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Abstract

Simple and systematic methods for determining lower and upper bound limit

loads, based on two linear elastic finite element analyses, are presented in this

thesis. The methods that are developed for estimating lower bound limit

loads are designated as the rna-method and the r-node (redistribution node)

method. It is also shown that robust upper bound limit loads can be obtained

from statically admissible stress distributions that satisfy the integral mean

of the yield.

The rna-method is based on the extended variational theorem of Mura

et a1.. and utilizes tbe concept of 1eal>frogging to a near limit state and the

notion of reference volume. The lower bound multiplier, 1710. is found to give

limit load estimates that are better than tbe classical.

The r-node method invokes the concept of redistribution nodes, refer·

enee stress and the primary stress as defined in the ASME Pressure Vessels

and Piping code. R-Nodes are loacl-controlled locations in a mechanical

component or a structure. As such r-nodes lie on a distribution of stresses

corresponding to primary stress as defined in the ASME code. On account

of its load-controlled nature, the "combined r-node equivalent stress" can



be identified with the reference stress, which is widely used in the integrity

assessment of components and structures.

The r-node method is also extended for analyzing two-Iayered, beams and

two-layered cylindrical sheil structures. The proposed methods are applied

to a number of pressure component configurations of practical interest. The

results in all the cases are compared with those obtained using inelastic finite

element analysis and the comparison is found to be good.

The concept of iso r-node stress is introduced in order to minimize the

weight of mechanical components and structures. A relationship is estab­

lished among the proposed minimum-weight method, the theorem of nesting

surfaces and the extended variational theorem. The proposed method is ap­

plied for minimizing the weigbt of an indeterminate beam and for designing

reinforcement in a spherical pressure vessel with a cylindrical nozzle.
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Chapter 1

Introduction

1.1 General Background

The primary objective in designing a mechanical component or a structure

is to ensure its ability to perform the intended function at minimum capi­

tal and operational COSt. Innovation by way of employing advanced analysis

techniques. newer materials. sophisticated manufacturing methods and strin­

gent quality control measures are some of the important requirements that

are necessary for improving product design and performance. During the

conceptual design stage, the designer should take into consideration all tbe

failure modes that tbe component may possibly encounter during operation.

An interesting discussion on the various failure modes and their significance,

and the different types of loading conditions is presented. by Burgreen.2

While it is important to design components by taking into account all the

possible Failure modes, it is also necessary, at tbe same time, to periodically

assess the "integrity" of mechanical compooents and structures. By this



process, an estimate of the remaining life of critical components, especially

in power, petroleum and chemical plants can be obtained.

Among the various modes that may govern the failure of a component.

plastic collapse is important since it would lead to gross plastic deformation

which can be potentially dangerous. Determination of loads which result

in cross-sectional plasticity in structures leading to uncontained plastic flow

is termed as limit analysis. Limit analysis is important since it provides

a measure of the reserve strength that exists in structural members. Also.

knowledge of limit load is necessary for estimating the reference stress which

is v.'idely used in the integrity assessment of mechanical components.3

Conventionally, limit loads are determined either analytically using the

bounding theorems, or numerically by using methods such as inelastic finite

element analysis, although efforts are currently being directed towards de-.

veloping simplified methods.~-6 Analytical methods of limit analysis have

evolved over a long period of time as compared to computer·aided numerical

techniques, such as inelastic finite element analysis, which are fairly recent.

An examination of the literature pertaining to limit analysis reveals that ana­

l:"tical solutions are available for only simple cases of loadings and geometric

configurations. Inelastic finite element analysis, on the otherhand, has its

own limitations because it requires enormous computational time, is an ex­

pensive process and produces a large amount of output data that bas to be

interpreted properly in order to make practical sense. The above factors thus

create a need for the development of robust methods of limit analysis which



are simple, efficient and yet sufficiently accurate. Systematic development of

such methods for performing limit analysis is the main aim of this thesis.

1.2 Limit Analysis of Mechanical
Components and Structures

The importance of limit analysis in structural design is well documented. 7-10

It is recognized that structures can withstand loads beyond the elastic limit

of structural materials and with plastic design, advantage can be taken of

the reserve strength that exists beyond the initial yielding. For statically in-

determinate structures, especially those with large redundancies, this reserve

strength is significant. Therefore, a knowledge of limit loads of components

and structures becomes useful to a designer, since it enables the detennina-

tion of the reserve strength and also addresses the mode of failure associated

with load-controlled effects.

Plastic design not only produces economy in materials but also simplifies

the design procedure through the use of the so-called "bounding theorems."

Lack of fit in structural connections, residual stresses and other fabrication

defects which are difficult to quantify do not affect plastic analysis, whereas it

is necessary to take these factors into account when elastic analysis is carried

out, thus making the latter more cumbersome. It is therefore more useful

to analyze structures that are on the "'verge of collapse" and then establish

appropriate working levels of applied loads.



Conventionally, the bounding theorems and inelastic finite element anal­

ysis are the methods that are adopted for determining limit loads. However,

both these methods have their own limitations - the former being intractable

and the latter being laborious and expensive.

The above mentioned factors have provided sufficient motivation to di-

rect efforts towards developing simpler and more general techniques that are

capable of providing acceptable results based on minimum input and cost,

using linear elastic analyses. In this thesis, robust methods for estimating

lower and upper bound limit loads are developed. The methods proposed

are based on linear elastic analyses and are intended to be generic in nature.

The material properties are assumed to be elastic perfectly.plastic and com-

ponents are considered to be subjected to "sustained loads", i.e., non-cyclic

loads that do not diminish because of structural deformation.

1.3 Need for Robust Techniques in Pressure
Component Design

In the design of pressure vessels by analysis, finite element analysis is

usually coupled with the use of appropriate rules contained in pressure vessel

codes such as the ASME Pressure Vessel and Boiler Code Sections III and

\flU (Division 2).11 The stresses obtained from linear elastic finite element

runs are partitioned into primary, secondary and peak stress categories in

order to apply appropriate stress limits. Each of these stress categories is

associated with distinct type of failure mechanisms such as gross distortion,



ratchetting and fatigue, respectively. The stress categorization procedure,

however, becomes tedious when continuum results given by 2-0 and 3-D

finite element analysis are considered.

In order to avoid the complexity of the stress categorization procedures.

the ASME code does, however, allow the designer to perform an elastic­

plastic or limit analysis of the component in order to arrive at allowable

loads. Plastic analysis, unlike elastic analysis, takes into account the stress

redistribution upon yield. For a component that fails by gross distortion due

to a single application of the load, a plastic analysis is the one that would

give the design pressure sought by the analyst. Design pressures that are

calculated by any other method are acceptable only as long as it is possible

to prove that the estimates obtained do not exceed those obtained on the

basis of plastic analysis. 12 This additional requirement is hard to be satisfied

b)· design based on elastic analysis procedures for complex structures with

limited amount of inelastic or limit design data.

An investigation into tbe literature pertaining to limit analysis reveals

that a considerable amount of effort has been expended. towards tbe ana­

lytical determination of limit loads of pressure components. The bounding

methods for determining limit loads may turn out to be mathematically in­

tractable with increasing complexity for problems such as oblique nozzle-shell

intersections, and component configurations with Don-symmetric loading and

boundary conditions. Moreover, the accuracy of the method is affected by

the underlying simplifying assumptions.



With the advent of high speed computers and the development of the

finite element technique, inelastic finite element analysis (FEA) has emerged

as a versatile tool for carrying out elastic-plastic analysis. Several commer­

cial packagesl.t3 are available for perfonning inelastic FEA. The method is

general and could be applied to a variety of engineering problems. A variety

of element types and solid modeling techniques enable the simulation of field

problems to a reasonable degree of accuracy.

Nevertheless, inelastic finite element analysis also has some inherent draw­

backs as mentioned io the previous sectioo. Apart from the method being

elaborate and time consuming, the merit of applying a detailed nonlinear

analysis for a given component is often questionable due to convergence

problems and tbe requirement of enormous computer memory. The limit

load values obtained by nonlinear finite element analysis, although accepted

to be by far the most aceurate, involves a higher cost per run. Therefore,

a detailed. nonlinear analysis may not be a viable alternative in situations

where results acceptable for practical purposes are all that is needed. in a

stipulated time frame. This clearly shows the necessity for developing robust

approximate techniques, which are simple, reliable methods based on linear

elastic analysis and are capable of predicting inelastic response with aceept­

able accur&ey. The reduced modulus methods are tbe robust te<:hniques that

are of interest in this thesis.

Robustness, in the present context, implies the ability to provide accept­

able results on the basis of less than reliable input, together with conceptual



insight and economy of computational effort. 14

The major application areas of robust methods are:

L Initial seoping and feasibility study,

2. Screening of critical areas in large complex: systems
for further detailed analyses,

3. "Sanity" checks on the results obtained by non­
linear analysis and

4. Approximate estimates of inelastic effects.

Robust methods are ideally suited for performing a preliminary analysis

or design of components so that the feasibility of a specified system can be

assessed. These methods can also be used for identifying critical locations

in complex systems which can be the source of potential problems. Robust

methods are sometimes the only recourse for an independent verification of

the results of a detailed nonlinear analysis of a complex: problem. While it

is recognized that the conventional methods for the structures analyzed in

this thesis provide reasonable results, it is imperative to note that robust

methods are simple, inexpensive and pragmatic alternatives.

1.4 Objectives of the thesis

The objectives of this thesis are to:

1. Propose simple and systematic procedures for determining the limit

loads of mechanical components and structures using linear elastic anal-



yses.

2. lnvestigate the conceptual basis and the functioning of the r-nodes

in depth, and propose the neressary guidelines for determining lower

bound limit loads.

3. Develop a procedure (or reducing the stress concentration in pressure

components on the basis of the iso r-node stress concept.

4. Apply tbe proposed methods to a variety of pressure component config­

urations and validate the methods by comparing witb results obtained

using conventional techniques.

1.5 Organization of the Thesis

Chapter 1 addresses the imponance of limit analysis. The limitations of

the existing methods are analyzed. and the need for robust methods of limit

analysis is brought out. The objectives and the organization of the thesis

are also presented in this chapter. The chapter ends by providing a list of

original contributions.

The theoretical aspects pertaining to the research reponed in this thesis

are explained in Chapter 2. The advantages of plastic design as compared

to elastic design are discussed and the usefulness of the upper and lower

bound limit loads are explained in this chapter. The extended variational

theorem proposed by Mura and co-workersl~ is introduced and the underly­

ing formulations are reconstructed. Evolution of robust methods in pressure



component design is examined and the metamorphosis of these methods into

limit analysis techniques is explored. The r-node and the elastic compensa­

tion methods of limit load determination are reviewed. The reference stress

method in pressure component design is introduced and the relationship be-­

tween reference stress and limit load is highlighted.

Chapter 3 deals with the finite element implementation of the existing

robust limit analysis techniques based on linear elastic finite element analyses.

The variational formulation proposed by Mura et al. ts•11l is implemented and

the method is rendered suitable for directly obtaining lower bound limit

loads for generic structures using linear elastic finite element analyses stress

distributions. The "theorem of nesting surfacesn proposed by Calladine and

Druckerli'·11 is also introduced as a direct way of determining the reference

stress using elastic stress distributions. A relationship between the integral

mean of the yield III and the reference stress obtained by invoking the theorem

of nesting surfaces is also identified.

In Chapter 4. the underlying problems in canying out a number of elas­

tic iterations are investigated and components are classified into three types

based on their response to elastic iterations. The advantages and disad,,'&Il­

tages of conventional limit analysis techniques are discussed from an engi·

neering standpoint. An improved method. named the mo-method, fot deter­

mining lower bound limit loads is proposed in this chapter on the basis of the

extended lower bound theorem, and uses the concept of "leap-fragging" to a

near limit state and the notion of reference volume. The proposed method is



based. on two linear elastic finite element analyses. The chapter is concluded

by detennining the limit loads of a number of pressure component configu­

rations of practical significance and comparing the results with the existing

One of the essential requirements while determining limit loads using the

r-node method lies in the identification of valid r-node peaks. The procedure

for identifying and eliminating virtual r-node peaks is explained and guide­

lines are provided for identifying valid r-node peaks in Chapter 5. The r-nodes

are investigated in depth in this chapter and aspects pertaining to conver­

gence of r-nodes are addressed.. Requirements for obtaining lower bound

limit loads are provided and limit loads are detennined for the components

considered in Chapter 4.

In Chapter 6, limit analysis of layered beams and layered cylindrical shells

are discussed. While the fonnulations for the beam problems are based on

the theory of bending, the theorem of nesting surfaces is invoked in order to

determine the r-nodes in cylindrical shells.

)"linimum weight design is important in engineering since a substantial

amount of savings is possible by way of better utilization of material. Fur­

thermore, such a design would help in minimizing stress concentrations and

improving fatigue life. Chapter 7 utilizes the iso r-node concept for min­

imizing the weight of pressure components. Numerical examples are also

illustrated in this chapter in order to demonstrate the applicability of the

method.

10



Chapter 9 summarizes the advantages of the proposed methods. Sugges­

tions are also provided for carrying out future work along the lines of this

thesis.

The appendices contain the programs and ANSYSI macros that are nec­

essary for solving the numerical examples. The Fortran programs in Appen­

dices A and 8 are used for determining the r-nodes and for minimizing the

weight of components, respectively. Appendix C contains the ANSYS list­

ings for the numerical examples. The ANSYS macros, written using ADPL I

(ANSYS DESIGN PARAMETRIC LANGUAGE) for carrying out the elas-

tic moduli modification, are given in Appendix D. Appendix E provides tbe

necessary macros for performing a number of elastic iterations. The Maple l9

listing tbat is necessary for implementing the Cormulations Cor the two-layered

cylinder is given in Appendix F.

1.6 Original Contributions

The following are the original contributions of this thesis:

• The extended variational theorem proposed by Mura et al. 16 has been

implemeoted so that stress distributions obtained from linear elastic

finite element analyses could be directly used for estimating lower and

upper bound limit loads.

• A relationship is identified between the integral mean criterion pro-­

posed by Mura et al. and the theorem of nesting surfaces.

11



• The underlying problems behind carrying out a number of elastic it­

erations are explored in this thesis and on this basis, mechanical com­

ponents and structures are classified into three distinct categories de­

pending on their response to elastic moduli changes. Methods are also

proposed to overcome the stability related problems in carrying out

repeated elastic iterations.

• The concept of reference volume is introduced in an attempt to iso­

late regions in structures that most likely do not participate in plastic

collapse. Using this, a procedure for determining upper bound limit

loads on the basis of the integral mean of the yield and the theorem of

nesting surfaces is proposed.

• A method, designated as the rna-method, is proposed for determining

the lower bound limit loads of mechanical components. The method

utilizes the concept of leap-frogging to a near limit state and the notion

of reference volume, in order to obtain improved lower hound limit loads

on the basis of two linear elastic analyses.

• The properties of r·nodes are investigated in detail and aspects per­

taining to lower bound limit loads are discussed.. Guidelines are also

provided for determining the valid r-node peaks that are responsible

for collapse.

• An r-node is idealized as a mechanical model. Based on this ideal­

ization, simple conceptual models that depict the stress redistribution

12



during collapse are proposed.

• Procedures for determi.ni.ng the limit loads of twt;layered beams and

two-Iayered axisymmetric cyliLJJ.ical shell structures using r-nodes are

proposed.

• The concept of iso r-nodes is proposed. for determining the minimum

weight of mechanical components and structures and for designing nen·

zle reinforcements.

• A number of numerical examples of varying complexity are worked out

and the results are compared with conventional analyses techniques. It

is demonstrated that the proposed methods are robust in nature and

can be used for analyzing complex problems with minimum effon and

13



Chapter 2

Theoretical Background

2.1 Introduction

Theoretical aspects germane to the forthcoming chapters of this thesis

are presented here. In the era prior to the introduction of finite element

analysis, robust approximations were commonplace in analysis and design

methodologies. It was considered sufficient for all practical purposes to es·

timate load bearing capacity of engineered structures that were below the

actual value. Obtaining a lov.-er bound estimate of limit loads was seen by

designers as a pragmatic way of ensuring safe designs. Howc\'er, when esti­

matiog power requirements for metal cutting, for instance, tbe upper bound

values of loads were considered to be appropriate. Conservative estimates of

load were determined by invoking the upper bound theorem. The classical

lower and upper bound theorems of plasticity still play an important role

in engineering design although today's powerful computational tools can be

used to great effect.

14



Alternate formulations to the lower and upper bound theorems that were

based on variational concepts were proposed by Mura et al. 15•16 By making

use of "statically admissible" stress distributions and "kinematically admis­

sible" strain distributions and invoking the notion of integral mean of yield,

pseudoelastic distributions of stresses that exceed yield were utilized. for de­

termining upper and lower bound limit loads.

Mura et al. 16 applied their variational method for determining the upper

and lower bound limit loads of a uniaxial specimen. Their results compared

",-ell with the results obtained using the classical theorems of limit analysis.

In this thesis the Mura's lower bound theorem is implemented for directly

using tbe stress distributions obtained from finite element analysis, for a

generic structure. It is also shown that an upper bound multiplier can be

obtained from stress distributions that satisfy the integral mean of the yield

condition.

Calladine and Druckerl7 proposed the "theorem of nesting surfaces" and

obtained an e.,<pression for the reference stress by making use of a stress-strain

relationship of the type f = Ban and the concept of average dissipation. They

demonstrated that the reference stress so obtained is strictly monotonic,

and increases with the exponent n. It is bounded by the result for n = 1

(elastic material) and above by the limiting functional as n -+ (Xl (perfectly­

plastic).18 The reference stress obtained using the theorem of nesting surfaces

could also be used for approximate estimation oflimit loads, though it would

be shown in this chapter that such estimates are unconservative in nature.

15



Despite the availabilitY of various theories and advances in nigh speed

computing for limit load detennination, the application of conventional anal­

ysis methods such as bounding theorems and inelastic finite element analyses

have proved to be elaborate, expensive and time-consuming. For instance,

a recent paper by Berak and Gerdeen2() proposed an effective technique us­

ing finite element analysis for simple two--dimensional problems and summa­

rized that "...this procedure is particularly applicable to the solution of com­

plex problems using parallel processing on a supercomputer." This clearly

demonstrates the need for developing simplified methods if one is to take

full advantage of the benefits of inelastic effects without a great deal of ef­

fort. Therefore, development of robust simplified. methods of limit analyses

that give acceptable results at minimum time and cost become useful during

the initial stages of the design process. The modulus adjustment method,

originally developed. in order to assess inelastic effects such as foHow-up in

mechanical components and structures, was the pioneering work in this di­

rection.21
.
22 Subsequent efforts by Marriott," Seshadri5 and Mackenzie et a1.6

have led to the development of robust methods for estimating limit loads on

the basis of linear elastic finite element analyses.

2.2 Elastic Analysis and Plastic Design

To carry out a complete stress analysis of mechanical components or struc­

tures, it is necessary to satisfy the equilibrium equations and the traction

boundary conditions. Next, the strain displacement or geometric compati-

16



bility conditions and the kinematic boundary conditions should be satisfied.

Finally, the stresses must be related to the strains by appropriate constitutive

relations.

Both the equilibrium equations and strain-displacement relations are in­

dependent of the material under consideration. While the equilibrium equa­

tion is an expression of a physical law, the compatibility relations are ge­

ometric descriptions that express the aspect of continuity of the structure.

Irrespective of whether the behavior of the structure is linear or non-linear,

these conditions are valid. The difference between an elastic and an inelastic

problem is therefore the constitutive equations. While this relationship is

linear in the elastic range, it will generally be non-linear in the plastic range.

This aspect can be understood by examining the uniaxial stress-strain curve

illustrated in Figure 2.l.

In the elastic range the strains are uniquely determined by the state of

stress regardless of how this stress state was reached. In the plastic range.

however, the strains are in general not uniquely determined by the stresses

but rather by the history of loading or in other words how the stress state

was reached.

The elastic stress-strain relationship is given by

(2.1)

where t:ij is the strain, Tij is the stress, E is the Young's modulus, II is the

Poisson's ratio and Oij is the Kronecker's delta.

17
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Figure 2.1; Uniaxial Stress-Strain Curve
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The plastic stress-strain relationship considers the plastic strain incre­

ment which, at any instant of loading, is proportional to the instantaneous

stress deviation, i.e.,

(2.2)

In this equation, Sij is the stress deviator tensor and d>' is a non-negative

constant which might vary throughout the loading history and is determined

from the yield criterion. The above equation is called the "Prandtl-Reuss"

equation.

Structures designed using the tbeory of elasticity are usually based on

the allowable stress concept. The structure is designed so that the ma."(­

imum stress as calculated for certain specified conditions of service is less

than a stipulated value of stress defined as the "allowable stress." The mar­

gin between the allowable stress and the ultimate stress may be reduced in

proportion to the certainty of the service conditions, intrinsic reliability of

the material and the accuracy of the stress analysis etc..23

The allowable stress is usually based on the yield stress. The design stress

is a fraction of the allowable stress. Design of the structure is carried out

so that the maximum stress can be no more than the stipulated allowable

It is apparent. however, that the important consideration in an engineer­

ing structure is not whether the yield stress has been exceeded at some point,

but whether the structure as a whole can carry out the intended function.

There is no reason not to allow some parts of the structure to exceed yield

19



as long as there is adequate reserve strength in the entire structure. In many

practical component configurations, local plastic Bow will occur at stress rais­

ers and at locations of discontinuity in the geometry. Residual stresses, while

affecting partially plastic behavior of a structure, do not affect the plastic

collapse load. Consequently, it makes sense to design a structure based on

the limiting load at which it will collapse (uncontained. plastic 80w occurs).

The limit load can be used. as a realistic basis for assessing the permissible

working load on a structure through the use of a factor of safety. Different

types of failures such as fatigue, fracture, or buckling may govern the design.

In some cases the magnitude of deBection (elastic or plastic) is itself a crite-

rion, rather than the imminence of plastic collapse. Avoidance of failure by

plastic collapse is the governing criterion in the design of many structures,

and the development of efficient methods for computing the collapse load bas

in recent years been of immense interest to engineers.24

2.3 Classical Lower and Upper Bound
Theorems

2.3.1 Statically Admissible Stress Fields

A stress field QI,Q2, .. ,Qn defined. throughout a continuum is called

statically admissible for the given loads if, in addition to satisfying the yield

conditions, it represents a state of equilibrium under the given loads. Such a

field is safe if at each point of the field, the state of stress is represented by

20



a point inside the yield surface.

The lower bound theorem states that, if any stress distribution through­

out the structure can be found which is everywhere in equilibrium internally

and balances certain external loads and at the same time does not violate

the yield condition, those loads will be carried safely by the structure.u The

limit load evaluated using this theorem is lower than the exact value of the

limit load and therefore can be used for designing mechanical components

that are safe against collapse.

2.3.2 Kinematically Admissible Velocity Fields

A strain rate field 111,42,. ., lin defined throughout a continuum is called

kinematically admissible for the given conditions of support, if it is derived

from a velocity field which is compatible with the conditions of support and

certain continuity conditions. Such a strain field is unsafe for the given loads.

if the total rate of energy dissipated is less than the rate at which the given

loads do '\1<rork on the generating velocities.'

The upper bound theorem states that. if an estimate of the plastic collapse

load of a structure is made by equating the internal rate of dissipation of

energy to the rate at which the external forces do work in any postulated.

mechanism of deformation of the body, the estimate will be either correct, or

high.u In processes such as metal fonning and metal cutting, it is necessary

to determine the load that is capable of performing the given operation.

Detennmation of limit loads using the upper bound theorem ensures that

21



the limit load estimates obtained can cause "plastic 6ow'" in the component.

2.3.3 Application of Lower and Upper Bound
Theorems - Determination of the Limit
Pressure for a Thick-Walled Cylinder

2.3.3.1 Lower Bound Limit Pressure

The lower bound theorem can be illustrated by considering the problem

of limit load determination of a thick-walled cylinder (Figure 2.2) subjected

to unifonn internal pressure.

The equilibrium equation for the thick-walled cylinder can be expressed

(2.3)

where err and as are respectively the radial and hoop stresses and r is the

radius.

The yield condition is assumed to be governed by the Tresca's yield cri-

terion. which is given by

(2.4)

Since the equilibrium conditions hold good even at impending plastic

collapse. equation (2.4) can be substituted into equation (2.3) resulting in

which on integrating leads to

err=Ylnr+C.

22
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Figure 2.2: Thick-Walled Cylinder subjected to Uniform Internal
Pressure
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(2.8)

where C is an arbitrary constant of integration.

The boundary conditions can be expressed as:

U
r = -P at r =a } (2.7)

U r = 0 at r =b

where a and b are the inside and outside radii of the cylinder respectively

and P is the internal pressure.

Assuming the cylinder to be completely plastic at collapse and applying

equations (2.7) on equation (2.6),

Ylna+C = -PLC}
Ylnb+C = 0

from which the limit pressure can be obtained as

Pr.c = Yln~. (2.9)

Alternately, in situations where such direct integration of the equilibrium

equation as in equation (2.5) is not possible, it becomes necessary to assume

some statically admissible stress distribution and proceed with the lower

bound limit load calculations. The closer the assumed stress distribution is

to the limit type, the more accurate would be the solution.

For the problem under consideration, a linear radial stress field can be

assumed as

U r =Ar+B (2.10)

Substituting the boundary conditions given by equation (2.7) in equa­

tion (2.10) the radial stress can be expressed as:

". = -P(b - r)/(b - a)

24
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The limit pressure can be derived from equations (2.3) and (2.11) as

a, - u,. = Prf(b - a). (2.12)

Clearly lu, -arl has its greatest value at r = b, so for the yield condition

not to be violated anywhere. but just to be reached at r = b, the lower bound

limit pressure can be determined as:

PLC = Y(l - a/b).

2.3.3.2 Upper Bound Limit Pressure

(2.13)

An upper bound limit load can be determined by considering any kine-

matically admissible velocity field. say, in this case based on the incompress­

ibility condition, Le.,

(2.14)

where. f r , flJ and f: are the radial, hoop and the axial strains. respecti\"el~·.

For a plane strain condition. equation (2.14) reduces to

fr+EIJ =0. (2.15)

The strains can be expressed in terms of the radial displacement field u(r)

du
Er=~

Equations (2.15) and (2.16) lead to the e.,<pression:
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which on integrating becomes

Inr=-lnu+lnC (2.18)

(2.19)

The arbitrary constant C can be determined by substituting the condition.

at T =a, u =U... , which leads to

U = u;a.
Therefore. the strain field is given by

(2.20)

and
u.a

€"=-;:2' (2.21)

The internal energy dissipation per unit volume can be expressed as

7(U,-UrJ

7Y at yield.

The internal dissipation per unit length of the cylinder is given by

W i1l1 = 16

D27rT dT = 27raYUaln~.

The external work done per unit length of the cylinder is
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Equating the internal dissipation ofenergy to the external work. the upper

bound limit pressure can be obtained as

Puc=Yln£'. (2.25)

which in tbis case is the same as the equilibrium solution given by equa-

tion (2.9). Therefore it is evident that the limit load obtained is exact. That

the value of limit pressure given by equation (2.13) is less than tbat given by

the exact solution [equation (2.9)] for b > a is shown in Figure 2.3.

2.4 Extended Variational Theorems of Limit
Analysis

Mura and Leel5 have demonstrated by means of the variational princi-

pie that the safety factor, tbe kinematically admissible multiplier and the

statically admissible multiplier for a component or structure made out of a

perfectly plastic material, and subjected to prescribed surface tractions are

actually extremum values of tbe same functional under different constraint

conditions.

In lower bound limit analysis. the statically admissible stress field cannot

lie outside of tbe hypersurface of the yield criterion. Mura et a1. 16 showed

that such a requirement can be eliminated if tbe integral mean of the yield

criterion is used. They showed that the safety factor, m, can be obtained by

rendering the following functional, F, stationary, i.e.,:I.5
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Figure 2.3: Comparison of Exact and Lower Bound Limit Loads of
a Thick-Walled Cylinder
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- [R;v,dS - m (L T;"dS - 1)

- [,,[/(s,;) +1>']dV (2.26)

with 112: o.
In tbe above equation, Vi is tbe velocity, Soj is the deviatoric stress. and

u. R.. m, p and dJ ace the Lagrangian multipliers. The yield criterion is given

by

(2.27)

The Cotalsurface, S. of the structure is divided into ST, where the traction

is prescribed and Sv. where tbe velocity is prescribed.

Taking the variation of F leads to

of = l OS;j~(Vi,j + vi,o)dV + Iv Sij~(6v;.j + oVj,i)dV

+ Iv 6UOijVudF + Iv UOijoviJdV - fsv 6R;v;dS - fsv flto1.',dS

-om (1sT T;vidS - 1) - misT T;6uidS -I. aJl!J(sij) + o:2]d\'

- !.1J.::1 6sijdF - kJ.l,2</.J6tixiV. (2.28J

Integrating the above equation by parts gives the natural conditions

~(v•.) + v).,)
8j

in V (2.29)fJ.
aSii

" ~ O. in V. (2.30)

(Sij+O;jU),J 0 in V (2.31)

(5ij +oiju)nj mT, on ST (2.32)

(so; + Oiju)nj R; on Sv, (2.33)

29



f(Sij) +q,2 0 in V, (2.34)

"¢ 0 in V, (2.35)

O;jV;J 0 in V, (2.36)

v, = 0 nn Sv, (2.37)

1
ST

T;v;dS l. (2.38)

Equation (2.29) is the plastic potential 8ow, equations (2.31) to (2.33)

are the equilibrium conditions, and equations (2.36) to (2.38) define a kine­

matically admissible velocity field. Equations (2.34) and (2.35) define the

admissible domain of the stress space, Le.,

f(Sij) = 0 if J.l> 0

f(s;j) $ 0 if p,=O

(2.39)

(2.40)

Obviously, equations (2.29) to (2.38) are the conditions for incipient plas­

tic flo...... Condition (2.33) can be used to determine Rt., the reaction at the

boundary, which is arbitrary. Condition (2.38) is no more restrictive than

the requirement

{ T;v;dS > O.1ST
(2.41)

Setting the integral equal to unity only determines the otherwise arbitrary

size of the velocity vector.

Considering the arbitrary arguments

(2.42)
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in which Vi, Sij, .. denote the stationary set of arguments of equation (2.26)

and JVi, JS;j, . . etc. are the corresponding variations. If the arguments of

equation (2.26) are substituted by equation (2.42), taking into account the

conditions specified by equations (2.29) to (2.38) for Vij, Sij, etc., F can be

written as

F[vf, sfj' dO, Ri, mO, 1).0, ,pO] =m + Iv J8ij~(JViJ + JVj,i)dV

+ Iv 6u6ij6viJdV - fsv JR;Jv;~S - Om1
ST

T;6v i dS

- lv"Gos;;os,; + (o~)'}dV - lvo" (f(s1,) + Wl'}dV. (2.43)

Making use of the boundary conditions given by equations (2.31), (2.32).

(2.33). the requirements for a statically admissible stress field, viz.,

(sf; + 6ijuO)J = 0 in v,

(sfj + OijUO)nj = m"7i ST,

and stipulating

equation (2.26) can be rewritten as

(2.44)

(2.45)

(2.46)

In equation (2.46), R!t denotes the reaction of the stress field on Sv. Also,

integrating equation (2.26) with arbitrary arguments vf, sfj' (10, ~, mO
, 1)."

and dlo and constraint conditions given by equations (2.44), (2.45) and (2.46),
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the following expression can be obtained:

(2.48)

The integral mean of yield can be expressed as

where

~tJ?: o.

Substituting equation (2.49) in equation (2.48) results in

F=mtJ .

Since JjtJ = Jj + Oil-, equation (2.49) can be written as

(2.49)

(2.50)

(2.51)

Equation (2.52) can be substituted in equation (2.47) which can be rewrit-

Since the second term on the right hand side of equation (2.53) is always a

positive Quantity, equations (2.51) and (2.53) can be related by an inequality

m' S m + fv ~ {J(s1j) + W)'} <IV

S m + m={J(s1j)+ Wi'} fvw£V. (2.54)
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where max{J(si'j) + (¢I")2} ?: 0 because of conditions (2.49) and (2.50).

The safety factor which can be expressed. as

m = m hT TiVidS

can be rearranged as

h(S;i + oiia )ni1J;dS

!)Sii + oiiu)ViJdV + iJSii + oiiU)viJdV

lSii~(1J;J+Vi":)dV= lSiilJ.SiidV =2k
2fv~

(2.55)

From equations (2.54) and (2.55) the expression for the lower bound mul­

tiplier (m') for the safety factor (m) can be obtained as

m'
m' = 1 + max{j(sfi) + (rP)2}/2k2 S m (2.56)

which holds for any set of si'i' a", m", IJ." and ¢" satisfying

(51, +Oiiu")J 0 in V,

(Sli + O;ju")nj m"1i 5,-,

Iv n'U(srj ) + W)'jdV 0,

n' ? O.

(2.57)

(2.58)

(2.59)

(2.60)

Equation (2.56) includes the classical definition of the (ower bound, as is

seen by taking equation (2.49) in the special fonn

f(srj) +(0')' ~ o.

In this case, max{j(si',)} vanishes and equation (2.56) reduces to
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2.5 Evolution of Robust Methods in
Pressure Component Design

The use of simplified methods for pressure component design started with

the development of reduced modulus procedures for assessing inelastic effects

in pressure components. The reduced modulus method was first introduced

by Jones and Dhalla in 1981 as a robust procedure for classifying local clamp

induced stresses in Liquid Metal Fast Breeder Reactors.2I ,22 They argued

that clamp induced stresses could be categorized as secondary by showing

that tbey redistribute on account of material or geometric Don-linearity. By

systematically reducing the elastic modulus, the inelastic response of this

problem was investigated. It was found that the reduced modulus approach

satisfactorily simulated the inelastic response.

By performing repeated elastic analyses and by judiciously modifying the

elastic modulus at every stage, Dhalla26 and Severud27 analyzed. tbe inelastic

response and follow-up characteristics of piping systems.

Thus baving understood that it is possible to use linear elastic analy.

ses for simulating inelastic effects, efforts were directed towards developing

procedures for categorizing stresses.'28 Subsequently, Marriott4. proposed a re­

duced elastic modulus procedure in 1988 for determining the primary stress

of pressure components, which also opened up the possibility of determining

limit loads.
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Formal development of the reduced modulus procedure was systematically

carried. out for the first time by Seshadri.s The method, called. the GLOSS

(Generalized. Local Stress Strain) analysis, was applied. by Seshadri and his

co-workers to a number of areas. An elastic analysis was performed and

all the elements having equivalent stress* greater than the material yield

stress were identified. Assuming pure deformatioD control and an elastic

perfectly plastic material, inelasticity would cause the stress to relax to a,l

while maintaining the strain at the original level. The modulus modification

scheme used by Seshadri is given by:

(2.63)

A simplified method was suggested by Seshadri:m,3o for estimating creep dam-

age in pressurized components in the presence of elastic follow-up. The pro­

cedure was also extended to elevated temperature component desIgn. The

procedure proposed by Seshadri demonstrated that inelastic effects could be

simulated with sufficient accuracyll,32 and subsequently stress categorization

methods were proposed..33 The terms GLOSS plot (Figure 2.4) and GLOSS

analysis were introduced into the modulus reduction vocabulary by Seshadri.

"Throughout thU thesis, the term equivalent stress refera to the von Mises equivalent
stress, unless otherwise stated.
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2.6 Robust Methods of Limit Load
Determination

2.6.1 Limit Analysis based on Partial Elastic
Modulus Modification

One of the main challenges in determining lower bound limit loads is in

identifying a stress field tbat satisfies all the requirements that are neces­

sary for "static admissibility" (Section 2.3.1). However, this problem can be

circumvented by using stress distributions obtained. from linear elastic finite

element analyses. If tbe applied loads are greater than the loads correspond­

ing to tbe first yield, the stress redistribution that takes place on account

of inelastic effects should also be accounted for. In the procedure adopted.

by Marriott,4 this is made possible by identifying tbe elements that ha\-"e ex­

ceeded. the allowable stress limit in a discretized structure. The elastic moduli

of these elements are suitably modified on an e1ement-by-element basis and

a second elastic analysis is carried out. In this manner. the elastic moduli

are changed after every elastic analysis and a number of elastic iterations are

performed. The stress field obtained as a result of this satisfies all the condi·

tions that are necessary for being statically admissible. Since this procedure

requires that the stresses are below yield, all the requirements necessary for

lower bound limit analysis are satisfied. If the value of the maximum von

Mises equivalent suess converges to a value less than the yield stress after

some iterations, then the applied load can be assumed to be a lower bound
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on tbe exact limit load.

It should, however, be noted tbat tbe procedure adopted by Marriott was

primarily intended for finding the stress distribution with the least maximum

stress for a given value of applied load., rather than determining the limit load

itself. Selective softening of the elements does not assure that the converged

value of stress would always be less than the code allowable. Since onl:r

specified portions of the structure are subjected to moduli modification, this

procedure does not entirely characterize the actual stress redistribution that

would occur in a component during plastic collapse.

2.6.2 The R-Node Method

The iterative procedure proposed by Marriott' for determining lower

bound limit loads has a number of limitations as explained in the previ­

ous section. Nevertheless, the procedure was a pioneering effort tbat opened

up the possibility of determining limit loads on the basis of linear elastic

analyses.

Cognizant of the practical difficulties that the analyst might encounter in

carrying out a number of elastic iterations, Sesbadri,34. in 1991, proposed an

approximate procedure for determining limit loads on the basis of two linear

elastic analyses. This method, referred to as the GLOSS R-Node metbod,

incorporated tbe concept of redistribution nodes and the reference stress

method for determining limit loads.
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R-Nodes are load-controlled locations within a structure. Therefore. the

stresses at the r-nodes are directly proportional to the external tractions ir­

respective of the material constitutive relations. Hence any two stress distri­

butions satisfying equilibrium with externally applied tractions will intersect

at the r-nodes. This feature is useful in the practical determin;-tion of the

r-nodes and the corresponding r-node equivalent stresses.

When widespread inelastic action (plasticity or creep) occurs, involving

entire cross-sections, the statically indeterminate stresses undergo a redistri­

bution except at the r-nodes which are almost statically determinate loca­

tions.

Plastic Collapse of Components and Structures: Consider a beam of

rectangular cross-section that is subjected to a bending moment M. If the

material constitutive relationship is given by e = Bq", where B and n are

material parameters, then n =1 corresponds to elastic behavior and n -+ 00

corresponds to perfect plasticity. The stationary stress distributions across

the beam for various values of n are shown in Figure 2.5. The intersection of

stress distributions for n = 1 and n -+ 00 is designated as the redistribution

nodes or simply r-nodes. The stress distributions for all other n's are assumed

to pass through the r-nodes. i.e., points A and B in Figure 2.5.

Since the stresses at points A and B are almost invariant, they can be

considered to be load-controlled, Le., they are set up in order to equilibriate

externally applied loads and moments. Therefore, the r-nodes are located on
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a "limit type" of stress distribution. Since r-node stresses are load-controlled

(2.64)

where 'Y is a constant of proportionality that depends on the geometr), and

loading. For an elastic perfectly plastic material, when (Ue:)r_nork approaches

the yield Stress (u~) corresponding to the von Mises criterion, the applied

moment will correspond to the collapse moment, Le.,

(2.65)

Eliminating..., between equations (2.64) and (2.65),

ML=~'
(u.)._......

(2.66)

The collapse process can be represented. by a single bar r-node model

(locations A and B). For an indeterminate beam (Figure 2.6), for instance,

where multiple plastic hinges form leading to plastic collapse, a multibar

model can be used to represent the collapse process. This model enables

"transfer of loads" to appropriate bars until collapse occurs. For such Struc­

tures .....ith generalized loads,

(P,M)L

(2.67)

where

(2.68)
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and an/s are the r-node peaks.

The r·node method has been applied to a number of two-dimensional me­

chanical components and structures such as frames, archesM,3$ and shelIs.34

Limit loads of three--dimensional non-symmetric plate structures subjected to

a variety or loading is made possible by plotting r-node stress surfaces.36 The

limit load estimates obtained using this method are found to compare well

with analytical and inelastic finite element analysis results. Although the

r·oode method has consistently been giving conservative estimates of limit

loads, rigorous guidelines ror ensuring that the limit loads obtained are lower

bounds would be of immense use for practicing engineers. In this thesis such

guidelines are proposed and the properties and the usefulness of the r·nodes

are investigated in detail.

2.6.3 The Elastic Compensation Method

Mackenzie and BoylelS proposed a method in 1992 for determining limit

loads based on iterative elastic analysis and called it the elastic compensa­

tion method. In this method the Seshadri'sS (r·node) method of limit load

determination is adopted for modifying the elastic modulus of elements and

at the same time repeated elastic iterations similar to that of Marriott's"

method are carried out.

The elastic compensation method typically aims at achieving a statically

admissible stress field having a maximum equivalent stress value which is min­

imum for a given set of elastic iterations (typically six to ten). This value of
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maximum stress is used for determining the limit load using the conventional

lo~..er bound theorem.,·n.38 This method however has disadvantages since

it has to maier use of a number of elastic iterations. Moreover, even after

a number of elastic iterations there is no guarantee that the resulting stress

distribution would correspond to limit type. of a stress distribution. While

the stresses relax to almost limit type in case of problems such as a beam

subjected to bendingt and a thick-walled cylinder subjected to uniform inter­

nal pressure, in case of problems such as a torispherical head under internal

pressure, this method requires modifications in order to achieve a satisfactol1'

trend in stress redistribution.38

2.6.4 Strain-Hardening and Strain-Softening: Limit
Load Approximations

The elastic modulus modification procedures for determining limit loads

idealize the material behaviour to be elastic perfectly-plastic. However, this

assumption may lead to overly conservative limit load estimates for com-

panents that are made out of strain-hardening materials (Figure 2.7). The

reverse ""'Quid be the case if strain-softening materials are used for compo­

nent fabrication. A practical way for applying the limit analysis procedures

in such situations would be to assume a nominal yield strength (11,) for per­

forming the computations. The value of this nominal yield strength may

•Limit type suess distribution can be defined aa the distribution ofstress cort'esponding
to an arbitrary U&l;tion, P. such that this nress distribution, when scaled by a factor. m.
becomes equal to the stress distribution at impend.in« collapae. The scaling factor, m.
otherwise known u the safety factor". is the ratio of a generic surlace uaction, p.nd at
the instant of impending plutic flow to the applied lIUlface uaction (P).
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typically be the value of the Sow stress, i.e., the arithmetic meaD of the yield

and the ultimate stresses. Alternately, this value can be assumed to corre­

spond to some limiting value of strain (say, 2-3% or S.../ E) in the uniaxial

stress-strain curve.

2.7 Reference Stress Method in Pressure
Component Design

The reference stress method. is a simple teeh..n.ique wberein tbe effect of

uncertainties in tbe material data on the behavior of structures in creep are

reduced by relating tbe structural behavior to a simple tension test conducted

at tbe "'referenCf! stress". By this method, tbe deflection 6 at a point in a

structure at some time to can be expressed as

(2.69)

where IJ is a geometric scaling factor tbat depends on the structure and tbe

boundary conditions. (C(to ) is the creep strain at time to as obtained in a

creep test performed on a sample of tbe material at the reference stress G"R'

Conventionally, experimental data are used to construct constitutive equa-

tions which are tben used for performing the necessary structural calcula­

tions. However. the inherent inconsistency of the available test data together

with an idealized. form of the constitutive law are likely to produce errors

in the tinal prediction of the structural behavior.39 While it is possible to

statistically control the uncertainties arising in tbe case of linear constitutive
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theories. the same may not be the case for non-linear constitutive theories.

wbich tend to amplify the errors.

The reference stress method fundamentally aims at controlling the effect

of these errors by identifying a particular uniaxial test, performed at the "ref­

erence stress" . which could satisfactorily characterize the structural behavior

under consideration. Thus the uncertainties in the available experimental

data pertaining to creep are eliminated. The reference stress method is, of

course. only an approximate method with possibilities of errors arising out of

anisotropy and multiaxiality of the structure. Nevertheless, considering the

advantages of the method, a practicing engineer would be willing to accept

this compromise at least during the early stages of design.

Among the early investigators of the reference stress method are Soder­

berg,40 who calculated the reference stress for pressurized tubes and Schulte,41

who observed skeletal points in creeping beams and estimated their deflec­

tions from uniaxial tests. Marriott and Leckie42 observed that there are

points in components undergoing transient creep where the stress does not

change with time. Such points are called as skeletal points. Anderson43 an­

alyzed creeping beams with various end conditions. Analytical methods for

identifying the reference stress were proposed by Mackenzie,44 Sim45•46 and

Johnson.47 The aforementioned methods involve procedures that rely on the

existence of an analytical solution for the creep problem which is available

only for simple geometries and loading.
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Noting that the reference stress is independent of the creep exponent,

Sim4S•46 reasoned that as the creep exponent approaches infinity, the stress

distribution will continue to pass through the point that defines it. Since

the solution for an infinite creep exponent is analogous to the limit solution

corresponding to perfect plasticity, Sim prop<::l6ed that the reference stress

can be obtained from

(2.70)

where P is the load on the structure, PL is the limit load, and 0"1/ is the yield

stress. To apply the above formula, the limit load is assumed to be available.

In 1991, Seshadri' introduced the concept of r·nodes (Section 2.6.2) in

an attempt to directly determine the reference stress and the limit (oads

of mechanical components and structures on the basis of two linear elastic

analyses. In this method, stress redistributioD similar to creep stress rOOistri·

bution is simulated by suitably modifying the elastic moduli of tbe elements

in the structure. The equivalent stresses at r-nodes does not change in the

process. The invariant beha.vior of the r·node stress and the reference stress

relates the two methods. As such, r-nodes lie on a distribution of stresses

that corresponds to primary stresses as defined in the ASME codes. ll The

apparently disconnected concepts of r·nodes, limit loads, reference stress and

the ASME stress classification concepts are unified in a paper hy Seshadri

and Marriott.:!

In the last several decades, there has been a significant development of the

reference stress method, mainly in the United Kingdom." The "combined r-
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Dade effective stress" , which can be obtained by the r-Dode method,:W can be

identified with the reference stress. The determination of the reference stress

using the r-node method is useful since it has application in the integrity

assessment of mechanical components and structures as described in Nuclear

Electric's R5 and R6 documents.49,50 The assessments include creep damage,

low cycle fatigue, elastic-plastic fracture and stress-classification.

2.8 Theorem of Nesting Surfaces

The reference stress can be interpreted in another manner on the basis of

energy dissipation considerations. The dissipation rate in a component or a

structure under a system of loads is equated to the average dissipation rate

at the "reference stress state,"

(2.71)

lising equivalent stresses and strains to represent three-dimensional stress­

states. and stipulating that steady state creep is of the form f = Bu" ,

from which the reference stress can be obtained as: 17•18

[
1 r nH ]oh

UR = V lv ue dV .

(2.72)

(2.73)

The theorem of "nesting surfaces" due to Calladine and Drucker17 states

that the functional

(2.74)
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is strictly monotonically increasing with the exponent n. It is bounded below

by the result orn =1 (elastic) and above by the limitingfunctional as n -+ oc

(perfect plasticity). Thus, if one considers the hypersurfaces F.. (l'1i;) = con·

stant. in the stress space, then they must "'nest" inside each other for in­

creasing n.

For a pin-jointed two-bar structure shown in Figure 2.8. the following

development will clarify the aforementioned concepts:

The stresses in bars 1 and 2 can be expressed as

(2.75)

For the simple statically determinate structure,

where the total volume of the bars F = 2LA.

If F..(UI,U2) is further examined, it can be seen that, for Qt, Q2;::: 0:

Forn= 1 (elastic):

For n ~ 00 (perfectly-plastic):

(~)' + (.92-)'Av'2 Av'2· (2.77)
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It can be shown that

(2.79)

The nesting surfaces for the two-bar pin-jointed. structure can be obtained

as shown in Figure 2.8.

Thus, the functional F..(at.0'2) == Q,,(Qt.Q2) is a strictly monotonic

(unction that increases with exponent n. Geometrically, the bypersurfaces

Q" = constant, must "nest" inside each other for increasing n. Tbey are

enveloped above by the surface for n = 1 and below by the limit surface

n -+ 00, which is the yield surface in generalized forces constructed on the

assumption that the condition of plasticity is Q" = constant.

2.9 Closure

It can be seen that robust concepts such as reference Stress, load control

and lower bound limit theorem can be conveniently coupled with linear elastic

finite element analyses for obtaining limit load estimates. The extended lower

bound theorem of Mura et a1. introduces new ideas such as integral mean of

)o;eld and exceedaoce of the yield criterion. This bas provided the impetus

for investigating this method further. with the aim of obtaining improved

lower bound limit load estimates. The finite element implementation of the

extended lower bound theorem in order to obtain lower bound limit loads or

generic components is discussed in the next chapter.
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Chapter 3

Finite Element Implementation
of Modified Elastic Modulus
Methods of Limit Analysis

3.1 Introduction

In Chapter 2. the upper and lower bound theorems of limit analysis were

discussed. The extended lower bound limit theorem proposed by Mura et

al. 16 was also introduced. With tbe emergence of high speed computing facil­

ities and advances in finite element techniques in the last two decades. ana­

lytical methods were rapidly being replaced by the relatively easier numerical

techniques. However. tbe time consuming aspect of conventional analyses.

particularly non-linear finite element analysis, necessitated development of

simpler techniques in order to study the inelastic effects in pressure compo­

nents. The ease in carrying out linear elastic finite element analyses with

modest resources motivated designers to develop techniques based on elastic
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analyses. It was found that by systematically modifying the elastic mod­

uli of structures, it is possible to obtain stress fields that would correspond

to the stress redistribution associated with inelastic effects. The reduced

modulus method was found to satisfactorily assess inelastic effects such as

follow-up. This further encouraged researchers to develop methods based on

linear elastic finite element analyses in order to determine limit loads.

The robust methods that are currently available for determining limit

loads are:

1. the reduced modulus method by partially modifying the elastic mod-

uti,4. which is based on the classical lower bound theorem,

2. the r-node method,S which is based on the concepts of reference stress

method in creep, load control and the notion of primary stress as de­

fined in the ASME B&PV codes,l1 and

3. the elastic compensation method,S which is an iterative method similar

to the Marriott's method but based on the elastic modulus modification

scheme as suggested by Seshadri. This method invokes the classical

lower bound theorem for estimating limit loads".

In this chapter, the finite element implementation of these three methods

is explained. The extended lower bound method of Mura et al. is imple­

mented for obtaining lower bound limit loads by directly using the stress

distributions obtained from finite element analyses. By using the theorem of

•A similar method, referred to as the Modified Elastic Modulus (MEM) Method, has
been proposed by Carter and Ponter l which also involves a number of elastic iterations.
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nesting surfaces it is also shown that the factor mO defined in the previous

chapter is actually an upper bound multiplier.

3.2 Limit Analysis based on Partial Elastic
Modulus Modification

The iterative procedure adopted by Marriott,4 introduced in Section 2.6.1,

was primarily intended to characterize the stress redistribution that would

occur as a result of pOSt yield loading and thereby estimate the primary stress

in the component. In this method, an arbitrary load above the first yield

load of the structure is applied and an initial elastic analysis is performed.

All the elements that are above the code allowable stress are selected and

the elastic moduli of these elements are modified on an element by element

basis according to the equation:

(3.1)

where. for any given elastic iteration, Eo is the previous value of modulus.

Sm is the code allowable stress and Sf is the element equivalent stress. The

analysis is then rerun to obtain a first reduced modulus solution. The elastic

modulus procedure is then repeated in an iterative manner until any further

iteration does not reduce the maximum stress, or until the element stress

becomes less than Sm. Since the stress distribution corresponding to any

iteration is a statically admissible stress field satisfying all the requirements

of the classical lower bound theorem, a lower bound limit load can also be
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obtained for every iteration as:

(3.2)

where U u is the yield stress and UM is the maximum equivalent stress in the

component.

3.3 The R-Node Method

The r-node method.5 (Section 2.6.2) is a robust method for determining

limit loads of mechanical components and structures based on two linear elas-

tic finite element analyses. Identifying load. controlled locations in a struc-

ture called as the r-nodes form the basis for using this method. The r-node

method can be used to determine the limit loads of mechanical components

and structures in the following manner:

• A linear elastic finite element analysis of a given mechanical component

or structure is carried out for prescribed isothermal loadings. The

resulting stresses would be pseudo-elastic quantities.

• The elastic modulus of each and every element, j, is modified according

to the equation

[....](E.),= .- E..
Utj

(3.3)

where Uo.~b is an arbitrary non-zero stress value. A second linear elastic

finite element analysis is carried out.
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• On the basis of the two linear elastic analysis, the follow-up angle (J

on the GLOSS diagram (Figure 2.4) can be determined for each ele­

ment. The locations for which (J = 90 deg. can then be identified as

the r-node locations, through interpolation. In practice, the foregoing

computations can be incorporated into the finite element code.

• A given structure can be visualized to be made of a finite number of

sections across the thickness, through out its length. Every section is a

potential plastic binge location and may contain an r·node. A plot of

these r-node stresses shows peaks at some locations along the structure

which indicates that as the external load is increased these locations

will become fully plastic at a lower load than the adjacent sections and

form a plastic hinge. These peak r-node stresses for a structure having

M peaks can be arranged in a numerically decreasing order, denoted

• Location of R-Node Peaks:

Two-Dimensional Structures:

As the external load is increased, plastic hinges first form at the location

with an r-node stress of O"nl and then at the location with an r-node

stress O"n2 and so on in that sequence. Thus the sequential formation

of hinges in the structure is tracked until a local or global collapse

mechanism can be identified. If the mechanism for the local or global
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collapse requires the formation of N hinges, the effective r-node stress

an can be obtained by relating to an N bar mechanism (Figure 2.6).

(3.4)

The limit load of the structure Pc. is given by:

Pc. = [~]P.

Three-dimensional Structures:

(3.5)

In case ofthree-dimensionaI structures such as non-symmetric plates. r·

node stress surfaces are required for the determination or r-node peaks.

The three-dimensional plot of the r·node stress (on the z coordinate)

versus the r-node location (on the x and y coordinates) produces the

three-dimensionaI r-node stress surface.

A three-dimensional structure such as, say, a plate structure can be

\'isualized to be made of a finite number of sections normal to the

neutraI plane. The number of r-nodes present in a section depends

on whether bending or direct stresses are dominant in that section.3~

For the plate structure shown in Figure 3.1, the r-node stress surface

(Figure 3.2) bas peaks at certain regions. The relative numericaI value

of the peaks indicates tbe sequence of formation of plastic zones or
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1. All dimensions in mm
2. 0 - Origin

Figure 3.1: A Square Plate Simply Supported on All Sides under
Uniform Pressure
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hinges in the structure and respective locations. Thus the r~node peaks

are potential nucleation points for plastic regions.

Since every section of the plate analyzed may not necessarily contain

an r~node, the r-node stress surface may, at the first sight, be difficult

to interpret. Therefore, a spline interpolated r-node stress surface is

introduced (Figure 3.3). This plot gives a better picture of the likely

locations of the r-node peaks. However, it should be noted that the

purpose of the spline interpolated r-node stress surface is only to enable

a better visual interpretation of the r-node stress surface. An iso r­

node stress contour plot (Figure 3.4) may also be used to enable the

determination of the r-node peaks.

The combined r-node effective stress Un can be obtained as

N

La"
Un=j;~ , (3.6)

where N refers to the number of peaks and tJ"nj refers to the r-node

stress of the jth peak. Using the expression given in equation (3.5).

the limit load of the structure is determined.

The r~node method has been applied to a number of two-dimensional me­

chanical components and structures such as frames, archesJ4·3,S and shells.34

Limit loads of three-dimensional non~symmetricplate structures subjected to

a variety of loading is made possible by plotting r-node stress surfaces.36 The

limit load estimates obtained using this method are found to compare well
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with analytical and inelastic finite element analysis results. Although the

r-node method has been consistently giving conservative estimates of limit

loads, rigorous guidelines for ensuring that the limit loads obtained are lower

bounds would be of immense use for practicing engineers. In this thesis such

guidelines are proposed and the properties and the usefulness of the r-nodes

are investigated in detail

3.4 The Elastic Compensation Method

The procedure proposed. by Mackenzie et al.6 (Section 2.6.3) is based on

the classical lower bound theorem of limit analysis and a number of linear

elastic iterations. An initial linear elastic finite element analysis of the dis­

cretized structure is carried out. This analysis is usually designated as the

zeroth iteration. Based on this, the elastic moduli of all the elements are

modified by following the procedure suggested by Seshadri. oS A number of

linear elastic iterations are carried out, similar to the procedure suggested by

~Iarriott,4 until any further iteration does not decrease the value of the ma.x­

imum equivalent stress in the component significantly. After every iteration,

the ne..... values of elastic moduli are determined for the subsequent iteration

based on equation (3.3) as:

(3.7)

where i is the iteration number, and r is the element number in the discretized

component or structure. Since the elastic moduli are modified for the entire
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component and the analyses are linear in nature, the value of the applied

load, P, can be arbitrary. The stress distribution having the least ma.'Cimum

Stress among the given set of iterations is selected to be the required stat·

ically admissible stress field. The final limit load can be detennined as a

linearly scaled value of the applied load such that the maximum stress in the

component corresponds to the yield stress. The limit load is given by the

expression:

(3.8)

where 17, is the yield stress, (U<!)M is the maximum von Mises equivalent

stress for any given elastic iteration and P is the applied load.

3.5 The Theorem of Nesting Surfaces

It \I.'as explained in Section 2.7 that the reference stress, being indepen-

dent of the creep exponent, should be a unique point through which the

stress distributions corresponding to any value of n should pass.45.46 Since

the solution for an infinite creep exponent corresponds to perfect plasticity,

Sim proposed that the reference stress can be obtained from equation (2.70)

which, obviously, requires prior knowledge of limit loads. The combined

r·node stress obtained using the r·node method is one way of directly deter·

mining the reference stress. Alternately, the task of direct determination of

reference stress using linear elastic stress distributions can be accomplished

by using the "theorem of nesting surfaces". 17 In this section, finite element

implementation of the theorem of nesting surfaces is carried out for n = 1 so
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as to enable direct determination of the reference stress from linear elastic

analyses stress distributions.

The reference stress, using the theorem of nesting surfaces, can be ex­

pressed as

(3.9)

For linear elastic analyses, n = 1 and therefore,

(3.10)

In terms of the finite element discretization scheme, equation (3.10) can

be written as

(3.11)

Thus the stress distributions obtained from linear elastic finite element

analyses can be used for directly determining the reference stress.

3.6 The Extended Lower Bound Theorem

Mura et al. 16 applied their proposed extended lower bound theorem for

determining the limit load of a tension specimen and obtained. good limit load

estimates. However, real life structures are more complicated in nature and

hence warrant a procedure that is generic. The methods based on modified

elastic moduli are viable alternatives since they provide statically admissi­

ble stress distributions. The implementation of the extended lower bound

theorem so as to enable direct determination of limit loads by using stress
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distributions obtained from linear elastic finite element analysis is discussed

in this section.

In equation (2.56), the linear elastic stress distribution si'; corresponds to

an applied traction, rnoP. If si'; is a statically admissible stress distribution

corresponding to an applied traction P, then mOsi'; would correspond to mOP.

It is therefore clear that

(3.12)

Thus equation (2.48) can be written as

The factors rno, JJ.0 and ¢o can be determined by rendering the functional.

F. stationary, leading to the following set of equations:

8F
8m' =0, ;; =0 (3.14)

The von Mises equivalence for uniaxial state of stress can be written as

foHows:

(3.15)

and

(3.16)

Equation (3.13) becomes

F =m' -Iv, ~ [{(m')'(a;)' - a:} +3(¢')'] dV. (3.17)
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Applying equation (3.14) in conjunction with equation (3.17), we get

.°=0 (3.18)

and

m"= q,~
(3.19)

N

E(o:,)'t.V.
'=,

where the quantities CTd, and av,. are the von Mises equivalent stresses and

volumes of respective elements in the FEA discretization scheme.

Comparing the expressions for m", as obtained from equation (3.19), and

the reference stress, as obtained from the theorem of nesting surfaces [equa­

tion (3.11)1. it can be seen that

(3.20)

Thus a monotonic increase in the value of the reference stress implies a mono­

tonic decrease in the value of m", with increasing n. Since equation (2.i9)

gives a lower bound on the reference stress for n = 1, m" corresponding to

n = 1 is an upper bound multiplier for limit loads.

Equation (2.56) can be simplified further using equations (3.15) and (3.16)

(3.21)

Equations (3.19) and (3.21) can be readily obtained on the basis of linear

elastic FEA. (q;)M is the maximum equivalent stress in a component or
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structure for a prescribed load, P. The lower bound limit load can therefore

be expressed as:

PLM=m'P. (3.22)

Combining equations (3.20) and (3.21), the limit load can be bounded as

follows:

(3.23)

3.7 Closure

The finite element implementation of the available methods for determin­

ing the limit loads has been discussed in this chapter. An alternate method

for determining lower bound limit loads, proposed by Mura et al., has been

implemented. By invoking the theorem of nesting surfaces it has been shown

that the multiplier mO defined by Mura is actually an upper bound on the

safety factor.

In the next chapter, the advantages and limitations of the methods dis­

cussed in this chapter are investigated. An improved method for obtaining

lower and upper bound limit loads, based on the extended variational tbe~

rem. is also presented.
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Chapter 4

Improved Lower Bound Limit
Load Estimates: The
rna-method

4.1 Introduction

The robust methods of limit analysis are attractive alternatives over ana·

lytical methods and inelastic finite element analysis since they are relatively

easy to implement and make use of statically admissible stress distributions

obtained from linear elastic analyses. However, the use of classical lower

bound theorem requires a number of linear elastic iterations in order to ob­

tain reasonable limit load estimates. Restricting tbe number of iterations

to a few may often lead to overly conservative results. A robust method is

one which bas the ability to give acceptable results at minimum cost and

effort. Hence any method aimed towards reducing the number of elastic it-

erations without compromising on tbe quality of results would be of definite
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significance.

An in-depth study into the extended lower bound theorem, the notion of

integral mean of yield and its relationship with the theorem of nesting sur·

faces offers sufficient motivation towards developing methods for obtaining

improved lower and upper bound limit loads. In this chapter a method is

proposed for determining lower bound limit loads on the basis of two linear

elastic analyses. The method, designated as the m.,-method, invokes the no­

tion of reference volume to account for locafu:ed collapse and the technique

of "leap-frogging" to a limit state. These concepts are used in conjunction

\\;th the elastic modulus adjustment technique, described by Seshadri and

Fernando,34 for obtaining improved lower and upper bound limit load esti-

mates. The advantages and limitations of the existing robust methods are

also investigated in this chapter from an engineering stand-point.

4.2 Advantages and Limitations of the
Existing Robust Limit Analysis
Techniques

4.2.1 Classical Limit Theorems

The classical lower and upper bound theorems of limit analysis offer a

practical way to avoid the severe limitations in estimating the limit loads

by analytical methods. By choosing statically admissible stress fields and

kinematically admissible velocity fields in an appropriate manner, reasonable

71



estimates of the bounds can be obtained. However, application of classical

lower and upper bound methods is limited to simple geometric codigurations

and loading patterns. Coming up with the appropriate statically admissible

stress distribution or kinematically admissible strain distribution is not a triv­

ial task. Furthennore, the construction of generalized yield surfaces in tenns

of stress and moment resultants and the manipulations involving strain-rate

vectors can be cumbersome and unwieldy.

Mackenzie et al.' extracted statically admissible stress fields by per­

fonning linear elastic FEA and applied the classical lower bound theorem.

Their repeated elastic analyses procedure and the elastic modulus adjustment

scheme is essentially an adaptation of the methods proposed by Marriott" and

Seshadri.s

It is worthwhile carrying out repeated elastic iterations provided tbe stress

distributions obtained progressively approach limit type. There is no assur­

ance, however, that the stress distributions would approach limit type even

after many iterations. This problem can be illustrated by considering the

example of a torispherical head subjected to internal pressure (Figure 4.1)

where the maximum stress does not converge; rather it fluctuates with suc­

cessive elastic iterations as shown in Figure 4.2.

Performing repeated elastic analyses by modifying the elastic moduli leads

to softening in some regions and hardening in the other regions of the struc­

ture. In some cases, tbe difference between the magnitudes of elastic moduli

during this process can become large. For instance, in a compact tension
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Figure 4.1: Dimensions of a Torispherical Head
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Table 4.1: Values of Elastic Moduli of Two Elements
in a Compact Tension Specimen - Elastic
Iteration Number 6 (q = 1)

Element Number Elastic Modulus Value (Pa)

958.73

31

specimen, after the sixth iteration the range of values of elastic moduli in tbe

structure was found to be quite high. The elastic moduli values of two typical

elements are given in Table 4.1 as representative cases. Such situations lead

to what is referred to as iIl-conditionint'2 of the stiffness matrix in the finite

element formulation which can severely affect the accuracy of the stress val­

ues obtained. Also, there is no prescribed procedure to determine the value

of the arbitrary stress in equation (3.3). This aspect is problematic since an

improper selection of the arbitrary number during every elastic analysis may

cause the elastic moduli values to progressively assume either very large or

negligibly small values, thus falling out of the range of numerical accuracy of

the FEA software.
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4.2.2 Extended Lower Bound Theorem

The main advantage in using the extended lower bound theorem lies in

the fact that both upper (mO) and lower bound (m') limit load multipliers

can be determined for any given stress distribution. It should be noted that

the factor m" is an upper bound multiplier only if the corresponding stress

distribution satisfies the theorem of nesting surfaces.

The extended lower bound theorem of limit analysis, however, bas its O'\\'Il

limitations. In the classical method of determining lower bound limit load,

the maximum equivalent stress value is all tbat is needed from a statically

admissible stress field. However, determination of Mura's lower bound multi~

plier (m/) requires, in addition to the entire stress field, the volume associated

with every element in order to calculate the parameter mO. The factor m"

can thus assume very large values in case of problems where the collapse is

local.

It can also be shown that the magnitude of lower bound limit load deter­

mined using Mura's method is always less than that obtained using classical

limit load and hence, as such, has no advantage. The relationship between

the c1assicallower bound limit load,

the upper bound limit load,

Pu=mOP,
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and Mora's lower bound Limit load,

2mo~

PU1 = cr: + (mO)2ta~)~

can be expressed as:

Let

Pu =w.
P",

Therefore,
PLC 1 +w2

PLM=~'

Since w ~ 1, as per equation (4.6),

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

Therefore. for any elastic stress distribution, the limit load value determined

using equation (4.1) will always be equal to or greater than the one evaluated

using equation (4.3).

The lower bound limit load values given by equations (4.1) and (4.3)

were determined for a number of structural components such as a thick·

walled cylinder subjected to uniform pressure, spherical pressure vessel \\'ith

a cylindrical nozzle subjected to uniform pressure, beams and torispherical

heads. to mention a few. Equations (3.23) and (4.7) were validated for a

number of linear elastic stress distributions. For the purpose of illustration,

some typical limit load estimates are plotted in Figure 4.2 for a number of

elastic iterations.
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(4.8)

4.2.3 Theorem of Nesting Surfaces

The theorem of nesting surfaces was proposed by Calladine and Drucker l !

as a method for detennin.ing the reference stress based on tbe nesting surfaces

of energy dissipation in creep. The reference stress is given by the expression

~t~4V;
u re/= ~

The maximum and the minimum values of tbe reference stress correspond

to n --+ 00 and n = 1 respectively. The stress distributions relating to the

various values of n can be simulated by performing a number of elastic anal·

yses in conjunction with elastic modulus modification after every iteration

(of course, assuming tbat all these iterations progressively lead to limit type

state for an arbitrarily applied external load). Thus a limit type stress distri­

bution can be identified with the stress distribution corresponding to n -+ oc.

Assuming the external load applied to be equal to tbe exact limit load and

limit stress distribution. for a structure that completely becomes plastic at

collapse, arel = Clr and otherwise "ref < a•. Thus iD general,

(4.9)

The refereDce stress formula due to Sim4M6 given by equation (2.70) can

be expressed as

(4.10)

where PL is the applied load which, in this case, is taken to be the exact

limit load. From equations (4.9) and (4.10), PLI 2:: PL. The unconservative
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nature of the limit load obtained using the theorem of nesting surfaces is

therefore not useful for pressure component design. Since the stress distri·

butions correspond to linear elastic analysis and can be scaled liDearly. the

aforementioned relationships are valid even if the applied load is of any arbi-

trary value. •!U the collapse of structures becomes more local, the reference

stress, which is determined on the basis of the total volume of the structure.

becomes increasingly smaller than the actual. The concept of reference vol-

ume to be discussed in Section 4.4 offers a convenient way to overcome this

problem.

4.3 Robustness of Structural Behavior
during Repeated Elastic Iterations

It was seen in Section 4.2.1 that performing a number of elastic analyses

may not necessarily lead to a limit type of stress distribution and may even

cause unstable structural response such as 8uetuation of maximum Stress.

Therefore. it becomes useful to understand the requirements for a valid stress

distribution and the ways and means for obta.ini.ng it.

The factor m<> is one oftbe parameters that is useful in assessing whether

or not limit stress distribution is being approached during successive elastic

iterations. As the number of iterations increase, m<> should monotonically

decrease and converge. Should this not occur, i.e., if there is an increase in

the value of mO as compared to its value during the previous iteration, then

79



the theorem of nesting surfaces would be violated· implying that the stress

distributions are not on a redistribution path leading to limit type.

The structural behavior would be considered robust and stable if the

sequence ofequivalent stresses described below and their relative locations are

preserved during the linear elastic finite element analyses.• i.e.• the sequence

holds good.

An iteration variable Cis introduced, such that both m" and (17£)M are

functions of C. A change in the secant modulus f(E.); in equation (3.3)J

by an infinitesimal amount will imply a change .6.( in the iteration variable.

The criteria for a (ower bound limit load is the concurrent satisfaction of the

following:

(1) m1 ~ m', or d~" :=; O.

This requirement ensures satisfaction of the theo-

rem of nesting surfaces which assures that there is (4.11)

a progressive increase in the internal energy di,s..

sipation, for a given value of applied load, as the

stress field becomes closer to the limit type.

·While carrying out repeated elastic iterations. assume that liInit type stress distribu­
tion is obtained at the nth iteration. Any Stres/l dUtribution corresponding to a preceding
iteration (say, iteration number r) should be on a path leading lO the final limit state.
One of the requirements for this is that the inequality

is satisfied. Otherwise. the "theorem of nesting surfaces" is considend to be violated.
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(2) (o"M)r;=: (oM)1I or ~ ::; 0,

This stipulation aims at a Batter stress distribu­

tion approaching a limit type stress field.

(3) The relative locations of the set of stresses ad >

lTd > . _. > (1eN are invariant.

This requirement ensures that successive distri·

butions are perturbed states about the initial

pseudoelastic Stress distributions with the r-node

equivalent stress being invariant.

(4.12)

(4.13)

The requirements stipulated by equations (4.11) to (4.13) ensure that

the resulting stress distributions belong to a family of distributions: Le..

intennediate stress distributions leading to one of limit type.
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4.3.1 Class It n and m Components and Structures

Repeated. elastic FEA enables an analyst to obtain insight into both locals as

well as globa1:M behavior ofcomponents and structures. The global structural

behavior can be assessed by plotting mO
, m' and UM as a function of the

iteration variable (. In practical terms, there is little advantage in carrying

out a large number of iterations just to find out if the global behavior would

degenerate. This would very much depend on the geometry and loading on

a given component configuration. and on the elastic modulus modification

scheme. However, it is sufficient for the purpose of ascertaining the bounds

to detennine the trend based on the first and second linear elastic FEA. It

is therefore useful to categorize the behavior as follows:

~ These are components and structures that are characterized.

by a monotonic convergent behavior. The 11lo estimates obtained are

reliable. For Class I components and structures

dm'
d($

dm'

d( " 0
(4.14)

~ ~ 0

and the maximum stress location is also more or less invariant.

A thick-walled cylinder subjected to a unifonn internal pressure and an

indetenninate beam under a uDifonnly distributed load are examples

of Class I components and structures.
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~ Successive iterations of modulus softening may sometimes re­

sult in an increase in the magnitude of the maximum equivalent stress.

This type of behavior is usually associated. with thin structures ,,;tb·

out a re-entrant comer-. The criteria for Class U components and

structures are:

d:;O $ 0.

dm' }d(
fluctuate.

dUM
d(

(4.15)

(4.16)

The maximum stress location may also 8uctuate for this type of strue·

Typical problems that fall under this category are thin torispherical

heads subjected to a uniform internal pressure.

~ Tbe criteria for these class of components and structures

can be expressed as

dmo
d(>O.

d;' } fluctu..e.
da;"

-,=-__---,,.- d(
"The presence of re-entrant comers in components such as a spherical pressure vessel

with a cylindrical nonle and a compact tension specimen enable stable positioning of the
maximum equivalent stress location.
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The maximum stress location liuctuates and the theorem or nesting

surfaces is violated, and therefore the results are invalid.

Figure 4.2 shows the typical behavior of the three classes of structures

during linear elastic iterations based on a modulus-softening index or q = 1.

The modulus softening scheme given by equation (3.3) is modified as:

(4.17)

Should the component or structure exhibit Class II or ill behavior, then

using q < 1 (say, 0.5 or 0.25) instead of 1.0 may stabilize the structural

beha";or of pressure components by weakening the extent or elastic moduli

modification and thereby transforming their behavior to Class 1.

4.4 Local Plastic Collapse - Notion of
Reference Volume (VR)

If plastic collapse occurs over a localized region or the mechanical com-

ponent or structure. mO will be significantly overestimated if it is calculated

on the basis of the total volume. Vr . Furthermore, the corresponding m' will

be underestimated {equation (4.1)}.

The reference volume concept is introduced here to identify the "kine­

maticallyactiven portion of the component or structure that participates in

plastic action. If VT is tbe total volume and VR is the rererence volume, then

VR .$ VT. During local collapse, plastic action is confined to a sul;region of
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the total volume (Figure 4.3). The magnitude of the upper bound multiplier

(mil) would therefore depend on the sub-volume, V6, where

(4.18)

In order to carry out the various summations, we consider the foUovdng

sequence, i.e.,

When 8 = 1, equation (3.19) degenerates to tbe classical lower bound

value. Le.

(4.20)

An iteration variable ( is introducro. next in such a way that infinitesi­

mal changes to the element elastic modulus of the various elements during

the second and subsequent linear elastic FEA would induce a corresponding

change ~(. The magnitude of !\( would. of course, depend on the nature of

the modulus-adjustments.

For the degenerate case. m" \l.'Ould increase with ( thereby violating the

nesting surface theorem. It is implied bere that the second linear elastic

FEA would lead to a "flatter" distribution of stress. On the other hand, mil

evaluated on the basis of the total \'Olume would decrease with increasing

(. Therefore, for some volume \.'R., where a VI < VR $ VT corresponding to

t3 = o. the multiplier mil would be invariant, Le., mi = mil' In other words,

the theorem of nesting surfaces would be just satisfied. The schematic of vari-
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Figure 4.3: Total and Reference Volumes
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ation of m" and m' with the iteration variable, (", is shown in Figure 4.4. The

procedure for deten:nining the reference volume is illustrated in Figure 4.5.

4.5 The rna-method

In this section, Mura's variational formulation is extended to provide

improved !ollo1!r bound limit loads for symmetric as well as nonsymmetric

components and structures. Using a modulus-adjustment scheme akin to the

R-Node method, the multiplier 11la can be obtained on the basis of twO linear

elastic FEA by "leap-fragging" to a near asymptotic limit state. The first

linear elastic FEA corresponds to the conventional linear elastic analysis.

while the second linear elastic FEA involves modifications to the elastic-

modulus of all the elements according to equation (4.17). In equation (4.17)

the element numbers vary from k = 1 to k = N and q is the "'modulus­

adjustment index" which is nominally taken to be equal to unity as in the

R·Node method.34 .At.. \a1ue of q < 1 can be used to stabilize the structural

behavior of "sensitive" pressure components.

On the basis of the results of the first and second linear elastic FEA. and

making use of the expression gi\-en by equation (3.19), the values of m1 and

m1t can be determined. The average surface; of dissipation 17 can now be

expressed as:

(4.21)
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where Ct and C2 are constants. In equation (3.19), VR :$; V ~ \-T. The

theorem of nesting surfaces essentially asserts that mt ~ mtl ~ m, where m

is the exact faetQr of safety.

As ( increases with successive linear elastic FEA iterations beyond two.

mO and m' "'''Quid eventually converge to the exact value of the factor of

safety, m. Whether or not the convergence is monotonic was discussed in

Section 4.3.1.

i\·Iura's lower bound multiplier can be expressed as:

2m'(()u'
m'«() = u: + [m.«()],[q.M«()]' (4.22)

where a"M(<) = (cr.')mu is the maximum equivalent stress at iteration number

"i". The quantities m', m O and UM are all functions of (.

Differentiating both sides of equation (4.22) with respect to {, we get

dm' {}m' dmo 8m'~
d( = tJmod(+ ChT'u ;.

In terms of finite differences, equation (4.23) can be expressed as:

(4.23)

(4.24)CIm'1 iJm'lt>.m' = CIm' (Am') + 8u'I. (t>.u:,).
(a(. Ai c=<.

Although equation (4.24) is valid for any given iteration, in the proposed

h d 1
.. . dmo

mo-met 0 on y two Iterations are requrred. IT (if < O. then mO > m'.

The following quantities are defined next:

t>.m' m. - , )t>.m· rna - m' (4.25)

and Au"M ."'- - O"M-irna
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where the subscript i refers to the iteration number.

If we insist tbat u:,oo = ~ when m" -+ m.o and m' """"t ma, tben it is

clear from equation (2.56) tbat m.. would be & lower bound.

Making use of equations (4.22), (4.24) and (4..25), and carrying out the

necessary algebraic manipulations, tbe following quadratic equation can be

obtained:

where

Am~ + Bm", +C =0 (4.26)

B

C

-8(m:'l'(":',)',

4(mn3(UMi),

q"Mi.
a,

The coefficients A, B and C can be evaluated. from the results of an~·

linear elastic FEA.

To ensure real roots for equation (4.26), the discriminant must be greater

than zero. i.e..

(4.27)

While it is possible to evaluate m.. on tbe basis of tbe results of tbe first

linear elastic FEA provided equation (4.27) is satisfied, tbe introduction of

refereoce volume in conjunction with two linear elastic FEA enables much im­

proved estimates ofm",. Furthermore, since m is bounded by mOIl and m"" tbe
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use of reference volume would narrow the spread. The phrase "mc.-method"

therefore refers to the use of Q elements in the finite element discretization

scheme that pertains to the identification of an appropriate reference volume

{equations (4.18) and (4.19)]. The "leap-frogging" of intermediate iterations

is schematically illustrated in Figure 4.6.

4.6 illustrative Example - Torispherical
Head

The step-by-step implementation of the nlo-method is explained in this

section by considering the example of a torispherica1 head subjected to uni­

fonn internal pressure (Figure 4.1). The dimensions of the head an L~/D=0.8.

r/D=0.12. H/D=O.2360 and a thickness of2.54)(10-2 m (I in.). The Young's

modulus and the yield stress of the material are respectively 206.85)( 106 kPa

(30)(10& psi) and 206.85xlQ3 kPa (30xl03 psi). The Poisson's ratio is as-

sumed to be 0.3. For perfonning the analyses, an arbitrary unifonn pressure

of 200 kPa (29 psi) is applied.

Determination of Reference Volume

The follcw,'i.ng are the steps that are necessary (or determ.ining the reference

volume:

• The elements are arranged in the descending order of energy dissipa­

tion corresponding to the first linear elastic analysis by following the

sequence given by equation (4.19).
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• In the same order, the dissipations corresponding to the second linear

elastic analysis are listed.

• The values of m" are determined by progressively increasing the volume;

starting with the element having the largest dissipation and following

the sequence given by equation (4.19) for the entire volume.

• Tbe volume corresponding to the two linear analysis having the same

value of m" is identified as the reference volume.

Computational Procedure:

Applied Pressure, P 200 kPa

Elastic modulus softening index, = 1

Value of yield stress, u, 206850 kPa

Upper bound multiplier

linear elastic analysis, I m1 6.41

linear elastic analysis, II m1r 6.23

~Ia...·dmum equivalent stress (nodal stresses

interpolated)

linear elastic analysis, I

linear elastic analysis, II

Location of maximum equivalent stress (el­
ement number)

linear elastic analysis, I

94

[(u,)Mlr = 82195.59 kP.

[(a,,)MJIl = 63351.79 kPa
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linear elastic analysis, II

The classical limit load corresponding to

the second elastic iteration,

Upper bound multiplier based on tbe ref-

erence volume,

Therefore the upper bound limit load,

:'\ormalized maximum stress,

(PLC)u

200 x 6~:~~9
653.02 kPa

6.19

m'RP = 6.19 x 200

1238.0 kPa
u"Mi 63351.79
-;; = 206850
306.3 x 10-3

~ext. the coefficients A, B and C of equation (4.26) are detennined as

follows:

.-l (mn·(OAfi)· + 4(mi)'(c1MJ2
- I,

6.19· )( (306.3 )( lO-'r + 4 x 6.192 x (306.3 X 10-')' - 1 = 26.30

B -8(mf)'(u:fi)',

-8 x 6.193 x (306.3 X 10-3
)2 = -178.01

• Element numbers S53 and 541 lie very close to one another in the finite element mesh
and are given here just to ill\1Stfate that the maximum suess 1oc&tion has not changed
appreciably bet1lleel1 the fint and the second elastic iterations.
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C 4(m:'l'Ca"ol,

-4 x 6.1gJ x (306.3 x 10-3
) = 290.59

Equation (4.26) therefore becomes

26.3m~ - 178.01ma + 290.59 = 0

leading to mO l=2.75 and 11lo2=4.02. Considering tbe larger of the two roots,

the lower bound limit load estimate is given by, PL = mo.2P= 4.02x200 =

804.0 kPa (116.6 psi). The limit load estimate using inelastic analysis and

the classical lower bound method are found to be 858.0 kPa (124.4 psi) and

651.0 kPa (94.4 psi), respectively.

It should be noted tbat, in general, it is not difficult to satisfy the con­

ditions stipulated by equations (4.11) and (4.12) for generic struCtures. The

third condition (equation (4.13)], however, places stringent requirements on

the redistributed stress field and can be satisfied only if the elastic modulus

modification scheme is capable of produc~gperturbations about the original

Stress field. This requires that the modulus modification scheme should be

"'--eak (q < 1) in case of sensitive structures so as not to cause any abrupt

change in the elastic moduli values. However, in the mo..method, the pri­

mary requirement is a statically admissible stress field that satisfies the two

conditions given by equation (4.11) and (4.12). Therefore, ensuring that the

maximum stress location does not show any unreasonable change would be

sufficient for all practical purposes.
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4.7 Numerical Examples

In this section, limit load estimates are determined (or a number of struc­

tural components of practical interest. The benchmark problems considered

here are torispberical heads, an indeterminate beam, 8. thick-waJled cylinder.

a spherical pressure vessel with a cylindrical nozzle, a pressure vessel SU~

port skirt. non-symmetric rectangular plates and a compact tension specimen

(Tables 4.2 and 4.4). The materials used are assumed to be homogeneous.

isotropic and elastic perfectly-plastic. AlI the problems are modeled using

the ANSys l software. Four-noded isoparametric quadrilateral elements are

used in the finite element modeling of all the two dimensional problems with

the exception of the compact tension specimen.

Non-symmetric plates are modeled using the three.d.imensional eight­

noded isoparametric solid elements while the compact. tension specimen is

modeled using tbe two-dimensional isoparametric six-noded triangular ele­

ments and the two-dimensional isoparametric eight-noded quadrilateral el­

ements. The A1'lSYS commands listings of all the problems are given in

Appendix C.

The upper bound limit load. mOP, the improved lower bound limit load,

maP, and the classica1lower bound limit load, PLC, for the second tinear

elastic analysis are determined for the aforementioned problems. These esti·

mates are then compared with analytical and inelastic finite element analysis

results. Based. on the first two linear elastic FEA iterations, all the problems

97



analyzed in this paper can be classified as Class I.

4.7.1 Thick-Walled Cylinder

The thick-walled cylinder considered has an inner radius of 7.62 x 10-2 m

(3 in.) and an outer radius of 22.86 X 10-2 m (9 in.). The yield stress of the

material is assumed to be 206.85xlfrl kPa (30xlfrl psi), and the modulus

of elasticity is 206.85 x 111 kPa (30xl()6 psi). The Poisson's ratio is assumed

to be equal to 0.3. An arbitrary uniform internal pressure of 68.95x lfrl kPa

(lOxlfrl psi) is applied.

The thick-walled cylinder is modeled as an axisymmetric, plane strain

problem. The analytical limit load for this problem, using the von Mises

yield criterion, is given by the expression

Puact = 0JUl/ln Y, (4.28)

where Y is the ratio of the outer radius to the inner radius of the cylinder.

The' limit load estimates are presented in Table 4.5.

4.7.2 Indeterminate Beam

The indeterminate beam of span SO.8xIO-2 m (20 in.) and thickness

2.54xlO-2 m (I in.). shown in Figure 2.6. has end A built·in and end B

simply supported. The beam is assumed to have unit width in the direction

normal to the paper. The modulus of elasticity, the yield strength and the

Poisson's ratio are assumed to be the same as in the previous problem.. The
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beam is modeled for the plane stress condition. A uniform arbitrary pressure

of 112.4 kPa (25 psi) is appUed.

When the first plastic hinge forms at end A, the structure becomes Stat­

ically determinate. As the load intensity is increased funher, an additional

plastic hinge forms at point C resulting in the coUapse of the beam. .l\n

expression for the coUapse load' is

p. _ll.66Mp
c:act- £2 . (4.29)

The variationofrn", rn' and rna with volume is shown in Figure 4.7. Table 4.5

gives tbe limit load estimates for the structure.

4.7.3 Torispherical Heads

A considerable amount of technical research bas been devoted to the

design of torispberical heads. An approximate analysis of torispherical beads

was carried out by Drucker and Shield.53 Subsequently, additional work

constituting improvements to the foregoing paper was also published.S4

The dimensions of the torispherica1 heads considered here (Figure 4.1) are

presented in Table 4.2. The modulus ofelasticity, yield strength and Poisson's

ratio are assumed to have the same values as in the previous problems. The

pressure vessels analyzed have a uniform thickness of 2.54xI0-2 m (1 in.)

through out. The ratio of the average diameter of the torispberical head

(D) to the thickness of the shell (t) is taken to be equal to 300 (consistent

with thin shell theory). An arbitrary internal pressure of 200 kPa (29 psi) is
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Table 4.2: Dimensions of Torispberical beads

Case Head Geometry Parameters
No.

L, D r HD
0.8 0.12 0.2360

0.14 0.2468
0.16 0.2577

0.7 0.12 0.2619
0.14 0.2710
0.16 0.2804

0.6 0.12 0.3068
0.14 0.3136
0.16 0.3207

applied. The variation arm", m' and rna with volume is shown in Figure 4.8.

The values of the limit loads are presented in Table 4.3.

4.7.4 Spherical Pressure Vessel with a Cylindrical
Nozzle

Limit analysis of axisymmetric nozzles has been a topic of substantial

interest since the 1960's. AnaIyticailimit analyses of these structural compo-­

nents are available in a number of references.55,55 The nozzle-shell geometry

parameters are as shown in Figure 4.9. To avoid any stress singularities. a

fillet radius equal to tj2 has been provided at the re-entrant corner of the
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Table 4.3: Limit Load Estimates of Torispherical Headst

Case Lower bounds Inelastic DrucW& Upper bound
No.1 P: m.P FEA ShieldS3•54 m1fP

1 650.0 804.0 858.0 803.3 1238.0
(567.7)"

2 760.2 943.5 970.6 893.6 1326.9
(662.3)

3 863.4 1068.6 1100.0 983.9 1413.8
(756.6)

4 760.8 941.3 1002.0 947.4 1396.1
(657.6)

5 886.0 1098.4 1138.0 1050.1 1480.1
(780.8)

6 1024.2 1253.6 1288.0 1152.8 1560.8
(912.1)

7 933.2 1158.2 1260.0 1145.3 1635.1
(774.6)

8 1072.0 1321.0 1404.0 1263.9 1695.3
(913.6)

9 1240.0 1488.0 1544.0 1382.4 1754.5
(1081.9)

I All units in kPa
'Refer Table 4.2 for shell geometries
I PLc is the classica1lower bound limit load obta.iaed from tbe second linear
elasticFEA.

°The quantities within the brackeu correspond to q :£ 0.25 and those outside
com!Spond to q "" 1.
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Torispherical Head Under Internal Pressure
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nozzle-shell intersection. The pressure vessel considered here has the values

R=l.O m (39.37 in.), r=O.2 m (7.87 in.) and T=O.2S m (9.84 in.). The nozzle

thickness is determined by approximately sizing the pressure vessel based on

the hoop stresses of the cylinder and the spherical shell expressible hy the

equation
'J!Tr

t=T' (4.30)

The length of the nozzle is made greater than S.Jrt to get away from the

effects of stress discontinuities at the far end of the nozzle. The yield stress

is assumed to be 300x103 kPa (43.S1xl03 psi) and the modulus of elasticity

is taken to be 200 X101 kPa (29xlOll psi). The Poisson's ratio is taken to be

the same value as for the previous problems. An arbitrary internal pressure

of 200 kPa (29 psi) is applied. The results of the analyses are presented in

Table 4.5.

4.7.5 Pressure Vessel Support Skirt

The pressure vessel support skin shown in Figure 4.10 is a cylinder at­

tached cone subjected to unifonn axial load.~7 The top supponing ring is

fixed to a rigid foundation. A blend radius is used at the cylinder-cone

juncture. The sharp juncture notch and modeling singularity are eliminated

because of the blend radius. The bottom of the cylinder has an axial load

applied and it is free to deflect and rotate. The material yield strength is

set at 275.8 MPa (40000.0 psi) and the Poisson's ratio is assumed to be 0.3.

An axial pressure of 7736.2 kPa (1122.0 psi) is applied. This problem is of
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Figure 4.9: Dimensions of the Spherical Pressure Vessel with a
Cylindrical Nozzle
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interest since it serves as a bencb·mark problem for developing stress classifi­

cation procedures.S1 The limit load estimates for this problem are presented

in Table 4.5.

4.7.6 Non-symmetric Rectangular Plate Structures

Plates form an important class of structural components since they are

widely used as flat heads of pressure containments, internals of pressure ves­

sels and heat exchangers, and various forms of closures. In this paper, the

proposed. methods are applied. to non~symmetricplate structures with com­

plex boundary conditions. The dimensions of the non~symmetricplate struc·

tures analyzed in this paper are shown in Figure 4.11. The elastic modulus.

yield stress and the Poisson's ratio of the plates are assumed to have the

same values as for the thick~wal1ed cylinder. The plates are subjected to

an arbitrary uniform pressure loading of 172.38 kPa (25 psi). The comple.'C

boundar:" conditions bave been chosen for these problems witb tbe intention

of investigating the versatility and robustness of the proposed methods.

By \irtue of tbeir complex boundary conditions, analytical solutions for

these configurations are difficult to obtain. For example. for tbe problems dis­

cussed in this section, the geometry along with tbe boundary conditions can

cause complex shear interactions during failure tbus rendering an analytical

elastic~plastic analysis intractable. Assuming an appropriate collapse mecb·

anism and evaluating an upper bound limit load is difficult for these types

of problems. Also, the boundary conditions pose difficulties in estimating a
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lower bound limit load. The proposed methods, even (or such complexities,

provide a direct and systematic method for estimating the limit loads. The

limit load estimates are given in Table 4.5.

4.1.1 Cracked Components

Determination o( limit loads (or cracked components is essential for the

robust estimation of fracture parameters such as the J.$I,~ For the present

analysis. a compact tension specimen shown in Figure 4.12 is considered. The

specimen is subjected to an arbitrary tensile (orce o( 100 N (22A7Ibf). The

material is assumed to exhibit elastic-perfectly plastic behavior. The elastic

modulus o( the material is assumed to be 211xl06 kPa (30.6xI06 psi) and

the yield Stress is taken to be 488.43 x 1l)3 kPa (70.84x 1()3 psi). The specimen

is modeled as a plane stress problem with specified tbickness.

It is necessary that the (1/.fi1 singularity o( the strain field at the crack

tip be generated when using linear elastic analysis. This is achieved most

effectively by using an isoparametric six-noded triangular element with the

mid-side nodes moved to quarter point.60 This element exhibits strain singu­

larity along the element boundaries as well as in the interior, and has finite

strain energy and stiffness at all points within the element.

For the elastic perfectly-plastic behavior of the elements, Rice and Rosen­

gren6t have shown the crack tip strain singularity to be of the order (l/r).

This is achieved by using an isoparametrlc eight-aoded quadrilateral element

that is degenerated into a triangle with mid-side nodes moved to the quarter
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Table 4.4: Configurations of Mechanical Components Analyzed

Case No. Problem

Thick Cylinder (Figure 2.2)
Indeterminate Beam (Figure 2.6)
Spherical Pressure Vessel (Figure 4.9)
Pressure Vessel Support Skirt (Figure 4.10)
(a) Non-symmetric Plate (Figure 4.11a)
(b) Non-symmetric Plate (Figure 4.11b)
Compact Tension Specimen (Figure 4.12)

Type of Loading

Unifnrm internal pressure
Uniformly distributed toad
Uniform internal pressure
Axial pressure
Uniform. external pressure
Uniform. external pressure
Tensile load

point.62 It must be noted that the singular elements are used only around

the crack tip, and these elements permit the use of a coarser mesh than is

possible with ordinary elements. Because of the high stress gradients a third

iteration is required in order to satisfy equation (4.27) for the mo-method.

The limit loads obtained using the proposed methods are compared with

inelastic finite element results (Table 4.5).

4.8 Closure

An improved method for determining lower bound limit loads of pressure

components is presented in this chapter. The phrase rna-method refers to the

use of Q elements in the finite element discretization scheme that pertains to

the identification of an appropriate reference volume.
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Table 4.5: Limit Load Estimates of Mechanical Components I

C... Lower bounds Inelastic Analytical Upper bound
No.! PI, m.P PEA Metbod m~P

1 lBO.lxlQJ 220.5 x 1<FJ 261.6xlfrl 262.4xlQJ 272.6 x 1<r'
(124.6xl()3)

2 1202.2 1490.2 1553.1 1507.3 2006.0
(882.6)

3 96.7xllf1 118.6xlcFJ 135.1xlfrl 136.5xlQJ 148.6xl0
13.1xIQ3

4 148.8xlQJ 184.1xlQJ 247.2xlfrl 273.2xl0
(1l9.6xl()3)

5. 453.4 561.3 707.7 827.1
(252.6)

5b 2691.2 3219.0 3483.1 3no.o
(1644.3)

6" 12.6 14.0 15.4 15.6
(3.5)

IAll units in kPa unless otherwise specified
i Refer Table 4.4 for respective configurations
I Pte is the c1assica1lower bound limit load obtained from the second linear
elastic FEA.

"The quantities within the brackets correspond to q "" 0.25 and those outside
correspond toq = l.

• Units in kN
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The multiplier rn.. is obtained £rom the results of a linear elastic FEA

by leap-frogging to a limit state. The numerical examples demonstrate that

the method is accurate and versatile. A classification of components and

structures into Class If II and III categories is also provided so that insight

into the behavior of sensitive structures is obtained.

Lower bounds obtained by the rn..-method are consistently better than

the corresponding limit load estimates based on the classical lower bound

theorem. The method can be applied to a wide range of symmetric and

non-symmetric geometric configurations and complex loading conditions.
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Chapter 5

In Search of the Redistribution
Nodes

5.1 Introduction

The reference stress method attempts to correlate creep deformations in

a structure with the results of a uniaxial creep test. The reference stress is

relatively insensitive to material parameters characterizing creep behavior.

The method bas applications in tbe design and life assessment of nuclear and

pressure components. Problems pertaining to creep growth, rupture damage.

creep buckling, and more recently, elastic-plastic fracture are some specific

cases where the method has been applied.

Determination of tbe reference stress is not always a simple task. An

approximate method of its determination relies on the availability of limit

load for the component. However, determination of limit load in itself is

by no means an easy task. Seshadri5 introduced tbe r-node method in an

attempt to directly determine the reference stress of generic structures and
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hence the limit loads. R-Nodes are load-<:ontrolled locations in a mechanical

component or a structure. As such, r-nodes lie on a distribution of stresses

corresponding to primary stress as defined in the ASME codes and can be

determined. on the basis of two linear elastic analyses. On account of its load

controlled nature, the "combined r-node equivalent stress" can be identified

with the reference stress, which is widely used in integrity assessments of

components and structures. The r-node method has been applied to a variety

of mechanical components and structures34- 36 and was found to provide good

estimates of limit loads.

This chapter unifies the concepts of r-nodes, reference stress and the pri­

mary stress as defined in the ASME pressure vessels and piping codes. As­

pects pertaining to lower bound limit loads are addressed because of their

relevance in engineering design and practical guidelines are provided. for an­

al)"Sts and designers.

5.2 R-Node Peaks and Collapse Mechanism

The r-node method for determining limit load estimates has been suc­

cessfully used for estimating tbe limit loads for a variety of mechanical com­

ponents and structures. The key to obtaining good estimates of limit toads

using the r-node method lies in the proper identification of the r-node peaks.

In the case of certain structures, the r-node peaks are distinct and suffi­

ciently spaced pointing to a "kinematically admissible" collapse mechanism.

The problems tbat fall in this category are structures like beams. circu-

us



lar plates, arches. frames and symmetric three-dimensional cectangular plate

configurations. Figure 2.6 and 5.1 show an indeterminate beam. subjected to a

uniform load and the corresponding coUapse mechanism and r-node diagrams

respectively. The plasticity spread at collapse as obtained from a detailed

inelastic finite element analysis is also shown in Figure 5.1. It can be seen

that the plastic hinge locations are well represented by the r-node diagram.

However, in the case of structures such as an axisymmetric spherical pres­

sure vessel with a cylindrical nozzle subjected to uniform internal pressure.

detailed inelastic analysis reveals that a clear failure mechanism does not

form prior to collapse (Figure 5.2). Rather, the failure is by the gross spread

of plasticit)" surrounding the re-entrant region of the structure. Therefore.

the r-node diagram cannot be expected. to point to a distinct kinematically

admissible collapse mechanism for these types of problems. Figure 5.3 shows

the r-node diagram for the pressure vessel. For this problem, the r-node peak

number one acts as a plastic control center describing the collapse process.

Although the r-node diagram consists of three peaks, only one peak (i.e..

peak number one) is considered for limit load detennination. The reasons

for not considering the other two peaks are described. in Section 5.4.

5.3 Virtual R-Node Peaks and Convergence
of R-Node Stresses

As explained earlier, the presence of distinct r-node peaks points to the

existence of a possible collapse mechanism for the structure under consid-
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-- Plaslicity spread at collapse

Figure 5.2: Spherical Pressure Vessel with a Cylindrical Nozzle sub­
jected to Uniform Internal Pressure - Dimensions and
Plasticity Spread at Collapse
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eration. Some r-node peaks can be introduced due to errors arising out of

interpolation of the stresses (Figure 5.4). These peaks, termed as "virtual

r-node peaks". should be ignored. while estimating collapse loads.

The r-node method is a practical technique foc determining limit loads

hased on the first and the second linear elastic finite element analyses. How­

ever, in order to illustrate the transient nature of the virtual r-nodes and to

show that the real r-node stresses do converge to load-controlled limit type

stresses, multiple successive elastic iterations are carried out. The first stcess

distribution corresponds to the initial elastic FEA and is designated as it­

eration number zero (i = 0). The modified stress distribution is obtained

from one of the successive iterations and is indicated by the corresponding

iteration number (i = N). As shown in Figure 5.4, the error in determin­

ing the r-node stress decreases as tbe modified stress distribution approaches

limit type. The error involved in determining the r-node stress is shown as

a consequence of the linear interpolation of the element centroidal stresses.

Similar trends can be expected even if polynomial interpolations are used.

The presence of virtual r-node peaks can be demonstrated, for instance.

by analyzing the r-node diagram of a torispherical head subjected to uniform

internal pressure shown in Figure 4.1. The r-node diagrams corresponding

to the first (i = 0) and the second (i = 1) linear elastic analyses, and the

first and the third (i = 2) linear elastic analyses are shown in Figure 5.5. It

can be observed from both the r-node plots that while peak number one is
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real, peaks number two and three are virtual.

The convergence of the r-node stresses with elastic iterations can, for the

purpose of illustration, be demonstrated by considering an indeterminate

beam subjected to uniform load (Figure 2.6). It can be seen that the two

distinct r-node peaks having different r-node stress magnitudes reach almost

identical values after a number of linear elastic iterations as shown in Fig­

ure 5.1. Let U"I and U"2 be the two r-node peak stresses of the indeterminate

beam structure. The combined r-node stress itn is given by

_ Un l+U,,2
u"=--2-' (5.1)

Here, the r-nodes are determined on the basis of initial elastic analysis, and

the subsequent elastic results after the elastic moduli modification has been

introduced. In order to verify the convergence of real r-node peaks. a number

of elastic iterations can be carried out. When satisfactory stress convergence

is achieved (say. at i = r), the r-nodes can be determined based on the stress

distributions corresponding to the initial and the rth linear elastic analysis.

The r-node stress of peak number one drops from its initial value of Unl to a

value 0-:.1' Likewise, the r-node stress of peak number two increases from its

original value of U,,2 to a value qI"I' The combined r-node stress is therefore

given by

_ 0"'''1+0-:.1 ,
u"=--2-=0'1I1' (5.2)

The real r-node peaks reach almost equal stress values after several iterations

because, during collapse, the plastic binges have the same stress value (equal
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to yield stress).

In the above discussion, use of the initial elastic iteration for determining

the r~node stresses (i.e., 0'..1, 0'102 and 0:.1) is for reducing the interpolation

errors pertaining to the r-node locations. This aspect is illustrated in Fig­

ure 5.4).

5.4 Identification of Real R-Node Peaks

It was explained earlier that virtual r-node peaks can exist in an r-node

diagram because of interpolation errors. However, these virtual peaks pro­

gressively vanish as the modified linear elastic stress distribution approaches

limit type. This of course requires a number of elastic iterations. However.

the present objective is to obtain reasonably good lower bound limit load esti­

mates based only on the first two linear elastic analyses. Therefore, practical

guidelines for determining the real r-node peaks are provided as follows;

1. The r-node peaks that are present at simply supported edges are vir­

tual. Every r-node peak is a potential plastic nucleation center. Since

plastic moments cannot be developed along simply supported bound­

aries, r-node peaks at or in close proximity to these locations are virtual.

2. The uniform portion of an r-node diagram indicates the presence of

membrane stress and absence of discontinuity stress in the region.

Consider, for instance, the r-node diagram of a tOrispherical bead (Fig­

ure 5.5). The portions AB and CD of the r-node diagram, being nearly
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uniform, represent the regions where membrane stresses are dominant.

3. An r-node peak located in the vicinity of & boundary (other than sim­

ply supported; 5&y. fixed. or symmetric boundary for instance) can be

identified. as real if it is flanked by the boundary on one side and a

valley on the other side. ..<\.n r-node peak elsewhere in the structure

can be recognized. by the presence of valleys on its either sides. One

stipulation while identifying a valley is tbat the minimum r-node "'aI­

ley Stress should approximately correspond to the average membrane

stress of the structure. Based on this criterion, peak number two of

the torispherical head (Figure 5.5) can be readily identified as a virtual

peak, since the valley to the left of it is much higher than the regions of

uniform membrane stress represented by the lines AB and CD. Using

the same argument, peak number one can be classified as real .

..I. Examining Figure 5.6, which is the r-node diagram of a torispherical

head corresponding to q = 0.25. it would seem at the immediate in­

stance tbat there are two r-node peaks. However, a closer look would

reveal that the so-called valley is comprised of only a single low stressed

r-node. If this r-node is not included, tbe r-node diagram presents an

entirely different picture. A valley should consist of at least an accept­

able number of r-nodes as could be seen, for instance, in Figure 5.L

Tberefore it can be concluded tbat tbere is only one r-node peak in

Figure 5.6.
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Figure 5.6: R·Node Diagram of a Torispherical Head
(q = 0.25)
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5. A.n r-node peak which is not distinct and located away from a "crit­

ical region" of the component or structure is a virtual peak. This

can be demonstrated by analyzing the r-node diagram of the spherical

pressure vessel with a cylindrical nonle subjected to uniform internal

pressure (Figure 5.3). The critical region for this structure is the region

surrounding the r~ntrant intersection of the nonle and the shell (Fig­

ure 5.2). The r·oode peaks number two and three are located far away

from the re-entrant corner, at the extremities of the shell and nozzle

portioos. As seen in Figure 5.3, these regions of the shell and nozzle

have uniform membrane stresses of low magnitudes and therefore are

least likely to undergo failure. Thus the r-node peaks number two and

three can be classified as virtual.

6. R·Node peaks along otherwise uniform r·node curves should be treated

as virtual. This aspect can be illustrated by considering the example

of the torispherical head shown in Figure 4.1. The region CD in the

r-node diagram shown in Figure 5.5 has uniform membrane stress. The

r-node peak number four has a stress value comparable to this mem­

brane stress value. Therefore, in the likelihood of peak number four

becoming plastic, the regions represented by AS and CD in Figure 5.5

should also become plastic. This would result in the entire structure

becoming plastic at collapse. However, intuitively this is unlikely to

happen since collapse would have occurred much earlier because of

localized plasticity. Thus the r-node peak number four cannot be c1as-
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sified as a real peak.

While the guidelines proposed above are general. it is necessary to take

precautions in order to rationally eliminate r-node peaks that are vinuaL

This is dependent on the specific component or structure that is being ana­

lyzed. In a situation where there is an uncertainty in deciding whether or not

an observed r-node peak is vinual, it is prudent to consider only those r·node

peaks tbat satisfy tbe above stated guidelines. The phrase "when in doubt

leave it out" is useful for obtai.n.ing lower bound limit load estimates. In tbe

extreme case wbere identification of r-node peaks become very difficult. to

assure lower bounds it is suggested that the maximum r-node Stress be used

for calculating tbe limit load. Incidentally, the location and magnitude of the

peak r-node stress are consistently found to be stable when compared to the

maximum Stress, with repeated elastic iterations. Two representative cases

are presented in Tables 5.1 and 5.2 in order to illustrate the same.

5.5 Criteria for Lower-Bound Limit Loads

The main purpose of carrying out a number of elastic iterations in con­

junction with systematic elastic moduli modification is to ensure tbat tbe re­

sulting stress distributions progressively approach limit type. In other ~1)rds,

the stress fields should belong to a "family of distributions", Banked by the

distributions corresponding to the creep indices n =1 and n --t 00. This can

be illustrated by considering a section of the indeterminate beam shown in

Figure 2.6. A near limit type stress distribution is achieved in this case in
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Table 5.1: Maximum Values of Equivalent and R-Node Stresses in
a Torispherical Head" (q = I)

Iteration Maximum Equivalent Maximum R-Node
Stress (kPa Stress (kPa

No. Magnitude Element Magnitude Element
Number Numberf

0 77564.00 553
1 59933.00 541 54167.91 567
2 82471.00 655 50190.78 568
3 69828.00 555 49127.14 569
4 60985.00 398 48647.28 569
5 67000.00 398 48373.66 569
6 96481.00 674 48214.06 569
7 55239.00 674 48168.21 574
8 71979.00 680 48085.51 580
9 73701.00 680 48070.41 580
10 57891.00 680 48046.12 580
11 51933.00 397 48004.39 580
12 55049.00 686 47980.21 580
13 57079.00 686 47964.33 580
14 51n1.00 398 47948.00 569

·Case Number 1 in Table 4.2
'Tbe element numbers are indicated only to illustrate the better loeational
stability of the highest stressed r-node as compared to the maximum stress
location.
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Table 5.2: Maximum Values of Equivalent and R-Node Stresses in
a Pressure Vessel Support Skirt· (q = 1)

Iteration Maximum Equivalent Maximum R-Node
Stress (kPa Stress (kPa

No. Magnitude Element Magnitude Element
Number Numbert

0 2900.30 708
1 1734.20 708 1586.42 669
2 1595.40 708 1526.92 669
3 1509.30 708 1468.93 669
4 1632.50 1008 1418.79 668
5 1656.20 1008 1380.59 668
6 2044.80 1020 1352.88 668
7 2080.80 1020 1332.58 668
8 1946.30 1020 1317.30 668
9 1793.50 1020 1305.64 668
10 1644.80 1020 1296.44 668
11 1604.80 1032 1289.22 668
12 1622.20 1032 1284.00 668
13 1581.80 1032 1280.05 668
14 1513.70 444 1276.76 668

"Refer to Table 4.4 for details pertaining to this component
'The element numbers are indicated only to illustrate the better locational
stability of the highest stressed r-node as compared to the maximum Stress
location.
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the seventh linear elastic iteration as shown in Figure 5.7. The intermediate

stress distributions lie in between the zeroth and the seventh iterations. in

the order of increasing iterations. The conditions that are to be satisfied for

ensuring this are given by equations (4.11) to (4.13), viz.,

dm'
(1) df"O

(2) du"M < 0
d( -

(3) The relative locations of the set of stresses

(5.3)

O"fl > dt:2 > ... > O"eN are invarient.

For a structure that is sensitive to elastic moduli modifications, leading

to violation of equations (5.3). a lower value of q, say q = 0.25 or 0.5, would

improve the stability. The effect of the modulus adjustment index. q, on

the stress distributions for a thick cylinder subjected to internal pressure is

shown in Figure 5.8. The values of m", the maximum von Mises equivalent

stresses and the corresponding locations are shown in Table 5.3. It can be

seen that the stress distributions corresponding to q :s 1 are valid since all

the requirements stipulated by equations (5.3) are satisfied.

For generic structures it is not difficult to satisfy the first two conditions

given by equation (5.3). The third condition, however, places very stringent

requirements on the redistributed Stress fields. Choosing a very small value

of q, although effectively attenuates this problem, can lead to errors in de-

termining the r-node stresses similar to those shown in Figure 5.4. Since the

maximum stress in pressure components occurs mostly because of geometric
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Table 5.3: Values of (q.Jmarl mO and Maximum Stress Location for
the Cylinder considered in Figure. 5.8

Maximum Stress
m" (q,.)m=; Location

(MPa) (Element Number)
II Linear Analysis

0.25 4.573 114.50 1
0.50 4.478 99.81 1
1.00 4.135 n.33 1
2.00 3.307 89.50 90
3.00 2.702 143.83 90

I Linear Analysis
4.605 131.47 1

discontinuities and secondary effects, it is quite sensitive to elastic iterations

and redistributes readily. To achieve a practical compromise bet.....een the

satisfaction of the third condition in equation (5.3) and an acceptable value

of q. it .....ould be sufficient to at least make sure that the maximum stress

location does not vary with elastic iterations.

For explaining the conservative nature of the r-node stress, the stress dis-

tributions across a section of a beam are considered as shown in Figure 5.7. In

this case, since limit type stress distribution is reached in the seventh elastic

iteration, the value of tbe r·node stress [(qr-...... )o_vul determined based on

the zeroth and the seventh iterations, should correspond to the exact value.

Since the remaining stress distributions are nested by these distributions, the

r-node stresses determined using the remaining distributions should be such
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that

Thus the limit load based. on the first two iterations is always less than or

equal to the exact limit load in this case. In case of generic structures which

fail due to the formation of multiple hinges or hinge contours, equation (5.4)

can be expressed as

(5.5)

where (0-.. )0_1, (0-.. )0_11, ", (U.. )O_N are the combined r-node stresses corre­

sponding to the iteration pairs 0-1, 0-11, . ", O-N. In practice, since the

r-nodes are determined based on the zeroth and the first elastic iterations,

the corresponding stress value should be an upper bound. It is not, how­

ever, necessary to perform a number of elastic iterations in order to confirm

the inequality given by equation (5.5). It would be sufficient to determine

r-nodes based on the first two linear elastic analysis, provided that the first

two conditions given by equation (5.3) and the invariance of the maximum

stress location are satisfied by the stress distributions.

The aforementioned explanation can be illustrated by considering the

indeterminate beam shown in Figure 2.6. The r-node peak stress values and

the combined r-node stress values are given in Table 5.4. [t can be seen that

as the stress distribution approaches the limit type, the r-node peak stresses

and the combined r-node stress also converge to a stable value.
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Table 5.4: Variation of R·Node Peak Stresses with Elastic Itera­
tions in an Indeterminate Beam

Elastic R-Node Peak Combined R-Node Maximum
Stress (MPa) 5t<esS (MPa) von Mises

Iteration Equivalent

Pair Stress (MPa)

".' ".' an = Uni ;Un2

0-1 27.16 20.91 24.04 44.98
o-ll 25.02 21.62 23.32 27.61
o-lll 24.07 21.95 23.01 25.43
o-n· 23.49 22.15 22.82 24.23
0-1' 23.12 22.27 22.69 23.64
o-t-'l 22.87 22.35 22.61 23.29

I o-~·ll 22.73 22.40 22.57 23.03
Io-Flll 22.65 22.43 22.55 22.83

Reference Stress (MPa):
Inelastic = 22.98; Theory = 23.72
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5.6 Dlustrative Example - Pressure Vessel
Support Skirt

The systematic procedure for calculating the lower bound limit load of a

Pressure Vessel Support Skirt is explained in this section. The dimensions

of the pressure vessel and the pertinent details are given in Section 4.7.5 and

Figure 4.10. Figure 5.9 shows the r-node diagram for this problem. The

following are the calculation steps involved in determining the limit loads:

Applied axial pressure, P 7736.2 kPa

Softening index,

Yield stress, a, 275800 kPa

L"pper bound multiplier

linear elastic analysis, I ml 36.79

linear elastic analysis, II m11 36.05

)'b.ximum equivalent stress (nodal stresses

interpolated)

linear elastic analysis. I

linear elastic analysis. I I

Location of maximum equivalent stress {el­

ement numbert

linear elastic analysis, I

((a.)M]t = 239.8 M?a

(<1e )M]l1 = 143.4 MFa

= 708

"The element numbers are given berejust to illustrate that the maximum stress location
has not changed hetween the tWO elastic iterations.
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Figure 5.9: R-Node Diagram for a Pressure Vessel Support Skirt
(q= 1)
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linear elastic analysis, II

Number of r-node peaks

Virtual r-node peaks

708

Peak Number Reason

No distinct valleys
No distinct valley to the left - peaks 3 and 4
can coalesce into a single peak
No distinct valley on the left; part of an
otherwise smooth curve

R-Node stresses of valid r-node peaks

Peak Number R-Node Stress (kPa)

8178.68
10938.33
8335.83

Combined. r-node stress, Un 8178.68 + 109~8.33 + 8335.83 9150.95 kPa

Limit load, PL = 5Lp = 275800 x 7736.19 = 233.16 MPa.
Un 9150.95

The inelastic limit load estimate for this problem is 247.20 MPa and the

classical lower bound limit load corresponding to the second linear elastic

finite element analysis is 148.80 MPa.
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5.7 Numerical Examples

In this section, the r-node method is used for determining the limit loads

of mechanical components and structures analyzed. in SectioD 4.7. Typical

r-node diagrams for an indeterminate beam, a spherical pressure vessel with

a cylindrical nonie, torispberical beads and non-symmetric plate structures

are shown in Figures 5.1, 5.3. 5.5, Figures 5.6 to 5.11 and Figures 5.12 to

5.15. The r-node diagram for the pressure vessel support skin is shown in

Figure 5.9. Figure 5.16 shows the stress distributions for a compact tension

specimen. All tbe components are analyzed for two different values of q, viz..

q = 1 and q = 0.25. and tbe limit load estimates are tabulated in Tables 5.5

and 5.6.

5.8 Closure

The conservative aspect of tbe r-node method is demonstrated in this

chapter. A proper understanding of the underlying rationale behind the r­

node method and the attributes of the r-nodes are important for analysts of

practical engin~ringcomponenLS in order to effectively implement the tech­

nique. This chapter provides a systematic approach for the determination of

the r-node peaks that are rele ....ant to lower bound limit loads.

Various investigators34- 3U3 have successfully obtained good limit loads

for a variety of problems such as frames, arches, pressure vessel heads and

non-symmetric structures. The limit load estimates obtained using the method
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Table 5.5: Limit Loads of Torispherica1 Heads using the R-Node
Methodi

Case No.

Limit Load 763.7 850.6 948.4 891.8 994.9
(735.2)· (827.9) (929.2) (859.1) (971.0)

Case No. 6 7 8 9

Limit Load 1118.6 1089.3 1205.4 1348.6
(1098.5) (1051.0) (1175.2) (1325.9)

!i All units in kPa unless otherwise specified
'Refer Table 4.2 for shell geometries and Table 4.3 for limit load estimates
using conventional methods

"The quantities within the brackeucorrespond to q "" 0.25 and those without
brackets correspond to q "" 1.

are consistently lower than the inelastic finite element analysis results in all

the cases - a feature one would expect since the formulation is based on

equilibrium considerations alone. This conservative feature of the method is

significant from the standpoint of engineering design.
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Table 5.6: Limit Loads of Mechanical Components using the R­
Node Methodi

Case No. 1 2 3 4

Limit Load. 26L3xl(}3 1483.3 106.3x103 233.2xlO3

(232.0x10')" (1383.2) (102.8x10') (184.7x10')

Case No.

Limit Load.

5a

651.9
(502.7)

5b

3253.1
(2812.0)

11.9
(11.5)"

i All units in kPa unless otherwise specified
I Refer Table 4.4 for respective configurations and Table 4.5 for limit load
estimates using conventional methods

"The quantities within the brackets correspond to q = 0.25 and those without
bracll:ets correspond to q = 1.

"Units in kN
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Figure 5.16: Stress Distributions for a Compact Tension Specimen
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Chapter 6

Limit Loads of Layered Beams
and Layered Cylindrical Shells
using the R-Node Method

6.1 Introduction

The importance of built-in anisotropy in engineering design such as rein­

forced structures and composites is well known on account of their superior

strength-to-weight characteristics. A knowledge of limit load of components

fabricated from these materials is therefore important from a design stand-

point. The r-node method of limit load determination has been found to

give good estimates of lower bound limit loads for isotropic components.

This success has provided the impetus to extend tbe method to laminated.

structures.

In this chapter, the r-node method is extended to two-layered beams and

two-layered axisymmetric cylindrical shells. Each layer is assumed to be
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made out of a homogeneous, isotropic and elastic perfectly-plastic material.

\Vhile the formulations for the beam problems are developed by considering

the theory of bending, the theorem. of nesting surfaces of dissipation I7,1'

is invoked in the case of cylindrical shells. The limit load estimates are

compared ""ith inelastic finite element analysis results.

6.2 Limit Load Estimates of Two-Layered
Beam.s subjected to Uniform Load

6.2.1 Elastic Modulus Modification Index based on
Deformation Control (q = 1)

(6.1)O<q$l

For an isotropic beam, the elastic modulus modification scheme given by

equation (4.17) can be expressed as:

(E.); ~ [U~'l'E.
0'"(2}

where Q"(z) is the stress in the direction of the neutral axis. For obtaining an

expression similar to the above for a ~layered beam, one can invoke the

theory of beam bending.

In this section, formulations for determining the limit load estimates of

two-layered beams are presented for q = 1 in equation (6.1). The dimensions

of a rectangular laminated beam subjected to pure bending is shown in Fig­

ure 6.1. The bending moment, M, at any cross-section of the beam can be

expressed as
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where G(=I is the normal stress in the z direction. Assuming k to be the

curvature or the beam for the second elastic analysis and considering that

G(~) = l{zlE(z), where lIz) = k/l. equation (6.2) can be rewritten as

The subscripts "1" and "2" stand for material numbers one and two respec·

tively.

The quantities E{z)1 and E{zJ2 can be determined, in a manner similar to

the expression given by equation (6.1), as

(6.4)

where the subscript I stands for first linear elastic analysis.

The elastic stress distributions along the direction of the neutral axis can

[] MZE'}G(~ll I = E.l
1
+ E;.zI

2

[G(~12L = El:::~12
.....here II and 12 are the corresponding moments of inertia of the layers.

(6.5)

Substituting equations (6.4) and (6.5) into equation (6.3) and simplifying,

the expression for strain can be obtained as:
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where

The subscript "Ir in equation (6.6) stands for second linear analysis.

Tbe expression for the stress in the first layer for the second linear analysis

can be given by

(6.7)

Substituting the first of equations (6.4) and equation (6.6) into equation (6.7)

and simplifying,

(6.8)

Similarly, the stress in the second layer for the second linear analysis is:

(6.9)

From equations (6.8) and (6.9) it can be seen that the stress distributions

after modifying the elastic moduli are independent of z. In otber words. the

stress distribution pertains to a limit type of distribution.

The condition for net-section yielding can be obtained from Figure 6.2

using similar triangles. As tbe applied load, P, is increased to PI so as to

cause net-section yield, i.e., P -+ PI. tben

'" (6.10)
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(6.12)

(6.13)

"'here 0'''1 and aft2 are the r·node stresses in the respective layers. If

(6.11)

where.., is a scaling factor, equation (6.10) becomes

(U(.:u) II = 'YU,,1 }

and {a{.:12]u = "(aYl'

Equations (6.8), (6.9) and (6.12) lead. to

[U""ju = (u~.h =~.
0'(.:12 II (U.r~h uv2

Therefore, a relationship between (a4r~h and (a.r~h can be obtained as

(6.14)

Assuming Et(a..,..h = C 1 and E2(a.....h = C2 , from equation (6.14) we

obtain

c, ~ [~] [~l C,

and the corresponding secant moduli can be expressed as:

(6.15)

c,
[a(2),L

C,

(a{212L'

By taking C\ to be any arbitrary positive value, C2 can be determined

thus enabling the second linear elastic analysis to be carried out. The quanti.

ties [a(2)1JI and [a{':12JI can be determined from the first linear elastic analysis.
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The combined r-node stresses Ctn1 and Un2 for both the layers are deter­

mined separately. Ideally, the ratio of these values should correspond to the

ratio of the corresponding yield stresses. However, the finite element mesh

and interpolation can cause some numerical inaccuracies. Therefore, to be

on the conservative side, the lower of t711t1Ctnl and crlll/Un2 is taken to be the

limit load multiplier. The limit load can then be expressed as:

(6.16)

(6.18)

where P is the applied load, which is arbitrary.

6.2.2 General Elastic Modnlus Modification Scheme
(0::; q ::; 1)

Equation (6.15) was derived for a specific case of q = 1. In this section.

the procedure is extended for the general case of 0 :$ q :$ 1.

The moment, l\tf, for the second linear analysis can be expressed in a

manner similar to equation (6.3) as

M = 1:", E(z)lkz2 dz + 100

-'" E(z)2kz2 dz + L: E(zl2kz2 dz (6.17)

where

E,." = E, [~r )
E,." = E,[M]'la,.),],

Applying equations (6.5) and (6.18) in equation (6.17) and simplifying,

M(q+l)z

[<']f1 = (E,l, + E,l,l'[p,(a•••)l + /l,(a...ll] (6.19)
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where

/31 £i1;'} L--CzC2-,) dz

and Ih. .Eil;') [.-C z(2-,) dz.

Considering that [0-(2)]11 = [42)]11 E(2)' the foUowing expressions can be

obtained for the stresses

and

£i ' - f' (17art)TM%P-d
[17(2")1]11 = .81(0-...,.)1 + .B2(O"....b)~ (a - c) :s %1 :s a

- b ~ z, ~ (a - c)

(6.20)

(6.21)

At the interface. %1 = %2. Therefore,

f<7""j" = [§.j"-" [(<7U O
),] , • (6.22)

0"(2)2 II E, Co-arth
Ne.'tt. the two extreme cases. q = 1 and q = 0 are considered. For q = I.

equation (6.22) becomes

[<7""l"l (<7
u

o), (6.23)
[0"(2)2 II qz1 = (O"arbh'

Comparing equations (6.13) and (6.23). the relationship

[<7'."Ie'1 = ~ (6.24)
(17(2)2]11 r-ol all2

can be obtained. For q =0, the stress ratio given by equation (6.22) degen.

erates to the ratio of the elastic moduli, i.e.,

(6.25)
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(6.26)

Assuming the stress ratio to be a linear function of q,

[U(zll]1f =Wtq+W2.
[0"(Z)2]11

and substituting equations (6.24) and (6.25) in equation (6.26) we obtain

[U(Z)l]U = [~_ §.] q +~.
(U(Z)2]11 U,,2 ~ &

Equations (6.22) and (6.27) together lead to the expression

C,

where

C, an arbitrary value,

[E,.,], C,

[alzlt]/'

[E,.,], C,

[UlZ )2L'

'"
E,
£:;'

and ( ~

u"

(6.27)

(6.28)

For q = 1, equation (6.28) reduces to the expression given by equation (6.14).

For isotropic materials, ( = T/J = 1 leading to the equation (U4"~)1 = (uarbh.

The absence of PI and f32 in equation (6.28) implies that the position of

the neutral axis has no effect in the elastic moduli modification scheme. The

cross-sectional dimensions of the beam also do not have any significance with

regards to equation (6.28).
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6.2.3 Numerical Examples

Three different configurations of two-Iayered beams under different SU~

port conditions, as shown in Figure 6.3, are considered. These problems are

analy2.ed for various values of q and elastic moduli ratios. The yield stresses

are taken to be 68.95xlQ3 kPa (lOxIQ3 psi) and 206.8SxIO" kPa (30xlQ3 psi)

respectively, for both the materials. The Poisson's ratio is assumed to be the

same for both tbe materials, baving a value of 0.3.

The beams, modeled for plane stress conditions using the ANSYSt soft­

ware, are assumed to have unit width in the direction nonna! to the paper.

The four coded i.g(;parametric quadrilateral elements are used for creating

the finite element mesh. An arbitrary exteroalload of 172.4 kPa (25 psi) is

applied in all the three cases as shown in Figure 6.3.

The stress distributions for typical sections are shown in Figures 6.4

and 6.5. The r-node diagrams for an indeterminate beam is shown in Fig­

ure 6.6. The results obtained are compared with tbose obtained using in­

elastic finite element analyses and are presented in Tables 6.1 to 6.4. The

inelastic results are, of course. independent of the elastic moduli ratios. A

typical beam bending problem is characterized by the presenCf: of an r-node

on each side of the neutral axis.:W However, for the ratios of Ed~ equal

to three and ten, only one r-node is present across the cross-section. The

other r·node, although satisfying the requirement given by equation 6.13, is

present outside the boundary of the structure and hence cannot be taken

into consideration. Therefore, the corresponding results are also not valid
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Figure 6.3; Dimensions of the Two-Layered Beams Analyzed
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and are presented just for the purpose of illustration.

6.3 Limit Load Estimates of Two-Layered
Axisymmetric Cylindrical Shells under
Uniform Internal Pressure

It is well-known that the elastic properties of materials such as the Young's

modulus and the Poisson's ratio have little inftuence on the limit load of any

structure. However, while performing elastic analysis of layered structures.

the relative elastic moduli values may give misleading indication as tbough

these represent tbe relative strengths of the layers. Thus, tbe material with a

higher elastic modulus would seem stronger, even though it might be baving

a lower value of yield strength than the remaining layer.;, tbus leading to

inaccurate magnitudes of tbe r-node stresses. In this section, formulations

for the layered cylinder problem are carried out by determining the elastic

material properties based on the magnitude of the reference stresses in tbe

respective layers.

6.3.1 Formulations for Layered-Cylinder Problem

The theory of bending was used to carry out the formulations in the case of

two-layered beam problems. However. since membrane stresses are dominant

in a two-layered cylinder, a different formulation is necessary. One way of

approaching this problem is by stipulating tbat the ratio of the reference

stress values, calculated on the basis of the elastic properties, is equal to tbe
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Figure 6.4: Stress Distribution in a Typical Section - Two-Layered
Beam subjected to Pure Bending (ll = 12 = 1.27 cm.,
111 = 1/3 and q = 1)

163



Element number along the depth of the beam

: /R-Node
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__ R_Node
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Stress in the X direction (10E3 kPal

- I linear analysis - - n linear analysis

Figure 6.5: Stress Distribution in a Typical Section ~ Two-Layered
Beam subjected to Pure Bending (t, = 0.84 em, t2 =
l.iO em., IV = 1/3 and q = 1)
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Figure 6.6: R-Node Diagram of a Two-Layered Indeterminate
Beam subjected to Uniform Loading (ll = t2 = 1.27 cm.,
w = 1/3 and q = 1)
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Table 6.1: Limit Loads for a Two-Layered Beam subjected to Pure
Bendingf (t1 = ~ = 1.27 em.)

Ratio of
Elastic

Modulus adjustment index, qModuli
(kPa/kPa)

¢=~ 1.00 0.75 0.50 0.25

68.95 x 106

2281.35 2169.37 2067.05 1976.93
206.85 x 106

68.95 X 106

2229.08 2237.50 2029.34 2382.50
689.50 x 10'

208.85 x 106

1755.67 1357.63 1180.70 1077.14
68.95 x 1()fi

689.50 x 10'
1425.13 861.05 723.77 659.30

68.95 x 106

'Limit loads in kPa

Yield stress of the first layer. 0'1I1=68.95xlfrl kPa

Ratio of yield stress values, (=1/3

Limit load estimate based on inelastic analysis, (PLhnelastic=2327.06 kPa

In the analyses pertaining to the last two rows of results, there is a signifi­
cant shift in the neutral axis between the two linear elastic iterations. This
introduces errors in the elastic modulus modification process and hence the
results are not valid.
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Table 6.2: Limit Loads for a Two-Layered Beam subjected to Pure
Bendingt (t l = 0.846 em.j t:a =L694 em.)

Ratio of Elastic
Moduli Modulus adjustment index, q

(kP./kP.)

E, LOO 0.75 0.50 0.25w~ s:;

68.95 x lOs
2789.72 2670.78 2564.39 2467.24

206.85 x lOS

68.95 x lOs
2743.73 2723.87 2709.18 2704.01

689.50 x lOs

206.85 x 10'
2580.25 1430.57 1162.63 1057.49

68.95 x lOs

689.50 x 10'
2049.68 1129.61 757.48 622.07

68.95 x lOS

tLimit loads in kPa

Yield stress of the first layer. u,I=68.95xlo' kPa

Ratio of yield stress values, {=1/3

Limit load estimate based on inelastic analysis, (PL)Inelastic=2744.21 kPa

The results in the last two rows are not valid for tbe same reason as mentioned
in Table 6.L
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Table 6.3: Limit Loads for a Two-Layered Simply Supported Beam
subjected to Uniform Pressure' (tt =h = 1.27 em.)

Ratio of Elastic
Moduli

(kPa/kPa)

w= E;
Modulus adjustment index, q

LOO 0.75 0.50 0.25

68.95 X 106

562.98 535.53 510.44 488.37
206.85 x 106

68.95 X 106

550.36 552.56 501.20 578.63
206.85 x 1()6

206.85 x lot
436.11 335.86 291.59 265.73

68.95 x 1()6

689.50 x 10'
349.58 212.02 178.37 162.5868.95XiQ6

'Limit loads in kPa

Yield stress of the first layer, (11'1 =68.95 x loJ kPa

Ratio of yield stress values, (=1/3

Limit load estimate based on inelastic analysis, (PdInelastic=5n.29 kPa

The results in the last two rows are not valid for the same reason as mentioned
in Table 6.1.

168



Table 6.4: Limit Loads for a Two--Layered Indeterminate Beam
subjected to Uniform Pressuret (t l = t2 = 1.27 em.)

Ratio of Elastic
Moduli Modulus adjustment index, q

(kPo/k?o)

Tb = E; 1.00 0.75 0.50 0.25

68.95 X 106

792.72 751.97 716.67 685.09
206.85 x 106

68.95 X 106

783.62 790.17 801.75 821.75
~

206.85 x 106

556.43 452.04 402.74 371.36
68.95 x 106

689.5 X 106

378.19 290.49 251.53 232.09
68.95 x 106

fLimit loads in kPa

Yield stress of the first layer. (Tvl=68.95xl03 kPa

Ratio of yield stress values, (=1/3

Limit load estimate based on inelastic analysis, (PLhnelastic=861.88 kPa

The results in the last two rows are not valid for the same reason as mentioned
in Table 6.1.
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ratio of the yield stress values. For a ~layered cylinder shown in Figure 6.7

this can be written as

(aRd,(EI.~,!I,P,rltr2,r3)_ ~
(aR2)/(EI>~,!I,P,rltr2,r3) - (fill

(6.29)

The reference stress can be conveniently determined by using the "theo­

rem of nesting surfaces" 17.39 as:

(6.30)

where ad and Ue2 are the von Mises equivalent stress values. obtained from

linear elastic analysis, given by

and Ure! is the lo....-er bound reference stress determined using the theorem of

nesting surfaces.

If the ..-essel is subjected to a uniform internal pressure, P, then assuming

plane-strain conditions, tbe expressions for the hoop, radial and longitudinal

stresses can be gi1.-en by the Lame's equations as:56

((u,ld, R1~ 1(1 +~) - :r~r (1 +~)
_P_ (1 + ~) _ Pi",R: (1 + '1)
R1-1 r 2 R1-1 r 2

[('.hl, "([('.hl, + [(.,),),} ; T,"; T"; T,
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for the inner cylinder and

[(a.hl,

[(a,hl,

for the outer cylinder.

p;~ (1 + ri)
~-l ;2

~(1+2)
~-l r 2

(6.33)

In tbe above e..~ressions, TI> r2 and r3 refer to tbe inside, interface and

tbe outside radii respectively, and R I = r2/r1 and R2 = r3/r2.

The displacements at the interface are given by the expressions:

and

r2 (_r,2" + r22 - 2r,2v2 - T,2 11 - r1 2) Pi•u
E1 (_TI'+T,2)

r2 (2rI2v" + 2rl'1I) P
E1 (_rI2 +r,2)

(6.34)

(6.35)

The term. Pw refers to tbe interface pressure wbich can be detennined by

equating Ut(r2) and u2(r2)'

The equivalent stresses O'qvl and 0'~qt12 can be determined by substitut-

ing equations (6.32) and (6.33) into equation (6.31). These equivalent Stress

expressions are then substituted into equation (6.30) for determining the

respective reference stresses (O'n/1)! and (O'r.{2lr, taking into account equa·

tions (6.34) and (6.35). The condition given by equation (6.29) can tberefore
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be expressed as

(O'r~/dJ = (O'OOCf2h.
O',l 0'r'2

(6.36)

The ratio of the yield stress and the reference stress values as given by

equation (6.36) is denoted as m" [equation (3.19)]. Therefore, equation (6.36)

can be expressed as:

(6.37)

Equation (6.37) gives tbe necessary and sufficient condition for ensuring

that the elastic properties selected result in stress values that point to the

strengths of the cylinders in terms of their respective yield values.

The elastic constants Et , E,. and v should be selected such that equa­

tion (6.37) is satisfied. The foregoing computations can be easily performed

by using any of the available symbolic mathematical softwares such as Maple. 19

The elastic modulus softening is carried out by using the relations

E"

and Et"J

where O'd and (Te2 correspond to the equivalent stress values of the elements

in the respective layers. which can be obtained from the first linear elastic

analysis.

Equation (6.37) can be readily extended for an "N-Iayeredn cylinder as

ImrJl ~ 1";)1 = ... = Im::']I·
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6.3.2 Numerical Examples

A variety of configurations of two-Iayered thick cylindrical shells are an·

alyzed in tbis section. The dimensions, material properties and the limit

load estimates are presented in Tables 6.5 and 6.6. The cylinders are mod·

eled using four-node axisymmetric isoparametric elements under plane strain

conditions. For performing the r-node analysis, an arbitrary uniform internal

pressure of 50000 kPa is applied. Typical plots of stress distributions across

tbe thickness are shown in Figures 6.8 and 6.9.

6.4 Closure

Anisotropic materials such as reinforced structures and composites play

an important role in engineering design on account of their superior strength­

to-weight characteristics. The main objective of this chapter is to demon­

strate that the r-node method can be applied for determining the limit loads

of layered structures. The formulations and tbe underlying theor:" for deter­

mining the r-nodes. at this stage. is not generic as in the case of isotropic

structures.

The fonnulations that are presented in this paper are suitable for no

more than two-linear elastic finite element analyses. The fact tbat the r­

node method requires only twO linear elastic analyses makes the method

attractive for detennining the limit loads.

The numerical examples demonstrate tba.t the method is easy to imple­

ment and the results compare well with those obtained using inelastic finite
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element analysis. Since the fonnulations for the beam problem are based on

the theory of bending, these can also be extended for determining the limit

loads of two-Iayered symmetric and non-symmetric plate structures.
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Table 6.5: Limit Load Estimates for a Two-Layered Cylinder ­
Configuration It

Ratio of the Ratio of
Cas. yield Elastic Poisson's Limit Pressure (kPa)
No. strengths Moduli Ratio

(kPa/kPa) (kPa/kPa)

(=~ ¢=~ R-Nodef
Inelastic

a" .-\nalysis

68.95 x 1()3
173999.96

91.87xlO-3 0.48 (169537.42) 174170.00
206.85 x 1()3 [165347.171

68.95 x lcP
488393.86

689.50 x 103
7.57x 10-3 0.48 (475391.87) 492330.00

[463234.061

i 206.85 x loJ
161358.37

I ~
1.04 0.48 (158032.50) 160830.00

i [154939.09J

I 689.50 x 1()3
432077.64

! 68.95 x 103
3.54 0.48 (423586.11 ) 431560.00

i [415703.421

Irz = 8 em., r2 =13 em., r) :23 em.• and P OOסס5= kPa
'The numbers within the ordinary parenthesis and square brackets correspond to q = 0.5
and q = 0.01 respectively and those without the brackets correspond to q =1.
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Table 6.6: Limit Load Estimates for a Two-Layered Cylinder ­
Configuration 2:

371599.79 I'
(364928.77) ;\77160.00
(358201.421 I
197i16.18 I

(l91047.12) 197500.00
[184985.29i !

0.48

0.48

11.67)(10-368.95 x 1()3

689.50 x 103

1206.85 x loJ
! 68.95 x 1()J I

Ratio of the Ratio of
C... yield Elastic Poisson's Limit Pressure (kPal
!\o. strengtbs Moduli Ratio

(kPa/kPa) (kPa/kPaj

(=~ tb=§. Ilnd..,;<
u" E, R·Node' .-\nalysis

,
68.95 x IOJ 150701.95 I

91.60xlO-3 0.48 (147140.36) 151670.00
206.85 x 1()J [143674.01] i

; I I I i

! 1689~ x I~ I
! ;

58-t330.75

I
, 3.38 0.48 (563049.82) 5833-10.00 ,

i 68.95 x I()J 1543765.771,
!

I I I
87442.12

II
16895 x 10' I5 68.95 X 103 318.80x10-J 0.48 [85003.86) 87282.00

[82713.93J

i,
!

I

I

I
i

: ..\ = 10 em .. r2 =20 em.. r" =30 cm., and P =50000 ItPa
'The numbers within the ordinary par'entbesis and square brackets cnrrespond to q = 0.3
and '1= 0.01 respectively.
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Figure 6.7: Two-Layered Cylinder under Internal Pressure
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Figure 6.8: Typical Stress Distributions across a Layered Cylinder
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Chapter 7

Minimum Weight Design of
Pressure Components using the
Iso R-Node Stress Concept

7.1 Introduction

Limit load determination of mechanical components and structures using

the r-node method..5·34 involves identification of r-nodes as load-controlled 10-

cations. The r-node peaks and their corresponding equivalent stress values

can characterize the nature of plastic collapse tbat is likely to occur. For

instance, distinct r-node peaks could represent well-defined plastic hinge lo­

cations and suggest a kinematically admissible collapse mechanism.. The non­

peak r-nodes which in many cases represent a large volume of the structure,

although load-controlled, may not always lead to cross-sectional plasticity.

While designing mechanical components and structures, in addition to

the knowledge of limit loads. it is useful to know whether it is possible to
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obtain an optimum. shape that can perform tbe intended function with the

minimum weight. The component design obtained. as a consequence of such

an objective, even if not practical due to various constraints, can still of-

fer valuable insights. In many engineering applications such as structural

designs for space projects, weight reduction with minimal loss of strength

is of significant interest. For homogeneous materials, the minimum weight

configuration coincides with minimum volume, and therefore, conventional

studieslO,61,6a have focused on the problem of minimizing the volume.

Although conventional analysis methods offer insight into the aspect of

minimum weight, solutioDs are available only for simple geometric descri~

tions. The structures that are used in practice are much more complex.

and therefore warrant procedures that are more general, simple and efficient.

The r-node method offers a simple and systematic alternative for minimizing

the weight of mechanical components and structures without significant loss

of strength. The method invokes the load-controlled. nature of the r-nodes

and utilizes the r-node concept for structural optimization. In essence. the

invocation of a minimum weight concept is tantamount to the finding of a

-primary stress" structure.

7.2 Minimum Weight Design based on the
Iso R-Node Stress Concept

In any mechanical component or structure, distinct r-node peaks could

represent well-defined plastic binge locations or hinge contours depending on
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the type of component or structure analyzed. The remaining r-nodes present

in the structure, although load-controlled, mayor may not lead to c~

sectional plasticity. It can therefore be inferred. that if there is a structure

with equal r-node stresses throughout, then such a structure v."Ould become

entirely plastic at collapse. A thick cylinder subjected to uniform internal

pressure is an example for such a case. In other words, if the geometI)'

of a structure" is suitably modified so that the r~node stresses are of equal

magnitude throughout, collapse would occur as a result of gross plasticity

rather tban by the formation ofdiscrete plastic zones. The process of removal

of material from a mechanical component or structure for tbe purpose of

achieving uniform r-node stresses is the basis for minimum weight design

using the r~node concept.

The procedure for minimizing the weight of structures using the r~node

method can be illustrated. by considering a simple structure (Figure 7.1) of

an arbitrary length and of varying cross-section that is subjected. to some

prescribed loading such that the structure undergoes bending. Minimum

weight design is achieved by modifying the geometry such that the entire

structure would undergo concurrent yielding.

The r~nodes are assumed to be potential plastic hinge locations. It is rea­

sonable to postulate tbat the cross-section of tbe structure with the higbest

r-node stress value would reach plasticity first, followed by another inde-

"that would have otherwise undergone collapse due to tbe fonnation of distinct plastic
binges
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Figure 7.1: An Arbitrary Beam of Varying Cross-section - Applica­
tion of the Iso R-Node Stress Concept
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pendent plastic zone in the cross-section containing tbe next highest r-node

peak. This process would continue until a kinematically ad.m.issible collapse

mechanism leading to coLlapse of the component develops.

Let to be the thickness of any given cross-section, i, of the original struc­

ture as shown in Figure 7.1, and (u..). the corresponding r-node equivalent

stress. unlike the elastic stresses which vary linearly across tbe cross-section.

tbe r-node stresses, by virtue of being 10ad-controUed, represent the entire

cross-section (Figure 7.1). Therefore, for any section i containing an r-node

or r-nodes, the limit type moment can be expressed as

(!VI,) = ("0); (tj')',
; . (7.1)

where the superscript "0" stands for "original struCture" .

For the section, i, which contains the r-node with the highest equivalent

stress. the moment for a fully plastic-type distribution can be expressed as:

(
-) ("0); (ti)'

Mp j=--'--' (7.2)

When (un») approaches a .. ; (Mp)j approaches M" where a" and M, stand

for the material yield stress and the plastic moment. respectively.

From equations (7.1) and (7.2), for every cross-section of the structure to

reach the plastic state simultaneously, the corresponding thickness tr should

be modified such tbat, as tr approaches t{; (a,,); .J.pproaches (u..)j. where

the superscript "/" stands for "final optimized structure". This would be

possible if the moment corresponding to limit type distribution, which is
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primarily due to loading and boundary conditions, ls stipulated to have the

same value before and after optimizing the structure, i.e.,

(u.l,('1'l' (u.);(l{)'--.-=--.-- (7.3)

from which the final thickness of any cross-section, i, can be obtained as,

(7.4)

The expression for determining the section thickness corresponding to

minimum weight design as given by equation (7.4) has been derived for a

beam type structure where the failure is caused by bending stresses. How-

ever, practical mechanical components or structures are subjected to comple."<

stress distributions, making it difficult for the analyst to guess 'a priori' the

optimal configuration.

The main purpose of equation (7.4) is to establish a relationship be-­

t"-een the cross-sectional dimensions of a structure subjected to bending and

the r-node stress, in light of minimum weight design. It is not necessat')·,

however. that similar specific expressions be derived for practical pressure

components. The expression gi,ren by equation (7.4) is not unique for mini-

mizing the weight of a beam structure. Any convenient empirical expression

can be used for arriving at the final thickness, t{. With a number of r-node

iterations·, the dimensions of the original structure progressively undergo

changes such that the final optimized structure is the one with equal r-node

'Every iteration consists of an r-node analysis, i.e., two sets of linear elastic finite
element analyses.
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stresses. Since bending is ooe of the dominant actions in many thin-walled

or slender compooents, equation (7.4) is found to perform adequately.

In essence the minimum weight design as described by equation (i.4)

implies that it is not necessary for any CI'OSS-section, i, of a structure to have

a thickness tf in order to withstand the given load; indeed the structure

would serve the intended purpose even if the thickness is reduced to t{.

7.3 Minimum Weight Design - Another
Perspective

The theorem of nesting surfaces1r• 11 (Section 2.8) can also be invoked for

relating the concepts of reference stress and minimum weight. £n designing

for minimum weight under prescribed loading conditions, the geometry of

a structure should be such that the entire volume undergoes plasticit}" at

collapse. This aspect can be readily verified by examining the nesting surfaces

for the two bar structure shown in Figure 2.8.

The nesting surfaces shown in Figure 2.8 have points where the surfaces

corresponding to n = 1 and n -i- 00 are coincident. The intersecting of all

Qe at such points can be attributed to the situation where all the material

in the structure has the same absolute value of stress. This is precisely tbe

condition for 'minimum weight' design of the structure under a given loading.

When a structure satisfies the minimum weight criterion for a given set of

loads. all the surfaces Qe are coincident on the the load-space. Minimum

weight is both a necessary and sufficient condition for the exact coincidence
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of all QeP The shaded portions of the nesting surfaces (Figure 2.8) is an

indication of the extent of deviation from the minimum weight state for a

set of prescribed loading conditions. The limitation of this approach is its

dependency on the state of the applied load and its applicability only to

simple structures.

7.4 Step-by-step Procedure for Minimizing
the Weight of Structures using the
R-Node Method

The methodology described in Section 7.2 can be presented as a step-by­

step procedure so that mechanical components and structures can be config­

ured for minimum weight conditions, as follows:

1. The given component is suitably discretized and linear elastic analy­

ses are performed. The r-nodes are then determined. by following the

procedure proposed by Seshadri and Fernando.'"

2. The section with the highest r-node stress is identified as section j

and. based on this r-node stress value, the thickness of the rest of the

structure is determined by using equation (7.4).

3. R-Node analysis is performed for the modified. component so obtained,

and equation (7.4) is once again applied and improved cross-sectional

dimensions are obtained.
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4. The design improvement procedure explained in step number three

can be repeated a few times (typically five to six times) until there

is no further change in the r-node stresses with iterations or until a

stage ",,'here any funher iteration might lead to practically unworkable

designs. Of course, the analyst might wish to terminate the iteration

even after two linear elastic runs (say), and get "closer" to the optimal

configuration.

It should be noted, however, that the reference section j determined in

step number two should always be maintained as the reference section

throughout the iteration process.

5. While performing the r-node analysis, it is not necessary that all sec­

tions contain r-nodes. Standard interpolation techniques can be used

for determining the r-node stresses at these missing locations.

The resulting structure would have large zones with more or less equal r­

node stress values indicating that these zones would entirely undergo plastic

deformations at collapse rather than narrow cross-.sections (or plastic hinges).

The procedure described opens up a wide range of application possibilities

in engineering designs such as minimum weight design of mechanical comp~

nents, design for reducing stress concentrations and thereby increasing the

fatigue life of structures and for designing reinforcements at the re-entrant

corner of a nozzle shell intersection, to mention a few.

188



7.5 Numerical Examples

In this section, tbe r-node concept for m.ini..m.izing the weight of structures

is applied for minimizing the weight of structural components of practical

interest. The problems considered here are an indeterminate beam subjected

to uniform load and a spherical pressure vessel with a cylindrical Dozz.le

subjected to uniform internal pressure. For the first problem. a uniform

rectangular beam is considered and an optimum sbape for which the weight

is minimum is determined. In tbe case of the spherical pressure vessel, the

nozzle and the reinforcement at the nozzle shell intersection are designed.

The problems are modeled using the ANSYS1 software. The four-noded

isoparametric quadrilateral elements are used for finite element modeling.

Limit loads are evaluated by using inelastic finite element analysis and the

r-node method.

7.5.1 Indeterminate Beam subjected to Uniform Load

The indeterminate beam of span 50.8x 10-2 m (20 in.) and thickness

2.54x10-2 m (1 in.), shown in Figure 2.6, has end A built in and end B

simply supported. The beam is assumed to have unit width in the direction

normal to the paper. A uniform arbitrary pressure of 172.4 kPa (25 psi) is

applied. The yield stress or the material is assumed to be 208.85x1()3 kPa

(30xl(}3 psi) and the modulus of elasticity is 206.85 X 10& kPa (30xlO& psi).

The Poisson's ratio is assumed to be equal to 0.3. The collapse mechanism

of the structure and the associated r-node multi-bar mode1J.4 are shown in
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Figure 2.6. Minimum volume problems of this kind have been solved by

Kodiyalam and VanderplaatsH by expanding the nodal forces in a Taylor

series with respect to the shape variations.

The minimum weight structure after six iterations is shown in Figure 7.2.

It can be seen that the final structure has 22 percent less volume as compared

to the original one. The results of the analyses are given in Table 7.1. In

this case, the Limit load of the optimized structure is more than that of the

original structure because. during optimization the maximum thickness of

the final structure was increased by ten percent as compared to the original

structure. The plasticity spread at collapse for the original structure and for

the final optimized. structure is shown in Figure 7.3 and the corresponding

r-node diagrams are shown in Figure 7.4, respectively.

At tbe point of contraBexure of tbe beam and at tbe simply supported.

edge. since the bending moment values are equal to zero. tbe computed thick­

nesses should ideally be equal to zero. In actual cases, however, the thickness

\a.lue determined depends not only on the required bending strength, but also

on the sbear strength necessary to transmit the shear force.

7.5.2 Design of Reinforcement and Nozzle of an
Axisymmetric Spherical Pressure Vessel with a
Cylindrical Nozzle subjected to Internal
Pressure

Design of reinforcements for axisymmetric nozzles bas been a topic of

substantial interest since the 1960's. Proper design of nozzles and reinforce-

190



(0) ORIGINAL STRUCTURE

(b) MINIMUM WEIGHT STRUCTURE

Figuroe 7.2: Disc:retized Indeterminate Beams
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(0) ORIGINAL STRUCTURE

(b) MINIMUM WEIGHT STRUCTURE

Figure 7.3: Plasticity Spread at Collapse for the Indeterminate
Beams
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Figure 7.4: R-Node Diagrams Cor the Indeterminate Beams
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Table 7.1: Comparison of a Uniform Indeterminate Beam. with an
Optimized Beam

Limit Limit Volume Total
Load - Load oftbe volume

Structure Inelastic Estimate - Plastic ortbe
FEA R-Node Region structure
(kPa) Method (kPa) (xlO-6 mJ ) (xlO-6 mJ )

Original 1551.38

Optimized 1639.29

1483.32

1640.67

95.70

190.75

327.74

254.33

meets ensures that the resulting pressure vessel has an adequately robust

design and a low stress concentration factor.'"'

To demonstrate the design procedure. a spherical pressure vessel (Fig­

ure 1.5) with equal nozzle and shell thickness of 0.25 m (9.84 in.) is consid­

erec!. The yield stress is assumed to be 300x lo:t kPa (43.51 x 1()3 psi) and the

modulus of elasticity is taken to be 200x 1()6 kPa (29x 1()6 psi). The Pois-

son's ratio is assumed to have a value of 0.3. An arbitrary internal pressure

of 200 kPa (29 psi) is applied. A fillet radius of 0.125 m (4.92 in.) is provided

at tbe re-entrant comer of the nozzle-shell intersection. The section number

one, as indicated in Figure 7.5, is assumed to be the reference section based

on which the thickness of tbe remaining sections are determined. The pro.-
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Table 7.2: Comparison of Optimized Pressure Vessel Design with
Conventional Pressure Vessel Design

Type of Minimum Minimum Limit Limit Load Volume of Maximum
Pressure thickness thickness Load - Estimate • p"",,,,,, Equivalent
v_I of the of the Inelastic R-Node vessel Stress

nozzle ,boll PEA Method
(m) (m) (MPa) (MPa) (m3 ) (kPa)

Reinforced
(using the
r-node 0.090 0.255 153.300 143.755 3.386 840.110
method,
Figure 7.6)

Unreinforced 0.090 0.250 149.400 121.017 3.320 944.530
(Figure 7.7)

cedure described in Section 7.4 is applied for this structure and two r-node

iterations are carried out. The resulting component is shown in Figure 7.6.

An unreinforced pressure vessel having unifonn shell and nozzle thickness

as shown in Figure 7.7 is considered for the purposes of comparison. The

results of the analyses are presented in Table 7.2 and the corresponding r-

node diagrams are shown in Figure 7.8.

It can be seen from Table 7.2 that while the volume of material required

for the proposed design (Figure 7.2) is only two percent more than that

required for the conventional design, the limit load is increased by about three

percent and the maximum equivalent stress is reduced by eleven percent.
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ri = 0.075 m

t 0.25 m
R, 0.875 m
T 0.25 m

t
TJ

L Section Number 1

Figure 7.5: Spherical Pressure Vessel with Equal Nozzle and Shell
Thickness
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Figure 7.6: Reinforced Spherical Pressure Vessel
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ri = 0.075 m
t 0.09 m

it; 0.875 m
T 0.25 m

t
r/ 2"

Figure 7.7: Unreinforced Spherical Pressure Vessel
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Figure 7.8; R-Node Diagrams for the Spherical Pressure Vessels
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Table 7.3: Limit Load Estinlates based on the R-Node Method ­
Indeterminate Beam

No. of R-Node Combined Limit Load
Structure R-Node Stress R-Node Stress, Estimatf'

Peaks a" = (a"l + a,,2}/2 based on
Equation (3.5)

(x10' kPa) (x10' kPa) (kPa)

Original ••,=27.16 1
Beam 0""2=20.91 24.03 1483.32

Optimized a"I=21.731
Beam a"2=21.10 j 21.42 1640.67
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Table 1.4: Limit Load Estimates based on the R·Node Method ­
Spherical Pressure Vessel with a Cylindrical Nozzle

Structure

Reinforced
Pressure
Vessel

uoreioforced
Pressure
Vessel

No. of R-Node
R-Node Stress
Peaks

(kPa)

O"n=417.38

201

Limit Load
Estimate
based 00

Equation (3.5)
(xl03 kPa)

143.76

121.02



7.6 Closure

A simple and systematic procedure based on tbe r-node concept bas been

proposed for minimizing the weight of mechanical components and structures.

The usefulness of the method has been demonstrated by way of carrying

out size optimizations for mechanical components and structures of practical

interest.

In the context of this chapter, the aim is designing a component or struc­

ture to make it, as far as possible, equally strong all over such that when

loaded, the component or structure would collapse simultaneously, if at all.
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Chapter 8

Conceptual Models for
Understanding the Role of
R-Nodes in Plastic Collapse

8.1 Introduction

In the r-node method of limit toad determination, tbe combined r-node

stress. which can be identified with tbe referenCi! stress in creep. can be

directly determined from tbe r-node diagram by identifying the r-node peaks

with equivalent uniaxial multi-bar models. The ban; represent tbe sequence

of fonnation of independent plastic zones in tbe component.

The multi-bar models enable one to obtain an expression for the combined

r-node stress, by invoking equilibrium considerations. However, multi-bar

models only represent tbe r-node peaks in a structure and do not provide

a physical representation of the underlying collapse process in terms of the

entire structure. Therefore, it would be useful to provide simple models
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which, along with the bar models, would characterize the stress redistribution

and the collapse thereof.

8.2 Idealization of an R-Node

In Section 2.6.2, the r-node has been identified with a uniaxial bar model.

The stress in the bar, which is designated as the r-node peak stress, is directly

proportional to the applied load such tbat, when this stress reaches the elastic

limit. a plastic hinge can he construed to have developed in the structure.

For an elastic-perfectly plastic material, the uDiaxial bar and hence the r­

node can therefore be represented by a mechanical model. In Figure 8.1,

the stress in the bar is proportional to the applied load UDtil the elastic

limit is reached. Any additional load beyond this results in the friction­

device to move indefinitely, thereby causing: collapse. This basic unit can be

put together with other simple mechanical units for creating an analogous

system that would represent tbe collapse of the entire structure.

8.3 Analogous Systems that Depict Plastic
Collapse

In this section. simple analogous systems that depict the plastic collapse

process are developed. The problems considered are a thick cylinder su~

jected to uniform internal pressure and a uniformly loaded indeterminate

beam. Limit loads for these problems using the r-node method have already

been determined in Chapter 5.
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8.3.1 Thick Cylinder subjected to Uniform Internal
Pressure

A thick-walled cylinder subjected to uniform internal pressure. as shown

in Figure 8.2. is considered. The r-node for this component can be determined

as the location in which the stress is invariant to elastic moduli changes.

The uniaxial bar model for location A, which is the lone r-node for this

structure, is shown in Figure 8.2. The analogous model depicting the stress

redistribution and collapse is shown in Figure 8.3.

The analogous model essentially consists of a mechanical model which

represents the r·node and a pair of tanks interconnected by a pipe (.-tEl

which depicts the structure. The rollers provided maintain a uniaxial state

of stress and strain by avoiding any possible lateral movement of the system.

The spring constant. k, the damping coefficient, c, the density of the liquid.

the dimensions of the tank, the reservoir and the pipes are component specific

quantities that depend on the geometry. loading and boundary conditions of

the structure that is being analyzed.

The externally applied load can be symbolized by means of a reservoir

containing liquid. All the components of the analogous model with the excep­

tion of the liquid are assumed to be weightless. The correspondence between

the actual structure and the analogous system during collapse is illustrated

in Table 8.L
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8.3.2 Indeterminate Beam subjected to Uniformly
distributed Load

The twO bar model for an indeterminate beam, representing tbe r-nodes. is

shown in Figure 2.6 and the r-node diagram is shown in Figure 5.1. Although

a number of r-nodes are present along the length of the beam. consideration of

only the two r-node peaks as per the guidelines offered in Chapter 5 simplifies

the analogous model to a great extent. The two r-node peaks are represented

by two mechanical models. Pipe AB is at a lower level than pipe CD implying

that the formation of a plastic hinge at the location A precedes the occurrence

of the same at the location B (Figure 2.6). The liquid level reaching the

pipe AB corresponds to the mechanical model number one reaching its elastic

limit.

8.4 Closure

An r-node has been idealized as a mechanical model. Based on this model.

a conceptual characterization of the collapse process has been suggested by

considering some practical configurations. It is hoped that the proposed

models along with the e."isting r-node multi·bar models would assist in the

better understanding of the r-nodes and their functioning during collapse.
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Table 8.1: Correspondence between the Actual Structure and the
Analogous System for a Thick Cylinder subjected to
Uniform Internal Pressure

Actual Structure

Applied Traction

Structure

Stress in the structure

Onset of yield at some portion of tbe
structure

Additional loading causes stress redis­
tribution about the r·node

The r-node by itself does not get in~

volved in stress redistribution

R-Node stress is proportional to the
applied load and is insensitive to the
material constitutive relationship

When the r-node stress reaches the
yield stress. the plasticity be<:omes un­
contained thereby causing coUapse

207

Analogous System

Liquid in the reservoir

Tanks 1 and 2

Mechanical model and pipe (AB)

Weight of the liquids in the tanks

Liquid level in one of the tanks (say.
tank 1) just reaching the pipe level

Additional liquid input into tank 1
only gets redistributed through the
pipe AB into tank 2

The pipe AS serves on.ly as a conduit
for the transfer of liquid from tank 1 to
tank 2 without actually being affected
by the redistribution process

The spring extends strictly in propor­
tion to the weight of the liquid in the
tanks irrespective of the distribution
of liquids in the tanks

When the liquid level in tank 2 reaches
the pipe level, even an infinitesimal
additional inflow causes the friction­
device to move, thereby causing col­
lap..



Friction
device

Spring

A

p

Uniaxial Bar Madel

A

p

Mechanical Model

E e

Stress-Strain Diagram

Figure 8.1: Idealization of an R-Node
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.1
err-node

----,

L - Limit distribution
e1 - I elastic distribution
e2 - I[ elastic distribution
R - R-Node

Figure 8.2: Determination orR-Node in a Thick Cylinder Subjected
to Uniform Internal Pressure
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Reservoir

Figure 8.3: Analogous Model for a Thick Cylinder Subjected to
Uniform Internal Pressure
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Chapter 9

Conclusions and Future
Research

9.1 Conclusions

Interest in limit load determinatioo originated with the primary purpose

of capita.li2ing on the reserve strength of structures. However, a relationship

between limit loads and refereoct! stress has substantially widened the scope

of applicability of limit analysis results.

Duly recognizing the underlying difficulties of conventional methods. this

thesis presents simple techniques for estimating reference stress and limit

loads. The r·node method and the 77lo-metbod are the robust techniques that

are developed herein in the aforementioned vein. The concepts of load con·

trot, primary stress and reference stress form the basis of the r·node method.

The mo-metbod is based on the extended lower bound limit load theorem

in conjunction with the concepts of reference volume and leap--frogging to a

near limit state. It is demonstrated that reasonable upper and lower bound
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limit load estimates can be determined. on the basis of two linear elastic finite

element analyses. The r-node method is also used for determining the limit

loads of laminated beams and laminated cylindrical shells. Given the use­

fulness of composites and reinforced structures in engineering, the proposed

method should serve as a starting point for further research in this area.

Useful concepts such as tbe reference volume, leap-frogging and iso r­

nodes are introduced in an attempt to elicit valuable physical insights into

tbe problem. The reference ,,"Olume concept, for instance, enables identifica­

tion of the "kinematically active" regions in a. component or strocture. The

idea of leap-fragging is introduced in order to reach the limit state rapidly in

comparison to repeated. elastic iterations. The notion of iso r-node stress uti­

lizes the aspect of load-control for minimizing the weigbt of mechanical com­

ponents. Useful designs frolD a standpoint of increased. fatigue life through

reduced stress concentrations are also possible through this approach. In

order to provide the analyst with a guide to the response of structures to

elastic iterations. mechanical components are classified into three distinct

categories. Recommendations are also provided for ensuring convergence to

lower bound values and related numerical stability issues.

Througb numerical examples. the proposed methods have been demon­

strated. to be accurate. easy to implement and less expensive. The methods

are general and can be applied to a variety of component configurations. It is

intended that the techniques developed would be useful for practicing engi­

neers, especially during the preliminary stages of design and during condition
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assessment exercises.

The time consuming aspect of the conventional analysis techniques is a

distinct disadvantage in highly competitive environments where rapid and

reliable methods are essential for evolving newer designs or upgrading the

existing ones. It is hoped that the methods proposed in this thesis would

adequately bridge the gaps between accuracy, speed. simplicity and cost of

analysis.

9.2 Future Research

The advantages offered by the robust techniques proposed in this thesis

amply indicate tbat further research in this direction would be rewarding.

The r-node method and the rna-method have been applied to a number of

bench mark problems and the results obtained are found to be encourag­

ing. Further research sbould concentrate on applying these methods to more

complex Structures such as three-dimensional nonIe-shell intersections. De­

\'elopment of red.u~ modulus methods for determining tbe limit loads of

generic composite structures would be another research area worth pursuing.

The proposed. minimum weight design procedure using iso r-nodes is found

to effectively attenuate the discontinuity stresses in pressure components. It

would be worthwhile to direct future efforts by incorporating design con­

straints in the method so as to evolve workable configurations that are suit­

able for manufacturing units.
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Appendix A

Fortran Program for
determining the R-Node
Locations and Stresses

This program (mode.for) determines the r-node equivalent stress values, their
respective locations, the values of mO, m' and the classical limit load values for
both the linear elastic: analyses. The input to be given are the equivalent stress
and element volume listings, and the yield stress value.

PROGRAM GLOSS

PARAMETER{MEMO=lSOO)

rnTEGER FLAGLRSEG.ELELOC,CQUNT,RSEGG

REAL Ml,M2

CHARACTER.15 FNAMEl.FNAME2,FNAMEJ.UNITS

DIMENSION SIGI(MEMO).SIG2(MEMO),NELE(MEMO)

DIMENSION RSTR(MEMO).RLOC(MEMO).RSEG(MEMO)

DIMENSION ELELOC(MEMO).RNO(MEMO).RSTRI(MEMO).
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1 YOL(MEMO)

DIMENSION RSTR2(MEMO),RSTR3(MEMO).ICOUNT(MEMO),

1 RSEGG(MEMO)

DO K=1.30

WRITE(.,.)

END DO

WRlTE(_._)'WELCOKE TO THE R-IODE

1 P II. a G II. A " - VERSION 5'

WRITE(.,.), 14 lUGUST 1994'

WRITE(.,.)

WRlTE(.,.)'EllTER THE NAME OF THE FIRST LINEAR ANALYSIS

1 INPUT FILE'

53 READ (-.'(A)')FNAMEI

OPEN(lS.FILE=FNAMEl,STATUS='OLD' ,ERR=56)

WRITE(.,.)·£NTER THE !fAME OF THE SOFTENED HTH LINEAR.

1 ANALYSIS INPUT FILE I

54 READ (*.' (A.) ')FNAME2

OPEN(16.FILE=FNAME2.STATUS=' DIll I ,ERR=57)

OPEN(Ul\'1T=17.FIT-£=-' ZR.STRO.OUT' ,STATUS=' UNKNOWN I)

OPEN(UNIT=18,FILE='ZRSTRS.OUT',STATUS='UNKNOWN')

WRITE(••• )'EJITER THE NAKE OF THE OUTPUT FILE FOR THE

1 HIGHEST R-HODE STRESS'

67 READ(.,'(A)·)FNAME3

OPEN(UNlT=19,FILE=FNAME3.STATUS_' NEV' ,ERR=66)

GOTO 68

66 WRlTE(_,_)'OtrrPUT FILE ALREADY' EXISTING. ENTER ANOllIER

1 FILE HAME'

229



GOTO 67

DUMMY STATEMENT

68 DUMMY=0.0

OPEN(UNIT=£O,FlLE= 'ZRSTR.AVG',STATUS='UNKNOWN')

OPEN(UNIT=Hl,FlLE='ZRSTR.SML',STATUS='UNKNOWN')

OPEN(UNIT=22.FILE=' ZSUHOF1. SQR' .STATUS= 'UNXNOVX' )

OPEN(UNIT=23,FILE=' ZSUKOF2 .SQR' ,STATUS= 'UIf1(NOVX')

OPEN(UNIT=24,FILE=' ZMURA.R£S' ,5TATUS= 'UJOOfOVX')

WRlTE(_._)'WHAT IS THE UliIT OF STRESS

1 (EG. PSI, N/SQ."., Pol, KPA ETC.)'

READ(o,' (A)')UNITS

WRITE(_,_)'YIElJ) STRESS"? '.UNITS

READ(o,o)SIGY

WRlTE(_.• )'APPLIED LOAD" 7 '.UNITS

READ(o,o)PAPP

20 WRITE(_._) 'TOTAL NUMBER OF ELEKENTS • 7'

READ(o,o)NELEM

WRlTE(•. _) 'NUMBER OF ELEMENTS PER SECTION .. 7'

READ(o.o)NEPS

CALL CHKINP(NELEM.NEPS.FLAGl)

IF (FLAGl.EQ.l) THEN

GO TO 20

END IF

NSEG = NELEM/NEPS

CALL VINPUT(SIGl,SIG2.NELE,NELEM,VOL,SIGY,

1 PAPP,UNITS)
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CALL RNODE(SIGl,sIG2,NSEG,NELEM,NEPS,RSEG.

1 RSTR.RLOC.ELELOC;)

CALL RESULT(RSEG.RLOC.ELELOC,RSTR,NEPS;)

CALL CALCU(I.RSTRl.RSTR2,RSTR3,KJ,RSEG,RSTR,

1 ICOUNT,RSEGG)

WRITE(19,.)'KAXlMUM R-NODE STRESS'

WRITE(J!O.•) 'AVERAGE R-NODE STRESS'

WRlTE(21,.)'MINIMUM R-NODE STRESS'

BIGl=O.O

DO 155 IPP=I,KJ

WRlTE(19,_) RSEGG(IPP),RSTR1(IPP)

IF(RSTR1(IPP).GT.BIGI)BIGI=RSTRl(IPP)

WRITE!.O,_) RSEGG!IPP).RST1U!IPP)

WRITE!2l,_) RSEGG!IPP),RSTR3!IPP)

155 CONTINUE

WRlTE(24.•) 'THE HICHEST R-NODE STRESS VALUE. "

1 BIGl,' ',UNITS

CLOSE(24)

CLOSE(23)

CLOSE(22)

CLOSE!'!)

CLOSE!.O)

CLOSE(19)

CLOSE(I8)

CLOSE(17)

CLOSE(I")

CLOSE(15)

GO TO 58

56 PRINT .,'THE FIRST INPUT FILE ',FNAMEl.' IS NOT EXISTINC.
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1 RE-ENTER ANOTHER FILE lUKE'

GO TO 53

57 PRINT ., 'THE SECORD 1IPtrr FILE' .FNAME2, , IS ROT EXISTING.

1 RE-ENTER ANQ'IlIm. FlLE RiME'

GO TO 54

58 STOP

END

CHECK [NPUT FOR CORRECTNESS

SUBROUTINE CHKINP(NELEM,NEPS.FLAG1)

INTEGER FLAG1

FLAG1=O

R = FLOAT(NELEM)

R1 = FLOAT(NEPS)

R2 ~ R/Rl

I ~ NELEM/NEPS

R3 ~ FLOAT(!)

IF (R3.NE.R2) THEN

FLAG1,., 1

WRITE(•.2l)

21 FORMAT(lX,' INPUT ERROR: CHECK AIfD REINPUT TOTAl. NUKBER

1 OF ELEMENTS' .1.1X. I OR NO. OF EU.XEIfTS PER SECKENT••••• ')

END IF

RETURN

END

READ INPUT FILE (STRS1.OUT AND STRS£.OUT)

SUBROUTINE VINPUT(SIG1,SIG2,NELE,NELEM,VOL,
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1 SIGY,PAPP,UNITS)

CHARACTER.(.) UNITS

DIMENSION SIG1(NELEM),SIG2(NELEM),NELE(NELEM).

1 VOL(NELEM)

READ FIRST LINEAR ANALYSIS STRESS LISTING

C READ(15,£5)

G25 FORMATU///IIJ

K = NELEM/41

J = NELEM - K • 41

1=1

DO 30 Kl = l,K

DO 35 K2 = 1.41

READ(15,.)NELE(I),SIG1(1)

35 1= I + 1

C READ(l5,.jO)

G40 FORMATU///1
30 CONTINUE

DO 45 Jl = l.J

READ(15... )NELE(I),SIGl(I)

45 1= r T 1

READ SECOND LINEAR ANALYSIS STRESS LISTING

C READ(l6,50)

G50 FORMATU///IIJ

1=1

DO 55 Kl = I.K

DO 60 K2 = 1,41
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READ(16,.)A,SIG2(I),YOL(I)

60 I = I + 1

C READ(16,65)

C6' FORMAT(f))))

55 CONTINUE

DO 70 Jl = 1,J

READ(16,.)A,SIG2(I),YOL(I)

70 1= [+ 1

SUMM = 0.0

SUMX = 0.0

VOLU = 0.0

TO FEND THE BIGGEST OF THE SECOND

LINEAR ANALYSIS STRESS VALUE

BIGG = 0.0

BIGGI = 0.0

DO K = l.NELEM

IF(SIG2(K).GT.BIGG)BIGG=SIG2(K)

END DO

DO K = 1,NELEM

IF(SIG1(K).GT.BIGG1)BIGG1~SIG1(K)

END DO

DO K = 1,NELEM

SUMN = (SIG2{K)..2).VOL(K)

SUMY ~ (SIG1(K)••2).YOL(K)

VOLU = VOLU + VOL(K)

SUMM = SUMM + SUMN
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SUMX = SUMX + SUMY

WRITE(22••) SUMX,VOLU

WRITE(23,.) SUMM.VOLU

END DO

RMO = SIGY.SQRT(VOLUl/SQRT(SUMMJ

DENOM = (SIGy..2 + (RMO.BIGG)••2l/(2.0.SIGY..2)

PLBOYL = SIGY/BIGG.PAPP

R.MOI ~ SIGY.SQRT(VOLUJ/SQRT(SUMX)

OENOMI = (SIGy..2 + (RMOhBIGGl)..2)/(2.0.SIGY..2)

PLBOYLI = SIGY/BIGGI.PAPP

WRJTE(22,.j 'vALUE OF MO I UIfEAR O.tLYSIS ., • ,HMOl

\VRITE(22••), VALUE OF I LIX, U.tLYSIS DFJlOMIlU.TDR. "

lOENOMI

WRlTE(22,.)' BOYLES LIMIT LOAD I LIlfEAR lJIALYSIS • "

1 PLBOYLl,' , .UNITS

WRITE(22,.) 'HIGHEST STRESS OF I LIHUR AlilLYSIS. "

I BIGGI,' ',UNITS

\VRITE(22,.)'KO X p. ',RMOhPAPP,' ',UNITS

WRJTE(22,.)'KO X P/DENOM. ',RMOhPAPP/OENOMl.

I ' ',UNITS

WRITE(24,.)'VlLUE OF KO - ',RMO

WRJTE(24,"l'APPLIED PRESSURE - ',PAPP,' ',UNITS

WRITE(24,.l'YIELD STRESS· '.sIGY,' ',UNITS

WRITE(24,.) 'VALUE OF KO X p. ',RMO.PAPP,' '.UNITS

WRITE(24,.) 'VALUE OF HIGHEST STRESS OF THE SOFTEllED

I LIHUR ANALYSIS. ',BICC,' ',UNITS

WRlTE(24,") 'VALUE OF THE DENOKIHATDR. ',DENOM

WRITE(24,.) 'VALUE OF MO X P I OENOKINATOR., "

I RMO.PAPP/DENOM.' ',UNITS

WRlTE(24,") 'VALUE OF LIKIT LOAD BY BOYLES KEnlOO. "
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1 PLBOYL,' •.UNITS

RETURN

END

CALCULATE R·NODE STRESSES AND LOCATIONS

SUBROUTINE RNODE(SIGl,SIG2,NSEG,NELEM,NEPS.

1 RSEG.RSTR.RLOC.ELELOCJ)

INTEGER RSEG.ELELOC

REAL Ml,M2

DIMENSION SIGl(NELEM),sIG2(NELEM).RSEG(NELEM).

1 RSTRINELEM),RLOG(NELEM).ELELOC(NELEM)

1=1

DO 85 J = l.NSEG

DO 85 K = l.NEPS-l

IJK = (J - l)_NEPS + K

Ml = SIGl{IJK+l) - SIGl(IJK)

M2 :=: SIG2(IJK+1) - SIG2(IJK)

SLOPE = ABS(MI - M2)

IF (SLOPE.LE.O.OOOOl) THEN

GOTO 85

END IF

X _ (SIG2(IJK) - SIGl(IJK)/(Ml - M2) + FLOAT(K) - 0.5

Y = Ml • (SIG21IJK) - SIG1(IJK))/(Ml - M2) + SIGl(IJK)

RK ::z FLOAT(K) + 0.5

RKl = FLOAT(K) - 0.5

IF(X.LE.RK.AND.X.GE.RKl) THEN

RSTRII} - Y
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RLOC(IJ - X

RSEG(I) = J

ELELOC(I) - UK

1 = I + 1

END IF

85 CONTINUE

RETURN

END

DISPLA Y RESULTS

SUBROUTINE RESULT(RSEG,RLOC.ELELOC,

1 RSTR,NEPS,I)

INTEGER RSEG,ELELOC

DIMENSION RSEG(IJ.RLOC(I),ELELOC(I),RSTR(I)

WRlTE{17.95)

95 FORMAT(lX, 'SEClKEHT NO LOCATION R-RODE STRESS')

WRITE(17,lOO)

100 FORMAT(lX.' R-NODE E:I.E:KEHTS ')

DO 105 II = 1.1-1

lEI = RSEG(II)

lE2 = ELELOC(II)

IE3 = ELELOC(II) + 1

WRITE(17,llO) IEl.RLOC(II).IE2,IE3,RSTR(II)

110 FORMAT(lX,14,2X.F9.5.2X.I5.2X15.2X.F13.S)

WRITE(J8,111) IEI.RSTR([I)

.111 FORMAT(lX,IIO.2X.F13.5)

105 CONTINUE

RETURN

END
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CALCULATES THE HIGHEST, AVERAGE AND THE

LOWEST R·NODE STRESSES

SUBROUTINE CALCU(I,RSTRl,RSTR2,RSTRJ.KJ,RSEG.

1 RSTR,ICOUNT,RSEGG)

INTEGER RSEGG,RSEG,COUNT

DIMENSION RSTRl(Il,RSTR2(Il,RSTR3(I),RSEG(l),

1 RSTR(l),ICOUNT(l)

DIMENSION RSEGG(I)

COUNT=l

IJ=l

KJ=l

GOTO 125

130 IJ=IJ+1

125 INTA=RSEG(IJ)

lNTB=RSEG(IJ+1)

IF(INTA.NE.INTB) GOTO 135

COUNT=COUNT+1

IF(IJ.EQ.I-1) GOTO 140

GOTO 130

135 ICOUNT(KJ)=COUNT

COUNT=l

RSEGG(KJ1~RSEG([J)

KJ=KJ+1

IF(IJ.EQ.I-1) GOTO 140

GOTO 130

140 ICOUNT(KJ)=l
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MM=l

DO 145 IP_1.KJ

BIG=-lE20

AVG=O.O

SMALL=lE20

L=ICOUNT(lP)

DO 150 IQ=l,L

IF(RSTR(MM).GT.BIG) BIG~RSTR(MM)

AVG=RSTR(MM)+AVG

IF(RSTR(MM).LT.SMALL) SMALL~RSTR(MM)

150 MM=MM+l

RSTRI(lPJ-BIG

RSTR2(lPJ-AVG/L

RSTRJ(lP)-SMALL

145 CONTINUE

RETURN

END
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Appendix B

Fortran Program for
determining the Minimum
Weight Geometry of
Mechanical Components and
Structures

The following program (minwt.for) delen:nines the r-nodes and the geometry of the
minimum weight structure based on tbe iso r-node stress concept. The program
automatically performs interpolation for sections tbat does not have r-nodes. The
output of tbe program is nodal coordinates and element connectivity listings in an
ANSYS readable format.

PROGRAM MINIMUM

PARAMETER(MEMO=1500)

CHARACTER.1S FNAMEl.FNAME2.FNAME3.UNITS

INTEGER FLAGl.FLAG2,FLAG3.FLAG4.RSEG,
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1 ELELOC.COUNT.RSEGG

INTEGER FLAG5.FLAG6.FLAG7.FLAG8.FLAG9

REAL Ml.M2

DIMENSION SIG1(MEMO).SIG2(MEMO).NELE(MEMO)

DIMENSION RSTR(MEMO).RLOC(MEMO),RSEG(MEMO)

DIMENSION ELELOC(MEMO),RNO(MEMO),

1 RSTR1(MEMO),YOL(MEMO)

DIMENSION RSTR2(MEMO),RSTR3(MEMO),

1 lCOUNT(MEMO),RSEGG(MEMO)

DIMENSION TffiCK(MEMO),ORSTR(MEMO),TRSEG(MEMO)

DIMENSION NNUM(MEMO),XCORD(MEMO),YCORD(MEMO)

DIMENSION TNSEC(MEMO),XCOORD(MEMO),

1 YCOORD(MEMO),STHK(MEMO)

CALL MESSAGE

WRlTE( •. _)' EJm:R THE flAME OF THE FIRST LIlfEAR

1 ANALYSIS IHPtIT FILE'

53 READ (•. "A)')FNAMEI

OPEN(15.FlLE=FNAMEl.STATUS=' OLD' .ERR=56)

WRITE(.,.)

WRlTE(•._)' EJm:R THE flAME OF THE SOFTENED 11th LINEAR

1 ANALYSIS INPUT FILE'

54 READ (•. 'CA)')FNAME2

OPEN(16.Fn.E=FNAME2,STATUS= 'OLD' .ERR=57)

WRITE(.,.)
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OPENCUNIT=17,FILE= 'zrstrO. out' ,STATUS= 'UNKNOWN')

OPEN(UNIT=18,FILE=' zrstrs. out' ,STATUS=' UNKNOWN' )

WRITE(*,*)' ENTER. THE NAME OF THE OUTPUT FILE FOR THE

I HIGHEST R-NODE STRESS'

67 READC*,'(A)')FNAME3

OPENCUNIT=19,FILE=FNAME3,STATUS=' HEW' ,ERR=66)

WRITE(.,.)

GOTO 68

66 WRITE(*,*)' OUTPUT FILE ALREADY EXISTING. £lITER ANOTHER

1 FILE HAKE'

WRITE(.,,)

GOTO 67

DUMMY STATEMENT

68 DUMMY=O.O

OPEN(unit=20,61e='zrstr .avg' ,status= 'unknovn')

OPEN(unit=21,file=' zrstr. sml' ,status=' unknovn' )

OPEN(unit=22,file=' %8U1l10fl. sqr' ,status= 'unknown')

OPEN(unit=23,file=' %sumof2. sqr' ,status=' unknovn ' )

OPEN{unit=24,file=':zmu.ra. res' ,status=' unknovn')

OPEN(unit=25,file=' nlist' ,status=' old')

OPEN(unit=26,file=' nlist .new' ,status= 'unlcnovn')

OPEN(unit=27,file=' elist ' ,status=' old' )

OPEN(un.it=28,file= 'elist .new' ,status= 'unlalovn')

WRlTE{*,*) 'UNIT OF STRESS? (eg. psi, N/sq.m,. Pa,

I kPa etc.)'
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READ(_,' (A) ')UNITS

WRITE(_,_)

WRlTEC-,-}'YIELD STRESS • ? ',UNITS

READC·,_)SIGY

WRlTE(.,..-)

WRITE(*,*) 'APPLIED LOAD·? ',UNlTS

READ(*,_)PAPP

WRITE(_,..-)

20 WRITE(_,_) 'TOTAL KUKBER OF ELFJIENTS • l'

READ(.,.)NELEM

WRITE(_,_)

WRITE(_,*)'IfUKBER OF ELFJ!FJITS PER SEenOIl. l'

READ(_,*)NEPS

WRITE(_,_)

701 WRITE(*,*)' FOR THICXHESS OF THE flIJfIMUK liEICHT STRUCTURE.'

WRITE(_,_) 'CHOOSE ONE OF THE FOUOWIKG OPTIONS:'

WRITE(.,_)' (.) Inner surface refers to the surface having'

WRITE(_,_), the smaller set of Ilode numbers in the node pairs'

WRITE(.,.). (.) Outer surface refers to the surface having the'

WRITE(_,_)'

WRITE(_,_)

WRITE(_._)'

WRITE(_._),

WRITE(_,_)'

WRITE(_,_)'

WRITE(_,_)'

WRITE(_,_)'

WRITE(_,_),

WRITE(_,_)'

WRITE(_,_),

larger set of node nUlllbers in the node pairs'

1 - PR.QBLEM WITH h'EUTRAL .uIS'

•.g. beama'

2 - PROBLEM liITH St".QOTH INXER SURFACE'

(such &S the inner surface of pr...ure vessels) •

3 - PROBLEMS WITH SHDOTH CJtT'I"ER SURFACE'

4 - SYHKETRIC WITH SHOOTH INNER SURFACE'

(line of sJ1IIIIletry corresponds to neutral axis'

i.e .• inner half of option. 1)'

5 - SYKKETRIC WITH SHOOTH OUTER SURFACE'
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WRITE( _,_)' (line of s,..try corre.ponds to neutral &.1ia'

WRITE(_,_), i.e .• outer half of option' 1)'

READ(_,_)FLAG2

WRITE(.,.)

WRITE(.,.)

IF(FLAG2.EQ.I)THEN

GOTO 702

ELSE IF(FLAG2.EQ.2)THEN

GOTO 702

ELSE IF(FLAG2.EQ.3)THEN

GOTO 702

ELSE IF(FLAG2.EQ.4)THEN

GOTO 702

ELSE IF(FLAG2.EQ.SlTHEN

GOTO 702

ELSE

WRITE(_,_) 'OPTION • ',FLAG2,, IJfViLID'

GOTO 701

END IF

702 WRITE( _._)' CHOOSE ONE OF TIlE FDLLOWIJIG OPTIONS'

WRITE(_._}' HIHlKl1K WEIGHT BASED 0.:'

WRITE(•.• )

WRITE(_,_), 1 - H.UIKUM R-NODE STRESS IN A SECTION'

WRITE(_._), 2 - HINlMUM R-NODE STRESS IN A SECTION'

WRITE(_,_), 3 - AVERAGE R-NODE STRESS III A SECTION'

READ(_,_)FLAG3

WRITE(.,.)

WRITEC-,-)

IF(FLAG3.EQ.IlTHEN

GOTO 725
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ELSE IF(FLAG3.EQ.2)THEN

GOTO ns
ELSE IF(FLAG3.EQ.3)THEN

GOT0725

ELSE

WRITE(_,_) 'OPTION • ',FLAG3,' INVALID'

GOTO 702

END IF

725 WRITE(_,_) 'Durin& optimi.zatiou SOGle sections may b8COlDe

1 impracticably thin. '

WRITE(_,_)'Therefore it becc.e. nece.sary to

1 prescribe the 1Ii.D.imwIl'

WRITE(_,_)·thiclal••• as -ASPECT" t~s the

1 muimum thickn••s·

718 WRlTE(_,_)'VALUE OF ASPECT RAnD i .•.• KIIIKUK THICKNESS/

1 KAIIMUM THICKNESS «1)'

READ(_,_)ASPECT

IF(ASPECT.GT.l.O)THEN

WRITE( _,_) • "ASPECT" KUST BE LESS THAN l'

GOTO 718

END IF

WRITE(_,_)

WRITE(_,_)

723 WRITE(_,_)' CHOOSE ONE OF THE FOLLOWIJIIG OPTIONS'

WRJTE(_,_)'SKAPE OPTIMIZATION BASED OR:'

WRITE( _,_)' 1 - BASED ON THE tuXIKUK R-IODE STRESS - Not

1 RecOllIaeuded'

WRITE(_,_)

WRITE(_,_)' 2 - BASED ON THE R-NODE STRESS OF A PRESCRIBED

1 SECTION - Recoa=end.d'
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READ(.,.)FLAG4

IF(FLAG4.EQ.l)THEN

GOTO 727

ELSE IF(FLAG4.EQ.2)THEN

GOTO 727

ELSE

WRlTE(*,*)'OPTIllN. ',FLAG4,' IS HOT VALID'

GOT0723

END IF

727 FLAG9=1l

IF(FLAG4.EQ.2)THEN

808 WRITE(.,.)'SECTIOI IfUKBER CORRESPQIfDIHG TO REFEREJfCE

1 a-lODE stRESS'

READ(•.•)FLAG9

IF(FLAG9.GT.(NELEM/NEPS))THEN

WRITE(*,.)'SECTION HUKBER ',FLAG9,' IS NOT VALID. SHOULD BE'

WRITE(_,_) 'LESS TIL\N '.NELEM{NEPS

GO TO 808

END IF

END IF

WRlTE(.,.)

WRlTE(•.• )

WRITE(*,.) 'CHOOSE ONE OF THE FOLLOWING OPTIONS'

WRITE(_,.), 1 - tuIIHUH THICKJfESS OF THE OR.IGIHAL STRUCTURE'

WRITE(.,.), CANNOT BE EXCEEDED OY WHERE OUJUlfG

1 OPTIMIZATION'

WRITE(.,.), 2 - IUIIHUH THICJQIESS C.lH BE EXCEEDED IN SOHE'

WRITE(.,.), PARTS OF THE STRUCTURE DURING OPTIMIZATION'

WRITE(_,.), Option. 2 results in better design than

1 option' l'

246



WRITE(_,_)' 3 - KUIKUK: TlUCKJESS OF THE ORIGIIAL STRUCTURE'

WRITE(_,_), C.uJ'DT BE EXCEEDED AJY WERE OORIIIG

1 OPTIKIZATION'

WRITE(_ .• ), B11I'!HE TIIIDD SECTlOIS iRE GIVER AN'

WRITE(_._)' .lDDITIOIAL THICKIESS &u'ovUCE'

READ('.')FLAG5

IF(FLAG5.EQ.l)THEN

GOTO 726

ELSE IF(FLAGS.EQ.2)THEN

GOTO 726

ELSE IF(FLAG5.EQ.3)THEN

GOTO 726

ELSE

WRlTEC-,-)'OPTIOH. ',FLAGS,' IS INVALID'

GOTO 727

END IF

726 IF(FLAG5.EQ.l.AND.FLAG4.EQ.2)THEN

WRITE(.,_)'OPTIOH. 1 IS NOT VALID SINCE OPTIMIZATION

1 IS BASED ON HJ.IIKUH SECTION'

WRITE(_,.)'THICKlIESS OF THE ORIGINAL STRUCTURE. SOKE

1 SECTIONS OF THE OPTIMIZED STRUCTURE'

WRITE( _,_)' CAN BECOME THICKER TH.Uf THE HAIIHUH THICKNESS

1 OF THE ORICINAL STRUCTURE'

WRITE(.,,)

WRITE(_,_)'OO YOU WANT TO'

WRITE(_,_), 1 - WANT TO CHANGE OPTIONS'

WRITE(_,_), 2 - CONTINUE WITH OPTION. 2'

READ(',')FLAG6

IF(FLAG6.EQ.2)THEN
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NO -> 2'

FLAG5=2

ELSE

GOTO 723

END IF

END IF

n4 WRITE(_,_)

WRITE(.,.)

WRITE(_,_) 'PERCENTAGE DIMENSIONAL SAFETY lLLOWlHCE

1 (USUALLY 0-10",)'

READ(_,_)PERCENT

IF(PERCENT.GT.50.0)THEN

WRlTE(.,_) 'INPUT VALUE OF ',PERCENT,'X. INVALID. SHOULD'

WRlTE<-,.) 'BE LESS THAN 50. OX'

GOTO n4
END IF

WRlTE(.,.)

WRITE(.,.)

805 WRITE(_.• )'DO YOU WANT TO FORCE SIMPLY SUPPORTED BOUliDARY

1 CONDITION?'

WRITE(_._), (i.e .• postulate th&t the r-aode stress iD the'

WRITE(_._), simply supported egde(s) is zero)'

WRlTE(.,.)

WRlTE(.,.)'YES -> 1

READ(-,.)FLAG7

IF(FLAG7.EQ.l)THEN

GOT0804

ELSE IF(FLAG7.EQ.2)THEN

GOTO 804

ELSE
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WRlTE(.,.) 'OPTION 11 ',FLAG7,' IS IIlVALID'

GOTO 805

END IF

804 IF(FLAG7.EQ.l)THEN

807 WRITE(.,.) 'CHOOSE ONE OF THE FOLLOWING CONDITIONS'

WRITE(.,.), EDGE IN THE VICINITY OF SECTION. 1 _> I'

NSEG ~ NELEM/NEPS

WRITE(.,801)NSEG

801 FORMAT(5x, 'EDGE IN THE VICINITY OF SECTION. ',14,' -> 2')

WRlTE(.,.), BOTH THE EDGES ...> 3'

READ(.,.)FLAG8

IF(FLAG8.EQ.1)THEN

GOTO 806

ELSE IF(FLAG8.EQ.2)THEN

GOTO 806

ELSE IF(FLAG8.EQ.3)THEN

GOTO 806

ELSE

WRITE(.,') 'OPTION • ',FLAG8.' IS IIlVALID'

GOTO 807

END IF

ELSE

FLAG8=0

END IF

806 DO MM=1,30

WRITE(.,.)

END DO

WRlTE(.,.) 'Program running.
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CALL CBJ<INP(NELEM,NEPS,FLAG1)

IF (FLAG1.EQ.l) THEN

GO TO 20

END IF

NSEG ~ NELEMfNEPS

CALL VINPUT(SIGl,51G2,NELE,NELEM,VOL,S1GY,

1 PAPP,UNITS}

CALL RNODE(SIGl,SIG2,NSEG,NELEM,NEPS,

1 RSEG,RSTR,RLOC,ELELOC)

CALL RESULT(RSEG,RLOC,ELELOC,RSTR,NEPS,I)

CALL CALCU(I,RSTRl,RSTR2,RSTRJ,KJ,RSEG,RSTR,

1 lCOUNT.RSEGG)

WRITE(19,_)'Ma.J:iJDum. ft.-Node StruB'

WRITE(20,_) I .....rage R-Node Stress'

WRlTE(21,_)'Minimwll a-Node Stress'

BIGl=O.O

KJ=KJ-l

DO 155 IPP-l,KJ

WRITE(l9,') RSEGG(IPP).RSTRl(IPP)

1F(RSTR1(IPP).GT.BIGllBIG1-RSTR1(IPPI

WRITE(20,') RSEGG(IPP).RSTR2(IPP)

WRITE(21,') RSEGG(IPPI.RSTR2(IPP)

155 CONTINUE

WRITE(24.•)'Tbe higbest r-node atr... value. ',bigl,' ',units

CALL lNTERPOL(FLAG3.RSTRl,RSTR2.RSTRJ,NSEG.

1 KJ,RSEGG,ORSTR.MEMO,FLAG8)

CALL RDNODE(NNUM,XCORD,YCORD,NSEG,NTOT,MEMO)

CALL MAXTHK(NNUM.XCORD,YCORD,THKMAX,NTOT,

1 THICK,ORSTR.,SIGMA...Nl,MEMO,BIGRST,REFTHK,STHK)

CALL RTffiCK(ORSTR,SIGMA-Nl,THKMAX,TRSEG,NSEG,
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1 MEMO.BrGRST.REFTHK.FLAG4,5THK.FLAG9)

CALL NTIDCK(TRSEG.TNSEC,NTOT.MEMO,ASPECT.THKMAX)

CALL NLIST(TNSEC,NTOT.xCORD,YCORD,xCOORD,YCOORD.

1 THICK.FLAG2.MEMO,PERCENT,FLAGS,THKMAX)

CALL NODES(XCOORD,YCOORD.NTOT,MEMO,NEPS.NNUM)

CALL RDELEM(NELEM)

CLOSE(2')

CLOSE(27)

CLOSE(26)

CLOSE(25)

CLOSE(24}

CLOSE(2')

CLOSE(22)

CLOSE(21)

CLOSE(20)

CLOSE(19)

CLOSE(18)

CLOSE(17)

CLOSE(l6)

CLOSE(lS)

GO TO 58

56 PRINT ., 'The first input file ',£namel,' is U.Ot existing.

1 Re-enter another file Dame'

GO TO S3

57 PRINT ., 'The second uput file' ,fname2, , i. not eZisting.

1 Re-enter &nother file name'

GO TO 54

58 WRITE(_,.)'ProgrUl completed'

STOP
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END

MESSAGE

SUBROUTINE MESSAGE

WRlTE(_,*)'TBIS PROGRAK DETEJ\KIRES THE OPTIKUK SHAPE OF'

WRlTE(.,.)'''' GlVEI STRUCTURE USING THE R-NODE KETROD. I

WRITE(.,.)'1HE OUTPUT FILES ·l:I.1ill1;.n••" and "elist.nev" I

WRITE(.,.) 'REPRESElfTS TKE NODAL COORDINATES lJfI) THE ELEMENT'

WRITE(*,.) 'CONNECTIVITY AND CAN BE OIREcn.y IJfPtTr INTO ANSYS'

WRITE(.,.)

WRITE(_,_) 'THE NODAL COORDINATES AND EL£MEHT CONNECTIVITY'

WRlTE(.,.)'ARE SUITABLE ONLY FOR AlISYS STIF-42 ELEKENTS'

WRITE(.,.)

WRITE(_,_), .....hi't < r. t urn> to continue'

READ(.,.)

DO MM=l,30

WRITE(.,.)

END DO

RETURN

END

CHeCK INPUT FOR CORRECTNESS

SUBROUTINE CHKINP(NELEM.NEPS,FLAGl)

INTEGER FLAGl

FLAGl=O

R~FLOAT(NELEM)
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RI_FLOAT(NEPS)

R2~R/Rl

'~NELEM/NEPS

R.'l~FLOAT(I)

IF(R3.NE.R2)THEN

FLAGl=l

WRlTE(.,21)

21 FORMAT(lX,'INPtIT £RROR: Check and reinput total number of

1 elemeD:ts',/.lX.'or No. of elements per segment ..... ')

END IF

RETURN

END

READ INPUT FILE (~trs1.olJt and 8trs2.otlt)

SUBROUTINE VINPUT(SIGl,SIG2,NELE,NELEM,VOL,

1 SIGY,PAPP,UNITS)

CHARACTER.(.) UNiTS

DIMENSION SIGI(NELEM),SIG2(NELEM),NELE(NELEM),

1 VOL(NELEM)

READ FIRST LINEAR ANALYSIS STRESS LISTING

READ!'S,2S)

2S FORMATU///Ill

K=NELEM/41

J=NELEM-K.41

1=1

DO 30 Kl=l,K

DO 35 K2=1,41
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READ(!5,.)NELE(I),SlGI(I)

35 1=1+1

READ(15,40)

40 FORMAT(f/1IJ

30 CONTINUE

DO 45 Jl=I.J

READ(15, ... )NELE(I),SIGl{i)

45 1=1+1

READ SECOND LINEAR ANALYSIS STRESS LISTING

READ(!',50)

50 FORMAT(f///1IJ

1=1

DO 55 Kl=l,K

DO 60 K2=1,41

READ(16,.)A,SIG2(I),VOL(I)

60 1=1+1

READ{16,65)

.5 FORMAT(f//1l

55 CONTINUE

DO 70 Jl=1.J

READ(16.• )A.SIG2(I),VOL(I)

70 [=[+1

SUMM=O.Q

SUMX=O.O

VOLU=O.O

To find the biggest of the 6econd linear stress value
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BIGG=O.O

BIGGI=O.O

DO K=I,NELEM

IF(SIG2(K).GT.BIGG)BIGG=SIG2(K)

END DO

DO K=l,NELEM

IF(SIGl(K).GT.BIGGl)BIGGl=SlGl(K)

END DO

DO K=l,NELEM

SUMN~(SIG2(K)••2).VOL(K)

SUMY_(SIGl(K)••2).VOL(K)

VOLU=VOLU+VOL(K)

SUMM=SUMM+SUMN

SUMX=SUMX+SUMY

WRITE(22,_)SUMX,VOLU

WRITE(23,. )SUMM,VOLU

END DO

RMO-SIGY.SQRT(VOLU)/SQRT(SUMM)

DENOM=(SIGY--2+(RMO-BIGG)-_2)/(2.0_SIGY._2)

PLBOYL=SIGY/BIGG_PAPP

RMOl~IGY,SQRT(VOLU)/SQRT(SUMX)

DENOMI=(SIGY-_2+(RM01_BIGGI) __2)/(2.0_SIGY..2)

PLBOYLl=SIGY/BIGGI_PAPP

WRITE(24,_) 'Applied pressure • ',PAPP,' ',UNITS

WRlTE(24,.)' Yi81d stress· ',SIGY,' ',UNITS

WRITE(24,_)' Maximum stress: '

WRITE(24,_), I linear analysis. ',BIGGI,' ',UNITS

WRITE(24,_), II linear analysis. ',BIGG,' ',UNITS
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WRlTE{24.•)'Cluaicallilllit load:'

WRlTE{24,.), I linear analysis· '.PLBOYLl.' , ,UNITS

WRlTE(24••), II linear aD.iI.l.yais • ',PLBOYL,' ',UNTrS

WRITE(24,_)'Value o~ 1llO:'

WRlTE(24,.), I linear an&1yeia • ',RMOI

WRlTE(24,.)' II linear analysis • ',RMO

WRlTE{24,.)' Value o~ the clenomi.Da'tor: •

WRlTE(24,.)' I linear analysis • ',DENOMl

WRlTE{24,.), II linear analysis. ',DENOM

WRITE{24,.)'lDO:ll: P:'

WRITE{24,.), I linear analysis· ',RMOI.PAPP,' '.UNITS

WRlTE(24,.), II linear analysis. ',RMO.PAPP,' ',UNITS

WRlTE(24,.) 'IDO :ll: P/C.nominator:'

WRlTE(24,.), I linear analysis. ',RMOI.PAPP/DENOMI.

1 ' ',UNITS

WRlTE(24,.), II linear aJa.l.ysia. '.RMO_PAPP/DENOM.

I ' ',UNITS

WRlTE(24,.) 'Tau.! volume • ',VOLU

RETURN

END

CALCULATE R·NODE STRESSES AND LOCATIONS

SUBROUTINE RNODE(SIG1,SIG2,NSEG,NELEM,NEPS,

I RSEG,RSTR,RLOC.ELELOC,I)

INTEGER RSEG,ELELOC

REAL MI,M2

DIMENSION SIG1(NELEM),SlG2(NELEM),RSEG(NELEM),

1 RSTR(NELEM),RLOC(NELEM),ELELOC(NELEM)
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1=1

DO 85 J=l,NSEG

DO 85 K=1,NEPS-1

IJK=(J-ll*NEPS+K

Ml~SlGl(IJK+l)-SIG1(IJK)

M2~SIG2(IJK+l)-SIG2(IJK)

SLOPE=ABS(MI-M2)

IF (SLOPE.LE.O.OOOOl) THEN

GOTO 85

END IF

X~(SIG2(IJK)-SIG1(IJK))/(MI-M2)+FLOAT(K)-O.5

Y~Ml.(S[G2([JK)-SIG1(IJK))/(Ml-M2)+SIG1(IJK)

RK=FLOAT(K)+O.5

RK1=FLOAT(K)-0.5

IF(X.LE.RKAND.X.GE.RKl) THEN

RSTR(I)~Y

RLOClI)=X

RSEG(I)~J

ELELOC(I)=IJK

1=1+1

END IF

85 CONTINUE

RETURN

END

DISPLA Y RESULTS

SUBROUTINE RESULT(RSEG,RLOC,ELELOC,RSTR,NEPS,I)

INTEGER RSEG.ELELOC
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DIMENSION RSEG(I).RLOC(I),ELELOC(I).RSTR(IJ

WRITE(17,95)

9S FORMAT(lX,'SEGMDlT 10 LOCATIO. ft.-lODE STRESS')

WRlTE(l1.IOO)

100 FORMAT(lX,' ft.-KODE EL.EMEJITS ')

DO IDS U=I)-1

lEl~RSEG(ll)

lE2~ELELOC(ll)

lE3~ELELOC(ll)+ 1

WRlTE{17.1l0)lEl.RLOC(ll).lE2.lE3.RSTR{ll)

110 FORMAT(lX,I4,2X,F9.5.2X,I5,2X,I5,2X,F13.5)

WRlTE(lB.lll) lEl.RSTR(ll)

III FORMAT(lX,IlO,2X,F13.5)

105 CONTINUE

RETURN

END

DETERMINES THE HIGHEST, AVERAGE AND THE

LOWEST R-NODE STRESSES

SUBROUTINE CALCU(I.RSTRl.RSTR2.RSTR3.KJ.

1 RSEG.RSTR,ICOUNT.RSEGG)

INTEGER RSEGG.RSEG.COUNT

DIMENSION RSTRl(I),RSTR2(IJ.RSTR.'l(IJ.RSEG(IJ.

1 RSTR(IJ.ICOUNT{I)

DIMENSION RSEGG{I)

COUNT=l

IJ=l

KJ=l

GOTO 125
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130 U=U+l

125 INTA~RSEG(U)

INTB=RSEG(IJ+l)

IF(INTA.NE.INTB) GOTO 135

COUNT=COUNT+l

IF(U.EQl-1) GOTO 140

GOTO 130

135 ICOUNT(KJ)=COUNT

COUNT=1

RSEGG(KJj-RSEG(lJ)

KJ=KJ+l

IF(IJ.EQ.I-l) GOTO 140

GOTO 130

140 ICQUNT(KJ)=1

MM=1

DO 145 1P=I,KJ

BIG=-IE20

AVG=O.O

SMALL=Ie20

L=ICOUNT(lP)

DO ISO IQ=l.L

IF(RSTR(MM).GT.BIG) BIG~RSTR(MM)

AVG=RSTR(MM)+AVG

IF(RSTR{MM).LT.SMALL) SMALL=RSTR(MM)

150 MM=MM+l

RSTRl(IP)-=BIG

RSTR.2{IP)_AVG/L

259



RSTR3{IPI=SMALL

145 CONTINUE

RETURN

END

LINEAR INTERPOLATlON OF THE R-NODE STRESSES

SUBROUTINE INTERPOL{FLAG3.RSTRl,RSTR2,RSTR3,NSEG.

1 KJ,RSEGG,ORSTR,MEMO,FLAG81

INTEGER FLAG3,RSEGG.FLAG8

DIMENSION RSTR1(MEMO),RSTR2(MEMO),RSTR3(MEMOI,

1 RSEGG(MEMOI,ORSTR(MEMO)

DO KOl=l,NSEG

ORSTR(KOI)=O.O

ENDDQ

IF(FLAG3.EQ.l)THEN

DO KQ2=1,KJ

KPl:RSEGG(K02)

ORSTR(KPl)=RSTRl{K02j

END DO

ELSE

IF'{FLAG3.EQ.2)THEN

DO K02=1.KJ

KPl:RSEGG(K021

ORSTR{KPII-RSTR2(K02)

ENDDa

ELSE
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IF(FLAG3.EQ.3)THEN

DO K02=l.KJ

KPI-RSEGG(K02)

ORSTR(KPl)-RSTR3(K02)

END DO

END IF

END IF

END IF

IF(FLAG8.EQ.I)GOTO 802

IF(FLAG8.EQ.3)GOTO 803

KP2-RSEGGIl)

DO K03=1.KP2-1

ORSTRIK03)_ORSTR(KP2)

END DO

IF'{FLAG8.EQ.2IGOTO 803

802 KP3-RSEGG(KJ)

DO K04=KP3+l.NSEG

ORSTR(K04'-ORSTR(KP3)

END DO

803 IF(FLAG8.EQ.l.OR.FLAG8.EQ.3)THEN

DO KSP-l.KJ

RSEGG(KJ+2-KSP)=RSEGG(KJ+I-KSP)
END DO

KJ=KJ+l
RSEGG(I)=1

ORSTR(l)-O.OOOl

END IF
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IF(FLAG8.EQ.2.0R.FLAG8.EQ.3)THEN

KJ=KJ+l

RSEGG(KJ)~NSEG

ORSTR(NSEG)=O.OOOl

END IF

DO K05=1,KJ-l

KP5=RSEGG(K05)

KP6-RSEGG(K05+1)

IDIFF=KP6-KP5

DO K06=1,IDIFF-l

KP4=KP5+K06

ORSTR(KP4)=ORSTR(KP5)+(PLOAT(KP4-KP5).

1 (ORSTR(KP6)-ORSTR(KP5)){FLOAT(IDIFF))

END DO

END DO

.m.sp CHECK POINT· 1

do ichkl=l.nseg

write(80.•) 'ORSTR(' ,ichkl,') - '.orstr(ichldl

end do

RETURN

END

READS NODE LISTING FOR THE SELECTED NODES

SUBROUTINE RDNODE(NNUM,xCORD,YCORD,NSEG,

1 NTOT,MEMO)
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DIMENSION NNUM(MEMOl,xCORD(MEMO),YCORD(MEMO)

NTOT={NSEG+l).2

READ(2S,703)

703 FORMAT(f1111111111J
GOTO 714

713 REWIND(25)

READ(25,715)

715 FORMAT(fIII
714 K_NTOT/20

J=NTOT-K.20

101=1

DO Kl=l,K

DO K2=1,20

READ(25,.,ERR=713)NNUM(lOl).XCORD(IOl),YCORD(IOl).a.b.c.d

101-=101+1

END DO

READ(25,704,ERR=713)

704 FORMAT{/)

END DO

DO Jl=1.J

READ(2S, •.ERR-713)NNUM(IOl).xCORD(IOI),YCORD(IOl).a.b.c.d

101-101+1

END DO

• msp CHECK POINT - II

do icbkl=l,ntot

write(81,.)'NNUM('.ichkl,') • ·,nnum(ich.kl),· ICORD('.

1 ichkl,') - ',xcord(ichkl),' YeaRD(' ,ichkl.') .. I,

1 ycord(ichkl)
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end do

RETURN

END

DETERMINES THE MAXIMUM SECTION THICKNESS

AND THE CORRESPONDING R-NODE STRESS - SIGMAJ{l

SUBROUTINE MAXTHK(NNUM,XCORD,YCORD,THKMAX.

1 NTOT,TmCK,ORSTR,SIGMAJoll,MEMO,BIGRST,REFTHK,STHK)

DIMENSION NNUM(MEMO),XCORD(MEMO),YCORD(MEMOj

DIMENSION THICK(MEMOj,ORSTR(MEMO),STIIK(MEMO)

NTOTAL_NTOT/2

THKMAX=O.O

DO I02=1,NTOTAL

THICK([Q2)~SQRT«YCORD(I02+NTOTAL)-YCORD(I02jj..2

1 +(XCORD(I02+NTOTALj-XCORD(I02j)••2j

IF(THICK(I02).GT.TIIKMAX) THEN

THKMAX~THICK(I02)

MARKl=I02

END IF

END DO

RMARK1=ORSTR(MARKl-1)

RMARK2=ORSTR(MARKl)

SIGMA_Nl=MAX(RMARKl.RMARK2)

DO K02A=1,NTOTAL-l

IF(THICK(K02A).GE.THKMAX.AND.ORSTR(K02A).

1 GT.SIGMA_Nl) THEN

SIGMA_Nl=ORSTR(K02A)

THKMAX=THICK(K02A)

END IF
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END DO

BIGRST-O.O

DO K02B=l,NTOTAL-l

IF(ORSTR(K02B).GT.BIGRST)THEN

BIGRST~ORSTR(K02B)

REITHK-MAX(TIDCK(K02B).TmCK(K02B+l»

END IF

END DO

DO KGOD=l,NTOTAL-l

STHK(KGODI-(TIDCK(KGOD)+TIDCK(KGOD+l)I/2.0

END DO

_rrup CHECK POINT·III

do ichkl=l,ntotaJ.

write(82,_) 'THICKC' ,ich.kl.') • '.thick(ichkl)

end do

write{82,.j'TIOO'IAX '"' •. thkmax

write(82,_)'SIGPU._Kl • '.sigma.....nl

do ich.kll=l.Dtow-l

write(83.•)· S1i{K( • .ich.kll.·) '"' •.sth.k(ichkll)

end do

RETURN

END

DETERMINES THE THICKNESS OF THE R·NODB SECTIONS

SUBROUTINE RTHICK(ORSTR.SIGMA...Nl,THKMAX.TRSEG.

1 NSEG,MEMO.BIGRST,REFTHK,FLAG4,STHK,FLAC9)

DIMENSION ORSTR(MEMOI.TRSEG(MEMOI.STHK(MEMO)
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INTEGER FLAG4,FLAG9

IF(FLAG4.EQ.l)THEN

DO K01A=l,NSEG

TRSEG(K07A)=STHK(K07A).SQlIT(ORSTR(K07A)/BIGRST)

END DO

END IF

IF(FLAG4.EQ.2)THEN

DO K01=1,NSEG

TRSEG(K07)~STHK(K07),SQlIT(ORSTR(K07)/ORSTR(FLAG9»

ENODO

END IF

• msp CHECK POINT - IV

do ichJcl=l.nseg

wtite(84,_) 'TRSEG(' ,ichlcl.') '" •,trseg(ichlcl)

end do

RETURN

END

DETERMINES THE NODE THICKNESS LIST

SUBROUTINE NTHICK(TRSEG,TNSEC,NTOT,MEMO.

1 ASPECf,THKMAX)

DIMENSION TRSEG(MEMO),TNSEC(MEMO)

NTOTAL=NTOT/2
THKMIN=ASPECT_THKMAX

TNSEC(l)=TRSEG(l)

TNSEC(NTOTAL)~TRSEG(NTOTAL-l)

DO K08=2.NTOTAL-l

TNSEC(K08)~MAX(TRSEG(K08-1),TRSEG(K08»
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END DO

DO K08A=1,NTOTAL

IF(TNSEC(K08A).LT.THKMlN)THEN

WRITE(_,711)K08A,TNSEC(K08A),THKMIN'

711 FORMAT(lX,'THICKNESS OF NODAL SEC. ",13,'-',

1 F7.3.' LESS THAN PRESCRIBED MIN. OF',F7.3)

WRITE(_,*) 'THICKNESS CORRECTION PERFORMED'

TNSEC(K08A)=THKMIN

END IF

END 00

-m.sp CHECK POINT - V

do ichkl=l,ntotal

Wt'ite(85,_)'TNSEC(',ichkl.') - ',tnsec(ichkl)

end do

RETURN

END

DETERMINES THE NEW NODE LIST

SUBROUTINE NLIST{TNSEC,NTOT,XCORD,YCORD.XCOORD.

1 YCOORD,TIDCK.FLAG2.MEMO,PERCENT,FLAG5,THKMAX)

DIMENSION TNSEC(MEMO).XCORD(MEMO),YCORD(MEMO)

DIMENSION XCOORD(MEMOl,YCOORD(MEMO),

1 THICK(MEMOl

INTEGER FLAG2.FLAG5

NTOTAL=NTOT/2

DO K09=1,NTOTAL

SP=(lOO.O-PERCENT)/lOO.O

IF(FLAGS.EQ.2)THEN
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DELT=TffiCK(K09}.SP-TNSEC(K09)

END IF

IF(FLAG5.EQ.1)THEN

DELT=TffiCK(K09).SP-TNSEC(K09)

IF(DELT.LT.O.O)THEN

DELT~THICK(K09)-TNSEC(K09)

IF(DELT.LT.O.O)THEN

DELT=THKMAX-TNSEC(K09)

IF(DELT.LT.O.O)THEN

DELT=O.O

END IF

END IF

END IF

END IF

IF(FLAG5.EQ.3)THEN

DELT_(l.O_PERCENT/lOO.O).(THlCK(K09)_TNSEC(K09»

END IF

DELX=DELT.ABS(XCORD(K09)-XCORD(K09+NTOTAL»

1 /THlCK(K09)

DELY-DELT.ABS(YCORD(K09)-YCORD(K09+NTOTAL))

1 /THlCK(K09)

• msp CHECK POiNT - Vi

Vlrite{_,_)'DELT = ',delt

Vlrite(_,.)'DELX = ',dea

Vlrite(_,.)'DELY = ',dely

write(_,_)'FLAGf = ',flag2

IF(FLAG2.EQ.l)THEN
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IF(YCORD(K09).GE.YCORD(K09+NTOTAL))THEN

YCOORD(K09)-YCORD(K09)-DELY12.0
YCOORD(K09+NTOTAL)=YCORD(K09+NTOTAL)

1 +DELY/2.0

ELSE

YCOORD(K09)~YCORD(K09)+DELY1'-0
YCOORD(K09+NTOTAL)~YCORD(K09+NTOTALJ

1 -DELY/2.0

END IF

IF(XCORD(K09).GEXCORD(K09+NTOTAL»THEN

XCOORD(K09)~XCORD(K09)-DELX/2.0

XCOORD(K09+NTOTAL)~XCORD(K09+NTOTALJ

1 +DELX/2.0

ELSE

XCOORD(K09)~XCORD(K09J+DELX/2.0

XCOORD(K09+NTOTAL)=XCORD(K09+NTOTAL)

1 -DELX/2.0

END IF

END IF

IF(FLAG2.EQ.2)THEN

IF(YCORD(K09).GE.YCORD(K09+NTOTAL»THEN

YCOORD(K09)-YCORD(K09)

YCOORD(K09+NTOTAL)=YCORD(K09+NTOTAL)

1 +DELY

ELSE

YCOORD(K09)-YCORD(K09)

YCOORD(K09+NTOTAL)=YCORD(K09+NTOTALj

1 -DELY

END IF

IF(XCORD(K09).GEXCORD(K09+NTOTAL»THEN
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XCOORD(K09)_XCORD(K09)

XCOORD(K09+NTOTAL)=XCORD(K09+NTOTAL)

1 +DELX

ELSE

XCOORD(K09)_XCORD(K09)

XCOORD(K09+NTOTAL)=XCORD(K09+NTOTAL)

1 -DELX

END IF

END IF

IF(FLAG2.EQ.3)THEN

IF(YCORD(K09).GE.YCORD(K09+NTOTAL»THEN

YCOORD(K09)-YCORD(K09)-DELY

YCOORD(K09+NTOTAL)=YCORD(K09+NTOTAL)

ELSE

YCOORD(K09)~YCORD(K09)+DELY

YCOORD(K09+NTOTAL)=YCORD(K09+NTOTAL)

END IF

IF(XCORD(K09).GE.XCORD(K09+NTOTAL»THEN

XCOORD(K09)~XCORD(K09)-DELX

XCOORD(K09+NTOTAL)==XCORD{K09+NTOTAL)

ELSE

XCOORD(K09)~XCORD(K09)+DELX

XCOORD(K09+NTOTAL)=XCORD(K09+NTOTAL)

END IF

END IF

IF(FLAG2.EQ.4)THEN

DELX=DELXj2.0

DELY=DELYj2.0

IF(YCORD(K09).GE.YCORD(K09+NTOTAL»THEN

YCOORD(K09)~YCORD(K09)
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YCOORD{K09+NTOTAL)=YCORD(K09+NTOTAL)

1 +OELY

ELSE

YCOORD(KO')~YCORD(KO')

YCOORD(K09+NTOTAL)=YCORD{K09+NTOTAL)

1 -DELY

END IF

IF(XCORD(KO').GE.xCORD(KO'+NTOTAL))THEN

XCOORD(KO')_XCORD(KOO)

XCOORD(KO'+NTOTAL)-XCORD(K09+NTOTAL)

1 +DELX

ELSE

XCOORD(K09)_XCORD(KO')

XCOORD(K09+NTOTAL)=XCORD(K09+NTOTAL)

1 -DELX

END IF

END IF

IF{FLAG2.EQ.5)THEN

DELX=DELX/2.0

DELY=DELY/2.0

IF(yCORD(K09).GE.YCORD(K09+NTOTAL»THEN

YCOORD(K09)-YCORD(K09)-DELY

YCOORD(K09+NTOTAL)=YCORD(K09+NTOTAL)

ELSE

YCOORD(K09)=YCORD(K09)+DELY

YCOORD(K09+NTOTAL)=YCORD(K09+NTOTAL)

END IF

IF(XCORD(K09).GE.XCORD(K09+NTOTAL»THEN

XCOORD(K09)-XCORD(KO')-DELX

XCOORD{K09+NTOTAL)=XCORD(K09+NTOTAL)

271



ELSE

XCOORD(K09)~XCORD(K09)+DELX

XCOORD(K09+NTOTAL)~XCORD(K09+NTOTAL)

END IF

END IF

END DO

- msp CHECK POINT· VII

do ichkl=I,ntotaJ

write{_,_)'XCOORD(',ichkl, ') = ',%coord(ichkl),

1 'YCOORD{',ichkl, ') = ',ycoord{ichkl)

end do

RETURN

END

OUTPUTS THE LIST OF NODES SUlTA.BLE FOR A.NSYS

SUBROUTINE NODES(XCOORD.YCOORD,NTOT,MEMO.

1 NEPS,NNUM)

DIMENSION XCOORD(MEMO).YCOORD(MEMO),NNUM(MEMO)

NTOTAL=NTOT/2

DO KQI=l.NTOT

WRlTE(26.707)NNUM(KQ1)'xCOORD(KQ1).YCOORD(KQ1)

707 FORMAT(lX,'N,'.IS,' ,'FLU.' ,'.FIU)

END DO

DO KQIA=l.NTOTAL

WRITE(26,708lNNUM(KQIAJ,NNUM(KQIA+NTOTAL).NEPS-1

708 FORMAT(IX.' FILL, ',15,' , ',15,' , ',15)

END DO

RETURN
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END

READS THE ELEMENT LIST OF AN5YS AND PRODUCES

ANSYS READABLE ELEMENT LIST

SUBROUTINE RDELEM(NELEM)

READ(27,70S)

70S FORMAT(f11111II IIIII
GOTO 722

720 REWIND(27)

REWIND!2.)

READ(27,719)

119 FORMAT(f111J
722 K=NELEM/20

J=NELEM-K_20

IOl=l

DO Kl=l,K

DO K2=1.20

READ(27,-.ERR=720)NENUM.lA.IB.IC,ID,NI,NJ,NK,NL

WRlTE(28.709)NI,NJ,NK.NL

709 FORMAT(lX,'E, ',15.'. 'l5,'. '.15,'. '.IS)

IOl=IOl+l

END DO

READ(27,706,ERR=121)

706 FORMAT(f1J

GOTOna

121 IF(J.EQ.O) THEN

GOTO 712

ELSE
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GOTO 720

END IF

728 END DO

DO Jl=I,J

READ(27,.,ERR=720)NENUM,IA,m,IC,ID,NI,NJ,NK,NL

WRITE(28,710)NI,NJ,NK,NL

710 FORMAT(lX, 'E, ',15,' • ',IS,' • ',15,' • '.IS)

101=101+1

END DO

712 RETURN

END
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Appendix C

ANSYS Commands Listing of
Mechanical Components and
Structures

All ANSYS commands listing for the problems given in Chapter 4 are provided in

this section. Some typical inelastic analysis listings using ANSYS are also provided.

Finally, listings for the layered beam problems are given.

C.l Isotropic Components

C.l.I Linear Elastic Analysis

C.l.l.I Thick Cylinder Subjected to Internal Pressure

/BATCH

-SET,RI,3

.SET,RO,9

-SET .NELEK,90

! INNER RADIUS (inch)

! OUTER RADIUS (inch)

! NO. OF ELEMEJlTS ACROSS THE CROSS-SECTION
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-SET,THICK,(RO-R!)/IELEM ! TBICKIESS (EiSURES SQUiRE ELEKENTS)

-SET, YS, 30£03

_SET,YK,30E06

-SET, POISSON, 0.3

-SET ,PRSR,10E03

! YIELD STREJrGTH (pSi)

! YOUBG'S "ODULUS (psi)

! POISSON'S RATIO

! IN'TElUfAL PRESSURE (psi)

! ELEMEIlT TYPE - PUlfE42 (FOUR HaDED ISOP.lRAKETlUC)

! UISnDIETllIC OPTIO.

! YOUNG'S "ODULUS

! POISSON'S RATIO

/PREP7 ! EJfTER PREPROCESSOR

mTLE, THICK CYLIIfDER OlDER IIfTERRAL PRESSURE

IJfTYPE,O

ET,1,42,0,0 ,1,0,0

KP,EX,l,YK

MP,HUXY"O.3

N,l,RI ! DEFINE NODES

If ,NELEH+l,RO

FILL,l,NELEK+l

N,NELEH+2 ,RI, THICK

N,2-01£LEM:+1) ,RO,THICK

FILL, NELEK+2, 2- (NELEl(+1)

-OO,K,l,NELDf ! DEFINE ELEKEJlTS

E ,K ,K+l,NELEK+K+2 ,NEI.EK+K+l

-EllDDO

FINISH I EXIT PREPROCESSOR

/SOLUTION ! ENTER SOLUTIOIl ROUTINE

276



ANTYPE.O

D,ALL,UY ,0

NSEL,S,LOC ,I,RI

SF ,ALL , PRES ,PRSa

NSEL,ALL

SAVE

SOLVE

FINISH

IINP, rnodemac

c.·· IINP. repeat

EXIT

! STATIC AN.tLYSIS

! DISPLACEMENT BOUNDARY CONDITION

! APPLY UNIFORM INTERHAL PRESSURE

! SAVE DATA-BASE

! SOLVE EQUATIONS

! EXIT SOLUTION ROUTINE

INPUT MACRO FOR A.-NODE ANALYSIS

! ... (OR) INPUT MACRO FOR REPEATEJl ELASTIC ANALYSIS

C.1.1.2 Indeterminate Beam Subjected to Uniform Load

IBATCH

.SET. LENG. 20

·SET.TIlIK.l.00

_SET ,NDIV1.100

_SET ,NDIV2,10

-SET ,PRSR,25

-SET.YH.30E06

- LENGTH OF THE BEAM (inch)

_ THICKNESS OF THE BEAK (inch)

* NUKBER OF DIVISIONS ALONG THE LENGTH OF THE BEJ.M

- NUMBER OF DIVISIONS ALONG THE VIOTH OF THE BEAM

- ARBITRARY APPLIED PRESSURE (psi)

- YOUNG'S ","OOULUS (psi)
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.S£T, TS ,30E03 • YIELD STRESS (psi)

/PREP7

ITlru:,IIIDETERKINATE BEAM

ET,l,42 ! PUHE STRESS OPTIOll

MP,EX,l,YM

MP,HUXT"O.3

K.l

K,2,LDtG

K,3,LEXG,naK

K,4,O,THIK

L,l,2,troIV1

L,2,3,NDIV2

L,3,4.!iDIV1

L,4,1,NDIV2

A,4,l,2,3

TYPE,l

KAT,l

AKESH,AU.

FIIIfI

/SOLU

AlITYPE,O

NSEL, ,LOC,X,O
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D,llL,ALL,O

HALL

HSEI., ,LOC,I,IDG

HSEL,R,LOC,Y,O

D,ALL,UY ,0

HALL

HSEL, ,LOC, Y, THIK

SF, ALL, PRES, PRSR

HALL

SAVE

SOLVE

FINISH

InlP ,ruodemac

C••• IIlfP, repea:t

EXIT

! IlfP11T IUCRO FUR R-IfDDE lJIALYSIS .

••• (OR) IlfPUT MACRO FOR REPEATED ELASTIC ANALYSIS

C.1.1.3 TorispbericaJ Head Subjected to Uniform Pressure

IBATCH

ALL DIMENSIONS 1M KETERS

! RID'" 0.12

BASIC CONSTANTS
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-SET,PI ,3.1415926536

-SET, YM,206.85E06

-SET. YS, 206.85£03

-SET ,PRSR, 200.0

! YOUIfG'S KODULUS (KPa.)

! YIELD STRESS (KPa.)

! INTERHAL PRESSURE (Kpa.)

BASIC IRPOTS

! THE SYMBOLS usm ARE AS PER IUSSOIlET' .uD SAVE

-SET, T ,2.54£-02

-SET ,LSBYD,O.S

-SET, RBYD. 0 .12

-SET, TBYD ,1/300

! VALL THICKJfESS (m)

! LS BY 0 (LS IS THE RADIUS OF THE HEAD)

! R BY' 0 (R IS THE RJ.D!OS OF THE TORUS)

! T BY 0 (T IS THE THICKHESS AND 0 IS THE

DIAKETER OF THE CYLINDER)

DERIVED DIHENSIONS

! THE SYMBOLS USED ARE tr( CMi

_SET, PHITWO ,ASIH( (0. 5-RBYD) / (LSBYD-RBYD» -180/PI

_SET, PHI I,90. o-PHITVO

_SET,D.T/TBYD ! INSIDE DIAKETER OF THE CYLINDER

_SET,RX,RBYD_O ! RADIUS OF THE KNUCKLE

_SET,RH,LSBYD_O ! RADIUS OF THE HEAD

-SET ,HH. RH-(RH-RJO -COS (PHITWO-PI/180. 0) ! HEIGHT OF THE TORISPHERICAL HEAD

_SET, A, D/2-RX ! DISTANCE FROH AXIS TO KWCKLE CENTER

_SET ,RI ,D/2.0 ! INNER RADIUS OF THE CYLINDRICAL PORTION
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-SET ,RO ,RI+T ! OUTER RADIUS OF THE CYLINDRICAL PORTION

_SET.H,1.2_S.0_SQRT(RO_T) ! HEIGHT FROM BASE TO LOWER KNUCKLE

ELEMENT SIZE PARAMETERS

_SET, NOIV1, 6

-SET, NDIV2. 70

-SET. NDIV3, 30

-SET,NDIV4,120

/PREP7

ANTYPE,O

ET,l ,42.0.0.1,0,0

HP,EX,l,YH

HP,NUXY ••0.3

K,l,RI

K,2,RO

K,3,RI,H

K,4,RO,H

! LOCAL CO-ORDINATE SYSTEM FOR THE KNUCKLE

LOCAL.l1,l,A,H

CSYS,l1

K,S.RK,PHI1

K,6,RK+T,PHI1

CSYS,O
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! LOCAL CO-ORDINATE SYSTD1: FOR THE HEAD

LOCAL,12,l.0.H+HH-RH

CSYS,12

K,1,RH.90

K.a.RH+T,90

CSYS,O

L.1,2.NDIV1

L.3.4.NDIV1

L,5,6,NDIVl

L,1,a,HOIV1

L,1.3.NDIV2

L,2,4,NDIV2

CSYS,l1

L,3,5.NDIV3

L,4.6.NDIV3

CSYS,12

L.5.1.NDIV4

L,6.a.NDIV4

CSYS,O

A,1,2,4,3

AKESH.1
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CSYS,ll

A,3,4.6,5

AKESH,2

CSYS,12

A,5,6,8,7

AM£SH,3

CSYS,O

SFL,5,PRES ,PRSR

CSYS,l1

sn, 7,PRES,PRSR

CSYS,O

CSYS,12

SFL,9,PRES,PRSR

CSYS.O

SFTRAN

NSEL, ,LOC,X,O

D.ALL,UX,O
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NSEL,ALL

NSEL"LOC,'l,O

D,ALL,UY ,0

NSEL,ALL

FINISH

/SOLUTION

SAVE

SOLVE

FINISH

/ HlP , rnodomac

C--- IINP ,repeat

EXIT

! INPUT MACRO FOR R-NODE ANALYSIS .•

. • . (OR) INPUT MACRO FOR REPEATED ELASTIC ANALYSIS

C.l.l.4 Spherical Pressure Vessel with a Cylindrical Nozzle
Subjected to Uniform Internal Pressure

IBATCH

BAS I C

-SET, YM,200 .00E06

-SET, YS,300.00E03

-SET ,PRSR,200

CONSTANTS

! YOUNG'S MODULUS (KPa)

! YIELD STRENGTIf (KPa)

l INTERNAL PRESSURE (KPa)

284



BASIC INPUTS

_SET,RS,1.0 ! MEAN RADIUS OF THE SPHERE (m)

-SET,TS,O.2S ! TIlICKNESS OF THE SPHERICAL SHELL (m)

_SET,RN,O.20 ! MEAN RADIUS OF THE NOZZLE (m)

DERIVED INPUTS

_SET,TN,2.0_TS_RN/RS ! TIlICKNESS OF THE NOZZLE (m)

_SET,H,1.2_S.0_SQRT(RN_TN) ! HEIGHT OF THE NOZZLE (m)

ELEMENT SIZE PARAMETERS

_SET ,NDIV1,45

-SET ,NDIV2,6

-SET,NDIV3,ll

_SET, NDIV4, 38

-SET ,NDIV5 ,10

/TITLE, INTERSECTION OF A SPHERICAL PRESSURE VESSEL WITH A CYLINDRICAL NOZZLE

/PFlEP7

ANTYPE,O

ET ,1,42,0,0,1,0,0

KP,EX,1,YH

MP,NUXY, ,0.3

RSI-RS-TS/2.0

RSO-RS+TS/2.0
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RHI..RH-TN/2.0

RNO-RH+TN/2.0

K.1,RSO

K, 2 ,RHO, SQRT(RSO"2-RHO..2)

K, 3 ,RNO ,SQRT(RSO"2-RNO"2) +TNI2. 0+8

K, 4 ,RNI ,SQRT(RSO"2-RHO**2)+TN/2. 0+8

K, 5, RNI, SQRT(RSO"2-RHO"2)+T8/2. 0

K,6 ,RBI, SQRT(RSI**2-RNI"2)

K,7,IlSI

K,12

K,15, ,-RSI

K,16, ,-RSO

CSYS,1

L,1,2

CSYS,O

L,2,3

L,3,4

L,4,S

L,S,6

CSYS,l

L,6,7

CSYS,O

L,7,1

LOCAL ,H,1, RNO+TN/2. 0, SQRT(RSO**2-RNO**2)+TNI2. 0

CSYS,H

LFILLT ,1,2,TN/2.0,10

LOIV,B,O.S,H
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CS'tS,O

L,a,12

LCSL,10,6

l.DELE,14

L,ll,6

L,9,S

L,lS,16

CSYS,l

L,1S,7

L,16,1

CSYS,O

KDELE,10

KDELE,2

KDELE,I2

I..ESIZE,I, "NDIV1,O.3333

LESIZE, 2, "NDIV4,3

LESIZE, 3, , ,BOIVS

LESIZE,4, "NDIV4 ,0.3333

LEStZE,S, "NDIV3

LESIZE,5, "BOIVS

LESIZE,7, , ,NDIVS

LESlZE,a" ,NDIV2

LESlZE,9" ,NDIV3

LEStZE,lO,, ,NDIVS

LESIZE,II" ,IIDIV2

LESlZE,12" ,HDIV1,O.3333

LESIZE,13" ,NDIVS
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LESlZE, 14, "MOIV5

LESlZE,15" ,NDIVl

LESlZE,16" ,MOIVl

C8YS,l

A,15,16,l,7

A,7,1,8,13

CSYS,O

A,13,8,11,6

A,6,11,9,5

A,5,9,3,4

ESHAPE,2

AMESH,ALL

FINI

!SOLU

ANTYPE,STATIC

8FL ,4 ,PRES ,PRSR

SFL, 5, PRES, PRSR

CSYS,1

8FL, 11 ,PRES ,PRSR

8Ft ,12 ,PRES,PRSR

Sf'L,15,PRES,PRSR

CSYS,O

SFTRAN
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NSEL. ,Lac, Y,SQRT(RSO"2-RNO..2)+TXI2.0+H

D,A.LL,UY.O

NSEL , ALL

NSEL.,LOC,X,O

D,ALL,UX.O

NSEL , All

SAVE

SOLVE

FINI

!IHP, rnodemac
C !IHP ,repeat

EXIT

! INPUT MACRO FOR R-NODE ANALYSIS ..

! . _. (OR) INPtTl' MACRO FOR REPEATED ELASTIC ANALYSIS

C.1.1.5 Pressure Vessel Support Skirt

!BATCH

-SET ,PI ,3.1415926536

-SET,DI,97.28

_SET,DO,101.28

_SET .Le.30.0

-SET ,DSK, 110.07

_SET ,SKA, 18 .05

INNER DIAMETER OF TIlE CYLIllDER (inch)

! OUTER DIAMETER OF TIlE CYLINDER (inch)

! LENGTH OF THE CYLINDER (inch)

! DIAMETER OF THE SKIRT (inch)

! ANGLE MADE BY TIlE SKIRT WITH THE VERTICAL (deg.)
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.SET, YM,30E06

.SET,ENLO,l122

.SET,NDlvt,12

.SET , HDIV2, 28

.SET ,NDIV3, 23

.SET ,NDIV4,5

! YOUNG'S MODULUS (psi)

! END LOAD (psi)

! HUMBER OF DIVISIONS ACROSS THE THICKNESS

J 0.5 • NUMBER OF DIVISIONS ALONG TIlE CYLINDER'S LENGTH

! 0.5 • NUMBER OF DIVISIONS ALONG TIlE SKIRT

! NUHBER OF DIVISIONS ALONG THE ARC OF THE BEND

RI-DI/2.0

RQ"D0!2.0

RSK-DSK!2.0

t-RD-RI

THETA-PI/180 .O-SKA

Hl- (RSK-RO+TlCOS (THETA» /TAN (THETA)

ITITLE ,PRESSURE VESSEL SUPPORT SKIRT

IPREP7

ANTYPE,STATIC

ET ,1,42,0,0,1,0,0

I'IP,EX,l,YM

HP,NUXY,.0.3

K,l,RI

K,2,RO

K,3,RO,LC

K, 4 ,It!, Hl+LC+TAN (PI/2. O-THETA) _ (RI-RSK)

K,5 ,RSK+T/COS(THETA) ,LC+H1

K,6,RSK,LC+Hl
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L,l,2

L,6,5

L,2,3

L,l,4

L,3,5

L,4,6

LOCAL,l1,l,RO+T ,LC-T

CSYS ,11

LFILLT ,3 ,5,T/2.0

LFILLT,4,6,3 .0.T/2.0

CSYS,O

L,7,9

L,a,10

KDELE,3

KDELE,4

LDIV,3

LDIV,4

LDIV,S

LDIV,6

LESIZE,l" ,NDIVl

LESIZE,9",NDIVl

LESIZE,10" ,NDIVl

LESIZE,2" ,NDIVl

LESIZE,3" ,NDIV2 ,2
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LESlZE.4" .lJDIV2.2

LESlZE.ll •• ,KDIV2.0.5

LESlZE, 12 ••• KDIV2 ,0.5

LESIZE.5 ••• NDIV3.2

LESlZE.6 ••• NDIV3.2

LESlZE.13., .NDIV3.0.5

LESlZE, 14" .NDIV3.0.5

LESlZE, 7 ••• NDIV4

LESlZE,8 ••• HOIV4

.... 1.2.3.4

"',4.3.7.9

CSYS.ll

.... 9.7.8.10

CSYS.O

"',10.8.11.12

1..12.11.5.6

ESHAPE,2

AMESH.ALL

FINISH

!SOLUTION

NSEL.,LOC.Y.H1 + LC

D.ALL U.O

USEL U
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SFL,l, PRES.ENLD

SFTIWI

SAVE

SOLVE

FINISH

/INP .rnodemac

C--- !IHP, repeat

EXIT

! INPUT MACRO FOR R-NODE ANALYSIS •.

... (OR) IHPtrr MACRO FOR REPEATED ELASTIC ...NALYSIS

C.1.1.6 Rectangular Plate Partially Fixed on Three Sides

c--- FULL THREE-DIMENSIONAL MODEL

-SET.THIK,O.5

-SET,LEHG,15

-SET,WOTH.IO

-SET ,PRSR,25

_SET, YM ,30E06

_SET, YS, 30E03

! THICKNESS OF THE PLATE (inch)

! LENGTH OF THE PLATE (inch)

! WIDTH OF THE Pl....TE (inch)

! ...PPLIED PRESSURE (psi)

! YOUNG'S MODULUS (psi)

! YIELD STRENGTH (psi)

/PREP7

/TITLE,RECT...NGULAR PLATE PARTIALLY FIXED

ANTYPE.O

ET, I ,45 ! ELEMENT TYPE IS 50LID45 (EIGHT NODED ISOPARAKETRIC
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MP,EX,l,YM

MP,NUXY, ,0.3

K,l,O,O,O

K,2,WDTH,O,O

K,3.WDTB.THIK.O

K,4,O,THIX,O

K,5,O.O,LEXG

K,6 ,W'DTH.O ,LENG

K,7,IIDTH,TIlIK,LENG

K,8 ,0,THIK ,LENG

L,l,2,1.2-WOTH

L,l,4,5

L,2,3,5

L,4.3,l.2-WIJTH

L,l.5,l.2-ILNG

L,4,8,L2-L£HG

L,3,7,l.2_LENG

L,2,6,L2-I.£NG

l,5,8,5

L,7,6,5

L,7,8,l.2-WOTH

L,5,6,l.2-llDTH

V,1, 2 ,6 ,5 ,4 ,3, 7 ,8

VKESH,ALL

FINISH

! SOLID ELEt!EJfT)
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!SOLUTION

NSEL,R,LOC,Z,O

O,ALL,ALL,O

NSEL,All

NSEL,S,LOC,X,WDTH

NSEL ,R,LOC ,Z ,0,0 . 33333.LENG

D,ALL,ALL,O

NSEL,ALL

liSEL,S,LOC,X,O

liSEL ,R,LOC ,Z ,0,0 .666667.LENG

O,ALL,ALt,O

liSEL,ALL

liSEL ,S,LOC, Y, THIK

SF' ,ALL,PRES,PRSR

NSEL,ALL

SAVE

SOLVE

FINISH

IINP,rnodemac

C••• IINP,repeat

INPUT MACRO FOR R-NODE ANlLYSIS.

. (OR) INPUT tlAcao FOR REPEATED ELASTIC ANALYSIS
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EXIT

C.l.I.7 Rectangular Plate Partially Fixed and Partially Simply
Supported

c... FULL THREE-DlHEKSIONAL MODEL

-SET,THIK,O.5

_SET ,LENG ,15

-SET, WOTH ,10

-SET ,PRSR. 25

-SET.YH.30E06

! THICKNESS OF THE PLATE (inch)

! LENGTH OF THE PLATE (inch)

! WrOTH OF THE PUTE (inch)

! ARBITRARY APPLIED PRESSURE (psi)

! YOUNG'S MODULUS (psi)

/PREP7

tTInE,RECTANGULAR PLATE PARTIALLY FIXED AND PARTIALLY SIKPLY SUPPORTED.

ET,1,45

HP.EX,l,30E6

HP.NUXY. ,0.3

K.l,a,ato
K,2,WDTH,O,O

K,3. WDTH. THIK ,0

K,4,O,THIK,O

K.Sta,a,LENG

K.6,WDTH.O,LENG

K. 7 ,WDTH. THIK,LENG

K.S.a, THIK,l.ENG
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L,l.2.1.2-IlDTH

L.l.4,S

L,2,3,S

L,4,3,l.2-WDTH

L,l.S,l.2-LENG

L.4,8,l.2-LEHG

L.3,7,1.2-LENG

L.2,6,l.2-LENG

L,S.8.S

L.7,6.S

L.7,8,l.2-WDTH

L,5,6,l.2-WDTH

V,1, 4.8,5 ,2.3,7,6

VHESH , ALL

FINISH

/SOLUTION

NSEL. S. LaC, X, O. 3333-IlDTH,O .66667-WOTH

NSEL,R,LOC,Y,O

NSEL,R,LOC,Z,O

D,AI..L,UY,O

NSEL,ALL

NSEL,S ,LOC,X ,WDTH

NSEL, R. LOC. Z,0,0. 33333_WG

D,ALL,ALL,O

NSEL.ALL
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NSEL,S,LOC,X ,VOTH

NSEL ,R, LOC , Z , 0 . 66667_LENG ,IENG

D,ALL,ALL,O

NSEL,ALL

NSEL,S,LOC,X,O

NSEL,R ,LaC, Z ,0 .3333-LENG ,0. 666667-LENG

D,ALL,ALL,O

NSEL,ALL

NSEL, S, LOC, X, 0,0. 3333_VOTII

NSEL,R,LOC, '( ,0

NSEL,R,LOC,Z,LENG

D,ALL,U'f ,0

NSEL,ALL

NSEL ,S, LOC ,X, O. 666667*WOTIl, VDTII

NSEL,R,LOC,'(,O

NSEL,R,LOC,Z ,LENG

O,ALL,U'f,O

NSEL,ALL

NSEL,S ,LOC, '(, THIK

SF, ALL,PRES,PRSR

NSEL,ALL

SAVE

SOLVE
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FINISH

lIMP, rnodemac

c••• /INP,repeat

EXIT

! INPUT MACRO FOR. R-HODE ANALYSIS •.•

! ... (OR) IMPtn' KACRO FOR. REPEATED ELASTIC ANALYSIS

C.l.l.8 Compact Tension Specimen

/BATCH

C··..
C••• ELASTIC ANALYSIS OF A COMPACT-TENSION SPECIMEN

C.... SINGULAR STIF 2 El.EKEHTS USED AROUND CRACK TIP

C•••

/PREP7

A-0.0466

8=0.003

W".lOO

Wl-.125

H-.060

a-0.0125

E-0.0275

5=0.003

01-0.080

02-0.075

YM"211E09

YS-488.43E06

! DIMENSIONS OF TIlE SPECIKEH (m)

! YOUNG'S KODULUS (Pa)

! YIELD STRENGTH (Pa)
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! DEFINE LINES

MP,EI,l,YH

MP.NUXY.l,.33

K, 1, A ! DEFINE KEY POINTS

K,2,W

K.3.W.H

K,4 ..H

K,S,(W-Wl',H

K.6.(W-W1) .S

K.T"S

K,8, (1i-01) ,S

K.9,(W-02)

K,lO, .E

K,ll, ,E,E

CIRCLE,10,R,l1.4. ,8

L,l.2

-REPEAT,S,l,l

L,9,l

L.4,12

L,16,7

KSEL,S ,LOC,X, -lE-6,l

LSLK,S,l

At,ALL

KSEL,S,LOC,X.-l,l£-6

LSLK,S,l

AL,ALL

KSEL,ALl.

LSEL,ALl.
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ET,l,PUHE2",3 ! DEFINE ELEKENTS

R,l,B

ESIZE,Aft

KSCON ,l,A/16,l,9

AHESH,ALL

IiSOR-T,1

FINISH

/SOLUTION

ANTYPE,O

NSEL,S,LOC,Y

NSEL,R,LOC,X.A,1i

D,ALL,UY,O

lISa,a,LOC,!,A

D,ALL,UX,O

NSa,ALL

F,SlS,FY,20

F,S16,FY,20

F,B,FY,20

F,9,FY,20

F ,6,FY ,20

SAVE

SOLVE

FINISH
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/IIfP, rnodemac

C--- /IIP, repeat

EXIT

! IIPUT IUCRO FOR a-lODE AJiALYSIS ••

•.• (Oa) IWPUT IUCRO FOa REPEATED ELASTIC ANALYSIS

C.1.2 Non-linear Analysis

C.1.2.1 Isotropic Thick Cylinder Subjected to Internal Pressure

/BATCH

-SET,RI,3

-SET ,RD,9

-SET,HELEK,90

! IIOlER RJJ)IUS (inch)

! OUTER RJJ)IUS (inch)

! NO. OF ELEHDlTS ACROSS THE CROSS-SECTION

_SET,THICK,(RO_RI)/NELEH! THICKXESS (ENSURES SQUARE ELEMDITS)

-SET,YS,30E03

-SET,YM,30E06

-SET ,POISSON ,0.3

! nEll) STRENGTH (plli)

! YOIDIG'S KODUWS (psi)

! POISSON'S RATIO

/PR£P7

/TITLE, THICK CYLINDER UNDER INTERNAL PRESSURE

AHTYPE,O

ET ,1,42,0,0,1,0,0

MP,EX,l, YK

MP,NUXY, ,0.3

TB,BKIN,l,l

TBDiTA,l,YS,O
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If,l,RI

1f,IfEL£M+l.RO

FILL , 1 ,JEI.Dt+1

If ,1ELEK+2 ,RI , THICK

N,2-(NEL£Pt+U ,RO, THICK

FILL, NEL£Pt+2, 2_ (NEL.DI+L>

-OO,K,l,NEI.EK

E, K,K+l,NELEK+K+2 ,!IELEH+K+l

-ENODO

FINISH

/SOLunON

AHTYPE,O

HROPT ,1, , OFF

AUTOTS,OH

PRED,ON, ,OX

IfCtfV,O

0UTflES ,ALI. , ALL

D,ALI.,UY,O

PFlSR.-15000 t INTERNAL PRESSURE (psi)

TlME,1E-12

NSEL ,S ,LOC,I,R.!
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SF .ALL.PRES,lE-12

HSEL,ALL

SAVE

SOLVE

TIKE,3

HSUBST ,150

NSEL.S.LOC.X.RI

SF ,ALL.PRES.3-PRSR

NSEL,ALL

SAVE

SOLVE

FINISH

EXIT
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C.2 Two-Layered Beams

C.2.1 Linear Elastic Analysis

C.2.I.! Beam Subjected to Pure Bending

IBATCH

/TITLE,LAMINATED (lVO-LAYERED) BEAM UHDER PURE BEliDIN'G

! BEAM DIMENSIONS

-SET,TRICK,1.0 ! TOTAL THICKNESS OF THE BEAK (inch)

-SET,SPAN,IO.O ! SEMI-LENGTH OF THE BEAM (inch)

-SET,THICK1,O.667 ! THICKNESS OF THE BDTfOM LAYER (iuch)

-SET ,DPRSR.SPAN/2 ! DISTUCE TO WHICH UIfIrORM PRESSURE IS APPLIED (inch)

-SET.NSPAN,50 ! NUMBER OF ELEKENTS ACROSS THE SPAN

-SET ,NTHICK,18 ! NUMBER OF ELEKENTS ACROSS THE THICKNESS

-SET,THICK2.(THICK-TIlICK1) ! TIlICKNESS OF TIlE TOP LAYER (INCH.)

! MATERIAL PROPERTIES

-SET,YM1.10E06 ! YOUNG'S MODULUS OF TIlE TOP LAYER (psi)

-SET. Y1'I2,30E06 ! YOUNG'S MODULUS OF THE BOTTOM UYER (psi)

-SET,POISSON,D.3 ! POISSON'S RATIO OF BOTII THE LAYERS

_SET. Y'IELD1.10E03 ! YIELD STRESS OF TIlE TOP LAYER (pili)

-SET. YIElD2, 30E03 ! YIELD STRESS OF THE BonOH LAYER (psi)

-SET ,PRSR,25 ! EXTERNAL LOAD (psi)
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/PREP7

£1',1,42

ET ,2,42

tIP,EX,1,YK1

HP,El,2,YK2

KP,NUXY,1,POISSOH'

KP ,NUlY ,2,POISSON

K,1,O,O

K.2.SPAH

K,3,O,llIICKl

K,4.SPAH.llIICKl

K.5,O,llIICK

K,6.SPAH,THICK

DUM- (TIaCK1/llIICK) .HTHIQ{

K, 7 ,SP.uf+5

K,a.SPAN+I0

L, 7 ,a,DUM

-CET ,HTHlCK1,LlHE,1,.un.,IiDIV

NTHICK2-IfTHICK-HTHICK1

LDELE.l

KDELE,7,8

L,1,2,NSPAH

L.3,4.NSPAH

L,5.6,NSPAN

L,1,3,NTHICK1

L,2,4,NTHICK1

L,3,5,NTHICK2
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L,4,6,NTHICK2

A,5,3,4,6

A,3,1,2,4

TYPE,1

KAT,1

AMESH,1

TYPE ,2

KAT,2

AKESH,2

-GET ,II ,£LEH,O ,COUHT

KK;;1

JJ-NTHICX2.NSPAN+1

-OO,K1,1,NSPJJ/

-DO ,K2,1,NTHICK2

-GET ,P1,ELEM,KK,NODE,1

-GET ,P2,ELEM,KK,NODE, 2

-GET ,P3 ,ELEM ,KK,l£OOE,3

-GET ,P4 ,ELEM,KK,NOOE,4

TYPE,1

KAT,1

E,P1,P2,P3,P4

KK-KK+1

-ENDDO

-DO ,K2,1,NTHICK1

-GET ,PS ,EL£M,JJ ,NODE,1
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-GET ,P6 ,ELEM.JJ ,NOO£,2

-GET ,P7 ,ELEM,JJ ,NOOE,3

-GET.P8.£LEK,JJ .NOOE.4

TYPE ,2

HAT.2

E,P5.P6.P7.P8

JJ-JJ+l

-ENDDO

-ENDOO

HOOHSH.OETACH

£DELE,l,II

mrKCKP .ELEK

FINISH

/SOLUTION

NSEL,S,LOC,X,O

O,ALL,UX,O

NSEt,ALL

IfSEL,S ,LOC, X,SPAN/2

NSEL.R.LOC, Y,0

O,ALL,UY,O

IfSEL,ALL

IfSEL.S .LOC, Y, THICK
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lfSEL,R,LOC ,x ,l.i-SPU/2 ,SPAN

SF ,iLL, PRES ,PRSR

NSEL,Atl.

SAVE

SOLVE

FINISH

lIMP ,ruO<1ellll.c

EXIT

! INPUT MACRO FOR R-IJODE AJrlALYSIS ...

C.2.1.2 Simply-Supported Beam

IBATCH

ITITLE.UJmfATED (TVO-LAYER£D) SIMPLY-SUPPORTED BEAM

! BEJJ'I DIMEXSIOHS

-SET,THICK,l.0

-SET,SPAJ,10.0

_SET,THICKi,O.5

-SET,NSPAN.50

-SET.N11IICK,18

! TOTAL THICKNESS OF THE BEAM (inch)

! SEMI-LENGTH OF THE BEAK (inch)

! THICKNESS OF THE Bono" UYER (inch)

! NUKBER OF ELEKENTS ACROSS THE SPAN

! NUHBER OF ELEMENTS ACROSS THE TIlICKNESS

-SET, THICK2, (THICK-THICKl) ! THICKNESS OF THE TOP LAYER (inch)
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! KATERIAL PROPERTIES

_SET.'fMl.l0E06 ! YOUIlG'S MODULUS OF THE TOP L"'YER (psi)

-SET.'fM2.10E06 ! YOUNG'S MODULUS OF THE BonoM LAYER (psi)

-SET .POISSON .0.3 ! POISSON'S RATIO OF BOTH THE LAYERS

-SET.YIELD1.I0E03 ! YIELD STRESS OF THE TOP LAYER (psi)

_SET. YIELD2.30E03 ! YIELD STRESS OF THE BOTTOM LAYER (psi)

-SET. PRSR. 25

/PREP7

ET.l.42

ET.2.42

MP.EX,l,YMl

MP.EX.2.YM2

MP .NUXY .1.PorSSON

HP .NUXY.2 .POISSON

K.l.0.a

K.2.SPAN

K.3.0.THICKl

K.4 .SP...N. THICKI

K.S.O.THICK

K.6.SPAN.THICK

! EXTERNAL LOAD (psi)

DUM=(THICK1/THICK) -HTHICK

K.7.SPA.N+5

K.S.SPANHO

L. 7 .S.DUM

_GET .HTHICKl.LlNE.l ....TTR.NDIV

310



NTIlICK2-NTHICK-HTHICKl

LDELE,l

KDELE,7,8

l.,l,2,NSPAN

l.,3,4,NSPAN

l.,5,6,NSPAN

l.,l,3,NTIIICKl

l.,2,4,NTIIICKl

l., 3,5, NTHICK2

E.,4,6,NTIIICK2

A,5,3,4,6

A,3,l,2,4

TYPE, 1

HAT,l

AHESH,l

TYPE, 2

HAT,2

AHESH,2

-GET, II ,ELEH,O ,COUNT

KJ(-,
JJ-NTHICK2-NSPAH+l

-OO,Kl,l.HSPAH

-DO ,K2.1,NTHICK2

-GET ,Pl,ELEK,KK ,NODE, 1
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_GET, P2, ELEK, KK, NODE, 2

_GET ,P3,ELEK,KK,NODE,3

_GET ,P4,ELEK,KK,NODE,4

TYPE, 1

HAT,l

E,Pl,P2,P3,P4

KK"KK+l

_EflDDO

_00 ,K2 ,l,NTHICKl

-GET ,PS,EL£K,JJ ,NODE,l

-GET ,P6,EL£K,JJ ,NODE,2

_GET ,P7 ,EL£K, JJ ,NODE,3

-GET ,P8,EL£K,JJ ,NODE ,4

TYPE,2

HAT,2

E,P5,P6,P7,P8

JJ=JJ+l

-ENDDO

-ENDDO

KODKSK,DETACK

EDELE,l,n

!lUI"lCKP,ELEK

rINISK

/SOLtITIOll
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NSn.,S,LOC,I,O

D,AIL,OI,O

NSn.,lLL

IiSn.,S,LDC,I,SPAJf

NSEL,R.,LDC,Y,O

D,ALL,UY ,0

NSEL , ALL

NSEL,S,LDe, Y, THICK

SF ,ALL,PRES,PRSR.

NSEL,lLL

SAVE

SOLVE

FINISH

lIMP ,rnodemac

EXIT

! IHPUT MACRO FOR. R-NODE AlfALYSIS_

C.2.1.3 Indeterminate Beam

IBATCH

/TITLE,LAMINATED (TVO-LAYERED) INDETERHINATE BElH

! BEAM DIMDfSIONS
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-SET, THICK.l.0

_SET,SPAN,20.0

-SET. THICK1, 0.5

_SET ,NSPAN ,100

_SET, NTHICK ,10

! TOTAL THICKRESS OF THE BEAM (inch)

! LENGTH OF THE BEAM (inch)

! THICKNESS OF mE BonoM LAYER (inch)

l NUMBER. OF ELEMEHTS ACROSS THE SPAN

! NUMBER. OF ELEMENTS ACROSS THE nlICKNESS

-SET.THICK2,(THICK-THICK1) ! THICKNESS OF THE TOP LAYER (inch)

! MATERIAL PROPERTIES

-SET,'fHl,10E06 ! YOUNG'S MODULUS OF THE TOP LAYER (psi)

-SET,YM2,30E06 ! YOUNG'S KODULUS OF THE BOnoM LAYER (psi)

-SET.POISSON,O.3 l POISSON'S RATIO OF BDnf THE LAYERS

-SET, YIELD1, loE03 1 YIELD STRESS OF THE TOP LAYER (psi)

-SET, YIELD2.30E03 ! YIELD STRESS OF THE BOTTOM LAYER (psi)

-SET,PRSR,25

!PREP7

ET,l,42

ET.2,42

KP,EX,l,YMl

KP,EX,2,YM2

KP, NU'XY ,1, POISSON

KP ,NUlY, 2 ,POISSON

K,t,O,O

K.2,SPAN

K.3.0,THICKl

! EXTERNAL LOAD (psi)
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K,4 ,SPAN, THICKI

K,5,O,THICK

K,6,SPAN,THICK

DUK" (THICKI/TRICK) .NTRICK

K,7,SPAlI+5

K,8.SPAlI+I0

L,7,8,DUK

"GET ,NTRICK1,LINE,I,A.TTR,lIDIV

NTIfICK2-NTRICK-NTHICKI

LDEll,1

KDaE, 7 ,8

L,I,2,NSPAN

L,3,4,NSPAN

L,S,6,NSPAN

L,1,3,NTRICKI

L,2,4,NTHICKI

L,3,5,NTHICK2

L,4,6,NTHICK2

A.,5,3,4,6

A,3,1,2,4

TYPE,1

KAT,I

AMESH,1

TYPE ,2

MA.T,2
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AMESH,2

-GET ,II,ELEH, 0,cmnrr

KJ("

JJ-NTHICK2_HSPl)f+1

-OO,K1,1,NSPAN

-OO,K2,1,NTHICK2

_GET ,P1,EI..EK,KX ,NODE,1

_GET ,P2,ELEM,KX,NODE,2

-GET ,P3,ELEH,KX,NOOE,3

_GET ,P4 ,ELEM,KX,NOOE,4

TYPE,l

HAT,l

E,Pl,P2,P3,P4

KK-KK+l

oEJll)DQ

-aD ,K2,l,NTHICKl

-GET ,P5 ,ELEH , JJ ,NOOE,1

-GET ,P6,EI..Dl,JJ ,HOOE,2

-GET ,P7 ,E1.EJ'I,JJ ,NOOE,3

-GET ,P8 ,ELEK,JJ ,HODE,4

TYPE,2

KAT,2

E,PS,P6,P7,P8

JJ-JJ+l

-ENDOD

-ENDOO

HOOHSH,OETACH
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EDELE,l,II

nHISH

!SDLU'I'IOrt

NSEL,S,LDC,X,O

D,iLL,All,O

NSEL,ALl.

NSEL,S,LOC,X,SPAN

KSa,R,LeC,Y,O

D,Al.L,UY,O

NSa,ALL

NSa,S,LeC, Y, THICK

SF ,ALL ,PRES ,PRSR

NSa,ALL

SAVE

SOLVE

FINISH

!INP, rtlodemac

E>:IT

! INPUT KACRO FOR R-HODE ANALYSIS.
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C.2.2 Non-linear Analysis

C.2.2.1 Indeterminate Beam

tBATCH

/TITLE,LOOHATED (TVO-LAYERED) INDETFJUfllflTE BEAM

! BEAM DIMENSIONS

-SET,THICK,I.O

_SET.SPAH,20.0

-SET. TRICKl,a.e

-SET. NSPAH .100

-SET .NTHICK,10

! TOTAL THICKNESS OF THE BEAM: (inch.)

! LENGTH OF tHE BUM (inch.)

! THICKNESS OF THE Bono" LAYER (inch.)

! NUKBER OF EI..EMEIfTS ACROSS THE SPU

! HUKBER OF EI..EKFJlTS ACROSS THE THICIOO:SS

-SET,THICK2,(TRICX-1lIICKl) ! THICKJlESS OF THE TOP LAYER (inch.)

! MATERIAL PROPERTIES

-SET. YKl.10E06 ! YOUNG'S "DDULUS OF THE TOP LAYER (psi.)

-SET.YK2.30£06 ! YOUNG'S MODULUS OF THE BOTTOM LAYER (psi.)

_SET,POISSOH,O.3 I POISSON'S RATIO OF BOTH THE LAYERS

-SET,'tIELDl.10E03 ! YIELD STRESS OF THE TOP LAYER (paL)

-SET,YIELD2.30E03 ! 'fIELD STRESS OF THE BOTTOM LAYER (paL)

/PREP7
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ET,l,42

ET,2.42

KP,EX.l.YKl

KP,EX.2,YM2

HP ,Kt1XY ,l.POISSON

HP ,Kt1XY ,2.POISSON

K,l.0.0

K,2.SPAN

K,3,O,THICKl

K,4 ,SPAN, THICKl

K.5.0,THICK

K,6,SPAN,THICK

DUM-(l1UCK1/THICK)_NTHICK

K,7,SPAN+S

K,a,SPAN+l0

L, 7 ,a,DUM

-GET ,NTHICK1,LlNE,l,ATTR,HDIV

NTHICK2-NTHICK-HTHICKl

LDELE,l

KDELE,7,a

L,l,2,NSPAN

L,3,4.NSPAN

L,5,6,NSPAN

L,l,3,NTHICKl

L.2,4,NTHICKl

L,3,5,NTHICK2

L,4,6,HTHICK2
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1,5,3,4,6

1,3,1,2,4

TB,BKIIi,l,l

TBD1T1 , l,YIELDl ,0

TYPE,l

KAT, 1

AKESH,l

TB,BKIN,2,l

TBDATA,l, YIELD2,O

TYPE, 2

KAT,2

AMESH,2

-CET, II , EI.EM ,0 ,COUNT

KJ(-,
J J-NTHICK2-NSPAH+l

-OO,Kl,l,NSPll

-00 ,K2,l,NTHICK2

-GET ,Pl ,EI.EM,KK,NOOE,l

-GET ,P2,ELEM,KK,NODE, 2

-GET ,P3,EI.EM,KK ,NOOE,3

-CET ,P4,ELEM,KK ,NQOE,4

TB,BKIN,l,l

TBDATA,l ,YIELDl ,0

TYPE,l

KAT, 1
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E,Pl,P2,P3,P4

KK;KK+l

_ENDDO

_OO,K2.1,NTHICXl

-GET ,P5.ELEM,JJ ,HODE.!

-GET ,P6,ELEM,JJ ,HODE,2

_GET .P7 ,ELEM,JJ,HODE,3

-GET ,P8,ELEM.JJ ,NODE,4

TB,BKIR,2,l

TBDATA,l, YIELD2 ,0

TYPE,2

KAT,2

E,P5,P6,P7,P8

JJ-JJ+l

-ENDDO

-ENDDO

KODKSH,DE'TACH

EDELE,l,II

NUKCKP ,ELEH

FINISH

/SOLUTION

ANTYPE,O

HROPT,I, ,OFF

AlTrOrS,ON
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PRED,ON, ,ON

NCNV ,0

OU'I'RES,ALL,ALL

NSEL,S,LOC,X,O

D,ALL,ALL,O

NSEL,ALL

NSEL,S ,LOC,X,SPAN

NSEL,R,LOC. '( ,0

D,A.Ll.,UY,O

NSEL,ALL

PRSR-I00

! NULL SOLtITION FOR LOAD-DEFLECTION DISPLAY

TIKE,1E-I0

NSEL ,S ,LOC, '( ,THICK

SF .ALL,PRES,lE-I0

NSEL,ALL

SAVE

SOLVE

TIHE.3

NSUBST ,300

NSEL,S ,LOC, Y ,TIfICK

SF. ALL, PRES, 3. O_PRSR.

NS£L.ALL

SAVE
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SOLVE

FINISH

EXIT

C.3 Two-Layered Cylinder under Uniform
Internal Pressure

C.3.1 Linear Elastic Analysis

/BATCH

! A THICK CYLINDER PROBLEM - COMPOSITE CYLINDER

-SET,RI,10£-02 ! Inner radius (111)

-SET ,RIIIT ,20£-02 ! Interface radius (111)

-SET ,RO ,30£-02 ! Outer radius (111)

-SET,NELEM,SO ! No. of elements across the cross-section

-SET ,HELEM1, (RINT-RI) -NELEK/(RO-RI) ! No. of elements in lDaterial 1

-SET, THICK, (RO-RI)/NELEM ! Thickness (Ensures Square ElelDents)

-SET ,E1BYE2,3 .1368

-SET, YIELD1,68.95E03

-SET, YIELD2, 68. 95E03

-SET, YM1,10E06

_SET. YM2, YH1-E1BYE2

-SET, POISSON, 0.48

-SET ,PRSR,50E03

! Yield Strength of Material 1 (kPa)

! Yield Strength of Material 2 (kPa)

! Young's Modulus

! Young's Modulus

! Poisson's Ratio

! Internal Pressure
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/PREP7

/TITLE.Thick Cylinder Under Internal. Preaaure

ANTYPE,O

ET ,1,42.0,0 ,1,0 ,0

MP,EX.l,YMl

MP .NUX'! ,1.POISSON

ET,2 ,42.0,0,1,0,0

MP,EX.2,'fM2

MP ,NUX'! ,2 .POISSON

K,l

K,2,3

L,l,2,NELEMl

-GET ,DIDI,LINE, 1 ,ATTR.NDIV

NELEM2-NELEK-DUK

llELEHl=NELEM-NELEM2

LeELE,I

KDELE,l,2

N,I,RI

N ,NELEMI+I,RINT

FILL,l,HELEMI+I

N,NELEM+2,RI. THICK

N ,1fELEM+2+NEl.EK1, RIlIT , THICK

FILL ,NELEK+2, NEI.E!l+2+NELEMI

TYPE,1
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KAT,1

.OO,K,1.N'ELEH1

E.K,K+l.N'ELEH+K+2.NELEH+K+l

.ENDDO

N,NELEK+1,RO

FILL, NELEH1+1.NELEK+1

N.2_(KELEK+1) ,RO, THICK

FILL. NELEH+NEI.EH1+2 ,2_ (HELEK+1)

TYPE, 2

MAT.2

.OO,K,1,KELEH2

E,HELEM1+K, NELEH1+K+1, NELEM+NELEK1+2+K .NELEM+NELEK1+l+K

-£NOOO

FINISH

!SDLUTIOH

ANTYPE,O

O,ALL,UY ,0

NSEL,S .Loe,X,RI

SF ,ALL,PRES,PRSR

NSEL,ALL
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SAVE

SOLVE

FINISH

linp.CYUlAC

C.3.2 Non-linear Analysis

IBATCH

NON - LINEAR ANALYSIS

A nuCK CYLINDER PROBLEM - 11l0-L.lY£RED CYLINDER

.SET,R.I,8E-02 ! Inner radius - 3 in.

·SET.RINT,13E-02 ! Interface radius'" 5 in.

·SET.RO,23E-02 ! Outer radius. 9 in.

_SET ,HELEM, 50 ! No. of elements across the cross-section

·SET ,HELEM1. (RINY-RI) .NEt.EK/(RO-RI) 1 No. of elements in IIlacerial 1

·SET,THICK,(RO-RI)!NELEM ! Thickness (Ensures Square Elements)

·SET,YIELD1,68.95E03 ! Yield Strength of Material. 1

-SET. YIELD2.206.85E03 ! Yield Strength of Material 2

_SET. 'fMl,10E06 ! Young's Modulus

.SET.YM2,30E06 ! Young's Modulus

.SET,POISSON,O.3 ! Poisson's Ratio
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!PREP7

!TITLE, Thick Cylinder Under Internal Preesure

ANTYPE,O

ET ,1,42,0 ,0 ,1,0,0

HP,EX,1,YM1

HP ,NUXY ,l,pOrSSON

ET ,2,42,0 ,0,1,0,0

HP ,EX, 2, YM2

HP ,NUXY ,2,POISSON

K,1

K,2,3

l,1,2,NELEHI

-GET ,DUM,LINE,I,ATTR,NDIV

NELEM2=NELEM-DUH

NELEM1-NELEPl:-NELEM2

LDELE,I

KDELE,1,2

N,I,RI

N,NELEM1+1,RINT

FILL,1,NELEPl:l+1

N, NEl.EM+2, RI, TIirCK

N, NELEH+2+NELEPl:l ,RINT , mICK

FILL, NEL£H+2, NELEH+2+NELEPl:1
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TB,BKIM,1,l

TBDATA .1.YIEW1, 0

TYPE,1

KAT.l

-OO,K,l,NELEI"I1

E.K.K+l. NELEI'I+K+2. JfELEM+K+l

-ENDDO

N.NELEK+1,RO

FILL,NELEM1+l.NELEH+1

N, 2-(llELEH+l) .RO, THICK

FILL ,NELEM+NELEM1+2. 2-(NELEH+l)

TB ,8KIN, 2 ,1

TaDATA.1, YIELD2 ,0

TYPE,2

"AT,2

-OO,K.1,NELEM2

E, NELEHl+K, NELEH1+K+1 .NEUll:+NELE1U+2+K ,JfELEM+NELEKl+1+K

·ENDDO

FINISH

!SOl.UnON

ANTYPE,O

NROPT ,1, ,OFF

AUTOTS,ON
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PRED,ON, ,ON

NCNV ,0

OUTRES ,ALL, ALL

D,ALL,UY ,0

! NULL SOLUTION FOR THE LOAD-DEFLECTION DISPLAY

TlME,lE-10

NSEL,S,LOC ,X ,RI

SF ,ALL,PRES ,lE-10

NSEL,ALL

SAVE

SOLVE

PRSR-1000OD _0

TIME,S.O

NSUBST ,600

NSEL ,S, LQC,X,RI

SF, ALL, PRES, S. O-PRSR

NSEL,ALL

SAVE

SOLVE

FINISH

EXIT
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Appendix D

Elastic Moduli Softening Macro
for R-Node Analysis

The following macros, (rnodemac and CYLMAC) written using the ADPL I (AN­
SYS DESIGN PARAMETRIC LANGUAGE), perform the necessary elastic mod­
ulus changes and post-processing in order to determine r-nodes. The macro °rn_
odemac' is suitable for isotropic structures and two-layered beams, and the macro
'CYLMAC' is for two-layered cylinders.

D.I Isotropic Structures and Two-Layered
Beams

FILE - 'ruodema.c'
XXX%'LXxxxxxxxnxxnxxuxxxxnxxxnxnX1Xlxxnxxxxxxnxxxxx
1 ELASTIC MODULUS SOFTEliIKG MACRO FOR R-1I0DE AlfALYSIS x
lxxnXXXnXX'l.xxxxxnxxxxxxxxxuxxxnxxnnxxnxnxxxxnxxx

ClIlClGOClGHClClClClCltlGClGGGClClClClOClClClClGOOClOOGOICIHttlLtCIClClClClGtlClClClOfIClClClClOClClClGtl
Cl FOR ISOTROPIC STRUCTURES AND Cl
Cl LAMINATED BEAKS II
ClClClClClClIlClClClClClClClGOClClClClClOOtClClClClGClClClClClClClGClOClHClHIlClClClCIGClClGGClIClCI"OClOOO",
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- NOTE:
_ The parameters to be defined in the main program
- POISSON - POiSSOD' S ratio

YIELD! - Yield Strength of I layer
YIELD2 - Yield Strength of II layer
1M! - Young's Modulus of I layer
1M2 - Young's Modulus of II layer

- Val.U88 to be given in this macro
ARB! - Arbitrary Number
AUA - Value of index (alpha)

I - LIN E J. R

IPOSTl

-OIH.DUK!.ARRAY,l
_OIM.DUK2.ARRAY,l
_OIM,DUK3,ARRAY,1

SET,l
ETABLE,SIGC.S.EQV
ETABLE, VOL, VOLU
ETABLE,STRN ,EPEL ,X

ANALYSIS

! ---------- -==__"""'.. 1

! UNSORTED ELEKENT STRESSES AND VOLUMES ARE STORED IN THE FILE "estrsl" I
1====,.",_=___ _ ..'" r

_GET, MAXl ,ELEK, 0, COUNT

-CFQPEN ,estral
-OO,KK,l,MAXl
-GET ,SIGC1.ELEK,KK,ETAB.SIGC
_GET, VOL1,ELEK.KK, VOLO
DUK1(l)-KK
DUK2(1)-SIGCl
DUH3(U-VOU
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-VWRITE,DtnU(l) ,DUK2(l) ,DUM3(1)
(:r:,f6.1,3:r: ,821.10 ,3:r:,821.10)
_£NODO
_CFCLOS

-----------------1
! UNSORTED ELEHENT X-STRAINS ARE STORED IN THE FILE H strainl" I

-I

-CFOPEN, strainl
_OO,KK,l,MAXl
-GET ,STRH1,ELEM, KK, ETA! ,STHN
DUMl(l)"KK
DUM2(1)-STRNl
-V'JRITE,DUM1(l) ,DUK2(1)
(:r:,f6. l,3:r:,e21. 10)

'ENDDO
-CFCLOS

ARBI-I00E03
ALFA-l
ZETA-YIELD1/YIELD2
PSI-YM1/YM2
A.RB2"ARBl! ((PSI"ALFA) _ ((ZETA-PSI) -ALFA+PSI»

-SET,KN,3

-CFOPEN ,EXVAL
-DO,J,l,MAXl
-GET ,STEQ,ELEK,J ,ETA! ,SIGC
-GET ,JJ ,ELE:M,J ,A.TTR,MAT
-IF ,JJ ,EQ ,l,11IEN
_SET ,ESEC,A.RB1/(STEQ"ALFA)
-ELSE
_SET ,ESEC,ARB2/(STEQ--ALFA)
-£NOIF
_CFWRITE,KP ,EX,MN ,ESEC
-CFWRITE,KP ,NUXY ,HM,POISSON
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·SET,MN.HN+l
·ENDDO
.CFCLOS

!.

ESEL.1LL

.SET ,l1N.3

·crOPEN ,EXMOD
·DO.H,l,MAXl
.CFWRITE.MAT.HN
·CFWRITE,EKODIF ,K
.SET,HN.MN+l
·ENDDO
·CFCLOS
FINISH

II-LINEAR

IPREP7
RESUME

·USE,EXVAL
.USE,EXHOD
FINISH

ISOLU
SAVE
SOLVE
FINISH

IPOSTt
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-ODl:,DUK1 ,ARR.lY, 1
-OIM ,DUK2 ,ARRAY ,1
_ODl:,DUK3 ,ARRAY, 1

SET,l
£TABLE,SIGC ,S,EQV
£TABLE, VOL, VOLO

£TABLE, STRN ,EPEL, X

!- -I
! tnlSORTED ELEMENT STRESSES UD VOLtnIES ARE STORED IN TIlE FILE Reatrs2"1
!- I

-GET ,MAX1,ELEK,O,Ntnl:,!U.I

-CFQPEH ,eatrs2
-OO,KK,l,MAX1
-GET ,SIGC3,EI.EK,Kk,ETAB,SIGC

-GET, VOL2,ELEK,Kk, VOLU
DUK1(l)-KJ(

DUM2(l)-SIGC3

DUK3(1)-VOL2

-vw.ITE, KJ(, SIGC3, VOL2
(x,£6.1 ,3x,821.10 ,3:1: ,821.10)
_ENDOD

-CFCL.OS

! UNSOR.TED El.£MDfT X-STRAINS ARE STORED III THE FILE -strain2"!----
-CFOPEH, atra.in2
-OO,KX,l,KA.J.1
-GET ,STRN1,ELEK,KX,ETAB ,STIlH
DUM1(1)-KX

DUM2(1)-SnUn
-V\rIR.lTE,DUM1(l) ,DUM2(l)
(x,£6.1,3x,821.10)

-ENDDD
-CFCLOS
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FINISH

D.2 Two-Layered Cylindrical Shells

FILE - 'CYLKAC'

................................ ...."...............
• ELASTIC MODULUS SOFTENING MACRO FOR R-NODE ANALYSIS •
• or TWO LAYERED CYLINDRICAL SHELLS •....................................................

• VALUES TO BE SUPPLIED:
KIlN PROGRAM :

(1) YMl
(2) YM2

IN nus MACRO
(1) AUA

! PROCEDURE:
,---------
! This macro uses Sigma_ubl .. Sigma_nfl
! Sigma_arb2 .. Sigma_ref2

E51 .. E1 • ((Sigma_ref1/Sigma_eqv1)"ALPHA) => Layer 1
E52 .. £2 • ((Sigma_ref2/Sigma_eqv2)••ALPHA) _> Layer 2

1 "Sigma_ref1" and "Sigma_ref2" are determined from the theorem of
! nesting surfaces.

I-LINEAR
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!POSTl

-OIK,OUKl,ARIU.Y,1
_OIK,OOK2 ,ARRAY ,1
-OIK,OUK3,AR!U.Y,l

SET,l
ETABLE,SIGC,S,EQV
ETABLE, VOL, VOLU

-------------------1
! SORTED ELEMDlT STRESSES.un> VOLUKES ARE STORED III THE FILE "..on1" I
! UNSORTED ELEKEln' STRESSES AJm VOLUMES ARE STORED IN THE FILE "estral" I

!- -------1
·GET .KAX1,EI.EM,0 ,NUM,KAX

ESORT ,£TAB ,SIee ,0
lout,esortl
PRETAB ,SIGC, VOL
lout
roSORT

·croPEN,estrsl
-OO,KK,l,KA.Il
-GET ,SIGC1,E1DI,KK,ETAB,SICC
-GET, VOL1, ELEJ'l, KK, VOLU
OUHl(1)-KX
DUK2(1)-SIGCl
DUK3 (1) -VOLl
-VVRITE,OUKl(1) ,DUK2(1) ,Dtm3(l)
(:II:,f6.1,3:11:,821.10,3:11:,821.10)
·ElIDDQ
-CFCLOS

! ------------------------------------------------------------

SUK1-0.0
SUH2-0.0
SUK3-0.0
SUK4-0.0
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-no ,KP. 1 ,Ml.Il
-eET, SICC1,EL£K ,KP ,ET.lB ,SIGC
_GET, YOL1,ELEJI.XP ,vow
_GET ,JJ ,£LDI,XP ,ATTR,K1T
_IF .JJ ,EQ.l,THEJf
Slml-SUK1+(SIGC1"2)_(YOLl)

SUM2-S0K2+YOLl
-ELSE

SUK3-SUK3+(SIGCl--2) - (VOLl)
SUK4-SUK4+YOLl
_EHDIF

-ElIDOO
SREF1-SQRT (St»Il/SUK2)

SREF2-SQRT(St»I3/SUK4)

-CFOPEN ,EXVAL

-OO,KK,l,l'UX1
_GET ,STEQ,ELEJI,KK,ET.lB,SIGC

-GET.JJ ,£LDI,!'lK ,ATTR,KAT
-IF ,JJ.£Q,I,THDf
-SET ,ESEC, «SREF1!SlEQ) ..1LFA)-YPU
_ELSE

-SET ,ESEC, «SREF2/SlEQ)--lLFA)-YM2
_EHDIF

-CFliRlTE ,KP.EX .KK+2, £SEC
-CFVR.ITE,KP.IIUXY ,KK+2.POISSON
oENDDO
-CFCLOS
£SEL,ALL

-SET,MH,3

_CFOPEN ,EX1'IOD
-OO,L,l,MAXI

-CF\IRITE,KAT ,MN
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-CFVRITE,DmOIF ,L
_SET,MII.MII+1
.EllDDO

-CFCLOS

ESEL •.lLL
FIIfISH

II-LIIfEAR

IPREP7
RESUME

EX.1,YK
-USE.EXVAL
-USE , EXKOD
FINISH

ISOLO
SAVE
SOLVE
FI!fISH

IPOST1

-OIM.DUK1.ARRAY.1
-OI!'I.OUK2. 1RRJ.Y , 1
-OIM.DUM3.lRRAY,1

SET.1
ETABLE.SIGC,S.EQV
ETABLE, VOL. VOLO

A.ALYSIS

I
l SORTED ELEHElfT STRESSES AND VOLUMES ARE STORED IN THE FILE ".lIort2" r
! UNSORTED ELEHElfT STRESSES AND VOLUMES ARE STORED IN THE FILE "8IItrs2"1!-------------------------------------I
-GET ,MAXl.ELEM.O.COUNT
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ESDRT ,ETAB,SIGC,O

lout .esort2
PRETAB, SIGC. VOL
lout
EllSORT

-CFQPEII,estrs2
-00 .KK,l,KUl
-GET, SIGC3,D.EM, KX ,ETiB. SIGC
-GET, VOL2 ,ELEK,KK, VOLU
DUM1(l)-KK

DUH2(l)-SIGC3
DUM3(l)-VQL2
-VWRITE,KX,SIGC3, VOL2
(x.f6.1,3.z:.e21.10.3:r..e21.10)
_ElIDDD
-CFCLDS

FINISH
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Appendix E

Essential Macros for
performing a Number of Elastic
Iterations

The macros that are necessary for performing repeated elastic analyses are prp.
vided in the following sections. The file 'iterl' performs the initial elastic analysis
and the subsequent analysis. The file 'iter2', which is input subsequently, performs
the third elastic iteration. The file 'iter2' can be copied subsequently as 'iter3'.
"iter4' etc. and after some minor changes (in places indicated by XXXnnXX) they
can be used for subsequent iterations. The file 'repeat' integrates all the 'iter' files
so that the required number of elastic iterations can be carried out.

E.l First Elastic Iteration - 'iterl'

......................................................._"
# ITERATION - I #

• ELASTIC KODULUS SOflENING MACRO FOR R-HODE ANALYSIS ,..........................................................
• NOTE:

• The parameter "YH" should be defined in the main program..............................................................
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I-LINEAR

IPOSTl

Inopr

-OIM ,DUM1,JJUlA'l,l
-OIM,OUM2,ARRAY,l
-OIM,DUM3,ARRAY,1
-OIM,OUM4,JJUlAY,1
_OIM,OUM5 ,ARRAY ,1

SET,l
ETABLE,SIGC ,S ,EQV
ETABLE, VOL, VOLO

lout ,esonl" .. /iterresl
ESORT ,ETAB, SIGC, 0
PRETAB ,SIGC, VOL
lout
EUSORT

ANALYSIS

! -_...._-------------.....--------------
! ELEMENT STRESSES AND VOLUMES ARE STORED IN THE FILE "estrsl"
! ....._ ....._ •••--------------_.---------.----

-GET ,MAX1,ELEM,O,NUM,MAX

OUH4(O·IUXl
-CFDPEH ,lUXl
- VWRITE, DUH4 (1)
(1x,F15.2)
-CFCLOS

Isys,cp MAXl RUlll
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-CFOPEI,estrs1, •. . /iurrul ! xtX't.%%XUUU't.%%XXUUXXXXXlX

_OO,K,1,KAX1
-GET ,SIGC1.EU:M,K ,ETAB,SIGC
-GET ,VOL1,ELEH.K.VOLU
DUMl(1)-K

DUK2(U"'SIGC1
DU!I3(1)-VOL1
.VliRITE,DUM1U) ,DUM2U) ,DU!I3(l)

(b,fS.1 ,3X.,821.10 ,3X,821.10)
-ENDDO
·CFCLOS
! -----------------------------------------------------------
/nopr

c--- !---------------
C". ! NODAL STRESSES ARE STORED Ilf THE FILE "natrd"

C••••CFOPEN.nstn1., .. /iterresl ! xxxxxxxxxnnnxxxxxnxnnuc-·.•GET ,KAX2,NODE,O,IfUM,1'Ill

C··· .OO.K,1,KAX2
C-...CET ,SIGC2.IfODE,K,S ,EQV
C." DUM1U)-K
c •• - OUM2(l)-SICC2c··· .WRITE, DUK1(1) ,DUM2 (1)
C". Ux,f6.1.3x.e21.10)
C••••ENDDO
c ••••CFCLOSC··· ! ------------------------------------------------------------

! FOR SELECTIVE SOf'TEliING REMOVE THE COMM£!lT BELOW
C-.. ESEt.,S.£TAB,SICC.YS.(YS-10E10)!------------_._-----------,
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-SET ,KN,2
_SET, YS ,100 ! Arbitrary Stress Value

-GET ,K,ELEK,O ,COUNT

_OO,L,l,K
-GET ,PUN1,ELEK,O ,NUK,KIN
_GET ,STEQ,£I.EM,MIN1,ETAB,SIGC
-SET ,ESECl (L) ,(YS!STEQ)-YM ! xxxxxxxxxxnxxxxxxxxxxx,X,XXXX%
-CFWRITE,KP ,EX,MN ,ESECl (L) ! XXXXX%XXXXXXXXxxxxxxxxnxxxxx
-SET,MN,HN'+l
_SET ,MIN1,KIN1+l
-IF ,MIN1,LE,KAX1,THEN
ESEL,R,ELEK, ,MIN1,KUl
_£NOIF

-£NODO
_CFCLOS

! -------------------------------------------------------------
Inopr

,...._-----------,-----
ESEL,ALL
c ESEL,S ,ETAB,SIGC, Y5, (yg-l0El0)

_CFOPEN ,EXVAL,AUX ! XX'l.XXXXXXXXXXXXX:!.x,X,X'l.XYoXXXXXX
-00 ,KK ,l,KAX1,l
DtrM5 (l)-ESECl (IoO
-VWRITE,OUK5(1) ! XXXXXXX'I.'I.XXXXXX'I.'I.XXXXXXio1.nXX
(h:,E36.19)
_ENDDD

-CFCLOS

!nopr
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-CFOPEJf ,ElMon, , . ./i terres!
-OO,LL,1,K
-GET ,MIN1,ELEK,O,NUK,KIH
-CFWRITE,MAT ,Mlf

-CFWRITE,EHODIF ,HIN1
_SET,MN ,MR+1
-SET ,KIN1,HIIf1+1
_IF ,HIN1,LE,MAX1, THEN'
ESEL,R.,ELEK, ,HIN1,MAX1

-ENDIF
-ENDOO
-CFCLOS
ESEL,All
FINISH

!l1opr

II-LINEAR

!PREP7
RESUME

ANALYSIS

KP,£I,1,YM
!INP ,EXVAL2" .!iterres! ! %%X%%X%%%XXZ'X'XXXX7:Z'XX'XZX7,7.'X'X%
!INP ,£IHOO" ./iterres!
FINISH

!SOLU
SAVE
SOLVE
FINISH

!POST1
RESUME

_OIH,OUH1,AMAY,1
_OIH,DUl12,AMAY,l
_OIH,DUM3,AMAY,1
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SET,l
ETABLE,SIGC,S ,EQY
ETABLE, VOL, YOLU

lout ,esort2, , .. /iterresl
ESORT ,ETAB ,SleC,a
PRETAB, SIGC, YOL
lout
EUSORT

.GET ,KAX1,ELEK,O,NUM,MAX

.CFOPEN ,estrs2, , .. /iUrres/ ! %%',4xnnxxn'.4X%',4XXXhXXXXXXXXX

·OO,K,l,KAXl
-GET ,SIGC3,E1.EI'I,K,ETAB,SIGC
.GET, YOL2,ELEH,K, YOLU
DUM1(l)-K
DUM2(l)-SIGC3
DUM3(l)-YOL2
.VWRlTE,K,SIGC3, VOL2
(1:I:,f6.1,3:1:,e21.10,3:1:,e21.10)

·ENDOO
·CFCLOS

/nopr

C··· ! ........-.-..--....-.---------------------.-
C••• ! NODAL STRESSES ARE STORED IN THE FILE "nstrs2"C••• !_____________ _="'=->00__=_

C... .CFOPEN .Dstrs2, , . .Iiterres/ ! XXXXXXXXXX',4X',4XX;;XX%XXXX;;XXXX'4
c ••••GET ,KAX2 ,NODE,a ,HUM ,MiX

C··••DO,K,l,KAX2
c••• •GET ,SIGC4,NODE,K,S ,EQY
c ••• *VWRITE,K,SIGC4
c ••• (:I:,f6.1.3x,e21.10)
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C••• _ENDDO
c••__CFCLOS

C"''''· ! ---------------------------------------------------------

FINISH

Isys.cp . ./itermac/iterl iter1.aux
/sys,tail -20 iter1.aux > iterla.aw::
/sys,rm iter1.aw::
/sys,eut -c2-12 iterla.au.x > vread.for
/sys,rm iterla.aUJ:
lays,f71 -0 vread vread.for
Isys.rm vread..for
/sys,vread

program vreadl
open(Wlit=10, file-' EXVAL. AUX' •status'" old')
open(Wlit-ll.file"'M.lXl' .status-'old')
open(unit-12 .file-'EXVAL' •status· 'unmOlm')

read(l1,_)ma..xl
do j-l,ma..x1
read(10,_)val

write (12,15) j.val
15 format (lx, 'YMODU(' ,I4, ')-' ,E32.19)
end do

close (12)
closeOl)
clolS8(10)
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! stop
! end

E.2 Second Elastic Iteration· 'iter2'
...................... 1.1 ............'"'"
• ITERATION - II •
• ELASTIC MODULUS SOFI'ENIRG KACRO FOR R-NODE AIULYSIS #
•••#...........I#.................~..............

IPOSTl

Inopr

RESUME

SET,l
ETABLE,SIGC,S,EQV

-GET ,HAX1,EL£H,O ,HUH,HAX

-OIH, YKODU ,ARRAY ,HAXl
-OIH , ESEC2 ,ARRAY ,HAXl
_DIM,DUM1,ARRAY,l

IIMP,ElVAL

Isys ,IllI ElVA!.

!--------------,--
! FOR SELECTIVE SQFI'ENING REMOVE 11IE COMMENT BELOW
c--- ESEL,S,ETAB ,SIGe, YS, (YS_l0El0)

! ••_------~----

-SET,HN,2

-SET, YST ,100£12 ! Arbitrary Stress Value
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-GET ,KK,ELEM,O,CDUNT

_OO,LL,1,KK

-GET ,KIN1,ELEM,O,llUM,KIN

-GET ,STEQ,ELEK,KIN1,ETAB,SIGC
_SET ,ESEC2(LL), (YST/STEQ)_YMDDU(IL)

_CFWRITE, KP ,EX ,KN ,ESEC2(LL)

-SET,KN,KN+l
_SET,KIlU,MIN1+1

-IF ,MIN1,LE,MAX1, THEN
ESEL,R,ELEM, ,MINI ,MAXI

-ENDIF
_ENDDD
-CFCLOS

! ------------------------------------------------------------

Inopr

! ..----_.._---------_.._--_.._-------------..
ESEL , ALL
c ESEL,S ,ETAB ,SlGC, YS, (YS.10E10)

-CFOPEN ,EXVAL.AUX
_OD,KJ,l,MAXl

DUM1 (1) -ESEC2 (KJ)

-VVRITE,DUMl(l)
Ox.E39.12)

-ENDDD
_CFCLDS

Inopr
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!PREP7
RESUME

II-LINEAR ANALYSIS

EX,1.'fM
/INP .EXVAL3 •••. (iterres( ! xxnxnxnxxxxxxxnx;,xnxxxxx
(INP .EXMDO, •. '/iterru(
FINISH

ISOLU
SAVE
SOLVE
FINISH

(POSTl

RESUME

SET,1
ETABLE.SIGe.s .EQV
ETABLE. VOL, VOLU

lout ,esort3, , .. /iterresl
£SORT ,ETAB .Slec ,0
PRETAB .SIGC, VOL
(out
EUSORT

-GET ,MAXl,ELEM.O,NUK,HAX
_CFOPEN, estrs3. , .•Iiterreal ! XX;;XX'loX%X't.'Io;''Io;''Io;''IoX;'XXXXXX1.;''t.'t.

-OO,KL.1.HAX1
_GET .SIGC3,ELEK.KL,ETAB ,SlGC
-GET, VOL3.ELEK,KL, VOLU
-VWRlTE.KL.SIGC3, VOU
(b:.f6.1 ,3:1:.e21.10 ,3:1: ,e21.10)
-ENDDD
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·CFCLOS ._------------

lnopr

C·" !-------------------
C... ! NODAL STRESSES ARE STORED II THE FILE -nstn2*

C·" ,--------------------

C••• *CFCPEN ,Detn3 I xxxxxxxnxnxxnnxxxxnxun
c••• -GET ,KAX2.NOOE,O,NUM,KAX

C••• *OO.K.l.KAX2c... .GET. SIGC4 ,NODE.K ,5 ,EQV
c••••VWRITE,K,SIGC4
c .... (1%,f6.1,3:1:,.21.10)

c••• *ENDDQ

c••• *CFCLQS

C··" ! -----------------------------------------------

FIIfISH

Isys.vread

E.3 Macro that Links all the Individual
Elastic Iteration Macros - 'repeat'

linp,iterl., . ./iterru.cl
Isys ,mv RUlH RUN2 ! Indicator i.n tbe problem directory to see

I how many iterationl have been cOlllphted

/iup, iter2., . ./itenu.cl
/ly8.MV RUH2 RUN3
/inp ,itu3••.. /iurmacl
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ISy8,rtJV RUN3 RUN4
linp, iter4. , . ./itermacl
18yS ,mv RUN4 RUNS
linp,iter5" .. /itermacl
15ys ,mv RUNS RUN6
liop, iter6. , . ./itermacl
15yS ,mv RUN6 RUN7
linp.iter7" _./itermacl
Isys ,my RUlH RUNS
liop,ieerS" .. /itermacl
Isys ,mv RUNS RUN9
liop,iter9., . ./itermacl
Isys .IDV RUN9 RUN10
liop, i terl0, , . ./itermacl
18yS,IDv RUN10 RUNa
liop,iterH" .. /itermacl
Isys ,IDV RUNU RUN12
liop, iter12, , . ./itermacl
Isys ,IDV RUN12 RUN13
liop. iter13, , . ./itermacl
15ys ,IDV RUN13 RUN14
liop, iter14, , . ./itermacl
Isys,mv RUN14 RUN1S

Isys,nII vread
Isys,nII HAXi
Isys ,nil EXVAL
Isys.r1II EXVAL.AUX
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Appendix F

Input File for determining the
Elastic Moduli Ratio for a
Two-Layered Cylinder

This following file is to be input into the Maple" software for determining the
elastic moduli values for a two-Iayered thick cylinder subjected to internal pressure.

F.l Axisymmetric Two-Layered Cylinder un­
der Plane-Strain Conditions

Digits:=15:

Du:=O.3:

exl:=l:

sigyl:=l;

sigy2:=1:

cr1:=3;

cr2:=5;

cr3:=9:
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cpl:=l;

pii:=evalf(Pi);

szz:=nu_(stt+srr);

el:=(srr-nu_(stt+szz)/e_er:

e2:=(stt-nu_(srr+szz»)/e_et;

ans:=solV1!({el.e2}.{srr.stt});

• Radial stress

subs(er=cl-c2/r~2.rhs(ans[lJ);

sr:=subs(et=cl+c2/r-2." );

# Hoop stress

subs(er=cl-c2/r -2.rhs(ans[2J));

st:=suhs(et=cl+c2/r-2. M);

subs(r=rl.sr);

e3:="+pl=O;

subs(r=r2.sr);

e4:="+p2=O;

ansl:=solve({e3.e4), {cl.c2));

conl:=rhs(ansl[l]);

con2:=rhs(ansl{2]);

e5:=conl_cr2+con2/cr2;

subs{pl=cpl.");
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subs(rl=crl. ");

subs(r2=cr2. ");

displ:=subs(e=exl. ");

subs(p2=O.e5);

subs(pl=p2. ,,);

subs(rl=cr2. ");

subs(r2=cr3. ");

disp2:=subs(e=ex2. ,,);

e8:=displ-disp2:

pint:=soive("=O.p2):

subs(ansl[l).sr):

.u",(...1(21,"):

subs(pl=cpl."):

subs(p2=piDt. ");

subs(rl=crl.");

subs(r2=cr2.");

srl:=subs(e=exl. ,,);

subs(ansl(l].st);

.u",(...1(21,"):

subs(pl=cpl."):

subs(p2=pint. ,,);

subs(rl=crl."):

subs(r2=cr2, ");

stl:=subs(e=exl." ):
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szl:=ou_(srl+5tl):

subs(ansl[lJ..sr):

subs(ansl[2J. -);

subs(rl=cr2.");

subs(r2=cr3."):

subs(pl=pint. ~);

subs(p2=O. ~):

sr2:=subs(e=ex2."):

subs(ansl[IJ.st);

subs(ansl[2J. ");

subs(rl=cr2,"):

5ubs(r2=cr3,");

subs(pl=pint. "):

subs(p2=O."):

st2:=subs(e=ex2."):

sz2:=nu_(sr2+st2):

5eq\'1:=(1/2)-«srl-stlj-2+(stl-szl)-2+(szl-srl)-2)_2_pii_r,

seqv2: =( 1/2).((sr2 -st2) -2+(st2-sz2) -2+(sz2-sr2) -2) _2_pii_r:

vl:=pii_{cr2-2_crl-2):

\'2:=pii-(cr3-2-cr2-2):

e9:=int(seqvl.r=crl. .cr2);

elO:=int(seqv2,r=cr2..cr3);

m01:=simplify{sigyl_sqrt(vl){sqrt(e9);
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m02:=simpllfy(sigy2_sqrt(v2)jsqrt(elO));

ell:=simpllfy(mOl{m02);
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