness
properties of t}\e system and frepresent the static deformation
states which result from the ‘motion of the interface ’
coo:d’inatea. ' n .

The modal coordinates are obtained by solving the

eigenvalue problem with the interface coordinates fixed, i.e.

{we)?} = {o}. ~
. I I 2




FFI (oM + KFFI{we)F) = (o) T -3.02),

where [MFP] is obtained by par:i/i'oni»qg the mass matrix [M]

simflar to [K] shown in Eqn. (3.89). The solution of the

eigenvalue problem gives .
(w(e)¥}" = ro1(n} N EX TN
, - g

where [®] contains the c set of eig The

(w(f.)F} vector in Eqn. (3.90) can now be written as

{w(e)F} = P18 kT (w(e) ) + Lod(n} (3,94

Thus the linear transfomatiﬂJcan now be written as .
-

. . -
we)l - 1] fece)?
{wit)} = = -7 . e
. W) SN KFT) e | | M)
= [t Mw i)} - - (3.95)
" I

where the transformation matrix [T,] can be written as

-




1l
™ nxn
) e EY o
L (m+n)x(n+r) 2
. -txF 17K
mxm

0
nxr|

] - }.{e)

By tel] -

mxn mxx ¥

VT e ) e

This ,nonruquare matrix can be'used to transform the unr&duc.d

dynnnu.c matrices to'a much smal

ler size.

Sublthuting for

{w(t)} from Eqn. {3.95) into Eqn. (3. 83) and ptemultlplylng

by [T 17 one obtains

P ik

eIl ()} + [e 0o (0] + Ik Ilw ()] = (e (0}

| (3.97)

where :
\ e
o -
e M) = [t 17 tu1rr )
‘teged = 11" el 1)
tx.e] = [ 17 (K] [Tel
- ® T
[Fec(t)] = [T (F(e))
. i !
i
%

Y &l
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The suffix cc denotes thé dynamic matrices and force vectors

obtained using the componen€ mode symthesis.

. . ) i

\

- - Y ~

3.4.3 The Stu of the Hachine—'l‘ool Spindle »
*
In ord-r to* study the use of t.h; two, condensation

uchniqun dtcuncd uarl&r, thé lathe spindle l‘hmm in
Fig. 3.6 was divided into twelve Elnite beam al-mnts with
two deg:eau of freedom at euch node. Thh apindle is

o

supported by r,wo bearings which were zeprs-enr.ed “by a linear
spring and a demper.™ The discretization of this upindle h/
also shown in this figure. The dat-ill about this !pi.ndle"
are givenlin the Table S.B.A It has bean oxperimentally. -

established that for this system the workpiece-live Center

‘co;moct:ion sheuld bo appruxiut‘ed as a hinged connection

[41): The damped natural frequencies of this system were"

calculated by using the velocity vector as an auxiliary

. . . .
variable and n second order differential equations were -

t#ansformed into 2n first order differential equations. The
details oE the. ca].cﬂ.auon of the dampad nltuﬂ&-ftequancxu

are given ifi [44]. Uling this technique, the dampgd natural

frequencies af th. ystem were calculated as per Eq}nu.-

., i S o3 « "
(3.87) ,and. (3.97) which are the condensed form of ﬂ’e Guyan's

ruduction\ch-mo and the cumponant inoda sym.halln - s

'l'hc results obtai d [45] are lhown,in the
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Fig. 3.6: Schematic Model of a Lathe Spindle-Workpiece
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X ..
g . Table 3.8
: Parametgt/\l—a\luea of the Lathe Spindle-Workpiece System [43]
<, @
- Parameters Vaiues of ‘Parameters
+7 *  |rhe Modulus of Elasticity L .| 206.456"x 10° & -
The Mass of the cm:cg ' 34'..01/2 Kg.
' The Dismeter of the Chuck ] 0.254m .
The Stiffness of the Front Bearing (KF) '2.2703939 x 10° g'
° The Stiffneu of the Rear Bearing (K ). 7.1172232 x 108 % T

e
|The Damping at the Front Bearing Locag.ion (cp) | 28.632 x 103 N=fec

. . A .
Fhe Damping at the Rear Bearing Location (Cg) 22.328 x 103 N:gﬁc

The Lerigth of the Workpiece 0.3302 m i
The Length of the Spindle ’ ' 0.822325 @
. The Diameter of Elements 1 - 5 . 0.051 m
] .|The Diameter of ;lemnt 6 i P . 0.254 m .
el The Diameter of Element 7~ | 0.200 m i
¢ |The Diameter of\Element 8 0.226 m . .
. The Biamanx' of Elements ,9,_ 10, and 12 - s 0.1I70 m
L "' |rhe Diameter of Element 11 : ( . |.oasem
S T 7
: ) » )
. . \ N ! b
; - . s
. ' . :
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8. .
In this table, due to the hinged boundag
condition, the total nimber of the degrees of freedom £6r the
12 elements having two degrees of freedom at each node are
. 25. Thd system matrices were condensed to umallet sizes by

varying the master degrees of £reedom and r.he corresponding

4 »“natural frequencies are shown here. It is evident _from this

- table that fewer the master ’degrees of freedom greater is the

Y
deviation ((the 25 degrees of freedom have zero deviation) of
a particular natural frequency. Another important fatt to be
notéd.isrthaf_ higher the natural ffequancy greater are the

number of the master de‘grees of freedom required to attain a

are i the mate Sies the .
L : frequency corresponding td the fun:,_ﬂyseem (25 de.gtauv of
£reedom) from te higher side, i.e. the deviation is
positive. In the case of the componént mode synthesie, the
= . number_of the interface coordinates remain fixed but the /

i ’ number of the modal coqr_qinates are varied. The reuults very

i i -
o : clearly show™ the superiority of the use of the component mode

. y is. ' If the d system is to be used to

C represent the ih"nt, five modes very accurately then one i

o & should use a minimuf.of 12 deg of e

certain deviatlon. Thirdly, age the master deq‘,es of freedom’
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3.4.4" The Study of the Robotic Manipulator .
t The use of the industrial robots is increasing )
- 7 JW

every day. In order to save CRU times in the-.dynamic

‘analysis.Of these types of systems jt was thought that the

present ‘type of utud‘yA would be quite useful. 'xr. should be %

- borne in mind that these robotic atructure} are more flexible
¥ than the machine tools and the stiffhess as well as the

1 inertia matrices are nonlinear they are on

the position of the end effector. One such robotic system is
., ::\G:n in the Fig. 1.1b, and its kinematic m8dél is shown in
) (the Fig. 2.8. . Lt oEg L .
N In the Fig, 2.8, the moving coordinatq system (x3,
Y4 23)'1s located at the end effector. The system matrices
= i.e. [M], [K] etc. vary depending on the location cE'f;}‘:e end
L4 + effector when measured with respect tg the global coordinate
system (xo, Yo zo). : In Bhe present study the global
coordinates of the an effector were (2, 0.55. 0.5). o
Damping was not included for this dysten. The
stiffness and the inertia matrices were obtaled after
' ‘cu'_ryinq out the inverse kinematic analysis corresponding to )
" a given position ‘of the end efi,ector.: as shown in ct;apcer 2.
! - Since a robot ig ;epreuvtad yy a sp:ce-frame structure, the
f£ihite beam elements in this case had six degrees &f frigedom
. a‘t e;ch node’- ' These ‘degrees of freedom include the three

displacements agd three rotations. The local and the global
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N
\ e
set u{ coordinate systems were related by the matrix of

ion cosines for the space-frames as explained in

- Section 3.2.6. . The various details of this manipulator arg

given in the Table 3.1, and the natural fr es
of this systdm using the two condensation techniques are
shown in the Table 3.10.

. There vere 66 total number Of degrees of ‘freedom ,

- which were condensed between 10 and 15. The table shows

,that the first four modes can be roughly repxjeuen‘ted by using

11 degrees of freedom by using either of the jwo technigues
but to ifclude the first six modes, the component mode
aysthe;is La‘ certainly better and it would require 13 degrees
of Sraedom; on thé.other han& to represent the system with
the same degreau’pf accurncyz it was found (not shown in f.he
Table 3.10) that it would need 36 degrees of freedom if the
Guyan's reduction technique is to be used. mauicfre",' in
tl;iu case also the use ;fvthe .componant nsode synthesis would

be recommended over the Guyan's reduction technique.~

’ SR

Xn this chapter, the dynamic analysis of the

3.5 " The Conclusions

robotic manipulator was carried -out by first aerivinq the
dynamic equations of motion. To transform the link

s “

coordinate system along the global.coordinate system, the

matrix of direction cosines were used and four new methods’ of
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calculating these matrices were discussed. The variation of

the natural frequencies of}ﬁ\ robotic manipulator as a

function of sevéral design parameters were studied next, and .

finally \:wo dynamic condensation techniques were analyzed.

'l'he conclusions that can be drawn from these studies are:

1. The ﬁtrix of dir\eccian cosines of the link coordinate

o‘ system can be:calculated using. the four new methods
discussed in this work. Some of these new methods are
much easier to use as compared to the one presently
used. :

2. The natural frequefcies of the robotic manipulators a;e
quite-sensitive to any variations of the mass of the
gripper. ) ’ .

3. The upper arm should be made of a material which should
have a high modulusg of elasticity. -

4. 'l’ha large variations of the natural frequencies along a

- trnjectox‘y are undesirable. :
§. Both, t.hé Guyun 8 reduction- technique and the component .
" mode synthesia can be used to reduce the size ofsthe
“System matrices but, the gpgrees of freqdom required to
represent the uncondensed system in‘ the case, of the
’cemponant mode syrthesis are less than ?hé other

techniq’us-. \¢




.- ® oy e . 156-° "

CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS
4 w’

4.1" A Brief Discussion Abaut This Investigation
and the Conclusions 7

The objective of this work was to carty out the

kinematic.és well as t‘ne—dynamic analy_ses of the robotic
manipulators. ' The kinematic an'alysis 1nv€lved the
displacement, velosity, and acceleration analysis™®f the
planar and spatial links. The téchnique’s used igL these
purposes were: (a) the algebraic method, (b) the-
ﬁewton-kap}éon technique, (c) the Hooke and Jeeves method,”

(d) the Complex optimization method, and (e) the modified

~ 7 Newton-Raphson technique. To calrry out the dynamic analysis,

the equaiiona of motion were discussed .in detail and

appropriate approximations were made. To express link :

coordinate system in terms of the global coordinate system,
v

several methods of obtaining the matrix of direction cplf.nes
were analyzed. 'nu; efiécts of the variation of the design
va‘:iab!.es on the system natural frequencies were studied next
\and )ﬁnauy, two techniques to reduce the size of system
matrices were discussed in detail and the better of the two
suggested. Based.on t;xa studies carried out in this

investigation the following conclusions can be drawn: L ]
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2.

3.
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The Hooke and Jeeves method can be successfully used® to
perform the axshcemem analysis of the planar and space®
closed I‘Qop mechanisms. & :
The complex optimization method can yield begter solution
as compared to the modified Newton-Raphson te&hnique for

solving inverse displ analysis bl involying

the robotic manipulators, =

If the open loop mechanisms or robotic manipulators have |

#® three degrees of freedom then the exaét values of the: /

4.

5.

angular)mcclcleu and angular a‘ccelentiops can be
obtained. d
The modified Newton-Raphson technique or other numerical.
methods such as the optimization principles have to be

used for velocity 'and acceleration analyses in situations
where the degrees of freedom are different from three in
space mechanv_fi'ms or robotic manipulators. ) .
The matrix of direqtion cosines of the link coordinate
system can ba"calculuted ﬁng the £out new methods

discussed in l.:his Wwo! Some of these new methods are
much gasier to use a&vﬁpared t6 the one presently

used. . ’ N .
The natural frequencies of the robotic numipulators are
quite unuicive to any variations of the mass of the

grlpper.
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- - 7. 'The upper arm should be made of a n\aterial which ahcu).d
fave a high modulus of elasticity. . ,’
8. The large variations of the natural frequencies along a
' trajectory are undesirable. .
9. Both, the Guyan's redution technique afd the component -
= mc:ds synthesis can be used to reduce the size o -
uystem.matrlces but, the degrees of freedom required to
represent the un‘co’ndenaed system in khé case of the

. component mode synthesis are less than the other ’ -

4.2 Limitations of the Investigtion and,
Recommendations for Future Work . e ®

The kinematic and dynamic analyses carried out in

¥ technique.

this work had‘ the -£ollowing iimitationu:
I4 1. In the derivation of the dynamic equation, the link
lengths wei'e of constant magnitude, because of the rotary
\/ joints. In the more general approach, the link lengths
can i)e congidered as a variable. <
: 2. In the present model the multiple-loop linkages could not

be analyzed. This can be an important area for future

work.'
3. The design of the optjmal control systems for chs robotic

manipulator can be analy:ed as a part of tha future -

| work.




The. forced response and the transient response analysis
=

can be dohe as a natural extension of this work.

The non-linearities introduced due to the gear drives or'

chain drives can be an interesting area for future work.

el
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"¢ 'EXPANSION OF VELOCITY. AND ACCELERATION EQUATIONS

.‘

APPENDIX A

.

A

&'

___ “The welocity équation for a spatial open-loop

mechanism can be written in  the matrix form as

1 0 o o
1° Vi Viz Vs
l- J »
Jo v, Va2 Vs
r k.
9 Va1 Yaa Y33

o
%

°2 .
%) =

-(1, cos 6, sin 8y +"13 ces(8, + 0,) sin 0,)

=(1, sin &, ‘tos 0«’

-(13 sin(6, + 8,)

* 13 51n.(92'

cons)

+.05) cos 0,)

(lz-cou 62 cos e + 15 cosl0; + s;)cou [} J)

-(:l2 l%n 92 uir! °l + ;3 ::1.n(92 + es)uin el) .

\
-uﬂ)ez +0,)

\

sin 0,) '.,

1; cos o |+ 1, os(0, + oi)

- X
15 cos(6,+ 83)

o

o

(A.1)

(A.2)
(A.3)

(A.4)

(5)

(A.6)"

(a7,

(A.8)
(A.9)"

(A.10)

=
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- The aucalaration equatidn for a apati?l open-1loop ( p
_mechanism can be writtan in the following matrix, forms ..“\
- !

¢ ] .

1 o o o 3 .
Asi P22 Ay Py ot -

. : P (A.lﬁ - )
Al Ay 33 Paa| Y

‘ oo - 53
Ag Ag2 As3 Pgs o3 < \
E < . e '

. '3
where % )
13 -/ ) LA

Ay % 201, ein 0 sl 0, + 15 sin(0, + 03)sin 0,3 6 0y )

A S

C - 2[13 col-(ez + 03) cos 81] 0, e . (,\:“;

v L .. .

2015 sin @, sin(e, + 93)3 0, 0, -

ke - U‘Z cos 01 &u 8, + 1, cou(ez + 83) cos 91
= [1, cos 8, cos 62 + 15 cos(8, + 05) cos 8,
< . & '
‘.\&13 cos(0,\+ 03) cos 6] 032 (A.12)
i
Ayy = =[1, fos 8, sin 6, + 13 cos (8, + 0,) sin 0,] (A.13)
A\l -
: k4 o -
* #
“ ; /
K < -
R % oy
B ‘ o &
Gy - ’
o . - . B
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Ay = -[\' in 6, cos 8) + 1, eu.n(a2 + 83)cos @ ] (A.14)
. <y . se :
Ayy = -1[13_ sin(8, + 6,) cos 91] % . (AJI5)
) e
Agy = - By cos 0y sin 8 + 13 cos(s, + 0) ain’ 0,36,2
. = [,"cos 0, sin 0, 441, cos(6, + 6,) sin 0,1 0,2
- —
B o v 2
- [15 cos(8, +0,) uin’ell L
- 31, sin 8, cos §) + 15 sin(e, + 0,) cos 6,1 5, 8,
. P TN -
|t mealiy cos(8y + 83) sin 011 0, o,
- 201, sin(6, + 0,) cos 631 0, 05 - '7 (A.16)
) o
. % i
1\} [1, cos 8, cob 6, + 1, cos(6, + 0;) cos 0,] (A.17)
Ayy = -[12 -%n 82 sin 8) +.1, ain(sz + 93) sin 01] (A.18)
Agq = =[13 sin(0; + 0,) ain 0] ) (A.19)
Ay = ~[1, sin8 + 1, sin(o, + 0,)¥6.2
41 2 w2 3 2 3’572 \ .
-1y -in(e2 + 63)62 [
& %
- 15 sin(0, + e'.,) 05 T (A.20)
o 3 / .
’ 4 s <4
Ay, =d p o (A:21)
Ryy = 1, oo, + 15 conley 4 0y ) L (e22)
Agy'= 14 cos(0, + - : (n23) .
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+/CONVENTIONAL METHOD OF FORMING GLOBAL MATRICES w

t SR ’ . IERY
The consistent finite element mass and stiffness

. matrices for a three-dimensional beam element gan be writtef
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1f lumped mass matrix is used,.then the mass of the
finite element is lumped at both ends and this mass is

present in all the three translation“gdegrees of freedom in
. .

one node. &

After getting the elemental mass and stiffness
matrices, they are pre and pc‘:sg multiplied by trannfg’nutnn
.

matrix which is given as
pua 9 ~/

.
o & ‘ ’
f i
(I /
.
& 4 ) .
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- where 1, m ,'n, are given in Equs. (3.51) - (3.53) o

sin « i - v
= .4
s . 1 - E (B.4)

my (B.5)
P ny (8.6)
. ..
1/ m sin @ = n, cos a -
> . - 1, = i i B e il (B.7)* 2
. ” \ 2 2
N L,% + . 3
é 1,%¢ n,? sin aw (.8
E ~ .
~ 7 Al N -
mn) sin @ + 1, cos a :
e R (B.9)
¢ g E
o o P 112 + 1'11..2 h .\ Kl

i v [y i

In F:(inl- (B.4 - B.9) angle a is found by upecigilné’
! ' ;

the coordirfhtes of apoint—P which les in-the—iccaix, Gy, A
. N g




. -
-1 % v
2k @ = tan (;E!)
2 § PY
‘ e B
where o v . .
) St -~
-1, m o . a
1™ Y T
Yoy = = 178 +y1;" +ny Yps
1,2 +m, )
« - 2 s
. -~
. . -
4 & N 4y
PY- Z a2 - 08 2 2
8 Jll iny J"x"'“l
5 ~. o -
and L yp!/uf:,d\<z! are r:‘:e c
respect to the global axes.
% 3
=
PN
o LTS
P . e
« ¥
= # ,
TR '
i . g o ‘
T Ve 3

oor&inatea of “the point P with
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!.1 +.n1 0
* (Ba1)
L (B.12)




APPENDIX C

EXPANSION. OF FORCE 'vac'mR“ e taw s
o -« : . ;.
¥ I‘nv orderu‘t_o write thé computer program to c’alculatn
the tétal Eo\rca \;uc_t:otvfov a’ robotic manipulator, the fofcg '

terms are expanded here.

Rewriting Eqn. (3.28) we have . .
e . L . .
o v -
Bio = (E50)y - (Big)y = (Fiply * () - (&)
: \ ; L O
| _ypere. ! = . '

(£;,), is due to the externally applied forces and

' ;oriuea ' &

(:ia)‘z i ‘the velocity: force, Lo
(£;,), 18 the acceleration force and
' (£54)4 18 the gru/vlt.y‘ !?rcu;' N
From Eqn. (3.46), we have o . "
. ~ 5 y
. . . s .

l‘,‘x.’}"“ﬂ?“u? ST e

I
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g 5 ¢ '[Ei] = iix kil [Cijk] oj“ K+ ¢ ) (c.3) ;
”,(1 = [T, ]Tetuijk] X ‘ (c.4)
v, ! N I~
[ui'jk:i is given in Ean. 3.26 ana IR
. L 5 o L “\
c Na(d) i i B ‘ - . R
. - Fiad =.g£1 ] Mig. ige Rig. - - (©.5)

-

= L4 .
Let’us consider the forearm of the T3R3 model robotic
manipulator. This is the\ﬂ'\ird link’ in the system l.e. =3,
In t‘his 1ink, thé first node ha‘s six degrees of- freedom,

three displapemanta and three fotuthns(. This node has six

- S i r
'pertutbation coordinates corresponding to the six degrees.of,

fteedom. “The force term currispond{ng to.the first '
perturbatlbm coordinate, i.e.,\the x-displacement deqrea of '

freedom~of ‘the node, is derived here,

'(fiu)z_'= [ejlolay, ] (c.6)




‘ ‘

3 w
: (£31)5 = [E3]0 0351
¥ * 4x4 - 4x4
~ .
T 33
(e 7, E fe 2 83 %%
. R

-~

(c.8)

The right aide of the Eqn. (C. 7) will have nine terms sumn)ea

and it is expandea bélow,

4x4

where

.t w 3.
fcy;,1 8, 6, = [T,7]

[Uj;,1 6,
4x4

34 1 200,
7,1 = rtae, 2ar,

e

8.

;  Byro e d £
[U;,1 = [7,°300lCr,  1c0ltn, 1

(c.8) are calculated and they are added to éet [E

2

together. One of these terms is taken for whigh 4=1 and Kz -

(c.9)

(c.10)

(c.11)

In this way all.the nine termg in the right hand of the Eqn.




.
; e ; NG(3) i 5 *

["31] =,z myg $3q1 Big | ) (c.12)‘ _
@ 8 g=1 axl x4 X :

where NG(3) is the total number of grid points or nodes in’

the ‘link 3. For example if the link 3 of the robot is
aiscritized into 5 finite elements, then the NG(3) will be 6.
The .Eqn. (C.12) is further expanded for gne particular value
of g'= 2. Ve gef. myy 8331 1_:32" where my, is the lumped mase
s of the second node.in-the third link. From Eqn. (3.21) we

s

‘get

0301 = “(e.13)

o o+ o

and b 1s the position vector of the second node in the l.Lnk

hich is determined after knowing tha input angleu ”x'

oy
and 93 for the rbbots :
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In this way all the quantitien in the right hand

side'of the Eqn. (r.' 12) are calculated and added to get.

[J31].. 'l'hen [E ] and [J. l:l are substituted in the Eqn. (C. 6)

and (£ )z.is\calculated. si.milarly all other terms in Eaqn.

31

‘The calculation of acceleration force is as

£ollows: + . ] By ‘\.
\ . & "y - s ~
| ‘F(x'om Eqn.' (3.47) ‘we have S F a.
(f)y = FI0LG] ERVIR
\ . P ‘. % °
L
where
NL ® | e
[rd = 2 eyl + Re.18)
=1
=i § o - / 3 i . ¥ Lo e - .
fey 1 =01, ]Tm[uij]. _ . (e
s @ % i >

E P .
t“xj] is given in Eqn. (3.23) and [J, ] was already derived

in Eqn. (C.5). . _

Paking the same node as before we have

: RS TR IR 5 [o1 £ % E (c.17)
s g :

’ (C.5) are calculated and the velocity_fqree is ‘obtained. ’\



31 8 *+ C3p 85+ Cqy 9.3_/ (c.19)

. \V C 8
B dat
- = [T,"1°CT, 1CQllT,

feg) = 01,21 %u50 - TR

Singe all the quantities. in thé right hand side of the Eqn.
(c.2b) are known; [cy,T is calciflated. .Similarly all terms
in Eqrr. (C.19) are calculated. The angular accelerations 0y,
2and 6, are known from Section (2.5) ‘and hence [F] in thé
Eqn, (C.18) is calculated. Since ‘[J31] is al‘rendy known
from Eqn. (C 12), (F31)3 in 1 Eqn. (c. 17) is' calculated.
simﬂely all other terms in Eqn. (C 14) ‘are calcul}tad. .

"x'hus the acceleration force is obtained.

vThe calculation of .gravity force in Eqn. (e.1) is

".as follows: - 2 S ER 3
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: " - .
. WP . Writing Eqn. (3.31) using the dot pz&dcz notation
we have & R ) i
i | e AT
(£10)q7= [T 1@ M0 7 F {9:22)

N

where [Mtu) is givan"in Eqn. (3.33). Consideri.ng the same
U

- ! .node as Defore, the gravity force is written as

S e
5y = 1,70 ) . . (c.23)

where

3) 8 S

-9.81| n/sec?

; ' . Na( s L
. / ) R -'951 Myg 831 9 (c.24)

g ‘g= |o -~ . (c.25) -

(C.24) is calculated. By substituting




tr_ 1 in zanl (c. z:) one &an- get “31’4 Similarly ai;'{naz
: f.am/a in r.he guvh.y force in the Egn. (C. 22) -can ha &

calcul?}od. ;o e " )
¥ _ Since all tha quanti.un in' the rlght. hand side ot

Eqn.. (c:l) are known, the total.frce v.ctﬁ (Eh) ‘can be i

q—alcu].uted. As a matter of clarification, it must be noted:

X that the total force (£5)) represents the first element in

» ::/}ieﬁ\o_ta; £drce vector for the 1ink 3. °,
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APPENDIX D

AZERNUIND

DESCRIPTION AND 'LIS'I‘ING OF THE COMPUTER PROGRAMS >

The raqﬁzed computations were done on the
VAX 11/780 digital, compur;e‘r, using a package of programs
" developed in FORTRAN language. "All t\;ese programs are given
in"thin Appe’ndix. They n:; :al}lsgffiptént am"l can‘ be run
with the required.input 'daté files. Many -IMSL subrdutines -
are used foz matrix multiplication, inversion, transpose and
while finding the eigénvalﬂés and vectors. A brief
description about n:ach progranm is ’given here:

The program NBWTON solvea the inverse kinematics
ptobl‘em. Given the position vector of the end efiectox, this
program calculates tha required inpuc angles using modiﬂad
Nautbn-kaphson.tac}gnique. The same program .also calculates

. the nngulu‘t' ‘velocities and.accelerations of the uqu for a’ ;
specified volocit"y‘and acceleration oi' tl;e end effector.

The program KXNEM uses the complex cpt:imization
’l‘ochnlque to, salve the inverse kinematics p;ohlem. This
progran is capnbh of Einding the best solution among "the
possible multipxe toluticns. ¢ thau are any constraints on
the uotid‘h ot the robot links, they can also be nauy v

1ncorpozatad ‘




"The program VEL finds the inpu‘F velocities and

‘acdelerations of the links for a given velocity and '

Tacceleration of the end effector. This lprogram

simultaneously solves three ‘equations to‘ find the three
e

unknown angular velocities and accaleratlcns.

The progzam FIN ib wz“:tan to‘ £ind the natural

o=

£requency of t:he robotic manipulator usi.ng three-dimensional

discretized into beam,

finite elemgnt analysin. ‘L'he robot wat

‘elements with six dag:eas of freedom nt‘ each node. Lumped
nass approach was used to find the elemental mass_and-
sti¥fness matrices. Then they are pre ‘and post mqltlpued.
with transformation matrix and thdn Fesembled into the global
system. - " | ) !

. The program STRUDL finds the natural frequency of - --
the robotic ma'nipu).at:o:\‘ using a standard finite element
analyais package GTSTRUBL. The main purpose of nii‘u ‘program
is to verify the :asulcs abtainod from [the progjam FIN. . In
order to run this program, it must be linked with GTSTRUDL

package. . . -

The program mmcou is used t4 condense the system
matrlcen qbtained from che ptogram FIN. Guynr_\‘l reduction )
tschnique is used to reduca the size oﬂl the dynamlc '
matrices: \}

The program ¢ COMCON uarve- th“ nama purpose as
DYNcoN excapt the fact that comp?nant mode -yntha-iu

technique in used for condensation.




G
G 'LISIING OF T PROGRAM +NEWTON+ .
c* DO THE D ANALYSIS VELOCITY'
c* RNACYSTS AND. ACCELEIATION ANALYSTS USING
g MODIFIED NEWTON RAPHSON TECHNIQUE :
C......m..........., » sanaes
| B E Bk K‘“"{ i
(- | 1
i TEMPég 5, MN}? é dng (1000) ‘
> 4 4) . .
|1 'rénmi(‘z 4 m{uz (4 3 TEH’mS ‘
| 3 31?4 \b2 (4 4) Bha 4) , ANVEL (3) “
A s Tasd
1 TEMPQE mc( JALVEL(3), émv(q o |

THETA3: . 42 i .
CHAt R AR AR R AR AR AR RE R R R AR AR AR AR E AR AR AR AR R AR AR AR

G+ | . R1 IS THE SPECIFIED POINT IN LOCAL COORDINATE *
g SYSTEM RSPI IS THE SPECIFIED POINT IN GLOBAL  *
COORDINATE SYSTEM,
c...m.m.......................m.............4.......
\' R
'R
| RsP
I R -

RSP
crassahan sisniaia hoaes

HERE THE FIRST TRANSFORMATION MATRIX IS F
e T L D vt
e iy

b S (THETA1)

11 {2.3) =-sIN(mETAL)

T1 (3, 2) =SIN (THETAL

- | T1(3) 3)=C0S (THETA1

171 (a;8)=1.

I res
¢ |HERE 'THE SECOND TRANSECRMATION Mmux 1 EORVED ¢
Caesraniin
; T2(1,1)=1,

T3 {3, 7) =008 (ntETAZ

112 {2.4) SIN(DETAY

- 12(3.3)=1.

T2 (4, 2) =-SIN(THETA2,

T2 (4, 4)=CoS me s .

c s sesssini

‘THIRD-TRANSEORMATION MATRIX IS F

€————HERE -THE- 'ORMED
cnnnnnnnnnaunnunununn-nunnnnunn

T P P TSI
A




170

I
Cnnnn ahhe

210

. 230

1JOB, =1

J=1,N0
(T} SGUPLX (LAMPAYT .
L et vt

ERM{NAT!ON OF EIGEN VALUES

g an..n.nn.nun.nunnununn

, TEMP4, 160, IER)

160.
160 160,RK, 160, TER!
0,160 TEMP ,160,1
,160, 160,RM; 160, IER|

3 _NO, 160, RKINV, IDGT, WKAREA
VMULEE {RKINV,RM,NO,NO, 0,160, 160, LAMD)

)

nnnnnnnnnnnun

CALL EICCC(ILAM'DA NO, 160, IJOB E/IGVAL 'EIGVEC, 160,

WK, IERROR
DO 190 I=

1,NO
EIGVAL (I —-1 /EIGVAL 1
PRINT ( ; (EZIROR *E;

ERROR=', I
20, (EIGVAL;I) ,1=1,K0),

E'ORMAT (2X, 12E10
O

NTINUE
E'ORMAT (2(212 4,4%))
£

/
/

% THI FREQ NCIES
= QRT{REALéEIGVg—

;éEN VALUES ARE—

OzIEGA(I)




186

’ _T3(1,1)=1. g
4 T3(2 :

L T3(2 S (THETA3 .

fog T3(2,4) SSIN (THETA3 »

: 3

2. 2)=-S1 mm?)

4.4)=COS (

n--nnnnn-n.“nnnn.nnnnnnn

3
T3

‘c...._..?é.
e APPROXIMATE POSITION VECTORS ARE FOUND HER
c..m.............u.......‘............................
,TZ&d&A&TEMPl‘lIER} _
MP1,T3,4,4,4,4,4,TEMP2, 4, IER) -
R1,4,4,1,4,4,RAP1,4,1ER) -/
IMATE VECTORS ARE', (RAP1 (I),I=1,4)

RARATARARAR AR A RAA R ARR TR RR AR Rk s
- : D MATRICES ARE FORMED-HERE. &
Gran e MBI ARLINR i
' Q1(2,3) . .
Q1(3,2)=1. g 5
Q2(2,4)=1. “
Q2(4,
T1,01 444441’5»4?341511)
-GALL. VINVE (11" 3,4, TEUDS 4, MKAREA  TER
L' VMULEE (TEMP3,TEMP9,4,4,4,4,4,D1, 4, IER]
TEMP1,02,4,4,4,4,4, TEMP5, 4, IER|
1,4,4, TEMP. ER. §

Hererl
%
gl

A MATRICES ARE FORMED HER
Cf.................m.......m..........................

CN..LVMULFF{I 4,4,1,4,4,TEMP6, 4, IER

CALL VMULEE (D2,RAP1,4,4,1,4,4, TEMP7, 4, IER
CALL VMULEE (D3,RAP1,4,4:1,4,4, TEMPS, 4, IER) * -

IN ANGLES ARE CALCULATED HERE

nnnnn
CALL VMULEM(A.A, 3,3,3,3,3,TEMI, 3, IER]

CALL LINV2F (TEM1,3,3,TEM2,4,

CAL[.VMUI.FP 2,A,3333BTB433I)

1,3
DEL (T)=RSP1(I+1) -RAP1(I+1)
CAII(.}MULE'F g ..31331NC31ER)
- ﬂ-lETAl='D~IETA1*INC

) THETA2=THETA2+INC (2 5 = P
y t. THETA3=THETA3+INC(3 ¢ g




. i 08 (tass et m1; GT. (1.E-5)). GO ‘TO 100
((A5S (R5E1 (1) -RAPL (1)) .OT. (1.E-5)), -

*PRINT*, ' FINAL.THETA VALUES ARE'

PRINT* | THETAL, THETAZ, THETA3
PRINT*. ' THE SPECIFIED POINTS ARE'
RINT+ (RAP1(T) I=1

Cc LOCITY ANALYSIS STARTS
Crseenna ERRARARRRARAARA R R AR RN R ey
. ALVEL (1)=0.733235

; u & ALVEL (2)=0.733235 .

i : 2., ALVEL(3] —-o 733235 .

. CALL’VMULEE (TEM3,ALVEL, 3,3,1,3, 3, ANVEL, 3, IER), 3
, "THE ANGULAR ‘VELOCITIES', ;

;.\....................................................

., HERE THE ACCELERATION.ANALYSIS STARTS

C.....\...............n.....................u..............

ALACCL (1)=2.93294 G o <. .
| AEACCE (30393504 &
ALACCL (3)=-2.93294  * T
DO 40 1=1,4 : .
’ DO 40 J=1;4 ~
D(L I, S
D(2.1. i
0 D(3,T. 3
DO 50 "
DO 50
Do €0 - ¥
DO €0 .
60 TEMP &
! 4 | 1 3 xé&)
. 1 i
. 5670 .
. DO 70
N 0 W (T, K)+TEMP3 (I, K) *ANVEL (J) *ANVEL (M) .,
50
&l RSP1 (4) =-RSP1 3
. (w ;mSvnsm-;thqmecixm) .
B S%INT'I'{ER JIER, "WHVARVY, TEMPE
. 80 TEM4 (1) =ALACCL (I) - TEMF6 (1+1) .
£ ‘CALLVLULFETErsSTEM‘lsslsaANACCL:!ID!) —
s gr%m- UANGOLAR ACCELERATIONS * , ANACCL W o B
. . . \\
. . - . :
? 5 .
. 3 ‘ =




s " « 188

crasf T s

C*
c*
c*
c*

.

o,

QJ.LISTING OF THE CﬂRAM ++KINEM* ¢
PROGRAM TO-DO

.

THE DISPLACEMENT ANALYSIS USING *

LEX OPTIHISATION E'OR ROBOTIC MANIPULATORS.. :
.

caa.-unnnnn..nunnannnnnnunununnn

13

11

-

SUBROUT!
. 1. DELTA,X,R,E,IT, I

DSEED=
' NI=!

R(II °y =(S;GUBES(DS

‘mum o ITERATION NO 1*

“DIMENSION. % (6., 3) .R{6,3) ,E (6) ,G(3) ,H(3) , XC(3)

INTEGI
DOUBLE PREIC)éSH)N DSEED

N0=66

K=6' o
TMAX=500

.1c=0 ? i ' ;
IPRINT=O . ) . .

ALPHA=1.3
BETA:

X(1.2)=.92378 e

DELTA=.0001
X(1.120.12435
X =05 . ' i
DSEEDD g

£o'10

s:m+ 39.D0

.
ITMAX ?L\;HA BETA,GAMMA, DELTA, X,

R F IT, IEVZ,N , G, H, X NT)
§H Q. TEMP) Co'to
xr 1 20, 20, 30
ITERATIONS EXCEEDI

ED',
' FINAL VALUE OF 'UNCTION' F(IEVZ) ’

UES ARE'

zF

I x( Evzi‘ \LT.-.000005) THEN
Bél 1)=x;n:vz LI)

STOP . 2 g
END .

R

QUTINE CONSX(N,M.K, ITHAX, ALPHA, BETA, GRIMAA,
2,X0,G, H, XC, IPRINT)
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d DIMENSION X (K.M).R(K,N),E (K),G(M) H(M) . XC(N
- Imtcmcmrﬁt\)(’)()‘()” (N), \
IT=1
KODE=0 J
. IF éM-N) 20,20,10 N
10 KODE=1 . N X
20 *
« ,
30
.40
, x il oo adlies
Srit, const TN M KX G R T
% X(I1.3) =G ) +R(T1,3) * (i ( ):G(J))
K1—11 E P
) éN .M, K X G.H,I,KODE, XC,DELTA,K1)
o & §“ ‘z&
51 IF( PRI 52, 65 52 - ’
52 ERINTS, COORDINATES, OF INITIAL COMPLEX ARE'
pmu-r- {10 3,8(10,9) 9218y - .
(2R 56,65.56°
BRI Nuéu 3 X(11,3) .31, N)
R G K1
! (\ CALLFU‘NC(NMKXF 1)
70 -
n' #TPRIN}'_IEH ,72
72 UES OF FUNCTION', (J,E (J) ,J=1,K)
80 TEvim - s ]
DO 100 IcM=2,K 4 s
Y . Igr(zz,vn-s(:w))mo,mo,qo = s gl
90 IEVI=ICM . ]
100 CONTINUE
N n-:v2=1
s B w F 0 v, o®
. 5 ‘IF F IEVZ F Iﬂ'l 110,110,120 ¥
110 % { ) ( )) . -
120 (I:gm"('g'évz) (s(n:vn BETA) ) 4o 30,130
+| X 1
130 . ours'r-
GO T0 so . q
,‘L" . 140 KOUNT=KO! N

IF (KOUNT- GAMMA) 150, 240,
150 CALL CENTR (N,M,K,IEV1, rxc X,K1) -
DO, 160 JJ=1,N . .

F] o B .




170
180
190
200
210

220

228
240

10

& 858 8

70
80

190

X({}E:VVI +33)=(1. +ALPHA) € (XC (3J) ) ~ALPHA® (X (IEV1.JJ) )

CALL CHE( 'SNMKXGHI ,KODE,XC,DELTA,K1) - -
CALL FUNC( X.E.1)

IEV2=1 —_— -

DO 190

IF (EflEVZ) E(ICM)) 190,190,180 o
Ievz=1ad .

n' (IEVgJIEVl)ZZO 200,220

=1 i
xm:v1 JJ) = (X (IEV1,JJ) +XC (39)) /2.
CONTINGE

CALL'CHECK N,M,K.X, & H,I, KODE XC,DELTA, K1)
CALL FUNC (N,M.K.X, E, I)
GO TO 170

CON'I‘INUE
T—IT . N .
ISTPRINT% 230,228,230 '

PRI ERATION NO. ' LIT 3

PRI COORDINATES OF CORRECTED POINT'

mum'-, (IEV1 JEX(IEVL IC).
INT THE VAL! ) FUNCT ON'

PRI

ERINT+! iJC )&:(Jc) Jc=1,N)

IT=IT+

JE(LTITHAX) 80,680,240

S% NE CHECK MKXCHIKODEXCDELTAK!)
SION X{K.M) . G(M) H() | XE (R)
CALLOONSTNMKXGHI) e

1!:‘})(})!;)(;()}5;{120,.20, 30

IF J)‘I (g)(lpgvmdo 40,50

IF lSKODE) 110,110, 60 -
NN=N+1
DO 100 J=NN,M

LK, X,G,H, I *

;gs,s*g IERI A

CALL CENTR'(N,‘M,K, IEV1,I,XC,X.K1)




ST .03y +xc 03y /2 ‘
CéN‘i‘INI!E (1.39) ¢ ))/~‘

90
100 -CONTI
fRicn 110. 110,10
10 RENOR
. END .
) . =
SUBROUTINE_CENTR (N,M,K, TEV1, I ,XC,X;K1)
DIMENSION X(K.H) , XE (M)
20 26 1
X(3)=0
10 éﬁ(a)l-xc(d)»x(n. o
20 XC(J)=(XC (J) -X (IEV1,J)) /,(RK-1 . o
2 ng)( '() ( D VAL )
R END
= SUBROUTINE EUNC(N,M,K,X,E,I) ’
DIMENSION X (K.M), F ( x(e) SrELEXO), PY(39)
1 ¥(2) Rl (4) k2 (4) AR (3) RFINGS) L RS1 (4) RS2 (4)
K143 28
551 (4)=0.5 y
o éI)—(RSlsZ) am(%))-)-zqnsus) RR1(3)) +*2+
. !‘I)—» Do, 1) 120355) 442
1 S (7)-.9424094) 42+ (X(1,3) +1.295016) *+2
UBROUTINE_CONST (N,M, K, X.C,H, T)
: IMEN ~~--»xuc M), G(M) H(M)
3 :o —
Qe . .
; ¥ =00 %
R END
e SUBROUTINE MAIN(I,K,M,X,RR1)




.

e

2 EEEOONQE

v 4‘“‘“”1‘;43 mlgq)‘ R T
gty " (nszf ‘x(mp) 1 ).
S (8] TEHl

4(4.4) . z(% 3 rza(4 a)

TEM3 (3.8) 1A 3 m[ni
nz( .4)) 3 4 ?‘m& %
1)=0.

0. 'nz

s s
'1'124 444 Zi!ER
VMULFETOZ 1‘2344444103,4 IER,

EE
CALLVMULE‘EémBRIQ& 1,4,4.RR1,4, IER)
FORMAT(5X, 4! 3,
RETURN
END .

i E JALEA, '101)

JTINE TRANS (L, THETA,ALEA, A)
. THETA, A (4. 4)
'mmn} .

agﬁ

uuuupN»wﬂg
I
»

SEIFIENT 0

b W

5
3
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c

c* LISTING OF THE PROGRAM ++VEL+ .
c* PROGRAM TO_CALCULATE VELOCITY AND 'ACCELERATION
ot OF OPEN LOOP SPATIAL MECHANISMS BY SOLVING .
c1 SYMULTANEOUS .EQUATIONS . Lo
.
.

cn-nnnc-un.nn--u-nn-¢nunn-nnnnnnn.
C...n.nnn-nnnnn.n.nnu-unnnnunnnnnu
C‘ NOTATION FOLLOWED

'3=THETA3, SI=T2+

T1=THETAl, T2=THETA2, T T3
Ca.n1lglilnt.tlAl'.lnt'tllittﬁﬁi!_pttttt'lil1....(..‘1..1‘ - -

DIMENSION AJACOB&Q ,ALVEL (4, i h
1, TEMP (3,4) L ANVEL ( ) AC(4, 3 aace %) ALAceL ()

3 1 5113
T1=0; st
T2=0.8281533.
T3=-1.346276
SI=T2+T3
- (A2*COS (T2) *SIN(T1) +A34COS 51 *SIN(T1
- A2*SIN(T2) *COS (T1) +A3*SIN (ST) *COS (T1
AS*SIN ST co -r
(A2*COS (T:

2) #C08 (T1) +A3+C0S sx}'cos m);
(A2*ST g ;'sx in}n\aﬁsx (SI) #SIN(T1))

A3y= | (A3*SIN(SI) *SIN(T: .
AZZ—AZ'COS T2) +A3*COS (SI)
. A3Z=A3+COS (SI “
 AJACOB =1.
AJACOB 1X i
AJACOB 2X
JACOB 3X
AJACOB 1Y ot
AJACOB 2Y . @]
JACO! Y ’
JACO] 4
JACO! Z } =
JACOE 3Z
ALVEL 4 / 4
ALVEL 733235 "
ALVEL 733235 - ¥

ALVEL =O 73323! .
CALL 2FAJACOB44TEMP4HKAREAI )
'EMP, ALVE! 4,1,4,4,ANVEL), 4, IER)

VEL1=ANVEL (2
VEL2=ANVEL'(3

L




™ L
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VEL3—ANVEL! }

+(AZ sn('r 'sm('ré%;;\a-sm SI)*SIN(T1))*
L2- 2* (A3*COS sx; T1)) VEL2'VELS

+2'(A3‘SIN(’I1)'SIN§ 1)) sVELLS
(AZ460S (T1) *COS (T ST) *COS (T1)) *VEL1**2
- {A24C0S (T1) 4COS {12) +A34CO08 (ST) *COS (T1)) +VEL2#+2
- (A3+COS (S1) %COS (T1) ) *VEL3!

AMy=- (Azeco5(12) "SIN(TL) +A3'COSéSI) -sm(n))-
VEL1#*42- (A2% SSIN(T1) +A38C0S (ST) 'SIN (1))
SVEL2#42- Aa-co e 1) $SIN (1)) VB

-2.* (A24SIN(T2) *COS (T1) +. A3k Nﬁr)-cos(n))-vsm
*VEL2-2.* (A c05(sx)-s (T

. 1)+
-2.# (A3*SIN s:) COS (T1) ) #VEL1*VEL3 -

M- (A2eSIN(T2) SAIIEIN(ST)) *VELZ* 2.
-2, % (A3*SIN( L *VEL2*VEL3 ;
-A34SIN(SI) *VEL3**2

DO 1D°1=2,4

‘D010 J=2,4

J,
1
1
1
1,

i=}

¢

3 Rn
SSCRORER

AL

A

A 9329

g\LLL ZFDEUACAQTEMP‘lWKAREAI
PF

ACCL
ER|]
ALL VMULEE (TEMP, ALACCL, 4.4,1, 44ANACCL)4 IE!)
INT*, "AN( ACCL ARE ', ANACCL
STOP
END
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Cuntnoon.lonttnlonantnacnlhtltaa-a.--au..i-ullnl‘ntql. 3

Cr .

) c* LISTING 01-' THE PROGRAM H4EIN++ o .

c* PROGRAM NATURAL FREQUENCIES OF *

c* ROBOTIC MANTPULATORS USTNG FINTTE ELEVENT .

c* ANALYSIS .

£ .

B S

I FEtag 1 GK(200. 2 zoo) GK2(200; zoc) GK23(200, 200)
OPEN.- (UNIT=14,E. , TYPE=

ILE= AT '
5 : OPEN (UNIT=15, FILE='STIF DAT', TYPE:
Lt ¥ . THETA (1) =0,1243549" .

. THETA (2 .002441
B . THETA (3) =-1.24042
ﬁALLoDI N (THETA, B1,C1,D1)

- N2=1

s . N3=15"
~ 'CALL BEAM(A1,B1,N1,2.E11, 01016 7800.,6. 1459)[-: S5,
3 . 1 3.07295E-5,3.,07295E-5,GM1,
EAM (C1,B1,N2,6. 394210 O 00798, 2700. , 3.62E-5,
IIBIESIBIESGMZ
1,D1,N3, 6. 894E10 o. 00795 2700.,3.62E-5,
V¥, A 81!5-5 1 61E 5,GM3, GK3;
CAL (NZ GM2,6K2, N3,GM3,GK3,GM23, CK23) e
N23—(N2‘N3)'
CALL ASSEM (N1, cm GK1,N23,GM23,GK23,GM, GK)
N= (N1+N2+NG?4'6

ggINﬁ‘I' 'I'L&AL FREQUENCIES ARE'
. By ’
Y PRINT+ 1or,1, *FREQUENCY=", OMEGA(I) /2./3.14159
14 CONTINUE ) .
STOP, . ] .
‘END E LT

SUEROUTINE BEAM (AL B1N.E A, DEN, ALX, AIY.AIZ G, GK
DIMENSION AK(12,12] Al(1212) 112 “é 53) ,Bi(3),

;5 TﬂllPlélz 12), Gﬂx ,zoo) &M(200, 200) , EK(12,12),

1 Mg 15,1 (25,12,12), m(u 1

” ~




2.0 (1.+
mrﬂn—sgnr((m(l -A1(1)) **2+(B1 (2)-A1 (2))**2+
1 (an%cmf)/&
CALL STIEF (ALEN.E G A AIX ATY,AIZ, A)
- CALL LUMPMAS (ALEN; A, DEN, AM)-

Ty

Cretespaatnsartin -n-nnnnn-nnn-.nnnnnnnu

c ‘ELEMENT MASS AND STIFENESS MATRICES ARE
MULTIPLIED.BY TRANSEORMATION MATRIX *

CHERRE R R A IR R RRRARRA R R R A AR AR AR R AR R R RN R AR E AR AR R R DAY

CALL VMULEM(T,AK;12,12,12,12,12, TEMP1, 12,IER

DO 10
© DO 10 z
- D010 - /
P AMM
10 AKK
Chasasnantns PEARRRRARA AR AR AR AR RS

[of HERE THE ELEMENT MATRICES ARE ASSEMBLED
cn.nnnn‘nannnuunnnnnnn--n-nn.nnnu

13=0
DO 20 I=1,N*6-5,6

13=13+1
I1=1-1 I
D0 20 12-1,12 - %
20 J -
& I1+Iz Ti52)-cu 11412, 11+J2)+AMM(13, 12,2,
20 GK(I1+12.11+72)=GK (11412, 11+J2) +AKK(13, 12,32
_Bo

SUEROUTINE FREQ(GM,

DIMENSION GMM(ZOO 2002”% KK (200, 200) QM (200,200) ,
1 WKAREA (2000 200) , GRKINV(200, 200) ,
R

) LEX . AILAMDA (200, 200) , EIGVAL (200).,
1 EIGVEC(200, 200)
1,/OMEGA (200) d

-nnnnn

c HERE THE BOUNDARY CONDITIONS ARE APPLIED
Chotiss nuun.n
: DO 30 I=1,N-6
30 J=1,N-6
GM I,J =M I+6 J+6
30" 1,J)=CK(I+6,J+6,
14,' G’M J J-l,N ‘6
HRITE 15,' J=1




cotnntatalaln\.‘.n--nnnntlntotttnttat'nc-alnt..nn. S
HERE THE NA' FREQUENCIES ARE FOUND ,v’
SRR 5 R L b L i Lot R KR
NN-—N oy .
CALL LINVZF GKK,NN, 200, GKKINV; IDGT ;WKAREA, I ER' h
. CGALL VMULEE (GKKINV ; G¥M, NN, NN, KN, 200, 200, ALAMDA, 200,
DO 40 I=1,NN .
) DO 40 J=1,NN
40 AILAMDA (I,J) =CMPLX (ALAMD J)
A i (L SO LT irsessiianiesann |
c DETERMINATION OF EIGEN VALUES | .
cnnnnnnqnnnn-n-n.u-mnunnnnnn--unun 1
1JOB=1 F
CALL EIGCC(AILAMDA NN, 200, 1J0B, EIGVAL , EIGVEC, 200,
s 1. WKAREA,IER
50 BoovaL( 1) 1. JEIGVAL (1) |
=1 . "
OUECA (1) =SQRT (REAL (EIGVAL (1))) § e . ~
70 . CONTI]
80" I=1,NN
DO 80 J=I+1,NN
IF (OMEGA(I) .GT.OMEGA(J)) THEN
TEMP '
OUEGA (1) ~OMECA(Y)
. QUEGA(J) = j
? =0 ONTINUE
RETURN .
\
S'MOUTIN'E STIEF (AL E,G.A,AIX, AIY AIZ, AK)
DIMENS ION AK (12,12)
v Al ¥
; k(22 5 *EJAIZ/AL**3
i AK(3,3) =12, *E*AIY/AE+*3 . :
: AK(;4) G*AIX/AL
; . BK(s.3< —-s.-}:mn{ AL 2 .
i ¥
At
AK(6.6 i
AK(7,1 H
AK(7.7
AK(8; 2 ) w
BK(8,6)=-6. "E*AIZ/AL4*#2"
AK(8,8) =12, *E*AIZ/AL**3
AK(9,3)=-12, *E*ATY/AL*#3
AK(9.5)=6. ¥E*ATY/AL* 2




9,9)=12.'E'AIY/AL'?3'
G*AIX/AL

11
10
1, )—AK(J z)

gﬁ%%;%%%i%?&%;%

SUBROUTINE LUMBMAS (AL A, DEN N, A)
DIMENSION AM(12,12)
S-AL'A'DEN/Z .

AM I.I) -AMASS
10 AM(I+6,1+6)=]
. DO 20 .
AM(I, I ASS /10000
20 AM(I+6, I+6) =AMASS,/10000:
RETURN

SUE(CUT&E TRAN (A,B,ET)
DIEKN?I A(3).B(3),FT(12,12)

sgl;[‘éasx-m + ABY*ABY + ABZ*ABZ)
,c¥=ABY/ABLm
C2=ABZ/ABLEN
CONS=SQRT (CX*CX+CZ*CZ)
-,

198




199

XP=CKPX + CYSPY + CZPZ
YE=-CX*CYPY/CONS + CONS*PY - CY*CZ‘PZ/CONS
Zp=-CZVPX/CONS £CX*PZ/CONS

AN (ZP /4P),..

A=
FT(1,1
ET(1.2 " = .
ET (3, 20 = (-CK* CY4COS (ALFA) ~CZ*SIN (ALEA S
ET(2,1) = (-CX*Cy*cos -~CZ*SIN (AU CON;
ET(3, 2} —oNsr Cos AERR (RLER) 37/ ey
FT(2,3) = (-CY*CZ4COS (ALEA) +CX*SIN (ALFA) )
ET(311) = (CXiCY SSIN (ALEN) -CZ4G3S (ALE) YRS
ET 3,3)= (cy'cz-sni(u)\f\) +CX4COS (ALEA) ) /CONS
" Do 10 I=1,3 ; -
N=N+3 ¥ «
DO10 J=1.3 . 0
. D010 KK
10 ET(eN, lchu)-s'ré
100 . ML (120X, F6.5)
2 B N .
\
8 '
. SUBROUTINE ASSEML(N2,GM2,GKZ,N3, GM3,0K3,GH23 , GK23)
. DIMENSION Qi (200, 200). 63 ( 200, 200) ,GM3 }m} 500,
1 CAMI3(200,200) \GK23 (200, 300) TBIES(200) SIED2 (305
1 GK3(200, 200)
DO 5 I=1)200
DO 5 J=1;2
Uz 3.
5 GK2

. DMA.-SO /1Nz+1)
1,i(u2+1)-s .6
AT II+1- 1)=GH2(IT+1-1, TT+1-1) +DMAS -

A
connnn-n ER AR AR SRR R AR AR R AR,
GRIPPER MASES ARE ADDED

HERE
Ctt.na.-:‘-tiltoahltlnalhthntnl.'tn.tﬁ.nnt..tul.ann

. Gﬁ!}l:«l'é'&l N3*6+1 =(343!N3'5d NS'sﬂi +GMAS

GM3(N3#*6+2,N3*6+2) =GM3 (N3*6+2, N3*6+2) +GMAS
GM3(N3*6+3,N3*6+3) =GM3 (N3#6+3, N3#6+3) +GMAS

c-'nn- RARRR RN RAR AR R A IR MR AARR R AR R AR AR

HERE THE ASSEMBLING STARTS *
c-nann'nunnun-a. T R T T T T T S P Y

DO 10 =1,N2*6+6 -
N2*6+46
GM23 J)=M2(1,J,
10 GK23(I,J)=0K2 (I,J,




D0 20 I-l N3'646

DO 20 J: =
0123 2'601 NI‘S#JF(HZ:! 246+ ,N2*6+J) +GM3 (I

GK23 Z'G'I NA- 3 (N2*6+1 ,N246+J, 'GKBEX
N=

30 l-l,

T
GM23 =GM23 (1, J+6)
GK23 1 J =GK23 I J+6

GM23 =TE!
GK23 I J+6 —TEMPZ I
RETURN

UBROUTINE

200

ASSEM (N1,GM1, GK1,N, GM23,GK23,GM, GK|

IMENSION (}11(200 200) , GK1 (200, ZOOAOGM”(ZOO ’203)

290) .4 (200, 200),

Gl Nl'eol N1‘60J
Glé Nl‘ﬁ'l NJ.‘G*J =GK 1

SUBROUTINE DIHm(n-IE’l‘A B1,C1,D1)

B ar it i r4 2

(260, 2

*6+1,N146+J) OGHZS{I .J)
641 Nl'ﬁ*l)tGKZ!(

3




3 -, 120
. . ' r. -
pRENSION AL (3 JTHETA3) 101 (4.4, 702 (4.4) R1(8) .
1 R(8) RRI()RRE (4) 23).0(a.4 ,Rs_}og 3(4)
1o 4) za( L4y, 1(3) 48 1(3)
100 LALEA,T01) N ! ‘
- 0., Ti2
= 3).0.,T23
Al .4,4,4,702,4, IER
CALL. \MULEE {02\ T23.4, 4, 4.4,4,T03.4,
5 10.3) .
’ L, -
%
| I .
10 . e
- . K
l\
SUBROUTINE, ‘TRANS (AL, THETA, ALEA, A) .
DIMENSION JA (4,4) - - o
CI=COS (THETA - i,
| . \
!
{ 5
] 4
. -~
| .
: END- - «
- ‘ -
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- .
PR e L T TS

(-1 - *
8, LISTING OF THE PROGRAM ++STRUDL++ .
g . TE THE NATURAL FREQUENCY OF  *
[ ROBOT USTNG STANDA STANDARD PACKAGE GTSTRUDL .

.
,...................m..................................

*TITLE 'ANALYSIS OF ROBOT' 3

STRUDL 'PROJECT' 'FREE VIBRATION OF ROBOT'

mg Sﬁ%CE E'RAMZ «
E39JOINTSIDll X 0.0 .0180804 Y 0.0 0.0 Z 0.0

ml‘E 6 JOINTS ID 40,1 X 0.673157L .00231665 Y O 0 0.6 4
. 756 947 -.00132065 »
ENERA' 6 JOINTS ID 46,1 X 0.7105024 .0234454 Y 0.0 0.0
. 735, 052 = 0133655
S ID 1,1 FROM 1,1 TO 2

GENERATE WEMBERSIDdleROM%lTOQ'Il
MEMBER INCIDENC

39 41 -

40 41 2

41 42 43

42 .43 44

43 44 45

44 45 39

45 3 46

| .
M’EMBER PROPERTIES PRISMATIC -
‘1'1035”(00 016 12 3.07E-05 JY307EOS IX 6.14E-05
TO 100 AX 0.00798 IZ 1.81E-OS IY 1.81E-O5 IX 3.62E-O5
UNI'IS _METER!
. MEMBERS 1 TO 38

CON:
E 1379310.3 ME{HD\S 39 TO 44 =
E 689655.17 MEMBERS 45 TO 100’ . < .

DENSITY 76518. MEMBERS 1'TO 38

. DENSITY 51502. MEMBERS 39.TO 44

DENSITY 26487, HEMBE{S 45 TO 100

INERTIA OF JOINTS LUMPED
INERTIA OF JOINTS ADD 29 TO 45 LINEAR X 7 1428571

INERTIA OF JOINTS ADD 101 LINEAR X 25. Y. 25. Z 25.0

LOT FORMAT ORIENTATION NON STANDARD s
EIGENPROBLEM PARAMETERS ~ k
SOLVE USING SUBSPACE LN
NUMBER ON MODES 6 ¥

END .
DYNAMIC ANALYSIS:MODAL §




N

PRINT DYNAMIC DEGREES OF FREEDOM ALL
PRINT DATA
FINISH

203




1
!
t
i
i
‘l‘
!
|
|

-

C.n.n-n-n-.nn.nn.nnn-.n. sasausasRaRbateans

C‘ LISTING OF THE PROGRAM **DYNCO *
c* PROGRAM TO. CONDENSE DYNAMIC/ MAmICES USING .
C' GUYAN'S REDUCTION TECHNIQUE' :
C................................,.;......................

GVM (160, 160),, GKK (16Q./160) ,KSSINV{(160, 160) ,
G“‘éf" 'flg mq%a 160 1 clJ) TEMP6 63) TEMPG )160 160) ,

é (150 160)
E (160 ,KSS(160 160; mv é1so Tieo L %
R(160) , TEMP1 S (160, 160) (160 160) ¥

MP4 (160 12% .G 160, 1 0) . GMR(IGO 160)
HK (10000, TEMES (160, 160)

LAMDA(IGO 160) ,EIGVAL (160) , BETVAI..(IGO)
.EIGVEC (160,160)
OPEN f I7=14, FILE='STIF .DAT',TYPE="OLD! )
(UN. + TYPE="0]

RIS IS o

IT=23,FILE='MAS.DAT'

OPEN
CHOO AR AR AR AR AR A RERRA KRR R RRR R AR nnnnnunnnnn

[+ = TOTAL.NO. OF D.O.E. .
C NSD=NO. OF SLAVE D.O.F . ] 4
NR - =N RETAINED MASTER D.O.E. *
c.n...nnn-n-nnnnn-n..nu.unnn.nn.nnn
N=156
NSD=136
NR“N NSD 4

READ 14, GKK (I,J,
OO, .

ENSATION STARTS

c THE CONDI HERE
e L s R e

DO_200 I1I=1,NSD & .
=0, ks

nnnnunuu

MAX=0.
60, goxsgcllu(('ux)/mm(x 1)
- R |
IF 45 R N
MAX=R (1)
' IMAX:
ELSE .
6o T0 70
ENDIE - ~
70 .
DO 80 J=1,NN -
TEMP1




{
GMM (I =GMM I1+1.J
GKK (T, 3) =GKK 11
GCC (I ,J)=CcC (I
90 E (I)=E (1+1) 1
DO 100 J=:
- 100
. o
110

' DO 150 J=1,NSD
» . 150 KMS(I.J)=GKK(I,IeNR)

IDGT=4
CALL LINV2E (KSS,NSD, 160, KSSINV, IDGT, WKAREA, IER
VMULEP (KSSINV, KMS NSD NSD,NR, 160, 160, TEMP! %

A;_‘.
O
o
o
e
o
e
o
O
P

c * . B T T T
INCLUSION OF DAMPING MA! IX *

sC
R R R Iy 1 SRR PURPIIN

DO 177 I=1,N f
DO 177 .




206

GMMM(I, J*N : = N
MMM (T+N 3
QMM 14
GKKK (I
17T - GICICI.( X*N J‘N)=GKR

X . . s T =
¥ . CALL LINVZF GICKK N,160, GKKINV; IDGT, WKAREA, IER) >
x INVMNNNIGOIGOLAMDA ¥

0 J=
ILAMDA (I, J)=CMPLX( A (1,J)
c.......-...n......................

INATION OF EIGEN VALUE:

’.....................
DETERM: S
Cnona-n-a-nannnn-nnn-annnnn-n-nnn-nnn

2 HCQLL EI%C(ILAMDA N,160, 1J0B, EIGVAL, EIGVEC 160,
% DO 133 1 i,N °
— . EIGVAL ./ET }
EI(‘VAL =] IGVAL(I) 2. /3.1415927
133
_PR ERROR=', TERROR, ' EIGEN' VALUES ARE-
- ‘BRINT 16 EIGVAL

1
16 EORUAT (2X,2E13. gx‘zma 7)
£y




CAMArai s AR A adtaahaa AR AR AR RN A RN R AR R i taas
.

c* E LISTING OF THE PRW
c PROGRAM TO CONDENSE THE D‘INAMIC- MATRICES USIN
g: NENT MODE SYNTHESIS TECHNIQUE
L T CL L]
[ e et L L CET T T TY Y
1 ROW NHIG{ HAS '10 BE SHIFTED
' THE SHIFTED FROM ROW
NN=INII;K'§AL SIZE OFJ&TIFFNESS MATRIX AFTER

NO=_EI r.NVl:LLQRS IO BE RETAINED INCLUDING.
INTERFACE - CORDI]
NI=N'UMIE1 OF INTE(EACE COO%INATES 2
13

N=] 2l THE \TRIX
ARARRERRRRRNR .n.nnn RRARRRRARRR AR R ATy

Qonanacaag

Brenennens

¥ .REAL G (160, 160) /K (160, 160 4 K8
GKK (160, 150 cxxmv 160,160 m&m
WK (1 18000) ¢ MASS, L, INER, Ti 1( 60) ,
GMMM (1 6 ). i 60,160)’ m(mvueo,leo).
3(160. 160 'REIG 160.160). " -
RK (160, 16 5

cm(1 ; o) A (160,160) , TEMP (150) A(lGO 160),

R (160,
LEX ILAMDA (160, 160) , EIGVAL (160) , BETVAL (160) ,
EIGVEC (160, 160) '
INTEGER

EN

b RRHERRE
ﬁ
HA

Q h;m
O
)-4
L3
9
E’
%

UNIT=14,EILE='STIF .DAT' , TYPE='OLD' )

N;g,.; “CK‘K? J; LNN) -

[o} 3
c CONDENSATION STARTS HERE,

DITTIT T
*

Ry

eanssane

TR=O Lt
DO 100 FR=NN-5,NN.
TR=TR+1

DO 35 J=1,NN

TEMP].EJ;=GMM ER,J
35, TEMP2(J
S DO 40 I

II=ER+1

‘40 J=1,NN
~ GMM(II,J)=GMM(II-1,J .
40 CKK(II,J)=GKK(II-1,J) *
& v

UNIT=23,FILE='MAS.DAT', TYPE—'OLD') -




i:'*"ra.‘f% .

1 .
60 'I’EMPZ{ ;=G§( I,FR, .

IJJ=GMM1JJI
70 ,JﬂlG(IJJl

DO
e
qu( I TR =TEMP2 (I
INUE
DO 110 -I=1.N
DO 110 J=1,NI
110 KEL(1 ) =G (1+N1.9)

80
100

80100({1 J;lﬁ'lgl( I4NI ,‘.hm;

120 canyg J)=GMM (I+NI, J+NI
CALL LINVZE‘ GKKK N, 160, G’KKINV I[XJT WKAREA Iﬂi)
L_VMULEF GMMNNNIGOJGOIAMDA
1 -160.
-~ DO 130 I 1 N
DO 130 :
130. ILAM!A(I J)=Q¢PLX(LAMDA(I J))
cnnnn Aekarienny nnnnn

TERMINATION OF EIGEN VALUES

‘DETERM.
cn-unnnnn.nnnnnnunuuunn“n.un.nn

Eash B3 EIGCC (ILAMDA,N, 160, 1JOB, EIGVAL, smv:-:c 160,
1. WK, IERROR) .
140 E?G\{AL( IGVAL(I) y "
150 - RETO (L, ) SAERL (BIGVEC (T3 i it
vm;rr( INV, KET,N, N, NI, 160, 160, TEMP3,

!ER)

1 160,
cn_nnnnnnnnnnnnnnnqn-nnnnuuununu

'FORMATION OF TRANSFORMATION MATRIX &
CHRPRRARE R ARAR R R RN R AR AR R AR IR R R AR AR AR LR RN R s

I
DO 160 J=1.NI
160 A(I*NI;J)=-TEMP3(I,J)
© 'DO°170 I=1N
DO 170- J=1,NO-NI

208




209

, 170 , =REIG(I1,J) - :
. . GKK, NN, NO, NN, 160, 160, TEMP4, 160, IER)
A,NO,NN,NO, 160, 160, RK, 160, IER
. GMM, NN, NO, NN, 160, 160, TEMPS, 160, IER)
. ,160, 160, RM, 160, IER)
LI

3 DGT , WKAREA, IER)
.RM,NO,NO, NO,16O 160, LAMDA,

(I,J)mu(um( J)):

180.
. C-'-.n-nnun-n--1onnnnnn.nu.nnnnnuuu

DETERMINATION OF EIGEN VALUES *
Cn-nnuun,nnu-nnun..ud...n.....nn--n.n.

. CALLIIGCC(ILAMDA.NO,!.GO,IJOB,EIGVAL.EIOVEC,IGO..
1 WK4 OR :

190 zmvu}z)-1 /EIGVAL}E)‘R
PRINT *, 'IERR( OR,
BRINT 200, (Emvmix) I=1,N

200 FORMAT (ZX 12E10
PRINT *,'THE FRE NCIES ARE'

QI}T WSEIWALE)R‘EGA(I) . -

CONTINVE
FORMAT (2 (E12.4,4X))
STOP g

‘EIGEN VALUES ARE=",
v

210
230
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