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ABSTRACf

Faceted conical structures have been proposed as an alternative to the true conical

form (0 ease the fabrication and 10 lower the construction costs. In considering ice forces on

these structures. there was a concern with the validity of existing theories. The main

objectives of this study are to improve the under..tanding of the interaction processes and the

f<lilure mechanisms of a level ice field againsl a faceted cone during continuous ice breaking.

and to provide engineers with a set of easy-to-apply fonnulae for ice load calculation. In this

thesis. the results of a three-pan study. consisting of experimental and theoretical

investigations. are documented. In Part I. a pilot series of physical model tests were

conducted to provide a clear insight into the interaction processes. Some important

interaction features were identified from analysis of the test data which provided a

fmmework vital to further model development. In Part n. the unique rubble piling process

was further examined with the aid of existing particulate mechanics and a comprehensive

numerical analysis. A new rubble model was developed to predict the geometry of the rubble

and the forces exerted on the structure and the base suppon. In Part m. an appropriate ice

breaking model was selected from the existing theories for the adaptation of the new rubble

model. The new model, which considers the salient aspects of the rubble piling process,

agrees well with the experimenla.l data.

The above developments and results are significant, because. for the first time, to the

knowledge of the author, an ice load model has been established to account for the effect of

rubble in ice loading on a multifaceted cone based on essential features of the interaction.



The resulls provide a useful framework for further model development. The state-of-the-art

is such that it is now possible 10 incorporate rubble load in the force calculation wilh higher

degree of confidence. The melhodology for doing so has been developed and presented

herein. and constitutes Ihe main conuibulion oflhis work to the slate-of-the-art.

iii



ACKNOWLEDGEMENTS

I wish (0 express my deepest gratitude 10 my supervisor. Dr. J. Molgaard. my co

supervisor. Dr. EM. Williams. and member of the supervising commiuee, Dr. A.SJ.

Swamidas. They provided much-needed advice and guidance during the course of this

research. Their inlerest and encouragement. as well as many stimulating discussions and

helpful suggestion. played a major role in the progress of this work.

I also wish to extend my gratilUde to Dr. 0.6. Muggeridge who first introduced me

to the exciting field of ice research. and has financially and academically suppon in my

formative years. He was also instrumental in organizing and securing funding for the

"MUNIERCLJNRC Multi-Faceted Cone SlUdy" from Natural Sciences and Engineering

Research Council (NSERC). Dr. S.J. Jones and Dr. G.W. Timcoofthe National Research

Council of Canada (NRC), Dr. K.R. Croasdale of Esse Resources Canada Limited (ERel).

and Dr. A.S.J. Swamidas of the Memorial University of Newfoundland (MUN) also

panicipated in the gram application. Without their effons.this research would not have been

possible.

Many people have contributed to the experimental program. The experiments

described in this thesis was conducted witllthe help of Mr. J.R. Tucker and Mr. B. Roche

of MUN and the technical staff of the Institute for Marine Dynamics' (lMO) ice tank

(especially Mr. Spence Bun and Mr. Brian Hill). The Faculty of Engineering's technical

services division constructed the model and the load measuring system used in the

experiments. Dr. 0.8. Muggeridge of MUN, Dr. S.J. Jones and Dr. G.W. Timeo of NRC,

i,



Dr. K. R. Croasdale of ERCl, Dr. M. Melge of Canatec Consultanls ltd., Mr. K.c. Chao of

Exxon. and Dr. A. Prodanovic of Mobile gave valuable suggestions for improvement of the

test program. Their contributions are acknowledged with appreciation.

The generous contribution and continuous suppon ofthe National Research Council's

Institute for Marine Dynamics in this research is gratefully acknowledged - in panicular my

fenner supervisor, Dr. SJ. Jones, who availed me the opportunity toconducllhe model test

program during my stay in the institule.

lMD has also provided vital support to this research by allowing me to access its

~'omputer facility after I left the institute to pursuit the graduate research on a full time basis.

In panicular, I am most grateful 10 Dr. SJ. Jones and Dr. O. Molyneux, who sponsored my

computer work in the institule. My thanks also go to Mr. B. Schooley, system manager of

lMO's compuler system, and Mr. O. Spencer. a OECICE expert. for their assistance and help

in using the software and facility.

Funding for Ihe IMO's lest series was panly provided by NSERC through their

University Industry Programs (CDR 661- (99/88). NRC provided in kinds personnel and lest

facility. Subsequent analysis of the experimental data was carried out under IMD project

PJXAQ94·00115·{022)/A supported by the Panel for Energy Research and Development

(PERO). The author acknowledges their sponsorship, together with the guidance and

encoui.lgement provided by Dr. S.J. Jones, Dr. F.M. Williams and Dr. R. McKenna.

Academic funding was provided by many source during this work. including: Atlantic

Awards Career Development Fellowship made available under the Canada Newfoundland



Offshore Agreement. the Memorial University of Newfoundland. and the Center for Cold

Oceans Resources Engineering. Their generosity is gratefully acknowledged..

Finally. I would like to thank my wife. Qj·Hing. and my four children. Grace.

Gabriel. Joshua and Rebecca. for their support and patience over such along period of time.

of which any <k:scription would be grossly understated.

vi



TABLE OF CONTENTS

Abstract.

Acknowledgements

Contents .

List or Tables

list or Figures .

Nomenclature

Chapter I Introduction

Page

vii

. xviii

xxxii

l.l

1.3

1.4

Chapter 2

2.1

Background.

Scope and Objectives.

Approaches and Methodologies.

Organization of the Thesis ...........•...

Literature Review

tee-Structure Interaction Processes .

2.1.1 Conical Structures

2.1.2 Sloping Planes

Models for Icc Force Predictions

2.2.1 Analytical Fonnulalions

2.2.1.1 Croasdale's Approach

vii

.1

. .4

.... 5

..... 7

...... 10

..11

........... 11

....... 14

.. 15

..... 16

...... 16



2.2.1.2 Nevel's Approach

2.2.1.3 Ralston's Approach.

2.2.1.4 M:lananen's Approach .

2.2.2 Empirical Formulae .

2.3 MUNIERCUNRC Multi-Faceted Cone Tests

2.3.1 Test Program .

2.3.2 Analysis of lME's Test Results.

2.3.3 Analytical Models .

2.4 Comparison of Models and Discussions

Part I: The Experiment

Chapter 3 Test Program .

P'g<

........ 19

. .... 22

. .. 24

. ..... 25

............ 28

. ..... 29

. .. 32

34

.. 36

..48

3.1 Test Facility and Structure . ..........•...•....... 50

3.3 Model Ice .

3.4 Test Matrix and Presentation of Results .

3.2 Instrumentation and Data Acquisition System .. 51

.. 52

53

Chapter 4 Analysis of Tests. . 65

4. I lee-Structure Interaction and Failure Processes. . . 67

4.2 lee Breaking Mechanisms . 70

4.2.1 Breaking Pattern Observed in lMD's Series. 70

viii



4.2.1.1 Common Beam Failure Scenarios.

4.2.2 Piece Size Analysis ..

4.3 Ice Rubble Formation Process

4.4 General Characteristics of Ice Load ..

Page

.7\

.73

.... 78

..80

4.4.1 Ice Load Distribution and Ratio of Horizomal to Venieal Forces 80

4.4.2 Ratio of Neck to Global Forces. 82

4.5 Semi-Empirical Formulae . .82

4.6 Comparison with Theoretical Prediction. . 85

4.7 Summary and Discussions . . ..........•........... 86

4.7.1 The Need for Funher Ice Force Modelling. .87

4.7.2 Conceptual Model for Ice Forces Exened on an Inclined PilUle. 90

Part II: Ice Rubble Modelling

ChapterS Ice Rubble Under Load . . . . . . . . . . . . . . . . . .. . ... 110

S.l Shear Strength of Ice Rubble. ........................ 112

S.J.l Phenomenological and Structural Approaches for Material

Description. . 113

5.1.2 Phenomenological Descriptions of Cohesionless Granular Materials

...................... 114

5.1.3 Effect of Initial Void Ratio on lntemal Friction .. 116

ix



Page

5.1.4 Limitalions of the PbeoomenologicaJ Approach. . 119

5.1.5 Labor.llory Measurements of Rubble Strength 120

5.2 Rubble's Surface Profile Due 10 Natural Dumping~s 125

5.2.1 Variation and Maintenance of Rubble Surface Profile 126

5.3 Stress·Slate of Ice Rubble .

5.3.1 Behaviour of Granular Material Under Stress

. .. 128

128

5.3.2 Expected Siress Slate ofa Typical Rubble in From ofa Faceted Cone

..... 135

5.4 Analytical Methods for the Computation of Wall Thrust Exened by Eanh

Mass al the ..At-Resl" State

5.4.1 MeikOle's Method .

5.4.2 Limit Equilibrium Methods .

Chapter 6 Rubble Geometry Idealization .

.. 137

. .... 138

.. 138

. 153

6.1 Genel'Oll Featu~ and Assumptionsoflhc: Interacling System. .. 154

6.2 Ideal Geometry and Mass Balance. . . . 159

6.3 Derivalion of Basic Equations for Characterislic Heights of Rubble .. 161

6.3.1 Rubble Heighl at the Edge of From Facet, h" .

6.3.2 Rubble Heighl at the Side of Cone, h,...

. ... \6\

,.7
6.3.3 Derivation of Generalized Equation for Maximum Rubble Height

Along the Fronl Facet Face, h,., .. '"



6.4 Validation of Ice Rubble Geometry Prediction Model

Page

.... 174

Chapter 7 Discrete Element Analysis of Rubble Loads on an Rigid Inclined Wall

188

7.\ Main Features of the DECICE Computer Code

7.2 Simulations of Rubble Mass at the "At-Rest" Condition

7.2.1 Generation of Rubble Ice Samples.

.189

.... 191

..193

7.2.2 Computations of the Coefficient of Lateral Earth Pressure at Res!. K"

............ 194

7.2.3 Angle of Repose Tests . .198

7.3 Development of Equations for Rubble Loads in 2-D 200

7.3.1 Form ofEanh Pressure Equation and Relevant Functions .... 201

7.3.2 Overview of OECICE Simulations and Analyses. . 206

7.3.3 Validation of Linear Dependency of Thrust Force on Rubble Height

Squared, h~ . 208

7.3.4 Validation of Linear Dependency of Thrust Force on the

Function, I - 2!...
'w

7.3.5 Validity of Equation 7.18 for Vertical Walls

7.3.6 Validity of Equation 7.17 for lnclined Walls ..

7.3.7 Derivation of Effective Wall Friction. ~'...

209

..... 210

..212

. 214

7.3.8 Summary of the Formulae Derived from Best Fit of DECICE Data

"



P'g<

_.... 217

7.4 Load Components Distribul~don tne Wall and the Supporting Ice Sheet

............................. 218

7.5 Application of the New Formula for Walls with Multiple Slopes.. .. 219

7.6 Application of the New Formula for Other loading Conditions. . . 221

7.6.1 Maximum Slope of Rubble with Basal Sliding al the Rubblel1ce

Interfaces. . 222

7.6.2 Maximum Rubble Height Limited by Bearing Failure of the

Supponing Ice Sheet . . 223

Pan III- la rom Model

ChapterS [)e"dopmmtola New let FOIU Modd. . 254

8,1 Selection of Base: Model for Modelling ofkt Breaking Behaviour of lnt;;act

~. . ... BS

8.1.1 Experimental DaLa and Ice Force Models for Smooth Cones. with

Ride-Up Icc. But No Rubble . 255

8.1.2 3·D Mooification ofCroasdaic's Model . 257

8.1.3 Result of Model Assessmenl . 260

8.2 Formul.uion of tee Force Model with Rubble at a Faceted Cone. 262

xii



Page

8.2.1 General Features and Simplificationsoflhe Ice-Structure Interaction

8.2. J.I Characteristic Ice Breaking Pattern .

263

263

8.2.1.2 Heights. Width and Weights of Rubble in Front of the Front

Facet. 264

8.2.1.3 Weights of Ride-Up Ice on Individual Sections 00 the Front

Facet. 265

8.2.104 Heights. Width. and Weights of Rubble in Front of the Side

Facets 266

8.2.1.5 Weights of Ride-Up Ice on Individual Sections on the Side

Facets 268

8.2.1.6 load Distribution and Failure of Ice Sheet . 269

8.2.2 Coordinate System and Gcomctry

8.2.3 Nonna! and Frictional Forces on Each Facet.

8.2.4 Overview of Various Force Components.

270

271

273

8.2.5 Force Required to Push Ice Blocks Up the Slope Through Ice Rubble

275

8.2.6 Force Acting on the Ice Sheet at Waterline. 276

8.2.7 Modification of Breaking load for In-Plane Force . . 278

8.3 Validation ofthc New Ice Load Model. 279

x.iii



Page

Chapter 9 Condusions and RttOnUntndations . 296

9.1 Conclusions From the Experimenlal lnvesligalion (Part 0 . 297

9.2 Conclusions From the Numerical Investigation (Part 10 . 298

9.3 Conclusions From the lee Force Modelling (Pan III) . 301

9.4 Contributions of This Work. 301

9.5 Recommendations for Future Work 302

9.5.1 Refinements of the Rubble Model. ]04

References .

9.5.2 Refinemenls of the Ice Force Model 105

306

Appendices

Appendix A SummaryofTestConditions.Configuralwns. and Results of ERCL's

and (MO's Test ~ries: Level Ice 331

Appendix B Load Time History of Tests Conducted in [MO's Test ~ries ]]9

Appendix C Example Calculation to Illustrate the Application of Equations

Developed in Chapters 7 to 9 . 376



Table 1.1

LIST OF TABLES

Page

Test conditions of each data set used in model formulation and coefficients

General test conditions of the model test series used in piece size analysis

Table 1.1

Table 3.1

Table 3.1

Table 3.3

Table 4.\

of the associated fonnula

Prototype and model geometries: symbols given in Figure 2.1 .

Test matrix for level ice tests in lMD's series.

Summary of ice conditions for each tesl

Summary of level ice test results .

41

42

'6

"
"

Table 4.1

93

Summary of the horizomal to vertical force ratio for level ice tesl~ measured

in the three series on multifaceted cones . 94

Table 4.3 SummaryoftotaJ, breaking and clearing ice forces measured in IMD series:

I:25 scale model 9'
Table 5.1 Summary of failure criteria proposed for granular materials (after Evgin and

Sun, 1989) 144

Table 5.2 Effect of angularity and grading on peak friction angle (after Tenaghi. (955)

144

Table 5.3 Summary of laboratory shear bolt tests on ice rubble 145

Table 5.4 Different equations for coefficient of pressure of loose soil at rest 146

Table 6.1 Comparison of predictions from the new geometry model and the



measurements from [MO's tests

Page

176

Table 7.1 DECICE parameters for the simulalions of rubble mass at the "at-res!"

condition 224

Table 7.2 Summary of the coefficient of lateral eanh pressure at rest. K".I' estimated by

gravity method . 225

Table 7.3 Summary of the coefficient of lateral eanh pressure at rest. 1<...1' measured

from the oedometer tests . 226

Table 7.4 Summary of the angle of repose. 4t•• estimated from the rubble's natural slope

after slope failure . 227

Table 7.5 Matrix of OECICE simulations of the thrust exelted upon a retaining waH by

cohesionless granular materials at "at rest" state of stress . 227

Table 7.6 Summary of DECICE simulations of the thrust exerted upon a retaining wall

by cohesionless granular materials at "at rest" state of stress 228

Table 7.6 SummaryofOECICEsimulationsofthe thrust exerted upon a retaining wails

by cohesionless granular materials at "at rest" state of stress (cont'd) 229

Table 7.7 Computed values forOECICE Analyses conducted in Sections 7.3.3to 7.3.6

230

Table 7.7 Computed values for DECICE Analyses conducted in Sections 7.3.3 10 7.3.6

(cont'd) 231

Table 7.8 Results of simulation runs to validate the direct proponionality between the

xvi



Page

rubble height squared, h~, and the tOlal wall thrust. Po (t = 22.5° and 4l = 24.2"

for all cases) . 232

Table 7.9 Results of the correlation analysis with the (Po· Kill data pairs. 233

Table 7.10 Base cases and their variations selected to assess the validity of Equation 7.18

for vcnical walls 234

Table 7.11 Base cases selected to assess the validity of Equation 7.17 for inclined walls

235

Table7.12 Least squares fit of force components computed from Equations 7.31. 7.32,

and 7.34. to values obtaincddirectly from simulation runs assuming $... equal

TableS.1

toO". Il.3°and 22.so

Summary of test conditions used in the selected test programs

236

181

Tablc 8.2 Summary of average and standard deviation of the predicted to measured

mean peak force ratio. Fpm/Fm<;b' in each test data sel . 182

Table 8.3 Summary of average and standard deviation of the predictcd to measured

mean peak force ratio, F~_, of all tests for each ice force models

283

Tablc8.4 Summaryof measured loads from lMO'sand ERCL's testdntaand the forces

predicted by the new model

xvii

283



LIST OF FIGURES

Page

Figure 1.1 Test structure geometry. All diameters arc comer to comer: and all slopes

arc of facet centres, given as a ratio of venicalto horizontal. 43

Figure 1.1 Rubble field types (after [zumiyama et al. (994) . 43

Figure 2.3 Rubble types in strength-thickness domain (after lzumiyama et ai. (994)

44

Figure 2.4 Piece size versus ice breaking length for lME's tests (after lzumiyama et al.

[994) 44

Figure 2.5 Figure showing the definition of ice piece size, Lw and ~ (after [zumiyama

eta!' 1994) . 45

Figure 2.6 Increase in total load due to rubble (after lzumiyama et al. 1994)., 45

Figure 2.7 Comparison of Croasdale et ai's mockl with tests in ERCL's series (after

Croasdale et at. 1994) 46

Figure 2.8 Ice forces treated in Izumiyama et ai's model (after lzumiyama et aI, 1993)

46

Figure 1.9 Comparison of Izumiyamaet al's model with tests in lME's series where ice

rubble was absent (after [zumiyama et ai, (993) . 47

Figure 2.10 Rubble coefficient as a function of ice thickness and ice strength derived

from {ME's tcst data (after Izumiyamaet al, 1993) . 47

Figure 3.1 Experimental set-up showing a I:25 scale large neck model mounted under

xviii



the main carriage.

Page

59

Figure 3.2 Dimensions ofthe I:25 large neck model. All diameters are comer to comer;

all slopes are of the facet centres and given as a ratio of venica! to horizontaL

All dimensions in millimetres . 59

Figure 3.3 Dimensionsofthe 1:25smaJl neck model. Alldiametersarecomerlo comer;

all slopes are of the facet centres and given as a ratio of venical to horizontal.

All dimensions in millimetres 60

Figure 3.4 Dimensions of the I :50 large neck model. All diameters are corner 10 comer;

all slopes are of the facet centres and given as a ratio of venica! to horizontal;

All dimensions in millimetres

Figure 3.5 Global load measurement assembly.

60

61

Figure 3.6 Orientation of global coordinate axes with respect to the model structure

61

Figure 3.7 Neck load cell arrangement for the 1:25 large neck model 62

Figure 3.8 Neck load cell arrangement for the I:50 large neck and I:25 small neck

models.

Figure 3.9 Schematic of the data acquisition system

62

63

Figure 3. 10 Matrix showing lMD's.lME's and ERCL's level ice tests in thickness-strength

domain (full scale): face-on orientation only . 64

Figure 3.11 Comparison of mean peak force and mean force plus one and a halftimes

xix



standard deviation (lMO's 1:25 scale model tests)

Page

64

Figure 4.1 Photos showing a typical ice breaking, ride-up and rubble piling sequence

(Test MUNCONE4_(XH): (a) initial contact, (b) ice ride-up, (c) rubble

accumulation, and (d) fully developed rubble pile. 96

Figurc 4.2 Photo from lMO's series showing the ride·up of ice and the rubble pile (Test

97

Figure 4.3 Profile of crack patterns associated with the (a) edge·on and (b) face-on

orientations. 97

Figure ~.4 Load trace showing typical cyclical ice loading (MUNCONE4_003) 98

Figure 4.5 Time history showing high frequency cyclical loading (MUNCONE7_006)

99

Figure 4.6 Bearing failure of unbroken ice slteet in strength-thickness domain. lMD's

and lME'sseries 100

Figure 4.7 Ice piece size, ~, versus breaking length, ~. with curve filling for ice

thickness larger than 0.045 m. Tatinclaux's equation for urea ice is also

given. 100

Figure 4.8 Ratio of ice piece size to characteristic length, L,jl<. versus ice tltickness, t,

for seven sets of model test data with sloping structures 101

Figure 4.9 ModeVFull scale icebreaker test results showing the effect of ice thickness,

t. on the ratio of ice piece size to characteristic length,~11<. Data include low



speed test with urea and sea ice .

Page

101

Figure 4.10 ModellFull scale wedge breaking tests taken from Keinonen et aJ (1993)

showing the effect of ice thickness, t, on the ratio of piece size to

characteristic length, LJI<, with loading velocity. V = 5 cmfs . 102

Figure 4.11 Rubble types associated with [ME's and IMD's model tests shown in the

strength-thickness domain . 102

Figure 4.12 Non-dimensional resolution factor, ~/~, versus non-dimensional waterline

width, D/I<, for smooth cone tests 103

Figure 4.13 Non-dimensiona1 horizontal neck force versus non-dimensional free-board.

'lit IOJ

Figure 4.14 Figure showing the definitions of Ft , Fb and F< (A is the scale factor) 104

Figure 4.15 Comparison of horizontal breaking force measured in IMD's series to the

breaking force predicted by Equation 4.4 104

Figure 4.16 Comparison ofhorizontal clearing force measured in £MD's series to clearing

force predicted by Equation 4.4 .. 105

Figure4.17 Comparison of total measured horizontal force with prediction from Equation

4.4 for the three lest series 105

Figure 4.18 Comparison of prediction from Nevel's model with measurements from the

three test series: horizonla! force , 106

Figure 4.19 Comparison of prediction from Nevers model with measurements from the

xxi



three test series: venical force.

Page

106

Figure 4.10 Comparison of horizontal breaking forte measured in [MO's series 10

prcdiclion from Nevel's model 107

Figure 4.11 Comparison of horizontal clearing force measured in [MO's series to

prediclion from Nevel's model 107

Figure 4.21 Geomelryoflheconceptual model for ice forces exened on an inclined plane

Figure 4.23 The loads exened on supponing ice sheet.

Figure 4.24 The loads exened on pile-up icc .

108

108

109

Figure 5.1 Example of interlocking: (a) slightly inlerlocked surfaces in loosely packed

rubble, (b) highly interlocked surfacfi in densely packed rubble .. 147

Figure 5.1 Typical stresS-Slmin curves for loose and dense samples . 147

Figure 5.3 Internal friction angle versus inilial void r:uio for medium fine sand. Q, ~","'

and t>•• are internal friction angle, cormant volume strength. and panicle

comact friction angle, respectively. (ailer Rowe, 1962) . 148

Figure 5.4 Three characteristic types of earth pressure. 148

Figure 5.5 Observed rclalionsh.ip between K.. and sin ¢I for cohesive and cohesionless

soils: the solid symbols denole cohesionless soils and the hollow symbols

denole cohesive soils (aiter Mayne et ai, 1982) .

Figure 5.6 Graphical iUusuation of a used in Equation :5.9 ..

xxii

149

149



Page

Figure 5.7 Rubble geometry showing the two rigid blocks and the potential failure

planes. 150

Figure 5.8 Free body diagram of sliding blocks . 150

Figure 5.9 Safety factor a.'i a function of 41/41 for wall angle. a = 50". angle of repose. 41

=30". and ice friction angle. 4l~ =11.3~ and 21.8". . 151

Figure 5.10 Limiting rubble slope as a function of 41/41 for wall angle. a =50". angle of

repose. 41 =30". and ice friction angle. ¢l~ :: 11.3" and 21.8" . 15 [

Figure 5.11 Horizontal thrust on the wall as a function of ~.I~ for wall angle. a = 50".

angle of repose. III :: 30". and ice friction angle. 4t~ :: 11.3° and 21.8" 152

Figure 6.1 Ice breaking pattern showing the location of the accumulation and dearing

zones (arrows indicate direction of ice movement) 177

Figure 6.2 Ride-up pattern of ice generated from the accumulation and clearing zones

(arrows indicate direction of ice movement) . 177

Figure 6.3 Geometry of a typical rubble showing the location of the accumulation and

clearing zones (arrows indicate direction of ice movement) 178

Figure 6.4 Geometry of a typical rubble at times tl' t~ and tJ as it grows in size (II < t~ <

t, and arrows indicate direction of ice movement) . 178

Figure 6.5 Geometry of an idealized rubble surrounding a faceted cone (only the front

right quarter is shown) .

xxiii

179



Page

Figure 6.6 Rubble system selected for mass balance calculation (arrows indicate

directions of ice movement and only the front right quarter is shown)

(79

Figure 6.7 Geometry of a rubble pile formed by dropping ice blocks from a line source.

Note: Half cones formed at the two ends 180

Figure 6.8 Rubble geometry in front of an inclined plane fanned by end dumping from

a line source. 180

Figure 6.9 Rubble system selected in the calculation of hr{ (only the front right quarter

of the rubble is shown) . 181

Figure 6.1 0 Geometry of Ar{corresponding to the Cross-Section A-A as detined in Figure

6.9: (al front view; (b) top view 182

Figure 6.11 Rubble system selected for the calculation of rubble height at the side of the

cone. hI' 183

Figure 6.12 Cross-sectional view B-B as defined in Figure 6.11 showing the geometry of

183

Figure 6.13 Formation of two-dimensional rubble pile from a line source: (aJ to (c) [ateroll

slope formed by depositing materials at both ends; (d) lateral slope is not

formed due to lateral restraints at both ends 184

Figure 6.14 Rubble formation by two consecutive processes: (a) heap formation with

lateral restraints (no end effect); (b) lateral slope formation by releasing the

x.x.iv



lateral restraints .

Page

184

Figure 6.15 Figure showing the dimensions of a two-dimensional heap fonned by the

process depicted in Figure 6.14, when: (a) wsO.5wr• and (b) w=O.5 W f 185

Figure 6.16 Rubble mass formed in front of a sloping plane by a line souree with lateral

movements of ice blocks restrained .. 186

Figure 6.17 Final shape of the rubble with the lateral restraint on the left hand side

removed. 186

Figure 6.18 Base of the lateral ponion of the rubble: coordinates a, b. and j corresponding

to those in Figure 6.17, and coordinate o;s the venical projection (on to the

ba:,c) of coordinate c in Figure 6.17 . 187

Figure 6.19 Figure showing the detrease of rubble heights with the decrease of rubble

angle. Rubble heights have been non-dimensionalized with heights computed

at l=l!l,=35° . 187

Figure 7.1 Figure showing the interaction of ice blocks, cone and ice sheet from a typical

DEClCE simulation (after Lau, 1994a) . 237

Figure 7.2 Simulated versus measured horizontal peak forces for a 60 degrees cone in

level ice (after Lau. 1994a) (Axis scaling is not given due to data propriety)

237

Figure 7.3 Snap-shots showing generation process of rubble sample: (a) random

genermion of icc blocks: (b) free falling of ice blocks; and (c) final



configuration of rubble sample .

Page

238

Figu~ 7.4 Final coofiguration of rubble samples :l.fter initial compaction: ice pi~ce

siz~:(3) 16 m Jt 16 m; (b) 16 m Jt 32 m and (c) 16 m x 48 m . 238

Figu~ 7.5 Comparison of initial void ratio. ~O' and the associaled contact friction.ll.

with aspect ratios. AR = 1,2 and 3 . 239

Figure 7.6 Pr~ssure distributions of rubbl~ sample assumed in the gravity test 239

Figure 7.7 Comparison of eanh pressure coefficient at-rest. K...•. and the associated

aspect ratio. AR. for contact friclion.1l = O. 0.2 and 0.4: gravity method

240

Figure 7.8 Comparison of ~anh pressure coefficient at rest. K....l. and the associated

COnlact friction. }.t. for aspect ratio. AR = 1. 2 and 3: gr.1vity method. 240

Figure 7.9 Comparison of internal friction angle. ~.' and the associated contact friction.

Il. for aspect ralio. AR =1. 2 and 3: gravity method 241

Figure 7.10 Configuration of oedometertests: side and bottom plat~s fixed whil~ the top

plal~ mov~s downward at V =0.4 mls . 241

Figure 7.11 Figure showing the increase of horizonlal stress. p~..., with the increase of

vertical stress. Pt,.. in a typical simulal~d ocdomet~r test (Run Q12) 242

Figure 7.12 Comparison of the at-rest eanh pressure coeffici~nt, K....l' in simula[~d

oedom~ter tests and the corresponding coeffici~nt. K...I' estimated from

xxvi



gravity lest simulations

Page

242

Figure 7,13 Comparison of Ihe imemal friclion angle, 41~, estimaled from oedomeler lest

simulalions and lhe corresponding internal friction angle. 41 1, from gravity lest

simulalions. 243

Figure 7.14 Snap shots of Run S12 at (a) t =0 s, (b) t = 15.3 s and (c) t = 30.6 s showing

a typical angle of repose tests. 243

Figure 7. 15a Final configuration of rubbles in the angle of repose tests: (i) Test 5 12: (ii)

TestSl3: and (iii) Tesl 522 244

Figure 7. 15b Final configuration of rubbles in lhe angle of repose tesls: (iv) Test 523: (v)

Test S32; and (vi) Test 533 . 245

Figure 7. I6 Comparison of the angle of repose. ~" and the associated inlemal friction

angle, 41 1, obtained from gravity test simulalions 246

Figure 7.17 Definilion of variables commonly used in various earth equillions: (a)

Coulomb's equalion: and (b) Reimben and Reimben's equalion. (The

direction of total wall thrust as defined in Coulomb's equation and Reimbert

and Reimbert's equation are different.) . 246

Figure 7.18 Test configuration and sample geometry for each tesl simulation conducted

for the throsl equation formulation. The results are given in Table 7.6 247

Figure 7.19 Definition of variables used in Table 7.6 ..

xxvii

248



Page

Figure 7.20 Comparison of the predictions from Equation 7.18 and the tOlal thrust

measured on the wall for Ihe three values of wall friction, $.... =0", 11.3°, and

21.8°, used in the DECICE simulations. 248

Figure 7.21 Comparison of the predictions from Equalion 7.17 and the total thrust

measured on the wall for the two values of wall friction, 41.. = 11.3" and

21.8°, in the DECICE simulations 249

Figure 7.22 Effects of the wall angle on wall thrust for a combination of inlernal friction

angle, $, and rubble angle, l (wall friction, $.... = 21.8") 249

Figure 7.23 Comparison oflile predictions from Equation 7.21 and the thrust on the wall

in the DEC ICE simulation. 250

Figure 7.24 Computed effective friction angle at wall, $'..., versus wall angle, ex, for wall

friction angle, 41.. = II.Y The broken line corresponds 10 41'.. =41.. = 11.3",

and the regression line fits data with ex between 6ft' to 90" . . . 250

Figure 7.25 Computed effective friction angle at wall, 41' .. , versus wall angle, a, for wall

friction angle 41... = 21.8". The broken line corresponds to $'.. = $... = 21.8°,

and the regression line fits data with ex between 6ft' to 90" 251

Figure 7.26 Snap-shot of Run R12W3_2 showing the whole rubble mass sliding down

along the wall and the supponing ice surfaces. 251

Figure 7.27 Force equilibrium of the rubble body .

x.xviii

252



Page

Figure 7.28 Figure of a rubble retained by a multi-sloped wall showing Ihe walllhrusl and

the wall angle of each section 252

Figure 7.29 Data for sample calculation showing the use of the derived equalions

253

Figure 8.1 Breaking and ride-up patterns assumed in Lau-Croasdale's model (only the

front right quaner of the cone is shown) . 284

Figure 8.2 Comparison of Lau-Croasdale's model with existing test data for smooth

cones: horizontal mean peak force .. 285

Figure 8.3 Comparison of Lau-Croasdale's model with existing test data for smooth

cones: venical mean peak force .. 285

Figure 8.4 Comparison ofCroasdale's model with exisling tesl dala for smooth cones:

horizonlal mean peak foree . 286

Figure 8.5 Comparison ofCroasdale's model with existing test data for smoolh cones:

venical mean peak force 286

Figure 8.6 Comparison of Nevel's model wilh existing tesl data for smoolh cones:

horizontal mean peak force . 287

Figure 8.7 Comparison of Nevel's model wilh existing tesl data for smoolh cones:

venical mean peak force 287

Figure 8.8 Comparison of Ralston's model wilh existing lest data for slTlOOlh cones:

horizontal mean peak foree . 288



"'g,
Figure 8.9 Comparison of Ralston"s model with existing test <bta for smooth cones:

vertical mean peak force . 288

Figure 8.10 Comparison ofprc:dictcd to measured values for each test series: horizontal

mean peak force . 289

Figure 8.11 Comparison of ~icted to me:lSu~ values for each lest series: venical

mean peak force . 289

Figure 8.12 Average predicted to measured peak force values for each ice force model

290

Figure 8.13 Schematic of crack patlem in front of a faceted cone .

Figure 8.14 Coverage of ride-up icc on an arbitrary section i .

290

191

Figure 8.15 Geometry of rubble mass in front of the side facet showing the idealized

volumes. VI and VII . 291

Figure 8.16 Geometry of ice rode-up Ihe side facet (only Ihe front right quarter of the

cone is shown) . 291

Figure 8.17 Coordinates and geometry (only the fronl righl quaneroflhe cone is shown)

192

Figure 8.18 General interaction between icc and sloping structure showing ice forces on

ride-up ice and Ihe icc sheet. 293

Figure 8.19 Forces acting at the tip of the icc wedge . 293

Figure 8.20 Forces acting on :l. layer of ride-up ice al an arbitr:lty cone seclion . 294



Figure 8.21 Comparison of model prediction and ERCL's test data

Figure 8.22 Comparison of model prediction and lMO's test data.

xxxi

Page

294

295



NOMENCLATURE

A,,., The projection of cone obstructing ice movement as defined in Figure 6.10

a.~sociilted with Art. or in Figure 6.12 associated with A"

A.. Cross-section of rubble as defined in Figure 6.9

A" Cross-section of rubble as defined in Figure 6.11

AR Aspect r..ltio defined as the ratio of ice thickness to piece size

B.,., Length defined in Figures 6.9 and 6.11 for h". and h" computations. respectively.

B.. Length defined in Figure 6.9 for h". computations

B" Length defined in Figure 6.11 for h,.. computations

C,.. Length defined in Figures 6.9 and 6.11 for n.,. and h" computations. respectively.

o Widlhofstructure

Effective clastic modulus of ice sheet

F.. Breaking component of ice force

F, Clearing component of ice force

F.. Ma:dmum force

F........' Measured force

F'"p Mean peak force

F, Factor of safety

F,.,., Force components along the respective Canesian axes

F,. Horizontal component along It' axis

Hs Horizontal force acting on cone surface as defined in Figure 8.19

ltXltii



HT Horizontal force acting on top tip of wedge beam as defined in Figure 8.19

HTor Total horizontal force as defined by Equation 8.43

HI\' Horizontal force acting on bottom tip of wedge beam as defined in Figure 8.19

K Earth pressure coefficient function

K" Earth pressure coefficient function: active state

K" EaI1h pressure coefficient function: at-rest condition

~ Earth pressure coefficient function: pa...sive state

K'. K". K'" and K....

Various coefficient functions as defined by Equation 7.12

~. Circumferential crack length

L,. Broken piece size a... defined in Figure 2.5 (see Equations 4.1 - 4.5)

LI\' Broken piece size as defined in Figure 2.5

L." Broken length. (apyS" (see page 71)

N Normal force

Earth pressure associated with earth pressure equations: or. Ride-up force

tangential to cone surface as defined by Equation 8.47

p. Force exerted by rubble: active thrust

p.... Force exerted by rubble: horizontal force acting on bottom support

Po, Force exerted by rubble: vertical force acting on bottom support

P" Force exerted by rubble: total wall thrust (at-rest condition)

Pp Force exerted by rubble: passive resistance

xxxiii



P1"<>1 Force clterted by rubble: predicted

P"",.l Force elterted by rubble: simulated

P~h Force elterted by rubble: horizontal force acting on wall

p~, Force exerted by rubble: vertical force acting on wall

Rubble force defined in lzumiyama et aI's model (Equation 2.23)

R, Rate of ice supply into the system

R,. Rate of ice clearing from the system

R, Rate of icc accumulation in the system

RMS Root-mean-squared value

Ice velocity

Vs Vertical forcc acting on cone surface as defined in Figure 8.19

YT Vertical force ucting on top tip of wedge beam a." defined in Figure 8.19

VTm Total vertical force as defined by Equalion 8.44

Vw Vcrtical force acting on bottom tip of wedge beam a... defined in Figure 8.19

Y" Bcam breaking load under li.utsverse load

V'" Effective beam breaking load under bending and inplane compression as defined

by Equation 8.5

V" Velocity of ice passing through a cross-section

W, Weight of rubble ice

W"c Weight of rubble ice displaced by front facet surface of a silt faceted cone as

defined by Equation 8.14

nxiv



W,.. Weight of rubble ice displaced by side facel surface of a Sill faceted cone as

defined by Equation 8.22

W", Weight of ride-up ice

W",~. Weight of ride-up ice displaced by front facet surface of a Sill faceted cone as

defined by Equation 8.17

WN.' Weight of ride-up ice displaced by side facet surface of a six faceled cone as

defined by Equation 8.24

X.Y.Z Cartesian axes as defined in Figure 8.17

X' Axis with direction perpendicular to side facet at waterline as shown in Figure

8.17

d" Breaking width of ice beam as defined in Figure 8.13

d. Projecled width of side facel as defined in Figure 8.16

Cohesion

t'" Initial void ratio

h or h, Rubble height

h~ Vertical dislance ofbouom level of a wall section from maximum height of

rubble as defined in Figure 7.28

hn Height of neck seclion from waterline

h,,,, Equivalent rubble heighl at front facet as defined by Equation 8.13

hr. Equivalent rubble height at side facet as defined by Equation 8.18

hn Rubble height at edge of front facet as defined by Equation 6.18



h"" Maximum rubble height at front facet as defined by Equation 6.35

h" Rubble height at the side as defined by Equation 6.22

hrn Ride-up height

hrn < Equivalent ride-up height at front facet a.<; defined by Equations 8.15 or 8.16

Vertical distance of top level ofa wall section from maximum height of rubble as

defined in Figure 7.28

Char.lcteristic length of ice sheet as defined by Equation 2.8

Pressure

Porosity

Thickness of ice

Horizontal distance from hr( to h... as defined in Figure 6.17

w,. Width of facet at waterline

w,., Average width of rubble at front facet (assumed equal to w..."')

w", Equivalent width of rubble at side facet as defined in Figure 8,23

W rn..: Average width of ride-up at front facet as defined in Figure 8.12

''(I Direction cosine of frictional force in It-direction a<; defined by Equation 6.28

Xs Direction cosine of normal force in x-direction as defined by Equation 8.16

Free-board of structure

Direction cosine of frictional force in z-direction as defined by Equation 6.29

Zs Direction cosine of nonnal force in z-direction as defined by Equation 8.27

Cone angle

xxxvi



am Average cone angle

a p Inclinalion of tmal walllhrust, p., from the horizontal

a, Cone angle at side of cone

Weight density of ice

y~ Bulk weight density of granular matcrial

y~ Weight density of water

Anglc between plane bed and planc abd as defined in Figure 8.17

6" Angle between radial crack and x-axis

Angle of inclination of rubble surfacc

Il, Ice-structure friction

Il' Effective icc-struclure friction

Poisson's ratio

Resolution factor for 2-D interaction as defined by Equation 2.2

~I Resolution factor as defined by Equalion 2.5

':l Resolution factor as defincd by Equation 2.6

~'D Resolution faclor for 3-D interaclion with smooth cone as defined by Equalion

2.25

Resolution factor for 3-D interaction with faceted cone as defined by Equalion

4.6

xxxvii



Density of ice

0'( Flexural strength of ice

0"( Effective flexural strength of ice. including effect of in-plane compression. as

defined by Equation 8.53

O'h Horizontal stress

0', Normal stress

0', Vertical stress

Shearstrcss

Angle of internal friction

c\lh Angle of base friction

Q'. Angle of effective base friction

Q)<,. Angle of internal friction corresponding to cOflstant volume strength

Q)J Angle of inter-block friction as defined in Figure 5.8

¢r Angle of internal friction corresponding to peak strength

$, Angle of repose

4l~ Angle of wall friction

41'" Angle of effective wall friction

¢I~ Angle of ice friction

\jf Angle of friction force with respect to the x~axis as defined in Figure 8.17

:uxviii



Chapter 1 Introduction

1.1 Background

Ice: mechanics and ice engineering research in Canada have assumed increased

imponance due to the growing interest in exploration of natura! resources and industrial

developments in its Arctic offshore regions. A major driving force behind the heightened

interest has been hydrocarbon developmcms in the contincmal shelf in the Arctic and suD

Arctic sca.~. Can::Jda has a va.~t infrastructure dependent on oil and gas and there are no

competing fuels on the horizon. Oil and gas are predicted to continue to make up about 60%

of Canada's energy consumption for the next two decades. a.>; predicted by Canadian

government for the year 2020 (Natural Resources Canada. 1993). The total recoverable

reserves for the Frontiers was conservatively estimated al 22 Billion Bbls of oil and 275

Trillion Cfs of gas. with the largest reserves being located at the Grand Banks and th~

Beaufort Sea (Natura! Resources Canada, 1993). Such vast quantities of petroleum reserves

ensure a secure source of future supply for Canada in place of the rapidly depleting oil

reserves in Western Canada. This has heightened the need for improving current technology

to lower the costs of oil production from ice covered areas. and stimulated significant activity

in thc development of novel offshore structures during the past two decades.

The development of new concepts and designs for engineering structures in ice

infested waters poses many challenging problems related to determination of ice loads and

assessment of the overall safety of such structures. Conical form at the water line ha.o; been



considered to~ belter than vertical surfaces in protecting vulnerable structures operaling in

these regions and helping them to withstand severe ice forces. since this configuration

reduces ice loads by causing ice features to break in bending. Conical structures also provide

a natural and smooth transition from a wide-base to a narrow deck supporting the

superstructure.

Although great effons have been put into both theoretical and experimental

investigations concerning ice forces on conical structures [see Wessels and Kato (1989)1.

serious problems still remain unsolved. A review of the ice load prediction methods for

conical structures by Chao (1992) reveals a high degree of uncertainty in ice force prediction.

mainly due to the lack offull scale measurements and the absence ofpropcr analytical tools

to model the complex three dimensional icc-structure interaction problem. It results in "over

designing"' to compensate forcurrent lack ofknowledge. Such overdesign leads toexcessive

construction costs and reduces a project's feasibility. Furthermore. early experimental and

theoretical work on ice-cone interaction were entirely devoted to smooth cones which had

narrower necks relative to the water line diameter. However. by mid-1980's it had become

apparent that new designs. incorporating sloping flat faces (facets) and wide necks above the

ice waterline. may be more COSI effective and practical. i.e.. ODECO AMDP (Chabot. 1985).

Such a structure is presently considered for operation in Russian water.; offSakhalin Island.

These structural concepts can also be implemented in structures located in less severe ice

environments. i.e., bridge piers and lighthouses.

No prior study related to ice forces on faceted cones existed before 1988 (Croasdale



and Muggeridge. 1993). The fundamental interaction processes we~ not fully understood.

Since the flat facet and its sharp comers were unique to a faceted cone. it was suspected that

such features would lead to an ice breaking and clearing process substantially diffe~nt from

that of a smooth cone. In considering ice forces on these structures. there was a concern with

the validity of existing theories in predicting ice forces knowing that their geometry was

significantly different from the true conical form. The anticipation of rubble accumulation

in front of the structure also led to a concern that the ice clearing forces would be greater than

the predicted values. obtained using eurrent theories. In order to enhance the understanding

of how ice would fail and clear around such structures. and to develop a proper ice load

estimation formulae. model testing and better theoretical fonnulation of the interaction were

proposed.

In 1988 the Memorial University of Newfoundland (MUN) collaborated with the

Institute for Marine Dynamics (IMOl and the {nstitute of Mechanical Engineering (lME) of

the National Research Council of Canada (NRC). Esso Resources Canada limited (ERCll.

E;(xon and Mobil in a university-industry program to perform an extensive series of physical

model tests in order to beller understand how ice floes and ridges would fail and clear around

such structures. and how well existing theories predicted the global loads. The results of the

various components of the program are described by Croasdale and Muggeridgc (1993).

While results of each series of tests have been separately documented (Metge and Weiss

(1989). and Metge and Tucker (1990) for ERCl's test series; Irani et al (1992) for IME's

series. and lau et al (l993b) for IMO's series). and published [Irani and Timeo (1993);



Timeo el al (1993); Lau el al (1993a); lzumiyama el al (1993.1994) and Wang et al.

(1997)J. only very simple analyses were perfonned and they were fragmented in nature.

Many aspeets of the interaction processes and the effects of various faclors on ice loads were

not fully addressed.

I conducted the model test program in lMD with the assistance of Mr. J.R. Tucker

of MUN during my stay in the institute. Analysis of the results from the L\1D series.

suppl~mcnted by additional data analysis of the accompanying series. and subsequent ice

force modelling form the bulk of the research effort for this thesis. Focus is devoted to level

ice tesl~ only.

1.2 Scope and Objectives

The main objectives of this study arc:

(i I To improve the understanding of the imeraction processes and failure

mechanisms of a level ice field against a faceted cone during continuous ice

breaking. and

(ii) To provide engineers with a sel of easy-to-apply formulae for ice load

calculations.

In this work. the major issues addressed are:

(i) Whether the existing theories. proposed based on earlier experiences with

smooth cones. were accurate enough for predicting ice forces on comparable

faceted cones; and.



(ii) Iftheexisting theories did nOiadequately predict ice forces on faceted cones,

what modifications were necessary to correct the deficiencies.

From a more practical point of view a load prediction model. applicable to the faceted

cone shape, was to be developed for design purposes. The model should reflect accurately

the dominant interaction processes generated by this unique shape.

While an improved ice force prediction model is proposed here to suit the pl"".JCtical

need of designers. the theoretical modelling erfort is kept to a minimum. Existing analyses

of icc force on smooth. cone were used when deemed appropriate. The improVed model

represents the most comprehensive att~mpt to incorporate fundamental processes in its

problem treatment and forms a new conceptual framework for future model refinements.

1.3 Approaches and Methodologies

This research investigation consists of experimental. numerical, and theoretical

studies described here in three parts. The approach promises the most versatile and relevant

procedurc for improving our undel1itanding of the icc-structure imeraction problem for the

multifaceted cone.

In part one. the pilot series of physical model tests are reported. The physical model

tests were planned to provide a dear insight imo the interaction processes by combining

rclcvam observations and interpretation of results. The ice forces corresponding to peak load

events were idemified for each. test, along with the associated imemction processes. The

observed unique interaction processes helped to formulate aconceptual model, whietl would



provide a focus and outline of the phenomena to be investigated, and the melhods 10 be used

to investigate these phenomena.

The model tests also provided a unique set of ex.perimenlal data 10 assess lhe validity

of existing formulae for predicting ice loads on a faceted cone. Comparisons were made of

the experimental results with the predictions of a leading theoretical model developed for

computing ice forces on smooth cones. The comparison further underlined the deficiency

of existing theories in predicting ice forces on faceted cones.

It became evident during the early pan of the model tests thai the ice pile-up induced

by the n<.l! facet was a typical behaviour of ice around the faceted cones as opposed 10 the

smooth cones. A proper understanding of the paniculale mechanics and the formation

process of ice rubble held the key to further studies in this area: this forms the focus of part

two of this research. Theories in the field of particulale mechanics were examined, and a

new rubble model wa... developed from appropriate theories to predict the geometry of a fully

developed rubble and the load it exerted on the structure. The geometry of the rubble was

deduced based on a simple interaction geometry and mass balance considerations; whereas

the equations for calculating the boundary forces exerted by the rubble at it's interfaces with

the wall and the base support were empirically formulated from a rigorous interpretation of

a ~eries of numerical simulations of earth pressure on a retaining wall. The numerical

simulations were carried over a broad spectrum of interaction conditions using the discrete

element method (OEM), implemented in a 2-D version of the computer code DECrCE.

Part three was devoted 10 the development of a new ice force model which took into



accountlhe main features of the interaction processes associated with faceted cones. In view

of thc existence of many ice breaking models. detailed modelling of the phenomenon of ice

breaking under load was not carried out in this work:; instead. the existing analytical models

of ice forces on sloping structures were critically assessed through an extensive comparison

with experimental data. and a base: model of ice breaking was selected. This base model was

further incorporated into the new rubble model developed in pan two. resul!ing in a set of

mathematical fonnulae which were established based on experimental observalions and basic

mechanics of ice. These fonnulac represent in a concise and general fashion the description

of ice breaking and clearing phenomena. the observed relationship between the processes.

the ba.o;ic mechanisms that underlie such relationships. and the relationships among relevant

ice and structure parameters.

1.4 Organization of the Thesis

This thesis consists of a total of nine chapters. The first two chapters fonn the

introdUl.:tory study to the thesis. Chapter I discusses the issues addressed in this work. The

relevant background. approaches and methodologies are briefly described. Chapter 2

consists of a literature review. which focuses on previous studies and modelling of ice loads

on sloping structures. The existing theoretical models and the associated ice-structure:

interaction processes observed in relevant model tests are summarized. with the limitations

and shortcomings of the previous studies discussed. The subsequent seven chapters. viz..

Chapten; 3 to 8. are divided into three parts. corresponding to the tllree stages of this study



already mentioned above.

Part I documents the results of the experimental investigation. which consists of two

chapters. Chapters 3 to 4. Chapter 3 describes the tests and summarizes the resuhs. Chapter

4 identifies the salient aspects of the ice cone interaction processes. and presents the analysis

of peak ice loads. The last section of Chapter 4 serves as a conclusion of this part. where the

findings are summarized and a conceptual model is presented. which forms the framework

for further model development.

The unique pile-up process of ice around a faceted cone forms the focus of Pan n.

This part consists of three chapters: Chapters 5 to 7. which document the results of a

subsequent rubble modelling. Chapter 5 summarises the constitutive behaviour of a rubble

under load. The defonnation characteristics of a rubble in fronl of an inclined wall are

identified. and the existing techniques for load calculation are examined. Chapler6 presents

a rubble model for predicting the geometry of an ice rubble in front of a multi-faceted cone.

Chapter 7 consists of (Wo pans which summarize the results of a series of numerical

simulations using a discrete element code. The first part examines the shear strength of the

rubble via a series of shear test simulations: whereas. the second pan presents a set of

empirical equations to compule the load exerted on an inclined wall and the base support by

the rubble.

Chapter 8 constitutes Part III of this thesis. This pan is dedicated to the presentation

of a new icc force model. In the first half of Chapter 8. a base model for ice breaking is

selected for incorporation into new rubble model developed in Pan nof this thesis. In the



latter part of Chapter 8. the new icc force model is developed. documented. and validated.

The final chapter summarizes the research efforts and contributions made throughout

this study. Conclusions arising out of this study and recommendations for future work in this

area are given in lhischapter.



Chapter 2 Literature 'Review

The faceted cone is a structure proposed for future oil and gas developments in the

Arctic and sub-Arctic regions; consequently. there is no theoretical and/or experimental

studies on such structures available in open literature. Since the faceted cone possesses a

b:ISic conical form with inclined surfaces, a review of studies carried OUI on inclined

structures. i.e., conical structures and inclined planes. could be helpful to the present

research. Thus. the literature available on ice interaction with an inclined struclUre is

reviewed and discussed in this chapter. Emphasis is laid on the available theoretical

modelling of ice loads on the structure and the observed ice-slruclUre interaction processes;

the physical modelling of ice load is only briefly discussed.

Over the last two decades. significant progress has been made in developing models

to predict ice loads on inclined structures (including conical structures and sloping planes).

Extensive reviews of the existing analytical and empirical methods were given by Sodhi

( 1987). Marcellus et at (1988). Cammaen and Muggeridge (1988). and Sanderson (1988).

Wessels and Kato (1989) reviewed the ice failure modes around conical structures, and

summarized the available model scale and full scale measurements. Evaluations of the

performance of several methods were given by Croasdale ( 1980). Timco (1984a). Marcellus

et al (1988). and Chao (1992).

Section 2.1 gives an overview of the dominant interaction processes as observed in

model tests. The subsequent theoretical models are summarized in Section 2.2. The work
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described in this thesis was conceived as part of a larger project with collaboration among

many participants. A general overview of the whole Icst program is given in Section 2.3.

The major findings reponed by other participants ate also summarized in the section.

Section 2.4 compares various modelling approaches and gives a state-of-the-art assessment

of the presenl available expenise on ice force predictions on conical structures.

2.1 Ice-Structure Interaclion Processes

2.1.1 Conical Structures

The following description of the internction between a conical structure and a level

ice sheet is based on the studies reponed by Croasdale (1980), Sodhi (1987), Wessels and

Kato (1989). and others. Additional details of the failure processes and ice forces

encountered by sloping structures have been obtained from experiments carried out by

Haynes et a\ (1983). Wessels (1984). Kato (1986), Hirayama and Obara (1986), Clough and

Vinson (1986). MaaUanen(1986), Lau et al (1988), and Lnu and Williams (1991).

As an ice sheet advances toward a conical structure, local crushing of ice occun at

the icc-structure interface. The local crushing creates an interaction force nonnal to the

structure surface. In addition. because the ice is sliding upwards relative to the surface, a

frictional force is also generated. These forces create in-plane and out-of-plane forces, and

an edge moment; and a complex three dimensional stress state is induced in the ice. As the

ice sheet continues to advance. the stresses increase until failure of the advancing ice sheet

occun in either one or a combination of the following failure modes: bending. crushing,
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shear, buckling, and splitting. Observations show thm the bending failure is more dominant

lhan the other modes of failure under interaction conditions such as low inclination angle

(10" to 60"), low ice-cone friclion coefficient, small ice Ihickness. and low speeds of ice

For a bending failure of ice sheet, the failure mechanism is governed by the flexural

stresses induced in Ihe ice in both radial and circumferential direclions. If the cone is small

compared to the ice thickness, radial cracks radiating al6O" intervals initiate the failure. The

peak load. however. occurs when circumferential cracks develop and wedges of ice break off.

With increasing cone diameter Ihe curvature oflhe cone surface at Ihe waterline decreases.

and the maximum tensile stresses of Ihe ice cover change from circumferential direction to

the radial direction. This process causes the ice sheel 10 fail firsl circumferentially and

thereafterr.ldially.

Failure modes other than bending can dominate under specific loading conditions.

With increasing steepness and rougttness of the cone surface, or ice thickness, the failure

mode also changes gradually from bending to shear or crushing. At higher speeds, the failure

mode changes abrupdy from bending to shear or crushing due to dynamic effects (Wessels,

1984: and Haynes et al. 1983). The speed at which the transilion of failure modes takes

place was found to increase with Ihe increase in the indination angle (Haynes el al, 1983).

The influence of shear stresses on determining failure modes becomes more

imponant with increasing ice thickness and is finally predominant for thick ice fields

(Mamtanen, 1986). Observation of actual fracture patterns in thin ice reveals that pure
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bending occurs when circumferemial cracks form at distances slightly higher than the

characteristic lengths; and with increase in thickness, the average length of broken pieces

decreases which may indicate a combinalion of bending and shear failures (Wessels, 1984;

and Lau et al. 1988).

Michel (1978) has described the condition where ice sheets imeract with inclined

structures having an inclination to the horizontal of greater than 75B
• For structures in this

category. crushing will generally take place before bending.

After the local failure of an ice sheet the broken ice pieces, pushed by the

approaching ice sheet. rotate until they are parallel to the inclined surface. and begin to ride

up the face of the structure (which has been termed ride-up); then the ice clears around and

slides down the back side of the cone. As the ice pieces rotate, water drag and inertia forces

arc developed on the structure. The broken ice pieces sliding up the inclined surface also

develop frictional and gravity forces on the surface.

The geometry of structure above the waterline has a significant influence on the way

the broken ice clears around the structure. On a cone with relatively narrow superstructure.

the ice can clear around the structure easily; however. for a wide conical structure or a

sloping plane. the ice may reach the superstructure and roll back onto itself. creating

additional ice on the slope of the structure, which may lead to an ice rubble pile in front of

the structure, interfering with the ice breaking process.

If the ice is weak, the load applied to the unbroken ice sheet by the broken ice pieces,

as they are being pushed up the cone surface, may cause the ice sheet to fail in bending with
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the broken ice pieces sliding down the front of the cone.

2.1.2 Sloping Planes

Many e)(periments have been conducted to study the features of ice failure processes

:.md the 3.."sociated ice loads on narrow and wide sloping planes (Zabilansky et aL 1975:

Sorensen. 1978: Haynesetal, 1983: Timco, 1984b: Frederkingand Timco, 1985: Michel

and Picard. 1989: Valanto. 1989: and Finn, 1991). The observed failure modes and the

interactions are similar to those described in the previous section. The features of ice failure

processes. particular to ice interaction with sloping planes, were summarized 3.." follows

(Sorensen, 1978: and Timco, 1984b):

As the ice sheet is lifted upwards by a narrow plane, two radial cracks e)(tend outward

from the comers of the plale at an angle of about ]0" according to Michel and Picard (1989)

and Frederking and Timeo (1985), and 45° according to Finn (1991), to the sides of the plate,

fanning a cantilever beam with the width slightly wider than the structure, Occasionally, a

radial crack also emanates from the centre of the plate (Finn, 1991; and Michel and Picard.

1989). When the flexural stress in the ice sheet exceeds the strength of the ice, a

drcumferential crack ronns at a finite distance from the structure, and the peak. load is

attained. Under some circumstances, the peak force could occur during the radial cracking

(Frederking and Timco, 1985).

Upon further advance, the broken ice slabs slide up the front face reactling the top of

the structure, The ice which overhangs the sides of the inclined plane usually breaks off due
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10 its own weight. In comparing with conical structures. the ice clearing around a sloping

plane is less effidem, The broken ice slabs usually reach the top of the structure. !flheyare

not cleared ofr. they may roll back onto themselves. leading to an ice rubble pile in front of

the structure. which interferes with the ice breaking process.

2.2 Models ror Ice Force Predictions

The development of computational methods for ice loads on sloping structures has

~~n limited because of the lack of knowledge about the dynamic nature of interactions. and

the complex rheological behaviour of ice and boundary conditions during the interaction.

In order to meet the pr.lCtical needs of designing structurt:s with conical forms. various

computational methods have been developed by making assumptions that would permit

analysis of the problem using available theoretical procedures. The simplest method to treat

the interaction is to assume that the structure is rigid and that only the deformation and

failure of ice sheet are considert:d. It should be noticed that all the analytical formulae were

d~rived based on observations from small-scale medeltests with gentle sloped cones (i.e..

- 45° to the horizomal). thin ice. low friction coefficient and low ice speed. in which bending

failure isdominam.

In the following sections. several approaches for prt:dicting sheet ice loads on

inclined structures are reviewed. which cover essentially all the importantlmown models.

and are representative of the available approaches. These approaches generally fall into two

basic types:
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(i) Analytical formulations based on elastic or plastic analysis. and

(ii) Semi-empirical formulae based on experimental data.

2.2.. Analylieal Fonnulations

Classical analytical procedures have been adopled to investigate the effects of an icc

sheet impinging on a single conical structure. The forces depend on the mechanisms of

failure and the geomelry of the structure. Usually dynamics. creep and OIher effects are

completely neglected with some justification.

2.2.1.1 Croasdale's Approach

Croa.'\dale ([980) proposed a simple two-dimensional theory for wide structures

ba.~cd on the theory for beams on elastic foundations (Helenyi. 1946). The ice sheet was

lreatcd as a semi-infinite elastic beam on elastic foundalion subjected to a horizonlal force.

F,. :md vertical force. F,. atone end. At the instant of first contact. the relationship between

F, and F, can be derived by resolving the forces. viz..

(2.1)

wherc; is called resolution factor defined as:
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with a being the 3ngle of the slope from the horizontal and J,.l. the friction coefficienl.

The maximum value of F, is limited by the flexural (tensile) strength of the ice sheet

with an vertical edge loading supported by an elastic foundation. The horizontal force per

unit width of the ~tructure. generated at the instant of first failure of ice. is given by:

F (Y"r~=O.68(J ~.~
D f E

(2-3)

where 0 is width of the structure; al • bending strength; 't.... weight density of water; t, ice

thickness: and E is elastic modulus of ice. For subsequem imeraction. an exira force is

required to push the ice up the slope. The corresponding !()(a1 force experienced by the

where:

(, ·O.68(
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with z being the free-board, and y the weight density of ice.

In the above relationship (Equalion 2.4), the first term (on right hand side) can be

considered a" the force necessary to break the ice. and the second term can be considered as

the force necessary to push the ice pieces up the sloping structure. It could be a simplified

2-D rclJtionship for a wide structure. but a" the structure width decreases relative to the

characteristic length of ice, the zone of ice failure will be wider than the structure itself, and

most of the ice pieces will not necessarily ride-up the structure but clear around it. For

narrow structures, Croasdale suggested a simple correction to adjust the two dimensional

force by the ratio of the length of the circumferential crack divided by the structure width,

multiplying the ice breaking component by

(2.7)

where 1< is the char-.lcteristic length for the plate given a..

lo(E..'.-Ii
,. 12Y...1" (2.8)

However, olher investigators (Ralston, 1977; and Nevel, 1980 and 1992) have given more

rigorous analyses of the three-dimensional problem.
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In 1994. Croasdale et aI extended their Ihree-dimensional analysis 10 incorporate

adjustments for in-plane compression as well as effecls of ice rubble build-up in front of the

structure. The in-plane compression creales a compressive stress in the ice sheet increasing

it's effective Ilexur..u slrength. The increase in load was computed through an iterative

process. The modifications for the presence of ice rubble include: Ihe force necessary to

push Ihe advancing ice sheet through the ice rubble; the additional force necessary 10 push

the ice blocks up the slope through the ice rubble; and. the additional force necessary 10 lift

and shear the ice rubble on top of the ice sheet. Croasdale pointed out Ihat the model was

simple to use and could be easily incorporaled into a probabilistic methodology. He further

asserted thai the model gave results similar to more complelt models. Le.. Nevel's model

(1(92) although simplistic assumptions had been made.

His model is based on simple mechanics and provides a good appreciation of the

important roles various paramelers and processes play on ice force development. II can be

a useful starting point for Ihe development of more complex approaches. and will be

examined in a greater detail in Ch.apter 9.

2.2.1.2 Nevel's Approa<:h

In a three dimensional case when the zone of failure extends wider Ihan the siruciure.

the failure occurs after the fonnation of radial cracks when a circumferential crack takes

place. Therefore. the simple beam theory has to be replaced by a more complicaled plate

theory. and the ice force problem is reduced to the prediction of the forces necessary 10:
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(i) Initiate radial or circumferential cracks in a semi-infinite floating ice sheet.

ood

(ii) Fail a series of truncated ice wedges. formed by radial cracking of the ice. as

it advances against the cone.

Nevel (1965) performed numerical integration to dctcrmine the bending momcnt

required to initiate failure ofan semi·infinite floating ice plate. He treated the problem as

a semi-infinite plate on an elastic foundation with a load applied near the ice edge. The

maximum deflection which occurred at the edge under load. the moment which eaused the

initial radial cracking of the plate. the distance from the edge at which acircumferential crack

would occur. and the moment that eaused thc circumferential crack were calculated and

given in graphical and tabulated forms.

If the failure W;l.<; initiated by radial cracking. a series of truncated ice wedges would

form. and the subsequent failure was reduced to the prediction of forces necessary to fail

these wedges. Nevel (1972) gave the failure force P on the tip of a truncated wedge to be:

(2.9)

where a is the distance from the tip of the wedge over which it is loaded. and bo is a constant

defining the width of the wedge. b. in the equation

b ~ b"x
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with x, being the distance along the wedge. His analysis compares favourably with published

data on the ultimate load carrying capacity of ice sheets.

Nevel (1980) further analysed the wedge on an elastic foundation subjecled 10 an in

plane force and edge moment and he considered the buckling and bending of this wedge. An

ex,act solution was oblained by means of a contour inlegral in a complex plane. In general.

the solulion shows that this additional moment is small because the deflection of the ice

wedge is small when failure of the wedge occurs. However. the effect of in-plane

compression becomes increasingly important for sleeper cones and thicker ice.

Recently. Nevel (1992) refined the ex,isting analytical theories and presented a

rigorous treatment of ice forces and moments on conical structures from ice floe. The new

theory included either simultaneous or sequemial breaking forces and the ride-up forces. The

ice cover was treated as an idealized truncated wedge based on his earlier work (1980). Of

particular significance is the development of forces from ice sliding on the surface of the

cone. The analysis identified where the forces acted on the cone. and hence allowed the

determination of moments. Funhennore. the in-plane compression and edge moment were

incorpor.lted in the solution.

In general. the cone could be multi-sloped. composed of a number ofconical sections

with the vertical neck of the cone being the smallest section. For each broken ice piece. the

forces which act on the cone were detennined along with those which were transmitted to

the broken ice piece below. The analysis proceeded from the neck section to the waterline

with a resultant ice load from the broken ice pieces acting on the floating ice wedges.
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To calculate the wedge failure load. Nevel used his solution for the deflection of a

wedge on an elastic foundation (Nevel. 1980) by considering the bending of a wedge beam.

with it's free end being acted on by a shear force. a bending moment. and a compressive

horizontal force. For sequential breaking, it was assumed that the maximum load on the

cone occurred when the centre wedge failed. Hence, the maximum force was the sum of

force from the wedge nearest the centre which failed and all other wedges lhat did not fail.

In simultaneous breaking. the breaking loads for all the wedges were summed.

A computer program was written which allowed sufficient variations of the input

parameters permitting the simulation of realistic ice condition. His solution was rather

complicated and too lengthy to be reproduced here and the reader is referred to the original

paper for full details (Nevel. 1992).

2.2.1.3 Ralston's Approach

Croasdale's and Nevel's approaches were based on the theory ofelastic plate or beam

on elastic foundation. An analysis by Ralston (1977), was based on an elastic-plastic

representation of the ice failure. He used three-dimensional plate theory. and plastic limit

stale analysis. where the work done by e:tlemal forces was equated to the iol.le of energy

dissipation. The use of an upper-bound procedure of plastic limit analysis led to a

mathematical model for both sheet ice failure and ride-up on aconical strUCture. The derived

formulae for the horizontal F. and the venical forces F, were expressed as follows:



(2-11)

(2.12)

where Dn and D were top and waterline diameters of the cone, respectively; AI and A~.

coefficients dependent on:

(2-13)

and A!. A•. 8 1 and B~ were coefficients dependent on the cone angle and ice friction. Values

for the coefficients were given in his paper.

In both the equations given above (Equations 2.11 and 2.12). the last term (on the

right hand side) is due to ice pieces sliding over the cone surface, and the other tenns result

rrom ice breaking. According to observations, radial cracks occur before circumferential

cracks and not simultaneously. These circumferential cracks give the maximum assumed ice

loading condition. The elastic analyses of failure follow closely each stage of crack

development, while the simuilaneous formation of the circumferential and radial cracles

;Jssumed in Ralston's model is not realistic. Therefore, Ralston's plastic approach. tends to

overestimate th.e bending resistance of ice. Maaltanen and Hoikkanen (1990) modified

Ralston's solution to omit the contribution of energy dissipation due to radial cracking. This

result gave a better fit to their model test data and field measurements. Nevertheless.
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Ral~ton's theory has been regarded widely 10 be satisfaclory in predicting ice forces after

cxtensive comparisons wilh experimental data.

2.2.1.4 Maattanen's Approach

Full-scale measuremems(Maauanen and Muslamaki. 1985; Hoikkanen. 1985) have

indicated that a rubble pile is likely to fonn in fronl of a conical structure. Previous scale

modeltesls and theorelical models do not consider the effeclS of pile-up.

Maauanen (1986) refined the analytical models by taking into accoum the effect of

the ice rubble pile on Ihe bending momem distribution in the ice sheet in front of Ihe

structure. The model is formulated using finile element methods capable of both bending

and buckling analysis. A constant thickness ice sheet is moving lmerally and breaking

against an inclined wall under a lriangular shaped ice rubble pile. The rubble pile is treated

hy using classical Coulomb's soil mechanics. The two dimensional model is based on the

bending theory of a beam on elastic foundation. The loading consists of horizoma! and

vertical edge reaction loads and dislributed vertical and horizontal rubble loads. Differenl

ice failure modes are considered.

An example calculalion shows that the ice rubble pile loading enhances edge crushing

and shearing. changes the location of the maximum bending momem. and results in smaller

broken floes than predicted by previous models. With Ihe same bending moment level the

ice load could increase by aboul 50% due to Ihe ice rubble.

In a subsequenl work. Maattanen and Hoikkanen (1990) eXlend the analysis to a three
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dimensional case. The beam theory is replaced by a more complicated wedge plate theory.

The new ice force calculation procedure is compared with results of full scale measurement

and scale model lests. The correspondence between the calculations and measurements

appears to be good.

2.2.2 Empirical Formulae

Empirical and semi-empirical formulae have been proposed based on small scale

modellests (Afanas'ev el ai, 1971; Edward and Croasdale, 1976: Pearce and Strickland,

1979: Brooke, 1981; Hirayama and Obara. 1986; and Kato. 1986). The total force was

customarily split into two components:

(i1 The force essential for breaking the ice. and

Oi) The force netessary to cause the broken ice to slide up the surface.

Dimensional analysis has been the main tool in finding the form of equations. The

..:odficients in each formula are Ihen determined by linear regression analysis of data from

respective experiments. The empirical formulae are summarized in this settion. The Icst

variables for each test dala sets. and the coefficients of the respective formula are listed in

TabJe2.J.

Afanas'ev et al (1971) proposed the following empirical relationship based on elaslic

plate theory:

(2.'4)
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where

".. ,~
1.93/,

with S, being the length of the circumferential crack given as

(2·\S)

(2.\6)

Their results give only the breaking component of the force exened by the ice shee!.

Although this formula underestimates Ihe force. the effects of ice strength, ice thickness. and

cone angle are clearly included and the trends seem reasonable,

Edwards and Croasdale (1976) performed a series of model tests on 450 cones with

a friction coefficient of 0.05. They dimensionally argued that the horizontal force F, on the

cone should be

(2.17)

where a., and a l are constants. The first term is the ice force caused by ice breaking, and the

second term is the force generated due to ice riding up the structure slope. The ride-up force

component is a function of 0 and t!, while the breaking component is independem of the

width of the cone at waterline. The fonn of the empirical expression is similar 10 Ralston's

plasticily model except thai the ice ride-up component comains Dt! rather than D!t. Ralston
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( 1977) commented thai iflhe iceckaring term was re·written in terms ofrYt.thecoeffkients

would also be approximately those computed by his analysis for the test conditions. Data

from model tests showed reasonable agreement.

Pearce and Strickland (1979) claimed that the equation

(2-18)

lined their experimental data.

Brooks ( 1981) adapted the general form ofiee resistance equation for an ice breaking

ship to fixed. upward-breaking. conical structures as:

('-19)

where V is the velocity of lhe iet. The: IiBt term is the ice breaking component. the second

term is the ice ride·up componenl. and the third tenn accounts for the incl1ia effects of the

moving ice sheel. Dimensional analysis yields relationships between the exponents in each

term of the equalion. The coefficients. a". a l • a~. and lhe exponents were cktennined from

a limited data ~l derived from model tests wilh a 45" cone. The test variables included

waterline diameter. ice flexural slrength. ice lhickness. and ice velocity.

Based on their model tests and severoll Olherpublished test data sets. and dimensional

analysis. Hirayama and Obara (1986) proposed the following fonnula:
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(2.20)

Their results agreed well with other published test data and with Ihe theoretical results of

Ralston (1977). However, the data showed a slight dependency of ice breaking component

on (0/1<), and such dependency was not observed in previous tests. Ralston explained that

the apparent discrepancy was due 10 the small values of (DIU tested by other investigators.

which was typically limited 10 a range of less than 0.5. When (One)« I, there will be no

dt:pendence on Ihc cone diameter.

Kate (1986) published Ihe following empirical rannula:

(2.21)

where the coefficients a" and 3 1 were funclions of cone configuration, coefficient of friction,

and relative velocity between ice and structure. Kato kepllhe friction coefficient between

ic~ and th~ structure at 0.09 in his model tests. Since the coefficients in the analytical

cltpression were also dependcm on the friction coefficient, he commemed that it was

necessary 10 investigate the dependency of these coefficiems on the coefficient of friction.

2.3 MUNIERCUNRC Multi-Faceted Cone Tests

The eltperimemal work conducted by the author was carried out as pan of a larger

project, entitled "MUNIERCUNRC Multi-Faceted Cone Study", a collaboration between
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Memorial University of Newfoundland (MUN). the National Research Council Canada

(NRC). Esso Resources Canada Limited (ERCL). Euon and Mobil. As the major focus of

the collaborative program was on ridges. only limited amount ofdata were obtained for level

ice. Nevertheless. sufficient data on level ice were obtained from which valuable insights

were gained and further mathematical modelling wa..; made possible. In Section 2.3.1. the

test program is briefly summarized. followed by a review of the findings contributed by other

participants of the program. Emphasis is given to the level ice tests as they fonn the focus

ofthc present study.

2.3.1 Tesl Program

The principal objectives orthe collaborative program were:

0) To understand how multi-year ice floes and ridges would interact

with a multifaceted cone: and

(ii) To investigate the effects of ice-structure interJ.ction and the

forces developed on faceted conical structures having the

diameter of the above-water vertical "neck" to be almost as

large as the waterline diameter.

Under the cooperative agreement. ERCL was responsible for the testing of two large

~ale models (1:IOand 1:20) in their outdoor basin in Calgary. The test program for MUN

and NRC involved testing of small and a medium size models at NRC's indoor facilities

a I:50 scale model at the lnstitute for Mechanical Engineering (IME) in Ottawa and 1:25 and
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1:50 scale mCKlels at the Institute for Marine Dynamics (IMO) in St. John's. With modellests

conducted in fourdirrerem scales, the results of this program could be used to determine the

influence of any scaling effccts on modelling ice-structure interaction as well as to provide

a good comparison of model ice results with those where -naturally grown- saline ice was

used. i.e.. ERCL's series.

The principal dimensions oflhe prototype and model SINCIures are shown in Figure

2.1 and summarized in Table 1.2: the circumscribed diameters are given for base. waterline,

collar and neck dimensions. The dimensions are based on the geometry of several large

exploration drilling structures designed for the Bcaufon Sea. These concepts incorporate

sloping nat faces (facets) and wide necks above the icc waterline. The structure is a six

faccl\:d multi-angle cone having a circumscribed diameter of 115.5 mal the base. 30.0 m at

the walerline and 13.1 m at the neck. A similar structure with a 11.6 m wide neck was also

modelled to study ice interaction with cones having a smaller neck. 10 waterline diameter

iJ.lio. The number of sides W:1S chosen to emphasize the effect of using a multifaceted

structure as distinct from a smooth cone. The slope of tile sides, 5:6 or about 40". was close

10 thai propclscd for scveral exploration drilling structures. The steep 2: I slope section

between the neck. and the larger lower section was designed to prevent thick. ice pieces from

jamming against the neck.

During the [ME test, the model was elevated to give a larger waterline diameter to

increase the loads on the structure for reasonable accuracy of the measurement. This resulted

in a scale of approximately 1:30 at the waterline for [ME's tests. IME's tests were carried out
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only with small-n«k model, whereas both IMO's and ERCL's tests used both small and large

neck models.

The ice sheet used in the IME and IMO test series was made of EGIADIS model icc

developed by Timco (l986), whereas saline ice was used in ERCL's test series. Aexural

strength of the ice sheet was measured using several ;ruilu beams. In most of the tests, the

beam loads were measured by applying the load, both in the upward and downward

directions. The elastic modulus, ice density and friction coefficient were also measured

during all the tests except lhe IME series. Severnl measurements for the compressive and

shear strength were also carried out for !MO's tests.

The models in IMO's and ERCl's facility were tested in a face-on orientation in

which a facet was facing lhe approaching ice. Two additional orientations, cdge-on and

intermediate. were also tested in !ME's series to examine the effect of orienl011ion.

ERCL's series primarily focussed on ridge loads on structure. Data from the level

ice tests were limited in nature which prevented detailed parametric evaluation.

Nevenheless, ERCl"s tests were perfonned in a much larger scale than the existing tank

experiments, and natural grown ice were used, which provided valuable data for icc force

model validation. On the other hand, lMO's and [ME's lest series provided a substantial

amount of data in level ice under various highly controlled test conditions: hence lhey

provided valuable data for detailed parametric evalualion and process identification.

The measured ice properties along wilh the configuration ofthe test condition in each

lc~t for ERCl's and !ME's series are extracted from respective data report and reproduced
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in Appendix. A for quick reference.

2.3.2 Analysis or IME's Test Results

Rubble building is an essential pan of the ice clearing process. Large amounts of

rubblc accumulate in front of the cone. and impose substantial loading on the structure and

the intact ice sheel.

Izumiyamact al (1994) analysed the model test data obtained in NRC-lME's facility.

and provided quantitative informalion on the formation of the rubble field and its effects on

the ice forces. They identified four Iypes of rubble formed in front oflhe faceled cone with

facc-on orientation. A schematic of each rubble type is shown in Figure 2.2 with the

following description given after lzumiyama et al (1994):

When the ice was strong. the ice pieees were very large compared to

its thickness. The broken ice pieces would ride-up the model and fall off the

side of the facet readily. The rubble field that fonned was small.

(ii) .I!:Imli

This type of rubble field was commonly observed. To form this Iype

of rubble field. the ice pieces which fell from the lap of Ihe cone would roll

back down Ihe fronl oflhe cone. and form a single-Ihickness rubble field as

a steady-state condilion.
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(iii)~

This type of rubble field was also quite common. It was similar to the

B-Type. except that the ice pieces broke up into many small pieces as they

rolled down the front of the model. when the ice strength was low. This

created a rubble field consisting of small ice blocks and crushed. mushy ice.

(iv)~

This Iype of rubble field was nOlcommon. It generally occurred when

thc ice was both thick and strong. and large pieces ofice would pile up in

front ofthc cone.

The occurrence of various types of rubble was found to be a function of ice strength

and ict: thicknt:ss. Figure 2.3 shows the occurrence of the different types of rubblc in

strength-thickness domain.

The size of broken ice pieces played an important role in the rubble fonnation process

and the ice force exerted on the model. Izumiyama ct al also performed a piece size analysis

with data from the lME series. They reported the average sizes of ice pieces at the neck. Lw

and LL' were directly proportional to the parameter. L = (cr~•.>''', as shown in Figure 2.4.

The Lw and Lt. are defined in Figure 2.5.

Izumiyama et al also showed the ratio of the maximum ice force on the model. FT'

to that in the no rubble condition. Fro. as a function of LJD. where D is the maximum

waterline diarneterofthe model (Figure 2.6). The effects of the rubble field on the ice force

were shown to be a function of ice piece size. ice strength and ice thickness. Based on their
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tests. the rubble can increase lhe ice load by a factor of 1.5 to 2.5.

2.3.3 Analytical Models

Croasdale et aI (1994) and lzumiyama et aI (1993) have developed ice force models

concurrently based on observations from the multi-faceted cone experiments.

Croasdale et 011 (1994) compared his model with the experimenls conducted in

ERCL's oUldoor test basin where ice rubble was present as shown in Figure 2.7. Their

model is reviewed in Section 2.2.1.1. The size of the rubble was eSlimated from

photog.raphs. It should be nOled that Croasdale et al only developed a theory for single slope

cone structures, while the test structures were multi-sloped. The procedure by which he

adapted his thcory to the multi-sloped cone was not provided, Despite a large scanering of

data at the lower measured load levels, his predictions agreed quite well with the

cxperimental data. and provided an upper-bound to the measurements.

lzumiyamaet aI (1993) extended Frederking and Timco's work (1985) on ice forces

on inclined panels. and developed a model for ice force exerted on a face-on oriented cone

with rubble present. By considering various force components on the ice sheet contacting

thc facet at the waterline as shown in Figure 2.8. they identified the following component for

icc force:

(2.22)

where F, is the total vertical force: VB' the vertical force required to break ice: VR,the force
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due to rotation of ice: R. the force due 10 the weight of ice rubble: and P is the force due to

the weight and friction of ice pi«es on the facet. For further delails about each individual

force components. please refer to their paper.

Izumiyama et aI established the \'a1idity of their model under no rubble condition by

comparing their model predictions with the peak force in the: initial ponion of force time

series. where ice rubble was absent. as shown in Figure 2.9. The figure shows good

agreement between model prediction and measurements. Furthermore. the comparison

shows that the eltisting model treatment of the ice force on conical structures is applicable

to a faceted cone for the prediction of the ice breaking and ride-up forces, if the unique

geometry of the faceted cone is properly considered.

Izumiyama et ai's model requires the vertical fOfce R due to {he weight of rubble to

be known. To estimate the values of R. Izumiyama et al introduced a rubble coefficient. C•.

where:

(2·13)

with w( being the width of facet at waterline: y. weight density of ice: y., weight density of

water: and lb' the breaking length taken as half of the characteristic length. This rubble

coefficient gave the relative index to the volume of rubble ice field. They established the

relationship of the rubble coefficient as a function of ice thickness and strength by back

calculating the coefficient of each test using their model (Figure 2.10). Izumiyama et aI

pointed out the complexity of rubble modelling. and the various factors aff«ting its
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formation. Ahhough, a functional relationship was observed between the rubble coefficient

and the ice thickness and strength, the large scattering of data testifies to the complexity of

rubble piling, and further study illld accumulation of data are needed.

Iwmiyama et al's and Croasdale et al's models were formulated based on a limited

set of test d3ta. The functional relationships of the rubble geometry, ice mechanics, and

clearing process to the basic ice and structure parameters had not been adequately

established. The lack of such relationships from models severely limited their applicability

to a wider range of ice and structure conditions. Despite the over-simplification of the

interaction process. both models have clearly identified the interaction between the important

force components. which may form the basis for future model developments.

2,4 Comparison or Models and Discussions

Many of the empirical formulae reviewed so far take a common form:

(2.24)

where the coefficients a" and a l are functions of structural shape, coefficient of friction and

relative velocity. Since it is considered that the breakingcomponem isdue to bending which

relates to a faclor of (Jr tl
. and the ride-up comp::ment relates to a weight of ice mounted on

the structure. the form is reasonable.

The fundamental limitation of the empirical formulae has been that they have

modelled only a particular situation and hence cannot be extended to other situations. This
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limitation leads 10 a wide range of values obtained for the respective coefficients. As shown

by Croasdale (1980) and Chao (1992). a substantial variation of force prediction still exists.

and a conclusive confirmation of me empirical approaches has not been reached.

Most analytical models for forces on a conical slrUcture have calculated either F, or

F" and used the resolution factor. ~, 10 calculate the other force component. i.e.. Equation

~.I. The resolution factor is theoretically derived for a sloping plane: and. therefore. il

would hold for forces on an inclined plane only. For a cone local ice failure and denection

of the sheet distributes the force around the circumference. Bercha and Danys (1975) have

shown that if F, is uniformly distributed around the front half of the circumference, then the

ratio of the net forces obtained by integrating the respective force distributions around the

circumference is given by

(2·15)

Thus. the value of the resolution factor depends on the distribution of the forces around the

cone. Lau and Williams (1991) have shown that such consideration is vital in the

interpretation of experimental data.

All analytical models and empirical formulae reviewed so far essenlially describe

quasi-static behaviour in whieh the inertial loads are low enough to be neglected. Results

from many model tests (Haynes et al. 1983: Wessels. 1984: Maauanen, 1986: and Lau and

Williams. 1991) have shown a speed effect on failure mode and ice force. and it is widely

recognized thaI a static analysis may not suffice to explain the dynamic effect.
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The influence of shear stresses on determining failure modes becomes more

imponant with increasing ice thickness. Since the existing theories are formulated by

assuming pure bending failure using classical theories of thin beam or plate on elastic

foundation with the shear stress across ice thickness being ignored, the validity of these

fonnulae in predicting failure oflhick ice may be questionable. Funhennore, failure modes

other than bending may dominate under certain indentation conditions.

Limited field measurements of ice loads on conical shaped bridge piers and

lighlhouses have been made and reported in the literature (Danys and Bercha. 1975; Alberta

Research Council. 1980; Oshima et ai, 1980; Hoik.k:anen, 1985; Frederking et aI. 1985;

Maattanen and Mustamaki, 1985; Frederkinget ai, 1992; Maattanen, 1994; Cheung, 1997;

Brown ct al. (998). The ice failure mode observed was usually different from existing

theorctical and experimental models. It was also observed that a rubble pile is likely to fonn

in front of a conical structure (Maattanen and Mustamaki, 1985; Hoik.k:anen, 1985). This

large amount of rubble. accumulated in front orthe cone. imposes substantial loading on the

structure and the intact ice sheet. An ice clearing component as much as 80% of the total

load on the structure has been measured in the work described in this thesis. Previous model

tests and theoretical models do not consider the effects of pile-up. Omission of such factors

in those analytical and empirical formulations might have severely underestimated the ice

forces.

The foregoing review of past research shows that the most general and advanced

analytical theories available at present have the theoretical weakness of application limited
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10 thin icc. small resolution factor and low interaction speed in which pure bending failure

is dominant. They are also limited to the initial stage of the interaction before any significant

rubble piles up around Ihe cone. However. the prevailing practice of component delineation

according to the two dominant interaction phenomena. i.e.. ice breaking and ice clearing. is

con~istent with the currently available experience of ice loads on conical structures.

Preliminary analysis of results has been reponed (Croasdale and Muggeridge. 1993)

in which reasonably good agreement has been found between forces measured from Ihe

faceted cone tests and those computed using the e'listing theories for smOOlh cones. It now

:Jppears that this agreement is accidental since the ice clearing pattern is totally different from

th:Jt poslul:Jted in the smooth cone models.

The present state of rubble modelling as exhibited by the two models formulated

concurrent to this research. i.e.• lzumiyama et aI (1993) and Croasdale et al (1994). shows

two weaknesses:

(i) The rubble geometrvwas hjghlyuncertajn. The existing models select rubble

heighl on the basis of limiled observations from tank lests. The dependency

of rubble geometry in ice and structure parameters has not been formulated

which limits use of the models to a narrow range of ice and structure

condilions.

(ii) The stress-state of the rubble js highly unccnain The assumptions and

simplifications with regard 10 the state of the rubble may not be valid which

can cast doubt on the validity of the Ul:atmenl. Information on the stress-state
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of the rubble is fundamental to rubble modelling.

In the subsequent analysis of the experimental d31a and the numerical analyses

developed for ice load compul3lion. an effort is made 10 improve the modelling procedure

and thus remove those limitalions.
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Tllhk2.1 Tesl conditions of each ,1,1101 Sl:t uscd in model furmul;.tion and cocfficients of the OIssoci:Jled formula

--:/-------- ._---- -_ .. - ----.-------._- ---,--- ----
Cone Cone Neck Ice Flexural Ice Friction

,,,
Tesl Angle Wllleriine Waterline Thiclmcs.~ Strength Modulus Cocff. Velocity 110' a,und

Q(O) O(cm) O.(CII1) t(em) Of (kPa) E(MPa) ~.( )
V "(em/sec)

Afana.~'ev et aJ I30,4S, 12- 18 9.7 3.0- 3.5 37-40 29.4 n.a. n.a. '" Eq.
(1971) 60 2.U

Edw"d& I ~= 1.6Croa.wale 4S 25· 100 0 1.7·6.8 1-41 n.a. 0.05 n.1I.
(1976)

a l =6.0

Pearce &
Strickland 45,60 73.7 48.9 J.3 -9.9 13.8 6.9 lUI. 1.21

(1979)

63.5· 3.56· 10.3-
a,.- 0.285

Brooks (1981) 45
102.6

n.a.
5.92 22.3

-7.5 n.a. .18- 1.09 a l '"' 5047
a1 =791

Hir.lyama& so-so IDA·
4.0· 30.5 0.65 - 3.1 27-710

35- n.lI. n.1I. 11,,=2043
Obam(1986) 37.5 2000 a l =0.7

KalO(l986) 45 - 80
34.2·

14 - 29 2.0- 5.0 10-40 n.a. 0.09
34.9

4'



Tahlc 2.2 Pf(llnlY~ and model gcnlllclric:-: :-ymhnls gi\'cn in Figurc 2.1

Prolntypc: I ERCL-Essll Rusin I NRC*IMD
NRC-
IME

1:1 large 1:IOJarge 1:lOsmall 1:20 large 1:25 large 1:25 small J:50lurge
1:50

Dimension small
neck (Ill) neck(m) neck (Ill) neck (Ill) neck(m) neck (Ill) neek(m)

neck m

Base*, a 115.5 7.75 7.75 7.75 3.418 3.418 3.418 1.84

Walerline··.b 34.65 3.465 3.465 1.14 1.386 1.386 0.691 1.15

Collar,e 30.0 1.0 1.0 1.50 1.201 0.139 0.601 0.60

Neck,d 23.1 2.31 1.155 1.155 0.924 0.462 0.462 0.23

Hei ht I,c 29.2 1.661 2.083 1.108 0.800 0.966 1.016 0.58

Hei ht 2, f 1.61 0.167 0.583 0.084 0.061 0.233 0.033 0.111

Hei ht J,l!. 6 0.6 0.6 0.30 0.240 0.240 0.120 0.134

Height 4, h 20 I.' 1.0 1.00 0.800 0.400 0.400 0.191

N()(c: 'The base width wus nOI modelled in model scak
"The waterline of NRC-IME's model WIiS modelled in I:30 scale
All diamelers are corner 10 corner
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Figure 2.1 Test structure geometry. All diameters are corner to comer: and all slopes
are of facet cenues. given as a ratio of vertical to horizomal.
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(alA-Type - (bIB-Type

~~
Figure 2.2 Rubble field types (after Lzumiyamaet ai, [994)

43



• Io-Typol
••TypoI
.. C·TYPI
o 'H

.....~--------&-- -......
Motdy C·Typc .........&

o,~~o--*""-~..;---;so!;;----:;..
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Figure 2.3 Rubble Iypes in suength·thickness domain (after lzumiyama et ai, 1994)

Figure 2.4 Piece size. Lw and Lt , versus the parameter, (apy.,t', for (ME's tests
(after Izwniyama etal, 1994)
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ice sheet

Figure 2.5 Figure showing the definition of ice piece size. Lw and LL (aCler
Izumiyama et aI. 1994)

3.5,-,-....-.--,-....-.-,

3.'

2.5 ..
~ ... .....~.. . ..................

1.~'~.2-';;-,.•;--;,.~.----;,~.•-~-7;-7.-:
UD

Figure 2.6 Increase in total load d~~· to rubbie (after Izumiyama et aI. 1994)
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Figure 2.7 Comparison of Croasdale el aI's model with tests in ERCL's series (after
Croasdaleel aI. 1994)

A
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Figure 2.8 Ice fon:es treated in lzumiyama et ai's model (after lzumiyama el aI. 1993)
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Figure 1.9
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Comparison oflzumiyamaet ai's model with tests in (ME's series where
ice rubble was absent (after lzumiyamaetal. 1993)
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('a~Yw)If2, m

Figure 2.10 Rubble coefficient as a function of ice thickness and ice strength derived
from IME's test data (after lzumiyama et ai, 1993)
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Part I The Experiment

Chapter 3 Test Program

Pan I documents the results of the experimental investigation conducted in £MO's

tcst basin and the additional data analyses. As a pan of this task, the results from all three

test series were consolidated and analyzed. The lest results were put into a spread-sheet

containing relevant ice and structure conditions, ice forces and the associate failure

processes. The available video recording made for each test was examined to identify the

interaction processes and the corresponding failure mechanisms associated with each test

condition. The influence of various parameters on ice loads and the associated failure

processes were assessed through the paramelric evaluation. The parameters considered

include ice advancing speed, structure orientation. ice strength and thickness. The loads

measured in the three lest series were compared with predictions from a leading force

prediclion algorithm. The discrepancies found indicated a neeessilY for further model

development.

Through detailed analysis of the dominant interaction processes and the associated

force levels under a wide range of test conditions, answers to the following three questions

were sought:

(i) Was there any similarilyorotherwise between the faceted andsmoolh cones,

in tenns of interaction processes and the associated force levels?
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(ii) Do the existillg models provide satisfactory predictions of the model test

measurements'!

(iii) What additional underlying processes are generated due to the: newcone form

that would be needed to improve the model prediction'!

The test program conducted in lMD has been documented in Lau et aI (I993b). In

Ihis chapter.lhe test program is brieny ckscribed. It should be pointed oul from the start tllat

the test progmm conducted in lMD is unique. It ventured into two new areas: Structural

shupe and ice thickness regime. Firstly, the inclined facet obstructed the clearing of broken

icc. leading to rubble pile·up (rubble pile up was not observed in previous model tests with

smooth cones). Scx:ondly. the advance in ice modelling techniques and the increase of model

ba.<;in size penniued testing in ice up to 0.16 m thickness without compromising scaling.

adequate run distance and boundary-conditions. The ice thickness of0.16 m targeted in these

tests increased the ice thickness regime to about two times beyond those previously

uncmpted with cones. Tests in thick ice led to ice breaking patterns different from those

observed from previous tcStsCOl'ldueted in thinner ice. The above tWO characteristics are new

for such tests. and will be examined in detail in the following chapters.

A brief description ofthe test fncility. test suucture. insuumentation. datancquisition

system. and the model ice is given in Section 3.1 to 3.3. The test matrix and results are

documented in Sections 3.4. Emphasis is given to level ice tests only.
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3.1 Tesl Facility and Siruciure

The model tests were carried ou[ in the ice tank at the Institute for Marine Dynamics

(TMDl. St. John's, Newfoundland (Jones. 1993). The ice testing basin was 96 m long. 12 m

wide and 3 m deep with a useable ice sheet length of 76 m. The main towing carriage,

weighing 80.000 kg, had a speed range of 0.001 m1s to 4.000 m1s with an accuracy of 0.1%.

Thc computer for the drive control and the data acquisition system were housed in the

thermally insulated control room on the carriage.

The experimental set-up is shown in Figure 3.1. The structure was tested at two

scales. I:25 and I:50, with a large neck. and additional tests were performed in I:25 scale

with the smaller neck. Dimensions of the three model configurations are shown in Figures

3.2 to 3.4. The model was designed in modules to allow the scales and neck sizes to be

easily changed. The main component of the model is the lower cone structure to which

various necks and collars could be auached to facilitate these changes. The model was

constructed of 1/4" thick marine grade aluminum plates welded to a rigid frame of 2" x 4"

aluminum channels. The model surface was finished to a friction coefficient.!!,. of 0.09.

The model was rigidly mounted to the underside of the ice tank carriage through a

specially designed towing post constructed from 12" x 12" x YJ" steel box beam. The cone

and the neck sections were instrumented separately to measure the forces and moments about

the three major axes.

For each cone. an insitu dynamic test was performed to measure its natural

frequency. Analysis of the force signals showed two dominant frequencies of the set-up at
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about 3 and II Hz (Lau et al. 1993b).

3.2 Inslrumentation and Data Acquisillon Syslem

The global load measuring syslem consisted of a series of 3 six-component load cells

placed between two steel plates as shown in Figure 3.5. The upper plate was auached to the

tow post and the model was rigidly secured to the lower plme. To enhance the system. the

load cells were rigidly fix-ed toone plate by hemispherical bearings while the other plate wa...

secured by a bolted connection. The installation of these bearings resuhed in a significant

reduction of residual moments on the lransducers and the system was capable of measuring

the loads to within an acceptable error range (2% and 5% for forces and moments.

respectively)

One AMTI model SRMC8-6-20000 and two AMTI model SRMC8·6-I0000 Sill

component load cells were used in this configuration. The forces and moments were

resolved loa global X. Y. Zcoordinate !>ystem shown in Figure 3.6. The origin of the global

coordinate system was located along the centerline of the cone at the water level. The X-axis

was positive in the direction of ice motion. the positive Z-axis was directed vertically

upwards. and the direction of the Y·axis was such that X, Y, Z fonned a right handed

coordinate system.

The loads on the neck were measured by one or two AMTI model SRMC6-6-4000

six-component load cells rigidly mounted between the lower cone and !he neck.. The 1:25

large nC1::k. model was equipped with two dynamometers; while. both the I:25 small neck.
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and I:50 large neck. models were fined with only one of the dynamometers. The load cell

contiguralion for these models are shown in Figures 3.7 and 3.8. Using the known geometry

of the system. the forces experienced by the neck were resolved to the global origin of the

model.

Accelerations of the model in the three principle axis were measured using three

Symon Donner accelerometers and the denection of the tow post and the model were

measured by two Sehacvitz linear voltage displacement transducer during tests.

A schematic arrangement of the data acquisition system is given in Figure 3.9.

E....citation for the transducers was provided by the NEFF System 620 Series 300 signal

conditioner. The Iransduceroutputs from the load cells and the LVDTs were filtered by a

10Hz analog low pass filter and digitized at a rate of 50 Hz whereas the accelerometer

outputs were filtered by 100Hz and digitized at a rate of 200 Hz by a NEFF System 620

Series 100 amplifiertmulti-plexer and stored in a Vax IIn50 computer for analysis. The

<lnalog outputs of the transducer were recorded by a KYOWA RTP-6008 14 channel tape

recorder. to allow examination of the high frequency components of the signals.

Video recordings were made of all tests using four colour video cameras which

provided overhead. sides. and underwater coverage. The video recordings were synchronized

with the data acquisition system. with an accuracy of0.5 second. Significant ice events were

also documented in the form of 35 mm colour prints by a number of still cameras.

3.3 Model Ice

The experiments were carried out using EOtADtS model ice. The structure and
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properties of this ice are described in Timeo (1986). The ice growth process and the ice

fonnation modelled that of full scale sea ice. giving a ~a1islic vertical distribution of

mechanical properties. The peranl.ageconcentr.lIions orEG/ADIS fortM present lest series

we~ 0.3910.03610.04. Density of lhe ice. p. was 920 kglmJ • For each ice sheet. flexural

slrength. (Jr. was measured frequently throughout Ihe lest period. The values reported;U lest

time were interpolated from the slJ'C:ngth versus lime curve for the ice shee!. Both downward

and upward breaking flexural strenglhs were measured. Typically. the upward. breaking

tlexur.ll strength. 0r~. was about one half of Ihe downward breaking strength. 0f~. The

clTeclive elastic modulus. E. was detennined from deflections of ice plale under a given load

(Sodhi et al. 1982). The ratio of elastic modulus to upward breaking flexural slrength. E!o",.

r.lnged from 4000 to 12000. The reported ice thickness. t. was the average over

approximately 30 mc:asurements for the ice sheet with a standard deviation of 2.5%. Other

properties. including compressive strength. O"c' shear strength. 0"•• icc<one friclion and ice

density. were also measured.. The procedures for producing and characterizing level ice

sheets are described in detail in lau el aJ (1993b).

3.4 Test Matrix and Presentation of Results

The test matrix with details of the test program are given in Table 3.1. It was

developed to accommodale the tesling of two scales (I :25 and I ;50) of model. two sizes of

neck at one scale (I :25). and a varielY of sheet ice slrengths and thicknesses over a five week

period. The models were tested in the face-on orienlation.
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A (otal of 18 teslS were conducted in .5 ice sheets. In each ice sheet. level ice tests

were performed at mooel velocilies of 0.01 mls. 0.04 m1s and 0.06 mls to assess the effect

of different inter.action rates. The: ice conditions for each lest run are summarized in Table

3.2. A number of tesLS (MUNCONE3, MUNCONE4 and MUNCONE7) were conducted

over a period of two days 10 obcain variation of ice su-engths.

For Ihe first run of each test, the ice pile in front ofthe 5truclure was cleared away to

pennit the ice to come into full contact wilh the front pt:rimeter of the cone 011 waterline. A

run distance of 3 m wa... required for the tcst to reach a quasi,sleady state. To speed up this

pr()(:css in subscquent runs, the rubble built up from the prior run was not cleared from the

model prior (0 the stan of the run.

In Figure 3.10 the test matrix is ploned together in full scale with the matrices of

ERCL's and IME's test series to facilitate cross comparison among tests performed in tbe

three lank.'i. Only the tests with a f:x:e-on orientation were plotted together, since they were

the only orientation tested in alllhree tanks. In IME. the model was built at 1:.50 scale but

lcsted in the scale of approxirlUltely 1:30 at waterline. Since the effective waterline width

of (he struclure is an imponant parameter affecting the ice 10000.the data were scaled up by

a factor of 1:30 according to the cone's waterline. It should be noted that the neck diameter

must also be scaled accordingly, i.e.. inscribed neck diameler is equal to 6 m in full scale.

The tcst data were analysed and ploucd in the form of time-traces for the following

param~lcn;:

(i) three global force components: and

(ii) Ihrec neck force components.
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The plots for the individual tests are presented in Appendix B.

The time series for the teslS MUNCONE3 to MUNCONE6 were digitally filtered

with an upper cut-off frequency of 2.75 Hz before plolting. During test MUNCONE7. the

intact ice sheet rode up onto the collar resulting in failure of the ice in high frequency.

Hence. the time series were not digitally filtered in order to retain the high frequency

imeraction da"•.

The sheet ice lest results are summarized in Tables 3.3. Basic statistical analyses

were perfonned on the lime series of the measured forces. Only the steady slate portion of

the force records was analysed and ploued.

The mean peak forces were detennined by tinding up-crossings of the time trace

above a reference level equal to the mean of the data plus one standard deviation. The

maximum value between this point and the next down-crossing of the same level was

designated a peak. The mean peak force was the mean of the above peaks. In Figure 3.1 L

the mean peak horizontal and vertical forces are plaited against mean force plus one and a

half times standard deviation. The correlation is good except for the tests where the shear

type failure occurred (not included in Figure 3. [ I). Thus. the peak forces for this test series

can be estimated as one and a halftimes the standard deviation above the mean of the force

record.
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Table 3,1 Test matri;l( for level ice tests in IMD's series

Test I V I t I 0,. I E
(emls) (em) (kPa) (MPa)

TEST MUNCONE3; MODEL 1:25S; SHEET NO. I

001

I
I

I
15.8

I
44.4

I
383

002 6 15.8 44.1 383
003 4 15.8 43.6 383
005 4 14.8 29.4 164

TEST MUNCONE4; MODEL: I:25l; SHEET NO.2

001

I
I

I
16.0

I
41.1

I
389

002 6 16.0 40.6 389
003 4 16.0 40.4 389
006 4 16.4 [9.7 188

TEST MUNCONE5; MODEL: 1:25L: SHEET NO.3

001

I
I

I
9.5

I
30.7

I
156

002 6 9.5 30.2 156
003 4 9.5 29.9 156

TEST MUNCONE6; MODEL: I:25l; SHEET NO.4

002 I
4

I
[2.4

I 22.5

I
120

003 1 12.4 22.5 120
004 6 12.4 22.5 120

TEST MUNCONE7: MODEL: 1:50L; SHEET NO.5

001

I
I

I
16.0

I
33.7

I
524

002 6 16.0 33.2 524
003 4 16.0 32.8 524
006 4 16.3 18.7 236
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Table 3.2 5ummary of ice conditions for each lest

Test

MODEL: 1:255; SHEET NO. I

MUNCONEJ 001
MUNCONE3 002

MUNCONEJ 003
MUNCONE3 005

MUNCONE4 001
MUNCONE4 002
MUNCONE4_003

MUNCONE4 006

15.8 44.4 79.8 4810 NA
15.8 44.1 79.4 4810 NA

15.8 43.6 78.7 4810 NA
14.8 29.4 42.4 3796 NA

MODEL: I :25L: SHEET NO.2
16.0 41.1 74.7 5212 5.2
16.0 40.6 73.5 5212 5.2

16.0 40.4 72.9 5212 5.2
16.4 19.7 39.0 4615 5.2

MODEL: 1:25L; SHEET NO.3

NA

NA

NA

NA

1.5

1.5

1.5

1.8

916

916

916

921

914

914

914

923

0.11
0.11
0.11
0.09

0.09

0.09

0.09

0.09

MUNCONE5 001 9.5

MUNCONE5_oo3 9.5

30.7 43.4 3002 4.9 2.1 928

30.2 41.6 3002 4.9 2.1 928

29.9 40.8 3002 4.9 2.1 928
MODEL: 1:25L; SHEET NO.4

0.09

0.09

0.09

MUNCONE6 002

MUNCONE6 003
MUNCONE6 004

12.4 22.5 ]6.0 3213 5.4
12.4 22.5 35.4 3213 5.4
12.4 22.5 35.1 3213 5.4

MODEL: 1:5OL;. SHEET NO.5

1.9

1.9

1.9

919

919

919

0.08

0.08

0.08

MUNC0NE13lOl 16.0 33.7 70.2 8494 3.8
MUNCONE7 002 16.0 33.2 69.7 8484 3.8
MUNCONE7_003 16.0 32.8 69.3 8494 3.8
MUNCONE7 006 16.3 18.7 42.8 5383 4.7

NOle: 1 "f. -bottom in tensioo: af~ -lop in tension
Alllests run in face-on orientation.
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1.7
1.7

1.7

1.5

918

918

918

920

0.08

0.08

0.08

0.08



Tahle 3.3 SUlllmliry of level k~ l~sl r~sull.'

GLOBAL GLOBAL NECK
HORIZONTAL VERTICAL HORIZONTAL

FORCE (kN) FORCE (kN) FORCE (kN)

Tesl Max Mean SIDev Mean Max Mean SIDcv Mean Max Mean SIDev Mean
Peak Peak p,""

MUNCONE3_001 4.52 3.78 0.35 4.29 5046 4.70 0041 5.30 0.60 0.23 0.12 0.47

MUNCONE3_oo2 :'i.I8 4.18 0.52 4.94 6.06 4.97 0.55 5.72 0.49 0.21 0.09 0.39

MUNCONE3_oo3 5.32 4.33 0.50 5.05 6.65 5.67 0.51 6.37 0.51 0.20 0.09 0.38

MUNCONE3 005 3042 2.93 0.25 3.23 4.22 3.87 0.22 4.18 0.36 0.19 0.05 0.29
MUNCONE4_001 5.25 4.31 0.45 5.01 5.37 4.33 0.39 4.72 0.33 0.19 0.05 0.29
MUNCONE4_002 6.27 5.02 0.58 5.91 6.57 5049 0.59 6.33 DAD 0.27 0.05 0.37

MUNCONE4_oo3 6.54 5.09 0.61 6.01 6.94 5.81 0.60 6.74 0048 0.33 0.04 0041

MUNCONE43M)6 5.08 4.17 0.45 4.% 5.07 4.50 0.31 4.86 0.31 0.16 0.01 0.26

MUNCONE5_ool 2.16 1.78 0.13 1.95 1.17 1.82 0.15 1.98 0.10 0.05 0.02 0.09

MUNCONE5_002 2.38 1.85 0.23 2.27 3.35 1.89 0.24 2049 0.21 0.12 0.05 0.15

MUNCONE5 003 2.25 1.77 0.18 2.04 2.26 1.83 0.18 2.15 0.21 0.14 0.01 0.16

MUNCONE6_002 3.08 2.65 0.21 2.95 3.28 2.82 0.19 3.14 0.25 0.18 0.02 0.22

MUNCONE6_oo3 2.96 2.56 0.17 2.81 3.16 2.85 0.13 3.06 0.21 0.12 0.02 0.16

MUNCONE6 004 3.26 2.74 0.19 3.06 3046 3.02 0.14 3.27 0.19 0.13 0.02 0.17

MUNCONE7_001 8.86 6.87 1041 8.51 4.10 2043 0046 3.40 0.98 0.54 0.14 0.82
MUNCONE7_002 9.99 5.92 1.34 8043 5.80 3043 0.78 4.86 1.01 0.50 0.15 0.80
MUNCONE7_003 10.40 6.78 1.44 9.05 5.56 3041 0.76 4.79 0.98 0.54 0.14 0.82

MUNCONE7 006 6.34 4.03 0.65 5045 3.66 2.57 0.36 3.16 0.97 0042 0.12 0.66

Note: Horizontal- (+) loward the model; Vertical- (+)downward
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Figure 3.1 Experimental set-up showing a I:25 scale large neck model mounted
under the main carriage

~~1;:2=O=====-~:::s~1~53~4~0~7, 5:6
2,4

r
O )-t-2_O_I-+-{ 2:1

24

Figure 3.2 Dimensions of the I:25 large neck model. All diameters are comer to
comer; all slopes are of the facet centres and given as a ratio of vertical to
horizontal. AU dimensions in millimetres.
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:,24;.:O-'- -+H'I 2:1

400 l
-.---;;:24~O,..--.,-------)-jI-4-\. 2:1

...

Figure 3.3 Dimensions afme 1:25 small neck model. All diameters are comer to
comer; all slopes are or the facet centres and given as a ralio ofvenical to
horizontal. All dimensions in millimetres.

Figure 3.4 Dimensions afthe 1:50 large neck model. All diameters are comer [0

comer: all slopes are of the facet centres and given as a ratio of vertical to
horizontal. All dimensions in millimetres.
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LD_r Load c.n Piau

AMTt we. Load c.n

Figure 3.5 Global load measurement assembly

Figure 3.6 Orientation or global coordinate axes wilh respect 10 the model structure
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~~ AMTI MC6 Load Cen

~ Attachment to Lower
Cone

Figure 3.7 Neck load cell arrangement for the 1:25 large neck model

'- Vertical
Neck
AMTI MC6
Load Cell

Attachment to
Lower Cone

Figure 3.8 Neck load cell arrangement for the I:50 large neck and 1:25 small neck
models
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.........'I
E 8

Ii
00'----,------,-------:------,

Upward Breaking Strength (MPaj

• IME. [:305 ERCL 1:IOL&I:10S x ERCL. 1:20L
• (MD,I:25L&1:25S • (MD.I:50L

Figure 3.10 Matrix showing £MO's. IME's and ERet's level ice tests in thickness
strength domain (full scale); face-on orientation only

• Horizontal

4 6 8
Mean Force + 1.5 51 Dev (kN)

'" Vertical _Best Fit

10

Figure 3.11 Comparison of mean peak force and mean force plus one and a half times
standard deviation (£MO's (:25 scale modellests)
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Chapter 4 Analysis of Tests

The let: failure and clearing processes around a faceted cone. in a quasi·steady-swe

ic~ b~ng. have been identified for each test for the (MO's and IME's tests. Mosllests in

ERCL's series were performed with an ice sheet typically shaner than two characteristic

lengths in the direction of ice molion. resulting in a significant end effect. Ice pi«es were

typically very large. and most ohlle runs were stopped before aquasi·steady-slatc interaction

was achieved. The breaking and the subsequent clearing of ice were complex. Nevenheless.

the breaking and clearing patterns were similar 10 those observed in the early stage or tile icc

cone interaction observed in lests from other tanks.

Information on the ice breaking paltems. i.e.• crack imprint and piece size. is or vital

imponance in the interpretation of the lest results. The dominant failure modes. which arc

generally difficult to discern. can be inferted from the crack imprint and the resulting broken

icc pie<:e size. The crack P'Utem iUld piece: sizes are also important in determining the

subsequent interaction process, Le.• the manner in which the ice rides up the suucture and

the subsequent nature of the rubble pile-up, and the ice force on the model. In this woric,

piece size analyses were conducted using video recording of the multi-faceted cone

c:(periments. The factors innuencing the piece sizes were examined, and the relationship

between ice piece size and the ice thickness and strength was established. The results were

compared with previous model test data and the findings of lzumiyama et aI (1994).

An important aspect of the modellests is the observation of a rubble pileup in front
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of the faceted cone models. The influence of a rubble buildup in the MUNIERCUNRC

multi-faccted cone experiments is addressed with emphasis on tests conducted in I:M.O's

tank. The analysis provides further insights into the foemation process of ice rubble, and the

effccts of important ice-structure interaction parameters on rubble geometry during s!eady

state ice rubble dearing.

The latter pan of this chapter documents the results of ice force analysis carried out

on the three test series with the focus given to the lMO's test data. The steady-state portion

of the load trace of each test was analysed, and the ice breaking and dearing components of

the total ice force were identified. The consistency of d;lta among the three test series wa.~

assessed using asemi-empirical formula developed from IMO's series. Measurements from

all tests were then compared with predictions from a leading theoretical ice force model,

developed for smooth cones, to assess the validity ofexisting models for predicting ice loads

on a faceted cone.

Section 4.1 gives a summary of the dominant features of ice structure interaction and

the various failure processes observed from tests conducted in the three model ba.'iins. The

processconsisls ofthree majorcomponents; namely the ice breaking mechanism, the ride-up

process and the ice rubble formation process. Main features associated with ice breaking

mechanism and rubble formation process are further analysed and discussed in Sections 4.2

and 4.3, respectively. Section 4.4 presents the general aspects of the ice load, including the

load distribution and the ratio of horizontal to vertical forces. and the ratio of neclc to global

forces. Section 4.5 presents the semi-empirical fonnula. and examines the data consistence
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among the three test series. A comparison ofthc test results with Nevel's model is given in

Section 4.6. Section 4.7 summarizes the results obtained from Part I of this investigation.

A conceptual model is proposed, which forms the framework. for Parts nand Part mof Ibis

study.

4.1 Ice·Slructure Interaction and Failure Processes

The interaction process with faceted cones was similar to that observed from previous

tests with sloping structures as shown in a series of snapshots during a typical test run (Figure

~.ll. The failure mechanism was typically governed by the flexural stresses induced in ice

in both mdial and circumferential directions due to bending of the ice sheet. For a faceted

cone with a face-on orientation. a pair of radial cracks initiated from the two edges of the

front facet. forming a series of three truncated wedges upon initial contact. The two side

wedges forced against the facets on the two respective sides, and a central wedge pushed

against the front facet. A radial crack also staned from the centre of the front facet in most

of the lMD tests

Upon fulther advance of the ice sheet. circumferential cracks developed and wedges

of ice broke off. The front wedge slid up the front facet, over the collar and neck, reaching

the top of the structure. and fell back onto the advancing ice sheet resulting in a rubble pile

up in front of the cone, interfering with the ice-breaking process. On the other hand, the side

wedges slid up the side facets and cleared around the cone without difficulty.

In the case of thinner and weaker ice used in IME's series, in sliding up the front
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facet, the ice which was overhanging the sides of the inclined plane usually broke off due to

its own weight. and slid around the side facets. In [MD's tests, such secondary breaking did

not occuidue to the stronger and thicker ice used. Instead, the ride-up ice formed a shielding

wall dfectivcly increasing the width of the front facet toa width slightly wider than the facet

width at the waterline (Figure 4.2). This increase substantially facilitated rubble piling. The

build up of rubble pile continued until a quasi-steady ice clearing process was achieved with

a conslant number of ice pieces accumulated in front of the cone.

If the cone was oriented in an edge-on mode, the rubble pileup did not occur due to

Ihe absence of a flat face perpendicular to the oncoming ice movemem. Typically. a radial

crack initiated from the frontal cone edge and propagated along the centerline. This resulted

in two truncated wedges. with the two wedges forcing themselves against the facets on the

twO respective sides. With the advance of the ice sheet, the truncated wedges failed. rode up

the front facets, over the collar and neck, and cleared around the cone without difficulty. A

quasi-steady ice clearing process was achieved with a constant breaking and clearing of ice.

The profile of the crack patterns associated with the two orientations is shown in

Figure 4.3. The circumferential cracks run at adistance from the cone perimeter with a given

characteristic length resulting in cyclical ice loading (Figure 4.4).

For the cone with a small freeboard, i.e., lMD's I:50 scale model tests. the intact ice

sheet rode up onto the collar and was caught by the transition of the collar and the cone

before any circumferential crack could form. The loading geometry resulted in the failure

of ice in shear mode, with failure occurring along the grain boundaries of the columnar
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model ice. Small chips of ice broke off from the intact ice sheet and extruded from the cone

resulting in high frequency cyclical loading (Figure 4.5). I The channel fanned by the model's

passage appeared very regular aI the approximate width of the: collar diameter. Piles of

extruded ice were formed on either side of the channel, The ice chips cleared around the

neck with only a small pileup.

Occurrence of the shear mode of failure was determined by whether the ice sheet

reached the conc-.<:ollar transition before it failed in bending; hence tbe failure mode was

very sensitive to the ratio of the effective modulus to the flexurdl strengt.h. Elcr. of ice. The

I:xtrapolation of the results to full scale should be cautioned since the Elc, ratio of the model

icc typically may vary from as low as SOO to 2000. much smaller than the full scale values

ml:asured in the field (which are of the order of 5000); hence the maximum deflection at

failure in the field as predicted from model tests is correspondingly higher than expected.

For example. Keinonen et al (1993) compared the propenies and behaviour of field ice and

EGJAD/S model ice by performing field and model wedge breaking tests and found the

deflection of ice predieted from model tests to be between 3 and lO times higher than basic

c1a.~tic deflection measured in the field for the test velocity of 5 cmls due to the ex«ss

plasticity of the EG/ADIS ice at low loading rates.

Other failure modes of the ice sheet were also observed. For example. for thin and

ITests MUNCONE4_003 and MUNCONE7_006 were tested with the same ice speeds
and run distances.
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weak ice used in the [ME's tesl series. bearing failure of the ice sheet occurred before a

significant amount of ice piled up in front of the cone, due to Ihe weight exerted on the

unbroken ice sheet by the broken ice pieces. as they were being pushed up the cone surface.

Once a bearing failure occurred. ice pieces got jammed belween the structure and the

oncoming ice sheet, leading to complex conlact geometry. After thaI. the cone experienced

a short period of non-steady state loading. The occurrence oflhis failure mode as a function

of ice strength and thickness is shown in Figure 4.6. This Iype of bearing failure did not

occur for test conditions largeted in IMO's test series.

4.2 Ice Breaking Mechanisms

Different model geometries and ice regimes result in a variety of failure patterns as

discussed in the preceding section. In Section 4.2.1, the breaking paltems observed in the

[MD's 1:15 scale model tests are further examined. Special attention will be given 10 Ihe

cracking mechanism during steady-state interaction process for obvious reasons. Section

4.1.2 gives a comprehensive analysis of Ihe broken pieces as observed in the present test

series as well as the previous tests. The analysis points to the need for further studies in this

4.2. t Breaking Pattern Observed In IMO's Series

The broken ice pattern could be inferred and reconstructed from the video recording

by considering the shape of each broken piece as sketched in Figure 4.3b. A pair of radial
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cr.lcks first propagated to a short distance comparable to the ice thickness, and Ihen

converged toward each other to form a circumferemial crack. The two radial cracks made

an angle of up 10 30" from the direction of Ihe ice advance. Another crack started from the

ccnterline in between the other two cracks.

This observation was contrary to the failure mechani~m routinely assumed in

previous treatments of the problem as discussed in the following section. The radial cracks

did not propllgllte into the ice far enough to form wedges which behaved as infinite wedges:

instead. the failure medanism observed from LMO's lest series wa." associated wilh the

ultimate failure of finite cantilever beams.

The history of crack development delermined Ihe boundary condilion and loading al

ultimate failure. i.e.• how far Ihe radial cracks propagated into the inlacl ice sheet at the onset

of the circumferential cr.teking. which effectively determined the length of the wedge to be

bent. In the following section, three common beam bending scenarios a.~sociated with

flexural failure are further discussed.

4.2.1.1 Common Beam Failure Sc:enarios

If we follow the mode of crack. development from the first impact. Ihree failure

scenarios could be identified, depending on beam length:

(i l Formation of a cusp bycircumferenlial cracking with limited radial cracking;

(ii) Formalion of circumferential cracks by cantilever beam failure. The radial

crack lenglh was substantially less than 3 times the ice characteristic lenglh.
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As a resull. the wedge failed as a finite cantilever wedge. having a

circumferential crack al its root; and

(iii) Formation of circumferential cracks after extensive radial cracking. The

r<ldial cracks propagaled at leasl 3 limes the characlerislic length of ice

dis5eCling the ice into wedges before ultimate failure occurred. The wedge

could be :l.~sLlmed to fail as a semi-infinite wedge.

Nevel ha.s pioneered lhe lheoretical analysis of ice breaking due to inleraclion wilh

<l cone. He assumed thai the radial cracks propagaled 10 such an extent thaI lhe wedges

behaved as independent infinite wedges (Case 3). Early experience from small scale model

tests conducted in thin ice tended to confirm his theory. Since then. most of the subsequent

ice cone modeling investigations assumed this failure scenario. Only recently has this

assumption been called into question. based on the increasing understanding of fracturing

mechanisms and recent experiments in thicker ice.

With increasing ice thicknesses. Bazanl and Li (1993) showed the onset of ice failure

changed from radial cracking to circumferential cracking. Hence. the loading geometry was

changed from a semi-infinite wedge beam (Case 3) to a cantilever beam (Case 2) and

eventually to a plate (Case I). Numerical analysis (VaJanto. 1992: Jebaraj et aJ. 1992;

Bazant and Li. 1993; and Dcrrndji-Aouat. 1994) and lest data (see next section) tcnd to

support this observation.
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4.2.2 Pita Size Analysis

Generally the ice breaking process produced a variety of piece sizes. Enema et aI

(1991) suggested that it was chaotic in nature. Varsta (1983) showed that the ice cusp size

and force on a landing craft bow wasdependem on the velocity. and hence the loading rate.

Tatinclaux (1986) measured the ice floe distribution in the wake of a simple wedge in urea

and synthetic model ice. He found that the average ice piece size.~. was independent ofthe

characteristic length of ice; instead. it was directly proportional to the parameter. ((J~...f.

as follows:

(4·1)

where crf was the flexural strength of ice; t. the ice thickness; and. Y.... the specific weight

of water. The constant C depended on the kind of ice. with C being equal to 0.54 and 0.254

for urea doped ice and synthetic ice. respectively. In this report. the parameter. (cr~S\ was

called the "breaking length" '-t. for convenience.

tn this section. the size relationship is further examined using the faceted cone test

data obtained from the three tanks. The data sets were supplemented with data from four

other test series conducted with similar model structures [Lau et al (1988) and Lau and

Williams ([ 991) with a 45Q smooth downward breaking cone; Sodhi et al (1985) with a 45Q

smooth upward breaking cone; and Timeo (l984b) with a 45Q upward breaking sloping
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plane I. These model tests were performed in urea Of EGiADiS ice. with the exception of

ERCL's tests which were conductcd in thick. naturally grown saline ice. Despite slight

differences in model shape. these tests were conducted in ice and structure conditions similar

to one another. To fun.her reduce the possible influences of test par.uneters other Uwl. ice

thick.ness and strength. data from tests with comparable cone and internction conditions. i.e..

icc advancing speed. friction coefficient, cone angle and waterline diameter. were chosen for

analysis. The range of variations for each parameter is given in Table 4.1.

For L\10's. ERCL's. lME's and Lau et aI's tests (1988). ~., was estimated from video

rttordings made of each test by counting the number of circumferential cracks. and the

corresponding run durJtion and velocity. To ensure that the estimated values of l..". were

representative of the primary ice breaking length, the values were compared with those

obtained from bow imprints taken after tests. i.e.. Lau et ai's tests: and in the cases where

bow imprints were not available. i,e.. lMD's series, comparisons were made with the broken

icc pattern inferred and reronstructed from the video recordings (see Section 4.2.1). For the

other tests where the piece size was not repon.ed, it was estimated from the ice breaking

frequency. f, and the icc: speed, V, using the following relationship:

(4-2)

which gives the aver<lge size of the ice blocks during primary failure due to circumferential

crJcking,

Figure 4.7 shows the ice piece size l..". versus the length I..,. observed in all seven
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model lest series. The data were further grouped according to ice thickness either larger or

smaller than 0.045 m. The relationship

(4-')

as dcvcloped by Tatinclaux for urea doped ice was also plotted in the same figure. The

figure shows a good agreement ofTatinclaux's relationship with data obtained in ice thinner

than 0.045 m. For thicker ice. the dependency of~.on the factor L" is negligible. and lhe

following relationship fitted the test data very well:

(4-4j

Figure 4.8 shows the ratio of picce size to characteristic length, ~II<. a... a function

of il.:c thickness. t. for the multi-faceted cone and the supplemental)' test series. The data

indicatcd a clear relationship between the Lt./I< and ice thickness despite a large variation of

ice strength.

Simple elastic theory predicted a value of 0.78 for the ratio, Ldl< (Afanas'ev et al,

1971). and the value was independent of ice thickness. However. Figure 4.8 shows that this

was valid only for a vel)' thin ice, and the ratio decreased with increasing ice thicknesses.

The dependency of piece size on icc thickness reneets lhe complexity of ice-breaking

process. and contributes to the scale effect. The data also suggest a lower limit for the ratio.

LIA . and the tests conducted in IMD's and EReL's ice tanks wilh icc sheets thicker than 9

em clearly renect a similar viewpoint. The following equation fits the data very well:
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!:!:. :: 0.0168,-O,lU2

"
(4-5)

This observed trend is also consistent with the results from field observations. In the

ca.o;c of ship-icc interaction. Keinonen (1983) pointed out:

"In model tests. the ice is broken inw large cusps. the typical size of ice

blocks being anywhere between 3-6 times the ice thickness. In full scale. the

typical blocks are radically smaller being in the range of 0,5-2 times the ice

thickness,"

This apparent lack of scaling of the broken piece size is of significance for modelling

the dynamics of ice and rubble clearing around a structure, and leado; to difficulty in model

testing of fragmented ice.

Funher review of model tests with other sloping structures (both model and full

scales) confinned the previous finding as shown in Figures 4.9 and 4.10.

Figure 4.9 shows the non-dimensional piece size observed in the wake of six ice

breaker hulls (both model and full scale) taken from Tatinclaux (1986) with a model wedge.

and the Kigoriak in both model and full scale trials. Howard and Abdelnour (1987) ..... ith the

1:8 scale R·Class model. and Vaianto(I993) with the mKapitan Sorokin In full scale,

Figure 4.10 is extrncted from the piece size data reponed by Keinonen et at (1993)

who conducted 28 tests on an inclined indenter moving against a simply supponed wedge.

The tests were conducted at the ESSO outdoor basin in Calgary using natural saline ice with
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thickness varying from 0.16 toO.29 m and a flexural sU'englh of approximately 200 kPa. The

indenter angle of 25°, 50" and 75° to the horizontal were tested with two wedge angiesof9QO

and 120". All tests were conducted using two indenter speeds: 0.05 mls and 0.30 mls. Only

data associated with Ihe lower speed are plotted in Figure 4.10.

Both figures indicate a limiting value of 0.2 for 4.110 in full scale. This value is a bit

higher than 0.1 associated with Ihe multi-faceled cone tesls. It may be due to the different

ice breaking processes observed.

One explanation for the discrepancy between the theories and tesl data is the non

inclusion of shear action across the ice thickness in Ihe existing analytical treatments of

failure. The chamcteristic lenglh of a beam (or plate) on an elastic foundation was derived

solving Ihe differential equation of the elaslic line using classical theory of an elastic beam

(or plate) on elastic foundalion (Helenyi, 1946), i.e., a Ihin beam (or plate) with small

dctlection. The classical theory, which neglects Ihe effect of transverse shear (i.e.. shear

modulus, in effect, is set to infinity), becomes unreliable in the case of beams (or plales) of

considerable thickness, especially in Ihe case of the highly concentrated loads experienced

in the types of interactions investigaled. Funhermore, wilh a ice piece size to characterislic

length ratio of as low as 0.1, Ihe tr.lllsverse shear would play an important role in ice

breaking. Buckling may also occur with increasing thickness and cone angle whiclt lead to

smaller piece sizes (Derradji-Aouat. 1994).

Satisfactory modeling of ice failure mechanisms is an essential requisite for the

proper computation of ice forces on the structure; however, an adequate examination ofme
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problem is outside the scope of this work. Nevertheless. il is reasonable 10 assume the piece

sizes encountered in full scale to be 0.1 to 0.2 1< according to the present analysis.

4.3 Ice Rubble Formation Process

In the present study. the rubble types as observed in the lMO's test series were

identified and shown in the strength-thickness domain wilh IME's lestdala. The rubble field

cla.~sificalion scheme developed by lzumiyama el aI (1994) wa... adopled (see Figure 4.11).

For IMO tests. C-Type rubble field was typically formed in front of tile 1:25 scale

models: however. rubble field was not observed in front ofthe 1:50 scale model as Ihe small

crushed ice picces cleared around the cone readily. The C-Type rubble field was

significantly larger than those of the same type observed in IME's lesls due to a larger ice

thickness and model neck. and a smaller freeboard. The rubble field tended to accumulate.

till it reachedlhe neck section.

The C-type rubble field consisted of small ice blocks and crushed. mushy ice. In

[ME's tests. these small ice blocks were created when the weak ice pieces fell from the top.

breaking and rolling down the front oflhe model. This secondary ice breaking is imponant.

since the degree of breakage determined which oflhe three types. designated A-type. B-Iype

and C-Iype. would occur. Degree of breakage. which was highly dependent on the thickness

and shape of the ice pieces and the ice strength. increases from A-type to B-type to C-type.

In L\10's tests. a crack extended from the centre of the front facet creating two ice pieces

before they rolled down from the top of the cone. Such a mechanism was sufficient 10 create
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small ice pieces even though the ice was relatively thick and strong. The ice pieces at the

neck. which were typically cubic in shape. rollcd down the front facet resulting in a rubble

pile of mndomly oriented ice pieces.

The manner in which the rubble evolved and changed shape during the interaction.

its geometry and size. could be explained in terms of ice generation and clearing

processes. The ice in front of the cone could be divided into J zones: a central accumulation

zone and two side clearing lones. Understanding of the main features of these zones is vital

to a satisfactory rubble mOOelling. The iee generation and clearing processes associated with

these zones will be examined in detail in Chapter 6.

It is recognized from this study that a unique rubble surface profile is generated

during ste:ldy-state accumulation by a process similarto dumping process from a line source.

[n this case, the free-surface of the rubble is govemed by a slope stability criterion with the

slope angle. t. being equal to the angle of repose. ell.. of the rubble material. This surface

profile. together with the rubble height profile around the cone's perimeter. defines the

geometry of the rubble mass.

It is also recognized that the rate of ice supply is balanced by the rate of ice clearing

during the steady-state ponion of the interaction. and the geometry and mass of the rubble

Lan be estimated by geometric considerations and mass balance.

The above-mentioned slope stability and mass balance criteria constitute the two

fundamental aspects of the clearing processes which will be examined in detail in Chapters

5 and 6.
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4.4 General Characlerislics of Ice Load

4.4.1 Ice Load Dislribution and Ratio of Horizontal 10 Vertical Forces

It can be shown that if the vertical force. F" is uniformly distributed around the front

half of a six-faceted cone with a face-on orientation. the ratio of the net horizontal to vertical

forces. F,IF,. obtained by integrating the respective force distributions is given by a

resolution factor:

(4-6j

where ~ is the resolution factor for a sloping plane: and the value of this resolution factor is

a good measure of the distribution of ice forces around the cone.

Table 4.2 summarizes the experimental values of the horizontal to venical peak force

ratio measured in tnc three test series. i.c..~. The theoretical values of the resolution

factor for the two limiting cases. ~Jdj' and ~. and the estimated percentage of ice force

distributed on the front facet. %r""". are also given. ~Jdj corresponds to the case where the

vertical force is uniformly distributed around the front half of the cone: whereas. ~ is

calculated assuming all ice forces are acting on the cone section at the front facel.

In general. the experimental values. ~:= F,IF•• were close to the theoretical values.

~. for 2-D loading suggesting that the major portion of the load (with more than 70%) was

distributed along the from facet during Ihe peak force events. This observation was contrary

10 the observations obtained from previous model tests with smOOlh cones where the
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resolution was found to be governed by ~Jo' i.e.• Equation 2.25.

Figure 4.12 shows the relationship of the non-dimensional resolution factor.W~

and the non-dimensional waterline width. Ol1e. for existing test data for smooth cones. The

data sets comain data from 10 level ice test programs done worldwide on conical structures

with a total of -400 data points (Afana~'ev et al. 1971: Verity. 1975: Edwardset al. 1975:

Edwards and Croasdale. 1976: Manders and Abdelnour. 1978: Hirayama and Akamatsu.

1982: Wessels. 1984: Sodhi et al. 1985: Lau et al. 1988: and Izumiyama et al. 1991).

The experimental value.~. has been non-dimensionalized by~. The upper limit

(= 1) corresponds to the 2·0 case where all loads are assumed to act on the front edge of the

cone. The lower limit (= 2In) corresponds to the 3-D case where the forces are uniformly

distributed along the front perimeter of the smooth cone. W~ is generally lower than the

value for the 20 case and in many cases is close to what is expected for a uniform

dimibution. panicular1y for Olle greater than I. II is consistem with the observation that for

a very narrow structure. ice-eone contact is concemrated at the from edge of the cone. and

with the waterline width increases. the ice-eonecontact increases from the front edge toward

the side of the cone. and eventually full contact of ice with the front half of the cone occurs

with a certain waterline (Hirayama and Obara. 1986).

The values of Dlle for the faceted cone series were a lot greater than I. and a uniform

distribution was expected. The reason for this difference between the smooth cones and the

faceted cones is not clearly understood. but might be auributed to two reasons. Firstly. the
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resolution factor was calculated assuming all load to act on the conical section only. The

large amount of rubble pile-up on the collar and the neck section would increase the

resolution factor since they have an inclination larger than that of the cone section. The

second reason is that the ride-up and pile-up would primarily occur on the front facet, which

would distribute most of the clearing loads onto the front facet in a two-dimensional manner.

4.4.2 Ratio or Neck to GkJbal Forces

Freeboard is the most imponant parameter influencing the ice loads on the neck.

With a large freeboard the broken ice can clear around the cone without a significant amount

of icc pieces accumulating on the neck. Figure 4. [3 shows the effect of frttboard on the

ratio of the neck to global horizontal loads for the level icc test!>. The freeboard i!> non

dimensionalized by the ice thickness. The ratio of the neck to global force increases with

the decrease of non-dimensional freeboard. The non-dimensional neck force is below 0.16

for all tests except the two runs tested in a very strong ice with a small freeboard to thickness

ratio. i.c=., ERCL's Tests 2 and 4.

4.5 Semi-Empirical Formulae

In this study. the ice breaking and clearing components of the total ice force. during

steady-state ice loading. were analysed. The ice breaking component is the force needed to

break the ice. The ice clearing component is the load imposed by the broken ice pieces as

they slide up the cone surface. These two components are attributed to completely different
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mechanisms. and they were isolated and treated separalely for deeper understanding of the

interaction. A semi-empirical formula, based on experimental measuremems and basic

mechanics of ice. was developed as a way 10 compare the results obtained from the three ice

tanks.

Table 4.3 gives a summary of the mean peak force. Fmp' and the a.o;sociated ice

breaking and cle:lring force components. i.e.. Fb and Fo• measured in L\tO's I:25 scale model

test series. The ice cle:lring force. F<, is assumed etjual to the mean trough force. The ice

breaking force. Fh• is obtained from subtracting the ice clearing force from the mean peak

force as shown in Figure 4.14. In the present test series, a major ponion of the total load in

the structure wa<; observed to be due to ice dearing, with the ice breaking force sometimes

contributing to as little as 20% of the total ice forces.

The mean peak and trough forces were detennined by the up-crossing method as

described in Section 3.4. Since there was a concern with the dynamic effects during the

unloading phase after the ice failed which tended 10 affect the uough force. the time-hislOry

records were tihered through a 1.5 Hz low pass filter before analysis.

The semi-empirical fonnula was developed from IMO's 1:25 scale model tests.:

Predictions from this fonnula are then compared with the measurements from the other IWO

tanks to assess the consistence of results among the three tank.s. As noted above a review of

existing empirical and analytical formulae for ice load computation on cones suggested the

!The experimental results with the 1:50 scale model were excluded due 10 the
shearing/crushing failure observed during tests.
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following common form for the horizonlal ice force:

(4-7)

where the coefficients. a" and a l • are functions of structural shape and coefficient of friction.

The first term is the ice force caused by ice breaking. and the second term is the ice force due

10 icc riding up the structure slope. Experimental dala also indicated Ihal the vertical force

was relatively independent of cone angle and friction coefficient. and the horizontal force

could be related to the vertical force Ihrough a resolution factor. ~. which depended on Ihe

inclination angle and the ice-structure friction coefficient. Therefore. the following form was

used in the present analysis:

(4-8)

where all'f' and attlare empirical functions. which lake inlo account the innuence of pile

up on the breaking and clearing forces; k". k,. kl. kJ• a" and al are empirical coefficients

which are optimized to fit the experimenlal data.

The ice breaking and ice clearing components oflhe general expression were derived

individually from the lMO's data resulting in the following expression for the horizontal

force:

(4-9)
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In Figures 4.15 and 4.16, the ice breaking and the ice clearing forces predicted by Equation

4.9 are compared to the experimental data. In the above comparisons. the scatter in data may

be partly due to the effects of neck size and velocity which are not included in the above

formulation.

rn Figure 4.17, the total force predicted from Equation 4.9 is compared with the

experimental data from the three tanks. In general. Equation 4.9 predicts the model test

results wdl. indicating a good agreement among the results obtained from the three model

basins. with loads measured extending more than three orders of magnitude.

4.6 Comparison wilh Theoretical Prediction

Theoretical loads corresponding to the level ice experiments were calculated by

applying [he elastic model due to Nevel (1992). This model is shown to be satisfactory in

predicting ice forces after extensive comparison with the existing experimental data. (See

Chapter 8.1). The mean features of the model have been reviewed in Section 2.2.1.2.

Figures 4.1 S and 4.19 show a comparison of the total horizontal and vertical peak

loads measured from the three tanks with the loads calculated from Nevel's theory.l The

agreement between the theoretical predictions and measured forces is remarkably good for

the ERCL and IME series; however. this theoretical model consistently under-predicts the

-'Again. the experimental results with the lMO's 1:50 scale model were excluded from the
comparison due to the shear/crushing failure observed during tests which was mentioned in
Section 4.2.



ice loads measured in IMO's tests by an average of 46%. Two points should be nOied here.

Firstly, a majority of tests conducted in IME's and ERCL's series do nOi have a substantial

amount of rubble piling in front of the structure. Furthermore. ERCL's icc thickness was less

uniform than the ice from other two tanks. resulting in non·simultaneous ice breaking. and

most tests were stopped before any significant amount of ice could accumulate on the cone.

Hence. the theory might possibly overestimate the ice breaking components while

underestimate the ice clearing component of lhe total ice force.

To show this. the model predictions were compared with the results from the [MO's

lest series to a.~sess the accuracy of the model 10 predict the individual force components.

Only componenls of the horizonlal force were compared. Figures 4.20 and 4.21 give the

results of comparison for the ice breaking and ice clearing components. respcc:lively. The

model predicts well the breaking component of the lower forces measured in thinner ice. but

underprcdicts Ihose of the higher forces measured in thicker ice; whereas Ihe model

consistently under-predicts the ice clearing component by about 30%. and again,lhe higher

lhe force the nigher the error. Since ice rubble tends 10 ;ncrca.c;e the ice clearing components

of ice force due to ils dead weight. the model is expected to under-estimate the clearing

component. This weight could also increase the breaking load somewhat by imposing an

in-plane compression at the tip of the supporting ice sheet as discussed in Chapter 8.

4.7 Summary and Discussions

Based on observations from model tests, aconceptual model is formulated to describe
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qualitatively the primary interaction processes. The conceptual model provides acon<:eptual

basis for the mathematical modelling oullined hereafter. In Section 4.7.1 the major findings

of the test program are summarized. and the need for funher ice force modelling discussed.

In Section 4.7.2 the general features of the interaction behaviour under investigation are

brielly described, and a method to incorporate the effect of rubble in the existing ice load

models is presenled.

4.7.1 The Need for Further Ice Fora Modelling

The validity of the existing theories for predicting global loads on a faceted cone is

one of the principal concerns from industry's point of view. The analysis of ice sheet load'\

with a leading ice force predictor developed for smooth cones indicates that the theory would

likely under-predict the clearing component of ice loads. Panicularly, the error in ice load

estimation might be quite large when a large rubble field piles in front of the structure.

justifying funher studies to develop some new formulae for the eSlimation of ice loads on

suchstruclUres,

Impenant insights have been obtained from acloser analysis of the model test results.

The process of ice failure and clearing during its interaction with the faceted structure has

indicated the presence of many new features. This process is substantially different from

that of a smooth cone and a two--dimensional sloping plane. The facet comers. acting as

stress concentration points. seem to play imponant roles because two cracks propagate from

the corners in many of the tests. In addition. the flat facet and large neck lend to prevent
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efficient ice dearing and initiate rubble piling in from of the structure.

Failures other than that due to bending modes have been observed from the teslS.

These may be due to the complex tmee-dimensional stress state induced in the ice sheet.

Piece size measurements significantly diverge from those predicted by existing theories

which are fonnulated using dassicaltheories ofthin beam orplate on elastic foundation with

the non-indusion of shear action across the ice thickness. Previous studies have shown that

the failure mode could gradually alter from bending to shear with increasing ice thickness.

Incorporating the three-dimensional nature of icc behaviour into the investigation of the

problem is essential to advance our present understanding of the interaction process.

Rubble building is an essential pan of the ice dearing process. The large amount of

rubble. accumulated in front of the cone. imposes a substantial loading on Ihe structure and

the intact icc sheet. An ice clearing component as much as 80% of the total load on the

stnlcture has been measured (see Table 4.3). The factors which contribute to the amount of

ride-up and rubble formation. and their subsequent effects on the interaction process were

poorly understood. Omission of these factors may lead 10 a severe underestimation of ice

forces.

Although a considerable amount of data was obtained from modelteslS mentioned

in Ihe previous section. a number of imponant ice-slnJcture parameters. i.e.. number of

facets. cone angle. icc-ice and ice-cone friction coefficienlS. etc.• were not varied in the test

progr.un. and the results were valid only for the conditions and geometries of the

experiments. Due to the limited numbers of parameters examined. these model teslS were
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more useful in confirming and calibrating algorithms for ice loads rather than in directly

providing equations for design ice loads. It is therefore considered likely that it would be

helpful to perform mathematical modelling in order to extend the observed relationships to

more general interaction conditions and geometry. The modelling is supplemented by a

series of numerical simulations to be presented in Chapter 7. The simulations provide

information on the complex stress conditions and load distributions, and how the loads were

transmitted and distributed along the ice sheet and on the surface of the structure, which is

helpful to a better understanding of the basic mechanical processes that take place during the

interaction.

On faceting a cone and enlarging the size of the neck, the interaction and failure

mechanisms were significantly altered, Existing theories of ice loads on a cone could not

explain this change. Since there are obvious economical advantages in incorporating nat

facets and large necks in the design of conical structures, an ice force model that allows for

the effects of cone facets, neck size. and the rubble pile. would be an asset to the industry.

Obviously. many issues associated with the three basic processes of ice breaking, ice ride-up.

and the ice piling should be addressed in a comprehensive study. However. the time

l:onstraint imposed on this research prevented acomprehensive examination ofthe problem,

Instead, a decision was made to focus further efforts on the formation of ice rubble in front

of the structure and its effect on ice loads. as no previous model has adequately accounted

for its effects.

In the following. a conceptual model is presented which provides a method for
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considering the dominant processes, and a framework to incorporate a rubble model into the

existing ice force models. Anention is given to the better characterization of rubble pile-up

phenomenon and the associated ice load. Since the issues related to ice break.ing and ice

ride-up have been studied previously in greater detail. the knowledge gained from these

slUdies is used in the present work.

4,7,2 Conceptual Model for Ice ForteS Exerted on an Inclined Plane

The model is proposed to explain the interaction processes between a faceted cone

and a level ice sheet during a continuous ice breaking mode. It provides an outline of the

phenomena to be investigated, and a fmmework for incorporating rubble load theory into

existing icc force models. The model is detailed enough to describe the interaction processes

as well as to obtain the fonn of equations for individual force components.

The geometry of the problem is presented for a two-dimensional case in Figure 4.22.

For simplicity, the model is given in 2-D, and a constant thickness ice sheet is moving

horizontally and breaking against a faceted cone under an ice rubble pile, the shape of which

is yet to be determined. From a modelling point of view, it is convenient to divide the

interaction process into three major simultaneous phenomena, i.e., (I) ice breaking, (2) ride

up, and (3) rubble pile-up, where different features dominate. The first phenomenon is the

failure of ice under contact forces imposed by the cone, the ride-up ice llfld the rubble

surcharge. The second phenomenon is the pushing of a layer of broken ice up the cone

surface. The third phenomenon is the clearing of a rubble surcharge around the cone due to
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tnc continuous movemem of the level ice past the cone. The three phenomena are mutually

depcndem. The constitutive properties of the rubble and ride~up ice depend on the

geometrical and mechanical properties of the constituem ice pieces which are generated by

the breaking of the ice sheet. and the size of ice pieces generated during ice breaking is in

tum affected by the additional loading imposed by the rubble and ride-up ice. The ice

breaking and ride-up processes have been extensively studied and many models are available

to predictlhe total load due to their effects. However. the rubble pile-up process is less well

unde~tood. For each process. some of the a."pects regarded as importam and/or unique to

the present investigation are briefly described below.

Figures 4.23 and 4.24 summarize the loads exerted on the ice sheet. the ride-up and

the pile-up which should be taken into account. The weight of the pile-up. W, = W< + W,.

is partly supported by the ride-up ice and partly by sheet ice. i.e.• distributed loads q< and q,.

The force, N. required to lift the rubble surcharge and break the ice sheet. acts at the bottom

edge of the ice sheet. As the ice moves and rides up along the cone. frictional forces. q,~,;.

N, and q<J.l.,. are also developed at the ice-rubble. ice-cone, and rubble-cone imerfaces

respectively, where J.l. and~ are the ice-ice and ice-cone friction coefficients at the respective

interfaces. A component, P, acting at the top edge of the ice sheet is also required to push

the ice up the slope. The failure of the ice sheet can take place either by bending, shearing,

crushing. buckling. or a combination of them. The velocity of ice is assumed to be high

enough that brittle ice failure mode is predominant. During a quasi-steady state ice
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interaction, some constant amounls of rubble ice pile up in front of the structure, when the

r.lte of ice supply is equal to [he rate of ice clearing. The underlying ice sheet may fail

before this quasi-steady state is reached.

The rubble is under conslant shearing due to constant deformation ofthe rubble. To

take into account the eff~ts of this rubble ice in ice force prediction, the amount and

distribution of Ihe rubble and associated forces exened at the inclined boundary (with the

ride-up ice) and the base (on the supponing ice sheet) must be known. The rubble pile

formation mechanism is a complicated process involving the dynamic balance between the

supply of icc pieccs due to continuous ice breaking, and the clearing process of ice as the

rubblc pile moves past the cone, Understanding these two procesSils is the key to modelling

the mechanism of rubble formation: besides, other (actors such as the size and distribution

of rubble ice, and the dynamic interactions between the individual ice pieces must also be

considered.
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Tilhle4.1 Gcner.tl lest comJitiulls Ill' the mOlJcllest scrh:s usctl in pieee size .mOllysis

Sloping Plane Smooth Cone
Fuceled Cone

(face-on oriclilation onlvl

PARA- I I IMETER Timco.1984 Lau & II Lau et aI, I Sodhi ct ai, IMD IME ERCL
Williams. 1991 1988 1985 1:25 I:SO 1:20

Cone Angle.I ., ., I ., I ., .0 I .0 I '0
----l:1-

g=:~ I Up I Dow" I Dow" I Up I Up I Up I Up

WaterJine
Diameter. I 1.0 I 1.28 I 1.28 I I.' I 1.38 I 1.24 I 1.72

..J!!!L
Friction 0.08

Velocity, 0.06
(mls)
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Table 4.2 Summary oC the horizontal to vertical Coree ratio for level ice tests measured
in the three series on multifaceted cones: face-on orientation only

Te..
Friction <-.= No. of

Coemcie ~... "'-
,

Oat.
Series F,IF.

nt.J.I.. Points

0.791 ±
0.833 0.555 0.899 15

0.046
'!ME

0.1
1.162±

1.018 0.679 1.283
0.085

:L\o1D 0.09
0.913 ±

0.998 0.665 0.830 I'0.08

ERe 0.1
0.87 ±

1.018 0.679 0.709 10
0.177

Note: I A friction coefficient of a is associated with runs I to ]8, and a friction
coefficient of 0.1 is as§OCiated wilh runs ]9 1066.
ln5th scale model tests only
% focce distribution on front facet calculated by the following equation:

% ,,~.aIli(6O"l
r- 1 ....60"'1
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Table 4.3 Summary or total. breaking and clearing ice ron:ts measured in lMD series:
I:25 scale model

T"t V F. F, F. F~/F.. a. ,
(') (mls) (N) (N) (N) (Id'. (m)

Test Set: Small neck. model with neck. size: 0.231 m

3.1 0.01 4287 2890 1397 0.309 44.4 0.158

3.' 0.06 4942 3200 1742 0.337 44.1 0.158

3.3 0.04 5049 3100 1949 0.366 43.6 0.158

3.5 0.04 3232 2400 832 0.243 29.4 0.148

Test Set: La! e neck. model with neck size: 0.462 m

4.1 0.01 5005 2950 2055 0.391 41.1 0.160

4.2 0.06 5907 3800 2107 0.336 40.6 0.160

4.3 0.04 6006 3500 2506 0.383 40.4 0.160

4.6 0.04 4963 31 SO 1813 0.357 19.7 0.164

5.1 0.01 1953 1520 433 0.200 30.7 0.095

5.2 0.06 2274 14SO 824 0.346 30.2 0.095

5.3 0.04 2035 1440 595 0.264 29.9 0.095

6.2 0.04 29SO 2150 800 0.260 "'.5 0.114

6.3 0.01 2810 20SO 760 0.257 22.5 0.124

6.4 0.06 3060 2250 810 0.249 22.5 0.124

Note: W,lIerline diameter: 1.386 m; friction coefficient: 0.09; and ice density: 930 k.glrn.
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Figure 4.2 Photo from IMO's series showing the ride-up of ice and the rubble pile (fest
MU CONE6_003)

Figure 4.3 Profile of crack patterns associated with the (a) edge-on and (b) face-on
orientations
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Figure 4.6 Bearing failure of unbroken ice sheet in strength-thickness domain, [MO's and
L\1E'sseries
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Figure 4.7 Ice piece size. I..,.. versus breaking length. 1..". with curve fitting for ice
thickness larger than 0.045 m. Tatinclaux's equation for urea ice is also given.
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Part II Ice Rubble Modelling

Chapter 5 Ice Rubble Under Load

The process of ice rubble pile-up around a conical structure has been poorly

understood. When a rubble mass clears around a stnlcture. the load that can be imposed on

the structure is influenced by a number of parameters, including: structure (ann, speed,

porosity, roughness. lateral confinement of the rubble. and the size-shape-strcngth-and

roughness of ice fragmcms comprising the ice rubble. Furthennore. geometry of the rubble

field and loading conditions at its boundaries would give rise 10 a complex state of stress

distribution.

In order to understand and to quantify the innuencc that a rubble field has on ice-eone

interaction behaviour, it is necessary to examine both the kinematic and the dynamic aspects

of the rubble clearing processes. The manner in which ice blocks are generated and cleared

around the structure determines the size and shape of the rubble foonation. This rubble

mass, in tum, being pushed against the structure, exerts forces on the ride-up ice and the

supporting ice sheet. Until now there has been very few research studies dedicated specially

to this subject. However, the problems encountered in the studies of rubble load on

structures are quite similar to those found in soil mechanics; while the constitutive material

differs, the similar particulate nature of the materials provides the common ground.

In this and the following two chapters, a rubble model is developed to model ice
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rubble behaviour in front of a faceted conical structure. Basic theories of soil mechanics are

explored, and the geometry of the rubble and the associated forces are modelled with the aid

of numerical simulations. This chapter focuses on the basic mechanical behaviour and the

failure processes of ice rubble under loading conditions typical of the ice-cone interaction

process. Chapter 6 presents a simple method to characterize and compute the geometry of

a fully developed rubble from known ice and structure conditions. The predictions agree

well with the experimental data. In Chaptcr?, a set ofempirical equations are developed to

calculate forces exerted by acohesionless granular mass, i.e., ice rubble, on a retaining wall

using a series of discrete element analysis. These equiltions are further incorporated into an

icc force model which will be presented in Chapter 8.

The model developed in this work. involves three important phenomenological

parameters: the angle of intemal friction. the anglc of repose, and the earth coefficient

function. Thc first parameter is a constitutive property of gmnular matcrials with Coulomb

lype shear behaviour. The second parameter characterizes the natural slope of granular

matcrials being dumped. The third parameter describes the stress state of a rubble mass

under various loading conditions. The second and the third parameters are functions of

loading conditions, and are closely related to the first parameter. In Section 5.1. the shear

strength of granular materials is discussed, followed by a brief review of laboratory

measurements of ice rubble shear properties. In Section 5.2. the surface profile of a rubble

pile due to the natural dumping process is explored. The angle of repose. an important

geometrical parameter of this profile, is discussed in detail. In Section 5.3. the behaviour of
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granular materials under stresses is eltamined. The characteristic stress states of the granular

materials under arbitrary loads, as described by various earth coefficients, are identified and

further eltplored. Based on basic theories of soil mechanics. it is concluded that the

cohesionless rubble is in an elastic state throughout its mass during the typical ice-cone

interaction process under investigation. Finally. two existing metnods for the computation

of wall thrust exerted by an earth mass at-rest are assessed in Chapter 5.4.

5.1 Shear Stnngth of Ice Rubble

Mostly. ice rubble studies were carried out due to the concerns expressed for the

integrity of the structure encountered by ice ridges. In most of tne instances. the ridges fail

in shear with the ma.ximum loads eltperienced by the structure are limited by the shear

strength of the rubble materials. Therefore. measurements of rubble mechanical properties

were mainly focussed on shear strength. The shear strength ofan ice rubble under isothermal

conditions is basically made up of:

(i) The structuraJ resistance to displacement of the ice blocks becauscof

the interlock.ing of the ice blocks.

(ii) The frictional resistance to translation between Ihe individual ice

blocks at their contact points, and

(iii) The cohesion (adhesion) between the surfaces of the ice blocks.

For a cohesionless material, cohesion is negligible, while the resistance to

deformation is influenced strongly by its frictional resistance at the contact surface and the
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interlocking between ice blocks. A knowledge of the possible magnitude of Ihis shear

resistance and the factors that influence it are essential to a rational design.

5.1.1 Phenomenological and Structural Approaches for Material Description

The mechanical behaviour of rubble is a complex reflection of its structure. Like

other particulate materials. the deformation is brought about by mutual sliding and rotation

of the ice blocks. The existence of mutual contacts restricts the freedom of motion of the

individual block resulting in strength and rigidityofthe ice rubble. The number and strength

of the contact bonds are to a large extent determined by the size. shape. roughness and

strength of the discrete blocks. the nature of the interaction between the various phases. the

state of the ice rubble in question (e.g.. its density and void ralio). and it~ texture.

The mcrhanical behaviour of ice rubble material can be studied using two different

approaches: the phenomenological approach and the structural approach. In the

phenomenological approach the laws governing the processes are deduced from the

correlation between the input and the output data of a system whose dimensions greatly

exceed those of their constitutive units; and hence, the real substances arc replaced by

mathematical models of struclureless continua. The structural approach. on the other hand.

analyses the mechanical behaviour based on the interaction between the fundamental

constitutive units of the system. Phenomenological conclusions are then made possible

through statistical synthesis.

Since the phenomenological characteristics are a result of rubble structure. a
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structural definition is the fundamental one. A fonnularion of the phenomenological

relations as a statistical synthesis of structural analysis would be ideal solution. This is the

only way in which one can correctly understand and pay due regard to their specific structural

characteristics which lead to constitutive relations of particulate materials. However, a

complete structural analysis is frequently unsuccessful even in the case of the simplest

deterministic systems, such as mono-erystals (Macmillan, 1972). For instance, in the

statistical characterization of particulate materials, it has been often found to be incapable

of describing the complete behaviour. In the present work, phenomenologically formulated

mechanical laws useful in simple engineering computation are adopted.

5,1,2 Phenomenological Descriptions of Cohesionless Granular Materials

A classical foundation for the entire phenomenological approach was laid by

Coulomb (1773). For the shear strength ofsoils. Coulomb derived a simple expression using

"the law of friction and cohesion" proposed for soil substances by Amontons (1699):

(5-1)

where t and cr. are the shear and nonnal stresses on the failure surface, respectively; c is the

cohesion: and ell is the effective angle of internal friction. This definition of strength was

funher refined by Mohr (1882), who proposed the idea of representing graphically the

combination of stresses by a circle. In the Mohr-Coulomb failure criterion, the strength of
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a grilnular soil can be represented by the Mohr failure envelope. which is a line drawn

tangent to the Mohr circles representing the state-of stress at the peak: points of the stress

strain curves under various confining stresses. For cohesionless materials. the cohesion is

negligible. i.e.. the intemal friction dominates the deformation characteristics and becomes

thc principal mechanical parameter of the materials.

Rubble is neither a solid nor a liquid. but it has some of the characteristics of both of

these states of matter. It differentiates itself from fluids as described by Delanges (1788):

"when poured. retain their shape. when excavated. do not fill the depression. after being

shaken or otherwise distutbed. seule rapidly as soon as the external impulse no longer acts".

However. on the other hand. it is similar to fluids in its tendency to exert a lateral pressure

:Igainst an object with which it comes in contact due to the Poisson' s ratio effect. This

chamcteristic can be measured by the coefficient of lateral pressure, K. i.e., the reciprocal of

the ratio between the venical stress and the horizontal stress which tends to resist lateral

deformation of the material. As we shall see, this K<oefficient is closely related to the

internal friction of the material.

An important implication of the Mol1r-Coulomb theory is that in a general three

dimensional stress state, the intermediate principal stress has no influence on the failure

criterion. This is approximately true. The behaviour ofgranular materials may be influenced

hy many factors, such as void ratio. gradation of grain sizes. loading path. temperature. time.

and stress history. In recent years. an increasing number of other failure criteria have been

proposed to give a better modelling of the most significant aspects of granular material
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behaviour. including non-linearity. inelasticity, shear dilatancy. and path dependency (see

Table 5.1). An overview of failure criteria for engineering materials, especially geological

materials, was given by Desai and Siriwardane (1984), including elasticity model. classical

plasticity models and other more recently developed models,

In the light of recent research, the linear Mohr-Coulomb model does eenainly not

mean the last word in strength theory. and in some problems it has proved inadequate in

describing the true behaviour of unconsolidated iee rubble (Eltema and Urroz·Aguirre. 1991:

Sayed et ai, 1992: and L0set and Sayed, 1993). Yet. for engineering purposes, il has become

a very useful and dependable tool for judging, by strength computations. the danger of failure

in solid bodies under general slress conditions.

5,1.3 Effect of Initial Void Ratio on Internal Friction

The intemal friction of a granular material in a given state is the result of a number

of factors and inlluences, i.e" the void ratio of the material, the confining stresses, Ihe rate

of loading, etc" which aCI upon the material at Ihe moment of ilS shear failure. Of these

factors, void ralio l is by far the most imponant. This ratio, which is a function of block

shape and size distribution, can have a profound influence upon the rubble's internal friclion.

The internal friction angle, $, of a cohesionless Coulomb material is made up of two

'The ratio of the volume oflhe pores to the volume of the solids in a rubble sample is
called "void ratio"; while porosity is defined as the volume of the pores to the total volume of
the rubble sample.
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components: firstly, the friclional resistance arising from Ihe sliding between particles;

secondly, the struclural resislance due to the interlocking of the particles. The fonner is

solely a property of Ihe malerial; whereas, the latter is purely geomelric. The effect of

panicle interlocking is illustrated in Figure 5.1. In loosely packed materials, to start shear

it is only necessary to make the particles slide upon one anolher. In a dense pack, the

particles arc interlocked with its neighbours, and have to move upwards and slip along the

shear plane during shear. This tendency to dilate during shear wa." first observed by

Reynolds (1885), and is known ilS the Reynolds dilatancy. The denser the packing, the

greater is the tendency to dilate.

The influence oflhe dilatancyon the behaviourofgranular materials hilS been studied

by Rowe (]961t Been and Jefferies (1985). BO[lon ([986), Goddard and Bashir (\990).

Ba...hir and Goddard (1991); Goddard (\991), Balendran and Nemal-Nasser (1993).

Pouliquen and Renaut (1996), and Schanz and Venneer (1996). Houlsby ( 199 [) gave an

excellent review on the relalionships between the friclion angle, dilation angle. density and

pressure in agranu[armaterial.

In a typical lri-axial strength test, Ihe shear stress-main behaviour of granular

materials at a given nonnal load depends on the initial packing density (Lambe and

Whitman. 1979). Figure 5.2 shows schematically two lypeS of characteristic stress-strain

curves. For densely packed samples, the shear stress increases with Ihe strain, reaching a

peak. $p' and then gradually decreasing 10 some constant value. $... Over this range of

strains. there is usually an initial reduction in Ihe volume of !he sample due to compression
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followed by an increase due todilatanc:y. The maximum shear suength. t,. is referred to as

peak strength. ellp.: The denser the sample. the more the stress-strain curve shows a

pronounced peak and the subsequent stress decreases following this peak. On the ather hand.

in case: of loosely packed samples. the stress-strain curve does not show a pronounced peak.

and instead the SlrcsS increases asymptotically to the critical value while the volume

decreases. At very largc strain both dense and loose samples ~hieve the same void ratio. ee-'

exhibit liulc or no tendency to further volume change: and the devialoric stress for both

curves becomes essentially constant. The strength for this state is referred to as constant

volume strength. $", \ At this state. the sample can deform without volume change.

Figure 5.3 furthcr shows the relationship !x:twecn the internal friction angle. (I. and

the initial void r,ltio. eo (Rowe. 1962). This trend of higher. for denser soil is always the

s.amc regardless of the type of granular materials. And. hence. this internal friction angle. (I.

is not a material property but depends strongly on the void r.ltio which reflects the degree of

interlocking betwc:c:n blocks.

Since the strength at the ultimate condition for a particular sample is the same

regardless of its initial void ratio.Q... may be thought of as a material property. The value of

9<, can be approximated with reasonable accuracy by the angle of repose. ~•. i.e.. Q". =41. (see

: 41 <lnd its variants, i.e.. ¢lp and 41"., are actually internal friction angles: however. they arc
commonly referred to as the strength of cohesionless materials in soil mechanics.

'The angle is sometime refem:d to as ultimate. critical or residual angle (Lambe and
Whitman. 1979).
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Section 5.2).

Ekside the void ratio. the inlemal friclion is also dependenl on the rubble

composition. SU'eSS slate. streSS history. temperature. stress and strain rates. and the slructure:

oflhe rubble. From Figure 5.1. il is clear that !he angle ofintemai friction is also influenced

by the gr.Jin size distribulion and grain shape (Holtz and Gibbs. 1956) (sec Table 5.2). 1be:

intcrlocking is panicularly imponant as tbe angular ice blocks (end (0 interlock more

lhoroughly than round blocks. The general influence of the other variables outlined above

with respect to soils has been detailed by Mitchell (1976).

5.1.4 Limitations or lhe Phenomtno~icalApproach

The forces and movemenl<; induced by rubble-cone inter3Ction processes arc: analysed

primarily from iI. macroscopic point of view. which means that the rubble mass is assumed

10 be a continuum rather than composed of individual material parts. and the ice blocks arc:

uniformlydistribuled throughoul the body. Suchan assumplion will be sufficiently valid as

long as voids arc small and irregularities arc present only on a scale small enough in

comparison to the size of the structure under consideration.

In a typical icc-rubble inter.lCtion situalion there arc: tr.llIsien15. Even afler sleady

state is reached. sizeable fluctuation of ice load can be observed which is superimposed on

the constant ba.--e line. Although this fluctualion can be auributed to the nature of ice

breaking and ride-up cycles. il may also be panly attributed to the pulsating clearance of

rubble ice due to the discrete nature of broken ice pieces and the local variation of geometric

119



and mechanical propenies.

In a typical rubble/structure system, a quantitative answer can only be given from

case to case based on detailed statistical considerations that arc beyond the scope of this

research. Qualitatively, however, one can imagine that with decreasing size ofthe ice pieces,

with respect to the structure dimensions. the discrete nature of the rubble becomes of lesser

significance increa..~ing the accuracyofacontinuum macroscopic description. Observations

from the present model tests, in terms of the geometry of the rubble and the associated loads

on thc models. suggest that the size effect is not significant even with the structure width to

piece siz.e ratio a.-; low as 4.

If. however. the dimensions of the ice pieces became comparable to the struclUre

width. the pulsating nature of ice clearance may become significant. In such situations.

methods which account for the discrete nature of the interaction. i.e.. discrete element

moddling, should be employed and the fluctuation phenomena taken into account.

5.1.5 Laboratory Measuremenl.'i or Rubble Strength

Knowledge of the mechanical propenies of bulk rubble is a prerequisite for analysis

of rubble mass behaviour. The mechanical propenies, such as imemal friction and cohesion.

can be determined through shear strength tests. These tests also allow the influence ofstrain

rate and other variables such as block size and distribution. temperature, etc.. to be

investigated.

Most of the studies to date have been carried out in the laboratory, many of which
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have been performed on artificially generated ice rubble using some fonn of the direct shear

box or the simple shear appar.nus. From these empirical test results. constitutive

relationships have been derived. The type of appamtus used in published shear box

experiments and the general results obtained are reviewed by Enema and Urroz-Aguirre

( 1989 and (991). The main features of these properties are briefly reviewed here. More

detailed information can be found in the cited references.

The first comprehensive study into the properties of rubble ice was conducted by

Prodanovic (1979) who performed direct shear tests on submerged samples. His results

indicated that the bulk rubble obeys the Mohr-Coulomb criterion. under a certain range of

stn::sses and displacement rates. i.e.. Equation 5.1.

Other experiments by Keinonen and Nyman (1978). Weiss et a1 (1981). Hellman

(1984). Gale et al (1985). Wong et al (I987). Sayed (1987). Urroz-Aguirre and Ettema

( 1987) and Case (1991) are in agreement with this conclusion. but there is an enormous

spread in the reported values of friction angle and cohesion. For example. angles of intemal

friction have been reported from 11° to 65u
• while cohesion has usually been reported to be

negligible. but has also been reported to be up to 20 kPa by Sayed (1987). The shear box test

results are summarized in Table 5.3.

The extreme variation in reported experimental results for the shear strength of ice

rubble testifies to the complexity of what may seem a simple mea.o:,ure of resistance to shear.

This variation may be attributed in part to the different testing methods used. Early tests

used direct shear boxes {Prodanovic. 1979; Weiss et aI. 1981; Hellman. 1984; and Franssen
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and Sandkvi~t. 1985). Other tests were done using simple shear boll (Urrez-Aguirre and

Enema. 1987). a plane-strain boll (Sayed. 1987; and Sayed et aI. 1992). and a small tri-axial

cell (Wong el aI. 1987). 1be direct shear bolles do not give a well defined failure plane

within lhe sample; consequently. the stress and suain measurements cannot be properly

quantified. 1lle set-up used by Urrez-Aguirre and Enema (1987). Sayed et aI (1992). and

Wong ct al (1987) overcame this problem by producing unifonn defonnation in lhe sample.

Different sample preparation methods. range of stres~s. strain rates. sample temperature.

melting or freezing of the samples. and the difficulty in proper scaling of the bulk material

furthcr complicate thc problem as well.

Bruneau (1997) collected laboratory ice rubble shear dala from the literature and

compared them with the theoretical behaviour of a loose and dense sand. He concluded thnt

thc lower bound strength of ice rubble undergoing shear was similar to that of loose sand.

Hc conjectured mat the highersuength is attributed to various degrees ofinterblock bonding.

Chao (1993) developed regression equations for estimating apparent cohesion and effective

internal friclion angle for unconsolidated ice rubble using four sets of ice rubble shear

strength measurements (Prodanovic. 1979; and Weiss et aI. 1981; Fransson and Sandkvist.

1985: and Case. 1991). It was found that the thickness and flexural strength oftile ice pieces

are the most important factors in detennining the cohesion of tile ice rubble. For the internal

friction of the ice rubble. void ratio appears to be the most imponant parameter. Although

the regression analysis was based on limited measurements of 10 . 15 data points. his

findings regarding the internal friction are in agreement with OIller granular materials.
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Rcrcnt studies on ice rubble mechanics indicated the importance of micro-mechanical

interaction between constilUent ice pieces in detennining the overall mechanical properties

of the ice rubble. Hopkins and Hibler (1991) conducted a series of discrete element

simulation with a two-dimensional shear box filled with blocks which have a length to

thickness distribution characteristic ofpressure ridges. Particle shape. angularity. uniformity.

mixture anisotropy, and compactness were modelled rigorously within the limits of the two

dimensional simulation. The results showed clearly that variations in the coefficient of

friction have a great effe<:t on the shear strength of angular rubble. They also demonstrated

that local rearrangement of block and breakage are competing mechanisms fOf the relief of

local forces on the nominal failure plane. Breakage which depended primarily on load

produced a IO;Jd dependence in the shear strength. Their results demonstrated the need to

tilkc account the micro-mechanical properties and interactions between the constituent ice

blocks in rubble research, and also the versatility of Discrete Element Method, as these

factors could be readily incorporated into the problem.

In interpreting the available laboratory measurements. two characteristics of rubble

ice must be kept in mind. 1be first is the breakage of constituent ice blocks under confining

pressures, which varies widely from tcst to tcst. Unlike other granular material, i.e.. soils,

the strength of ice is relatively weak. and considerable breakage of ice blocks may occur

under even a moderate pressure. This breakage substantially affects the interlocking of the

sample which is refle<:ted in a lower internal friction at higher pressure. The second is the

size of the sample. Unlike testing of real soils. rubble samples used in previous tests are
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made from various sources, ranging from large size field ice to small size manufactured ice

cubes. Early tests used relatively small test chambers, which might have led to size effects.

Funhermore, all data on mechanical properties are from small scale laboratory tests, and

uncenainties remain regarding the elttrapolation of small scale data to field conditions.

Recently. comprehensive field eltperiments were carried out near Borden, Prince

Edward Island adjacent to the Confederation Bridge to develop reliable and practical

methods for characterizing the insitll strength of ice rubble in first-year ridges and rubble

fidds (Bruneau e! ai, 1998). Two insiul shear strength testing methods were attempted. The

first. referred to as the direct shear approach. involved the horizontal displacemenl of a

prc-eut ridge core slab. Forcing the solid ice layer sideways resulted in the shearing of bonds

with the underlying ice rubble keel. The second approach. referred 10 as the downward punch

technique. involved the vertical displacement ofapre-eut block ofthe ridge's refrozen layer.

The technique provided a venical failure of the underlying keel. Ancillary measurements

were made of level ice thickness, ridge depths. ridge protiles, refrozen layer core samples.

water salinities. sail heights. block size dimensions and weather conditions. Careful analysis

of the data set will provide significant information on the deformation properties of ice

rubble.

The mea.~urementof the strength propenies of ice rubble have been focussed on ilS

pla.~tic failure state under high to medium pressure. Only a few have been performed at the

low pressure regime. Whereas, the rubble in front of a cone is expected to be in a loose state,

Le. cohesionless and under low confining pressure, and hence the lest conditions may not
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modclthe stress state that exists in the rubble under a typical interaction. At the rubble's free

surface. the rubble is at the limit plastic state characterized by the inlernal friction angle at

it's loose state. 4Ie.' (See Section 5.2) Inside the rubble mass. the rubble is at it's elastic

state. which can also be related to 41" (see Section 5.3). This 4IcY is essential to model the

rubble behaviour associated with the problem under investigation: yet, such measurements

:lssoci<ltl:d with ice rubble are scanty.

5.2 Rubble's Surface Profile Due to Natural Dumping Process

If a dry granular cohesionless material, i.e.• dry, clean sand, is poured slowly from

a not very high level onto a smooth horizontal plane. it will form acone with it's free surface

inclined at a definite angle to the plane due to Ihe inlernal friclion of the material. The

limiting slope formed by this process is called the angle of repose, $" and it presents the

mall.imum inclination at which the material will just begin to move down the slope. Since

thl: poured material generally finds itself in a loose state. the maximum stable slope angle,

<11,. is about equal to the angle of internal friction for the loose state, <IIeY. The existence of this

<Ingle of repose has been shown in various text books on soil mechanics, i.e., Lambe and

Whitman (1979).

Observations from experiments indicate that a similar slope failure process constantly

takes place at the free surface of tile rubble as a result of constant dumping of ice blocks onto

its surface: and hence the rubble's free surface profile may be conveniently assessed by the
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simple. empirical measurement of its angle of repose assuming lhe scale of the ice pieces is

small.

5.2.1 Variation and Maintenance of Rubble Surf~ Proflle

When rubble clears around the co~, th~ processes may arise:

(i) Continuous dumping of ice blocks from the tOp to Ihe rubble's free

surface:

(iiI Removal of ice blocks at Ihe fool of the rubble as they move and clear

fromlhe side. and

(iii) Increase oflhe free surface inclination oflhe rubble as it slides up the

Alllhree processes tend to increase the surface slope of the rubble, and hence ensure

a unique surface profile of the rubble to be: maintained at its angle of repose by continuous

failure ofil~ free surface. The third process happens onlywhc:n the rubble is allowed to slide

up the wall with the underlying ice, when the static friction is high enough to prevent sliding

between the rubble and the underlying ice. When this condition occurs, it also accentuates

the effects of the olher two processes.

During steady-stale rubble accumulation. the rubble slope fluctuates be:lween IWO

limiting values. Initially, the slope angle is less than the angle of repose. The slope increases

through the aforementioned three processes until the slope is larger than the angle of repose

for the rubble material. and progressive slope failure occurs. Up to this point. the motion of
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ice pieces is slow and static equilibrium is maimained at each time instant. However. after

the on-set of the slope failure, the motion of the toppling ice pieces is large and substantial

kinetic energy is acquired by the toppling ice and the subsequent failure is dynamic. The

slope after failure is substantially less than the angle of repose.

Cantelaube-Lebec et 011 (1995) reponed an 8 degree difference between the angle of

repose just after an avalanche. and the angle of maximum stability just before the avalanche

in their experiment on the equilibrium conditions at the surface ofa flowing 2-dimensionaJ

granular medium. The pre-avalanche slope angle represents the limiting condition which

corresponds to the maximum amount of rubble loading on the cone.

Various aspcC(S of gravity driven granular flows of panicles down inclined surfaces.

similar to the avalanche process. have also been studied by Savage and Nohguchi (1988). Jan

et al (1992). Abu-Zaid and Ahmadi (1993). Chou (1994) and Pouliquen and Renaul (1996).

Another process was also observed during tests which could limit the maximum

rubble slope. Before the limiting angle of repose can be reached. all of the rubble mass can

slide down the facet. thus decreasing the slope. This is expected to happen when the cone

angle is steep or the ice-ice friction is low. Again. the pre-failure condition is static.

The angle of repose is affected by measuring methods and many parameters. Three

methods commonly used to measure the angle of repose are described by Linoya( 1993). viz..

injection method. discharge method and tilting method. Brown and Richard (1990) have

described each of these methods and discussed the various parameters affecting the angle of

repose. Linoya et al (1990) have identified the various factors influencing the angle of repose
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for gr.lnular materials, such as: particle size. size distribution, void fraction, injection rate,

falling distance and size of heap.

5.3 Slress-8tate of Ice Rubble

5.3.1 Behaviour of Granular Malerial Under Siress

Stre~ses within a granular mass are caused by the external loads applied 10 the

gi.mular mass and by its own weight. Since rubble ma.~s is made up of blocks. it is essential

[0 understand how a mosaic of gr.lnular material behaves under stress. Classical Iheories

governing thc carth pressure on a relaining wall fonn the logical starting point due to the well

explored nature of the subject and the similarity of the inleraction processes under

investigation.

The stress state of a granular mass. under various loading condilions. can be

described using the concept of earth pressure ratio function. In soil mechanics. this function

is commonly expressed by a ratio called the coefficient of lateral stress. and is denoted by

the symbol K:

(5·')

where 0h and 0. are the horizontal and the vertical stresses, respectively. The value ofKcan

vary over a wide range depending on the magnitude of the latera! (horizontal) pressure which

can develop in the rubble mass. This lateral pressure can be related to the strength and
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stress*strain propenies of the material and deformations which OlXUr within the mass as a

resuh of lateral movements. There are three distinct kinds of lateral pressure. and a clear

underslanding oflhe nature of each is essential. In the special case. where there has been no

lateral suain within the soil. the coefficient of lateral Stress is said to be in the "at·rest"

condition. and is denoted by the coefficient of elastic equilibrium at resc. K". K" describes

the geostatic stress condition. Coeffteients for the two plastic limit equilibriums. K" and K".

can also be identified. K" and K" describe the two plastic limits at which rigid plastic:

material yieldsplastica1ly.

To illustrate the material behaviour at these three Slates. consider a level soil mass

of semi·infinite extent retained by a smooth. rigid. wall as shown in Figure SA which

summarizes the general relationships between la&eral deformation and pressure. For

simplicity. the soil is assumed to be homogeneous. isotropic and c:ohesionless. The granular

malerial lends to slip laterally and seek its natural slope. nus tendency results in a push

against the wall.

The venica! stress cry is controlled by gravity. and can be estinwed from a profile of

overburden s~ with depth. For the condition where the soil deposit is normally

consolidat~.the Iotal vertical StreSS in the bomottneous soil at any depth ofz is equal to

the weight of the overburden:

~A condition in which the existing overburden pressure repraeDts the maximum vertical
pressure the soil mass has been subjected in ilS history.
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(5-3)

where y, is the lotal unit weight of the soil. There are no shear stresses upon vertical and

horizontal planes within the soil: and hence. in the case of a horizontal. ground surface. the

vertical and horizontal components of the overburden stress are also principal stresses. If

these stresses ate associated with zero lateral deformations of the soil. i.c.. the unyielding

waJl depicted in Figure 5.4b, they are referred to as the latera.I stress at rest and lhr: eanh

pressure coefficient is designated 1(".

The horizontal slI'ess. (J~. and hence the earth coefficient. K. are highly influenced by

the current soil state. lfthe wall of Figure 5.4 is allowed to move away from the retained soil

mass. the soil starts to expand in the horizontal direction. following the wall movement. (Sec

Figure 5.4a) The lateral expansion of the soil against a smooth wall does not affect the

venica! stress wilhin the soil. but leads 10 a decrease in lhe lateral suess. Any clement ofsoil

will then behave just like a specimen of a tri-axial test in which the confining SlJ'eS5 is

decreasing wtulc the axial suess remains constant. The soil's shear strength acts opposite

to the direction of the upanston resulting in sbearing ~sisWlCe developed within the soil

mass, and hence the lateral soil pressure on the wall decreases. When the soil develops its

maximum shearing resistance with increasing 1aJera1 e~pansion. a sliding surface is formed

in the soil beh.ind the retaininS wall. and the horizontal suess e~ened on the wall decreases

to a cenain minimum, aDd no further decrease in the horizontal stress is possible. 1be

horizontal stress for lhis coodition is called the acti...e stress., and the ratio of horizontal to
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vertical s.tress is. called the coeffIcient o( active stress and is denoted by the symbol K".

U the same wall moves into the retained soil mass, the soil is compressed in the

honzonlal direction, with the soil shearing ~istance acting to oppose the lalt~

compression (see Figure 5.4c). Any element o(the soil is now injust tbe condition ora tri·

axial specimen being (ailed by increasing the confming pRSSUte while holding the venica!

stress constant. When sufficient late~ movement occurs. the shearing strength o( the soil

is fully mobilized and the. reaction of the ~ulting late~ earth pressure reaches its maximum

value. The horizontal stress condition is called tbe passive stress, and the ratio of honzomal

to vertical stress is called the coefficient o( passive slJeSS. 1',.

Figure 5.4 illustrates the important (act that lateral pressures change gradually in

accordance with wall movement, and reach the fully active or passive conditions only when

adeqU.1te mOvement has occwred. Until such movement is. achieved. the lateral pressure

acting on the wall is inlermediate between the two limiting values. and the: soil is said to be

in a state of elastic equilibrium. Results o( large scale model tests ;n reported by

Tschebotarioff(1951).

Theactive and passive earth pressuresconstitutc: the u1tinwecase. The sweofstress

at this IWO extreme situatioos are called Rankine states, after the British engineer Rankine

(1858) who nOled the relationship between the active and passive conditions. For a simple

case of a level cohesionless fiU behind a frictionless venical wall, the magnitudes o( K" and

~aregivenby:
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K '" I - sin4l
" I· sin41

K '" I + sin41
, I - sin41

(5-4)

(5.5)

The range ofK values can be large. For. z 35·, the possible I1lnge ofearth pressures

is as follows:

Eanh pressure Symbol Computed as K coefficient

Active K, Eq.5.' 0.27

AI Resl K, Eq.5.7 0.43

Passive K. Eq.5.5 3.69

The two limiting values K, and K. vuy by filClor of 13.7. Thus, it is important to identify

the appropriate values for K to nweh a particular deformation and failure process.

The at-rest stress state is of practical and theoretical significance to the present

investigation, since stress slate is established when the backfill is placed behind a rigid wall

without allowing any lateral strain, i.e., soil deposited behiDd a rigid unyielding wall. a

process similar to the disposition of ice rubble in front of a rigid cone wall tb'ough end

dumping process. This process results in a cohestonless gnnular pile in loose stale, and,

thus. the initial state of the rubble can be characterized by K".

When the soil is in a state of clastic equilibrium, the stteSSCS in the lateral direction
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can be computed from the suess-strain relationships of the soil assuming a linear isotropic

material behaviour. The isotropic linear elastic bodyischaracterized by two parametc:rs: the

Young's modulus of elasticity, E, and the Poisson's ratio, Y, or with the use of another set

of elastic constants -·llJe modulus ofrigidi[y, G, and the l..amC's constaru, A..

The relationsh.ip between latera.! and venical strains is described by Poisson's ratio',

v; and for the condition of urn laaenJ strain the relationship between the principle stress

(horizontal stress and vertical stress) are re1aled by the ratio:

K"~ 'O_v_
~ o~ I - y

(5-6)

Matsuo et at (1978) compared the measured earth pressure at rest on a retaining wall with

the results from finite element computation, and showed that the elastic theory is applicable

to evaluate earth pressure at rest if the Poisson's ratio can be properly given. The classical

model of linear elasticity bas been modifted for use with city cohesion.less gnnular materials

to account for the non-l.inearity of the suess-str.ili.n ~1ationships of particulate suuetures.

Even with these major modifications, accurate pred.ic:tionsof loads due10 smaildeformations

are very diffICult to make: due to a lack of knowledge of the stiffness moduli and strains as

'While the concept of Poisson's ratio used in continuum mechanics is still valid for a
granular mass, it should be noted that, the Poisson's ratio is used here to describe the behaviour
of the whole granular mass, i.e.. not the individual discrete ice block. As the SU'tSS-stale of the
rubble depends on it's load history, the Poissoo's ratio oflhe rubble is not a material property
and varies with the stress-state.
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they change from point to point within the granular body.

Severallheoretica1 and empirical relationships for K" have been postulated for loose

sands as summarized in TaMe 5.4 [J4k)', 1944 and 1948; De Wet. 1961; Brooker and

Ireland, 1965; Wienbiczky (see Rymsza (1979)); Feda. 1982; Matsuoka and Sakakibara.

1987; and Su:peshazi. 1994J. However, experimental values ofK" are best represented by

a simple expression given by 14k)' (1948):

K" a I - sin~ (5.7)

The validity of this formula has been established by Supesh.izi (1994) and Mayne

and Kulhawy (1982). After giving a detailed examination of 14ky's equation, Szepeshazi

found the Jaky's equation and its variations compared well with 152 measurements from a

variety of soils. Mayne and Kulbawy (1982) conducted an extensive review of laboratory

data from over 170 different soils as shown in Figure 5.5 (Mayne and Kulhawy, 1982).

Statistical analysis conducted on K" for aU available data indicated:

K.. a I - l.OO3sin~ (5-1)

having a sample correlation coefficient. r. 0.802. The scattering of data may be due to the

variations of the other iodex propen.ies of the soil, i.e.• liquid limit. plasticity index, clay

fraction, uniformity coefficient. void ratio, etc.

Many otber investigators have also corroborated the results, i.e.. Simons (1958);

Brooker and Ireland (1965); Bishop (1971); PMb (1972); Wroth (1972); Myslivec
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(1972); Andl11wesand EI·Sohby(1973); Lambe and Whitman (1979); FUkagawaandOhta

(1988); Mesri and Hayar.(1993); andFedaetal(I99S).

5.3.2 Expeded Stras State or. Typical Rubble ill Front or. F.C'ded Cone

When me rubble is formed by a natural dumping process. me clearing of the rubble

from the slructure is analogous to the bulk material uanspon on an inclined belt conveyor

as the supporting ice sheet and the ride-up ice act as the belt conveyor. And hence the rubble

in front of the cone may cOOSWltly be subjected to two simultaneous processes:

(i) The deposition of granular malerial in loose state in front of the

struelUre durinl the initial formatioa: and

(ii) The ride-up of rubble onto the facet in which the rubble is forced to

confonn to the underlying support when the rubble is conveyed up the

facet.

The first process results in a rubble with stress associated wim the at-rest state. The

second process may affect the stress stale within the rubble:. with the stI~SHIate deviating

from the at-rest condition and moving toward the two plastic limits. depending on the type

of defonnation in question. i.e.• compression or extension

The real inleraction process may be a good deal more complicated man the simple

picture presented above. but the essential process is nevertheLess clear. It is expected that the

maximum force mat is ellcned by the rubble on the wall would correspond to the: elastic

equilibrium state wim a Kvalue somewhatclose 10 K". and it can diverge from K" depending
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on the effeet or the second process. In alIlikelibood. such a change is negligible as long as

the rubble is allowed to clear hom the structure; tbererore. in the present study. the effect

or Ihe second process on ice load is assumed to be negligible. and is not studied.

Possible extra load due to horizontal compression may be or concern. ir the rubble

is prevented. rrom riding-up the structure; bo~ver. it should be noIed that the rubble will

nOI auain the passive state. even in this case. It is illustrated as rollows:

General equations ror passive earth pressure coefficients. K". can be established

graphically through Poncelet'sconsuuctions (1840) ror various wall angles. a.. rubble angle.

\6. wall rriction angle...... and the internal rriction angle••. or the rubble material (Jumikis.

1962). The expected rupcure angle. n. as defined in Figure 5.6 is given as rollows(Jumikis.

1962):

~nC ~ tanC+- Cl).jWl(+-Cl lItaIl(.-Cl).cot('.(90'.,IIi I·.-i..-{90' ·\))col(+·{90" .\)1 (5.')
1·Wl( - ..._(90° -\»IUIn(.-Cl)"COI{.-(90" .,))

II should be noIed that when the rubble angle. t. is equal to the angle or repose.•. the

rupture angle. n. is equal to zero and the actual NplW'e line would make an angle. below

the horizontal level.

The above formula suggests that for an discrete rubble mass accumulated in front of

6 In this thesis. the rubble angle. t. is rcckooed as negative above and positive below the
horizontal plane which is different from the common conventioo used in the rteld of soil
mechanics. In the case under investigatioo. the angle is always positive.
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an inclined wall. passive shear failure within the rubble will not occur during a Iypical

interaction process. due lothe large positive inclination oflhe free surfac:c: oflhe rubble. Any

shearing failure (if !here is any) will take place at the boaom of the rubble. where a weak

shearing plane already exists. way before the shearstretlglh oflhe rubble is fuUymobiliud.

5.4 Analytkol_r......Compa.._otWaDn..-Ex.-byEonhM...

at the At-Rest Stlk

The problem of !he eanh pressure wilhin rubble at !he 'ai-rest' slate or near it

corresponds to one of the calculation of the eanh pressure at rest for triangUlar fills.

The calculation methods of earth pressure al the ultimate Coulomb's and Rankine's

equilibrium Slates have been studied and examined by many researchen and engineers

(Coulomb, 1773: Caquot and Kerisel, 1948: Tenagb:i and Peck. 1967: Packsbaw, 1969;

James and Bransby, 1971; and Shields and Tolunay, 1973): but there is no satisfactory

method 10 compule Ihe laleral pressure on walls due to fill at the at-rest SIale. Technical

liter.ltUre for the: calculation ofla1eral pressures on a rigid wall due to a triangular fiU. as in

the present case, is limiled.

In this scction,lwoexisting methods for the calculation oflalel'a1 pressures on a rigid

wall due to a triangular fill are described: Melkote's elastic analysis (Melkote. 19TI) and

limit equilibrium methods. The discussion focuses on the limit equilibrium methods, while

Melkote's method is only briefly described.
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5.4.1 Mefkote's Mtthod

Melkote has developed a set of equations to compute earth pressures exened on

retaining walls by triangular ftlls as in the: case of wrap-around for transition blocks, between

earth dams and concrete spillways. His method consists of two steps by recognizing two

important features of the problem. i.e.• the fill is triangular in shape and the pressure is

exerted in an 'at rest' condition. His derivations~ based on Jurgenson's work (1934) on

slrip loads on semi-inftnite masses. In this method. the: vertical wail pressum due to the

triangular fill are first estimated by calculating the vertical pressures due to a quarter infinite

fill against the retaining wall on the basis of intepation ofBoussinesq's Equation (1885) for

a single concentrated load acting on a semi·infWte medium; aDd then unloading the fiJI in

strips beyond the actual embankment section. The horizontal pressures~ then obtained by

multiplying the venical pressures with the coefficient of earth pressure at rest. His method

is also applicable to a wall inclined at any angle. and a liU consisting ofany number of layers

with different densities and compaction chancteristics. Due to the complexity of the

derivation. the equations are not~ted here.

Melkote's method has rarely been used as designers favour simpler methods.

5.4.2 Umll EquIHbrilIln__

A simpler and widely used method. wttich may be applicable (0 the problem under

investigation. is the limit equilibrium method coaunonly used in slope stability analysis

(Huang. 1983). This method isbasc:duponswesoftimitequilibriwn wbicbhavedominatcd
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earth pressure problems for over two hundred years. 1be analysis essentiaUy applies the

principles of static equilibrium to a relatively simp~ geometry in which slip on

discontinuities is governed by a specified shear stmIgth model. h involyes malcing an

estimate of (he weights to be resisted. the geometry and the shear strength of the failure

surface, and the amoum of shear mobilized within me granular mass. The stability of

indiyidual slopes is expressed as a factor of safety. F
"

which is the ratio of forces resisting

movement to the forces tencling to induce sliding. When the mass is stable, the factor of

safety is higber than unity; ;wi when the factor of safety is equal (0 unity. the slope will be

unstable. i.e.. at limiting equilibrium. A factor of safety smaller than unity implies an

impossibly steep slope.

Most problems in slope stability arestatically indete:mtirwe, and hence various levels

of simplification art: used in order to aniye at a unique solution. This leads to a variety of

methods (Fellenius. 1936: Bishop. 1955: Morp:nscem and Price, 1965; Seed and Sultan,

1967: Spencer. 1967; Wang et a1. 1972; andJanbu,l973).rangingfromthesimplewedge

method (Seed and Sultan. 1967) to the very sophisticated finite:-elemmt method (Wang et

aI. 1972). In this sectioD. the simp~ wedge method is presented to iIIUstnfC the general

computatiooal procedures of the limit equilibrium methods.

As we have a1Ieady shown in the previous section. any slidin. will occur at the pre

existing sliding plane, and the principle underlying stability caJcuJation of the triangular

rubble mass is the failure in shear along the sliding planes, when the driving forces exceed

the resisting fon:es. The forces 00 the ice cmtact surfaces. due to the rubble, can be
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reasonably estimated by assuming that the rubbk is made up of a number of hypothes.i.zed

rigid blocks piled up against the inclined surface and considering the equilibrium of forces

for each of these blocks. By considering the rubble blocks as rigid bodies. it is possible 10

predict rubble forces on tbecone with the aid of rigid body mechanics. The simplest analysis

consists of two rigid blocks moving along the contact surfaces: the suppon and the incline.

as shown in Figure 5.7.7 'The lower block has a weight, WI; and the upper block has a

weight. W:. resting on the incline with an angle. a. The dimensions ofW, and W~ are given.

The rubble is assumed to be cohesionlcss, and have a natural slope. t = ,. The contact

surfaces between the rigid blocks, support. and wall as well as each other fonn potential

failure planes. The sliding resistance of the rubbk at the wall and the suppon is governed

by ice friction angle, ••.

The distribution offorteS on each plane depends on the interaction force between the

twO sliding blocks and can be determined by considering the two blocksjoimly. Fiaure 5.8

shows the free-body diagram for each block. The angle of the inter-block force. ,~. is

required for solution. and may be assumed equal to the developed friction angle. i.e.• tm+~

=~••,with F, being the factor of safety corMklDly used in limit equilibrium analysls.

'The mechanism in Figure 5.7 is not suictly kinematically feasible for the rigid blocks
analysis. because any downward venica1 movement of the upperbloclc. will cause the block to
lock up at point A. This difficulty can be overcome by assuming lhat sufficient localised
deformation occurs in the region around point A to allow the mechanism to operate:.

•At the verge of failure, the friction at the sliding planes. along the support and the
incline. ls fully mobilized, i.e.• equal to~: however. the friction between the two rigid blocks
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By assuming that the faetorof safety. F•• is everywhere the same. applying equally to tan4l

for the rubble material between blocks. and to~ aI the wall and the support. there are a

total offourunknowns. P. F•• NI andN!; where P is the force acting between the lwoblocks.

and NI and N~ are the forces normal 10 the failure plaoes. The problem is statically

determinate with four unknowns and four equations. two from each block...

For the lower block. summing all forces in the venical direction and !he horizontal

directions. and solving for Nt and P:

(S.\O)

(S·II)

or P. in tenn of the unknown F.only:

P R Wltan.,
F.cos.tI - tan.~sin4>"

For the upper block.

(S·U)

may not be fully mobilized, i.e., the angle of the inter-block force is less than or equal to tan ,.
depending on the value of F•.
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N, [Sina -(";~.),oso]
p. •

'os4>,

or P. in tem aCthe unknown F,0tlly:

w, [Sina -(";~.)coso]

(5-13)

(5-14)

(5·'5)

Theequation (<<the faetorof safety F. as a function of input parameters Q•• QII' a. WI

and Wl can be determined by equating Equations S.12 and5.IS. Once F, is obtained, N,. N1

and Pcan be computed from Equations 5.10. 5.13 and 5.15. Acomputed value of F, greater

than unity means sliding at the potential failure plane does not take place: while. a values

of F, smaller than unity means that the sliding failure will occur with a given rubble angle.

In such cases. the rubble angle should be reduced and a new F. computed until a value of

unity for F. is obl:ained. The corresponding rubbk angle is the muimum angle which can

satisfy the static equilibrium condition.

By assumins the rubble as rigid biocks. the limit equilibrium methods ignore the

nexibility of the rubble mass. FUI'tbermofe. the assumed value of •• highly influences the
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s~ distribution on the potential sliding plane. and the associated factor of safety. For

example. Figures 5.9 to 5.11 show the safety factor. the limiting rubble angle. and the

horizontal wall thrust. calculated from the fore·mentioned method. as a function of /Il" for

h =1 m, a = 50"., =30" and 4l~= 11.3° and 21.8°. A commonly accepted way to estimate

4lJ has yet to be developed.

In Chapter 7. empirical equations to cakulale wall thrust due to a triangular fill at the

at·rest state will be fonnulated from a series of numerical simulations. 1be equations are

simple 10 use and yet account fully for the disc~ natute of the fill materials.
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TabJ~ 5.1 Summary of failure criteria proposed for granular materials (after Evgin and Sun.
1989)

Isotropic Criteria

Mohr-Coulomb

Drucker-Prager (1952)
a. Bishop (l971)

Anisotropic Criteria

Hill (1950)
(for ortholrOpic materials)

2. Generalization of Mohr Coulomb's
Criteria
a. Baker and Krizek (1970)
b. Boehler and Sawzuck (1970)
c. Nova and Sacchi (1979)

3. Tsai-Wu
a. Tsai and Wu (1971)
b. Wu (1974)
c. Saada el al. (1983)

Table 5.2 Effect of angularity and grading on peak friction angle (after Tenaghi. 1955)

Shape and Grading Loa", [kn",

Rounded. uniform :w 37"

Rounded. well graded )4' 4C'

Angular. unifonn 35' 43'

Angular. well graded 39" 45'
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Table 5.4 Different equations for coefficient of pressure of loose soil at rest

Sour«

laky (1944) - original

Jaky (1948)· simplified

QeWel(l96I)

Brooker and Ireland (1965)

Wicrlbiczky ((see Rymsza (1979»

Fcda( 1982)

Matsuoka and Sakak.ibara (1987)

Szepeshoi.zi (1994)

Equation

K.. • I - sin41

K" " 0.95 (I - sin41)

""'~-/2-l~JK" " !{!II . III

(...!.-..'LJ - 21""~ -/2
J!ll ·111

Pis the ratio of the elastic and plastic axial strains

K.. '" I'~

K.. " (I - sin41) l ..... )
1I· ..... )I..... ·~·JI
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the solid symbols denole cohesionless soils and the hollow symbols denote
cohesive soils (after Mayne and Kulhawy. 1982)

Figure 5.6 Graphical illuslration orO used in Equation 5.9
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Figure 5.9 Safety factor as a function of $.141 for wall angle. 0. = 50". angle of repose. 41 = 30".
and ice friction angle. $~ = 11.3" and 21.8"
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Figure 5.10 Limiting rubble slope as a function of $.141 for wall angle. a = 50". angle of
repose. 41 = 30". and ice friction angle. 4l~ = 11.3" and 21.8"
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Figure 5.11 Horizontal thrust on the wall as a function of 41.1' for wall angle. a = 50". angle of

rcposc.ljl = 30". and ice friction angle. ¢'~ = 11.3° and 21.S"
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Chapter 6 Rubble Geometry Idealization

When an ice sheet encounters an obstacle in its path. the amount of ice blocks that

can be generated and piled up in front of the structure is influenced by a number ofstructure

and icc parameters. A realistic modelling of the rubble field and the mechanism of its

fannalian is essential to an accurate ice load estimate.

In this Chapter, a new model to predicllhe shape and size of the rubble is presented

based on insights obtained from the earlier experiments (Chapter 4) and the basic soil

mechanics theories (Chapter 5). The purpose Oflhis model is to compute the geometry of

the rubble based on simple yet essential interaction processes and mechanical principles.

Section 6.1 describes the general features of the interacting systems and the assumptions

used. The discussion forms the conceptual basis of the rubble geometry idealization. In

Section 6.2. an idealized geometry of a fully developed ice rubble is presented. Such a

rubble is expected to pile-up in frOnl of a faceted cone during typical rubble generation and

clearing processes. The geometry is uniquely defined by the rubble's angle of repose, and

the characteristic rubble heights along the cone perimeter. The methodology to predict the

amouni of ice piled up via mass balance considerations is also described. I Section 6.3

presents the detailed derivation of the basic equations for the rubble height calculations. The

key heights ilre the maximum lleights of the rubble along the front facet and side of the cone.

lMcKenna and Bruneau (1991) used a very similar mass balance technique to estimate
rubble build-up on conical structures during ridge interactions by considering the projected area
of the advancing ice and the amount of ice rubble cleared.
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The derivations are validated in Section 6.4 by comparing t~ predicted values of the

maximum heights to the corresponding measurements from physical model tests.

6.1 General Features and Assumptions of the Interacting System

A considerable simplification of the analysis can be realized by recognizing the

principal features of ice generation. ice supply and ice c1e3ring processes associated with the

interJction between a relatively thick and slfOIlg slow moving ice sheet and a face-Qn

oriented faceted cone. Figure 6.1 describes the typical kt breaking pattern observed in the

modellests. The ice sheet in froot of the cone can be divided into 3 characteristic zones: an

accumulation zone located directly in froot of the front facet and a clearing zone located on

both sides of the accumulation tone (the ice tends to aa:umulale in the accumulalion zone

and clear from the clearing zone). For simplicity. the width of the accumulation zone is

equal to the facet width at the waterline~. Wf; whereas. the width of the clearing tones is

almost equal to the projected waterline width of the side facet in the direction of ice

If the ice is thick and strong. the train of i~ blocks generated from the accumulation

zone will be allowed to ride up the front f~t. reaching the neck intact. and form an inclined

wall with a constant width. Wfo as shown in Figure 6.2. This wall fomu a barrier preventing

any icc clearing lhrough it; and any ice generated from the ice breaking can only clear

lThe width of the accumulation zone is influenced by the i~ breaking pattern. and a more
precise method to estimate this width is given in Section 8.2.1.1.
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beyond the wall at both sides. Hence. analogous to those of the ice sheet. accumulation and

clearing zones can also be identified within the rubble, as shown in Figure 6.3.

When the ride-up ice from the accumulation zone reaches tne neck. the broken ice

blocks fall back onto the accumulation zone following a path parallel to the centerline of the

cone. These ice blocks contribute to a constant supply of ice blocks into the rubble. On the

other hand. the icc blocks generated from the clearing zone ride up the side facet and clear

around the cone without obstruction: and hence, they do not contribute 10 the supply of the

rubble.

Since the rubble is siuing on top of the ride~up ice, it follows the same clearing

process of the underlying icc. In most case, the friction between the rubble and the

underlying ridc·up ice is sufficient to prevent any sliding between the interface. As a result,

the rubble is transported up the facets with the underlying icc acting as il conveyer belt. The

ice blocks located in the accumulation zone cannot clear around the cone. but instead tumble

b;lck onto the accumulation zone due to the obstruction of the neck located directly in their

path. These blocks eventually move sidewards into the clearing zone. Once the ice blocks

are in the clearing zone, they ride up and clear from the side facet with the riding-up icc. The

idealized flow pa{lem around the cone is also given in Figure 6.3.

The rubble surface profile is generated by a process analogous to the process of berm

construction by end dumping of gmnular materials from a line source, i.e,. at the end of a belt

conveyor. Although the rubble is constantly pushed forward by the front facet. the speed is

so slow that it docs not seem to affect the process. This process results in a rubble with a
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surface profile governed by slope: stability criterion where the slope of tile rubble is equal to

the angle of repose of its constituent marerial. With this surface: profile known. the geometry

ofthe rubble can be uniquely defined with a given height profile around the cone perimeter.

The size and shape of the rubble at any instant during its development depend on the

balance between the supply and c1ear.mce of ice blocks to the rubble system. AI the steady

stale rubble clearing process. a constant amount ofrubbte piles up in front of tile structure.

and its mass can be eSlim;ued by geometric consideration and a mass balance calculation.

Neglecting the discrete nature of the ice flow. the rale of ice supply into the rubble

depends on the thickness and velocity of the ice sheet and size of the cone: and Ihe rate of

ice clearing from the rubble depends on the size of the rubble fornlation. AI the earlier stages

or the rubble growth. the rate of ice clearing is low a.o; most ice blocks are situated in the

:lCcumulation zone. As the rubble grows. the rate of ice clearing from the sides increases

wilh increasing amount of tile: ice blocks moving into the clearing zone. until the rate of ice

clearing equals to the rate of ice supply. When this condition occurs. the rubble is fully

developed. As the rubble grows. the slope lends to be constant. equal to the angle of repose.

Figure 6.4 shows the geometry of the rubble as it grows in size.

To simplify the problem treatment, the following silt assumptions are used for the

analysis:

(i) Rubble Gener;l!jQn Process:

The rubble pile is generated by end dumping of ice blocks from a line source
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located at the neck directly above the front facet.

(ii) Cohesionlsss Icc Blocks:

The constant deformation of the rubble mass preveniS any cohesion

being developed within the rubble.

(iii) Full Mobilization of Shear Strength al Rubble's Free Surface:

The shear strength is fully mobilized at the rubble's free surface. It

follows from a."sumptions (i) and (ii) that thc free surface of the rubble is

equal to the angle of repose of thc material.

(iv) Full Rubble Development:

The rubble is allowed to develop fully without thc bearing failure of

the supporting ice sheetJ

(v) Quasj.St;;uje Equilibrium State of Rubble:

The ice velocity is slow enough that the dynamic motion of the ice

'This condition is valid for relatively strong ice tested in IMO's series; however, this
may not always be the case. The maximum amount of rubble may not be developed due to
failure of the supporting ice sheet, as observed in severallesls conducted in IME. In such cases,
the strength of the supporting ice sheet has to be considered (see Section 7.6.1).
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blocks can be ignored.~ The rubble in front of the cone is assumed 10

maintain a quasi-slatic equilibrium state al all time. It follows thai:

(aj The shape of the fully developed rubble can be deduced from

considering the sialic stability of the rubble around the structure

alone. In olher words.lhe dynamic motion oflhe individual ice block

docs not alter this stable shape.

Cbj The inertial impact of ice blocks tumbling down Ihe slope will not de-

stabilize the natural slope of the ruhble. i.e.. the slope maintains at its

angle of repose.

\vi I No Inleraction Between the free Surface and Ihe Rubble-Ice Interface

The existence of the structure does not modify the free surface profile

of the rubble. I.e .. the rubble is thick enough that there is no interaction

between the free surface and the ice-structure interface. The free-surface

maintains it's angle of repose independent of Ihe ice-struclure interface

condilion. Thus. a unique geometry of the rubble can be obtained by first

fonning a heap of rubble from a line source and then superimposing it on to

the structure.

'Observation from model tests shows no discernible effects on Ihe piling process or the
geometl)' of the rubble with speed up to 2 m1s full scale.
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6.2 Ideal Geometry and Mass Balance

Figure 6.5 shows the idealized geometry of the rubble system surrounding a simple

faceted conc. Only the front right quaner of the cone is shown. The free surface of the

rubble always maimains at its natural angle of repose. fil" in the radial direction. The profile

of rubble height around the front perimeter of the cone is defined by three characteristic

heights, h", hrf, and hrm' which are the heights of rubble at the side of the cone, at the edge of

the from facet, and the maximum heights along the front facet, respectively, In the pre:-ent

model. the values of h". hrf' and h"" are derived. and the variation of height between these

three points along the cone perimeter is assumed to be linear. The increase of height from

the edge of the front facet toward its cemerline is due to the end effect typical of a three

dimensional heap formation from a line source with finite length (see Section 6.3.3); and the

increase of height from the edge of the from facet toward the side of the cone is due to the

ride-up of the rubble ice along the side facet. The rubble height profile along the cone's

perimeter. together with the known geometry of the cone and the assumed natural angle of

repose. uniquely define the geometry of the rubble.

The above idealized geometry is deduced from considering the main features of the

rubble geneioltion and clearing processes, and is in agreemem with observations from model

tests (see Figure 4.ld). Once this geometry is deduced, the size ofthe rubble, i.e., tbe values

of h", hrt, and h"", can be obtained through mass balance calculation.

To illustrate this, please refer to the rubble system shown in Figure 6.6. Again. only

the front right quarter of the system is shown. The rubble's free surface. the cone surface,
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and an imaginary venical plane form Ihe boundaries of the sy~tem under con~ideration. The

ice blocks are supplied into the system at Ihe top of the rubble. and eventually clear through

the cross-seclion of the rubble intersecled by the venical plane. i.e.. cross-sectional area. A.

The general mas.~ balance equation governing the selected system is given as follows:

R, :: R~ • R,. (6-1)

where R, and R< are the rate of ice supply 10 and clearing from Ihe rubble syslem.

respectively: and R, is the rate of ice accumulation in Ihe syslem.

In the case ofa sleady flow,there is no mass accumulalion within the rubble system.

Thus. the rate of mass supply to Ihe rubble system is equal 10 the rate of mass clearing from

the system:

R, "R, (6-2)

Since alllhe ice mass riding up the front facet must eventually enter into the rubble

system as icc supply to the syslem, the rale of ice supply is equal to the rale of ice displaced

by the front facet; and hence:

(6-J)

where W f is the waterline width of the front facet; t, is Ihe ice thickness: and V is the ice

advancing speed.

The !"'.lIe of ice clearing through an arbitrary cross-seclion in the rubble mass is a
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function of the area oflhe cross~seclion.A. as well as the velocity. V" and the porosity, p.

of ice passing through it:

R., " 2(1 - p)AV•. (6-4)

The factor of 2 renecls the fact thai same cross-section. A. e:tisls at both sides ofthc cone.

In the present derivalion. two imaginary venical planes are selected. a front reference

plane and a side reference plane which intersect the rubble mass with Ihe cross-sections

associated with hrf and h ", respectively. Since the rubble moves with. the underlying ice

sheet, the speeds of ice dearing through these twO reference planes are assumed to be equal

to the ice i.ldvancing speed V. By equating the ice clearing rate to the ice supply rate. i.e..

Equations 6.3 and 6.4. and letting V,equal to V:

(6-5)

The geometry of A is defined by the angle of repose at the rubble surface. the cone angle at

the ice cone interface. and an unknown height which is dctennined in the ne:tt section.

6.3 Derivation of Basie Equations for Characteristic Heights of Rubble

6.3.1 Rubble Height at Ihe Edge of Front Facet, h,.,.

Because of its pro:timity to the sou~e of ice supply. the geometry of the frontal

portion oflhe rubble is highly affected by the way the icc blocks are supplied into th.e rubble
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system.

Figure 6.7 shows the geometry of a rubble pile fonned by dropping ice blocks from

a line source. If we ignore the end effect due to the finite width of the line source. the rubble

will have a central wedge section with length equal to the width of the line source. and a half

cone seclion formed at each of the two ends. The free surface of the rubble has an angle

equal to the angle of repose. ~,. of the dumped material. Suppose thai we dump material

from a finite line source onto an inclined plane with the same width as the source. the

expected geometry of the rubble is illumated in Rgure 6.8. In another words. the geometry

of the rubble formed in front ofa structure can be obtained by super-imposing the rubble on

the structure.

To perform a mass balance calculation for hn. only the frontal portion of the rubble

is considered. Figure 6.9 defines the rubble system to be considered. The cone in this

problem consists of three seclions. with the subscript I denoting the lowest section and

subscript 3 the neck section. The geometry of the cone. in terms of the height. hi' and the

slope.ex,. of each section is known. The slope of the rubble is equal to 41,. In this figure. the

rubble reaches the vertical neck. bUl the analysis also applies to rubble with its height at the

edge of the ride-up ice below level of the neck. To simplify the calculation. the thickness of

the ride-up ice is ignored. and the width of the ride-up ice wall is assumed equal to Wf' The

retcrcnce plane intersects the rubble at the side of the ride-up ice on the neck and front facets

to form a cross-section A.,. It is assumed that some ice will be trapped between the side-facet
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and the back of the ride-up ice wall. preventing any ice to pass through cross-section A~ and

the ti.lpped ice is not considered in this analysis. The resl of [he rubble system interfaces

with the side-facet at area A1: and, hence, the ice. which is supplied from Ihe lop ofthe fronl

facet, must dear from Ihe rubble syslem through cross-section A".

Figure 6.10 shows the geometry of A<tcorresponding 10 the Cross-Seclion A-A as

dcfined in Figure 6.9. The cross-sectional area, A<t. can be obtained by considering the

geometry of the system:

(6-6)

whcre A,,,, is the projeclion of A, (see Figure 6.9) onto the reference vertical plane where the

icc is directly blocked by the ponion of the structure protruding beyond Ihe ride-up ice wall.

Since:

(6-7)

then:

(6-8)

When the rubble increases in height.lhe front reference plane moves toward the rear
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part of the cone with increasing Coli' until. and unless. the h,r is equal to or grealer than h~.

and portion of the cone blocking the ice movement increases with increasing Boll and h".,.

The shape of A'II> depends on the geometry of the cone. i.e .. D.n.I' h I' and the height hob or

length Bob as defined in Figure 6.10. In Figures 6.9 and 6.10. B""and h..t,are shown at their

maximum values. The ct rf.1 corresponding to each cone section can be obtained by tracing

the interaction between the cone and the vertical reference plane. It can be shown that when

the plane intersects the cone surface at a particular section. the intersecting line always makes

an angle equal to the cone's side angle.~.with the horizontal. where i is the corresponding

section: and hence a,,-.I =~. It can also be shown that the following relationships hold for

a six-faceted cone of any cone inclinations and sections:

~=tan30"
C,.

and

tana
--'~ =sin6O"
tanai

(6-,)

(6-'0)

where ct; and ct.. are the slopes of the centerline and edges of a facet at section i. respectively.

The distance C"" is equal to:
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where the subscript. n, is the highest section of the cone Ihe rubble reaches, and ho is equal

to zero. Substituting Equations 6.10 and 6.11 into Equation 6.9:

8 .(~.r ~)sin30"
.>1, tana.... L.... IJI-I tanex,.,

Thc height h.", can becalcuJaled from S~. a-and h. i.e.,

(6.12)

where m is the number of sections blocking the ice clearing. In the above equation, m cannot

be calculated a-priori; however, unless the height of the lowest cone. hI' is very small. for

all intents and purposes, the ice will only be blocked by the lowest section of the cone, i.e..

m = I. with h""equal to (Sabtan CX'l)' In lhiscase. ~can be calculated from the following

equatIon:

Combining Equation 6.14 and Equation 6.8 gives:
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I ( ,,~ , )
AI'( = - - - B,." lanet .I

2 tan41, •

Lelling A from Equation 6.5 equal to An in Equation 6.15. tin can be solved:

whl:rc 8,,,, is compUlcd from Equation 6.12:'

(6.15)

(6.16)

To campUie the value of 8 ob• Ihe highest !1tCction. n, which the rubble reaches must

he known. The value n can be obtained via trial and error method by assuming an arbitrary

n. and then the corresponding h". is calculated and compared with ho' the height of the

assumed section. Ifh,.,. is greater than hn, then the aclUal n is greater than the assumed value.

and a higher value for n must be assumed until hrf is smaller than the assumed hn ,

For an unlikely event that m is greater than 1. A..t. and hrf can be calculated from the

following gener.l1ized equations:

A '.!.[~.L ,,'(_I-~-'-)l (6-17)
,010 .2 lana..... ,-1m' 1 , tancx'J tanllu .1

··Provided the value of n is known. Equations 6.12 and 6.16 fonn a set of two
~imultan~ousequations with two unknowns. Bo and h,p Ba and hrf ean be solved by iterative
procedure by lelting the initial value of hrf equal h". A few iterations will give a converged value
ofh".
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II,., = [~.~.L ",(_1 1_)],,,,<1> (6-18)
(I - p) lana. "1... -1 'tana. tana r''''II' .'J dol

where h,,,, is computed from Equalion 6.13. and the trial value of h,r is computed via the

above trial and error method by assuming an arbilrary m (in an ascending order) for each

ussumcdnvulue.

6.3.2 Rubble Height at the Side of Cone, hI"

For the calculation of the characteristic rubble height at the side of the cone. h".

consider an imi.lginary venical axial plane of l>ymrnetry in the cone, 8-8. which inle~ects the

rubble at the side of the cone with a cross-section A,., as shown in Figure 6.11. Again. to

maintain a constant amount of ice ma.~s within the rubble system. the iJ.te ariee supply to the

rubble system must be equal to the rale of ice clearing through A,...

The cross-section, An' is depicted in Figure 6.12. The slope of the rubble is equal to

4>,. Again similar to Equalion 6.8:

Ii!

A" " 11';~, - A'>h

where A."" a function of h, hI" ex. and n, is given as lhe following:
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A ~.!. [~ . L 10' (-'- - _,_) I (6.20)
"b 2 lana,... ._1 ... _1' tana,., tana""1

where the subscript n dcnOies the highest section where the rubble reaches (see Figure 6.(2).

Substituting Equation 6.20 into Equalion 6. 19 leads to the following equation for A,,:

A ~.!.llo'l~--'-)-L Io'l-'---'_)]
" 2 '" tan¢l, tana,... ,1 ... -1' tana,~ tana'~'l

By substituting Equation 6.5 into Equation 6.21. h" can be solved:

(6.21)

11" =

~ ':E II~(_'_ I)
(I-p) ,01.llI'la0I1 -~, __,_

tan<l>, tana,...

(6.22)

To compute the highest section. n. of the cone which the rubble reaches. trial and

error procedure similar to those given in the preceding section can be used.

6.3.3 Derivalion of Generalized Equation for Maximum Rubble Height Along the

Front Facet Face. h....

Observations from modellests indicate that the rubble edge along the front facet is

nOlleve!. The rubble height profile is parabolic with the height decreasing from a maximum

value. h"". at the centerline of the front facet to ~ at the edge. This decrease can be
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attributed to the end effect during the fonnalion process of ::'lhrec:-dimensional rubble pile

from a finite line source with a constant output rate along it's length. In this Stttion. this

effect is explained and a simplification in regarding the rubble geometry is made in order to

arrive at a simple relation between h,. and h.". The implic:llion of this approximalion and ilS

correction are then addressed. Due to geometric complexity ofa multi-sloped cone. only the

~quations a...soc:iated with single sloped cones arc derived in this section.

The phenomenon of end effect due to dumping from a finite line source is illustrated

in Figure 6.13 for a simple two-dimensional ca.~. If there is no lateral restraint. a portion of

the dumped material at the two ends will slide down the heap to form a lateral slope: and

thus decrease its height at the two ends. Conceptually. the end effect can be illustrated by

replacing the heap formation with (WO step!\ process a... shown in Figure 6.14. The rubble

material is !1r.;t dumped within the two lateral wall restraints. and then. the lateral wall

rcstr..I.ints are released to :LIlow materials at both ends to collapse to form the laleral slopes.

The protile ofthc heap can be computed by letting are::. Al equal to area A:. Tbe length. w.

can be viewed as the portion of the line source which is subjected to the end effect. Figure

6.15 shows the dimension of a two-dimensional heap formed in front of a facet by the

process depicted in Rgure 6.14. As material is added to the heap. the length w will increase

with increase of B. hrf• and h.... Ifw is smaller tnan 0.5 w,. a trapezoidal profile is formed

\Vitn:

II' " 0.58
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and the maximum height:

(6.24)

as shown in Figure 6.15a. The maximum value ofw is limited to 0.5 w f• when a triangular

profile is formed, tfthe heap is allowed to grow funher. the dimensions B. h... and h.". will

increa.~e while w is k.ept constant. The maximum height:

(6·25)

as shown in Figure 6.15b.

To extend the analysis to a three-dimensional case analogous to the rubble formation

in front of a conical structure. the problem is simplified by assuming the geometry of the

rubbk in front of the conc to be identical to that formed by dumping materials in front of an

inclined plane. Figure 6. 16 shows half of the rubble mass formed in front ofa sloping plane

by a line source with the lateral movement of ice blocks remained. The right hand side is

the planc of symmctry through the centerline of the sloping plane. Figure 6.17 shows the

tinal shape of the rubble after the removal of lateral restraint on the left hand side. The

inclined planl: is selected in order to simplify the derivation. The plane intersects the rubble

over an area. part of which is a triangle. egj. with an area A,. (See Figure 6.17.) The

derivation is only for a single slope structure with the front facet wide enough such that w

170



is leS,!; than Y2 Wf'~ To further simplify the eompUiation.the curved free surface on the lateral

slope is approximated by a plane surface. The width, w. can be computcd by equating thc

volume. V~_, of the wedge abcdef in Figure 6.16 to the volume. Vp' of the pyramid abcj in

Figure 6. [7 and is given as:

8
IV -= 3' (6.26)

Band h"" are related to B I and hrf' respectively. by a simple proportionality of 1.5. i.e.:

(6-27)

and

(6.28)

Combining Equations 6.26 and 6.27:

(6·29)

These relationships. applicable to eases with w less than Y2 WI' are independent of C\l, and a.

To compute w using Equation 6.29, B I must be known. B ( can be estimated by a

method similar to those used in the previous section by considering the cross-section A~ in

~Forlhe size of the structures encountered in the field. w is generally less than Y2 Wf'
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Figure 6.17; and 8 1 is given as:

B'~"'[Si"·'(Si"~)]
1 (I - p)sincP, sina

(6-:10)

Despite a slight difference between the cross-section used in the derivation of the hrf in

Section 6.3.1 and the one used here. the h<fcomputed in Section6.3.1 can be used to estimate

h,.. via Equation 6.28. 1

In the above derivation. Vp i.e .. the volume abcj of Figure 6.17. is a.~sumed to be a

pyramid. Since the volume aocj is part of a right circular cone bisected by an inclined plane.

the surface acj is a curved surface and an exact solution should treat line aj as a circular arc.

as shown by a dOlled line in the figure. The approximate solutions of wand h"" always

under-estimate the exact values. and the error increases with increasing a.

To adjust for the error incurred by the assumption. consider the base of the lateral

portion of the rubble a.~ shown in Figures 6.18. The area A.l' i.e.. triangle abj. is the

appro.'timate base area of the lateral portion of the rubble deposited in from of the inclined

plane. whereas the area. AJ + A•. is the true base area. The values of AJ and A, are given in

the following relationships:

(6-31)

"For a rea.~onably deep cone. Le.. cone angle. a > 4S~' and rubble angle. <Il, = 3S~. the h"
derived from the vertical or the inclined reference planes are within 1% of each OIher.
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where.

nn , (.) (.)
A~ ~ ~ - '-sin -t cos -t

( '~$)a, = cos' l -----.::
lana

(6.32)

(6.33)

The exact values of wand h"" can be obtained by the following relationships:

(6·34)

(6·35)

For example. for the case of a cone with an angle ofaequa!lo 53° and a rubble with

slope equal to the angle of repose. 41, = 3Y. A land A. equal to 0.201r and O.083r.

respectively. and the ratio. (AJ+A.)/AJ = 1041. Therefore. the exact solution forw and h".

arc equal to 0.57B I and 1.887h,r. according to Equations 6.34 and 6.35. respectively.
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6.4 Validation or Ice Rubble Geometry Prediction Model

The predictions for h" and h... from the above model are compared to the

measurements wilh the two I:25 scale models tested in Ihe IMO's series. Only Ihose tested

with a velocity of 0.04 mls wereexamined.~ The large necked model was tested in 0.094 m,

0.123 mand 0.160 m thick ice. and the small necked model was tested inO.158 m thick ice.

with a lotal of four data points. The model predictions and the relevant measurements are

giv~n in Table 6.1. An example calculation is given in Appendix C. The angle of repose.

dl,. was about 35" estimaled from the video recording. This value is used in the model

pr~dictions. To use the equalion for h"". the structure is assumed to have an aveiJ.ge slope.

aM' of 49.8" and 56.9" for the small and the large necked models. respeclively. The

computed h... is only slightly sensitive 10 the 0.,,,,. i.e.. the h". is within 5% computed from

a",~ ranging from 40" 10 60". The computed w for all tests is less Ihan 0.5 W f• indicating a

trapezoidal rubble height profile along the front facet.

Despitc limited data used. the prcdictions from Ihc derived equations give excellent

agreement with the measurements from the selected tests with the difference between the

computed and the measured values for h" and h,.. being 2.6% and 1.2% (on the average).

r~spectively. It is expected that such agreemenl will hold for other faceted cone structures

provided thai the imeraction assumed in this work prevails.

~There was no discemable effect on ice force or ice dearing process due to ice velocity.
The rubble heights measured from the selected tests were considered represcOlative to Ihose
associated with tests conducted wilh different velocities.
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The model predicts thaI the rubble height at Ihe edge of Ihe front facel is lower than

the rubble height al the side of the cone. This prediction is consistenl wilh Ihe general

observations from model tesls in which Ihe rubble is forced to ride-up the side facet with its

height increasing gradually toward the side of the cone (see Figure 4.ld).

This model assumes Ihe rubble slope is governed by 41, of the rubble material. In the

case where the rubble angle. I, is smaller than 41, due to premature sliding failure of the

rubble. the actual I should be used. With the reduction of I. the rubble heights will be

reduced as shown in Figure 6.19.

There is no rubble accumulation for aeone with edge-on orientation since all ice will

slide along the side facet and clear around the cone continually. Foreones oriented between

the face-on and edge-on directions. the ice blocks can slide along the side facet or fall back

onto the on-coming ice sheet. The balance of these two tendencies governs the molions of

thc blocks. No consideration is given to this. and this model is valid for faceted cones with

face-on orientation only.
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Table 6.1 Comparison of predictions from Ih' "'w geomclry model and the
measurements from lMO's lests

Measuremenls Predictions

Test Model I w/w f h, h". h" h, h~
(m) (m) 1m) 1m) (m) (m)

MUNCONE3 1:255 0.158 0.43 0.49 0.68 0.48 0.36 0.67

MUNCONE5 1:25L 0.095 0.35 0.35 051 0.33 0.27 0.51

MUNCONE6 1:25L 0.124 0.41 0.37 0.57 0.36 0.30 0.58

MUNCONE4 1:25L 0.160 0.46 0.39 0.65 0.39 0.34 0.66

Common Paramelers:

~ -= ~

hI (m): 0.233 0.067

h: (m): 0.466 0.307

wr (m): 0.693 0.693

(Xl (0): 39.8 39.8

~(O): 63.4 63.4

lX,,, (0), 49.8 56.9

p (), 0.3 0.3

~. (0), 35 35

Note: I Subscript; I _ [ower cone, 2 - collar
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Figure 6.1 Ice breaking pattern showing the location of the accumulation and clearing
zones (arrows indicate direction of ice movement)

Figure 6.2 Ride-up pattern of ice generated from the accumulation and clearing zones
(arrows indicatc direction of ice movement)
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Figure 6.3 GeomelIy of a typical rubble showing the local ion of Ihe accumulation and
clearing zones (arrows indicate direclion of ice movement)

FIgure 6.4 Geomelry of a Iypical rubble at times II' 12 and I) as it grows in size (11 < ~
< IJ and arrows indicate direction of ice movement)
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Figure 6.5 Geometly of an idealized rubble surrounding a faceted cone (only the front
right quarter is shown)

Ice Supply x
Rate, 0.5 R,

Ice Clearing
Rate,O.5R,

Figure 6.6 Rubble system selected for mass balance calculation (arrows indicate
directions of ice movement and only the front right quarter is shown)
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'f'f'f'f'f'f'f'f'f'f'f,
(a) Front View

(b) Top View

Figure 6.7 Geometry of a rubble pile fanned by dropping ice blocks from a line
source. NOle: Half cones formed at Ihe IWO ends

Figure 6.8 Rubble geometry in front of an inclined plane formed by end dumping
from a line source
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Figure 6.9 Rubble system selected in the calcul:llion of h". (only the fronl right quarter
of the rubble is shown)
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h"

---------------j---......-~Section 3

Section 2

Section I

Ride-Up
Ice Wall

Figure 6.10 Geometry of An corresponding to the Cross-Section A-A as defined in
Figure 6.9: (a) front view; (b) top view
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A

yb"

....

....
Figure 6.11 Rubble system selected for lhe calculation of rubble height at the side of

the cone, hrs

Section 3

Figure 6.12 Cross-sectional view B-B as defined in Figure 6.11 showing the geometry
ofA.
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('J

(cJ

==

(b)

(d)

Figure 6.13 Formation of two-dimensional rubble pile from a line source: (a) to (e)
lateral slope fonned by depositing materials at both ends; (d) lateral slope
is not Formed due to lateral restraints at both ends

Figure 6.14 Rubble formation by two consecutive processes: (a) heap formation with
lateral restraints (no end effect); (b) lateral slope formation by releasing
the lateral restraints
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(b) w = 0.5 wr

«1---:---..' «-8-"

(a)w<O.5wr

Figure 6.15 Figure showing the dimensions of a two-dimensional heap formed by the
process depicted in Figure 6.14. when: (a) w < O.5wf , and (b) w = O.5wf
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Figure 6.16 Rubble mass formed in front of a sloping plane by a line source with
lateral movements of ice blocks restrainted

Figure 6.17 Final shape of the rubble with the lateral restraint on the left hand side
removed
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33 35

r= h",/tan~,

h",/tana

Figure 6.18 Ba.~ of the lateral portion of the rubble: coordinates a. b. and j
corresponding to those in Figure 6.17. and coordinate 0 is the vertical
projection (on to the base) of coordinate c in Figure 6.17

0.75 L- ----'

25 21 29 31

A..... Angie, , (0)

Figure 6. (9 Figure showing the decrease of rubble heights with the decrease of
rubble angle. Rubble heights have been non-dimensionalized with
heights computed at t = $, = 35° .
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Chapter 7 Discrete Element Analysis of Rubble

Loads on an Rigid Inclined Wall

Discrete element analysis (OEM) using the computer program DECICE has provided

a powerful simulation tool for complementing analytical and cx:perimcmal work. It is

particularly appropriate for cases in which contact behaviour between adjacent ice blocks

govern the mechanical properties orlhe ice rubble. The versatility of OEM in modelling ice

related problems has been demonstrated in a number of receAl works (Babic ct aJ. 1990:

Hopkins and Hibler, 1991; Hopkins, 1992: Evgin et aI. 1993: Loset. 1994a and 1994b:

Hopkins, 1995: Sepehrci ai, 1997: Sayed. 1997: Katsuragi et aI. 1997: Wanget aL 1997: and

Sayed and Timeo, 1998).

In the present study. the problem of rubble loads exerted on the faceted cone is tre.ned

as a two-dimensional problem using the DECICE2D, a two-dimensional version of the

di~crete element code DECICE. ' The numerical investigation has been divided into two

pan~. In part one. the geometries ofaone-dimensional compression (oedometer) test (Lambe

and Whitman. (979) and a simple gravity test were simulated toevaluate the internal friction

parameters for simulated ice rubble blocks. i.e.. the internal friction angle. ¢I. the

I The appropriateness of DEClCE in ice related problems has been demonstrated by the
author in his previous work. including modelling of rubble shear properties. ice force on a
moored buoy (McKenna et al. 1997). ice interactions on a bridge pier (lau. L994a), and jamming
of noes at bridge piers (Lau. 1994b).
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corresponding 'at-rest' eartn pressure c<>effidem. 1<". and tne angle of repose. 41,. Tile effects

of ice shape and friction were investigated. In part two. tne loads exerted on an unyielding

retaining wall and the base support by a rubble pile were addressed. Tne effect of rubble

height. rubble slope. wall inclination. and tile internal friction of the rubble were examined.

and a set of equations were formulated from the results of tne simulations. These equations

arc incorporated imo the ice force model presented in Chapter 8.

In this chapter the results of tile analysis are summarized. Section 7.1 describes

briclly the main features of the DECICE computer code. The results of studies on

simulations of rubble mass behaviour at the "at-rest" state arc presented in Section 7.2.

Section 7.3 summarizes the results of tile load computation for rubble at the same stress state.

from which an equation for the computation of 10tal wall thrust is derived and prescmed for

a variety of simulated ice and structure conditions. Equations for the other componems are

derived in Section 7.4. The equations are extended to walls with multiple slopes in Section

7.5: and finally,lhe application of the new formula for other loading conditions is discussed

in Sections 7.6.

7. t Main Features or the DEcrCE Computer Code

DECICE is a two-- and three-dimensional discrete element computer program for

solving complex solid mechanics problems involving multiple interacting bodies undergoing

fracturing. In this method. the problem domain is divided into discrete elements. Each

c1cmem is considered as a distinct body which interacts with. or disconnects from.
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neighbouring elements during loading. The movement ofeach block is governed by the laws

of motion due to unbalanced forces acting on the element. Elemenl~ may be rigid or

deformable. The deformability. frictional. and damping characteristics of the interfaces

between elements are represented by spring-slider-damper systems which are located at

contact points between elements. Prescribed force displacement relations for the spring

slider-damper system allow evaluation of normal and shear forces between elements. The

algorithmic detail of DEC ICE is described in the DEcrCE theoretical manual (Intern

Technology. Inc. 1986c).

DECrCE ha.~ been calibrated against a wide set of experimental and field results.

including ice ride-up and pile-up on artificial island side-slopes (Hocking et aI. 1985a).

dynamic impact of ice on an offshore structure {Hocking et al. 1985bl. ice ride-up and ice

ridge cone interaction (Hocking et al. 1985c). identification of ice properties (lntera

Technology. Inc.. 1986a). analysis of spray ice platform (Applied Mechanic. Inc.. 1985). and

ice ridging loads (Intera Technology. Inc.• 1986b).

Recently. the author (1994a) has performed an independent verification of DECICE

in ice force prediction and simulation. A series of six runs. which simulate the dynamics of

sheet ice interaction with a 60" conical bridge pier, were conducted using DECICE3D. a 3-D

version of DECrCE. The results were verified with model tests c3lTied out in the tank of the

Institute for Marine Dynamics (Spencer et ai, (993) and the available field observations

around Finnish Kemi I lighthouse in the Gulf of Bothnia (Hoikkanen. 1985; and Maattanen

and Hoikkanen. 1990). Figure 7.1 shows the imeraction of the ice blocks. the cone and the
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icc sheet from a typical DEGCE simulation of ice forces on a 6ff cone in ice. A plot of

predicted versus mea.~ured horizontal peak forces is shown in Figure 7.2. A close agreemem

~twecn the calculaled peak force values with the eltperimental measurements suggests that

DEGCE is a promising simulation tool for solving ice cone interaction problems.

7.2 Simulations or Rubble Mass at the "At-Rest" Condition

For a cohesion less ice rubble. the most important and commonly used

phenomenological descriptor to describe the mechanical behaviour of the rubble is its

internal friction angle. $. During a typical rubble piling. the rubble's free surface is at a state

of limit plastic equilibrium charJcterir.ed by the angle of repose. 41,: while. inside the rubble.

it is at clastic statecharJcterized by the later..u cocfficiem ofearth pressure at rest, K
Q

• These

two pammeters can be related to the internal friction angle of the rubble material in a loose

stale. $,~. and are essential to model the rubble behaviour; yet. measurernemsassociated with

icc rubble are not available.

The main objectives of this part of the analysis. using DECICE simulations. are to:

(i) Obtain the internal friction angle of the bulk rubble which is to be used in the

subsequem load simulations; and.

(ii) Verify the relationship between the internal friction angle. the lateral

coefficient of earth pressure at rest. and the angle of repose of the rubble

materials in the mnge of expected field conditions.
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Two series of simulations were conducted. In the ftrst series, rubble samples with

a wide range of ice piece a...pect ratio, AR, and ice friction. 11, were prepared and the at~rest

canh coefficient was computed via two test set-ups: (i) a simple grnvity test, and (ii) the

standard oedometer test. From the earth coefficient. the corresponding internal friction angle

was computed using laky's equation. In the second series. six rubble masses were allowed

[0 fonn in front of an inclined wall with a process analogous to the material dumping or

<lvalanche. a formation process similar to that taking place in a typical ice/cone interaction.

The natural angle of repose. $,. thus formed and the material's internal friction angle. $, were

l;ompared.

The main parameters common to each simulalion are summarized in Table 7.1. The

analySl:s were conducted a... two-dimensional (plane strain) problems using the explicit time

stepping solution scheme. In this study. the ice blocks were modelled by the simply

defonnable perfectly elastic solid element. The specimens were tested in a dry condition.

Funhennore. element cracking was not allowed. This condition was confinned during

selected preliminary runs, in which the stress within each element was sufficiently low and

element fr.lcture was not observed. The stress-strain relationship is linear elastic in each

clement with an elastic modulus ofO.2E7 N/m1 and a contact stiffness ofO.2Eg N/m1
• chosen

for computation efficiency. The effects of elastic modulus and contact stiffness on the K"

values were not examined: however, the these values are in line with the values used by

Sayed (1995) and Hopkins and Hibler (199 t) in their simulations of rubble shear propenies.
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the results of which compared well with experimental data.: For these simulations. the added

ma.~ses and moments of inertia were not included. The details of the simulations and the

results are given in the following sub-sections.

7.2.1 Generation of Rubble Ice Samples

Three scts of rubble samples with uniform piece sizes ranging from 0.16 m x 0.16 m.

O. 16 m x 0.32 m. and 0.16 m x 0.48 m. were prepared. These corresponded to the aspect

ralios. AR. of I: I. 1:2 and I:3, respectively. Each set consiSied of 3 samples with ice

friction. !-t, set at O. 0.2. and 0.4. The chosen values of ice friction. J.I. = 0.2 and 0.4, rellect

the range of values frequemly quoted for design purposes. The density of icc was 900 kglmJ•

The rubble samples were prepared via a natural dumping process as shown in Figure 7.3.

Firstly. a total of 475 pieces of randomly oricmed ice blocks with a prescribed piece size and

wntact friction were gener.ated by nonnal randomizing method within a rectangular area

formed by three frictionless rigid clements represeming two side-walls and a bottom plate.

The rectangular area had a height. h. approximately 3.5 times the width. b. of the base. After

thc random genemtion. the blocks were then allowed 10 fall and compact at the bottom of the

box by applying gmvitiltional acceleration 10 the elements. Vibration of ice blocks due to

inter-block collisions was damped by applying a 35% critical mass damping. A semi-

:Sayed (1995) used a spring constant ofO.265E7 N/m between rigid sphere resulting in an
ctTcctive elastic modulus of the bulk rubble of approximately 7 MPa wh..ich agreed well with the
experimental values reported by L0set and Sayed (1993).
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randomly packed form was created through the impacting of blocks on the boundaries and

between blocks. After compaction. the sample had a height to width ratio of approximately

:2 to I. The packing condition of the assembly was considered to be loose. and the cohesion

was set to zero. Figure 7.4 shows the final configuration of the rubble samples after the

initial compaction.

The initial void ratiO'. e
6

• of the bulk sample wa.s dependent on the ice friction a.s

shown in Figure 7.5. This reflects the fact that the inter-block sliding is easier for a lower

I:ontact friction resulting in a much denser configuration during natural deposition process.

7.2.2 Computations of the Coefficient of Lateral Earth Pressure at Rest. K~

Two methods of measuring the coefficient of lateioll earth pressure at-rest. K". i.e..

a simple gravity method and the oedometer test. were simulated.

Afler all the blocks had settled down. the forces acting on the bouom plate and the

side·walls were summed. Since no external load was applied to the rubble sample except

its own self-weight. it is dubbed "gravity method" Since there was no friction between the

ice blocks and the rigid boundaries. shear stresses upon venical and horizontal planes within

the rubble sample were not allowed to develop; and the principal axes coincided with the

horizontal or venical axis. the ratio of the principal stresses was equal to the coefficient of

'The void ratio_ eo'_ for two dimensional cases is defined as the ratio of the area of void to
Ihc arca of thc solid mass in an arbitrary cross-section. The void ratio for three-dimensional
I:ases can be estimated as 3.33e assuming the sample is made up of an assemblage of spheres.
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lateral stress at rest. Ko• By a.~suming a linear increase of stresses with depth from the top

surface'. the horizontal and vel1ical stresses, P"'h and p.,.., at the bouom surface of the sample

wcrccalculatcd:

. ,(P",)
P,,-~ - It (7-1)

(7-2)

whcre hand b arc the height and width of the sample. respectively; and P"'h and P"" are the

sum of thc normal forces exerted on the wall and the ba.'\e. respectively; and. thus. K..:

(7.3)

The geometry and variables used for Equations 7.1 to 7.3 are shown in Figure 7.6.

A summary of the coefficient of lateral earth pressure at rest. K.., estimated by this

method is given in Table 7.2. The internal friction angle for each sample as calculated from

~he assumption implied that the horizontal wall thrust, P",~, will act at il distance L,.
equal to 1/3 h from the bottom of the sample. To verify this assumption. the point of action ofP"'h
was computed for each simulation. For all cases. P"'h acted on the side wall within a distance
O.045h from the assumed point of action.
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K.. " 1 - sin¢l (7-4)

is also given in the table. The subscript I associated wilh the symbols K,. and (l refers 10 the

grJ.vitYlests.

A comparison of Ihe eanh pressure coefficiem al rest. K". and the associated aspect

rJtio of the ice pieces. AR. is given in Figure 7.7. The dala shows no discernible effeclS of

the ice pieces geometry on the eanh prcssure coefficicm. However. there is a significant

dependency of Ihe eanh pressurc coefficient at resi. K". on the conlact friction. Il. as shown

in Figure 7.8. The coefficient shows a higher sensilivilY to ice friction al the Iowcr friction

values.

Figure 7.9 shows the same set of data comparing the internal friction angle. ¢. and

lhe associaled ice friction. Il. Since lhe imernal friction is a combined function of ice block

interlocking and friclion. the values corresponding to zero ice friclion can be a measure of

the effect of the block inlerlocking. which contribute up 10 about 10 degrees 10 the imernal

friction angle. This angle is analogous to tbe effcclive roughness angle used in rock

mechanics to explain the higher apparent angle of friction due 10 visible roughness and other

surface irregularities <Patton. 1966; and Hoek and Bray. 1981). and can be referred to as thc

'In practical soil mechanics. laky's equation is an approximalion. The validilY of this
fonnula ha.~ been explored in Section 5.3.1.
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"interlocking angle'" Within the range of icc friction examined. the internal friction angle

is roughly equal to the arithmetic sum of this angle and the contact friction angle.

The above simulation is relatively simple to perform and the stress and strain

conditions arc similar to the field conditions studied. A more popular test, called oedometer

tcst. wa.~ also simulaled for comparison with Ihe gmvily test. In this test, stress is applied to

the sample along the vertical axis. while stmin in the horizontal direction is prevented. The

results of the oedometer test simulation are summarized in Table 7.3. In this table. the

subscript .2 associated with the symbols K" and til denotes the oedometer lests. Only the

samples with contact friction values of 0..2 and 0.4 were tesled. Figure 7.10 shows the

conligurJtion of the oedometer teSl simulation. In this case, gravily force was selto zero. and

a top plate wa.~ added to the problem setup. The rubble, initially in a loose condition. was

compressed one dimensionally in strain controlled manner giving no strdin in the lateral

direction. The top plate moved and compressed the sample wilh a velocityofO.4 mls. while

the forces on the side-walls. and the top and bottom plates were monitored conlinually. The

vertical velocity corresponded to axial strain rates ranging from O.04/s 10 0.07/s depending

on the height of each sample. Again. assuming a unifonn load distribution along the

sample's surface. Ihe P"'h' !lb.. K".l' and 4>1 can be computed at any instant during Ihe test.

Figure 7.11 shows an increase of the horizonlal stress with increasing vertical stress during

a typical test simulation.

Figure 7.11 exhibits densily-dependem assembly characteristics with a slight decrease

197



of K,,! with time. This decrease is a manifestation of increasing degree of interlocking as the

samples become denser upon compression. In order to compare the K" values obtained from

these tests to the gravity tests. the K...! value corresponding to the moment of first contact

between the top plate and the ice was estimated from the data points before comparison, i,e..

K" value at the same void ratio. A comparison of the values of K" and ¢I estimated from the

gravity tests and the oedometertests aregiven in Figures 7.12 and 7.13. respectively. Again.

the subscript I refers to the gravity tests and the subscript 2 denotes the oedometertests. The

ligures show good agreement between the values of 1<" and cjl from the oedometer and gravity

7.2.3 Angle of Repose: Tests

In this series of simulations. the number of ice blocks in each sample was increased

from 475 10 950 pieces to give a better surface profile for the angle of repose computations.

The simulations were performed on the three standard rubble samples. with ice friction equal

to 0.1 and 0.4. A tOlal of six runs were conducted. The samples were prepared with the

same method given in Se<:tion 7.2.1. After each rubble sample was prepared, the rigid side

wall at the right side of the box was changed into a movable element. which moved slowly

away from the rubble sample with. a velocity of 0.22 rnJs as shown in Figure 7.14. The

surface of the bottom plate had a coefficient of friction equal to 0,2. while the friction at the

wall was set to zero. lnitially. both sliding of the ice blocks at the boUom surface and the
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failure of the rubble surface occurred: however. the bottom sliding ceased at the lalter part

nf the simulation due to the frictional resistance at the bottom. and the final profile of the

rubble wa.~ detennined by slope failure. Damping of ice blocks is not necessary in this case

as the friction between ice blocks was sufficient to damp out the slight vibration induced by

the ice blocks rolling down the slope. Table 7.4 summarizes the results from this simulation

Figure 7.15 shows the configurations of the rubble at the end of each simulation run.

The profile of the natural angle varies significantly along the surface of the rubbledepending

on the local variations of ice block orientation and interlocking which affect the sliding

conditions of the surface ice along the free surface. Typically the surface slopt: <It the mid

hill section had lesser variation than those of the top and the bottom sections where the

slopes werc sub-critical. Thcrefore. the angle of repose. $,. wa." detennined by taking the

best fit of the slo~ profile at the mid-section only. In Figure 7.16. this angle is compared

with the rubblc's internal angle. $1' obtained from the gravity lest simulations. The angles

of repose are up to 4.50 smaller than the rubble's internal friction angles.

The above angle of repose was measured after the avalanche condition. The slightly

lower values of the angle of repose measured may be due to the specific avalanche condition

uscd. With the constant activity at the free surface due to the rolling down of the rubble

blocks. it is expected that the maximum angle will be somewhat lo.....er than the angle of

repose of the material.
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7.3 Development of Equations for Rubble Loads in 2-D

In this section a set of equations for rubble load computations, I.e.. the total thrust

force and its anglc ofattack, are presented for a variety of ice and structure conditions. Thesc

equations are fonnulated by:

(i) First. deducing the form of the principal equation and identifying the relevant

functions from examining the cxisting eanh pressure equations for various

loading geometries and conditions: and. then.

(ii) Performing a series of DECICE simulations, the analysis of which either

conlirms the selected relationship or gives a betler functional relationship

betwecn the total thrust force and the relevant variables identified in the

principal equation.

The equations provide the best fit to the DECICE results. and are applicable to acohesionless

rubble mass of various heights and internal frictions which is deposited in front of an

unyielding wall with single or multi-slopes. The rationale behind the selected form equation

and relevant functions is described in Section 7.3.1. The matrix. for the DEC ICE simulations

is described in Section 7.3.2; and a detailed analysis is in Sections 7.3.3 to 7.3.6. A general

equation for thrust force calculation is fonnulated and validated. In Section 7.3.7. empirical

equations to estimate the amount of friction mobilized at the wall are presented. If this

friction is known. the other components of the rubble load. acting on the wall and the

supporting ice sheet. can be computed from the wall thrust via a simple force balance

calculation. Finally. in Section 7.3.8. the results of the DECICE analysis are summarized.

200



7.3.1 Form of Earth Pressure Equalion and Relevanl Funclions

Research on the pressure exerted by a variety ofcohesionless granular materials. i.e..

loose sand. on a retaining wall has been a subject of concern to scientists over the last two

centuries. In all the various theories used in solving this problem. the expression for the total

thrust exerted on a wall takes the following common form:

where:

Yh = bulk den~ity of the granular material.

h = vertical height of the backfill.

17-5)

l). = angle of the inclination of the inner face of the wall measured from the horizontal

plane.

angle of the inclination of the free surface of the backfill in relation to the horizontal

plane. reckoned as negative above and as positive below this plane.6

o = angle of internal friction of the backfill.

$", = angle of wall friction. and

K = earth pressure coefficient function.

;.md the form of K(Ct,I.l!l.l!l..) depends on the loading geometry and the state of stress in the

"In this thesis t is defined as positive below the horizontal which is different from the
convention commonly used in soil mechanics.
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backfill. For example, Coulomb's equations for computing active thrust. P" and passive

resistance. p•. exerted on an inclined wall with a sloping backfill are given as (liu and Evett.

1987):

(7")

(7·7)

In addition. Rcimben and Reimbcn's (1974) empirical equations applicable to wall thrust.

when the backfill is on the verge of significant plastic deformation in active or passive

manners. arc given as:

p • ly ", (180" -2~)' (, _.2'..) (180" -• -~)
~ ! b ISO" ~ 241 180" 90" - ¢l

(7·8)

p .ly,,'l(180"-2~l'( 180"'2~)"I(,_.2'..)(~l(7")
I' ~ b 180" • 2¢l 180" - 2¢l 180" 90" - ¢l

where n in Equation 7.9 is equal to I in the case ofrotutional passive resistance and 2 in the
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ca...e oftranslalOry passive resistance.

As for the ·at·rest' state, there: is not yet a commonly acceptable general equation to

compule the wall throst applicable to inclined wall with sloping backfill, due to the lack of

studies in this area. Nevenheless. foc the case of a level cohesionless nocmally consolidated

fill behind a frictionless vcnicaJ unyielding walJ.the wall thrust can be calculated using the

following fonnula where the fill is assumed to be at the geostatic state:

The \'ariabks used in Equations 7.5 to 7.10 ace defined in Figure 7.17.7

Equation 7.5 is a good staning point for the present analysis, i.e. all previous soil

pressure equations are of this fonn. In this work.. Equation 7.5 is assumed, and the form of

K(a.1.9.41.. ) is deduced through a series of DECICE simulations.

Reimbert and Reimben's equations, i.e.• Equations 7.8 and 7.9, are particularly

rt:levant to the present investigation as their equations apply to loading conditions similar to

the present case, and were validated by extensive experimentation. 1lley are by far the

simplest. and provide acleardelineation of the effects of o.,t. 9, and Q.. on the K function.

Forexample, in Reimbenand Reimben's Equation, the K function takes the following form:

7Note that the direction of the thrust as defined in Coulomb's Equation and the Reimbert
and Rcimben's Equation ace different.
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K(ct.L.$.QlMJ "K(o::.l.<P) "K'($) (I -~)(~) (7-11)
"(Y' 9lY' - $

or th~ following gencmlized fonn:

(7-12)

The tirst term on the right hand side of Equation 7.12 is a function of cjl only, the fonn of

which depends on the particular mess slate oflhe backfill. (The corresponding functions for

other stress states are given in Section 5.3.1.) The second term is a function of I only which

accounts for the effect of backfill inclination. The third term is a function ora and ¢I, which

accounts fortheeffect of wall inclination. The 1a.~1 term isequaJ to I indicating no influence

of o~ on the K function.

Rcimbcrt and Reimbcn' s K function serves a." a logical slarting point for the analysis

of the DECICE results. Since the rubble is deposited in front of an unyielding wall. the

rubble is expected to be at the 'at rest" state. Therefore, K'(t!l) is assumed to be a function

of III in the form of 'l-s;ncll' via Jiky's equation. i.e.,

K!(~) "(l • sin~) (7.'1)

The theoretical and ex.perimental validities of Equation 7.13 for cases with vertical

frictionless wall and level fill have been shown in previous sections. II is also hypothesized
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that the Rcimbert and Rcimbert's (1974)coefficiem funclionscorresponding to K", K'" and

K"" for the effects of rubble inclination, wall indinalion and wall friclion are also valid for

the 'at rest' state under investigated. since Ihe 'al rest' slale is located in between the two

states~ Reimbert and Reimbert siudied, i.e..

K'hl" II 2\)- I8(y.

KIII(Cl.¢l),,(~)
90" - ~

Kf/l/(¢l,) ~ I

(7·14)

(7·IS)

(7.16)

These assumptions lead 10 the following general equation for the thrust applicable 10 an

inclined wall with a sloping backfill:

P "..!.Y1l 2(l -Sin¢ll(I-~)(18O"-Cl-¢l)
" 2 ~ 180" 90" - ¢l (7.17)

For the case of a vertical wall, i.e.. a =90". Equation 7.17 is reduced 10 the following form:

~Description of these two states is given in their paper (Reimbert and Reimbert. [974).
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(7.18)

The wall friction, 41... affects the lotal wall thrust. Po. through the amount of friction

actually mobilized at the wall surface. This mobilized wall friction is called 'effective wall

friction', denoted as ¢I' ... in this thesis. (t was anticipated that the relationship between Q... and

¢I'", and hence between P ~ and ¢l w' would take a complicated form as the relationship was

expected 10 not only depend on the geometry but also on the history of the loading. Various

functional relationships derived between total wall thrust and wall frictionean testify to thai.

Forexamplc. Reimben and Reimben'sexperiments( 1974) showed thallhe wall friction. 41...

had no effect on the magnitude oflhe walllhrust: while OIlters. i.e.. Equations 7.6 and 7.7.

give various functional relationships. Limited computational resources prevented an in-

depth derivation ofK""; however. the DEC ICE analysis shows lhat K"" is approximately

e4uailO I ~uggesting that the wall friction has negligible influence on the tolal wall thrust.

7.3.2 Oyer-view or DECICE Simulations and AlUllyses

Equation 7.5 suggests that a dife1:1 proportionality exists belween tne tOlal thrust

force. Po" and the height squared. h1
• of the fill. This proportionality is independent oflhe

carth pressure coefficient funclion. K. Before a comprehensive investigation of the K

function. a number of DECICE simulalions were condUCled to verify this dependency.
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Validation of this proportionality ensured the scalability" ofthe DECICE results to other

heights. After that. the four variables. t. Cl. ~ and ~... were systematically varied. and their

effects on the earth pressure coefficient function. K. and hence the t()(aI wall thrust were

examined and delineated. The range of variations for each parameter is given in Table 7.5.

with I at 1.0.75 and 0.5 times the base value ofns. (l from 9fl't045"., at 14.2" and 33.2".

and ~... set at 0". 11.3" and 21.S". The ice friction angle at the base of the rubble. ~. was set

to 11.3". The bulk weight density/unit width. 'lb' of the material varied from 6807 N/mJ to

6950 N/m~ (with an aver,lge of 6887 N/m:) depending on the height of rubble sample. The

mass density/unit width. y. of the material used was 8829 kglm:. These ranges were

c:){~cted to c:ncompass the ice and structure conditions encountered in the field.

The test configuration and sample geometry for each test conducted in this series art

given in Figure 7.18. In the DECICE analysis. the condition with the non-displacing

boundary is analogous to the at-rest earth pressure condition in the field. A t()(al of 48 runs

were conducted. Foreach test configuration. the forccsexerterl on the wall and the base were

computed. The results art summarized in Table 7.6. The variables art defined in Figure

7.19.

The linear dependencies of total wall thrust. Po. on h:. and the assumed K" art

validated in Sections 7.3.3 and 7.3.4. respectively; whereas. the validities of Equations 7.18

and 7.(7 in thrust force predictions art assessed in Sections 7.3.5 and 7.3.6. Table 7.7 lists

"Scalability also implies repeatability. i.e.. repeatability of data in different scales.
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the computed values of differem functions or functional groups used in the analyses

conducted in those sections.

7.3.3 Validation or Linear Dependency of Thrust Forc:e on Rubble Height Squared.

h'

To validate the linear dependency of the thrust force on hl
• three base cases with

different combinations of$" and a were selected for DEcrCE simulation. i.e.. a = 90" and

9..,= 0". a = 90" and $... = 11.3", and a = 45° and 41... = 21.8": and the height of the rubble. h.

for each case was then systematically reduced by 1/3 and 213 times while keeping the other

parameters conslant. The rubble angle, 1, and the internal friction angle. $. are kept at 22.5"

and 24.2" respectively for all cases. A total of nine simulation runs were conducted. and the

results arc summarized in Table 7.8. In the table, P" is the value for the total waJl thrust in

the DEC ICE simulation. and P".I\&.l.1 is the scale-up value ofPocolTesponding to h =4.8 m

llsing the scaling ratios, (h1h •.i and (YJY~.u). The second factor was applied to reduce the

variation due to varying weight density between cases. If applying this scale-up factor to

each simulated wall thrust produces the same thrust as the simulation with h = 4.8 m. this

would tend 10 confirm hl dependency for the thrust. This is confirmed by the presem

simulations. The scaled-up values of the thrust. P".Ilo-l.I' all lie within 2.5% of the simulated

values at h =4.8 m for each set.
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7.3.4 Valldalion of Linear Dependency ofThrust Force on the Function, I - ~
'w

To validate the linear dependency ofthetOlal wallthrusl, Po, on the assumed K", Le.,

I - ~ . a correlation analysis was performed on all DECICE simulations to establish

the degree or correlation between Pol and K". for conslant a, $. and $.... Since hand Yb

dirfered fromeusc to case. the K" was multiplied by Ybhl before comparison toeliminale the

variation due to hand Yb' The y-interceptoflhe unknown regression line wa.~ assumed to be

zero. i.e.,

P" • m l y, h' l' 1\)j
- 180" ]7.19)

where m is the slope. With this assumption, the number of degrees of freedom. df, can be

t<lken as (n- \), since there exist only one independent relationship involving the n pairs of

v<lluesofP"and yII 1 tl - ~J .This allows the correlation coefficient to be compuled

for a dala set with as few as two data points.

Table 7.9 summarizes the resuhs of the correlalion analysis. The test matrix has been

given in Section 7.3.1. Data witn same ct, $, and til.. are grouped together resulling into 18

possible data sets. In Ihe lable, tne coefficient of determination. r. the correlation

coefficient. r. and the degrees of freedom. df. ofeach test set are summarized. The minimum

values of r required 10 establish tne confidence level of90%. 95% and 99% for a given df are
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also listed. III If the computed r value is above the required minimum value, it can be

concluded with the corresponding confidence level that a linear relationship exists between

the examined variable pair. Po and Yb III II -~) .The table shows the two variables

were highly correlated with all r values being higherlhanO.937. All data sets with more than

three data pairs. i.e .. df ~ 2. has r values exceeding 99% confidence level. The data set with

only two data pairs. i.e.. df = I. gives a lower confidence level. the uncertainty of which is

a direct result of the small number of data pairs used; however, all of them are either close

to or exceed the 90% confidence level. It can be concluded with a high degree of confidence

that linear correlation exists between the Po' K" variable pair.

7.3.5 Validity of Equallon ',l8for Vertical Walls

In this section. the validity of Equation 7.18 for wallthrusl computation associated

with vertical walls is assessed. The results from DECrCE simulation runs conducted with

a frictionless vertical wall and a backtill with a value oft set at I. 0.75, and 0.5, times the

base value of 22,50 were selected for analysis. The 41 was 24.20 and 33.2" which correspond

to the ice contact coefficient of friction, J1. of 0.2 and 0.4, respectively. In addition, the

simulation runs with wall friction angle, 41..., equal to 11.30 and 21.80 were also analysed.

This was to examine the sensitivity of the above equation to wall friction.

lI'The 95% confidence indicates there is only a 5% chance of having r as large as those in
the table when no correlation exists. In order to conclude at a given confidence level that the
correlalion does exist. the calculated r should exceed the tabulated value of r.
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The parameters for the base cases and their variations associated with this task ~

listed in Table 7.10. (Please refer toTable 7.6 for the details of the individual tests ;md Table

7.7 for the computed values used in this analysis.) Figure 7.20 gives the comparisons of the

total wall thrusts computed by Equation 7.18 and the simulated values for the three values

ofQ~.. The data shows a remarkable agreement between the values computed from Equation

7.18 and the values obtained from the simulations. Linear regression conducted on the three

individual sets of data give thc following results:

and

p...,m : 1.025P"..,,,,,,':

,!~O.996

,~·0.992

for the three ¢... values of0". 11.3" and 21.8"'. respectively.

The data shows a slight dependency of thc measured P" on the wall friction angle

with a decrease of thrust by 3.7% to 8.5% (on average). when the wall friclion angle

increases from (J' to 11.3" and 21.8~, respectively.

It is concluded that Equation 7.18 is valid for the thrust computation for a venical

wall and a rubble with varying \ and~. Wall friction slightly d«reascs the measured P~; and
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hence the prediction slightly errs on Ihe conservative side by omitting the effect of wall

friction. The effect of wall friction will further be explored in Section 7.3.7.

7.3.6 Validity of Equation 7.•7 ror Inclined Walls

Existing earth pressure theories suggest a significant effect of the wall inclinationon

the thrust exerted upon a retaining wall by the earthfill. For example. for a granular till. with

an internal friction angle. ell:: 25~. inclined at its angle of repose. i.e.. t :: ell:: 25". the

Coulomb equation (Equation 7.6) predicts an increase of IIIrust by 67% when a smooth wall

I.:hangcs it's incline from 90" t045~; while Reimbert and Reimbcrt's equation (Equation 7.8)

gives a 69% increase for Ihe same change.

In lhis section. the analysis is extended to examine the effects of wall angle on the

lOlal wall thrust. and Ille validity of Equalion 7.17 for inclined wall is assessed. Four base

l.:a.'\Cs with a combination of t :: 22S and 17.3" and ¢ :: 24.2" and 33.2~ were selecled and

tested with Cl values 90". 75", 60" and 45~. The simulations were conducled with 41.. :: 11.3"

and 21.8". The runs related to tllis series are listed in Table 7.11. Again. please refer 10

Tables 7.7 for the computation results.

Figure 7.21 gives a comparison of the Po computed from Equation 7.17 and the

corresponding simulated walllhrust. The figure clearly shows a substantial over-estimation

of lhe walllhrust by Equation 7.17. The over-estimation increases with Ihe increased

deviation of wall angle from the vertical. For example. Equation 7.17 overestimates the

thrust by 23% . 20%. and 29% when the wall angle changes from 90" to 75" 10 60" to 45",
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n::spcctivdy.

Despite the discrepancy. the general trend predicted by Equation 7.17 is consistent

with the results from the DECICE simulations in which the thrust decrea.~es with the increase

of the wall angle. and the rate of deerease is larger for a larger rubble angle. as shown in

Figure 7.21. Therefore, the fonn of the assumed K'" wa.~ retained but modified to fit the test

data. It was found by trial that the following function agreed well with the data:

K'" (a.~) '" (180" - a - 2~) ~
90" - 2~

This gives the following general equation for the thrust:

(7-20)

Figure 7.13 shows a comparison of the P" computed from Equation 7.21 and the

corresponding thrust on the wall in the simulation for the two values of ell... Linear regression

conducted on the two individual sets of data gave the following results:

,::=0.973

and
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forthe ell. values of II.3"and 21.8". respecti,,·ely. Equation 7.21 only slightly over-cstimales

lhe simulated values in the: order of 7% with a r value better ttun 0.965 for the two values

of Q..-. Again. the overeslimalion can be attribuled to the omission of !he efftel of wall

friclion on P~.

7.3.7 Derivation of E"edlve Wall Friction••'.

The angle of wall friclion is oflen assumed to be a material property but this

ilssumption is incorrect. It depends upon Ihe direction of movement. the amount of

movement and the properties of the material. Moreover. it may also vary along the wall.

Hence it is a response and nOI a property.

During tr.tnsportation of the rubble ice up the cone facclS. the rubble lends to shde

down duc to it's own weight. Ekcause of friction between Ihe rubble and !he ride-up icc.lhe

tendency is to cau...e a downward friclional force on the ride-up. The magnitude of this forer

is limited by the (riclion angle. 9... belween the rubble and the ride-up ice. For icc. ~.

typically ha.... a value ranging from 1\.3~ to 21.8". and is frrquenlly quoled toward the lower

end.

When the relative rTJ()(ioo between the rubble and the ride-up is not sufficient to fully

mobilize the available frictional resistance at the interface. the amount of friction mobilized

is indetenninate. However. the effective wall friction angle. $'~. can be computed

empirically from the data by considering force equilibrium at the interface. and is given by
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the following equation:

(7-22)

The angle. $ ..... together with the wall inclination. n, determines the direction of the

thrust exerted on the wall. In order to maintain equilibrium condition, the thrust always acL<o

upon the wall atan angle:

(7-23)

measured from the horizontal plane. In order to accuroltely predict the direction of the thrust,

and hence its horizontal and vertical components, this $'.. must be known.

Figures 7.24 and 7.25 show the ¢l .... computed from Equation 7.22 as a function of

a for$w equal to 11.3" and 21.8", respectively. The data set includes tests with 1 = 22.5" and

17.3". and $ = 24.2" and 33.2". The data show a definite dependency of$ .... on the a. and $....

while the trends with other parameters were of lesser significance. Comparing the two

ligures. the value of$'wis substamiaHy higher with the higher value of $... for the same cone

angle. Despite a large scatter in data, the trends are linear with the following two equations

litling the data with a between 6ft' to 90":

$:. "-0.2561« ~ 24.758:
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for 41.. = 11.3". and

4>~, " - 0.3407« +- 39.339; ,! " 0.842 (7·25)

for 41.. = 21.8". respectively; and the value of4l· ... is always smaller than or equal to the value

of 41".

in Figures 7.24 and 7.25. the broken lines correspond to 41' .. = 41.... which is the

limiting value corresponding to the conclition of full friction mobilisation at the wall.

Equations 7.24 and 7.25 predict that such conditions would occur when a < 53Q for 41... =

11.3" and a. < 44" for ¢l... = 21.8" • respectively. Since wall indination of most offshore

stmcturcs are designed within the range of40" to 60". as a rule-of-thumb the wall friction will

be fully or almost fully mobilized at the wall for the commonly quoted coefficient of ice

friction between 0.2 to 0.4. i.e.. the friction mobilized on the wall for Il =0.2 and 0.4 is 83%

and 80% of wall friction. respectively. for a = 60". It should be noted that although the

frictional resistance is exhausted at the wall. the frictional resistance at the rubble's bottom

face may still be sufficient to hold the mbble in static equilibrium,

When the frictional resistance at both the wall and the supporting ice sheet are fully

mobilized. i.e.. ¢l .... = ¢l... and 41'" =~. the rubble starts to slide down the slope. These

conditions are reached for two simulations. i.e.. Runs Rl2W2_2 and R 12W3_2. Figure 7.26

is a snap-shot of Run R12WL2 showing the whole mbble mass sliding down along the wall

and the supporting ice surfaces.
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7.3.8 Summary or the Fonnulae Derived rrom Best FitofDECICE Data

Based on the DECICE simulations. a simple expression was formulated to calculate

Ihe thrust exerted on an unyielding wall, from a knowledge of the ice and structural

paramele~:

p ",..!..y h~ (I - sin4l) (I _~) (180" - a: - 241 ) 1 (7.26)
" 2 1> 180" 90" - 241

with P" making an angle:

(7.27)

from the horizontal. where the effective wall friction angle. $'.. , is the angle of friction

mobilised at the wall. This effective wall friction angle was found to be a function of the

wall inclination. ex, and the wall friction angle. $.. , with Ihe following empirical relationships:

41~. '" - 0.2561a: .. 24.758

for ¢.. = I 1.32": and

4<. '" - 0.3407« ~ 39.339

for $.. = :?1.8". respectively. The $'.. is always smallerthan or equal to ell....

(7·28)

(7·29)

The equalion is similar to the universal formula proposed by Reimben and Reimben.
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i.e., Equ.:ations 7.8 and 7.9. Thecodficient for maximum thrust, (!!2:..:.1!f . is replaced
110"·2.

by thecoeflicient at rest, K,. = (I -c», of the granular material, which reflects (he appropriate

al resl stress condition in Iht: ice rubblt:. Theeot:fficient, 1 -.; ,suggeSiedbyReimbt:rt

and Reimbert (1974jto account for the effects of backfill's inclinations for the maximum

active and the minimum pas$ivc stale is found to be applicable to the 'at reSl' Slate of stress

as well. However, Reimbert and Reimbert'scoefficient, .!.!!:....:.... ,for the effect of wall....
inclination significantly overestimates the simulated thrust on the wall, specially for a small

wall angle. Instead, a coefficient function. (~)~ ,is found to give a much beucr
'10" ~o

agreement wilh the DEC ICE simulation.

7.4 Load Components Distributed on the Wall and the Supporting Ice Sheet

The weight of the ice rubble is partly supported by the ride-up ice and partly by the

supporting ice sheet. The horizontal and \'ertical components of the thruSl exerted on the

ride-up icc are given by the following equations:

I, (" ) (ISO" - a: - "41) 1 ,p.~ = -Y"/,-(1 - sin¢l) I - -:- - 'cos(9O"-(a:-¢l...» (7.30)
2 ISO" 90" -241

I, ('I )(ISO" - Cl - "41) 1 ,p.... =-Ybll-et - sin¢ll I - ~ - }sin(90"-(a-41...» (7·31)
2 180" 90" - 241

The horizontal and vertical forces exerted on the sUPlXlrting ice sheet can be

computed through a considcl'::ltion of simple force equilibrium as shown in Figure 7.27: and
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are given as the following:

(7.32)

(7-33)

while W, is the weight of the rubble computed from its known geometry and bulk density.

The contact friction mobilized at the bottom surface of the rubble is equal to:

(7·34)

and is limited to 4l~. the friclion angle at the supporting ice surface.

Table 7.12 summarizes a result of least squares fit ofcomputed force components to

corresponding simulated values for the cases with the three wall friction angles. respectively.

The ;malysis shows good overall agreement for the force components.

7.5 Application of the New Formula for Walls with Multiple Slopes

Equations 7.30 and 7.31 can be generalized and applied to walls with multiple slope

angles. Forexample. for a multi-sloped wall retaining a rubble. as illustrated in Figure 7.28.

the pressure. p. at a depth hdmeasured from the maximum height of the rubble is given by:

219



p -:: Y"Ii}1 - 5io4» (1 . ~) (180" ~ « - 2~) 4 (7.35)
180" 90" - 2~

and the thrust for an arbitrary section. i:

P, ~ ~_lYh(1I/,} _ h,})(l _ sin<l» (I _~) (180" - at - 2$) + (7.36)
, 180" 90" - 2$

where hi.• and h"" are the venicaJ distance of the top and bottom level of an arbilrary section

i measured from the maximum height of the rubble.

The IOlal horizontal and vertical forces exerted on the wall are. therefore:

where k is the number of sections covered by the rubble. The effective friction angle for

section i. ¢I'...,. is calcuhltcd from Equations 7.24 or 7.25. and is less than or equal to the wall

friclion angle ell",.,.

The weight of the rubble per unit width is given as:
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IV .'!'y lh' l.-!..- - -'---) -L h'l-'--- -_1_) j
r 2 I> r lam tumxl ,,1.,\·1' lana; tana"l (7~39)

wh~rc h, is the rubble height. h, is the height of section i. and k. is the highest section the

rubble reaches.

For example. for the retaining wall and back.fiIl of Figure 7.29. simple geometric

l'onsidcrution gives the base lengths. hi' b~. and bJ equal 10 4.8562. [. and 0.57735 m

respectively, with the total cross-sectional area of the rubble equal to 8.2842 m! and the

weight of the rubble equal to 58909 N/m. With $. = 1l,3"common rcreach section. ¢I'_is

obtained from Equalion 7.24 as 1.7",9.4", and 11.3" fOrlhe upper. the middle and the lower

'iC"ctions. respectively. Substituting $'.. for the respective section into Equations 7.37 and

7.38. P~~and P..,are computed as 10923 and 11384 N/m. respectively. Finally, the normal

force. PltI , and the frictional resislance. P", acting on lhe ba£e are computed from Equations

7,32 and 7.33 as 10923 N/m and 48596 N/m. respectively.

An example calculation for Tesl MUNCONEJ is given in Appendix C.

7.6 Applicalion or the New Formula ror Olher Loading Conditions

Two other loading conditions are of interest 10 designers. The firsl is associated with

the basal sliding at the rubble/ice interfaces. and the second one associated with bearing

failure of the supporting ice sheet. Both conditions may Limit the maximum slope and height

that a rubble can altain. and hence. limit the maximum load that a rubble can exert on the
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structure. In this section, application of the new model formula 10 the aforementioned cases

is briefly described.

7.6.1 Maximum Slope of Rubble with Basal Sliding at the Rubblellce Interfaces

When rubble is pushed up a sloping plane. the free surface slope of the rubble is

limited by one or the two failure criteria: slope instability and bu...al sliding as described in

Chapter 5. The first criterion limits the rubble angle to the material's angle of repose;

whereas. the second criterion prevents further ride-up of the rubble mass onto the slope.

And. hence. the second criterion further limils the maximum angle that the rubble can altain.

If the surface slope momentarily increases beyond this limiting value.lhe whole rubble will

slide down the sloping plane to seek for the limited equilibrium state exhibited by Runs

R12W2_2 and R12W3_2 conducted in the previous section.

The equations presenled in Section 7.3 can also be applied to the limiting equilibrium

state on the onset of this basal sliding. In this case. the value of slope angle.l. is unknown

which is to be determined by back calculation using the known frictional resistance at both

the wall and the supporting ice sheet. i.e.. ¢I' ... =: ¢I... and ~'b=: ¢I.,. It is expected thai the angle.

l. will be a function of wall angle. imemal friction angle. and icc friction at the interfaces.

The corresponding thrust. P
G

• is the maximum load that can be exerted on the slructure.
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7.6.2 Maximum Rubb5e Height Limited by Bearing Failure or lhe Supporting Ice

Sheet

The supporting ice sheet may fail before the full developmen! of the ice rubble. which

limits the amoUn! of ice piled up in from of the cone, and the size of the rubble is no longer

determined by the m:l.'>S balance requirement but is rather limited by the strength of the

supporting ice sheet. This type of bearing failure was observed in a number of tests

conducted in (ME's series when the ice sheets were weak and thin. In this c:l.'>e.lhe height

of the rubble. h. is unknown. The h can be determined by back calculation using the

equations derived in Section 7.3 with the known bearing resistance. i.e.. P"" calculated from

hearing analysis of thc underlying ice sheet. Again. the corresponding thrust. Po, is the

maximum load that can be exerted on the structure.
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Table 7.1 DECICE parameters for the simulations of rubble mass at the "ai-rest"
condition

Solution Scheme

Time Slep Length

Constilutive Model

Element - Ice Blocks

Element - Walls, Top and Base Plales

Ice Elastic Modulus (Pa)

Inter-Element Stiffness (Pa)

Icc Density (kglml
)

Poison Ratio

Gravity

Two-dimensional plain-slrain explicit
time·slepping algorilhm

Program generated default value

Perfectly elastic

Simply deformable solid

Rigid

O.2E7

O.2E8

900

0.3

No gravity for Ihe oedometer tests. and I·
g for all the other tests

224



Table 7.2 Summary of the coefficient of lateral eanh pressure at rest. K...l' estimated by
gravity method

Test I (:) I (~) I ~ I ~N) I ~N) I(~i:n) I(~~m) I K...l I i~)
Set 1: PieceSize=0.16mxO.16m

PI I 5.20 2.75 0 92271 107361 17744 39042 0.909 5.2
PI2 5.50 2.75 0.2 63361 107361 11520 39040 0.590 24.2
PI3 5.80 2.75 0.4 51257 (07361 8837 39040 0.453 33.2

Set 2: Piece Size - 0.16m x 0.32 m

P"I 7.30 3.89 a 163410 214721 22385 55198 0.811 10.9
P22 7.60 3.89 0.2 117610 214721 15475 55198 0.561 26.1
P2) 8.10 3.89 0.4 106891 214721 13196 55198 0.478 31.5

Set 3: Piece Size =0.16m x 0.48 m
P31 8.70 4.80 0 250528 322082 28796 67100 0.858 8.1
P32 9.60 4.80 0.2 184705 322082 38480 67100 0.573 25.2
P33 10.10 4.80 0.4 139972 322082 13859 67100 0.413 35.9
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Tllhk 7.3 SUlllmary of the I;odfieientuf lateral earth prc.ssure lit rcst. K...!. measured from thc oedulllctcr ICSlS

T,,, IS''''PI;""I h I b I I p.. I p. I t'.. I 1'. I K", I ~,
rXlrapollitc

Values at
Pomt (m) (m) ~ (N) (N) (N/ml (N/ml I"' P :ON

Set I: Pil..'CcSizc=O.16mxO.16m

QI2
I" 5.44

2.751 0.2
44861 38983 8242 14176 0.581 24.7 K".l '" 0.593

2 5.32 114702 105361 21.544 38313 0..562 26.0 Illll = 24,0"

QIJ
I" 5.69

1.7.51 0.4
27460 31695 4823 11526 0.419 35.6 K".l = 0.419

2" 5.57 SOl37 101877 14377 37046 0.388 37.7 141, =34.5"
Sci 2: Piece Size - 0.16 m x 0.32 m

Q22 ," 7.84
3.891 0.2

55657 50969 7095 13103 0.542 27.3 K<>.l:=0.566
2 7.68 140712 142019 18329 36509 0.502 29.9 - 25.7"

Q23 ," 8.13
3.891 0.4

2889 3006 355 773 0.460 32.7 K".l = 0.460
2" 7.97 67232 72075 8440 18528 0.456 33.0 ~ -32.7"

Sct3: PieceSizc=O.16Il\xO.48m

Q31
I" 9.41

4.80 I 0.2
80011 15039 8502 15633 0.544 27.1 K~.l. 0.593

9.21 192033 185920 20850 38n3 0.538 17.5 It, -26.9"

Q33
I" 10.16

4.80 I 0.4
319 252 21 53 0.406 36.4 K•.l",O.407

2 9.96 35892 43992 3604 9165 0.393 37.4 '" 36.4u

Nute: Forces Measured on the two side walls are within 0.46% of each olher; whereas. those measured on the top lmd bottom
plales are wilhin 1.1 %. The values given are the average values.
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Table 7.4 Summary of the angle of repose. $,. estimaled from the rubble's natural slope
after slope failure

Test I I ~, I i~ I ~/~,
(.) (N)

Set I: Piece Size -0.16 m:ll: 0.16 m

S12 0.2 24 24.2 0.99
SI3 0.4 31 33.2 0.93

Set 2: Piece Size =0.16 m)C. 0.32 m

522 0.2 25 26.1 0.%

523 0.4 27 31.5 0.86

Set 3: Piece Size _ 0.16 m)C. 0.48 m

S32 0.2 22 25.2 0.87

S33 0.4 32 35.9 0.89

T~ble 7.5 Matri:ll: of DECICE simulations oflhe thrust e:ll:erted upon a relaining wall by
eohesionless granular malerials al "ai-rest" state of siress

Parameters

Height of Rubble. h (m)

Rubble Angle. I e)
Wall Angle. a (~)

Internal Friction Angle of Rubble. $ (")

Friction Angle at Wall. $... (")

Friclion Angle al Base. ~ (0)

Number of Tests
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Variation

from L6 to 4.8

22.5.17.3.11.7

45. 60. 75. 90

24.2.33.2

0,11.3.21.8

11.3
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Table 7.6 Summary of DECICE simulalions oflhe throsl ex.erted upon a retaining wall
by cohesionless granular materials al "ai-rest" slate of stress

Test h b a ,
~ Y.

p...b =
p- p. p. a,

(m) (m) rJ (') (~ (N/m~)
p~

(N) (N) (N) (")
(N)

Set I: $... =0"
RI2 , 4.1l0 11.59 90 22.5 24.2 6940 35139 0 193019 35139 0.0

Rl2A , 3.20 7.73 90 22.5 24.2 683' [5355 0 84530 15355 0.0

RI2B , 1.60 3.86 90 22.5 24.2 6876 3805 0 2[249 3805 0.0
R13_1 4.80 11.59 90 22.5 33.2 6940 27603 0 193019 27603 0.0

R2Ll 3.60 11.59 90 17.3 24.2 6892 21365 0 143747 21365 0.0

R23 , 3.60 11.59 90 17.3 33.2 6892 17485 0 143748 17485 0.0

Rn_l 2AO 11.59 90 11.7 24.2 6826 10360 0 94926 10360 0.0

R33_1 2AO 1l.S9 90 11.7 33.2 6826 8638 0 94926 8638 0.0

Set 2: ~. = 11.3'
R12_2 ·uo 1l.S9 90 22.5 24.2 6940 33227 ''''' 191418 33265 2.8

Rl2A 2 3.20 7.73 90 22.5 24.2 6837 1+«J7 271 84239 14410 l.l

RUB 2 1.60 3 .. 90 22.5 24.2 6873 3644 40. 20833 3666 6A

RI32 aD 11.59 90 22.5 33.2 6940 27364 554 192466 27369 1.2

R222 3.60 11.59 90 17.3 24.2 6892 20417 '3S 143209 20425 1.S

R232 3.'" 1l.S9 90 17.3 33.2 6892 17039 154 142993 [7056 2.5

R32_2 2AO 11.59 90 11.7 24.2 6826 9728 1139 93787 9794 6.7

RJ3_2 2AO 11.59 90 11.7 33.2 6826 11277 766 94'''' 8312 '.3
R12WI_2 4.80 10.30 15 22.5 24.2 69SO J0967 12927 158917 33557 22.7

RI2W22 4.110 8.82 '" 22.5 24.2 Slidin Failure

RI2W32 4.80 6.79 4S 22.5 24.2 Slidin Failure

R13WI 2 4.80 10030 15 22.5 33.2 69SO 27091 8435 163408 28374 17.3

R13W22 .uO 8.82 60 22.5 33.2 69" 24685 21594 l2Soo5 32797 41.2

R13W3_2 ..UO 6.79 4S 22.5 33.2 ,." 19294 28940 83074 34782 56.3

R22Wl 2 3.49 10.30 15 17.3 24.2 68.. 18075 6333 117670 19152 19.3

R22W22 3.3-l 8.82 60 17.3 24.2 '''4 16428 13160 87687 21049 38.7

R22W3 '2 3Jl6 6.79 4S 17.3 24.2 6807 10097 15015 55663 "094 56.l

R23WI 2 3.49 10.30 15 17.3 33.2 68.. 16102 6092 117911 17216 20.7

R23W2 '2 3.34 8.82 60 17.3 33.2 6854 16153 12396 811452 20361 37.5

R'23\V3 '2 3.06 '''' 4S 17.3 33.2 6807 l0lOO 14111 6567 17405
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Table 7.6 Summary of DECrCE simulations ofthe thrust exened upon a retaining wall
by cohesionless granular materials at "at-rest" stale of stress (cont'd)

h b a l 9 Y.
P"'h= p.... p~ p. ..TeSI p.

(m) (m)

" "
f) (N/m!)

IN)
(N) (N) (N) (')

Set 3: ¢l = 21.80

RI23 4.80 11.59 90 22.5 24.2 6940 31030 6246 [86773 31652 11.4

RI33 4.80 11.59 90 22.5 33.2 6940 25700 4180 18900C 26038 9.2

R22 3 3.60 11.59 90 17.3 24.2 6892 19304 3117 1406 19554 9.2

R23 3 3.60 11.59 90 17.3 33.2 6892 16150 2412 141335 16329 8.5

R323 2.40 11.59 90 11.7 24.2 6826 9701 1619 93307 9836 9.5

R33 3 2.40 11.59 90 11.7 33.2 6826 7862 1479 93447 8000 10.7

RI2Wl3 4.80 10.30 7S 22.5 24.2 6950 29983 16540 155309 34243 28.9

RI2W23 4.80 8.82 60 22.5 24.2 6929 23407 28376 118235 36784 50.5

R12W33 4.80 6.79 45 22.5 24.2 6926 15109 33568 69264 38612 65.8

RI2W3A 3 3.20 4.53 45 22.5 24.2 6733 6651 14826 33927 16250 65.8

RI2W3B 3 1.60 2.26 45 22.5 24.2 6892 1628 3622 8853 3971 65.8

R13WI3 4.80 10.30 7S 22.5 33.2 6950 24595 13315 158525 27%8 28.4

RI3W23 4.80 8.82 60 22.5 33.2 6904 22900 27100 11900( 35480 49.8

RI3W33 4.80 6.79 45 22.5 33.2 6926 15269 34946 77883 38136 66.4

R22WI3 3.49 10.30 7S 17.3 24.2 6896 17336 7716 116287 18976 24.0

R21W13 3.34 8.82 60 17.3 24.2 6854 13908 16660 84188 21702 50.1

R22W33 3.06 6.79 45 17.3 24.2 6807 8277 18077 52600 19882 65.4

R23WI3 3.49 10.30 7S 17.3 33.2 6896 14833 7468 116535 16606 26.7

R23W23 3.34 8.82 60 17.3 33.2 6854 13274 15130 85711 20128 48.1

R23W33 3.06 6.19 45 17.3 33.2 6807 8389 17035 53642 18989 63.8
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Table 7.7 Computed values for DECICE Analyses conducted in Sections 7.3.310 7.3.6

Pn........" y!'h1(l-2t1180")
p.,.., Pn.pm/ p...pm/

Test
(N) (N)

(EQ.7.18) (EQ.7.17) (EQ.7.21)
(N) N) (N)

Sel I: • _fJ'

RI2 I 35139 119928 35383 35383 35383
R12A I 15355 52523 Not Comnuted

RI28 I 3805 13202 Not Comnuted

RI3 I 27603 119928 27130 27130 27130
R22 I 21365 72188 21298 21298 21298
R23 1 17485 72188 16330 16330 16330

R321 10360 34208 10093 10093 10093
R331 8638 34208 7739 7739 7739

Se12: 41.. - 1l.3°

RI22 33265 119928 35383 35383 35383

RI2A 2 14410 52510 Not Comouted

RI282 3666 13197 Not Comouted

RI32 27369 119928 27130 27130 27130

R222 20425 72188 21298 21298 21298

R2J 2 17056 72188 16330 16330 16330

R322 9794 34208 10093 10093 10093
R332 8312 34208 7739 7739 7739

R12Wl2 33557 120102 43513 35435 39265

RI2W22 Slidine: Failure
RI2W32 Slidine: Failure
RI3WI2 28374 120102 34344 27169 32011

RI3W22 32797 119716 41386 27082 35598
R13W32 34782 118813 48172 26878 38359

R22WI2 19152 67927 24610 20041 22207

R22W22 21049 61713 26509 18208 21821

R22W3_2 18094 51489 25581 15191 19397

R23W12 17216 67927 19424 15366 18105

R23W22 20361 61713 21334 13961 18351

R23W32 17405 51489 20876 11648 16623
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Table 7.7 Computed values forDECICE Analyses conducted in Sections 7.3.3 to 7.3.6
(cont'd)

p~.m<:l' Ybh~(1-2tJI80")
po.pr«I p~.pmI po.pMl

Test (N) (N)
(EQ.7.18) (EQ.7.17) (EQ.7.21)

N N N

Set 3: $ = 21.80

R123 31652 119928 35383 35383 35383

RJ3 3 26038 120028 27153 27153 27153

R223 19554 72188 21298 21298 21298

R233 16329 72188 16330 16330 16330

R31 3 9836 34208 10093 10093 10093

R333 8000 34208 7739 7739 7739

R12Wl3 34243 120105 43514 35436 39266
R12W2_3 36784 119726 51429 35324 42332

RI2W33 36812 109073 54189 32181 41090

RJ1W3A 3 16250 25855 NotComOUled

RllW3B 3 3971 6616 Not Comouted

RI3WI3 27968 120099 34343 27168 32010
RI3W13 35480 119309 41145 26990 35477

R13W33 38136 119676 48522 27073 38637

R11Wl3 18976 67917 24610 10041 11207

R11W23 21701 61713 26509 18208 11821
R22W33 19882 51489 25581 15191 19397

R23WI3 16606 67927 19424 15366 18105

R23W23 20128 61713 21334 13961 18351

R23W33 18989 51489 10876 11648 16623
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Table 7.8 Results of simulation runs to validate the direct proportionality between Ihe
rubble height squared. h~. and the tOlal wall thrust. Pn (I =22.5n and $= 24.2n

for all cases)

Test
I

h I(N~~1) I p. I(hIh••)' I(1J1....) I'PiN), IPJP",~.1m) (N)

Set I: a=9O"and$... =0"

RI2 I 4.8 6940 35139 1.000 1.000 ]51]9 1.000

RI2A I 3.2 6838 15355 0.444 0.985 35066 0.998

RI2B_I 1.6 6876 3805 0.111 0.991 34758 0.989

Setl: a=9O"and$... = IUn

Rl2 2 4.8 6940 33265 1.000 1.000 33265 1.000
Rl2A 2 3.2 6874 14410 0.444 0.990 32734 0.984

RI28 2 1.6 6950 3666 0.111 1.001 32945 0.990

Set3: a-45"and41 -21.8"

RI2W 3 4.8 6926 36812 1.000 1.000 36812 1.000
RI2W3A 3 3.2 6733 16249 0.444 0.972 37608 1.022

Rl2W3B 3 1.6 6892 3971 0.111 0.995 35915 0.976
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T<lble 7.9 Results of the correlation analysis of the Po - K" data pairs

~. df 90% 95% 99%

1.000 1.000 0.729 0.811 0.917

14.1 11.3 1.000 1.000 0.729 0.811 0.917

11.8 0.997 0.999 0.900 0.950 0.990
90

0.995 0.997 0.900 0.950 0.990

33.2 11.3 0.998 0.999 0.900 0.950 0.990

11.8 0.997 0.998 0.900 0.950 0.990

11.3 1.000 1.000 0.988 0.997 1.000
24.2

21.8 1.000 1.000 0.988 0.997 1.000
75

11.3 0.983 0.992 0.988 0.997 1.000
33.2

21.8 0.993 0.996 0.988 0.997 1.000

11.3 NA (too few samples)
14.2

0.878 I 0.937 I 0.988 I 0.9972\.8 I 1.000
60

11.3 0.948 0.974 0.988 0.997 1.000
33.2

0.979 I 0.989 I 0.988 I 0.99721.8 I 1.000

11.3 NA (too few samples)
24.2 I 0.805 I 0.878 I 0.95921.8 0.986 0.993 3

.5
I 0.988 I 0997 I 1.00011.3 0.964 0.982 I

33.2 I 0.988 I 0.997 I 1.00021.8 0.969 0.985 I

Note; I. Number of sample pairs. n = df +1. where df is the number of degrees of
freedom, Minimum values for 90%. 95% and 99% confidence level are taken from
Fisher and Yates (1970).
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Table 7.J 0 Base cases and their variations selected to assess the validity of Equation 7.18
for vertical walls

Base Parameters
Test Run (Base Test Run

Case) (Variation)

<i>n <i>. (') l=22.5 (Q) l:::17.3(D) l= 1L3 (")

24.2 RI2 I R22 I R32_1

33.2 RI3 I R23 I R3LI

24.2 !L3 RIL2 R2L2 R3L2

33.2 1L3 R13_2 R23_2 R332

24.2 21.8 R12_3 R22 3 R32_3

33.2 21.8 R13_3 R23_3 R333
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Table 7.11 B;l.'>c cases selected to a..;ses~ the validity of Equmion 7.17 for inclined walls

Test Run Base Panuneters

Basc Case h(m) l(U) .n •. n
RI2 ): 4.8 22.5 24.2 11.3

RI3 2 4.8 22.5 33.2 11.3

R22_2 3.6 17.3 24.2 11.3

RD 2 3.6 17.3 33.2 11.3

RI23 4.8 22.5 24.2 21.8

RI3_3 4.8 22.5 33.2 11.8

R22_3 3.6 17.3 24.2 21.8

R233 3.6 17.3 33.2 21.8

~otc: For the base case. C1 = 90": the wall angle of each case was varied from 90" to 75u to
60" to 45" with the runs ~aring the extension WI, Wl. and W3 respeclively.
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Table 7.12 Least squares fit of force components computed from Equalions 7.31. 7.32.
and 7.34. to values obtained directly from simulation runs assuming 41w equal
toO".II.3°and22S

Least Squares Fit (Pp«d ::= m P"""I)

Force Component <1>.(") ~

0.989 0.997

po. IU 1.062 0.961

22.5 1.093 0.973

11.3 0.969 0.%8
P"

22.5 1.042 0.982

1.000 1.000

p. 11.3 0.999 0.999

22.5 0.995 0.999
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Figure 7.1 Figure showing the interaction of ice blocks. cone and ice sheet from a
typical DEcrCE simulation (after Lau. 1994a)

increase ..
Measured Horizontal Force

Figure 7.2 Simulated versus measured horizontal peak forces for a 60 degrees cone in
level ice (after loiu. 1994a) (Axis scaling is not given due 10 data
propriety)
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(a) (b) (e)

Figure 7.3 Snap-shots showing generation process of rubble samp:rple: (a) random
generation of ice blocks; (b) free falling of ice blocks; ;; and (e) final
configuration of rubble sample

(,j (b) (e)

Figure 7.4 Final configuration of rubble samples after initial conu::npaction: ice piece
size: (a)O.16mxO.16m; (b)O.16mxO.32m; and 0 {c)O.16mxO.48m
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Figure 7.5 Comparison of initial void ratio. e". and the associated contact friction. ~.

with aspect ratios. AR = I. 2 and 3

Figure 7.6
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Figure 7.7 Comparison of earth pressure coefficient at~rest. K".l' and the associated
aspect ratio. AR, for contact friction, j.l = O. 0.2 and 0.4: gravity method

,~AR.l, II

0.9 -o-AR:2'

08 .. AR=3 !

07 ", ~~ I

'::I'~04 t
I

03

0.1 0.2 0.3 0.4

Figure 7.8 Comparison of earth pressure coefficient at rest. K",I' and the associated
contact friction. Il. for aspect ratio. AR = 1,2 and 3: gravity method
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Figure 7.9 Comparison of inlemal friction angle. 411' and [he associated COniact

friction,}1. for aspect ratio. AR = 1,2 and 3: gravity melhod

Bottom Plate

Figure 7.10 Configuration of oedometer leslS: side and bottom plates fixed while the
top plate moves downward at V = 0.4 mls
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Figure 7.11 Figure showing the increase of horizontal stress, P...~, with the increase of
vertical stress, Pb•• in a typical simulated oedometer test (Run Q 12)
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Figure 7.12 Comparison of the at-rest eanh pressure coefficient, ~, in simulated

oedometer tests and the corresponding coefficient. «".1' estimated from
gravity test simulations
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b,

Figure 7.13 Comparison of the imemal friction angle, $~. estimated from oedometer
tesl simulations and the corresponding inlemal friclion angle. 411' from
grJ.vity test simulations

l[J
i l

I: I I·

i~1 ,

~lli II i~.,~ [
, I; !1
c ' ~'::.-' --"-J

'b' '0'
Figure 7.[4 Snap shots efRuo 512 at (a) t = Os. (b) t = 15.3 s and (el t =30.65

showing a typical angle of repose tests
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Figure 7.1Sa Final configurllion of rubbles in the angle ofreposc: tests: (i) Test 512;
(ii) Tcst.SI3; and (iii) Tcst.S22
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Figure 7.1Sb Final configun,tioo OfNbbies in the angle ofreposc: tests: (iv) Test S2J;
(v) T... 532; ODd (vi) T... 533
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Figure 7.16 Comparison aCme anile of repose•.,. and the associated internal friction
angle••1' obtained from gravily test simulations

(.) (b)

Figure 7.17 Definition of variaba commonly used in various eanh equations: (a)
Coulomb's equation; and (b) Reimbert and Reimben's equation. (The
direction of tOW wall thnw u defined in Coulomb's equation and
Reimbert and RmJbcn.·scquation are diaaent.)
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IS: 'Il r

Figure 7.18 Test configuration and sample aeomeuy for each test simulation
conducted for the thrust equation Cannulation. The results are given in
Table 7.6.
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y -b_
Figure 7.19 Definition ofvariables used iD Table 7.6
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Figure 7.20 Comparison oCthe predictions from Equation 7.18 and the total thrust
measured on the wall for the three values of wall friction, +.. ·00, t 1.3°,
and 21.8". in DECIeE simulations

248



f"2;4.2"t=-22.5'
f'33.2"t"'-22.5'
~2"t:L17.3"

~~~",:,!!~~-

6E+4
+.""1.315E+4
+.. =21.8

'"! 'E" ..
~ 3E+4

~
.... ..

J
2E+4 ,-

£ lE+4

OE" '----------'
OE+O lE+4 2E+.4 3E+4 4E+4 5E+4 6E+4

Simulated Total Wal Thrust, Po....ul{N)

Figure 7.21 Comparison of me predictions from Equation 7.17 and the total thrust
measured on the wall for the two values of wall friction.Ijl ..... 11.3° and
21.8°, in the DECICE simulations
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Figure 7.26 Snap-shot of Run R12W3_2 showing the whole rubble mass sliding down
along the wall and the supporting ice surfaces.
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Figure 7.27 Force equilibrium of the rubble body

Figure 7.28 Figure ofa rubble retained by a multi-sloped wall showing the wall thnJst
and the wall angle ofeach section
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Part III Ice Force Model

Chapter 8 Development ofa New Ice Force Model

In Chapter 6. a new rubble geometry prediction model was fannulated from mass

balance and interaction geomelry considerations. With the geometry of the rubble known,

the forces imposed by the rubble on the ride-up ice and the supponing ice sheet can then be

compUlcd via the set of equations derived in Chapter 7. These forces. interacting with the

ride-up ice and the supponing ice sheet. affect the magnitude of loads acting on the conc.

While the estimation of the load imposed by the ride-up ice is rather simple. the

breaking behaviour of ice under the complex geometry imposed by both the rubble and the

ride-up ice is complex. Many models have been constructed 10 predict ice forces on cone for

the cases where there is no rubble buildup. In Ihis chapter. those models are examined, and

a ba.~c model is selecled to model the breaking behaviour of intact ice. The new rubble

model is then incorporaled into lhe base model to compule lhe peak ice load exerted on the

cone due to the passage of a combined ice sheet/rubble system.

In Seclion 8.1 the base model is selected from four representative models. The

primary criterion for selection is the degree of simplicily and accuracy. The adaptation of

the rubble model to the base model is presented in Section 8.2; while. in Section 8.3 the new

ice force model is validated by the experimental results presented in Pan I of this thesis.
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8.1 Selection or Base Model ror Modelling or Ice Breakinl Behaviour or Intact Ice

In Section 8.1.1 the experimental data and Ihe analytical models used for comparison

are briefly described. All data and models are for smoolh cones only. In Seclion 8.1.2. a

method to adapt the 2-D model to 3-D cases is presented. This melhod is incorporated into

the Croasdale's model to give a bener representation of the 3-D nature of ice load. In Section

8.1.3. accuracy of the existing mathematical models is assessed and discussed.

8,1.1 Experimental Data and Ice Forte Models ror Smooth Cones, with Ride.Up Ice,

But No Rubble

The data set utilizes data from ten test programs done worldwide on smooth conical

structures wilh a total of 226 data points (Afanas'ev et aI. 1971. Verity. 1975; Edwards el

al. 1975: Edwards and Croasdale. 1976; Manders and Abdelnour. 1978; Hirayama and

Akarnatsu, 1982; Wessels, 1984: Sodhi et ai, 1985; Lauet al. 1988: and lzumiyamaet aI.

1991). The test condition of each program is summarized in Table 8.1. These data

t:ncornpa.<;s most of the data available during the last 25 years which have been widely cited

in the open literature. All tests were conducted in model basins where the unifonnlty of ice

properties was highly controlled, and the ice properties and load data were well documented.

Three widely used analyticaIlmathematicai models for smooth cones were chosen as

possible candidates for the base model. They are:

(i) Nevel's elasticity model (1992);

(ii) Ralston's plasticity model (1977); and

255



(iii) Croasdale's 3-D model (1980) with in-plane force adjustment (Croasdale et

011,1994).

In addition. Croasdale's model was modified to give a better representation of the 3-D

geometry of ice loading. The modified model is referred to as 'Lau-Croasdale' model in the

rest of the section. The modification is described in Section 8.1.2.

These models are representative of the existing major model treatments of ice forces

on conical structures. The models and their panicular modelling features have been reviewed

in Chapter 2.

Ralston's model allows computation of failure load due to two types of failure

criteria, i.e.. Johansen and Tresca failure criteria. In this work, the Johansen failure criterion

was assumed. I

For Nevel's model, the computer program supplied by Nevel (1992) was used.

Nevel's computer program provides calculations for a combination of selected interaction

conditions including: sequential or simultaneous ice breaking, inclusion or exclusion of ice

pieces on neck seclion, and active or passive ice actions, with a total of8 possible interaction

scenarios. Computations for each assumed scenario is given elsewhere (Lau, 1999). In the

present comparison, ice load for each individual test was computed for all 8 scenarios and

then averaged to give the model prediction for that test.

lin the present test sets, computation using Tresca failure criterion gives an overall 12.5%
higher force values in both the horizontal and the vertical directions than that computed using the
Johansen failure criterion.
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8.1.2 3·0 Modification orCroasdale's Model

Croasdale's (1980) provided a method 10 adapi his 2-D model 10 a 340 case, i.e..

narrow structures, by considering lhe length of circumferential cracks 10 ex.tend beyond the

structures. For example, in Croasdale's model, the total horizonlal and vertical forces. HTOT

and VTOT' exerted on the front half of the smooth cone can be expressed in the following

simplified form:

(8·1)

(8.2)

wh..:re F~ is the resolulion factor for a sloping plane,~. as defined in Equation 2.2: ~ is Ihe

total length of the circumferenlial crack; W IU is the lotal weight of ride-up ice; and V'b is the

effective breaking load per unit width of ice beam under combined bending and in-plane

compression. As noted already. the concern here is only wilh a single layer of ice. of

thickness, I. riding up the front half of the cone with no rubble accumulation on top of the

kc layer or ice sheet. 4:, WIU and V'b are expressed as follows:

( n'l)Lc "DI·
4
;"
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(V I') ,V; 2 0.680; T .

(8-4)

(8.S)

where y the weight density of ice; y". the weight density of water; E. the elastic modulus of

icc: t. the ice thickness: D. the waterline width of the struclUre; Ct. the inclination angle;

z. the free-board; [<.the characteristic length of ice; and cr' f is the effective OeltumJ strength

of the ice beam under combined bending and in-plane compression. The method to compute

cr',. is given by Croasdale et a1 (1994) and is further discussed in Section 8.2.7.

It has been shown in Chapler 4 that the 3-D distribution of ice loads is important.

particularly in a larger scale. and F; in Equation 8.1 should be approximately equal to (211'[><;

(see Section 4.4. [1, By assuming F~ is equal to G,. Croasdale's model tends to overestimate

the horizontal force component. Furthermore, while the equations for l.c and WN are derived

considering a sloping plane, Iheir application to conical struclUres omits of the 3-D nalure

of icc load distribution caused by Ihe cone's curvature.

The following method is proposed by the present aUlhor to adapt Croasdale's 2-D

model to a 3-D case. which gives a beUer representalion of the 3-D nature of ice loading on
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the cone. The method considers the direction of ice force distribution around the cone

surface, and gives a bener estimation of WNand l...c. It first compules and integrates the

distributed ice lorces along the front perimeter of the cone to give the net vertical loads, and

then calculales the net horizonlal force by the appropriate resolution factor for a )·0 case.

i.e, (211t)~.

For modelling purposes. only the loads on the front half of the cone are considered,

and full coverage of ride-up ice on this half oflhe cone is assumed as shown in Figure 8.1.

The total weight of ride-up ice. WN' is given in the following expression:

(8.6)

where 0 and O~ are the waterline and neck. diameters of the cone. respectively.

The breaking foree is computed by considering simultaneous failure of a series of

wedge beams along the cone's front perimeter (see Figure 8.1). Each beam has a breaking

length. Lv derived from the theory of semi-infinite elastic beam on elastic foundalion

(Hetenyi. 1946), i.e"

(8·7)

The distance of the circumferential crack to lhe centre of the cone is equal to (012 + (1t/4)lc)

and the tOlallength of the circumferential crock,~, is given as follows:
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(8.8)

With the W", and lc given in Equiltions 8.6 and 8.8, the vertical load on each wedge beam

is computed via Croasdale's 2-D model. i.e., Equation 8.2. and then summed up to give the

net vertical breaking load. VTOT:

,(y,I') i (0 ",.) (0"0) ( : )Vwr = 0.680, - ':t," - .. 'It -- ~ r y
E _ 4 4 sma

(8·9)

Since that the vertical load. VTOT' is uniformly distributed along the front half of the cone.

the horizontal load. HTOT• is related to VTOT' by SlD (see Seclion 4.4.1). i.e.,

(8-10)

The adjustment for the effect orin-plane compression on 0'(can be performed for each beam

in the same manner as suggested by Croasdale et al (1994) (see Section 8.2.7),

8.1.3 Result or Model Assessment

Figure 8.2 compares the predicted horizontal force. F,.pmI. computed from Lau-

Croasdalc's model to the horizontal mean peak force. F,~.... measured from each lest in the

data sets listed in Section 8.1.1, and the comparison for [he venical force is shown in Figure
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8.3. Comparisons for the Croasdale's model. the Nevel's model, and the Ralston's model

are shown in Figures 8.4 to 8.9. Table 8.2 summarizes the average and standard deviation

ufthe predicted to measured mean peak force ratio, Fpm/F0><»' associated with each test data

set. The data are ploued in Figures 8.10 and 8.11 for two respective directions. 801h the

Nevel's and the Ralston's models give very high estimates of the horizontal forces measured

for the 80" cone model in the Hir:tyama et ai's tests (Series #3), i.e., 13.8 and 12.8 times the

measured values, respectively; hence, the statistics were computed without the

corresponding runs. Figure 8.12 gives the overall average Fpm/F........, ratio for each ice force

model. and the associated statistics are summarized in Table 8.3.1

Ralston's model over-estimates ice loads by 41 % in both the horizontal and venical

directions and is eliminated from further consider.ltion. This over-prediction is a

consequence of the plasticity modelling (see Section 2.2.1.3).

Croasdale's and Nevel's models predict welt the ice force in the vertical direction

with overprediction by merely 4% and 6 %, respectively: however, these models over-

estimate the horizontal ice force by 37% and 12%. respectively. The over-prediction of ice

force in the horizontal direction by the Croasdale's model is due to the 2-D treatment of load

distribution: whereas, the source of over-prediction for the Nevel's model is uncertain.

Overall, Lau-Croasdale's model gives the best agreement with test data for both the

horizontal and the vertical loads with an average Fpm/F"""'" value of 0.92 and 1.0 I for the

lThe values given in Table 8.3 is the arithmetic mean of the statistics calculated for each
tcst set as given in Table 8.2. This gives equal weighting for each test set.
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respectivc directions. The 8% discrepancy between the predicted and the measured

horizontal force values is mainly comributed by the discrepancy between the measured and

prcdicted resolution factors associated with tests with smaller ratio of watcrline diameter to

icc characteristic length. when the measured resolution factor diverges from the assumed

value of (2!J't)'; and moves toward'; a... the ratio decreases (See Figure 4.12).

All the models deal with forces from the ice shcct and ridc·up ice, not considering

the forces due to rubble. Based on the above assessment, Lau·Croasdale's model is sele<:ted

as the basis for further model formulation to include the effect of rubble.

8.2 Formulation of Ice Force Model with Rubble at a Faceted Cone

The problem of ice rubble loading on cones is essemiaUy a three-dimensional

problem. Any satisfactory treatmem of the problem would have to accoum for the three·

dimensional nature oftlle interaction as in the previous section. However. a complete three·

dimensional treatment of the problem would lead to complexities too difficult for analysis.

Instead. a pseudo-three-dimensional treatment of the intemetion was performed by

recognizing the two-dimensional nature of the interaction geometry associated with

individual facet. This treatment results in a set of simple equations which can be easily

incorporated imo a probabilistic methodology.

In this model. only the front half of the cone is considered. and the loading on each

facet is treated two-dimensionally. The horizontal and venicaJ forces in the plane

perpendicular to each facet are tirst computed using a two-dimensional model. These forces
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are then transformed into their X and Z Cartesian components using the appropriate

resolution factors and summed up veclorially to give the net force on the cone.

Section 8.2.1 describes the general features and assumptions of the interaelion

systc:m. 1 he coordinate system and geomelry of the problem arc described in Section 8.2.2.

The basic governing equations 10 transform the interactive forces on a particular facet inlo

components acting along the principal axes directions are given in Section 8.2.3. Section

8.2.4 describes the various force components to be considered in the model. followed by

detailed derivalions of each component in Sections 8.2.5 and 8.2.6. Section 8.2.7 describes

the compUiational procedure 10 adjust for Ihe effecl of in-plane compression on failure load.

8.2.1 General Features and Simplineations of the leeoStrueture Interadion

The interaction processes under investigation arc quite complex. resulting from Ihe

complex interaction geometry existing between the rubble. the ride-up ice and the structure.

Simplifications were adopted to generate fairly realistic representations of a range of ice

structure interaction conditions while at the same time providing computational simplicity.

The general features and the simplifications of the interaction system with regard 10 Ihe ice

breaking pattern. the rubble and ride-up ice geomelries and weights. and the load distribution

and failure of ice sheet are described in the following section.

8.2.1.1 Characteristic Ice Breaking Pattern

The characteristic ice crack patterns are depicted schematically in Figure 8.13. Two
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radial cracks make an angle. ea' extending outward from the comers of a facet fonning a

cantilever beam with the width. d",. slightly wider than the structure. The do< is related to B,..

and the broken beam length. 4. by the following relationship:

(8.'1)

where W f is the width of facet at waterline. In the present model. the values ore« is assumed

10 be 30". and the 4. can be computed from the empirical equation derived in Section 4.2.2.

i.e .. Equation 4.5. or from field measurements. As depicted in Figure 8.13. the same value

of ice breaking width. d",. is assumed for broken wedge in front of the three facets.

The broken ice pieces riding up the central facet are trapezoidal in shape. This train

of ride-up icc results in an ice wall with an aVCl""Jge width. wtu.<:' being:

(8-12)

As these icc picces eventually contribute to the ice supply to the rubble. wtu.<: should be used

10 calculate the rubble geometry as the width of the central zone. i.e.. by simply replacing WI

with w"'"" in the equations given in Chapter 6.

8.2.1.2 Heights, Width. and Weights of Rubble in Front of the Front Fa«t

At the front facet. the rubble increases in height from the two edges reaching a

maximum value at the centerline. In order to compute total tmust on the facct using the
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equations derived in Chapter 7. an average height and width of the rubble in front of the front

facet, i.e.. h," and w,,,,, must be estimated. h,,,, is given by the following equation:

(8-13)

where hn is the rubble heighl at the edge of the front facet; hrm is the maximum rubble height

at the front facet; w is the width computed from Equation 6.34 (see Section 6.3.3), and w,,,:

is the width of the rubble. w,": is equal to wru",' which can be computed via Equation 8.12.

The total weight of the rubble, W,,,:, in front of the front facet is given as:

where '(~ is the bulk weight density of the rubble; ¢I. the rubble inclination; a, and h" the cone

angle and height of an arbitrary section i. respectively; and k is the highest section the rubble

reaches,

8,2.1.3 Weights of Ride-Up Ice on Individual Set:tions on lhe Fronl Facet

In the present model. the weight of ride-up ice covering the individual sections is

needed. Observation from model tests showed an average extrusion of 5 pieces of ice

constantly maintained on the neck beyond the top of the rubble before they fell onto the 00-
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coming rubble. Therefore. the following ride-up height on the front facet. h,.,.<:, is assumed:

(8-IS)

(8-16)

whichever is greater. h. is the base height of the neck section from the waterline.

With ride-up icc reaching the neck. all sections are covered with icc. The weight of

rice-up ice. Wru..:,,' covering an arbitrary section. i. is given as:

(8-17)

where hi., is the length of ride-up ice of an arbitrary ~tion i as defined in Figure 8.14. For

the neck section. hL , is equal to hru .<: minus h.; and for the lower sections. hL , is equal to h;.1

minush,.

8.2.1.4 Heights. Width, and Weights or Rubble In Front of the Side Facets

The average rubble height in front of the side facet. hr." is taken as the average of the

height at the edge of the front facet. hot, and the height at the side, hr>' i.e.,

(8-18)
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The total weight of rubble. W,,,, in front of the side facet can beestimated by divided

the ponion of rubble mass in question into two volumes. VI and VII' as shown in Figure 8.15.

VI is approx.imacely equal to the volume resulting from rotating the cross-section A by 90"

about axis ~ (see Figure 8,15). VI can be computed using the following equation:

VII is approximately equal to a volume formed by two equal and pamJlel cross-sections, An

and A", with a distance dn between them. The distance d ll depends on h,,- and is computed

by the following expression:

(8.20)

where k is the highest seetion the rubble reaches at the edge of the front facet, and Ok_I is the

diameter of the k+1 section.-~ Therefore, VII can be computed using the following equation:

and the total weight of the rubble, W,,,, in front of the side facet is given a.~:

'[fthe rubble reaches the neck section, Ok>l is assumed equaJ to On' the diameter of the
neck s~etion,
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(8-22)

Again. an average width nfttle rubble. W,"'. at thc side facet is needed 10 calculate the tOlal

wall thrust due to rubble. This width can be approximated by assuming an equivalent rubble

in front nfthe facet with a constant width w,... and a height h..•. W r., is calculated by dividing

the total volume. VI + VII' by the cross-sectional area of the equivalent rubble. A~ = W/Yb'

where W, is the weight of the rubble per unit width computed by Equation 7.40. and Yb is the

bulk weight density of the rubble. Le..

II' = VI' VII

,~ --:0 h' l~ ---"-) -L h' l--"- I J1 (8.23)
~ l 'oJ tam tana

k
,·1..1·1' tanlX, - tana,.\

8.2.1.5 Weights of Rkle.Up Ice on Individual Sec:t1ons on lhe Side Facets

The amount of ice riding-up the side facets can be estimated by considering the

amount of icc on the side zone, with width Cflhc side zone, d" =0.5 (0 - w",..,), which musl

be displaced by Ihe cone. i.e., the shaded area. abc, as shown in Figure 8.16. with the tOla!

weight of ride-up ice. W",..., displaced being:

W <yl.!.)l-')lD-W .)'
'II" 8 lanJ<Y' 'II.•
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for a six-faceted cone.

The coverage of ride-up ice on the side facet is not constanl which leads to uneven

weight distribution along the face!. To simplify Ihe compulation. the weight is assumed to

be distributed evenly along the lowest section of the facel.

8.2.1.6 Load Distribution and Failure of lee Sheet

The base model selected in Section 8.1 computes the breaking load resulting from

simultaneous bending failure of a series of wedge beams loaded at their lips. While this

loading condition is a good characterization of the contact loads imposed on the supporting

ice sheet by the ride-up ice and the cone. the presence of rubble significantly modifies the

load dislribution the intact ice experiences. In addition to a concentrated load transferred via

lhe ride-up ice to the tip of the ice sheet. the rubble distribules its mass and imposes a

triangular load distribution along the supporting ice sheet. The effect of this dislributed load

on the breaking behaviour of the supporting ice sheet is not examined in Ihis work: inslead.

the load is assumed to act at the tip of lhe suppotting ice sheel as assumed in previous

mOdels. Since the distributed load can be transformed into a poimload a.'i well as a moment

applied at the tip of the ice beam with the momenl tending to facilitate breaking of ice.

omission of this moment renders the approximation conservative.

Different failure modes due to acombination ofaxial, shear. and bending stresses can

also occur: however, only ice failure due 10 bending is modelled in this model. Failure due

10 other modes should be considered during the design process.
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8.2.2 Coordinate System and Geometry

Consider a quaner of a faceted conical structure above the waterline which has an

inclination of angle a. with respect to the horizontal. as shown in Figure 8.17. Let (XYZ)

b.: a right handed Cartesian coordinate system. The water surface is the (Z=O)-plane. The

+X-axis is opposite to the motion of the ice; the +Z-axis is directed upward through the

center of the cone; and the +Y direction is then toward the viewer when viewing the \X-Z)

plane.

The icc moves from the X direction and the broken ice pieces slide over the cone in

p!;mes parallel to the X·Z plane as shown by the path in Figure 8.17. Consider an ice piece

on the surface of the cone at position b. AI this point there is a force. N. normal to the

surface of the cone and a frictional force. ~,N, tangential to the surface of the cone where Il.

is the coefficient of icc friction.

Plane abd is a plane parallel to the X-Z plane with line ab coincident with the ice

path. Plane bed is a plane perpendicular to the COile surface. The angle a is the angle

between plane bcd and plane abc!. For the 6·faceted cone. aequal toO" fOrlhe front facet and

60" for the side facets. The angle \II is the angle of the frictional force at any point on the

cone surface with respect to the X-axis and can be related to aand a:

tan+ " tanacose
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8.2.3 Normal and Frictional Fones on Each Facet

The equations for the dir«:tion cosines, cos(xN ) and COS{ZN)' of any nonnal force, N,

on the front half of the cone are given as follows;

cos-x.... = -sinc:cos6

cos: .... -; -COSCl

(8·26)

(8.27)

where ,,~ and ZN are the angle between the normal force and the respecti ...e axes. and the

angles, (l and e. are between 0" and 90" a.~ shown in Figure 8.17. The scalar quantities.

INlcos(x.'l) and lNlcos(zN)' are equal to the components ofN in the direction of the respective

X and Z a.'tcs. If the icc path is parallel to X-Z plane, the equations for the dir«:tion cosines

of the frictional force, cos{xF) and cos{zr-)' on the from half of the cone are given as follows:

(8-28)

(8.29)

The components. F, and F•. along the negative X and Z axis of any normal force N

and its frictional force ~N at any point on from half of Ihe cone surface can be resolved

using the direction cosines. i.e..

F, -; N(cos.:r:,v + IJ.,cos.tF) " N(sinc:cos6 .. IJ,cosV) (8-30)
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F~ '" N(cos:.,v • J.I,COSZF ) " N(cosa - J.I .•sinljl)

And. hence. F, is related to F. through the following ratios:

~ = sinacos6 + lJ,coslJr

F, casa - lJ,sintlr

(8.31)

(8.32)

For the forces acting at the front facet. where IV = (l and e = O. Equations 8.30 to 8.32 get

reduced to the following familiar form:

F, = N(sina + lJ,cosa)

F: = N(cosa - lJ,sina)

!:.:.. = sina • lJ,cosa '" ~

F. cosa - lJ,sina

(8.33)

(8·34)

(8·3S)

If we let X' be the direction perpendicular to the side facet at the waterline as shown

in Figure 8.17. then F,. and FLat any point on the surface of the side facet are related by ~.

and the following relationship between F,. and F, is valid:
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F" (SinClCOSe • iJ.COS~)
F "-

• ~ COSa: 4 lJ.sinlfl
(8-36)

By lrealing the side facet 0lS a simplirJed two-dimensional system. the total horizontal force.

F,. on the facer is computed first, and then resolved to F, using Equation 8.36.

8.2.4 O,'erview of Various Force Components

Consider the general interaction between the icc and a sloping wall in a simplified

2-D system a... shown in Figure 8.18. The load on the cone is derived from IWO sources:

OJ The contaclload exened directly on the cone surface by the ride-up and the

rubble as they are being pushed up the slope by the ice stlett. i.e.. lhe reaction

force... of Hs and Vs; and.

(ii) The conlact load exerted by the ice sh«:l at the w:l.lerline as it slides up the:

slope. i.e.. the reaction forces of H... and Vw• This load is Iimiled by (he

ullim:l.lc failure of the ice sheet.

The rubble interacts with and imposes loads on the riding-up ice and the supponing i« sheet.

i.e.• P"w,. PlIIlw,. and Pb\ow,. as shown in Figun: 8.18 (wilh w, being the width of rubble).

These loads are eventually lransfem!d onto the cone as additional loads. Equations 10

compule Ihese loads have been derived in the Chapter 7.

The lotal force acting on the cone can be n:laled 10 the forces acting a! Ihe tip of the

ice sheet as shown in Figun: 8.19 with the forces imposed by the rubble included. HT and
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VT are the total horizontal and vertical forces acting at the top edge of the ice sheet, i.e.,

(8-37)

(8-38)

whl:Te P is the force required to push ice blocks up the slope through ic~ rubble. Equations

to compute P are derived in Section 8.2.5. The reactions of HT and Vt eventually act on the

cone surface through the ride-up ice, i.e..

(8-39)

(8-40)

where Hs and Vs are the total horizontal and vertical forces on the cone surface above

waterline; and W, and W", are the total weights of the ice rubble and the ride-up ice,

respectively.

H..... and Vw in Figure 8.19 are the total horizontal and vertical forces acting at the

bottom edge of the ice sheet. i.e..

(8-4')
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(lI-C1)

Wht:re V.. is the effective breaking load per unit width of the ice beam under combined

bending and in-plane compression. and du is tbe crack length. In this model V'b is calculated

using Equation 8.5 as derived by Croasdale et aI (1994). The: reactions of H..,. and Vw give

total loads on the cone surface at the waterline.

Therefore. the total borizonlal and vertica.lloads on the CODe. HTOT and Vrur• are

given as follows:

(8-43)

(8-44)

HT and Hware derived in Section 8.2.6. V'b is computed in Section 8.2.7. and Equations [0

compute W, and W.. are given in Sections 8.2.1.2 to 8.2.1.5 with a given amount of ride-up

and rubble ice for the respective fillCtlS.

8.2.S Forces Reqlliftd 10 Pudllct Blocks Up 1MS. 'I"hroaP lee a.bbIe

Figure 8.20 shows the forces acting on a layer of ride-up ice at an arbitrary cone

section, i. Force balance at direction parallel to the structure slope gives:
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where p••• and,'.." an: the rubble thrust force per unit width of rubble and its angle of action

exened on the ride-up ice, W..... is the weight of the ride-up ice, and Pi • 1 is the total force

tr~ferred from the above conical section. Pe.i and .'..~ an: computed from the universal

equation given in Chapter 7.

Force balance perpendicular to the Slt\ICture slope gives:

By substituting Equations 8.46 into Equalioo 8.4S. P, is found:

P, " W.....(sina:, ......C0S4/) .. P...,w,.{sin4( • ""~:)
~ P,ol[COS(4;o, - a:) ~ tJ,sin(4/' 1 - Cl;)J

(8-4')

The forces. P,. an: determined foreach section proceeding from the neck to the: lowest

cone section at the waterline. with the lowest CODe being designated as the fant section. W...

and w,areequal toW.....~andw•.c.respectively.forthe front facet. Ukewise. W"'. and w.are

equal to W...... and w," for the side facets.

8.2.6 ForetS Actiq 011 tIM: In: $bed at W.1er'IiDe

The forces acting on the tips of an ice wedge have been shown in Figure 8.l9. H,. and

VT are the horizontal and venical componenuofthe forces ncoessaryto push the ice blocks

and the rubble up the slope. The: compooents. which~ assumed to act at the top of the
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wedge tip. are given as:

(8-48l

(11-49)

where PI is the total fon:c transferred 10 !he lop of the ice sheet from the pushing of lhe ride-

up ice Ihrough the ice rubble: a l is the cone angle at the waterline; and PbII and P"," are lhe

forces per unil width of rubble acting on the ice sheet due 10 the pushing of the ice sheet

under the rubble. The: P"" and p.. are computed from the rubble model.

The verticaJ component. V.... ofthecont.ae:t load acting on the bottom tip of the ice

sheet is given as follows:

(8-SO)

The horizontal component. Hw• of the contact load acting on the bottom tip of the ice sheet

is relaled to V,:

(8-51)

where'; is defined by Equation 2.2.
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8.2.7 Modme.tion or Braldlll LoMl for In-Plaae Foru (croucWe d at. 1994)

The horizontal force acting on the ice sheet, i.e.. HTOT• creates an in·planc

compression and an edge moment aI the ice edge. The maximum lenSile suess per unit width

along lhe bouom surface of the beam due to the combined out-or·plane bending and in-plane

compression. equal to the effective flexural strength of ice. (J'r- i.e..

The first tenn on the right hand side of Equation 8.S2 is the compressive stress due

to the in-planecomprtsSion (-vel. The second tenn is the tensile sttessdue 10 the combined

edge moment applied at the top and bottom tip of the wedge. The eccentricity is assumed

equal to Y, of ice thickness. The last lenn is the maximum tensile stress of the ice beam due

10 transverse load only (Hetcnyi. 1946).

The above equation can be wrinen as below:

(11-53)

where or is the flexural strength measured by transverse: loading only; and V'_is given in

Equation 8.5. The value of (J', can be obcained by trial and error method using err as the

initial strength. Several iteraLions are Deeded 10 coovcrge to a new value for a',. In the
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following comparison, the decrease of effcctive strength due to edge moment is ignored,

which tends to give a more conservative prediction.

8.3 V.UclItloa 01 the Nnr let: Loed Model

The experimental data from the IMD's series and the ERO:s series are chosen for

the validation ofme new ice force model. The model assumes unifonnity of telil condition:

therefore, mean peak force is compared. Since Metge and Weiss (1989) and Metge and

Tucker{ 1990) reponedonJythe maximum loads, F., on the structure, theirdata was adjusted

by assuming the follow;ng relationship between the mean peat load, F_, and the maximum

load. F"" hold:

The relationship is trUe forlhe IMD's data. The computed and the measured ice forces, i.e..

FI'fUI and F..-" are summarized in Table 8.4. An example computation is given in Appendix

C.

Figures 8.21 and 8.22 plot the model predictionsagainst ERCL's and IMD's test data.

respectively. Results from lioear regression for the two comparisons are given in the

respective figures. The comparison shows good agreement berween model predictions and

test data. On average, the model overpredicted the borizontal ice force by 12.9% for ERCL's

data, and underpredieted by 8.9% for the IMD's data; whereas, it underpredicted the vertical
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ice force by 1.4% for ERCL'sdara, and 13.1% for IMD's data.

Despite Limited data., the agreement between model predictions and experiment data

in the horizontaJ direction is signmcant, as the looding in this direction tends to destabilize

the structures, and accurate estimation of this force component is imponanc Nevenheless,

the discrepancy of load warrants funher refinement of the model.

One source of error may be attributed to the ice breaking model used. The failure

mechanism observed from IMD's test series was associated with the ultimate failure of finite

cantilever beams (see Section 4.2), while the ict: breaking model used in this work is for

semi-infinite beams. Models based on failure of a semi·inflJlite beam may not predict well

the ice breaking load with thick ice. This observation is consistent with [MO's data in which

the comparison of the load is aood for the thinner ice (i.e., the scmi·infinite beam fannula

may be vaJid),and the degreeofunderprediction increases with the increasing ice thickness;

however, funher investigation is needed to verify the above observation.

The underestimation in the vertical. direction may also partly due to the omission of

ice loading at the back half of the cone. This amount of ict: canl10l be estimated pecisely.

However, if we arbitrarily assumed SO% of the ride-up and rubble ice loading on the front

side facet would load on the back side facet as well, the model will overestimate EReL's

data by 8.4CJJ and underestima&e IMD's data by 2.7CJJ in the venical direction.
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Table 8.1 Summmy of test conditions used in the selected test programs

Test
Reference

(l D ke ai I No. of
SOl (0) (m) Type (kPa) (em) Data Pts.

Sodhi et aI,
4S I.S EGADS 20-45 ! 4.5-9.0 28

1985

Izumiyama et al. (,() 0.5.0.6.
EGADS 24-59 ! 1.8-4.6 19

1991 0.7

Hirayama and 50.('().
0.14.0.17

fresh-
11771 0.6-0.9 46

Akamatsu. 1982 70.80 water

Edwards and
45

0.25.0.5.
saline 1-411 1.9-6.8 20

Croasdale, 1976 1.0

Afanas·evetal. 30.45.
.12-0.28 saline 40 I i4

1972 (,()

Manders and
45 0.67,1.5 saline 11-211 2.2-5.1 23

Abdelnour. 1978

Wessels. 30.45. L.08.1.28.
EGADS (,(), 3.0-7.0 i4

1984 (,() 1.48

Lau ct ai, 30.45. 1.08,1.28.
EGADS 24-47 I 3.0-6.8 54

1988 (,() 1.48

Verity.
45 3.3 saline 10-495 ! 6.8-23.5

1975

10
Edwards et a1.

45
p.IO.0.i5.

synthetic 20-98 ; 0.7-8.9 40
1975 0.31.0.61

Note: I Arrow indicates loading directions.
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Table 8.2 Summary of average and standard deviation of the predicted to measured
mean peak force ratio. Fpm/'Fm<:IS' in each test data set

Lau- l.o,. """'", roasdale Nevel Nevel RalstOll RalslOll
Test Statistics roasdale roasdale

F, F, F, F, F, F, F, F,
Average 0.83 0.71 1.58 0.95 1.24 0.89 1.33 0.95

1
0.15 0.24SIDev 0.17 0.10 0.35 0.14 0.27 0.13

Average 1.01 ~ ~ ~2 N/A N/A N/A N/A
SIDev 0.28 0.56 0.45 0.31

Averag.e 0.88 1.29 1.27 1.20 1.19 1.28 2.69 2.21
3

0.22 0.22 0.77StOev 0.17 0.23 0.25 0.65 0.42

Average 0.65 0.81 1.27 1.19 0.80 1.00 0.97 1.05
4

SlOev 0.18 0.13 0.42 0.36 0.27 0.27 0.24 0.12

Average 0.59 ~ N/A ~ ~5 N/A N/A N/A
SIDev 0.13 0.20 0.13 0.28

6
Average 1.14 ~ N/A ~ N/A ...!.E...
SIDev 0.50

N/A
0.57 0.48 0.50

N/A

Average 0.99 0.97 1.29 0.87 1.30 1.02 1.42 1.13
7

0.23SIDev 0.33 0.16 0.58 0.51 0.23 0.50 0.17

Average 1.34 Ll5 1.68 0.92 1.39 1.21 1.35 1.L3
8

0.30 0.61 0.52StOev 0.74 0.41 1.11 0.43 0.35

Average 0.96 1.07 1.46 !.to 1.13 1.03 1.91 1.73
9

0.39 0.38SIDev 0.35 0.39 0.51 0.36 0.72 0.66

Average 0.85 l.OS 1.21 1.02 0.99 0.99 1.62 1.68
10

0.22 0.27 0.32 0.26 0.37 0.52StDev 0.31 0.32
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Table 8.3 Summary of average and standard deviation of the predicted to measured
mean peak force ratio, Fprd'F...", of a.l1 tesls for each ice force models

u,"- Croasdale Nevel Ralslon
CroasdaJe

Average 0.92 1.37 1.12 1.41
F,"""".~

StDev 0.21 0.23 0.26 0.46

Average 1.01 1.04 1.06 1.41
F'.r-..JF,.-..

StDev 0.19 0.12 0.[2 0.43

Table8A Summaryof measured loads from lMO's and ERCl's test data and the forces
predicted by the new model

Measured Peak Force Predicled Mean Peak
Tes! I Force. FprNMaximum, F Mean.F

,#) F, I F, I F, I F, F, I F,
(kN) (kN) (kN) (kN) (kJ") (kN)

ERCl Test Series I: 10 scale
TI_RI 10 II 9.26 10.2 [[.4 11.9

T2_RI 19 22 17.6 20.4 [6.2 l6.4

TLR2 20 20 18.5 18.5 27.4 28.3

TLRI 30 38 27.8 35.2 27.6 29.0

14 RI 30 3' 27.8 32.4 32.8 34.2

lMO Test Series (MUNCONE)
LOOI N/A N/A 4.29 5.30 4.03 4.04

4JXlI N/A N/A '.00 4.72 4.28 4.38

5_001 N/A N/A 1.95 1.98 2.04 2.[-1

6003 N/A N/A 2.81 3.06 2.78 2.93

Note: Test condilion for each lesl is given in Chapter 3.
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Figure 8.1 Breaking and ride-up patterns assumed in Lau-Croasdale's model (only
(he front righl quaner of the cone is shown)
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Figure 8.2 Comparison of Lau-Croasdale's model with existing lest data for smooth
cones: horizontal mean peak force
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Figure 8.3 Comparison of Lau-Croasdale's model with existing test dala for smooth
cones: vertical mean peak force
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Figure 8.4 Comparison ofCroasdaic's model with existing telit data for smooth
cones: horizontal mean peak force
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Figure 8,5 Comparison ofCroasdale's model with existing test data for smooth
cones: venical mean peak force
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Figure 8.6 Comparison of Nevel's model with existing tesl data for smooth cones:
horizontal mean peak force
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Figure 8.7 Comparison of Nevel's model with existing test data for smooth cones:
vertical mean peak force
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Figure 8.8 Comparison of Ralston's model with existing test data for smooth cones:
horizontal mean peak force
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Figure 8.9 Comparison of Ralston's model with existing test data for smooth cones:
vertical mean peak force
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Figure 8. J0 Comparison of predicted to measured values for each test series:
horizontal mean peak force
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Figure 8.11 Comparison of predicted to measured values for each test series: vertical
mean peak force
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Figure 8.12 Average predicted to measured peak: force vaJues for each ice force model

Ice Motion-
y

Figure 8.13 Schematic of crack pattern in fronl of a faceted cone
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Figure 8.14 Coverage of ride·up ice on an arbitrary section i

Figure 8.15 Geometry of rubble mass in front afthe side facet showing the idealized
volumes, VI and VII
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Figure 8.16 Geometry of ice rode up the side facet (only the front righl quarter of
the cone is shown)

Figure 8.17 Coordinates and geometry (only the front right quarter of the cone is
shown)
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Figure 8.18 General interaction between ice and sloping structure showing ice forces
on ride-up ice and the ice sheet

Ice Sheet

Figure 8.19 Forces acting at the tip of the ice wedge
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Figure 8.20 Forces acting on a layer of ride·up ice at an arbitrary cone section
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Figure 8.21 Comparison of model prediction and ERCL's test data
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Figure 8.22 Comparison of model prediclion and tMO's lest data
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Chapter 9 Conclusions and Recommendations

This study employed experimental. numerical and analytical methods 10 study ice

forces on a faceted cone due to the passage of a level ice field dlJring continuous ice

breaking. The main objectives were 10 improve our undc:fStnnding of the interaction and

failure processes. and (0 provide engineers with a sel of easy-I()-.apply formulae for ice load

calculation.

Both objectives of the study were reached. First. the experimemal investigation

provided a clear insight into the interaction processes and the failure mechanisms through

relevant observations and interpretation ofmcdcltcst results. The suitability oflhe existing

theories for predicting ice forces on comparable faceted cones was assessed and defICiencies

identified. The deficiencies wert then addressed and an improved load prediction model was

developed in the sut>stquent numerical and analytical investigations. Tbe model represents

the most comprehensive 3tlemp!. to date to incorpor.ue fundamental processes in the problem

treatment and provides a new conceptual framework. for future model refinements.

Focus was put 00 developing a physical sense of the general. processes. and a

quantitative sense of the magnitude of icc fon::e expected. Simple theories were used. and

the mathematical treatment of the topic was kept to minimum. lnsofnr as JX)Ssible. the

accuracy and range of applicability of the models were evaluated by comparison with

experimental data. The model predictions of the rubble geometry. ice movement and the

associated forces agreed well with the interaction dctcnnincd by experiment.
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Sections 9.1 t09.3 highlight the major conclusions drawn regarding the results of the

experimentaL numerical, and analytical investigations, respectively. Section 9.4 summarizes

the main contributions made in the course of this investigation. Recolnmendations for

funher work arc given in Section 9.5.

9.1 Conclusions From Ihe Experimenlallnvesllgallon (Pari I)

In the present study, the resullS from the multi-faceted cone tests conducted in three

ice tanks were consolidated and analyzed. The following conclusions can be drawn for the

results of the experiments:

0) Interaction Process: The interaction process was substantially different from that

of a smooth cone and a two-dimensional sloping plane. The flat facet and large neck

tended 10 prevent efficient ice clearing. and rubble building was fQund to be an

essential pan of the ice clearing process. An ice clearing component which is as

much as 80% of the total load on the structure has been measured. No previously

reponed work identifies the factors which contribute to the amount of ride-up and

rubble formation. and their subsequent effeclS on the interaction process; this

omission can lead to a severe underestimation of the ice forces.

(iil Ice Breaking Mec:banism' Pi~e size measurements significantly diverged from

those predicted by existing classical thin plate theories. This study has shown the

imponant influence of ice thickness on ice breaking. Incorporating the three

dimensional nature of ice behaviour into the problem treatment is essential 10
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advance our present underslanding of lhe ice breaking process.

(iii) Efficiency of Existing Models in PJ:edidlng Ice forces on Multifaceted CODf!$'

The analysis of ice sheet loads with a leading ice force predictor revealed thallhe

presently available lheory for smooth cones can give sufficiently accurate prediction

of ice loads on face led cones when rubble piling is absent; however, il also indicated

that the theory would likely under-predict lhe clearing componem of ice loads. The

error in ice load estimation may be quite large when a large rubble field piles in front

of the structure, justifying the development of new fonnulae for the estimation of ice

loads on suchslructures.

(iv) Conceptual Model, A conceptual model was proposed to explain the observed

interaction processes between a faceted cone and a level ice sheet during a

continuous ice breaking mode. It outlines the three primary interaction processes,

i.e .. icc breaking, ride-up, and rubble pile-up. where different featuresdominale, and

provides a means of incorporating rubble load theory into existing ice force models.

9.2 Conclusions From the Numericallnnstiglltion (Part II)

In Part II, the unique rubble piling process was further examined with the aid of

existing particulate mechanics and acomprehensive numerical analysis. A new rubble model

was developed to predict the geometry of the rubble and the forces exerted on lhe structure

and the base support. Based on the result of the rubble modelling, the following conclusions

may be drawn regarding the fonnation process. material properties, stress state, geometry and
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a.~sociated load of II rubble:

01 Formation Proem' 1lle basic m«hanical behaviour and the failure processes of

ice rubble under looding conditions typical of the ice<Olle interaction process have

been examined in Ch:lpter 5. It is concluded that the flow process of ice blocks

around the structure can be idealized as quasi-static and steady. and the material as

cohesionless coulomb material. The rubble is formed by a natural dumping process.

and the clearing of the rubble from the structure is analogous 10 the bulk material

transpon on an inclined belt conveyor as the supponing ice sheet and the ride-up ice

aetas the belt conveyor. Funhermore. the shear strength is fully mobilized at the

rubble's free surface.

(ii) Stre...... Stale: Ba.<;ed on basic theories of soil mechanics. it is concluded that the

cohesionless rubble is in an elastic state throughout its mass during the typical ice

cone interaction process under investigation. Three imponant phenomenological

paramt:ters: the angle of internal friction. the angle of repose. and the 'at rest" eanh

coefficient function were identified and funhcr explored. These parameters are

essential in modelling of rubble behaviour associ:lted with the problem under

investigation: yet. measurements associated with ice rubble are scanty.

(iii) Model GeoDlftn· A new model to predict the shape and size of the rubble has

been presented based on insights obtained from the experiments and the basic soil

mechanics theories. The idealized geometry is uniquely defined by the rubble's angle

ofrepose. and the characteristic rubble heights along the cone perimeter. The amount
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of ice pikd up was calculated via m:lSS balance considerations. Despite limited data

used. tilt: predictions from the derived equations give excellent agreemenl with the

measuremenlS from the experimenl.

Discrete element analysis using Ihe computer program

DECICE has provided a powerful 1001 for complementing Ihe analytical and

experimental work. The :1I\alysis helped the development of a scmi~mpirical

equation for the computalion of Iota! wall thrust for a variety of ice and structure

conditions. The equation is simple to use and yet accounls fully for the discrete

nature of the rubble materials. The following conclusions may be drawn regarding

the formula that WQS developed:

(a) The formula relains lhe form used in theories of earth pressure on retaining

walls. and it represents a best fit of the DECICE results.

(b) The proposed equation for rubble load may be applied to design problems:

but wilh caution. since only Iimiled checks have bttn made.

(c) The formula can be adapled to the existing ice breaking model with ease. II

substantially reduces the mathematical complexityofthe model fonnulalion

by allowing the load exerted on the ride-up and supponing ice Shetl to be

compuled via simple semi~mpirica1 equations. The modular nature of the

model allows ils adoption to fUiure and more advanced ice breaking models

with the same degree of ease.
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9.3 Conclusions From the Ice Forte Modelling (Part III)

In Pan m. a base model is first selected from the existing theories to model the

brca\.>ing behaviour of intact ice. and the new rubble model is then incorporated inlo the base

model to compute the peak ice loadexened on the cone due to the passage ofacombined ice

shcctJrubblc system. The following conclusions may be drawn regarding the model that was

developed herein:

(i) Base Model: As it gives the best agreement with experiments. Croasdale's (1980)

model. with the 3-D modifications suggested in this thesis, was selected as the base

model for ice breaking load.

(ii) Ice Load Model: The model is based on a pseudo-three-dimensional treatment

of the interaction, by recognizing the two-dimensional nature of the interaction

geometry associated with individual facets. It does so in enough detail to allow

exploration of first order effects resulting from changes in the most imponant design

parameters. The expression for ice load has been established in detail. Experimental

data affirmed the validity of the developed ice load model and demonstrated its

ability to account for the effect of rubble piling.

9.4 Contributions or This Wort

The physical experiments reviewed and the numerical experiments performed in this

work provide a clear insight into the interaction processes and improves our understanding

of the dominant ice-structure interaction processes taking place around faceted cones. They
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also provide a set of valuable data useful in confinning and calibrating algorithms for ice

loads. A new ice force model has also been developed to compute ice load on the faceted

cones. Although the problem was highly idealized. it accurately captured the essential

features of a typical interaction and predicted the ice forces well.

The above developments and results are significant. because. for the first time. to the

knowledge of the amhor. an ice load model has been established to account for the effect of

rubble in ice loading on a multifaceted cone based on essential features of the interaction.

The results provide a useful framework. for further model development.

The state-of-the-art is such thaI it is now possible to incorporate rubble load in the

force calculation with higher degree of confidence. The methodology fordoing so has been

developed and presented herein. and constitutes the main contribution of this work to the

state-or-the-art.

9.5 Rfeommendations ror Future Work

While considerable effort has been expended to document the model. no sensitivity

analysis has been perfonned ror the model developed in Chapter 6 through 8.

Comprehensive sensitivity analyses would help to identify the most important parameters.

Limited experimental data have prevented a comprehensive assessment or the

accuracy and limitations of the model. which constitutes a potential weakness of this woek..

Furthermore. the model was developed from model test data. Some assumptions may be

valid in the ideal conditions of the ice tank.. but may not be sustainable in the field where the
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seale is larger and inhomogeneities more prevalent. Until it is calibrated against full scale

data. there will always be uncertainty. A comprehensive assessment of the model resuhs

against field measurements (when available) will give a better sense of its accuracy and

limitations for different ranges of ice and structure conditions.

The theoretical developments of rubble behaviour draw heavily on soil mechanics.

Most of the phenomenological theories and correlations used are empirical. i.e., they are

based on observation and results of eltpcrimcntal measurements on soil materials under

spe:cific conditions. For example, laky's equation for lateral earth pressure at rest, used in

the present study to estimate internal friction angle of ice rubble, is known to be valid for

normally consolidated soils. Despite the particulate nalUre of both soils and ice rubble,

uncertainty still remains concerning the applicability of the soil mechanics theories to rubble

behaviour. Improvements in the theories developed in this study depend crucially upon the

availability of accurate field data, i.e" shear strength, rubble geometry and ice load

measurements, This would seem to be an area ripe forexperimemal research.

Due to the pilot nature of this work. there are many aspects of the interaction, which

it ha.~ not been possible to explore; however, it is evident from the results that a useful

modelling framework has been developed. The immediate need is for the incorporation into

the theory of some of the more complex aspects of the interaction with respect to rubble

piling and ice loads.
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9.S.1 Refinements of the Rubble Model

The model is applicable to Ihick and wong icc: impacting on the structure at low to

moderate vc:locity. In order to extend the model to other conditions. the following factors

should be: considered in further modelling:

Ii) Dynamic Rubbk Milne: This ~uires more complicated assumptions for ice

block motions within the rubble mass and for ice generation and clearing rates.

(ii) Deformation or Bubble MISS" The possible increase of load on the wall due

to deformation of the rubble mass as it is pushed against and up the cone wall should

be included as suggested in Seclion 5.3.2.

(iii) Secondary Rrtaklng Qr Ride-Up Ice: [f the ice in question is thin and weak.

i.e.. lirst year ice around a bridge pier. secondary ~ak.ing of the ride-up ice may

occur which increases the width of the side zones. and the width of the accumulation

zone: decreases. This will affect the mass balance and profile of the rubble in front

of the cone and should be incorporated into further model ~aUnenl5.

iivl Rubhie<:olK!jon: If the rubble mass is allowed to stagnate in front of the

structure for a period of time. cohesi\'e sirength may devc:lop within the pile and

increase the rubble load.

(v) EfTedive Wall Friction: A better picture ofthe functional relationship between

wall friction and ice force awaits the development ofa theory to predict the effective

friction mobilized at the wall.

It is desirable to develop a purely theoretical rubble model that would. at a future
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<.loue, replace the empirical fonnulations presently adopled in this research. Funhennore,

measurements on ice rubble material propenies to belter defined lhe shear slrength in the

loose state are needed.

9.5.2 Refinements of the Ice Forte Model

The present sludy analysed rubble loading on Ihe basis of the interaction observed in

IMD' s tests. Other failure modes, and lest conditions have nOI been accounted for: however.

the methodology used here can be extended to those C3ses. A number ofareas require funher

attention. These include:

(i) Ice Breaking ComlMmenl: The ice breaking is modelled comparalivelycrudcly

ilnd much work is needed to improve the model prediction as indicated in Section

4.2.

(ii) Further Mode! and Field Tests: Improvemenls in the theory of this Sludy and

the development of eXlensions depends crucially upon Ihe availability of accurate

complele field dala; therefore, large-scale field tests are strongly recommended.
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Appendix A

Summary of Test Conditions, Configurations,

and Results of ERCL's and IME's Test Series:

Level Ice
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The measured ice properties. configurations and results associated with each test for

the individual test series in the "MUNIERCUNRC Mulli-Faceted Cone SlUdy" are extracted

from respective data report and reproduced here for quick reference.

The mea.o;ured ice properties along with the configuration ofthe test condition in each

test for the two test series are given in Tables A I and A2; whereas. the results of each test

series are consolidated and summarized in Tables AJ and A4.

Tables A3 summarizes the mean. maximum. and peak values of the global and neck

forces measured in the lME's level ice tests. The force statistics are computed only for the

steady state portion of the force records. Table A4. on the other hand, gives only the

maximum loads measured in the ERCL's level ice tests since most of the runs were stopped

before a qua..,i-steady-state interaction was achieved.

Peak force analysis was not carried out on IME's tests; instead. the peak forces were

calculated as suggested by lrani and Timco (1993) as the sum ofthe mean plus one and a half

times the standard deviation of the force record. It should be noticed that after publishing

their data report. Irani and Timco (1993) have since revised and published their global load

measurements. The data given in Tables A3 are the revised values.
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Table Al Matrix for level ice tests: NRC-lME series

LEVEL ICE PROPERTIES

Tc:sl Modd Orienl. V , o. o.(, (em's) (em) ''''''' '''''''
C_OOI 15 2.6 2.6 46 7J
C_002 15 9.8 2.3 46 7J
Coo3 15 4.8 2.3 46 7J
C_OO4 15 2.2 3.3 104 166
C_005 15 3.8 3.7 104 166
C_OO6 15 6.2 3.7 104 166
C_007 15 2 2.4 24 29
Cl108 15 4 2.3 24 29
C_OO9 15 6 2.2 24 29
COlO 15 2.2 4 " "C_OII 15 4.1 3.8 58 67
C_012 15 6.1 4.1 58 67
C_OI3 15 ,

1.7 42 67
C_OI~ 15 4.3 1.6 41 67
C_OI.5 15 6 1.8 42 67
C_OI6 " 6 3.4 96 72
COl? " 6 2.4 7J 122
C_Olll " 6.1 2.1 J7 "C_019 " 6.2 2.3 IJ 21
C_020 " '.9 '.7 2J J7
C_021 " '.8 '.7 11 17
C_022 • '.9 304 84 134
C_023 • 6 3.3 29 47
C024 • '.8 304 16 "C_02.5 • 6 4.' 78 '"C_026 • 6 4.6 M 102
C_021 • 6 4.7 " 82
C_028 • '.7 4.4 63 81
C_029 • '.7 4.2 28

"C_030 • '.7 4.' 16 26
C_031 3. 5.1 2.4 22 '6C032 3D '.7 2 9 27
C03J 3D '.7 1.8 3 17
C_034 3D '.7 3.' 71 112
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Table Al Matrix for level ice tests: NRC-IME series (cominued)

LEVEL ICE PROPERTIES

Test
Model V ! 0,. 0"

Oriem. (") (cmlsl (em) (kPa) (kPa)

C_035 30 5.7 3.4 64 44
C_036 30 5.8 3.4 13 25
C_037 30 6.2 5.6 41 60
C_038 30 5.9 5.6 40 40
C_039 30 6.2 4.9 39 44
C_040 30 6.2 5.1 30 15
C_041 30 5.9 5.4 14 12
C_042 0 6 3.3 40 41
C_043 15 6.1 3 40 41

C044 30 6 3.3 40 41

C_050 0 6.2 2.8 II 21
C_054 0 6.1 4.2 40 80
C_055 0 5.8 3.6 27 76

C056 0 5.9 3.5 24 49
C_057 0 5.9 3.6 10 2S
C_06O 0 6 3 9 36

C_061 15 5.9 3.1 9 36

C 062 30 6 3.1 9 36

Note: 0ru= upward breaking flexural strength; 0rd= downward breaking flexural strength
Structure orientation: 0" =faceoQn: IS" =intermediate; 30" = edge-on
A friction coefficiem of0 is associated with runs I to 38. and a friction coefficient

of 0.1 is associated with runs 39 to 66.
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Table A2 Matrix for level ice tests: ERCL series

Test
V . 0, E

(emls) (em) (kPa) (MPa)

Year One: 1988-89; 1:105

Tl RI I 33 I 165 1136

Year One: 1988-89; I:IOL
T2_R2 34 183 836
TLR2 27 249 1129
T4 Rl 12 159 1590

Year Two: 1989·90; 1:20L
Tl_RI 25 50 203
Tl R2 25 50 203
T2_RI 32 35 288
T2_R2 36 141 1154
T3_Rl 38.5 125 56.
T3_R2 38.5 [25 56.
T4_Rl 41 .41 853
T4_RI 41 141 853
T5_RI 5 "' na
T5 R2 5 na "'
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TableA3 Summary of level ice test results: NRC-IME series (Irani and Timeo. 1992;
and Irani et aJ. 1992)

GLOBAL- GLOBAL- NECK-
HORIZONTAL VERTICAL HORIZONTAL

FORCE{kN) FORCE(kN) FORCE{kN)

Test M'an Max. "'''' Moan Max. """ M'an Max. "''''
1 0.132 0.219 0.164 0.176 0.262 0.221 0.00 0.03 0.00,
2 0.117 0.214 0.161 0.173 0.261 0.227 0.00 0.04 0.006
3 0.122 0.188 0.153 0.162 0.233 0.207 0.00 0.03 0.010
4 0.189 0.335 0.269 0.244 0.417 0.337 0.01 0.04 0.019
5 0.161 0.288 0.227 0.222 0.369 0.320 am 0.03 0.011
6 0.160 0.236 0.218 0.218 0.334 0.307 0.01 0.03 0.014
7 0.113 0.143 0.134 0.152 0.192 0.182 0.00 0.01 0.006
8 0.108 O.ISO 0.129 0.151 0.206 0.179 0.00 am 0.005
9 0.115 0.175 0.140 0.157 0.208 0.193 0.00 om 0.005
10 0.284 0.438 0.366 0.374 0.541 0.463 0.01 0.04 0.002
II 0.280 1.420 0.430 0.320 0.470 0.410 0.01 0.10 0.029
12 0.295 0.465 0.410 0.404 0.633 0.554 0.00 0.00 0.014
13 0.074 0.105 0.097 0.111 0.159 0.144 0.00 om 0.004
14 0.060 0.086 0.081 0.089 0.128 0.115 0.00 0.00 0.002
15 0.064 0.093 0.087 0.095 0.129 0.123 0.00 om 0.002
16 0.210 0.690 0.300 0.281 0.609 0.381 0.01 0.12 0.003
17 0.113 0.183 0.152 0.125 0.203 0.174 0.00 0.04 0.010
18 0.1l0 0.160 0.140 0.140 0.190 0.170 0.00 om 0.005
19 0.115 0.160 0.146 0.149 0.210 0.191 0.00 om 0.006
20 0.390 0.630 0.300 0.510 0.710 0.630 0.01 0.10 0.034
21 0.360 0.600 0.450 0.470 0.620 0.550 0.01 0.10 0.034
22 0.199 0.324 0.266 0.280 0.484 0.375 0.01 0.03 0.013
23 0.190 0.345 0.250 0.265 0.414 0.345 0.01 0.04 0.014
24 0.176 0.382 0.233 0.230 0.386 0.288 0.01 0.08 0.024
25 0.386 1.593 0.649 0.510 1.396 0.772 0.01 0.28 0.043
26 0.398 0.887 0.578 0.534 0.890 0.742 0.01 0.05 0.026
27 0.426 0.811 0.619 0.563 0.940 0.795 0.01 0.05 0.030
28 0.300 0.540 0.420 0.360 0.058 0.300 0.01 0.05 0.025
29 0.333 0.650 0.428 0.432 0.652 0.540 0.01 0.04 0.026

;~ 0.254 0.339 0.306 0.353 0.469 0.419 0.01 0.03 0.018
In.on 0.097 0.090 0.124 0.155 0.144 0.00 0.00 0.002
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TableA3 Summary of level ice test ~sults: NRC·IME series (1r3ni and Timco, 1992;
and Irani et aI. 1992) (COOl' d)

GLOBAL· GLOBAL- NECK·
HORlZONTAL VERTICAL HORIZONTAL

FORCE(kN) FORCE(kN) FORCE(kN)

Test Mean Max. Peak Mean Max. Peak Mean Max. Peak

32 0.069 0.088 0.019 0.109 0.133 0.122 0.00 0.00 0.00
33 0.056 0.08 0.072 0.088 0.135 0.114 0.00 0.00 0.00
34 0.15 0.225 0.197 0.238 0.354 0.305 0.00 0.02 0.01
35 0.157 0.22 0.196 0243 0.314 0.290 0.00 0.02 0.01
36 0.113 0.161 0.137 0.181 0.246 0.215 0.00 0.01 0.00
37 0.355 0.606 0.489 0527 0.802 0.691 0.01 0.05 0.02
38 0.348 0.595 0.482 0.499 0.823 0.662 0.01 0.07 0.02
39 0.253 0.37 0.328 0.382 0.516 0.482 0.00 0.03 0.01
40 0.193 0.291 0.246 0.308 0.4 0.370 0.00 0.02 0.01
41 0.18 0.24 0.211 0.294 0.362 0.332 0.00 0.02 0.01
42 0.149 0.226 0.198 0.16 0.212 0.199 0.00 0.01 0.01
43 0.132 0.253 0.199 0.147 0.259 0.213 0.00 om 0.01
44 0.123 0.161 0.143 0.134 0.173 0.159 0.00 0.01 0.00
50 0.164 0.313 0.226 0.167 0.243 0.196 0.00 0.01 0.00
54 0.428 0.707 0.377 0.353 0.554 0.470 0.01 0.05 0.02
55 0.237 0.421 0.317 0.202 0.331 0.260 0.00 0.02 0.01
56 0.248 0.429 0.334 021 0.331 0.272 0.00 0.02 O.QI
57 0.268 0.426 0.358 0242 0.35 0.299 0.00 0.02 0.01
60 0.166 0.314 0.238 0.167 0.261 0.214 0.00 0.01 0.00
61 0.168 0.285 0.23 0.158 0.235 0.206 0.00 0.01 0.00
62 0.145 0.99 . 76 0.145 0.96 10177 om 0.01 0.00

Note: Global fDrces are taken from Irani and Timco (1993). Neck forces are estimaled
from time'NSIDtY given in lranietal (1992).
-Horizontal· (+) toward the: model; Vertical· (+) downward
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TableA4 Summary or level ice test results: ERa. series

GLOBAL' GLOBAL' NECK-
HORlZONTAL VERTICAL HORlZONTAL

FORCE(kN) FORCE(kN) FORCE(kN)

Test Max Max Max

Year One: 1988-89; 1:10

TLRI 40 48-- 1.5
T2_R2 10 8 0.8
TJ_R2 17 \9 NA
T4_RI 12 15 0

YcarTwo: 1989-90: 1:20

T1_RI \0 11 0.7
T1_R2 1.5 4 0.8
T2_RI 19 22 5
T2_R2 20 20 8
TLRI 30 38 2.5
T4_RI 30 35 5
T.5 RI 2 4 0

Note: - Horizontal- (+) toward the model; Vertica.l· (+) downward
--Typo error in original report
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APPENDIXB

Load Time History of Tests Conducted in
IMD's Test Series
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FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE ~ _006
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APPENDIXC

Example Calculation to IDustrate the Application
of Equations Developed in Chapters 7 to 9
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An example cakv.lation for Test MUNCONEJ_OOI is shown here 10 illustrale the

usag~ of equations developed in Chapters 6 to 8 for the computation of icc loads on facdCd

Values of the relevant parameters are given as follows:

(i) ~; Thicmess.t.0.1583m: n~xuraisuengtb.or=44.38kPa:~Iastic

modulus, E = 362.2 MPa; ice-structure friction coefficient.lJ.,.:a 0.1: and weight

density."t= 8985 N/m' .

(ii) Rubble Progenjes: Rubble angle. 1 :: 35°: internal friction angle,' = 3.5°: wall

frictionangk.... = 11.3°; bulkweightdensity.-.,.:z6290NlmJ : and porosity. p=

0.3.

(iii) Wiler EOIlndj,!joo: Weight density, "t.. " 9839 N/m).

(iv) StructYre Dimensions: Height of cone section, hI ,. 0.233 m; height of collar

section. hl = 0.473 m; facet width at walCrune. wr = 0.693 m: cone angle. Cl1=

39.8°: collar angle. Cl,; .. 63.4°: neck angle; Cl, " 90"; cone angle at side. «"1 =

3.5.r; collar angle at side.~ = 60"; neck angle at side. au ,. 90"; and average

cone angle. «- =49.r.

(v) lee Brcaking Pauem: Angle between !'Mia! crack and x-axis; eO' =)00; and

rncasuredbrokeopiecesizc. I..t.=O.1511 m.

C.I RubbIeB....ICakulatloa(C""-6)

The width of ride-up ice wall at front facet. w__ is equal to 0.7802 m. computed by

3TI



Equation 8.12.

C.l.l Rubble HftPi 8t Side of Front Fame b.r

lbe cross-section of rubble at both side ofcone. A. is equal toO.08822 m2• computed

from Equation 6.5. The rubble height at side of the front facet. b". and the COIRSponding

value ofBocan be compuled using Equations 6.12 and 6.16, respectively, via atrial and error

procedure. by arbitr.lrily assuming a value of n and b,,:

.Eia1.Iri!l: n = I with an initial value of b" = hi = 0.233 m

B. = 0.2798 m and b,,:3' 0.4039 m

Since h". > til' then n must be greater than 1.

~: n=2withan initial value of b,,= h2 =0.473 m

8 0 = 0.2039 m and h.t,. 0.3802 m

Si~ h" < ~. then n must be equal to 2.

lberefo~. the rubble reaches the collar section with h.t being equal to 0.380 m..

C.I.2 Rubble IIeIPt II Side ofe-, b"

The rubble height at side of the cont. h,.,. can be computed using Equation 6.22 via

a similar trial and error procedure:

.Eim...l.r:W: forn=I.h,.=2.0347m

Since h,. > hi. then n must be greater than 1.

~: forn=2.h,., z O.S087m
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Since h,. >~. then n must be gruaer lban 2.

Ihi.n1...u:iiI.: forn=3.b,.=0.4941m

Therefore. !he rubble reaches the neck. section with h.. being equal to 0.495 m.

C.1.3 Maximum Rubble Heiahtal Front Facel: b.,.

The maximum rubble heighl at the fronl facet. b,.. is computed as the following:

B1 =004507 m (Equation 6.30); ~ =53.r (Equation 6.33 with (l '" a...): A} =0.1105 r

(Equation 6.31); ~ =0.0680IJ r(Equation 6.32); (A) +AJI A J = 1.3994; w =0.3154 m

(Equation 6.34); w/wr:l': 0.4042 (impltes a trapezoidal profile): and b,. = 0.7126 m

(Equation 6.35 with h.t =0.3802 m).

Therefore. the rubble has a trapezoidal profile along the fronl facel Wilh hr", being

equal toO.113 m.

C.2 Rubble Lood CaIadoIioa(CIlllpOer 7)

Rubble loads for the center and the: side facets are cakulaled sepaRlely for the

respective equivaieAt rubbk heights. h..c and h....

C.l.l Rubbte to.d Per Unit W5dlh on Ceater FKet

h•.c =0.5783 m (Equation 8.13)

(i) Load per unjt wjdlb po jndjlljdYaI scctiOli$:

(a) Lpweuons; sctjon i" I: ••...1 = I1.30 (Equation 7.29); a,.•• 61.49" (Equation
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7.28); p..1 =268.0 N/m (Equation 1.37); p•• =127.9 N/m (Equation 7.38): and

p....l = 235.5 N/m{Equation 7.39)

(b) Collauection j=2: ••...J""8.51°: ~=3.5.0": Po.J= I 17.5 N/m; PwL:""96.1 N/m;

and P_.: = 67.5 N/m

(c) NeckgGtjoD i=3: ••• .3""1.709": ",-,=1.109": PoJ=9.1N/m; P..u=9.IN/m:

and P_.3 = 0.3 N/m

(ii) 10lai rubble load:

P.. =233.1N/m(Equalion7.38); P _::303.3 Nlm(Equation 1.39); P ... =233.1

N/m (Equation 1.33); p... :. 121.4 Nlm (Equation 1.34); and W'J: = W, = 1030.6 N/m

(Equation 8.14)

(iii) Equivalent rubble width:

W'J: = w""" =0.7802 m (Equation 8.12)

C.2.2 Rubble LoN Per Uatt Wklth oa Side flK'd

1\... =0.4375 m(Equation 8.18)

(i) {pad ncr unjt wjdth 90 individual SfljSlw

(a) LoweceQQC'iSitjoo j"" t: .'...,. Il.3°a".-61.49"; p..1 =186.2 N/m: p.....1 =88.9

N/m; and P_.I = 163.7 N/m

(b) Col!arsectjon i=2: .....:.8.51°; ~.,35.0"; Po.l=45.4N/m; P""-1 = 37.1 N/m:

and p••.:= 26.1N/m
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(c) Neckssctjpn j=J: •••.)""1.709"; «,.,=1.709"; Poo.)=ONlm; P-.JzONlm; and

P....)=ONJm

(ii)~:

PM! = 126.1 N/m; p..... == 189.8 N/m; P!Ih= 126.1 NJm; p... =249.3 NJm; and W.-, =

439.0 NJm (Equation 8.14 with VI = 0.02181 m1 [Equation 8.191 and Vn = 0.02175 m.'

[Equation 8.21J)

(iii) Enujvilen! robbh: wjdth;

wu = 0.559 m (Equation 8.23 with~ = 0.0698 m l
)

C.3 Ice Lood CakuIo_ (CIoapfn- ')

Ice loads for lhe center and tbe side facets are calculated separately.

C.3.1 Ice Load on Center Facet

(i) Beam c@Gkjng knah:

Assuming the ice cracking paltem as shown in Figure 8.13. Equation 8.11 gives 3

value of 0.1511 m for the beam cracking lengtb.~

(ii) Ride'uP and roWe bcisb':; h.-..iDllby..:

by.. = 0.S7S3 m (from Section C.2.1)

Since by.. > (h" = h~ ... 0.473 m). then h,..... 1.334 m (Equation 8.IS). and hL.1 = h~ •

ht = 0.233 m. hw:Z: h) - h~ = 0.240 m. and hw = h,.... • h. = 0.861 m.

(iii) Wejlbt of ride-un icc W -.....l:
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w"'-" is equal to 0.7802 m (from Section CI).

(a) WeightoD jndividYaI sectiON: Wtu.l =404.7 N: W...,,~ =297.3 N; and WNLJ"

955.2 N (Equation 8.17)

(b) ~:WJU=Wtu.I+W~+WruJz1657.1 N

(iv) foss required to push i" bloch up the :dope tbrpugh iss rubble; P:

Le,P,=ONanda.. z 0,=90":

(a) Neck section i = 3: p] =956.2 N (Equation 8.45)

(b) CoUargc:tjon i=2: P1 =1207.7N

(c) Lowe;rconesc;c:tjon i-I: P, =1519.2N

(v) force; cgmngne;nlS as wWrline Ht'y't...Hw.Yw:

Assume initial value: of (J'I - (Jf =44.38 kPa;

(a) ~: V'I>""217.5N1m(Equation8.5); Ht '" 1350N(Equation8.48): Vt =

IS40 N (Equation 8.49); V" = 1729 N (Equation 8.50); ~ '" 1.()435 (Equation 2.2):

Hw = 1804 N(Equation 8.51): Hror =3153 N(Equation 8.43); and Vtot = 2650 N

(Equation 8.44).

(b) Update the Cffcsl OuyA! strength for in-plane; fgq;c: SubstiNte the old value ofeJ'f

into (Jf' and calculate the DeW value of (J'f using Equation 8.53. Repeat the above

Sleps (a) and (b) until a'feonverges.

(el ~: (J·f",68.lIlcPa: V'I>=333.9N/m: Ht '" 1349N; Vt = I540N: Vw

::::1830N; Hw "'I902N; Htotz32S8N; andVror "'275IN.
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C.3.Z Ice Lo.d oa Side F-u

0) Beam CJ]Ckjng lengtb;

Assuming the ice cracking panem as shown in Figure 8.13. Equation 8.1 gives a

value of 0.86744 m for the beam cracking length. da.

(ii)~h..5;

b..5 = 0.4375 m (from Scctioo C.2.2)

(iii) Weigh! of ride-uP jcc W ...;

~: WN .5=187.5N(Equation8.24)

Distributing !be loW weight of ride-up ice on the lowest section gives: WNJ = WN,1

=0 N and W.... I .. Wrou = 187.5 N.

(iv) forces along X' - Z,J)[Si reqYired Iopysb jqblocjs 1m II!; $Iopetbrpugb ice rubble

1'.'

w,.. = 0.559 m (from Section C.2.2.ill)

Lc[P~=ONanda~= a.,:o:9O";

(a) Neck sg;ti90 i=1: PJ '" 0 N (Equation 8.45)

(b) ~,P,=6.6N

(e) Lpwe[£ooc:;ectioQ i =1; PI. 174.4 N

(v) Fore; components along X'. Z alA at wU,djnC' HT.YT..HW..Y....;.

Assume initial valueofO'f=Or=44.38 kPa;

(a) ~: V',= 217.5 N/m(Equalion 8..5); Hr = 204..5 N (Equation 8.48); VT=
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151.0 N (Equatioo8.49); V... = 439.7 N (Equation8.SO); ~::::< 1.0435 (Equalion 2.2);

Hw = 458.8 N (Equation 8.51); Hmr =663.3 N (Equation 8.43): and Vmr =621.6

N (Equation 8.44).

(b) Update the effect Oex,yral$trengtb Cor jn.p1ans Corce: Substitute the old value oCer'f

into (Jf' and calculate the new value of (J'f using Equation 8.53. Repeat the above

Steps (a) and (b) until a'rconverges.

(e) ~: a'r=49.37kPa; V·,,=242.0N/m: K,:a:204.5N: VT =251.0N; Vw

""460.9N; H... =481.0N; Kror=685.5N: andVTOT =642.8N.

(vi) Force; romponcO! orthur AlogB X.Z AUt:

HTOT 1-' X uisf S 383.8 N (Equatioo 8.36)

C.J.3 Total Itt LOMI on Cone

VTOTI...n=Vmrc_I+2VTOTt_,=4051 N

HrorI-aI=Hrorc_l + 2HTOTt-..-.X ....I.4041.5 N
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