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Abstract

Simple and i hods for di ining lower and upper bound limit

loads, based on two linear elastic finite element analyses, are presented in this

thesis. The hods that are loped for estimating lower bound limit
loads are designated as the m,-method and the r-node (redistribution node)
method. It is also shown that robust upper bound limit loads can be obtained

from i issible stress distributi that satisfy the integral mean

of the yield.

The m,-method is based on the extended variational theorem of Mura
et al., and utilizes the concept of leap-frogging to a near limit state and the
notion of reference volume. The lower bound multiplier, m,, is found to give
limit load estimates that are better than the classical.

The r-node method invokes the concept of redistribution nodes, refer-

ence stress and the primary stress as defined in the ASME Pressure Vessels

and Piping code. R-Nodes are load lled locati in a
component or a structure. As such r-nodes lie on a distribution of stresses
corresponding to primary stress as defined in the ASME code. On account

of its load-controlled nature, the “combined r-node equivalent stress” can



be identified with the reference stress, which is widely used in the integrity
assessment of components and structures.

‘The r-node method is also extended for analyzing two-layered beams and

two-layered cylindrical shell The d hods are applied
to a number of pressure ions of ical interest. The
results in all the cases are d with those obtained using inelastic finite
element analysis and the comparison is found to be good.

The concept of iso r-node stress is i duced in order to minimize the
weight of hanical p and A relationship is estab-

lished among the proposed minimum-weight method, the theorem of nesting
surfaces and the extended variational theorem. The proposed method is ap-
plied for minimizing the weight of an i i beam and for d

in a spherical vessel with a cylindrical nozzle.
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Chapter 1

Introduction

1.1 General Background

The primary objective in designing a mechanical or a structure

is to ensure its ability to perform the intended function at minimum capi-

tal and ional cost. ion by way of employing d analysis

newer ial isticated f i hods and strin-

gent quality control measures are some of the important requirements that
are necessary for improving product design and performance. During the
conceptual design stage, the designer should take into consideration all the
failure modes that the component may possibly encounter during operation.

An interesting discussion on the various failure modes and their significance,

and the different types of loading conditions is p by 2
While it is important to design components by taking into account all the
possible failure modes, it is also necessary, at the same time, to periodically

assess the “integrity” of mechanical components and structures. By this
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process, an estimate of the remaining life of critical components, especially
in power, petroleum and chemical plants can be obtained.
Among the various modes that may govern the failure of a component,

plastic collapse is important since it would lead to gross plastic deformation

which can be ially d; De ination of loads which result

in ional plasticity in leading to ined plastic flow

is termed as limit analysis. Limit analysis is important since it provides
a measure of the reserve strength that exists in structural members. Also,

knowledge of limit load is necessary for estimating the reference stress which

is widely used in the integrity of mechanical 3

Conventionally, limit loads are determined either analytically using the

ing theorems, or ically by using such as inelastic finite

element analysis, although efforts are currently being directed towards de-

veloping simplified hods.** Analytical hods of limit analysis have
evolved over a long period of time as compared to computer-aided numerical
techniques, such as inelastic finite element analysis, which are fairly recent.
An examination of the literature pertaining to limit analysis reveals that ana-
Ivtical solutions are available for only simple cases of loadings and geometric
configurations. Inelastic finite element analysis, on the otherhand, has its
own limitations because it requires enormous computational time, is an ex-
pensive process and produces a large amount of output data that has to be
interpreted properly in order to make practical sense. The above factors thus

create a need for the development of robust methods of limit analysis which



are simple, efficient and yet sufficientl S i of

such methods for performing limit analysis is the main aim of this thesis.

1.2 Limit Analysis of Mechanical
Components and Structures

The importance of limit analysis in structural design is well documented.”?
It is recognized that structures can withstand loads beyond the elastic limit
of structural materials and with plastic design, advantage can be taken of
the reserve strength that exists beyond the initial yielding. For statically in-

d inate structures, ially those with large redundancies, this reserve

strength is significant. Therefore, a knowledge of limit loads of components
and structures becomes useful to a designer, since it enables the determina-
tion of the reserve strength and also addresses the mode of failure associated

with load-controlled effects.

d in ials but also simpli:

Plastic design not only
the design procedure through the use of the so-called “bounding theorems.”
Lack of fit in structural connections, residual stresses and other fabrication
defects which are difficult to quantify do not affect plastic analysis, whereas it
is necessary to take these factors into account when elastic analysis is carried
out, thus making the latter more cumbersome. It is therefore more useful
to analyze structures that are on the “verge of collapse” and then establish

appropriate working levels of applied loads.



Conventionally, the bounding tt and inelastic finite element anal-

ysis are the methods that are adopted for determining limit loads. However,
both these methods have their own limitations - the former being intractable
and the latter being laborious and expensive.

The above mentioned factors have provided sufficient motivation to di-
rect efforts towards developing simpler and more general techniques that are
capable of providing acceptable results based on minimum input and cost,

using linear elastic analyses. In this thesis, robust methods for estimating

lower and upper bound limit loads are developed. The hod d
are based on linear elastic analyses and are intended to be generic in nature.
The material properties are assumed to be elastic perfectly-plastic and com-

ponents are i d to be subje d to “ ined loads”, i.e., 1i

loads that do not diminish because of structural deformation.

1.3 Need for Robust Techniques in Pressure
Component Design

In the design of pressure vessels by analysis, finite element analysis is
usually coupled with the use of appropriate rules contained in pressure vessel
codes such as the ASME Pressure Vessel and Boiler Code Sections III and
VIII (Division 2).!! The stresses obtained from linear elastic finite element
runs are partitioned into primary, secondary and peak stress categories in
order to apply appropriate stress limits. Each of these stress categories is

associated with distinct type of failure mechanisms such as gross distortion,
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ratchetting and fatigue, ively. The stress

however, b tedious when il results given by 2-D and 3-D

finite element analysis are considered.

In order to avoid the complexity of the stress categorization procedures,
the ASME code does, however, allow the designer to perform an elastic-
plastic or limit analysis of the component in order to arrive at allowable
loads. Plastic analysis, unlike elastic analysis, takes into account the stress
redistribution upon yield. For a component that fails by gross distortion due
to a single application of the load, a plastic analysis is the one that would
give the design pressure sought by the analyst. Design pressures that are
calculated by any other method are acceptable only as long as it is possible
to prove that the estimates obtained do not exceed those obtained on the
basis of plastic analysis.'? This additional requirement is hard to be satisfied
by design based on elastic analysis procedures for complex structures with
limited amount of inelastic or limit design data.

An investigation into the literature pertaining to limit analysis reveals
that a considerable amount of effort has been expended towards the ana-
Ivtical determination of limit loads of pressure components. The bounding

methods for determining limit loads may turn out to be mathematically in-

ble with i it for probli such as oblique nozzle-shell
and ions with Y ic loading and
boundary diti M , the of the method is affected by

the underlying simplifying assumptions.



With the advent of high speed and the of the
finite element technique, inelastic finite element analysis (FEA) has emerged
as a versatile tool for carrying out elastic-plastic analysis. Several commer-

cial pack 113 are avai for performing inelastic FEA. The method is

general and could be applied to a variety of engineering problems. A variety

of element types and solid i enable the si: ion of field
toa ble degree of

Nevertheless, inelastic finite element analysis also has some inherent draw-
backs as mentioned in the previous section. Apart from the method being

elaborate and time consuming, the merit of applying a detailed nonlinear

bl

analysis for a given is often due to g

b and the i of memory. The limit

load values obtained by nonlinear finite element analysis, although accepted
to be by far the most accurate, involves a higher cost per run. Therefore,
a detailed nonlinear analysis may not be a viable alternative in situations

where results for ical are all that is needed in a

stipulated time frame. This clearly shows the necessity for developing robust
approximate techniques, which are simple, reliable methods based on linear
elastic analysis and are capable of predicting inelastic response with accept-
able accuracy. The reduced modulus methods are the robust techniques that
are of interest in this thesis.

Robustness, in the present context, implies the ability to provide accept-

able results on the basis of less than reliable input, together with conceptual



insight and economy of computational effort.*

The major application areas of robust methods are:

-

Initial scoping and feasibility study,

e

Screening of critical areas in large complex systems
for further detailed analyses,

|-

“Sanity” checks on the results obtained by non-
linear analysis and

-~

. Approximate estimates of inelastic effects.

Robust methods are ideally suited for performing a preliminary analysis
or design of components so that the feasibility of a specified system can be
assessed. These methods can also be used for identifying critical locations
in complex systems which can be the source of potential problems. Robust
methods are sometimes the only recourse for an independent verification of

the results of a detailed nonlinear analysis of a complex problem. While it

is ized that the ional hods for the structures analyzed in
this thesis provide ble results, it is i ive to note that robust
hods are simple, i ive and ic alternatives.

1.4 Objectives of the thesis

The objectives of this thesis are to:
1. Propose simple and systematic procedures for determining the limit

loads of mechanical components and structures using linear elastic anal-



yses.

2. Investigate the conceptual basis and the functioning of the r-nodes
in depth, and propose the necessary guidelines for determining lower
bound limit loads.

@

Develop a d for reducing the stress ion in pressure

components on the basis of the iso r-node stress concept.

L

Apply the proposed methods to a variety of pressure component config-
urations and validate the methods by comparing with results obtained

using conventional techniques.

1.5 Organization of the Thesis

Chapter 1 addresses the importance of limit analysis. The limitations of
the existing methods are analyzed and the need for robust methods of limit
analysis is brought out. The objectives and the organization of the thesis
are also presented in this chapter. The chapter ends by providing a list of
original contributions.

The theoretical aspects pertaining to the research reported in this thesis
are explained in Chapter 2. The advantages of plastic design as compared
to elastic design are discussed and the usefulness of the upper and lower
bound limit loads are explained in this chapter. The extended variational
theorem proposed by Mura and co-workers'® is introduced and the underly-

ing formulations are reconstructed. Evolution of robust methods in pressure
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design is ined and the is of these hods into
limit analysis techniques is explored. The r-node and the elastic compensa-

stress

tion methods of limit load d ination are reviewed. The
method in pressure design is i d and the relationship be-
tween reference stress and limit load is highlighted.

Chapter 3 deals with the finite element implementation of the existing

robust limit analysis techniques based on linear elastic finite element analyses.
The variational formulation proposed by Mura et al.'*!6 is implemented and
the method is rendered suitable for directly obtaining lower bound limit
loads for generic structures using linear elastic finite element analyses stress
distributions. The “theorem of nesting surfaces” proposed by Calladine and
Drucker'™!® is also introduced as a direct way of determining the reference

stress using elastic stress distributions. A relationship between the integral

mean of the yield'® and the stress obtained by invoking the theorem
of nesting surfaces is also identified.
In Chapter 4, the underlying problems in carrying out a number of elas-

tic i ions are i i and are i into three types

based on their to elastic i i The ad and disad

tages of conventional limit analysis techniques are discussed from an engi-
neering standpoint. An improved method, named the m,-method, for deter-
mining lower bound limit loads is proposed in this chapter on the basis of the
extended lower bound theorem, and uses the concept of “leap-frogging” to a

near limit state and the notion of reference volume. The proposed method is



based on two linear elastic finite element analyses. The chapter is concluded
by determining the limit loads of a number of pressure component configu-
rations of practical significance and comparing the results with the existing
ones.

One of the ial i while d ining limit loads using the

r-node method lies in the identification of valid r-node peaks. The procedure
for identifying and eliminating virtual r-node peaks is explained and guide-
lines are provided for identifying valid r-node peaks in Chapter 5. The r-nodes

are investigated in depth in this chapter and aspects pertaining to conver-

gence of r-nodes are add d. Requi for obtaining lower bound
limit loads are provided and limit loads are determined for the components
considered in Chapter 4.

In Chapter 6, limit analysis of layered beams and layered cylindrical shells
are discussed. While the formulations for the beam problems are based on
the theory of bending, the theorem of nesting surfaces is invoked in order to
determine the r-nodes in cylindrical shells.

Minimum weight design is important in engineering since a substantial
amount of savings is possible by way of better utilization of material. Fur-

thermore, such a design would help in minimizing stress ations and

improving fatigue life. Chapter 7 utilizes the iso r-node concept for min-

imizing the weight of pressure Ni i les are also

illustrated in this chapter in order to demonstrate the applicability of the

method.



Chapter 9 summarizes the ad of the d hods. Sugges-

tions are also provided for carrying out future work along the lines of this

thesis.
The dices contain the and ANSYS! macros that are nec-
essary for solving the ical les. The Fortran in Appen-

dices A and B are used for determining the r-nodes and for minimizing the
weight of components, respectively. Appendix C contains the ANSYS list-
ings for the numerical examples. The ANSYS macros, written using ADPL!
(ANSYS DESIGN PARAMETRIC LANGUAGE) for carrying out the elas-
tic moduli modification, are given in Appendix D. Appendix E provides the
necessary macros for performing a number of elastic iterations. The Maple!®
listing that is necessary for implementing the formulations for the two-layered

cylinder is given in Appendix F.
1.6 Original Contributions

The following are the original contributions of this thesis:

 The extended variational theorem proposed by Mura et al.!® has been
implemented so that stress distributions obtained from linear elastic
finite element analyses could be directly used for estimating lower and

upper bound limit loads.

e A relationship is identified between the integral mean criterion pro-

posed by Mura et al. and the theorem of nesting surfaces.
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e The underlying problems behind carrying out a number of elastic it-
erations are explored in this thesis and on this basis, mechanical com-
ponents and structures are classified into three distinct categories de-
pending on their response to elastic moduli changes. Methods are also
proposed to overcome the stability related problems in carrying out

repeated elastic iterations.

The concept of reference volume is introduced in an attempt to iso-
late regions in structures that most likely do not participate in plastic
collapse. Using this, a procedure for determining upper bound limit
loads on the basis of the integral mean of the yield and the theorem of
nesting surfaces is proposed.

A method, desi| d as the m,-method, is d for

the lower bound limit loads of mechanical components. The method
utilizes the concept of leap-frogging to a near limit state and the notion
of reference volume, in order to obtain improved lower bound limit loads

on the basis of two linear elastic analyses.

The properties of r-nodes are investigated in detail and aspects per-
taining to lower bound limit loads are discussed. Guidelines are also
provided for determining the valid r-node peaks that are responsible

for collapse.

An r-node is idealized as a mechanical model. Based on this ideal-

ization, simple conceptual models that depict the stress redistribution

12



during collapse are proposed.

e Procedures for determining the limit loads of two-layered beams and
two-layered axisymmetric cylindiical shell structures using r-nodes are
proposed.

e The concept of iso r-nodes is d for d ining the

weight of

zle reinforcements.

e A number of ical of varying ity are worked out
and the results are with i hni It
is d that the d hods are robust in nature and
can be used for lyzing complex probl with mini effort and
resources.
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Chapter 2

Theoretical Background

2.1 Introduction

T ical aspects to the forth ing ch of this thesis
are presented here. In the era prior to the introduction of finite element
analysis, robust i i were L in analysis and design

hodol It was id d flici for all ical to es-

timate load bearing capacity of engineered structures that were below the
actual value. Obtaining a lower bound estimate of limit loads was seen by

asa ic way of ing safe designs. However, when esti-

mating power requirements for metal cutting, for instance, the upper bound
values of loads were considered to be appropriate. Conservative estimates of
load were determined by invoking the upper bound theorem. The classical
lower and upper bound theorems of plasticity still play an important role
in engineering design although today’s powerful computational tools can be

used to great effect.
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Alternate formulations to the lower and upper bound theorems that were
based on variational concepts were proposed by Mura et al.!*!'¢ By making

stress distributions and “ki ically admis-

use of “
sible” strain distributions and invoking the notion of integral mean of yield,
pseudoelastic distributions of stresses that exceed yield were utilized for de-

termining upper and lower bound limit loads.

Mura et al.' applied their variational method for ining the upper
and lower bound limit loads of a uniaxial specimen. Their results compared
well with the results obtained using the classical theorems of limit analysis.
In this thesis the Mura’s lower bound theorem is implemented for directly
using the stress distributions obtained from finite element analysis, for a
generic structure. It is also shown that an upper bound multiplier can be
obtained from stress distributions that satisfy the integral mean of the yield
condition.

Calladine and Drucker!” proposed the “theorem of nesting surfaces” and
obtained an expression for the reference stress by making use of a stress-strain

relationship of the type € = Bo™ and the concept of average dissipation. They

d d that the refe stress so obtained is strictly

and increases with the exponent n. It is bounded by the result for n = 1
(elastic material) and above by the limiting functional as n — oco (perfectly-
plastic).!® The reference stress obtained using the theorem of nesting surfaces
could also be used for approximate estimation of limit loads, though it would

be shown in this chapter that such estimates are unconservative in nature.
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Despite the availability of various theories and advances in high speed

computing for limit load ination, the ication of ional anal-
ysis hods such as boundi and inelastic finite element anal
have proved to be elab ive and ti i For instance,

a recent paper by Berak and Gerdeen? proposed an effective technique us-
ing finite element analysis for simple two-dimensional problems and summa-
rized that “...this procedure is particularly applicable to the solution of com-
plex problems using parallel processing on a supercomputer.” This clearly
demonstrates the need for developing simplified methods if one is to take
full advantage of the benefits of inelastic effects without a great deal of ef-

of limit

fort. Therefore, d of robust si
that give acceptable results at minimum time and cost become useful during
the initial stages of the design process. The modulus adjustment method,
originally developed in order to assess inelastic effects such as follow-up in

hanical and was the pioneering work in this di-

rection.?!?2 Subsequent efforts by Marriott,* Seshadri® and Mackenzie et al.5

have led to the devel of robust hods for estimating limit loads on

the basis of linear elastic finite element analyses.

2.2 Elastic Analysis and Plastic Design

To carry out a complete stress analysis of mechanical components or struc-

tures, it is necessary to satisfy the equilibrium equations and the traction

boundary conditions. Next, the strain or geometric pati
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bility ditions and the ic boundary ditions should be satisfied.

Finally, the stresses must be related to the strains by appropriate constitutive

relations.
Both the equilibrium ions and sti displ: 1 are in-
d dent of the ial under id i ‘While the equilibrium equa-

tion is an expression of a physical law, the compatibility relations are ge-
ometric descriptions that express the aspect of continuity of the structure.
Irrespective of whether the behavior of the structure is linear or non-linear,
these conditions are valid. The difference between an elastic and an inelastic

problem is th the ituti i ‘While this i ip is

linear in the elastic range, it will generally be non-linear in the plastic range.
This aspect can be understood by examining the uniaxial stress-strain curve
illustrated in Figure 2.1.

In the elastic range the strains are uniquely determined by the state of
stress regardless of how this stress state was reached. In the plastic range.
however, the strains are in general not uniquely determined by the stresses
but rather by the history of loading or in other words how the stress state
was reached.

The elastic stress-strain relationship is given by

_l+v

& =~ T~ L (2.1)

E

where ¢;; is the strain, 7; is the stress, E is the Young’s modulus, v is the

Poisson’s ratio and §;; is the Kronecker’s delta.
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Stress —— =

ELASTIC PERFECTLY—PLASTIC IDEALIZATION

(2)

(1) ELASTIC
(2) ELASTIC PERFECTLY—PLASTIC
(3) STRAIN HARDENING

Strain ——=

Figure 2.1: Uniaxial Stress-Strain Curve



The plastic ain relationshij iders the plastic strain incre-

ment which, at any instant of loading, is ional to the i

stress deviation, i.e.,
de?; = s;5 dA. (2.2)

In this equation, s;; is the stress deviator tensor and dA is a non-negative

constant which might vary throughout the loading history and is determined
from the yield criterion. The above equation is called the “Prandtl-Reuss”
equation.

Structures designed using the theory of elasticity are usually based on
the allowable stress concept. The structure is designed so that the max-
imum stress as calculated for certain specified conditions of service is less
than a stipulated value of stress defined as the “allowable stress.” The mar-
gin between the allowable stress and the ultimate stress may be reduced in
proportion to the certainty of the service conditions, intrinsic reliability of
the material and the accuracy of the stress analysis etc..?®

The allowable stress is usually based on the yield stress. The design stress
is a fraction of the allowable stress. Design of the structure is carried out
so that the maximum stress can be no more than the stipulated allowable
stress.

It is apparent, however, that the important consideration in an engineer-
ing structure is not whether the yield stress has been exceeded at some point,
but whether the structure as a whole can carry out the intended function.

There is no reason not to allow some parts of the structure to exceed yield
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as long as there is adequate reserve strength in the entire structure. In many

1 i local plastic flow will occur at stress rais-

ers and at locations of discontinuity in the geometry. Residual stresses. while
affecting partially plastic behavior of a structure, do not affect the plastic
collapse load. Consequently, it makes sense to design a structure based on
the limiting load at which it will collapse (uncontained plastic flow occurs).

The limit load can be used as a realistic basis for assessing the permissible
working load on a structure through the use of a factor of safety. Different
types of failures such as fatigue, fracture, or buckling may govern the design.
In some cases the magnitude of deflection (elastic or plastic) is itself a crite-
rion, rather than the imminence of plastic collapse. Avoidance of failure by
plastic collapse is the governing criterion in the design of many structures,

and the devel of efficient hods for ing the collapse load has

in recent years been of immense interest to engineers.2*

2.3 Classical Lower and Upper Bound
Theorems

2.3.1 Statically Admissible Stress Fields
A stress field Q,Q,...,Qn defined throughout a continuum is called
statically admissible for the given loads if, in addition to satisfying the yield

conditions, it represents a state of equilibrium under the given loads. Such a

field is safe if at each point of the field, the state of stress is represented by
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a point inside the yield surface.

The lower bound theorem states that, if any stress distribution through-
out the structure can be found which is everywhere in equilibrium internally
and balances certain external loads and at the same time does not violate
the yield condition, those loads will be carried safely by the structure.”® The
limit load evaluated using this theorem is lower than the exact value of the

limit load and therefore can be used for d

that are safe against collapse.

2.3.2 Kinematically Admissible Velocity Fields

A strain rate field ¢y, 4, . . ., ¢ defined throughout a continuum is called
kinematically admissible for the given conditions of support, if it is derived
from a velocity field which is compatible with the conditions of support and
certain continuity conditions. Such a strain field is unsafe for the given loads.
if the total rate of energy dissipated is less than the rate at which the given
loads do work on the generating velocities.®

The upper bound theorem states that, if an estimate of the plastic collapse
load of a structure is made by equating the internal rate of dissipation of
energy to the rate at which the external forces do work in any postulated
mechanism of deformation of the body, the estimate will be either correct, or
high.?® In processes such as metal forming and metal cutting, it is necessary

to determine the load that is capable of performing the given

Determination of limit loads using the upper bound theorem ensures that
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the limit load estimates obtained can cause “plastic flow” in the component.

2.3.3 Application of Lower and Upper Bound
Theorems - Determination of the Limit
Pressure for a Thick-Walled Cylinder

2.3.3.1 Lower Bound Limit Pressure

The lower bound theorem can be illustrated by considering the problem
of limit load determination of a thick-walled cylinder (Figure 2.2) subjected

to uniform internal pressure.

The ilibri ion for the thick-walled cylinder can be expressed
as:
do, o09—o0,
— = 2.
dr T 23)

where o, and oy are respectively the radial and hoop stresses and r is the
radius.

The yield condition is assumed to be governed by the Tresca’s vield cri-
terion. which is given by

lo. — ol =Y. (2.4)

Since the equilibrium conditions hold good even at impending plastic

collapse. ion (2.4) can be substi into ion (2.3) resulting in
do, Y
T 0, (2.5)

which on integrating leads to
or=Ylnr+C. (2.6)
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Figure 2.2: Thick-Walled Cylinder subjected to Uniform Internal
Pressure
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where C is an arbitrary constant of integration.

The boundary conditions can be expressed as:
o = —P at r=a
27)
o = 0 at r=b
where a and b are the inside and outside radii of the cylinder respectively
and P is the internal pressure.
Assuming the cylinder to be completely plastic at collapse and applying

equations (2.7) on equation (2.6),

Yhha+C = —Pc
(2.8)
Yinb+C = 0
from which the limit pressure can be obtained as
Pec=YIn ‘%A (2.9)

Alternately, in situations where such direct integration of the equilibrium

equation as in equation (2.5) is not possible, it becomes necessary to assume

some icall issible stress distribution and proceed with the lower

bound limit load calculations. The closer the assumed stress distribution is
to the limit type, the more accurate would be the solution.
For the problem under consideration, a linear radial stress field can be
assumed as
o,=Ar+B (2.10)
Substituting the boundary conditions given by equation (2.7) in equa-
tion (2.10) the radial stress can be expressed as:
o, ==P(b-r1)/(b—a) asr<h (2.11)
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The limit pressure can be derived from equations (2.3) and (2.11) as
09 — 0, = Pr/(b—a). (2.12)

Clearly |og — o, has its greatest value at r = b, so for the yield condition
not to be violated anywhere, but just to be reached at r = b, the lower bound

limit pressure can be determined as:
Prc =Y(1—a/b). (2.13)
2.3.3.2 Upper Bound Limit Pressure
An upper bound limit load can be determined by considering any kine-
matically admissible velocity field. say, in this case based on the incompress-

ibility condition, i.e.,

&+eg+e.=0 (2.14)

where. €, €5 and ¢; are the radial, hoop and the axial strains. respectively.

For a plane strain condition, equation (2.14) reduces to
& +é€ =0. (2.15)

The strains can be expressed in terms of the radial displacement field u(r)
as:

Bt : = (2.16)

o (2.17)



which on integrating becomes
Inr=-khnu+InC

or

u=

1

(2.18)

(2.19)

The arbitrary constant C can be determined by substituting the condition.

at r = a, u = u,, which leads to

U@

Therefore, the strain field is given by

UgQ U@
Erz_._a2— and E’ziz_‘
5 T

The internal energy dissipation per unit volume can be expressed as

D = ¢og+ €0
U,
= —(os—or)
7

uga :
Y at yield.
=

The internal dissipation per unit length of the cylinder is given by
. b b
Wi = [ D2ar dr = 2rmaYu,ln~.

The external work done per unit length of the cylinder is

Weze = 2maPittg.
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Equating the internal dissipation of energy to the external work. the upper

bound limit pressure can be obtained as
b %
Poc=YnZ (2.25)

which in this case is the same as the equilibrium solution given by equa-
tion (2.9). Therefore it is evident that the limit load obtained is exact. That
the value of limit pressure given by equation (2.13) is less than that given by

the exact solution [equation (2.9)] for b > a is shown in Figure 2.3.

2.4 Extended Variational Theorems of Limit

Analysis
Mura and Lee'> have demonstrated by means of the variational princi-
ple that the safety factor, the ki ically admissit iplier and the
dmissibl iplier for a or structure made out of a

perfectly plastic material, and subjected to prescribed surface tractions are
actually extremum values of the same functional under different constraint
conditions.

In lower bound limit analysis, the statically admissible stress field cannot
lie outside of the hypersurface of the yield criterion. Mura et al.'® showed
that such a requirement can be eliminated if the integral mean of the yield
criterion is used. They showed that the safety factor, m, can be obtained by

dering the following functional, F, ionary, i.e.,:'S

1
Flowsigo, Romond] = [ syglog +0iaV + [ obyjav
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Figure 2.3: Comparison of Exact and Lower Bound Limit Loads of
a Thick-Walled Cylinder



—/‘/&v,ds—m (/ TividS — 1)
—/V#[f(s.-,-) +¢%lav (2.26)

with p > 0.

In the above equation, v; is the velocity, s;; is the deviatoric stress. and

o.R,.m,p and o are the L i Itipli The yield criterion is given
by
1 2 ”
f(sif) = 58S = k2. (2.27)
The total surface. S, of the structure is divided into S, where the traction

is prescribed and Sy, where the velocity is prescribed.

Taking the variation of F' leads to

. 1 5 1

6F = [ By (i + 1)V + /V i 6y + bu5.)dV
- [ GobijusdV + A 0b6,,dV — /s 8RS - /s  Riuds
= % = =3 ) - 2 -]

om (/ST TrwidS —1) m [, Tduds ~ [ 6ulf(sy) + ot
af . .

7['umdsl,d‘ —/;_u2¢§dzdv. (2.28)

Integrating the above equation by parts gives the natural conditions

%(v..,-*-v,.;) = ”66;:] in V, (2.29)

g >0 inV, (2.30)
(55 +650), = 0 in V, (2.31)
(sij +di0)n; = mT; on Sr (2.32)
(85 +650)n; = Ri on Sy, (2.33)
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f(si)+6* = 0 in V, (2.34)

up = 0in V, (2.35)

by = 0 in V, (2.36)

v = 0 on Sy, (2.37)

/sr TwdS = 1. (2.38)

Equation (2.29) is the plastic potential flow, equations (2.31) to (2.33)
are the equilibrium conditions, and equations (2.36) to (2.38) define a kine-
matically admissible velocity field. Equations (2.34) and (2.35) define the

admissible domain of the stress space, i.e.,

fls) = 0 if p>0 (2.39)

flsy) € 0 if p=0 (2.40)

Obviously, equations (2.29) to (2.38) are the conditions for incipient plas-
tic flow. Condition (2.33) can be used to determine R;, the reaction at the
boundary, which is arbitrary. Condition (2.38) is no more restrictive than
the requirement

/ﬁ TwidS > 0. (2.41)
Setting the integral equal to unity only determines the otherwise arbitrary
size of the velocity vector.

Considering the arbitrary arguments

v =v; + 0w, $Y = sij + 0545, .. (2.42)
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in which v, s;5, . . . denote the i 'y set of of ion (2.26)

and dv;, 855, .. - etc. are the di iati If the of

(2.26) are i d by ion (2.42), taking into account the

diti ified by i (2.29) to (2.38) for vy, sy, etc., F' can be
written as

P, s 0°, By, 6] = m+ [ 8o (Gusg + 60V
£ L b0bi;8v;5dV — /s SRibuidS — 6m /s TidudS
1
-/ u{ias;jasi,+(5¢)=}¢v- [ou{rep+@rlav. @)

Making use of the boundary conditions given by equations (2.31), (2.32),

(2.33). the requirements for a statically admissible stress field, viz.,

(s +650°;=0 in V, (2.44)
(s +6i50°)n; =m°T;  on  Sr, (2.45)

and stipulating
(sf; +di;;0°)n; =R} on Sy, (2.46)

equation (2.26) can be rewritten as
L ,
Fem-[u {555.-,-63., % (a«s)*}dv - [ou{ssp) +@r}av. @

In equation (2.46), R? denotes the reaction of the stress field on Sy. Also,
integrating equation (2.26) with arbitrary arguments v¢, s%, 0°, R¢, m°, p°
and ¢° and i ditions given by fons (2.44), (2.45) and (2.46),
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the following ion can be
Fe=m®— [ u{f(s5) + @ }av. (2.48)

The integral mean of yield can be expressed as
L {#s) + @1}av =0 (2.49)

where

e >0. (2.50)

Substituting equation (2.49) in equation (2.48) results in
F=m°. (2.51)

Since p° = p + 6, equation (2.49) can be written as
~ /v S {f(sy) + (72} av = /V w{f(s3) +(¢)?} av. (2.52)
Equation (2.52) can be substituted in equation (2.47) which can be rewrit-

ten as
1 ; B

Fem- [ 4 {555‘,55,, * (6¢)2} v+ [ u{fs3)+ @P}av. @53)
Since the second term on the right hand side of equation (2.53) is always a

positive quantity, equations (2.51) and (2.53) can be related by an inequality

as

55
In

m+ [ u{f(s5) + (@)} av
< me+max{f(sg) + ()} [ pav. (2549
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where max{f(s%) + (¢°)?} > 0 because of conditions (2.49) and (2.50).
The safety factor which can be expressed as

m=m /s _TwdS = /s (i + 8j0)nudS

i+ 8s0Y0isaV + [ (5 + o)z
= / s~»i(v- -+u--)dV=/ sv-ysvvdV=2k2/ pdv,
v ‘12 W el v b land ) v 1
can be rearranged as
/V udV = m/2K2. (2.55)
From equations (2.54) and (2.55) the expression for the lower bound mul-

tiplier (') for the safety factor (m) can be obtained as

me

S T ma (e F @ S ™ (2.56)
which holds for any set of sfj, 0°, m®, p° and ¢° satisfying
(s +850°); = 0 in V, (2.57)
(s +850%n; = m°T; on Sr, (2.58)
[t + @ = o, _—
w2 0 (2.60)

Equation (2.56) includes the classical definition of the lower bound, as is
seen by taking equation (2.49) in the special form
f(sg) + (872 =0. (2.61)
In this case, max{f(s;)} vanishes and equation (2.56) reduces to
o

me <m. (2.62)
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2.5 Evolution of Robust Methods in
Pressure Component Design

The use of simplified hods for pressure design started with

the devel of reduced dulus p d for ing inelastic effects
in pressure components. The reduced modulus method was first introduced
by Jones and Dhalla in 1981 as a robust procedure for classifying local clamp
induced stresses in Liquid Metal Fast Breeder Reactors.??* They argued
that clamp induced stresses could be categorized as secondary by showing

that they redistribute on account of ial or ic non-li ity. By

systematically reducing the elastic modulus, the inelastic response of this

problem was investigated. It was found that the reduced modulus approach

ily simulated the i

By performing repeated elastic analyses and by judiciously modifying the
elastic modulus at every stage, Dhalla? and Severud?” analyzed the inelastic

and foll p ch istics of piping systems.

Thus having understood that it is possible to use linear elastic analy-

ses for simulating inelastic effects, efforts were directed towards developing

es for izing stresses.”® Sub Marriott* are-

duced elastic modulus procedure in 1988 for determining the primary stress
of pressure components, which also opened up the possibility of determining

limit loads.
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Formal development of the reduced modul dure was ical
carried out for the first time by Seshadri.®> The method, called the GLOSS
(Generalized Local Stress Strain) analysis, was applied by Seshadri and his
co-workers to a number of areas. An elastic analysis was performed and
all the elements having equivalent stress® greater than the material yield
stress were identified. Assuming pure deformation control and an elastic
perfectly plastic material, inelasticity would cause the stress to relax to o,
while maintaining the strain at the original level. The modulus modification

scheme used by Seshadri is given by:

E,= E? (2.63)
=

A simplified method was by Seshadri?®3° for estimating creep dam-
age in pressurized components in the presence of elastic follow-up. The pro-
cedure was also extended to elevated temperature component design. The

procedure d by Seshadri d that inelastic effects could be

simulated with sufficient accuracy®!-* and subsequently stress categorization

methods were proposed.® The terms GLOSS plot (Figure 2.4) and GLOSS

analysis were i d into the modul d bulary by Seshadri.

“Throughout this thesis, the term equivalent stress refers to the von Mises equivalent
stress, unless otherwise stated.
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2.6 Robust Methods of Limit Load
Determination

2.6.1 Limit Analysis based on Partial Elastic
Modulus Modification

One of the main challenges in determining lower bound limit loads is in
identifying a stress field that satisfies all the requirements that are neces-
sary for “static admissibility” (Section 2.3.1). However, this problem can be
circumvented by using stress distributions obtained from linear elastic finite
element analyses. If the applied loads are greater than the loads correspond-
ing to the first yield, the stress redistribution that takes place on account
of inelastic effects should also be accounted for. In the procedure adopted
by Marriott,* this is made possible by identifying the elements that have ex-
ceeded the allowable stress limit in a discretized structure. The elastic moduli

dified

on an el t-by-el t basis and

of these are suitably
a second elastic analysis is carried out. In this manner, the elastic moduli
are changed after every elastic analysis and a number of elastic iterations are
performed. The stress field obtained as a result of this satisfies all the condi-

tions that are necessary for being i issible. Since this e
requires that the stresses are below yield, all the requirements necessary for
lower bound limit analysis are satisfied. If the value of the maximum von
Mises equivalent stress converges to a value less than the yield stress after

some iterations, then the applied load can be assumed to be a lower bound
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on the exact limit load.
It should, however, be noted that the procedure adopted by Marriott was

primarily intended for finding the stress distribution with the least

stress for a given value of applied load, rather than determining the limit load

itself. Sel ftening of the does not assure that the converged
value of stress would always be less than the code allowable. Since only

specified portions of the are j to moduli i ion, this

procedure does not entirely characterize the actual stress redistribution that

would occur in a component during plastic collapse.

2.6.2 The R-Node Method

The iterative procedure proposed by Marriott* for determining lower
bound limit loads has a number of limitations as explained in the previ-
ous section. Nevertheless, the procedure was a pioneering effort that opened
up the possibility of determining limit loads on the basis of linear elastic
analyses.

Cognizant of the practical difficulties that the analyst might encounter in

carrying out a number of elastic iterations, Seshadri,* in 1991, proposed an

dure for ining limit loads on the basis of two linear

elastic analyses. This method, referred to as the GLOSS R-Node method,
incorporated the concept of redistribution nodes and the reference stress

method for determining limit loads.
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R-Nodes are load: olled I ions within a structure. Therefore, the

stresses at the r-nodes are directly proportional to the external tractions ir-
respective of the material constitutive relations. Hence any two stress distri-
butions satisfying equilibrium with externally applied tractions will intersect
at the r-nodes. This feature is useful in the practical determination of the
r-nodes and the corresponding r-node equivalent stresses.

When widespread inelastic action (plasticity or creep) occurs, involving

entire cross-secti the ically i i stresses undergo a redistri-

bution except at the r-nodes which are almost statically determinate loca-

tions.

Plastic Coll of Ci and Str Consider a beam of

cre tion that is subjected to a bending moment M. If the

material constitutive relationship is given by € = Bo™, where B and n are
material parameters, then n = 1 corresponds to elastic behavior and n — co
corresponds to perfect plasticity. The stationary stress distributions across
the beam for various values of n are shown in Figure 2.5. The intersection of
stress distributions for n =1 and n — oo is designated as the redistribution
nodes or simply r-nodes. The stress distributions for all other n's are assumed
to pass through the r-nodes, i.e., points A and B in Figure 2.5.

Since the stresses at points A and B are almost invariant, they can be

idered to be load: i.e., they are set up in order to equilibriate

externally applied loads and moments. Therefore, the r-nodes are located on
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a “limit type” of stress distribution. Since r-node stresses are load-controlled
(Te)r—node = TM, (2.64)

where v is a constant of proportionality that depends on the geometry and
loading. For an elastic perfectly plastic material, when (0¢)r—node approaches
the yield stress (o,) corresponding to the von Mises criterion, the applied

moment will correspond to the collapse moment, i.e.,

oy =M. (2.65)
Eliminating y between i (2.64) and (2.65),
Mo,
M= —%¥Y— 2.66
£ Oe)ronode (2:66)

The collapse process can be represented by a single bar r-node model
(locations A and B). For an indeterminate beam (Figure 2.6), for instance,
where multiple plastic hinges form leading to plastic collapse, a multibar
model can be used to represent the collapse process. This model enables
“transfer of loads” to appropriate bars until collapse occurs. For such struc-

tures with generalized loads,

ho- g
" (2:67)
@ = [2epan
where
N
2 ons
= (2.68)
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(a) BEAM WITH A DISTRIBUTED LOAD

Figure 2.6: Indeterminate Beam subjected to Uniform Load - Col-
lapse Mechanism
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and op;'s are the r-node peaks.
The r-node method has been applied to a number of two-dimensional me-

chanical components and structures such as frames, arches® 35 and shells.3*

to

Limit loads of th di ional Y ic plate
a variety of loading is made possible by plotting r-node stress surfaces.** The
limit load estimates obtained using this method are found to compare well
with analytical and inelastic finite element analysis results. Although the
r-node method has consistently been giving conservative estimates of limit
loads, rigorous guidelines for ensuring that the limit loads obtained are lower

bounds would be of i use for ici i In this thesis such

guidelines are proposed and the properties and the usefulness of the r-nodes

are investigated in detail.

2.6.3 The Elastic Compensation Method

Mackenzie and Boyle® proposed a method in 1992 for determining limit
loads based on iterative elastic analysis and called it the elastic compensa-
tion method. In this method the Seshadri’s® (r-node) method of limit load
determination is adopted for modifying the elastic modulus of elements and
at the same time repeated elastic iterations similar to that of Marriott’s*

method are carried out.

The elastic ion method typically aims at ing a statically
admissible stress field having a maximum equivalent stress value which is min-

imum for a given set of elastic iterations (typically six to ten). This value of
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maximum stress is used for determining the limit load using the conventional
lower bound theorem.®*":3 This method however has disadvantages since
it has to make use of a number of elastic iterations. Moreover, even after

a number of elastic i ions there is no that the Iting stress

distribution would correspond to limit type® of a stress distribution. While
the stresses relax to almost limit type in case of problems such as a beam
subjected to bending® and a thick-walled cylinder subjected to uniform inter-
nal pressure, in case of problems such as a torispherical head under internal
pressure, this method requires modifications in order to achieve a satisfactory
trend in stress redistribution.®®

2.6.4 Strain-Hardening and Strain-Softening: Limit
Load Approximations

for d ining limit loads

The elastic modul di

idealize the material behaviour to be elastic p ly-plastic. However. this

assumption may lead to overly conservative limit load estimates for com-
ponents that are made out of strain-hardening materials (Figure 2.7). The
reverse would be the case if strain-softening materials are used for compo-
nent fabrication. A practical way for applying the limit analysis procedures
in such situations would be to assume a nominal yield strength (o}) for per-

forming the computations. The value of this nominal yield strength may

“Limit type stress distribution can be defined as the distribution of stress corresponding
to an arbitrary traction, P, such that this stress distribution, when scaled by a factor, m,
becomes equal to the stress distribution at impending collapse. The scaling factor, m,
otherwise known as the safety factor, is the ratio of a generic surface traction, P.zece at
the instant of impending plastic flow to the applied surface traction (P).
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typically be the value of the flow stress, i.e., the arithmetic mean of the yield
and the ultimate stresses. Alternately, this value can be assumed to corre-
spond to some limiting value of strain (say, 2-3% or Sn./E) in the uniaxial

stress-strain curve.

2.7 Reference Stress Method in Pressure
Component Design

The reference stress method is a simple technique wherein the effect of
uncertainties in the material data on the behavior of structures in creep are
reduced by relating the structural behavior to a simple tension test conducted
at the “reference stress”. By this method, the deflection § at a point in a

structure at some time , can be expressed as
5(ta) = B (to), (2.69)

where J is a geometric scaling factor that depends on the structure and the
boundary conditions, €C(t,) is the creep strain at time t, as obtained in a
creep test performed on a sample of the material at the reference stress oz.
Conventionally, experimental data are used to construct constitutive equa-

tions which are then used for ing the necessary calcula-

tions. However, the inherent inconsistency of the available test data together

with an idealized form of the itutive law are likely to produce errors

in the final prediction of the structural behavior.?® While it is possible to

control the inties arising in the case of linear constitutive
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theories, the same may not be the case for non-linear constitutive theories.
which tend to amplify the errors.

The reference stress method fundamentally aims at controlling the effect

of these errors by identifying a icular uniaxial test, perf d at the “ref-
erence stress”, which could satisfactorily characterize the structural behavior
under consideration. Thus the uncertainties in the available experimental
data pertaining to creep are eliminated. The reference stress method is. of
course, only an approximate method with possibilities of errors arising out of
anisotropy and multiaxiality of the structure. Nevertheless, considering the
advantages of the method, a practicing engineer would be willing to accept
this compromise at least during the early stages of design.

Among the early investigators of the reference stress method are Soder-
berg,*® who calculated the reference stress for pressurized tubes and Schulte,*!
who observed skeletal points in creeping beams and estimated their deflec-
tions from uniaxial tests. Marriott and Leckie*? observed that there are

points in undergoing ient creep where the stress does not

change with time. Such points are called as skeletal points. Anderson*® an-
alyzed creeping beams with various end conditions. Analytical methods for

identifying the reference stress were proposed by Mackenzie,* Sim45-46 and

Johnson.” The af ioned hods involve that rely on the
existence of an analytical solution for the creep problem which is available

only for simple geometries and loading.
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Noting that the refe stress is indi dent of the creep exp

Sim*4 reasoned that as the creep exponent approaches infinity, the stress
distribution will continue to pass through the point that defines it. Since
the solution for an infinite creep exponent is analogous to the limit solution
corresponding to perfect icity, Sim d that the refe stress

can be obtained from

TR, ( 1}’: ) Oy (2.70)

where P is the load on the structure, P is the limit load, and o, is the yield
stress. To apply the above formula, the limit load is assumed to be available.

In 1991, Seshadri® introduced the concept of r-nodes (Section 2.6.2) in
an attempt to directly determine the reference stress and the limit loads
of mechanical components and structures on the basis of two linear elastic
analyses. In this method, stress redistribution similar to creep stress redistri-
bution is simulated by suitably modifying the elastic moduli of the elements
in the structure. The equivalent stresses at r-nodes does not change in the
process. The invariant behavior of the r-node stress and the reference stress
relates the two methods. As such, r-nodes lie on a distribution of stresses
that corresponds to primary stresses as defined in the ASME codes.!* The

di d of r-nodes, limit loads, reference stress and

the ASME stress classification concepts are unified in a paper by Seshadri
and Marriott.
In the last several decades, there has been a significant development of the

reference stress method, mainly in the United Kingdom.*® The “combined r-
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node effective stress”, which can be obtained by the r-node method, can be

e

identified with the ref stress. The ination of the stress

using the r-node method is useful since it has application in the integrity

of mechanical and structures as described in Nuclear

Electric’s R5 and R6 d 49,50 The include creep damage,

low cycle fatigue, elastic-plastic fracture and stress-classification.
2.8 Theorem of Nesting Surfaces

The reference stress can be interpreted in another manner on the basis of

energy dissipati id i The dissipation rate in a ora

structure under a system of loads is equated to the average dissipation rate
at the “reference stress state,”
orerV = /V oieidV. (2.71)
Using equivalent stresses and strains to represent three-dimensional stress-
states. and stipulating that steady state creep is of the form ¢ = Bo™,
TV = /; oy, (2.72)
from which the reference stress can be obtained as:!7!8
1 L]
— [‘—, foz dv] . (2.73)
The theorem of “nesting surfaces” due to Calladine and Drucker!? states
that the functional
1 n+l ";H
or=Faloy) =[5 [ o2 dv] (2.74)
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is strictly i i ing with the n. It is bounded below

by the result of n = 1 (elastic) and above by the limiting functional as n — oc

(perfect ). Thus, if one iders the hypersurfaces Fy(0;;) = con-
stant. in the stress space, then they must “nest” inside each other for in-
creasing 7.

For a pin-jointed two-bar structure shown in Figure 2.8, the following
development will clarify the aforementioned concepts:

The stresses in bars 1 and 2 can be expressed as

& = Q+Q
Av2 '
(2.75)
o = @Q-Q
AVZ

For the simple statically determinate structure,

Fy(o1,00) = [é/‘_‘,:ﬂdv]#,

_ |l (@Qi+@ 11— mit]
= [5( or talas G

where the total volume of the bars I = 2LA.

If Fo(01,07) is further examined, it can be seen that, for @, Q, > 0:

For n =1 (elastic):

Q

Qe = Fa(on,02) = (A\/f (2.77)
For n — oo (perfectly-plastic):
- L, @
Qe = Fy(o1,02) = ;] + v (2.78)
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(b) Nesting Surfaces in Generalized Load
Space for the Two-bar Structure

Figure 2.7: Nesting Surfaces for a Pin-Jointed Two-Bar Struc-
ture
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It can be shown that
Qelpmy £ Qe < lim (Qe). (2.79)

The nesting surfaces for the two-bar pin-jointed structure can be obtained
as shown in Figure 2.8.
Thus, the functional F,(01,02) = Q.(Q1,Q2) is a strictly monotonic

function that i with n. G ically, the hy f:
Q. = constant, must “nest” inside each other for increasing n. They are
enveloped above by the surface for n = 1 and below by the limit surface

n — oo, which is the yield surface in generalized forces constructed on the

that the dition of icity is Q. =
2.9 Closure

It can be seen that robust concepts such as reference stress, load control
and lower bound limit theorem can be conveniently coupled with linear elastic

finite element anal for obtaining limit load esti: The ded lower

bound theorem of Mura et al. introduces new ideas such as integral mean of

vield and of the yield criterion. This has provided the impetus
for investigating this method further, with the aim of obtaining improved
lower bound limit load estimates. The finite element implementation of the
extended lower bound theorem in order to obtain lower bound limit loads of

generic components is discussed in the next chapter.
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Chapter 3

Finite Element Implementation
of Modified Elastic Modulus
Methods of Limit Analysis

3.1 Introduction

In Chapter 2, the upper and lower bound theorems of limit analysis were
discussed. The extended lower bound limit theorem proposed by Mura et
al.'® was also introduced. With the emergence of high speed computing facil-
ities and advances in finite element techniques in the last two decades. ana-
Iytical methods were rapidly being replaced by the relatively easier numerical
techniques. However, the time consuming aspect of conventional analyses,
particularly non-linear finite element analysis, necessitated development of
simpler techniques in order to study the inelastic effects in pressure compo-
nents. The ease in carrying out linear elastic finite element analyses with

modest i d desi to develop techni based on elastic

53



analyses. It was found that by systematically modifying the elastic mod-
uli of structures, it is possible to obtain stress fields that would correspond
to the stress redistribution associated with inelastic effects. The reduced
modulus method was found to satisfactorily assess inelastic effects such as
follow-up. This further encouraged researchers to develop methods based on
linear elastic finite element analyses in order to determine limit loads.

The robust hods that are i for ining limit

loads are:
1. the reduced modulus method by partially modifying the elastic mod-

uli,* which is based on the classical lower bound theorem,

. the r-node method,® which is based on the concepts of reference stress

o

method in creep, load control and the notion of primary stress as de-

fined in the ASME B&PV codes,!! and

the elastic compensation method,® which is an iterative method similar

&

to the Marriott’s method but based on the elastic modulus modification
scheme as suggested by Seshadri. This method invokes the classical

lower bound theorem for estimating limit loads®.

In this chapter, the finite element implementation of these three methods
is explained. The extended lower bound method of Mura et al. is imple-
mented for obtaining lower bound limit loads by directly using the stress

distributions obtained from finite element analyses. By using the theorem of

“A similar method, referred to as the Modified Elastic Modulus (MEM) Method, has
been proposed by Carter and Ponter®! which also involves a number of elastic iterations.
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nesting surfaces it is also shown that the factor m® defined in the previous

chapter is actually an upper bound multiplier.

3.2 Limit Analysis based on Partial Elastic
Modulus Modification

The iterative procedure adopted by Marriott,* introduced in Section 2.6.1.
was primarily i ded to ct ize the stress redistribution that would

occur as a result of post yield loading and thereby estimate the primary stress
in the component. In this method, an arbitrary load above the first yield
load of the structure is applied and an initial elastic analysis is performed.
All the elements that are above the code allowable stress are selected and
the elastic moduli of these elements are modified on an element by element

basis according to the equation:

Ep= Ea% (3.1)

where. for any given elastic iteration, E, is the previous value of modulus.
Sm is the code allowable stress and ST is the element equivalent stress. The
analysis is then rerun to obtain a first reduced modulus solution. The elastic
modulus procedure is then repeated in an iterative manner until any further
iteration does not reduce the maximum stress, or until the element stress
becomes less than S,,. Since the stress distribution corresponding to any
iteration is a statically admissible stress field satisfying all the requirements

of the classical lower bound theorem, a lower bound limit load can also be
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obtained for every iteration as:

p=pPX (3.2)
oM

where oy is the yield stress and o, is the maximum equivalent stress in the

component.

3.3 The R-Node Method

The r-node method® (Section 2.6.2) is a robust method for determining
limit loads of mechanical components and structures based on two linear elas-
tic finite element analyses. Identifying load controlled locations in a struc-
ture called as the r-nodes form the basis for using this method. The r-node
method can be used to determine the limit loads of mechanical components
and structures in the following manner:

® A linear elastic finite element analysis of a given mechanical component

or structure is carried out for prescribed isothermal loadings. The

resulting stresses would be pseudo-elastic quantities.

o The elastic modulus of each and every element, j, is modified according

to the equation

o,
(&), =[] & 33
L
i
where 04, is an arbitrary non-zero stress value. A second linear elastic

finite element analysis is carried out.



@ On the basis of the two linear elastic analysis, the follow-up angle 6
on the GLOSS diagram (Figure 2.4) can be determined for each ele-
ment. The locations for which & = 90 deg. can then be identified as

the r-node 1 i through i lation. In practice, the foregoing

can be i d into the finite element code.

A given structure can be visualized to be made of a finite number of

sections across the thickness, through out its length. Every section is a
potential plastic hinge location and may contain an r-node. A plot of
these r-node stresses shows peaks at some locations along the structure
which indicates that as the external load is increased these locations
will become fully plastic at a lower load than the adjacent sections and
form a plastic hinge. These peak r-node stresses for a structure having
M peaks can be arranged in a numerically decreasing order, denoted

bY On1,On2, - -, Onit-

Location of R-Node Peaks:

Two-Dimensional Structures:

As the external load is increased, plastic hinges first form at the location
with an r-node stress of g, and then at the location with an r-node
stress oq2 and so on in that sequence. Thus the sequential formation
of hinges in the structure is tracked until a local or global collapse

can be identified. If the hanism for the local or global
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collapse requires the formation of N hinges, the effective r-node stress
n can be obtained by relating to an N bar mechanism (Figure 2.6).

as:

(3.4)
The limit load of the structure Py is given by:
P = [@] P. (3.3)
Fn

Three-dimensional Structures:

In case of three-dimensional structures such as non-symmetric plates, r-
node stress surfaces are required for the determination of r-node peaks.
The three-dimensional plot of the r-node stress (on the z coordinate)
versus the r-node location (on the z and y coordinates) produces the
three-dimensional r-node stress surface.

A three-dimensional structure such as, say, a plate structure can be
visualized to be made of a finite number of sections normal to the
neutral plane. The number of r-nodes present in a section depends
on whether bending or direct stresses are dominant in that section.®*
For the plate structure shown in Figure 3.1, the r-node stress surface
(Figure 3.2) has peaks at certain regions. The relative numerical value

of the peaks indicates the sequence of formation of plastic zones or
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1. All dimensions in mm
2. 0 - Origin

Figure 3.1: A Square Plate Simply Supported on All Sides under
Uniform Pressure
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hinges in the and ive locati Thus the r-node peaks
are potential nucleation points for plastic regions.
Since every section of the plate analyzed may not necessarily contain
an r-node, the r-node stress surface may, at the first sight, be difficult
to interpret. Therefore, a spline interpolated r-node stress surface is
introduced (Figure 3.3). This plot gives a better picture of the likely
locations of the r-node peaks. However, it should be noted that the
purpose of the spline interpolated r-node stress surface is only to enable
a better visual interpretation of the r-node stress surface. An iso r-
node stress contour plot (Figure 3.4) may also be used to enable the
determination of the r-node peaks.
The combined r-node effective stress &, can be obtained as

N

Xowi

Ga=2 (3.6)

N

where N refers to the number of peaks and oy,; refers to the r-node
stress of the jth peak. Using the expression given in equation (3.5).

the limit load of the structure is determined.

‘The r-node method has been applied to a number of two-dimensional me-

chanical components and structures such as frames, arches®*35 and shells.®

Limit loads of three-dimensional non-symmetric plate structures subjected to

a variety of loading is made possible by plotting r-node stress surfaces.** The

limit load estimates obtained using this method are found to compare well
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with analytical and inelastic finite element analysis results. Although the
r-node method has been consistently giving conservative estimates of limit
loads, rigorous guidelines for ensuring that the limit loads obtained are lower

bounds would be of i use for ici i In this thesis such

guidelines are proposed and the properties and the usefulness of the r-nodes

are investigated in detail.

3.4 The Elastic Compensation Method

The d by Mackenzie et al.® (Section 2.6.3) is based on
the classical lower bound theorem of limit analysis and a number of linear
elastic iterations. An initial linear elastic finite element analysis of the dis-
cretized structure is carried out. This analysis is usually designated as the
zeroth iteration. Based on this, the elastic moduli of all the elements are

dified by following the by Seshadri.® A number of

linear elastic iterations are carried out, similar to the procedure suggested by
Marriott,* until any further iteration does not decrease the value of the max-
imum equivalent stress in the component significantly. After every iteration,
the new values of elastic moduli are determined for the subsequent iteration

based on equation (3.3) as:

[Be], = | o] [Bs-n], 37
(02) i1y

where i is the iteration number, and r is the element number in the discretized

component or structure. Since the elastic moduli are modified for the entire
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component and the analyses are linear in nature, the value of the applied
load, P, can be arbitrary. The stress distribution having the least maximum
stress among the given set of iterations is selected to be the required stat-
ically admissible stress field. The final limit load can be determined as a
linearly scaled value of the applied load such that the maximum stress in the
component corresponds to the yield stress. The limit load is given by the
expression:

P =P (3.8)

9y
(o)m
where oy is the yield stress, (0)a is the maximum von Mises equivalent

stress for any given elastic iteration and P is the applied load.

3.5 The Theorem of Nesting Surfaces

It was explained in Section 2.7 that the reference stress, being indepen-
dent of the creep exponent, should be a unique point through which the

stress distributions corresponding to any value of n should pass.*>4¢ Since

to perfect

the solution for an infinite creep
Sim proposed that the reference stress can be obtained from equation (2.70)
which. obviously, requires prior knowledge of limit loads. The combined
r-node stress obtained using the r-node method is one way of directly deter-

mining the reference stress. Alternately, the task of direct determination of

reference stress using linear elastic stress dist can be

by using the “theorem of nesting surfaces”.!” In this section, finite element

implementation of the theorem of nesting surfaces is carried out for n = 1 so
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as to enable direct determination of the reference stress from linear elastic
analyses stress distributions.
The reference stress, using the theorem of nesting surfaces, can be ex-
pressed as
1 T L
o= [.‘; A ar+iay| ™ (3.9)

For linear elastic analyses, n = 1 and therefore,
1 i
o= [V /V afdv] . (3.10)

In terms of the finite element discretization scheme, equation (3.10) can

be written as

(3.11)

Thus the stress distributions obtained from linear elastic finite element

analyses can be used for directly determining the reference stress.
3.6 The Extended Lower Bound Theorem

Mura et al.' applied their proposed extended lower bound theorem for
determining the limit load of a tension specimen and obtained good limit load
estimates. However, real life structures are more complicated in nature and
hence warrant a procedure that is generic. The methods based on modified
elastic moduli are viable alternatives since they provide statically admissi-

ble stress distributi The impl ion of the ded lower bound

theorem so as to enable direct determination of limit loads by using stress
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distributions obtained from linear elastic finite element analysis is discussed
in this section.
In equation (2.56), the linear elastic stress distribution sg; corresponds to

stress

an applied traction, m°P. If 53 is a
corresponding to an applied traction P, then m®5g; would correspond to m°P.
It is therefore clear that

% = mes,. (3.12)

i

Thus equation (2.48) can be written as
Peme— [y [E(ma)is'? 2K+ (¢°)’] av. (3.13)
v 2 b

The factors m®, u° and ¢° can be determined by rendering the functional,

F. stationary, leading to the following set of equations:

oOF OF OF
% g% e e

The von Mises equivalence for uniaxial state of stress can be written as

follows:
1o _ (027 -
5558 = { 3) (3.15)
and
ol
3, Iy
=2 (3.16)
Equation (3.13) becomes
Fem - [ B {02 - o2} + 3697 av. (3.17)
vr 3 © 2 : :
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Applying ion (3.14) in ji ion with ion (3.17), we get
=0 (3.18)
and

(3.19)

where the quantities 02, and AV are the von Mises equivalent stresses and

volumes of respecti 1 in the FEA di ization scheme.

C ing the ions for m°, as obtained from ion (3.19), and

the reference stress, as obtained from the theorem of nesting surfaces [equa-
tion (3.11)], it can be seen that

me=2L. (3.20)
OR

Thus a monotonic increase in the value of the reference stress implies a mono-
tonic decrease in the value of m®, with increasing n. Since equation (2.79)
gives a lower bound on the reference stress for n = 1, m® corresponding to
n =1 is an upper bound multiplier for limit loads.

Equation (2.56) can be simplified further using ions (3.15) and (3.16)

2m°g?
ek <™ @20

Equations (3.19) and (3.21) can be readily obtained on the basis of linear

elastic FEA. (02)a is the maximum equivalent stress in a component or
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structure for a prescribed load, P. The lower bound limit load can therefore
be expressed as:
Py =m'P. (3-22)

Combining equations (3.20) and (3.21), the limit load can be bounded as

follows:
m' <m<m°. (3.23)
3.7 Closure
The finite element impl; ion of the availabl hods for determin-

ing the limit loads has been discussed in this chapter. An alternate method
for determining lower bound limit loads, proposed by Mura et al., has been
implemented. By invoking the theorem of nesting surfaces it has been shown
that the multiplier m® defined by Mura is actually an upper bound on the
safety factor.

In the next chapter, the advantages and limitations of the methods dis-
cussed in this chapter are investigated. An improved method for obtaining
lower and upper bound limit loads, based on the extended variational theo-

rem. is also presented.
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Chapter 4

Improved Lower Bound Limit
Load Estimates: The
mq-method

4.1 Introduction

The robust methods of limit analysis are attractive alternatives over ana-
Iytical methods and inelastic finite element analysis since they are relatively

easy to implement and make use of statically stress distribution

obtained from linear elastic analyses. However, the use of classical lower
bound theorem requires a number of linear elastic iterations in order to ob-

tain ble limit load esti Restricting the number of iterations

to a few may often lead to overly conservative results. A robust method is
one which has the ability to give acceptable results at minimum cost and
effort. Hence any method aimed towards reducing the number of elastic it-

erations without compromising on the quality of results would be of definite
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significance.
An in-depth study into the extended lower bound theorem, the notion of

integral mean of yield and its relationship with the theorem of nesting sur-

faces offers suffici ivation towards developing hods for ob

improved lower and upper bound limit loads. In this chapter a method is
proposed for determining lower bound limit loads on the basis of two linear
elastic analyses. The method, designated as the m,-method, invokes the no-

tion of reference volume to account for localized collapse and the technique

of “leap-frogging” to a limit state. These pts are used in

with the elastic modulus adjustment technique, described by Seshadri and
Fernando,* for obtaining improved lower and upper bound limit load esti-
mates. The advantages and limitations of the existing robust methods are

also investigated in this chapter from an engineering stand-point.

4.2 Advantages and Limitations of the
Existing Robust Limit Analysis
Techniques

4.2.1 Classical Limit Theorems
The classical lower and upper bound theorems of limit analysis offer a

practical way to avoid the severe limitations in estimating the limit loads

by analytical hods. By choosi icall issible stress fields and

kinematically admissible velocity fields in an appropriate manner, reasonable
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estimates of the bounds can be obtained. However, application of classical
lower and upper bound methods is limited to simple geometric configurations
and loading patterns. Coming up with the appropriate statically admissible

stress distribution or kil ically admissible strain distribution is not a triv-

ial task. Furthermore, the construction of generalized yield surfaces in terms

of stress and moment and the i ions involving strain-rate
vectors can be cumbersome and unwieldy.

Mackenzie et al.® d ical issible stress fields by per-

forming linear elastic FEA and applied the classical lower bound theorem.

Their repeated elastic anal, dure and the elastic modul dj
scheme is ially an ad ion of the method d by iott* and
Seshadri.

It is worthwhile carrying out repeated elastic iterations provided the stress
distributions obtained progressively approach limit type. There is no assur-
ance, however, that the stress distributions would approach limit type even
after many iterations. This problem can be illustrated by considering the
example of a torispherical head subjected to internal pressure (Figure 4.1)
where the maximum stress does not converge; rather it fluctuates with suc-
cessive elastic iterations as shown in Figure 4.2.

Performing d elastic by modifying the elastic moduli leads

to softening in some regions and hardening in the other regions of the struc-
ture. In some cases, the difference between the magnitudes of elastic moduli

during this process can become large. For instance, in a compact tension

72



Figure 4.1: Di

of a T

h

1 Head

73

3
]
=]
=
a
=
o




‘Thick Cylinder Subjected to Uniform
Internal Pressure

Limit Pressure (kPa - Thousands)

Torispherical Head Subjected to Uniform
Internal Pressure

Rectangular Plate Partially Fixed and

1000
2
0-6—-0-6-0-0-0-6-0-6-G0a0
-
w3,
0|
4
0]
R
Linear Elastic Iteration Number
Class I (First Two I

iteratioas)
Class IT (Beyond the Second Iteration)

Partially Simply Supported
Limit Pressure (kPa - Thousands)
T T PSR
g 2-mP (Exen
2 3-p (Lower bound
e S - classical)
s
4-mP  (Lower bound
- Mura's)
3
i
h
o+ & 1w oe uow
Linear Elastic lieration Number
Class )
Class IT] (Beyond the Second lieration)
Figure 4.2: Typical R of Str to Rep d Elas-

tic Iterations

4



Table 4.1: Values of Elastic Moduli of Two Elements
in a Compact Tension Specimen - Elastic
Iteration Number 6 (g =1)

Element Number | Elastic Modulus Value (Pa)

8 958.73

31 2.43x10'2

specimen, after the sixth iteration the range of values of elastic moduli in the

structure was found to be quite high. The elastic moduli values of two typical

elements are given in Table 4.1 as ive cases. Such si ions lead
to what is referred to as ill-conditioning®? of the stiffness matrix in the finite

element formulation which can severely affect the accuracy of the stress val-

to the value

ues obtained. Also, there is no
of the arbitrary stress in equation (3.3). This aspect is problematic since an
improper selection of the arbitrary number during every elastic analysis may
cause the elastic moduli values to progressively assume either very large or
negligibly small values, thus falling out of the range of numerical accuracy of

the FEA software.
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4.2.2 Extended Lower Bound Theorem

The main advantage in using the extended lower bound theorem lies in
the fact that both upper (m°) and lower bound (m') limit load multipliers
can be determined for any given stress distribution. It should be noted that

the factor m° is an upper bound multiplier only if the ding stress

distribution satisfies the theorem of nesting surfaces.

The extended lower bound theorem of limit analysis, however, has its own
limitations. In the classical method of determining lower bound limit load,
the maximum equivalent stress value is all that is needed from a statically
admissible stress field. However, determination of Mura’s lower bound multi-
plier (') requires, in addition to the entire stress field, the volume associated
with every element in order to calculate the parameter m°. The factor m®
can thus assume very large values in case of problems where the collapse is
local.

It can also be shown that the magnitude of lower bound limit load deter-
mined using Mura’s method is always less than that obtained using classical
limit load and hence, as such, has no advantage. The relationship between

the classical lower bound limit load,

o,
Po=P~- 4.1
LC CA) (4.1)
the upper bound limit load,
Py =m°P, (4.2)
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and Mura’s lower bound limit load,

Py = _m (4.3)
T G (0N ’
can be expressed as:
2PyPi.
Py = 4.4
Let
Py _ -
P w. (4.5)
Therefore,
P _ 1+
Py 2w (48)
Since w > 1, as per equation (4.6),
P >1. (4.7)

Pra

Therefore, for any elastic stress distribution, the limit load value determined

using equation (4.1) will always be equal to or greater than the one evaluated
using equation (4.3).

The lower bound limit load values given by equations (4.1) and (4.3)

were determined for a number of structural components such as a thick-

walled cylinder subji d to uniform 1 pressure vessel with

a cylindrical nozzle subjected to uniform pressure, beams and torispherical
heads. to mention a few. Equations (3.23) and (4.7) were validated for a
number of linear elastic stress distributions. For the purpose of illustration,
some typical limit load estimates are plotted in Figure 4.2 for 2 number of

elastic iterations.



4.2.3 Theorem of Nesting Surfaces

The theorem of nesting surfaces was proposed by Calladine and Drucker!”
as a method for determining the reference stress based on the nesting surfaces
of energy dissipation in creep. The reference stress is given by the expression

(48)

The maximum and the minimum values of the reference stress correspond
ton — oo and n = 1 respectively. The stress distributions relating to the
various values of n can be simulated by performing a number of elastic anal-

vses in j ion with elastic dul di ion after every iteration

(of course, assuming that all these iterations progressively lead to limit type
state for an arbitrarily applied external load). Thus a limit type stress distri-
bution can be identified with the stress distribution corresponding to n — oc.
Assuming the external load applied to be equal to the exact limit load and
limit stress distribution, for a structure that completely becomes plastic at
collapse, 0,y = 0, and otherwise o,.; < 0,. Thus in general,
Oref S0y (4.9)
The reference stress formula due to Sim*54¢ given by equation (2.70) can

be expressed as
Pn=P-2 (4.10)
Oref

where Py is the applied load which, in this case, is taken to be the exact

limit load. From equations (4.9) and (4.10), Pz, > P;. The unconservative
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nature of the limit load obtained using the theorem of nesting surfaces is
therefore not useful for pressure component design. Since the stress distri-
butions correspond to linear elastic analysis and can be scaled linearly, the
aforementioned relationships are valid even if the applied load is of any arbi-
trary value. As the collapse of structures becomes more local, the reference
stress, which is determined on the basis of the total volume of the structure.
becomes increasingly smaller than the actual. The concept of reference vol-
ume to be discussed in Section 4.4 offers a convenient way to overcome this

problem.

4.3 Robustness of Structural Behavior
during Repeated Elastic Iterations

It was seen in Section 4.2.1 that performing a number of elastic analyses
may not necessarily lead to a limit type of stress distribution and may even

cause ble structural such as fi ion of i stress.

Therefore, it b useful to und d the i for 2 valid stress

distribution and the ways and means for obtaining it.
The factor m® is one of the parameters that is useful in assessing whether

distribution is being hed during ive elastic

or not limit stress
iterations. As the number of iterations increase, m° should monotonically
decrease and converge. Should this not occur, i.e., if there is an increase in

the value of m® as compared to its value during the previous iteration, then
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the theorem of nesting surfaces would be violated* implying that the stress
distributions are not on a redistribution path leading to limit type.
The structural behavior would be considered robust and stable if the

of equi' stresses described below and their relative locations are

preserved during the linear elastic finite element analyses., i.e.. the sequence
Oel 2 02 2 *+* 2 Oen-

holds good.

An iteration variable ( is introduced, such that both m® and (o.)r are
functions of (. A change in the secant modulus [(E,); in equation (3.3)]
by an infinitesimal amount will imply a change A( in the iteration variable.
The criteria for a lower bound limit load is the concurrent satisfaction of the

following:
dm®
1) m>m} or — <O0.
(1) mf>my, <

This requirement ensures satisfaction of the theo-

rem of nesting surfaces which assures that there is (4.11)
2 progressive increase in the internal energy dis-

sipation, for a given value of applied load, as the

stress field becomes closer to the limit type.

“While carrying out repeated elastic iterations, assume that limit type stress distribu-
tion is obtained at the nth iteration. Any stress distribution corresponding to a preceding
iteration (say, iteration number r) should be on a path leading to the final limit state.
One of the requirements for this is that the inequality

mf22m222my

is satisfied. Otherwise, the “theorem of nesting surfaces” is considered to be violated.
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@) (o2 (@R or T <0,

4.12
This stipulation aims at a flatter stress distribu- ( )

tion approaching a limit type stress field.

@

The relative locations of the set of stresses o.; >

Oe2 > -+ > O,y are invariant.

This i ensures that ive distri-
(4.13)
butions are perturbed states about the initial

ic stress distributions with the r-node

equivalent stress being invariant.

The i i by i (4.11) to (4.13) ensure that

the resulting stress distributions belong to a family of distributions: i.e.. are

intermediate stress distributions leading to one of limit type.
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4.3.1 Class I, IT and III Components and Structures

Repeated elastic FEA enables an analyst to obtain insight into both local® as
well as global® behavior of components and structures. The global structural
behavior can be assessed by plotting m®°, m’ and o as a function of the
iteration variable . In practical terms, there is little advantage in carrying
out a large number of iterations just to find out if the global behavior would
degenerate. This would very much depend on the geometry and loading on
a given component configuration, and on the elastic modulus modification
scheme. However, it is sufficient for the purpose of ascertaining the bounds

to determine the trend based on the first and second linear elastic FEA. It

is therefore useful to ize the behavior as follows:
Class I: These are and that are ch ized
by a i gent behavior. The mq esti btained are
reliable. For Class I components and structures
dm°®
<o
i S
dm’
— >0 4.14
= (4.14)
dogy
X <o
x =

and the maximum stress location is also more or less invariant.

A thick-walled cylinder subjected to a uniform internal pressure and an
indeterminate beam under a uniformly distributed load are examples

of Class I components and structures.
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Class II: Si ive iterations of modulus softening may imes re-
sult in an increase in the itude of the il quivalent stress.

This type of behavior is usually associated with thin structures with-

out a re-entrant corner”. The criteria for Class II components and

structures are:

<o,
ac <
(4.15)
fluctuate.
doiy
d¢

The maximum stress location may also fluctuate for this type of struc-

ture.

Typical problems that fall under this category are thin torispherical

heads subjected to a uniform internal pressure.

Class ITI: The criteria for these class of components and structures
can be expressed as
dm®
d¢
dm’
¢
dofy
a¢
*The pi ce of re-entrant corners in components such as a spherical pressure vessel

with a cylindrical nozzle and a compact tension specimen enable stable positioning of the
maximum equivalent stress location.

>0;

(4.16)
fluctuate.
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The maximum stress location fluctuates and the theorem of nesting

surfaces is violated, and therefore the results are invalid.

Figure 4.2 shows the typical behavior of the three classes of structures

during linear elastic i ions based on a modul fit index of ¢ = 1.

The modulus softening scheme given by equation (3.3) is modified as:
(B, = [ 2=t ‘B (4.17)
" L~ b i

Should the component or structure exhibit Class II or III behavior, then
using ¢ < 1 (say, 0.5 or 0.25) instead of 1.0 may stabilize the structural
behavior of by kening the extent of elastic moduli

modification and thereby transforming their behavior to Class L.

4.4 Local Plastic Collapse - Notion of
Reference Volume (Vg)

If plastic collapse occurs over a localized region of the mechanical com-

ponent or structure, m® will be signi 1 i if it is calculated
on the basis of the total volume, Vr. Furthermore, the corresponding m' will
be underestimated [equation (4.7)].

The reference volume concept is introduced here to identify the “kine-

matically active” portion of the p or that ici in

plastic action. If V7 is the total volume and Vj is the reference volume, then

Vg < Vr. During local collapse, plastic action is confined to a sub-region of
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the total volume (Figure 4.3). The magnitude of the upper bound multiplier
(m®°) would therefore depend on the sub-volume, V3, where

5
Vs=Y (AVR). (4.18)
=1

In order to carry out the various summations, we consider the following

sequence, ie.,
(62)?AV: > (5)?AV; > ... > (o) AVi. (4.19)

When 8 = 1, equation (3.19) degenerates to the classical lower bound

value, i.e.
(4.20)

An iteration variable ¢ is introduced next in such a way that infinitesi-
mal changes to the element elastic modulus of the various elements during
the second and subsequent linear elastic FEA would induce a corresponding
change A¢. The magnitude of A¢ would. of course, depend on the nature of
the modulus-adjustments.

For the degenerate case. m° would increase with { thereby violating the
nesting surface theorem. It is implied here that the second linear elastic
FEA would lead to a “flatter” distribution of stress. On the other hand, m®
evaluated on the basis of the total volume would decrease with increasing
¢. Therefore, for some volume Vi, where AV; < Vg < Vr corresponding to
8 = a, the multiplier m° would be invariant, i.e., m$ = m$,. In other words,

the theorem of nesting surfaces would be just satisfied. The schematic of vari-
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ation of m® and m’ with the iteration variable, (, is shown in Figure 4.4. The

d for di the refe volume is ill in Figure 4.5.

4.5 The m,-method

In this section, Mura’s iati ion is to provide

improved lower bound limit loads for ic as well as ic

components and structures. Using a modulus-adjustment scheme akin to the
R-Node method, the multiplier m, can be obtained on the basis of two linear
elastic FEA by “leap-frogging” to a near asymptotic limit state. The first

linear elastic FEA to the ional linear elastic analysis,

while the second linear elastic FEA involves modifications to the elastic-

dulus of all the el ding to equation (4.17). In ion (4.17)

the element numbers vary from £ = 1 to k = N and ¢ is the “modulus-
adjustment index” which is nominally taken to be equal to unity as in the
R-Node method.* A value of ¢ < 1 can be used to stabilize the structural
behavior of “sensitive” pressure components.

On the basis of the results of the first and second linear elastic FEA. and
making use of the expression given by equation (3.19), the values of m§ and
m$; can be determined. The average surfaces of dissipation!” can now be

expressed as:

m{ = ¢
] (4.21)
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where ¢; and c, are constants. In equation (3.19), Vg < V < Vr. The
theorem of nesting surfaces essentially asserts that m§ > mg; > m, where m
is the exact factor of safety.

As ¢ increases with successive linear elastic FEA iterations beyond two,
m° and m’ would eventually converge to the exact value of the factor of

safety, m. Whether or not the is ic was di: in
Section 4.3.1.

Mura’s lower bound multiplier can be expressed as:
2m°(¢. ):7‘l
a2 + [mo(C)P[of, ()1

where 6%,(¢) = (02)maz is the maximum equivalent stress at iteration number

m(Q) = (4.22)

“i". The quantities m', m® and oy are all functions of ¢.

Diffe iating both sides of ion (4.22) with respect to ¢, we get
dm' _ 8m'dm° 8m' doy,

=== TN 4.23
& = ome & a0t & s
In terms of finite differences, equation (4.23) can be expressed as:
am’ am'
Am'= 2= (Am%)+ 2| (Aod). (4.24)
om (=G aﬂﬂ( =G

Although equation (4.24) is valid for any given iteration, in the proposed

dm®
mq-method only two iterations are required. If =, < 0, then m° > m'.

d¢
The following quantities are defined next:
Am' = m, - m]
am® = me — m} (4.25)

and  Ady = L - o3,
M ™, M



where the ipt i refers to the i ion number.
9y

If we insist that 0%, = when m° — m, and m’ — m,, then it is

clear from equation (2.56) that m, would be a lower bound.

Making use of equations (4.22), (4.24) and (4.25), and carrying out the

necessary ipulati the foll ds can be
obtained:

Am2 +Bma+C =0 (4.26)
where

A = (m)'E%)" +4m)* (%) — 1,

B = -8(m{)*(a%n)%,
C = 4(mf)’@m)
and &3; = %“-".

The coefficients A, B and C can be evaluated from the results of any
linear elastic FEA.

To ensure real roots for ion (4.26), the discrimi. must be greater

than zero. ie.,

(m$)(@3:) < (1 +V2). (a.27)

While it is possible to evaluate m, on the basis of the results of the first

linear elastic FEA provided equation (4.27) is satisfied, the introduction of

reference volume in conjunction with two linear elastic FEA enables much im-

proved esti; of mq. Fu since m is b ded by m° and m,, the
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use of reference volume would narrow the spread. The phrase “m,-method”

therefore refers to the use of « elements in the finite element discretization

scheme that pertains to the identi ion of an fi volume

[equations (4.18) and (4.19)]. The “leap-frogging” of intermediate iterations
is schematically illustrated in Figure 4.6.

4.6 Illustrative Example - Torispherical
Head

The step-by-step implementation of the m,-method is explained in this
section by considering the example of a torispherical head subjected to uni-
form internal pressure (Figure 4.1). The dimensions of the head are L,/ D=0.8.
r/D=0.12, H/D=0.2360 and a thickness of 2.54x10~2m (1 in.). The Young’s
modulus and the yield stress of the material are respectively 206.85x10° kPa
(30x10° psi) and 206.85%10° kPa (30x10° psi). The Poisson’s ratio is as-
sumed to be 0.3. For performing the analyses, an arbitrary uniform pressure
of 200 kPa (29 psi) is applied.

D ination of Refe Vol

The following are the steps that are necessary for determining the reference

volume:

e The el are d in the d ding order of energy dissipa-

tion corresponding to the first linear elastic analysis by following the

sequence given by equation (4.19).
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o In the same order, the dissipations corresponding to the second linear

elastic analysis are listed.

the volume;

e The values of m° are d ined by

starting with the element having the largest dissipation and following

the sequence given by equation (4.19) for the entire volume.

e The volume corresponding to the two linear analysis having the same

value of m° is identified as the reference volume.

Computational Procedure:

Applied Pressure,
Elastic modulus softening index,
Value of yield stress,
Upper bound multiplier
linear elastic analysis, /

linear elastic analysis, J1

Maximum equivalent stress (nodal stresses
interpolated)

linear elastic analysis,

linear elastic analysis, I
Location of maximum equivalent stress (el-
ement number)

linear elastic analysis, I
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linear elastic analysis, IT = 541"

The classical limit load corresponding to

the second elastic iteration, (Pe)yy = P %y
(0e)mas
206850
= 20X G5
= 653.02 kPa
Upper bound multiplier based on the ref-
erence volume, m = 6.19
Therefore the upper bound limit load, Py = mjP =6.19 x 200
= 1238.0 kPa
? 63351.79
N i il 3 = M _
ormalized maximum stress, i = 206850
= 306.3x107%.

Next, the coefficients A, B and C of equation (4.26) are determined as

follows:

(m)!(330)" + 4(m0)*(33)* — 1,
6.19% x (306.3 x 10~)" + 4 x 6.197 x (306.3 x 107)" — 1 = 26.30
—8(m{)*(9%)"s

-8 x 6.19° x (306.3 x 107%)" = ~178.01

*Element numbers 553 and 541 lie very close to one another in the finite element mesh
and are given here just to illustrate that the maximum stress location has not changed
appreciably between the first and the second elastic iterations.
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Q
[

4(m?)*@aes),
4x 6.16° x (3063 x 10°) = 290.59

[l

Equation (4.26) therefore b

26.3m2 — 178.01m, + 290.59 =0

leading to m,;=2.75 and ma,=4.02. Considering the larger of the two roots,
the lower bound limit load estimate is given by, Py = ma2P= 4.02x200 =
804.0 kPa (116.6 psi). The limit load estimate using inelastic analysis and
the classical lower bound method are found to be 858.0 kPa (124.4 psi) and
651.0 kPa (94.4 psi), respectively.

It should be noted that, in general, it is not difficult to satisfy the con-
ditions stipulated by equations (4.11) and (4.12) for generic structures. The
third condition [equation (4.13)], however, places stringent requirements on
the redistributed stress field and can be satisfied only if the elastic modulus
modification scheme is capable of producing perturbations about the original
stress field. This requires that the modulus modification scheme should be
weak (g < 1) in case of sensitive structures so as not to cause any abrupt

change in the elastic moduli values. However, in the m,-method, the pri-

mary i isa ically admissible stress field that satisfies the two
conditions given by equation (4.11) and (4.12). Therefore, ensuring that the
maximum stress location does not show any unreasonable change would be

flicient for all ical




4.7 Numerical Examples

In this section, limit load estimates are determined for a number of struc-

tural of ical interest. The b
here are torispherical heads, an ind i beam, a thick-walled cylinder,

a spherical pressure vessel with a cylindrical nozzle, a pressure vessel sup-

port skirt, plates and a tension

(Tables 4.2 and 4.4). The ials used are d to be h

isotropic and elastic perfectly-plastic. All the problems are modeled using
the ANSYS! software. Four-noded i ic quadrilateral el are
used in the finite element modeling of all the two dimensional problems with

the ion of the ct tension

Non-sy ic plates are modeled using the three-di | eight-
noded i ic solid el while the tension speci: is
modeled using the two-di ional i ic si ded triangular ele-

ments and the two-dimensional isoparametric eight-noded quadrilateral el-
ements. The ANSYS commands listings of all the problems are given in
Appendix C.

The upper bound limit load, m°P, the improved lower bound limit load,
moP, and the classical lower bound limit load, Ppc, for the second linear

elastic analysis are ined for the afc ioned probl These esti-

mates are then compared with analytical and inelastic finite element analysis

results. Based on the first two linear elastic FEA iterations, all the problems
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analyzed in this paper can be classified as Class I

4.7.1 Thick-Walled Cylinder

The thick-walled cylinder considered has an inner radius of 7.62x10~2 m
(3 in.) and an outer radius of 22.86x10~2 m (9 in.). The yield stress of the
material is assumed to be 206.85x10° kPa (30x10° psi), and the modulus
of elasticity is 206.85x10° kPa (30x10° psi). The Poisson’s ratio is assumed
to be equal to 0.3. An arbitrary uniform internal pressure of 68.95x10° kPa
(10x10° psi) is applied.

The thick-walled cylinder is modeled as an axisymmetric, plane strain
problem. The analytical limit load for this problem, using the von Mises

vield criterion, is given by the expression

Perace = %a,, nY, (4.28)

where Y is the ratio of the outer radius to the inner radius of the cylinder.
The limit load estimates are presented in Table 4.5.

4.7.2 Indeterminate Beam

The indeterminate beam of span 50.8x10~2 m (20 in.) and thickness
2.54x10~% m (1 in.), shown in Figure 2.6, has end A built-in and end B

simply supported. The beam is assumed to have unit width in the direction

normal to the paper. The modulus of icity, the yield h and the

Poisson’s ratio are assumed to be the same as in the previous problem. The
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beam is modeled for the plane stress condition. A uniform arbitrary pressure
of 172.4 kPa (25 psi) is applied.

When the first plastic hinge forms at end A, the structure becomes stat-
ically d i As the load i ity is i d further, an
plastic hinge forms at point C resulting in the collapse of the beam. An

expression for the collapse load® is

Prcser = 255, (4.29)

The variation of m®, m’ and m, with volume is shown in Figure 4.7. Table 4.5

gives the limit load estimates for the structure.

4.7.3 Torispherical Heads

A iderable amount of ical research has been devoted to the
design of torispherical heads. An i analysis of torispherical heads
was carried out by Drucker and Shield.®® Subsequently, additional work
¢ ituting i to the ing paper was also published.3*

The di ions of the torispherical heads idered here (Figure 4.1) are

presented in Table 4.2. The modulus of elasticity, yield strength and Poisson’s
ratio are assumed to have the same values as in the previous problems. The
pressure vessels analyzed have a uniform thickness of 2.54x10~2 m (1 in.)
through out. The ratio of the average diameter of the torispherical head
(D) to the thickness of the shell (¢) is taken to be equal to 300 (consistent
with thin shell theory). An arbitrary internal pressure of 200 kPa (29 psi) is
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Table 4.2: Dimensions of Torispherical heads

Case | Head Geometry Parameters
No.
L,/D[r/D H/D

1 0.8 [0.12 0.2360
2 0.14 0.2468
3 0.16 0.2577
4 0.7 | 012 0.2619
5 0.14 0.2710
6 0.16 0.2804
7 0.6 |0.12 0.3068
8 0.14 0.3136
9 0.16 0.3207

applied. The variation of m°, m’ and m, with volume is shown in Figure 4.8.

The values of the limit loads are presented in Table 4.3.

4.7.4 Spherical Pressure Vessel with a Cylindrical
Nozzle

Limit analysis of axisymmetric nozzles has been a topic of substantial
interest since the 1960’s. Analytical limit analyses of these structural compo-

nents are avai in a number of refe 35,56 The le-shell geometry

parameters are as shown in Figure 4.9. To avoid any stress singularities, a

fillet radius equal to t/2 has been provided at the re-entrant corner of the
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Table 4.3: Limit Load Estimates of Torispherical Heads'

Case [ Lower bounds Drucker & | Upper bound

Nol [ Pl meP | FEA | Shield®% mgP

1 650.0 804.0 858.0 803.3 1238.0
(567.7)"

2 760.2 943.5 970.6 893.6 1326.9
(662.3)

3 863.4 | 1068.6 | 1100.0 983.9 1413.8
(756.6)

4 760.8 | 941.3 | 1002.0 947.4 1396.1
(657.6)

3 886.0 | 1098.4 | 1138.0 1050.1 1480.1
(780.8)

6 1024.2 | 1253.6 | 1288.0 1152.8 1560.8
(912.1)

7 933.2 1158.2 | 1260.0 1145.3 1635.1
(774.6)

8 1072.0 | 1321.0 | 1404.0 1263.9 1695.3
(913.6)

9 1240.0 | 1488.0 | 1544.0 1382.4 1754.5
(1081.9)

"All units in kPa
SRefer Table 4.2 for shell geome
Pyc is the classical lower boum‘l limit load obtained from the second linear

elastic FEA.

“The quantities within the brackets

correspond to ¢ = 1.

tog=0.25and th

id
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nozzle-shell intersection. The pressure vessel considered here has the values
R=1.0m (39.37in.), 7=0.2 m (7.87 in.) and 7=0.25 m (9.84 in.). The nozzle
hick is ined by i ly sizing the pressure vessel based on

the hoop stresses of the cylinder and the spherical shell expressible by the
equation
2Tr

t= (4.30)

The length of the nozzle is made greater than 5/7% to get away from the
effects of stress discontinuities at the far end of the nozzle. The yield stress
is assumed to be 300x10° kPa (43.51x10° psi) and the modulus of elasticity
is taken to be 200x10° kPa (29x10° psi). The Poisson’s ratio is taken to be
the same value as for the previous problems. An arbitrary internal pressure
of 200 kPa (29 psi) is applied. The results of the analyses are presented in
Table 4.5.

4.7.5 Pressure Vessel Support Skirt

The pressure vessel support skirt shown in Figure 4.10 is a cylinder at-
tached cone subjected to uniform axial load.” The top supporting ring is
fixed to a rigid foundation. A blend radius is used at the cylinder-cone
juncture. The sharp juncture notch and modeling singularity are eliminated
because of the blend radius. The bottom of the cylinder has an axial load
applied and it is free to deflect and rotate. The material yield strength is
set at 275.8 MPa (40000.0 psi) and the Poisson’s ratio is assumed to be 0.3.
An axial pressure of 7736.2 kPa (1122.0 psi) is applied. This problem is of
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Figure 4.9: Di i of the Spherical P Vessel with a
Cylindrical Nozzle
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interest since it serves as a bench-mark problem for developing stress classifi-
cation procedures.5” The limit load estimates for this problem are presented

in Table 4.5.

4.7.6 Non-symmetric Rectangular Plate Structures

Plates form an important class of structural components since they are
widely used as flat heads of pressure containments, internals of pressure ves-
sels and heat exchangers, and various forms of closures. In this paper, the
proposed methods are applied to non-symmetric plate structures with com-

plex boundary diti The di ions of the ic plate struc-

tures analyzed in this paper are shown in Figure 4.11. The elastic modulus.
vield stress and the Poisson’s ratio of the plates are assumed to have the
same values as for the thick-walled cylinder. The plates are subjected to
an arbitrary uniform pressure loading of 172.38 kPa (25 psi). The complex

boundary conditions have been chosen for these problems with the intention

of i igating the ility and rob of the d methods.

By virtue of their complex boundary conditions, analytical solutions for
these configurations are difficult to obtain. For example, for the problems dis-
cussed in this section, the geometry along with the boundary conditions can
cause complex shear interactions during failure thus rendering an analytical

elastic-plastic analysis i ble. A ing an iate collapse mech-

anism and evaluating an upper bound limit load is difficult for these types

of problems. Also, the boundary conditions pose difficulties in estimating a
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lower bound limit load. The proposed methods, even for such complexities,
provide a direct and ic method for estimating the limit loads. The

limit load estimates are given in Table 4.5.
4.7.7 Cracked Components

Determination of limit loads for cracked components is essential for the

robust estimation of fracture such as the J.%% For the present
analysis, a compact tension specimen shown in Figure 4.12 is considered. The
specimen is subjected to an arbitrary tensile force of 100 N (22.47 Ibf). The
material is assumed to exhibit elastic-perfectly plastic behavior. The elastic
modulus of the material is assumed to be 211x10° kPa (30.6x10° psi) and
the yield stress is taken to be 488.43x 10° kPa (70.84x10° psi). The specimen
is modeled as a plane stress problem with specified thickness.

It is necessary that the (1/,/7) singularity of the strain field at the crack
tip be generated when using linear elastic analysis. This is achieved most

ffectively by using an i: ic six-noded tri lar element with the

mid-side nodes moved to quarter point.®® This element exhibits strain singu-
larity along the element boundaries as well as in the interior, and has finite
strain energy and stiffness at all points within the element.

For the elastic perfectly-plastic behavior of the el Rice and Rosen-

gren® have shown the crack tip strain singularity to be of the order (1/r).

This is achieved by using an i ic eight-noded quadril | element

that is degenerated into a triangle with mid-side nodes moved to the quarter
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Table 4.4: Confi i of Mechanical C Analyzed
Case No. Problem Type of Loading
1 Thick Cylinder (Figure 2.2) Uniform internal pressure
2 Indeterminate Beam (Figure 2.6) Uniformly distributed load
3 Spherical Pressure Vessel (Figure 4.9) Uniform internal pressure
4 Pressure Vessel Support Skirt (Figure 4.10) | Axial pressure
5 (a) Non-symmetric Plate (Figure 4.11a) Uniform external pressure
(b) Non-symmetric Plate (Figure 4.11b) Uniform external pressure
6 Compact Tension Specimen (Figure 4.12) | Tensile load

point.52 It must be noted that the singular elements are used only around

the crack tip, and these elements permit the use of a coarser mesh than is

possible with ordinary elements. Because of the high stress gradients a third

iteration is required in order to satisfy equation (4.27) for the m,-method.

The limit loads obtained using the proposed methods are compared with

inelastic finite element results (Table 4.5).

4.8 Closure

An improved method for determining lower bound limit loads of pressure

components is presented in this chapter. The phrase m,-method refers to the

use of o elements in the finite element discretization scheme that pertains to

the identification of an appropriate reference volume.
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Table 4.5: Limit Load E: of Mechanical C t
Case Lower bounds Tnelastic | Analytical | Upper bound
No.f Pl maP FEA Method myP
1 180.1x10° | 220.5x107 | 261.6x10° | 262.4x10° | 272.6x10°

(124.6x10°%)
2 1202.2 14902 1553.1 1507.3 2006.0
(882.6)
3 96.7x10° | 118.6x10° | 135.1x10° | 136.5x10° | 148.6x10°
73.1x10%
1 148.8x10° | 184.1x10° | 247.2x10° - 273.2x10°
(119.6x103)
52 4534 561.3 707.7 £ 827.1
(252.6)
5b 26012 3219.0 34831 B 3770.0
(1644.3)
6 126 140 154 E 15.6
(3.5)

TAll units in kPa unless otherwise specified
SRefer Table 4.4 for respective configurations
Py is the classical lower bound limit load obtained from the second linear
elastic FEA.
“The quantities within the brackets correspond to g = 0.25 and those outside
correspond to g = 1.
~ Units in kN
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The multiplier m,, is obtained from the results of a linear elastic FEA
by leap-frogging to a limit state. The numerical examples demonstrate that

the method is and ile. A classi ion of and

structures into Class I, II and III categories is also provided so that insight

into the behavior of sensitive structures is obtained.

Lower bounds ined by the mq-method are i ly better than

the ding limit load esti based on the classical lower bound

theorem. The method can be applied to a wide range of symmetric and

non-symmetric geometric configurations and complex loading conditions.
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Chapter 5

In Search of the Redistribution
Nodes

5.1 Introduction

The reference stress method attempts to correlate creep deformations in

a structure with the results of a uniaxial creep test. The reference stress is

relatively i itive to material h izing creep behavior.

The method has applications in the design and life assessment of nuclear and
pressure components. Problems pertaining to creep growth, rupture damage.
creep buckling, and more recently, elastic-plastic fracture are some specific
cases where the method has been applied.

Determination of the reference stress is not always a simple task. An
approximate method of its determination relies on the availability of limit
load for the component. However, determination of limit load in itself is
by no means an easy task. Seshadri® introduced the r-node method in an

attempt to directly determine the reference stress of generic structures and
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hence the limit loads. R-Nodes are load d I ions in a

component or a structure. As such, r-nodes lie on a distribution of stresses
corresponding to primary stress as defined in the ASME codes and can be
determined on the basis of two linear elastic analyses. On account of its load

d nature, the d r-node equivalent stress” can be i

with the reference stress, which is widely used in integrity assessments of
components and structures. The r-node method has been applied to a variety

of mechanical and 34-36 and was found to provide good

estimates of limit loads.

This chapter unifies the concepts of r-nodes, reference stress and the pri-
mary stress as defined in the ASME pressure vessels and piping codes. As-
pects pertaining to lower bound limit loads are addressed because of their
relevance in engineering design and practical guidelines are provided for an-

alysts and designers.
5.2 R-Node Peaks and Collapse Mechanism

The r-node method for determining limit load estimates has been suc-
cessfully used for estimating the limit loads for a variety of mechanical com-
ponents and structures. The key to obtaining good estimates of limit loads
using the r-node method lies in the proper identification of the r-node peaks.

In the case of certain structures, the r-node peaks are distinct and suffi-

ciently spaced pointing to a “ki ically collapse

The problems that fall in this category are structures like beams, circu-
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lar plates, arches, frames and ic three-dis ional lar plate
configurations. Figure 2.6 and 5.1 show an indeterminate beam subjected to a
uniform load and the ding collapse hanism and r-node diagrams
respectively. The plasticity spread at collapse as obtained from a detailed

inelastic finite element analysis is also shown in Figure 5.1. It can be seen
that the plastic hinge locations are well represented by the r-node diagram.
However, in the case of structures such as an axisymmetric spherical pres-
sure vessel with a cylindrical nozzle subjected to uniform internal pressure.
detailed inelastic analysis reveals that a clear failure mechanism does not
form prior to collapse (Figure 5.2). Rather, the failure is by the gross spread

of icity sur ding the trant region of the structure. Therefore.

the r-node diagram cannot be expected to point to a distinct kinematically
admissible collapse mechanism for these types of problems. Figure 5.3 shows
the r-node diagram for the pressure vessel. For this problem, the r-node peak
number one acts as a plastic control center describing the collapse process.
Although the r-node diagram consists of three peaks, only one peak (i.e..
peak number one) is considered for limit load determination. The reasons

for not considering the other two peaks are described in Section 5.4.

5.3 Virtual R-Node Peaks and Convergence
of R-Node Stresses

As explained earlier, the presence of distinct r-node peaks points to the

existence of a possible collapse mechanism for the structure under consid-
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eration. Some r-node peaks can be introduced due to errors arising out of
interpolation of the stresses (Figure 5.4). These peaks, termed as “virtual
r-node peaks”. should be ignored while estimating collapse loads.

The r-node method is a ical techni for ining limit loads

based on the first and the second linear elastic finite element analyses. How-
ever, in order to illustrate the transient nature of the virtual r-nodes and to

show that the real r-node stresses do converge to load-controlled limit type

stresses, multipl ive elastic i ions are carried out. The first stress
distribution corresponds to the initial elastic FEA and is designated as it-
eration number zero (i = 0). The modified stress distribution is obtained

from one of the ive i i and is indi d by the corresponding
iteration number (i = N). As shown in Figure 5.4, the error in determin-
ing the r-node stress decreases as the modified stress distribution approaches
limit type. The error involved in determining the r-node stress is shown as

a consequence of the linear interpolation of the element centroidal stresses.

Similar trends can be d even if poly ial i lations are used.
The presence of virtual r-node peaks can be demonstrated, for instance,
by analyzing the r-node diagram of a torispherical head subjected to uniform
internal pressure shown in Figure 4.1. The r-node diagrams corresponding
to the first ( = 0) and the second (¢ = 1) linear elastic analyses, and the
first and the third (i = 2) linear elastic analyses are shown in Figure 5.5. It

can be observed from both the r-node plots that while peak number one is
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real, peaks number two and three are virtual.
The convergence of the r-node stresses with elastic iterations can, for the

purpose of il ion, be d by ing an i

beam subjected to uniform load (Figure 2.6). It can be seen that the two
distinct r-node peaks having different r-node stress magnitudes reach almost
identical values after a number of linear elastic iterations as shown in Fig-
ure 5.1. Let o, and oq2 be the two r-node peak stresses of the indeterminate
beam structure. The combined r-node stress &, is given by

=~ _ On1+0n2
= ————

(5.1)
Here, the r-nodes are determined on the basis of initial elastic analysis, and
the subsequent elastic results after the elastic moduli modification has been
introduced. In order to verify the convergence of real r-node peaks. a number
of elastic iterations can be carried out. When satisfactory stress convergence
is achieved (say. at # = r), the r-nodes can be determined based on the stress
distributions corresponding to the initial and the rth linear elastic analysis.
The r-node stress of peak number one drops from its initial value of o,; to a
value oy,,. Likewise, the r-node stress of peak number two increases from its
original value of o2 to a value o,,. The combined r-node stress is therefore

given by

(5.2)

The real r-node peaks reach almost equal stress values after several iterations
because, during collapse, the plastic hinges have the same stress value (equal
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to vield stress).

In the above discussion, use of the initial elastic iteration for determining
the r-node stresses (i.e., 0n1, Onz and oy,) is for reducing the interpolation
errors pertaining to the r-node locations. This aspect is illustrated in Fig-

ure 5.4).

5.4 Identification of Real R-Node Peaks

It was explained earlier that virtual r-node peaks can exist in an r-node
diagram because of interpolation errors. However, these virtual peaks pro-
gressively vanish as the modified linear elastic stress distribution approaches
limit type. This of course requires a number of elastic iterations. However,
the present objective is to obtain reasonably good lower bound limit load esti-
mates based only on the first two linear elastic analyses. Therefore, practical
guidelines for determining the real r-node peaks are provided as follows:

1. The r-node peaks that are present at simply supported edges are vir-

tual. Every r-node peak is a potential plastic nucleation center. Since
plastic moments cannot be developed along simply supported bound-

aries, r-node peaks at or in close proximity to these locations are virtual.

N

. The uniform portion of an r-node diagram indicates the presence of
membrane stress and absence of discontinuity stress in the region.
Consider, for instance, the r-node diagram of a torispherical head (Fig-
ure 5.5). The portions AB and CD of the r-node diagram, being nearly
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uniform, represent the regions where stresses are d

. An r-node peak located in the vicinity of a boundary (other than sim-

ply d; say, fixed or sy ic boundary for instance) can be
identified as real if it is flanked by the boundary on one side and a
valley on the other side. An r-node peak elsewhere in the structure
can be recognized by the presence of valleys on its either sides. One
stipulation while identifying a valley is that the minimum r-node val-
ley stress should approximately correspond to the average membrane
stress of the structure. Based on this criterion, peak number two of
the torispherical head (Figure 5.5) can be readily identified as a virtual
peak, since the valley to the left of it is much higher than the regions of
uniform membrane stress represented by the lines AB and CD. Using

the same argument, peak number one can be classified as real.

Examining Figure 5.6, which is the r-node diagram of a torispherical
head corresponding to ¢ = 0.25, it would seem at the immediate in-
stance that there are two r-node peaks. However, a closer look would
reveal that the so-called valley is comprised of only a single low stressed
r-node. If this r-node is not included, the r-node diagram presents an
entirely different picture. A valley should consist of at least an accept-
able number of r-nodes as could be seen, for instance, in Figure 5.1.
Therefore it can be concluded that there is only one r-node peak in

Figure 5.6.
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Figure 5.6: R-Node Diagram of a Torispherical Head
(g=0.25)
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5.

)

An r-node peak which is not distinct and located away from a “crit-
ical region” of the component or structure is a virtual peak. This
can be demonstrated by analyzing the r-node diagram of the spherical
pressure vessel with a cylindrical nozzle subjected to uniform internal
pressure (Figure 5.3). The critical region for this structure is the region

ding the trant i ion of the nozzle and the shell (Fig-

ure 5.2). The r-node peaks number two and three are located far away
from the re-entrant corner, at the extremities of the shell and nozzle
portions. As seen in Figure 5.3, these regions of the shell and nozzle
have uniform membrane stresses of low magnitudes and therefore are
least likely to undergo failure. Thus the r-node peaks number two and
three can be classified as virtual.

R-Node peaks along otherwise uniform r-node curves should be treated
as virtual. This aspect can be illustrated by considering the example
of the torispherical head shown in Figure 4.1. The region CD in the
r-node diagram shown in Figure 5.5 has uniform membrane stress. The
r-node peak number four has a stress value comparable to this mem-
brane stress value. Therefore, in the likelihood of peak number four
becoming plastic, the regions represented by AB and CD in Figure 5.5
should also become plastic. This would result in the entire structure
becoming plastic at collapse. However, intuitively this is unlikely to
happen since collapse would have occurred much earlier because of

localized plasticity. Thus the r-node peak number four cannot be clas-
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sified as a real peak.

While the guidelines proposed above are general. it is necessary to take
precautions in order to rationally eliminate r-node peaks that are virtual.
This is dependent on the specific component or structure that is being ana-
lyzed. In a situation where there is an uncertainty in deciding whether or not
an observed r-node peak is virtual, it is prudent to consider only those r-node
peaks that satisfy the above stated guidelines. The phrase “when in doubt
leave it out” is useful for obtaining lower bound limit load estimates. In the
extreme case where identification of r-node peaks become very difficult, to
assure lower bounds it is suggested that the maximum r-node stress be used
for calculating the limit load. Incidentally, the location and magnitude of the
peak r-node stress are consistently found to be stable when compared to the

stress, with d elastic i i Two ive cases

are presented in Tables 5.1 and 5.2 in order to illustrate the same.

5.5 Criteria for Lower-Bound Limit Loads

The main purpose of carrying out a number of elastic iterations in con-
Jjunction with systematic elastic moduli modification is to ensure that the re-

sulting stress distributi i h limit type. In other words,

the stress fields should belong to a “family of distributions”, flanked by the
distributions corresponding to the creep indices n = 1 and n — oco. This can
be illustrated by considering a section of the indeterminate beam shown in

Figure 2.6. A near limit type stress distribution is achieved in this case in
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Table 5.1: Maximum Values of Equivalent and R-Node Stresses in
a Torispherical Head" (¢ =1)

I i faxi Equi i R-Node
Stress (kPa) Stress (kPa
No. Magnitude | Element | Magnitude | Element
Number Number!
0 77564.00 553 - -
1 59933.00 541 54167.91 567
2 82471.00 655 50190.78 568
3 69828.00 655 49127.14 569
4 60985.00 398 48647.28 569
5 67000.00 398 48373.66 569
6 96481.00 674 48214.06 569
(' 65239.00 674 48168.21 574
8 71979.00 680 48085.51 580
9 73701.00 680 48070.41 380
10 57891.00 680 48046.12 580
11 51933.00 397 48004.39 580
12 65049.00 686 47980.21 580
13 57079.00 686 47964.33 380
14 51721.00 398 47948.00 569

“Case Number 1 in Table 4.2

"The element numbers are indicated only to illustrate the better locational
stability of the highest stressed r-node as compared to the maximum stress
location.
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Table 5.2: Maximum Values of Equivalent and R-Node Stresses in
a Pressure Vessel Support Skirt* (g =1)

i qr R-Node
Stress (kPa/ Stress (kPa
No. Magnitude | Element | Magnitude | Element
Number Number'
0 2900.30 708 - -

1 1734.20 708 1586.42 669
2 1595.40 708 1526.92 669
3 1509.30 708 1468.93 669
4 1632.50 1008 1418.79 668
5 1656.20 1008 1380.59 668
6 2044.80 1020 1352.88 668
i 2080.80 1020 1332.58 668
8 1946.30 1020 1317.30 668
9 1793.50 1020 1305.64 668
10 1644.80 1020 1296.44 668
11 1604.80 1032 1289.22 668
12 1622.20 1032 1284.00 668
13 1581.80 1032 1280.05 668
14 1513.70 444 1276.76 668

“Refer to Table 4.4 for details pertaining to this component

*The element numbers are indicated only to illustrate the better locational
stability of the highest stressed r-node as compared to the maximum stress
location.



the seventh linear elastic iteration as shown in Figure 5.7. The intermediate

stress distributions lie in between the zeroth and the seventh iterations. in

the order of i ing i i The ditions that are to be satisfied for
ensuring this are given by equations (4.11) to (4.13), viz.,

dm®

i

(2) L3 <0 (5.3)

(¢)] <0
d¢
(3) The relative locations of the set of stresses
Oe1 > Oez > -+ + > O,y are invarient.

For a structure that is sensitive to elastic moduli modifications, leading
to violation of equations (5.3), a lower value of g, say ¢ = 0.25 or 0.5, would
improve the stability. The effect of the modulus adjustment index. g, on
the stress distributions for a thick cylinder subjected to internal pressure is
shown in Figure 5.8. The values of m°, the maximum von Mises equivalent
stresses and the corresponding locations are shown in Table 5.3. It can be
seen that the stress distributions corresponding to ¢ < 1 are valid since all

the i i by ions (5.3) are satisfied.

For generic structures it is not difficult to satisfy the first two conditions

given by equation (5.3). The third condition, however, places very stringent

q on the redistributed stress fields. Choosing a very small value
of g, although effectively attenuates this problem, can lead to errors in de-
termining the r-node stresses similar to those shown in Figure 5.4. Since the

maximum stress in pressure components occurs mostly because of geometric
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P Stress along Neutral Axis (Thousands kPa)

® R-Node

=+ Direction of movement of the r-node
with elastic iterations

6 L n L L T L
0 1 2 3 4 5 6 7 8 9 10 11
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—— Iteration 0 —+— Iteration 1 —¥- Iteration 7

Figure 5.7: Stress Distribution across the Thickness of an Indeter-
minate Beam
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Figure 5.8: Influence of ¢ for a Thick-Walled Cylinder analyzed in
Section 4.7.1
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Table 5.3: Values of (0¢)mez; m° and Maximum Stress Location for
the Cylinder considered in Figure 5.8

Maximum Stress

q m® | (Oc)maz Location
(MPa) | (Element Number)
T Linear Analysis
0.25 | 4.573 | 114.50 1
0.50 | 4.478 | 99.81 1
1.00 | 4.135 | 77.33 1
2.00 | 3.307 | 89.50 90
3.00 | 2.702 | 143.83 90
T Linear Analysis
4.605 | 131.47 1

discontinuities and secondary effects, it is quite sensitive to elastic iterations
and redistributes readily. To achieve a practical compromise between the
satisfaction of the third condition in equation (5.3) and an acceptable value
of g. it would be sufficient to at least make sure that the maximum stress
location does not vary with elastic iterations.

For explaining the conservative nature of the r-node stress, the stress dis-
tributions across a section of a beam are considered as shown in Figure 5.7. In
this case, since limit type stress distribution is reached in the seventh elastic
iteration, the value of the r-node stress [(0r—node)o~vr7] determined based on
the zeroth and the seventh iterations, should correspond to the exact value.
Since the remaining stress distributions are nested by these distributions, the

r-node stresses d ined using the ining distributions should be such
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that

(Or-node)o—1 = (Or-node)o-11 2 - - 2 (Or—node)o—vrr- (5.4)
Thus the limit load based on the first two iterations is always less than or
equal to the exact limit load in this case. In case of generic structures which
fail due to the formation of multiple hinges or hinge contours, equation (5.4)

can be expressed as

(Gn)o—1 2= (Fn)o-11 > ... 2 (Gn)o-n (5.5)
where (Fn)o-1, (Fn)o-11, -+ (Fn)o-n are the combined r-node stresses corre-
sponding to the iteration pairs 0-1, 0-II, ---, 0-N. In practice, since the

r-nodes are determined based on the zeroth and the first elastic iterations,
the corresponding stress value should be an upper bound. It is not, how-
ever, necessary to perform a number of elastic iterations in order to confirm
the inequality given by equation (5.5). It would be sufficient to determine
r-nodes based on the first two linear elastic analysis, provided that the first
two conditions given by equation (5.3) and the invariance of the maximum

stress location are satisfied by the stress distributions.

The afc ioned lanation can be il by idering the
indeterminate beam shown in Figure 2.6. The r-node peak stress values and
the combined r-node stress values are given in Table 5.4. It can be seen that
as the stress distribution approaches the limit type, the r-node peak stresses

and the combined r-node stress also converge to a stable value.
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Table 5.4: Variation of R-Node Peak Stresses with Elastic Itera-
tions in an Indeterminate Beam

Elastic R-Node Peak | Combined R-Node | Maximum

4 Stress (MPa) Stress (MPa) von Mises
Tteration Equivalent
Pair Stress (MPa)

i o g, =Tt o
0-1 27.16 20.91 24.04 44.98
0-I1 25.02 21.62 23.32 27.61
0-I11 24.07 21.95 23.01 25.43
0-Iv 23.49 22.15 22.82 2423
oV 23.12 22.27 22.69 23.64
0-vr 22.87 22.35 22.61 23.29
o-vII 22.73 22.40 22.57 23.03
o-VIIr 22.65 22.43 22.55 22.83
Reference Stress (MPa):
ic = 22.98; Theory = 23.72
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5.6 Illustrative Example - Pressure Vessel
Support Skirt

The sy i dure for calculating the lower bound limit load of a

Pressure Vessel Support Skirt is explained in this section. The dimensions
of the pressure vessel and the pertinent details are given in Section 4.7.5 and
Figure 4.10. Figure 5.9 shows the r-node diagram for this problem. The

following are the calculation steps involved in determining the limit loads:

Applied axial pressure, P = 7736.2 kPa
Softening index, q =1
Yield stress, oy = 275800 kPa

Upper bound multiplier
linear elastic analysis, J m§ = 36.79

linear elastic analysis, T miy = 36.05

Maximum equivalent stress (nodal stresses

interpolated)
linear elastic analysis, / [(oe)um]; = 239.8 MPa
linear elastic analysis, /7 [(oe)m);r= 143.4 MPa

Location of maximum equivalent stress (el-
ement number)*
linear elastic analysis, [ = 708
"~ “The element numbers are given here just to illustrate that the maximum stress location

has not changed between the two elastic iterations.
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R-Node Equivalent Stress (Thousands kPa)
2

Peak number &

Peak number 3 ~ /

Figure 5.9: R-Node Diagram for a Pressure Vessel Support Skirt
(g=1)
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linear elastic analysis, IT = 708

Number of r-node peaks = 6

Virtual r-node peaks

Peak Number Reason
1 No distinct valleys
4 No distinct valley to the left - peaks 3 and 4
can coalesce into a single peak
6 No distinct valley on the left; part of an
otherwise smooth curve

R-Node stresses of valid r-node peaks

Peak Number | R-Node Stress (kPa)

8178.68
10938.33
8335.83

o n

_ 8178.68 + 10938.33 + 8335.83

Combined r-node stress, &, =9150.95 kPa

o oy, _ 275800
Limit load, P, = on. 915095

The inelastic limit load estimate for this problem is 247.20 MPa and the

X 7736.19 = 233.16 MPa.

classical lower bound limit load corresponding to the second linear elastic

finite element analysis is 148.80 MPa.
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5.7 Numerical Examples

In this section, the r-node method is used for determining the limit loads

of hanical and d in Section 4.7. Typical
r-node di for an i i beam, a spherical pressure vessel with
a cylindrical nozzle, torispherical heads and Y ic plate structures

are shown in Figures 5.1, 5.3, 5.5, Figures 5.6 to 5.11 and Figures 5.12 to
5.15. The r-node diagram for the pressure vessel support skirt is shown in
Figure 5.9. Figure 5.16 shows the stress distributions for a compact tension

All the are lyzed for two different values of g, viz.,

g =1and g =0.25, and the limit load estimates are tabulated in Tables 5.5

and 35.6.

5.8 Closure

The conservative aspect of the r-node method is demonstrated in this
chapter. A proper understanding of the underlying rationale behind the r-
node method and the attributes of the r-nodes are important for analysts of

in order to effecti impl the tech-

nique. This chapter provides a sy i h for the d ination of

the r-node peaks that are relevant to lower bound limit loads.

Various i i 34-36.63 have btained good limit loads
for a variety of problems such as frames, arches, pressure vessel heads and

non-symmetric structures. The limit load estimates obtained using the method
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Table 5.5: Limit Loads of Torispherical Heads using the R-Node
Method?

Case No.T 1 2 3 4 5

Limit Load | 763.7 | 850.6 | 9484 | 891.8 | 994.9
(735.2) | (827.9) | (929.2) | (859.1) | (971.0)

Case No. 6 7 8 9

Limit Load | 1118.6 | 1089.3 | 1205.4 | 13486
(1098.5) | (1051.0) | (1175.2) | (1325.9)

SAll units in kPa unless otherwise specified
"Refer Table 4.2 for shell geometries and Table 4.3 for limit load estimates

using conventional methods
“Theq within the brack t0g = 0.25 and those without

brackets correspond to ¢ = 1.

are consistently lower than the inelastic finite element analysis results in all
the cases - a feature one would expect since the formulation is based on
equilibrium considerations alone. This conservative feature of the method is

significant from the standpoint of engineering design.
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Table 5.6: Limit Loads of Mechanical Components using the R-
Node Method!

Case No. 1 2 3 4
Limit Load | 261.3x10° 1483.3 106.3x10° 233.2x10°
(232.0x10%)" | (1383.2) | (102.8x10%) | (184.7x10%)
Case No. 5a 5b 6
Limit Load 651.9 3253.1 119
(502.7) | (2812.0)| (11.5)"

SAIl units in kPa unless otherwise specified

*Refer Table 4.4 for respective configurations and Table 4.5 for limit load
gstimates using conventional methods
a RSO convention

brackets correspond to ¢ = 1.

to ¢ = 0.25 and those without
*Units in kN

142



el'p 2anSig Ul umoys aunjnng
| IMIIWUWAG-UON U} J0j DeJINg SS3I)G IPON-Y :0]°C ddn!

(8di)

SE'ly

ovr's9

Ss3uLs J00N-U

143



el ejod.a: S
. b 2an3y,
A1 1] ut um
v .“...__m 2anjnalg
LR
g _E.ku_.:w:::hm
5 juy aurd,
S apoN-Y P nds
try'g aangd
'

=

R

RN
R

#w%mwuﬂun.mmmmnunn"oo nonh»t:: mmwwmm 0
s....Sim},p%xmw.nmmﬁ,%ﬁé
...e:&?é?a.«aﬁ%%zz%&a
AN AR N
\ z% %.....:/ ;/%Wz%%%.
6%«54%?.
\ f??—?v R
WIS
o g N A
2
. ‘ f TR /
Q) ) =
\ B
Y
8!

4ﬂ$¢2¢¢
4
, ] Z, .. N/,é
T W o .
/‘f 00. ’ oo gf W R ooo,w”«““s\ 7
X MM,

=

???32
AN
XN /
,,”%,”"“.“.ﬁ“““@.%,., {
il ...“.M",,, TR

RS
K

Nt

T
I e )
,%%wm@w.\..w.ymw,,..
or'se
(edi) ssauts 3008~

144



B’y 24N Ul umoys aunjpnag aje|g
IPUNUAG-UON 3} JOJ JNOJUOY SSAUYG BPON-Y OS] :Z1°C dInSig

145



qI1'y 2an8ig ul umoys NNy
Em_h_:.....::::nm.:czw._‘_._ém,.&.:_mmme.:mmwoz.zﬂn_ﬁ?_:mﬁ

146



qI1'p 22081 Ul umoys 34nNIg aju|d d3PWAG
-UON] 31} J0j ddejING ssaUYG PON-Y pajejoduaju] auljdg :p1°¢ vanBiy

T
80 72

D AN

D S AN Z;

SR

R TTRN

..mnuuwww%w”%W%wmw"wmuw@\%a@,.,_;é,,”%ﬂ %
NN s 5397 \

RN $$$

e S

{

i
il

211]]
SN

TN
R ‘.““~n~.«~&$\¢$~“.....?. o
il R I AEESS
il N
..u&a ‘q,.«ua. e e
NIRRT
\ 'o...“.&wwm&”.§$~ (9am) ss3us 3o0vy
10,999,
:.&www...w.vw%
a PR35
W RIS

K>

147



1.z
Wy
i

1978

.23

148

-1

Figure 5.15: Iso R-Node Stress Contour for the Non-Symmetric

Plate Structure shown in Figure 4.11h



Equivalent stress (MPa)
5

— 1 elastic iteration = = Il elastic iteration

20

)
) 0.01 0.02 0.03 0.04 0.05
Ligament length (m)

Figure 5.16: Stress Distributi for a C Tension

149

S



Chapter 6

Limit Loads of Layered Beams
and Layered Cylindrical Shells
using the R-Node Method

6.1 Introduction

The importance of built-in anisotropy in engineering design such as rein-

forced structures and composites is well known on account of their superior

strength-t ight ch istics. A k ledge of limit load of components

fabricated from these materials is therefore important from a design stand-
point. The r-node method of limit load determination has been found to
give good estimates of lower bound limit loads for isotropic components.
This success has provided the impetus to extend the method to laminated
structures.

In this chapter, the r-node method is extended to two-layered beams and

two-layered axisymmetric cylindrical shells. Each layer is assumed to be
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made out of a h it ic and elastic perfectly-plastic ial.

While the formulations for the beam probl are developed by
the theory of bending, the theorem of nesting surfaces of dissipation'”:!®
is invoked in the case of cylindrical shells. The limit load estimates are
compared with inelastic finite element analysis results.

6.2 Limit Load Estimates of Two-Layered
Beams subjected to Uniform Load

6.2.1 Elastic Modulus Modification Index based on
Deformation Control (g =1)

For an isotropic beam, the elastic modulus modification scheme given by

(4.17) can be d as:
a
(B.); = [;ﬂ) E, ; 0<gq<1 (6.1)

where o(.) is the stress in the direction of the neutral axis. For obtaining an
expression similar to the above for a two-layered beam, one can invoke the
theory of beam bending.

In this section, formulations for determining the limit load estimates of

layered beams are dforg=1in ion (6.1). The di

ofa lar | d beam subj

d to pure bending is shown in Fig-
ure 6.1. The bending moment, M, at any cross-section of the beam can be

expressed as
M = / 0(z)z dz
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. e
= / owzdz+ [ o@zdi+ [ omzd: (6.2)
la—c o i

where o) is the normal stress in the z direction. Assuming k to be the
curvature of the beam for the second elastic analysis and considering that

0(z) = €z)E{z), Where ¢(;) = kz, equation (6.2) can be rewritten as
M= [ Bupk et [ Bpki? de+ [ ks dz. (63)

The subscripts “1” and “2” stand for material numbers one and two respec-
tively.
The quantities E(.); and E{(:); can be determined, in a manner similar to

the expression given by equation (6.1), as

o, (2
Eup=E (Tars)1 : Eup= E-‘( ard)2 (6.4)
[oen], [oten],
where the subscript / stands for first linear elastic analysis.
The elastic stress distributions along the direction of the neutral axis can
be expressed as:®
[a ] _ MzE,
nf, = ——Ellx TEL

R <=
erl L+ Exhy
where I, and I are the corresponding moments of inertia of the lavers.

(6.3)

Substituting equations (6.4) and (6.5) into equation (6.3) and simplifying,
the expression for strain can be obtained as:

[ _ M2z
e(.)]" " [Bili + B2 L][By(0ars)1 + Ba0ars)a]

(6.6)
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where

a —c
b= zd: ad = zd=
The subscript “II” in equation (6.6) stands for second linear analysis.
The expression for the stress in the first layer for the second linear analysis
can be given by
[oen] = Een [f(:)],, . (6.7)

bstituting the first of ions (6.4) and ion (6.6) into ion (6.7)

and simplifying,

(Garsh M

= 6.8

(0 Pt e (o5
Similarly, the stress in the second layer for the second linear analysis is:

T ey r s fe
From equations (6.8) and (6.9) it can be seen that the stress distributions
after modifying the elastic moduli are independent of z. In other words. the
stress distribution pertains to a limit type of distribution.

The condition for net-section yielding can be obtained from Figure 6.2

using similar triangles. As the applied load, P, is increased to P; so as to

cause net-section yield, i.e., P — P, then
[U(m]" = On1 — Op
(6.10)
and [0'(‘)2]" = On2 = op
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where o and o, are the r-node stresses in the respective layers. If
P=+P, (6.11)

where 7 is a scaling factor, equation (6.10) becomes
[”""] n = Tm }

and [V(x)z]" = 70y

(6.12)

Equations (6.8), (6.9) and (6.12) lead to
[0(')‘] _ (Garh _ ot (6.13)
(2] (0ars)2 Oy2
Therefore, a relationship between (04r)1 and (dars)2 can be obtained as
(Gars)2 = iyﬁ("-rt)l- (6.14)
o
Assuming E;(0ers)1 = Ci and E>(0ars)2 = Ca, from equation (6.14) we

Gr= [ZT'T] [%] G (6.13)

and the corresponding secant moduli can be expressed as:

obtain

G

["(‘"]l
C

Eup = .
(22 r(m]’

By taking C, to be any arbitrary positive value, C; can be determined

Egn

thus enabling the second linear elastic analysis to be carried out. The quanti-

ties [0()1]r and [0(z)2]r can be determined from the first linear elastic analysis.
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Figure 6.2: Relationship between R-Node Stresses and Yield
Stresses in a Two-Layered Beam
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The combined r-node stresses Gy; and Gn2 for both the layers are deter-
mined separately. Ideally, the ratio of these values should correspond to the
ratio of the corresponding yield stresses. However, the finite element mesh
and interpolation can cause some numerical inaccuracies. Therefore, to be
on the conservative side, the lower of oy, /G, and 0,2/n; is taken to be the

limit load multiplier. The limit load can then be expressed as:

P=P [mm %;_Z)] (6.16)

where P is the applied load, which is arbitrary.
6.2.2 General Elastic Modulus Modification Scheme
(0<g<1)
Equation (6.15) was derived for a specific case of ¢ = 1. In this section,
the procedure is extended for the general case of 0 < ¢ < 1.
The moment, M, for the second linear analysis can be expressed in a

manner similar to equation (6.3) as

a a—c 0
M= / * Eunkeds+ fo Eayh2? dz + /_ Bonkdz (617

- (gars)1 |
Ezn = Ey {—["(ﬂl]l}

where

0<g<l (6.18)
(ars)z |
Eap = B |1
[oen],
Applying equations (6.5) and (6.18) in equation (6.17) and simplifying,
el M@+
M = B+ BLY i)l + Ba(as)]
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g = E&9 /"‘ 20-9) gz
and B = E&9 /‘." 22-9) g
Considering that [a(,,] = [E(:)] 11 Ete), the following expressions can be

obtained for the stresses

E(-9 (Gar )'Mz("')
bl = 5+ oy | 7SS 020

and

P G0} 7 R
[xr(x)z]" = Buow)t + Balowe)] b<z<(a—c) (6.21)

At the interface, z; = z,. Therefore,
[‘7(:)‘] . [ﬂ i [M]' (6.22)
u(,,g] » E, (oars)2) ~ o
Next, the two extreme cases, ¢ =1 and g = 0 are considered. For ¢ = 1.

equation (6.22) becomes

ol _ (o .
[‘7(‘)7111 =1 (@ers)2” ’

Comparing equations (6.13) and (6.23), the relationship

[U(zu] r 9 (6.24)
el

can be obtained. For g = 0, the stress ratio given by equation (6.22) degen-
erates to the ratio of the elastic moduli, i.e.,

["(z)l]"

-y (6.25)
o,

=0
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Assuming the stress ratio to be a linear function of g,

[‘7(‘"] w

=wig+wy, (6.26)
[‘7("2 I

and substituting equations (6.24) and (6.25) in equation (6.26) we obtain

@ = [ﬂ = ﬂ] a+ _E_‘ (6.27)
a’(:)z] 1w o B E;
Equations (6.22) and (6.27) together lead to the expression

Ci

R (TR (6:28)

CZ
where

C, = an arbitrary value,

C,
bl = g,
Sie
C;
=2l
and ( = :iﬂ'.

For ¢ = 1, equation (6.28) reduces to the expression given by equation (6.14).
For isotropic materials, { = ¥ = 1 leading to the equation (0urs)1 = (Tars)2-
The absence of 8, and f, in equation (6.28) implies that the position of
the neutral axis has no effect in the elastic moduli modification scheme. The
cross-sectional dimensions of the beam also do not have any significance with

regards to equation (6.28).
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6.2.3 Numerical Examples

Three different configurations of two-layered beams under different sup-
port conditions, as shown in Figure 6.3, are considered. These problems are
analyzed for various values of ¢ and elastic moduli ratios. The yield stresses
are taken to be 68.95x10° kPa (10x10° psi) and 206.85x10° kPa (30x10° psi)
respectively, for both the materials. The Poisson’s ratio is assumed to be the
same for both the materials, having a value of 0.3.

The beams, modeled for plane stress conditions using the ANSYS! soft-
ware, are assumed to have unit width in the direction normal to the paper.

The four noded i are used for creating

the finite element mesh. An arbitrary external load of 172.4 kPa (25 psi) is

applied in all the three cases as shown in Figure 6.3.

The stress distributions for typical sections are shown in Figures 6.4
and 6.5. The r-node diagrams for an indeterminate beam is shown in Fig-
ure 6.6. The results obtained are compared with those obtained using in-
elastic finite element analyses and are presented in Tables 6.1 to 6.4. The
inelastic results are, of course, independent of the elastic moduli ratios. A

blem is ized by the of an r-node

typical beam bending p
on each side of the neutral axis. However, for the ratios of E;/E, equal

to three and ten, only one r-node is present across the cross-section. The

other r-node, although isfying the i given by ion 6.13, is
present outside the boundary of the structure and hence cannot be taken

into consideration. Therefore, the corresponding results are also not valid
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All dimensions in cm.

Figure 6.3: Dimensions of the Two-Layered Beams Analyzed
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and are presented just for the purpose of illustration.

6.3 Limit Load Estimates of Two-Layered
Axisymmetric Cylindrical Shells under
Uniform Internal Pressure

It is well-known that the elastic properties of materials such as the Young’s
modulus and the Poisson’s ratio have little influence on the limit load of any
structure. However, while performing elastic analysis of layered structures,
the relative elastic moduli values may give misleading indication as though
these represent the relative strengths of the layers. Thus, the material with a
higher elastic modulus would seem stronger, even though it might be having
a lower value of yield strength than the remaining layers, thus leading to
inaccurate magnitudes of the r-node stresses. In this section, formulations
for the layered cylinder problem are carried out by determining the elastic
material properties based on the magnitude of the reference stresses in the

respective layers.
6.3.1 Formulations for Layered-Cylinder Problem

The theory of bending was used to carry out the formulations in the case of
two-layered beam problems. However, since membrane stresses are dominant
in a two-layered cylinder, a different formulation is necessary. One way of

hing this probl is by sti ing that the ratio of the reference

stress values, calculated on the basis of the elastic properties, is equal to the
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Element Number along the depth of the beam

0

15 F

n L

-3 -2 -1 0 1 2 3
Stress in the X direction (10E3 kPa)

— I linear analysis ~ ~ II linear analysis

Figure 6.4: Stress Distribution in a Typical Section - Two-Layered
Beam subjected to Pure Bending (t; = t, =
v=1/3and ¢=1)
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Element number along the depth of the beam

0
!

5 L

10 -

15

20 . L . .
3 2 -1 0 1 2 3

Stress in the X direction (10E3 kPa)

— I linear analysis ~ = II linear analysis

Figure 6.5: Stress Distribution in a Typical Section - Two-Layered
Beam subjected to Pure Bending (f, = 0.84 cm, t; =
1.70 cm., w = 1/3 and ¢ =1)
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R-Node Equivalent Stress (Thousands kPa)

0 L L L L
[} 20 40 60 80 100

Segment Number

—— Top Layer —&— Bottom Layer

Figure 6.6: R-Node Diagram of a Two-Layered Indeterminate
Beam subjected to Uniform Loading (t; = {; = 1.27 em.,
=1/3and ¢=1)

165



Table 6.1: Limit Loads for a Two-Layered Beam subjected to Pure
Bending' (¢, = t, = 1.27 cm.)

Ratio of

Elastic

Moduli
(kPa/kPa)

v 100 | 075 | 050 | 025
B

Modulus adjustment index, g

68.95 x 10°

206.85 % 10° 2281.35 | 2169.37 | 2067.05 | 1976.93

g

6‘6—889;9510% 2229.08 | 2237.50 | 2029.34 | 2382.50
6

%1—10% 1755.67 | 1357.63 | 1180.70 | 1077.14
6

?:;J*;:; 1425.13 | 861.05 | 723.77 | 659.30

tLimit loads in kPa

Yield stress of the first layer, 0,1 =68.95x10° kPa

Ratio of yield stress values, (=1/3

Limit load estimate based on inelastic analysis, (PL)[yelastic=2327.06 kPa
In the analyses pertaining to the last two rows of results, there is a signifi-
cant shift in the neutral axis between the two linear elastic iterations. This

introduces errors in the elastic modulus modification process and hence the
results are not valid.
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Table 6.2: Limit Loads for a Two-Layered Beam subjected to Pure
Bending' (¢, = 0.846 cm.; t, =1.694 cm.)

Ratio of Elastic

Moduli Modulus adjustment index, ¢
(kPa/kPa)

w=B | 100 | 075 | 050 | 025

E;

68.95 x 10° B
206aET0F | 278972 | 267078 | 2564.39 | 2467.24
68.95 x 10°
SIS0 T0F | 274373 | 272387 | 270018 | 2704.01
20685 x10° | )80 95 | 143057 | 1162.63 | 1057.49
68.95 x 10° i - X s
88950 x10° | 11068 | 112061 | 757.48 | 622.07
68.95 x 10° : . ; ;

"Limit loads in kPa

Yield stress of the first layer. 0,,=68.95x10° kPa

Ratio of yield stress values, (=1/3

Limit load estimate based on inelastic analysis, (PL)[pejastic=2744-21 kPa

The results in the last two rows are not valid for the same reason as mentioned
in Table 6.1.
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Table 6.3: Limit Loads for a Two-Layered Simply Supported Beam
subjected to Uniform Pressure! (¢, =t, = 1.27 cm.)

Ratio of Elastic
Moduli Modulus adjustment index, g
(kPa/kPa)
v=br 100 | 075 | 050 | 025
E
68.95 x 10°
SR B IgE | 96298 | 535.53 | 51044 | 488.57
)6
% 550.36 | 552.56 | 501.20 | 578.63
20685x10° | 13611 | 335.86 | 201.50 | 265.73
68.95 x 10° : * * o
88950 x 10° | 54058 | 212.02 | 178.37 | 16258
68.95 x 10° - g ’ a

"Limit loads in kPa

Yield stress of the first layer, 0,,=68.95x10° kPa

Ratio of yield stress values, (=1/3

Limit load estimate based on inelastic analysis, (PL)[pejastic=572-29 kPa

The results in the last two rows are not valid for the same reason as mentioned
in Table 6.1.



Table 6.4: Limit Loads for a Two-Layered Indeterminate Beam
subjected to Uniform Pressure! (¢, =, = 1.27 cm.)

Ratio of Elastic

Moduli Modulus adjustment index, ¢
(kPa/kPa)
F=l 100 | 075 | 050 | 025
EZ
68.95 x 10°

206.85 % 10° 792.72 | 751.97 | 716.67 | 685.09
68.95 x 10°

§89.50 X 10° 783.62 | 790.17 | 801.75 | 821.75

206.85 x 10°

68.95 x 10° 556.43 | 452.04 | 402.74 | 371.36

689.5 x 10°

6895 X 10° 378.19 | 290.49 | 251.53 | 232.09

*Limit loads in kPa

Yield stress of the first layer, 0y, =68.95x10° kPa

Ratio of yield stress values, (=1/3

Limit load estimate based on inelastic analysis, (PL)[pe|astic=861.88 kPa

The results in the last two rows are not valid for the same reason as mentioned
in Table 6.1.
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ratio of the yield stress values. For a two-layered cylinder shown in Figure 6.7
this can be written as

(om); (By, Ep, v, Pry,2,73) _ 0w (6.29)
(or2); (Er, B2, v, PyTy,m2,T3) Oy )

The refe stress can be i ined by using the “theo-

rem of nesting surfaces” "3 as:

L emiav
Vi

(or); = (Orent)y = 3
and (6.30)
(Ceqa)idV
©@r)i = (@veps); = Jtomaa” —

where o, and o, are the von Mises equivalent stress values, obtained from
linear elastic analysis, given by
1 12
o= (00 = 01)? + (07 = 0.)* + (0 — 0%)’] (6.31)
and o,y is the lower bound reference stress determined using the theorem of

nesting surfaces.

If the vessel is subjected to a uniform internal pressure, P, then assuming

pl i iti the i for the hoop, radial and longitudinal
stresses can be given by the Lame’s equations as:%
P 3\ PueBl(, 1}
[(oa)s], = F-_l(“-f_’ “®-o1 1+3

P 2\ PuRE(, 12
ol = =y (1+,7) B = G

@)y = v{l(oehilr+[(ga)ils} 5 mSr<m
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for the inner cylinder and

[(0)a], —R% (1 + ’,-2_;)

int 3 :
[(@)aly = R;-_ - (1 + ;%) (6:33)
(o)l = v{l(or)al +[(@a)als} 5 r2<T<rs

for the outer cylinder.

In the above expressions, ry, r; and r; refer to the inside, interface and
the outside radii respectively, and Ry = r/r; and R; =r3/r;.

The displacements at the interface are given by the expressions:

_ _ra(-rfv+r? - 2022 —1®v —1y?) Pine
falrallr = Ey (-ri2+12?)
_m@rAAe2ni) P

Ey (-2 +13?) fo:a4)

and
2v =12 + 21,22 + r3?v +132) P, =
[ua(ra2)lr = n v 5 (::, _r;;); v+ 757) P (6.33)

The term Pine refers to the interface pressure which can be determined by
equating u;(r2) and up(r2).

The equivalent stresses 0eq and Tequ2 can be determined by substitut-
ing equations (6.32) and (6.33) into equation (6.31). These equivalent stress
into ion (6.30) for ining the

are then

respective reference stresses (0yes1)r and (0yes2)r, taking into account equa-

tions (6.34) and (6.35). The condition given by ion (6.29) can therefc
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be expressed as

(Grep)r _ (@repadr (636)
%% Ty2

The ratio of the yield stress and the reference stress values as given by
equation (6.36) is denoted as m® [equation (3.19)]. Therefore, equation (6.36)
can be expressed as:

(m); = (m3), - (6.37)
Equation (6.37) gives the necessary and sufficient condition for ensuring
that the elastic properties selected result in stress values that point to the
strengths of the cylinders in terms of their respective yield values.

The elastic constants E;, E; and v should be selected such that equa-
tion (6.37) is satisfied. The foregoing computations can be easily performed

19

by using any of the availabl boli ical such as Maple.

The elastic modulus softening is carried out by using the relations

e
Ew = B [——(";‘" ‘)’]

and Es’.' - 57{(”::)’]0

where o,; and o,, correspond to the equivalent stress values of the elements
in the respective layers, which can be obtained from the first linear elastic
analysis.

Equation (6.37) can be readily extended for an “N-layered” cylinder as

[mil; = m3]; =--- = [m}]; - (6.38)

172



6.3.2 Numerical Examples

A variety of configurations of two-layered thick cylindrical shells are an-
alyzed in this section. The dimensions, material properties and the limit
load estimates are presented in Tables 6.5 and 6.6. The cylinders are mod-

eled using fc de axisy ic i i under plane strain

conditions. For performing the r-node analysis, an arbitrary uniform internal
pressure of 50000 kPa is applied. Typical plots of stress distributions across
the thickness are shown in Figures 6.8 and 6.9.

6.4 Closure

Ani i ials such as rei structures and composites play
an important role in engineering design on account of their superior strength-
to-weight characteristics. The main objective of this chapter is to demon-
strate that the r-node method can be applied for determining the limit loads
of layered structures. The formulations and the underlying theory for deter-
mining the r-nodes, at this stage, is not generic as in the case of isotropic
structures.

The formulations that are presented in this paper are suitable for no
more than two-linear elastic finite element analyses. The fact that the r-
node method requires only two linear elastic analyses makes the method
attractive for determining the limit loads.

The numerical examples demonstrate that the method is easy to imple-

ment and the results compare well with those obtained using inelastic finite
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element analysis. Since the formulations for the beam problem are based on
the theory of bending, these can also be extended for determining the limit
loads of two-layered sy ic and ic plate
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Table 6.5: Limit Load Estimates
Configuration 1}

for a Two-Layered Cylinder -

Ratio of the Ratio of
Case vield Elastic Poisson’s tcit ]
No. | stremgths | Moduli Ratio Ll Brestase skee)
(kPa/kPa) | (kPa/kPa)
gy E, Inelastic
(=2 =t ] t 5

o ¢ 5 v R-Node' Analysis
—_—— 173999.96

i 95 x 10° | o) g7x10-3 0.48 (169537.42) | 174170.00
206.85 x 108 [165347.17]
488393.86

3

s 68.95 x 10z 7.57x10-3 0.48 (475391.87) | 492330.00
689.50 x 10 [463234.06]
| B 161358.37

g | 20685x10° 1.04 0.48 (158032.50) | 160830.00
68.95 x 10° [154939.09]
432077.64

4 639.5_0 x 10° 354 0.48 (423586.11) | 431560.00
68.95 x 103 [415703.42]

iry = 8§ cm., ry =13 cm., r3 =23 cm., and P =50000 kPa
tThe numbers within the ordinary parenthesis and square brackets correspond to g = 0.5
and ¢ = 0.01 respectively and those without the brackets correspond to ¢ = 1.
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Table 6.6: Limit Load Estimates for a Two-Layered Cylinder -
Configuration 2°

]
Ratio of the |  Ratio of |
Case yield Elastic Poisson’s i |
oy Foo i S Limit Pressure (kPa) |
(kPa/kPa) | (kPa/kPa) H
_ g _E _ Inelastic |
¢ e =5 L R-Node' Analysis t
|
150701.95 i
1 91.60x10~2 0.48 (147140.36) | 151670.00 |
[143674.01] ;
|
|
e — 371599.79 |
> 95 x10° | | 67 10-3 048 (364928.77) | 377160.00 |
689.50 x 103 [358207.42] |
E—_— 197716.18
5 120685 x 1 048 (191047.12) | 197500.00
i | 68.95 x 10° [184985.29]
i i
. 581330.75 ;
4 689.0’0 x 10° 338 0.48 (363049.82) | 383340.00 :
68.95 x 103 [543765.77) 1
[ 87442.12
7442.12
68.95 x 10° it
5 SB8e x 10 -3 ; (85003.86 7282.00
5| egoraios | 3188010 0.48 [82713'93]) 87282,

iry = 10 em., r2 =20 cm.. r3 =30 cm., and P =50000 kPa
"The numbers within the ordinary parenthesis and square brackets correspond to ¢ = 0.5
and g = 0.01 respectively.
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Figure 6.7: Two-Layered Cylinder under Internal Pressure
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80 -
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20

Figure 6.8: Typical Stress Distributions across a Layered Cylinder

- Configuration 1, Case No. 1 (¢=1)
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Figure 6.9: Typical Stress Distributions across a Layered Cylinder
- Configuration 2, Case No. 5 (¢=1)
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Chapter 7

Minimum Weight Design of
Pressure Components using the
Iso R-Node Stress Concept

7.1 Introduction

Limit load d ination of mechanical and structures using

the r-node method™ involves identification of r-nodes as load-controlled lo-
cations. The r-node peaks and their corresponding equivalent stress values
can characterize the nature of plastic collapse that is likely to occur. For
instance, distinct r-node peaks could represent well-defined plastic hinge lo-
11 issible collapse i The non-

cations and suggest a ki
peak r-nodes which in many cases represent a large volume of the structure,

although load-controlled, may not always lead to cross-sectional plasticity.

1 and in addition to

‘While designi: h

the knowledge of limit loads, it is useful to know whether it is possible to
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obtain an optimum shape that can perform the intended function with the
btained as a of such

weight. The design
an objective, even if not practical due to various constraints, can still of-

fer valuable insights. In many ineeri: icati such as

designs for space projects, weight reduction with minimal loss of strength

is of significant interest. For homogeneous materials, the minimum weight

ides with minis volume, and th
studies'® 7% have focused on the problem of minimizing the volume.
Although conventional analysis methods offer insight into the aspect of

weight, soluti are only for simple geometric descrip-

tions. The structures that are used in practice are much more complex,
and therefore warrant procedures that are more general, simple and efficient.

for

The r-node method offers a simple and
the weight of mechanical components and structures without significant loss
of strength. The method invokes the load-controlled nature of the r-nodes
and utilizes the r-node concept for structural optimization. In essence, the
invocation of 2 minimum weight concept is tantamount to the finding of a

“primary stress” structure.

7.2 Minimum Weight Design based on the
Iso R-Node Stress Concept

In any mechanical component or structure, distinct r-node peaks could

d di

represent well-defined plastic hinge locations or hinge on
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the type of or lyzed. The ining r-nodes present

in the structure, although load-controlled, may or may not lead to cross-
It can therefore be inferred that if there is a structure

with equal r-node stresses th then such a would become
entirely plastic at collapse. A thick cylinder subjected to uniform internal

pressure is an example for such a case. In other words, if the geometry
of a structure® is suitably modified so that the r-node stresses are of equal
magnitude throughout, collapse would occur as a result of gross plasticity
rather than by the formation of discrete plastic zones. The process of removal

of material from a hanical or for the purpose of

achieving uniform r-node stresses is the basis for minimum weight design
using the r-node concept.
The procedure for minimizing the weight of structures using the r-node

method can be i d by idering a simple (Figure 7.1) of

an arbitrary length and of varying cross-section that is subjected to some
prescribed loading such that the structure undergoes bending. Minimum
weight design is achieved by modifying the geometry such that the entire
structure would undergo concurrent yielding.

The r-nodes are assumed to be potential plastic hinge locations. It is rea-

sonable to late that the tion of the with the highest

r-node stress value would reach plasticity first, followed by another inde-

“that would have otherwise undergone collapse due to the formation of distinct plastic
inges
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Figure 7.1:

’\__‘,’-—'\/

LReference section, 7

L— Typical section,i

ORIGINAL STRUCTURE

(.,,.&._ s
—] 0"’
/Qw =
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e b(l) —E
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— (% mox)j
(%e mox);

(1) Pseudo elastic stress distribution
(2) R-Node
(3) Limit type stress distribution

FINAL OPTIMIZED STRUCTURE

,n (U,.)
" ET/ =t;
Section i Section j

An Arbitrary Beam of Varying Cross-section - Applica-
tion of the Iso R-Node Stress Concept
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pendent plastic zone in the cross-section containing the next highest r-node

peak. This process would il until a ki icall; issible collapse
mechanism leading to collapse of the component develops.

Let ¢; be the thickness of any given cross-section, i, of the original struc-
ture as shown in Figure 7.1, and (0,): the corresponding r-node equivalent
stress. Unlike the elastic stresses which vary linearly across the cross-section.
the r-node stresses, by virtue of being load-controlled, represent the entire
cross-section (Figure 7.1). Therefore, for any section i containing an r-node

or r-nodes, the limit type moment can be expressed as
2
(MF).' = (Un)i(t?) . (7.1)
where the superscript “o” stands for “original structure”.

For the section, j, which contains the r-node with the highest equivalent

stress, the moment for a fully plastic-type distribution can be expressed as:

2
. (an); (25,
(), =5 o2
When (0,), hes ay; (M,); hes M,, where o, and M, stand

for the material yield stress and the plastic moment, respectively.
From equations (7.1) and (7.2), for every cross-section of the structure to

reach the plastic state si;

be modified such that, as ¢ hes t!; (0n): hes (0,);, where

the cor ding thick t? should

the superscript “f” stands for “final optimized structure”. This would be

possible if the moment corresponding to limit type distribution, which is
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primarily due to loading and boundary conditions, is stipulated to have the
same value before and after optimizing the structure, ie.,

(ol (@) _ (on)s ()’
== . (7.3)

from which the final thickness of any cross-section, i, can be obtained as,

-({&)
t'[—( (on);

The expression for determining the section thickness corresponding to

(7.4)

minimum weight design as given by equation (7.4) has been derived for a
beam type structure where the failure is caused by bending stresses. How-

ever, ical hanical or structures are subjected to complex

stress distributions, making it difficult for the analyst to guess ‘a priori’ the
optimal configuration.

The main purpose of equation (7.4) is to establish a relationship be-
tween the cross-sectional dimensions of a structure subjected to bending and
the r-node stress, in light of minimum weight design. It is not necessary,
however, that similar specific expressions be derived for practical pressure

The ion given by ion (7.4) is not unique for mini-

mizing the weight of a beam structure. Any convenient empirical expression
can be used for arriving at the final thickness, t{ . With a number of r-node
iterations®, the dimensions of the original structure progressively undergo

changes such that the final optimized structure is the one with equal r-node

“Every iteration consists of an r-node analysis, i.e., two sets of linear elastic finite
element analyses.
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stresses. Since bending is one of the dominant actions in many thin-walled
or slender components, equation (7.4) is found to perform adequately.

In essence the minimum weight design as described by equation (7.4)
implies that it is not necessary for any cross-section, i, of a structure to have
a thickness ¢ in order to withstand the given load; indeed the structure
would serve the intended purpose even if the thickness is reduced to #/.

7.3 Minimum Weight Design - Another
Perspective

The theorem of nesting surfaces!™!® (Section 2.8) can also be invoked for

relating the pts of refe stress and mini weight. In d

for minimum weight under prescribed loading conditions, the geometry of
a structure should be such that the entire volume undergoes plasticity at
collapse. This aspect can be readily verified by examining the nesting surfaces
for the two bar structure shown in Figure 2.8.

The nesting surfaces shown in Figure 2.8 have points where the surfaces
corresponding to n = 1 and n — oo are coincident. The intersecting of all
Q. at such points can be attributed to the situation where all the material
in the structure has the same absolute value of stress. This is precisely the
condition for ‘minimum weight’ design of the structure under a given loading.

When a structure satisfies the minimum weight criterion for a given set of

loads, all the surfaces Q. are coincid on the the load-sp:
weight is both a necessary and i ition for the exact id;
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of all Q..'" The shaded portions of the nesting surfaces (Figure 2.8) is an
indication of the extent of deviation from the minimum weight state for a
set of ibed loading diti The limitation of this h is its
dependency on the state of the applied load and its applicability only to

simple structures.

7.4 Step-by-step Procedure for Minimizing
the Weight of Structures using the
R-Node Method

The methodology described in Section 7.2 can be presented as a step-by-

step dure so that i and can be config-

ured for minimum weight conditions, as follows:

1. The given is suitably di is and linear elastic analy-
ses are performed. The r-nodes are then determined by following the
procedure proposed by Seshadri and Fernando.*

X

The section with the highest r-node stress is identified as section j
and, based on this r-node stress value, the thickness of the rest of the

structure is determined by using equation (7.4).

o

R-Node analysis is perft d for the modified so

and equation (7.4) is once again applied and improved cross-sectional

dimensions are obtained.
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4. The design imp d lained in step number three

can be repeated a few times (typically five to six times) until there

is no further change in the r-node stresses with iterations or until a

stage where any further i ion might lead to ically unworkable
designs. Of course, the analyst might wish to terminate the iteration
even after two linear elastic runs (say), and get “closer” to the optimal
configuration.

It should be noted, however, that the reference section j determined in
step number two should always be maintained as the reference section

throughout the iteration process.

‘While performing the r-node analysis, it is not necessary that all sec-

o

tions contain r-nodes. Standard i lati i can be used

for determining the r-node stresses at these missing locations.

The resulting structure would have large zones with more or less equal r-
node stress values indicating that these zones would entirely undergo plastic
deformations at collapse rather than narrow cross-sections (or plastic hinges).

The procedure described opens up a wide range of application possibilities

in engineering designs such as minimum weight design of mechanical compo-

nents, design for stress i and thereby i ing the
fatigue life of structures and for designing reinforcements at the re-entrant

corner of a nozzle shell intersection, to mention a few.
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7.5 Numerical Examples

In this section, the r-node concept for minimizing the weight of structures

is applied for minimizing the weight of 1 of ical
interest. The problems considered here are an indeterminate beam subjected
to uniform load and a spherical pressure vessel with a cylindrical nozzle
subjected to uniform internal pressure. For the first problem, a uniform

beam is idered and an opti shape for which the weight

is minimum is determined. In the case of the spherical pressure vessel, the
nozzle and the reinforcement at the nozzle shell intersection are designed.
The problems are modeled using the ANSYS! software. The four-noded

ic dril 1 el are used for finite element modeling.

Limit loads are evaluated by using inelastic finite element analysis and the
r-node method.

7.5.1 Indeterminate Beam subjected to Uniform Load

The indeterminate beam of span 50.8x10~2 m (20 in.) and thickness
2.54x107% m (1 in.), shown in Figure 2.6, has end A built in and end B
simply supported. The beam is assumed to have unit width in the direction
normal to the paper. A uniform arbitrary pressure of 172.4 kPa (25 psi) is
applied. The yield stress of the material is assumed to be 208.85x10° kPa
(30x10° psi) and the modulus of elasticity is 206.85x10° kPa (30x10° psi).
The Poisson’s ratio is assumed to be equal to 0.3. The collapse mechanism

of the and the iated r-node multi-bar model** are shown in
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Figure 2.6. Minimum volume problems of this kind have been solved by

Kodiyalam and Vanderplaats® by ding the nodal forces in a Taylor

series with respect to the shape variations.

The minimum weight structure after six iterations is shown in Figure 7.2.
It can be seen that the final structure has 22 percent less volume as compared
to the original one. The results of the analyses are given in Table 7.1. In
this case, the limit load of the optimized structure is more than that of the

original structure because, during optimization the i hick of
the final structure was increased by ten percent as compared to the original
structure. The plasticity spread at collapse for the original structure and for
the final optimized structure is shown in Figure 7.3 and the corresponding
r-node diagrams are shown in Figure 7.4, respectively.

At the point of contraflexure of the beam and at the simply supported
edge. since the bending moment values are equal to zero, the computed thick-
nesses should ideally be equal to zero. In actual cases, however, the thickness
value determined depends not only on the required bending strength, but also

on the shear strength necessary to transmit the shear force.

7.5.2 Design of Reinforcement and Nozzle of an
Axisymmetric Spherical Pressure Vessel with a
Cylindrical Nozzle subjected to Internal
Pressure

Design of rei for axisy ic nozzles has been a topic of

substantial interest since the 1960’s. Proper design of nozzles and reinforce-
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Figure 7.2: Discretized Indeterminate Beams
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Figure 7.3: Plasticity Spread at Collapse for the Indeterminate
Beams
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Table 7.1: Comparison of a Uniform Indeterminate Beam with an
Optimized Beam

Limit Limit Volume Total
Load - Load of the volume
Structure | Inelastic | Estimate - Plastic of the

FEA R-Node Region structure
(kPa) | Method (kPa) | (x10~® m%) | (x10~° m?)

Original 1551.38 1483.32 95.70 327.74

Optimized | 1639.29 1640.67 190.75 254.33

ments ensures that the resulting pressure vessel has an adequately robust
design and a low stress concentration factor.”™

To d the design d a ical pressure vessel (Fig-

ure 7.3) with equal nozzle and shell thickness of 0.25 m (9.84 in.) is consid-
ered. The yield stress is assumed to be 300x10° kPa (43.51x10° psi) and the
modulus of elasticity is taken to be 200x10° kPa (29x10° psi). The Pois-
son’s ratio is assumed to have a value of 0.3. An arbitrary internal pressure
of 200 kPa (29 psi) is applied. A fillet radius of 0.125 m (4.92 in.) is provided
at the re-entrant corner of the nozzle-shell intersection. The section number

one, as indicated in Figure 7.5, is assumed to be the reference section based

on which the thick of the ining sections are d. The pro-
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Table 7.2: Comparison of Optimized Pressure Vessel Design with
C ional Pressure Vessel Design

Type of Minimum | Minimum | Limit | Limit Load | Volume of | Maximum
Pressure thickness | thickness | Load - | Estimate- | Pressure | Equivalent
vessel of the of the Inelastic R-Node vessel Stress

nozzle shell FEA Method

(m) (m) (MPa) (MPa) (m®) (kPa)

Reinforced
(using the
r-node 0.0%0 0.255 153.300 143.755 3.386 840.110
method,
Figure 7.6)
Unreinforced 0.090 0.250 149.400 121.017 3.320 944.530
(Figure 7.7)

cedure described in Section 7.4 is applied for this structure and two r-node
iterations are carried out. The resulting component is shown in Figure 7.6.
An unreinforced pressure vessel having uniform shell and nozzle thickness

as shown in Figure 7.7 is idered for the of i The

results of the analyses are presented in Table 7.2 and the corresponding r-
node diagrams are shown in Figure 7.8.

It can be seen from Table 7.2 that while the volume of material required
for the proposed design (Figure 7.2) is only two percent more than that
required for the conventional design, the limit load is increased by about three

percent and the maximum equivalent stress is reduced by eleven percent.
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Figure 7.5: Spherical Pressure Vessel with Equal Nozzle and Shell
Thickness
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Figure 7.7: Unreinforced Spherical Pressure Vessel
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Table 7.3: Limit Load Estimates based on the R-Node Method -
Indeterminate Beam

No. of R-Node Combined Limit Load
Structure | R-Node Stress R-Node Stress, Estimate
Peaks Gn = (On1 + 0n2)/2 based on
Equation (3.3)
(x10° kPa) (x10° kPa) (kPa)
| Original 0n1=27.16
! Beam 2 0n2=20.91 24.03 1483.32
| Optimized Om=21.73
i Beam 2 Tn2=21.10 21.42 1640.67
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Table 7.4: Limit Load Estimates based on the R-Node Method -
Spherical Pressure Vessel with a Cylindrical Nozzle

No. of | R-Node Limit Load
Structure R-Node Stress Estimate
Peaks based on
Equation (3.5)
(kPa) (x10° kPa)
Reinforced
Pressure 1 G,=417.38 143.76
Vessel
Unreinforced
Pressure 1 Gn=495.80 121.02
Vessel

201



7.6 Closure

A simple and systematic procedure based on the r-node concept has been

i for minimizing the weight of hanical and structures.
The usefulness of the method has been demonstrated by way of carrying

out size optimizations for hanical and of practical

interest.
In the context of this chapter, the aim is designing a component or struc-
ture to make it, as far as possible, equally strong all over such that when

loaded, the component or structure would collapse simultaneously, if at all.
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Chapter 8

Conceptual Models for
Understanding the Role of
R-Nodes in Plastic Collapse

8.1 Introduction

In the r-node method of limit load determination, the combined r-node
stress. which can be identified with the reference stress in creep, can be
directly determined from the r-node diagram by identifying the r-node peaks
with equivalent uniaxial multi-bar models. The bars represent the sequence
of formation of independent plastic zones in the component.

The multi-bar models enable one to obtain an expression for the combined

r-node stress, by invoking ilibri id i However, multi-bar

models only represent the r-node peaks in a structure and do not provide
a physical representation of the underlying collapse process in terms of the

entire structure. Therefore, it would be useful to provide simple models
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which, along with the bar models, would ch ize the stress

and the collapse thereof.

8.2 Idealization of an R-Node

In Section 2.6.2, the r-node has been identified with a uniaxial bar model.
The stress in the bar, which is designated as the r-node peak stress, is directly
proportional to the applied load such that, when this stress reaches the elastic
limit. a plastic hinge can be construed to have developed in the structure.
For an elastic-perfectly plastic material, the uniaxial bar and hence the r-

node can therefore be d by a hanical model. In Figure 8.1,

the stress in the bar is proportional to the applied load until the elastic
limit is reached. Any additional load beyond this results in the friction-
device to move indefinitely, thereby causing collapse. This basic unit can be
put together with other simple mechanical units for creating an analogous

system that would represent the collapse of the entire structure.

8.3 Analogous Systems that Depict Plastic
Collapse

In this section, simple analogous systems that depict the plastic collapse

process are The bl idered are a thick cylinder sub-

jected to uniform internal pressure and a uniformly loaded indeterminate
beam. Limit loads for these problems using the r-node method have already

been determined in Chapter 5.

204



8.3.1 Thick Cylinder subjected to Uniform Internal
Pressure

A thick-walled cylinder subjected to uniform internal pressure. as shown
in Figure 8.2. is considered. The r-node for this component can be determined
as the location in which the stress is invariant to elastic moduli changes.
The uniaxial bar model for location A, which is the lone r-node for this
structure, is shown in Figure 8.2. The analogous model depicting the stress
redistribution and collapse is shown in Figure 8.3.

The analogous model essentially consists of a mechanical model which
represents the r-node and a pair of tanks interconnected by a pipe (AB)
which depicts the structure. The rollers provided maintain a uniaxial state
of stress and strain by avoiding any possible lateral movement of the system.

The spring k, the d i ffici ¢, the density of the liquid.

the dimensions of the tank, the reservoir and the pipes are component specific
quantities that depend on the geometry. loading and boundary conditions of
the structure that is being analyzed.

The externally applied load can be symbolized by means of a reservoir

containing liquid. All the components of the analogous model with the excep-

tion of the liquid are d to be weightl The d between
the actual structure and the analogous system during collapse is illustrated

in Table 8.1.
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8.3.2 Indeterminate Beam subjected to Uniformly
distributed Load

The two bar model for an indeterminate beam, representing the r-nodes. is
shown in Figure 2.6 and the r-node diagram is shown in Figure 5.1. Although
a number of r-nodes are present along the length of the beam. consideration of
only the two r-node peaks as per the guidelines offered in Chapter 5 simplifies
the analogous model to a great extent. The two r-node peaks are represented
by two mechanical models. Pipe AB is at a lower level than pipe C D implying
that the formation of a plastic hinge at the location A precedes the occurrence
of the same at the location B (Figure 2.6). The liquid level reaching the
pipe AB corresponds to the mechanical model number one reaching its elastic

limit.
8.4 Closure

An r-node has been idealized as a mechanical model. Based on this model.
a conceptual characterization of the collapse process has been suggested by
considering some practical configurations. It is hoped that the proposed
models along with the existing r-node muiti-bar models would assist in the

better understanding of the r-nodes and their functioning during collapse.
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Table 8.1: Correspondence between the Actual Structure and the
Analogous System for a Thick Cylinder subjected to
Uniform Internal Pressure

Actual Structure

Analogous System

Applied Traction
Structure

R-Node

Stress in the structure

Onset of yield at some portion of the
structure

Additional loading causes stress redis-
tribution about the r-node

The r-node by itself does not get in-
volved in stress redistribution

R-Node stress is proportional to the
applied load and is insensitive to the
material constitutive relationship

When the r-node stress reaches the
yield stress, the plasticity becomes un-
contained thereby causing collapse

Liquid in the reservoir

Tanks 1 and 2

Mechanical model and pipe (AB)
Weight of the liquids in the tanks

Liquid level in one of the tanks (say,
tank 1) just reaching the pipe level

Additional liquid input into tank 1
only gets redistributed through the
pipe AB into tank 2

The pipe AB serves only as a conduit
for the transfer of liquid from tank 1 to
tank 2 without actually being affected
by the redistribution process

The spring extends strictly in propor-
tion to the weight of the liquid in the
tanks irrespective of the distribution
of liquids in the tanks

When the liquid level in tank 2 reaches
the pipe level, even an infinitesimal
additional inflow causes the friction-
device to move, thereby causing col-
lapse
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device

Friction a u fN

Spring k
A A
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Uniaxial Bar Model Mechanical Model
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Stress—Strain Diagram

Figure 8.1: Idealization of an R-Node
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L — Limit distribution

el — | elastic distribution
e2— Il elastic distribution
R — R—Node

Figure 8.2: Determination of R-Node in a Thick Cylinder Subjected
to Uniform Internal Pressure
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Reservoir

N

Figure 8.3: Analogous Model for a Thick Cylinder Subjected to
Uniform Internal Pressure
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Chapter 9

Conclusions and Future
Research

9.1 Conclusions

Interest in limit load determination originated with the primary purpose

of capitalizing on the reserve h of However, a

between limit loads and refé stress has ially widened the scope
of applicability of limit analysis results.

Duly recognizing the underlying difficulties of conventional methods. this

thesis presents simple i for esti i stress and limit

loads. The r-node method and the m,-method are the robust techniques that

fc ioned vein. The of load con-

are developed herein in the
trol, primary stress and reference stress form the basis of the r-node method.
The m,-method is based on the extended lower bound limit load theorem

in j ion with the of

volume and leap-frogging to a

near limit state. It is demonstrated that reasonable upper and lower bound
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limit load estimates can be determined on the basis of two linear elastic finite
element analyses. The r-node method is also used for determining the limit

loads of lami d beams and i cylindrical shells. Given the use-

fulness of ites and rei in engineering, the d

method should serve as a starting point for further research in this area.
Useful concepts such as the reference volume, leap-frogging and iso r-
nodes are introduced in an attempt to elicit valuable physical insights into
the problem. The reference volume concept, for instance, enables identifica-
tion of the “kinematically active” regions in a component or structure. The
idea of leap-frogging is introduced in order to reach the limit state rapidly in

d elastic i i The notion of iso r-node stress uti-

to rep
lizes the aspect of load-control for minimizing the weight of mechanical com-
ponents. Useful designs from a standpoint of increased fatigue life through
reduced stress concentrations are also possible through this approach. In
order to provide the analyst with a guide to the response of structures to

elastic i i hani are i into three distinct

R dations are also ided for i 8 to

lower bound values and related numerical stability issues.
Through ical the d hods have been demon-

strated to be easy to i and less expensive. The methods

are general and can be applied to a variety of component configurations. It is

ded that the techni developed would be useful for practicing engi-

neers, especially during the preliminary stages of design and during condition
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assessment exercises.

The time consuming aspect of the ional analysis i isa
distinct disad in highly iti i where rapid and
reliable methods are essential for evolving newer designs or upgrading the
existing ones. It is hoped that the methods proposed in this thesis would
adequately bridge the gaps between accuracy, speed, simplicity and cost of

analysis.
9.2 Future Research

The advantages offered by the robust techniques proposed in this thesis
amply indicate that further research in this direction would be rewarding.
The r-node method and the m,-method have been applied to a number of

bench mark problems and the results obtained are found to be encourag-

ing. Further research should on applying these hods to more
complex structures such as th: di ional le-shell i i De-
1 of reduced dul hods for d ining the limit loads of

generic composite structures would be another research area worth pursuing.
The proposed minimum weight design procedure using iso r-nodes is found

to effectivel; the di inuity stresses in pressure components. It

'y

would be worthwhile to direct future efforts by incorporating design con-
straints in the method so as to evolve workable configurations that are suit-

able for manufacturing units.
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Appendix A

Fortran Program for
determining the R-Node
Locations and Stresses

This program (rnode.for) determines the r-node equivalent stress values, their
respective locations, the values of m®°, m' and the classical limit load values for
both the linear elastic analyses. The input to be given are the equivalent stress
and element volume listings, and the yield stress value.

PROGRAM GLOSS

PARAMETER(MEMO=1500)

INTEGER FLAG1.RSEG.ELELOC,COUNT.RSEGG

REAL M1.M2

CHARACTER+15 FNAMEL FNAME2 FNAME3,UNITS
DIMENSION SIG1(MEMO),SIG2(MEMO),NELE(MEMO)
DIMENSION RSTR(MEMO),RLOC(MEMO),RSEG(MEMO)
DIMENSION ELELOC(MEMO),RNO(MEMO),RSTR1(MEMO),
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67

66

1 VOL(MEMO)
DIMENSION RSTR2(MEMO).RSTR3(MEMO)ICOUNT(MEMO),
1 RSEGG(MEMO)

DO K=1.30
WRITE(s.+)
END DO
WRITE(+,+)'WELCOME TO THE R-NODE
1PROGRAM - VERSION5' 2
WRITE(s,%)' 14 AUGUST 1994°
WRITE(s,+)
WRITE(s,») 'ENTER THE NAME OF THE FIRST LINEAR ANALYSIS
1 INPUT FILE'
READ (=’ (A) ')FNAMEL
OPEN(15,FILE=FNAME1 STATUS="0LD' ERR=56)
WRITE(»,+) 'ENTER THE NAME OF THE SOFTENED NTH LINEAR
1 ANALYSIS INPUT FILE'
READ (=, (A)')FNAME2
OPEN(16,FILE=FNAME2 STATUS="0LD' ERR=57) 3

OPEN(UNIT=17 FILE="ZRSTRO.0UT' STATUS="'UNKNOWN ")
OPEN(UNIT=18,FILE="ZRSTRS.OUT',STATUS="UNKNOWN")

‘WRITE(+,«) 'ENTER THE NAME OF THE OUTPUT FILE FOR THE

HIGHEST R-NODE STRESS'

READ(»," (A) ' )FNAME3

OPEN(UNIT=19,FILE=FNAME3 STATUS="'NEW' ERR=66)

GOTO 68

‘WRITE(x,+) ' OUTPUT FILE ALREADY EXISTING. ENTER ANOTHER 40
1 FILE NAME'

-
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68

20

GOTO 67

DUMMY STATEMENT
DUMMY=0.0

OPEN(UNIT=20,FILE="ZRSTR.AVG',STATUS="UNKNOWN")
OPEN(UNIT=21,FILE="ZRSTR.SML',STATUS="UNKNOWN")
OPEN(UNIT=22 FILE="'ZSUMOF1.SQR ' ,STATUS="UNKNOWN ")
OPEN(UNIT=23,FILE="ZSUMOF2.SQR ' ,STATUS="'UNKNOWN ‘) 50

OPEN(UNIT=24,FILE="'ZMURA .RES ' STATUS="UNKNOWN ")
WRITE(=,+) 'WHAT IS THE UNIT OF STRESS
1 (EG. PSI, N/SQ.M., PA, KPA ETC.)*
READ(~,' (A) ' )UNITS
WRITE(»,+)'YIELD STRESS = ? ', UNITS
READ(+,#)SIGY
WRITE(s.+) ' APPLIED LOAD = ?  *,UNITS
READ(x,+)PAPP
WRITE(=,+) ' TOTAL NUMBER OF ELEMENTS = 7" 60

READ(+,+)NELEM
WRITE(=.«) 'NUMBER OF ELEMENTS PER SECTION = ?*
READ(=.+)NEPS

CALL CHKINP(NELEM.NEPS FLAG1)
IF (FLAGLEQ.1) THEN
GO TO 20
END IF
NSEG = NELEM/NEPS
CALL VINPUT(SIG1,SIG2,NELE,NELEM,VOL,SIGY, 70
1 PAPP,UNITS)
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155

56

CALL RNODE(SIG1,SIG2,NSEG NELEM,NEPS,RSEG.
1 RSTR,RLOC.ELELOC])
CALL RESULT(RSEG,RLOC.ELELOC,RSTR.NEPS,I)
CALL CALCU(L,RSTR1.RSTR2,RSTR3,KJ,RSEG,RSTR,
1 ICOUNT,RSEGG)
‘WRITE(19,=) ' MAXIMUM R-NODE STRESS'
WRITE(20,+)’AVERAGE R-NODE STRESS’
WRITE(21,+)' MINIMUM R-NODE STRESS’
BIG1=0.0 )
DO 155 IPP=1KJ
WRITE(19,+) RSEGG(IPP),RSTR1(IPP)
IF(RSTR1(IPP).GT.BIG1)BIG1=RSTR1(IPP)
WRITE(20,+) RSEGG(IPP),RSTR2(IPP)
WRITE(21,+) RSEGG(IPP),RSTR3(IPP)
CONTINUE
‘WRITE(24,+) ' THE HIGHEST R-NODE STRESS VALUE = *,
1 BIGL,' *,UNITS

CLOSE(24) %
CLOSE(23)

CLOSE(22)

CLOSE(21)

CLOSE(20)

CLOSE(19)

CLOSE(18)

CLOSE(17)

CLOSE(16)

CLOSE(15)

GO TO 58 100
PRINT »,'THE FIRST INPUT FILE ',FNAMEL,' IS NOT EXISTING.
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21

1 RE-ENTER ANOTHER FILE NAME'

GO TO 53

PRINT +,'THE SECOND INPUT FILE ' FNAME2,' IS NOT EXISTING.
1 RE-ENTER ANOTHER FILE NAME'

GO TO 54

STOP

END

CHECK INPUT FOR CORRECTNESS

SUBROUTINE CHKINP(NELEM,NEPS,FLAG1)
INTEGER FLAGL
FLAG1=0
R = FLOAT(NELEM)
R1 = FLOAT(NEPS)
R2 = R/RL
I = NELEM/NEPS
R3 = FLOAT(I)
IF (R3.NE.R2) THEN
FLAGl =1
‘WRITE(+,21)
FORMAT(1X,"' INPUT ERROR: CHECK AND REINPUT TOTAL NUMBER
1 OF ELEMENTS',/,1X.'OR NO. OF ELEMENTS PER SEGMENT. . ... i )
END IF
RETURN
END

READ INPUT FILE (STRS1.0UT AND STRS2.0UT)

SUBROUTINE VINPUT(SIG1,SIG2,NELE,NELEM,VOL,
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C25

35

C40

45

1 SIGY,PAPP,UNITS)

CHARACTER«(x) UNITS

DIMENSION SIG1(NELEM),SIG2(NELEM),NELE(NELEM).
1 VOL(NELEM)

READ FIRST LINEAR ANALYSIS STRESS LISTING

READ(15,25)
FORMAT(//////) 140
K = NELEM/41

J = NELEM - K = 41

I=1

DO 30 K1 = 1L,K

DO 35 K2 = 141

READ(15,«)NELE(I) SIG1(I)

I=I+1

READ(15,40)

FORMAT(////)

CONTINUE 150
DO 45J1 =1J

READ(15,+)NELE(I).SIG1(I)

I=I+1

READ SECOND LINEAR ANALYSIS STRESS LISTING

READ(16,50)

FORMAT(//////)

I=1

DO 55 K1 = 1,K 160
DO 60 K2 = 1,41
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70

READ(16,+)A,SIG2(I), VOL(I)
I=I+1
READ(16,65)
FORMAT(////)
CONTINUE
DO70J1=1J
READ(16,%)A,SIG2(I), VOL(I)
I=I+1
170
SUMM = 0.0
SUMX = 0.0
VOLU = 0.0

TO FIND THE BIGGEST OF THE SECOND
LINEAR ANALYSIS STRESS VALUE

BIGG = 0.0

BIGG1 = 0.0

DO K = 1,NELEM 180
IF(SIG2(K).GT.BIGG)BIGG=SIG2(K)

END DO

DO K = 1,NELEM

IF(SIG1(K).GT.BIGG1)BIGG1=SIG1(K)

END DO

DO K = 1,NELEM

SUMN = (SIG2(K)**2)+«VOL(K)

SUMY = (SIG1(K)*+2)«VOL(K)

VOLU = VOLU + VOL(K) 190
SUMM = SUMM + SUMN
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1

1

1

1

1

-

SUMX = SUMX + SUMY

WRITE(22,+) SUMX,VOLU

‘WRITE(23,+) SUMM,VOLU

END DO

RMO = SIGY*SQRT(VOLU)/SQRT(SUMM)

DENOM = (SIGY*s2 + (RMO+BIGG)##2)/(2.0+SIGY+x2)
PLBOYL = SIGY/BIGG+«PAPP

RMO1 = SIGY+SQRT(VOLU)/SQRT(SUMX)

DENOMI1 = (SIGY#**2 + (RMO1+BIGG1)#+2)/(2.0«SIGY #+2)
PLBOYL1 = SIGY/BIGG1+PAPP

‘WRITE(22.+) 'VALUE OF MO I LINEAR ANALYSIS = ' RMO1
WRITE(22.+)' VALUE OF I LIN. ANALYSIS DENOMINATOR = °,
DENOM1

WRITE(22.+)' BOYLES LIMIT LOAD I LINEAR ANALYSIS = ',
PLBOYL1,' * ,UNITS

WRITE(22,+) 'HIGHEST STRESS OF I LINEAR ANALYSIS = ',
BIGG1,' '.UNITS

WRITE(22,+)'MO X P = ' RMO1+PAPP,' ' ,UNITS
WRITE(22,+)'MO X P/DENOM = ' RMO1+«PAPP/DENOM1.

* *.UNITS

WRITE(24,+)' VALUE OF 0 = ' RMO

‘WRITE(24.=)' APPLIED PRESSURE = ' .PAPP,' ' UNITS
‘WRITE(24.+)' YIELD STRESS = * SIGY,' ' ,UNITS
‘WRITE(24,%) ' VALUE OF MO X P = ' RMO+PAPP.' ' ,UNITS
WRITE(24,+) ' VALUE OF HIGHEST STRESS OF THE SOFTENED
LINEAR ANALYSIS = ',BIGG,' ',UNITS

‘WRITE(24,+) ' VALUE OF THE DENOMINATOR = ' DENOM
WRITE(24,) ' VALUE OF MO X P / DENOMINATOR = ',
RMO+PAPP/DENOM.' *,UNITS

‘WRITE(24,+) ' VALUE OF LIMIT LOAD BY BOYLES METHOD = ',
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1 PLBOYL," *,UNITS
RETURN
END

CALCULATE R-NODE STRESSES AND LOCATIONS

SUBROUTINE RNODE(SIG1,SIG2,NSEG,NELEM,NEPS,
1 RSEG,RSTR.RLOC,ELELOC,I) 230
INTEGER RSEG,ELELOC
REAL M1.M2
DIMENSION SIG1(NELEM),SIG2(NELEM),RSEG(NELEM),
1 RSTR(NELEM),RLOC(NELEM),ELELOC(NELEM)

I=1

DO 85 J = 1LNSEG

DO 85 K = 1NEPS—1

UK = (J — 1)«NEPS + K

Ml = SIGL(IJK+1) — SIG1(LJK) 210

M2 = SIG2(IJK+1) — SIG2(IJK)

SLOPE = ABS(M1 — M2)

IF (SLOPE.LE.0.00001) THEN
GOTO 85

END IF

X = (SIG2(IIK) — SIGI(LJK))/(M1 — M2) + FLOAT(K) - 0.5

Y = M1 » (SIG2(IJK) — SIGL(LJK))/(M1 — M2) + SIG1(IJK)

RK = FLOAT(K) + 05

RK1 = FLOAT(K) - 0.5

IF(X.LE.RK.AND X.GE.RK1) THEN 250
RSTR(I) = Y
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85

95

110

+111
105

1

RLOC(I) = X
RSEG(I) =J
ELELOC(I) = UK
I=I+1
END IF
CONTINUE
RETURN
END

DISPLAY RESULTS

SUBROUTINE RESULT(RSEG,RLOC.ELELOC,

RSTR,NEPS,I)

INTEGER RSEG,ELELOC

DIMENSION RSEG(I).RLOC(I),ELELOC(T), RSTR(I)
WRITE(17.95)

FORMAT(1X,'SEGMENT NO LOCATION R-NODE STRESS')
'WRITE(17,100)

FORMAT(1X," R-NODE ELEMENTS B}
DO 105 II = 1I-1

IE1 = RSEG(II)

IE2 = ELELOC(II)

IE3 = ELELOC(II) + 1

WRITE(17,110) IELRLOC(II).IE2,IE3 RSTR(IT)
FORMAT(1X,14,2X.F9.5.2X 15.2X.15,2X F13.5)
WRITE(18,111) IE1.RSTR(II)

FORMAT(1X,110.2X F13.5)

CONTINUE

RETURN

END



130
125

135

140

=

-

CALCULATES THE HIGHEST, AVERAGE AND THE
LOWEST R-NODE STRESSES

SUBROUTINE CALCU(L,RSTR1,RSTR2,RSTR3.KJ.RSEG.
RSTR,ICOUNT,RSEGG)

INTEGER RSEGG,RSEG,COUNT

DIMENSION RSTRI(I),RSTR2(I),RSTR3(I), RSEG(I),
RSTR(I),ICOUNT(I) 290
DIMENSION RSEGG(I)

COUNT=1

=1

KJ=1

GOTO 125

U=0J+1

INTA=RSEG(1J)

INTB=RSEG(1J+1)

IF(INTA.NE.INTB) GOTO 135

COUNT=COUNT+1 300
IF(IJ.EQ.I-1) GOTO 140

GOTO 130

ICOUNT(KJ)=COUNT

COUNT=1

RSEGG(KJ)=RSEG(1J)

KJ=KJ+1
IF(IJ.EQ.I-1) GOTO 140
GOTO 130
310
ICOUNT(KJ)=1
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150

145

MM=1
DO 145 [P=1KJ

BIG=—1E20

AVG=00

SMALL=1€20

L=ICOUNT(IP)

DO 150 1Q=1L

IF(RSTR(MM).GT.BIG) BIG=RSTR(MM) a0
AVG=RSTR(MM)+AVG

IF(RSTR(MM).LT.SMALL) SMALL=RSTR(MM)

MM=MM+1

RSTRL(IP)=BIG

RSTR2(IP)=AVG/L

RSTR3(IP)=SMALL

CONTINUE

RETURN

END
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Appendix B

Fortran Program for
determining the Minimum
Weight Geometry of
Mechanical Components and
Structures

The following program (minwt.for) determines the r-nodes and the geometry of the
minimum weight structure based on the iso r-node stress concept. The program

i performs i lation for sections that does not have r-nodes. The
output of the program is nodal inates and element ivity listings in an
ANSYS readable format.

PROGRAM MINIMUM

PARAMETER(MEMO=1500)

CHARACTER+15 FNAMEL,FNAME2 FNAME3,UNITS

INTEGER FLAG1,FLAG2,FLAG3,FLAG4,RSEG,
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53

1 ELELOC,COUNT.RSEGG
INTEGER FLAGS5,FLAG6,FLAG7 FLAG8,FLAGS

REAL M1,M2

DIMENSION SIG1(MEMO),SIG2(MEMO),NELE(MEMO)
DIMENSION RSTR(MEMO),RLOC(MEMO) RSEG(MEMO)
DIMENSION ELELOC(MEMO),RNO(MEMO),
RSTRI1(MEMO),VOL(MEMO)

DIMENSION RSTR2(MEMO),RSTR3(MEMO),

1 ICOUNT(MEMO),RSEGG(MEMO)

DIMENSION THICK(MEMO),0RSTR(MEMO), TRSEG(MEMO)
DIMENSION NNUM(MEMO),XCORD(MEMO),YCORD(MEMO) 20
DIMENSION TNSEC(MEMO),XCOORD(MEMO),
'YCOORD(MEMO),STHK(MEMO)

-

-

CALL MESSAGE

‘WRITE(+,+)'ENTER THE NAME OF THE FIRST LINEAR

ANALYSIS INPUT FILE'

READ (="' (A)')FNAME1

OPEN(15,FILE=FNAME1.STATUS="'0LD' ERR=56)

WRITE(s.*) 30

-

‘WRITE(=,*) 'ENTER THE NAME OF THE SOFTENED Nth LINEAR
ANALYSIS INPUT FILE'

READ (=" (A)')FNAME2

OPEN(16 FILE=FNAME2,STATUS="0LD' ERR=57)
WRITE(x,%)

-
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1
67

66
1

68

1

OPEN(UNIT=17,FILE="'zrstr0.out' ,STATUS="UNKNOWN"')
OPEN(UNIT=18,FILE="zrstrs.out ' STATUS="'UNKNOWN')

‘WRITE(x,+)'ENTER THE NAME OF THE OUTPUT FILE FOR THE
HIGHEST R-NODE STRESS'

READ(s,' (A) ' )FNAME3

OPEN(UNIT=19 FILE=FNAME3 STATUS='NEW' ERR=66)
WRITE(+,+)

GOTO 68

‘WRITE(x.*) ' OUTPUT FILE ALREADY EXISTING. ENTER ANOTHER

FILE NAME'
‘WRITE(x.%)
GOTO 67

DUMMY STATEMENT
DUMMY=0.0

'unknown')
it=21.file="'zrstr.sml' status='unknown')
OPEN(unit=22,fille="zsumof1.sqr" status="'unknown')
OPEN (unit=23 file="'zsumof2.sqr ' status='unknown')
4,file="'zmura.res',status='unknown')
Jfile='nlist ' status='old')

OPEN (unit=26 file="'nlist .new' status="'unknown')
OPEN (unit=27 file='elist ' status="'old')

OPEN (unit=28.file="'elist.new' status="'unknown')

0,file="'zrstr.avg' stats

‘WRITE(x,+) 'UNIT OF STRESS ? (eg. psi, N/sq.m., Pa,
kPa etc.)’
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701

READ(+," (8) ')UNITS

‘WRITE(+,*)

‘WRITE(=,*) ' YIELD STRESS = ? *,UNITS 7
READ(,#)SIGY

WRITE(+,%)

WRITE(s,=)'APPLIED LOAD = ? ', UNITS

READ (+,«)PAPP

WRITE(s,+)

‘WRITE(=,*) ' TOTAL NUMBER OF ELEMENTS = 7'

READ(s,»)NELEM

WRITE(s.+)

WRITE(=,+)' NUMBER OF ELEMENTS PER SECTION = 7'

READ(s,«)NEPS s
WRITE(x,%)

‘WRITE(+,+)'FOR THICKNESS OF THE MINIMUM WEIGHT STRUCTURE'
‘WRITE(*,*) ' CHOOSE ONE OF THE FOLLOWING OPTIONS: '

WRITE(*,*)' (*) Inner surface refers to the surface having'
WRITE(*,*)" the smaller set of node numbers in the node pairs'
WRITE(*,+)' (#) Outer surface refers to the surface having the'
WRITE(s,*)" larger set of node numbers in the node pairs'

WRITE(s,*)
WRITE(s.«)' 1 - PROBLEM WITH NEUTRAL AXIS'

WRITE(».+)* e.g. beazms' %
WRITE(++)' 2 - PROBLEM WITH SMOOTH INNER SURFACE'
WRITE(s,%)' (such as the inner surface of pressure vessels)'

‘WRITE(*,*)' 3 - PROBLEMS WITH SMOOTH OUTER SURFACE'
WRITE(*,*)' 4 - SYMMETRIC WITH SMOOTH INNER SURFACE'
WRITE(*,*)" (line of symmetry corresponds to neutral axis'
WRITE(*,*)" i.e., inner half of option # 1)'

‘WRITE(*,*)' 5 - SYMMETRIC WITH SMOOTH OUTER SURFACE'
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702

WRITE(s,+)" (line of symmetry corresponds to neutral axis'
WRITE(+,+)" i.e., outer half of option # 1)*
READ(+,«)FLAG2 100
‘WRITE(+,*)
‘WRITE(»,%)
IF(FLAG2.EQ.1)THEN
GOTO 702
ELSE IF(FLAG2.EQ.2)THEN
GOTO 702
ELSE IF(FLAG2.EQ.3)THEN
GOTO 702
ELSE IF(FLAG2.EQ.4)THEN
GOTO 702 110
ELSE IF(FLAG2.EQ.S5)THEN
GOTO 702
ELSE
‘WRITE(+,+)'0PTION # ' FLAG2,' INVALID'
GOTO 701
END IF
‘WRITE(+.+) ' CHOOSE ONE OF THE FOLLOWING OPTIONS'
‘WRITE(=.+) 'MINIMUM WEIGHT BASED ON:'
WRITE(.+)
WRITE(s,+)' 1 - MAXIMUM R-NODE STRESS IN A SECTION' 120
WRITE(»,+)' 2 - MINIMUM R-NODE STRESS IN A SECTION'
WRITE(*,*)' 3 - AVERAGE R-NODE STRESS IN A SECTION'
READ(*,+)FLAG3
WRITE(*,*)
‘WRITE(*,%)
IF(FLAG3.EQ.1)THEN
GOTO 725
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718

ELSE IF(FLAG3.EQ.2)THEN
GOTO 725
ELSE IF(FLAG3.EQ.3)THEN
GOTO 725
ELSE
WRITE(+,*)'OPTION # ',FLAG3,' INVALID'
GOTO 702
END IF
‘WRITE(+.+) 'During optimization some sections may become
1 impracticably thin.'
WRITE(*,#)'Th it becomes Yy to
1 prescribe the minimum'
WRITE(s,*) 'thickness as "ASPECT" times the
1 maximum thickness'
‘WRITE(=,+) 'VALUE OF ASPECT RATIO i.e., MINIMUM THICKNESS/
1 MAXIMUM THICKNESS (<1)'
READ(»,*)ASPECT
IF(ASPECT.GT.1.0)THEN
‘WRITE(s,+)' "ASPECT" MUST BE LESS THAN 1'
GOTO 718
END IF
WRITE(x,+)
WRITE(s,*)
‘WRITE(,*) ' CHOOSE ONE OF THE FOLLOWING OPTIONS'
WRITE(+,x)' SHAPE OPTIMIZATION BASED ON:'
WRITE(s,+)' 1 - BASED ON THE MAXIMUM R-NODE STRESS - Not
1 Recommended'
WRITE(+)
‘WRITE(*,*)' 2 - BASED ON THE R-NODE STRESS OF A PRESCRIBED
1 SECTION - Recommended'
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READ(+,+)FLAG4
IF(FLAG4.EQ.1)THEN
GOTO 727 160
ELSE IF(FLAG4.EQ.2)THEN
GOTO 727
ELSE
WRITE(+,+)'OPTION # ' ,FLAG4,' IS NOT VALID'
GOTO 723
END IF
FLAG9=0
IF(FLAG4.EQ.2) THEN
WRITE(x,+) ' SECTION NUMBER CORRESPONDING TO REFERENCE
R-NODE STRESS' 170
READ(=.+)FLAGY
IF(FLAGY.GT.(NELEM/NEPS)) THEN
‘WRITE(»,+) ' SECTION NUMBER ', FLAGY,' IS NOT VALID. SHOULD BE'
WRITE(»,+) 'LESS THAN ' NELEM/NEPS

GO TO 808

END IF
END IF
WRITE(=,*)
WRITE(+,+)
‘WRITE(=,*) ' CHOOSE ONE OF THE FOLLOWING OPTIONS' 180
WRITE(s,*)* 1 - MAXIMUM THICKNESS OF THE ORIGINAL STRUCTURE'
WRITE(+,5)" CANNOT BE EXCEEDED ANY WHERE DURING
OPTIMIZATION'
WRITE(s,+)" 2 - MAXIMUM THICKNESS CAN BE EXCEEDED IN SOME'
WRITE(x,%)" PARTS OF THE STRUCTURE DURING OPTIMIZATION'

WRITE(+,*)' Option # 2 results in better design than
option # 1°'
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726

WRITE(*,+)" 3 - MAXIMUM THICKNESS OF THE ORIGINAL STRUCTURE'

WRITE(s,#)" CANNOT BE EXCEEDED ANY WHERE DURING
1 OPTIMIZATION'
WRITE(+.#)" BUT THE THINNER SECTIONS ARE GIVEN AN'
WRITE(s,*)" ADDITIONAL THICKNESS ALLOWANCE'
READ(s,+)FLAGS
IF(FLAG5.EQ.1)THEN
GOTO 726
ELSE IF(FLAG5.EQ.2)THEN
GOTO 726
ELSE IF(FLAG5.EQ.3)THEN
GOTO 726
ELSE
WRITE(»,+)'0PTION # ' FLAGS5,' IS INVALID'
GOTO 727
END IF

IF(FLAG5.EQ.1.AND.FLAG4.EQ.2) THEN

WRITE(s,+)OPTION # 1 IS NOT VALID SINCE OPTIMIZATION
1 IS BASED ON MAXIMUM SECTION*

WRITE(s,+) ' THICKNESS OF THE ORIGINAL STRUCTURE. SOME
1 SECTIONS OF THE OPTIMIZED STRUCTURE'

WRITE(»,+)'CAN BECOME THICKER THAN THE MAXIMUM THICKNESS
1 OF THE ORIGINAL STRUCTURE'

WRITE(s,%)

WRITE(s,+)'D0 YOU WANT TO'

WRITE(s,%)" 1 - WANT TO CHANGE OPTIONS'

WRITE(s,#)' 2 - CONTINUE WITH OPTION # 2'

READ(s,+)FLAG6

IF(FLAG6.EQ.2)THEN
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724

805

FLAG5=2
ELSE
GOTO 723 2
END IF
END IF
WRITE(s,s)
WRITE(s,*)
WRITE(s,+) ' PERCENTAGE DIMENSIONAL SAFETY ALLOWANCE
1 (USUALLY 0-10%)*
READ(+,«)PERCENT
IF(PERCENT.GT.50.0) THEN
WRITE(x,+) ' INPUT VALUE OF ',PERCENT, % INVALID. SHOULD'
WRITE(x,»)'BE LESS THAN 50.0%' 230
GOTO 724
END IF

WRITE(+,+)
WRITE(s,s)
WRITE(+,+)'D0 YOU WANT TO FORCE SIMPLY SUPPORTED BOUNDARY
1 CONDITION?'

WRITE(+.*)' (i.e., postulate that the r-node stress in the'
‘WRITE(»,+)' simply supported egde(s) is zero)'
WRITE(=,#) 240
WRITE(»,*)'YES => 1 : NO => 2°'
READ(s,#)FLAG7
IF(FLAG7.EQ.1)THEN

GOTO 804
ELSE IF(FLAG7.EQ.2)THEN

GOTO 804
ELSE
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807

801

806

‘WRITE(x,+) '0PTION # ', FLAG7,' IS INVALID'
GOTO 805
END IF
IF(FLAG7.EQ.1)THEN
‘WRITE(*,*) ' CHOOSE ONE OF THE FOLLOWING CONDITIONS'
WRITE(*,5)* EDGE IN THE VICINITY OF SECTION # 1 = 1'
NSEG = NELEM/NEPS
WRITE(,801)NSEG
FORMAT(5x,"EDGE IN THE VICINITY OF SECTION # 'I4,' =>2')
WRITE(,#)'  BOTH THE EDGES =3
READ(»,«)FLAGS
IF(FLAGS.EQ.1)THEN
GOTO 806
ELSE IF(FLAGS.EQ.2) THEN
GOTO 806
ELSE IF(FLAG8.EQ.3) THEN
GOTO 806
ELSE
‘WRITE(*,*) '0PTION # ', FLAGS,' IS INVALID'
GOTO 807
END IF
ELSE
FLAG8=0
END IF

260

DO MM=1,30

WRITE(s,s)

END DO

‘WRITE(#,*) 'Program running. . . '

249



155

CALL CHKINP(NELEM,NEPS,FLAGI1)
IF (FLAG1.EQ.l) THEN
GO TO 20 20
END IF
NSEG = NELEM/NEPS
CALL VINPUT(SIG1,SIG2,NELE,NELEM,VOL SIGY,
1 PAPP.UNITS)
CALL RNODE(SIG1,SIG2,NSEG,NELEM,NEPS,
1 RSEG,RSTR,RLOC,ELELOC,I)
CALL RESULT(RSEG,RLOC,ELELOC,RSTR,NEPS,I)
CALL CALCU(I,RSTR1,RSTR2,RSTR3,KJ,RSEG,RSTR,
1 ICOUNT,RSEGG)
WRITE(19,+) ' Maximum R-Node Stress' 200
WRITE(20,%) ' Average R-Node Stress'
‘WRITE(21,) 'Minimum R-Node Stress
BIG1=0.0
KJ=KJ-1
DO 155 IPP=1,KJ
WRITE(19,«) RSEGG(IPP).RSTRI1(IPP)
IF(RSTR1(IPP).GT.BIG1)BIG1=RSTRI(IPP)
WRITE(20,+) RSEGG(IPP).RSTR2(IPP)
‘WRITE(21,+) RSEGG(IPP).RSTR3(IPP)
CONTINUE 300
‘WRITE(24,+)'The highest r-node stress value = ' bigl,' ',units
CALL INTERPOL(FLAG3.RSTR1,RSTR2,RSTR3,NSEG,
1 KJ,RSEGG,0RSTR,MEMO,FLAGS)
CALL RDNODE(NNUM,XCORD,YCORD,NSEG,NTOT,MEMO)
CALL MAXTHK(NNUM,XCORD,YCORD,THKMAX,NTOT,
1 THICK,ORSTR,SIGMA_N1,MEMO,BIGRST,REFTHK STHK)
CALL RTHICK(ORSTR,SIGMA_N1,THKMAX,TRSEG,NSEG,
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1 MEMO,BIGRST,REFTHK,FLAG4,STHK,FLAG9)
CALL NTHICK(TRSEG,TNSEC,NTOT,MEMO,ASPECT, THKMAX)
CALL NLIST(TNSEC,NTOT,XCORD,YCORD,XCOORD,YCOORD, 310
1 THICK.FLAG2 MEMO,PERCENT FLAGS5, THKMAX)
CALL NODES(XCOORD,YCOORD,NTOT,MEMO,NEPS,NNUM)
CALL RDELEM(NELEM)

CLOSE(28)
CLOSE(27)
CLOSE(26)
CLOSE(25)
CLOSE(24)
CLOSE(23) 320
CLOSE(22)
CLOSE(21)
CLOSE(20)
CLOSE(19)
CLOSE(18)
CLOSE(17)
CLOSE(16)
CLOSE(15)
GO TO 58
56 PRINT »,'The first input file ‘,fnamel,' is not existing. 330
1 Re~enter another file name'
GO TO 53
57 PRINT «,'The second input file ‘,fname2,' is not existing.
1 Re-enter another file name'
GO TO 54
58 ‘WRITE(x,#) 'Program completed'
STOP
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END

MESSAGE
SUBROUTINE MESSAGE

‘WRITE(»,+) 'THIS PROGRAM DETERMINES THE OPTIMUM SHAPE OF'
WRITE(+,*)'A GIVEN STRUCTURE USING THE R-NODE METHOD. '
WRITE(»,+)'THE OUTPUT FILES "nlist.new" and "elist.new" '
WRITE(#,+) 'REPRESENTS THE NODAL COORDINATES AND THE ELEMENT'
WRITE(+,«) ' CONNECTIVITY AND CAN BE DIRECTLY INPUT INTO ANSYS'
WRITE(+,*) 350
‘WRITE(*,+) ' THE NODAL COORDINATES AND ELEMENT CONNECTIVITY'
‘WRITE(#,%) ' ARE SUITABLE ONLY FOR ANSYS STIF-42 ELEMENTS'
WRITE(s,+)

WRITE(s,#)'  ..... hit <returmn>to continue’
READ(s,5)

DO MM=1,30

WRITE(s,*)

END DO

RETURN

END 360

CHECK INPUT FOR CORRECTNESS
SUBROUTINE CHKINP(NELEM,NEPS,FLAG1)
INTEGER FLAG1

FLAG1=0
R=FLOAT(NELEM)
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21

R1=FLOAT(NEPS)
R2=R/R1
I=NELEM/NEPS 370
R3=FLOAT(I)
IF(R3.NE.R2)THEN

FLAG1=1

WRITE(»,21)

FORMAT(1X,' INPUT ERROR: Check and reinput total number of

1 elements',/,1X,'or No. of elements per segment. . ... )

1

25

END IF
RETURN
END

READ INPUT FILE (strsl.out and strs2.out)

SUBROUTINE VINPUT(SIG1,SIG2,NELE,NELEM,VOL,
SIGY,PAPP,UNITS)

CHARACTER«(+) UNITS

DIMENSION SIG1(NELEM),SIG2(NELEM),NELE(NELEM),
VOL(NELEM)

READ FIRST LINEAR ANALYSIS STRESS LISTING

READ(15,25)
FORMAT(//////)
K=NELEM/41
J=NELEM-K»41
I=1

DO 30 K1=1,K
DO 35 K2=1,41
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70

READ(15,+)NELE(I),SIG1(I)

I=I+1

READ(15,40) 400
FORMAT(////)

CONTINUE

DO 45 J1=1,J

READ(15,«)NELE(I),SIG1(i)

I=I+1

READ SECOND LINEAR ANALYSIS STRESS LISTING

READ(16,50)

FORMAT(/////]) 410
I=1

DO 55 K1=1K

DO 60 K2=1,41

READ(16,#)A,SIG2(I),VOL(I)

I=I+1

READ(16,65)

FORMAT(////)

CONTINUE

DO 70 Ji=1J

READ(16.x)A,SIG2(I),VOL(I) 420
I=I+1

SUMM=0.0
SUMX=0.0
VOLU=0.0

To find the biggest of the second linear stress value
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BIGG=0.0
BIGG1=0.0 w0
DO K=1NELEM

IF(SIG2(K).GT.BIGG)BIGG=SIG2(K)

END DO

DO K=1,NELEM

IF(SIG1(K).GT.BIGG1)BIGG1=SIG1(K)

END DO

DO K=1NELEM
SUMN=(SIG2(K)#+2)* VOL(K)

SUMY =(SIG1(K)##2)+VOL(K) w0
VOLU=VOLU+VOL(K)

SUMM=SUMM+SUMN

SUMX=SUMX+SUMY

WRITE(22,+)SUMX.VOLU

WRITE(23,+)SUMM,VOLU

END DO

RMO=SIGY+SQRT(VOLU)/SQRT(SUMM)
DENOM=(SIGY++2+(RMO+BIGG)=+2)/(2.0sSIGY=+2)
PLBOYL=SIGY/BIGG+PAPP
RMO1=SIGY+SQRT(VOLU)/SQRT(SUMX) 0
DENOM1=(SIGY ++2+(RMO1+BIGG1)*22)/(2.0+SIGYs+2)
PLBOYL1=SIGY/BIGG1+PAPP

'WRITE(24,%) ' Applied pressure = ' PAPP,' ' ,UNITS
WRITE(24,%) 'Yield stress = *,SIGY,' ',UNITS

WRITE(24,+) 'Maximum stress: '

WRITE(24,#)' I linear analysis = ',BIGGI,' *,UNITS
WRITE(24,+)'  II linear analysis = ',BIGG,' ',UNITS
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WRITE(24,%)'Classical limit load:'
WRITE(24,#)* I linear analysis = '.PLBOYLL.' * ,UNITS
WRITE(24,+)' I linear anmalysis = ' PLBOYL,' *,UNITS 50
‘WRITE(24,+) 'Value of m0:"
WRITE(24,+)' I linear amalysis = ',RMO1
WRITE(24,+)'  II linear analysis = ',RMO
‘WRITE(24,+) 'Value of the denominator: '
WRITE(24,¢)' I linear analysis = ‘,DENOMI1
WRITE(24,+)'  II linear analysis = ',DENOM
WRITE(24,+) 'm0 x P:*
WRITE(24,+)" I linear analysis = ',RMOI1+PAPP,' ' UNITS
‘WRITE(24,%)" II linear analysis = ',RMO«PAPP,' ‘,UNITS
‘WRITE(24,+) 'm0 x P/Denominator: ' a7
WRITE(24,+)' I linear analysis = ',RMO1+PAPP/DENOMI.

1+ ',UNITS
WRITE(24,+)' II linear analysis = ' . RMO+PAPP/DENOM.

1 ',UNITS

‘WRITE(24,+) 'Total volume = ' VOLU

RETURN

END

CALCULATE R-NODE STRESSES AND LOCATIONS 480

SUBROUTINE RNODE(SIG1,SIG2,NSEG,NELEM,NEPS,
1 RSEG,RSTR,RLOCELELOC,I)

INTEGER RSEG,ELELOC

REAL M1,M2

DIMENSION SIG1(NELEM),SIG2(NELEM),RSEG(NELEM),
1 RSTR(NELEM),RLOC(NELEM),ELELOC(NELEM)
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I=1
DO 85 J=1,NSEG 490
DO 85 K=1,NEPS—1
IJK=(J-1)+NEPS+K
M1=SIG1(LJK+1)-SIG1(IJK)
M2=SIG2(1JK+1)-SIG2(IJK)
SLOPE=ABS(M1-M2)
IF (SLOPE.LE.0.00001) THEN
GOTO 85
END IF
X=(SIG2(IJK)~SIG1(LIK))/(M1-M2)+FLOAT(K)—0.5
Y=M1x(SIG2(LIK)-SIG1(LJK))/(M1—M2)+SIG1(LJK) 500
RK=FLOAT(K)+0.5
RK1=FLOAT(K)—0.5
IF(X.LE.RK.AND X.GE.RK1) THEN
RSTR(I)=Y
RLOC(I)=X
RSEG(I)=J
ELELOC(I)=LJK
I=I+1
END IF
CONTINUE 510
RETURN
END

DISPLAY RESULTS

SUBROUTINE RESULT(RSEG,RLOC,ELELOC,RSTR,NEPS,I)
INTEGER RSEG.ELELOC
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95

100

110

111
105

1

DIMENSION RSEG(I),RLOC(I) ELELOC(I),RSTR(I)

WRITE(17,95)
FORMAT(1X, ' SEGMENT NO
‘WRITE(17,100)

LOCATION

FORMAT(1X,' R-NODE

DO 105 O=1I-1
IE1=RSEG(II)
IE2=ELELOC(II)
IE3=ELELOC(II) + 1

'WRITE(17,110)IE1,RLOC(II),IE2 IE3, RSTR(IT)

ELEMENTS

FORMAT(1X,14,2X,F9.5,2X,15,2X,I5,2X, F13.5)
'WRITE(18,111) IELRSTR(II)

FORMAT(1X,110,2X,F13.5)
CONTINUE

RETURN

END

R-NODE STRESS')

Y)

DETERMINES THE HIGHEST, AVERAGE AND THE
LOWEST R-NODE STRESSES

SUBROUTINE CALCU(I.RSTR1,RSTR2.RSTR3 KJ.
1 RSEG,RSTR,ICOUNT,RSEGG)

INTEGER RSEGG,RSEG.COUNT

DIMENSION RSTRI1(I),RSTR2(I),RSTR3(I),RSEG(I),

RSTR(I),ICOUNT(I)
DIMENSION RSEGG(I)
COUNT=1
=1
KJ=1
GOTO 125
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130
125

135

150

U=0I+1

INTA=RSEG(LJ)

INTB=RSEG(IJ+1) 50
IF(INTA.NE.INTB) GOTO 135

COUNT=COUNT+1

IF(LJ.EQ.I-1) GOTO 140

GOTO 130

ICOUNT(KJ)=COUNT

COUNT=1

RSEGG(KJ)=RSEG(LJ)

KJ=KJ+1
IF(lJ.EQ.I-1) GOTO 140 560
GOTO 130

ICOUNT(KJ)=1

MM=1
DO 145 [P=1KJ

BIG=-1E20

AVG=0.0

SMALL=1e20

L=ICOUNT(IP) s
DO 150 IQ=1.L

IF(RSTR(MM).GT.BIG) BIG=RSTR(MM)

AVG=RSTR(MM)+AVG

IF(RSTR(MM).LT.SMALL) SMALL=RSTR(MM)

MM=MM+1

RSTRI(IP)=BIG

RSTR2(IP)=AVG/L
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145

-

1

RSTR3(IP)=SMALL
CONTINUE

LINEAR INTERPOLATION OF THE R-NODE STRESSES

SUBROUTINE INTERPOL(FLAG3,RSTR1,RSTR2,RSTR3.NSEG.
KJ,RSEGG,0RSTR,MEMO,FLAGS)

INTEGER FLAG3,RSEGG,FLAGS

DIMENSION RSTR1(MEMO),RSTR2(MEMO),RSTR3(MEMO).
RSEGG(MEMO),0RSTR(MEMO) 590

DO KO1=1,NSEG
ORSTR(KO1)=0.0
END DO

IF(FLAG3.EQ.1) THEN
DO KO2=1,KJ
KP1=RSEGG(K02)
ORSTR(KP1)=RSTR1(KO?2)
END DO 0
ELSE
IF(FLAG3.EQ.2) THEN
DO KO02=1KJ
KP1=RSEGG(K02)
ORSTR(KP1)=RSTR2(K02)
END DO
ELSE
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802

803

IF(FLAG3.EQ.3)THEN
DO KO2=1KJ
KP1=RSEGG(K02)
ORSTR(KP1)=RSTR3(KO02)
END DO
END IF
END IF
END IF

IF(FLAG8.EQ.1)GOTO 802

IF(FLAG8.EQ.3)GOTO 803

KP2=RSEGG(1)

DO KO03=1KP2-1
ORSTR(KO3)=ORSTR(KP2)

END DO

IF(FLAG8.EQ.2)GOTO 803

KP3=RSEGG(KJ)

DO KO04=KP3+1.NSEG
ORSTR(KO4)=ORSTR(KP3)

END DO

IF(FLAG8.EQ.1.OR.FLAG8.EQ.3)THEN
DO KSP=1KJ
RSEGG(KJ+2—-KSP)=RSEGG(KJ+1-KSP)
END DO
KJ=KJ+1
RSEGG(1)=1
ORSTR(1)=0.0001
END IF
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IF(FLAG8.EQ.2.0R.FLAG8.EQ.3)THEN
KJ=KJ+1 640
RSEGG(KJ)=NSEG
ORSTR(NSEG)=0.0001

END IF

DO KO05=1,KJ-1
KP5=RSEGG(KO5)
KP6=RSEGG(KO5+1)
IDIFF=KP6-KP5
DO KO06=1,IDIFF-1 650
KP4=KP5+KO06
ORSTR(KP4)=ORSTR(KP5)+(FLOAT(KP4—KP5)*
1 (ORSTR(KP6)—ORSTR(KP5))/FLOAT(IDIFF))
END DO
END DO

= msp CHECK POINT -1

do ichkl=1nseg
write(80,¢) ' ORSTR(" ,ichkl,") = * orstr(ichkl)
end do 660

RETURN
END

READS NODE LISTING FOR THE SELECTED NODES

SUBROUTINE RDNODE(NNUM,XCORD,YCORD,NSEG,
1 NTOT,MEMO)

262



703

713

715
714

704

DIMENSION NNUM(MEMO),XCORD(MEMO),YCORD(MEMO)

NTOT=(NSEG+1)s2

READ(25,703)
FORMAT(/////////1])
GOTO 714
REWIND(25)
READ(25,715)
FORMAT(///)
K=NTOT/20
J=NTOT-K+20

101=1

DO Ki=1K

DO K2=120

READ(25,+,ERR=713)NNUM(IO1),XCORD(IO1),YCORD(IO1).a.b.c.d

101=I01+1

END DO
READ(25,704 ERR=713)
FORMAT(/)

END DO

DO Ji=1J

READ(25,» ERR=713)NNUM(I01). XCORD(I01),YCORD(IO1).a.b.c.d

101=I01+1
END DO

- msp CHECK

do ichkl=1,ntot

POINT - II

write(81,#) 'NNUM(',ichkl,") = ',nnum(ichkl),"  XCORD(',

1 ichkl,") = ' xcord(ichkl),"
1 ycord(ichk1)

YCORD(',ichkl,') = ',
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end do

RETURN 700
END

DETERMINES THE MAXIMUM SECTION THICKNESS
AND THE CORRESPONDING R-NODE STRESS - SIGMA_N1
SUBROUTINE MAXTHK(NNUM,XCORD,YCORD,THKMAX,
1 NTOT,THICK,ORSTR,SIGMA_N1,MEMO,BIGRST ,REFTHK ,STHK)
DIMENSION NNUM(MEMO),XCORD(MEMO),YCORD(MEMO)
DIMENSION THICK(MEMO),0ORSTR(MEMO),STHK(MEMO)
NTOTAL=NTOT/2
THKMAX=0.0 710
DO 102=1,NTOTAL
THICK(102)=SQRT((YCORD(I02+NTOTAL)—-YCORD(I02))**2
+(XCORD(I02+NTOTAL)—XCORD(I02))##2)
IF(THICK(102).GT.THKMAX) THEN
THKMAX=THICK(I02)
MARK1=I02
END IF
END DO
RMARKI1=ORSTR(MARK1-1)
RMARK2=ORSTR(MARK1) 720
SIGMA_N1=MAX(RMARKI1,RMARK?2)
DO KO02A=1,NTOTAL-1
IF(THICK(KO2A).GE.THKMAX.AND.ORSTR(KO24).
1 GT.SIGMA.N1) THEN
SIGMA_N1=ORSTR(KO02A)
THKMAX=THICK(KO2A)
END IF

-
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END DO
BIGRST=0.0
DO KO2B=1NTOTAL-1 0
IF(ORSTR(KO2B).GT.BIGRST)THEN
BIGRST=ORSTR(KO2B)
REFTHK=MAX(THICK(KO2B),THICK(KO2B+1))
END IF
END DO

DO KGOD=1,NTOTAL-1
STHK(KGOD)=(THICK(KGOD)+THICK(KGOD+1))/2.0
END DO

CHECK POINT - Il
do ichkl=1,ntotal
write(82,+) ' THICK (' ,ichkl,") = * thick(ichkl)
end do
write(82,+) ' THKMAX = *,thkmax
write(82,«) 'SIGMA_N1 = * sigma nl
do ichkll=1ntotal—1
‘write(83.+) ' STHK('.ichk11,') = ' sthk(ichkll)
end do

-

RETURN
END

DETERMINES THE THICKNESS OF THE R-NODE SECTIONS
SUBROUTINE RTHICK(ORSTR,SIGMA_N1,THKMAX,TRSEG,
NSEG,MEMO,BIGRST,REFTHK,FLAG4,STHK,FLAG9)
DIMENSION ORSTR(MEMO),TRSEG(MEMO),STHK(MEMO)
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INTEGER FLAG4,FLAGY
IF(FLAG4.EQ.1)THEN
DO KO7A=1NSEG 760
TRSEG(KO7A)=STHK(KO7A)+SQRT(ORSTR(KO7A)/BIGRST)
END DO
END IF
IF(FLAG4.EQ.2) THEN
DO KO7=1,NSEG
TRSEG(KO7)=STHK(KO7)=SQRT(ORSTR(KO7)/ORSTR(FLAG9))
END DO
END IF

= msp CHECK POINT - IV 70

do ichkl=1.nseg
write(84,s) ' TRSEG(' ,ichkl,") = ' trseg(ichkl)
end do

RETURN
END

DETERMINES THE NODE THICKNESS LIST
SUBROUTINE NTHICK(TRSEG,TNSEC,NTOT,MEMO.
1 ASPECT.THKMAX) 0
DIMENSION TRSEG(MEMO),TNSEC(MEMO)
NTOTAL=NTOT/2
THKMIN=ASPECT-THKMAX
TNSEC(1)=TRSEG(1)
TNSEC(NTOTAL)=TRSEG(NTOTAL~-1)
DO KO8=2,NTOTAL~1
‘TNSEC(KO8)=MAX(TRSEG(KO8-1), TRSEG(K08))
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END DO
DO KO8A=1NTOTAL
IF(TNSEC(KO8A).LT.THKMIN) THEN
‘WRITE(*,711)KO8A,TNSEC(KO8A ), THKMIN
711 FORMAT(1X, ' THICKNESS OF NODAL SEC. #',I3,'=',
1 F7.3,' LESS THAN PRESCRIBED MIN. OF'F7.3)
‘WRITE(x,+) ' THICKNESS CORRECTION PERFORMED'
TNSEC(KO8A)=THKMIN
END IF
END DO

= msp CHECK POINT -V
do ichkl=1ntotal
write(85,#) "TNSEC( ' ,ichkl.') = *,tnsec(ichkl)
end do

RETURN
END

- DETERMINES THE NEW NODE LIST

SUBROUTINE NLIST(TNSEC,NTOT.XCORD,YCORD.XCOORD.

1 YCOORD,THICK.FLAG2,MEMO,PERCENT ,FLAGS5, THKMAX)
DIMENSION TNSEC(MEMO),XCORD(MEMO),YCORD(MEMO)
DIMENSION XCOORD(MEMO),YCOORD(MEMO),

1 THICK(MEMO)

INTEGER FLAG2,FLAGS

NTOTAL=NTOT/2

DO KO9=1,NTOTAL
SP=(100.0-PERCENT)/100.0
IF(FLAG5.EQ.2)THEN
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DELT=THICK(KO9)+SP—TNSEC(KO9)
END IF
IF(FLAG5.EQ.1) THEN 520
DELT=THICK(K09)+SP—TNSEC(K09)
IF(DELT.LT.0.0) THEN
DELT=THICK (KO9)—TNSEC(KO09)
IF(DELT.LT.0.0) THEN
DELT=THKMAX—-TNSEC(KO9)
IF(DELT.LT.0.0)THEN
DELT=0.0
END IF
END IF
END IF 80
END IF
IF(FLAG5.EQ.3)THEN
DELT=(1.0-PERCENT/100.0)+(THICK(KO9)—TNSEC(K09))
END IF

DELX=DELT+ABS(XCORD(K09)—XCORD(KO9-+NTOTAL))

1 /THICK(KO9)
DELY=DELT+ABS(YCORD(K09)-YCORD(KO9+NTOTAL))
1 /THICK(KO9)
840
msp CHECK POINT - VI

write(s,)'DELT = ',delt
write(s,+)'DELX = ',delz
write(x,+)'DELY = ',dely
write(x,x)’FLAG2 = *flag?

IF(FLAG2.EQ.1)THEN
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IF(YCORD(KO9).GE.YCORD(KO9+NTOTAL)) THEN
YCOORD(KO09)=YCORD(KO9)—-DELY /2.0
YCOORD(KO9+NTOTAL)=YCORD(KO9+NTOTAL)

+DELY/2.0

ELSE
‘YCOORD(KO9)=YCORD(K09)+DELY/2.0
YCOORD(KO9+NTOTAL)=YCORD(KO9+NTOTAL)

—~DELY/2.0

END IF

IF(XCORD(K09).GE.XCORD(KO9+NTOTAL)) THEN
XCOORD(K09)=XCORD(K09)-DELX/2.0
XCOORD(KO9+NTOTAL)=XCORD(KO9+NTOTAL)

+DELX/2.0

ELSE
XCOORD(KO9)=XCORD(K09)+DELX/2.0
XCOORD(KO9+NTOTAL)=XCORD(KO9+NTOTAL)

—DELX/2.0
END IF
END IF
IF(FLAG2.EQ.2)THEN

IF(YCORD(KO9).GE.YCORD(KO9+NTOTAL)) THEN
'YCOORD(KO09)=YCORD(KO9)
YCOORD(KO9+NTOTAL)=YCORD(KO9+NTOTAL)

+DELY

ELSE
YCOORD(K09)=YCORD(KOS)
YCOORD(KO9+NTOTAL)=YCORD(KO9+NTOTAL)

—-DELY
END IF
IF(XCORD(KO09).GE.XCORD(KO9+NTOTAL)) THEN
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XCOORD(KO09)=XCORD(K09)
XCOORD(KO9+NTOTAL)=XCORD(KO9+NTOTAL)
1 +DELX
ELSE
XCOORD(K09)=XCORD(K09)
XCOORD(KO9+NTOTAL)=XCORD(KO9+NTOTAL)
1 -DELX 4
END IF
END IF
IF(FLAG2.EQ.3)THEN
IF(YCORD(K09).GE.YCORD(KO9+NTOTAL)) THEN
YCOORD(KO09)=YCORD(K09)-DELY
YCOORD(KO9+NTOTAL)=YCORD(KO9+NTOTAL)
ELSE
YCOORD(K09)=YCORD(K09)+DELY
YCOORD(KO9+NTOTAL)=YCORD(KO9+NTOTAL)
END IF
IF(XCORD(K09).GE.XCORD(KO9+NTOTAL)) THEN
XCOORD(K09)=XCORD(KO09)—DELX
XCOORD(KO9+NTOTAL)=XCORD(KO9+NTOTAL)
ELSE
XCOORD(K09)=XCORD(K09)+DELX
XCOORD(KO9+NTOTAL)=XCORD(KO9+NTOTAL)
END IF
END IF
IF(FLAG2.EQ.4)THEN
DELX=DELX/2.0
DELY=DELY/2.0
IF(YCORD(K09).GE.YCORD(KO9+NTOTAL)) THEN
‘YCOORD(K09)=YCORD(K09)
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YCOORD(KO9+NTOTAL)=YCORD(KO9+NTOTAL)
+DELY
ELSE
'YCOORD(KO9)=YCORD(K09)
‘YCOORD(KO9+NTOTAL)=YCORD(KO9+NTOTAL)
—DELY
END IF
IF(XCORD(K09).GE.XCORD(KO9+NTOTAL)) THEN
XCOORD(K09)=XCORD(KO9)
XCOORD(KO9+NTOTAL)=XCORD(KO9+NTOTAL)
+DELX
ELSE
XCOORD(KO09)=XCORD(KO9)
XCOORD(KO9+NTOTAL)=XCORD(KO9+NTOTAL)
—DELX
END IF
END IF
IF(FLAG2.EQ5)THEN
DELX=DELX/2.0
DELY=DELY/2.0
IF(YCORD(KOS9).GE.YCORD(KO9+NTOTAL)) THEN
YCOORD(KO9)=YCORD(K09)—-DELY
YCOORD(KO9+NTOTAL)=YCORD(KO9+NTOTAL)
ELSE
YCOORD(KO09)=YCORD(K09)+DELY
YCOORD(KO9+NTOTAL)=YCORD(KO9+NTOTAL)
END IF
IF(XCORD(KO09).GE.XCORD(KO9+NTOTAL)) THEN
XCOORD(K09)=XCORD(K09)—DELX
XCOORD(KO9+NTOTAL)=XCORD(KO9+NTOTAL)
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ELSE
XCOORD(K09)=XCORD(K09)+DELX

XCOORD(KO9+NTOTAL)=XCORD(K0O9+NTOTAL) 940
END IF
END IF
END DO
* msp CHECK POINT - VIl

.

do ichkl=1,ntotal

write(x,x)'’XCOORD(’,ichk1,’) = ’,zcoord(ichk1),
1 'YCOORD(’,ichk1,’) = ',ycoord(ichkl)

end do

707

708

RETURN
END

OUTPUTS THE LIST OF NODES SUITABLE FOR ANSYS
SUBROUTINE NODES(XCOORD,YCOORD,NTOT MEMO,

1 NEPS,NNUM)
DIMENSION XCOORD(MEMO).YCOORD(MEMO) NNUM(MEMO)
NTOTAL=NTOT/2
DO KQI1=1,NTOT

‘WRITE(26,707)NNUM(KQ1), XCOORD(KQ1),YCOORD(KQ1) 960
FORMAT(1X,'N, " I5,", 'F11.7.*, ' F11.7)
END DO

DO KQ1A=1,NTOTAL
‘WRITE(26,708)NNUM(KQ1A),NNUM(KQ1A+NTOTAL),NEPS—1
FORMAT(1X,'FILL, ' I5,",*,I5,*, *,I5)

END DO

RETURN
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705

720

719

722

709

706

721

END

READS THE ELEMENT LIST OF ANSYS AND PRODUCES
ANSYS READABLE ELEMENT LIST

SUBROUTINE RDELEM(NELEM)

READ(27,705)
FORMAT(/////111111]
GOTO 722
REWIND(27)
REWIND(28)
READ(27,719)
FORMAT(////)
K=NELEM/20
J=NELEM-K+20
I01=1
DO Ki=1K
DO K2=1,20
READ(27,+ ERR=720)NENUM.IAIB,IC,ID.NI,NJ NK,NL
WRITE(28,709)NI,NJ NK,NL
FORMAT(IX.'E," I5,",* I5,", * I5,", *I5)
101=I01+1
END DO
READ(27,706 ERR=721)
FORMAT(//)
GOTO 728
IF(J.EQ.0) THEN
GOTO 712
ELSE
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728

710

712

GOTO 720
END IF
END DO
DO J1=1,J
READ(27,+,ERR=720)NENUM,IA,IB,IC,ID,NI,NJ,NK,NL
‘WRITE(28,710)NI,NJ,NK,NL
FORMAT(1X,'E, ' ,I5,', ' I5,", ' ,I5," , * I5)
101=I101+1
END DO
RETURN
END
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Appendix C

ANSYS Commands Listing of
Mechanical Components and
Structures

All ANSYS commands listing for the problems given in Chapter 4 are provided in
this section. Some typical inelastic analysis listings using ANSYS are also provided.
Finally, listings for the layered beam problems are given.

C.1 Isotropic Components

C.1.1 Linear Elastic Analysis

C.1.1.1 Thick Cylinder Subjected to Internal Pressure

/BATCH

*=SET,RI,3 ! INNER RADIUS (inch)

*SET,R0,9 ! OUTER RADIUS (inch)

*SET,NELEM, 90 ! NO. OF ELEMENTS ACROSS THE CROSS-SECTION
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*SET, THICK, (RO-RI)/NELEM ! THICKNESS (ENSURES SQUARE ELEMENTS)

*SET, YS,30E03 ! YIELD STRENGTH (psi)
*SET, YM, 30E06 ! YOUNG’S MODULUS (psi)
+SET,POISSON,0.3 ! POISSON’S RATIO
+SET,PRSR, 10E03 ! INTERNAL PRESSURE (psi)
/PREPT t ENTER PREPROCESSOR
/TITLE, THICK CYLINDER UNDER INTERNAL PRESSURE
ANTYPE,O
ET,1,42,0,0,1,0,0 ! ELEMENT TYPE - PLANE42 (FOUR NODED ISOPARAMETRIC)
! AXISYMMETRIC OPTION
MP,EX,1,YM ! YOUNG’S MODULUS
MP,NUXY,,0.3 ! POISSON’S RATIO
N,1,RI { DEFINE NODES
N,NELEM+1,R0

FILL,1,NELEM+1
N,NELEM+2,RT, THICK

N, 2+ (NELEM+1) ,RO, THICK
FILL,NELEM+2, 2= (NELEM+1)

+D0,K,1,NELEM ! DEFINE ELEMENTS
E,K,K+1,NELEM+K+2 ,NELEM+K+1

*ENDDO

FINISH ! EXIT PREPROCESSOR
/SOLUTION ! ENTER SOLUTION ROUTINE
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ANTYPE, 0 ! STATIC ANALYSIS

D,ALL,UY,0 ! DISPLACEMENT BOUNDARY CONDITION
NSEL,S,LOC,X,RI ! APPLY UNIFORM INTERNAL PRESSURE
SF,ALL,PRES,PRSR

NSEL,ALL

SAVE ! SAVE DATA-BASE

SOLVE ! SOLVE EQUATIONS

FINISH ! EXIT SOLUTION ROUTINE

INPUT MACRO FOR R-NODE ANALYSIS...
...(OR) INPUT MACRO FOR REPEATED ELASTIC ANALYSIS

/INP,rnodemac

Cs== /INP,repeat

EXIT

C.1.1.2 Indeterminate Beam Subjected to Uniform Load

/BATCH

*SET, LENG, 20 * LENGTH OF THE BEAM (inch)

*SET, THIK,1.00 * THICKNESS OF THE BEAM (inch)

*SET,NDIV1,100 * NUMBER OF DIVISIONS ALONG THE LENGTH OF THE BEAM
*SET,NDIV2,10 *= NUMBER OF DIVISIONS ALONG THE WIDTH OF THE BEAM
*SET,PRSR, 25 * ARBITRARY APPLIED PRESSURE (psi)

*SET, YM, 30E06 * YOUNG’S MODULUS (psi)
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*SET, YS,30E03 = YIELD STRESS (psi)

/PREPT

/TITLE, INDETERMINATE BEAM

ET,1,42 ! PLANE STRESS OPTION
MP,EX,1,YM

MP,NUXY,,0.3

K,1

K,2,LENG
K,3,LENG, THIK
K,4,0,THIK

L,1,2,NDIV1
L,2,3,NDIV2
L,3,4,NDIVL
L,4,1,NDIV2

4,4,1,2,3

NSEL,,LOC,X,0
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D,ALL,ALL,0
NALL

NSEL, ,LOC,X,LENG
NSEL,R,LOC,Y,0
D,ALL,UY,0

NALL

NSEL, ,LOC,Y,THIK
SF,ALL,PRES,PRSR

NALL

SAVE
SOLVE

FINISH

/INP,rnodemac ! INPUT MACRO FOR R-NODE ANALYSIS...
Ce== /INP,repeat ! ...(OR) INPUT MACRO FOR REPEATED ELASTIC ANALYSIS

EXIT

C.1.1.3 Torispherical Head Subjected to Uniform Pressure

/BATCH
! ALL DIMENSIONS IN METERS
! R/D =0.12

! BASIC CONSTANTS
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*SET,PI,3.1415926536

*SET, YM, 206 .85E06 ! YOUNG’S MODULUS (KPa)
*SET, YS,206.85E03 ! YIELD STRESS (KPa)
*SET,PRSR,200.0 ! INTERNAL PRESSURE (Kpa)

! BASIC INPUTS

! THE SYMBOLS USED ARE AS PER MASSONET AND SAVE

*SET,T,2.54E-02 ! WALL THICKNESS (m)

*SET,LSBYD,0.8 ! LS BY D (LS IS THE RADIUS OF THE HEAD)
*SET,RBYD,0.12 { RBY D (R IS THE RADIUS OF THE TORUS)
+SET, TBYD, 1/300 ! TBY D (T IS THE THICKNESS AND D IS THE

! DIAMETER OF THE CYLINDER)

L DERIVED DIMENSIONS

! THE SYMBOLS USED ARE MY OWN

*SET,PHITWO,ASIN((0.5-RBYD) / (LSBYD-RBYD) ) *180/P1
*SET,PHI1,90.0-PHITWO

*SET,D, T/TBYD ' INSIDE DIAMETER OF THE CYLINDER
*SET ,RK,RBYDsD ! RADIUS OF THE KNUCKLE

*SET,RH,LSBYD*D ! RADIUS OF THE HEAD

*SET, HH, RH- (RH-RK) +COS (PHITWO*PI/180.0) ! HEIGHT OF THE TORISPHERICAL HEAD
+SET,A,D/2-RK { DISTANCE FROM AXIS TO KNUCKLE CENTER
*SET,RI,D/2.0 t INNER RADIUS OF THE CYLINDRICAL PORTION
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*SET,RO,RI+T ! OUTER RADIUS OF THE CYLINDRICAL PORTION
*SET,H, 1.2%5.0#SQRT(RO*T) ! HEIGHT FROM BASE TO LOWER KNUCKLE

! ELEMENT SIZE PARAMETERS

*SET,NDIV1,6
*SET,NDIV2,70
=SET,NDIV3, 30
*SET,NDIV4,120

/PREPT

ANTYPE, O
ET,1,42,0,0,1,0,0
MP,EX,1,YM
MP,NUXY,,0.3

K,1,RI
K,2,RO
K,3,RI,H
K,4,R0,H

! LOCAL CO-ORDINATE SYSTEM FOR THE KNUCKLE
LOCAL,11,1,A,H

CsYs,11
K,5,RK,PHI1
K,6,RK+T,PHI1
CsYs,0
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! LOCAL CO-ORDINATE SYSTEM FOR THE HEAD
LOCAL,12,1,0,H+HH-RH

CsYs, 12
K,7,RH,90
K,8,RH+T,90

CsYs,0

L,1,2,NDIV1
L,3,4,NDIV1
L,5,6,NDIVL
L,7,8,NDIVL

L,1,3,NDIV2
L,2,4,NDIV2

csys,11
L,3,5,NDIV3
L,4,6,NDIV3
csys,12
L,5,7,NDIV4
L,6,8,NDIV4

CsYs,0

4,1,2,4,3
AMESH, 1
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CsyYs, 11

A,3,4,6,5
AMESH, 2

CsYs,12

A,5,6,8,7
AMESH, 3

CsYs,0

SFL,S,PRES,PRSR

cs¥s,11

SFL,7,PRES,PRSR

CsYs,0

CsYs,12

SFL,9,PRES,PRSR

CsYs,0

SFTRAN

NSEL, ,LOC,X,0
D,ALL,UX,0
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NSEL,ALL
NSEL,,LOC,Y,0
D,ALL,UY,0
NSEL,ALL
FINISH
/SOLUTION
SAVE

SOLVE

FINISH

/INP,rnodemac ! INPUT MACRO FOR R-NODE ANALYSIS...
Ce=x /INP,repeat ! ...(OR) INPUT MACRO FOR REPEATED ELASTIC ANALYSIS

EXIT

C.1.1.4 Spherical Pressure Vessel with a Cylindrical Nozzle
Subjected to Uniform Internal Pressure

/BATCH

f BASIC CONSTANTS
*SET, YM, 200.00E06 ! YOUNG’S MODULUS (KPa)
*SET, YS,300.00E03 ! YIELD STRENGTH (KPa)
*=SET, PRSR, 200 ! INTERNAL PRESSURE (KPa)
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L BASIC INPUTS

=SET,RS,1.0 ! MEAN RADIUS OF THE SPHERE (m)
*SET,TS,0.25 ! THICKNESS OF THE SPHERICAL SHELL (m)
*SET,RN,0.20 ! MEAN RADIUS OF THE NOZZLE (m)

t DERIVED INPUTS

*SET,TN,2.0sTS*RN/RS ! THICKNESS OF THE NOZZLE (m)
*SET,H,1.2#5.0*SQRT (RN=TN) ! HEIGHT OF THE NOZZLE (m)

! ELEMENT SIZE PARAMETERS

+SET,NDIV1,45
*SET,NDIV2,6

*SET,NDIV3,11
*SET,NDIV4,38
*SET,NDIV5, 10

/TITLE,INTERSECTION OF A SPHERICAL PRESSURE VESSEL WITH A CYLINDRICAL NOZZLE

/PREPT

ANTYPE, O
ET,1,42,0,0,1,0,0
MP,EX,1,YM
MP,NUXY,,0.3

RSI=RS-TS/2.0
RSO=RS+TS/2.0
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RNI=RN-TN/2.0
RNO=RN+TN/2.0

K,1,RSO

K,2,RNO, SQRT (RSO**2-RNO*»2)

K,3,RNO, SQRT(RSO**2-RND*+2)+TN/2.0+H
K,4,RNI,SQRT (RSO**2-RNO*#2)+TN/2.0+H
K,5,RNI,SQRT (RSO**2-RNO*»2)+TN/2.0
K,6,RNI,SQRT (RSI*#2-RNI*»2)

K,7,RSI

K,12

K,15,,-RSI

K,16,,-RSO

csvs,1
L.1,2
CsYs,0
L.2,3
L.3,4
L.4,5
L,5,6
csys,1
L.6,7
csys,0
Eitid

LOCAL,11,1,RNO+TN/2.0,SQRT (RSO**2-RND**2)+TN/2.0
Csys, 11

LFILLT,1,2,TN/2.0,10

LDIV,8,0.5,11
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CsYs,0
L,8,12
LCsL,10,6
LDELE, 14
L,11,6
L,9,5

L,15,16
csys,1
L.15,7
L,16,1
CsYs,0

KDELE, 10
KDELE, 2
KDELE, 12

LESIZE,1,,,NDIV1,0.3333
LESIZE,2,,,NDIV4,3
LESIZE,3,,,NDIVS
LESIZE,4,,,NDIV4,0.3333
LESIZE,S,,,NDIV3
LESIZE,S,,,NDIVS
LESIZE,7,,,NDIVS
LESIZE,8,,,NDIV2
LESIZE,9,,,NDIV3
LESIZE,10,,,NDIVS
LESIZE,11,,,NDIV2
LESIZE,12,,,NDIV1,0.3333
LESIZE,13,,,NDIVS
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LESIZE, 14, ,,NDIVS
LESIZE, 15,,,NDIV1
LESIZE,16,,,NDIV1

CsyYs,1
A,15,16,1,7
A4,7,1,8,13
CsyYs,0
A,13,8,11,6
4,6,11,9,5
A,5,9,3,4

ESHAPE, 2
AMESH, ALL

FINI

/sOLU
ANTYPE, STATIC

SFL,4,PRES,PRSR
SFL,5,PRES,PRSR

CsYs,1

SFL,11,PRES,PRSR
SFL,12,PRES,PRSR
SFL,15,PRES,PRSR

CsYs,0
SFTRAN
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NSEL,,LOC,Y,SQRT (RSO»#2~RNO*2)+TN/2.0+H
D,ALL,UY,0
NSEL,ALL

NSEL,,LOC,X,0
D,ALL,UX,0
NSEL,ALL

SAVE
SOLVE

FINI

/INP,rnodemac ! INPUT MACRO FOR R-NODE ANALYSIS...
C*=s /INP,repeat ! ...(OR) INPUT MACRO FOR REPEATED ELASTIC ANALYSIS

EXIT

C.1.1.5 Pressure Vessel Support Skirt

/BATCH

*SET,PI,3.1415926536

*SET,DI,97.28 ! INNER DIAMETER OF THE CYLINDER (inch)
*SET,D0,101.28 ! OUTER DIAMETER OF THE CYLINDER (inch)
*SET,LC,30.0 ! LENGTH OF THE CYLINDER (inch)
*SET,DSK,110.07 ! DIAMETER OF THE SKIRT (inch)

*SET,SKA,18.05

ANGLE MADE BY THE SKIRT WITH THE VERTICAL (deg.)
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*SET, YM, 30E06
*SET,ENLD, 1122

*SET,NDIV1,12
*SET,NDIV2,28
*SET,NDIV3,23
*SET,NDIV4,5

RI=DI/2.0

RO=D0/2.0
RSK=DSK/2.0

T=RO-RI
THETA=PI/180.0%SKA

YOUNG’S MODULUS (psi)
END LOAD (psi)

NUMBER OF DIVISIONS ACROSS THE THICKNESS

0.5 = NUMBER OF DIVISIONS ALONG THE CYLINDER’S LENGTH
0.5 = NUMBER OF DIVISIONS ALONG THE SKIRT

NUMBER OF DIVISIONS ALONG THE ARC OF THE BEND

Hi=(RSK-RO+T/COS (THETA) ) /TAN(THETA)

/TITLE,PRESSURE VESSEL SUPPORT SKIRT

/PREP7
ANTYPE,STATIC
ET,1,42,0,0,1,0,0
MP,EX,1,YM
MP,NUXY,,0.3

K,1,RI
K,2,R0
K,3,R0,LC

K,4,RI,H1+LC+TAN(PI/2.0-THETA) *(RI-RSK)
K,5,RSK+T/COS (THETA) ,LC+H1

K,6,RSK,LC+H1

290



Lyti2
L,6,5
L.2:3
L,1,4
L,3,5
L,4,6

LOCAL,11,1,R04T,LC-T
csys, 11
LFILLT,3,5,T/2.0
LFILLT,4,6,3.0¢T/2.0
csYs,0

L,7.9
L,8,10

KDELE, 3
KDELE, 4

LDIV,3
LDIV,4
LDIV,S
LDIV,6

LESIZE,1,,,NDIV1
LESIZE,9, , ,NDIV1
LESIZE,10
LESIZE,2,

LESIZE,3,,,NDIV2,2
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LESIZE,4,,,NDIV2,2
LESIZE,11,,,NDIV2,0.5
LESIZE,12,,,NDIV2,0.5

LESIZE,5, ,,NDIV3,2
LESIZE,S, , ,NDIV3,2
LESIZE,13,,,NDIV3,0.5
LESIZE,14,,,NDIV3,0.5

LESIZE,7,,,NDIV4
LESIZE,8,,,NDIV4

4,1,2,3,4
A,4,3,7,9
CsYs, 11
4,9,7,8,10
CsYs,0
A,10,8,11,12
A,12,11,5,6

ESHAPE, 2
AMESH, ALL

FINISH

/SOLUTION

NSEL,,LOC,Y,H1 + LC

D,ALL,ALL,0
NSEL,ALL
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SOLVE
FINISH

/INP,rnodemac ! INPUT MACRO FOR R-NODE ANALYSIS...
Cs== /INP,repeat ! ...(OR) INPUT MACRO FOR REPEATED ELASTIC ANALYSIS

EXIT

C.1.1.6 Rectangular Plate Partially Fixed on Three Sides

Ce=s FULL THREE-DIMENSIONAL MODEL

*SET, THIK,0.5 ! THICKNESS OF THE PLATE (inch)

*SET,LENG, 15 ! LENGTH OF THE PLATE (inch)

#SET,WDTH, 10 ! WIDTH OF THE PLATE (inch)

*SET,PRSR, 25 ! APPLIED PRESSURE (psi)

*SET, YM, 30E06 ! YOUNG’S MODULUS (psi)

*SET, YS,30E03 ! YIELD STRENGTH (psi)

/PREPT

/TITLE,RECTANGULAR PLATE PARTIALLY FIXED

ANTYPE, 0

ET,1,45 ! ELEMENT TYPE IS SOLID45 (EIGHT NODED ISOPARAMETRIC
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! SOLID ELEMENT)
MP,EX,1,TM
MP,NUXY, ,0.3

k,1,0,0,0
K,2,WDTH,0,0
K,3,WDTH, THIK,O0
K,4,0,THIK,0
K,5,0,0,LENG
K,6,WDTH,0,LENG
K,7,WDTH, THIK, LENG
K,8,0,THIK,LENG

L,1,2,1.2«WDTH
L.1,4,5
L,2,3,5
L,4,3,1.2+WDTH
L,1,5,1.2¢LENG
L,4,8,1.2+LENG
L,3,7,1.2+LENG
L,2,6,1.2+LENG
L,5,8,5
L,7,6,5
L,7,8,1.2+WDTH
L,5,6,1.2sWDTH

v,1,2,6,5,4,3,7,8
VMESH, ALL

FINISH



/SOLUTION

NSEL,R,L0C,Z,0
D,ALL,ALL,0
NSEL,ALL

NSEL,S,LOC,X,WDTH
NSEL,R,L0C,Z,0,0.33333+LENG
D,ALL,ALL,0

NSEL,ALL

NSEL,S,L0C,X,0
NSEL,R,L0C,Z,0,0.666667+LENG
D,ALL,ALL,0

NSEL,ALL

NSEL,S,LOC,Y, THIK
SF,ALL,PRES,PRSR

NSEL,ALL

SAVE

SOLVE

FINISH

/INP,rnodemac ! INPUT MACRO FOR R-NODE ANALYSIS...
Cs== /INP,repeat ! ...(OR) INPUT MACRO FOR REPEATED ELASTIC ANALYSIS
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C.1.1.7 Rectangular Plate Partially Fixed and Partially Simply
Supported

Ce=*= FULL THREE-DIMENSIONAL MODEL

*SET,THIK,0.5 ! THICKNESS OF THE PLATE (inch)
*SET,LENG, 15 ! LENGTH OF THE PLATE (inch)
*SET,WDTH, 10 ! WIDTH OF THE PLATE (inch)

*SET,PRSR, 25 ! ARBITRARY APPLIED PRESSURE (psi)
*SET, YM, 30E06 ! YOUNG’S MODULUS (psi)

/PREPT

/TITLE,RECTANGULAR PLATE PARTIALLY FIXED AND PARTIALLY SIMPLY SUPPORTED.
ET,1,45

MP,EX,1,30E6

MP,NUXY,,0.3

K,1,0,0,0
K,2,WDTH,0,0
K,3,WDTH, THIK, 0
K,4,0,THIK,0
K,5,0,0,LENG
K,6,WDTH,0,LENG
K,7,WDTH, THIK, LENG
K,8,0, THIK,LENG

296



L,1,2,1.2+WDTH
L.1,4,5
L,2,3,5
L,4,3,1.2+WDTH
L,1,5,1.2+LENG
L,4,8,1.25LENG
L,3,7,1.2+LENG
L,2,6,1.2¢LENG
L,5,8,5
L,7,6,5
L,7,8,1.2+WDTH
L,5,6,1.2«WDTH

v,1,4,8,5,2,3,7,6
VMESH, ALL

FINISH

/SOLUTION

NSEL,S,L0C,X,0.3333+WDTH,0.66667 *WDTH
NSEL,R,LOC,Y,0

NSEL,R,LOC,Z,0

D,ALL,UY,0

NSEL,ALL

NSEL, S,LOC, X, WDTH
NSEL,R,L0C,Z,0,0.33333+LENG
D,ALL,ALL,0

NSEL, ALL
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NSEL,S,LOC,X,WDTH
NSEL,R,L0C,Z,0.66667+LENG, LENG
D,ALL,ALL,0

NSEL,ALL

NSEL,S,L0OC,X,0
NSEL,R,L0C, Z,0.3333+LENG, 0. 666667+LENG
D,ALL,ALL,0

NSEL,ALL

NSEL,S,L0OC,X,0,0.3333*WDTH
NSEL,R,LOC,Y,0
NSEL,R,LOC,Z,LENG
D,ALL,UY,0

NSEL,ALL

NSEL,S,LOC,X,0.666667+WDTH, WDTH
NSEL,R,LOC,Y,0
NSEL,R,LOC,Z,LENG

D,ALL,UY,0

NSEL,ALL

NSEL,S,LOC,Y,THIK
SF,ALL,PRES,PRSR

NSEL,ALL

SAVE
SOLVE
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FINISH

/INP,rnodemac ! INPUT MACRO FOR R-NODE ANALYSIS...
Cs*x /INP,repeat ! ...(OR) INPUT MACRO FOR REPEATED ELASTIC ANALYSIS
EXIT

C.1.1.8 Compact Tension Specimen

/BATCH

Cues

Cx=* ELASTIC ANALYSIS OF A COMPACT-TENSION SPECIMEN
C=+ SINGULAR STIF 2 ELEMENTS USED AROUND CRACK TIP

Coax
/PREPT

A=0.0466 ! DIMENSIONS OF THE SPECIMEN (m)
B=0.003

W=.100

Wi=.125

H=.060

R=0.0125

E=0.0275

§=0.003

D1=0.080

D2=0.075

YM=211E09 ! YOUNG’S MODULUS (Pa)
YS=488.43E06 ! YIELD STRENGTH (Pa)
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MP,EX,1,YM
MP,NUXY,1,.33

K,1,A ! DEFINE KEY POINTS
K.2,0 ’
K,3,W,H

K4, ,H

K,5, (¥-W1) ,H

K,6,(W-W1),S

K.,7,,8

K,8,(¥-D1),S

K,9, (W-D2)

K,10,,E

K,11,,E,E

CIRCLE,10,R,11,4,,8

L,1,2 ! DEFINE LINES
*REPEAT,8,1,1

L,9,1

L,4,12

L,16,7
KSEL,S,L0C,X,~1E-6,1
LSLK,S,1

AL,ALL
KSEL,s,L0C,X,-1,1E-6
LSLK,S,1

AL,ALL

KSEL,ALL

LSEL,ALL
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ET,1,PLANE2,,,3 ! DEFINE ELEMENTS

R,1,B

ESIZE,A/4
KSCON,1,A/16,1,9
AMESH, ALL
WSORT, X

FINISH

/SOLUTION
ANTYPE,O

NSEL,S,LOC,Y
NSEL,R,LOC,X,A,W
D,ALL,UY,0
NSEL,R,LOC,X,A
D,ALL,UX,0
NSEL,ALL
F,515,FY,20
F,516,FY,20
F,8,FY,20
F,9,FY,20
F,6,FY,20

SAVE
SOLVE

FINISH
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/INP,rnodemac ! INPUT MACRO FOR R-NODE ANALYSIS...
Css= /INP,repeat ! ...(OR) INPUT MACRO FOR REPEATED ELASTIC ANALYSIS

EXIT

C.1.2 Non-linear Analysis

C.1.2.1 Isotropic Thick Cylinder Subjected to Internal Pressure

/BATCH

*SET,RI,3 ! INNER RADIUS (inch)

*SET,R0,9 ! OUTER RADIUS (inch)

*SET,NELEM, 90 ! NO. OF ELEMENTS ACROSS THE CROSS-SECTION

*SET, THICK, (RO-RI) /NELEM ! THICKNESS (ENSURES SQUARE ELEMENTS)

*SET, YS,30E03 ! YIELD STRENGTH (psi)
*SET, YM, 30E06 ! YOUNG’S MODULUS (psi)
*SET,POISSON,0.3 ! POISSON’S RATIO

/PREPT

/TITLE,THICK CYLINDER UNDER INTERNAL PRESSURE
ANTYPE, 0

ET,1,42,0,0,1,0,0

MP,EX,1,YM

MP,NUXY, 0.3

TB,BKIN,1,1

TBDATA,1,YS,0
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N,1,RI

N,NELEM+1,R0
FILL,1,NELEM+1
N,NELEM+2,RI, THICK
N,2=(NELEM+1) ,R0, THICK
FILL,NELEM+2,2+ (NELEM+1)

*D0,K, 1, NELEM
E,K,K+1,NELEM+K+2, NELEN+K+1
+«ENDDO

FINISH

/SOLUTION

ANTYPE,0

NROPT, 1, ,0FF

AUTOTS,ON

PRED,ON, ,ON

NCNV,0

OUTRES, ALL, ALL

D,ALL,UY,0

PRSR=15000 ! INTERNAL PRESSURE (psi)

TIME,1E-12

NSEL,S,LOC,X,RI



SF,ALL,PRES,1E-12
NSEL,ALL

SAVE

SOLVE

TIME,3
NSUBST, 150

NSEL,S,LOC,X,RI
SF,ALL,PRES,3*PRSR
NSEL,ALL

SAVE

SOLVE

FINISH
EXIT
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C.2 Two-Layered Beams

C.2.1 Linear Elastic Analysis

C.2.1.1 Beam Subjected to Pure Bending

/BATCH

/TITLE,LAMINATED (TWO-LAYERED) BEAM UNDER PURE BENDING

! BEAM DIMENSIONS

*SET, THICK,1.0
*SET,SPAN,10.0
*SET, THICK1,0.667
*SET,DPRSR, SPAN/2

*SET, NSPAN, 50
*SET,NTHICK, 18

TOTAL THICKNESS OF THE BEAM (inch)

SEMI-LENGTH OF THE BEAM (inch)

THICKNESS OF THE BOTTOM LAYER (inch)

DISTANCE TO WHICH UNIFORM PRESSURE IS APPLIED (inch)

NUMBER OF ELEMENTS ACROSS THE SPAN
NUMBER OF ELEMENTS ACROSS THE THICKNESS

*SET, THICK2, (THICK-THICK1) ! THICKNESS OF THE TOP LAYER (INCH.)

¢ MATERIAL PROPERTIES
=SET, YM1,10E06

*SET, YM2,30E06
*SET,POISSON,0.3
*SET, YIELD1, 10E03
*SET, YIELD2, 30E03

*SET,PRSR, 25

'
'
!
'

YOUNG’S MODULUS OF THE TOP LAYER (psi)
YOUNG’S MODULUS OF THE BOTTOM LAYER (psi)
POISSON’S RATIO OF BOTH THE LAYERS

! YIELD STRESS OF THE TOP LAYER (psi)

YIELD STRESS OF THE BOTTOM LAYER (psi)

EXTERNAL LOAD (psi)
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/PREPT

ET,1,42

ET,2,42
MP,EX,1,YM1
MP,EX,2,YM2
MP,NUXY, 1,POISSON
MP,NUXY,2,POISSON

K,1,0,0
K,2,SPAN
K,3,0,THICK1
K,4,SPAN, THICK1
K,5,0,THICK
K,6,SPAN, THICK

DUM=(THICK1/THICK) *NTHICK
K,7,SPAN+5

K,8,SPAN+10

L,7,8,DUM

=GET ,NTHICK1,LINE, 1,ATTR,NDIV
NTHICK2=NTHICK-NTHICK1

LDELE, 1

KDELE,7,8

L,1,2,NSPAN
L,3,4,NSPAN
L,5,6,NSPAN
L,1,3,NTHICK1
L,2,4,NTHICK1
L,3,5,NTHICK2



L,4,6,NTHICK2

4,5,3,4,6
4,3,1,2,4

TYPE,1
MAT,1
AMESH, 1

TYPE, 2
MAT,2
AMESH, 2

*GET, II,ELEM,0,COUNT

KK=1
JJ=NTHICK2NSPAN+1
+DO,K1,1,NSPAN
*D0,K2,1,NTHICK2
*GET,P1,ELEM, KK, NODE, 1
<GET,P2,ELEM, KK, NODE, 2
=<GET,P3,ELEM, KK, NODE, 3
*GET, P4, ELEM KK, NODE,, 4
TYPE,1

MAT,1

E,P1,P2,P3,P4

KK=KK+1

<ENDDO

*D0,K2, 1, NTHICK1
+GET,P5,ELEM, JJ,NODE, 1
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*GET,P6,ELEN, JJ,NODE, 2
*GET,P7,ELEM, JJ,NODE, 3
*GET,P8,ELEN, 1J,NODE, 4
TYPE, 2

MAT,2

E,PS,P6,P7,P8

J3=13+1

=ENDDO

=ENDDO

MODMSH , DETACH
EDELE, 1,IL

NUMCMP , ELEM

FINISH

/SOLUTION
NSEL,S,LOC,X,0
D,ALL,UX,0

NSEL, ALL
NSEL,S,LOC,X,SPAN/2
NSEL,R,LOC,Y,0
D,ALL,UY,0

NSEL, ALL

NSEL,S,LOC,Y, THICK
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NSEL,R,LOC,X, 1.1+SPAN/2,SPAN
SF, ALL,PRES,PRSR
NSEL,ALL

SAVE
SOLVE

FINISH

/INP,rnodemac ! INPUT MACRO FOR R-NODE ANALYSIS...

EXIT

C.2.1.2 Simply-Supported Beam

/BATCH
/TITLE,LAMINATED (TWO-LAYERED) SIMPLY-SUPPORTED BEAM

! BEAM DIMENSIONS

*SET, THICK,1.0 ! TOTAL THICKNESS OF THE BEAM (inch)
*SET,SPAN,10.0 ! SEMI-LENGTH OF THE BEAM (inch)
*SET,THICK1,0.5 ! THICKNESS OF THE BOTTOM LAYER (inch)
*SET,NSPAN, 50 ! NUMBER OF ELEMENTS ACROSS THE SPAN
*SET,NTHICK, 18 ! NUMBER OF ELEMENTS ACROSS THE THICKNESS

*SET, THICK2, (THICK-THICK1) ! THICKNESS OF THE TOP LAYER (inch)
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! MATERIAL PROPERTIES
*SET, YM1, 10E06

*SET, YM2, 10E06
*SET,POISSON,0.3
*SET, YIELD1,10E03
*SET, YIELD2,30E03

*SET,PRSR, 25

/PREPT
ET,1,42

ET,2,42
MP,EX,1,YM1
MP,EX,2,YH2
MP,NUXY, 1,POISSON
MP,NUXY,2,POISSON

K,1,0,0
K,2,SPAN

K,3,0, THICK1
K,4,SPAN, THICK1
K,5,0,THICK
K,6,SPAN, THICK

! YOUNG’S MODULUS OF THE TOP LAYER (psi)
! YOUNG’S MODULUS OF THE BOTTOM LAYER (psi)
! POISSON’S RATIO OF BOTH THE LAYERS

YIELD STRESS OF THE TOP LAYER (psi)

! YIELD STRESS OF THE BOTTOM LAYER (psi)

! EXTERNAL LOAD (psi)

DUM=(THICK1/THICK) *NTHICK

K,7,SPAN+5
K,8,SPAN+10
L,7,8,DUK

*GET,NTHICK1,LINE,1,ATTR,NDIV
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NTHICK2=NTHICK-NTHICK1
LDELE, 1
KDELE, 7,8

L,1,2,NSPAN
L,3,4,NSPAN
L,5,6,NSPAN
L,1,3,NTHICK1
L,2,4,NTHICK1
L,3,5,NTHICK2
L,4,6,NTHICK2

A,5,3,4,6
4.,3,1,2,4

TYPE, 1
MAT,1
AMESH, 1

TVPE,2
MAT,2
AMESH, 2

*GET,II,ELEM,0,COUNT

KK=1
JJ=NTHICK2*NSPAN+1
*D0,K1,1,NSPAN
*D0,K2,1,NTHICK2
*GET,P1,ELEM,KK,NODE, 1
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*GET, P2, ELEM, KK, NODE, 2
+GET, P3,ELEM, KK, NODE, 3
<GET, P4 ,ELEM KK, NODE, 4
TYPE,1

MAT,1

E,P1,P2,P3,P4

KK=KK+1

<ENDDO
*D0,K2,1,NTHICKL
*GET,P5 ,ELEM, JJ,NODE, 1
+GET,P6 ,ELEM, JJ,NODE, 2
*GET,P7,ELEM, JJ,NODE, 3
*GET, P8 ,ELEM, JJ,NODE, 4
TYPE,2

MAT,2

E,PS,P6,P7,P8

13=33+1

*ENDDO

+ENDDO

MODMSH ,DETACH

EDELE,1,II

NUMCMP ,ELEM

FINISH

/SOLUTION
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NSEL,S,LOC,X,0
D,ALL,UX,0
NSEL,ALL

NSEL,S,LOC,X,SPAN
NSEL,R,LOC,Y,0
D,ALL,UY,0
NSEL,ALL

NSEL,S,LOC,Y, THICK
SF,ALL,PRES,PRSR

NSEL,ALL

SAVE
SOLVE

FINISH

/INP,rnodemac ! INPUT MACRO FOR R-NODE ANALYSIS...

C.2.1.3 Indeterminate Beam

/BATCH

/TITLE,LAMINATED (TWO-LAYERED) INDETERMINATE BEAM

! BEAM DIMENSIONS
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*SET, THICK,1.0
*SET,SPAN,20.0
*SET, THICK1,0.5

*SET,NSPAN, 100
*SET,NTHICK, 10

! TOTAL THICKNESS OF THE BEAM (inch)
! LENGTH OF THE BEAM (inch)
! THICKNESS OF THE BOTTOM LAYER (inch)

! NUMBER OF ELEMENTS ACROSS THE SPAN
! NUMBER OF ELEMENTS ACROSS THE THICKNESS

*SET, THICK2, (THICK-THICK1) ! THICKNESS OF THE TOP LAYER (inch)

! MATERIAL PROPERTIES

*SET, YM1,10E06
*SET, YM2,30E06
*SET,POISSON,0.3
*SET, YIELD1,10E03
*SET, YIELD2,30E03

*SET,PRSR, 25

/PREPT

ET,1,42

ET,2,42
MP,EX,1,YM1
MP,EX,2,YM2
MP,NUXY,1,POISSON
MP,NUXY, 2,POISSON

K,1,0,0
K,2,SPAN
K,3,0,THICK1

! YOUNG’S MODULUS OF THE TOP LAYER (psi)

! YOUNG’S MODULUS OF THE BOTTOM LAYER (psi)
! POISSON’S RATIO OF BOTH THE LAYERS

! YIELD STRESS OF THE TOP LAYER (psi)

! YIELD STRESS OF THE BOTTOM LAYER (psi)

! EXTERNAL LOAD (psi)
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K,4,SPAN,THICK1
K,5,0,THICK
K,6,SPAN, THICK

DUM=(THICK1/THICK) sNTHICK
K,7,SPAN+5

K,8,SPAN+10

L,7,8,DUM

*GET ,NTHICK1,LINE, 1,ATTR,NDIV
NTHICK2=NTHICK-NTHICK1

LDELE, 1

KDELE,7,8

L,1,2,NSPAN
L,3,4,NSPAN
L,5,6,NSPAN
L,1,3,NTHICKL
L,2,4,NTHICK1
L,3,5,NTHICK2
L,4,6,NTHICK2

A,5,3,4,6
4,3,1,2,4

TYPE, 1
MAT,1
AMESH, 1

TYPE,2
MAT,2
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AMESH, 2

*GET,II,ELEM,0,COUNT

KK=1
JJ=NTHICK2NSPAN+1
*D0,K1,1,NSPAN
+D0,K2,1,NTHICK2
*GET,P1,ELEM,KK,NODE, 1
*GET, P2, ELEM, KK, NODE, 2
*GET,P3,ELEM,KK,NODE, 3
*GET,P4,ELEM,KK,NODE, 4
TYPE,1

MAT,1

E,P1,P2,P3,P4

KK=KK+1

+ENDDO
=D0,K2,1,NTHICK1
*GET,P5,ELEM, JJ,NODE, 1
*GET,P6,ELEM, JJ,NODE, 2
*GET,P7,ELEM, JJ,NODE, 3
*GET,P8,ELEM, JJ,NODE, 4
TYPE,2

MAT,2

E,P5,P6,P7,P8

JI=J3+1

*ENDDO

*ENDDO

MODMSH, DETACH
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EDELE,1,II
NUMCMP ,ELEM

FINISH

/SOLUTION
NSEL,S,LOC,X,0
D,ALL,ALL,0

NSEL, ALL
NSEL,S,LOC, X, SPAN
NSEL,R,LOC,Y,0
D,ALL,UY,0
NSEL,ALL
NSEL,S,LOC, Y, THICK
SF,ALL,PRES,PRSR

NSEL,ALL

SAVE
SOLVE

FINISH

/INP,rnodemac ! INPUT MACRO FOR R-NODE ANALYSIS...

EXIT
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C.2.2 Non-linear Analysis

C.2.2.1 Indeterminate Beam

/BATCH
/TITLE,LAMINATED (TWO-LAYERED) INDETERMINATE BEAM

! BEAM DIMENSIONS

*SET,THICK,1.0 ! TOTAL THICKNESS OF THE BEAM (inch.)
*SET,SPAN,20.0 ! LENGTH OF THE BEAM (inch.)

*SET, THICK1,0.8 ! THICKNESS OF THE BOTTOM LAYER (inch.)
*SET,NSPAN, 100 ! NUMBER OF ELEMENTS ACROSS THE SPAN
*SET,NTHICK, 10 ! NUMBER OF ELEMENTS ACROSS THE THICKNESS

*SET, THICK2, (THICK-THICK1) ! THICKNESS OF THE TOP LAYER (inch.)

! MATERIAL PROPERTIES

*SET, YM1,10E06 ! YOUNG’S MODULUS OF THE TOP LAYER (psi.)
*SET, YM2, 30E06 ! YOUNG’S MODULUS OF THE BOTTOM LAYER (psi.)
*SET,POISSON,0.3 ! POISSON’S RATIO OF BOTH THE LAYERS

*SET, YIELD1,10E03 ! YIELD STRESS OF THE TOP LAYER (psi.)

*SET, YIELD2,30E03 ! YIELD STRESS OF THE BOTTOM LAYER (psi.)
/PREP7
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ET,1,42
ET,2,42
MP,EX,1,YML
MP,EX,2,YM2
MP,NUXY,1,POISSON
MP,NUXY, 2, POISSON

k,1,0,0
K,2,SPAN
K,3,0,THICKL
K,4,SPAN, THICK1
K,5,0, THICK
K,6,SPAN, THICK

DUM=(THICK1/THICK) *NTHICK
K,7,SPAN+5

K,8,SPAN+10

L,7,8,DUM
*GET,NTHICK1,LINE,1,ATTR,NDIV
NTHICK2=NTHICK-NTHICK1
LDELE,1

KDELE, 7,8

L,1,2,NSPAN
L,3,4,NSPAN
L,5,6,NSPAN
L,1,3,NTHICK1
L,2,4,NTHICK1
L,3,5,NTHICK2
L,4,6,NTHICK2
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4,5,3,4,6
A,3,1,2,4

TB,BKIN,1,1
TBDATA,1,YIELD1,0
TYPE, 1

MAT,1

AMESH, 1

TB,BKIN, 2,1
TBDATA, 1,YIELD2,0
TYPE,2

MAT,2

AMESH, 2

*GET, II,ELEM,0,COUNT

KK=1
JJ=NTHICK2+NSPAN+1
+D0,K1,1,NSPAN
+D0,K2,1,NTHICK2
*GET,P1,ELEM,KK,NODE, 1
*GET,P2,ELEM,KK,NODE, 2
*GET,P3,ELEM,KK,NODE, 3
*GET,P4,ELEM,KK,NODE, 4

TB,BKIN,1,1
TBDATA,1,YIELD1,0
TYPE, 1

MAT,1
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E,P1,P2,P3,P4
KK=KK+1

<ENDDO
*D0,K2, 1, NTHICKL
<GET,P5,ELEM, JJ,NODE, 1
+GET,P6,ELEM, JJ,NODE, 2
*GET,PT,ELEM, 1J,NODE, 3
*GET, P8, ELEM, JJ,NODE, 4
TB,BKIN,2,1

TBDATA, 1, YIELD2,0
TYPE,2

MAT,2

E,P5,P6,P7,P8

11=1+1

<ENDDO

<ENDDO

MODMSH, DETACH

EDELE,1,II

NUMCMP ,ELEM

FINISH

/SOLUTION

ANTYPE,O

NROPT, 1, ,0FF
AUTOTS, ON
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PRED,ON, ,ON
NCNV,0
OUTRES, ALL,ALL

NSEL,S,LOC,X,0
D,ALL,ALL,0
NSEL,ALL

NSEL,S,LOC,X,SPAN
NSEL,R,LOC,Y,0
D,ALL,UY,0
NSEL,ALL

PRSR=100

! NULL SOLUTION FOR LOAD-DEFLECTION DISPLAY

TIME,1E-10
NSEL,S,L0OC, Y, THICK
SF,ALL,PRES, 1E-10
NSEL, ALL

SAVE

SOLVE

TIME,3

NSUBST, 300
NSEL,S,LOC,Y, THICK
SF,ALL,PRES, 3.0%PRSR
NSEL,ALL

SAVE
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SOLVE
FINISH

EXIT

C.3 Two-Layered Cylinder under Uniform
Internal Pressure

C.3.1 Linear Elastic Analysis

/BATCH

! A THICK CYLINDER PROBLEM - COMPOSITE CYLINDER

*SET,RI,10E-02 Inner radius (m)
*SET,RINT,20E-02 ! Interface radius (m)
+SET,RO,30E-02

Outer radius (m)

No. of el ts across the

*SET,NELEM, 50
*SET,NELEM1, (RINT-RI) *NELEM/ (RO-RI) ! No. of elements in material 1

+SET, THICK, (RO-RI) /NELEM ! Thickness (Ensures Square Elements)

*SET,E1BYE2,3.1368

*SET,YIELD1,68.95E03 ! Yield Strength of Material 1 (kPa)
*SET,YIELD2,68.95E03 Yield Strength of Material 2 (kPa)
*SET, YM1, 10E06 ! Young’s Modulus

*SET,YM2, YM1sE1BYE2 Young’s Modulus

*SET,POISSON,0.48
*SET,PRSR, 50E03 ! Intermal Pressure

Poisson’s Ratio
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/PREP7

/TITLE,Thick Cylinder Under Internal Pressure
ANTYPE, O

ET,1,42,0,0,1,0,0

MP,EX,1,YM1

MP,NUXY,1,POISSON

ET,2,42,0,0,1,0,0
MP,EX,2,YM2
MP,NUXY, 2, POISSON

K,1
K.2,3

L,1,2,NELEML
*GET,DUM,LINE, 1, ATTR, NDIV
NELEM2=NELEM-DUM
NELEM1=NELEM-NELEM2
LDELE,1

KDELE, 1,2

N,1,RI
N,NELEM1+1,RINT
FILL,1,NELEM1+1
N,NELEM+2,RI, THICK

N, NELEM+2+NELEM1 ,RINT, THICK
FILL,NELEM+2, NELEM+2+NELEM1

TYPE, 1
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MAT,1

»D0,K,1,NELEM1
E,K,K+1,NELEM+K+2 , NELEM+K+1
*=ENDDO

N,NELEM+1,R0
FILL,NELEM1+1,NELEM+1
N, 2#(NELEM+1) ,R0, THICK

FILL,NELEM+NELEM1+42, 2% (NELEM+1)

TYPE, 2
MAT,2

+D0,K, 1, NELEM2
E,NELEM1+K, NELEM1+K+1, NELEM+NELEM1+2+K , NELEM+NELEM1+1+K
*ENDDO

FINISH

/SOLUTION

ANTYPE,O

D,ALL,UY,0

NSEL,S,LOC,X,RI

SF,ALL,PRES,PRSR
NSEL,ALL



SAVE
SOLVE

FINISH

/inp, CYLMAC

C.3.2 Non-linear Analysis

/BATCH

1 NON - LINEAR ANALYSIS
! A THICK CYLINDER PROBLEM - TWO-LAYERED CYLINDER

*SET,RI,8E-02

*SET,RINT, 13E-02

*SET,R0,23E-02

*SET,NELEM, 50

=SET,NELEM1, (RINT-RI) *NELEM/ (RO-RI)

*SET, THICK, (RO-RI) /NELEM

Inner radius = 3 in.

Interface radius = 5 in.

Outer radius = 9 in.

No. of elements across the cross-section

No. of elements in material 1

Thickness (Ensures Square Elements)

=SET, YIELD1,68.95E03 ! Yield Strength of Material 1
*SET, YIELD2, 206.85E03 ! Yield Strength of Material 2

*SET, YM1, 10E06 ! Young’s Modulus
*SET, YM2,30E06 ! Young’s Modulus
*SET,POISSON,0.3 ! Poisson’s Ratio
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/PREP7
/TITLE,Thick Cylinder Under Internal Pressure
ANTYPE, 0

ET,1,42,0,0,1,0,0

MP,EX,1,YM1

MP,NUXY, 1,POISSON

ET,2,42,0,0,1,0,0
MP,EX,2,YM2
MP,NUXY,2,POISSON

K.1
K,2,3

L,1,2,NELEML
*GET,DUM,LINE, 1, ATTR, NDIV
NELEM2=NELEM~-DUM
NELEM1=NELEM-NELEM2
LDELE, 1

KDELE, 1,2

N,1,RI

N,NELEM1+1,RINT
FILL,1,NELEM1i+1
N,NELEM+2,RI,THICK
N,NELEM+2+NELEM1,RINT, THICK
FILL,NELEM+2,NELEM+2+NELEM1
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TB,BKIN,1,1
TBDATA, 1,YIELD1,0
TYPE,1

MAT,1

+D0,K,1,NELEM1
E,K,K+1,NELEM+K+2 , NELEM+K+1
=ENDDO

N,NELEM+1,R0
FILL,NELEM1+1,NELEM+1
N,2=(NELEM+1) ,RO, THICK
FILL,NELEM+NELEM1+2, 2% (NELEM+1)

TB,BKIN, 2,1
TBDATA, 1,YIELD2,0
TYPE,2

MAT,2

=D0.K, 1, NELEH2
E,NELEM1+K,NELEM1+K+1 , NELEM+NELEM1+2+K , NELEM+NELEM1+1+K
<ENDDO

FINISH

/SOLUTION

ANTYPE, 0

NROPT, 1, ,OFF
AUTOTS ,ON
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PRED,ON, ,ON
NCNV,0
OUTRES, ALL,ALL

D,ALL,UY,0

! NULL SOLUTION FOR THE LOAD-DEFLECTION DISPLAY

TIME,1E-10
NSEL,S,LOC,X,RI
SF,ALL,PRES, 1E-10
NSEL,ALL

SAVE

SOLVE

PRSR=100000.0

TIME,5.0

NSUBST, 600
NSEL,S,LOC,X,RI
SF,ALL,PRES,5.0#PRSR
NSEL,ALL

SAVE

SOLVE

FINISH
EXIT
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Appendix D

Elastic Moduli Softening Macro
for R-Node Analysis

The following macros, (rnodemac and CYLMAC) written using the ADPL! (AN-
SYS DESIGN PARAMETRIC LANGUAGE), perform the necessary elastic mod-
ulus changes and ps ing in order to ine r-nodes. The macro ‘ro-
odemac’ is suitable for isotropic structures and two-layered beams, and the macro
‘CYLMAC' is for two-layered cylinders.

D.1 Isotropic Structures and Two-Layered

Beams
! FILE - ‘rnodemac’
! [AAAA AR NN YA YAA AN AN A AN NN
' % ELASTIC MODULUS SOFTENING MACRO FOR R-NODE ANALYSIS %
! AANNAN A A A %
!
t @ FOR ISOTROPIC STRUCTURES AND
toe LAMINATED BEANS
'
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1 = NOTE: o
' * The parameters to be defined in the main program .
! - POISSON - Poisson’s ratio -
' - YIELD1 - Yield Strength of I layer .
! . YIELD2 - Yield Strength of II layer .
t - ML - Young’s Modulus of I layer *
! = ™2 - Young’s Modulus of II layer =
! = Values to be given in this macro -
' . - Arbitrary Number *
1 * ALFA - Value of index (alpha) ¥
'

'

! I -LINEA AR A N ALY SIS

!

/POST1

*DIM,DUM1,ARRAY, 1
*DIM,DUM2,ARRAY, 1
=DIM,DUM3,ARRAY, 1

SET,1

ETABLE, SIGC,S,EQV
ETABLE, VOL, VOLU
ETABLE,STRN,EPEL,X

!
! UNSORTED ELEMENT STRESSES AND VOLUMES ARE STORED IN THE FILE "estrsi"|

*«GET,MAX1,ELEM,0,COUNT

*CFOPEN, estrs1

*D0,KK,1,MAX1

*GET, SIGC1,ELEM,KK,ETAB,SIGC
*GET,VOL1,ELEM,KK, VOLU

DUM3(1)=VOL1
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*VWRITE,DUM1(1) ,DUM2(1) ,DUM3(1)
(x,£6.1,3x,621.10,3x,621.10)
<ENDDO

*CFCLOS

! UNSORTED ELEMENT X-STRAINS ARE STORED IN THE FILE “straini"

*CFOPEN, strainl
+D0,KK,1,MAX1

*GET, STRN1,ELEM, KK, ETAB, STRN
DUM1 (1)=KK

DUM2(1)=STRN1
<VWRITE,DUM1 (1) ,DUM2(1)
(x,£6.1,3x,e21.10)

<ENDDO

=CFCLOS

ARB1=100E03

ALFA=1

ZETA=YIELD1/YIELD2

PSI=YM1/YM2

ARB2=ARB1/((PSI**ALFA) * ((ZETA-PSI)*ALFA+PSI))

*SET,MN,3

*CFOPEN, EXVAL
*D0,J,1,MAX1

*GET, STEQ,ELEM, J ,ETAB, SIGC
*GET, JJ,ELEN, J, ATTR, MAT
«IF,JJ,EQ,1, THEN

+SET, ESEC, ARB1/ (STEQ=*ALFA)
<ELSE

*SET, ESEC, ARB2/ (STEQ+*ALFA)
<ENDIF

*CFWRITE,MP,EX ,MN,ESEC
*CFWRITE,MP,NUXY ,MN, POISSON
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ESEL,ALL

*SET,MN,3

*CFOPEN, EXNOD
+D0,M,1,MAX1
*CFWRITE, MAT,MN
*CFWRITE, EMODIF , M
*SET,MN, MN+1
*ENDDO

*CFCLOS

FINISH

' II - L I NEA AR

A N ALY SIS

/PREPT
RESUME

*USE,EXVAL
*USE, EXMOD
FINISH

/soLu
SAVE
SOLVE
FINISH

/POST1
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+DIM,DUM1,ARRAY, 1
+DIM,DUM2, ARRAY , 1
*DIM,DUM3, ARRAY, 1

SET,1

ETABLE, SIGC,S,EQV
ETABLE, VOL, VOLU
ETABLE, STRN, EPEL, X

! UNSORTED ELEMENT STRESSES AND VOLUMES ARE STORED IN THE FILE "estrs2"|

*GET,MAX1,ELEM, 0, NUM,MAX

*CFOPEN, estrs2

+DO0,KK, 1,MAX1
*GET,SIGC3,ELEM,KK,ETAB,SIGC
*GET, VOL2,ELEM, KK, VOLU
DUM1(1)=KK

DUM2(1)=SIGC3

DUM3(1)=VOL2
*=VWRITE,KK,SIGC3,VOL2
(x,£6.1,3x,e21.10,3x,e21.10)

! UNSORTED ELEMENT X-STRAINS ARE STORED IN THE FILE “strain2" I

+CFOPEN, strain2
=DO0,KK,1,MAX1

*GET, STRN1,ELEM,KK,ETAB,STRN
DUM1(1)=KK

DUM2(1)=STRN1
*VWRITE,DUM1(1) ,DUM2(1)
(x,£6.1,3x,e21.10)



FINISH

D.2 Two-Layered Cylindrical Shells

FILE - ‘CYLMAC’

# ELASTIC MODULUS SOFTENING MACRO FOR R-NODE ANALYSIS #
# OF TWO LAYERED CYLINDRICAL SHELLS #

!
!
[
L = VALUES TO BE SUPPLIED: -
3 L MAIN PROGRAM : -
! * (1) M1 -
! - (2) M2 .
! - IN THIS MACRO *
! . (1) ALFA -
'
'
! PROCEDURE:

This macro uses Sigma_arbl = Sigma_refl

Sigma_arb2 = Sigma_ref2

Esi = E1 = ((Sigma_ref1/Sigma_eqvi)s*ALPHA) => Layer 1

Es2 = E2 = ((Sigma_ref2/Sigma_eqv2)**ALPHA) => Layer 2
"Sigma_ref1" and "Sigma_ref2" are determined from the theorem of
nesting surfaces.

! I -LINEA KR AN AL YSTIS
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/POST1

*DIM,DUM1,ARRAY,
+«DIM,DUM2,ARRAY,
*DIM,DUM3, ARRAY,

-

SET,1
ETABLE,SIGC,S,EQV
ETABLE, VOL, VOLU

! SORTED ELEMENT STRESSES AND VOLUMES ARE STORED IN THE FILE "esorti”
! UNSORTED ELEMENT STRESSES AND VOLUMES ARE STORED IN THE FILE "estrsi"|

*GET,MAX1,ELEM,0,NUM, MAX

ESORT,ETAB,SIGC,0
/out esort1
PRETAB, SIGC,VOL
/out

EUSORT

*CFOPEN, estrs1

+D0,KK,1,MAX1
*GET,SIGC1,ELEM,KK,ETAB,SIGC
*GET,VOL1,ELEM, KK, VOLU
DUM1(1)=KK

DUM2(1)=SIGC1

DUM3(1)=VOL1

*VWRITE,DUM1(1) ,DUM2(1) ,DUM3(1)
(x,£6.1,3x,e21.10,3x,€21.10)
=ENDDO

*CFCLOS

'

SUM1=0.0
SUM2=0.0
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«D0,KP,1,MAX1
*GET,SIGC1,ELEM,KP,ETAB,SIGC
*GET,VOL1,ELEM,KP,VOLU
*GET, JJ,ELEM,KP,ATTR,, MAT
«IF,JJ,EQ,1,THEN
SUM1=SUM1+(SIGC1s+2)=(VOL1)
SUM2=SUM2+VOL1

*ELSE
SUM3=SUM3+(SIGC1++2)=(VOL1)
SUM4=SUM4+VOL1

«ENDIF

*ENDDO
SREF1=SQRT (SUM1/SUM2)
SREF2=SQRT (SUM3/5UM4)

*CFOPEN, EXVAL
ALFA=1

=D, MM, 1, MAX1
*GET,STEQ, ELEM, MM, ETAB, SIGC

GET, JJ,ELEM, MM, ATTR, MAT
«IF,JJ,EQ, 1, THEN

*SET,ESEC, ((SREF1/STEQ) *+ALFA) sYM1
«ELSE

«SET,ESEC, ( (SREF2/STEQ) **ALFA) =YM2
=ENDIF

*CFWRITE,MP,EX, M¥+2,ESEC
=CFWRITE,MP, NUXY, MM+2, POISSON
«~ENDDO

«CFCLOS

ESEL,ALL

'

«SET,MN,3
*CFOPEN, EXMOD

*DO0,L,1,MAX1
*CFWRITE, MAT ,MN
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! II - L INEAWAKR AN ALYSTIS

/PREPT
RESUME

EX,1,YM
*USE,EXVAL
*USE, EXMOD
FINISH

/SOLU
SAVE
SOLVE
FINISH

/POST1

*DIM,DUM1,ARRAY,1
*DIM,DUM2,ARRAY,1
+DIM,DUM3,ARRAY,1

SET,1
ETABLE, SIGC,S,EQV
ETABLE, VOL, VOLU

SORTED ELEMENT STRESSES AND VOLUMES ARE STORED IN THE FILE “esort2"|
UNSORTED ELEMENT STRESSES AND VOLUMES ARE STORED IN THE FILE "estrs2"|

*GET,MAX1,ELEM,0,COUNT
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ESORT,ETAB, SIGC,0
/out,esort2
PRETAB, SIGC,VOL
/out

EUSORT

+CFOPEN, estrs2

*D0,KK,1,MAX1

*GET, SIGC3,ELEM,KK,ETAB,SIGC
*GET, VOL2, ELEM, KK, VOLU

DUM1 (1)=KK

DUM2(1)=SIGC3

DUM3(1)=VOL2
*VWRITE,KK,SIGC3,VOL2
(x,£6.1,3x,e21.10,3x,e21.10)

FINISH
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Appendix E

Essential Macros for
performing a Number of Elastic
Iterations

The macros that are necessary for performing repeated elastic analyses are pro-
vided in the following sections. The file ‘iter]l’ performs the initial elastic analysis
and the subsequent analysis. The file ‘iter2’, which is input subsequently, performs
the third elastic iteration. The file ‘iter2’ can be copied subsequently as ‘iter3’,
“iter4’ etc. and after some minor changes (in places indicated by %%%%%%%%%) they
can be used for subsequent iterations. The file ‘repeat’ integrates all the ‘iter’ files
so that the required number of elastic iterations can be carried out.

E.1 First Elastic Iteration - ‘iterl’

'

! # ITERATION - I #
i # ELASTIC MODULUS SOFTENING MACRO FOR R-NODE ANALYSIS #
1

'
t = NOTE: .
! = The parameter "YM" should be defined in the main program =
'
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! I -LINEHAWAKTR AN ALY SIS

/POST1
/nopr

+DIM,DUM1,ARRAY, 1
*DIM,DUN2, ARRAY, 1
*DIM,DUN3, ARRAY, 1
*DIM,DUM4, ARRAY, 1
*DIM,DUMS5, ARRAY, 1

SET,1
ETABLE, SIGC,S,EQV
ETABLE,VOL, VOLU

/out,esort1,,../iterres/
ESORT,ETAB,SIGC,0

PRETAB, SIGC,VOL

/out

EUSORT

! ELEMENT STRESSES AND VOLUMES ARE STORED IN THE FILE “estrsi"

*GET,MAX1,ELEM, 0, NUM, MAX

DUM4 (1)=MAX1
*«CFOPEN, MAX1
*VWRITE,DUM4 (1)
(1x,F15.2)
*CFCLOS

/sys,cp MAXL RUN1
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*DIM,ESEC1, ARRAY, MAX1 U URBRIARLAT LA L DAIIIAL LD LRLL LD
*CFOPEN,estrsl,,../iterres/ ! ULLALRALANALAARLNIARLLRLALLLLS

«D0,K,1,MAX1
*GET,SIGC1,ELEM,K,ETAB,SIGC
*GET,VOL1,ELEN, K, VOLU

DUM1 (1)=K

DUM2(1)=SIGC1

DUM3(1)=VOL1

*VWRITE,DUM1(1) ,DUM2(1) ,DUM3(1)
(1x,£6.1,3x,021.10,3x,e21.10)
<ENDDO

*CFCLOS

'

/mopr

cens |

ce=ss ! NODAL STRESSES ARE STORED IN THE FILE "nstrsi"

cess !

cees sCFOPEN,nstrsl,,../iterres/ ! WAAUANALNALLLAAALLALALLLLILLN
ce== *GET,MAX2,NODE,O0,NUM,MAX

ces= *D0,K,1,MAX2
*GET,SIGC2,NODE,K,S,EQV
cess DUM1(1)=K

cess DUM2(1)=SIGC2

c=e= «VWRITE,DUM1(1),DUM2(1)
cee+ (1x,£6.1,3x,e21.10)
ces= *ENDDO

cess *CFCLOS

cews 1

! FOR SELECTIVE SOFTENING REMOVE THE COMMENT BELOW
cs== ESEL,S,ETAB,SIGC,YS, (YS*10E10)

342



+SET,MN,2
*SET, YS,100 ! Arbitrary Stress Value

#CFOPEN,EXVAL2, ,../iterres/ ! WANAUUULLAALILAALALALALALADLS
*GET,K,ELEM, 0, COUNT

+D0,L,1,K
+GET, MIN1,ELEM,0,NUM,MIN

*GET, STEQ, ELEM, MIN1,ETAB, SIGC

*SET,ESEC1(L) , (YS/STEQ)#YM ! UAUUAUALLUDLARLLALALLRIALAAL Y
*CFWRITE,MP,EX,MN,ESEC1(L) ! UAUUUUAUAAAAUALAAAAAIAAIAALLNS
*SET, MN, MN+1

*SET, MIN1,MIN1+1

*=IF,MIN1,LE,MAX1, THEN

ESEL,R,ELEM, ,MIN1,MAX1

*ENDIF

ce=+ ESEL,S,ETAB,SIGC,YS, (YS*10E10)

*CFOPEN,EXVAL,AUX ! UURUAUAUUAUALUDADADULDA DA UDL D
*D0,KK,1,MAX1,1

DUMS (1) =ESEC1 (KK)

*VWRITE,DUM5(1) L Y A YA AT A AN AN AN AN AN
(1x,E36.19)

=ENDDO

*CFCLOS

/nopr

*SET,MN,2
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*CFOPEN,EXMOD, , . . /iterres/
*D0,LL,1,K

*GET ,MIN1,ELEM, 0, NUM, MIN
*CFWRITE, MAT M
*CFWRITE, EMODIF , MIN1
*SET, MN, MN+1

*SET,MIN1 ,MIN1+1
+IF,MINL,LE,MAX1, THEN
ESEL,R,ELEM, ,MIN1,MAX1
<ENDIF

+ENDDO

! ITI - L I NEAR AN ALY SIS

/PREP7
RESUME

MP,EX,1,YM

/INP,EXVAL2,,../iterres/ ' WARAWARILAUARLADADIADDANIALLDL
/INP,EXMOD, ,../iterres/

FINISH

SOLVE
FINISH

/POST1
RESUME

*DIM,DUM1,ARRAY, 1
*DIM,DUM2,ARRAY,1
*DIM,DUM3,ARRAY, 1
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SET,1
ETABLE, SIGC,S,EQV
ETABLE, VOL, VOLU

/out ,esort2,,../iterres/
ESORT,ETAB, SIGC,0

PRETAB, SIGC,VOL

/out

EUSORT

*GET,MAX1,ELEM,0,NUM, MAX
*CFOPEN,estrs2, , ../iterres/

*D0,K, 1,MAX1

+GET, SIGC3,ELEM,K,ETAB, SIGC
*GET, VOL2,ELEM, K, VOLU

DUM1 (1) =K

DUM2(1)=SIGC3

DUM3(1)=VOL2
*VWRITE,K,SIGC3,VOL2
(1x,£6.1,3x,e21.10,3x,e21.10)

L Y YA A Y Y YN YA

/nopr

cunx 1

c===x | NODAL STRESSES ARE STORED IN THE FILE "nstrs2"

cxxs |

cex= =CFOPEN,nstrs2,,../iterres/ ! UUAUALULIRLALIADALLLALLNAILLY

c==* *GET,MAX2,NODE,O,NUM,MAX

cexs *D0,K,1,MAX2

c==x *GET,SIGC4,NODE,K,S,EQV
cse* *VWRITE,K,SIGC4

ce*x (x,£6.1,3x,e21.10)
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cx*= «ENDDO
c=** *CFCLOS

ceex |

FINISH

/sys,cp ../itermac/iter1l iterl.aux
/sys,tail -20 iteri.aux > iterla.aux
/sys,rm iterl.aux

/sys,cut -c2-72 iterla.aux > vread.for
/sys,mm iterla.aux

/sys,f77 -o vread vread.for

/sys,mm vread.for

/sys,vread

! program vreadl
! open(unit=10,file=’EXVAL.AUX’,status=’old’)
! open(unit=11,file=’MAX1’,status=’old’)

! open(unit=12,file=’EXVAL’,status="unknown’)
'

! read(11,s*)max1

! do j=1,max1

! read(10,s)val

! write(12,15)j,val
115 format(1x,’YMODU(’,I4,’)=’,E32.19)
! end do

|

! close(12)

! close(11)

! close(10)

|
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! stop
! end

E.2 Second Elastic Iteration - ‘iter2’

kS ITERATION - II
# ELASTIC MODULUS SOFTENING MACRO FOR R-NODE ANALYSIS

#
#

/POST1

/nopr

RESUME

SET,1
ETABLE, SIGC,S,EQV

*GET,MAX1,ELEM, 0, NUM, MAX
*DIM,YMODU, ARRAY ,MAX1
*DIM,ESEC2, ARRAY ,MAX1
«DIM,DUM1,ARRAY,1
/INP,EXVAL

/sys,rm EXVAL

! FOR SELECTIVE SOFTENING REMOVE THE COMMENT BELOW
c=== ESEL,S,ETAB,SIGC,YS, (YS*10E10)

*SET,MN, 2
*SET, YST, 100E12 ! Arbitrary Stress Value
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*CFOPEN,EXVAL3, , ../iterres/ ! ULAUALAAAAUARLALLALALLUALLLLAL.
*GET, KK ,ELEM, 0, COUNT

«D0,LL,1,KK
+GET,MIN1,ELEM, 0, NUM, MIN

*GET, STEQ, ELEM, MIN1 ,ETAB, SIGC
#SET,ESEC2(LL) , (YST/STEQ)YMODU(LL)
*CFWRITE,MP,EX , MN,ESEC2(LL)
*SET, M, MN+1

*SET, MINL, MIN1+1

«IF,MIN1,LE,MAX1, THEN

ESEL,R,ELEM, ,MIN1,MAX1

<ENDIF

+ENDDO

*CFCLOS

/nopr

ESEL,ALL
c=== ESEL,S,ETAB,SIGC,YS, (YS*10E10)

*CFOPEN,EXVAL, AUX
*D0,KJ,1,MAX1
DUM1(1)=ESEC2(KJ)
*VWRITE,DUM1(1)
(1x,E39.12)
«ENDDO

*CFCLOS

/nopr
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! II - L I NEAKR AN ALY SIS

/PREPT
RESUME

EX,1,YM
/INP,EXVAL3,,../iterres/
/INP,EXMOD,,../iterres/
FINISH

/sOLU
SAVE
SOLVE
FINISH

/POST1

RESUME

SET,1

ETABLE, SIGC,S,EQV
ETABLE, VOL,VOLU
/out,esort3, , ../iterres/

ESORT,ETAB,SIGC,0
PRETAB, SIGC, VOL

*GET,MAX1,ELEM,0,NUM,MAX

*CFOPEN, estrs3,, ../iterres/

=D0,KL, 1,MAX1

U WRRRRRRR AR LAARAAALLLLDLLNL DT

L A YA AN AN AY A A YA AR AN AN

*GET, SIGC3,ELEM,KL,ETAB,SIGC

*=GET, VOL3,ELEM, KL, VOLU
*VWRITE,KL,SIGC3,VOL3

(1x,£6.1,3x,e21.10,3x,e21.10)

*ENDDO
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cees !

cees

cess !

cees

cens

conn
cons
conx
cons
cees
coss
cees

! NODAL STRESSES ARE STORED IN THE FILE "nstrs2"

*CFOPEN,nstrs3 | UWAUALKALLLALUUIINILIIIN AL LN
*GET,MAX2,NODE, O, NUM, MAX

*D0,K,1,MAX2

*GET, SIGC4,NODE,K,S,EQV
*VWRITE,K,SIGC4
(1x,£6.1,3x,e21.10)
+ENDDO

=CFCLOS

'

FINISH

/sys,

vread

E.3 Macro that Links all the Individual

/inp,
/sys,

/inp,

Elastic Iteration Macros - ‘repeat’

iter1,,../itermac/

mv RUN1 RUN2 ! Indicator in the problem directory to see
| how many iterations have been completed

iter2,,../itermac/

/sys,mv RUN2 RUN3

/inp,

iter3,,../itermac/
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/sys,mv RUN3 RUN4
/inp,iter4, ,../itermac/
/sys,mv RUN4 RUNS
/inp,iterS5,,../itermac/
/sys,mv RUNS RUN6
/inp,iterS, ,../itermac/
/sys,mv RUN6 RUN7
/inp,iter7,,../itermac/
/sys,mv RUN7 RUN8
/inp,iter8,,../itermac/
/sys,mv RUN8 RUN9
/inp,iter9,,../itermac/
/sys,mv RUNS RUN10
/inp,iter10,,../itermac/
/sys,mv RUN10 RUN11
/inp,iterll,,../itermac/
/sys,mv RUN11 RUN12
/inp,iter12,,../itermac/
/sys,mv RUN12 RUN13
/inop,iter13,,../itermac/
/sys,mv RUN13 RUN14
/inp,iteri4,,../itermac/
/sys,mv RUN14 RUN15

/sys.m vread
/sys,rm MAX1
/sys,rm EXVAL
/sys,rm EXVAL.AUX
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Appendix F

Input File for determining the
Elastic Moduli Ratio for a
Two-Layered Cylinder

This following file is to be input into the Maple!? software for determining the
elastic moduli values for a layered thick cylinder subj; to internal pressure.

F.1 Axisymmetric Two-Layered Cylinder un-
der Plane-Strain Conditions

Digits:=15;




cpl:=1; 10
pii:=evalf(Pi);

szz:=nux(stt-+srr);
el:=(srr—nux(stt+s2z)) /e—er;
e2:=(stt—nux(srr+szz)) fe—et;
ans:=solve({el,e2},{srr.stt});

# Radial stress
subs(er=cl—c2/r~2,rhs(ans[1]));
sri=subs(et=cl+c2/r~2,"); c

# Hoop stress
subs(er=cl-c2/r"2.rhs(ans[2])):
st:=subs(et=cl+c2/r"2,");

subs(r=rl.sr);

e3:="+pl=0;

subs(r=r2.sr);
ed:="+p2=0; Y

ansl:=solve({e3,e4}.{c1.c2});

conl:=rhs(ans1{1]);
con2:=rhs(ans1[2]);

eb:=conl*cr2+con2/cr2;

subs(pl=cpl,
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subs(rl=crl,");
subs(r2=cr2,");
displ:=subs(e=ex1,");

subs(p2=0,e5);
subs(pl=p2."):
subs(rl=cr2."):
subs(r2=cr3,");
disp2:=subs(e=ex2,");

e8:=displ —disp2;

pint:=solve("=0,p2);

subs(ans1[1].sr);
subs(ans1[2].");

subs(pl=cpl.");
subs(p2=pint.");
subs(rl=crl,");
subs(r2=cr2,
srl:=subs(e=ex1,");

subs(ans1[1].st):
subs(ans1[2].
subs(pl=cplL."):
subs(p2=pint,");
subs(rl=crl,
subs(r2=cr2,
stl:=subs(e=exl,");
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szl:=nus(srl+stl);

subs(ans1[1],st);
subs(ans1[2]."):
subs(rl=cr2,");
subs(r2=cr3,");
subs(pl=pint.");
subs(p2=0.");
sr2:=subs(e=ex2,");

subs(ans1[1].st);
subs(ans1[2].");
subs(rl=cr2,");

st2:=subs(e=ex2,");
sz2:=nus(sr2+st2);

seqvl:=(1/2)«((st1—st1)"2+(stl—sz1)2+(szl —sr1)~2)s2spiisr;
seqv2:=(1/2)e((sr2—st2) "2+ (st2—s22)"2+(s22—s12)~2)*2spiisr;

v1:=piis(cr2-2—crl~2);
iix(cr3-2—-cr2-2);

e9:=int(sequl,r=crl. .cr2);
el0:=int(seqv2,r=cr2. .cr3);

mO0L:=simplify(sigy1 +sqrt(v1)/ )
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ell:=simplify(m01/m02);

v2)/
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