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ABSTRACT
Faceted conical structures have been proposed as an alternative to the true conical

form to ease the fabrication and to lower th ion costs. In idering ice forces on

these structures, there was a concern with the validity of existing theories. The main

objectives of this study are to improve the ing of the i i and the

failure mechanisms of a level ice field against a faceted cone during continuous ice breaking,

and to provide engineers with a set of easy-to-apply formulae for ice load calculation. In this

thesis, the results of a three-part study, isting of i and

investigations, are documented. In Part I, a pilot series of physical model tests were

conducted to provide a clear insight into the i Some i

interaction features were identified from analysis of the test data which provided a
framework vital to further model development. In Part I, the unique rubble piling process

was further examined with the aid of existing parti ics and a

numerical analysis. A new rubble model was developed to predict the geometry of the rubble
and the forces exerted on the structure and the base support. In Part III, an appropriate ice
breaking model was selected from the existing theories for the adaptation of the new rubble
model. The new model, which considers the salient aspects of the rubble piling process,
agrees well with the experimental data.

The above and results are signi because, for the first time, to the

knowledge of the author, an ice load model has been established to account for the effect of

rubble in ice loading on a multifaceted cone based on essential features of the interaction.



The results provide a useful framework for further model development. The state-of-the-art
is such that it is now possible to incorporate rubble load in the force calculation with higher
degree of confidence. The methodology for doing so has been developed and presented

herein, and constitutes the main contribution of this work to the state-of-the-art.
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Chapter 1 Introduction

1.1 Background

Ice mechanics and ice engineering research in Canada have assumed increased
importance due to the growing interest in exploration of natural resources and industrial
developments in its Arctic offshore regions. A major driving force behind the heightened

interest has been in the i | shelf in the Arctic and sub-

Arctic seas. Canada has a vast infrastructure dependent on oil and gas and there are no
competing fuels on the horizon. Oil and gas are predicted to continue to make up about 60%
of Cunada’s energy consumption for the next two decades, as predicted by Canadian
government for the year 2020 (Natural Resources Canada, 1993). The total recoverable
reserves for the Frontiers was conservatively estimated at 22 Billion Bbls of oil and 275
Trillion Cfs of gas, with the largest reserves being located at the Grand Banks and the
Beaufort Sea (Natural Resources Canada, 1993). Such vast quantities of petroleum reserves
ensure a secure source of future supply for Canada in place of the rapidly depleting oil

reserves in Western Canada. This has hei the need fori

p
to lower the costs of il production from ice covered areas, and stimulated significant activity
in the development of novel offshore structures during the past two decades.

The development of new concepts and designs for engineering structures in ice
infested waters poses many challenging problems related to determination of ice loads and

assessment of the overall safety of such structures. Conical form at the water line has been



considered to be better than vertical surfaces in p

perating in
these regions and helping them to withstand severe ice forces, since this configuration
reduces ice loads by causing ice features to break in bending. Conical structures also provide
a natural and smooth transition from a wide-base to a narrow deck supporting the
superstructure.

Although great efforts have been put into both theoretical and experimental
investigations concerning ice forces on conical structures [see Wessels and Kato (1989)],
serious problems still remain unsolved. A review of the ice load prediction methods for
conical structures by Chao (1992) reveals a high degree of uncertainty in ice force prediction,

mainly due to the lack of full scale measurements and the absence of proper analytical tools

to model th plex th i i ice-st i ion problem. Itresultsin "over-
designing" to compensate for current lack of | ge. Such ign leads
construction costs and reduces a project’s feasibility. F early i | and

theoretical work on ice-cone interaction were entirely devoted to smooth cones which had
narrower necks relative to the water line diameter. However, by mid-1980's it had become
apparent that new designs, incorporating sloping flat faces (facets) and wide necks above the
ice waterline, may be more cost effective and practical, i.e., ODECO AMDP (Chabot, 1985).
Such a structure is presently considered for operation in Russian waters off Sakhalin Island.
These structural concepts can also be implemented in structures located in less severe ice

environments, i

., bridge piers and lighthouses.

No prior study related to ice forces on faceted cones existed before 1988 (Croasdale

©



and Muggeridge, 1993). The i i were not fully

Since the flat facet and its sharp corners were unique to a faceted cone, it was suspected that

such features would lead to an ice breaking and clearing process substantially different from

that of a smooth cone. s idering ice forces on these there was a concern with
the validity of existing theories in predicting ice forces knowing that their geometry was
significantly different from the true conical form. The anticipation of rubble accumulation
in front of the structure also led to a concern that the ice clearing forces would be greater than
the predicted values, obtained using current theories. In order to enhance the understanding

of how ice would fail and clear around such structures, and to develop a proper ice load

estimation formulae, model testing and better ical ion of the i ion were
proposed.

In 1988 the Memorial University of Newfoundland (MUN) collaborated with the
Institute for Marine Dynamics (IMD) and the Institute of Mechanical Engineering (IME) of
the National Research Council of Canada (NRC). Esso Resources Canada Limited (ERCL),
Exxon and Mobil in a university-industry program to perform an extensive series of physical
model tests in order to better understand how ice floes and ridges would fail and clear around
such structures, and how well existing theories predicted the global loads. The results of the
various components of the program are described by Croasdale and Muggeridge (1993).
While results of each series of tests have been separately documented [Metge and Weiss
(1989). and Metge and Tucker (1990) for ERCL's test series; Irani et al (1992) for IME's

series, and Lau et al (1993b) for IMD's series), and published [lrani and Timco (1993);



Timco et al (1993); Lau et al (1993a); [zumiyama et al (1993, 1994) and Wang et al,
(1997)], only very simple analyses were performed and they were fragmented in nature.
Many aspects of the interaction processes and the effects of various factors on ice loads were
not fully addressed.

I conducted the model test program in IMD with the assistance of Mr. J.R. Tucker
of MUN during my stay in the institute. Analysis of the results from the IMD series,

supplemented by additional data analysis of the ing series, and ice

force modelling form the bulk of the research effort for this thesis. Focus is devoted to level

ice tests only.

1.2 Scope and Objectives
The main objectives of this study are:

i) To improve the ing of the il i and failure

mechanisms of a level ice field against a faceted cone during continuous ice

breaking, and

(ii)  To provide i with a set of easy-to-apply formulae for ice load

calculations.
In this work, the major issues addressed are:

(i) Whether the existing theories, proposed based on earlier experiences with

smooth cones, were h for icting ice forces on

faceted cones; and,



(i) If the existing theories did not adequately predict ice forces on faceted cones,

what modifications were necessary to correct the deficiencies.

From a more practical point of view a load prediction model, applicable to the faceted
cone shape, was to be developed for design purposes. The model should reflect accurately
the dominant interaction processes generated by this unique shape.

While an improved ice force prediction model is proposed here to suit the practical
need of designers, the theoretical modelling effort is kept to a minimum. Existing analyses

of ice force on smooth cone were used when deemed appropriate. The improved model

the most hensive attempt to i inits

problem treatment and forms a new conceptual framework for future model refinements.

1.3 Approaches and Methodologies

This research i igation consists of i ical. and ical

studies described here in three parts. The approach promises the most versatile and relevant

for improving our ing of the ice-structure i ion problem for the
multifaceted cone.

In part one, the pilot series of physical model tests are reported. The physical model
tests were planned to provide a clear insight into the interaction processes by combining
relevant observations and interpretation of results. The ice forces corresponding to peak load

events were identified for each test, along with the associated interaction processes. The

observed unique i i helped to model, which would



provide a focus and outline of the tobei i and the methods to be used
to investigate these phenomena.

The model tests also provided a unique set of experimental data to assess the validity
of existing formulae for predicting ice loads on a faceted cone. Comparisons were made of

the experimental results with the ictions of a leading ical model for

P

computing ice forces on smooth cones. The ison further ined the iency

of existing theories in predicting ice forces on faceted cones.
It became evident during the early part of the model tests that the ice pile-up induced
by the flat facet was a typical behaviour of ice around the faceted cones as opposed to the

smooth cones. A proper ing of the i ics and the

process of ice rubble held the key to further studies in this area; this forms the focus of part

two of this research. Theories in the field of parti ics were i and a

new rubble model was developed from appropriate theories to predict the geometry of a fully
developed rubble and the load it exerted on the structure. The geometry of the rubble was
deduced based on a simple interaction geometry and mass balance considerations; whereas
the equations for calculating the boundary forces exerted by the rubble at it’s interfaces with
the wall and the base support were empirically formulated from a rigorous interpretation of
a series of numerical simulations of earth pressure on a retaining wall. The numerical
simulations were carried over a broad spectrum of interaction conditions using the discrete
element method (DEM), implemented in a 2-D version of the computer code DECICE.

Part three was devoted to the development of a new ice force model which took into



account the main feats fthe i i iated with faceted In view

of the existence of many ice breaking models, detailed modelling of the phenomenon of ice
breaking under load was not carried out in this work; instead, the existing analytical models
of ice forces on sloping structures were critically assessed through an extensive comparison
with experimental data, and a base model of ice breaking was selected. This base model was

further incorporated into the new rubble model developed in part two, resulting in a set of

formulae which d based on i observations and basic

mechanics of ice. These formulae represent in a concise and general fashion the description
of ice breaking and clearing phenomena, the observed relationship between the processes.
the basic mechanisms that underlie such relationships, and the relationships among relevant

ice and structure parameters.

1.4 Organization of the Thesis
This thesis consists of a total of nine chapters. The first two chapters form the

introductory study to the thesis. Chapter | discusses the issues addressed in this work. The

relevant and ies are briefly i Chapter 2

con: of aliterature review, which focuses on previous studies and modelling of ice loads
on sloping structures. The existing theoretical models and the associated ice-structure
interaction processes observed in relevant model tests are summarized, with the limitations

and shortcomings of the previous studies discussed. The subsequent seven chapters, viz.,

Chapters 3 to 8, are divided into three parts, corresponding to the three stages of this study



already mentioned above.

Part1 the results of the i i igation, which consists of two

chapters, Chapters 3 to 4. Chapter 3 describes the tests and summarizes the results. Chapter
4 identifies the salient aspects of the ice cone interaction processes. and presents the analysis
of peak ice loads. The last section of Chapter 4 serves as a conclusion of this part, where the
findings are summarized and a conceptual model is presented, which forms the framework
for further model development.

The unique pile-up process of ice around a faceted cone forms the focus of Part II.

This part consists of three chapters: Chapters 5 to 7. which document the results of a

rubble modelling. Chapter 5 ises the ituti iour of a rubble
under load. The deformation characteristics of a rubble in front of an inclined wall are

identified, and the existing i for load ar i Chapter 6 presents

a rubble model for predicting the geometry of an ice rubble in front of a multi-faceted cone.
Chapter 7 consists of two parts which summarize the results of a series of numerical
simulations using a discrete element code. The first part examines the shear strength of the
rubble via a series of shear test simulations; whereas, the second part presents a set of
empirical equations to compute the load exerted on an inclined wall and the base support by
the rubble.

Chapter 8 constitutes Part [T of this thesis. This part is dedicated to the presentation
of a new ice force model. In the first half of Chapter 8, a base model for ice breaking is

selected for incorporation into new rubble model developed in Part II of this thesis. In the



latter part of Chapter 8, the new ice force model is developed, documented, and validated.

The final chapter izes the hefforts and ibuti de

this study. Conclusions arising out of this study and recommendations for future work in this

area are given in this chapter.



Chapter 2 Literature Review

The faceted cone is a structure proposed for future oil and gas developments in the

Arctic and sub-Arctic regions; there is no ical and/or

studies on such structures available in open literature. Since the faceted cone possesses a
basic conical form with inclined surfaces, a review of studies carried out on inclined
structures, i.e., conical structures and inclined planes, could be helpful to the present
research. Thus, the literature available on ice interaction with an inclined structure is
reviewed and discussed in this chapter. Emphasis is laid on the available theoretical
modelling of ice loads on the structure and the observed ice-structure interaction processes;
the physical modelling of ice load is only briefly discussed.

Over the last two decades, significant progress has been made in developing models
to predict ice loads on inclined structures (including conical structures and sloping planes).
Extensive reviews of the existing analytical and empirical methods were given by Sodhi
(1987), Marcellus et al (1988), Cammaert and Muggeridge (1988), and Sanderson (1988).
Wessels and Kato (1989) reviewed the ice failure modes around conical structures, and
summarized the available model scale and full scale measurements. Evaluations of the
performance of several methods were given by Croasdale (1980), Timco (1984a), Marcellus
et al (1988), and Chao (1992).

Section 2.1 gives an overview of the dominant interaction processes as observed in

model tests. The ical models are ized in Section 2.2. The work

10



described in this thesis was conceived as part of a larger project with collaboration among
many participants. A general overview of the whole test program is given in Section 2.3.
The major findings reported by other participants are also summarized in the section.

Section 2.4 various i and gives a state-of-the-art

of the present available expertise on ice force predictions on conical structures.

2.1 Ice-Structure Interaction Processes

2.1.1  Conical Structures

The ing iption of the i ion between a conical structure and a level
ice sheet is based on the studies reported by Croasdale (1980), Sodhi (1987), Wessels and
Kato (1989), and others. Additional details of the failure processes and ice forces
encountered by sloping structures have been obtained from experiments carried out by
Haynes et al (1983), Wessels (1984). Kato (1986), Hirayama and Obara (1986), Clough and
Vinson (1986), Maattanen (1986), Lau et al (1988), and Lau and Williams (1991).

As an ice sheet advances toward a conical structure, local crushing of ice occurs at
the ice-structure interface. The local crushing creates an interaction force normal to the
structure surface. In addition, because the ice is sliding upwards relative to the surface, a
frictional force is also generated. These forces create in-plane and out-of-plane forces, and
an edge moment; and a complex three dimensional stress state is induced in the ice. As the
ice sheet continues to advance, the stresses increase until failure of the advancing ice sheet
occurs in either one or a combination of the following failure modes: bending, crushing,

11



shear, buckling, and splitting. Observations show that the bending failure is more dominant

than the other modes of failure under i i itions such as low inclination angle
(10° to 60°), low ice-cone friction coefficient, small ice thickness, and low speeds of ice
movement.

For a bending failure of ice sheet, the failure mechanism is governed by the flexural
stresses induced in the ice in both radial and circumferential directions. If the cone is small
compared to the ice thickness, radial cracks radiating at 60° intervals initiate the failure. The

peak load, however, occurs i i ks develop and wedges of ice break off.

With increasing cone diameter the curvature of the cone surface at the waterline decreases,
and the maximum tensile stresses of the ice cover change from circumferential direction to
the radial direction. This process causes the ice sheet to fail first circumferentially and
thereafter radially.

Failure modes other than bending can dominate under specific loading conditions.
With increasing steepness and roughness of the cone surface, or ice thickness, the failure
mode also changes gradually from bending to shear or crushing. At higher speeds, the failure
mode changes abruptly from bending to shear or crushing due to dynamic effects (Wessels,
1984: and Haynes et al, 1983). The speed at which the transition of failure modes takes
place was found to increase with the increase in the inclination angle (Haynes et al, 1983).

The influence of shear stresses on determining failure modes becomes more
important with increasing ice thickness and is finally predominant for thick ice fields
(Maattanen, 1986). Observation of actual fracture patterns in thin ice reveals that pure
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bending occurs when circumferential cracks form at distances slightly higher than the
characteristic lengths; and with increase in thickness, the average length of broken pieces
decreases which may indicate a combination of bending and shear failures (Wessels, 1984;
and Lau et al, 1988).

Michel (1978) has described the condition where ice sheets interact with inclined
structures having an inclination to the horizontal of greater than 75°. For structures in this
category, crushing will generally take place before bending.

After the local failure of an ice sheet the broken ice pieces, pushed by the
approaching ice sheet, rotate until they are parallel to the inclined surface, and begin to ride
up the face of the structure (which has been termed ride-up); then the ice clears around and
slides down the back side of the cone. As the ice pieces rotate, water drag and inertia forces
are developed on the structure. The broken ice pieces sliding up the inclined surface also
develop frictional and gravity forces on the surface.

The geometry of structure above the waterline has a significant influence on the way
the broken ice clears around the structure. On a cone with relatively narrow superstructure,
the ice can clear around the structure easily: however, for a wide conical structure or a
sloping plane, the ice may reach the superstructure and roll back onto itself, creating
additional ice on the slope of the structure, which may lead to an ice rubble pile in front of
the structure, interfering with the ice breaking process.

If the ice is weak, the load applied to the unbroken ice sheet by the broken ice pieces,
as they are being pushed up the cone surface, may cause the ice sheet to fail in bending with
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the broken ice pieces sliding down the front of the cone.

2.1.2 Sloping Planes

Many experiments have been conducted to study the features of ice failure processes
and the associated ice loads on narrow and wide sloping planes (Zabilansky et al, 1975;
Sorensen, 1978: Haynes etal, 1983; Timco, 1984b; Frederking and Timco, 1985; Michel

and Picard, 1989; Valanto. 1989; and Finn, 1991). The observed failure modes and the

are similar to those ibed in the previous section. The features of ice failure
processes, particular to ice interaction with sloping planes, were summarized as follows
(Sorensen, 1978; and Timco, 1984b):
As the ice sheet is lifted upwards by a narrow plane, two radial cracks extend outward
from the corners of the plate at an angle of about 30° according to Michel and Picard (1989)
and Frederking and Timco (1985), and 45° according to Finn (1991), to the sides of the plate.
forming a cantilever beam with the width slightly wider than the structure. Occasionally, a
radial crack also emanates from the centre of the plate (Finn, 1991; and Michel and Picard,
1989). When the flexural stress in the ice sheet exceeds the strength of the ice, a
circumferential crack forms at a finite distance from the structure, and the peak load is
attained. Under some circumstances, the peak force could occur during the radial cracking
(Frederking and Timco, 1985).
Upon further advance, the broken ice slabs slide up the front face reaching the top of
the structure. The ice which overhangs the sides of the inclined plane usually breaks off due
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to its own weight. [n comparing with conical structures, the ice clearing around a sloping
plane is less efficient. The broken ice slabs usually reach the top of the structure. If they are
not cleared off, they may roll back onto themselves, leading to an ice rubble pile in front of

the structure, which interferes with the ice breaking process.

22 Models for Ice Force Predictions

The development of computational methods for ice loads on sloping structures has
been limited because of the lack of knowledge about the dynamic nature of interactions, and
the complex rheological behaviour of ice and boundary conditions during the interaction.
In order to meet the practical needs of designing structures with conical forms, various
computational methods have been developed by making assumptions that would permit
analysis of the problem using available theoretical procedures. The simplest method to treat
the interaction is to assume that the structure is rigid and that only the deformation and
failure of ice sheet are considered. [t should be noticed that all the analytical formulae were
derived based on observations from small-scale model tests with gentle sloped cones (i.e.,
~45"to the horizontal), thin ice, low friction coefficient and low ice speed. in which bending
failure is dominant.

In the following sections, several approaches for predicting sheet ice loads on

inclined structures are reviewed, which cover essentially all the important known models,

and are ive of the available These generally fall into two

basic types:



(i) Analytical formulations based on elastic or plastic analysis, and

(i)  Semi-empirical formulae based on experimental data.

2.2.1 Analytical Formulations
Classical analytical procedures have been adopted to investigate the effects of an ice
sheet impinging on a single conical structure. The forces depend on the mechanisms of

failure and the geometry of the structure. Usually dynamics, creep and other effects are

p with some j

2.2.1.1 Croasdale's Approach

Croasdale (1980) proposed a simple two-dimensional theory for wide structures
based on the theory for beams on elastic foundations (Hetenyi, 1946). The ice sheet was
treated as a semi-infinite elastic beam on elastic foundation subjected to a horizontal force,
F.. and vertical force, F,, at one end. At the instant of first contact, the relationship between

F, and F, can be derived by resolving the forces, viz.,

F = F& @

where & is called resolution factor defined as:

sina +p cose St
= ———— = tan(a+tan"p) @-2)
cose - sina



with o being the angle of the slope from the horizontal and , the friction coefficient.
The maximum value of F, is limited by the flexural (tensile) strength of the ice sheet

with an vertical edge loading by an elastic ion. The hori: force per

unit width of the structure, generated at the instant of first failure of ice, is given by:

F, Mo
. 0,630,(“ TE (2-3)
D E

where D is width of the structure; o, bending strength: ¥, weight density of water: t, ice

thickness; and E is elastic modulus of ice. For subsequent interaction, an extra force is

required to push the ice up the slope. The ing total force i by the

structure is

F, vw"]%
ik o, (T + ayk,y 2-4)
where:

€ = 068 2-5)

. sina + pcosa
&, = E(sinee + p cosa) + " (2-6)



with z being the free-board, and y the weight density of ice.

In the above relationship (Equation 2.4), the first term (on right hand side) can be
considered as the force necessary to break the ice, and the second term can be considered as
the force necessary to push the ice pieces up the sloping structure. It could be a simplified
2-D relationship for a wide structure, but as the structure width decreases relative to the
characteristic length of ice, the zone of ice failure will be wider than the structure itself, and
most of the ice pieces will not necessarily ride-up the structure but clear around it. For

narrow Croasdale a simple ion to adjust the two dimensional

force by the ratio of the length of the circumferential crack divided by the structure width,

i.e.. multiplying the ice breaking component by

g wl, 2
R 5
4D ¢

where |, is the characteristic length for the plate given as
_| E? )&
L= [ 0 2-8)

However, other investigators (Ralston, 1977; and Nevel, 1980 and 1992) have given more

rigorous analyses of the three-dimensional problem.



In 1994, Croasdale et al extended their thi i i analysis to i

adjustments for in-plane compression as well as effects of ice rubble build-up in front of the
structure. The in-plane compression creates a compressive stress in the ice sheet increasing
it's effective flexural strength. The increase in load was computed through an iterative
process. The modifications for the presence of ice rubble include: the force necessary to
push the advancing ice sheet through the ice rubble; the additional force necessary to push
the ice blocks up the slope through the ice rubble: and, the additional force necessary to lift
and shear the ice rubble on top of the ice sheet. Croasdale pointed out that the model was

simple to use and could be easily i

P intoap ilisti . He further
asserted that the model gave results similar to more complex models, i.e., Nevel's model
(1992) although simplistic assumptions had been made.

His model is based on simple mechanics and provides a good appreciation of the

p roles various and play on ice force development. It can be
a useful starting point for the development of more complex approaches, and will be

examined in a greater detail in Chapter 9.

2.2.1.2 Nevel's Approach

In a three dimensional case when the zone of failure extends wider than the structure,
the failure occurs after the formation of radial cracks when a circumferential crack takes
place. Therefore, the simple beam theory has to be replaced by a more complicated plate
theory. and the ice force problem is reduced to the prediction of the forces necessary to:
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(i) Initiate radial or ci ial cracks in a i-infinite floating ice sheet,

and

(i)  Fail a series of truncated ice wedges, formed by radial cracking of the ice, as

it advances against the cone.

Nevel (1965) performed numerical integration to determine the bending moment
required to initiate failure of an semi-infinite floating ice plate. He treated the problem as
a semi-infinite plate on an elastic foundation with a load applied near the ice edge. The
maximum deflection which occurred at the edge under load, the moment which caused the
initial radial cracking of the plate, the distance from the edge at which a circumferential crack

would occur, and the moment that caused the ci ial crack were and

given in graphical and tabulated forms.
If the failure was initiated by radial cracking, a series of truncated ice wedges would
form. and the subsequent failure was reduced to the prediction of forces necessary to fail

these wedges. Nevel (1972) gave the failure force P on the tip of a truncated wedge to be:

a a’
=105 - 2.0(;—) - 05 (2-9)

where a is the distance from the tip of the wedge over which it is loaded, and b, is a constant

defining the width of the wedge, b, in the equation

b =bx (2-10)



with x being the distance along the wedge. His analysi: p with
data on the ultimate load carrying capacity of ice sheets.

Nevel (1980) further analysed the wedge on an elastic foundation subjected to an in
plane force and edge moment and he considered the buckling and bending of this wedge. An
exact solution was obtained by means of a contour integral in a complex plane. In general,

the solution shows that this additional moment is small because the deflection of the ice

wedge is small when failure of the wedge occurs. However, the effect of in-plane

pression becomes i i i for steeper cones and thicker ice.
Recently. Nevel (1992) refined the existing analytical theories and presented a

rigorous treatment of ice forces and moments on conical structures from ice floe. The new

theory included either si ial breaking for d the ride-up forces. The
ice cover was treated as an idealized truncated wedge based on his earlier work (1980). Of
particular significance is the development of forces from ice sliding on the surface of the
cone. The analysis identified where the forces acted on the cone, and hence allowed the

determination of moments. F the in-plane ion and edge moment were

incorporated in the solution.

In general, the cone could be multi-sloped, composed of a number of conical sections
with the vertical neck of the cone being the smallest section. For each broken ice piece, the
forces which act on the cone were determined along with those which were transmitted to
the broken ice piece below. The analysis proceeded from the neck section to the waterline
with a resultant ice load from the broken ice pieces acting on the floating ice wedges.
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To calculate the wedge failure load, Nevel used his solution for the deflection of a
wedge on an elastic foundation (Nevel, 1980) by considering the bending of a wedge beam,
with it's free end being acted on by a shear force, a bending moment, and a compressive
horizontal force. For sequential breaking, it was assumed that the maximum load on the
cone occurred when the centre wedge failed. Hence, the maximum force was the sum of
force from the wedge nearest the centre which failed and all other wedges that did not fail.
In simultaneous breaking, the breaking loads for all the wedges were summed.

A computer program was written which allowed sufficient variations of the input

permitting the si ion of realistic ice conditi His solution was rather

complicated and too lengthy to be reproduced here and the reader is referred to the original

paper for full details (Nevel. 1992).

2.2.1.3 Ralston's Approach

Croasdale’s and Nevel's approaches were based on the theory of elastic plate or beam
on elastic foundation. An analysis by Ralston (1977), was based on an elastic-plastic
representation of the ice failure. He used three-dimensional plate theory, and plastic limit
state analysis, where the work done by external forces was equated to the rate of energy
dissipation. The use of an upper-bound procedure of plastic limit analysis led to a
mathematical model for both sheet ice failure and ride-up on a conical structure. The derived

formulae for the horizontal F, and the vertical forces F, were expressed as follows:

"
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F = AfA0f* + Ay, 1D + Ay (D* - D)) @-11)

F. = BF, + By (D> - D} 2-12)

where D, and D were top and waterline diameters of the cone, respectively; A, and A,,

coefficients dependent on:

-13)

and A,, A,, B, and B, were coefficients dependent on the cone angle and ice friction. Values
for the coefficients were given in his paper.

In both the equations given above (Equations 2.11 and 2.12), the last term (on the
right hand side) is due to ice pieces sliding over the cone surface, and the other terms result

[rom ice breaking. According to observations, radial cracks occur before circumferential

cracks and not si Th i ial cracks give the maximum assumed ice

loading condition. The elastic analyses of failure follow closely each stage of crack

while the si ion of the cil ial and radial cracks

assumed in Ralston’s model is not realistic. Therefore, Ralston's plastic approach tends to

the bending resi of ice. and Hoil (1990) modified
Ralston'’s solution to omit the contribution of energy dissipation due to radial cracking. This

result gave a better fit to their model test data and field measurements. Nevertheless,
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Ralston’s theory has been regarded widely to be satisfactory in predicting ice forces after

with i data.

2.2.1.4 Maattanen's Approach

Full-scale ( and i, 1985; Hoil 1985) have

indicated that a rubble pile is likely to form in front of a conical structure. Previous scale
model tests and theoretical models do not consider the effects of pile-up.

Maattanen (1986) refined the analytical models by taking into account the effect of
the ice rubble pile on the bending moment distribution in the ice sheet in front of the
structure. The model is formulated using finite element methods capable of both bending
and buckling analysis. A constant thickness ice sheet is moving laterally and breaking
against an inclined wall under a triangular shaped ice rubble pile. The rubble pile is treated
by using classical Coulomb's soil mechanics. The two dimensional model is based on the
bending theory of a beam on elastic foundation. The loading consists of horizontal and
vertical edge reaction loads and distributed vertical and horizontal rubble loads. Different
ice failure modes are considered.

Anexample calculation shows that the ice rubble pile loading enhances edge crushing
and shearing, changes the location of the maximum bending moment, and results in smaller
broken floes than predicted by previous models. With the same bending moment level the
ice load could increase by about 50% due to the ice rubble.

Ina work, and Hoi (1990) extend the analysis to a three
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dimensional case. The beam theory is replaced by a more complicated wedge plate theory.
The new ice force calculation procedure is compared with results of full scale measurement

and scale model tests. The between the ions and

appears to be good.

2.2.2 Empirical Formulae

Empirical and semi-empirical formulae have been proposed based on small scale
model tests (Afanas'ev et al, 1971; Edward and Croasdale, 1976 Pearce and Strickland,
1979: Brooke, 1981: Hirayama and Obara, 1986; and Kato, 1986). The total force was
customarily split into two components:

(i) The force essential for breaking the ice. and

(ii)  The force necessary to cause the broken ice to slide up the surface.
Dimensional analysis has been the main tool in finding the form of equations. The
coefficients in each formula are then determined by linear regression analysis of data from
respective experiments. The empirical formulae are summarized in this section. The test
variables for each test data sets, and the coefficients of the respective formula are listed in

Table 2.1.

Afanas'ev etal (1971) proposed the ing empirical relationship based on el

plate theory:

F, = a,0f’tane (2-14)



where

S

a, = 1—93? 2-15)

with S, being the length of the circumferential crack given as

D, ™,
8o~ (AL »o X
: G (2-16)

Their results give only the breaking component of the force exerted by the ice sheet.

Although this formula i the force, the effects of ice strength, ice thickness, and

cone angle are clearly included and the trends seem reasonable.
Edwards and Croasdale (1976) performed a series of model tests on 45° cones with

a friction ient of 0.05. They di i argued that the hori force F, on the

cone should be

F, =agop +ayDt? 217

where a, and a, are constants. The first term is the ice force caused by ice breaking, and the
second term is the force generated due to ice riding up the structure slope. The ride-up force
component is a function of D and t*, while the breaking component is independent of the
width of the cone at waterline. The form of the empirical expression is similar to Ralston's
plasticity model except that the ice ride-up component contains Dt rather than D’t. Ralston
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(1977 thatif the i ing term was itten in terms of D’t, thy

would also be approximately those computed by his analysis for the test conditions. Data
from model tests showed reasonable agreement.

Pearce and Strickland (1979) claimed that the equation

F, =aop* + ayD (2-18)

fitted their experimental data.
Brooks (1981) adapted the general form of ice resistance equation for an ice breaking

ship to fixed, upward-breaking, conical structures as:

F,=aop* +ayD" " + ayD*V? 2-19)

where V is the velocity of the ice. The first term is the ice breaking component, the second
term is the ice ride-up component. and the third term accounts for the inertia effects of the
moving ice sheet. Dimensional analysis yields relationships between the exponents in each
term of the equation. The coefficients, a,, a,, a,. and the exponents were determined from
a limited data set derived from model tests with a 45° cone. The test variables included

waterline diameter, ice flexural strength, ice thickness, and ice velocity.

Based on their model tests and s 1} i test data sets, and di

analysis, Hirayama and Obara (1986) proposed the following formula:



(@ o (5 () am
F, =ag’ I_ + a,yED*t 777 & e

Their results agreed well with other published test data and with the theoretical results of
Ralston (1977). However, the data showed a slight dependency of ice breaking component
on (D/L,), and such dependency was not observed in previous tests. Ralston explained that
the apparent discrepancy was due to the small values of (D/1,) tested by other investigators,
which was typically limited to a range of less than 0.5. When (D/I,) << I, there will be no
dependence on the cone diameter.

Kato (1986) published the following empirical formula:

F = a0t + a(D* - Dyt (2-21)

where the coefficients a, and a, were functions of cone configuration, coefficient of friction,
and relative velocity between ice and structure. Kato kept the friction coefficient between
ice and the structure at 0.09 in his model tests. Since the coefficients in the analytical

expression were also dependent on the friction coefficient, he commented that it was

necessary to i i the d of these ients on the ient of friction.
ary & P

23 MUN/ERCL/NRC Multi-Faceted Cone Tests
The experimental work conducted by the author was carried out as part of a larger

project, entitled *“MUN/ERCL/NRC Multi-Faceted Cone Study”, a collaboration between
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Memorial University of Newfoundland (MUN), the National Research Council Canada
(NRC). Esso Resources Canada Limited (ERCL), Exxon and Mobil. As the major focus of
the collaborative program was on ridges, only limited amount of data were obtained for level
ice. Nevertheless, sufficient data on level ice were obtained from which valuable insights
were gained and further mathematical modelling was made possible. In Section 2.3.1, the
test program is briefly summarized, followed by a review of the findings contributed by other
participants of the program. Emphasis is given to the level ice tests as they form the focus

of the present study.

2.3.1 Test Program
The principal objectives of the collaborative program were:
(i) To understand how multi-year ice floes and ridges would interact

with a multifaceted cone; and

(ii) Toi igate the effects of i i ion and the
forces developed on faceted conical structures having the
diameter of the above-water vertical "neck” to be almost as

large as the waterline diameter.

Under the perati ERCL was ible for the testing of two large
scale models (1:10 and 1:20) in their outdoor basin in Calgary. The test program for MUN
and NRC involved testing of small and a medium size models at NRC's indoor facilities -

a 1:50 scale model at the Institute for Mechanical Engineering (IME) in Ottawa and 1:25 and
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1:50 scale models at the Institute for Marine Dynamics (IMD) in St. John's. With model tests
conducted in four different scales, the results of this program could be used to determine the
influence of any scaling effects on modelling ice-structure interaction as well as to provide
a good comparison of model ice results with those where "naturally grown" saline ice was
used. i.e.. ERCL’s series.

The principal di ions of the and model are shown in Figure

2.1 and st arized in Table 2.2; theci i i are given for base, waterline,
collur and neck dimensions. The dimensions are based on the geometry of several large
exploration drilling structures designed for the Beaufort Sea. These concepts incorporate
sloping flat faces (facets) and wide necks above the ice waterline. The structure is a six-

faceted multi-angle cone having aci ibed diameter of |15.5 m at the base. 30.0 m at

the waterline and 23.1 m at the neck. A similar structure with a 11.6 m wide neck was also
modelled to study ice interaction with cones having a smaller neck to waterline diameter
ratio. The number of sides was chosen to emphasize the effect of using a multifaceted
structure as distinct from a smooth cone. The slope of the sides. 5:6 or about 40°, was close
10 that proposed for several exploration drilling structures. The steep 2:1 slope section
between the neck and the larger lower section was designed to prevent thick ice pieces from
jamming against the neck.

During the IME test, the model was elevated to give a larger waterline diameter to

increase the loads on th for of the This resulted

inascale of approximately 1:30 at the waterline for IME's tests. IME's tests were carried out
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only with small-neck model, whereas both IMD's and ERCL's tests used both small and large
neck models.

The ice sheet used in the IME and IMD test series was made of EG/AD/S model ice
developed by Timco (1986), whereas saline ice was used in ERCL's test series. Flexural
strength of the ice sheet was measured using several insitu beams. In most of the tests, the
beam loads were measured by applying the load, both in the upward and downward
directions. The elastic modulus, ice density and friction coefficient were also measured
during all the tests except the IME series. Several measurements for the compressive and
shear strength were also carried out for IMD's tests.

The models in IMD's and ERCL's facility were tested in a face-on orientation in

which a facet was facing the ing ice. Two additi i i edge-on and
intermediate, were also tested in IME's series to examine the effect of orientation.
ERCL's series primarily focussed on ridge loads on structure. Data from the level

ice tests were limited in nature which pi detailed

Nevertheless, ERCL's tests were performed in a much larger scale than the existing tank
experiments, and natural grown ice were used, which provided valuable data for ice force
model validation. On the other hand, IMD's and IME's test series provided a substantial

amount of data in level ice under various highly controlled test conditions: hence they

provided valuable data for detailed i ion and process i

The ice properti with th ion of the test condition ineach

test for ERCL's and IME's series are extracted from respective data report and reproduced
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in Appendix A for quick reference.

232 Analysis of IME’s Test Results

Rubble building is an essential part of the ice clearing process. Large amounts of
rubble accumulate in front of the cone, and impose substantial loading on the structure and
the intact ice sheet.

[zumiyama et al (1994) analysed the model test data obtained in NRC- IME's facility,
and provided quantitative information on the formation of the rubble field and its effects on
the ice forces. They identified four types of rubble formed in front of the faceted cone with

fuce-on orientation. A schematic of each rubble type is shown in Figure 2.2 with the

ing description given after i etal (1994):
@ A-Type:

When the ice was strong, the ice pieces were very large compared to
its thickness. The broken ice pieces would ride-up the model and fall off the
side of the facet readily. The rubble field that formed was small.

(i) B- H

This type of rubble field was commonly observed. To form this type
of rubble field, the ice pieces which fell from the top of the cone would roll
back down the front of the cone, and form a single-thickness rubble field as

a steady-state condition.



(iii) C-Type:
This type of rubble field was also quite common. It was similar to the

B-Type, except that the ice pieces broke up into many small pieces as they

rolled down the front of the model, when the ice strength was low. This

created a rubble field consisting of small ice blocks and crushed, mushy ice.

(iv)  D-Type:

This type of rubble field was not common. It generally occurred when

the ice was both thick and strong, and large pieces of ice would pile up in

front of the cone.

The occurrence of various types of rubble was found to be a function of ice strength
and ice thickness. Figure 2.3 shows the occurrence of the different types of rubble in
strength-thickness domain.

The size of broken ice pieces played an important role in the rubble formation process
and the ice force exerted on the model. Izumiyama et al aiso performed a piece size analysis
with data from the IME series. They reported the average sizes of ice pieces at the neck, Ly,
and L, were directly proportional to the parameter, L = (6#/1,)", as shown in Figure 2.4.
The Ly, and L, are defined in Figure 2.5.

Izumiyama et al also showed the ratio of the maximum ice force on the model, Fr,
to that in the no rubble condition, Fro, as a function of L/D, where D is the maximum
waterline diameter of the model (Figure 2.6). The effects of the rubble field on the ice force
were shown to be a function of ice piece size, ice strength and ice thickness. Based on their
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tests, the rubble can increase the ice load by a factor of 1.5 to 2.5.

2.3.3  Analytical Models

Croasdale et al (1994) and [zumiyama et al (1993) have developed ice force models
concurrently based on observations from the multi-faceted cone experiments.

Croasdale et al (1994) compared his model with the experiments conducted in
ERCL's outdoor test basin where ice rubble was present as shown in Figure 2.7. Their
model is reviewed in Section 2.2.1.1. The size of the rubble was estimated from
photographs. It should be noted that Croasdale et al only developed a theory for single slope

cone structures, while the test were Iti-sloped. The by which he

adapted his theory to the multi-sloped cone was not provided. Despite a large scattering of
data at the lower measured load levels, his predictions agreed quite well with the
experimental data, and provided an upper-bound to the measurements.

[zumiyama et al (1993) extended Frederking and Timco's work (1985) on ice forces
on inclined panels, and developed a model for ice force exerted on a face-on oriented cone

with rubble present. By idering various force on the ice sheet contacting

the facet at the waterline as shown in Figure 2.8, they identified the following component for

ice force:

F: =V + Vg + R+ (P + Rsina (2-22)

where F, is the total vertical force; Vg, the vertical force required to break ice: Vg, the force
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due to rotation of ice; R, the force due to the weight of ice rubble; and P is the force due to
the weight and friction of ice pieces on the facet. For further details about each individual
force components, please refer to their paper.

[zumiyama et al established the validity of their model under no rubble condition by
comparing their model predictions with the peak force in the initial portion of force time
series, where ice rubble was absent, as shown in Figure 2.9. The figure shows good

between model iction and F the

shows that the existing model treatment of the ice force on conical structures is applicable
to u faceted cone for the prediction of the ice breaking and ride-up forces, if the unique
geometry of the faceted cone is properly considered.

Izumiyama et al's model requires the vertical force R due to the weight of rubble to

be known. To estimate the values of R, i etali arubble ient, Cg,

where:

R = Coyywit 223

with w, being the width of facet at waterline: Y, weight density of ice; ¥, weight density of
water; and I, the breaking length taken as half of the characteristic length. This rubble
coefficient gave the relative index to the volume of rubble ice field. They established the
relationship of the rubble coefficient as a function of ice thickness and strength by back-
calculating the coefficient of each test using their model (Figure 2.10). Izumiyama et al
pointed out the complexity of rubble modelling, and the various factors affecting its
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formation. Although, a functional relationship was observed between the rubble coefficient
and the ice thickness and strength, the large scattering of data testifies to the complexity of
rubble piling, and further study and accumulation of data are needed.

Tzumiyama et al’s and Croasdale et al's models were formulated based on a limited
set of test data. The functional relationships of the rubble geometry, ice mechanics, and
clearing process to the basic ice and structure parameters had not been adequately

established. The lack of such relationships from models severely limited their applicability

to a wider range of ice and structure iti Despite the implification of the

interaction process, both models h: identified the i ion b he il

force components, which may form the basis for future model developments.

24 Comparison of Models and Discussions

Many of the empirical formulae reviewed so far take a common form:

F =ag0t + ayD (2-24)

where the coefficients a, and a, are functions of structural shape, coefficient of friction and
relative velocity. Since it is considered that the breaking component is due to bending which
relates to a factor of o, %, and the ride-up component relates to a weight of ice mounted on
the structure, the form is reasonable.

The fundamental limitation of the empirical formulae has been that they have
modelled only a particular situation and hence cannot be extended to other situations. This
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limitation leads to a wide range of values obtained for the respective coefficients. Asshown
by Croasdale (1980) and Chao (1992), a substantial variation of force prediction still exists,
and a conclusive confirmation of the empirical approaches has not been reached.

Most analytical models for forces on a conical structure have calculated either F, or
F,. and used the resolution factor, &, to calculate the other force component, i.e., Equation
2.1. The resolution factor is theoretically derived for a sloping plane; and, therefore, it
would hold for forces on an inclined plane only. For a cone local ice failure and deflection
of the sheet distributes the force around the circumference. Bercha and Danys (1975) have
shown that if F, is uniformly distributed around the front half of the circumference, then the

ratio of the net forces obtained by i ing the

pective force distributions around the

circumference is given by
o= £ @25

Thus, the value of the resolution factor depends on the distribution of the forces around the
cone. Lau and Williams (1991) have shown that such consideration is vital in the
interpretation of experimental data.

All analytical models and empirical formulae reviewed so far essentially describe
quasi-static behaviour in which the inertial loads are low enough to be neglected. Results
from many model tests (Haynes et al, 1983; Wessels, 1984; Maattanen, 1986; and Lau and
Williams, 1991) have shown a speed effect on failure mode and ice force, and it is widely
recognized that a static analysis may not suffice to explain the dynamic effect.
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The influence of shear stresses on determining failure modes becomes more
important with increasing ice thickness. Since the existing theories are formulated by
assuming pure bending failure using classical theories of thin beam or plate on elastic
foundation with the shear stress across ice thickness being ignored, the validity of these
formulae in predicting failure of thick ice may be questionable. Furthermore, failure modes
other than bending may dominate under certain indentation conditions.

Limited field measurements of ice loads on conical shaped bridge piers and
lighthouses have been made and reported in the literature (Danys and Bercha, 1975; Alberta

Research Council, 1980; Oshima et al, 1980: Hoikkanen, 1985; Frederking et al. 1985;

and i, 1985; Fi ing et al, 1992; 1994; Cheung, 1997:
Brown et al, 1998). The ice failure mode observed was usually different from existing
theoretical and experimental models. It was also observed that a rubble pile is likely to form

in front of a conical structure (M: and i, 1985; Hoil 1985). This

large amount of rubble, accumulated in front of the cone, imposes substantial loading on the
structure and the intact ice sheet. An ice clearing component as much as 80% of the total
load on the structure has been measured in the work described in this thesis. Previous model
tests and theoretical models do not consider the effects of pile-up. Omission of such factors
in those analytical and empirical formulations might have severely underestimated the ice
forces.

The foregoing review of past research shows that the most general and advanced
analytical theories available at present have the theoretical weakness of application limited
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to thin ice, small resolution factor and low interaction speed in which pure bending failure
is dominant. They are also limited to the initial stage of the interaction before any significant

rubble piles up around the cone. However, the prevailing practice of

according to the two dominant interaction phenomena, i.e., ice breaking and ice clearing, is
consistent with the currently available experience of ice loads on conical structures.

Preliminary analysis of results has been reported (Croasdale and Muggeridge, 1993)
in which reasonably good agreement has been found between forces measured from the
faceted cone tests and those computed using the existing theories for smooth cones. It now
appears that this agreement is accidental since the ice clearing pattern is totally different from
that postulated in the smooth cone models.

The present state of rubble modelling as exhibited by the two models formulated
concurrent to this research, i.e., lzumiyama et al (1993) and Croasdale et al (1994), shows
two weaknesses:

(i) The rubble geometry was highly uncertain. The existing models select rubble
height on the basis of limited observations from tank tests. The dependency
of rubble geometry in ice and structure parameters has not been formulated
which limits use of the models to a narrow range of ice and structure
conditions.

(ii)  The stress-state of the rubble is highly uncertain, The assumptions and
simplifications with regard to the state of the rubble may not be valid which

can cast doubt on the validity of th ion on the
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of the rubble is fundamental to rubble modelling.
In the subsequent analysis of the experimental data and the numerical analyses
developed for ice load computation, an effort is made to improve the modelling procedure

and thus remove those limitations.



“Table 2.1 Test conditions of each data set used in model fc and c of the d formula
Cone Cone Neck Iee Flexural Ice Friction v :cc_ i
Test Angle | Waterline | Waterline | Thickness | Strength [ Modulus [ Coeff. [ YEIOEIY | ot o0
o i . ’ ’ 3
o) D (ecm) D, (cm) t(cm) o (kPa) | E(MPa) | () (cin/sec)
Afanasevetal | 3045, y . ] " a,: Eq.
(1971 60 12-18 9.7 30-35 37-40 294 n.a, n.a, 215
Edward & e
Croasdale 45 | 25-100 0 1.7-68 | 1-41 na. 0.05 na. &= 6o
(1976) =0
Pearce &
Strickland 45, 60 7.7 48.9 1.3-99 13.8 6.9 n.a. 1.27 na.
(1979)
0.285
) 63.5 - 3.56 - 103- . &=
Brooks (1981) 45 102.6 na. 502 23 ~15 na, JA8-1.09 | a,=547
a,=797
Hirayama & 104 - 35- a,=243
Obara (1986) 50 - 80 375 4.0-305 | 065-3.1 | 27-710 2000 n.a. n.a. 2,207
Kato (1986) 45 - 80 3;4’29' 14-29 20-50 10- 40 n.a. 0.09 n.a, n.a.
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Table 2.2 Prototype and model geometries: symbols given in Figure 2.1

Prototype NRC-IMD e

Dimension 121 large 1:10 large | 1:10 small | 1:20 large | 1:25 large | 1:25 small | 1:50 large \Ims.n(l)l
neck (m) [ neck(m) [ neck(m) [ neck (m) neck (m) | neck (m) | neck (m) gt

1155 175 775 115 3418 3418 3418 1.84

Waterline™, b 34.65 3.465 3.465 1.74 1.386 1.386 0.693 1,15
Collar, ¢ 300 30 3.0 1.50 1.201 0.739 0.601 0.60
Neck, d 23.1 231 1.155 1.155 0924 0.462 0.462 0.23
Height I, e 29.2 1.667 2,083 1.708 0.800 0.966 1.016 0.58
Height 2, { 1.67 0.167 0.583 0.084 0.067 0.233 0.033 0.333
Height 3.8 6 0.6 0.6 0.30 0.240 0.240 0.120 0.134
Height 4, h 20 1.4 1.0 1.00 0.800 0.400 0.400 0.197

Note: “The base width was not modelled in model scale
“The waterline of NRC-IME's model was modelled in 1:30 scale
All diameters are corner (o corner



Figure 2.1 Test structure geometry. All diameters are corner to corner; and all slopes
are of facet centres, given as a ratio of vertical to horizontal.

(@ AType ®)8Type

(c)C-Type (d)O-Type
Figure 2.2 Rubble field types (after [zumiyama et al, 1994)
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Figure 2.3

Figure 2.4
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ice sheet

Figure 2.5 Figure showing the definition of ice piece size, Ly, and L, (after
Izumiyama et al, 1994)
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Figure 2.6 Increase in total load due to rubble (after Izumiyama et al, 1994)
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Figure 2.7 Comparison of Croasdale et al's model with tests in ERCL's series (after
Croasdale et al, 1994)

b+ §

Figure 28 Ice forces treated in [zumiyama et al’s model (after Izumiyama et al, 1993)
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Figure29  Comparison of [zumiyama et al’s model with tests in IME’s series where
ice rubble was absent (after Izumiyama et al, 1993)
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Figure 2.10  Rubble coefficient as a function of ice thickness and ice strength derived
from IME’s test data (after [zumiyama et al, 1993)
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PartI The Experiment

Chapter 3 Test Program

Part [ documents the results of the i i igati ducted in IMD’s

test basin and the additional data analyses. As a part of this task, the results from all three
test series were consolidated and analyzed. The test results were put into a spread-sheet
containing relevant ice and structure conditions, ice forces and the associate failure

processes. The available video recording made for each test was examined to identify the

p and the ing failure it i with each test
condition. The influence of various parameters on ice loads and the associated failure

processes were assessed through the i i The

include ice ing speed, structure ori ion, ice strength and thickness. The loads
measured in the three test series were compared with predictions from a leading force
prediction algorithm. The discrepancies found indicated a necessity for further model
development.

Through detailed analysis of the dominant i i and the

force levels under a wide range of test conditions, answers to the following three questions
were sought:
(i) ‘Was there any similarity or otherwise between the faceted and smooth cones,

in terms of i ion p and the i force levels?
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(i) Do the existing models provide satisfactory predictions of the model test

measurements?

(iii))  What additi i d he cone form
that would be needed to improve the model prediction?

The test program cond in IMD has been in Lau et al (1993b). In

this chapter, the test program is briefly described. It should be pointed out from the start that
the test program conducted in IMD is unique. It ventured into two new areas: Structural
shape and ice thickness regime. Firstly, the inclined facet obstructed the clearing of broken
ice. leading to rubble pile-up (rubble pile up was not observed in previous model tests with

smooth cones). Secondly, the advance in ice i i and the i f model

basin size permitted testing in ice up to 0.16 m thickness without compromising scaling,

adequate run distance and y it The ice thick f0.16 mtargeted in these
tests increased the ice thickness regime to about two times beyond those previously

attempted with cones. Tests in thick ice led to ice breaking patterns different from those

observed from previous inthi ice. The above st new

for such tests, and will be examined in detail in the following chapters.

A brief description of the test facility, test structure, i ion, d:

system, and the model ice is given in Section 3.1 to 3.3. The test matrix and results are

documented in Sections 3.4. Emphasis is given to level ice tests only.
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31 Test Facility and Structure

The model tests were carried out in the ice tank at the Institute for Marine Dynamics
(IMD), St. John's, Newfoundland (Jones, 1993). The ice testing basin was 96 m long, 12 m
wide and 3 m deep with a useable ice sheet length of 76 m. The main towing carriage,
weighing 80,000 kg, had a speed range of 0.001 m/s to 4.000 m/s with an accuracy of 0.1%.
The computer for the drive control and the data acquisition system were housed in the
thermally insulated control room on the carriage.

The experimental set-up is shown in Figure 3.1. The structure was tested at two
scales, 1:25 and 1:50, with a large neck, and additional tests were performed in 1:25 scale
with the smaller neck. Dimensions of the three model configurations are shown in Figures
3.2t0 3.4. The model was designed in modules to allow the scales and neck sizes to be
easily changed. The main component of the model is the lower cone structure to which
various necks and collars could be attached to facilitate these changes. The model was
constructed of 1/4" thick marine grade aluminum plates welded to a rigid frame of 2" x 4"
aluminum channels. The model surface was finished to a friction coefficient, ., of 0.09.

The model was rigidly mounted to the underside of the ice tank carriage through a
specially designed towing post constructed from 12" x 12" x 2" steel box beam. The cone

and the neck sections were i pi o he forces and moments about

the three major axes.
For each cone, an insitu dynamic test was performed to measure its natural
frequency. Analysis of the force signals showed two dominant frequencies of the set-up at
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about 3 and 11 Hz (Lau et al, 1993b).

32 ion and Data Acquisition System

The global load i isted of a series of 3 si. load cells

placed between two steel plates as shown in Figure 3.5. The upper plate was attached to the
tow post and the model was rigidly secured to the lower plate. To enhance the system, the
load cells were rigidly fixed to one plate by hemispherical bearings while the other plate was
secured by a bolted connection. The installation of these bearings resulted in a significant
reduction of residual moments on the transducers and the system was capable of measuring
the loads to within an acceptable error range (2% and 5% for forces and moments,
respectively).

One AMTI model SRMC8-6-20000 and two AMTI model SRMC8-6-10000 six
component load cells were used in this configuration. The forces and moments were
resolved to a global X, Y, Z coordinate system shown in Figure 3.6. The origin of the global
coordinate system was located along the centerline of the cone at the water level. The X-axis
was positive in the direction of ice motion, the positive Z-axis was directed vertically
upwards, and the direction of the Y-axis was such that X, Y, Z formed a right handed
coordinate system.

The loads on the neck were measured by one or two AMTI model SRMC6-6-4000
six-component load cells rigidly mounted between the lower cone and the neck. The 1:25
large neck model was equipped with two dynamometers; while, both the 1:25 small neck
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and 1:50 large neck models were fitted with only one of the dynamometers. The load cell
configuration for these models are shown in Figures 3.7 and 3.8. Using the known geometry
of the system, the forces experienced by the neck were resolved to the global origin of the
model.

Accelerations of the model in the three principle axis were measured using three
Systron Donner accelerometers and the deflection of the tow post and the model were

measured by two Schaevitz linear voltage displacement transducer during tests.

A i of the data isition system is given in Figure 3.9.
Excitation for the transducers was provided by the NEFF System 620 Series 300 signal
conditioner. The transducer outputs from the load cells and the LVDT's were filtered by a
10 Hz analog low pass filter and digitized at a rate of 50 Hz whereas the accelerometer
outputs were filtered by 100 Hz and digitized at a rate of 200 Hz by a NEFF System 620
Series 100 amplifier/multi-plexer and stored in a Vax 11/750 computer for analysis. The

analog outputs of the transducer were recorded by a KYOWA RTP-600B 14 channel tape

recorder, to allow ination of the high freq y of the signals.
Video recordings were made of all tests using four colour video cameras which
provided overhead, sides, and underwater coverage. The video recordings were synchronized

with the data acquisition system, with an accuracy of 0.5 second. Significant ice events were

also documented in the form of 35 mm colour prints by a number of still cameras.

33 Model Ice

The experiments were carried out using EG/AD/S model ice. The structure and
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properties of this ice are described in Timco (1986). The ice growth process and the ice

formation modelled that of full scale sea ice, giving a realistic vertical distribution of

The i f EG/AD/S for the present test series
were 0.39/0.036/0.04. Density of the ice, p, was 920 kg/m’. For each ice sheet, flexural
strength, G, was measured frequently throughout the test period. The values reported at test
time were interpolated from the strength versus time curve for the ice sheet. Both downward
and upward breaking flexural strengths were measured. Typically, the upward breaking
flexural strength, G, was about one half of the downward breaking strength, o, The
effective elastic modulus, E, was determined from deflections of ice plate under a given load
(Sodhi et al. 1982). The ratio of elastic modulus to upward breaking flexural strength, E/ay,,
ranged from 4000 to 12000. The reported ice thickness, t, was the average over
approximately 30 measurements for the ice sheet with a standard deviation of 2.5%. Other

properties, including compressive strength, G, shear strength. 6., ice-cone friction and ice

density. were also The for ing and izing level ice

sheets are described in detail in Lau et al (1993b).

34 Test Matrix and Presentation of Results

The test matrix with details of the test program are given in Table 3.1. It was
developed to accommodate the testing of two scales (1:25 and 1:50) of model, two sizes of
neck at one scale (1:25), and a variety of sheet ice strengths and thicknesses over a five week

period. The models were tested in the face-on orientation.
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A total of 18 tests were conducted in 5 ice sheets. In each ice sheet, level ice tests
were performed at model velocities of 0.01 m/s, 0.04 m/s and 0.06 m/s to assess the effect
of different interaction rates. The ice conditions for each test run are summarized in Table
3.2. A number of tests (MUNCONE3, MUNCONE4 and MUNCONE?) were conducted
over a period of two days to obtain variation of ice strengths.

For the first run of each test, the ice pile in front of the structure was cleared away to
permit the ice to come into full contact with the front perimeter of the cone at waterline. A
run distance of 3 m was required for the test to reach a quasi-steady state. To speed up this
process in subsequent runs, the rubble built up from the prior run was not cleared from the
model prior to the start of the run.

In Figure 3.10 the test matrix is plotted together in full scale with the matrices of
ERCL's and IME's test series to facilitate cross comparison among tests performed in the
three tanks. Only the tests with a face-on orientation were plotted together, since they were
the only orientation tested in all three tanks. In IME, the model was built at 1:50 scale but
tested in the scale of approximately 1:30 at waterline. Since the effective waterline width
of the structure is an important parameter affecting the ice loads, the data were scaled up by
a factor of 1:30 according to the cone's waterline. It should be noted that the neck diameter
must also be scaled accordingly, i.e.. inscribed neck diameter is equal to 6 m in full scale.

The test data were analysed and plotted in the form of time-traces for the following
parameters:

(i) three global force components: and

(ii)  three neck force components.
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The plots for the individual tests are presented in Appendix B.

The time series for the tests MUNCONE3 to MUNCONES were digitally filtered
with an upper cut-off frequency of 2.75 Hz before plotting. During test MUNCONE?, the
intact ice sheet rode up onto the collar resulting in failure of the ice in high frequency.
Hence, the time series were not digitally filtered in order to retain the high frequency
interaction data.

The sheet ice test results are summarized in Tables 3.3. Basic statistical analyses
were performed on the time series of the measured forces. Only the steady state portion of
the force records was analysed and plotted.

The mean peak forces were determined by finding up-crossings of the time trace
above a reference level equal to the mean of the data plus one standard deviation. The
maximum value between this point and the next down-crossing of the same level was
designated a peak. The mean peak force was the mean of the above peaks. In Figure 3.11
the mean peak horizontal and vertical forces are plotted against mean force plus one and a
half times standard deviation. The correlation is good except for the tests where the shear
type failure occurred (not included in Figure 3.11). Thus, the peak forces for this test series
can be estimated as one and a half times the standard deviation above the mean of the force

record.



Table 3.1 Test matrix for level ice tests in IMD’s series

Test l v ] ! | O | E
(cm/s) (cm) (kPa) (MPa)

TEST MUNCONE3; MODEL: 1:25S; SHEET NO. |

001 1 15.8 444 383

002 6 158 4.1 383

003 4 15.8 43.6 383

005 4 148 294 164
TEST MUNCONE4; MODEL: 1:25L; SHEET NO. 2

001 1 16.0 41.1 389

002 6 16.0 40.6 389

003 4 16.0 404 389

006 4 164 19.7 188
TEST MUNCONES; MODEL: 1:25L: SHEET NO. 3

001 1 9.5 307 156

002 6 95 302 156

003 4 9.5 299 156
TEST MUNCONES6: MODEL: 1:25L; SHEET NO. 4

002 4 124 225 120

003 1 124 2235 120

004 6 124 22.5 120
TEST MUNCONE7 ; MODEL: 1:50L; SHEET NO. 5

001 1 16.0 337 524

002 6 16.0 332 524

003 4 16.0 328 524

006 4 16.3 18.7 236
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Table 3.2

Summary of ice conditions for each test

Test I ' %' I %' I Elo,, | oJo, | o/o, I 4 I W,
(cm) | (kPa) | (kPa) i - “ | (kg/m) 2
MODEL: 1:25S; SHEET NO. |
MUNCONE3 001 | 158 | 444 | 798 [4810| NA | NA | 916 0.11
MUNCONE3_002 | 158 | 44.1 79.4 | 4810 | NA NA 916 0.11
MUNCONE3_003 | 158 | 436 | 787 |4810| NA | NA | 916 0.11
MUNCONE3_005 | 14.8 | 294 424 | 3796 | NA NA 921 0.09
MODEL: 1:25L; SHEET NO. 2
MUNCONE4_001 | 160 | 4l.1 747 5212 ] 5.2 1.5 914 0.09
MUNCONE4_002 | 16,0 | 406 | 73.5 [5212] 5.2 1.5 914 0.09
MUNCONE4_003 | 16,0 | 404 | 729 |5212] 52 18 914 0.09
MUNCONE4_006 | 164 | 19.7 39.0 |4615] 5.2 1.8 923 0.09
MODEL: 1:25L; SHEET NO. 3
MUNCONES_001 | 9.5 30.7 | 434 |3002 | 49 .1 928 0.09
MUNCONE5_002 | 9.5 30.2 416 | 3002 | 49 2.1 928 0.09
MUNCONES_003 | 9.5 299 408 | 3002 | 49 % 928 0.09
MODEL: 1:25L; SHEET NO. 4
MUNCONE6_002 | 124 | 225 360 | 3213 | 54 1.9 919 0.08
MUNCONE6_003 | 124 | 225 354 |3213] 54 1.9 919 0.08
MUNCONE6_004 | 124 | 225 35.1 |3213 ] 54 1.9 919 0.08
MODEL: 1:50L; SHEET NO. 5
MUNCONE7_001 | 160 | 337 | 702 |8494 | 38 1.7 918 0.08
MUNCONE7_002 | 160 | 332 69.7 | 8484 | 38 1.7 918 0.08
MUNCONE7_003 | 160 | 328 69.3 | 8494 | 3.8 1.7 918 0.08
MUNCONE7_006 | 16.3 | 187 | 428 | 5383 | 4.7 L5 920 0.08

Note: '

All tests run in face-on orientation.
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Table 3.3 Summury of level ice test results

GLOBAL GLOBAL NECK
HORIZONTAL VERTICAL HORIZONTAL
FORCE (kN) FORCE (kN) FORCE (kN)

Test Max | Mean | StDev [ Mean | Max | Mean | StDev | Mean | Max | Mean |StDev | Mean

Peak Peak Peak

MUNCONE3_001 452 [ 378 [ 035 | 429 | 546 [ 470 | 0.41 | 530 | 0.60 | 023 | 0.12 | 0.47
MUNCONE3_002 518 | 4.18 | 052 | 494 | 6.06 | 497 | 055 | 572 | 049 | 0.21 | 0.09 | 0.39
MUNCONE3_003 532 | 433 | 050 | 505 | 6.65 | 567 | 0.51 | 637 [ 051 | 0.20 | 0.09 | 0.38
MUNCONE3_005 342 1293 | 025 | 323 ] 422 )| 387 | 022 | 418 | 0.36 | 0.19 | 005 | 029
MUNCONE4_001 525 | 431 | 045 | 501 537433039 [ 472 | 033 ] 0.19 | 005 | 0.29
MUNCONE4_002 627 | 502 | 0.58 | 591 6.57 | 549 | 059 | 633 | 040 | 0.27 | 005 | 0.37
MUNCONE4_003 6.54 | 509 | 0.61 | 6.01 694 | 581 | 060 | 6.74 | 048 | 0.33 | 0.04 | 041
MUNCONE4_006 508 { 4.17 | 045 | 496 | 507 | 450 | 031 | 486 | 031 | 0.16 | 0.01 | 0.26
MUNCONES_001 216 | 1.78 [ 013 |1 195 | 217 [ 1.82 [ 0.15 | 1.98 | 0.10 [ 0.05 | 0.02 | 0.09
MUNCONES_002 238 | 1.85 | 023 | 227 | 335 | 1.89 | 0.24 | 249 | 021 | 0.12 | 0.05 | O.IS
MUNCONES_003 2251177 1 018 | 204 | 226 | 1.83 | 0.18 | 2.15 | 021 | 0.14 | 0.01 | 0.16
MUNCONE6_002 308 | 265 | 021 | 295 [ 3.28 [ 282 [ 0.19 [ 3.14 | 025 | 0.18 | 0.02 | 0.22
MUNCONEG6_003 296 | 2.56 | 0.17 | 2.81 3.6 | 2.85 | 0.13 | 3.06 | 0.21 | 0.12 | 0.02 | 0.16
MUNCONEG6_004 326 | 274 | 0.19 | 3.06 | 346 | 3.02 | 0.14 | 327 | 0.19 ] 0.13 | 002 | 0.17
MUNCONE7_001 886 | 687 | 141 | 851 | 4.10 | 243 | 046 | 340 | 098 | 0.54 | 0.14 | 0.82
MUNCONE7_002 999 | 592 | 1.34 | 843 | 580 | 343 | 0.78 | 4.86 1.01 | 0.50 | 0.15 | 0.80
MUNCONE7_003 1040 | 6.78 | 1.44 | 9.05 | 556 | 3.41 | 0.76 | 479 | 098 | 0.54 | 0.14 | 0.82
MUNCONET7_006 6.34 | 403 | 065 | 545 | 3.66 | 2.57 | 036 | 3.16 | 097 | 042 | 0.12 [ 0.66

Note: Horizontal - (+) toward the model;

ertical - (+) downward
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Experimental set-up showing a 1:25 scale large neck model mounted

Figure 3.1
under the main carriage
| Wsin 1534 o
[] 5:6
T240 201 2:1
800 024 9
l T 240
i 2:1
f 5 38(15 2 =
66.7- L % 5:6
800 %
l 3418 ¢
Figure 3.2 Dimensions of the 1:25 large neck model. All diameters are corner to
corner; all slopes are of the facet centres and given as a ratio of vertical to
horizontal. All dimensions in millimetres.
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T 240 |
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ses 233 5:6
l 3418
Figure 3.3 Dimensions of the 1:25 small neck model. All diameters are corner to
corner; all slopes are of the facet centres and given as a ratio of vertical to
i All in milli

5:6

Dimensions of the 1:50 large neck model. All diameters are corner to
facet centres and given as a ratio of vertical to

Figure 3.4
corner; all slopes are of the
i All di ions in




Tow Post
Upper Load Cell Plate

Momentless Connection

Lower Load Cell Plate

AMTI MC8 Load Cell

Figure 3.5 Global load measurement assembly

Figure 3.6 Orientation of global coordinate axes with respect to the model structure
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“\— Vertical Neck

AMTI MC6 Load Cell

Attachment to Lower
Cone

Figure 3.7 Neck load cell arrangement for the 1:25 large neck model

AMTI MCé
Load Cell

Attachment to
Lower Cone

Figure 3.8 Neck load cell arrangement for the 1:50 large neck and 1:25 small neck
models
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Level Ice Thickness (m)

Figure 3.10

z
g
E
i
]

Figure 3.11
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Matrix showing IMD's, IME's and ERCL's level ice tests in thickness-
strength domain (full scale); face-on orientation only
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Comparison of mean peak force and mean force plus one and a half times
standard deviation (IMD's 1:25 scale model tests)
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Chapter 4 Analysis of Tests

The ice failure and clearing processes around a faceted cone, in a quasi-steady-state
ice breaking, have been identified for each test for the IMD's and IME's tests. Most tests in
ERCL's series were performed with an ice sheet typically shorter than two characteristic
lengths in the direction of ice motion, resulting in a significant end effect. Ice pieces were
typically very large, and most of the runs were stopped before a quasi-steady-state interaction

was achieved. The breaking and the clearing of ice 1

the breaking and clearing patterns were similar to those observed in the early stage of the ice-
cone interaction observed in tests from other tanks.

Information on the ice breaking patterns. i.e., crack imprint and piece size. is of vital
importance in the interpretation of the test results. The dominant failure modes, which are
generally difficult to discern, can be inferred from the crack imprint and the resulting broken
ice piece size. The crack pattern and piece sizes are also important in determining the
subsequent interaction process, i.e., the manner in which the ice rides up the structure and
the subsequent nature of the rubble pile-up, and the ice force on the model. In this work,

piece size analyses were using video ing of the multi-faceted cone

The factors i ing the piece sizes were examined, and the relationship
between ice piece size and the ice thickness and strength was established. The results were
compared with previous model test data and the findings of [zumiyama et al (1994).

An important aspect of the model tests is the observation of a rubble pileup in front
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of the faceted cone models. The influence of a rubble buildup in the MUN/ERCL/NRC
multi-faceted cone experiments is addressed with emphasis on tests conducted in IMD’s
tank. The analysis provides further insights into the formation process of ice rubble, and the
effects of important ice-structure interaction parameters on rubble geometry during steady-
state ice rubble clearing.

The latter part of this chapter documents the resuits of ice force analysis carried out
on the three test series with the focus given to the IMD's test data. The steady-state portion
of the load trace of each test was analysed, and the ice breaking and clearing components of
the total ice force were identified. The consistency of data among the three test series was
assessed using a semi-empirical formula developed from IMD's series. Measurements from

all tests were then with ictions from a leading ical ice force model,

developed for smooth cones, to assess the validity of existing models for predicting ice loads
on a faceted cone.
Section 4.1 gives a summary of the dominant features of ice structure interaction and

the various failure processes observed from tests conducted in the three model basins. The

p SS ists of three major namely the ice breaking mechanism, the ride-up
process and the ice rubble formation process. Main features associated with ice breaking
mechanism and rubble formation process are further analysed and discussed in Sections 4.2
and 4.3, respectively. Section 4.4 presents the general aspects of the ice load, including the
load distribution and the ratio of horizontal to vertical forces. and the ratio of neck to global

forces. Section 4.5 presents the semi-empirical formula, and ines the data
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among the three test series. A comparison of the test results with Nevel's model is given in
Section 4.6. Section 4.7 summarizes the results obtained from Part I of this investigation.
A conceptual model is proposed, which forms the framework for Parts [T and Part [l of this

study.

4.1 Ice-Structure Interaction and Failure Processes

The interaction process with faceted cones was similar to that observed from previous
tests with sloping structures as shown in a series of snapshots during a typical test run (Figure
4.1). The failure mechanism was typically governed by the flexural stresses induced in ice
in both radial and circumferential directions due to bending of the ice sheet. For a faceted
cone with a face-on orientation, a pair of radial cracks initiated from the two edges of the
front facet, forming a series of three truncated wedges upon initial contact. The two side
wedges forced against the facets on the two respective sides, and a central wedge pushed
against the front facet. A radial crack also started from the centre of the front facet in most
of the IMD tests

Upon further advance of the ice sheet, circumferential cracks developed and wedges
of ice broke off. The front wedge slid up the front facet, over the collar and neck, reaching
the top of the structure, and fell back onto the advancing ice sheet resulting in a rubble pile-
up in front of the cone, interfering with the ice-breaking process. On the other hand, the side
wedges slid up the side facets and cleared around the cone without difficulty.

In the case of thinner and weaker ice used in IME’s series, in sliding up the front
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facet, the ice which was overhanging the sides of the inclined plane usually broke off due to
its own weight, and slid around the side facets. In IMD’s tests, such secondary breaking did
not occur due to the stronger and thicker ice used. Instead, the ride-up ice formed a shielding
wall effectively increasing the width of the front facet to a width slightly wider than the facet
width at the waterline (Figure 4.2). This increase substantially facilitated rubble piling. The
build up of rubble pile continued until a quasi-steady ice clearing process was achieved with
a constant number of ice pieces accumulated in front of the cone.

[f the cone was oriented in an edge-on mode, the rubble pileup did not occur due to

the absence of a flat face i to the ing ice Typically, a radial

crack initiated from the frontal cone edge and propagated along the centerline. This resulted
in two truncated wedges. with the two wedges forcing themselves against the facets on the
two respective sides. With the advance of the ice sheet, the truncated wedges failed, rode up
the front facets, over the collar and neck, and cleared around the cone without difficulty. A

quasi

teady ice clearing process was achieved with a constant breaking and clearing of ice.
The profile of the crack patterns associated with the two orientations is shown in
Figure 4.3. The circumferential cracks run at a distance from the cone perimeter with a given
characteristic length resulting in cyclical ice loading (Figure 4.4).

For the cone with a small freeboard,

, IMD's 1:50 scale model tests, the intact ice
sheet rode up onto the collar and was caught by the transition of the collar and the cone
before any circumferential crack could form. The loading geometry resulted in the failure
of ice in shear mode, with failure occurring along the grain boundaries of the columnar
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model ice. Small chips of ice broke off from the intact ice sheet and extruded from the cone
resulting in high frequency cyclical loading (Figure 4.5)." The channel formed by the model's
passage appeared very regular at the approximate width of the collar diameter. Piles of
extruded ice were formed on either side of the channel. The ice chips cleared around the
neck with only a small pileup.

Occurrence of the shear mode of failure was determined by whether the ice sheet
reached the cone-collar transition before it failed in bending; hence the failure mode was
very sensitive to the ratio of the effective modulus to the flexural strength, E/o,, of ice. The
extrapolation of the results to full scale should be cautioned since the E/o; ratio of the model
ice typically may vary from as low as 500 to 2000, much smaller than the full scale values
measured in the field (which are of the order of 5000); hence the maximum deflection at
failure in the field as predicted from model tests is correspondingly higher than expected.

For example, Kei etal (1993) the ies and iour of field ice and

EG/AD/S model ice by performing field and model wedge breaking tests and found the
deflection of ice predicted from model tests to be between 3 and 10 times higher than basic
elastic deflection measured in the field for the test velocity of 5 cm/s due to the excess
plasticity of the EG/AD/S ice at low loading rates.

Other failure modes of the ice sheet were also observed. For example, for thin and

'Tests MUNCONE4_003 and MUNCONE7_006 were tested with the same ice speeds
and run distances.



weak ice used in the IME's test series, bearing failure of the ice sheet occurred before a
significant amount of ice piled up in front of the cone, due to the weight exerted on the
unbroken ice sheet by the broken ice pieces, as they were being pushed up the cone surface.
Once a bearing failure occurred, ice pieces got jammed between the structure and the
oncoming ice sheet, leading to complex contact geometry. After that, the cone experienced
ashort period of non-steady state loading. The occurrence of this failure mode as a function
of ice strength and thickness is shown in Figure 4.6. This type of bearing failure did not

occur for test conditions targeted in IMD's test series.

4.2 Ice Breaking Mechanisms
Different model geometries and ice regimes result in a variety of failure patterns as
discussed in the preceding section. In Section 4.2.1, the breaking patterns observed in the

IMD's 1:25 scale model tests are further examined. Special attention will be given to the

cracking ism during steady-state i ion process for obvious reasons. Section
4.2.2 gives a comprehensive analysis of the broken pieces as observed in the present test
series as well as the previous tests. The analysis points to the need for further studies in this

area.

4.2.1 Breaking Pattern Observed in IMD’s Series
The broken ice pattern could be inferred and reconstructed from the video recording
by considering the shape of each broken piece as sketched in Figure 4.3b. A pair of radial
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cracks first propagated to a short distance comparable to the ice thickness, and then
converged toward each other to form a circumferential crack. The two radial cracks made
an angle of up to 30° from the direction of the ice advance. Another crack started from the
centerline in between the other two cracks.

This observation was contrary to the failure mechanism routinely assumed in
previous treatments of the problem as discussed in the following section. The radial cracks
did not propagate into the ice far enough to form wedges which behaved as infinite wedges;
instead, the failure mechanism observed from [MD’s test series was associated with the
ultimate failure of finite cantilever beams.

The history of crack development determined the boundary condition and loading at

ultimate failure.

how far the radial cracks propagated into the intact ice sheet at the onset
of the circumferential cracking, which effectively determined the length of the wedge to be
bent. In the following section, three common beam bending scenarios associated with

flexural failure are further discussed.

4.2.1.1 Common Beam Failure Scenarios
If we follow the mode of crack development from the first impact, three failure

scenarios could be identified, depending on beam length:

(i rmation of a cusp by cil ial cracking with limited radial cracking;
(ii)  Formation of circumferential cracks by cantilever beam failure. The radial
crack length was substantially less than 3 times the ice characteristic length.

71



As a result, the wedge failed as a finite cantilever wedge, having a

circumferential crack at its root; and

(iii) ~ Formation of cil ial cracks after ive radial cracking. The
radial cracks propagated at least 3 times the characteristic length of ice
dissecting the ice into wedges before ultimate failure occurred. The wedge
could be assumed to fail as a semi-infinite wedge.

Nevel has pioneered the theoretical analysis of ice breaking due to interaction with

a cone. He assumed that the radial cracks propagated to such an extent that the wedges
behaved as independent infinite wedges (Case 3). Early experience from small scale model
tests conducted in thin ice tended to confirm his theory. Since then, most of the subsequent
ice cone modeling investigations assumed this failure scenario. Only recently has this

assumption been called into question, based on the i i ing of

mechanisms and recent experiments in thicker ice.

With increasing ice thicknesses, Bazant and Li (1993) showed the onset of ice failure
changed from radial cracking to circumferential cracking. Hence, the loading geometry was
changed from a semi-infinite wedge beam (Case 3) to a cantilever beam (Case 2) and
eventually to a plate (Case 1). Numerical analysis (Valanto, 1992; Jebaraj et al, 1992;
Bazant and Li, 1993; and Derradji-Aouat, 1994) and test data (see next section) tend to

support this observation.
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4.2.2  Piece Size Analysis

Generally the ice breaking process produced a variety of piece sizes. Ettema et al
(1991) suggested that it was chaotic in nature. Varsta (1983) showed that the ice cusp size
and force on a landing craft bow was dependent on the velocity, and hence the loading rate.
Tatinclaux (1986) measured the ice floe distribution in the wake of a simple wedge in urea
and synthetic model ice. He found that the average ice piece size, L, was independent of the
characteristic length of ice; instead, it was directly proportional to the parameter, (Gt/Y,)",

as follows:

L, - c(2) @

where o, was the flexural strength of ice; t, the ice thickness; and, ¥, the specific weight
of water. The constant C depended on the kind of ice, with C being equal to 0.54 and 0.254
for urea doped ice and synthetic ice, respectively. In this report, the parameter, (G,t/y,)", was
called the "breaking length" L, for convenience.

In this section, the size relationship is further examined using the faceted cone test
data obtained from the three tanks. The data sets were supplemented with data from four
other test series conducted with similar model structures [Lau et al (1988) and Lau and
Williams (1991) with a 45° smooth downward breaking cone; Sodhi et al (1985) with a 45°

smooth upward breaking cone; and Timco (1984b) with a 45° upward breaking sloping
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plane]. These model tests were performed in urea or EG/AD/S ice, with the exception of
ERCL's tests which were conducted in thick naturally grown saline ice. Despite slight

differences in model shape. these tests iniceand itions similar

to one another. To further reduce the possible influences of test parameters other than ice

thickness and strength, data from tests with and il i it ie.

ice advancing speed, friction coefficient, cone angle and waterline diameter, were chosen for
analysis. The range of variations for each parameter is given in Table 4.1.

For IMD's, ERCL's, IME's and Lau et al's tests (1988), L, , was estimated from video
recordings made of each test by counting the number of circumferential cracks, and the
corresponding run duration and velocity. To ensure that the estimated values of L, were
representative of the primary ice breaking length, the values were compared with those
obtained from bow imprints taken after tests, i.e., Lau et al’s tests; and in the cases where
bow imprints were not available, i.e., IMD's series, comparisons were made with the broken

ice pattern inferred and from the video ings (see Section 4.2.1). For the

other tests where the piece size was not reported, it was estimated from the ice breaking

frequency, f, and the ice speed, V, using the following relationship:

“2)

o
Sl<

which gives the average size of the ice blocks during primary failure due to circumferential
cracking.
Figure 4.7 shows the ice piece size L, versus the length L, observed in all seven
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model test series. The data were further grouped according to ice thickness either larger or

smailer than 0.045 m. The relationship

L, =054L, @3

as developed by Tatinclaux for urea doped ice was also plotted in the same figure. The
figure shows a good agreement of Tatinclaux's relationship with data obtained in ice thinner
than 0.045 m. For thicker ice, the dependency of L, on the factor L, is negligible, and the

following relationship fitted the test data very well:

L, = 0.15 + 0.039L, @4

Figure 4.8 shows the ratio of piece size to characteristic length, L,/l,. as a function
of ice thickness, t, for the multi-faceted cone and the supplementary test series. The data
indicated a clear relationship between the L, /I, and ice thickness despite a large variation of
ice strength.

Simple elastic theory predicted a value of 0.78 for the ratio, L/, (Afanas’ev et al,
1971). and the value was independent of ice thickness. However, Figure 4.8 shows that this

was valid only for a very thin ice, and the ratio with i ing ice

The dependency of piece size on ice thickness reflects the complexity of ice-breaking
process, and contributes to the scale effect. The data also suggest a lower limit for the ratio,
L,/1. , and the tests conducted in IMD's and ERCL's ice tanks with ice sheets thicker than 9
cm clearly reflect a similar viewpoint. The following equation fits the data very well:
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L,
L = 0.0168 0% @-5)

T

This observed trend is also consistent with the results from field observations. Inthe
case of ship-ice interaction, Keinonen (1983) pointed out:

“In model tests, the ice is broken into large cusps, the typical size of ice

blocks being anywhere between 3-6 times the ice thickness. In full scale, the

typical blocks are radically smaller being in the range of 0.5-2 times the ice

thickness."

This apparent lack of scaling of the broken piece size is of significance for modelling
the dynamics of ice and rubble clearing around a structure. and leads to difficulty in model
testing of fragmented ice.

Further review of model tests with other sloping structures (both model and full
scales) confirmed the previous finding as shown in Figures 4.9 and 4.10.

Figure 4.9 shows the non-dimensional piece size observed in the wake of six ice
breaker hulls (both model and full scale) taken from Tatinclaux (1986) with a model wedge,
and the Kigoriak in both model and full scale trials, Howard and Abdelnour (1987) with the
1:8 scale R-Class model, and Valanto (1993) with the [B Kapitan Sorokin in full scale.

Figure 4.10 is extracted from the piece size data reported by Keinonen et al (1993)
who conducted 28 tests on an inclined indenter moving against a simply supported wedge.
The tests were conducted at the ESSO outdoor basin in Calgary using natural saline ice with
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thickness varying from 0.16 to 0.29 m and a flexural strength of approximately 200 kPa. The
indenter angle of 25° 50° and 75° to the horizontal were tested with two wedge angles of 90°
and 120°. All tests were conducted using two indenter speeds: 0.05 m/s and 0.30 m/s. Only
data associated with the lower speed are plotted in Figure 4.10.

Both figures indicate a limiting value of 0.2 for L, /1, in full scale. This value is a bit
higher than 0.1 associated with the multi-faceted cone tests. It may be due to the different
ice breaking processes observed.

One explanation for the discrepancy between the theories and test data is the non-
inclusion of shear action across the ice thickness in the existing analytical treatments of
failure. The characteristic length of a beam (or plate) on an elastic foundation was derived
solving the differential equation of the elastic line using classical theory of an elastic beam
(or plate) on elastic foundation (Hetenyi, 1946), i.e., a thin beam (or plate) with small
deflection. The classical theory, which neglects the effect of transverse shear (i.e., shear
modulus, in effect, is set to infinity), becomes unreliable in the case of beams (or plates) of

considerable thickness, especially in the case of the highly concentrated loads experienced

in the types of i ions i i F with a ice piece size to characteristic
length ratio of as low as 0.1, the transverse shear would play an important role in ice
breaking. Buckling may also occur with increasing thickness and cone angle which lead to
smaller piece sizes (Derradji-Aouat, 1994).

Satisfactory modeling of ice failure mechanisms is an essential requisite for the
proper computation of ice forces on the structure; however, an adequate examination of the
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problem is outside the scope of this work. Nevertheless, it is reasonable to assume the piece

sizes encountered in full scale to be 0.1 to 0.2 |, according to the present analysis.

4.3  Ice Rubble Formation Process
In the present study, the rubble types as observed in the IMD's test series were
identified and shown in the strength-thickness domain with IME's test data. The rubble field

scheme

ped by i et al (1994) was adopted (see Figure 4.11).

For IMD tests. C-Type rubble field was typically formed in front of the 1:25 scale
models: however, rubble field was not observed in front of the 1:50 scale model as the small
crushed ice pieces cleared around the cone readily. The C-Type rubble field was
significantly larger than those of the same type observed in IME's tests due to a larger ice
thickness and model neck, and a smaller freeboard. The rubble field tended to accumulate,
till it reached the neck section.

The C-type rubble field consisted of small ice blocks and crushed, mushy ice. In
IME's tests, these small ice blocks were created when the weak ice pieces fell from the top,
breaking and rolling down the front of the model. This secondary ice breaking is important,
since the degree of breakage determined which of the three types, designated A-type, B-type
and C-type, would occur. Degree of breakage, which was highly dependent on the thickness
and shape of the ice pieces and the ice strength, increases from A-type to B-type to C-type.
In IMD's tests, a crack extended from the centre of the front facet creating two ice pieces
before they rolled down from the top of the cone. Such a mechanism was sufficient to create
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small ice pieces even though the ice was relatively thick and strong. The ice pieces at the
neck, which were typically cubic in shape, rolled down the front facet resulting in a rubble
pile of randomly oriented ice pieces.

The manner in which the rubble evolved and changed shape during the interaction,

i.c., its geometry and size, could be i in terms of ice ion and clearing

processes. The ice in front of the cone could be divided into 3 zones: a central accumulation

zone and two side clearing zones. Understanding of the main features of these zones is vital

to a sati: 'y rubble ing. The ice ion and clearing i with
these zones will be examined in detail in Chapter 6.

It is recognized from this study that a unique rubble surface profile is generated
during steady-state accumulation by a process similar to dumping process from a line source.
In this case, the free-surface of the rubble is governed by a slope stability criterion with the
slope angle, 1. being equal to the angle of repose, ¢,. of the rubble material. This surface
profile, together with the rubble height profile around the cone's perimeter, defines the
geometry of the rubble mass.

It is also recognized that the rate of ice supply is balanced by the rate of ice clearing
during the steady-state portion of the interaction, and the geometry and mass of the rubble

can be esti by i i ions and mass balance.

The above-mentioned slope stability and mass balance criteria constitute the two
fundamental aspects of the clearing processes which will be examined in detail in Chapters

5 and 6.



44  General Characteristics of Ice Load
44.1 Ice Load Distribution and Ratio of Horizontal to Vertical Forces
It can be shown that if the vertical force, F,, is uniformly distributed around the front

half of a six-faceted cone with a face-on orientation, the ratio of the net horizontal to vertical

forces, F/F,, obtained by i ing the ive force distributi is given by a

resolution factor:
2
Sy = 56 6)

where & is the resolution factor for a sloping plane; and the value of this resolution factor is

a good measure of the distribution of ice forces around the cone.

Table4.2 izes the i values of the hori: to vertical peak force

ratio measured in the three test series, i.e., &, The theoretical values of the resolution
factor for the two limiting cases, &,,,, and &, and the estimated percentage of ice force
distributed on the front facet, %y, are also given. &,,, corresponds to the case where the
vertical force is uniformly distributed around the front half of the cone; whereas, § is
calculated assuming all ice forces are acting on the cone section at the front facet.

In general, the experimental values, &, = F,/F,, were close to the theoretical values,
&, for 2-D loading suggesting that the major portion of the load (with more than 70%) was
distributed along the front facet during the peak force events. This observation was contrary

to the observations obtained from previous model tests with smooth cones where the
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resolution was found to be governed by &y, i.e.. Equation 2.25.

Figure 4.12 shows the i ip of the i i ion factor, §,,../&

and the non-dimensional waterline width, D/I, for existing test data for smooth cones. The
data sets contain data from 10 level ice test programs done worldwide on conical structures
with a total of ~400 data points (Afanas'ev et al, 1971; Verity, 1975; Edwards et al, 1975;

Edwards and Croasdale, 1976; Manders and Abdel; 1978; Hi and Ak

1982; Wessels, 1984; Sodhi et al, 1985: Lau et al, 1988; and Izumiyama et al, 1991).

The experimental value, &, has been non-dimensionalized by &. The upper limit
(= 1) corresponds to the 2-D case where all loads are assumed to act on the front edge of the
cone. The lower limit (= 2/1) corresponds to the 3-D case where the forces are uniformly
distributed along the front perimeter of the smooth cone. &,../& is generally lower than the
value for the 2D case and in many cases is close to what is expected for a uniform
distribution, particularly for D/I, greater than 1. Itis consistent with the observation that for
a very narrow structure, ice-cone contact is concentrated at the front edge of the cone, and
with the waterline width increases, the ice-cone contact increases from the front edge toward
the side of the cone, and eventually full contact of ice with the front half of the cone occurs
with a certain waterline (Hirayama and Obara, 1986).

The values of D/1, for the faceted cone series were a lot greater than |, and a uniform
distribution was expected. The reason for this difference between the smooth cones and the

faceted cones is not clearly understood, but might be attributed to two reasons. Firstly, the
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resolution factor was calculated assuming all load to act on the conical section only. The
large amount of rubble pile-up on the collar and the neck section would increase the
resolution factor since they have an inclination larger than that of the cone section. The
second reason is that the ride-up and pile-up would primarily occur on the front facet, which

would distribute most of the clearing loads onto the front facet in a two-dimensional manner.

4.4.2 Ratio of Neck to Global Forces

Freeboard is the most important parameter influencing the ice loads on the neck.
With a large freeboard the broken ice can clear around the cone without a significant amount
of ice pieces accumulating on the neck. Figure 4.13 shows the effect of freeboard on the
ratio of the neck to global horizontal loads for the level ice tests. The freeboard is non-
dimensionalized by the ice thickness. The ratio of the neck to global force increases with
the decrease of non-dimensional freeboard. The non-dimensional neck force is below 0.16
for all tests except the two runs tested in a very strong ice with a small freeboard to thickness

ratio, i.e., ERCL's Tests 2 and 4.

4.5  Semi-Empirical Formulae

In this study, the ice breaking and clearing components of the total ice force, during
steady-state ice loading, were analysed. The ice breaking component is the force needed to
break the ice. The ice clearing component is the load imposed by the broken ice pieces as

they slide up the cone surface. These are attri to different




mechanisms, and they were isolated and treated separately for deeper understanding of the
interaction. A semi-empirical formula, based on experimental measurements and basic

h; of ice, was

ped as a way pare the results obtained from the three ice
tanks.

Table 4.3 gives a summary of the mean peak force, F,,, and the associated ice
breaking and clearing force components, i.e., F, and F., measured in IMD's 1:25 scale model
test series. The ice clearing force, F. is assumed equal to the mean trough force. The ice
breaking force, F,, is obtained from subtracting the ice clearing force from the mean peak
force as shown in Figure 4.14. In the present test series, a major portion of the total load in
the structure was observed to be due to ice clearing, with the ice breaking force sometimes
contributing to as little as 20% of the total ice forces.

The mean peak and trough forces were determined by the up-crossing method as
described in Section 3.4. Since there was a concern with the dynamic effects during the
unloading phase after the ice failed which tended to affect the trough force, the time-history

records were filtered through a 1.5 Hz low pass filter before analysis.

The semi-empirical formula was d ped from IMD's 1:25 scale model tests.
Predictions from this formula are then compared with the measurements from the other two
tanks to assess the consistence of results among the three tanks. As noted above a review of

existing empirical and analytical formulae for ice load computation on cones suggested the

*The experimental results with the 1:50 scale model were excluded due to the
shearing/crushing failure observed during tests.
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following common form for the horizontal ice force:

F =agp + ayD @n

where the coefficients, a, and a,, are functions of structural shape and coefficient of friction.
The first term is the ice force caused by ice breaking, and the second term is the ice force due
to ice riding up the structure slope. Experimental data also indicated that the vertical force
was relatively independent of cone angle and friction coefficient, and the horizontal force
could be related to the vertical force through a resolution factor, &, which depended on the
inclination angle and the ice-structure friction coefficient. Therefore, the following form was

used in the present analysis:
a3 ko k 2, ko k
F, = &a,00%0/ ") + a,yD’(o/1™) 4-8)

where ,**' and 6,***" are empirical functions, which take into account the influence of pile-
up on the breaking and clearing forces; k., ki, ka, ks, 4, and a, are empirical coefficients
which are optimized to fit the experimental data.

The ice breaking and ice clearing components of the general expression were derived

individually from the IMD's data resulting in the ing ion for the

force:

F, = E71102%(0,"*1°%) + 1.05yD1(a)™t**) 4-9)



In Figures 4.15 and 4.16, the ice breaking and the ice clearing forces predicted by Equation
4.9 are compared to the experimental data. In the above comparisons, the scatter in data may
be partly due to the effects of neck size and velocity which are not included in the above
formulation.

In Figure 4.17, the total force predicted from Equation 4.9 is compared with the
experimental data from the three tanks. In general, Equation 4.9 predicts the model test
results well, indicating a good agreement among the results obtained from the three model

basins, with loads measured extending more than three orders of magnitude.

46 C with T ical Predicti

Theoretical loads corresponding to the level ice experiments were calculated by

applying the elastic model due to Nevel (1992). This model is shown to be satisfactory in

predicting ice forces after i ison with the existing i data. (See

Chapter 8.1). The mean features of the model have been reviewed in Section 2.2.1.2.
Figures 4.18 and 4.19 show a comparison of the total horizontal and vertical peak

loads measured from the three tanks with the loads calculated from Nevel's theory.” The

between the it ictions and forces is ly good for

the ERCL and [ME series; however, this ical model i ' dicts the

P!

*Again, the experimental results with the IMD's 1:50 scale model were excluded from the
ison due to the ing failure observed during tests which was mentioned in
Section 4.2.
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ice loads measured in IMD's tests by an average of 46%. Two points should be noted here.
Firstly, a majority of tests conducted in IME’s and ERCL’s series do not have a substantial
amount of rubble piling in front of the structure. Furthermore, ERCL's ice thickness was less
uniform than the ice from other two tanks, resulting in non-simultaneous ice breaking, and
most tests were stopped before any significant amount of ice could accumulate on the cone.
Hence, the theory might possibly overestimate the ice breaking components while
underestimate the ice clearing component of the total ice force.

To show this, the model predictions were compared with the results from the IMD’s
test series to assess the accuracy of the model to predict the individual force components.

Only of the hori: force were Figures 4.20 and 4.21 give the

results of comparison for the ice breaking and ice clearing components, respectively. The
model predicts well the breaking component of the lower forces measured in thinner ice, but
underpredicts those of the higher forces measured in thicker ice; whereas the model
consistently under-predicts the ice clearing component by about 30%, and again, the higher
the force the higher the error. Since ice rubble tends to increase the ice clearing components
of ice force due to its dead weight, the model is expected to under-estimate the clearing

component. This weight could also increase the breaking load somewhat by imposing an

in-plane ion at the tip of the ing ice sheet as di in Chapter 8.

4.7  Summary and Discussions
Based on observations from model tests, a conceptual model is formulated to describe
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qualitatively the primary i i The model provides a

basis for the mathematical modelling outlined hereafter. In Section 4.7.1 the major findings
of the test program are summarized, and the need for further ice force modelling discussed.

In Section 4.7.2 the general features of the i i iour under i igation are

briefly described, and a method to incorporate the effect of rubble in the existing ice load

models is presented.

4.7.1 The Need for Further Ice Force Modelling

The validity of the existing theories for predicting global loads on a faceted cone is
one of the principal concerns from industry's point of view. The analysis of ice sheet loads
with a leading ice force predictor developed for smooth cones indicates that the theory would
likely under-predict the clearing component of ice loads. Particularly, the error in ice load
estimation might be quite large when a large rubble field piles in front of the structure,
justifying further studies to develop some new formulae for the estimation of ice loads on
such structures.

Important insights have been obtained from a closer analysis of the model test results.
The process of ice failure and clearing during its interaction with the faceted structure has
indicated the presence of many new features. This process is substantially different from
that of a smooth cone and a two-dimensional sloping plane. The facet comers, acting as
stress concentration points, seem to play important roles because two cracks propagate from
the corners in many of the tests. In addition, the flat facet and large neck tend to prevent

87



efficient ice clearing and initiate rubble piling in front of the structure.

Failures other than that due to bending modes have been observed from the tests.
These may be due to the complex three-dimensional stress state induced in the ice sheet.
Piece size measurements significantly diverge from those predicted by existing theories
which are formulated using classical theories of thin beam or plate on elastic foundation with
the non-inclusion of shear action across the ice thickness. Previous studies have shown that

the failure mode could gradually alter from bending to shear with increasing ice thickness.

Incorporating the thi i i nature of ice iour into the igation of the
problem is essential to advance our present understanding of the interaction process.
Rubble building is an essential part of the ice clearing process. The large amount of
rubble, accumulated in front of the cone, imposes a substantial loading on the structure and
the intact ice sheet. An ice clearing component as much as 80% of the total load on the
structure has been measured (see Table 4.3). The factors which contribute to the amount of

ride-up and rubble ion, and their effects on the i ion process were

poorly understood. Omission of these factors may lead to a severe underestimation of ice

forces.
Although a considerable amount of data was obtained from model tests mentioned

. number of

in the previous section, a number of important ice-structure parameters, i.
facets, cone angle, ice-ice and ice-cone friction coefficients, etc., were not varied in the test
program, and the results were valid only for the conditions and geometries of the
experiments. Due to the limited numbers of parameters examined, these model tests were
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more useful in ing and calibrati i for ice loads rather than in directly
providing equations for design ice loads. It is therefore considered likely that it would be
helpful to perform mathematical modelling in order to extend the observed relationships to
more general interaction conditions and geometry. The modelling is supplemented by a

series of numerical simulations to be presented in Chapter 7. The simulations provide

information on the complex stres: itions and load distributi and how the loads were

transmitted and distributed along the ice sheet and on the surface of the structure, which is

helpful toa better ing of the basic ical processes that take place during the
interaction.
On faceting a cone and enlarging the size of the neck, the interaction and failure

mechanisms were significantly altered. Existing theories of ice loads on a cone could not

explain this change. Since there are obvious i d ini ing flat
facets and large necks in the design of conical structures, an ice force model that allows for
the effects of cone facets, neck size, and the rubble pile, would be an asset to the industry.
Obviously, many issues associated with the three basic processes of ice breaking, ice ride-up.

and the ice piling should be addressed in a comprehensive study. However, the time

constraint imposed on this research p a i ination of the problem.
Instead. a decision was made to focus further efforts on the formation of ice rubble in front
of the structure and its effect on ice loads, as no previous model has adequately accounted
for its effects.

In the following, a conceptual model is presented which provides a method for
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he domil anda toi arubble model into the
existing ice force models. Attention is given to the better characterization of rubble pile-up
phenomenon and the associated ice load. Since the issues related to ice breaking and ice
ride-up have been studied previously in greater detail, the knowledge gained from these

studies is used in the present work.

4.7.2  Conceptual Model for Ice Forces Exerted on an Inclined Plane

The model is proposed to explain the interaction processes between a faceted cone
and a level ice sheet during a continuous ice breaking mode. It provides an outline of the
phenomena to be investigated, and a framework for incorporating rubble load theory into
existing ice force models. The model is detailed enough to describe the interaction processes

as well as to obtain the form of ions for indivi force

The geometry of the problem is presented for a two-dimensional case in Figure 4.22.
For simplicity, the model is given in 2-D, and a constant thickness ice sheet is moving
horizontally and breaking against a faceted cone under an ice rubble pile, the shape of which
is yet to be determined. From a modelling point of view, it is convenient to divide the
interaction process into three major simultaneous phenomena, i.e., (1) ice breaking, (2) ride-
up, and (3) rubble pile-up, where different features dominate. The first phenomenon is the
failure of ice under contact forces imposed by the cone, the ride-up ice and the rubble

The second is the pushing of a layer of broken ice up the cone

surface. The third phenomenon is the clearing of a rubble surcharge around the cone due to
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the continuous movement of the level ice past the cone. The three phenomena are mutually

The ituti ies of the rubble and ride-up ice depend on the

geometrical and

properties of the i ice pieces which are generated by
the breaking of the ice sheet, and the size of ice pieces generated during ice breaking is in

tumn affected by the additional loading imposed by the rubble and ride-up ice. The ice

breaking and ride-up have been ively studied and many models are available
to predict the total load due to their effects. However, the rubble pile-up process is less well
understood. For each process, some of the aspects regarded as important and/or unique to
the present investigation are briefly described below.

Figures 4.23 and 4.24 summarize the loads exerted on the ice sheet, the ride-up and
the pile-up which should be taken into account. The weight of the pile-up, W, =W + W,
is partly supported by the ride-up ice and partly by sheet ice, i.e., distributed loads q. and q;.
The force, N, required to lift the rubble surcharge and break the ice sheet, acts at the bottom
edge of the ice sheet. As the ice moves and rides up along the cone. frictional forces, q,;.
N, and q.u,, are also developed at the ice-rubble, ice-cone, and rubble-cone interfaces
respectively, where jL and p, are the ice-ice and ice-cone friction coefficients at the respective
interfaces. A component, P, acting at the top edge of the ice sheet is also required to push
the ice up the slope. The failure of the ice sheet can take place either by bending, shearing,
crushing, buckling, or a combination of them. The velocity of ice is assumed to be high

enough that brittle ice failure mode is i During a quasi dy state ice
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interaction, some constant amounts of rubble ice pile up in front of the structure, when the
rate of ice supply is equal to the rate of ice clearing. The underlying ice sheet may fail
before this quasi-steady state is reached.

The rubble is under constant shearing due to constant deformation of the rubbie. To
take into account the effects of this rubble ice in ice force prediction, the amount and
distribution of the rubble and associated forces exerted at the inclined boundary (with the
ride-up ice) and the base (on the supporting ice sheet) must be known. The rubble pile
formation mechanism is a complicated process involving the dynamic balance between the
supply of ice pieces due to continuous ice breaking, and the clearing process of ice as the
rubble pile moves past the cone. Understanding these two processes is the key to modelling
the mechanism of rubble formation: besides, other factors such as the size and distribution
of rubble ice, and the dynamic interactions between the individual ice pieces must also be

considered.



Table 4.1

General test conditions of the model test series used in picce size analysis

¢ Faceted Cone
Sloping Plane Smooth Cone (face-on orientatii
Sines Lau & Lauetal, | Sodhietal IMD I
METER " au au et al, odhi et al, M ME
Timeo, 1984 | witjiams, 1991 1988 1985 1:25 1:50
Cunc(angle. 45 45 45 45 40 40 40
Breaking
Direction Up Down Down Up Up Up Up
Waterline
Diameter, 10 128 128 15 138 124 172
(m)
Fiictio 002 015 0.15 01 0.09 001 008
Vf.'";c;)'y' <006 001005 | 001/0.05 2 001/0.04006|  0.06 006
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Table 4.2

Summary of the horizontal to vertical force ratio for level ice tests measured

in the three series on cones: face-on only
Friction No. of
Test .
< Coefficie 3 Er L Data
Sexies nt, B, - Points
0791 +
0 0.046 0.833 0.555 0.899 15
' IME
1162+ N
0.1 0.085 1018 0.679 1.283 7
:vp | 009 | %93 | o998 | o06es | 0830 14
0.08
0.87 +
ERC 0.1 0.177 1018 0.679 0.709 10
Note: | A friction coefficient of 0 is associated with runs | to 38, and a friction
coefficient of 0.1 is associated with runs 39 to 66.
2 1/25th scale model tests only
3 % force di on front facet by the equation:
= e
% 3

front

- cos(60”)



Table 4.3

Summary of total, breaking and clearing ice forces measured in IMD series:

1:25 scale model

Test | v Fa E F, F,/Fy O, t
@) (m/s) [Q)) (L)) o) (kPa) (m)

Test Set: Small neck model with neck size: 0.231 m
3.1 0.01 4287 2890 1397 0.309 444 0.158
33 0.06 4942 3200 1742 0.337 4.1 0.158
3.3 0.04 5049 3100 1949 0.366 43.6 0.158
3:3 0.04 3232 2400 832 0.243 294 0.148

Tc_s% Set: _Large neck model with neck size: 0.462 m
4.1 0.01 5005 2950 2055 0.391 4l.1 0.160
4.2 0.06 5907 3800 2107 0.336 40.6 0.160
43 0.04 6006 3500 2506 0.383 404 0.160
4.6 0.04 4963 3150 1813 0.357 19.7 0.164
5.1 001 1953 1520 433 0200 | 307 0.095
52 0.06 2274 1450 824 0.346 302 0.095
53 0.04 2035 1440 595 0.264 299 0.095
6.2 0.04 2950 2150 800 0.260 25 0.124
6.3 001 2810 2050 760 0.257 25 0.124
6.4 0.06 3060 2250 810 0.249 25 0.124

Note: Waterline diameter: 1.386 m; friction coefficient: 0.09; and ice density: 930 kg/m.
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Figure 4.2

Figure 4.3

Photo from IMD’s series showing the ride-up of ice and the rubble pile (Test
MUNCONES6_003)

CIRCUMFERENTIAL
CRACK

RADIAL CRACK

DIRECTION OF
ICE MOTION

(a)
-«
-—
CENTRAL CRACK
FOUNDONLY IN =~

U
IMD'S TESTS

(b)

Profile of crack patterns associated with the (a) edge-on and (b) face-on
orientations
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FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE7 _006
LR F!
AVE = 403 kN
e MAX = 834 KN
MIN = 1 80 kN
STD = 083 KN
- 4.0
A 1 A L O "
S e iy
e STD = 0 35 kN
o vol—
G F
2
2.0~ i | AvE - -2 87 KN
MAX = -0 .82 kN
MIN = 308 KN
an e U oan KN
1% kL 4 L1 7% 00 108 1ze 135 150
TIME (s)
NECK SIZE - - SMALL ICE THICKNESS = no mIDGE
YHICTiON u.0e 1CE DENBITY o kg/m-3 HTEADY STATE POKTION ONLY
DINECTION - - BROAD ON PLEX BTN (down) = 42.8 kPa
HPEED = 4. om/s PLEX 8TR (up) = 18.7 kPa
MULTIFACETED CONE TESTS A =50.00, NRC/IMD
Figure4.5  Time history showing high frequency cyclical loading (MUNCONE7_006)
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Figure 4.6

Figure 4.7

Downward Breaking Flexural Strength (Pa)

IME'S g |
.. TESTS IMD'S TESTS

«— —> |

0.1 0.15 02
Ice Thickness (m)

« Non-Bearing Failure Mods ., Bearing Failure Mode

Bearing failure of unbroken ice sheet in strength-thickness domain, IMD's and
IME's series

04 1
Tatinclaux's equation for urea ice: |
L =054L, |
0.3 |
02
0.1
Best Fit Curve to t > 0.045m:
L, =0.150 +0.039 L,
0
0 02 04 0.6 08 1 12
L, (m)
+ 1<0.045m < t20045m

Ice piece size, Ly, versus breaking length, L,, with curve fitting for ice
thickness larger than 0.045 m. Tatinclaux’s equation for urea ice is also given.
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Best Fit Curve:

Lo/l =0.0168 * 1™

0.05 0.1 0.1 0.2 0.25 03
Ice Thickness, t (m)
 Lauetal, 1988&1991 ¢ Lauetal, 1993

x  Sodhictal, 1985
« Timco, 1984

ol e « Metge and Tucker. 1990

Figure 4.8 Ratio of ice piece size to characteristic length, L, /1. versus ice thickness, t, for

seven sets of model test data with sloping structures

* Model Wedge (Tatinclaux, 1986)

" 1:8 R-Class (Howard and Abdelnour, 1987)
* Kigoriak, Full (Tatinclaux, 1986)

X Model Kigoriak. Synthetic lce (Tatinclaus. 1986)
* Kapitan, Full (Valanto. 1993)

© Model Kigoriak (Tatinclaux, 1986)

. 1 15 2
Ice Thickness, t (m)

Figure 4.9 Model/Full scale icebreaker test results showing the effect of ice thickness, t,

on the ratio of ice piece size to characteristic length, L,/l.. Data include low
speed test with urea and sea ice.
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Figure 4.10

Figure 4.11

Downward Breaking Flexural Strength (kPa)

o ¥

[ 0.05 0.1 0.25 03 0.35

0.15 0.2
Ice Thickness, t (m)
« 90-wedge, 25-incline  120-wedge, 25-incline, 90-wedge. 80-incline
. 120-wedge, 80-incline . 90-wedge, 25-incline « 120-wedge. 80-incline
Model/Full scale wedge breaking tests taken from Keinonen et al (1993)
showing the effect of ice thickness, t, on the ratio of piece size to characteristic
length, L,/l., with loading velocity, V = 5 cm/s

IME'S TESTS «———»  IMD'STESTS

Mostly A-Type

{C-Type (IMD tests
only) i

"t

Mostly C-Typei * ° ! i
0 005

0

0.1
Ice Thickness (m)
« A-Type B-Type x C-Type, IME
« D-Type + C-Type, IMD
Rubble types associated with IME's and IMD's model tests shown in the
strength-thickness domain
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Figure4.12  Non-dimensional resolution factor, §/g, versus non-dimensional waterline
width, D/I, for smooth cone tests
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FORCE ON STRUCTURE IN X DIRECTIONS MUNCONE 3 005

FORCE (KN)

T R T TR TR TR
TIME (3)

MULTIFACETED CONE TESTS | A = 25.00, NRC/IMD

Figure 4.14  Figure showing the definitions of F,, F, and F, (A is the scale factor)

3 =
—1:1 fit #
3 yau
£ P
H * A
i "
& o }
. |
0 1 2 3

Measured Breaking Force (kN)

Figure 4.15  Comparison of horizontal breaking force measured in IMD’s series to
breaking force predicted by Equation 4.9

104



Figure 4.16

Figure 4.17
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Measured Clearing Force (kN)

Comparison of horizontal clearing force measured in IMD's series to clearing
force predicted by Equation 4.9
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4.9 for the three test series
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["e IME 1:50
i « ERC 1:10|
| « ERC1:20]
|+ IMD 125
— 1t

Predicted Horizontal Force

0.1 1 10 100
Measured Horizontal Force

Figure 4.18  Comparison of prediction from Nevel's model with measurements from the
three test series: horizontal force
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Figure 4.19  Comparison of prediction from Nevel’s model with measurements from the
three test series: vertical force
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Figure4.20  Comparison of horizontal breaking force measured in IMD’s series to prediction
from Nevel's model
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Figure4.21  Comparison of horizontal clearing forces measured in [IMD’s series to prediction
from Nevel's model
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Figure 4.24  The loads exerted on pile-up ice



Part II Ice Rubble Modelling

Chapter 5 Ice Rubble Under Load

The process of ice rubble pile-up around a conical structure has been poorly
understood. When a rubble mass clears around a structure, the load that can be imposed on
the structure is influenced by a number of parameters, including: structure form, speed,

porosity, roughness, lateral confinement of the rubble, and the size-shape-strength-and-

of ice ising the ice rubble. Furthermore, geometry of the rubble
field and loading conditions at its boundaries would give rise to a complex state of stress

distribution.

In order to understand and to quantify the influence that a rubble field has on ice-cone

,itis necessary ine both the kil ic and the dynamic aspects
of the rubble clearing processes. The manner in which ice blocks are generated and cleared
around the structure determines the size and shape of the rubble formation. This rubble
mass, in turn, being pushed against the structure, exerts forces on the ride-up ice and the
supporting ice sheet. Until now there has been very few research studies dedicated specially
to this subject. However, the problems encountered in the studies of rubble load on
structures are quite similar to those found in soil mechanics; while the constitutive material
differs, the similar particulate nature of the materials provides the common ground.

In this and the following two chapters, a rubble model is developed to model ice
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rubble behaviour in front of a faceted conical structure. Basic theories of soil mechanics are
explored, and the geometry of the rubble and the associated forces are modelled with the aid
of numerical simulations. This chapter focuses on the basic mechanical behaviour and the
failure processes of ice rubble under loading conditions typical of the ice-cone interaction
process. Chapter 6 presents a simple method to characterize and compute the geometry of
4 fully developed rubble from known ice and structure conditions. The predictions agree
well with the experimental data. In Chapter 7, a set of empirical equations are developed to
calculate forces exerted by a cohesionless granular mass, i.e., ice rubble, on a retaining wall
using a series of discrete element analysis. These equations are further incorporated into an
ice force model which will be presented in Chapter 8.

The model developed in this work involves three important phenomenological
parameters: the angle of internal friction, the angle of repose, and the earth coefficient

function. The first parameter is a constitutive property of granular materials with Coulomb-

type shear iour. The second acterizes the natural slope of granular
materials being dumped. The third parameter describes the stress state of a rubble mass
under various loading conditions. The second and the third parameters are functions of
loading conditions, and are closely related to the first parameter. In Section 5.1, the shear
strength of granular materials is discussed, followed by a brief review of laboratory
measurements of ice rubble shear properties. In Section 5.2, the surface profile of a rubble
pile due to the natural dumping process is explored. The angle of repose, an important

& of this profile, is di: d in detail. In Section 5.3, the behaviour of
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granular materials under stresses is examined. The characteristic stress states of the granular
materials under arbitrary loads, as described by various earth coefficients, are identified and
further explored. Based on basic theories of soil mechanics, it is concluded that the
cohesionless rubble is in an elastic state throughout its mass during the typical ice-cone
interaction process under investigation. Finally, two existing methods for the computation

of wall thrust exerted by an earth mass at-rest are assessed in Chapter 5.4.

51 Shear Strength of Ice Rubble

Mostly, ice rubble studies were carried out due to the concerns expressed for the
integrity of the structure encountered by ice ridges. In most of the instances, the ridges fail
in shear with the maximum loads experienced by the structure are limited by the shear

strength of the rubble materials. Therefore, of rubble

were mainly focussed on shear strength. The shear strength of an ice rubble under isothermal
conditions is basically made up of:
(i) The structural resistance to displacement of the ice blocks because of
the interlocking of the ice blocks,
(i) The frictional resistance to translation between the individual ice
blocks at their contact points, and
(iii)  The cohesion (adhesion) between the surfaces of the ice blocks.
For a cohesionless material, cohesion is negligible, while the resistance to
deformation is influenced strongly by its frictional resistance at the contact surface and the
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interlocking between ice blocks. A ge of the possible magnitude of this shear

resistance and the factors that influence it are essential to a rational design.

5.1 P ical and App for Material Descripti

The mechanical behaviour of rubble is 2 complex reflection of its structure. Like
other particulate materials, the deformation is brought about by mutual sliding and rotation
of the ice blocks. The existence of mutual contacts restricts the freedom of motion of the
individual block resulting in strength and rigidity of the ice rubble. The number and strength
of the contact bonds are to a large extent determined by the size, shape, roughness and
strength of the discrete blocks, the nature of the interaction between the various phases, the
state of the ice rubble in question (e.g.. its density and void ratio), and its texture.

The mechanical behaviour of ice rubble material can be studied using two different
approaches: the phenomenological approach and the structural approach. In the
phenomenological approach the laws goveming the processes are deduced from the
correlation between the input and the output data of a system whose dimensions greatly
exceed those of their constitutive units; and hence, the real substances are replaced by

mathematical models of structureless continua. The structural approach, on the other hand,

analyses the i iour based on the i ion between the 1

constitutive units of the system. Phenomenological conclusions are then made possible
through statistical synthesis.
Since the phenomenological characteristics are a result of rubble structure, a
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structural definition is the one. A ion of the

relations as a statistical synthesis of structural analysis would be ideal solution. This is the
only way in which one can correctly understand and pay due regard to their specific structural
characteristics which lead to constitutive relations of particulate materials. However, a
complete structural analysis is frequently unsuccessful even in the case of the simplest
deterministic systems, such as mono-crystals (Macmillan, 1972). For instance, in the
statistical characterization of particulate materials, it has been often found to be incapable
of describing the complete behaviour. In the present work, phenomenologically formulated

mechanical laws useful in simple engineering computation are adopted.

5.1.2 Ph i iptions of Ci G I

A classical foundation for the entire phenomenological approach was laid by

Coulomb (1773). For the shear gth of soils. Coulomb derived a simpl ion using

“the law of friction and cohesion™ proposed for soil substances by Amontons (1699):

T =c + otand -1)

where T and g, are the shear and normal stresses on the failure surface, respectively; c is the
cohesion: and ¢ is the effective angle of internal friction. This definition of strength was
further refined by Mohr (1882), who proposed the idea of representing graphically the

combination of stresses by a circle. In the Mohr-Coulomb failure criterion, the strength of
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a granular soil can be represented by the Mohr failure envelope, which is a line drawn
tangent to the Mohr circles representing the state-of stress at the peak points of the stress-
strain curves under various confining stresses. For cohesionless materials, the cohesion is

negligible, i.e., the internal friction i the i istics and becomes

the principal mechanical parameter of the materials.

Rubble is neither a solid nor a liquid, but it has some of the characteristics of both of
these states of matter. It differentiates itself from fluids as described by Delanges (1788):
“when poured, retain their shape, when excavated, do not fill the depression, after being
shaken or otherwise disturbed, settle rapidly as soon as the external impulse no longer acts™.
However, on the other hand, it is similar to fluids in its tendency to exert a lateral pressure
against an object with which it comes in contact due to the Poisson’s ratio effect. This
characteristic can be measured by the coefficient of lateral pressure. K. i.e., the reciprocal of
the ratio between the vertical stress and the horizontal stress which tends to resist lateral
deformation of the material. As we shall see, this K-coefficient is closely related to the
internal friction of the material.

An important implication of the Mohr-Coulomb theory is that in a general three

dimensional stress state, the intermediate principal stress has no influence on the failure

criterion. This i il true. The iour of granular materials may be influenced
by many factors, such as void ratio, gradation of grain sizes, loading path, temperature, time,
and stress history. In recent years, an increasing number of other failure criteria have been
proposed to give a better modelling of the most significant aspects of granular material
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, including linearity, i icity, shear dilatancy, and path dependency (see

Table 5.1). An overview of failure criteria for engineering materials,

materials, was given by Desai and Siriwardane (1984), including elasticity model, classical
plasticity models and other more recently developed models.

In the light of recent research, the linear Mohr-Coulomb model does certainly not
mean the last word in strength theory, and in some problems it has proved inadequate in
describing the true behaviour of unconsolidated ice rubble (Ettema and Urroz-Aguirre, 1991;
Sayed etal, 1992; and Leset and Sayed, 1993). Yet, for engineering purposes, it has become
avery useful and dependable tool for judging, by strength computations, the danger of failure

in solid bodies under general stress conditions.

5.1.3 Effect of Initial Void Ratio on Internal Friction

The internal friction of a granular material in a given state is the result of a number
of factors and influences, i.e., the void ratio of the material, the confining stresses, the rate
of loading, etc.. which act upon the material at the moment of its shear failure. Of these
factors, void ratio' is by far the most important. This ratio, which is a function of block
shape and size distribution, can have a profound influence upon the rubble’s internal friction.

The internal friction angle, ¢, of a cohesionless Coulomb material is made up of two

'The ratio of the volume of the pores to the volume of the solids in a rubble sample is
called "void ratio"; while porosity is defined as the volume of the pores to the total volume of
the rubble sample.
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components: firstly, the frictional resistance arising from the sliding between particles;
secondly, the structural resistance due to the interlocking of the particles. The former is
solely a property of the material; whereas, the latter is purely geometric. The effect of
particle interlocking is illustrated in Figure 5.1. In loosely packed materials, to start shear
it is only necessary to make the particles slide upon one another. I[n a dense pack, the
particles are interlocked with its neighbours, and have to move upwards and slip along the
shear plane during shear. This tendency to dilate during shear was first observed by
Reynolds (1885), and is known as the Reynolds dilatancy. The denser the packing, the
greater is the tendency to dilate.

The influence of the dilatancy on the behaviour of granular materials has been studied
by Rowe (1962), Been and Jefferies (1985). Bolton (1986), Goddard and Bashir (1990).
Bashir and Goddard (1991); Goddard (1992), Balendran and Nemat-Nasser (1993),
Pouliquen and Renaut (1996), and Schanz and Vermeer (1996). Houlsby (1991) gave an
excellent review on the relationships between the friction angle, dilation angle, density and
pressure in a granular material.

In a typical tri-axial strength test, the shear stress-strain behaviour of granular

materials at a given normal load depends on the initial packing density (Lambe and

Whitman. 1979). Figure 5.2 shows i two types of

curves. For densely packed samples, the shear stress increases with the strain, reaching a
peak. ¢,, and then gradually decreasing to some constant value, ¢,. Over this range of
strains, there is usually an initial reduction in the volume of the sample due to compression
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followed by an increase due to dilatancy. The maximum shear strength, 7,, is referred to as
peak strength, ¢, The denser the sample, the more the stress-strain curve shows a

=

peak and thy d ing this peak. On the other hand,

in case of loosely packed samples, the stress-strain curve does not show a pronounced peak.
and instead the stress increases asymptotically to the critical value while the volume
decreases. At very large strain both dense and loose samples achieve the same void ratio, e,.
exhibit little or no tendency to further volume change: and the deviatoric stress for both
curves becomes essentially constant. The strength for this state is referred to as constant
volume strength, ¢,,." At this state, the sample can deform without volume change.

Figure 5.3 further shows the relationship between the internal friction angle, ¢, and
the initial void ratio, e, (Rowe, 1962). This trend of higher ¢ for denser soil is always the
same regardless of the type of granular materials. And, hence, this intemnal friction angle. 9.
is not a material property but depends strongly on the void ratio which reflects the degree of
interlocking between blocks.

Since the strength at the ultimate condition for a particular sample is the same
regardless of its initial void ratio, ¢, may be thought of as a material property. The value of
0,, can be approximated with reasonable accuracy by the angle of repose, ¢, i.e.. ¢, =, (see
* ¢ and its variants, i.., ¢, and 9,,, are actually internal friction angles; however, they are

commonly referred to as the strength of cohesionless materials in soil mechanics.

“The angle is sometime referred to as ultimate, critical or residual angle (Lambe and
Whitman, 1979).
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Section 5.2).
Beside the void ratio, the internal friction is also dependent on the rubble

composition, stress state, stress history, t ind strain rates, and th

of the rubble. From Figure 5.1, it is clear that the angle of internal friction is also influenced
by the grain size distribution and grain shape (Holtz and Gibbs, 1956) (see Table 5.2). The
interlocking is particularly important as the angular ice blocks tend to interlock more
thoroughly than round blocks. The general influence of the other variables outlined above

with respect to soils has been detailed by Mitchell (1976).

5.1.4  Limitations of the P i h

The forcesand induced by rubbl i ion processes are analysed
primarily from a macroscopic point of view, which means that the rubble mass is assumed

10 be a contil rather than of indivi material parts, and the ice blocks are

uniformly distributed throughout the body. Such an assumption will be sufficiently valid as
long as voids are small and irregularities are present only on a scale small enough in
comparison to the size of the structure under consideration.

In a typical ice-rubble interaction situation there are transients. Even after steady-
state is reached, sizeable fluctuation of ice load can be observed which is superimposed on
the constant base line. Although this fluctuation can be attributed to the nature of ice
breaking and ride-up cycles, it may also be partly attributed to the pulsating clearance of
rubble ice due to the discrete nature of broken ice pieces and the local variation of geometric
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and mechanical properties.

In a typical

system, a quantitative answer can only be given from
case to case based on detailed statistical considerations that are beyond the scope of this
research. Qualitatively, however, one can imagine that with decreasing size of the ice pieces,
with respect to the structure dimensions, the discrete nature of the rubble becomes of lesser

NPT T ey ing the accuracy of a i iic description. Observations

from the present model tests, in terms of the geometry of the rubble and the associated loads
on the models, suggest that the size effect is not significant even with the structure width to
piece size ratio as low as 4.

If, however, the dimensions of the ice pieces became comparable to the structure

width. the pulsating nature of ice cl may become signi: In such

methods which account for the discrete nature of the interaction, i.e., discrete element

should be emp! and the i taken into account.

5.1.5 Laboratory Measurements of Rubble Strength

Ki ge of the i ies of bulk rubble is a prerequisite for analysis

of rubble mass iour. The ical properties, such as internal friction and cohesion,
can be determined through shear strength tests. These tests also allow the influence of strain
rate and other variables such as block size and distribution, temperature, etc.. to be
investigated.

Most of the studies to date have been carried out in the laboratory, many of which
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have been performed on artificially generated ice rubble using some form of the direct shear
box or the simple shear apparatus. From these empirical test results, constitutive
relationships have been derived. The type of apparatus used in published shear box
experiments and the general results obtained are reviewed by Ettema and Urroz-Aguirre
(1989 and 1991). The main features of these properties are briefly reviewed here. More
detailed information can be found in the cited references.

The first comprehensive study into the properties of rubble ice was conducted by
Prodanovic (1979) who performed direct shear tests on submerged samples. His results
indicated that the bulk rubble obeys the Mohr-Coulomb criterion, under a certain range of
stresses and displacement rates, i.c., Equation 5.1.

Other experiments by Keinonen and Nyman (1978), Weiss et al (1981), Hellman
(1984), Gale et al (1985), Wong et al (1987), Sayed (1987), Urroz-Aguirre and Ettema
(1987) and Case (1991) are in agreement with this conclusion, but there is an enormous
spread in the reported values of friction angle and cohesion. For example, angles of internal
friction have been reported from 1 I° to 65°, while cohesion has usually been reported to be
negligible, but has also been reported to be up to 20 kPa by Sayed (1987). The shear box test
results are summarized in Table 5.3.

The extreme variation in reported experimental results for the shear strength of ice
rubble testifies to the complexity of what may seem a simple measure of resistance to shear.
This variation may be attributed in part to the different testing methods used. Early tests
used direct shear boxes (Prodanovic, 1979; Weissetal, 1981; Hellman, 1984; and Fransson
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and Sandkvist, 1985). Other tests were done using simple shear box (Urroz-Aguirre and
Ettema, 1987), a plane-strain box (Sayed, 1987; and Sayed et al, 1992), and a small tri-axial
cell (Wong et al, 1987). The direct shear boxes do not give a well defined failure plane
within the sample: consequently, the stress and strain measurements cannot be properly
quantified. The set-up used by Urroz-Aguirre and Ettema (1987), Sayed et al (1992), and
Wong et al (1987) overcame this problem by producing uniform deformation in the sample.
Different sample preparation methods, range of stresses, strain rates, sample temperature,
melting or freezing of the samples, and the difficulty in proper scaling of the bulk material
further complicate the problem as well.

Bruneau (1997) collected laboratory ice rubble shear data from the literature and

them with the i iour of a loose and dense sand. He concluded that
the lower bound strength of ice rubble undergoing shear was similar to that of loose sand.

He conjectured that the higher strength is attributed to various degrees of interblock bonding.

Chao (1993) P ion equations for estimating apparent cohesion and effective
internal friction angle for unconsolidated ice rubble using four sets of ice rubble shear
strength measurements (Prodanovic, 1979; and Weiss et al, 1981; Fransson and Sandkvist,
1985: and Case, 1991). It was found that the thickness and flexural strength of the ice pieces
are the most important factors in determining the cohesion of the ice rubble. For the internal
friction of the ice rubble, void ratio appears to be the most important parameter. Although
the regression analysis was based on limited measurements of 10 - 15 data points, his
findings regarding the internal friction are in agreement with other granular materials.
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Recent studies on ice rubbl ics indicated the i of

between i ice pieces in ining the overall
of the ice rubble. Hopkins and Hibler (1991) conducted a series of discrete element

simulation with a two-dimensional shear box filled with blocks which have a length to

thickne istributi istic of p id, Particle sh angularity,
mixture anisotropy, and compactness were modelled rigorously within the limits of the two-
dimensional simulation. The results showed clearly that variations in the coefficient of
friction have a great effect on the shear strength of angular rubble. They also demonstrated
that local rearrangement of block and breakage are competing mechanisms for the relief of
local forces on the nominal failure plane. Breakage which depended primarily on load
produced a load dependence in the shear strength. Their results demonstrated the need to

take account the and i ions between the i ice

blocks in rubble research, and also the versatility of Discrete Element Method, as these
factors could be readily incorporated into the problem.

In interpreting the available laboratory measurements, two characteristics of rubble
ice must be kept in mind. The first is the breakage of constituent ice blocks under confining
pressures, which varies widely from test to test. Unlike other granular material, i.e., soils,
the strength of ice is relatively weak, and considerable breakage of ice blocks may occur
under even a moderate pressure. This breakage substantially affects the interlocking of the
sample which is reflected in a lower internal friction at higher pressure. The second is the
size of the sample. Unlike testing of real soils. rubble samples used in previous tests are
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made from various sources, ranging from large size field ice to small size manufactured ice
cubes. Early tests used relatively small test chambers, which might have led to size effects.
Furthermore, all data on mechanical properties are from small scale laboratory tests, and
uncertainties remain regarding the extrapolation of small scale data to field conditions.
Recently, comprehensive field experiments were carried out near Borden, Prince
Edward Island adjacent to the Confederation Bridge to develop reliable and practical
methods for characterizing the insitu strength of ice rubble in first-year ridges and rubble
fields (Bruneau et al, 1998). Two insitu shear strength testing methods were attempted. The
first. referred to as the direct shear approach, involved the horizontal displacement of a
pre-cut ridge core slab. Forcing the solid ice layer sideways resulted in the shearing of bonds
with the underlying ice rubble keel. The second approach, referred to as the downward punch
technique, involved the vertical displacement of a pre-cut block of the ridge's refrozen layer.

The technique provided a vertical failure of the ing keel. Ancillary

were made of level ice thickness, ridge depths, ridge profiles, refrozen layer core samples,

water salinities, sail heights, block size di ions and weather iti Careful analysis
of the data set will provide significant information on the deformation properties of ice
rubble.

The of the strength ies of ice rubble have been focussed on its

plastic failure state under high to medium pressure. Only a few have been performed at the
low pressure regime. Whereas, the rubble in front of a cone is expected to be in a loose state,
i.e.. cohesionless and under low confining pressure, and hence the test conditions may not
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model the stress state that exists in the rubble under a typical interaction. At the rubble's free
surface, the rubble is at the limit plastic state characterized by the internal friction angle at
it's loose state, ¢,,. (See Section 5.2) Inside the rubble mass, the rubble is at it's elastic

state, which can also be related to ¢,, (see Section 5.3). This ¢,, is essential to model the

rubble behaviour associated with the problem under i igation; yet, such

associated with ice rubble are scanty.

5.2 Rubble’s Surface Profile Due to Natural Dumping Process

If a dry granular cohesionless material, i.e., dry, clean sand, is poured slowly from
a not very high level onto a smooth horizontal plane, it will form a cone with it's free surface
inclined at a definite angle to the plane due to the internal friction of the material. The
limiting slope formed by this process is called the angle of repose, ¢,, and it presents the
maximum inclination at which the material will just begin to move down the slope. Since
the poured material generally finds itself in a loose state, the maximum stable slope angle,
@, is about equal to the angle of internal friction for the loose state, ¢,,. The existence of this
angle of repose has been shown in various text books on soil mechanics, i.e., Lambe and
Whitman (1979).

Observations from experiments indicate that a similar slope failure process constantly
takes place at the free surface of the rubble as a result of constant dumping of ice blocks onto

its surface: and hence the rubble's free surface profile may be conveniently assessed by the
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simple, empirical measurement of its angle of repose assuming the scale of the ice pieces is

small.

5.2.1 Variation and Maintenance of Rubble Surface Profile

‘When rubble clears around the cone, three processes may arise:

(i) Continuous dumping of ice blocks from the top to the rubble's free

surface;

(i) Removal of ice blocks at the foot of the rubble as they move and clear

from the side, and

(i) Increase of the free surface inclination of the rubble as it slides up the

cone.

All three processes tend to increase the surface slope of the rubble, and hence ensure
a unique surface profile of the rubble to be maintained at its angle of repose by continuous
failure of its free surface. The third process happens only when the rubble is allowed to slide
up the wall with the underlying ice. when the static friction is high enough to prevent sliding
between the rubble and the underlying ice. When this condition occurs, it also accentuates
the effects of the other two processes.

During steady-state rubble accumulation, the rubble slope fluctuates between two
limiting values. Initially, the slope angle is less than the angle of repose. The slope increases
through the aforementioned three processes until the slope is larger than the angle of repose
for the rubble material, and progressive slope failure occurs. Up to this point, the motion of
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ice pieces is slow and static equilibrium is maintained at each time instant. However, after
the on-set of the slope failure, the motion of the toppling ice pieces is large and substantial
kinetic energy is acquired by the toppling ice and the subsequent failure is dynamic. The
slope after failure is substantially less than the angle of repose.

Cantelaube-Lebec et al (1995) reported an 8 degree difference between the angle of

repose just after an avalanche, and the angle of maximum stability just before the avalanche

in their i on the equilibri ions at the surface of a flowing 2-dimensional

granular medium. The p slope angle the limiting condition which
corresponds to the maximum amount of rubble loading on the cone.

Various aspects of gravity driven granular flows of particles down inclined surfaces,
similar to the avalanche process, have also been studied by Savage and Nohguchi (1988), Jan
etal (1992), Abu-Zaid and Ahmadi (1993), Chou (1994) and Pouliquen and Renaut (1996).

Another process was also observed during tests which could limit the maximum
rubble slope. Before the limiting angle of repose can be reached, all of the rubble mass can
slide down the facet, thus decreasing the slope. This is expected to happen when the cone
angle is steep or the ice-ice friction is low. Again, the pre-failure condition is static.

The angle of repose is affected by measuring methods and many parameters. Three

gle of repose ibed by Linoya (1993), viz.,

thod: used

injection method, discharge method and tilting method. Brown and Richard (1990) have
described each of these methods and discussed the various parameters affecting the angle of
repose. Linoya etal (1990) have identified the various factors influencing the angle of repose
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for granular materials, such as: particle size, size distribution, void fraction, injection rate,

falling distance and size of heap.

5.3  Stress-State of Ice Rubble
5.3.1 Behaviour of Granular Material Under Stress

Stresses within a granular mass are caused by the external loads applied to the
granular mass and by its own weight. Since rubble mass is made up of blocks, it is essential
to understand how a mosaic of granular material behaves under stress. Classical theories
governing the earth pressure on a retaining wall form the logical starting point due to the well
explored nature of the subject and the similarity of the interaction processes under
investigation.

The stress

tate of a granular mass, under various loading conditions, can be
described using the concept of earth pressure ratio function. In soil mechanics, this function
is commonly expressed by a ratio called the coefficient of lateral stress, and is denoted by

the symbol K:

K= (5-2)

where 6, and G, are the horizontal and the vertical stresses, respectively. The value of K can

vary over a wide rang ing on the i f the lateral (hori: ) pressure which
can develop in the rubble mass. This lateral pressure can be related to the strength and
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stress-strain properties of the material and deformations which occur within the mass as a
result of lateral movements. There are three distinct kinds of lateral pressure, and a clear
understanding of the nature of each is essential. In the special case, where there has been no
lateral strain within the soil, the coefficient of lateral stress is said to be in the “at-rest”
condition, and is denoted by the coefficient of elastic equilibrium at rest, K. K, describes
the geostatic stress condition. Coefficients for the two plastic limit equilibriums, K, and K.
can also be identified. K, and K, describe the two plastic limits at which rigid plastic
material yields plastically.

To illustrate the material behaviour at these three states, consider a level soil mass

of semi-infinite extent retained by a smooth, rigid, wall as shown in Figure 5.4 which

the general i ips between lateral deformation and pressure. For

simplicity, the soil is assumed to be i pi i The granular
material tends to slip laterally and seek its natural slope. This tendency results in a push
against the wall.

The vertical stress ©, is controlled by gravity, and can be estimated from a profile of
overburden stress with depth. For the condition where the soil deposit is normally
consolidated’, the total vertical stress in the homogeneous soil at any depth of z is equal to

the weight of the overburden:

*A condition in which the existing pressure the maxi; vertical
pressure the soil mass has been subjected in its history.
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g, =2, 5-3)

where ¥, is the total unit weight of the soil. There are no shear stresses upon vertical and

horizontal planes within the soil: and hence, in the case of a horizontal ground surface, the

vertical and hori: of the stress are also principal stresses. If
these stresses are associated with zero lateral deformations of the soil, i.e., the unyielding
wall depicted in Figure 5.4b, they are referred to as the lateral stress at rest and the earth
pressure coefficient is designated K.

The horizontal stress, 6,, and hence the earth ient, K, are highly i by

the current soil state. If the wall of Figure 5.4 is allowed to move away from the retained soil

mass, the soil starts d in the hori direction, ing the wall (See
Figure 5.4a) The lateral expansion of the soil against a smooth wall does not affect the
vertical stress within the soil, but leads to a decrease in the lateral stress. Any element of soil
will then behave just like a specimen of a tri-axial test in which the confining stress is
decreasing while the axial stress remains constant. The soil’s shear strength acts opposite
to the direction of the expansion resulting in shearing resistance developed within the soil
mass, and hence the lateral soil pressure on the wall decreases. When the soil develops its
maximum shearing resistance with increasing lateral expansion, a sliding surface is formed
in the soil behind the retaining wall, and the horizontal stress exerted on the wall decreases
10 a certain minimum, and no further decrease in the horizontal stress is possible. The
horizontal stress for this condition is called the active stress, and the ratio of horizontal to
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vertical stress is called the coefficient of active stress and is denoted by the symbol K.

If the same wall moves into the retained soil mass, the soil is compressed in the
horizontal direction, with the soil shearing resistance acting to oppose the lateral
compression (see Figure 5.4c). Any element of the soil is now in just the condition of a tri-
axial specimen being failed by increasing the confining pressure while holding the vertical

stress constant. When sufficient lateral movement occurs, the shearing strength of the soil

is fully ilized and th ion of th Iting lateral earth pressure reaches its maximum
value. The horizontal stress condition is called the passive stress, and the ratio of horizontal
to vertical stress is called the coefficient of passive stress, K.

Figure 5.4 illustrates the important fact that lateral pressures change gradually in
accordance with wall movement, and reach the fully active or passive conditions only when
adequate movement has occurred. Until such movement is achieved, the lateral pressure
acting on the wall is intermediate between the two limiting values, and the soil is said to be
in a state of elastic equilibrium. Results of large scale model tests are reported by
Tschebotarioff (1951).

The acti ) . Iti Th f stress

at this two extreme situations are called Rankine states, after the British engineer Rankine
(1858) who noted the relationship between the active and passive conditions. For a simple
case of a level cohesionless fill behind a frictionless vertical wall, the magnitudes of K, and

K, are given by:
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The range of K values can be large. For ¢ = 35°, the possible range of earth pressures

is as follows:
Earth pressure Symbol Computed as K coefficient
Active K, Eg.54 027
At Rest K, Eq.5.7 043
Passive K, Eq.5.5 3.69

The two limiting values K; and K, vary by factor of 13.7. Thus, it is important to identify
the appropriate values for K to match a particular deformation and failure process.

The at-rest stress state is of practical and theoretical significance to the present
investigation, since stress state is established when the backfill is placed behind a rigid wall
without allowing any lateral strain, i.e., soil deposited behind a rigid unyielding wall, a
process similar to the disposition of ice rubble in front of a rigid cone wall through end
dumping process. This process results in a cohesionless granular pile in loose state, and,
thus, the initial state of the rubble can be characterized by K.

When the soil is in a state of elastic equilibrium, the stresses in the lateral direction
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can be from the i ionships of the soil ing a linear isotropic
material behaviour. The isotropic linear elastic body is characterized by two parameters: the
Young's modulus of elasticity, E, and the Poisson’s ratio, v, or with the use of another set
of elastic constants -- the modulus of rigidity, G, and the Lamé’s constant, A.

The relationship between lateral and vertical strains is described by Poisson’s ratio®,
v; and for the condition of zero lateral strain the relationship between the principle stress

(horizontal stress and vertical stress) are related by the ratio:

(5-6)

Matsuo et al (1978) compared the measured earth pressure at rest on a retaining wall with
the results from finite element computation, and showed that the elastic theory is applicable
to evaluate earth pressure at rest if the Poisson's ratio can be properly given. The classical
model of linear elasticity has been modified for use with dry cohesionless granular materials

to account for the linearity of the i i ips of

Even wil jor modifications, icti f loads du il

are very difficult to make due to a lack of knowledge of the stiffness moduli and strains as

*While the concept of Poisson's ratio used in continuum mechanics is still valid for a

granular mass, it should be noted that, the Poisson’s ratio is used here to describe the behaviour
of the whole granular mass, i.e., not the individual discrete ice block. As the stress-state of the
rubble depends on it's load history, the Poisson’s ratio of the rubble is not a material property
and varies with the stress-state.
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they change from point to point within the granular body.

Several ical and empirical i ips for K, have been postulated for loose

sands as summarized in Table 5.4 [Jiky, 1944 and 1948; De Wet. 1961: Brooker and

Ireland, 1965; Wierzbiczky (see Rymsza (1979)); Feda, 1982; Matsuoka and Sakakibara,

1987; and i, 1994]. However, i values of K, are best represented by

a simple expression given by Jaky (1948):

K, =1 -sind 57

The validity of this formula has been established by Szepeshazi (1994) and Mayne
and Kulhawy (1982). After giving a detailed examination of Jaky's equation, Szepeshazi
found the Jdky's equation and its variations compared well with 152 measurements from a
variety of soils. Mayne and Kulhawy (1982) conducted an extensive review of laboratory
data from over 170 different soils as shown in Figure 5.5 (Mayne and Kulhawy, 1982).

Statistical analysis conducted on K, for all available data indicated:

K, = 1 - 1.003sing (5-8)

having a sample correlation coefficient, r = 0.802. The scattering of data may be due to the
variations of the other index properties of the soil, i.e., liquid limit, plasticity index, clay
fraction, uniformity coefficient, void ratio, etc.

Many other investigators have also corroborated the results, i.e., Simons (1958);
Brooker and Ireland (1965); Bishop (1971); Pruska (1972); Wroth (1972); Myslivec
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(1972); Andrawes and El-Sohby (1973); Lambe and Whitman (1979); Fukagawa and Ohta

(1988); Mesri and Hayat (1993); and Feda et al (1995).

5.3.2 Expected Stress State of a Typical Rubble in Front of a Faceted Cone
When the rubble is formed by a natural dumping process, the clearing of the rubble

from the structure is analogous to the bulk material transport on an inclined belt conveyor

as the supporting ice sheet and the ride-up ice act as the bell . And hence the rubble
in front of the cone may constantly be subjected to two simultaneous processes:
0] The deposition of granular material in loose state in front of the
structure during the initial formation; and
(ii)  The ride-up of rubble onto the facet in which the rubble is forced to

conformto the i when the rubble i d up the

facet.

The first process results in a rubble with stress associated with the at-rest state. The
second process may affect the stress state within the rubble, with the stress-state deviating
from the at-rest condition and moving toward the two plastic limits, depending on the type
of deformation in question, i.e., compression or extension

The real interaction process may be a good deal more complicated than the simple

above, but th ial process is lear. Itis expected that the

maximum force that is exerted by the rubble on the wall would correspond to the elastic

state witha K val close to K, and it can diverge from K, depending
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on the effect of the second process. In all likelihood, such a change is negligible as long as
the rubble is allowed to clear from the structure; therefore, in the present study, the effect
of the second process on ice load is assumed to be negligible, and is not studied.

Possible extra load due to horizontal compression may be of concern, if the rubble
is prevented from riding-up the structure; however, it should be noted that the rubble will
not attain the passive state, even in this case. It is illustrated as follows:

General equations for passive earth pressure coefficients, K, can be established

through Poncelet” ions (1840) for various wall angles, o, rubble angle.
1, wall friction angle, ¢,, and the internal friction angle, ¢, of the rubble material (Jumikis,
1962). The expected rupture angle, £, as defined in Figure 5.6 is given as follows (Jumikis,

1962):

N tan($ -a)+tan( -a)[tan($-a) +cot(§ +(90° +1)][1 +tan(-$_—(90° +1))cot(d+(90° +1]
1+tan( -9, -(90° +1)){tan( -@) +cot($+(90° +1)]

n 1 59

It should be noted that when the rubble angle, 1, is equal to the angle of repose, ¢, the
rupture angle, Q, is equal to zero and the actual rupture line would make an angle ¢ below
the horizontal level.

The above formula suggests that for an discrete rubble mass accumulated in front of
© In this thesis, the rubble angle, 1, is reckoned as negative above and positive below the

horizontal plane which is different from the common convention used in the field of soil
ics. In the case under i igation, the angle is always positive.
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an inclined wall, passive shear failure within the rubble will not occur during a typical

process, due to the large positive inclination of the free surface of the rubble. Any
shearing failure (if there is any) will take place at the bottom of the rubble, where a weak

shearing plane already exists, way before the shear strength of the rubble is fully mobilized.

54  Analytical the of Wall Thrust Exerted by Earth Mass

at the At-Rest State
The problem of the earth pressure within rubble at the ‘at-rest’ state or near it
corresponds to one of the calculation of the earth pressure at rest for triangular fills.

The calculation methods of earth pressure at the ultimate Coulomb's and Rankine's

equilibrium states have been studied and ined by many and engi
(Coulomb, 1773; Caquot and Kerisel, 1948; Terzaghi and Peck, 1967; Packshaw, 1969:
James and Bransby, 1971; and Shields and Tolunay, 1973); but there is no satisfactory
method to compute the lateral pressure on walls due to fill at the at-rest state. Technical
literature for the calculation of lateral pressures on a rigid wall due to a triangular fill, as in
the present case, is limited.

In this section, two existing methods for the calculation of lateral pressures on a rigid
wall due to a triangular fill are described: Melkote's elastic analysis (Melkote, 1977) and

limit equilibrium methods. The di: ion f the limit equilibrium methods, while

Melkote’s method is only briefly described.
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5.4.1 Melkote’s Method
Melkote has developed a set of equations to compute earth pressures exerted on

retaining walls by triangular fills as in thy f wrap-around for ition blocks, between

earth dams and concrete spillways. His method consists of two steps by recognizing two
important features of the problem, i.e., the fill is triangular in shape and the pressure is
exerted in an “at rest’ condition. His derivations are based on Jiirgenson's work (1934) on

strip loads on semi-infinite masses. In this method. the vertical wall pressures due to the

fill are first esti d by ing the vertical pressures due to a quarter infinite

fill against the retaining wall on the basis of integration of Boussinesq's Equation (1885) for

asingle load acting on a semi-infinite medium; and then unloading the fill in

strips beyond the 1} section. The hori: pressures are then obtained by

multiplying the vertical pressures with the coefficient of earth pressure at rest. His method
is also applicable to a wall inclined at any angle, and a fill consisting of any number of layers

with different densities and i isti Due to the ity of the

, the ions are not here.

Melkote's method has rarely been used as designers favour simpler methods.

542 Limit Equilibrium Methods

A simpler and widely used method, which may be applicable to the problem under

is the limit equilibrium method used in slope stability analysis
(Huang, 1983). This method is based upon states of limit equilibrium which have dominated
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earth pressure problems for over two hundred years. The analysis essentially applies the
principles of static equilibrium to a relatively simple geometry in which slip on
discontinuities is governed by a specified shear strength model. It involves making an
estimate of the weights to be resisted, the geometry and the shear strength of the failure
surface, and the amount of shear mobilized within the granular mass. The stability of
individual slopes is expressed as a factor of safety, F,, which is the ratio of forces resisting
movement to the forces tending to induce sliding. When the mass is stable, the factor of
safety is higher than unity; and when the factor of safety is equal to unity, the slope will be
unstable, i.e., at limiting equilibrium. A factor of safety smaller than unity implies an

impossibly steep slope.

Most i il i i i arious levels

of simplification are used in order to arrive at a unique solution. This leads to a variety of
methods (Fellenius, 1936; Bishop, 1955; Morgenstern and Price, 1965; Seed and Sultan,
1967; Spencer, 1967; Wang et al, 1972; and Janbu, 1973), ranging from the simple wedge
method (Seed and Sultan, 1967) to the very sophisticated finite-element method (Wang et
al, 1972). In this section, the simple wedge method is presented to illustrate the general

of the limit equilibrium methods.

As we have already shown in the previous section, any sliding will occur at the pre-

existing sliding plane, and the principle ing stability ion of the

rubble mass is the failure in shear along the sliding planes, when the driving forces exceed

the resisting forces. The forces on the ice contact surfaces, due to the rubble, can be
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reasonably estimated by assuming that the rubble is made up of a number of hypothesized
rigid blocks piled up against the inclined surface and considering the equilibrium of forces

for each of these blocks. By considering the rubble blocks as rigid bodies, it is possible to

predict rubble forces on the cone with the aid of rigid ics. The simplest analysi:

consists of two rigid blocks moving along the contact surfaces: the support and the incline,
as shown in Figure 5.7.” The lower block has a weight, W,; and the upper block has a
weight, W,, resting on the incline with an angle, o.. The dimensions of W, and W, are given.
The rubble is assumed to be cohesionless, and have a natural slope, 1 = ¢. The contact
surfaces between the rigid blocks, support, and wall as well as each other form potential
failure planes. The sliding resistance of the rubble at the wall and the support is governed

by ice friction angle, ¢,

The distribution of f ch plane depends on the interaction force between the
two sliding blocks and can be determined by considering the two blocks jointly. Figure 5.8
shows the free-body diagram for each block. The angle of the inter-block force, ¢, is
required for solution, and may be assumed equal to the developed friction angle, i.c.. tan¢,

=tan¢/F}, with F, being the factor of safety commonly used in limit equilibrium analysis.

"The mechanism in Figure 5.7 is not strictly kinematically feasible for the rigid blocks
analysis, because any downward vertical movement of the upper block will cause the block to
lock up at point A. This difficulty can be overcome by assuming that sufficient localised
deformation occurs in the region around point A to allow the mechanism to operate.

'Auhevergcoffaﬂuu.d!eﬁicﬁouumeslidingphnﬁ.almgmewpponmdlhe
incline, is fully mobilized, i.e., equal to tang,; however, the friction between the two rigid blocks
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By assuming that the factor of safety, F,, is everywhere the same, applying equally to tan¢
for the rubble material between blocks, and to tan, at the wall and the support, there are a
total of four unknowns, P, F,, N, and N,; where P is the force acting between the two blocks,
and N, and N, are the forces normal to the failure planes. The problem is statically

with four and four ions, two from each block.

For the lower block, summing all forces in the vertical direction and the horizontal

directions, and solving for N, and P:

T Wcosd,
-
ool tand, ) o &, (5-10)
(5-11)
(5-12)

For the upper block,

may not be fully mobilized, i.e., the angle of the inter-block force is less than or equal to tan ¢,
depending on the value of F,.
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or P, in term of the unknown F, only:
tan
LA [sinu = (;0,,‘] oosa]
2 F,

P=
cos(dp, - @) - (m—r¢l] sin(¢, - @)

(5-13)

(5-14)

(5-15)

The equation for the factor of safety F, as a function of input parameters ¢, ¢, & W,

and W, can be determined by equating Equations 5.12 and 5.15. Once F, is obtained, N, N,

and P can be computed from Equations 5.10, 5.13 and 5.15. A computed value of F, greater

than unity means sliding at the potential failure plane does not take place; while, a values

of F, smaller than unity means that the sliding failure will occur with a given rubble angle.

In such cases, the rubble angle should be reduced and a new F, computed until a value of

unity for F, is obtained. The corresponding rubble angle is the maximum angle which can

satisfy the static equilibrium condition.

By assuming the rubble as rigid blocks, the limit equilibrium methods ignore the

flexibility of the rubble mass. Furthermore, the assumed value of ¢, highly influences the
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stress distribution on the potential sliding plane, and the associated factor of safety. For
example, Figures 5.9 to 5.11 show the safety factor, the limiting rubble angle, and the

wall thrust, from the fo i method, as a function of ¢,/¢ for

h=1m,a=50°¢=30°and ¢,=11.3°and 21.8°. A commonly accepted way to estimate
@, has yet to be developed.
In Chapter 7, empirical equations to calculate wall thrust due to a triangular fill at the

at-rest state will be formulated from a series of ical si i The ions are

simple to use and yet account fully for the discrete nature of the fill materials.
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Table 5.1 Summary of failure criteria proposed for granular materials (after Evgin and Sun,
1989)

Isotropic Criteria Anisotropic Criteria

L Hill (1950)
(for orthotropic materials)
2. Generalization of Mohr Coulomb's
I Mohr-Coulomb Criteria
a. Baker and Krizek (1970)
2 Drucker-Prager (1952) b. Boehler and Sawzuck (1970)
a. Bishop (1971) c. Nova and Sacchi (1979)
3. Tsai-Wu
a. Tsai and Wu (1971)
b. Wu (1974)
c. Saadaetal. (1983)

Table 5.2 Effect of angularity and grading on peak friction angle (after Terzaghi, 1955)

Shape and Grading Loose Dense

Rounded, uniform 30° ar
Rounded. well graded 34° 40°

Angular, uniform 35" 43°
Angular, well graded 39° 45°
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Table 5.4

Different equations for coefficient of pressure of loose soil at rest

Source

Equation

Jiky (1944) - original

K, = K, (1 - 3sing)

Jiky (1948) - simplified K, =1 - sind

De Wet (1961) K = tose'e
1 ein'p

Brooker and Ireland (1965) K, =095 (1 - sing)

Wierzbiczky ((see Rymsza (1979))

K, = an'(4s’ - %)

Feda (1982)

Matsuoka and Sakakibara (1987)

2sind

Szepeshizi (1994)

K, = (1 - sind) [“ 08

- sind) (sind - Y33 - Jand - 31

J
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Figure 5.1 Example of interlocking: (a) slightly interlocked surfaces in loosely packed
rubble, (b) highly interlocked surfaces in densely packed rubble
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Figure 5.2 Typical stress-strain curves for loose and dense samples
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Figure 5.3 Internal friction angle versus initial void ratio for medium fine sand. ¢, ¢,,, and

6, are internal friction angle, constant volume strength, and particle contact
friction angle, respectively. (after Rowe, 1962)
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Figure 54  Three characteristic types of earth pressure
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Observed relationship between K, and sin ¢ for cohesive and cohesionless soils:
the solid symbols denote cohesionless soils and the hollow symbols denote
cohesive soils (after Mayne and Kulhawy, 1982)
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Figure 5.6 Graphical illustration of Q used in Equation 5.9
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Figure 5.9 Safety factor as a function of ¢/¢ for wall angle, o = 50°, angle of repose, ¢ = 30°,
and ice friction angle, ¢, = 11.3 and 21.8"
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Figure 5.10  Limiting rubble slope as a function of ¢,/¢ for wall angle, o = 50°, angle of
repose, ¢ = 30°, and ice friction angle, ¢, = 11.3° and 21.8"
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Figure 5.11  Horizontal thrust on the wall as a function of ¢,/¢ for wall angle, o. = 50°, angle of
repose., ¢ = 30°, and ice friction angle, ¢, = 11.3° and 21.8"
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Chapter 6 Rubble Geometry Idealization

When an ice sheet encounters an obstacle in its path, the amount of ice blocks that
can be generated and piled up in front of the structure is influenced by a number of structure
and ice parameters. A realistic modelling of the rubble field and the mechanism of its
formation is essential to an accurate ice load estimate.

In this Chapter, a new model to predict the shape and size of the rubble is presented
based on insights obtained from the earlier experiments (Chapter 4) and the basic soil
mechanics theories (Chapter 5). The purpose of this model is to compute the geometry of

the rubble based on simple yet essential i i and

Section 6.1 describes the general features of the i ing systems and the

used. The discussion forms the conceptual basis of the rubble geometry idealization. In
Section 6.2, an idealized geometry of a fully developed ice rubble is presented. Such a
rubble is expected to pile-up in front of a faceted cone during typical rubble generation and
clearing processes. The geometry is uniquely defined by the rubble’s angle of repose, and
the characteristic rubble heights along the cone perimeter. The methodology to predict the

amount of ice piled up via mass balance considerations is also described.' Section 6.3

presents the detailed derivation of the basi ions for the rubble height calculations. The

key heights are the maximum heights of the rubble along the front facet and side of the cone.

'McKenna and Bruneau (1997) used a very similar mass balance technique to estimate
rubble build-up on conical structures during ridge interactions by considering the projected area
of the advancing ice and the amount of ice rubble cleared.
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The derivations are validated in Section 6.4 by comparing the predicted values of the

heights to the i from physical model tests.

6.1  General Features and Assumptions of the Interacting System

A considerable simplification of the analysis can be realized by recognizing the
principal features of ice generation, ice supply and ice clearing processes associated with the
interaction between a relatively thick and strong slow moving ice sheet and a face-on
oriented faceted cone. Figure 6.1 describes the typical ice breaking pattern observed in the
model tests. The ice sheet in front of the cone can be divided into 3 characteristic zones: an
accumulation zone located directly in front of the front facet and a clearing zone located on
both sides of the accumulation zone (the ice tends to accumulate in the accumulation zone
and clear from the clearing zone). For simplicity, the width of the accumulation zone is
equal to the facet width at the waterline®, w,; whereas, the width of the clearing zones is
almost equal to the projected waterline width of the side facet in the direction of ice
movement.

If the ice is thick and strong, the train of ice blocks generated from the accumulation
zone will be allowed to ride up the front facet, reaching the neck intact, and form an inclined
wall with a constant width, w,, as shown in Figure 6.2. This wall forms a barrier preventing
any ice clearing through it; and any ice generated from the ice breaking can only clear
*The width of the accumulation zone is influenced by the ice breaking pattern, and a more

precise method to estimate this width is given in Section 8.2.1.1.
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beyond the wall at both sides. Hence, analogous to those of the ice sheet, accumulation and
clearing zones can also be identified within the rubble, as shown in Figure 6.3.

When the ride-up ice from the accumulation zone reaches the neck, the broken ice
blocks fall back onto the accumulation zone following a path parallel to the centerline of the
cone. These ice blocks contribute to a constant supply of ice blocks into the rubble. On the
other hand, the ice blocks generated from the clearing zone ride up the side facet and clear
around the cone without obstruction; and hence, they do not contribute to the supply of the
rubble.

Since the rubble is sitting on top of the ride-up ice, it follows the same clearing
process of the underlying ice. In most case, the friction between the rubble and the
underlying ride-up ice is sufficient to prevent any sliding between the interface. As a result,
the rubble is transported up the facets with the underlying ice acting as a conveyer belt. The
ice blocks tocated in the accumulation zone cannot clear around the cone, but instead tumble
back onto the accumulation zone due to the obstruction of the neck located directly in their
path. These blocks eventually move sidewards into the clearing zone. Once the ice blocks
are in the clearing zone, they ride up and clear from the side facet with the riding-up ice. The
idealized flow pattern around the cone is also given in Figure 6.3.

The rubble surface profile is generated by a process analogous to the process of berm
construction by end dumping of granular materials from a line source, i.e., at the end of a belt
conveyor. Although the rubble is constantly pushed forward by the front facet, the speed is
so slow that it does not seem to affect the process. This process results in a rubble with a
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surface profile governed by slope stability criterion where the slope of the rubble is equal to
the angle of repose of its constituent material. With this surface profile known, the geometry
of the rubble can be uniquely defined with a given height profile around the cone perimeter.

The size and shape of the rubble at any instant during its development depend on the
balance between the supply and clearance of ice blocks to the rubble system. At the steady
state rubble clearing process. a constant amount of rubble piles up in front of the structure.
and its mass can be estimated by geometric consideration and a mass balance calculation.

Neglecting the discrete nature of the ice flow, the rate of ice supply into the rubble
depends on the thickness and velocity of the ice sheet and size of the cone; and the rate of
ice clearing from the rubble depends on the size of the rubble formation. At the earlier stages
of the rubble growth. the rate of ice clearing is low as most ice blocks are situated in the
accumulation zone. As the rubble grows, the rate of ice clearing from the sides increases
with increasing amount of the ice blocks moving into the clearing zone, until the rate of ice
clearing equals to the rate of ice supply. When this condition occurs, the rubble is fully
developed. As the rubble grows, the slope tends to be constant. equal to the angle of repose.
Figure 6.4 shows the geometry of the rubble as it grows in size.

To simplify the problem treatment, the following six assumptions are used for the

analysis:

(i) Rubble Generation Process:
The rubble pile is generated by end dumping of ice blocks from a line source
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located at the neck directly above the front facet.

(i) Cohesionless Ice Blocks:
The constant deformation of the rubble mass prevents any cohesion

being developed within the rubble.

(iii)  Full Mobilization of Shear Strength at Rubble's Free Surface:
The shear strength is fully mobilized at the rubble’s free surface. It
follows from assumptions (i) and (ii) that the free surface of the rubble is

equal to the angle of repose of the material.

(iv)  Eull Rubble Development:
The rubble is allowed to develop fully without the bearing failure of

the supporting ice sheet.®

(v)  Quasi-Static Equilibrium State of Rubble:

The ice velocity is slow enough that the dynamic motion of the ice

* This condition is valid for relatively strong ice tested in IMD's series; however, this
may not always be the case. The maximum amount of rubble may not be developed due to
tailure of the supporting ice sheet, as observed in several tests conducted in IME. In such cases,
the strength of the supporting ice sheet has to be considered (see Section 7.6.2).
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blocks can be ignored.* The rubble in front of the cone is assumed to

maintain a quasi-static equilibrium state at all time. It follows that:

(a)  The shape of the fully developed rubble can be deduced from
considering the static stability of the rubble around the structure
alone. In other words, the dynamic motion of the individual ice block
does not alter this stable shape.

(b) The inertial impact of ice blocks tumbling down the slope will not de-
stabilize the natural slope of the rubble, i.e.. the slope maintains at its

angle of repose.

(vi)  No Interaction Between the Free Surface and the Rubble-Ice Interface
The existence of the structure does not modify the free surface profile
of the rubble, i.e., the rubble is thick enough that there is no interaction
between the free surface and the ice-structure interface. The free-surface
maintains it's angle of repose independent of the ice-structure interface
condition. Thus, a unique gecometry of the rubble can be obtained by first
forming a heap of rubble from a line source and then superimposing it on to

the structure.

*Observation from model tests shows no discernible effects on the piling process or the
geometry of the rubble with speed up to 2 m/s full scale.
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6.2  Ideal Geometry and Mass Balance

Figure 6.5 shows the idealized geometry of the rubble system surrounding a simple
faceted cone. Only the front right quarter of the cone is shown. The free surface of the
rubble always maintains at its natural angle of repose, ¢,, in the radial direction. The profile
of rubble height around the front perimeter of the cone is defined by three characteristic
heights, h, hy, and h_, which are the heights of rubble at the side of the cone, at the edge of
the front facet. and the maximum heights along the front facet, respectively. In the present
model. the values of h,, h,, and h,, are derived, and the variation of height between these
three points along the cone perimeter is assumed to be linear. The increase of height from

the edge of the front facet toward its centerline is due to the end effect typical of a three-

| heap ion from a li with finite length (see Section 6.3.3); and the
increase of height from the edge of the front facet toward the side of the cone is due to the
ride-up of the rubble ice along the side facet. The rubble height profile along the cone's
perimeter, together with the known geometry of the cone and the assumed natural angle of
repose, uniquely define the geometry of the rubble.

The above idealized geometry is deduced from considering the main features of the

rubble ion and clearing p . and is in with observations from model

tesi

(see Figure 4.1d). Once this geometry is deduced, the size of the rubble, i.., the values
of h,, hy, and h,, can be obtained through mass balance calculation.

To illustrate this, please refer to the rubble system shown in Figure 6.6. Again, only
the front right quarter of the system is shown. The rubble’s free surface, the cone surface,
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and an imaginary vertical plane form the boundaries of the system under consideration. The
ice blocks are supplied into the system at the top of the rubble, and eventually clear through

the cross-section of the rubble intersected by the vertical plane.

cross-sectional area, A.

The general mass balance equation governing the selected system is given as follows:

R.=R +R (6-1)

where R, and R, are the rate of ice supply to and clearing from the rubble system,
respectively; and R, is the rate of ice accumulation in the system.

In the case of a steady flow, there is no mass accumulation within the rubble system.
Thus, the rate of mass supply to the rubble system is equal to the rate of mass clearing from

the system:

R =R 6-2)

Since all the ice mass riding up the front facet must eventually enter into the rubble
system as ice supply to the system, the rate of ice supply is equal to the rate of ice displaced

by the front facet; and hence:

R = w v ©3)

where w is the waterline width of the front facet; t, is the ice thickness; and V'is the ice
advancing speed.
The rate of ice clearing through an arbitrary cross-section in the rubble mass is a
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function of the area of the cross-section, A, as well as the velocity, V., and the porosity, p,

of ice passing through it:
R, =21 - pAv, 6-4)
The factor of 2 reflects the fact that same cross-section, A, exists at both sides of the cone.

In the present derivation, two imaginary vertical planes are selected, a front reference

plane and a side reference plane which intersect the rubble mass with the cross-sections

with h, and h , respectively. Since the rubble moves with the underlying ice
sheet, the speeds of ice clearing through these two reference planes are assumed to be equal
to the ice advancing speed V. By equating the ice clearing rate to the ice supply rate, i.e..

Equations 6.3 and 6.4. and letting V_ equal to V:

A= .. (6-5)
Al - p)

The geometry of A is defined by the angle of repose at the rubble surface, the cone angle at

the ice cone interface, and an unknown height which is determined in the next section.

6.3  Derivation of Basic Equations for Characteristic Heights of Rubble
6.3.1 Rubble Height at the Edge of Front Facet, h,,

Because of its proximity to the source of ice supply, the geometry of the frontal
portion of the rubble is highly affected by the way the ice blocks are supplied into the rubble
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system.

Figure 6.7 shows the geometry of a rubble pile formed by dropping ice blocks from
aline source. If we ignore the end effect due to the finite width of the line source, the rubble
will have a central wedge section with length equal to the width of the line source, and a half
cone section formed at each of the two ends. The free surface of the rubble has an angle
equal to the angle of repose, ¢,, of the dumped material. Suppose that we dump material
from a finite line source onto an inclined plane with the same width as the source. the
expected geometry of the rubble is illustrated in Figure 6.8. In another words, the geometry
of the rubble formed in front of a structure can be obtained by super-imposing the rubble on
the structure.

To perform a mass balance calculation for h,, only the frontal portion of the rubble
is considered. Figure 6.9 defines the rubble system to be considered. The cone in this
problem consists of three sections, with the subscript | denoting the lowest section and
subscript 3 the neck section. The geometry of the cone, in terms of the height, h;, and the
slope, o, of each section is known. The slope of the rubble is equal to ¢,. In this figure, the
rubble reaches the vertical neck, but the analysis also applies to rubble with its height at the
edge of the ride-up ice below level of the neck. To simplify the calculation, the thickness of
the ride-up ice is ignored, and the width of the ride-up ice wall is assumed equal to w,. The
reference plane intersects the rubble at the side of the ride-up ice on the neck and front facets

to form a cross-section A;. Itis assumed that some ice will be trapped between the side-facet
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and the back of the ride-up ice wall, preventing any ice to pass through cross-section A, and
the trapped ice is not considered in this analysis. The rest of the rubble system interfaces
with the side-facet at area A;; and, hence, the ice, which is supplied from the top of the front
facet, must clear from the rubble system through cross-section A,

Figure 6.10 shows the geometry of A, corresponding to the Cross-Section A-A as
defined in Figure 6.9. The cross-sectional area, A, can be obtained by considering the

geometry of the system:

B
4, By

gL - A, (6-6)

where A, is the projection of A, (see Figure 6.9) onto the reference vertical plane where the
ice is directly blocked by the portion of the structure protruding beyond the ride-up ice wall.

Since:

B, = —1 ()

then:

A =—L— -4, (6-8)

When the rubble increases in height, the front reference plane moves toward the rear
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part of the cone with increasing C, until, and unless, the h, is equal to or greater than h,.
and portion of the cone blocking the ice movement increases with increasing B,, and h,,.
The shape of A, depends on the geometry of the cone, i.e., &, h ,, and the height h,, or
length By, as defined in Figure 6.10. In Figures 6.9 and 6.10, B, and h,, are shown at their
maximum values. The @ ;, corresponding to each cone section can be obtained by tracing
the interaction between the cone and the vertical reference plane. It can be shown that when
the plane intersects the cone surface at a particular section, the intersecting line always makes

an angle equal to the cone’s side angle, a.,;, with the hori where i is the di

section: and hence o;; = 0. It can also be shown that the following relationships hold for

a six-faceted cone of any cone inclinations and sections:

B, 30
—— = tan30’ -
Con &2
and
tane,
= = sin60” (6-10)
tane,

where o, and o, are the slopes of the centerline and edges of a facet at section i, respectively.

The distance C,, is equal to:



hyh h - b

& et = By ]
o Z"'“"—'m. 6-11)

where the subscript, n, is the highest section of the cone the rubble reaches, and h, is equal

to zero. Substituting Equations 6.10 and 6.11 into Equation 6.9:

- h, h - h

h d
B :( IRCTIN i ,u)_-m” "
"\ e, b I ana,, i (6-12)

The height h,, can be calculated from B, a;and h. i.e.,

h,

-h
by = (B,ﬂ, % Vo 'T.I) ane,, + hy, (6-13)

where m is the number of sections blocking the ice clearing. In the above equation, m cannot
be calculated a-priori: however, unless the height of the lowest cone, h,, is very small, for
all intents and purposes, the ice will only be blocked by the lowest section of the cone, i.e..
m = |, with h, equal to (B, tan o). In this case, A, can be calculated from the following
equation:

1

1 &2
Ay =5 By hy = 3 By tanay, (6-14)

Combining Equation 6.14 and Equation 6.8 gives:
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(6-15)

(6-16)

where B, is computed from Equation 6.12.%

To compute the value of B, the highest section, n, which the rubble reaches must

be known. The value n can be obtained via trial and error method by assuming an arbitrary

n, and then the cor ing h, is and with h,. the height of the
assumed section. If h, is greater than h,, then the actual n is greater than the assumed value,
and a higher value for n must be assumed until h, is smaller than the assumed h,.
For an unlikely event that m is greater than 1, A, and h, can be calculated from the
following generalized equations:
A h“z,,

1 3 1 1
R N FREE |

taner,,  taner,

*Provided the value of n is known, Equations 6.12 and 6.16 form a set of two

with two . B, and h,. B, and h, can be solved by iterative

procedure by letting the initial value of h,equal h,. A few iterations will give a converged value
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By s e,

ane, tane,  tana

where h,, is computed from Equation 6.13, and the trial value of h, is computed via the
above trial and error method by assuming an arbitrary m (in an ascending order) for each

assumed n value.

6.3.2 Rubble Height at the Side of Cone, h,,

For the calculation of the characteristic rubble height at the side of the cone. h,,
consider an imaginary vertical axial plane of symmetry in the cone, B-B, which intersects the
rubble at the side of the cone with a cross-section A, as shown in Figure 6.11. Again, to
maintain a constant amount of ice mass within the rubble system, the rate of ice supply to the
rubble system must be equal to the rate of ice clearing through A

The cross-section, A,,, is depicted in Figure 6.12. The slope of the rubble is equal to

®,. Again similar to Equation 6.8:

(6-19)

where A, a function of h, h, &, and n, is given as the following:
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(6-20)

where the subscript n denotes the highest section where the rubble reaches (see Figure 6.12).

Substituting Equation 6.20 into Equation 6.19 leads to the following equation for A, :

A, = %[},”’ (ﬁ - ?LMJ B S [; - ﬁ” (6-21)

tane,

By substituting Equation 6.5 into Equation 6.21. h, can be solved:

S
i & Y fane,, (6-22)

tand,  tane

To compute the highest section. n, of the cone which the rubble reaches. trial and

error procedure similar to those given in the preceding section can be used.

6.3.3 Derivation of Gi i ion for i Rubble Height Along the

Front Facet Face, h,,,

Observations from model tests indicate that the rubble edge along the front facet is
not level. The rubble height profile is parabolic with the height decreasing from a maximum
value. h,. at the centerline of the front facet to h, at the edge. This decrease can be
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attributed to the end effect during the ion process of a three-di i rubble pile

from a finite line source with a constant output rate along it's length. In this section, this

effectis ined and a simplification in ing the rubble geometry is made in order to

arrive at a simple relation between h,, and h,. The implication of this approximation and its

are then Dueto i ity of a multi-sioped cone, only the
equations associated with single sloped cones are derived in this section.

The phenomenon of end effect due to dumping from a finite line source is illustrated
in Figure 6.13 for a simple two-dimensional case. If there is no lateral restraint, a portion of
the dumped material at the two ends will slide down the heap to form a lateral slope: and
thus decrease its height at the two ends. Conceptually, the end effect can be illustrated by
replacing the heap formation with two steps process as shown in Figure 6.14. The rubble
material is first dumped within the two lateral wall restraints, and then. the lateral wall
restraints are released to allow materials at both ends to collapse to form the lateral slopes.
The profile of the heap can be computed by letting area A, equal to area A,. The length, w.
can be viewed as the portion of the line source which is subjected to the end effect. Figure
6.15 shows the dimension of a two-dimensional heap formed in front of a facet by the
process depicted in Figure 6.14. As material is added to the heap, the length w will increase
with increase of B, h, and h,. If w is smaller than 0.5 w,, a trapezoidal profile is formed

with:

w = 0.58 (6-23)



and the maximum height:

h,, = B and, = 2 (6-24)

as shown in Figure 6.15a. The maximum value of w is limited to 0.5 w,, when a triangular
profile is formed. [f the heap is allowed to grow further, the dimensions B, h, and h,, will

increase while w is kept constant. The maximum height:

h,, =h,+wuand, =h, + 05w and, (6-25)

as shown in Figure 6.15b.

To extend the analysis to a thi i i case to the rubble

in front of a conical structure, the problem is simplified by assuming the geometry of the
rubble in front of the cone to be identical to that formed by dumping materials in front of an
inclined plane. Figure 6.16 shows half of the rubble mass formed in front of a sloping plane
by a line source with the lateral movement of ice blocks restrained. The right hand side is
the plane of symmetry through the centerline of the sloping plane. Figure 6.17 shows the
final shape of the rubble after the removal of lateral restraint on the left hand side. The
inclined plane is selected in order to simplify the derivation. The plane intersects the rubble
over an area, part of which is a triangle, egj, with an area A,. (See Figure 6.17.) The

derivation is only for a single slope structure with the front facet wide enough such that w
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is less than Y2 w..* To further simplify the computation, the curved free surface on the lateral
slope is approximated by a plane surface. The width, w, can be computed by equating the
volume, V,, of the wedge abcdef in Figure 6.16 to the volume, V,, of the pyramid abcj in

Figure 6.17 and is given as:
_B
L (6-26)

B and h,,, are related to B, and h,, respecti . by a simple

B = (6-27)
and
Iy = %"4 628
Combining Equations 6.26 and 6.27:
w (6-29)

These relationships, applicable to cases with w less than 2 w,, are independent of ¢, and a.
To compute w using Equation 6.29, B, must be known. B | can be estimated by a

method similar to those used in the previous section by considering the cross-section A in

“For the size of the structures encountered in the field, w is generally less than Y2 w;.
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Figure 6.17; and B, is given as:

(6-30)

Despite a slight difference between the cross-section used in the derivation of the h, in
Section 6.3.1 and the one used here, the h,,computed in Section 6.3.1 can be used to estimate
h,,, via Equation 6.28."

In the above derivation, V, . i.e., the volume abcj of Figure 6.17, is assumed to be a
pyramid. Since the volume abcj is part of a right circular cone bisected by an inclined plane,
the surface acj is a curved surface and an exact solution should treat line aj as a circular arc,
as shown by a dotted line in the figure. The approximate solutions of w and h,, always
under-estimate the exact values. and the error increases with increasing o.

To adjust for the error incurred by the assumption, consider the base of the lateral
portion of the rubble as shown in Figures 6.18. The area A,, i.e.. triangle abj, is the
approximate base area of the lateral portion of the rubble deposited in front of the inclined
plane, whereas the area, A, + A,, is the true base area. The values of A, and A, are given in

the following relationships:

A, - %sinu,(l - cosa,) (6-31)

“For a reasonably deep cone, i.e., cone angle, ot > 45* and rubble angle, ¢, = 35°, the h,
derived from the vertical or the inclined reference planes are within 1% of each other.
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i si (‘1,) (“,)
A= 360 - risin = cos = (6-32)
where,
« = cos’! (”¢’) (633
tanet

The exact values of w and h,,, can be obtained by the following relationships:

=

(A A
" 38.( . ) (6-34)

"l

(6-35)

For example, for the case of a cone with an angle of o equal to 53° and a rubble with
slope equal to the angle of repose, ¢, = 35°. A .and A, equal to 0.201" and 0.083r,
respectively. and the ratio, (A;+A,)/A, = 1.41. Therefore, the exact solution for w and h,

are equal to 0.57B | and 1.887h,, according to Equations 6.34 and 6.35, respectively.
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6.4 Validation of Ice Rubble Geometry Prediction Model

The predictions for hy and h,, from the above model are compared to the
measurements with the two 1:25 scale models tested in the IMD's series. Only those tested
with a velocity of 0.04 m/s were examined.* The large necked model was tested in 0.094 m,
0.123 m and 0.160 m thick ice, and the small necked model was tested in 0.158 m thick ice.
with a total of four data points. The model predictions and the relevant measurements are
given in Table 6.1. An example calculation is given in Appendix C. The angle of repose.
&, was about 35° estimated from the video recording. This value is used in the model
predictions. To use the equation for h,,, the structure is assumed to have an average slope,
o, of 49.8" and 56.9° for the small and the large necked models, respectively. The
computed h, is only slightly sensitive to the o, i.¢.. the h, is within 5% computed from
o, ranging from 40" to 60°. The computed w for all tests is less than 0.5 w,, indicating a
trapezoidal rubble height profile along the front facet.

Despite limited data used, the predictions from the derived equations give excellent

agreement with the measurements from the selected tests with the difference between the
computed and the measured values for h,, and h,, being 2.6% and 1.2% (on the average),
respectively. It is expected that such agreement will hold for other faceted cone structures

provided that the interaction assumed in this work prevails.

*There was no discernable effect on ice force or ice clearing process due to ice velocity.

The rubble heights measured from the selected tests were considered representative to those

with tests with different
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The model predicts that the rubble height at the edge of the front facet is lower than
the rubble height at the side of the cone. This prediction is consistent with the general
observations from model tests in which the rubble is forced to ride-up the side facet with its
height increasing gradually toward the side of the cone (see Figure 4.1d).

This model assumes the rubble siope is governed by ¢, of the rubble material. In the
case where the rubble angle, t, is smaller than ¢, due to premature sliding failure of the
rubble, the actual t should be used. With the reduction of 1, the rubble heights will be

reduced as shown in Figure 6.19.

There is no rubble ion for a cone with edg i ion since all ice will
slide along the side facet and clear around the cone continually. For cones oriented between
the face-on and edge-on directions, the ice blocks can slide along the side facet or fall back
onto the on-coming ice sheet. The balance of these two tendencies governs the motions of
the blocks. No consideration is given to this, and this model is valid for faceted cones with

face-on orientation only.
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Table 6.1 Comparison of predictions from the new geometry model and the
measurements from IMD’s tests

Measurements Predictions
Test Model | t wiw, | by b, h, by b,
(m) (m) (m) (m) (m) (m)

MUNCONE3 | 1:25S | 0.158 | 043 | 049 | 068 | 048 | 036 | 0.67
MUNCONES | 1:25L | 0.095 | 0.35 | 035 | 0.51 0.33 0.27 0.51
MUNCONES6 | 1:25L | 0.124 | 0.41 037 | 057 | 036 | 030 | 0.58

MUNCONE4 | 1:25L | 0.160 | 046 | 039 | 0.65 0.39 | 0.34 | 0.66

Common Parameters:

P Model 1:258 Model 1:25L

h, (m): 0.233 0.067

h, (m): 0.466 0.307
w, (m): 0.693 0.693

o () 398 39.8

@ ) 63.4 63.4
e ()2 498 56.9

p () 03 03

o () 35 35

Note: ' Subscript: | - lower cone, 2 - collar
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Figure 6.1 Ice breaking pattern showing the location of the accumulation and clearing
zones (arrows indicate direction of ice movement)

Figure 6.2 Ride-up pattern of ice generated from the accumulation and clearing zones
(arrows indicate direction of ice movement)
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Geometry of a typical rubble showing the location of the accumulation and
tion of ice movement)

Figure 6.3
clearing zones (arrows indicate direct

Figure 6.4 Geometry of a typical rubble at times Uity and t, as it grows in size (1, < L
<1; and arrows indicate direction of ice movement)
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Figure6.5 G -y of an idealized rubble ding a faceted cone (only the front
right quarter is shown)

Ice Supply
Rate,0.5R, 'V,

Ice Clearing
Rate, 0.5R,

Figure 6.6 Rubble system selected for mass balance calculation (arrows indicate
directions of ice movement and only the front right quarter is shown)
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(a) Front View

——
Central 2\ Side

S Wedge (=" Cone

(b) Top View

Figure 6.7 Geometry of a rubble pile formed by dropping ice blocks from a line
source. Note: Half cones formed at the two ends

Figure 6.8 Rubble geometry in front of an inclined plane formed by end dumping
from a line source
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Ride-Up
Iee Wall

v &
Figure 6.9  Rubble system selected in the calculation of h, (only the front right quarter
of the rubble is shown)
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Section 2

Section 1

Figure 6.10  Geometry of A corresponding to the Cross-Section A-A as defined in
Figure 6.9: (a) front view; (b) top view
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A
Figure 6.11  Rubble system selected for the calculation of rubble height at the side of
the cone, h,;

Section 3

Section 2

Section 1

Figure 6.12  Cross-sectional view B-B as defined in Figure 6.11 showing the geometry
of A,
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(a)

©
Figure 6.13  Formation of two-dimensional rubble pile from a line source: (a) to (c)
lateral slope formed by depositing materials at both ends; (d) lateral slope
is not formed due to lateral restraints at both ends

Figure 6.14  Rubble f¢ ion by two (a) heap formation with
lateral restraints (no end effect); (b) lateral slope formation by releasing
the lateral restraints

184



B = D 0.5 W 1210, et e B = 2h
|
A /\
A

b A i B

7 =

h ! h,

"N¢ i dx i e

vy @ ; AN 2

(b)w=05w, (a) w<0.5w,

Figure 6.15  Figure showing the dimensions of a two-dimensional heap formed by the
process depicted in Figure 6.14, when: (a) w < 0.5w,, and (b) w =0.5w,
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Figure 6.16  Rubble mass formed in front of a sloping plane by a line source with
lateral movements of ice blocks restrainted

Figure 6.17  Final shape of the rubble with the lateral restraint on the left hand side
removed
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Figure 6.18  Base of the lateral portion of the rubble: coordinates a, b. and j
corresponding to those in Figure 6.17, and coordinate o is the vertical
projection (on to the base) of coordinate ¢ in Figure 6.17
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Figure 6.19  Figure showing the decrease of rubble heights with the decrease of
rubble angle. Rubble heights have been non-dimensionalized with
heights computed at1 = ¢, =35°.

187



Chapter 7 Discrete Element Analysis of Rubble

Loads on an Rigid Inclined Wall

Di I analysis (DEM) using th program DECICE h: ided

a powerful si ion tool for i ytical and i work. It is

particularly appropriate for cases in which contact behaviour between adjacent ice blocks
govern the mechanical properties of the ice rubble. The versatility of DEM in modelling ice
related problems has been demonstrated in a number of recent works (Babic et al, 1990;
Hopkins and Hibler, 1991; Hopkins, 1992; Evgin et al, 1993; Loset, 1994a and 1994b;
Hopkins, 1995 Sepehretal, 1997: Sayed, 1997; Katsuragi et al, 1997; Wang etal, 1997: and
Sayed and Timco, 1998).

In the present study, the problem of rubble loads exerted on the faceted cone is treated
as a two-dimensional problem using the DECICE2D, a two-dimensional version of the
discrete element code DECICE.! The numerical investigation has been divided into two

parts. [npartone, the ies of i i i ) test (Lambe

and Whitman, 1979) and a simple gravity test were simulated to evaluate the internal friction

parameters for simulated ice rubble blocks, i.e., the intemal friction angle, ¢, the

! The appropriateness of DECICE in ice related problems has been demonstrated by the
author in his previous work, including modelling of rubble shear properties, ice force on a
moored buoy (McKenna et al, 1997), ice interactions on a bridge pier (Lau, 1994a), and jamming
of floes at bridge piers (Lau, 1994b).
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corresponding ‘at-rest’ earth pressure coefficient, K,,, and the angle of repose, ¢,. The effects
of ice shape and friction were investigated. In part two, the loads exerted on an unyielding
retaining wall and the base support by a rubble pile were addressed. The effect of rubble
height, rubble slope, wall inclination, and the internal friction of the rubble were examined,
and a set of equations were formulated from the results of the simulations. These equations
are incorporated into the ice force model presented in Chapter 8.

In this chapter the results of the analysis are summarized. Section 7.1 describes

briefly the main features of the DECICE computer code. The results of studies on

s of rubble mass iour at the “at-rest” state are presented in Section 7.2.
Section 7.3 summarizes the results of the load computation for rubble at the same stress state,
from which an equation for the computation of total wall thrust is derived and presented for

a variety of si ice and struct iti ions for the other are

derived in Section 7.4. The equations are extended to walls with multiple slopes in Section
7.5 and finally, the application of the new formula for other loading conditions is discussed

in Sections 7.6.

71 Main Features of the DECICE Computer Code

DECICE is a two- and three-dimensional discrete element computer program for
solving complex solid mechanics problems involving multiple interacting bodies undergoing
fracturing. In this method, the problem domain is divided into discrete elements. Each
clement is considered as a distinct body which interacts with, or disconnects from,
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neighbouring elements during loading. The movement of each block is governed by the laws
of motion due to unbalanced forces acting on the element. Elements may be rigid or
deformable. The deformability, frictional, and damping characteristics of the interfaces
between elements are represented by spring-slider-damper systems which are located at
contact points between elements. Prescribed force displacement relations for the spring-
slider-damper system allow evaluation of normal and shear forces between elements. The
algorithmic detail of DECICE is described in the DECICE theoretical manual (Intera
Technology, Inc. 1986¢c).

DECICE has been calibrated against a wide set of experimental and field results,
including ice ride-up and pile-up on artificial island side-slopes (Hocking et al, 1985a),
dynamic impact of ice on an offshore structure (Hocking et al, 1985b), ice ride-up and ice
ridge cone interaction (Hocking et al, 1985c), identification of ice properties (Intera
Technology. Inc., 1986a), analysis of spray ice platform (Applied Mechanic, Inc., 1985), and
ice ridging loads (Intera Technology, Inc., 1986b).

Recently, the author (1994a) has anis ion of DECICE

in ice force prediction and simulation. A series of six runs, which simulate the dynamics of
sheet ice interaction with a 60° conical bridge pier, were conducted using DECICE3D, a 3-D
version of DECICE. The results were verified with model tests carried out in the tank of the
Institute for Marine Dynamics (Spencer et al, 1993) and the available field observations
around Finnish Kemi I lighthouse in the Gulf of Bothnia (Hoikkanen, 1985; and Maattanen
and Hoikkanen, 1990). Figure 7.1 shows the interaction of the ice blocks, the cone and the
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ice sheet from a typical DECICE simulation of ice forces on a 60° cone in ice. A plot of
predicted versus measured horizontal peak forces is shown in Figure 7.2. A close agreement
between the calculated peak force values with the experimental measurements suggests that

DECICE is a promising simulation tool for solving ice cone interaction problems.

7.2 Simulations of Rubble Mass at the “At-Rest” Condition

For a cohesionless ice rubble, the most important and commonly used
phenomenological descriptor to describe the mechanical behaviour of the rubble is its
internal friction angle, ¢. During a typical rubble piling, the rubbles free surface is at a state
of'limit plastic equilibrium characterized by the angle of repose, 9, while, inside the rubble,
itis atelastic state characterized by the lateral coefficient of earth pressure at rest, K,. These
two parameters can be related to the internal friction angle of the rubble material in a loose

state, ¢, and are essential to model the rubble iour; yet, i with

ice rubble are not available.
The main objectives of this part of the analysis. using DECICE simulations, are to:
(i) Obtain the internal friction angle of the bulk rubble which is to be used in the
subsequent load simulations; and,
(ii) Verify the relationship between the internal friction angle, the lateral
coefficient of earth pressure at rest, and the angle of repose of the rubble

materials in the range of expected field conditions.
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Two series of simulations were conducted. In the first series, rubble samples with
a wide range of ice piece aspect ratio, AR, and ice friction, i, were prepared and the at-rest

earth coefficient was computed via two test set-ups: (i) a simple gravity test, and (ii) the

standard test. From the earth ient, the ing internal friction angle
was computed using Jiky's equation. In the second series, six rubble masses were allowed
to form in front of an inclined wall with a process analogous to the material dumping or
avalanche, a formation process similar to that taking place in a typical ice/cone interaction.
The natural angle of repose, ¢, thus formed and the material’s internal friction angle, ¢, were
compared.

The main parameters common to each simulation are summarized in Table 7.1. The
analyses were conducted as two-dimensional (plane strain) problems using the explicit time-
stepping solution scheme. In this study. the ice blocks were modelled by the simply
deformable perfectly elastic solid element. The specimens were tested in a dry condition.
Furthermore, element cracking was not allowed. This condition was confirmed during
selected preliminary runs, in which the stress within each element was sufficiently low and
element fracture was not observed. The stress-strain relationship is linear elastic in each
clement with an elastic modulus of 0.2E7 N/m® and a contact stiffness of 0.2E8 N/m®, chosen
for computation efficiency. The effects of elastic modulus and contact stiffness on the K,
values were not examined; however, the these values are in line with the values used by

Sayed (1995) and Hopkins and Hibler (1991) in their simulations of rubble shear properties,
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the results of which pared well with i data.? For these si ions. the added
masses and moments of inertia were not included. The details of the simulations and the

results are given in the following sub-sections.

7.2.1 Generation of Rubble Ice Samples
Three sets of rubble samples with uniform piece sizes ranging from 0.16 m x 0.16 m,
0.16 m x 0.32 m, and 0.16 m x 0.48 m, were prepared. These corresponded to the aspect

ratios, AR, of 1:1, 1:2 and 1:3, respectively. Each set consisted of 3 samples with ice

friction. p, set at 0, 0.2, and 0.4. The chosen values of ice friction. p = 0.2 and 0.4, reflect
the range of values frequently quoted for design purposes. The density of ice was 900 kg/m”’.
The rubble samples were prepared via a natural dumping process as shown in Figure 7.3.
Firstly, a total of 475 pieces of randomly oriented ice blocks with a prescribed piece size and
contact friction were generated by normal randomizing method within a rectangular area
formed by three frictionless rigid elements representing two side-walls and a bottom plate.
The rectangular area had a height, h, approximately 3.5 times the width, b, of the base. After
the random generation, the blocks were then allowed to fall and compact at the bottom of the
box by applying gravitational acceleration to the elements. Vibration of ice blocks due to

inter-block collisions was damped by applying a 35% critical mass damping. A semi-

*Sayed (1995) used a spring constant of 0.265E7 N/m between rigid sphere resulting in an
effective elastic modulus of the bulk rubble of approximately 7 MPa which agreed well with the
experimental values reported by Laset and Sayed (1993).
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randomly packed form was created through the impacting of blocks on the boundaries and
between blocks. After compaction, the sample had a height to width ratio of approximately
2o L. The packing condition of the assembly was considered to be loose, and the cohesion
was set to zero. Figure 7.4 shows the final configuration of the rubble samples after the
initial compaction.

The initial void ratio’, e,, of the bulk sample was dependent on the ice friction as
shown in Figure 7.5. This reflects the fact that the inter-block sliding is easier for a lower

contact friction resulting in a much denser configuration during natural deposition process.

7.2.2 Computations of the Coefficient of Lateral Earth Pressure at Rest, K,

Two methods of measuring the coefficient of lateral earth pressure at-rest. K. i.e..
a simple gravity method and the oedometer test. were simulated.

After all the blocks had settled down, the forces acting on the bottom plate and the
side-walls were summed. Since no external load was applied to the rubble sample except
its own self-weight, it is dubbed “gravity method™. Since there was no friction between the
ice blocks and the rigid boundaries, shear stresses upon vertical and horizontal planes within
the rubble sample were not allowed to develop; and the principal axes coincided with the

horizontal or vertical axis, the ratio of the principal stresses was equal to the coefficient of

*The void ratio, ¢,, for two dimensional cases is defined as the ratio of the area of void to
the area of the solid mass in an arbitrary cross-section. The void ratio for three-dimensional
cases can be estimated as 3.33e assuming the sample is made up of an assemblage of spheres.
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lateral stress at rest, K,. By assuming a linear increase of stresses with depth from the top
surface’, the horizontal and vertical stresses, p,,, and p,,, at the bottom surface of the sample

were calculated:

2 Fuh
Py =2 (—) a-

Pi, =" a2

where h and b are the height and width of the sample, respectively: and P,, and P,, are the
sum of the normal forces exerted on the wall and the base. respectively: and, thus, K,

- P (PM) (b)
K, s=th 2| =||2 73
Py P/ h 3

The geometry and variables used for Equations 7.1 to 7.3 are shown in Figure 7.6.
A summary of the coefficient of lateral earth pressure at rest. K, estimated by this

method is given in Table 7.2. The internal friction angle for each sample as calculated from

*The assumption implied that the horizontal wall thrust, P,, will act at a distance Ly
equal to 1/3 h from the bottom of the sample. To verify this assumption, the point of action of P,
was computed for each simulation. For all cases, P, acted on the side wall within a distance
0.045h from the assumed point of action.
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Jiky's equation®:

1 - sin (71-4)

is also given in the table. The subscript | associated with the symbols K, and ¢ refers to the
gravity tests.

A comparison of the earth pressure coefficient at rest, K, and the associated aspect
ratio of the ice pieces, AR, is given in Figure 7.7. The data shows no discernible effects of
the ice pieces geometry on the earth pressure coefficient. However, there is a significant
dependency of the earth pressure coefficient at rest, K, on the contact friction, p, as shown
in Figure 7.8. The coefficient shows a higher sensitivity to ice friction at the lower friction
values.

Figure 7.9 shows the same set of data comparing the internal friction angle. ¢, and
the associated ice friction. . Since the internal friction is a combined function of ice block
interlocking and friction, the values corresponding to zero ice friction can be a measure of
the effect of the block interlocking. which contribute up to about 10 degrees to the internal
friction angle. This angle is analogous to the effective roughness angle used in rock
mechanics to explain the higher apparent angle of friction due to visible roughness and other

surface irregularities (Patton, 1966 and Hoek and Bray, 1981), and can be referred to as the

“In practical soil mechanics, Jiky's equation is an approximation. The validity of this
formula has been explored in Section 5.3.1.
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“interlocking angle”. Within the range of ice friction examined, the internal friction angle
is roughly equal to the arithmetic sum of this angle and the contact friction angle.

The above simulation is relatively simple to perform and the stress and strain
conditions are similar to the field conditions studied. A more popular test, called oedometer
test, was also simulated for comparison with the gravity test. In this test, stress is applied to
the sample along the vertical axis, while strain in the horizontal direction is prevented. The

results of the oedometer test simulation are summarized in Table 7.3. In this table. the

subscript 2 ciated with the symbols K, and ¢ denotes the oedometer tests. Only the

samples with contact friction values of 0.2 and 0.4 were tested. Figure 7.10 shows the

guration of th test si ion. Inthis case, gravity force was set to zero, and

a top plate was added to the problem setup. The rubble, initially in a loose condition, was

one di lly in strain 1l

d manner giving no strain in the lateral
direction. The top plate moved and compressed the sample with a velocity of 0.4 m/s, while
the forces on the side-walls, and the top and bottom plates were monitored continually. The
vertical velocity corresponded to axial strain rates ranging from 0.04/s to 0.07/s depending
on the height of each sample. Again, assuming a uniform load distribution along the
sample’s surface, the pyy, Py, K, and ¢, can be computed at any instant during the test.
Figure 7.11 shows an increase of the horizontal stress with increasing vertical stress during

a typical test simulation.

Figure7.11 exhibits densil istics with a slight decrease
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of K, , with time. This decrease is a manifestation of increasing degree of interlocking as the
samples become denser upon compression. In order to compare the K, values obtained from
these tests to the gravity tests, the K, value corresponding to the moment of first contact
between the top plate and the ice was estimated from the data points before comparison. i.e.,
K, value at the same void ratio. A comparison of the values of K, and ¢ estimated from the
gravity tests and the oedometer tests are given in Figures 7.12 and 7.13, respectively. Again,
the subscript | refers to the gravity tests and the subscript 2 denotes the oedometer tests. The
tigures show good agreement between the values of K, and ¢ from the oedometer and gravity

tests.

7.2.3  Angle of Repose Tests

In this series of simulations, the number of ice blocks in each sample was increased
from 475 to 950 pieces to give a better surface profile for the angle of repose computations.
The simulations were performed on the three standard rubble samples. with ice friction equal
t0 0.2 and 0.4. A total of six runs were conducted. The samples were prepared with the
same method given in Section 7.2.1. After each rubble sample was prepared, the rigid side-
wall at the right side of the box was changed into a movable element, which moved slowly
away from the rubble sample with a velocity of 0.22 m/s as shown in Figure 7.14. The
surface of the bottom plate had a coefficient of friction equal to 0.2, while the friction at the

wall was set to zero. Initially, both sliding of the ice blocks at the bottom surface and the
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failure of the rubble surface occurred: however, the bottom sliding ceased at the latter part
of the simulation due to the frictional resistance at the bottom, and the final profile of the
rubble was determined by slope failure. Damping of ice blocks is not necessary in this case
as the friction between ice blocks was sufficient to damp out the slight vibration induced by
the ice blocks rolling down the slope. Table 7.4 summarizes the results from this simulation
series.

Figure 7.15 shows the configurations of the rubble at the end of each simulation run.
The profile of the natural angle varies significantly along the surface of the rubble depending
on the local variations of ice block orientation and interlocking which affect the sliding
conditions of the surface ice along the free surface. Typically the surface slope at the mid-
hill section had lesser variation than those of the top and the bottom sections where the
slopes were sub-critical. Therefore, the angle of repose, 9,. was determined by taking the
best fit of the slope profile at the mid-section only. In Figure 7.16, this angle is compared
with the rubble’s internal angle. ¢,, obtained from the gravity test simulations. The angles
of repose are up to 4.5° smaller than the rubble’s internal friction angles.

The ubove angle of repose was after the dition. The slightly

lower values of the angle of repose measured may be due to the specific avalanche condition
used. With the constant activity at the free surface due to the rolling down of the rubble
blocks, it is expected that the maximum angle will be somewhat lower than the angle of

repose of the material.

199



7.3 Development of Equations for Rubble Loads in 2-D

In this section a set of equations for rubble load computations, i.e., the total thrust
force and its angle of attack, are presented for a variety of ice and structure conditions. These
equations are formulated by:

(i) First, deducing the form of the principal equation and identifying the relevant
functions from examining the existing earth pressure equations for various
loading geometries and conditions: and, then,

(i) Performing a series of DECICE simulations, the analysis of which either
confirms the selected relationship or gives a better functional relationship
between the total thrust force and the relevant variables identified in the
principal equation.

The equations provide the best fit to the DECICE results. and are applicable to a cohesionless
rubble mass of various heights and internal frictions which is deposited in front of an
unyielding wall with single or multi-slopes. The rationale behind the selected form equation
and relevant functions is described in Section 7.3.1. The matrix for the DECICE simulations
is described in Section 7.3.2; and a detailed analysis is in Sections 7.3.3 10 7.3.6. A general
equation for thrust force calculation is formulated and validated. In Section 7.3.7. empirical
equations to estimate the amount of friction mobilized at the wall are presented. If this
friction is known, the other components of the rubble load, acting on the wall and the
supporting ice sheet, can be computed from the wall thrust via a simple force balance

calculation. Finally, in Section 7.3.8, the results of the DECICE analysis are summarized.
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7.3.1 Form of Earth Pressure Equation and Relevant Functions

Research on the pressure exerted by a variety of cohesionless granular materials, i.e..
loose sand, on  retaining wall has been a subject of concern to scientists over the last two
centuries. Inall the various theories used in solving this problem, the expression for the total

thrust exerted on a wall takes the following common form:
P = Ly K@rdd,) (1-5)
where:

Y»= bulk density of the granular material,

h = vertical height of the backfill,

o = angle of the inclination of the inner face of the wall measured from the horizontal
plane,
v = angle of the inclination of the free surface of the backfill in relation to the horizontal

plane, reckoned as negative above and as positive below this plane,®
¢ = angle of internal friction of the backfill,
¢, = angle of wall friction, and
K = earth pressure coefficient function,

and the form of K(o,1,9,9,,) depends on the loading geometry and the state of stress in the

“In this thesis t is defined as positive below the horizontal which is different from the

used in soil
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backfill. For example, Coulomb's equations for computing active thrust, P,, and passive

resistance, P, exerted on an inclined wall with a sloping backfill are given as (Liu and Evett,

1987):
P, = “:‘Y,,I,ll sin’(ar+) = J
N . ( sin(d+d,) sin(d+1) ) (7-6)
sin*e sin(ee-,) | 1+ | ———
sin(ee-¢,) sin(e-1)

sin*(a-)

Py = %Yh"l{ 3 J
- sin(d + in(d - h 77
sin'e sin(e +¢,) [ 1 ——~—-—M_"(¢ ) an(d’ 2 ] o
sin(a+,) sin(ee-1)

In addition, Reimbert and Reimbert’s (1974) empirical equations applicable to wall thrust.

when the backfill is on the verge of significant plastic deformation in active or passive

manners. are given as:

(7-8)

| () () ) et

where n in Equation 7.9 is equal to | in the case of rotational passive resistance and 2 in the
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case of translatory passive resistance.

As for the “at-rest’ state, there is not yet a commonly acceptable general equation to
compute the wall thrust applicable to inclined wall with sloping backfill, due to the lack of
studies in this area. Nevertheless. for the case of a level cohesionless normally consolidated
fill behind a frictionless vertical unyielding wall, the wall thrust can be calculated using the

following formula where the fill is assumed to be at the geostatic state:

P = K, (7-10)

The variables used in Equations 7.5 to 7.10 are defined in Figure 7.17.”

Equation 7.5 is a good starting point for the present analysis, i.e., all previous soil
pressure equations are of this form. In this work. Equation 7.5 is assumed, and the form of
K(ot.1.0.9,) is deduced through a series of DECICE simulations.

Reimbert and Reimbert's equations, i.e.. Equations 7.8 and 7.9. are particularly
relevant to the present investigation as their equations apply to loading conditions similar to
the present case. and were validated by extensive experimentation. They are by far the
simplest. and provide a clear delineation of the effects of &, 1, ¢, and ¢, on the K function.

Forexample. in Reimbert and Reimbert’s Equation, the K function takes the following form:

“Note that the direction of the thrust as defined in Coulomb’s Equation and the Reimbert
and Reimbert’s Equation are different.
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2 ¢ g
Kaid0,) - Kend) - K 1 - 2 (M) a1
180" 90° - ¢
or the following generalized form:
Kend.d,) = K'd) K1) K"(d.0) K"(d,) (1-12)

The first term on the right hand side of Equation 7.12 is a function of ¢ only, the form of
which depends on the particular stress state of the backfill. (The corresponding functions for
other stress states are given in Section 5.3.1.) The second term is a function of t only which
accounts for the effect of backfill inclination. The third term is a function of o and ¢, which
accounts for the effect of wall inclination. The last term is equal to | indicating no influence
of ¢, on the K function.

Reimbert and Reimbert’s K function serves as a logical starting point for the analysis
of the DECICE results. Since the rubble is deposited in front of an unyielding wall, the
rubble is expected to be at the ‘at rest’ state. Therefore, K'(¢) is assumed to be a function

of ¢ in the form of *I-sing" via Jiky's equation. i.e.,

K@) = (1 - sind) 7-13)

The theoretical and experimental validities of Equation 7.13 for cases with vertical

frictionless wall and level fill have been shown in previous sections. Itis also hypothesized



that the Reimbert and Reimbert’s (1974) coefficient functions corresponding to K'*, K*** and
K" for the effects of rubble inclination, wall inclination and wall friction are also valid for

the "at rest’ state under investigated, since the "at rest’ state is located in between the two
states® Reimbert and Reimbert studied. i.e.,

kw1 - Ié—;) 1-19)

K"(a.d) = ('30' E; “d; 4’)

% (1-15)

K", =1 (7-16)

These assumptions lead to the following general equation for the thrust applicable to an

inclined wall with a sloping backfill:

P, = %yhhl{l - sing) (1 - i)( -1

180"

For the case of a vertical wall, i.e., o = 90°, Equation 7.17 is reduced to the following form:

*Description of these two states is given in their paper (Reimbert and Reimbert, 1974).
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1 3 e 21
P, = —y,h%(1 - sing) [I - = i
2 1o ISD”J (7-18)

The wall friction, ¢,,, affects the total wall thrust, P,, through the amount of friction
actually mobilized at the wall surface. This mobilized wall friction is called “effective wall
friction’, denoted as ¢, in this thesis. It was anticipated that the relationship between ¢,, and
@’,.. and hence between P, and ¢, would take a complicated form as the relationship was
expected to not only depend on the geometry but also on the history of the loading. Various
functional relationships derived between total wall thrust and wall friction can testify to that.
For example, Reimbert and Reimbert’s experiments (1974) showed that the wall friction, ¢,
had no effect on the magnitude of the wall thrust; while others, i.e., Equations 7.6 and 7.7.

give various fi |

Limited i p! an in-

depth derivation of K'"*’"; however, the DECICE analysis shows that K"’

approximately

equal to | suggesting that the wall friction has negligible influence on the total wall thrust.

7.3.2 Overview of DECICE Simulations and Analyses

Equation 7.5 suggests that a direct proportionality exists between the total thrust
force, P,, and the height squared, h’, of the fill. This proportionality is independent of the
earth pressure coefficient function, K. Before a comprehensive investigation of the K

function, 2 number of DECICE si ions were to verify this




Validation of this ionality ensured the ility” of the DECICE results to other

heights. After that, the four variables, 1, &t ¢ and ¢, were systematicaily varied, and their

effects on the earth pressure coefficient function, K, and hence the total wall thrust were

and deli: The range of variations for each is given in Table 7.5,
with tat 1. 0.75 and 0.5 times the base value of 22.5°, o from 90° to 45°, ¢ at 24.2° and 33.2°.
and ¢, set at 0%, 11.3% and 21.8°. The ice friction angle at the base of the rubble, ¢, was set
to 11.3". The bulk weight density/unit width, y,, of the material varied from 6807 N/m’ to
6950 N/m* (with an average of 6887 N/m*) depending on the height of rubble sample. The
mass density/unit width, v, of the material used was 8829 kg/m’. These ranges were
expected to encompass the ice and structure conditions encountered in the field.

The test configuration and sample geometry for each test conducted in this series are
given in Figure 7.18. In the DECICE analysis. the condition with the non-displacing

boundary is analogous to the at-rest earth pressure condition in the field. A total of 48 runs

were For each test ion, the fc d on the wall and the base were

P The results are ized in Table 7.6. The variables are defined in Figure

The linear dependencies of total wall thrust. P,, on h’, and the assumed K’ are

validated in Sections 7.3.3and 7.3.4, i whereas, the validities of ions 7.18

and 7.17 in thrust force predictions are assessed in Sections 7.3.5 and 7.3.6. Table 7.7 lists

also implies ility. i.e., ility of data in different scales.
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the computed values of different functions or functional groups used in the analyses

conducted in those sections.

7.3.3 Validation of Linear Dependency of Thrust Force on Rubble Height Squared,

e

To validate the linear dependency of the thrust force on h’., three base cases with
different combinations of ¢, and o were selected for DECICE simulation. i.e., & = 90" and
9,=0° =90 and ¢,,= 11.3°, and o = 45°and ¢, = 21.8° and the height of the rubble. h,
for each case was then systematically reduced by 1/3 and 2/3 times while keeping the other
parameters constant. The rubble angle, 1, and the internal friction angle, ¢, are kept at 22.5"
and 24.2° respectively for all cases. A total of nine simulation runs were conducted. and the
results are summarized in Table 7.8. In the table, P, is the value for the total wall thrust in
the DECICE simulation, and P,,_, , is the scale-up value of P, corresponding to h = 4.8 m
using the scaling ratios, (Wh,,)* and (Y,/%..s)- The second factor was applied to reduce the
variation due to varying weight density between cases. If applying this scale-up factor to
cach simulated wall thrust produces the same thrust as the simulation with h = 4.8 m. this
would tend to confirm h’ dependency for the thrust. This is confirmed by the present
simulations. The scaled-up values of the thrust, P, ., y, all lie within 2.5% of the simulated

values at h = 4.8 m for each set.
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7.3.4 Validation of Linear Dependency of Thrust Force on the Function, 1 - 2
180

To validate the linear dependency of the total wall thrust, P,, on the assumed K"/, i.e.,

7 ;‘y .a ion analysis was on all DECICE si ions to establish
180

the degree of correlation between P, and K", for constant o, ¢, and ¢,. Since h and ¥y,

differed from case to case, the K" was iplied by y,h* before i liminate the

variation due to h and ¥,. The y-intercept of the unknown regression line was assumed to be

zero, Le.,

(7-19)

where m is the slope. With this assumption, the number of degrees of freedom, df, can be
taken as (n-1), since there exist only one independent relationship involving the n pairs of
values of P, and  yh? [l S ﬁJ . This allows the correlation coefficient to be computed
for a data set with as few as two data points.

Table 7.9 summarizes the results of the correlation analysis. The test matrix has been
given in Section 7.3.2. Data with same c, ¢, and ¢, are grouped together resulting into 18
possible data sets. In the table, the coefficient of determination, r., the correlation
coefficient, r, and the degrees of freedom, df. of each test set are summarized. The minimum

values of r required to establish the confidence level of 90%. 95% and 99% for a given df are



also listed."® If the computed r value is above the required minimum value, it can be

with the di level that a linear relationship exists between
the examined variable pair, Pyand vy, & 2 [l i %) . The table shows the two variables
were highly correlated with all r values being higher than 0.937. All data sets with more than
three data pairs, i.., df > 2, has r values exceeding 99% confidence level. The data set with
only two data pairs, i.e.. df = I, gives a lower confidence level, the uncertainty of which is
adirect result of the small number of data pairs used; however, all of them are either close

to or exceed the 90% confidence level. It can be concluded with a high degree of confidence

that linear correlation exists between the P, - K' variable pair.

7.3.5 Validity of Equation 7.18 for Vertical Walls

In this section, the validity of Equation 7.18 for wall thrust computation associated
with vertical walls is assessed. The results from DECICE simulation runs conducted with
a frictionless vertical wall and a backfill with a value of t set at 1, 0.75. and 0.5, times the
base value of 22.5° were selected for analysis. The ¢ was 24.2°and 33.2° which correspond
to the ice contact coefficient of friction, p, of 0.2 and 0.4, respectively. In addition, the
simulation runs with wall friction angle, ¢, equal to 11.3° and 21.8° were also analysed.

This was to examine the sensitivity of the above equation to wall friction.

'“The 95% confidence indicates there is only a 5% chance of having r as large as those in
the table when no correlation exists. In order to conclude at a given confidence level that the
correlation does exist, the calculated r should exceed the tabulated value of r.
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The parameters for the base cases and their variations associated with this task are
listed in Table 7.10. (Please refer to Table 7.6 for the details of the individual tests and Table
7.7 for the computed values used in this analysis.) Figure 7.20 gives the comparisons of the

total wall thrusts computed by Equation 7.18 and the simulated values for the three values

of ¢,. Thedatashowsa between the values from Equation

7.18 and the values obtained from the si i Linear i on the three

individual sets of data give the following results:

P O9BRE. s r*=0.996
Pos = VO2SP, r?=0.992
and
P ™ LOTIP, r=0.991

for the three ¢, values of 0°, 11.3” and 21.8°, respectively.

The data shows a slight dependency of the measured P, on the wall friction angle
with a decrease of thrust by 3.7% to 8.5% (on average), when the wall friction angle
increases from 0" to 11.3” and 21.8°, respectively.

It is concluded that Equation 7.18 is valid for the thrust computation for a vertical

wall and a rubble with varying tand ¢. Wall friction slightly decreases the measured P,; and



hence the prediction slightly errs on the conservative side by omitting the effect of wall

friction. The effect of wall friction will further be explored in Section 7.3.7.

7.3.6 Validity of Equation 7.17 for Inclined Walls

Existing earth pressure theories suggest a significant effect of the wall inclination on
the thrust exerted upon a retaining wall by the earthfill. For example, for a granular fill, with
an internal friction angle, ¢ = 25° inclined at its angle of repose, i.e.. t = ¢ = 25° the
Coulomb equation (Equation 7.6) predicts an increase of thrust by 67% when a smooth wall
changes it’s incline from 90° to 45°; while Reimbert and Reimbert's equation (Equation 7.8)
gives a 69% increase for the same change.

In this section, the analysis is extended to examine the effects of wall angle on the
total wall thrust. and the validity of Equation 7.17 for inclined wall is assessed. Four base
cases with a combination of t = 22.5° and 17.3" and ¢ = 24.2° and 33.2° were selected and
tested with o values 90°, 75% 60° and 45°. The simulations were conducted with ¢, = 11.3"
and 21.8". The runs related to this series are listed in Table 7.11. Again. please refer to
Tables 7.7 for the computation results.

Figure 7.21 gives a comparison of the P, computed from Equation 7.17 and the
corresponding simulated wall thrust. The figure clearly shows a substantial over-estimation
of the wall thrust by Equation 7.17. The over-estimation increases with the increased
deviation of wall angle from the vertical. For example, Equation 7.17 overestimates the

thrust by 23% , 20%, and 29% when the wall angle changes from 90" to 75° to 60° to 45°,
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respectively.

Despite the discrepancy, the general trend predicted by Equation 7.17 is consistent
with the results from the DECICE simulations in which the thrust decreases with the increase
of the wall angle, and the rate of decrease is larger for a larger rubble angle, as shown in
Figure 7.22. Therefore, the form of the assumed K"’ was retained but modified to fit the test

data. It was found by trial that the following function agreed well with the data:

il :(mm -a-20)3

(7-20)
90" - 2¢
This gives the following general equation for the thrust:
2
P, = —‘l,yhhl(l - sind) (l = aifhy ](— (7-21)

180"

Figure 7.23 shows a comparison of the P, computed from Equation 7.21 and the
corresponding thrust on the wall in the simulation for the two values of ¢,,. Linear regression
conducted on the two individual sets of data gave the following results:

Pogrea = 1065P, s r=0973

and

Prped = LOTOP, i r?=0.965

o.simul



for the ¢, values of 11.3"and 21.8°, respectively. Equation 7.21 only slightly over-estimates
the simulated values in the order of 7% with a r* value better than 0.965 for the two values
of ¢,. Again, the overestimation can be attributed to the omission of the effect of wall

friction on P,.

7.3.7 Derivation of Effective Wall Friction, ¢’,

The angle of wall friction is often assumed to be a material property but this
assumption is incorrect. [t depends upon the direction of movement, the amount of
movement and the properties of the material. Moreover, it may also vary along the wall.
Hence it is a response and not a property.

During transportation of the rubble ice up the cone facets, the rubble tends to slide
down due to it’s own weight. Because of friction between the rubble and the ride-up ice. the
tendency is to cause a downward frictional force on the ride-up. The magnitude of this force
is limited by the friction angle. ¢,. between the rubble and the ride-up ice. For ice, ¢,
typically has a value ranging from 11.3° to 21.8", and is frequently quoted toward the lower
end.

‘When the relative motion between the rubble and the ride-up is not sufficient to fully
mobilize the available frictional resistance at the interface. the amount of friction mobilized
is indeterminate. However, the effective wall friction angle, ¢’,, can be computed

empirically from the data by considering force equilibrium at the interface, and is given by



the following equation:

o (Pm_sin(a) - Phhcos(a))
" P cos(@) + P, sin(e)

(71-22)
The angle, ¢',.. together with the wall inclination, o, determines the direction of the

thrust exerted on the wall. In order to maintain equilibrium condition, the thrust always acts

upon the wall at an angle:

@, =90 - (e - ¢) (1-23)

measured from the horizontal plane. In order to accurately predict the direction of the thrust,
and hence its horizontal and vertical components, this ¢’, must be known.

Figures 7.24 and 7.25 show the ¢',, computed from Equation 7.22 as a function of
o for ¢, equal to 11.3"and 21.8°, respectively. The data set includes tests with 1 = 22.5° and
17.3". and ¢ = 24.2° and 33.2°. The data show a definite dependency of ¢’, on the cand ¢,
while the trends with other parameters were of lesser significance. Comparing the two
figures, the value of ¢’ is substantially higher with the higher value of ¢, for the same cone
angle. Despite a large scatter in data, the trends are linear with the following two equations

fitting the data with o between 60° to 90°:

¢ = - 0256l + 24.758; r?=0779 (7-24)



for ¢, = 11.3°, and

b, = - 0.3407a + 39.339; r? - 0842 (7-25)
for ¢, =21.8", respectively: and the value of ¢, is always smaller than or equal to the value
of 9.

In Figures 7.24 and 7.25, the broken lines correspond to ¢', = ¢,,, which is the

limiting value ponding to the dition of full friction ilisation at the wall.

Equations 7.24 and 7.25 predict that such conditions would occur when o < 53° for ¢, =
11.3" and & < 44° for ¢, = 21.8” , respectively. Since wall inclination of most offshore
structures are designed within the range of 40° to 60°, as a rule-of-thumb the wall friction will
be fully or almost fully mobilized at the wall for the commonly quoted coefficient of ice
friction between 0.2 to 0.4, i.e., the friction mobilized on the wall for p =0.2 and 0.4 is 83%
and 80% of wall friction, respectively, for o = 60°. It should be noted that although the
frictional resistance is exhausted at the wall, the frictional resistance at the rubble’s bottom
face may still be sufficient to hold the rubble in static equilibrium.

When the frictional resistance at both the wall and the supporting ice sheet are fully

mobilized. ie.. ¢', =

.« and ¢’y = @, the rubble starts to slide down the slope. These

conditions are reached for two sil i i.e., RunsR12W2_2and R12W3_2. Figure 7.26
is 1 snap-shot of Run R12W3_2 showing the whole rubble mass sliding down along the wall

and the supporting ice surfaces.



7.3.8 Summary of the Formulae Derived from Best Fit of DECICE Data

Based on the DECICE si i asimple ion was to calculate
the thrust exerted on an ielding wall, from a ge of the ice and structural
parameters:

i 2 (180" - o - 20) %
P, = oy pt [l - sind))(l - '—‘) (——; 3 (7-26)
2l 180" 90" - 2
with P, making an angle:
@, = 90" - (@ - b)) 120

trom the horizontal, where the effective wall friction angle. ¢',, is the angle of friction
mobilised at the wall. This effective wall friction angle was found to be a function of the

wall inclination, o, and the wall friction angle, ¢,, with the following empirical relationships:
¢, = - 0256la + 24.758 (7-28)

for ¢, = 11.32°; and

/

b, = - 03407 + 39.339 (7-29)

for ¢, = 21.8", respectively. The ¢’ is always smaller than or equal to ¢,,.

The equation is similar to the universal formula proposed by Reimbert and Reimbert.



i.c.. Equations 7.8 and 7.9. Th ient for maximum thrust, (22X -22)* s replaced
1807 - 26

by the coefficient at rest, K, = (1 - ¢), of the granular material, which reflects the appropriate

atrest stress condition in the ice rubble. Th i Jo= =% by Reimbert

and Reimbert (1974) to account for the effects of backfill’s inclinations for the maximum
active and the minimum passive state is found to be applicable to the “at rest’ state of stress

as well. However, Reimbert and Reimbert's coefficient, % . for the effect of wall
=

ifi i the il thrust on the wall, specially for a small
W sy
T

wall angle. Instead, a coefficient function, ( . is found to give a much better

agreement with the DECICE simulation.

7.4  Load Components Distributed on the Wall and the Supporting Ice Sheet
The weight of the ice rubble is partly supported by the ride-up ice and partly by the

ice sheet. The hori: and vertical of the thrust exerted on the

ride-up ice are given by the following equations:

]
1 3 % b1 180" -« - 29| 7 " ;
P, = =Y (1 - sin )(l - —) (————] cos(90"-(x~,)) (7-30)
4 = gt = 18071 90" - 29
!
N (_2\]([80"~ -z@);. i
P =500 - sind) (1 T g | sin(90”~(x-4,)) (7-31)

The horizontal and vertical forces exerted on the supporting ice sheet can be

througha i ion of simple f ilibrium as shown in Figure 7.27; and
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are given as the following:

P

bi

=P (7-32)

Py =W, - P, (7-33)

while W_ is the weight of the rubble computed from its known geometry and bulk density.
The contact friction mobilized at the bottom surface of the rubble is equal to:
P
p = tan’! (—ﬂ] 8
wh Pln a M)
and is limited to @, the friction angle at the supporting ice surface.

Table 7.12 summarizes a result of least squares fit of computed force components to

corresponding simulated values for the cases with the three wall friction angles, respectively.

The analysis shows good overall agreement for the force components.
7.5 Application of the New Formula for Walls with Multiple Slopes

Equations 7.30 and 7.31 can be generalized and applied to walls with multiple slope
angles. Forexample, for a multi-sloped wall retaining a rubble, as illustrated in Figure 7.28,

the pressure. p. at a depth h; measured from the maximum height of the rubble is given by:



'
P = vhgL - sing) (1 = i] (M) 3 (7-35)
180"\ 90" - 29

and the thrust for an arbitrary section, i:

3 ](180’ - - 2¢)l‘

P, = Ly - n20 - sing) (1 L
2 " ' 180° 90" - 2¢

(7-36)

where h, and h,, are the vertical distance of the top and bottom level of an arbitrary section
i measured from the maximum height of the rubble.

The total horizontal and vertical forces exerted on the wall are, therefore:

Lo ) 2 3y (150
Po s 310 - sind) (I - H) Xty - b '(

Sa) L
) *cos(90" (e, ~4,,)X7-37)
90" - 2

'
W

[ i sin(90° -(a, -, ))(7-38)

T ( ) z.) A
P = 301 - sind) |1 e X il B

where k is the number of sections covered by the rubble. The effective friction angle for
section i, ¢",,. is calculated from Equations 7.24 or 7.25, and is less than or equal to the wall
friction angle ¢,, ,.

The weight of the rubble per unit width is given as:



where h, is the rubble height, h, is the height of section i, and k is the highest section the
rubble reaches.

For example, for the retaining wall and backfill of Figure 7.29. simple geometric
consideration gives the base lengths, b,, b, and b, equal to 4.8562, I, and 0.57735 m
respectively, with the total cross-sectional area of the rubble equal to 8.2842 m* and the
weight of the rubble equal to 58909 N/m. With ¢,, = | 1.3° common for each section, ¢’ is

obtained from Equation 7.24 as 1.7, 9.4°. and 11.3" for the upper, the middle and the lower

sections, respectively. ituting ¢', for the respective section into Equations 7.37 and
7.38. P, and P, are computed as 10923 and 11384 N/m, respectively. Finally, the normal
force. Py, and the frictional resistance, P, acting on the base are computed from Equations
7.32 and 7.33 as 10923 N/m and 48596 N/m, respectively.

An example calculation for Test MUNCONES3 is given in Appendix C.

7.6 Application of the New Formula for Other Loading Conditions

Two other loading itions are of interest to desi, The first is i with

the basal sliding at the rubble/ice interfaces. and the second one associated with bearing

failure of the ing ice sheet. Both itions may limit the i slope and height

that a rubble can attain, and hence, limit the maximum load that a rubble can exert on the
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structure. In this section, application of the new model formula to the aforementioned cases

is briefly described.

7.6.1 Maximum Slope of Rubble with Basal Sliding at the Rubble/Ice Interfaces

When rubble is pushed up a sloping plane. the free surface slope of the rubble is
limited by one of the two failure criteria: slope instability and basal sliding as described in
Chapter 5. The first criterion limits the rubble angle to the material’s angle of repose:
whereas. the second criterion prevents further ride-up of the rubble mass onto the slope.
And. hence, the second criterion further limits the maximum angle that the rubble can attain.
If the surface slope momentarily increases beyond this limiting value. the whole rubble will
slide down the sloping plane to seek for the limited equilibrium state exhibited by Runs
R12W2_2 and R12W3_2 conducted in the previous section.

The equations presented in Section 7.3 can also be applied to the limiting equilibrium
state on the onset of this basal sliding. In this case. the vaiue of slope angle. 1. is unknown
which is to be determined by back calculation using the known frictional resistance at both
the wall and the supporting ice sheet, i.e..¢’, = ¢, and ¢’, = ¢, It is expected that the angle,
1. will be a function of wall angle, internal friction angle. and ice friction at the interfaces.

The corresponding thrust, P,, is the maximum load that can be exerted on the structure.
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7.6.2 Maximum Rubble Height Limited by Bearing Failure of the Supporting Ice

Sheet

The supporting ice sheet may fail before the full development of the ice rubble, which
limits the amount of ice piled up in front of the cone, and the size of the rubble is no longer
determined by the mass balance requirement, but is rather limited by the strength of the
supporting ice sheet. This type of bearing failure was observed in a number of tests
conducted in IME's series when the ice sheets were weak and thin. In this case, the height
of the rubble, h. is unknown. The h can be determined by back calculation using the
equations derived in Section 7.3 with the known bearing resistance, i.e., P,,, calculated from
bearing analysis of the underlying ice sheet. Again, the corresponding thrust, P, is the

maximum load that can be exerted on the structure.



Table 7.1
condition

DECICE parameters for the simulations of rubble mass at the "at-rest"

Solution Scheme

Two-dimensional plain-strain explicit
time-stepping algorithm

Time Step Length

Program generated default value

Constitutive Model

Perfectly clastic

Element - Ice Blocks

Simply deformable solid

Element - Walls, Top and Base Plates Rigid
Ice Elastic Modulus (Pa) 0.2E7
Inter-Element Stiffness (Pa) 0.2E8

Ice Density (kg/m’) 900

Poison Ratio 0.3

Gravity

No gravity for the oedometer tests, and 1-
g for all the other tests




Table 7.2 Summary of the coefficient of lateral earth pressure at rest, K, ,, estimated by
gravity method

h b P P, 3

est | (m) I (m) l " | & l ® l(ﬁ/."m ] Sy ‘ Koy I ‘f:')

Set 1: Piece Size=0.16 mx 0.16 m
Pl 5.20 275 0 92271 |107361 | 17744 | 39042 | 0.909 5.2
P12 | 550 | 275 02 |63361 |107361] 11520 | 39040 | 0.590 | 24.2
P13 | 580 | 275 04 |51257 |107361| 8837 | 39040 | 0.453 | 33.2
Set 2: Piece Size =0.16m x 0.32 m
P21 730 | 3.89 0 |163410]214721 | 22385 | 55198 | 0.811 | 109
P22 7.60 3.89 02 1176101214721 15475 | 55198 | 0.561 [ 26.1
P23 [ 810 | 389 | 04 |106891214721] 13196 | 55198 | 0478 | 31.5
Set 3: Piece Size=0.16m x 0.48 m
P31 8.70 | 4.80 0 250528 | 322082 | 28796 | 67100 | 0.858 8.1
P32 | 9.60 | 4.80 | 0.2 [184705}322082 | 38480 | 67100 | 0.573 | 25.2
P33 10.10 | 480 04 1399721322082 | 13859 | 67100 | 0.413




Table 7.3 Summary of the coefficient of lateral carth pressure at rest, K, ., measured {rom the oedometer tests
i “xtrapolated|
g |Samplingf h b P, Py, Pan Pr [ iliese
Test Point | (m) | (m) I » (N) (N) L(N/m) (N/m) | “ r:“"ic(‘;:;
=
Set I: Piece Size=0.16 mx 0.16 m
12 P 5.44 275 | 02 44861 38983 8242 14176 0.581 24.7 K,,=0.593
Q oM 5.32 o ) 114702 | 105361 21544 38313 0.562 26.0 =24.0"
13 1 569 |, 75 | 04 27460 31695 4823 11526 0.419 356 |K,
Q 2% 5.57 i = 80137 101877 14377 37046 0.388 3779,
Set 2: Piece Size=0.16 m x 0.32 m
22 iTs .84 389 | 02 55657 50969 7095 13103 0.542 7.3 |K,,=0.566)
Q 2% .68 ) ) 140712 | 142019 18329 36509 .502 9.9 5.
{ Tl .13 2889 3006 355 773 .460 2.7
@3 7971 > | ™ o732 [ 72075 | sed0 | 18528 | 0456 | 330
Set 3: Piece Size =0.16 m x 0.48 m
e 941 15633 0.544 27.
Q32 7 o2 ] 48002 38733 | 053 | 27,
12 10.16 53 0.406 36.4
@3 [ 15061480 04 5165 | 0393 | 374

Note: Forces Measured on the two side walls are within 0.46% of cach other; whereas, those measured on the top and bottom
plates are within 1.1%. The values given are the average values.



Table 7.4 Summary of the angle of repose, ¢,, estimated from the rubble's natural slope
after slope failure

o, [ /0,
Test l e I o | e | ™
Set 1: Piece Size=0.16 mx 0.16 m
s12 0.2 24 | 24.2 [ 09
S13 | 04 | 31 | 332 | 0.93
Set 2: Piece Size=0.16 mx 0.32 m
522 0.2 25 | 26.1 | 0.96
523 | 04 Il 27 | 315 | o086
Set 3: Piece Size =0.16 m x 0.48 m
s32 0.2 22 [ 252 | Y
$33 | 04 | 32 [ 359 [ o8

Tuble 7.5 Matrix of DECICE simulations of the thrust exerted upon a retaining wall by
cohesionless granular materials at "at-rest" state of stress

Parameters Variation
Height of Rubble, h (m) from 1.6 10 4.8
Rubble Angle, 1 (°) 22.5,17.3, 11.7
Wall Angle, a. (*) 45, 60, 75, 90
Internal Friction Angle of Rubble, ¢ (°) 242,332
Friction Angle at Wall, ¢, (°) 0,113,218
Friction Angle at Base, ¢, (°) 1.3
Number of Tests 48




Table 7.6 Summary of DECICE simulations of the thrust exerted upon a retaining wall
by cohesionless granular materials at "at-rest" state of stress

Test | b | b [ o | v ]o | P;,"’ P, | Py | P [ o
m|lm|eo|lo|o |onm (13'3 (GO NGO GO )

480 | 1159 193019135139 | 00
320 } 773 84530 15355 | 0.0
1.60 | 3.86 21249 | 3805 0.0

0
0
0
480 11591 90 225 | 33.2 | 6940 |37603 0 193019] 27603 | 0.0
0
0
0
0

slele
8|8

1o

i

&

>

i

o

N

&3

%

k]

=

3

3

&5

3.60 | 11.59 143747] 21365 | 0.0
360 | 11.59 1437481 17485 | 0.0
240 | 11.59 94926 | 10360 | 0.0
240 | 11.59 94926 | 8638 0.0

<le

3181818
S
o
]
i
o
2
3
I
S
=
%
=

480 | 1159 90 225 | 242 | 6940 |33227 | 1601 |i91418} 33265
320 | 7.73 90 225 | 242 | 6837 | 14407 | 271 |84239 | 14410
1.60 | 386 90 225 | 242 | 6873 | 3644 | 408 | 20833 | 3666
480 111591 90 225 | 332 | 6940 27364 | 554 192466
360 | 1159 1 90 17.3 | 242 | 6892 20417 | S38 1143209
360 | 1159 ] 90 17.3 | 33.2 | 6892 | 17039 | 754 142993
240 11591 90 117 | 242 | 6826 | 9728 | 1139 |93787
240 | 11.59 90 117 ] 33.2 | 6826 | 8277 | 766 | 94160
75

R12W1 2| 4.80 | 10.30 s 30967 | 12927 |158917] 33557 | 22.7
2] 480 | 8.82 60 225 Sliding Failure

3.2] 480 | 679 45 25 Sliding Failure
RI3WI_2] 4.80 | 10.30 75 225 27091 | 8435 116340828374 | 17.3
R13W2 2| 480 | 8.82 60 2.5 24685 | 21594 1125005 32797 | 41.2
R13W3 2| 480 | 6.79 45 25 6876 | 19294 | 28940 | 83074 | 34782 | 56.3
R22W1 2| 349 | 1030 | 75 17.3 6896 | 18075 | 6333 |117670} 191521 19.3
R22W2 2] 3.34 | 8.82 60 17.3 16428 | 13160 | 87687 ] 21049 | 38.7
[R22W3 2| 3.06 | 6.79 45 173 X 10097 | 15015 | 55663 | 18094 | 56.1
IR23WI_2] 349 | 1030 ] 75 17.3 | 33.2 | 6896 | 16102 | 6092 |117911} 17216
R23W2 2| 334 | 8.82 60 17.3 | 33.2 | 6854 | 16153 | 12396 | 88452 | 20361 i
R23W3 2] 306 | 679 45 173 | 332 | 6807 | 10190 | 14111 | 56567 | 17405 | 54.2 |



Table 7.6 Summary of DECICE simulations of the thrust exerted upon a retaining wall
by cohesionless granular materials at “at-rest" state of stress (cont'd)

Pwh=
RO L LR S A . O I IR I

3 P, | o
@ oo | e Nml s ] oo

Set 3: ¢, =21.8°
RI2.3 4.80 [11.59] 90 | 22.5 | 24.2 | 6940 |31030| 6246 |186773]31652] 11.4
RI3. 3 480 [11.59] 90 | 22.5 | 33.2 | 6940 [25700] 4180 |I8! 26038) 9.2
R22.3 360 [11.59] 90 | 7.3 | 24.2 | 6892 | 19304 ] 3117 ]140630] 19554] 9.2
90
90
90

R23 3 3.60 | 11.59 17.3 | 33.2 | 6892 [16150] 2412 [141335]16329| 8.5
R323 ]240 1159 11.7 | 242 | 6826 | 9701 | 1619 |93307 9836 | 9.5

R333 [ 2401159 117 | 332 | 6826 | 7862 | 1479 [93447] 8000 | 107
RI2w13 [ 480 [1030] 75 | 22.5 | 242 | 6950 |29983 | 16540 |155309] 34243 | 28.9
Ri2w2 3 [ 4380 [ 882 | 60 | 22.5 | 242 | 6929 |23407 {28376 J118235] 36784 50.5
RI2W3 3 | 480 | 679 | 45 | 22.5 | 24.2 | 6926 |15109]33568]69264 38612 65.8
RI2W3A 31 3.20 | 453 | 45 | 225 | 242 | 6733 | 6651 [14826{33927] 16250 65.8
RI2W3B 3| 160 | 226 | 45 | 22.5 | 24.2 | 6892 | 1628 | 3622 | 8853 | 3971 | 65.8
Ri3Wi_3 [ 480 [1030] 75 33.2 | 6950 |24595 | 13315 158525| 27968 | 28.4 |
RI3W2 3 [ 480 | 882 | 60 33.2 | 6904 |22900]27100119000] 35480] 49.3 |
RIIW3 3 | 480 | 679 [ 45 | 225 | 332 | 6926 |15269 3494677883 [38136| 664
R22W1 3 [ 349 [1030] 75 | 17.3 | 242 | 6896 |17336 | 7716 |116287] 18976 | 24.0
R2ow2 3 | 334 | 882 [ 60 | 17.3 | 242 | 6854 [13908] 1666084188 {21702
R22w3 3 | 306 | 679 { 45 | 17.3 | 242 | 6807 | 8277 [18077]52600| 19882} 65.4
R23W1 3 | 349 [1030] 75 | 17.3 | 332 | 6896 [14833 ] 7468 [116535|

R23W2 3[3.34 1882 )60 | 17.3 | 33.2 | 6854 |13274|15130|85717 2!
R23W3 3]3.06 | 6.79 [ 45 | 17.3 | 33.2 | 6807 | 8389 |17035}53642]18989] 63.8

-
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Table 7.7 Computed values for DECICE Analyses conducted in Sections 7.3.3 t0 7.3.6

2 P, P P,
Test P;ﬁ;*‘ Yhh_”(’i‘)“w’ €QT18) | EQTAT | BQT21)
N) N) N)
Set I: ¢, =0°
RI2_| 35139 119928 35383 | 35383 | 35383
RI2A_I 15355 52523 Not Computed
RI2B_| 3805 13202 ot Computed
RI3_| 27603 119928 27130 27130 27130
R22_| 21365 72188 21298 21298 21298
R23_| 17485 72188 16330 16330 16330
R32_1 10360 34208 10093 10093 10093
R33_1 8638 34208 7739 7739 7739
Set2: ¢,=11.3
RI2_2 33265 119928 35383 | 35383 | 35383
RI2A_2 14410 52510 Not Computed
RI2B_2 3666 13197 Not Computed
RI3_2 27369 119928 27130 27130 27130
20425 72188 21298 21298 21298
17056 72188 16330 16330 16330
9794 34208 10093 10093 10093
8312 34208 7739 7739 7739
RI2WI 2 33557 120102 43513 35435 39265
RI2W2 2 Sliding Failure
RI2W3 2 Sliding Failure
RI3WI_ 2 28374 120102 34344 27169 32011
RI3W2 2 32797 119716 41386 27082 35598
32 34782 118813 48172 26878 38359
12 19152 67927 24610 20041 22207
2 21049 61713 26509 18208 21821
18094 51489 25581 15191 19397
17216 67927 19424 15366 18105
20361 61713 21334 13961 18351
17405 51489 20876 11648 16623
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Table 7.7 Computed values for DECICE Analyses conducted in Sections 7.3.3 to 7.3.6

(cont'd)
, 1 ». Por P,
Test P;ﬁ;*» e ‘;i{‘i‘so | & Tis) | €71 | €720
) ) ™)
Set3: 0, = 218"
RI23 31652 119928 35383 35383 35383
RI33 26038 120028 27153 27153 27153
R22.3 19554 72188 21298 21298 21298
R23 3 16329 72188 16330 16330 16330
R32.3 9836 34208 10093 10093 10093
R333 8000 34208 7739 7739 7739
RIZWI 3 | 34043 120105 43514 35436 39266
RIZW2 3 | 36784 119726 51429 35324 42332
RI2W3 3 | 36812 109073 54189 32181 41090
RIJW3A_3 16250 25855 Not Computed
RI2W3B 3 | 3971 6616 Not Computed
RIBWI 3 | 27968 120099 34343 27168 32010
RI3W2 3 | 35480 119309 41245 26990 35477
RI3W3 3 | 38136 119676 48522 27073 38637
R22W1 3 | 18976 67927 24610 20041 22207
R22W2. 3 | 21702 61713 26509 18208 21821
R2W3 3 | 19882 51489 25581 15191 19397
RBWL 3 | 16606 67927 19424 15366 18105
R23W2.3 | 20028 61713 21334 13961 18351
R23W3 3 | 18989 51489 20876 11648 16623




Table 7.8 Results of simulation runs to validate the direct proportionality between the
rubble height squared, h?, and the total wall thrust, P, (1 =22.5° and ¢ = 24.2°
for all cases)

Test I - | s l & | v,y ] Wtous) | Pt [P
Set 1: o.=90°and ¢,=0"
RI2 1 48 6940 35139 1.000 1.000 35139 1.000
RI2A_I 32 6838 15355 0.444 0.985 35066 0.998
RI2B_I 1.6 6876 3805 0.111 0.991 34758 0.989
Set2: a=90°and 9, = 11.3°
438 6940 33265 1.000 1.000 33265 1.000
32 6874 14410 0.444 0.990 32734 0.984
1.6 6950 3666 0.111 1.001 32945 0.990
Set3: o.=45°and ¢, = 21.8°
RI2W_3 4.8 6926 36812 1.000 1.000 36812 1.000
RI2ZW3A 3| 32 6733 16249 0.444 0972 37608 1.022
RI12W3B_3 L6 6892 3971 0.111 0.995 35915, 0976

Note: " Py = P/ (Whyg)/ (foras)



Tuble 7.9

Results of the correlation analysis of the P, - K" data pairs

o [} 9, ¢ r df 0% | 95% | 9%
0 1000 [ 1000 | 4 | 0729 | 0811 | 0917
242 | 113 | 1ooo [ 1ooo | 4 | 0729 | 0811 | 0917
0 218 | 0997 | 0999 | 2 | 0900 | 0950 | 0.990
0 | 095 | 0997 | 2 | 0900 | 0950 | 0990
332 | 113 [ 0998 | 0999 | 2 | 0900 | 0950 | 0990
218 | 0997 | 0998 | 2 | 0900 | 0.950 | 099
o |13 | rooo 1000 | 1 |o9ss | 0997 | 1000
e | tow | tewo I | 0988 | 0997 | 1.000
» , |n3 | o983 | oo I | 0988 | 0997 | 1.000
= 218 | 0993 | 0.99 1 | 0988 | 0997 | 1.000
- 1.3 NA (too few samples)
218 | 0878 | 0937 1 | 0988 | 0997 | 1000
© , |13 | 0948 [ 0974 1 | 0988 | 0997 | 1000
B2 0% oo | oo | 1| ovss | 0997 | 1o
a3 i3 NA (too few samples)
218 | 0986 | 0993 | 3 | 0805 | 0.878 | 0959
* |13 | oges | osm 1| 0988 | 0997 | 1.000
22 [Tois | oses | osss 1| 0988 | 0997 | 1.000
Note: 1. Number of sample pairs, n = df +1, where df is the number of degrees of

o

freedom
Minimum values for 90%, 95% and 99% confidence level are taken from
Fisher and Yates (1970).



Table7.10 Base cases and their variations selected to assess the validity of Equation 7.18
for vertical walls

[ —_— Test Run (Base Test R_un
Case) (Variation)
o) 9 () 1=225() 1=173() 1=1130)
24.2 0 RI2_1 R22_1 R32_1
332 0 RI13_1 R23_1 R33_1
24.2 1.3 R122 R222 R32_2
332 11.3 R132 R23.2 R332
24.2 21.8 RI2_3 R22_3 R32_3
332 21.8 R13_3 R233 R33_3
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Table 7.11 Base cases selected to assess the validity of Equation 7.17 for inclined walls

Test Run Base Parameters

Base Case h (m) () () 9., ()
Ri2.2 48 25 242 1.3
RI3/2 4.8 225 332 1.3
R22_2 3.6 17.3 24.2 113
R23_2 3.6 17.3 332 L3
R12_3 4.8 22.5 24.2 21.8
R13_3 4.8 22.5 332 218
R223 36 17.3 24.2 21.8
R23_3 3.6 17.3 332 21.8

Note: For the base case, ot = 90" the wall angle of each case was varied from 90° to 75" to
60° to 45° with the runs bearing the extension W1, W2, and W3 respectively.



Table 7.12  Least squares fit of force

from

7.31,7.32,

and 7.34, to values obtained directly from simulation runs assuming ¢,, equal
t0 0%, 11.3° and 22.5°

Least Squares Fit (P, = m P,
Force Component 0, () m r

0 0989 0997

P, 113 1.062 0961

%3 1093 0973

113 0.969 0.968

P 25 1.042 0982

0 1.000 1.000

P, 113 0999 0999

25 0995 0.999
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Figure 7.1 Figure showing the interaction of ice blocks, cone and ice sheet from a
typical DECICE simulation (after Lau, 1994a)

Simulated Horizontal Force
N

increase »:
Measured Horizontal Force

Figure 7.2 i versus hori: | peak forces for a 60 degrees cone in
level ice (after Lau, 1994a) (Axis scaling is not given due to data

propriety)
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(c)

Figure 7.3 Snap-shots showing generation process of rubble sampzpple: (a) random
generation of ice blocks; (b) free falling of ice blocks; =3 and (c) final
configuration of rubble sample

(a) (b) (c)

Figure 7.4 Final configuration of rubble samples after initial commnpaction: ice piece
size: (a)0.16 mx0.16 m; (b)0.16 mx0.32m; and ® (c)0.16 m x 0.48 m
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Figure 7.5 Comparison of initial void ratio, e,, and the associated contact friction, j,
with aspect ratios, AR = |, 2 and 3

Figure 7.6 Pressure distributions of rubble sample assumed in the gravity test
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Figure 7.7 Comparison of earth pressure coefficient at-rest, K., and the associated
aspect ratio, AR, for contact friction, p = 0, 0.2 and 0.4: gravity method
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Figure 7.8 Comparison of earth pressure coefficient at rest, K, ;, and the associated
contact friction, W, for aspect ratio, AR = 1, 2 and 3: gravity method
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Figure 7.9 Comparison of internal friction angle, ¢,, and the associated contact
friction, p, for aspect ratio, AR = 1, 2 and 3: gravity method
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Figure 7.10  Configuration of oedometer tests: side and bottom plates fixed while the
top plate moves downward at V = 0.4 m/s
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Figure 7.11  Figure showing the increase of horizontal stress, p,, with the increase of

vertical stress, p,,. in a typical simulated oedometer test (Run Q12)
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Figure 7.12  Comparison of the at-rest earth pressure coefficient, K, ., in simulated
tests and the i ient, K, ,, esti from
gravity test simulations
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Figure 7.13  Comparison of the internal friction angle, ¢,, estimated from oedometer
test simulations and the corresponding internal friction angle, ¢,, from
gravity test simulations

Figure 7.14  Snap shotsof Run S12at(a)t=0s,(b)t=153sand (c)t=30.6s
showing a typical angle of repose tests

243



Figure 7.15a  Final configuration of rubbles in the angle of repose tests: (i) Test S12;
(ii) Test S13; and (iii) Test S22
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Figure 7.15b  Final configuration of rubbles in the angle of repose tests: (iv) Test S23;
(v) Test $32; and (vi) Test S33
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Figure 7.16

Figure 7.17

0
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Comparison of the angle of repose, ¢,, and the associated internal friction
angle, ¢,, obtained from gravity test simulations

Definition of variables commonly used in various earth equations: (a)
Coulomb’s equation; and (b) Reimbert and Reimbert’s equation. (The
direction of total wall thrust as defined in Coulomb’s equation and
Reimbert and Reimbert’s equation are different.)
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Figure 7.18  Test configuration and sample geometry for each test simulation

conducted for the thrust equation formulation. The results are given in
Table 7.6.
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Figure 7.19  Definition of variables used in Table 7.6
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Figure 7.20  Comparison of the predictions from Equation 7.18 and the total thrust
measured on the wall for the three values of wall friction, ¢, = 0°, 11.3°,
and 21.8°. in DECICE simulations
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Figure 7.21  Comparison of the predictions from Equation 7.17 and the total thrust
measured on the wall for the two values of wall friction. ¢,,= 11.3° and
21.8°, in the DECICE simulations
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Figure 7.22  Effects of the wall angle on wall thrust for a combination of internal
friction angle, ¢, and rubble angle, 1 (wall friction, ¢,, = 21.8°)
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Figure 723 Comparison of the predictions from Equation 7.21 and the thrust on the
wall in the DECICE simulation

z 15
8 ¥, =-02561a +24.758
g 125 - #=0.7992

- 8 ®

5 10-

2 CRE

E

§ 75 - s e

5 s- °

T °

<

s 25- « @

3 8

T o0

30 45 60 b %0 105
Wal Angle, a (degrees)

Figure 724  Computed effective friction angle at wall, ¢',, versus wall angle, a, for wall
friction angle, ¢,, = 11.3°. The broken line corresponds to ¢’, = ¢,, = 11.3°,
and the regression line fits data with a between 60° to 90°.
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Figure 7.25  Computed effective friction angle at wall, ¢’,, versus wall angle. a, for
wall friction angle ¢,, = 21.8°. The broken line corresponds to ¢’,, = ¢,, =
21.8°. and the regression line fits data with o between 60° to 90°.

Figure 7.26  Snap-shot of Run R12W3_2 showing the whole rubble mass sliding down
along the wall and the supporting ice surfaces.
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Figure 7.27  Force equilibrium of the rubble body

A A A
P"“;\—' h"
@y W,
i by,
h,

Figure 7.28  Figure of a rubble retained by a multi-sloped wall showing the wall thrust
and the wall angle of each section
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Figure 7.29  Data for sample calculation showing the use of the derived equations
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Part III Ice Force Model

Chapter8 Development of a New Ice Force Model

In Chapter 6, a new rubble geometry prediction model was formulated from mass
balance and interaction geometry considerations. With the geometry of the rubble known,
the forces imposed by the rubble on the ride-up ice and the supporting ice sheet can then be
computed via the set of equations derived in Chapter 7. These forces, interacting with the
ride-up ice and the supporting ice sheet, affect the magnitude of loads acting on the cone.

While the estimation of the load imposed by the ride-up ice is rather simple, the
breaking behaviour of ice under the complex geometry imposed by both the rubble and the
ride-up ice is complex. Many models have been constructed to predict ice forces on cone for
the cases where there is no rubble buildup. In this chapter, those models are examined, and
a base model is selected to model the breaking behaviour of intact ice. The new rubble
model is then incorporated into the base model to compute the peak ice load exerted on the
cone due to the passage of a combined ice sheet/rubble system.

In Section 8.1 the base model is selected from four representative models. The
primary criterion for selection is the degree of simplicity and accuracy. The adaptation of
the rubble model to the base model is presented in Section 8.2; while, in Section 8.3 the new

ice force model is validated by the experimental results presented in Part [ of this thesis.
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8.1  Selection of Base Model for ing of Ice i iour of Intact Ice

In Section 8.1.1 th i data and the analytical models used for comparison

are briefly described. All data and models are for smooth cones only. In Section 8.1.2,a
method to adapt the 2-D model to 3-D cases is presented. This method is incorporated into
the Croasdale’s model to give a better representation of the 3-D nature of ice load. In Section

8.1.3, accuracy of the existing mathematical models is assessed and discussed.

8.1.1 Experimental Data and Ice Force Models for Smooth Cones, with Ride-Up Ice,

But No Rubble

The data set utilizes data from ten test programs done worldwide on smooth conical
structures with a total of 226 data points (Afanas'ev et al, 1971, Verity, 1975: Edwards et
al, 1975; Edwards and Croasdale, 1976: Manders and Abdelnour, 1978; Hirayama and
Akamatsu, 1982; Wessels, 1984; Sodhi et al, 1985; Lau et al, 1988; and [zumiyama et al,
1991). The test condition of each program is summarized in Table 8.1. These data
encompass most of the data available during the last 25 years which have been widely cited

in the open literature. All tests were conducted in model basins where the uniformity of ice

was highly and the ice ies and load data were well documented.
Three widely used analytical/mathematical models for smooth cones were chosen as
possible candidates for the base model. They are:
(i) Nevel's elasticity model (1992);
(i) Ralston’s plasticity model (1977); and
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(iii)  Croasdale’s 3-D model (1980) with in-plane force adjustment (Croasdale et
al, 1994).
In addition, Croasdale's model was modified to give a better representation of the 3-D
geometry of ice loading. The modified model is referred to as ‘Lau-Croasdale’ model in the
rest of the section. The modification is described in Section 8.1.2.

These models are representative of the existing major model treatments of ice forces
onconical structures. The models and their particular modelling features have been reviewed
in Chapter 2.

Ralston’s model allows computation of failure load due to two types of failure
criteria, i.e., Johansen and Tresca failure criteria. In this work, the Johansen failure criterion
was assumed.'

For Nevel's model, the computer program supplied by Nevel (1992) was used.

Nevel's computer program provides ions for a ination of selected il

ing: ial or si ice breaking, inclusion or exclusion of ice
pieces on neck section, and active or passive ice actions, with atotal of 8 possible interaction
scenarios. Computations for each assumed scenario is given elsewhere (Lau, 1999). In the
present comparison, ice load for each individual test was computed for all 8 scenarios and

then averaged to give the model prediction for that test.

‘In the present test sets, computation using Tresca failure criterion gives an overall 12.5%
higher force values in both the horizontal and the vertical directions than that computed using the
Johansen failure criterion.
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8.1.2  3-D Modification of Croasdale’s Model
Croasdale’s (1980) provided a method to adapt his 2-D model to a 3-D case, i.e.,

narrow structures, by idering the length of ci ial cracks to extend beyond the

structures. For example, in Croasdale’s model, the total horizontal and vertical forces, Hygr
and Vror, exerted on the front half of the smooth cone can be expressed in the following
simplified form:

ror = Fe Vror 8-

Vior = Vi L + W, 8-2)

where F; is the resolution factor for a sloping plane, &, as defined in Equation 2.2; L. is the
total length of the circumferential crack; W, is the total weight of ride-up ice; and V', is the
effective breaking load per unit width of ice beam under combined bending and in-plane
compression. As noted already, the concern here is only with a single layer of ice, of
thickness, t, riding up the front half of the cone with no rubble accumulation on top of the

ice layer or ice sheet. L, W, and V', are expressed as follows:

8-3)
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8-49)

@8-5)

where ythe weight density of ice; ¥,, the weight density of water; E, the elastic modulus of
ice: t, the ice thickness: D, the waterline width of the structure; c, the inclination angle;

2. the free-board: |, the characteristic length of ice; and o’ is the effective flexural strength

of the ice beam under ined bending and in-pl: ion. The method to compute
o, is given by Croasdale et al (1994) and is further discussed in Section 8.2.7.

It has been shown in Chapter 4 that the 3-D distribution of ice loads is important,
particularly in a larger scale, and F in Equation 8.1 should be approximately equal to (2/m)§

(sce Section 4.4.1). By assuming F; is equal to §, Croasdale’s model tends to overestimate

the horizontal f F while th ions for L and W, are derived
considering a sloping plane, their application to conical structures omits of the 3-D nature
of ice load distribution caused by the cone’s curvature.

The following method is proposed by the present author to adapt Croasdale’s 2-D

model to a 3-D case, which gives a better representation of the 3-D nature of ice loading on
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the cone. The method considers the direction of ice force distribution around the cone
surface, and gives a better estimation of W, and L. It first computes and integrates the
distributed ice forces along the front perimeter of the cone to give the net vertical loads, and

then calculates the net hori: force by the factor for a 3-D case,

ie. (2m)E.
For modelling purposes, only the loads on the front half of the cone are considered,
and full coverage of ride-up ice on this half of the cone is assumed as shown in Figure 8.1.

The total weight of ride-up ice, W, is given in the following expression:

D, +D -
w22 () ey 0
4 singt

where D and D, are the waterline and neck diameters of the cone, respectively.

The breaking force is by idering sil failure of a series of
wedge beams along the cone's front perimeter (see Figure 8.1). Each beam has a breaking
length, L, derived from the theory of semi-infinite elastic beam on elastic foundation

(Hetenyi, 1946), i.e..

==l
LT

(€3]

The distance of the circumferential crack to the centre of the cone is equal to [D/2 + (n/4).]

and the total length of the circumferential crack, L., is given as follows:
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8-8)

With the W, and L. given in Equations 8.6 and 8.8, the vertical load on each wedge beam
is computed via Croasdale's 2-D model, i.e., Equation 8.2, and then summed up to give the

net vertical breaking load, Vyor:

(x5 (o rrf..) (Dn*D ( :
Vior = 0.680; = ] oy Rl v —jry (8-9)

Since that the vertical load, Vi, is uniformly distributed along the front half of the cone,

the horizontal load, Hror, is related to Voor, by &y, (see Section 4.4.1), ie.,
2i
Hror = &p Vior = T € Vior (8-10)
The adjustment for the effect of in-plane compression on ¢’ can be performed for each beam

in the same manner as suggested by Croasdale et al (1994) (see Section 8.2.7).

8.1.3 Result of Model Assessment
Figure 8.2 compares the predicted horizontal force. F_,.,, computed from Lau-
Croasdale’s model to the horizontal mean peak force, F, ..., measured from each test in the

data sets listed in Section 8.1.1, and the comparison for the vertical force is shown in Figure
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8.3. Comparisons for the Croasdale’s model, the Nevel's model, and the Ralston's model
are shown in Figures 8.4 to 8.9. Table 8.2 summarizes the average and standard deviation
of the predicted to measured mean peak force ratio, F/F .., associated with each test data
set. The data are plotted in Figures 8.10 and 8.11 for two respective directions. Both the

Nevel's and the Ralston's models give very high estimates of the hori; forces

for the 80° cone model in the Hirayama et al’s tests (Series #3), i.e., 13.8 and 12.8 times the
measured values, respectively; hence, the statistics were computed without the
corresponding runs. Figure 8.12 gives the overall average F.,/F,., ratio for each ice force
model, and the associated statistics are summarized in Table 8.3.

Ralston’s model over-estimates ice loads by 41% in both the horizontal and vertical

directions and is eliminated from further i i This iction is a

consequence of the plasticity modelling (see Section 2.2.1.3).

Croasdale's and Nevel's models predict well the ice force in the vertical direction
with overprediction by merely 4% and 6 %, respectively; however, these models over-
estimate the horizontal ice force by 37% and 12%, respectively. The over-prediction of ice
force in the horizontal direction by the Croasdale’s model is due to the 2-D treatment of load
distribution; whereas, the source of over-prediction for the Nevel's model is uncertain.

Overall, Lau-Croasdale’s model gives the best agreement with test data for both the

horizontal and the vertical loads with an average F/F,,, value of 0.92 and 1.0l for the

*The values given in Table 8.3 is the arithmetic mean of the statistics calculated for each
test set as given in Table 8.2. This gives equal weighting for each test set.
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pecti irecti The 8% di: y between the predicted and the measured

horizontal force values is mainly il by the discrep. between the and
predicted resolution factors associated with tests with smaller ratio of waterline diameter to
ice characteristic length, when the measured resolution factor diverges from the assumed
value of (2/m) and moves toward & as the ratio decreases (See Figure 4.12).

All the models deal with forces from the ice sheet and ride-up ice, not considering
the forces due to rubble. Based on the above assessment, Lau-Croasdale’s model is selected

as the basis for further model formulation to include the effect of rubble.

8.2 Formulation of Ice Force Model with Rubble at a Faceted Cone

The problem of ice rubble loading on cones is essentially a three-dimensional
problem. Any satisfactory treatment of the problem would have to account for the three-
dimensional nature of the interaction as in the previous section. However, a complete three-
dimensional treatment of the problem would lead to complexities too difficult for analysis.

Instead, a pseudo-three-dimensional treatment of the interaction was performed by

ing the i i nature of the i ion geometry i with
individual facet. This treatment results in a set of simple equations which can be easily

incorporated into a probabilistic methodology.
In this model, only the front half of the cone is considered, and the loading on each

facet is treated i i The i and vertical forces in the plane

perpendicular to each facet are first computed using a two-dimensional model. These forces
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are then transformed into their X and Z Cartesian components using the appropriate
resolution factors and summed up vectorially to give the net force on the cone.

Section 8.2.1 describes the general features and assumptions of the interaction

The basic governing equations to transform the interactive forces on a particular facet into
components acting along the principal axes directions are given in Section 8.2.3. Section
8.2.4 describes the various force components to be considered in the model. followed by
detailed derivations of each component in Sections 8.2.5 and 8.2.6. Section 8.2.7 describes
the computational procedure to adjust for the effect of in-plane compression on failure load.

8.2.1 General Features and Si of the I I

The interacti under i igation are quite complex resulting from the

complex interaction geometry existing between the rubble, the ride-up ice and the structure.
Simplifications were adopted to generate fairly realistic representations of a range of ice
structure interaction conditions while at the same time providing computational simplicity.
The general features and the simplifications of the interaction system with regard to the ice
breaking pattern, the rubble and ride-up ice geometries and weights, and the load distribution

and failure of ice sheet are described in the following section.

8.2.1.1 Characteristic Ice Breaking Pattern
The characteristic ice crack patterns are depicted schematically in Figure 8.13. Two
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radial cracks make an angle, 8., extending outward from the corners of a facet forming a
cantilever beam with the width, d.,, slightly wider than the structure. The d,, is related to 8,

and the broken beam length, L, by the following relationship:

d, = w, + 2L ;tan6 (8-11)

where w, is the width of facet at waterline. In the present model, the values of 6, is assumed
to be 30", and the L, can be computed from the empirical equation derived in Section 4.2.2,
i.e., Equation 4.5, or from field measurements. As depicted in Figure 8.13. the same value
of ice breaking width, d,,, is assumed for broken wedge in front of the three facets.

The broken ice pieces riding up the central facet are trapezoidal in shape. This train

of ride-up ice results in an ice wall with an average width, w,, ., being:
1
Wee = Sldy v W) = wp e L,tan,, (8-12)

As these ice pieces eventually contribute to the ice supply to the rubble, w,,, should be used
1o calculate the rubble geometry as the width of the central zone, i.e., by simply replacing w,

with w,, . in the equations given in Chapter 6.

8.2.1.2 Heights, Width, and Weights of Rubble in Front of the Front Facet
At the front facet, the rubble increases in height from the two edges reaching a

maximum value at the centerline. In order to compute total thrust on the facet using the



equations derived in Chapter 7, an average height and width of the rubble in front of the front

facet, i.e., h,, and w, ., must be estimated. h, is given by the following equation:

W

= hg v, - h) [1 - »-J 8-13)

where h, is the rubble height at the edge of the front facet; h,, is the maximum rubble height
at the front facet: w is the width computed from Equation 6.34 (see Section 6.3.3). and w,
is the width of the rubble. w,, is equal to w,, ... which can be computed via Equation 8.12.

The total weight of the rubble, W, . in front of the front facet is given as:

1 2 1 1 2 I 1
W o=y w l/’ e )_ h L_f_JJ
e = b e | B tandg  tane, ot tane,  tang, @14

where v, is the bulk weight density of the rubble: ¢, the rubble inclination: o, and h,, the cone
angle and height of an arbitrary section i, respectively; and k is the highest section the rubble

reaches.

8.2.1.3 Weights of Ride-Up Ice on Individual Sections on the Front Facet

In the present model, the weight of ride-up ice covering the individual sections is
needed. Observation from model tests showed an average extrusion of 5 pieces of ice
constantly maintained on the neck beyond the top of the rubble before they fell onto the on-
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coming rubble. Therefore, the following ride-up height on the front facet, h,, . is assumed:

[ A 8-15)

or
B = 5Ly + b, (8-16)
whichever is greater. h, is the base height of the neck section from the waterline.

With ride-up ice reaching the neck, all sections are covered with ice. The weight of

rice-up ice, W, ., covering an arbitrary section, i, is given as:

h,
Woey = b 17
sina,

where hy, is the length of ride-up ice of an arbitrary section i as defined in Figure 8.14. For
the neck section. h;, is equal to h,, . minus h,; and for the lower sections, h,_, is equal to h,,,

minus h,.

8.2.1.4 Heights, Width, and Weights of Rubble in Front of the Side Facets
The average rubble height in front of the side facet, h,, is taken as the average of the

height at the edge of the front facet. hy, and the height at the side, h,, i.e.,
h, =L, o
e = E( e+ by 8-18)
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The total weight of rubble, W, in front of the side facet can be estimated by divided
the portion of rubble mass in question into two volumes, V, and Vy, as shown in Figure 8.15.
V, is approximately equal to the volume resulting from rotating the cross-section A by 90°
about axis Z; (see Figure 8.15). V, can be computed using the following equation:

leﬂl"J{ ! : J'Z,m"f( : ;H @19

tan’p  tan’e, an'e, tan’e,

Vy is approximately equal to a volume formed by two equal and parallel cross-sections, A
and A, with a distance d,, between them. The distance d;; depends on h,, and is computed
by the following expression:

Iy - hy
tan(e,)

(! 2
d, = -;Dk_‘cns(m') > (8-20)

where k is the highest section the rubble reaches at the edge of the front facet, and D, is the

diameter of the k+1 section." Therefore, V, can be computed using the following equation:

W

v, - d-( -’)(ID 30 I"‘h”)
= A dy = W-p \ 2 .(cOS(30") + D) (8-21)

and the total weight of the rubble, W, in front of the side facet is given as:

'If the rubble reaches the neck section, Dy, is assumed equal to D, the diameter of the
neck section.

267



Wo=WW +Vy, (8-22)

Again, an average width of the rubble, w, , at the side facet is needed to calculate the total

wall thrust due to rubble. This width can be il by assuming an equi rubble
in front of the facet with a constant width w, and a height h, . w,, is calculated by dividing
the total volume, V, + V,,, by the cross-sectional area of the equivalent rubble, A, = W /¥,

where W, is the weight of the rubble per unit width computed by Equation 7.40, and v, is the

bulk weight density of the rubble.

J - ¥ Pl _'” ®-23)

tane,  tane,

8.2.1.5 Weights of Ride-Up Ice on Individual Sections on the Side Facets

The amount of ice riding-up the side facets can be estimated by considering the
amount of ice on the side zone, with width of the side zone, d, = 0.5 (D - w,, ), which must
be displaced by the cone, i.e., the shaded area, abc, as shown in Figure 8.16, with the total
weight of ride-up ice, W,,,, displaced being:

W, =¥ (%J( L J[D . *vn._‘-} ’ (8:24)

tan30”




for a six-faceted cone.
The coverage of ride-up ice on the side facet is not constant which leads to uneven
weight distribution along the facet. To simplify the computation, the weight is assumed to

be distributed evenly along the lowest section of the facet.

8.2.1.6 Load Distribution and Failure of Ice Sheet

The base model selected in Section 8.1 computes the breaking load resulting from
simultaneous bending failure of a series of wedge beams loaded at their tips. While this
loading condition is a good characterization of the contact loads imposed on the supporting
ice sheet by the ride-up ice and the cone, the presence of rubble significantly modifies the
load distribution the intact ice experiences. In addition to a concentrated load transferred via
the ride-up ice to the tip of the ice sheet, the rubble distributes its mass and imposes a
triangular load distribution along the supporting ice sheet. The effect of this distributed load
on the breaking behaviour of the supporting ice sheet is not examined in this work; instead,
the load is assumed to act at the tip of the supporting ice sheet as assumed in previous
models. Since the distributed load can be transformed into a point load as well as a moment
applied at the tip of the ice beam with the moment tending to facilitate breaking of ice,
omission of this moment renders the approximation conservative.

Different failure modes due to acombination of axial, shear, and bending stresses can
also occur; however, only ice failure due to bending is modelled in this model. Failure due
to other modes should be considered during the design process.
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8.2.2 Coordinate System and Geometry

Consider a quarter of a faceted conical structure above the waterline which has an
inclination of angle ., with respect to the horizontal, as shown in Figure 8.17. Let (XYZ)
be a right handed Cartesian coordinate system. The water surface is the (Z=0)-plane. The
+X-axis is opposite to the motion of the ice; the +Z-axis is directed upward through the
center of the cone: and the +Y direction is then toward the viewer when viewing the (X-Z)-
plane.

The ice moves from the X direction and the broken ice pieces slide over the cone in
planes parallel to the X-Z plane as shown by the path in Figure 8.17. Consider an ice piece
on the surface of the cone at position b. At this point there is a force, N, normal to the
surface of the cone and a frictional force, u,N, tangential to the surface of the cone where i,
is the coefficient of ice friction.

Plane abd is a plane parallel to the X-Z plane with line ab coincident with the ice
path. Plane bed is a plane perpendicular to the cone surface. The angle 8 is the angle
between plane bed and plane abd. For the 6-faceted cone, 8 equal to 0° for the front facet and
60" for the side facets. The angle y is the angle of the frictional force at any point on the

cone surface with respect to the X-axis and can be related to 8 and o::

tany = tanacos® (8-25)



8.2.3 Normal and Frictional Forces on Each Facet
The equations for the direction cosines, cos(xy) and cos(zy), of any normal force, N,

on the front haif of the cone are given as follows:

cosxy, = -sinacos® (8-26)

cosz, = -cose (8-27)

where Xy and zy are the angle between the normal force and the respective axes, and the
angles, o and 6, are between 0° and 90° as shown in Figure 8.17. The scalar quantities,
INIcos(xy) and INlcos(zy). are equal to the components of N in the direction of the respective
X and Z axes. [fthe ice path is parallel to X-Z plane, the equations for the direction cosines

of the frictional force. cos(xg) and cos(z), on the front half of the cone are given as follows:

cosx, = -cosy (8-28)

cosz, = sinf (8-29)

The components, F, and F,, along the negative X and Z axis of any normal force N
and its frictional force wN at any point on front half of the cone surface can be resolved
using the direction cosines, i.e.,

F, = N(cosx, + pcosx,) = N(sinacos® + p cosyr) (8-30)
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F. = N(cosz, + pcosz,) = N(cosa - p sing) (8-31)

And, hence, F, is related to F, through the following ratios:

F_  sinacos® + pcosy

F, cosa - psiny ®32)
For the forces acting at the front facet, where y = o and 8 = 0, Equations 8.30 to 8.32 get

reduced to the following familiar form:
F_ = N(sinat + p cosa) (8-33)
F. = N(cosat - p sina) (8-34)

F, sine + p cosa

F: " cosx - u sine - (8-35)

If we let X” be the direction perpendicular to the side facet at the waterline as shown
in Figure 8.17, then F,. and F, at any point on the surface of the side facet are related by &,

and the following relationship between F,. and F, is valid:

o
3
&)



F =X

F, [sinucose + p,cos#]
e

cose - psing (8-36)

By treating the side facet as a simplified two-dimensional system, the total horizontal force.

F, . on the facet is computed first, and then resolved to F, using Equation 8.36.

8.2.4 Overview of Various Force Components
Consider the general interaction between the ice and a sloping wall in a simplified
2-D system as shown in Figure 8.18. The load on the cone is derived from two sources:

] The contact load exerted directly on the cone surface by the ride-up and the
rubble as they are being pushed up the slope by the ice sheet, i.e.. the reaction
forces of Hg and Vs; and.

(ii)  The contact load exerted by the ice sheet at the waterline as it slides up the
slope. i.e.. the reaction forces of Hy, and Vy,. This load is limited by the
ultimate failure of the ice sheet.

The rubble interacts with and imposes loads on the riding-up ice and the supporting ice sheet.
ie.. Pw,. P,w, and P,w, as shown in Figure 8.18 (with w, being the width of rubble).
These loads are eventually transferred onto the cone as additional loads. Equations to
compute these loads have been derived in the Chapter 7.

The total force acting on the cone can be related to the forces acting at the tip of the

ice sheet as shown in Figure 8.19 with the forces imposed by the rubble included. H; and

273



V; are the total horizontal and vertical forces acting at the top edge of the ice sheet, i.e.,

H, = Pcosa + P, (8-37)

V, = Psine + P, w,

we (8-38)

where P is the force required to push ice blocks up the slope through ice rubble. Equations
to compute P are derived in Section 8.2.5. The reactions of Hy and V; eventually act on the

cone surface through the ride-up ice, i.e..
s T (8-39)

T (8-40)

where Hg and V are the total horizontal and vertical forces on the cone surface above
waterline; and W, and W, are the total weights of the ice rubble and the ride-up ice,
respectively.

Hy, and V,, in Figure 8.19 are the total horizontal and vertical forces acting at the

bottom edge of the ice sheet, i.e.,

Hy = V£ (8-41)



Vw=VreVpd, 842

Where V', is the effective breaking load per unit width of the ice beam under combined
bending and in-plane compression, and d., is the crack length. In this model V", is calculated
using Equation 8.5 as derived by Croasdale et al (1994). The reactions of Hy, and V,, give
total loads on the cone surface at the waterline.

Therefore, the total horizontal and vertical loads on the cone, Hror and Vyor, are

given as follows:

Hpor = Hg + H, = Hy + H, (8-43)

H; and Hy, are derived in Section 8.2.6, V', is computed in Section 8.2.7, and Equations to
compute W, and W, are given in Sections 8.2.1.2 to 8.2.1.5 with a given amount of ride-up

and rubble ice for the respective facets.

8.2.5 Forces Required to Push Ice Blocks Up the Slope Through Ice Rubble
Figure 8.20 shows the forces acting on a layer of ride-up ice at an arbitrary cone

section, i. Force balance at direction parallel to the structure slope gives:
P, = W,sina, + N, + P,wsind,, + P, cos(@,, - ) ©45)
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where P, ;, and ¢, ,, are the rubble thrust force per unit width of rubble and its angle of action
exerted on the ride-up ice, W, is the weight of the ride-up ice, and P, is the total force
transferred from the above conical section. P, and ¢’, ; are computed from the universal
equation given in Chapter 7.

Force balance perpendicular to the structure siope gives:

N, = P".‘w,casQL., + W, cosa, + P_sin(e,., - @) (8-46)

By substituting Equations 8.46 into Equation 8.45, P, is found:

P, = W, (sing, + pcosw) + P, w(sind,, + pcosd.,)

P lcos(a,., - @) + ugine,., - @)] ®47)
The forces, P,, ined for each section i he k It
cone section at the line, with the bei i as the first section. W,

and w, are equal to W, ., and w, .. respectively, for the front facet. Likewise, W, and w, are

equal to W, and w,, for the side facets.

8.2.6 Forces Acting on the Ice Sheet at Waterline
The forces acting on the tips of an ice wedge have been shown in Figure 8.19. Hyand
V are the horizontal and vertical components of the forces necessary to push the ice blocks

and the rubble up the slope. The components, which are assumed to act at the top of the
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wedge tip, are given as:
Hy = Pcosa, + Pyw, (8-48)

Vr = Psina, + P,w, (8-49)

where P, is the total force transferred to the top of the ice sheet from the pushing of the ride-
up ice through the ice rubble: a, is the cone angle at the waterline; and Py, and P, are the
forces per unit width of rubble acting on the ice sheet due to the pushing of the ice sheet
under the rubble. The Py, and P,, are computed from the rubble model.

The vertical component, Vy, of the contact load acting on the bottom tip of the ice

sheet is given as follows:

'5 <
V= Vy+ Vid,= Pgsina, + Py, + 0680 (12__ P (8-50)

or

The horizontal component, Hy, of the contact load acting on the bottom tip of the ice sheet

is related to V:

sy &
Hy = V£ = | Psing, + P,w, + 0630, (%) ‘4, ls @51

where § is defined by Equation 2.2.
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8.2.7 Modification of Breaking Load for In-Plane Force (Croasdale et al, 1994)

The horizontal force acting on the ice sheet, i.e., Hror, creates an in-plane

and an ed, atthe ice edge. Th i i per unit width
along the bottom surface of the beam due to the combined out-of-plane bending and in-plane
compression, equal to the effective flexural strength of ice, o'y, i.c.,
v (£)
_ Wy e VO < Hy 3MH - (V< VR TS
! t ' 0.68

(8-52)

The first term on the right hand side of Equation 8.52 is the compressive stress due
to the in-plane compression (-ve). The second term is the tensile stress due to the combined
edge moment applied at the top and bottom tip of the wedge. The eccentricity is assumed
equal to %2 of ice thickness. The last term is the maximum tensile stress of the ice beam due
to transverse load only (Hetenyi, 1946).

The above equation can be written as below:

, (Vs + VOE « Hy  3[Hy - (V, + VDBl
oy =+ ~ % : + 0

(8-53)

where o is the flexural strength measured by transverse loading only; and V', is given in
Equation 8.5. The value of 6, can be obtained by trial and error method using o, as the

initial strength. Several iterations are needed to converge to a new value for 6’,. In the
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following comparison, the decrease of effective strength due to edge moment is ignored,

which tends to give a more conservative prediction.

83  Validation of the New Ice Load Model
The experimental data from the IMD’s series and the ERCL’s series are chosen for
the validation of the new ice force model. The model assumes uniformity of test condition:

therefore, mean peak force is compared. Since Metge and Weiss (1989) and Metge and

Tucker (1990) rep ly the i loads, F,, on th their data was adjusted
by assuming the i i the peak load. F,.,, and the maximum
load, F,, hold:
Foai™ Fo 8-54)
mea .08 ¢

The relationship is true for the IMD's data. The computed and the measured ice forces, i.e.,
Fyreq and Fppe,,, are summarized in Table 8.4. An example computation is given in Appendix
C.

Figures 8.21 and 8.22 plot the model predictions against ERCL’s and IMD's test data,
respectively. Results from linear regression for the two comparisons are given in the

pective figures. The ison shows good between model ictions and

testdata. On average, the model icted the hori ice force by 12.9% for ERCL's
data, and underpredicted by 8.9% for the IMD's data; whereas, it underpredicted the vertical
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ice force by 1.4% for ERCL's data. and 13.1% for IMD's data.
Despite limited data, the agreement between model predictions and experiment data
in the horizontal direction is significant, as the loading in this direction tends to destabilize

the and accurate estimation of this force isi

the discrepancy of load warrants further refinement of the model.

One source of error may be attributed to the ice breaking model used. The failure
mechanism observed from IMD's test series was associated with the ultimate failure of finite
cantilever beams (see Section 4.2), while the ice breaking model used in this work is for
semi-infinite beams. Models based on failure of a semi-infinite beam may not predict well
the ice breaking load with thick ice. This observation is consistent with IMD's data in which
the comparison of the load is good for the thinner ice (i.e., the semi-infinite beam formula
may be valid), and the degree of underprediction increases with the increasing ice thickness;
however, further investigation is needed to verify the above observation.

The underestimation in the vertical direction may also partly due to the omission of
ice loading at the back half of the cone. This amount of ice cannot be estimated precisely.
However, if we arbitrarily assumed 50% of the ride-up and rubble ice loading on the front
side facet would load on the back side facet as weil, the model will overestimate ERCL's

data by 8.4% and underestimate IMD's data by 2.7% in the vertical direction.
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Table 8.1 Summary of test conditions used in the selected test programs

?es«[ Refercnce (?) (2) ‘I!;;e ug;;) (c:'n) [;::.—; ;:fs
I Sodlh 45 15 |EGADS 20451 4590 | 28
g | fmivamactal | gy | 0306 | gGaps | 24591 | 1846 | 19
3 Aﬂxf‘;z‘f‘f‘g“gz 57%3% 0.14,0.17 f;:‘lzr 1771 0609 | 46
4| st | 45 |The>| satine | 1411 | 1968 | 2
5 | Amasevetal. 13045 b 12-028) saline | 401 | 3 14
6 | anpreante | 45 |067.15 | satine |11201 | 2250 | 23
7 Wossels. | 30,45 1198 L2 EGADs | 601 [3070 | 14
8 Lowetal. | 3035 |LOB, L8 BGADS | 24471 | 3068 | 4
9 Y a5 | 33 | saline pro49sif6s23s| 8
10 Edwf;‘:‘;‘ a1 gs 0'3? %’_lﬁsl' synthetic| 20-98 1 | 0789 | 40

Note: ' Arrow indicates loading directions.
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Table 8.2 Summary of average and standard deviation of the predicted to measured
mean peak force ratio, Fyy/F e, in €ach test data set

,::':,'1,, ,,':";m roasdale(Croasdale| Nevel | Nevel | Raiston | Raston
Test isti
F, F, £ F, F, E, F, F,

Average| 0.83 | 0.71 1.58 | 0.95 1.24 | 0.89 133 | 095
StDev | 0.17 | 0.10 | 035 | 0.15 | 024 | 0.14 | 027 | 0.13
Average| 1.01 1.50 1.36 1.60
N/A N/A N/A N/A
StDev | 0.28 0.56 0.45 0.31
Average| 0.88 1.29 1.27 1.20 1.19 1.28 | 2.69 | 221
StDev | 0.17 | 023 | 025 | 022 | 022 | 0.77 | 065 | 042
Average| 0.65 | 0.81 1.27 1.19 | 0.80 1.00 | 097 1.05

w

4
StDev [ 0.18 | 0.13 | 042 | 036 | 027 | 027 | 024 | 0.12
Average| 0.59 0.83 0.53 112
5 N/A N/A N/A N/A
StDev | 0.13 0.20 0.13 0.28
Average| .14 1.56 1.30 1.37
6 N/A N/A N/A N/A
StDev | 0.50 0.57 0.48 0.50
7 Average| 0.99 | 0.97 1.29 | 0.87 1.30 1.02 1.42 1.13
StDev | 033 | 0.16 [ 058 | 023 | 051 | 023 | 050 | 0.17
s Average| 1.34 1.15 1.68 | 0.92 1.39 1.21 1.35 1.13
StDev | 0.74 | 041 1.11 ] 030 | 061 | 052 | 043 | 035
9 Average| 0.96 1.07 1.46 1.10 1.13 1.03 1.91 1.73
StDev [ 0.35 | 039 | 051 | 039 | 038 | 036 | 0.72 | 0.66
i Average| 0.85 1.08 1.21 1.02 | 099 | 099 1.62 1.68

StDev | 0.22 | 031 | 032 | 027 | 032 | 026 [ 037 | 052




Table 8.3 Summary of average and standard deviation of the predicted to measured

mean peak force ratio, Fy/Fp.,, of all tests for each ice force models

Lau- Croasdale Nevel Ralston
Croasdale
Average 0.92 1.37 112 141
F e Fomess
StDev 021 0.23 0.26 0.46
Average 101 1.04 1.06 L41
Fo e/ Frmens
StDev 0.19 0.12 0.12 0.43
Table 8.4 Summary of measured loads from IMD's and ERCL's test data and the forces
predicted by the new model
Test Measured Peak Force Predicted Mean Peak
_ Maximum, F, Mean, F, Force. Fyrey

" F, E F, F, E; F,

(kN) (kN) (kN) (kN) (kN) (kN)
ERCL Test Series scale
TI_RI 10 1 9.26 10.2 11.4 1.9
T2_R1L 19 22 17.6 204 16.2 164
T2_R2 20 20 185 18.5 274 283
T3_RI 30 38 278 352 276 29.0
T4_R1 30 35 278 324 328 34.2
IMD Test Series (MUNCONE)

3_001 N/A N/A 429 5.30 4.03 4.04
4_001 N/A N/A 5.00 472 4.28 4.38
5.001 N/A N/A 1.95 1.98 2.04 2.14
6_003 N/A N/A 2.81 3.06 2.78 293

Note: Test condition for each test is given in Chapter 3.
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Figure 8.1 Breaking and ride-up patterns assumed in Lau-Croasdale’s model (only
the front right quarter of the cone is shown)
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Figure 8.2 Comparison of Lau-Croasdale’s model with existing test data for smooth
cones: horizontal mean peak force
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Figure 8.3 Comparison of Lau-Croasdale's model with existing test data for smooth
cones: vertical mean peak force
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Figure 8.4 Comparison of Croasdale’s model with existing test data for smooth
cones: horizontal mean peak force
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Figure 8.5 Comparison of Croasdale’s model with existing test data for smooth
cones: vertical mean peak force
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Figure 8.6 Comparison of Nevel’s model with existing test data for smooth cones:
horizontal mean peak force
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Figure 8.7 Comparison of Nevel's model with existing test data for smooth cones:
vertical mean peak force
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Figure 8.8 Comparison of Ralston's model with existing test data for smooth cones:
horizontal mean peak force
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Figure 8.9 Comparison of Ralston’s model with existing test data for smooth cones:
vertical mean peak force
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Figure 8.10
horizontal mean peak force
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Figure 8.11  Comparison of predicted to measured values for each test series: vertical

mean peak force
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Figure 8.12  Average predicted to measured peak force values for each ice force model

Ice Motion
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Figure 8.13  Schematic of crack pattern in front of a faceted cone
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i

Figure 8.14  Coverage of ride-up ice on an arbitrary section i

Figure 8.15  Geometry of rubble mass in front of the side facet showing the idealized
volumes, V,and V,,
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Figure 8.16 ~ Geometry of ice rode up the side facet (only the front right quarter of
the cone is shown)

Figure 8.17  Coordinates and geometry (only the front right quarter of the cone is
shown)



Figure 8.18  General interaction between ice and sloping structure showing ice forces
on ride-up ice and the ice sheet

V=P, w+ Psina

H; =Pyw, + Pcosa.
-

‘ Ice Sheet 4-—%
ok Hior

Hy =& Vy
i RREIC, SR
Vy =V +V'id,

Figure 8.19  Forces acting at the tip of the ice wedge
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Figure 8.20  Forces acting on a layer of ride-up ice at an arbitrary cone section
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Figure 8.21  Comparison of model prediction and ERCL’s test data
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Figure 8.22

Predicted Mean Peak Force, Fpred (N)
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Comparison of model prediction and IMD's test data
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Chapter 9 Conclusions and Recommendations

This study i ical and ical methods to study ice
forces on a faceted cone due to the passage of a level ice field during continuous ice
breaking. The main objectives were to improve our understanding of the interaction and
failure processes. and to provide engineers with a set of easy-to-apply formulae for ice load
calculation.

Both objectives of the study were reached. First, the experimental investigation
provided a clear insight into the interaction processes and the failure mechanisms through

relevant observations and interpretation of model test results. The suitability of the existing

theories for icting ice forces on faceted cones was assessed and deficiencies

identified. The iencies were then and an improved load prediction model was
ped in the ical and analytical i igati The model

the most i nptto date to i inthe problem

treatment and provides a new conceptual framework for future model refinements.

Focus was put on developing a physical sense of the general processes, and a
quantitative sense of the magnitude of ice force expected. Simple theories were used, and
the mathematical treatment of the topic was kept to minimum. Insofar as possible, the
accuracy and range of applicability of the models were evaluated by comparison with
experimental data. The model predictions of the rubble geometry, ice movement and the

associated forces agreed well with the i i ined by
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Sections 9.1 to 9.3 highlight the major conclusions drawn regarding the results of the

experimental, ical, and analytical i igati ively. Section9.4

the main contributions made in the course of this investigation. Recoinmendations for

further work are given in Section 9.5.

91 G ions From the i (Part I)

In the present study, the results from the multi-faceted cone tests conducted in three
ice tanks were consolidated and analyzed. The following conclusions can be drawn for the
results of the experiments:

(i) ion Process: The i ion process was ially different from that

of a smooth cone and a two-dimensional sloping plane. The flat facet and large neck
tended to prevent efficient ice clearing. and rubble building was found to be an
essential part of the ice clearing process. An ice clearing component which is as
much as 80% of the total load on the structure has been measured. No previously
reported work identifies the factors which contribute to the amount of ride-up and

rubble ion, and their effects on the i ion process; this

omission can lead to a severe underestimation of the ice forces.

(i)  Ice

Piece size igni diverged from
those predicted by existing classical thin plate theories. This study has shown the
important influence of ice thickness on ice breaking. Incorporating the three-
dimensional nature of ice behaviour into the problem treatment is essential to
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(iii)

(iv)

advance our present understanding of the ice breaking process.

Efficiency of Existing Models in Predicting Ice Forces on Multifaceted Cones:
The analysis of ice sheet loads with a leading ice force predictor revealed that the
presently available theory for smooth cones can give sufficiently accurate prediction
of ice loads on faceted cones when rubble piling is absent; however, it also indicated
that the theory would likely under-predict the clearing component of ice loads. The
error in ice load estimation may be quite large when a large rubble field piles in front
of the structure, justifying the development of new formulae for the estimation of ice
loads on such structures.

Conceptual Model: A conceptual model was proposed to explain the observed
interaction processes between a faceted cone and a level ice sheet during a
continuous ice breaking mode. It outlines the three primary interaction processes,
i.e., ice breaking, ride-up, and rubble pile-up, where different features dominate, and

provides a means of incorporating rubble load theory into existing ice force models.

92 C ions From the i igation (Part II)
In Part II, the unique rubble piling process was further examined with the aid of
existing parti ics and i ical analysis. A new rubble model

was developed to predict the geometry of the rubble and the forces exerted on the structure

and the base support. Based on the result of the rubble modelling, the following conclusions

may be drawn regarding the ion process, material ies, stress state, geometry and
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associated load of a rubble:

(0]

(ii)

(iii)

Formation Process: The basic i iour and the failure of

ice rubble under loading conditions typical of the ice-cone interaction process have
been examined in Chapter 5. It is concluded that the flow process of ice blocks
around the structure can be idealized as quasi-static and steady, and the material as
cohesionless coulomb material. The rubble is formed by a natural dumping process,
and the clearing of the rubble from the structure is analogous to the bulk material
transport on an inclined belt conveyor as the supporting ice sheet and the ride-up ice
act as the belt conveyor. Furthermore, the shear strength is fully mobilized at the
rubble’s free surface.

Stress State: Based on basic theories of soil mechanics. it is concluded that the

cohesionless rubble is in an elastic state throughout its mass during the typical ice-

cone i ion process under i igation. Three i
parameters: the angle of internal friction, the angle of repose, and the “at rest’ earth

coefficient function were identified and further explored. These parameters are

essential in ing of rubble i i with the problem under
yet, it with ice rubble are scanty.
Model Geometry: A new model to predict the shape and size of the rubble has

been presented based on insights obtained from the experiments and the basic soil
mechanics theories. The idealized geometry is uniquely defined by the rubble’s angle
of repose, and the characteristic rubble heights along the cone perimeter. The amount
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(iv)

of ice piled up via mass balance i i Despite limited data

used, the predictions from the derived equations give excellent agreement with the

measurements from the experiment.

Rubble Load: Discrete element analysis using the computer program

DECICE has provided a powerful tool for complementing the analytical and

experimental work. The analysis helped the development of a semi-empirical

equation for the computation of total wall thrust for a variety of ice and structure

conditions. The equation is simple to use and yet accounts fully for the discrete

nature of the rubble materials. The following conclusions may be drawn regarding

the formula that was developed:

(a)  The formula retains the form used in theories of earth pressure on retaining
walls, and it represents a best fit of the DECICE results.

(b)  The proposed equation for rubble load may be applied to design problems:
but with caution, since only limited checks have been made.

(c) The formula can be adapted to the existing ice breaking model with ease. It

reduces the i ity of the model formulation

by allowing the load exerted on the ride-up and supporting ice sheet to be

via simple it irical i The modular nature of the
model allows its adoption to future and more advanced ice breaking models

with the same degree of ease.
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Conclusions From the Ice Force Modelling (Part III)

In Part ITI, a base model is first selected from the existing theories to model the

breaking behaviour of intact ice, and the new rubble model is then incorporated into the base

model to compute the peak ice load exerted on the cone due to the passage of a combined ice

sheet/rubble system. The following conclusions may be drawn regarding the model that was

developed herein:

(i)

(i)

94

Base Model: As it gives the best agreement with experiments, Croasdale’s (1980)
model. with the 3-D modifications suggested in this thesis, was selected as the base

model for ice breaking load.

Ice Load Model: The model is based on a pseudo-three-dimensional treatment
of the i ion, by gnizing the t i i nature of the interaction

geometry associated with individual facets. It does so in enough detail to allow

exploration of first order effects resulting from changes in the most important design

The ion for ice load has be i indetail. Experimental
data affirmed the validity of the developed ice load model and demonstrated its

ability to account for the effect of rubble piling.

Contributions of This Work

The physical experiments reviewed and the numerical experiments performed in this

work provide a clear insight into the interaction processes and improves our understanding

of the d

ice-structure i i taking place around faceted cones. They




also provide a set of valuable data useful in ing and calibrati i for ice

loads. A new ice force model has also been developed to compute ice load on the faceted
cones. Although the problem was highly idealized, it accurately captured the essential
features of a typical interaction and predicted the ice forces well.

The above developments and results are significant, because, for the first time, to the
knowledge of the author. an ice load model has been established to account for the effect of
rubble in ice loading on a multifaceted cone based on essential features of the interaction.
The results provide a useful framework for further model development.

The state-of-the-art is such that it is now possible to incorporate rubble load in the

force calculation with higher degree of confidence. The methodology for doing so has been

ped and herein, and i the main ibution of this work to the

state-of-the-art.

9.5  Recommendations for Future Work
While considerable effort has been expended to document the model. no sensitivity
analysis has been performed for the model developed in Chapter 6 through 8.

Comprehensive sensitivity analyses would help to identify the most important parameters.

Limited i | data have p! a i of the
accuracy and limitations of the model, which constitutes a potential weakness of this work.
Furthermore, the model was developed from model test data. Some assumptions may be
valid in the ideal conditions of the ice tank, but may not be sustainable in the field where the
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scale is larger and inhomogeneities more prevalent. Until it is calibrated against full scale

data, there will always be i A i of the model results

against field measurements (when available) will give a better sense of its accuracy and

limitations for different ranges of ice and structure conditions.

The i of rubble iour draw heavily on soil mechanics.

Most of the ical theories and ions used are empirical, i.e., they are

based on observation and results of experimental measurements on soil materials under
specific conditions. For example, Jiky's equation for lateral earth pressure at rest, used in
the present study to estimate internal friction angle of ice rubble, is known to be valid for
normally consolidated soils. Despite the particulate nature of both soils and ice rubble,

still remains ing the applicability of the soil ics theories to rubble

behaviour. Impi in the theories ped in this study depend crucially upon the
availability of accurate field data, i.e., shear strength, rubble geometry and ice load
measurements. This would seem to be an area ripe for experimental research.

Due to the pilot nature of this work, there are many aspects of the interaction, which
it has not been possible to explore; however, it is evident from the results that a useful
modelling framework has been developed. The immediate need is for the incorporation into

the theory of some of the more complex aspects of the interaction with respect to rubble

piling and ice loads.
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9.5.1 Refinements of the Rubble Model

The model is applicable to thick and strong ice impacting on the structure at low to

moderate velocity. In order to extend the model to other conditions, the following factors

should be considered in further modelling:

M

(i)

(iii)

(iv)

)

Dynamic Rubble Piling:  This requires more complicated assumptions for ice
block motions within the rubble mass and for ice generation and clearing rates.
Deformation of Rubble Mass: The possible increase of load on the wall due
to deformation of the rubble mass as it is pushed against and up the cone wall should
be included as suggested in Section 5.3.2.

eco i Ice: If the ice in question is thin and weak,
i.e., first vear ice around a bridge pier, secondary breaking of the ride-up ice may
occur which increases the width of the side zones, and the width of the accumulation
zone decreases. This will affect the mass balance and profile of the rubble in front
of the cone and should be incorporated into further model treatments.
Rubble :  If the rubble mass is allowed to stagnate in front of the
structure for a period of time, cohesive strength may develop within the pile and
increase the rubble load.
Effective Wall Friction: Abetter picture of the functional relationship between
wall friction and ice force awaits the development of a theory to predict the effective
friction mobilized at the wall.
It is desirable to develop a purely theoretical rubble model that would, at a future
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date, replace the empirical formulations presently adopted in this research. Furthermore,
measurements on ice rubble material properties to better defined the shear strength in the

loose state are needed.

9.5.2  Refinements of the Ice Force Model

The present study analysed rubble loading on the basis of the interaction observed in

IMD’s tests. Other failure modes, and test itions have not been for: however,

the methodology used here can be extended to those cases. A number of areas require further

attention. These include:

(i) Ice Breaking Component: The ice breaking is modelled comparatively crudely
and much work is needed to improve the model prediction as indicated in Section
4.2

(ii) Further Model and Field Tests: Improvements in the theory of this study and
the development of extensions depends crucially upon the availability of accurate

complete field data; therefore, large-scale field tests are strongly recommended.

305



REFERENCES

Abu-Zaid, S., and Ahmadi, G., 1993. Analysis of Rapid Shear Flows of Granular Materials
by Kinetic Model Including Frictional Losses, Power Technology, Vol. 77, No. 1,
Oct., pp. 7-17.

Afanas'ev, V.P., Dolgopolov, Y.V., and Shvaishstein, Z.I., 1971. Ice Pressure on Individual
Marine Structures, in Studies in Ice Physics and Ice Engineering, Edited by G.N.
Yakovlev, Published by Israel Program for Scientific Translations, Jerusalem, Israel,
pp. 50-68.

Amontons, G., 1699. De la Résistance Causée Dans les Machines, Tant Par les Frottements
des Parties Qui les Composent Que Par la Roideur des Cordes Qu'on y Employe, et
la Maniére de Calculer L'Un et L' Autre, Mém. Math. Phys. Hist. Acad. Roy. Sci.. pp.
206-227.

Alberta Research Council, 1980. Field Measurements of Ice Forces on Bridge Piers 1973-
1979, Report SWE 80-3, Department of Transportation and Surface Water
Engineering, Edmonton, Alberta.

Andrawes, K.Z., and El-Sohby, M.A., 1973. Factors Affecting K, J. of the Geotechnical
Engineering Division, ASCE, Vol. 99, No. SM7, July, pp. 527-539.

Applied Mechanics, Inc., 1985. Mechanical Analysis of Spray Ice Platform, Final Report
Prepared for Standard Oil Company (Indiana), Amoco Research Center, by Applied

Mechanics, Inc., Lakewood, CO.



Babic, M., Shen, H.T., and Bjedov, G., 1990. Discrete Element Simulations of River lce
Transport, Proc. 10" IAHR Ice Symp., Vol. 1, Espoo, Finland, pp. 564-574.

Baker, W.H., and Krizek, R.J., 1970. Mohr-Coulomb Strength Theory for Anisotropic Soils,
1. of the Soil Mechanics and Foundations Division, ASCE 96, Vol. I, pp. 269-292.

Balendran, B., and Nemat-Nasser, S., 1993. Double Sliding Model for Cyclic Deformation
of Granular Materials, Including Dilatancy Effects, J. of Mechanics and Physics of
Solids, Vol. 41, No. 3, pp. 573-612.

Bashir, Y. M., and Goddard, J.D., 1991. A Novel Simulation Method for the Quasi-Static

of Granular A J.of R i ions of the Society of

Rheology, Vol. 35, No. 5, pp. 849-885.

Bazant. Z.P..and Li. Y.N.. 1993. Fracture Analysis of Penetration Through Floating Sea Ice
Plate and Size Effect, Proc. Ice Mechanics --1993, 1" Joint Mechanics Meeting of
ASMEASCESES - MEET'N'93, ASCE, Edited by J.P. Dempsey, Charlottesville.
VA, p.131-144,

Been K., and Jefferies, M.G.. 1985. A State Parameter for Sands, Geotechnique, Vol. 35,
No.2,99-112.

Bercha, F.G., and Danys, J.V., 1975. Prediction of Ice Forces on Conical Offshore
Structures, Proc. 3" [AHR Ice Symp., Hanover, NH, pp. 447-458.

Bishop. A.W., 1955. The Use of Slip Circle in the Stability Analysis of Slopes,
Geotechnique, Vol. 5, No. 1, pp. 7-17.

Bishop, A.W., 1971. Shear Strength P for Undi and Soil




Specimens, Proc. Roscoe Memorial Symp., Foulis & Co., pp. 3-58.

Bochler, J.P., and Sawzuck, A., 1970. Equilibre Limite des Sols Anisotropes, J. de
Mecanique, Vol. 9, No. 1, pp. 5-33.

Bolton, M.D., 1986. The Strength and Dilatancy of Sands, Geotechnique, Vol. 36, No. 1,

pp. 65-78, Discussion: Vol. 37, No. 2, pp. 219-226.

1., 1885. Application des Potentials 3 L Etude de L'Equilibre et du I

des Solids Elastiques, Gauthier-Villars, Paris.

Brooker, E.W., and Ireland, H.O., 1965. Earth Pressures at Rest Related to Stress History,
Canadian Geotechnical J., National Research Council, Ottawa, Ontario, Vol. 2, No.
1. Feb., pp. 1-15.

Brooks, L.D.. 1981. Ice Resistance Equation for Fixed Conical Structures, Proc. 6" Intl.
Conf. on Port and Ocean Engineering under Arctic Conditions, Vol. I, Quebec City,
pp. 90-99.

Brown, T.G., Croasdale, K.R., Bruce, J.R., and Azamejad, A.. 1998. Observations from the

Ce ion Bridge Ice itoring Program, P ings of the 8" Intl. Offshore
and Polar Engineering Conf., Montreal, Canada, pp. 438-442.

Bruneau, S.E., 1997. Development of A First-year Ridge Keel Load Model, Thesis

(Ph.D.)--| ial University of St. Kjohn's, 307p.

Bruneau, S.E., Croasdale, K.R., Crocker, G.B., McKenna, R.F., Metge, M., Ritch, R., and

Weaver, J.S., 1998. De p of Techni for suring /n Situ Ice Rubble

Shear Strength, P ings of the 14" ional [AHR ium, Potstam,

308



NY.

Cammaert, A.B., and Muggeridge, D.B., 1988, Ice Interaction with Offshore Structures, Van
Nostrand Reinhold, New York.

Cantelaube-Lebec, F.. Limon-Duparcmeur, Y., Bideau, D., and Troadec, J.P., 1995.
Equilibrium in a 2-Dimensional Granular Flow, Proc. 10 Conf. on Engineering
Mechanics, Vol. I, ASCE, New York, pp. 618-621.

Caquot, A.. and Kerisel, J., 1948. Tables for Calculation of Passive Pressure. Active
Pressure, and Bearing Capacity of Foundations, Gauthier-Villars, Paris.

Case, P., 1991. A Continued Study of the Frictional and Cohesive-Like Behaviour of
Floating Model Ice Rubble, IMD/NRC Report LM-1991-27, National Research
Council of Canada, Institute for Marine Dynamics, St. John's, Newfoundland.

Chabot, L, 1985. ODECO Designs Massive Deepwater Rig, Oil and Gas J., June, pp. 59-63.

Chuo, J.C., 1992. Comparison of Sheet Ice Load Prediction Methods and Experimental Data
for Conical Structures, Proc. 11" Intl. Cont. on Offshore Mechanics and Arctic
Engineering, Calgary, Vol. 4, pp 183-193.

Chao, J.C., 1993. An Analysis of Ice Rubble Shear Strength Data, Proc. 3" Intl. Offshore

and Polar Engineering Conf., Singapore, Vol. 2, pp. 607-612

Cheung, M.S., 1997. ion and Research Progi C ion Bridge, Proc.
7* Intl. Offshore and Polar Engineering Conf., Hawaii, USA, pp. 10-16.

Chou, C.S., 1994. Studies of Granular Flows Down Inclined Bumpy Surfaces, J. of Wuhan
University of Technology, Material Science Edition, Vol. 5, No. 2, pp.152-162.

309



Clough, H.F., and Vinson, T.S., 1986. Ice Forces on Fixed Conical Structures, Proc. 5" Intl.
Conf. on Offshore Mechanics and Arctic Engineering, Vol. 4, Tokyo, pp.507-514.

Coulomb, C.A., 1773. Essai sur une Application des Régles des Maximis et Minimis a
Quelques Problémes de Statique, Relatifs a L'Architecture, Mémoires de
Mathematique et de Physique, 4 L' Academie Royale des Sciences, Paris, Vol. 5, No.
7, pp. 343-382 (published in 1776).

Croasdale, K.R., 1980. Ice Forces on Fixed, Rigid Structures, A State-of-the-Art Report by
[AHR Working Group on Ice Forces on Structures, Edited by T. Carsten, CRREL
Special Report 80-26, U.S. Army CRREL, Hanover, N.H., pp. 34-106.

Croasdale, K.R., Cammaert, A.B., and Metge, M., 1994. A Method for the Calculation of

Sheet Ice Loads on Sloping Proc. 12 i Y ium on Ice,

[AHR, Trondheim, Norway, Vol. 2, pp. 874-885.

Croasdale, K.R., and Muggeridge, D.B., 1993. A Collaborative Research Program to
Investigate Ice Loads on Multifaceted Conical Structures, Proc. 12 Intl. Conf. on
Port and Ocean Engineering under Arctic Conditions, Vol. 2, Hamburg, pp. 475-486.

Danys, J. V., and Bercha, F.G., 1975. Determination of Ice Forces on Conical Offshore
Structures, Proc. 3 Intl. Conf. on Port and Ocean Engineering under Arctic
Conditions, Vol. 2, Fairbanks, pp. 741-752.

De Wet. 1961. The Use of the Energy Concept in Soil Mechanics, Proc. 5 Intl. Conf. on

Soil ics and F i ineering, [CSMFE, Paris, Vol. 1, pp. 403-406.

Delanges, P., 1788. Statica e Macinica de Semi-Fluidi, Mem. de Mat. e Fis. della Soc.

310



Italiana, 4 (cf. Feld, 1948)
Derradji-Aouat, A., 1994. Ice Loads on Conical Piers - A Finite Element Investigation, Intl.
J. of Offshore and Polar Engineering, Vol. 4, No. 1. ISOPE, pp. 53-61.

Desai, C.S., and Siriwardane, H.J., 1984. Constitutive Laws for Engineeri: ials -

with Emphasis on Geologic Materials, Englewood Cliffs/N.J., Prentice-Hall, N.J.

Drucker, D.C, and Prager, W., 1952. Soil Mechanics and Plastic Analysis or Limit Design,
Quarterly of Applied Mathematics, Vol. 10, pp. 157-165.

Edwards, R.Y., and Croasdale, K.R., 1976. Model Experiments to Determine Ice Forces on
Conical Structures, Proc. Applied Glaciology Symp., Cambridge. U.K.: J. of
Glaciology, Vol. 19, No. 81, p. 660.

Edwards. R.Y.. Wallace, W.G.. and Abdelnour, R.. 1975. Model Experiments to Determine
the Forces Exerted on Structures by Moving Ice Field (Comparison with the Small
Prototype Cone Results), APOA Project Report APOA 077-01, Prepared for Arctic
Petroleum Operators Association by Arctec Canada Limited, Montreal, P.Q., 51p.

Ettema, R., Sharifi, M.B., Georgakakos, K.P., and Stern, F., 1991. Chaos in Continuous-
Mode Icebreaking, Cold Regions Science and Technology, Vol. 19, No. 2, pp. 131-
144,

Ettema, R., and Urroz-Aguirre, G.E., 1989. On Internal Friction and Cohesion in
Unconsolidated Ice Rubble, Cold Regions Science and Technology, Vol. 16, No. 3,
pp. 237-248.

Ettema, R., and Urroz-Aguirre, G.E., 1991. Friction and Cohesion in Ice Rubble Reviewed.

311



Proc. 6" Int. Specialty Conf. on Cold Regions Engineering, CRREL, U.S. Army
Corps of Engineers, pp. 316-325, Hanover, N.H., US.A.
Evgin, E., and Sun, L.B., 1989. Review of Analyticai Modelling of Ice Cover Evolution:
Final Report, Dept. of Civil Engineering, University of Ottawa, Ottawa, 185p.
Evgin, E., Zhan, C., and Timco, G.W., 1993. Distinct Element Modelling of Seabed Ice

Rubble Interaction, Proc. 4" Canadian C on Marine G

Engineering, Vol. 3, St. John's, Newfoundland, pp. 1164-1180.

Feda, J., 1982. A ics of Particulate Materials - The Principles, Elsevier Scientific Pub.

Co., New York.
Feda, J., Bohic, J.. and Herle, 1., 1995. K,-Compression of Reconstituted Loess and Sand

with Stress P ion, Soils and F ations, Japan G ical Society. Vol.

35, No. 3, pp. 97-104.
Feld. 1., 1948. Early History and Bibliography of Soil Mechanics, Proc. 2 Intl. Conf. on

Soil ics and Foundati ineering, [COSMFE, R Vol. I, pp. I-7.

Fellenius, W., 1936. Calculation of the Stability of Earth Dams, Transactions of the 2™
Congress on Large Dams, Washington, D.C., Vol. 4, pp. 445-462.
Finn, D., 1991 Vertical and Inclined Edge-indentation of Freshwater Ice Sheets, M.Eng.

Thesis, ial University of St. John's, NF, 97p.

Fisher,R.A., and Yates, F., 1970. istical Tables for Biological, Agri and Medical

Research, 6" Ed., Hafner Publishing Company, Darien, Conn.
Fransson, L., and Sandkvist, J., 1985. Brash Ice Shear Properties — Laboratory Tests. Proc.

312



8" Intl. Conf. on Port and Ocean Engineering under Arctic Conditions, Vol. 1,
Narssarssuaq, Greenland, pp. 75-87.

Frederking, R.M.W., Sayed, M., Hodgson, T., and Berthelet, W., 1985. Ice Force Results
from the Modified Yamamiche Bend Lightpier, Winter 1983-84, Proc. Can. Coastal
Conf., St. John's, pp. 319-331.

Frederking, R-M.W. , Sayed, M., and Penney, G., 1992. Ice Forces on Light Piers in St.
Lawrence Seaway, International Journal of Offshore and Polar Engineering, [SOPE,
Vol. 2, San Francisco, No. 1, pp. 67-72.

Frederking, R.M.W., and Timco, G.W., 1985. Quantitative Analysis of Ice Sheet Failure
Against an Inclined Plane. Proc. 4" Intl. Conf. on Offshore Mechanics and Arctic
Engineering, Vol. 2, Dallas, pp. 160-169.

Fukagawa, R., and Ohta, H., 1988. Effect of Some Factors on K -Value of a Sand, Soils and
Foundations, Vol. 28, No. 4, pp. 93-106.

Gale, A.D., Sego. D.C., and Morgenstern, N.R., 1985. Geotechnical Properties of Ice
Rubble. Report I, Report submitted to the Natural Sciences and Engineering Research
Council.

Goddard, J.D., 1992. New Theoretical Estimates for Dilatancy in Granular Materials, In
Theoretical and Applied Rheology, Proc. 11® Intl. Congr. of Rheology, Edited by P.
Moldenaers and R. Keuning, Elsevier, Amsterdam.

Goddard, J.D.. and Bashir, Y.M., 1990. On Reynolds Dilatancy, In Recent Developments
in Structured Continua, Vol. 2, Edited by D. De Kee and P. N. Kaloni, Longman

313



Scientific and Technical, London, pp. 23-35.

Haynes, F.D., Sodhi, D.S., Kato, K., Hirayama, K., 1983. Ice Forces on Model Bridge Piers,
CRREL Report 83-19, U.S. Army CRREL, Hanover, N.H..

Hellman, J.H., 1984. Basic Investigations of Mush Ice, Proc. 7" [AHR Ice Symp., Hamburg,
Vol. 3, pp. 37-55.

Hetenyi, M., 1946. Beam on Elastic Foundations, University of Michigan Studies,
Scientific Series, Vol. XVI, The University of Michigan Press.

Hill, R., 1950. The ical Theory of Plasticity, Oxford University Press, London.

England.

Hirayama, K., and Akamatsu, H., 1982. Experimental Study of Ice Forces on Conical
Structures, Technical Report: 21-45, IWATE University. Morioka, Japan.

Hirayama. K., and Obara, L., 1986. Ice Forces on Inclined Structures, Proc. 5™ Intl. Conf. on
Offshore Mechanics and Arctic Engineering, Vol. 4, Tokyo, pp. 515-520.

Hocking, G., Mustoe, G.G.W., and Williams, J.R., 1985a. Influence of Antificial Island
Side-Slopes on Ice Ride-Up and Pile-Up, Proc. ARCTIC '85 Conf.. ASCE. San
Francisco, pp. 185-192.

Hocking, G., Mustoe, G.G.W., and Williams, J.R., 1985b. Dynamic Global Forces on an
Offshore Structure from Multi-Year Ice Floe Impact, Proc. ARCTIC '85 Conf.,
ASCE, San Francisco, pp. 202-210.

Hocking, G., Mustoe, G.G.W., and Williams, J.R., 1985c. Validation of the CICE Code for
Ice Ride-Up and Ice Ridge Cone Interaction, Proc. ARCTIC ‘85 Contf., ASCE, San

314



Francisco, pp. 962-970.

Hoek, E. and Bray, J., 1981. Rock Slope Engincering, The Institution of Mining and
Metallurgy, London.

Hoikkanen, J., 1985. Measurements and Analysis of Ice Force Against a Conical Structure,
Proc. 8" Intl. Conf. on Port and Ocean Engineering under Arctic Conditions, Vol. 3.
Narssarssuag, Greenland, pp. 1203-1220.

Holtz, W.G..andGibbs, H.J., 1956. Shear Strength of Previous Gravelly Soils, Proc. ASCE,

Vol. 82, Paper No. 867.

Hopkins, M.A., 1992. i i ion of Systems of itudi Poly,
Blocks, U.S. Army CRREL Report 92-22, U.S. Army Cold Regions Research and
Engineering Laboratory (CRREL), Hanover. NH. 74p.

Hopkins, M.A.. 1995. Numerical Simulation of Arctic Pressure Ridging, Proc. Sea Ice

and Arctic i rkshop, Vol.1, Anch AK, pp.199-208.

Hopkins, M.A., and Hibler, W.D., III, 1991. On the Shear Strength of Geophysical Scale Ice
Rubble, Cold Regions Science and Technology. Vol. 19, No. 2, pp. 201-212

Houlsby, G.T., 1991. How the Dilatancy of Soils Affects Their Behavior, Proc.10"

onf. on Soil ics and i ineering, Florence, Italy, Vol.

4. pp. 1189-1202.
Howard, D., and Abdelnour, R., 1987. The Testing of the 1:8 Scale Model of the R-Class

in Level Ice, Transportation Development Centre Report TP8828E, submitted by

Arctec Limited, T ion D Centre, Quebec.

315



Huang, Y.H., 1983. Stability Analysis of Earth Slopes, Van Nostrand Reinhold Company

Inc., New York, N.Y.

Intera T ies, Inc., 1986a. Quantification of First-Year and Multi-Year Ice Ridge
Properties, Final Report for Alaskan Oil and Gas Association Joint Industry Study,
AOGA #305, Lakewood, Colorado.

Intera Technologies, Inc.. 1986b. Ice Sheet Ridging Loads for Limit Force Design, Final
Report for Alaskan Oil and Gas Association Joint Industry Study, Lakewood,
Colorado.

Intera Technologies, Inc., 1986¢c. DECICE Theoretical Manual, Lakewood, Colorado.

Irani, M.B., and Timco, G.W., 1993. Ice Loading on a Multifaceted Conical Structure, Proc.
3 Intl. Offshore and Polar Engineering Conf., Singapore, Vol. 2, pp. 520-558.

Irani, M.B., Timco, G.W., and Muggeridge, D.B., 1992. Ice Loading on a Multifaceted
Conical Structure, Technical Report IME-CRE-TR-005, National Research Council
of Canada, Institute for Mechanical Engineering, Cold Regions Engineering, Ottawa,
Ontario.

Izumiyama, K., Irani, M.B., and Timco, G.W., 1993. Computation of Sheet Ice Forces on
a Faceted Conical Structure, Proc. 12" Intl. Conf. on Port and Ocean Engineering
under Arctic Conditions, Vol. 2, Hamburg, pp. 517-526.

I[zumiyama, K., Irani, M.B., and Timco, G.W., 1994. Influence of a Rubble Field in Front
of a Conical Structure, Proc. 4" Intl. Offshore and Polar Engineering Conf., Osaka,

Vol. 2, pp. 553-558.

316



Izumiyama, K., Kitagawa, H., Koyama, K., and Uto, S., 1991. On the Interaction Between
a Conical Structure and Ice Sheet, Proc. 11™ Intl. Conf. on Port and Ocean
Engineering under Arctic Conditions, Vol. 1, St. John's, pp. 155-166.

Jiky, J., 1944. The Coefficient of Earth Pressure at Rest, J. of the Society of Hungarian
Architects and Engineers, Vol. 78, No. 22, pp. 355-358.

Jiky, J., 1948. Pressure in Silo, Proc. 2™ Int. Conf. on Soil Mechanics and Foundation
Engineering |, Rotterdam.

James, R.G., and Bransby, P.L., 1971. A Velocity Field for Some Passive Earth Pressure
Problems, Geotechnique, London, England, Vol. 21, No. [, pp. 61-84.

Jan. C.D, Shen, H.W., Lang, C.H, and Chen, C.L.. 1992. Sphere Moving Down an Inclined
Bumpy Surface, Proc. 9" Conf. on Engineering Mechanics, ASCE, New York, pp.
768-771.

Janbu, N., 1973. Slope Stability Computation, Embankment-Dam Engineering, Casagrande
Volume, Edited by R.C. Hirschfeld and S.J. Poulos, John Wiley and Sons, New
York. pp. 47-86.

Jebaraj, C., Swamidas, A.S.J., Shih, L.Y., and Munaswamy, K., 1992. Finite Element
Analysis of Ship/Ice Interaction, Computers and Structures, Vol. 43, No. 2, pp. 205-
221.

Jones, S.J., 1993. Ice Tank Test Procedures at the Institute for Marine Dynamics, Institute
for Marine Dynamics Report LM-AVR-20, National Research Council of Canada,

Institute for Marine Dynamics, St. John's, Newfoundland.

317



Jumikis, A.R., 1962, Soil Mechanics, University Series in Civil Engineering and Applied
Mechanics, Edited by S.F. Borg, D. Van Nostrand Company, Inc., Princeton, New
Jersey.

Jiirgenson, L., 1934. The Application of Theories of Elasticity and Plasticity to Foundation

Problem, in p. 184 of Contribution to Soil ics, 1925-1940, J. Boston Soc.

Civil Engineers, BSCE, (published in 1940).

Kato, K., 1986. Experimental Studies of Ice Forces on Conical Structures, Proc. 8" IAHR
Ice Symp., Vol. 1, lowa City, pp. 185-196.

Katsuragi, K., Ochi, M., Seto, H., and Kawasaki, T., 1997. Distinct Element Simulation of
Ice Sheet Failure Against Offshore Structures, Proc. 7" Intl. Offshore and Polar
Engineering Cont.. ISOPE, Hawaii. USA. pp. 356-359.

Keinonen, A., 1983. Major Scaling Problems with Ice Model Testing of Ships. Proc. 20th
American Towing Tank Conf., Davidson Laboratory, Stevens Institute of
Technology, Hoboken, N.J., Vol. 2, pp. 595-612.

Keinonen. A.J., Browne. R., and Reynolds, A., 1993. Model/Full Scale Ice Analysis --
Volume [, Transportation Development Centre Report TP11545E, Transport Canada,
Prepared by Arno Keinonen Arctic Consulting Inc., 137p.

Keinonen, A., and Nyman, T., 1978. An Experimental Model-Scale Study on the
Compressible, Frictional and Cohesive Behaviour of Broken Ice Mass, Proc. 5"
TAHR Ice Symp., Lulea, Part 2, pp. 335-353.

Lambe, T.W., and Whitman, R.V., 1979. Soil Mechanics SI Version, MIT, John Wiley &

318



Sons, New York.

Lau, M., 1994a. A Three Di i 'DECICE' Si ion of Ice Sheet ing a 60-

Degree Conical Structure, NRC/IMD Report CR-1994-16, National Research
Council of Canada, Institute for Marine Dynamics, St. John's, Newfoundland.

Lau, M., [994b. Pack Ice Jamming Simulation: DECICE2D, Contract Report to NRC/IMD,
National Research Council of Canada, Institute for Marine Dynamics, St. John's,
Newfoundland.

Lau, M., Jones, S.J., Tucker, J.R., and Muggeridge, D.B., 1993a. Model Ice Ridge Forces
on a Multi-Faceted Cone, Proc. 12" Intl. Conf. on Port and Ocean Engineering under
Arctic Conditions, Vol. 2, Hamburg, pp. 537-546.

Lau, M., Muggeridge. D.B.. and Williams, F.M., 1988. Model Tests of Fixed and Free
Floating Downward Breaking Cones in Ice, Proc. 7" Intl. Conf. on Offshore
Mechanics and Arctic Engineering, Houston, pp. 239-247.

Lau, M., Tucker, J.R., Jones, S.J., and Muggeridge, D.B., 1993b. Model Ice Forces on an
Upward Breaking Multi-Faceted Cone, NRC/IMD Report TR-1993-07, National
Research Council of Canada, Institute for Marine Dynamics, St. John's,
Newfoundland.

Lau, M., and Williams, F.M., 1991. Model Ice Forces on a Downward Breaking Cone, Proc.
11 Intl. Conf. on Port and Ocean Engineering under Arctic Conditions, Vol. L, St.
John's, pp. 167-184.

Linoya, K., Gotoh, K., and Higashitani, K., 1990. Power T book; Marcel

319



Dekker Inc., New York.

Liu, C.. and Evett, J.B.. 1987. Soils and Foundations, 2* Edition, Prentice-Hall, Inc.,
Englewood Cliffs, N.J.

Loset, S.. 1994a. Discrete element modelling of 2 broken ice field - Part II: simulation of ice
loads on a boom, Cold Regions Science and Technology, Vol.22, No.4, pp. 349-360.

Loset, S., 1994b. Discrete Element Modelling of A Broken Ice Field - Part I: Model

Development, Cold Regions Science and Technology, Vol.22, No.4, pp. 339-347.

Loset, S., and Sayed, M., 1993. P i Strain Tests of Ice Rubble, J. of
Cold Regions Engineering, Vol. 7, No. 2, pp. 44-61

Maattanen, M., 1986. Ice Sheet Failure Against an Inclined Wall, Proc. 8" IAHR Ice Symp..
Vol. 1, lowa City. pp. 149-158.

Maattanen, M.. 1994. Ice Force Design and Measurement of a Conical Structure. Proc. 12th
[AHR Ice Symposium, Trondheim, pp. 401-410.

Muaattanen, M., and Hoikkanen, J., 1990. The Effect of Ice Pile-Up on the Ice Force of a
Conical Structure, Proc. 10" Intl. Symp. on Ice, Vol. 2, Espoo. Finland. pp. 1010-
1021.

Maattanen. M., and Mustamaki, E.O., 1985. Ice Forces Exerted on a Conical Structure on
the Guif of Bothnia, Proc. 17th Offshore Technology Conference, Vol. 4, Paper No.
5054, Houston, pp. 313-320.

Macmillan, N.N., 1972. Review: The Theoretical Strength of Solids, J. of Material Science.
Vol. 7, No. 2, pp. 239-254.

320



Manders, C., and Abdelnour, R., 1978. A Series of Model Tests of Down Breaking Cones
in Level and Multi-Year Ridged Ice Fields, Arctec Canada Limited, Report submitted
to Gulf Oil Canada.

Marcellus, R.W., Morrison, T.B., Allyn, N.F.B., Croasdale, K.R., Iyer, H.S., and Tseng, J.,

1988. Ice Forces on Marine Volume 2 -- Di; ion, D of

Public Works Canada Report AES/SAG 1-2:88-5v2, Public Works Canada, Cttawa,
ON, submitted by C.M.E.L. Enterprises Ltd.

Matsuo, M., Kenmochi, S., and Yagi, H.. 1978. Experimental Study on Earth Pressure of
Retaining Wall by Field Tests, Soil and Foundations, Vol. 18, No. 3, pp. 27-41.

Matsuoka, H., and Sakakibara, K., 1987. A Constitutive Model for Sands and Clays
Evaluating Principal Stress Rotation, Soils and Foundations, Vol. 27, No. 4, pp. 73-
88.

Mayne. P.W., and Kulhawy, F.H, 1982. K_-OCR Relationships in Soil, J. of the
Geotechnical Engineering Division, ASCE, Vol. 108, No. GT6, June, pp. 851-872.

McKenna. R.F.. and Bruneau, S.E.. 1997. Ice Rubble Build-Up on Conical Structures
During Ridge Interactions, Proc. 16" Intl. Conf. on Offshore Mechanics and Arctic
Engineering, Vol. 4, Yokohama, Japan, p. 355-364.

McKenna, R.F., Walker, D., Lau, M., and Daley, C., 1997. Ice Loads on CALM Buoy at
Butinge Oil Terminal, Contract Report Prepared for SOFEC. Inc., by the Center for
Cold Oceans Resources and Engineering and Marineering Ltd., St. John's.

Newfoundland.

321



Melkote, R.S., 1977. Design Pressures for Retaining Walls with Triangular Fills, Proc. 3
Intl. Symp. on Soil Structure Interaction, Vol. 2, U. of Roorkee, India, pp. 31-35.

Mesri, G., and Hayat, T.M., 1993. The Coefficient of Earth Pressure at Rest, Can. Geotech.
J.. Vol. 30, No. 4, pp. 647-666.

Metge, M., and Tucker, J.R.. 1990. Multifaceted Cone Tests - Year Two, 1989-1990,
Technical Report, Esso Resources Canada Limited, Calgary, Alberta.

Metge. M., and Weiss, R.T., 1989. Multifaceted Cone Tests 1988-1989, Technical Report,
Esso Resources Canada Limited, Calgary, Alberta.

Michel, B., 1978, Ice Mechanics, Les Presses de |'Universite' Laval, Quebec.

Michel, B., and Picard, F., 1989. Major Differences in the Failure Modes of an Ice Sheet on
an Inclined Plane: Laboratory Tests. Proc. 10" Intl. Conf. on Port and Ocean
Engineering under Arctic Conditions. Vol. I, Lulea, pp. 235-248.

Mitchell, J.K., 1976. Eundamentals of Soil Behavior, John Wiley and Sons, New York.

Mohr, O., 1882.  Ueber die D: des und des

D i eines Ko und iiber die Anwendung derselben

in der Festigkeitslehre, Civilengenieur, Vol. 28, pp. 113-156

Morgenstern, N., and Price, V.E., 1965. The Analysis of the Stability of General Slip
Surfaces, Geotechnique, Vol. 15, No. 1, pp. 79-93.

Myslivec, A., 1972. Pressure at Rest of Cohesive Soil, in Structures Subjected to Lateral

Forces, Proc. 5" European Conf. on Soil ics and F

Madrid.



Natural Resources Canada, 1993. Canada's Energy Outlook, 1992-2020: Working Paper,
Prepared by Energy and Fiscal Analysis Division, Economic and Financial Analysis
Branch, Energy Sector, Ottawa, 96p.

Nevel, D.E., 1965. A Semi-Infinite Plate on an Elastic Foundation, CRREL Research Report
No. 136, U.S. Army CRREL, Hanover, NH.

Nevel, D.E., 1972. The Ultimate Failure of a Floating Ice Sheet, Proc 2™ [AHR Ice Symp..
Part 1, Leningrad, U.S.S.R.. pp. 23-27.

Nevel. D.E., 1980. Bending and Buckling of a Wedge on an Elastic Foundation, Proc.
IUTAM Symp. on Physics and Mechanics of Ice, Copenhagen, Edited by P. Tryde,
Springer-Verlag, Berlin, pp.278-288.

Nevel, D.E.. 1992. Ice Forces on Cones from Floes, Proc. | 1™ IAHR Ice Symp., Vol. 3.
Banff, pp. 1391-1401.

Nova, R.. and Sacchi, G., 1979. A Generalized Failure Condition for Orthotropic Solids,
Proc. Euromech Collogium 115, Villard-de-Lans, pp. 623-641.

Oshima, M., Narita, H., Yashima, N., and Tabuchi, H.. 1980. Model and Field Experiments
for Development of ACE Resistant Offshore Structures, Proc. 12th Offshore
Technology Conference, Vol. 4, Paper No. 3885, Houston, pp. 307-314.

Packshaw, S., 1969. Earth Pressure and Earth Resistance, A Century of Soil Mechanics, The
Institution of Engineers, London, England, pp. 409-434.

Patton, F.D., 1966. Multiple Modes of Shear Failure in Rock and Related Materials, Ph.D.
Thesis, University of Illinois, llinois.

323



Pearce, J.C., and Strickland, G.E., 1979. Ice Forces on Conical Structures, Proc. 11®
Offshore Technology Contf., Vol. 4, Paper No. 3635, Houston, pp. 2407-2414.

Poncelet, J.V., 1840. Memoire Sur la Stabilite des Revetments et de Leurs Fondation, Note
Additionelle Sur les Relations Analytiques Qui Lient Entre Elles la Poussee et la
Butée de la Terre, Memorial de L'Officier du Genie, Paris, Vol. 13.

Pouliquen, O.. and Renaut, N., 1996. Onset of Granular Flows on an Inclined Rough
Surface: Dilatancy Effect. J. de Physique, II, Vol. 6, No. 6, pp. 923-935.

Prodanovic, A.. 1979. Model Tests of Ice Rubble Strength, Proc. 5" Intl. Conf. on Port and
Ocean Engineering under Arctic Conditions, Vol. |, Trondheim. pp.667-678.

Pruska. L., 1972. Basic Equations of Pressure at Rest of Granular Materials. in Structures
Subjected to Lateral Forces. Proc. 5 European Conf. on Soil Mechanics and
Foundation Engineering, Madrid.

Ralston, T.D.. 1977. Ice Force Design Consi ions for Conical Proc. 4" Intl.

Cont. on Port and Ocean Engineering under Arctic Conditions, Vol. 2, St John's, pp.

741-752.
Rankine, W.J. M., 1858. A Manual of Applied Mechanics, Griffin, London.
Reimbert, M.L., and Reimbert, A.M., 1974. Retaining Walls, h and Sheet Piling --

Theory and Practice -- Volume [, Tran Tech Publications, Clausthal, Germany.
Reynolds, O., 1885. On the Dilation of Media Composed of Rigid Particles in Contact, with
Experimental Illustrations, Philos. Mag., Vol. 20, pp. 469-481.

Rowe, P.W., 1962. The Stress-Dilatancy Relation for Static Equilibrium of an Assembly of

324



Particles in Contact, Proc. Royal Society, A269, pp. 500-527.

Rymsza, B., 1979. Earth Pressure At Rest in Design of Retaining Structure, Proc. 7"

European Conf. on Soil icsand F ion Engil ing, Vol. 1,

Saada, A.S., Bianchini, G.F., and Puccini, P., 1983. The Mechanical Properties of

Anisotropic Granular Soils, Colloque Intl. du C. N. R. S. No. 351, Villard, Villard-

de-Lans.

Sanderson, T.J.O., 1988. [ce Mechanics, Risks to Offshore Structures, Graham Trotman,
London.

Savage, S.B., and i, Y., 1988. Similari i for of Granular

Materials Down Curved Beds, ATCA Mechanica, Vol. 75, pp. 153-174.
Sayed, M.. 1987. Mechanical Properties of Model Ice Rubble, In Material and Member
Behaviour, Proc. Structures Congress ‘87, Orlando, FL. American Society of Civil

Engineers, New York, pp. 647-659.

Sayed, M., 1995. Ni ical Simulation of the ion Between Ice Ridges and Bridge
Piers, Technical Report TR-1995-10, National Research Council of Canada. Ottawa,
Ontario.

Sayed, M., 1997. Discrete and Lattice Models of Floating Ice Covers, Proc. 7" Intl. Offshore
and Polar Engineering Conf.. ISOPE, Hawaii, USA, pp. 428-433.

Sayed, M., and Timco, G.W., 1998. A Lattice Model of Ice Failure, ERD/CHC Report 9-77.
Technical Report HYD-TR-035, NRC, Ottawa.

Sayed, M., Timco, G.W., and Sun, L., 1992. Testing Model Ice Rubble under Proportional

325



Strains, Proc. 11" Intl. Conf. on Offshore Mechanics and Arctic Engineering, Vol.
4, Calgary, pp. 335-341.

Schanz, T., and Vermeer, P.A., 1996. Angles of Friction and Dilatancy of Sand,
Geotechnique, Vol. 46, No. 1, pp. 145-151.

Seed, H.B., and Sultan, H.A., 1967. Stability Analysis for a Sloping Core Embankment, J.
of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM4, pp. 69-
84.

Sepehr. K., Selvadurai, A.P.S., and Comfort, G., 1997. Discrete Element Modelling of the
Local Interaction Between a Stationary Structure and a Moving Ice Pack, Proc. 7"
Intl. Offshore and Polar Engineering Conf., ISOPE, Hawaii, USA, pp. 480-486.

Shields, D.H.. and Tolunay, A.Z., 1973. Passive Pressure by Method of Slices, J. of the Soil
Mechanics and Foundations Division, ASCE, Vol. 99, No. SM12, pp. 1043-1053.

Simons, N., 1958. Contribution to discussion, Proc. Brussels Conf. on Earth Pressure
Problem, Vol. 3, pp. 50-53.

Sodhi, D.S., 1987. Flexural and Buckling Failure of Floating Ice Sheets Against Structures.
3" State-of-the-Art Report, [AHR Working Group on Ice Forces, Edited by T.J.O.
Sanderson, CRREL Special Report 87-17, U.S. Army CRREL, Hanover, N.H., pp.
53-73

Sodhi. D.S.. Kato, K., and Haynes, F.D., 1982. Determining the Characteristic Length of
Model Ice Sheets, Cold Regions Science and Technology, Vol. 6, No.2, pp. 99-104.

Sodhi, D.S., Morris, C.E., and Cox, G.F., 1985. Sheet Ice Forces on a Conical Structure - An

326



Experimental Study, Proc. 8" Intl. Conf. on Port and Ocean Engineering under Arctic
Conditions, Vol. 2, Narssarssuaq, pp. 643-655.

Sorensen, C., 1978. Interaction Between Floating Ice Sheets and Sloping Structures, Series
Paper 19, Technical University of Denmark, Institute of Hydrodynamics and
Hydraulic Engineering, Denmark, 175p.

Spencer, D., McKenna , R., and Lau, M., 1993. Ice Model Tests of a 60° Upward Breaking
Bridge Pier for the Northumberland Strait Crossing, NRC/IMD Report TR-1993-05
(Protected), National Research Council of Canada, Institute for Marine Dynamics,
St. John's, Newfoundland.

Spencer, E., 1967. A Method of Analysis of the Stability of Embankments Assuming
Parallel Inter-Slice Forces, Geotechnique. Vol. 17, No. 1, pp. 11-26.

Szepeshizi, R., 1994. Onthe K, Factor, Periodica Polytechnica Ser. Civil Eng., Vol. 38, No.
1, pp. 127-135.

Tatinclaux. J.C., 1986. Ice Floe Distribution in the Wake of a Simple Wedge, Proc. 5 Intl.

Cont. on Offshore Mechanics and Arctic Engineering,Vol. 4, Tokyo, pp. 622-629.

Terzaghi, K., 1955. The Influence of Geological Factors in the Engineering Properties of
Sediments, Econ. Geol., 50" Ann. Vol., pp. 557-618.

Terzaghi, K, and Peck, R.B., 1976. Soil M ics in Engineering Practice, Wiley, New

York.
Timco, G.W. 1984a. Ice Forces on Structures, Proc. 7" IAHR Ice Symp.,Vol. 4, Hamburg,
pp. 117-150.

327



Timco, G.W. 1984b. Model Tests of Ice Forces on a Wide Inclined Structure, Proc. 7"
IAHR Ice Symp., Vol. 2, Hamburg, pp. 89-96.

Timco.G.W., 1986. EG/AD/S: A New Type of Model Ice for Refrigerated Towing Tanks,
Cold Regions Science and Technology, Vol. 12, No. 2, pp. 175-195.

Timco, G.W., Irani, M.B., English, L.A., Carroll, L.B., and Arambarri, E.. 1993. Ice Loads
Distribution on a Faceted Conical Structure, Proc. 12" Intl. Conf. on Port and Ocean
Engineering under Arctic Conditions, Vol. 2, Hamburg, pp. 607-616.

Tsai, S.W., and Wu, E]M., 1971. A General Theory of Strength for Anisotropic Materials,
J. of Composite Materials, Vol. 5, pp. 58-80.

Tschebotarioff, G.P., 1951. Soil ics, F ions, and Earth New York,

McGraw-Hill.
Urroz-Aguirre, G.E.. and Ettema, R., 1987. Simple Shear Box Experiments with Floating
Ice Rubble, Cold Regions Science and Technology, Vol. 14, No. 2, pp. 185-199.
Valanto, P., 1989. Experimental Study of the Ice Breaking Cycle in 2-D, Proc. 8" Intl. Conf.
on Offshore Mechanics and Arctic Engineering,Vol. 4, The Hague, pp. 343-349.

Valanto, P., 1992. The ing Problem in Two Di i i and Theory,

J. of Ship Research, Vol. 36, No. 4, pp. 229-316.

Valanto, P., 1993. Investigation of Icebreaking Pattern at the Bow of The [B Kapitan
Sorokin on the Yenisei River Estuary in May 1991, Proc. 12" Intl. Contf. on Offshore
Mechanics and Arctic Engineering, Vol. 4, pp. 127-134.

Varsta, P., 1983. On the Mechanics of Ice Load on Ships in Level Ice in the Baltic,

328



Technical Research Centre of Finland, Publication No. 11, Espoo.

Verity, P.H., 1975. Small Prototype Cone Tests, Winter ‘73 - ‘74, APOA Project No. 65
Report, Imperial Oil Ltd., Distributed by Pallister Resource Management Ltd.,
Calgary, Alberta.

Wang, F.D., Sun, M.C., and Ropchan, D.M., 1972. Computer Progr: for Pit Sloj

Method, RI 7685. Bureau of Mines.

Wang, Z.G, Muggeridge, D.B., and Croasdale, K.R., 1997. Ridge Ice Loads On Proposed
Faceted Conical Structure, Proc. 7" Intl. Offshore and Polar Engineering Conf., Vol.
2, Hawaii, USA, pp. 449-456.

Weiss. R.T.. Prodanovic. A., and Wood. K.N.. 1981. Determination of Ice Rubble Shear
Properties, Proc. Intl. Association for Hydraulics Research Ice Symp., Quebec City,
pp- 861-872.

Wessels, E., 1984, Model Test Investigation of Ice Forces on Fixed and Floating Conical
Structures, Proc. 7" Ice Symp., [AHR,Vol. 3. Hamburg, pp. 203-220.

Wessels, E.. and Kato, K., 1989. Ice Forces on Fixed and Floating Conical Structures, [AHR
Working Group on Ice Forces, 4™ State-of-the-Art Report, CRREL Special Report
89-5, U.S. Army CRREL, Hanover, N.H., pp. 231-258.

Wong, T.T., Gale, A.D., Sego, D.C., and Morgenstern, N.R., 1987. Shear Box Tests on
Broken Ice, Proc. 9" Intl. Conf. on Port and Ocean Engineering under Arctic

Conditions, Vol. 3, pp. 97-107.



Wroth, C.P., 1972. General Theories of Earth Pressures and Deformations, Proc. 5"

European Conf. on Soil ics and F i ineering,Vol. 2, Madrid, pp.

33-52.

M., 1974. Phenomenological Anisotropic Failure Criterion, in Mechanics of

Composite Materials, Edited by G.P. Sendeckyj, Academic Press, N.Y., Vol. 2, pp.
353-432.

Zabilansky, L.J., Nevel, D.E., and Haynes, F.D.. 1975. Ice Forces on Model Structures,

Canadian J. of Civil Engineering, Vol. 2, pp. 400-417.

330



Appendix A
Summary of Test Conditions, Configurations,
and Results of ERCL’s and IME’s Test Series:

Level Ice
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The measured ice i ions and results iated with each test for

the individual test series in the “MUN/ERCL/NRC Multi-Faceted Cone Study™ are extracted

from respective data report and reproduced here for quick reference.

The measured ice i with the ion of the test condition in each
test for the two test series are given in Tables Al and A2; whereas, the results of each test
series are consolidated and summarized in Tables A3 and A4.

Tables A3 summarizes the mean, maximum, and peak values of the global and neck
forces measured in the IME's level ice tests. The force statistics are computed only for the
steady state portion of the force records. Table A4, on the other hand. gives only the
maximum loads measured in the ERCL's level ice tests since most of the runs were stopped
before a quasi-steady-state interaction was achieved.

Peak force analysis was not carried out on IME's tests; instead, the peak forces were
calculated as suggested by Irani and Timco (1993) as the sum of the mean plus one and a half
times the standard deviation of the force record. It should be noticed that after publishing
their data report, Irani and Timco (1993) have since revised and published their global load

measurements. The data given in Tables A3 are the revised values.



Table Al

Matrix for level ice tests: NRC-IME series

LEVEL ICE PROPERTIES
Test Model Orient. t O, Oy
) ) (cm) (kPa) (kPa)
c_001 15 26 46 7
C_002 15 23 46 7
c_003 15 23 46 7
C_004 15 33 104 166
C_005 15 37 104 166
C_006 15 37 104 166
c_07 15 24 4 29
C_008 15 23 24 29
C_009 15 22 % 29
c_olo 15 4 58 67
con 15 38 58 67
c_oi2 15 41 58 67
c_013 15 1.7 42 67
C_014 15 1.6 42 67
C_015 15 1.8 42 67
0 34 96 7
0 24 73 122
0 2.1 37 59
0 23 13 21
0 57 23 37
0 57 11 17
0 34 84 134
0 33 29 47
0 34 16 25
0 45 8 125
0 46 64 102
0 47 st 82
0 44 63 81
0 42 2 45
0 45 16 %
30 24 2 56
30 3 9 27
30 1.8 3 17
30 35 n 1n2
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Table Al Matrix for level ice tests: NRC-IME series (continued)

LEVEL ICE PROPERTIES
Test Model v t O, Oy
Orient. (°) (cm/s) (cm) (kPa) (kPa)

C_035 30 57 34 64 44
C_036 30 5.8 3.4 13 25
C_037 30 6.2 5.6 41 60
C_038 30 59 5.6 40 40
C_039 30 6.2 49 39 44
C_040 30 6.2 5.1 30 15
C_041 30 59 54 14 12
C_042 0 6 33 40 41
C_043 15 6.1 3 40 41
C_044 30 6 33 40 41
C_050 0 6.2 28 11 2l
C_054 0 6.1 4.2 40 80
C_055 0 5.8 3.6 27 76
C_056 0 59 35 24 49
C_057 0 59 3.6 10 25
C_060 0 6 3 9 36
C_061 15 59 3.1 9 36
C_062 30 6 3.1 9 36

Note: @, = upward breaking flexural strength; o, = downward breaking flexural strength
Structure orientation: 0° = face-on: 15° = intermediate; 30° = edge-on
A friction coefficient of O is associated with runs 1 to 38, and a friction coefficient
of 0.1 is associated with runs 39 to 66.
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Table A2

Matrix for level ice tests: ERCL series

Test \4 t o E
_ (cm/s) (cm) (kPa) (MPa)
Year One: 1988-89; 1:10S
TI_RI 33 165 1136
Year One: 1988-89; 1:10L
T2_R2 6 34 183 836
T3_R2 6 27 249 129
T4 RI1 6 12 159 1590
Year Two: 1989-90; 1:20L
TI_RI 6 25 50 203
TI_R2 6 25 50 203
T2_RI 6 32 35 288
T2_R2 6 36 141 1154
T3_RI 6 385 125 569
T3_R2 6 385 125 569
T4_RI 6 41 141 853
T4_R1 6 41 141 853
TS_RI 6 5 na na
T5_R2 6 5 na na
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Table A3 Summary of level ice test results: NRC-IME series (Irani and Timco, 1992;
and Irani et al, 1992)

GLOBAL * GLOBAL * NECK *
HORIZONTAL VERTICAL HORIZONTAL
FORCE (kN) FORCE (kN) FORCE (kN)
Test Mean | Max. | Peak | Mean | Max. | Peak | Mean | Max. | Peak
1 0.132 1 0.219 | 0.164 | 0.176 | 0.262 | 0.221 | 0.00 | 0.03 |0.007
2 0.117 | 0.214 | 0.161 | 0.173 | 0.261 | 0.227 | 0.00 | 0.04 |0.006
3 0.122 { 0.188 | 0.153 | 0.162 | 0.233 | 0.207 | 0.00 | 0.03 | 0.010
4 0.189 | 0.335 | 0.269 | 0.244 | 0.417 | 0.337 | 0.01 | 0.04 |0.019
5 0.161 [ 0.288 | 0.227 | 0.222| 0.369 | 0.320 | 0.01 | 0.03 [0.011
6 0.160 [ 0.236 | 0.218 | 0.218 | 0.334 | 0.307 | 0.01 | 0.03 |0.014
7 0.113 [ 0.143 1 0.134 | 0.152]0.192 | 0.182 | 0.00 | 0.01 |0.006
8 0.108 [ 0.150 | 0.129 | 0.151 | 0.206 | 0.179 | 0.00 | 0.01 |0.005
9 0.115 (0.175 | 0.140 | 0.157 | 0.208 | 0.193 | 0.00 | 0.01 |0.005
10 0.284 | 0.438 | 0.366 | 0.374 | 0.541 | 0.463 | 0.01 | 0.04 |0.002
11 0.280 | 1.420 | 0.430 | 0.320| 0.470 | 0.410 | 0.01 | 0.10 |0.029
12 0.295 [ 0.465 | 0.410 | 0.404 | 0.633 | 0.554 | 0.00 | 0.00 |0.014
13 0.074 | 0.105 [ 0.097 | 0.111]0.159 | 0.144 | 0.00 | 0.01 |0.004
14 0.060 | 0.086 | 0.081 | 0.089 | 0.128 | 0.115 | 0.00 | 0.00 |0.002
15 0.064 | 0.093 | 0.087 | 0.095]0.129 | 0.123 | 0.00 | 0.01 |0.002
16 0.210 { 0.690 | 0.300 | 0.281{ 0.609 | 0.381 | 0.01 | 0.12 |0.003
17 0.113 { 0.183 [ 0.152 | 0.125]/0.203 | 0.174 | 0.00 | 0.04 |0.010
18 0.110 { 0.160 | 0.140 | 0.140] 0.190 | 0.170 | 0.00 | 0.01 |0.005
19 0.115 | 0.160 | 0.146 | 0.149] 0.210 | 0.191 | 0.00 | 0.01 |0.006
20 0.390 | 0.630 | 0.500 | 0.510 0.710 | 0.630 | 0.01 | 0.10 |0.034
21 0.360 | 0.600 [ 0.450 | 0.470 0.620 | 0.550 | 0.01 | 0.10 |0.034
22 0.199 | 0.324 | 0.266 | 0.280 | 0.484 | 0.375 | 0.01 | 0.03 |0.013
23 0.190 | 0.345 | 0.250 | 0.265 0.414 | 0.345 | 0.01 | 0.04 |0.014
24 0.176 | 0.382 | 0.233 | 0.230| 0.386 | 0.288 | 0.01 | 0.08 |0.024
25 0.386 | 1.593 [ 0.649 | 0.510] 1.396 | 0.772 | 0.01 | 0.28 |0.043
26 0.398 | 0.887 | 0.578 | 0.534 | 0.890 | 0.742 | 0.01 | 0.05 |0.026
27 0426 [ 0.811 | 0.619 | 0.563 | 0.940 | 0.795 | 0.01 | 0.05 |0.030
28 0.300 | 0.540 | 0.420 | 0.360 | 0.058 | 0.500 | 0.01 | 0.05 |0.025
29 0.333 | 0.650 | 0.428 | 0.432 | 0.652 | 0.540 | 0.01 | 0.04 |0.026
30 0.254 1 0.339 | 0.306 | 0.353 | 0.469 | 0.419 | 0.01 | 0.03 |0.018
31 0.077 1 0.097 1 0.090 | 0.124] 0.155 ) 0.144 | 0.00 | 0.00 |0.002
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Table A3 Summary of level ice test results: NRC-IME series (Irani and Timco, 1992;
and Irani et al, 1992) (cont’d)

GLOBAL * GLOBAL * NECK *
HORIZONTAL VERTICAL HORIZONTAL
FORCE (kN) FORCE (kN) FORCE (kN)
Test Mean | Max. | Peak | Mean | Max. | Peak | Mean | Max. | Peak
32 0.069 | 0.088 | 0.079 | 0.109 | 0.133 | 0.122 | 0.00 | 0.00 | 0.00
33 0.056 [ 0.08 | 0.072 | 0.088 | 0.135 | 0.114 | 0.00 | 0.00 | 0.00
34 0.15 | 0225  0.197 | 0238 | 0.354 | 0.305 | 0.00 | 0.02 | 0.01
35 0.157 | 0.22 | 0.196 | 0.243 | 0.314 | 0.290 | 0.00 | 0.02 | 0.01
36 0.113 [ 0.161 | 0.137 | 0.181 | 0.246 | 0.215 | 0.00 | 0.01 | 0.00
37 0.355 | 0.606 | 0.489 | 0.527 | 0.802 | 0.691 | 0.01 | 0.05 | 0.02
38 0.348 | 0.595 | 0.482 | 0.499 | 0.823 | 0.662 | 0.01 | 0.07 | 0.02
39 0.253 | 037 | 0.328 | 0.382 | 0.516 [ 0.482 | 0.00 | 0.03 | 0.01
40 0.193 [ 0.291 | 0.246 { 0308 | 04 (0370 | 0.00 | 0.02 | 0.01
41 0.13 | 024 | 0211 | 0294|0362 | 0.332 | 0.00 | 0.02 | 0.01
42 0.149 { 0.226 | 0.198 | 0.16 | 0.212 [ 0.199 | 0.00 | 0.01 | 0.01
43 0.132 { 0.253 | 0.199 | 0.147 | 0.259 ( 0.213 | 0.00 | 0.01 | 0.01
44 0.123 [ 0.161 | 0.143 | 0.134 | 0.173 | 0.159 | 0.00 | 0.01 | 0.00
50 0.164 | 0.313 | 0.226 | 0.167 | 0.243 | 0.196 | 0.00 | 0.01 | 0.00
54 0.428 | 0.707 | 0.577 | 0.353 | 0.554 | 0.470 | 0.01 | 0.05 | 0.02
55 0.237 | 0.421 | 0.317 | 0.202 | 0.331 | 0.260 | 0.00 | 0.02 | 0.01
56 0.248 | 0.429 { 0.334 | 021 [ 0.331 | 0.272 | 0.00 | 0.02 | 0.01
57 0.268 | 0.426 | 0.358 | 0242 | 0.35 | 0.299 | 0.00 | 0.02 | 0.01
60 0.166 | 0.314 | 0.238 | 0.167 | 0.261 | 0.214 | 0.00 | 0.01 | 0.00
61 0.168 | 0.285 | 0.23 | 0.158 | 0.235 | 0.206 | 0.00 | 0.01 | 0.00
_62 0.14510.199 ] 0.176 ] 0.145/0.196 1 0.177 | 0.00 | 0.0l | 0.00

Note: Global forces are taken from Irani and Timco (1993). Neck forces are estimated
from time-history given in Irani et al (1992).
*Horizontal - (+) toward the model; Vertical - (+) downward
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Table A4 Summary of level ice test results: ERCL series

GLOBAL * GLOBAL * NECK *
HORIZONTAL | VERTICAL | HORIZONTAL
FORCE (kN) FORCE (kN) FORCE (kN)
Test Max Max Max
Year One: 1988-89: 1:10
TI_R1 40 48** L5
T2_R2 10 8 08
T3_R2 17 19 NA
T4_RI 12 15 0
Year Two: 1989-90: 1:20
TI_R1 10 1 0.7
TI_R2 15 4 08
T2_R1 19 22 S
T2_R2 20 20 8
T3_RI 30 38 25
T4_R1 30 35 3!
TS5 R1 2 4 0

Note: * Horizontal - (+) toward the model; Vertical - (+) downward
**Typo error in original report

338




APPENDIX B

Load Time History of Tests Conducted in
IMD'’s Test Series
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FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONE4 003

133

7.5 s P
x
AVE = 800 KN
] AV MAX = 8.84 kN
MIN = 2.40 kN
2TD - 0.01 kN
- S
« 1 + 1 P ¥ A& ¥. I § N = B
x
= - Manpd AMags Lo N N o | ave = 000 un
u.0 B M/ N * vt wf MAX = 138 kN
‘L‘: V MIN = -1 30 kN
b STD = 043 kN
o -2.5
-
. l. Ll TR " Ll :
5. 1 AVE = 8 w1 kN
N v\ k"""ﬁv‘w M MAX = 0 E0 kN
MIN = 8 ue KN
i 3TD - v kN
(1) 30 4" 60 78 00 108 120 133 150
TIME (s)
NECK S1ZE -~ LARGE No miDaE
PRICTION -- 0.00 STEADY STATE PORTION ONLY
DIRECTION -~ BROAD ON o
SPEED = 4. cm/s FLEX 3TR (up) = 40.¢ kPa

MULTIFACETED CONE TESTS I A =25.00, NRC/IMD
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FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS

MUNCONE4_006

6.0

F
x
AVE = 4 17 kN
MAX = 5.08 KN
MIN = 2 82 kN
3.0 u ¥ 8TD = 0.45 kN
-2 I PP R T R O e .,
& ~y Wkt - A AVE = -0.12 KN
w LYY AV I = Vi v AN uAL 0,87 N
(&) - -
' 8TD = 0 20 kN
o
" KN . L2 gl .
A AL N :
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\ LN . 9
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—6.0 . aTD = 031 kN
v 100 1o 120 130 140 150
TIME (s)
NEUK SIZE - - LARGE ICE THICKNESS =~ 10.4cm NO RIDOR
PRICTION -~ 0.00 ICE DENBITY - 923, kg/m-3 STRADY STATE PORTION ONLY
DIRECTION -~ BROAD ON FLEX STR (dewn) = 30.0 kPa
SPEED = 4. em/n PLEX STR (up) = 10.7 kPa

MULTIFACETED CONE TESTS |

A =25.00, NRC/IMD
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FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONES 002
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MULTIFACETED CONE TESTS A = 25.00, NRC/IMD
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FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONEG _002
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FORCE ON STRUCTURE IN X, Y, Z DIRECTIONS MUNCONEG6 003
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APPENDIX C

Example Calculation to Ilustrate the Application
of Equations Developed in Chapters 7 to 9
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An example calculation for Test MUNCONE3_001 is shown here to illustrate the

usage of equations developed in Chapters 6 to 8 for the computation of ice loads on faceted

cones. Values of the relevant parameters are given as follows:

(i)

(ii)

(iii)

(iv)

(]

Ci1

Ice Properties: Thickness, t =0.1583 m; flexural strength, 6, = 44.38 kPa; elastic
modulus, E = 362.2 MPa; ice-structure friction coefficient, u, = 0.1; and weight
density, Y= 8985 N/m’.

Rubble Properties: Rubble angle, 1 =35° intemal friction angle, ¢ =35° wall
friction angle, ¢, = 11.3% bulk weight density, ¥, = 6290 N/m’; and porosity, p=
03.

Water Foundation: Weight density, ¥, = 9839 N/m’.

Structure Dimensions: Height of cone section, h, = 0.233 m; height of collar
section, h, =0.473 m; facet width at waterline, w, = 0.693 m; cone angle, o, =
39.8% collar angle, o, = 63.4° neck angle; @, =90°% cone angle at side, o, =
35.8% collar angle at side, &, = 60°; neck angle at side, &, =90° and average
cone angle, @, =49.8°.

Ice Breaking Pattern: Angle between radial crack and x-axis; 6, = 30° and

measured broken piece size, L, =0.1511 m.

Rubble Height Calculation(Chapter 6)
The width of ride-up ice wall at front facet, w,, is equal to 0.7802 m, computed by
mn



Equation 8.12.

C.1.1 Rubble Height at Side of Front Facet: h,
The cross-section of rubble at both side of cone, A, is equal to 0.08822 m’, computed

from Equation 6.5. The rubble height at side of the front facet, h,, and the corresponding

value of B, can bx using it .12 and 6.16, respectively, via a trial and error
procedure, by arbitrarily assuming a value of n and h,:

First trial: n= 1 withan initial value of hy=h, =0.233 m

B, =0.2798 m and h, = 0.4039 m

Since h, > h,, then n must be greater than 1.

Second trial: n =2 with an initial value of hy=h, =0473 m

B, =0.2039 mand h, = 0.3802 m

Since h, < h,, then n must be equal to 2.

Therefore, the rubble reaches the collar section with h,, being equal to 0.380 m.

C.1.2 Rubble Height at Side of Cone: h,,
The rubble height at side of the cone, h,, can be computed using Equation 6.22 via
a similar trial and error procedure:
Eirst trial: forn=1,h,=2.0347m
Since h, > h,, then n must be greater than 1.
Second tral: forn=2, h,=0.5087 m
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Since h, > h,, then n must be greater than 2.
Third tral: forn=3,h,=0.4947m

Therefore, the rubble reaches the neck section with h,, being equal to 0.495 m.

C.1.3 Maximum Rubble Height at Front Facet: h,,

The maximum rubble height at the front facet, h,,, is computed as the following:
B, = 0.4507 m (Equation 6.30); &, = 53.7° (Equation 6.33 with @ = a,..); A,=0.1705
(Equation 6.31); A, =0.06809 ¢ (Equation 6.32); (A,+A,)/A,=1.3994; w=03154m
(Equation 6.34); w/w, = 0.4042 (implies a trapezoidal profile); and h, = 07126 m
(Equation 6.35 with h, = 03802 m).

Therefore, the rubble has a trapezoidal profile along the front facet with hr,, being

equal 10 0.713 m.

C.2  Rubble Load Calculation(Chapter 7)
Rubble loads for the center and the side facets are calculated separately for the

respective equivalent rubble heights, h,_and h,,.

C.2.1 Rubble Load Per Unit Width on Center Facet
. =0.5783 m (Equation 8.13)
() Load per unit width on individual sections:
(@)  Lower cone section, i = 1: ¢',, = 11.3° (Equation 7.29); o, = 61.49° (Equation
379



7.28): P,, = 268.0 N/m (Equation 7.37); P, = 127.9 N/m (Equation 7.38); and
P, =235.5 N/m (Equation 7.39)

(b)  Collar section,i=2: ¢',.=8.51% 0y, =350% P,.=117.5N/m; P,,.=96.1 N/'m;
and P, = 67.5 N/m

(¢)  Neck section,j=3: ¢', 3= 1.709% 043 =1.709% P,3=9.1 N/m; P,,;=9.1 N/m;
and P, , =03 N/m

(ii)  Total rubble load:
P., = 233.1 N/m (Equation 7.38); P . =303.3 N/m (Equation 7.39); P ,, =233.1

N/m (Equation 7.33); P,, = 727.4 N/m (Equation 7.34); and W, = W, = 1030.6 N/'m

(Equation 8.14)

(iii)  Equivalent rubble width:

Wy = Wo. =0.7802 m (Equation 8.12)

C.22 Rubble Load Per Unit Width on Side Facet
b,, =0.4375 m (Equation 8.18)

@ Load per unit width on individual sections:

(a)  Lowercopesection.j=1|:

i = 11.3° 0, = 61.49% P, = 1862 N/m; P, =88.9
N/m; and P, = 163.7 N/m
(®)  Collarsection.i=2: ¢',,=8.51% 0,,=350°; P,;=454 N/m; P,,,=37.1 N/im;

and P, = 26.IN/m
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()  Necksection.i=3: ¢',=1.709 o,y =1.709% P,;=0N/m; P,,=0N/m; and
P,.,=0N/m
(i) otal load:
P,,= 126.1 N/m; P,, = 189.8 N/m; P,, = 126.1 N/m; P,,=249.3 N/m; and W,, =
439.0 N/m (Equation 8.14 with V, = 0.02181 m® [Equation 8.19] and V,, = 0.02175 m*
[Equation 8.21])
(iii) ivalent rul Wi

w,, =0.559 m (Equation 8.23 with A_, =0.0698 m’)

C.3  Ice Load Caiculation (Chapter 9)

Ice loads for the center and the side facets are calculated separately.

C.3.1 Ice Load on Center Facet
(i) Beam cracking length:

Assuming the ice cracking pattern as shown in Figure 8.13, Equation 8.11 gives a
value of 0.1511 m for the beam cracking length, d...
(ii)  Ride-up and rubble heights, h...and b, :

h, = 0.5783 m (from Section C.2.1)

Since h, > (h, = h, = 0.473 m), then h,,, = 1.334 m (Equation 8.15), and h,_, =h, -
h,=0233m, h., = h, - h, =0.240 m, and by , = h,,, - h, = 0.861 m.
(iii) ~ Weight of ride-up jce, W, ;2
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(@

(b

(iv)

(a)

(b)

(c)

v)

(a)

(b)

()

W, is equal to 0.7802 m (from Section C.1).

Weight on individual sections: W, =404.7N: W, .=2973N; and W, =
955.2 N (Equation 8.17)
Total weight: W, =W, ,+W,,+W,.,=1657.IN

LetP,=0Nand o, = @, =90%

Neck section,i=3: P;=956.2 N (Equation 8.45)
Collar section, j = 2: P,=1207.7N
Lower cone section. i =1: P, =1519.2N

Force at waterline, Hr.Vr, HyVy:

Assume initial value of 6’ = 6, = 44.38 kPa;

1% iteration: V', =217.5 N/m (Equation 8.5); H, = 1350 N (Equation 8.48); V;=
1540 N (Equation 8.49); Vy, = 1729 N (Equation 8.50); § = 1.0435 (Equation 2.2);
H,, = 1804 N (Equation 8.51); Hyor = 3153 N (Equation 8.43); and Vyor = 2650N
(Equation 8.44).

Update the effect flexural strength for in-plane force: Substitute the old value of o'
into Gy, and calculate the new value of o’, using Equation 8.53. Repeat the above
Steps (a) and (b) until o', converges.

Final results: o', =68.11 kPa; V', =333.9 N/m; Hy=1349N; Vy=1540N; V,,

=1830N; Hy = 1902 N; Hror =3258 N; and Voo =2751 N.
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C.3.2 Ice Load on Side Facet
(i) Beam cracking length:
Assuming the ice cracking pattern as shown in Figure 8.13, Equation 8.1 gives a
value of 0.86744 m for the beam cracking length, d...
(i) Rubble height.h,.:
h,, = 0.4375 m (from Section C.2.2)
(iii) ~ Weight of ride-up ice, W,,:
Total weight: W,, , = 187.5 N (Equation 8.24)
Distributing the total weight of ride-up ice on the lowest section gives: W, =W,

=0Nand W, ,=W,,=1875N.

W, =0.559 m (from Section C.2.2.iii)

LetP,=0Nand o, = o, =90%
(a)  Necksection.i=3: P,=0N (Equation 8.45)
()  Collarsection.i=2: P,=6.6N
(c)  Lower cone section.i=|:

,=1744N
(v)  Force components along X' Z axes at waterline: Hr,Vr HuaVu:
Assume initial value of 6’, = 6, = 44.38 kPa;

(a)  1Ziteration: V', =217.5 N/m (Equation 8.5); H,=204.5 N (Equation 8.48); V;=
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251.0N (Equation 8.49); V,,=439.7N jon 8.50); §=1.0435 ion 2.2);

Hy, =458.8 N (Equation 8.51); Hyor =663.3 N (Equation 8.43); and Vyor =621.6
N (Equation 8.44).

(b)  Update the effect flexural strength for in-plane force: Substitute the old value of 6’
into oy, and calculate the new value of o’; using Equation 8.53. Repeat the above
Steps (a) and (b) until ¢’ converges.

(c)  Einalresults: o', =49.37kPa; V', =242.0N/m; H,;=204.5N; V;=2510N; V,,
=4609N; Hy, =481.0N; Hyor =685.5N; and Vyor = 6428 N.

(vi)  Force component of Hror.Along X-Z Axes:

Hror (osg xun = 383.8 N (Equation 8.36)

C.3.3 Total Ice Load on Cone
Vror wean =Vror e + 2Vr0r sieey = 4051 N

Hror woan =Hror os + ZHror . song xaum = 4041.5 N
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