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tmmng-nehc Wave of nrbxtnry ization and angle of i

" trie matenal and are us\lmed to- be enibedded in-a non-lossy mﬁnlle homogene—

-
¥ ABSTRACT

Exact solntions are obtained for scauering of a monochpmatic plane elec-

by a single

dlelectrlc prolate spheroid apd 8 system of two dwleémc prolate upheronds in
o

panllel ion. Modal series ions of fields in terms :

of i prolate h Yector. wave 5 ureﬂused to obtain these .

lutions. The prolate sphefcids are posed of b

s and perl‘ccc :hclcc- A

ous  and 1sotroplc medmm, which- contains the mcndent plane electromﬁgneuc
wave. 'l‘he medl’um and, the scatterers are all assumed to ‘be non-l’u:r\mng-nenc

kmagnehc permeablllues of the material. of ench spheroid and thpt pl the medium

e

nsshmed to be roxim: fely equal to the p o l‘ree spnce) thh 1o frée
chnrge in nny region. P : -
The 84 solution gives the unk efficients in. the seties expantions-of -

the scnttered and }ransm\tted fields, in terms of. the kno\wn coeﬂ'lclenls in the '

series expansion | ol‘ the incident ﬁeld by means of s mntrp( "transformation in

which the system ‘matrix depends only on ‘the scaﬂem ensemblp This eliminates

-Lhe necasny [or repentedly solvmg 3 new set of sxmultuneous equauons to obtnln i St

= . ¢
the unk o) ﬁeld i for a new dlrechon ol‘ mexdence Numen—

- o ;
cal results nre glven as curves ol bi-¢ Atatle nnd’ back cnnermg cross-sect\ons for l—-

¢ oz’ lectric material ofdlﬂ'erent f

variety of prolnre

.mdlces Moreover, lor two body scattering, different’ parnllel conﬁgumtmns and

1 i ofth_etwo pheroid: nrelho isil \ s
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CHAPTER 1 #
“ e ' . ‘ T e it =
b - i@oDUCHON X “
2 l 1 Genera R TS a IS : .
o ® S « R & =
5 The sahmans 6 ‘probl in tror ic’ 'have 1mponant'

¢
\ptscucal npphcmons in, Lhe ﬁelag or Apphed Physics,

o

cally in' closed I'orms But wnth the advent of cbmputers in the past few decades

the use of numenc-l lechmques for solvm complex eleceromagneuc scatlermg

lhu}problems in closed Iorms. which is onen unxchxevable

As regsrds electromngneuc scnuenng I'rom regular shuped bodm a fmrly

-, . large nmo\h\e\fl’ whrk is* nvallnble in htenhlre for cylmdrml and sphencal

. ob,eets 85 d to spheroidal objects Obtaini exact solntmns for

et 2
Acoustits and Elecmcal'

scnttenng in the nbovp, ﬁelds were hm\ted to thosg which wnld be solved mnlyh-

bl on dlgltal - s is il at a rapid pace, rnther than solhng %




.- which are very useful for comparative purposes.

spheroidal co-ordinate system, that gives the spheroidal scalar wave function,

which leads to the evaluation of different spheroidal vector wave functions.

Two frequently ref d publications on sph "wsve' ions are

. those by Flammer [1] and Stratton et. al. [16]. 1 these publications they discuss

in detail the solution of the scalar 'wave equatmn in spheroidal co-ordinate system:

and give éxpressions for"the expansion of different vector wave functions..They - *

2l provide tables of numerical results for differént“spheroidal wave functions
ln revxewmg literature, it is observed tlm research into_the appheahons of
spheroxda] wave Nncncns goes as far back as 1880 [l] Though- various Appllcn-

tions of these” fnncnons appeared arter thls time [1}, it lsihe wurk'of Schullz [15]

in 1950, which first gave an exact sohmon for scattering of plane electromagnetic

waves by d ds . for axi;l" ide

prolate usmg prohle

sphermdal wave functions. Thls led reséarch into the area of obtammg exact solu-

nons to scattermg by spherolds Based -on Schultzs lechmque, Slegel et. al 2]

have carried ollt, itati ! jons of thﬁ i from ES prolale

|
I

spherald nnd have given a curve of" bnck-scauenng cross-section I'or a sphermd oI'

u\al ratio. 10., Semur |5] has made a co}npnnson of some expcnmentnl resulls

ob\mned for the same ‘case with the results obtmned by- Slegel et. al. [2): The

curve obtmned ‘by, Siegel et. al. [2] was improved later by Smha & Macth 3 .
: .who ~nl‘§ol gave nimerical results s scattering cross-secnons for axial rauos‘v

different from 10. Taylor. [10]; in 1967 obtained an?&isolution for electromag- .

i \ : o >
|- metic ing with broadside incidence and TM polarization of the incident

L




wave, but no numerical results were presented, &
. N B 8
The exact solution for the more general case of scattering of ‘plane elet-

tr i waves. by & ‘prolate §pheroid for arbitrary polarization

and angle of incidentewas givén by Reitilinger in 1957 (8], However no numerical

" resulls were presented. There were two major drawoacks in’this solution. One

" [22 24], employing Mie's type of series field i in sp

*was the necessity to réﬁeat‘ the proce!s of inversion of matrices' With changing *

duechon of mcldence‘ f the mcldent wave. The other was the |ncapnbllny tﬂ

‘usmg the mntnces required to obtain. the unknown sems coeﬂ' cxenf.s of the scab—

tered field l'or oone pnnclpsl polanzahon to determme ‘the same for the nther prln-
cipal polarization. ’I‘hese two major driwbacks were overcome in the.work of
Sinha & MacPhie [4], who glso préségmed _aumerical Tesults s plots of back-
scattering cross»segtion vs' a‘ngle of: ’incvi;ience"and relative phase vs angle of
s Ko pboicad sl vty 85 00, T il s 2B
l‘o;;nd to be }n agreement with Ll;e'experimentul results obtained lfy Moffatt_[21]
for the.sn;ne case. The presentation_of the above sohmon by Sinha & MacPhie
]4] was based on previous rsem‘h dong on the cnlcnlatlon of e:genvalues for pro-

late heroidal

pheroidal wave jons: 2 }; comp ion of prolate }-ndial func-

.tions.of the second kind |18] nnd ! ic scg by conducti pro-

late spherolds in the resonance region (13] Exachsolutmns for scntermg by 8

perl’ ectly conducting prolate spheroid were also obLamgd by Dalmas and Deleuil

with vector wnve functions M’m and N'm 1




o ductmg nd’{mpedluce splmmds, nsmg
X

Usmg the vector wave functions M'm and, N"" an exact solution for glu-

by ah dielectric spheroid with arbitrary polar- ~
izatign and l:ngle of incidence was given by Asano & Yamamoto [7]. Resululwere'r
presented for spheroids of axial ratios 2 & 5 and a refractive index 1.33

corresponding to the scattering of-light. Sebak and Shafai [25] have pruemed lll.

approximate numerical soluuon to the pmblem ol senterln; by lmperl‘ecuy conr-

\

--results for sphemxdl with different uxul ratios and xurhce lmpedmcu

Resesrch on obmmng un exact solutlan lor electromngnehc plnne wave

scmering by two parallel conducting prolm gphemidl was carried onl by Sinha

. & MacPhie [11] in 1983, employmnhe ltipol i hnigue developed

in [4} for'A conducting pmhte spherold and nomlllzed exponenunl prolate
sphar_onhl vector wave [unctions together - with "T‘mlntmml ,Addition
Theoyem" [14], which convrts an ontioing wave from one spheroi?u an incom-

ing wave 10 the other. The “Translational Addition Theorem" is the 1ey require-

ment for two I;ody scattering problems; ‘Numerical results were given as plots of

 Seattering cross-sections for different parallel mnq;uu}'wns “sud separations of the

two -prolate sph _“' The advs A‘ ge of using i P ial  prolate

v % ! ¢
spheroidal vector wave functions is that they translate like scals

under the transl of ti:e heroidal co-ordinat sfutem._’

In viéw.of the simplici .nd' cctivesess of the normalized ex; "x'mi—

hle spheroidal vector wnvle runchons developed hy Slllhl A MacPhie [lll,

 applied to the study of scatteri problum g two spheroid l11,12), the

wave functions -

integral equation formulation, giving| < -




obj:cuve oHIfe pmenl. work is to extend the exu:l. solution for scattering of
plane elec/romngneuc waves by a single eondnctm; prolate spherojd [4”;:
. dielectric [(ohte spheroid, and further to ul.end ‘the exact soluhon for scaturmg

by two parallel condutnng prolate sphemlds 1], to a symm of iwo- parallel

i pxolnl.e pheroids. The dielectri ials of the ic nrea.ssumed

to be honwteneous. non-lossy md-*non—l'ermmgnetxe (permégpmyﬂ I.he bteri-

Y B nls Appraxlmnely uqull m the peripelblllty of free spwe) The medmm outside,

S _‘ . whlch conmns the meldent plane eleclrolmgnetlc wnve, is also assdmed lo be
non-lnsty, homogeneous, untmplc nnd non~ferrom:gnehc. It is l‘urtheg- usumed
that the medium nnulde as well as tha scntterers donot éontain any free chsrxe.

Th! problem: are orm llsmg the ltipole asion téehns s and the

developed hy Slnln & MucPhie [4,11, 13] i

metbe isfacti ol‘ d ditions that the : ial

- ,'. of both E snd H fields be continious simultaneously across Ll‘:e surface. of'the

i I i "-And #- hing snd r‘,-‘ tching on lhuphemdsﬂrhm, thegen-

eral aohltmn for both cus can be given in matrix form as

BaN, ® -

Por the umgla ultterm; case, § i is.the column vector of unknowp coeﬂ'le\unts

m the series expamlonl o{ lrlnsmxned snd sennered ﬁelds taken together and 1

the column vector of known coefficients in !l:g series expansion of the mendenj.

& ized & ial prol-u heroidal“vector wave functi M and'N

% . '§=IG11, #oE ).

" field. For the two body. ‘case, S and ] are the column vectors containing i




: prolnte heroids in pnnllel‘

coefficients in the series cxpnnsmn: of tbe mxmpondln; fields for both: syhermd;..

Nnmeﬂcu Tunlu are given a$*plots of b:—snm and back-scattering cross'secuons

for a variety of prolate spheroids composed of dielectric m'.enlls of d|ll’erent

" refractive indices. Moréover for the two body case dlﬂ'erent plnllel conﬁ‘uuhons

and separations of the two sphier "’;m.ko sidered i
12 Organiistion of the thesls . >~ ' o
T A X ? R = e "
This thesis is pimarily concerned with obtai an exact solution to the ,
= Br . et e HRd
problem of i f C ic plane el ic waves of arbjtrary
S 2 i

_poldrjz;ﬁ;'l"i unvd‘n}n‘i;le of incid by_diel i vpr&lnte heroids. The cases of

u;tt;‘ring by,s sigle dielar;;,_rk pn;lne sphgmi_dvlnd scattering by two dielectric

are dealt with se ly. A brief out—

lme of the rehted ramch done in the srea. of :Ieclmm-gneuc suuermsv llong :

with & snmmn’y of the nnture of the present pmblein andits lormulal.mn were. |

« given in sechon 1.1. The other. clnpur! are nruged as fole s Tz

In .:hnpter 2 tl:e nometry of tte prollu spherolﬂnl stem is given ﬁn’l.l '

) ,
Next the scalar wave fnnctlon ﬁ, which is the solutién to e scalat wive equa-

tion and- dxﬂ'erent i ion iated with it lre ib Fi innll)",

derival

o! dlﬂ‘erent vector wave luneuons lmm this scnlnr wave l ction is pmenled

Chnplera" ib Ihe hematical fc

|xed pmlnte splmoldxl v;e'.or wave i i r the

-

¥




-

the sati: ion of )mundary and derivation of the system matrix. ,

:Chapter 4 g'lves the nllmencal comput;twng and the results ol' the sollmuu
for the pmblem formnlated in chnpoer 3 The method Gised in truncatmg the
mamces and column vectors of infinite Size that appear in 1he machemaucal for-

mu]nwn of chapt.ar 3is ducussed here. The résults are praeuted as b| stauc md

for the ¢ g. by two ; pr‘;jnie :

it

Sin” pa‘n'llel-

g'lven in chiptér 5. Unli‘(e"in' chapterr 3,

,.éxpnnsians ol all'E and ﬁelds au glven, using the. mstnxr {orm I'or compact~
ness, The use of the: “Tnnslntlona.l Addmon Theorem'! in lrmsformmg the scat-
tered ﬂeld of one spherold as°an meldent field to the other, the ,saus{achon -of

boundary cundnionu nnd “the’ qlenvmon of the sys!em matrix are, dlscussed in

Ranlu of the sol\mon rgr !he pmblem lormulnted m clupter 5 ire gwen in

chapter 8, as normalfied bi-static and‘ Ensditeriice i Jns, for spheroids

. composed of mntenals ol ‘d:ﬂ‘erent refractive indica’n‘ Different ‘vparnllel

f and s 5 of the two heroids are Also considered

, Finally in ¢hapter 7' the Jusion ‘ari’ natized and some ré d
v N i 52 «
tions for future,research are oullinetL" : s o




T ‘able il in many standnrd

)

N ls no \lmfotlmty in nolatxon The co-ordinate system and the notatmn! used

MaéPhie [11]. A desenpuon of tils, coordinate syste

- two foci . Fy ap_d F, are g{ven by [13] ‘ o
) % 8

—

CHAPTER 2

PROLATE SPHEROIDAL GE&ME"I‘R.Y AND Plaa 3
PROLATE SPHER.OIDAL WAVE FUNCTIONS o £

2 1 Intx-oductlon

Although deta\ls relatmg io pro]nte spheroidal. co-ordmnu systems arg’an

“on sphieroidal

wave f fi |1 18, l7], there

thls thesis,_are '.hose of Flammer [l], mcorpomtmg th modlﬁcntlon by Smha &

en'in sectmu 2.2, fql-.
lowed by a\'lenvatmn ol‘ the vector wave eqnshon for ths pmi H ﬁelds of “un
electroma.g-nehc wave. The scalar wave eq\uhon is then solved to obnm_uze.

scalar wave rum:hon, and finally different vectov wave l‘uncuons are denved l‘rom

the scalar wave' funcuon by the apphcuhon of vector dxﬂerentml operamrs

2.2 Pfolnte ap‘heroldnl co-ordinate aysmn

" The prolnte spheroldal eo-ordmnte system is obmned by rotation oI 2 é%f ’

r.
ca] sht of elllpses nbont theu common ma]or uls as) shown in fig.(2.1) ‘13]

ta.nce of the conl‘ocal elhpses be denoled by F 'Then thh rererence to fig.(2.2) \
[13], where 8 smgle elhpse o[ the set is shown sepnrslely, Lhe spheroxdnl caordi-'

nates (E,q,¢) ofa given: point P in space distant ry and rp respectivily from "",E




|<e1<€2 B I>|"7\i > I"lzl

, . Flg 2.1 Pmlate spheroldnl ;eon:e\ly e .'- s E
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Fig. 2.2 Prolate sph%m

/

idal geometry and rectangular co-qrdin-levs'yn:em.v /




of the® rectnngu]ar system (x,y,z) The Mxls is along the major axis .of the ..

me (2 3)it is posslble to oblnm %y & zin terms of E, n& ?'&9 fuljows [13].

11

€= +r)foF (2.10)

1 (7 -1)/2F (21b) |
J:as ‘ ) Tl

where £ is the-radial co-ordinate, n the angular co-ordinate and ¢’ the azimuthal /

co-pidinnte. 2 d o /

2.2.1  Relation with the Carteslan eo—ordlnlu system - . / .

Let the ongm O of the prolabe sphercldnl system (fig. 2.2) be also the origin. &

sphemld and ',lie rocl of the s'pherolds are at the points (0,0,F) & (0, 0 -F)

- 4
From co-_ord.mate geometry
oo =y 2R < (22a)
Bty 4 (z-FP J (2.2b)
- ¢=tan(y/x) (2.2¢)

“Theén the: prolate spheroidal co-ordinates (£,1,8) are given in tem\s of reczangulnr .

# co-ordmatu (x.y,z) by using (2. 2) in the transformation (2.1). Thst is

S F [(x +y +(z+F)’}"’+(x +18+ )’)‘/’] (230)
"= L [o2+y (PR 4 07 497 (z-r)’)‘/’] T (23b)
¢=ean"(y/x) oM . - (230)

5 i

L x=F e (g 1)"”cos¢ L (24e),
e e Gt ) D
z2=Fné - 5 ¢ (2:4¢)

- with=1<ng1, l<£<oo o<¢<z:. h D 2.7 5




¥

. The size and shape of the ellipse are specified by the two quantities viz. semi

interfocal distance F and eccentricity e. The eccentricity is related to the radial

e co-ordinate £ by e

8 2%- Vector wave equation for the E and H flelds of an electromagnetic \
g - © -

' wave 3

) e The theory on‘ i ering is developed by -startin’g”with the

basic Maxwell's equations. In general, a tlme hnrmomc electromagnetic ﬁeld ti
‘\.

fac',or ei“t assumed, w bemg Lhe nng\llar [requency]‘sansﬁm Maxwells equnhons

) TN
VXE =-jwpH L 25)
VXH =ju (e 45)1; (2:6a)
( 5 . =B S (28b)
‘where
. N . en

is the complex permlttlvny

In (2.5) and (2 6) .E and H are the phnsor electromngneuc fields, p and ¢ the per-

meablhty and permv wuy of the medium respectively and ¢ ; the conductivity of

the medium. If the propagnhon constant of free space is denoled by\kg then,
g ko= 27/X
i t ! =w/e 1
" . : T s w(ua)




l

P where ), is_the wavelength in free space, ¢ is the velocity of propagation in free
space and ;g & ¢ 't.lse permesbility and perxriittivity of free space respectively.

3 Substitliting for w in (2.5) and (2.6) from (2.8 gives

— S B ' o e =

. -V)SE'}- ,]/(‘VGEU)I 2 kt:H . (2'9) <

( ~ 0\ . v>£n=", £ v 2.1‘0‘ .
o TR g &

© e Lo ‘ N 3 .
Assuming the medium to bé non magnetic and applying the curl operator to both

sides of (2:9) yields |

VVE-VE= ‘—‘#ka e )m ‘,E (2.11a)
(“ = lk’ . o (2.11b)
1 . : & 2
- (;)ko : S e,

From Maxwell's equations i b ) . s wxg © W s

At
ge VDe=yp . . (2.12)
¢, v . < = '
-'where D is the electric flux dendity vector and p, the charge density. .
1f the medium is also.assumed to be isotropic, then D and E are related by )
-D’=eE . - (28
where ¢ is the permlttmty of the. medulm s i - of e

Substitution of |

13 in {&2) glves



Assuming charge free space (p2= 0),,equu|,ion' (2.14) can be written as

Now substitution of (2.15) in (2.11c) gi\?ei
.

‘Ypplication-of the cl‘ulype;awr to bp‘h sides of (2.!0) yields
L

w-n_m

”
VE+(E)KE =0
€0

--—(J‘—)( )k’

=-(l_o~) KH

From Maxwell's 6quations

VB =0

L

where Blis the magmetic flux denﬂty veetor.

B and é arerelated by

B

B=uH

Substitution of (2.18) in (2.18) gives

» Thus (2: 17¢) becomes

VH =0

o
VH+ (£)EH
€0

|

'T»*’*‘“’W""-

(2.15).

(2.16)

- (207)

(2:11bj

(2.17¢)

" 12.20)

(zm):




 equation are requi?ed One of

- ' . &
wave function. Hence the

‘In the proh!e spheroldnl co—ordmlw system thu equmon reduces 00

. OBy 15

Setﬁng oW R ! .
R e k= (/e PPhy - - . (2.22a)

) ) =nky * . (z22b)

'

w’i:ere o is the ‘con;piex refractlve index of the medium and k,, is the propagation

" “constant of free space, lhe veclor wave eqllatlons lor E And B ﬁelds«can be pven "

by “ . * )

VEHPEZ0

ik o \7n+k2

N " =
»Whlcll are also knOWn as vector Helmlml eqnations

Fpr muny pmblems in

wave equation is by the

2.4 * Scalar wave ! and different function

* The scalar. wave equation give_‘n by

€ Ppg ¢ R -
,V\b+k"b=0. e ) ) (225)
2 ™
has ‘been found to be aepnnble in eleven eoordlnate sysiems [l] ont o{ whnch the S
ptolnn spheroldll system is-ope. S (. . ¥ty ; ' .' Bt Ny

2 e _(5’_'13)__'& ¥
% [(:e' .1) ].+ [u »’) (e“ e ”,) wn(e"‘ ’)w




- : - )
4 i . 16
» . 'whereh =kF. e : H
i v ) . . : : . o L
.+ By-the isual method of separation of variablés, ‘solutions to (2.25) can be . *
e T -nbtgiﬂed‘as 1] BT ) : B
v
1
w)—Rm..(h €) S.....(h ) (2427)

= ’ o ™ - :

’l‘he runcnons Rm,‘(h é) and S,,m(h,q) are known as radml funcuons and angle

b g i gt T
d"{u v,)_d’,Sm(h,(q)}+(.xm,, Bt~ ) Sanftr) =0 -(229)

In the above equahons (2. 28) & (2 29), Mun nnd m-are sepa.ratxon Tstanls‘. Aon

is.e [unctlon of h.- The dlsarete values of an (n=m, m+1, m+2

which the dm‘erennal equman gives ﬁmté solntmns at n=+I are Lhe deslrcd LI

2 elgenvalues, and the value of m is an ml,eger which mcluda‘zero n>|m[ 1
s . o 5 . . ;

.2,4 53 Ailgle ?Fninetions

The prolnte nngle fusictions -are the iated cigenfuneti s ,,.,.(h,rl)

rrespondmg to the genvulue Xm,,(h] There are two’ kmds of angle l‘unchons

S(,:,n(h,rl) and S(,:),,(h,v,) Out of Lhese it, is Sm,,(h,q) thnt is used frgquently in ph!!l- A

t is regulnr h ‘,i the interval - l<q<l Hence we sim-
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It is possible ta ex;rqss this angle funetion Sp,,(h,n)} as an infinite series of the
. associated Legendte functions of li:e first kind to give

Spalbit) = ié’ld:‘“(hn".:;.(n) : (230,
b0 = % :

. where d7"(h) n_fe the expansion coefficients relating to the prolate. system, which "

- _originate in calculating eigenvalues,and are given. by the recurrence relation

- . >
o Lo (2mr+1 !2m+r+2 h’d Lt
e - (@m+2r+3)2m2r¥s)  *E -

s !m+rl m+r+l!-2m 2| jmn
g {(m+')(m+'+') g+ (ot IfzmF2rd) Ly } o
1-1)

(2m+2r 3)(2m+2r—1) h d""' =0 ® (@231)

There are twa sets-of coelﬁcients that satisfy the al?oye recurrence rél;tion, Out_

. of these two only the one.in which d:‘”/dﬁ; = /42 — 0 yields a convergent .
. seriés asr incredises [1). The p‘rime over the ¥ indicates (tha! ti:e sl?r'xr‘méti;an is.
. only over even values of r; when (n-m)-is e\;en and only over odd valaes of T,

vibien (n- m) s odd, & - .

- Another important property oi le functions is the orihogonality in the interval

— L agn<i [l]._wfiich results lrom the th’eorylol.Stnrm ~ Liouville differentisl equa-’
 tions. Thus ' .
J Sontt) Sul) a1 = 81y Ny | )
%1 . & E b

where 6,‘,,.: is the Kronecker delta function’defined in appendix B and*




~ sz 5
2
2, (r+2m)!{d7") B
New=2 X Trmend i S
is the normalization constant.

2.42 Radial Functk’ml- -

“The radial functions are the soluticms of the diﬂeren‘tisi equation (2.28). »The =

& rnnge “of cp-ordmnte E is l<E<po snd the agenvalues )‘mn whlch oceur in (2 28). . "

are those to wlnch the ungln futictions Sm,,(h,q] belong
. @ ' ' . Tn physlcsl problems one’ n:\lally reqmra bnth radial tuncuons of the ﬁm ‘
\ w kind Rm,,(h £) And second kind R(m,,(h E) The tlmd snd fourth kind ol funcuons Bl
R (b,6) and R (b,6)are s mmr combination of Ris(h,€) and Ron(b€). .
.2 Similar to the angle functions, the radial fnyclioqs R (bg) and RO,

can also be expsnded as the sum of en infiite series given by ua] ’
fr - ' :
' R"nuxa -1& | £ “"(hnm,wa e

and .

v
- o e [5"—] £ ""(h)nm,(he) 239)
* - where ji, and nm,, are spherical Bessel and Nzumunn fulictions respectively.

""‘(h] are convergent coefficients’ such that a]""/ap3— h’/ﬁ’ = 0 as T—00. ? -

©. . The expansion coafficients a7'"(h) are given by the recurrence relation”




) - o
4 1)(r+2, '

‘
| mtert3)@m+2r5) o

< = 20+ 2(2mil) + 2m -1 1ol o
{""-*"("‘*”” Ao + ~@mrar-Em2r+) hzl“»""

‘(r+2m-1)(r+-2m) = a .
¥ (2m+2r—3)(2m+2r—1) Fam =0 (2.38)

" The radial functxons ol' lhe thlrd and fourtll kind are rapechvely g1ven by

#, o=r, e)+,RL”,(h o L e
Rin.6)= R‘.l..(haﬂnfﬁi(h 0 _(238;

* The nsymptoh: behayior of R(,:,),(h €, Rm (B, E) R(:),,(h £). and R‘,:z,(h £) is readlly\ ’

“obtained by the ssymptohc behavwr of the sphme-l Bessel and Neumnnn [nnc- -

Llons ay h(’ﬁoo, and is given by

"’(h f)—'—cos he- O I X N
,.‘ r? , ’
« Rm(b, €'~ — sin [hE ln+l)1r/2] N (240)
P Rm(h €)—-—€-e’"“ ki L ey
. : 0] R WY x)./z] LR o
.+ Rm n(h,sy g e 4 ‘ XN
gt S L ) | T
From the a.sympwuc values of Ry (h,€) snd R,,,n(h £) itis evndent tlmt they have |

the properhes of dlvergmg spheneal waves at large duunces from lhe sphermd




The series representation of R(,,l,),,(h f) has good converéence, where as the one of

R(,,.z]n(h €) is an nsympmm series whlch is not ahsolutely convergenv. for any limte

value of hf [17]

An integral method introduced by Sinha and MacPhie, [18] overcomes this “

W . difficulty to’ 8 certam extent, glvmg accural.é results for Rm"(h f) for hlues "ot

h<9. But as the value.of B increases above 9, the x‘ccuracy of the resu]ts becomc;

“low [8]. .

o . “« : i
2.6 Spheroidal Vector Wave Furictions

‘By ‘the application of vector differenti o-the spheroldal scalar

wave function given in (2 27), it is posslble to obtam ‘the sphemldal veclor wave
functions M and N given below [1). + ., . .1 ..
' © 0 Mpy=VipXa .o T e

TR T N =KNEXMg) 0

ST I . o % -
Thejl,e':tor a ino* should be either an arbitrary constant unit vector or-the - -
- ¢ A .
. position vector r. : | P 3

Also it can be shown that ’ s -

T m—k(vam)

None of the co-ordmate unit vector

,E, or¢ in the uphemldul m-ordmate sys- ,
- tem, Ins the properhes reqmred ror a. Hence the Cartesian system’ is used since_

-~ it has the properhes required for a nnd nlso since the ‘Lransfor_mnuon from Carj.e- At e
o .

sian to spheroidal system [13],




uknown i Pl B

The three Cnrtesmn unit vectors 5( and'i genentu three distinct classes ol‘ .

spheroldn.l véctor wave: fnncuons M: And N viz,, o

T A Mfm’,,(h.ve.a) vwl‘j,,(h;vils,as)'xp G=xwa) o @)

B a e - . =

expressions for_‘ these spheroidal vector wave funet:it;nz' are available in [l]. 3
"xr»

) M"" N“" and N’” thie 4 = dpenanes ol varioun faiir

In the I'llnchons

ponents. is equal to the product of alt.her cow or sing Mth cos meb or sin mg. It is
convenient therel’ore to deﬂne tha foll’\_\ng nddltmnll veetor ~wave Iunﬁhons

! where the componenh lnbeled wnh the mdex m+J hu enher a cos (m+l)d or

sin (m+1)¢ - depended Whlla the

of hose hbeled with f-1 have!

enher a cos (m -1)¢ or sln lm-ll¢ ¢ dependenee ]l]

i [oxM® ming ] (v L oe)

Y £ L T Y ) .
e & o in (2.47) & (2.48) refer to the even and odd functions fespectively. Explicit




'
2
'M.,(,:L,"(h:yl.é.eﬁ) =1 [Mff‘n’n(hm,e@n Mimn(h,n.'e.w] Y
oinEd) = 1 [ f‘m"n(h,n ) ﬂ:Mi‘m(ﬁ.n.e,J)] © (es0)
+,:)H..“"” 5*‘)_* .[VXMT:,;J,,,I,‘(h;mM)] . - e
\ .
) “’_ i ¢) ‘_—, K [V,XM “m’_, Gmg] (e
Exphclt expresslons for M7 M N, (') nnd"N"“ 10 3T given in[1)”

'm+ln om-ln’ 'm+l

< boo but are also hstad in appendix A together with M )n and N for conveni-‘

ence. Accordmg to Sinha & MacPlue [ll] it is posslble to express the smnsmdnl
variation of @ presént in the above sphgroldal‘ vector wave functions M and N as
sn exponential variation, and also since for any n>0, the azimuthal harmonic

number 'm’.can bé negative or positive (-n<m<n), the vector wave functions

\
-can be normalized in such a way thnt they depend only on |m|. Thls ncrmallzn-

" tion and the representauon of vector wave l'uncuons in exponential form are also

, that M*“ and N,*,‘(,,) lmve (mil)¢ 4~ dependenee T

given in gppend:x A. The notation used by Smhg & Mchhne [11] differs l’rom '

that used by‘ Flammer [i]-in the following manner. Flammer's M;‘B,.“ & N:,Tl‘"

Feseig M:',,‘,:’ 2 N ana Mﬁ’_’, 2 & N, becoms M) & N mpecuvay P

The veclor wave f«nehons used thmughout this thesis wnll be these normalized

‘., idal vector wave functi denoted by M:,l,',),\ 1(') .

1 prolate

] (i) H) o At

N nnd Nm with Mp, & N,,,,l havmz (m+1)¢ ¢~ “dependence, M,,,,, & N,:,?

. havmg (m—l)d ¢ dependence, and M'(') & N:,f',? having m¢ ¢- dependence B
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- ‘ T \ CHAPTER 3
ELECTROMAGNETIC PLANE WAVE SCATTERING BY A
HOMOGENEOUS DIELECTRIC PROLATE SPHEROID -

3.1 Introduction

In this nhlpter, expansions of the incident, scattered and transmitted electric

lnd magnetic fields for TE and TM polmzluons of the mclden!. electromngnf.hc

& 5 ‘wave, are gwen in, terms of a set of prolnte héroidal vector wave
luncuons defined m Appendlx A. The holmdlry conditions that have to be

s snhsﬁed across the surface of the spherold are wrm.en in terms ol‘ these field

and n- hing and ¢ - hing is carried out on the spherold sur-

face to obtam a set of slmultuneons linear equations in matrix form relatmg the

- know fici in the series expansions of scattered and tmnsmltted fields

_ with the known coefficients in the series expansion of the ‘incident feld. Finally

* these equations -are ‘solved to evaluate the above mentioned unknown expansion

field mﬁ‘iciené.

3.2 Expansion of the incident plane wave in terms of normalized
" prolate spheroidal vector wave functions ;

ochr 1 wave of unit litud

s Consider a plsné
e ° SO ¢ 7 0 W s i e v . . "
and length ), prop ing in a logsy infinite, h -and- isotropic

medium of dielectric constant ¢,. This wave is propagating i .the: Xz plane

- S . L
" (¢ =0) at an angle 6; (<x/2) with the negative z-direction (z being the axis. of




N
\

A i 3 b
symmetry), and is "mgide}!\,on a dielectric prolate spheroid composed of homo--*-

Jo 4 -

geneous and perfect dielectric material of dieléctric constant €5 as shown in fig.

- "8.1. Let 2F be the interfocal distance of the spheroid, and a/b its axial ratio. The

edium and the scatterer are both “assimed fo be non-ferromagnetic (magnetic

g permeabilitiﬁ'u, and.pg each =~ o, .the ]igr}héability of ffee s’iﬁnce) with no-free

charge in exther regmn

Let the electnc field vector E; und the magneue ﬁeld vector ﬂi of, ther‘

mcldent plane wave, be Imenrly polamed in an nrbltmry dn‘ecuon Thls can

always be di nposed into two

polnmed E vect E,TE, Ejry and
" H vectors Hyrg, Hipy such that By & Hpy li:,e perpendicular to the plane of

propagation and"E;ry-& Hpg lie in the plane of propagation.

-3.2.1 Explnmon of E fleld of the TE incident wave In terms of

normlll:zd pralste vecbor wave fu

According to Flammer [1] the e]ecmc ﬁe]d Eie t;f lhe TE polqnzed mcldent
plane wave can be expanded in terms of pmlate spheroidal vector wave runct!ons

M togive . » - "

. s
L olby) +MEh i) | 31)

) © © i
Erg= Y X 4,
M0 nmm
where h, is the‘ value of b outside the sphemid (medium 1).

Explicit expressions for Mfmﬂ a aregiven in appendix A.

h i .
Gy = Tmn/ikicost; 3.2)




INC]DENT PLANE WAVE

(€mz% pg)

e &

Flg 31 Scnnenng geometry for 'y dlel;ctnc prolste spheroxd With”

DIELECTRIC MEDIUM
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(8,:4;°0) : 2
SCATTERED WAVE IN THE,
FAR ZONE (6,¢)
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N Y = 2(2 = fom) " Ny Sl c08) (3.3)
in which N,/ nud 5,',,l are defined in chnpter 2 and k, ls the prcpagauon con-

stant of the medmm autslde lhc sphemld (medium l) TN

: Lez»i\ﬁm - Then,

=.{2 n}x,;,éo

1 34)

Subsmutmg ror M:_,,, ,,,(h,’) and M,,“,,,',,(h,) in terms of normahzed prolnto.

sphermdal veclbr wave l‘unctmns M* gives'

Erem & 55| "”(h»+M*““’rhn+M"n"(h,)+M.mu-.)] @),

m=0 ne=m_

Th aboverexpanslon for E-m.; can riow be written as

B I L L‘n"(h,ummn(m]

. - - m=0 ne=im|._ y
TR B [M;‘J’(h )+ M) | (3.6a)
o i thm—cd nem|m| 4

£° 8 Aua [y *“’(h‘l‘+M11’thn] - b
Y m--mn-]m| €m E e
£ £ [qm-MTn‘n’(h)»rq-mM,i’n’(h.)‘] e
wpere. . E
G4, = 2" Nimja Sjifi(bp,cosy) (jkyeosti)™ Y
and - . _
: " G = G LT e




Hereafter M(h,) and N(h,) will be referred to as M and N respectively for R

sake of simplicity. ce E 7

3.2. 2 Expuulon of E field of the TM incident wave in terms of

d prolate sp vector wave fu

Tbe expansion given by Flammer [1] for the eleémc field Eipy of the TM

polnnzed mcldent plane wave is

+1) n - - g A
Emv = 2 E [M o,m+1,n = Mn(,m- .n] B9
. m-o _ = e
where ¢ - )
g, 2 ) B
= uk.i Ymn . T (340)
'1,,,,, is-defined i in (33) and M‘,.,,,*, are deﬁned in nppendr.x A : >>

Substituting for M,IML,_,, and M‘m_“, in. terms of the normahzed/p )hts~

(3.11) .ﬂ °

spheroidal vector wave functions M,*n,, gwes ’ o
Eimy = )30 5 -3 3o coun, [ MER! - M+ ME - MY
ne=m § %
Lt
. ® o 5 9!) _! &
-53 J;w[ el
m=0 n-lm
- . ) i TR 0
N ;—lﬂacosol [M‘“’ ;‘;’] . (3.12a) *
Mmoo u-[ml 2, .. ST
w imln coshy [M4(17 ‘M—(l)] . I\'f-hb)
= o q,,,,,M“.:.(;)+q M"’ A TR T
. m=-c0 oo | i




where By . = e

Dl ST .
= -2 Njo Siep(brcost) ki)' (@.133)
_. -
y G = Gy €086,
= 2 N Sl G- (3.13b)

One can' comibine, lhe two separate- expansions of E;rg and Eipy into one, by
» s
introducing a polarization angle (7). which is the angle the incident electric vector:

-mékes with the normal to.the plane of incidence. (x-2 plane). Thus for TE polari-

zation 7=0 and for TM polarization 7= /2. Hence the expansima for the

incident electric field E; can be given as

/ B — n-lml

= W'I(T) S|..1,.(h.,wsﬂl (—,7‘-;1 sin). (3.15)

3.3 Scattered and trlnnnlt'.ed flelds due to the ineident ﬂeld

In response to the electromagnetic field incident on the !phermd, there wil.l
be a field scattered outside the spheroid (§>&) and a field transmitted inside it

(€<, where & is the value of £ on the sphefoid surface. The expabsion of

these two fields in terms of lized prolaté spherojdal

!
vector wave functions is

given below.

= - 4 {1 () ~(1)
k'3 [P M+ bl M ] (3.14) -




. ¢ . 20
o : 331 Expansion of the scattered E fleld due to the incident E f¥ld in
™R ’ terms of normalized prolnt‘e np'hero,ldl.l vector | winve f\mctinns
' The !&‘mered electric ﬁeld E must satisfy the radmtwn condntwn, a reqmr&
~ ©, ment l.hal is fulfilled ‘when. the radlal l‘uncuons of the foulth kind are used in .

._ expanding the, scattered E ﬁelt{] i lerms f} normahzed vector wave funcuons,

since from (2:42) : 4 s

Jim R‘m"n(ix..ﬂ o (/g eibe-reneps

| Also the components of the scattered E ﬁcld must have the same ¢- dependence

| as that of the con-spcndlng components of the mcldenLE field.

Sinha & MncPlpe |u] the expsnsmn of the scattered E feld i in terms of normal-

ized prolate sphemxdal vector wave lunchons that satisfy the above Fequirements

can heglveﬂas ) - ot Y
+(4) a(4) -+ (4), el
£ £ an M + S Mt + B a*.nM .J+%M‘
™0 nery | R
i Coee o Ty ; =
+ Y Yool Mpt °-(m+l].n M—{mﬂl-n S F (3.17)
me0 e e T Sty el .
& Ay 4 . . L el
~7.a* o" and’e* are the unknowd coeflicients.in the’ series ion. of the scnt—

tered E:field thnt hnve to he evaluated. Also-n shonld be noted that the nbove e

expnns’on of E, is vahd l‘or bolthE and TM polanzanons of the mudent wave.




-te[ms of oY i prolslg

late

“wave.

\.h . P e

a.:g.é Expansion of the transmitted ? fleld due to the incident E fleld ]

¢ in terms of lized prnlite ;,‘ oldal vector wave,

In addition to the E field scntmed D\Itsld!, there wnll also be an E field

'.mnsmmed inside the spherold The ﬂp&nsmn of this trlnsmmed,E ﬁeld in

pleroid: I'veetor wave finctions is similar to that of

the expuns' o of the scattered E hﬂd b;m with vectbr wave mnctiohs of the

" . wave flmctmns have to be evalunzed with rupect to the value of h inside the

spheroid (hg). The relation between by nnd hy lollows in acchon 34.

* fourth kind bemg replmd By the corresponding veczor wave !uncuons or the ﬁrst 3

Therefore, the expanswn of the trusnuued E ﬁeld in terms of normahzed -pro-

pheyoi vecgorwnve ions-can be gwenn.s
i i (o
; E,=>: z ﬂ;n ;‘n’ihzuﬂm“ ﬁ’l.,n(;w £ {atamtlo
+BonM;‘n"(hz)}+z B ':m"nmw(m.)n i}'m’..,,"(hz) @18)
A\,

N -
il ﬂ\md B are the

n}(nown coeﬂ'lclents m the serm expnuslon of the

transmlttexf field that have to be evnlunted The nhove expanswn of  the

field i m also valid for both TE :nd ‘I"M pnlmzanons of the mcldent

transmitted

A

: kind. A]so it is |mportnnt to note,thnt smee the ‘medium is different, the vector :




, @
. » e
8.4 Relation between h; and h, " # ¥
f . . 3 )
. If the semifocal distanee of the spheroid under consideration is F and the
f 3 propagation constant of the medium ubder consideration is k, then as shown in
chapter 2, h is defined by 9 . g .
h = kP 3 (3.29). 7"

o 'No}v if the p'ropngntion constats of mediums 1 (outside the spheroid) & 2 (inside

' the §pher§id) arg denoted by ky & ko respectively, then .

bk ) oy
S vy (3.20)

As Both mediums have been assumed to be non-ferromagnetic 5, -

kL (afw)”

g ) (3.21a)
o, |
‘ “ . (3.21b)

In (alzn), €1 & ¢ are the permittivities of mediums 1 & 2 respectively and ¢ is
the permittivity of free space. In (3.21b) n,, and n,, are the refractive indices of
mediums 1 & 2 respectively. . \

Substitution of (3.21b) in (3,20) givés,

Iy, K
h,=,[r1vh, . A
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3.6 Expansion of the H fields in mn‘ns of normalized prolnte'
&
spheroldal vector wave functions
Expnnslon of the H fields can emly be obtained rrom the corresponding

expansion of the E fields if the lelnhon between E nm{ll ﬁelds of the same kind Se "

can be derived.

Frqm Maxwell's it 4‘ foratime h ic electr cfield
VXE =-juH ) ‘  (3)
. or rearranging(3.23)
B = ./wp (vxE) e ' ! (3.24) '

Chapter 2 shows tha the proyngauon conshnl ol’ free space (kol can be written

as ko—- w (I‘o co)'Iz and the propngatmn constant of any other medium (k) can be.

written as k = (¢//¢o)/? ko.»where € joju. .

i Since we are dealing with a non-lossy dielectric, o = 0, which gives

Hence assuming both mediur‘n’s to be ndn~ferron;ngnetic (3.24) cén be wri {en as
H=j (w2 1 (IXE) N (3.25)

8.5.1 Expansion of the incident H field In terms of normalized prolate

1 vector wave f

\ X ok Referring to (3. 25). the mcldent H ﬁeld can be written in terms of mcldenl'

E field as . ’ . ' 5

T | H=;(e,/uo)"’ Soxm) (@)




Substituting for E; from (3.14) and using the relation

Now=1 (va“ : 32

gives' :
'

_/\ H,=j (es/m)"* }: E [P.,...Nf..[n”+x>,....N'm] )

P..L are deﬁned in (315)

'3.52 Expuuian of n‘:_e scattered H field in terms of normalized

prs_)htg sph‘eroldnl vector wave functions

Also using, (3.25), the scattered H field can be written in terms of the scat-
“E sy 7 tered E field as 3 s -
H, = j(o/mo)”* kl_, (VXE,) . (3.29)
»

Substituting for B, from (3.17) and using the relation tetween N and M given in

(32 yields = » R
—J(c./ﬂ.l'"{mE .Em" NZ.‘.'+n..,,,.N:§‘.’,.' : .

K +(4) 1(4)
7 5 * E "-l..N-ln *"o.. Now .

£ sE o M, +E za N_,,,,,+a_(m“)' Nf(m,,)“]‘
me=0 ne=m
& =y " i
. . 4 ts: @ 2
B & L x s
v




3.5.3 Expansion of the transmitted H field In terms of normalised
prolate spheroidal vector wave. functions
Similar to the above two cases, using (3.25) the transmittéd H field can be

written in terms of the trnnsmined E ﬁeld as

H =] (q/m)"” (vxm L a3y
8 Substimting‘ for'E, from (3.18) and using the relation between N a‘nd M giyc? in
(3.27) resulls '

& +()

.. ) ™
H, = (co/u® [E S g N lh2)+ﬂ;+,,nfw’m‘i’,,n<hzl
B M0 ne==m

T e RN N0
ok + 55 ﬂ...m .,..,.(hz)+ﬂ(,..+,,n .(,..,,.,,.(nq)] (3.32)

mm=0 nem
The above expan;:ons of H, and H, are also valid for both TE ‘and TM polarl‘m—.
.hfms of the incident wave. .
3‘».0-';Bbundli'y (‘J'tlmrlllt'lona R ) L. L
) The boundary conditions of il;é system. require that n.é tangential com:
ponents of the E and H fields be conunuous acmss the spheron surface 1;—'60 ;

" These can be wrm.en in ‘an eqmvalent form as
4

‘Ei,,+E,,,=E‘,, ! . (333a)

Ey+Ey =Ey ' " (asb)




7’
B,+H;=H, . (33%)
; .. Hy+Hy=H, . T eas)

o E=f . o

In the sbove four equations' (3338) (333d), the E and H fields have two 'si-b- ~
scripts. The ﬁnl refers to the type of ﬁald (l e. incident, auuered or Lransmm.ed) "

.and the. second refers- do the comyunent of- the ﬂeld (n or 0)

By explndlng ench E field-in terms o{ nmmalued pmhte spheroidal” vector wave

l’lmcuons M and each H field i in terms. of nommhxed pmlate spheroldnl vector"

wave Iunctlons N, the rour equnuons (3.33a) - (3. ud) can be rewnnen in terms

of d prolate sph vector wave i .Thue tic must

" ~ 2
hold for all allowed values of n and ¢. i.e.in the ranges -1<7<1 and 0<¢< 2.

3.6.1 ¢- matching aar ¥
Once the equnion‘s (3.33a) - (3.33d) have been u;;resed in“terms of formal-
fzed prolate spheroidal vector wave functions, .the coefficients of the same

¢ - dependent :;p‘onanlinl barmonic function on both sides of each equation
. A g

should be equal by ¢ nn'd-lhe aalities should hold for each

corrupondmg term. in the summation over_m. Tis ls nc!neved hy mu]uplym;

both sides of each eqlntlon by — elme1)é and integrating from 0 to 2 for

m=0,l,2,'.... -

¥
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3.862 n- matching

For the summation over n however, the indi\]idunl terms in the series cannot
I3e matched term by term. The method used is as fol]ow_s“_First the equations
that stand for the continuity of the 5 component of the E field ‘are multiplied on

bot| "sxdes by] 2F (& 11’)'/2 S|,,‘”ml,,,N(h ) and those that stand for the conununy.

) of the ¢ cqmponent ‘of the-E field by 2F (fz q’) Siopmpen(hy)- Then the equa-

tions that stand for the continuity of the n cumponent of the l-l ﬁeld dre. multi-’

plied on both sides by Slml |m]vN(hl) and those that stand for the
.

ZKF, 51(5: T S lmw(h,) for

Moreover, ing- mal:hlflg\of the H fields,

2P
(é n""
'conunmy of the ¢ compoment of the H feld by j -

=0.l 2,..4.andm=0 1,2;...

after multiplying by the relevant mulup]ymg lnctor as dast;nbed Above, whenevct
(&-n) nppenrs in the numerator it is expresseLns [(e“-l) + (l-q’jl and "~
mmphﬁed After thls, all I‘our equatmns are integrated over the full range of -

which is ~1<n<1.

All angle functions are

P 4 by the’ series jon of iated L d
functlons of the ﬁrst kind as given in (2.30); which are orthogcnal in the m'.erval :
—l <n<1, and the mtegrals are evaliated. The equauom that resnlt after
¢ - mllchmg-and 1 - matching are g‘lven in mntnx form in the !ollov&'m; section.
5 . o 5
3.7 Derivation of the sydtem matrix

The equations: resulting from ¢ - matching and q‘f matchingl are finally

represented in matrix form. The following matrix notation is carried throughout.




If s,, denotes”any of the expansion coeflicients of the incident, scattered or

% transmitted fields, then 0 * . :
. 2njm| - *‘r 5
a 'n.‘lm|+| :
. i mjm]+2 S
" ) Sl loal = . : (3.34) -
- - B0 . -

\. Usi’npthis notation it is p;ssih!e to write ‘-k" resultiu;:eq\la‘ﬁons’-a(ter qh- xim‘ch-.
,ing and ¢ - matching in the following mnf.rix form. ; w K

C Xl A= 5] [vxm” S
2 form=})_ 1,2, ...., where W B 8
[ = IIJC‘R’(M)][ﬁdi'm(h.l}[.f(‘.'.lm(h.)] (B as¥®) (338)

[ = [0 ol XS]] o300

[nx-l—[l —(“N(hzl][.,)gﬂﬂ),n(hd”— .,)(.*.‘Enlh.l][ .pdm.,n(h.)]] (33%)

= © ‘. . [ﬁ;] B

. . ) . i [ﬁ:ul] N
_ J = e T
S : ol . :
. Se® gy [ 63

Lo A S (T

Lo . e iy .

’ : lof ] - ) .
b}




W X A = [XE] (a1

(Xl =11 ax*“’(hz)] [.x

(3.38)

(3.308)

(3.39b)

l)] [‘ Kinao]] (339¢)

with Aj and S as deﬁned in (3 37).

@ (¥l e = 2] [0 50

)| Y—(mm iy YZL”th.)]]

W= u »*“’w»] [

with A, and S,y as defined in (3.37).

EACAIRS Palpe LR

with A, and S, a5 defined in (3.37). |

(3.40)

) '
?a.ub) ’

(3.41¢)
(3.42)
..(3.43a)

(3.43b)

" (3.43¢)




(i) afi]

The functions N 9‘:‘2 .P‘:ﬂ:.u- Kt

X8, are all defined in sppendix

The following matrices are defined.

[ [XRw)- [Xie] ]

o

39

[ Rm) [aaNm] | . o
Q=1 (xR [l | o)
: | () i) -
1] [ X [ X))
iRl [ ] - KaR00] - dan] ‘
(R =1 [y Q0] [op] [ [- oo 2
L[ 0) (e [ R0m) - M)
R
Xal| ] [
| Sl 12 R [ 1) e
(o) [X] [
Also let ) o
& i R 16
54} 3]
A= 1:‘.1 Se= oy @)
._", : S |
tﬁen,
k' [Qu] Ay = TR, Sy 4

Nowif g skt A =ki Bims 0o =Ky Ghpo0d  of= kil

N g
(i) 0} (i)
-,Y::N: ov:.;lv .,Y:.'u.m and -

~—



o 0
5
forall m & n, and T
- 18
- - 185l ™ )
T el -
. [oha y ':;'49)
- il T P
'{ﬂ.—’(mll] X
| el -
d laf'l;fml
. J then < . #
T si=Ks, ' . (3.50)
: T S ’
‘ So=kSa (351)
Heneg/(3.35), (3.38), (3.40) &/(3.42) can be rewritten using (3.50) as # '
IXn] A= [[Xa) [XKal)s0 . . b2
(el ham 2] [l fasa)
InYm]AM': [[’IY;] [er-n]]S:n + 2
E C L el A= (] [l S (855)
“and (3.48) can be written using (3:50) as ’ . - S
\ - s e, e S, . .
AR T ey

(3.52) — (3.55) can now be combined together and -written as’




P N s s = P
[ Sam %
5 | ik
i/' ‘1‘ \ . . & '

& L ) [Qn) An= [Ra|Sm k (8:57)

[Q,,] and [R,,,] as defined above for m =0, 1, .2, -
(857) & (856) can now be rearranged to o J[ :
8= B [QelAn . frm=0,1 2. ‘fass),
B . S'+= [R']J[Q*]A*' \ ‘(359); A
Finally the ;wo solutions from (3.58) & (3.50) c: 2 bé ‘;mbilled, " ‘i"‘ 5 s
i . . §=‘[G]1 K = [380) .
where ) % 5t Y . ki =
s %
q Sa = - " N 5
- sy .
- ) // % = (3.61)
- | _
T [G.] 101 1o} ' 2

o |0 [Go] ol
0 1
AL




(3.60) is valid for both TE and TM -pqluintions of th: incidenl’ wave.

It is possible Yo evaluate the coefficients o’ and £’ which are the elements of the
column vector S multiplying the ;ysum matrix [G] with the particular
incident wlumn vector | con:upondm; to mh dlﬂ’uenl angle ol’ incidence.*As .

[G] depends only on the scatterer, and‘not on the ugle of incidence, only -ope-

matrix yinn is required to evaluate [G], which is a great advantage in numer-, - d

ical computations. R 4

3.7.1 Case of incident angle 6, = /2
The series .repment'ati.on of theincident field becomes indeterminate for the *
case when angle of inciden:e‘ [ beﬂmm equal to ;r/2 (broadside incidence) for TE _ o )
. polarization. Hence the limiting values of the coefficients have to be evnhme;'l for
this case. Sinha & MacPhie [4] have derived a limiting expression for the incident
field coefficients when. 6, = /2 for TE polarization. Acmrdnq;\__ghur fon'nulb
tion, the two types of incid'. ﬁeld coefficients p:m & p, giver in (3.15), which =

B . - 5
are equal for TE polarization of the incident wave are given by - v

0, (n-Jm]) even N —
-1)e-1m 072 (04 [mi1)! -
, (n-] odd -
STk meinizr, I

*=

The column vector §, ror this case can be obtained by multiplying [G] with ti!e
column vector of incident field coeﬂiﬂenls 1, which is obtained by replacing the

elemen!s of the column vectors Am & A,, with the values evlllllled from (3.84). o




Hence (3. 60) becomes v-hd for tlus case too

Therel’ore in general the soluhon l‘or the problem of electmmag'neuc scauenng by

a dielectric prolate sphero|d can'be gwen L ’ s
o ) s~=[c]1 o . @8s)
o ok - \ i '
where S is the column vector of 'unk i in the series jons of

Lrnnsmlued and scattered ﬁelds taken together, Lis the column vector of known

mcldenl field; coemclenu l.lld [G] is the system mat) '_

\ ' p

L5 &

o P ’ i
= e i :
1 . &g . .
‘ .
v
.




CHAPTER 4

p FAR-EELD SCATTERING CROSS-SECTIONS AND ~
NUMERICAL RESULTS FOR SCATTERING BY A ¢
SINGLE DIELECTRIC PROLATE SPHEROID ,

E 7

4.1 Introducthn ‘

In this chapter, the drsmbuuon of scattered power reltive to incldcnt power

of the electromngnenc wave rn the )‘ar ﬁelil wrﬂ. be considered This p powcr ratio

glven by a quanmy called radar u-oss»sechon, wi rch in lhe far ‘field | R

derit ‘of the distance from the scatterer @nmerlcal results are given* for normal-

ized . bi-static radar cr L for axial ia and also - for lized . "
. N .

radar ¢ ti

‘rons) as plots, for a

variety of prolate spherords composed of drelecmc matenals of different refracuve e

indices. o . ¥,
" 4.2 . Normal d far feld scattering crose-sgcti )
Once the nnknown oeflicients i th fes éxpansions of the

: transmnted ﬁelds are evalluted by solvmg the mntnx eqmmcm (3 60), it is" possi

ble to ezaluate the msgmtude of the scauered field at any distance from the ¥

sphierdid by tithting for the ed field eoeffcients in (317) Howeverthe,"

- zome; that is ol‘ prachcal mterest is the hr 20he where |r[-' oo F bemg the dis-

tance from the sphe; d to the pomt of observntion« .

. The scattering eross-section can bp deﬁned a5 4m times the ru;ié of the scat-"

tered power delivered' per unit solid-angle in the' direction- of .thie- receiver to the.; -




power per.uhit area incident at the scatterer. This can be shown to be indepen-

dent of the distance between the spheroid and the point of observation (r).

43 Normalized bl-static and back™ tio

As described above the bl-stanc radar cross-section o(6,4) can be defined as
L (41)
‘ \

where 7 represents the polanzauon of the receiyer at the observahon polnt (r 6,8).

E,.7
 oto)= i an L
g

From (3 17), the scattered ﬁeld E, IS glven by —_— !

E E o8 M:n(:)(hl""”mun m+l.n(hl)+ E { In j::)(hﬂ

- e » (4)"
+ g, M) + 5 i M) + 0 M alb) (42
PRI _

o—

- At very large distances from the spheroid, h;—o0: Hence, vl\
lim  Fg—r Iim ) 7.7 cosd Iim ;,- -6 . (4.3a) .
s lclm h,e_ hm (27r/x) Fé— ('hr/M r=kr (4.3)
uol ;

From chaptér 2, when h,EAoo, an qxpression is.obtained for the radial funétion

of the fourth kind -as .

; lun Rm“(hl,gj - re—um e ' (448)
: =i g " (44v)
ik : 3
. = jrH & (4.4¢)




4 "4,
Differentiating both sldes of (4.4b) wllh rape} to £ and negledmg £ 2 and other.

higher i inverse powers ol’ £ (this i |s rmonable since h,€—~oo) gives,

tim LR ) 15 G

~ v lim € R, —-[ Lv o,
s f (LQb)

- / (4:5¢);

L .
‘Neglecting, E and other hlgher mverse powels of E, an’ snhsmutmg for R,,,,, and .

Fi R“) from (4 4b) & (4 5b)in the respecnve normnhzed modnl vector Wave

functions yields:

. 4) o R 8
Jm M) = B by Syl S e‘“’*‘” S uee

el‘(‘k" Leilmens T
r

- i Ly jo+1
= ¢ him Monagfhi) = = 5= ki Sy

— )
i Mim1)an(tn) =0

s ‘ ) :
- Mlgg-wMi‘(&.,,Mkh,)i R T e
) hllgr_nmmff:’,(h.)= ",_k,sm(h.) L o
o lm M}‘,,‘,f(h)_o v LT . o ‘ 3 : '(4.}1) o
: i ML) = ‘%_klé.ml'n(k,)!%:‘. dmene " . ),

LN




| | e % P -
: P p
*/ oS T o : s o

LI . o .
..le.i ,_,‘(h,]='.‘,% Ky Simpalti o L eilme1s . (4.13)

» h,leii'-'A_M"("?)' x),...(:.hx')_=—~ (.-7;;'?5 i lfnsp;+-|,-(hn)%°i(“*"‘ e
'.-‘4 / y..le'f'.' ;Mf((g;’f.;,..;(lf,l-;-(!-;’)'_{2;;""knslngi-_ll-n(“y Chins ,—i(mi); A (4.15) -
A % "‘ U E \ %
\/ i - Jin‘\ Mf,(,‘.)‘(hl) -.—-h'l "1— ;l‘sln(hl) !kLk: : ‘(4.16)
k3 tim’ M&‘.}(m—m ) . Lol -‘ R

hyf—oo
_)
Subuﬁtuli‘ng\the limiting vn.luu of the—tliove normalized vector wave functions i

(4.2) and using ‘theésym};toti;: values derived in (4.3) - (4.5) résults

i ¥ *—" [F,(o 9)6 + F, (0, m] ) (4.18)
where ) .

Res=- % ):;'*'[ {(a o) cos 1)

o
+ J(&’m + "-m) sin (m+l)¢} + -- o_,n] (4.19)
e 2 5
; f‘, (6,9) = §° ﬁ L [n LY ‘(nm,, + nr;m,.) cos (m+1)¢ +j (a _m} smim+1j¢}
Tk O ' - (»l_,'z)ll'-’ Smtin {(‘ﬂ‘n&l’,n + "f(mu).n) €08 (in+1) + § (0Fyyy 0~ “-(mm;n)
~sin (m+x)¢} +n —': a*;,, — (1-n%)'" sy, a;] )
ey
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6 and é are the unit vectors in the directi of i ing 0 and ¢ .,. ively.
. As given in (4.1) the bi-static radar cross-section is .
. '
o(6,6) = lim dnr® (4.21)
) o [T =

where 7 denotes the polarization of the receiver at the point of observation. With

-
“f in_the same direction as E, the d bi-static il ection is %
s o0 . w
5 . . x
S ety -
) - §o o % &
©ECA oo’ G . e
%5 The normayzed bi-static cross-sections in the E and H planes are ohtaine(i by '
- | substituting ¢ =m/2 and ‘¢ =0 respectively in (4.22).: For back-scattering
f=206, and ¢ =0, so-that the ‘corresponding back-scattering eross-section ¢
T ‘becpmes » n ST ‘ X
‘ 2 2 B 3
o v = RE@IE IR @ . , (4.23)
A . "’44 N lized bi-static and back ing tions for.the #
case’of axial incidence .. %
"Ilhe’,case of axial inciderice can_{ﬁe.considered as a specia) case of oblique
Y . . -

incidence, with angle of incidence_equal l.of zero. When 6;=0, S, (h,cosf;) =0 .

5% 5
for all m 5 0. Therefore of the‘expansion coeflicients for the incident field” P:n'

only pg, will have.non zero values given by




S (Hsv.,(hl,l)(cosmsmﬂ (424)

Subsmutmg for the mcndent field coeﬂ'ments in (3.60) and evnluatmg ‘the unk-
nown scattered field coefficients, shows that only the cbeﬂ'lclents “’om a". and

1 87€ nOD Zero. Hence for this case. (4. l&n be written as *

E,——»E:i . F,.'(i&:)é+ F,(M)?S] o | 42)
with )
F(69) = z H s”"("" [(n:;-na',,l Fﬂ!¢+i,(ﬂ$.’,:""6’..‘)v=in¢]‘ - (azey

5 o) g w b /
F0g) = §° i [ L Sulb) {0 + o) co86 + (o - ) sng]

- (1) S;n("l){("xn + a—,n) cos¢ +1 (o}, - o)) smqﬁ}] («5.21;

The i ecti "forlinnd é '  {Zati nregiven‘hy,_
' q(o,f')=:—:;|r‘,(a,¢)'|‘ i (4.98a)
and . : 3
e v.(v.¢)';i’élr"(o,a)|" AL sy

- and are relerred lo as E plane and H - plnne cms‘seclwns mpecnvely
‘For, b:ck-scn"enng 0-—- 6, snd ¢ =0, so that. lrom |4 22), the conespondmg

" back:scattering cross-section becomes %o

‘i
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A 4.; N_un;e'rlul tki:nlque-

L'X-gg.l=li‘:(0)l’t+lh(‘0)|’: T
where =
T e Salli) (a,,,,-a;n)’, S e
and % ! . \
'FJS)' EoslLg e

For either TE or TM polarization of the incident wave, the scattered column

. vector § is obtained from the incident column vector L by the tmnslcrmuuon

(3 ao)

=[G]1 . (431

In particular the scattered column vector corresponding to an m' mode is

obtained by (3.58)

S IR.,.] [Qn) Am S ‘(4.32)

Equano (4.32) conslsts of ‘matrices 4nd column vectors of mﬂmtc size. Ta get. 8
¥

E Ieaslble numerical soluhon to this equnnon using a d|g|tal computer, it is mmces-

,. sary thnt the matrices nnd column veetors be truncated in & sultnble mlnner to

“ get rébults of l dwred accuracy. Smce the colump vector on the left of (4. 32)

, contains the | unknown coefficients ﬂm, ﬂm“ nﬁ °’mn' “:\H,n and ﬂ_m,,, ﬂ {mﬂ).n' . '
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a in, the series expansions of transmitted and scattered fields taken

i af(m-ﬂ).n

together and the column vector on the right contains-the known cLoeﬂ’lcients L

in the series exp;msinn of the incident field, truncation of these column vectors
- -

will eventually lead to a truncation of the seyiu gxpx;nsions of transmitted, scat-

tered and incident fields.

In order to accomplish this truncation, the following physical arguments

given'in (13] are used: Each term in the s,ei'ig expénsion of the scattered field E,

) with fixed m, represents forced oscillntit;ns of the n"‘“order of the secondary‘v radi-

ation from the aphe‘roid. It-is known physically that above a certain order n,,
depending on the relative bsize kja l;f the scatterer, (kja being the length of ‘the
semi-major axis of the sph‘ero’id in \nrisvelengths) the amplitudes of the modes
dampen down .quite rapidly when n exceeds‘ n,. Thus the inﬁnite matrices and
column vectors are truncated such that’ in each matrix only the first n, rows and

the first n, columns are retained, and in eacl‘: column vector énly the first n, fows

are retained. The infinite series expansion.of each field is truncated such that-for

each value.of m there are only n,

to forced oscillation by higher ordervmoda' (n>n,) to be negligible.

The “trincation scheme that is used in this chapter is that developed by

Slnha & MacPhne for ucnnenng by a perfectly conducting prolate spherold l4],

" consldenng !he physical nrz\lments given above. Accordmg to this scheme Ior:

each value of m, n.can be given as n—|m|.|m|+l |m|+2 |m|+n,l with

. =Int (k|a+4) |m] wheu Int (- ) is the integer part of (-). Also for each th, N

il Sy imj+N-given in‘sub section 3.4.2 can be given as N=10,1,2,...,n,-1.
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The numerical results obtained using the above method of truncation
defined for truncating the infinite matrices, column vectors and series, are found
— :

to be canverging satisfactorily giving an accuracy up to at least two significant
digits. Also during calculations it was found that :onsidcring the ¢ harmonics
—_—

(0)¢, (1)¢, and (+2)¢ is sufficient to give-converging results. This limits lhe
va.lusofmto—2 -1,0,1and 2. g -

Because ol their value in comnection with pnctlcll data, the results are

presented as hr field b:;shhc teri tions and back ing cross-

" .uectmns for different refractive indices. Prolnte aphe’h:ids‘ of‘ axial' ratios
;/b = 1.00001, 2, 5 and 10 are considered. With the axial ratio equal to 1.00001
the spheroid approximates a sphere. The sphel!'n_id of axial ratio 2 represents a
fat sph(‘er_oid, axial ratio 5, a moderatelyfat spheroid and axial ratio 10, n't'hin
spheroid. Also spheroids of different k;a values varying from 1 to 4 are fon-
sidered. ) )

5

Figures (4.1) - (4.4) gjve plots [26] of bi-static cross-section vs scattering

angle”in both E - plane

=190") and H- plane (¢=0°) for refractive indices
1.5,2.0,25 and 3.0 mpectiv;ly. It is observed that vin all cases the back-
scattering cross-section (§=0°) is smaller than the forward scattering cross-
séction o= 180‘) There are two main hct(;n re.;ponsible for such behavior. The
first is the presence of the transmitted field, which emerges from the spherold
without undeﬁomg any energy loss, since the spheroid is composed of a perfect
dielectric material, making a contribution to the forward scattering. The second

=t & : -
is-the diffraction that takes place at the point of incidence of the incident wave
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Fig. 4.1 Normlllzed bl-stullc cross  sections mv(ﬂ,qb)/k2 for l.xml incidence

(6,=0) ss functions of the scattering angle ¥ in E (¢ =100") and H
($=0") planes for prolate spheroids ‘with -axial ratios "of
a/b =10, 5,2 and 1 (columns) and of relative sizes k, =1,2, 3 and 4
(rows) for & refractive index 1. 5. - o
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Fig\} Normalized bi-stitic cross  sections 70(6,6)/N for axial incidence

=’ (6;=19") as functions-of the scattering angle 6 in E (¢=00") and H

-7 . (=07 planes for prolate spheroids with axial ratios of
a/b=10,5, 2 and 1 (columns) and of relative sizes k,n =1,2,3and 4
(rows) for'a refractive index 2. 0

1
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< Flg 4.3 Normalized bl—suhc cross sections 1ra(0 ¢l/)\ for axial incidence
' (6;=10") as functions of the scattering angle ¢ in"E (¢ =90") and H
(¢ =0) planes for prolate spheroids with axial ratios of
a/b=10, 5. 2 and 1 (columns) and of relative sizes kja =1,2, 3 and 4
(rows) for a refractive index 2.5. :
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Fig. 4.4 Normnhzed bi-static cross sections wa(6, ¢)/)‘2 for . axial incidence

6,= 0°) as functions of the scattering angle 6 in E (¢ =90°) and H
(& 0°) planes for prolate spheroids with axial' ratios ., of
a/b =10, 5, 2 and 1 (columns) and of relative sizes k,n—-l 2,3and 4
(ruwa) fora retrlcuve index 3.0,
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P
and st the pnml of ‘cmergence of the '.rlnsmmed wave which also contributes to
forward sclfunng It is further observed that the ml;mtuds of the buk-
u-turmg and forwud scattering cross sectlons are reduced as lhe axial ratio
increases fmm 1.00001 to 10. lt can dso be noted that the bi-static cfo&seclmns,
tend to ﬁlclllne more & more sho ing oscillations for a.given sxul nho and a
¢ plou (28] of back:scattari / o

2 ' "
can be obsnrved for a:

refractive mdex as the vnlue of k,: increases: ~

Flg\ﬂu (4.5) - (4 8) p ¢ vg

lngle of mcldeneh ln theu figures 600 a similar ﬂuctumon

given nxm ratio nnd rerncuva index. It is néud um the same vn.lue of b«k——

scattering cross-section is obtuned for l." ‘angles o! mcxdencu I‘or the case of

" n/b—l 00001 as it mu-t be, due to nsotroplclty ol l.he sphenenl geometry Also as

of lhe back- _- ing’ cti become_ the sz same

expecledlhe \agnitudes

nT -xnl incidence (&=0’) for both TE and TM polulnuom ol ,u(” mmdent

wave md the magpitude of TM pohnut n becomu more than that of TE

_polari '»n‘ dside incid (0—00')‘ forlmenm;lnho"
(8/b) and size (kya), the magiitud of the back-scatlerinig erosssecti increases -

* with the refractivé index. ° = ;e T

i ) p ¢
7 4 p "
5 = . ' : b
) Ay N .
~ )




A . -Fig 45 'Nq;xg:alized,.back-scntier_ing

088 s'ebtiqixs 7o(6)/3 - as” functi

! -+ aspect" ‘angle .6 for.. prolate:"’spheroids : with “axial _ratios’
5 10, 5,2 and 1 (columns) and’of relative sizes kja.=1, 2,3 and 4
f & refrictivesindes 2.5, - v - . it B4 : -
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CHAPTER 5

" ELECTROMAGNETIC PLANE WAVE SCATTE G BY
A SYSTEM OF TWO PERFECT DIELECTRIC PROLATE
'  SPHEROIDS IN PARALLEL CONFIG'URATI@N

5.1 Introduction

This chapter iders the tering of a iatic plane el
’ netic v)a\;e of arbitrary polarization and angle of incidence (rnn;-a syslem of two .
perl'ech dielectric prolate spherolds in parnllel “The theory “of scauenng of elec:

tromagnenc waves l‘rom a perfect dlelecmc prolMQ sphermd developcd in chupter .

3, and the theory ol‘ senuenng from two bndy conducung prolnte sphexmds i

developed by Sinha & MacPhie [11] are used.

The formulation o( the problem is very s|m|lar to that dest)nbed in chnpter» :
3. AII scauered trnnsmltted and.incideat ﬂelds afe expanded in tefms of nurmal-"’ 3
ized modal vector wave functions given in nppend)x A. The expnns:on coeﬂ'lclenls
of the incident field are known;  while those of scnmred and lrnnsmmed ﬂeltls are
v-unknown The boundary condmons that have to be sntuﬁed across the ‘surface of

each sphermd are wrmen in term: of these ﬂeld expnnslons and q muchmg and

' ‘¢ matching is carried out on the surface of the sphemlds w obtain & set of.' 4

s)mullanecns linear equnl.lons in maLnx form. These equnu&:s rsme the unk‘ 3

nown scnttered and trnnsmnu.ed ﬁeld coeﬂxclen ts wnh the known mcldent ﬂeld

coeﬂ’lclents anlly these are mlved to obtmn the unknown expnnsmn coeﬂ" cients
.

by mearis of a matrix inversion. Since tbe system _matnx depends only on the




EEa

kg v . .. 8

scatterer ensemble, the scattered .field for a new dlrecuon of mcndence can be

obtnmed without wlvmg a new set of slmultnneous Imear equanons

.52 Expmllon qf the incident E fleld in terms of normalized prolate

heroidal 'vector wave fu

P

Conslder two prolsta heroids A & B ¢or ed of h and perfect
dlelectrlc m;terul of dlelectnc constanl €& and-¢ respechvely, xznbedded ina

ndn-lossy mﬁmte, homugeneous and lsotmplc medxum of dlelecmc constnnt eh

wnth their. axes, s, of symmetry parallel to one anothtr as shown in ﬁg (5. l) [ll] All
‘mediums are nssumed to be non-lermmagneuc wnh no free churge in any region.

’[‘he pnmed co—ordmates re(er to spl

md B and \mpnmed to A The ongm O of.
spherold Ais chosen as the glo al ongm The origin o' of sphemld B has polar’
co-ordmatm (d ﬂo.én] with respect to the globsl origin O. v

ic. wave having

_L_et a lmesr)y polarizef pIAne

umt a and wayelength X, p i m the medium of dlelectnc con-

stnnt €; be mcndent on t e A B system from the direction (6,8; =0). l,Lsmg the

id vector wave funetic M:l,:] defined "h appenthx A,

d prolate

itis possible}n.upméhe mcxden& E lield on-A as. gnven T (3 14) to he J
i

Ea=k' § z v M;‘n’u-)wm &4

Mm-00 N

(hn ‘ (2)

‘yjher'e iz, is the value of b ouls'icle sphieroid A, and k; is the'prdﬁugnfion constant -« A
& ’ A A

*,.of this. medium.

With:eference to fig. 5.1, ) : > By
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Fig. 5.1 i y for an ens

g g of two arbitrary prolate spheraids
in parallel configuration. 4 &




Ny aré the normalized angle functioi and

"where M&) and I are column veetors given by =

PE.= N’I Siola(lucosy) (ook . iny) (52)
~ is the’ polarization angle (i.e. the angle the incident electric vector makes with
the normal to the plane of inciden;e], 8; is the angle of incidence ind Sy, &

1 lizatior fans

respectively. '

Herenl’ter l‘or

N*m(hl] N ”(h,), where h, is-the vnlue ofh onts:de spheroid A, will’ Be rel‘med “

to as M*m M'(‘) & N*(') N'm respechve]y and the veetor wave functions

M2, MYy e N*"’(h) N'“’(h] wbere b% is \the value of b, outside

spheroid B, will be referred to as M2, M'W & N*”'

\y
espec'.ively for con-
venience.

If the expansion for Ey i¥ arranged in the ¢ - sequence (0)¢, (+1)¢, (&2)8, -

" then the series 'a:psnsion in (5.1) can be given as >
z -1 +) (1) +(1
Ep=ki' [P~l 1o M2 I,I+n i PLuan 140+ PonM a
n
M- M +(1) i ¥
+ Piaen 1240+ PiMon +P%221, M2 240 +. (6.3)
‘This' can now be written in a concise matrix form as P
—1 4T 5
Ep=ki'Mya Ia 64

M| b Y
M, . ‘i’l. ¢ \L
5 M&”:l N = B . (5.5)

=1,2,3,4 the vector wave functions M* (h ) M (h &
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-
with P z )
[ +)T -(u'r] ' T
g
T, AT +HOT (T 5 3
Mo = [ o-1, Mott iMlen Moy |i foro21 - (5.6b)
- = . and = * = e
()T, tlll (i) (i) .
i M = MMM, ] =128 (5.7)
Also '
7 e g
e (5.8a)
(5.8b)
with %
AT . [ LI 3 + - .
N P = Pr,|¢Pf,|y|+1Pr.|v|o,z--~-,] ) (5-9)

The incident field E;g on spheroid B can also be expressed sa series expanslon

of lized prolate spheroidal vector wave f but wnth the vector wave
.
R functions and incident field coefficients evaluated with respect to pnmed- co-
o g ordinates to give Y b E w2 : -
: My o e ¥ : 5
Ep I R Yol +p.,.,.M 5 (5.10)

memco nm=m|

If the expansion for E;p is arranged in the same 0'— sequence as that for Eiy,

then it can also be expressed in a cohcise matrix formas ~ i
(T N
By ="k'M5 Lo 1)

~—where Mf.t’ and Ip Jr’e column vectors given by




: .
The multiplication factor ¢’

Mid i .
1 &
¥ My|. - 1
Mi LA
Ma=|""| L= | [0 (s.1)
Definitions of M,, and p} "x=0,1,2,.... are similsr to thoss of ct;rrmponding

M; and p, x‘=0.1,2,“..,

primed co-ordinates. ;

!I the :phero-ids are ide'ntiéul, then #

(5.13)

; B T
" h%h.eiiﬁ S

shift that takes place due to the wave not being incident on both spheroids A &

B at the samme titne. With reference to fig. 5.1, since ' =7-d and the global

feh‘arence poiit for the inei‘den)t\p@:e wave is at O, this time shift becomes ofid,

5.3 Expansion of the scattered E field in &eﬂ;lg of nornill!xéd prolate

+ spheroldal vector wave functions -

7 The electric field scattered from spheroid A, E,, can be expanded in ‘terms

of lized prolate sph I vector wave ft 45 shown in (3.17) to give ’
(4) D 4 gt 1(4)

E-A— by E “mann + 04, ‘Mllnﬂ.n +3 "fu. -1a +°DnM;

me=0 nwm am0 .

M
+ 3 8 M0 0_(,“;),, M aiya (5.14)
m=0t=m : ) :

a*,-g" and 4" are the fici in the series of E, that

but with the functions evaluated with respect to

*? is necessary in [g in order to accouiit, for the time - :

2




have to be evaluated.
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If the same ¢ —sequence of azimuthal harmonics used in section 5.1 for the ’

incident eld is used in this case too, the expansion given in (5.14) can be wrilten

&I‘ -
Ey= ..;-.jn [“ InM+|(n) + 0, M;“) +dg, Mn.f‘) +aj, |+..M| |+n
+ '-"inM;(n") +0X 1 Mf‘:)‘,n +e. ]
This. ;n;:w—l; glven insg conclse matnx form as 2ol !
; E-A = M(-:IT ety

where cojlrﬁi; vectors M£2 and a are given by

Mol e - -
Ma . a

VL - 2

Mi=1"|. a=|

with - “ o,
M; M+(4)TM“1] L
[ +(411‘ x(l)‘l‘ —un-uxm-r] - 7
o |y foret——o:

Mfm are defined in (5.7), and

|(|)T

M, [M‘v(llll M:.(I?M MI'(I?IH ]r i=1234

b

Also - .

(6.15)

(5.17)

(5.18a)

(5.18b) ———

(a 1)
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ag = (a7 f] _ (5.209)
= [aNa; Q:I“a::] >1 - (5.20b)
with . .
- o u:Ma:M"_;ann . ...] - (521a)
! ot = [avlvlavlr[-o-l “vmz ) ’ (5.21b)

lh the presénce of sphem{d B, there 'will be in addition a non plnqe wave type of

E. ﬁeld mcldent on sphemld A, wlnch is the E field scnnered from sphemxd B. -

" tered ﬂeld_‘of »sphgroid Alss. given in (5.14), bu; usmg pri

e & W,
Ep'=Y 3 ﬂ;,. My, +ﬂ.‘,¢-.n e Eﬂ*
mm0 ne=m

W“ +E Eﬁ'

‘This E ﬁeld can also be &xpnnded ina manner very sil

(ay
g ’—(...m.. s o

o thnt for the scat-

ed ¢ or*hnat.estogwe

+(:)’ + ﬂh -(lY
" (6.22)

B*.B" and’ 5' are the unknown ‘coefficients .in the series expansion that have to
~ . R X :

be evnl\medA

=

: Smoe E,A and E;g have the same formst when expmded i a senes, E.B can also

A

be wnuen in"a, concue matrix form’similir to' E;y as

T - (5.23)_

e ; - 4) - N
where the column vectors MEB and @ dregiven by 7/

2 2
P 8, 3
,—.ﬂ‘.
- =% e
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Definitions of M., and f, x =0,1,2,..... aresimilar to My, ind a defined fof

spheroid A, but the functions evAluated with respect to primed co-ordinates.

At this stage Lhe ““Translational Addnmn Theorem™ developed by Sinha & Mag-

Phie’ (14] ‘has to be used to express each outgoing wave function from spheroid B =
.(prime;i co-ordinates) in terms of incoming waves in the (unprimed) co-ordinates

of spheroid A.

Usmg this theurem, it is posslble to write the ou'.gmng vector wave hmchons

. M,*,,(,:)’ and M:,(‘,,y in terms of i mcommg vector wave functlons.anl,,) and M'm oo ‘
e, W =8 E I AU
. T pm—co yem|pl
N Y,
M:.(-i)' =g 5" L, i VT . (5.28) 5
p=z00 velu] B T L4
v . _where B’A’i‘:‘" are the lized versi’on'of the lational coefficients ’l‘
defined in the “Translational Addmon Theorem [14]. Explicit expressions for the .
. “expansion of normalized ional coeflici are given in appendix D:
T‘ "I thé series expansions of M:l[:y and M,,,,, are arranged in the order ([Mﬂ“[: )
M PECYH T ), o M M,
where [. - ]o)‘[ Jus |-+« Jo represents the ¢ - sequence (0)¢, (1), (£2),
- as before, then an expression for M?g) defined in (5.23) can be writgl,eu as . $
Sl L. Ma=Tal M - ' "’
2 ”
. Detmls relatmg to derivation of (5 27) and definitions of mnnx ITM] and.
! co]umn vector Mm are also given' in appendu( D. % - T
v v > v ~




Subsmuun; for EB from (5.27) i in (5.23) gives 7
= e ¥ T
Lt e By B =M [Tl 2
e whm E_m denotes the E-field lcuured from spllemld B, exprssed as

st ly 'mcldent on spherondA . ‘_~

-
# wa i spherold Bis con;;dexed it will also have s ulueud E ﬁeld (E,B) and an

mudent E ﬂeld (E.AB) due to the E_ﬁehj ultuml lrom spheml_d A (E_A)‘ That 2

twa felds Eg nd Ep when d as e series e i bl‘ pro-

lAle spheroidal vector wave functions, in mnmx l’orm wnll hnve the same form

as those for E, and Egpy respectwely, but ‘with the vector wave l‘uncnon bem;

% 4 i evnluned with mpect to gnmed co-nrdm-tes Also hecnuse of the symmetry o[
the two body scattering prohlem the unu upmsxons of E,g and EMB ‘are identi-
cnl to the expl.nslon: of E.A and E,M wnlh.lhe unknown column vectors aand 8

— lnurchmged

d . Henee "‘ : . ) ) P
el o CoEe=MT® . e
- ' _ K > St ad

LT Ee=MITmes T s

o B i N . ) P
4 M‘.g lnd" are alreddy®defined in (5.24) and definitions of column vectors MB:,),

g and, matrix [Tg] are given in appendix D.




+l)

z £ il (ﬁz)+ Ml + § {'7... m(hz)

are. thp

AT sn,d‘

évalunted and hz is the iralue' vail inside sf;heroid A

s in the _series

+’1u,.Mnn (lrzi} v E o] .mg(h,)ﬂ(m,.,, M(m.,‘"(ha) Gan

n that have to be

' ]l’ the above expannon for E‘A is also arranged in the ¢ - sequence (0)¢, (il)¢,

L (£2)8, 1t cm e

® +(1 ) o )
By= 5 [+, M.,n’ghz) + Ty Mg () + 5, Moy () 2] M hnl3)
=0 . e .

o
g Mo (Ba) +

This can now be given in a concise matrix form as:
) e,
=MATb) 7

where column veg'tors M(R,am.i 7 are given by

Maft)
. Mu(by)
o= [

T

(1) )
1140 Mil.l#n(h?) Fi'oh

(5.32)

(5.33)

oy




o .‘ -
£ o L) .
.l vl ok F o »
: _‘v M:rq(hz) s [ +!|)T(h )MI(I]T(b l]
S Muba=[M S ""’(h,) M‘.Ei’fl(hz) w7,

*for a>i

(5.350)
(5.35b)

> As shown in chupter 3, the vnlue of h mude sphexold A (hz) nnd the value or h

_'-’ Lo ;. ouuxde  spheroid A (h,) are reluted by
} =
-
b= || b
o,

refractive index of the medium outside.

(#30)

whiere ., is the refractive index of the material of spheroid A aid ny, is the -

The fransmitted E field of spheroid B when expanded in terms of vector wave

funétions takes a similar form"as'that of

i terin as . )
, B =Mihs 5
where the column vectors M(,‘Q(h'z) and § are given by
’ wa)] . &
N T
Ml = M",“"‘) ; =12

—

eroid A and can'be given in matrix

(5.37)

" (5.38)




. respechvely with 7 in (5.34) replnced by é.

74 .

- Mty = [M*i‘”(h,m"‘“(h,)] (5.390)
M.,(m [*“”(rx'zm’.,“’T M‘.‘J’ M'("T(h’ ; _(s,am,)

for o>l

The elements of the column vector § are the unknown coeflicients in the series

* expansion of the transmitted field E;g that have to be evaluated.

h'z is the value of h inside spheroid B, which is related to the value of h outside

 spheroid B (b)) by i ’ ) . \

. ] "(5.40)

where nf, is the reffactive index of the material of spheroid B, and ;‘11 is the’
refractive index of the medium outside.
Deffnitions of Mfm(hz) and M,"’(hz) are analogoua to those deﬁned in (5.7) and

(5:19) respectively, but the functi Juaied with mpecttohz.ﬁo,ﬁl,ﬁa-....

which are the elem®nts of the column vector § , are ldentxcnl to ¥, Ui Tar e

|

65 Incldent scattered and transmitted H fields for spheroids A & B

Since the series expansions of the E fields have already been derived, the
relation between E and H ﬂe]T developed in (3.25)

H=j (1:/:1)'/2 + (VXE O (eay

N

can be used to express each H field in terms of tiormalized prolate spheroidal




. This can be written in a matrix form similar to that of E;, as

Susd 2 e et 75
vector wave functions. In (5.41), € is'the permittimy of the medium and p is the

i.)ei-meability of the medium which is assumed to be approximately equal to s,
. .

(the permeability of free 5pu’ce) for each médium, assuming all mediums are non-

. Ié‘rrbmn’gnétic k is the propagation constant of the medium.

Consider spherold A first, Usmg (5.41), the_incidgnt H field on sphermd Al (Hia)

cnn be given as e,

Hiy = (/" (9 XEu) )

where ¢, and k; are respectively the permitii_vity and propagation constant of the

medium outside. Expressing E,,l\ by the. series expnnsién given in (5.1) and using

the relation between M and N giv‘en in (3.27) results
3 Sl

Ha=iit et £ 8 [Lnlend] o ee

=00 nem|m| .

¢ ) Qa

_ Byo= ki e/ MY Ly (549
where N&] and ] are column vectors. uﬁ,\" has the same ronﬁ that of Mm-
defined in (5.5), with M replaced by N. 14 is nls(; defined in (5,5).

Next consider the H field scattered by spheroid A (H,,). From (5.41)

)|/z‘ 1

Hyp = (/o

" ¥ )

(VXE,p) (5.45),
. e, 2

Expressing E,, by the series expansio: / gi\‘ren in (5.14) and usil;é the relation

between' M 'Lnd'N‘vectom yield; ' ' \

sy




4 . 18

L 3 (4] & -
H.A =j _(‘I/I‘u)u2 [ X ): ay, mn s umﬂnNn(lll.n 4 2 ){":m N¢|(:)

. +u..N3‘n"

M0 nmm

* ‘E E‘ o, N-m‘n'*“.(mu],n"(n!u).] S (sa8) g

This can also be g1ven in a matrix form similar to that of E,s 88

. H.A =i{ei/m N o : A
where NS: and g are column vectors. NiA has the same format as that of M(.,z

defined in (5.17), with M replaced by N. g is also deﬁned in (5. l7)
Prom the derivation of the above fields it is clear that in denvmg an H field from'
the correspondmg E field, the M vectors in the ex/pausmn of the E field have to
be replnced by the corresponding N vectors nng the whole expnnsxon has o be
| miltiplied by a factor of § (e/uo)'/ o dependmg on the n/ledlum or propagation of
v . the wave. Therefore the expansions of iheuremaining HJﬁelds can be written by
refen'ing to the corresponding E fields.
Rel‘émng (5.28), the H field incident on spherold A due to the H field scattered

by spheroxd B can be written as

i y
.BA—J(ll/l‘o)llzﬂg [Teal 8 (5.48) '
u‘,,')\ is analogous to Mg}\ with M replnced by N. [Tpa] and 4 are’defined in
(523) ot S NN

Wlth refewce&: (5. 33), the lrnnsmnued H ﬂeld in sphermd A can be written as
: Y.
: ; Hy =] (‘2/l‘u)mﬂ(u\ (ha)y  pae) -

i where Eg‘ is the permlulvuy of che mateml of spheroid A. H‘mﬂlz) is analogous

L . 5o '




7

Now if spheroid B): considered, similar expressions can be written for Hip, Hp,

i .- A
H,sp and Hig by referring to (5.11), (5,23_), (5.30) and (5.37).

- L He=ik /) M1 T ss0)
Hp=j (cl/ﬂnl‘” NI g ‘ (551
' Houp = 1 (cllﬂn)'/’ﬁua (Tao (5.52)

Nis, EB_and Nagp are nnnlogous to Mig, M. 2nd Myg defined in section5.3
with M replaced b’y N. I, 8.and g are those defined in (5.12), (5.24) and (5;l7j

respectively.

Substituting for Eg from (5:5?) in (5.41) gives

Ho=i(/m NTTwDE - )

- where ¢ is the permittivity of the material of spheroid B, (b (b)) has the ssme

format as that of M‘g‘g’ (h') with: M replaced by N. § is défined in (5.38).
Now since the exp-nsmns of all E snd H fields for both spherolds A% B have

bcen written, it is ]IDsslble to express the boundary conditions in terms of these

The bolmdnry condmons for the system require that the tangentml com- )

field expansions. o

5.8 Bmmd-ry Cnndltlonl

ponents of both E and H fields be contmuo\n almulhneously across the sullaew

of both uphewlds
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First consider sphemld A The inuity of the ial of Both E

and B fields across the surface of sphemd A can be uprased mxthemmully as’

= 1&M+lm+z_,) xe] med‘_l. : (554)

(nmnmm.,)xel +—n.,\x€| T e
§ Now if each field in (5.54) and (5.55) is written in terms of its matrix expansion,
then - 4
6" MU 10+ MY (Taal 84+ MU 006 =M xél, {59
ea/mol” (7 N Ly + NS [Ty l* 24 N @) x e|,_t
= o/l N 1 xE | 68

wﬁgre fl* is the value of § outsid’e spheroid A, and £ is thie value of £ inside.

Similarly the inuity of the cntial ts of both fields across the

- surface of spheroid B can be expressed muhm‘nﬁ'ully as

(E+ Eups + Epp) X €| et = Eg xé|,_ b (5.58)

+ =Hpg XEI

- (5.59)

(H + Hpp + Hg) X €] =g
Again exprésin; each field in (5:58) and (5.50) in.terms of its matrix expansion

gives ’ %
(" M3 T+ My [Thol a0 Xl =u.27(h2)¢xel._q—
. v o (5.60)




Wy .
e 6 uf"’la + u‘m Tl o+ NG 8) X,

=j (Eg/ﬂo)mN“ﬂ(hg'ﬁ %é IH . » C ()

SA

where_ Er is the value @)l‘ 3 outside sphéroid th_:d 5," is th® value of £ 'inside.

(5.56) & (5.57) can now be rewritten as

ML [Tmfu 4 o = M) 4 (5.62)

: . .i(;" "Tmuwlml 8+ MY« = Mij(ba) 1 (53)
S -”Tmuﬁﬁlm’amiﬂ amn b1 - Gon,
| k;‘ {38 La+ ks ITaal" a+u£,2.n—n,uw(hm C (s89)

In (5.64) & (5.65) n, ls)le refractive index of the mnterial of spheroid A relative

2 . to the medium om.side. ’ . %

o " u_ Similarly (5.60) and (5.61) can be rewritten as

K M‘:.?:h+M%TITul at M, 8= Mib) g (5.60)
A ln+M(xu)a1; (T "o+ M= M‘gf(h,)ﬁ 1)

ST,

k' Ny Ip + N‘&T [Tm]Tﬂ +Nn 8= Nm,,(h,)ﬁ e )

' :,’Immm] a+u.n.ﬁ—n'kds’.(h)£» (5.69) &

In (8. 68) & (5 89) n is the: relrncuve mdex of the mutennl ul‘ spheruld B relatlve L.( %

" to the medium outside. '




Now (5 sz) '(5.65) can be mma;ed -
Mﬁlr..'(hz) 1+0.4- n@.rrml A
M‘L“(hz) 1408~ Mﬁw [Taal d-;;‘.:\r: a=k;' M&’IL\ s (‘5'.11)
n,u‘.ﬁ_m»i# 0.6~ N (Tauf’ - 7o = ki'Nwh e,
» u‘w<hg)7+o S-NO (Taa" 8- N o = ' N0, )

Similarly (5.65) - (5.69) can be rearranged as

T

Lo (670)

01 M) 6y 2~ M, (Mol 2 = g My Ls (674

o '1+M£2:(h,)£ M3 M‘,{.’ﬁlm‘m«k. M‘i;’ha ()

oqi,uié’(h,)ﬁ N oM (Tl a =K' N I (5:70)
91+n: '“(h,u—uié’fﬂ—l!h.l%l a=k'Npls )

The above equations must hold for all 1l]owed values of 5 and ¢. (i.e. within the °

*- ranges -1<97<1 and-0<¢$<27).

5.6.1 ¢- matching

P ln (5. 70) - (5 77), the coefficients of the same ¢ - dep‘endent exponentinl hn- )

* ‘monic funchon on both sides of each eqlution must be equal component by com-

ponent nnd the equalities must hold for ench corresponding term in the summa-

tion over m. This is mhleved_ by muluplymg both sides of each equation by
Y

. e‘“‘"*“‘/'ﬁr and integrating from 0 to 27, form =0, 1,2,....
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5.82 n- matching

N

For the sumﬁintioq over n, individyal terms in the series cannot be matched'

term by term. ‘The method used is as' follows. The equations that stand for the .

contimiitj' of .the 5 comiponent of the E field ére multiplied on both ‘sides by
§9F, (&-)* S22 for spheroid A, and by j 2, (5'2 2 slmnmlm(" )
for spherold B. Those for the continuity ol‘ the ¢ component of the E ﬁeld are

multiplied on_both sides by 2F, (&-9% )S (h;) for spheroid A, and by

Im},[m]+N
ZF (& r,' )s[m| [m|+N(hl) for spheroid' B.

The equations that stand for the continuity of the n component of the H ﬂeld n.xe

L G
- multiplied on both sides by —‘QE—RWZ— el lmHN(h,) for spheroid A, and by

(-1
Qan ( 5'2_ Q,z)s/z

W slmliMI*N(h’l) for spheroid B. Those for-the continuity 61' ¢ com:

%EL (€-07)

pcne{:t of the H field are multiplied on bot}: sides by j —T‘—l)_ Slml i +n(hi)

__—(BEE’TJ{Q slml lmlm(h;) for. spheroid B. :

Factors F, And thnt appeai in the above: multiplying factors are the semi-

« for spheroid A, and by j

orfocal di

stant ol‘ the medmm under consldﬂ-auon In_the case of n— matchmg for- the II

fields, after the spondi fons have beetr 1 T by the relevant

ibed

Itiplying factor ‘as d above, b (€27?) and (€% y'%) appears in

@he.n\lmemtor, they -are expressed - as [(6‘,—1)4‘-(1—0;’)] and [(€%-1) + (1-n?)] .

respectively and simplified. i - . I
i a

Legendre

All angle furictions are rep: ! d by the series ion of

of spheroids A & B respectively and k is the pmpaguhxon}on-



= i ) s 8

Iunctions of the first kind sive;l in (2.30); which ‘are orthogonal in’ the interval

-1<7<1 and both sides of each equation are integrated over the full »,"_n“ of g,

which is -1<n<1 (sppendix B). © |

5.7 Derivation of the system ina

( * The resulting jons after ¢ - matching and 5 - hing can be given in

the I‘ollowmg matrix form. ‘ ¥ s

Pad 1t 0 £ R Mo 2- L0l a=k'Rulle 679 '

(Pl 7+ (0] 8- [Rpa) [Tonl" ﬂ- ClQnl a=Kki! Byl Ia (5.79)
10) 1+ Ppls- Qe B2 Ryl [T,ual a=ki' [Ryp}Ls (5.80)
[0 7+ [Pxgl 8- [QNB] B~ Ryxal [Tasl @ = ki lRNalla (5.81)

All the matrices are daﬂmd in Appendxx E.

Combining {5.78) - (s.sn gives 3
Pl 0 Fo[Toa] [0 Ry
{Pxa 10 Ry [Tanl HI L [1,\]
O Pel Qe Rl Tl | (2T O Rual| 1o
L0 Pwl  (@al  RulTal ] 12 O Ryl
(5.82)
which can be rearranged as
Ty] [Pl 0 RadTal 0w ][R @]
2 (P O Rl Toal Qu || Rud Do [u]
21710 Pal @l Rl Tl || 9 Rl Ll
A2 e Pl el Rl (Tl [0 Rl

) (5.83)

i



This equation is' o_f tﬂe for_ri\ B R : i . . ~
. s=[QlL ", - . <1689
with 7 ) g ) '
7 i .
i R
s= é, =k |4 (5.85)
¢ e o

N

P ¥ Rod Tl @l T R 10

_|Pa 0 RediTel QR
=10 Pal  (@a (Rl Tl | | O Rl 2
O Pral (Ol Rl [Tl | | 0 Rl
and o \ R . ) ¥ U
L= 1, (5.87)

|G] is defined as the géneralized system matrix for the two body ‘scattering prob-
‘ %
lem, and depends only on the scatterer ensemble. .

The.coeﬂicients o, g, 8, apd 7' can be obtained for different aspect angl;as of the

i
incident wave from (5.84), by { iplying [G] with the | ding column
2 =y

vector ] for the particurr angle of incidence. Hence the matrix inversion needs
€ B

to be done only once, which is a great advantage in numerical computatiops.




by two dielectric p;oléte‘
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CHAPTER 8 . .t f
¢ . L .

FA.R. FIELD SCATTERING CROSS—SECTIONS AND NUMERXCAL
'+ RESULTS FOR SCATTERING BY TW{ DIELECTI;IC .

PROLATE SPHER?SJKARALLB NFIGURATION

6.1 Introduction e . w3

Definitions of thé far field scattering cross-sections for the case of scattering

heroid

in parallel on, are given'in this -
chdpter. The scattering sectio psidered .are the li:
oSS tion and the‘ ‘malized back- i tion similar to the L‘;;se‘

Yot scattering by a single dielecttic prolate spﬁemid Numerical nsulls are 'Fiven as

* plots,for these twd, cross-secuons for different parallel cenﬁgumuons and\sepm-

tions of the two dpheroid d of dielectri ials of different rel’racnve :
AN . e

indices. N i B

6.2 Normalized far fleld ng secti '

'
Let the dmances from the spheroids A€ B (fig®5.) to the point of obaerv)~

tion be' denoﬁ.ed by r and ¢’ respectively.. To caleulate the scnncrmg cross-sectmns

in the far zone (r—¢oo r'—00), which is, the zone that is of pruchcnl lMerest lhe .

Y

glves the Mymptohc valuu 0]’ b€, y, and i) as . P oo
' e ; L
28 Ilmh 6—‘ k‘ limr,—v’cosﬁ limj—-0 L (8.1) .
o0 L r=o s -

; . i 4
By relemng to the derivation.of the abgve asymptotic values, the asy \,

.\ S ( |

= uympcotlc values of hlf' b} 1€ oy i and q\should be, evaluated. Chaplur 4
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values of h',(i, v/ and #' can be writlen.ns . i Fe
1 E ~
Ii_ml\',f‘-.k,r‘ mn”r/-—~ eos‘ limr‘f—-'-é = ; (6.2)_ -

_Usm; (44) lnd (4. 5), the uymptohc zxprwmons for ﬁu(hl,fl, deR,,,,,(h“Q

w(h,,f‘)md —R,,_(n,,c')m bederivedas . © . .
: : s
! ki &k
rli_x:kf.:’.,(h..a .—-Ji"“fm-  Jlim “R.,..,(h.,e)—u l@., ©3) |
' ' ke . L 8
Jim B (5 €) — ;T,em St b
hm—R,,,,,(hpf)—q"k —é" N T (s4b)

with b, b, F & F, defined in chlpler 5

X, =k, {&sinfcosg + y cosfsing + icosf) is the vector-of the far scw.ered field

\

+ where spheroidal dil are’ symptoti to spherical Usmglhe ;bove

~ N

. uymptotlc values and the asymptotic forms ol the vector wavé functions denved

in chapter 4 ((4.6) - (4.17)}, the scattered E field in the fll‘ zone withi reference to

the ong'm 0 of spherold A (fig. 5.1} can be glven as

= E,_E.A+E.B

e “3 (65a)

-

" where

[F,(_a,aw’.# F,(M)é] , ~ (85b)

Fo=Fa+Fp =~ (60




]

. ity = E $ s"*'\[ o {(a“' 'mos\(gu\uw‘ -

‘m=0nm=m

5" +j (am + a,m") sin (m+l)¢} + -——'3'- a*,',,] R N (67) '

g g 5r[is

{(a +a_m) cos (m+l]¢ +J (ar""I ;k_mn) siq(m+l)¢}

et { (n;“;n+ai'(m_m,n) 08 (MFTT5 +3 (010 m )

. sin (m+1)¢} + q e a_,n - (l-»]")l/2 Son af,’n:l “" (6'8)
'y .

The expresslons for Fyp(6,¢) and Fyp(f, ¢) are” slmllar wnh B replacing « and an’

overall phase factor exp(jK,.d) added to account l‘or\tha vector dmpM{

from the origin O.

As given in (4.1) the bi-static radar cross-section ‘is

o(0,0).= (89

_where 7 denotés the polarization of the receiver at the point of observation. With

#in the same direction as E, the normalized bi-static scattering cross-section is
< v s 5= 2

.given by »

ﬂ%“i m(m|+|w¢n L e

The normalized bi-static cross-sections in-the E and H planes are obtained by




»

Ty substituting ¢—-1r/2 and 6_0 respectively in (6.10). For back-scattering

e

by ;
=6 and F=0 s tht the ding back i ti

becomes

[ 3
. .
’"" L L

The reénlts are given as plots of ‘bi-static and back:scattering cross-sections. Pro-

late spheroids -of axial ratios 10:1 and 2:1 are considered as they represeyu,thm

- and ﬁat spheroids respecnvely. %

6.3 Numerical computations and results

In numerical computations, the system matrix which is infinite in size is

truncated so that it becomes finite. For the numerical results obtained in this*

thesis, ¢ harmonics of (0)g, (1) & (+2)¢ have been considered,to ensure at

least two significant digit accuracy. This restricts the values of m to -1,0, 1. For

éach value of m, n changes from |m| to [m|+3 in'steps of 1, and N in Sy N’

chxnges from 0 to '3 in steps of 1. For evaluation of F, and F‘ from (6.7)"and

(6.8), m=0,1 since the expressmns are for m>0.

Under ‘the above limiting conditions, the convergence of the scattering

Oy 2nd

. rate of convergence of (+m)¢ hnrmomcs is the same as that for (~-m)¢ harmonics,

Then is one more important’ hmlta\thn that should be consldered in. carrying out -

numenca] computations for the two body scauermg problem This is the limita-

tion on the distance be_tween the spherolds. It thl’rd\l!llnce between the spheroids ,

B is found to be satisfactory. The *

|}




then the “Translational Addition Theorem” used for \
vector wave functions of ‘spheroid B into M(')

=7 is denoted by
tral’lsfﬂrming'M“‘y vector wave

v functions of spheroid A is valid only within the regionenclosed iy kaphereiof
" radius d centered at the-global origin O. Similarly M" vector wave functions of

spheroid’ A cu;x'be transiormed into M"r only within the; region enclosed by a

p J o sphere of radius d centered at the origin O' |12]- of the pnmed’ co-ordinate system
R \Thererdre for the “Translational Addition Theorem“ to hold l‘or all pmnts on

- spheroid A, the semi major-axis of A, a,, must be l:ss than\ the radms of the
o sphere of convergence. i.e. a,<d. A similar urgument holds t'or spheroid B '.oo #

Therefore if ap is the semi-major axis of sphercud B, then ag<d. For the results

obtained. in this thesis, two spheroids of équal major axis-length A/4 have been

idered. Hencethe ietion on ‘d’ to d>N/4.

. . \
\ 5 Flgures 6.1- 6 4 give plots of alized bi-static ¢ tion vs i . ;

B angle at endfire lncldence (6 0‘) for two ldenncal axmlly dlsplnced prolate

spheroids, each of semi-major axis length,g/«l or matenals of

g indices 1.5, 2.0, 2.5, and 3.0. Fig. 8.1 is. l‘or two prolate spheroxds of nxml ratio
a/b=2 and fig. 6.3 is for two prolate spheroids ol‘ axial rmo a/b—lD In. both

oo CTSES the distance betwee;u the cemers of the spheroids i lf A/2; so that they are in

contact end to end. I " . \ o !

Flgum 6.2 and 0 4 are _Lor the same- parallel conﬁgurmon of the prolate

spheroids, but with the distance between centers changed to . Scatiering cross

L% sections in both E (¢.= 7/2) and H (¢ =) planes are given ‘separately. It can be

R (R .obs.erved that when the sphe‘roids are in contact, the diffgrence between the

.
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imum:{g re[rnctfve index 1,5,/ with the domi eﬂ:ect being back-s

‘magnitudes of the back~scacteriﬁg and forward scattering cross-sections ‘is a max-

However as the refrnctlve mdex increases from 13 t0'3.0. this difference becomes

less significant. The in lensny of scattered energy-in the far field becomes greater

‘cross-sechons increase w1t}: increase in refrac

m magmtude is hlgh when he axnl mtlo is low.

" when'the axial mtmrs o!\the spheroxds are low.. The mngmwde the scattering’

mdex, snd the r: f inérease

,.

When the dlstance between the centers of t‘he spherolds 1;’changed from A/?

to A, the cross-sections in bLath plans are subjecled to oscillations with deep

mlmmas, and also ilbe magn‘l'.ude of the back-scattering i

uced for a/b=2.

However for a/b=10, that m}lih of a change is not observed.

Figurés 6.5-6.8

+d

plots of normalized back-scattering cro tio
1

vs angle ot for t

semi-major &us length. /4,

axially d ;)prolate heroid: eanh or

of . ials of ref: '.mdlcwls 20,

2.5 and 3.0, 'Fig -6.5 is for prolate spheroids of axial ratio a/b=2 _and. fig. 8.7 is

5 for‘prolate spheroids of axial ratio n/b‘=!0. In, both figures the distance be’tweén

- the Sphel’old centers is A\/2.. Figures 6.6 -and 6.8 are for the ':fame parallel

co figuration ol thé"prolatelspheroids, but with the 'distance between centei-a

ilmnged to A. The cases of TE and TM polamaho have been cons:dered

ly.. The

lr the back i sections for both h polai-

/"‘ zations become the same at ‘Fndﬁe incillence (6;

dé of the back-

0°). The rate of increase in
s

for a/b=2 is iﬁo_r‘e than that for

= e i
/” a/b=10. The minimas that jare present in the oscillations are not as deep as °
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N 08
= tftse in bisstatic cross-sections. When the distance between  the spheroids
increases from X/ﬂ to )r'm k- i section-tends to show more

oscnllnuons with deep minimias farboth l/h—‘2 nnd n/b'=lo

of' id !or two b X dside displaced prolate spheroids-of Lxml-nhos n/b—z

< —
N md |}b._10 uch of ulm-ml]or uls length ,\/4 composed of mnenlls of.

= 3 . nfthe k i b atcndﬁre idei forthetwo olarizati
% . K o8 o

is observed The dlﬂerence is more sighificant for the sphemlds of ms.l nup‘

A/Ir—z than for a/b=10. It is seen tl!ut when A/b——‘-Z b:ck—sclttenng cmss-

.uctmnsrorboth'I'EsndTM i :_ are subjected to more oscillati

ﬁnn I‘or a, i —!0 I lhe\ case of l/b—2 is eonsldued the buk—untenng cross-

S A.l‘_ refractive. mdn, but is not the same for 'l'M pohnnuon. However for .l/b—lO,

 J en o
bagk- ; tions for both polarizations vary in the samle manner

with the increase in refnctlve index. Flg 8. ll glvu the blck—sunenng cross-

disol

. section for two ial genenlly

prolnte ph oids of l/b= 2 ‘and

. l/b—lq each of seml—mnjor axis leﬁgtl\'x/d composed of ‘materials of refractive

: lndicesls 20, 25nd30 Tha“ k-scattering.cr tion for TE ' i

varies llmost in the sameé manner  with increase in refractive index. But thnt for

*. tends to lncnué 8s the: refractive indu lncm;s

Fl‘lﬂ'E 00 and 6. 10 give e plots of bu:l(-suuenn; crostecuon vs angle .

“Rfractive igdlces 1.5, 20 2.5'and 3.0. ’l‘he dlshnce'between the center: ol' lhe .

’ sphemlds is )\/‘2 ln contrast to the umlly duplncad' case, & change i in mlgmhlde i

section for TE poln.mmon varies almost in the same manner with the increase m'

A . &
™ ‘.' ion is subjecte to oscillati nsthe fracti 1ndexmcrels=The"

hnék -enuenn‘ eros--u!tiens are dx.ll‘er:nt nt endfire ‘nendence, and the dnleronce )
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CHAPTER 7
CONCLUSIONS 2

7. f " Discussion

Exact solutions’ have been ubmned for. scnttenng by a smgle dlelec’mc pm—

lnte sphgrmd and two di ; i pmln&< heroids in parallel co ati usmg

the multipole expansion technique, As fa have been made in for-

»mulatmg ‘the prob]em for both cases, the solnhon ubmned is vs.hd throughont
" the frequency range. With the availability of exact solunons like” !,hese, the use-
fulness of various approximate solulions,vcnn be ‘determined quantitatively.-
Numerical results for 'sp‘heroids whose’ major .axes are cnmp&rab‘le' to the

wavelength of the exciting wave are gi;len in terms of bi-static and back-

tions. Spheroid d of materials of diffefent refractive
indices are considered. - R
One of tlie_advantages in this formulation is- the ability to obtain the unk-

nown and tra T ission field e Hici by means of a matﬁk rbrmul{l-v

tion. In this Im‘;tr'ug formulation the ‘system matrix depends-only on the scatteter

ensemble and m_)t. on the angle of incidence. Hgn:::e if the system rﬁatrjx is’

\| “‘!oroﬁe,." lr angle of i

then it is possible to evaluate the

unknown coemgients mentioned above for any ‘other nngle of incidence, ‘wit_hout

repemng the process of inverting matrices. It is also worthwhlle noting the use:

Foed

. fulness of the nslized a | prolate sphersidal vector wave_ l‘uncuons’f

used in. the series expnnsions. of;'diﬂ'eréni fields. Since these translate like scalar




} The importance of ‘these studies lies in their practical app]icaticns in- elec-

trpmagnetic suwenng from hydrometeors such as ram drops, snow ﬂskes, ice

crys!als, ete. and in spheroldul snlennn systems . o 5 g

.2 Sll;;estlonlformmrework . iy _,.

Although specnﬁcn]ly the soluhcn for aeauenng by prolate spherolds has t

. ) - be}n consldered, the solution for !cnttenng by oblnte spheroids can be obtained
= N in a” similar manner by replacing prolate spheroidal vector wave ful;etions by

oblate pheroid vector wave functions in ing the pmblem
As d:scussed in chnptel‘ 8, due to tbe rc:mctlon of the regmn within' Whu‘h
“Translalmnnl’Addmon Tlleorem is valld for the two body scattering case
there exists & mxmmum distance between the spheroids. If thal“Tunslsuonal %
Addmon Theoxem" can be extended to eaver the egtire rdnge, then it would bn 3
possible to take an clnser’fook into the scattering eﬂ'ects, for tl’e brondsxd . di

/ ' » ’ | £ .

1] 3 placed co_nﬁgurphon of the two prql:te spheroids. - /

: ) e
2 - The maximum value of refractive index that has.been gonsﬁered in the
«  present work is 3 0.As the rélructivé index increases nbdve this value, the c"oﬁver-v

gence of the ndlnl l‘uncnons of the second kmd evnl\nte with mi:ect to the

values of ka greater than 4, for the dlelectnc mcdmm be mes very slow With

future development of techmques to improve the cGRver ch ol the radial func- £

" tions, it should be possible to extend the range of telract ve index beyond 3.0.
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“The above vector wave functions are characterized as even or odd depznding on
the sinusoidal variation of @. Aacordmg to Sinha & MacPlne (1], it is possnble to
express this sinusoidal variation of ‘¢ 5 an ex))onentnl harmomc function

exp [i(m+1)¢], exp [i(m-1)¢] or exp (jm¢) d-ependm; on the choice of vector wave
function and the vector v‘vnve funct}on itself written asa cor:iplex function so that
therddl part of f:ghves vhie eren compisent: and the imaginary part the odd com-- -

. ponent. As mentioned in chapter 2, the notation used here is different from that

of Flyymer’s in the,rolloﬁﬁ‘g\manner Flammer s M;Ql o & Nﬂ"
M*('] & Nﬂ’) and M:,P, n& Nm_l n become M,,s:] & N, 0% respecuvely, so that .

Mm,, has exp [)(m:kl),é] ¢-dependence. )

Hence the vebtor waye functions with sn exponential variation of ¢ can be given
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Using (A.1) - (A 18) in (A.19) & (A. 20) one can ‘write down explicit expressions
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N In the vector wave functions M,,, and Ny, the azimuthal harmoni¢ number
m, can-be negative or positive (~n<m<n) for any n>0. Hence jt will simplify

computshons if the vecl,or wave functions depend only on |ml except for a suit-:

" wble normalization lnctor [11). With the radial funcnons there is no pmblem since .'
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APPENDIX B . .

The integrals that result in as a consequence of p-matching are evnluale@
using the recurrence relations of the associated Legendre functions given in [6],"

the integrals [4]

/ fF ¥ w)dq—mi(;m’%p.,f R
1 o, o ow>p »
J e e o = | i el = (B
-1 2 .
! v+m)! 1
ik 2(m+1) = [+, v<p
" and the integrals in [7] ’ N

Thg evaluation of mtegrals ls somewhat tedmus and only the results are included
and listed below.
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where 6,y is the Kronecker delta function given by
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(2m+5:2)' {gzmg—l)gzm ) [ 1) N2
b l . q_,,, Cmr2qrs) | )T
\l' Hm+:}(2m+2q+a). f}'d'{,‘"""*’,’"] [(q+2)d’,;',’rﬁ
‘. 5 . remqtl -
- -
) 4+ (2=+2q+3) E ar ’"*"] [q dneeN
. ~ ‘ =etd i .
.
+(2m+2q-1) f;‘d’,""“""] B [4(m+¢+1)d"‘*""*"”
remgl temg .
i Co ’ . .
-
+ (m+2)(2m+2t+3) . z'd;"*"'"*"”]}, (0+N) even
~ retil p .
v =0, (+N)odd . - . ) - (B.33)

- 3 ammN 2m(2m+2q-1) 5 d"'""'N

- r—q+2 = L
;3. b . E (2m+2t+3) E‘dm”m"*z]} , (n+N) even
. - .
' P !

=0, ('n+.N)$qd o _ (B34
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o ® " . 5 - :
For m>0, . . . B |
- . : 2 ;
\
" lygnn = (l-'l’) = sz mn42 Smm 4N d'l - e
. =2lgimNa t+ (m“)2 Tagma = Ams2amens bimtin + B2 BomNn (B.35)
! a . £ ok o %
For'm=0, . - -

% . e ¢
lnmm—2 £ [(q+1)d‘:’1.--§’d3'““+(2.q+a) e to'ld‘.'”], (mN)odd
q re=q =01

) ' =0 (n+N) even ¢ - ' o - (B.36)
Y Dy {—Q(Q+1NM+"+2(2'-I+3) D) d“*"} : ol
r=qtl
. = {(v.1+l)(q+2)2 o~ L (q+l](2q’;#5qz+9q+2) +1} o 4
Tzl 2(2045) ot " 2(2q+3)(2q+1) gl _ !
. 48 33 d""}. (34N odd
" . I—OI
. =‘o, (n+N)even _ ’ . P (B.37)
. N . T S ' -
Tt =4 z; (s+ias2) £ d“*" [ £ B ] (3+N) eved
' o1\ - gmon U7 g L o
=0, (n+N)agd  uw ¢ . .(B38) "
{ ® . 0h0) @222 v | { (ab]) (2oPeoete042)
g gt '“mN"—,E_, [ ) ’*{ 2(2q%3)(2q+1) } ‘
] il IS S ): '@ (a4N) even ’
' & s=0,1 Q-o.
o - F e . 5 .
" =0, (a%N)odd : (B39) . .,
. % T " .9
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APPENDIX C

 Defintions of [ Xan |s [ Xein ] X2 ] [Xehi ] and

f" Yarl, {Y;2.~1 [o¥a o [¥adin

(i)

Since the. row matric; [X] and [Y]-hnve the same lorr;lut it is possible to
repre(ent them usmg a genenhzed row mamx [Q} wlnch will consist of elements '
evaluated wnth respect to h, or hy dependmg on whether the medium under-con-
sideration is outside the spheroid or inside.

. 1f the field under consideration is the E (electric) field, then Q will be equal to X

and if it is the H (magneuc) field then Q will be equal to Y.

[qQ:‘;l(cJ] = [Qanaleh Qnnleh oQmaleh oo oo ] (Caal
[Qnane)] = [qu‘l’z nale) Qani(e), Qianald) - 1 {(C.1b)
[qQ'm“ll,N(e)]f[ne'm“l}.N_o(c), A it WQ:i‘i..N,z(ly. ----- 1 e

(@20 = [,Q;“,l o) QN Qe ] (caa)
(02 @] = [s@2maleh (@2mated @ianale) ... ] (évlﬂ
[sQmhin(e) = [Qbinoleh @mna(e) Qobangih ] (@

where Q is equal to either X or Y. ¢ is equal to either by or hy depending on the
medium under consideration.

4
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It Q equals X, then the yelements Q0 Q:.'l’m..(cl nd Qlyale)

¥

(b=0,1,2,...... ) of the row matrices are given by,
- B
Xnxale) = -‘- K zl-‘(e'af)"’Mi O o) Spmppia By € dy as
27 ||
4 _— (c 2)
s(-)

2 1
Kool ‘7‘- [ f (S 1m|+...(e)5.m”....,..th.)e'""*"'dnducs)

|
P\n("lmn(cl--—!fl 2F(E-n?) mlllmﬂhnnl‘)slml Jmpen(hy) eme e ’M

(C4)
T2

- i 1
X iale) = ! [origr) M.....M.,...(c) St slh) 5541 d a6

(CH)
rQ equals ¥, ther the dements o0, n(e) Q,,,,w c) and QY e
(n=012,...... ) of the row ma!ncu are given by,  *

s

nl_

20 1
222 I’
f f Zkfé{:),n m|m|ﬂ...(°l Sp..||m|¢N(h|)c"['“*”'d'l d¢
0 -

(c)

i) 2
.Yi'# =5 [ f Jife—,‘f:T'ﬂNﬂm.m(c) 5|m||m|+N(h|)B""'"l‘d'I d

(1)
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i 2 2 /‘-’ S '
u'.:m..(cl !f ﬂ:,,él;,",, N.:lnh“m..,..(c) Siapimi+n(b) e dn dg

(c8)

IAFA(Eerf) il U
ole Nale) = 5= [ f (Ez_f_; Ny ijms 114+04(¢) Simpjmien(by) €+ dy do

-(C.9)
Explicit expressions for X (c) and Y(c) are given below.

Kanale) = -+ (- -)"’[ER..,,,.(c.E)I,_Q T R!;’.,.,n(ce,)] —t

@@
. (C.10)
.X:Tz,N,n(fl =F ((:—llm [%Rﬁln.mna(c-f) lg-(.
(m+2)¢,
+ R...a..wlae.,)] )
Xt ale) = 2 (--+{) Rt msseo) linv (c12)

Kaale) = (€31 )—R‘.n",“n(ee)l(:(.hmm+e., R msalef) e (C13)

(i) i 2
Havanald) = (€51) d—enm,.m.z(c,e)lf_& Tomto *+ € Rakmansa(€i60) Tomia

N ) L (31}
Hhale = 2 (G160 oo
s . R(mun.mnﬂ(cyfn) Inmm] S (C.15)

~ ) 4 ‘
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,)(;(.?«.nic) =0 (C.18)

Xkt =200 ¢, ——R...(c.al(_l. hae- Rk luna | (€17

tfl

Yoale) = [(e, ) R menlell g+ sl ]
((fq 1) IgNn + Ligmin) o . .2
ks fn dERm mnlhf)l(,‘ [(Eo ~1) Limn + Tismnn + 2 ll(mN»]

= Rm.mn(c.fg) [‘lumNn = LismNn ]

_“_
(&-1)
(i) 2
F(me£1) R mn(€6o) [(fn‘” Lismnn + 2 Limnn ]
(i) 2
-m(mz1) Ry (€69 [(frl) Lizmba + 2 lamin ]

- %f—j)l R a6 (m Ty £ Vi) (c.s)
m+~Nn(=) = [(fo 1) Rn+zn+n+=(°-ﬂ|5-€.+ S 3¢ dskmn,mn»-(c,f)lf_‘.]

L . ((E.,-l) Tgmn + TiomNa)

by R a6 (65 e+ B + 2 e I
&

z R(m“u,m..n(cvfn) []ﬂann = m L20mNn ] .

$220) By mansn ) [ (65 s+ 2 e |

A2 20) Ry a6 [ 1631 B + 2

%:”T*;lnm.zmwte.g) [ s e | (C19)
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m-H N, n(E) =2 [(Eo 1)312 R‘n]-fl m+n+|(°,£)|£=5 (TsmNn = Jsmiin)
+(&- ”1/7 d Rm+|m+n+l(c 0'5- (logmatNn ~ Iosmnv)

- §le2- 1)'” _'E?Rm-flm-&nﬂ(ch)I‘V ((&-1) ISmNn“zsman

(m+1)*6 0
7 T ”wn d—ER...nmﬂn(C,E)l(,( {(Eo‘l) Tagmmn

+2 (E.,-l) Tomnin + lemNn} + (_EiT)Rm-Hmhﬂ-l (e, fu) Iszn is

260 d

ST i SeFmsnnle 5”€=(ulzsmNn] © o)

Yotale) = (E31) Ry e (m Lt % L)

’i [(e.,’—x)’ ;—gn“m’,mn(e,e) IH\- (62 TeRmmralef] g

- (lame m,R‘L’,m(e.eo)] Lata . (cay

i) : . i : g r
Novapinle) = (E6-11 R0z man (60 (1049 Us bz & (Tt ~ i) _ - -

2
& [(534)' SR zammiaef g = (681 F1k(me))

¢
d i ; 0
* . d—ER"'”'f“"”(c’s)lf-ﬁn & (m+2) Rmpzmnens2l6i6o) ] limNn

(c29)

() = 2 (m41) (€202 [ 1 s

+(&-) ——RM. mtntt(©8)] 12,““"] (C29)




- 13

ot = 2 [ (1" Lalh(etl g {60 b+ L)
-6 Erlie], { (€0 homa ]

_l(.’-l)l/'-' e Ron (e8], {(€-1hme + Tira )

+—:—'“' o5 RY(e,&) [lm,u.j‘fo(;:-u"’ l,m}] (c24)
Nipale) =0 ) = e
-
ey
|
: N -
-
»
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APPENDIX D
BA mn
Derivation of the normalized tramslational coefficients ~.T,, and
AB, mn
eTow

.
- . - C
With reference to [1]; the translationsl coefficients . Ty, for the transla-

tion from B to A (fig. 5.1) can be given as : .

By 2R 81 Rio (s+pts)

T Nulh) (5005005 (P

< dg"(B) "(B) a(m,|m]-+ql-p,|u|+s|p)

“by(kd) Py *(costy) el ) (D.1)

‘where p=|m|-+q-+|p|+s, |m|+q+|p|+s-2, . <y Im-| or [mepl+1.

’

d3"(i) and d}"(h) are the spheroidal expansion coeflicients. dy " s are evaluated
with respect to primed coordinates (spheroid B) and d®’ s with respect to
unprimed co-ordinates (spheroid A}. hy(kd) is the Hankel furction, F, * is the /
associated Legendre function, ' Nw(h) is the normalization constant and
“a(m,|m|+q|-,lp|+s|p) are the linear expansion coeflicients. f, and ¢, are the
sn’gles shown " in ﬁg:(ﬁ.l), and kd is the distance between the spheroids in
‘wavelengths. .

A recursive mgthod for evaluation of a(m,|m|+q|-p,|u|+s|p) is\given in Appendi;'
10f [14). ) ‘ .
As shown by Sinha & MacPhie [11] it is convenient to express these spheroidal

translational coefficients in terms of spherical translational coefflicients.
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N
According to Cruzan [19] the spherical translational coefficients are given by,

Ty = (1) (2+1) ™ T ® a(min|-pvlp)

y(kd) By *{costy) eil™ (D.2)

where p=[n+/|, [n+v]-2, ... .. , [m-p| or |m-p|+1.
= \
hy(kd), P:'-"(cosﬂo) and a(m,n|-p,v|p) s are as deffed above.

Now (D.1) can be rewy‘icten as

BAT::\= 2 j¥-n o @ jimbreclel-2 ()4 pts)t d';m(h')
Noulb) (2616200 (21pl+25+1) (lul-pts)!

-d2¥(h) {(—w' (2lul-+2s+1) jlultsIna 57 o b (kd)
P

2 * atminlral-lil+sl B eosy) ) B 3

Using the definition of spherical translational coeflicients given in (D.2), (D.3) can

be expressed as

Bpmn | 2jn &y @ jimbtebbe ()
BT Nulb) (530,550 @lula2s1) (ul-pts)!
- d() () T (D.4)

Since normalized functions are used in every expansion, the translational
coeflicients should also be normalized.

Using the "Translational Addition Theorem" each outgoing wave function from
spheroid B (primed co-ordinates) can be written in terms of incoming waves into

spheroid A (unprimed cc-ordinates) as



(4 ‘@ o BAmn £(1)
Hop = 3 Y T Hu
u—fm»—lnl
24y o mn .(n
Ha= 55 ") E

-0 ve=|ps|
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(D5)

08)

where ,H denotes the unnormalized version of vector wave function H, H being

either prolate spheroidal vector wave function M or N. ~

.- '
As shown in Appendix A, to normalize the vector wave functions H, the unnor-

malized vector wave function ,H has to be divided by Ky, where *

n G

Hence,
:m‘ " +(i) (i) = (i)
=Kon e Hpp = Kqy Hpy
=K B H =K B =134

"Substitution of (D.8a) & (D.8b) in (D.5) & (D.6) gives

i i ©  © BAmn_ (1)
KpHpn = 55 5 "k, 5

v
——co vem|ps]

2(4) o ©©  BA_mn_ (1)
v

Ko Hy = 35 T Ky H

"
=0 ymm ||

or
, 5
&4y o & BAm K £(1
Ha = £ % M
=00 vemy|
L T -
p=-c0 v—lul

(D7)

(D8a)

(D8b)

(D.9a)

(D.9b)
7

(D.108)

(D.10b)




137

. Since there are normalized vector wave functions on both sides of (D.10s) &

(D.10b), the normalized translational coefficient can be defined as ™

K, @ ;
Tegs T © o
-

s..mnu:in;'h\ T‘,", in (D.11) from (D.4) gives”

BATmn b} Ky )uj, i jlml+a-jul-s (lut+a+s)! P
s N o AB) K ,-n._n,(zlﬂ'l*ﬁ!“) (lu-n+s)t A

mal+

-d':"(l_l)df”(h) °Tmy,|+. A (D.12a)
2 g @y imiebbe e
Niupulb) (55,1 0m0, (21asl+25+1) (jp]-pus)!

R (il (el
q!

Ay gl ) Sp s . (D.12b)
since
N,o(b) = K3, Ny, (b) (D.13a)
and
A .
&= (.1)_4'L Ky M%"— e (D.13b)
Usingythe relations
: T s (D.14a)
and - i
ml-m+q)! __ _(2lm]+q)! (D.14b)
qt  (ml+m+q) '
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(D.12b) can be rearranged to give | ‘/
» BALm _ gjtn @, &, jml+allle (2lul+s)!
T Nplh) (S CHFEED Sl .
|-p—]m|+m
Imn 27y uly ([ad]+u+s)t
gy o (o e
el abny (-1) G
§ . |
2m]+q)!  opminita | *
“Tnfrmeql b \ ‘ 18,
. : . s
From (D.10) oo | ) :
oot Kyjutas opmlnita
o = K::’:;q Tiitia , (D.162)
— (P Qultuten _(almiq)t pmimtes {Di1b]
@+t mlmeq)l i+ .
Hence from (D.15) and (D.16b) . ° !
! BA mn => 2 oy 2, jml+a-luls- (2lults)! ~
7 T Nylb) (G055 ClelF2sH) ! . N
- LTSRS e (0.17)
where according to (D.2) and (D.18b) ’ ) \\_, )
.,Tmn=‘_”M1E12’El*—"‘- () () (o), e
e (v+]pl)! (n+m)!
. 2 iPa(m,n|-uv|p) bykd) B} "(costy) Sm-ske (D.18)
P i

.oy mep| or [m-pe|+1

with p=[n+/, [n+v]-2,

. . PN BA, -mn . ) .
It is also important to’evaluate T, . Chsnging m to -m and g to-p in
Y
(D.18) gives




aT = 1 G il e

S IP a (malaelp) by(kd) By ™ (cosdg) el #e
D ;

.

It can be shown thatji]

. _ {o-m)t '!w-g! (ptm—p)! .
bz ;(—mmlu,ulyl_—,(“m), G _lu’_m+“"l(m,nl—u,ulp)
and—" . »
) -(mos) s G ! e
SR “(costy) = (11 LB BT o
 Combising (D19), (D20) and (D.21) yieds W

i bl
b _ym (lt (a4jm])t
el O T Tem)t Y

L 5 Pa(m,n|-51p) bylkd) B “(costydritm-s
v o

Then from (D.18) and (D.22)

o0 sm-
R e Lo

o © Next, replacing m and g by -m and -p respectively in (D.17) results

BA,-m gjv-n o iy b " !
N B) (5555 ClalH2s+1) st
B e

w4

<
Substituting for ‘ :T:: fm.:q from (D.23) gives

BA,-mn
' L =

BA,m0 _9j(m-
n g 2im-plt
Henceit is possible to evaluate B’:’l‘:: if m,’l’:," is known.

(D.19)

" (D)

(D42|‘) .

(D.22)

(D) -

. (D.24)

(D.25)

Vly
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It s also possible to'caleulate *>To from the knowledge of “ATo

BA,_ mn

, from "\, the parameters h and I have to

be interchanged and 6, and ¢g have to be replaced by (7-0) and (« + @)
Jrespectively. ® '
). G
Making these substitutions in (D4l7)‘givcs
c .
_2gn @y oy jimbraclele - (g)u)4s)t
Nl (55105, ClHF2sH) o

d'mln(h) dl'l“(h) Ky mll«ﬁ:q’

'y

AB_mn
T

" (D.26)
A
where from (D.. IS) ’ B

w4 p-|m]+m

‘:T;","=( o2

Iu—w)‘ (n-+{m])! (@wt1) jon

(v+lu))! (n+m)! -
. );1 P a(m.n[~,‘,u{p; by(kd) p;"“‘(_eos(w - 631} .e'“""“) L 'fgﬂ’ ‘
¢ . ’

This can be rewritten as i

(D.27)

\

pl+p-|m[+m

‘°,,,_(1) ?

(v+#)! " (n+|m])!

(v+la])! (n+m)!

X . -
- 3 i? a(mn]|-p,v|p) by(kd) Fy
»

(2v41) j0

*(—cost) (~1)m-# eilmwte (D.28)
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Definitions of matrix [Tg,| and column vector Mg,)\

With reference to (5.22) the scattered field due to sphe‘:nid B can be written

as
Egp = Eo ): ﬁ.:n :\(nr+ﬂm+ln mun"‘ E {5 M+|l:] . g “
1’ ﬂ M:m }"‘ 2 E /’-mn -q-n"’ﬁ(mu]. M—im#l]. (D29) "
From(D.10), . S ' o\ - ‘
Al (D.30)
BA,mn a1}

T My, »(D..’u)

@;smmunng for M2 and M:,',:,] in (D. 20) from (D.30) snd (D.31).gives

CEs= g £ q;,z"‘ Zi"+ﬁ,+.,>: '"“"M',‘:’ ’
o+ ’3.," .z T"“Mti“+ﬂo.,>3 "‘.T.,M’,‘,"
E ): m.E Mr—- M,» +3(-+n,n MT*MII' 'm (D.32)
me=0 gesm

(D.:S‘Z) can now be rewritten as




Bo= £ %5

forc=12,3,....,7=1,2,8;,....
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BAL-In (1) | BA_-ln _ (1) . BA-In 1)
LMy + T Mo+ oo Moan)e

2 O x(1)  “BA,On_ a(l) BAOn. (1)
+ 8 5,0 MMy + MM+ Pl M,
=0 v

) BA I o +(1) | BAr-la o 4(1) BA,-lo +1)
+ gﬁ::,u YU Moy + T Moy, + e Tooiu Mioa),
o v 2

& BA (1) | BA_m . (1) m gl .
+ 8y MMy, + Man M+ Mal, MG,

=0 v 4o

e BA~{r-1hn (1) =1 (1), BA-{r=1)n o (1)

+ Eo BlnaX T My + Do, Mopot+ (T Moy,
= e !

IS S0 Vi b VA b VRS i ¥ S )
A0 v .

This is of the form

Eg= M(.'g” 8 (D.34)

with, “T" iated with the ipt denoting the of the vector. 8

is the colimn vector defined in (5.24) and

where

with

M = [Tsu] Mo _ )
st [Tl (Tl [Tl - . .

[The [Tl [Ty - . .
mf;‘ mf," mf,‘ 5 4%

[Toal = \ (pasey .

U S B




BA, -1
(P AT, (o] o] I
=2 = BA.,.. 0 .36
oo =" 1o} *T (0} 22
[BA, -1 BA -l ’
[TlBA . [Tlo-t [Tl oen) [°l° |“]ﬂ [o] (0] |. - r—
M= P ™ g0 (o) )
BA,.* -
(TG (o o)
BApr : ) :
(oA o] (T, ‘[01( . o o
= B He-1) |, 7] . 4
S I (R I 3 1 = )
e BA T =
. o ATy ol
BA, %
(717 ITl.[m) [0} ] (0] lo],.
BA, r  BA, ' 4
ITIBA {0} (0] ITh 1Tl l°l 0] ;
- Ar-1) BA (1)
” [0 (0] (0] m[01 M T
B e e
Lo o TEy M ¥ M O
+ -
for 721,021 (D.36e)
The matrices [0] (null matrices) and [T] are of the same order. The submatrices
BAT), where 7,0 =....-2f¢1,0,1,2, .. .. are given by )
_ s S
; T..I ol+1 T.,l.m -
BATf.HN B@r rl+1 nir+1 . .
. BA, fhn BAT |r|+2 BA, v.[’loz
Bl o.Jol+1 |a|+z e .
Mo=| . o (D.37)
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Th;z transpose of the rov«; vector MSA can be defined as _
on = [ Moko Mon Mo, - ] (D.38)

with g
Ml ] -
Mon = [ME 0l M R ST M ], e (D.30b)

[Tap] can be obtained from [Tg,] by replse'ing the submatrices’ BA[T]:, by
A, ) ) '

Elements of the row vector M:B ‘can be obtained from the corresponding ele«
ments of row vegtor M;A by evalu’ating the vector wave functions, which n.re the

T
elements of Mp, with respect to primed co-ordinates.
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APPENDIX E

In \this appendix, all the matrices that appear in equations (5.78) - (5.81) will
be deffned. The vector wave functions without an argument are those evaluated
with respect to by, the value of h-in the medium outside. by is the value of h
inside spheroid A (fig. 5.1).

<+ First consider equation (5.70)

(1T, (1T ! nT

M) 740 6-MY [Tof 8- M= k' MITL,  E)

Since this equation has been obtained by the satisf: of ‘boundary conditi

¢ #matching and n - fatching should be done as a meang of deriving the system
equations. This can be done by multiplying both sides of the equation by

§2F (€112 Syppjajen(by) - 3™ /27 for m=0,1,2,... and N=0,1,2,...

and integrating over the ranges 0<¢<2x and -1<n<1. The above multiplica- .

tion and i ion of (E.1) is equivalent to iplying each

Tow vec:
‘mr on both sides of !E.l) by the relevant mulg_piljﬁL{utor and integrating
within the same ranges.”
Consider the first coeflicient row vcctol: on the left of (E.I), which is M&’:(h,).

Using (5.34) and (5.35), Mon(hy) can be written as

Mubon) = [M21 (0 M2 (ba) ., Ma ) Mytha).
Mabo(ho) My(ha) .. MiSh(b) Miihtba) ..
-(1) -(1), 1(1) a(1) .
Mogn(bg) Mo pabak. . . . Moy g o(hg) My o(hg) .oieeee ] (E.2)
If ¢ - matching and - matehing of the (0)¢ harmonic is considtred frst, then
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the multiplication factor would be j 2F (€%-n%)"/8, |, n(h,)/27. Multiplying both
sides of (E.2) by this factor and, integrating oveF the full range of ¢ would make
“
* all elements on the right of (E.2) zero, except the ones with a (0)¢ harmonic, due

to the orth lity of the atial ic functi Next when both sides

\
are integrated over the full range of ¥, then due to the orthogonality of angle - *
functions, (E.2) can be written as :

Ml = [ X TNolba) Xmaha) ..., Xaboba) Xowtis) .00, ‘
= [[XRwa) [ XeNba)] ;0] (0] [0] [o] ... ] (E3)

forN=0,1,2,...., where y

* 1 ‘Zl
Min(b) = % f [ 08 2R S, | (b)) Minn(by) dn dg (E.4)
# =1

with the row vectors [X] defined in appendix C. [0]is a null row vector having

X w5 . =

. : the same length as of [X].
Referring to appendix D, the third coeflicient row vector Mi;,)‘: on the left of

4(E41) can be written as

T H1) (1) (1) ) ) )

Maa, = [M-:.l,w M2y My Mot Miin Mg,
+(1) o H(1) H1) L +(1) (1) (1),
Mooy Mo+ M2, Mgs,. .. Mio, Mg, ..,

1) ol o) )
MM, M M MM, ] e

If the same integrations are performed on both sides of (E.5), then using the

orthogonality properties’of ial harmonic functions and angle jond -

this equation can be written as - B ' X . -
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mﬁfu,—[[ X ""][ Xain] 104 [0] 0] louonon....-] (E8)

for N=0, l,2,....,where

1 2r g ,

T i G )T

Mio = 3= [ J i o M 00 ®)
-1

T
*Similarly by substituting for the fourth coefficient row vector M:z,, on the left of
. N ~

(E.1), from (5.17) - (519) and integrating over the same ranges of n snd ¢\r\esults

M, — ([ X9) (X4 (0 [0l o) [ o} .- ) E£8)
“forN=0,1,2,...., where
N ¥
12y
Mﬁ;" E!; f f A@“j () s’l.HN(hl)M(:AK: dn dé (E.9)
-1 0

Finally substituting for the coeflicient row vector on the right of (E.1) from

(5.5) - (5.7) and integrating over the same ranges of y and ¢ gives

_!‘)T

+(1)

([XIN] [ s o] fol 1ol [ 01 o] ;. ] (E10)

forN=0,1,2,...., where

1
M= [ e“"“"jw(e’-n’»'/’s,_.m(h.)mﬂ,’: dnds €N
10

The above #smpnon is for the matching of ¢ - harmonic (0)¢ Sxmllar match-
ing _ conditions should be considered for ¢ - harmonics l:tm)a) " where

m=123,....

This can be done by first multiplying each of the equations (5.70) - (5.74) on_both

sides by one of the relevant multiplying factors j 2F (2-n%)'/%, 2F (&-y?),
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/2
2”(\:2“:)_:;:)5 “Qk::z iz) "2) ling common factors on both sides and

then multiplying each equation on both sides by e7i(™!)¢ Sim|mp+n(hy)/2m for

m=0, 1,2,.. . N -—:0, 1,2,.... and integrating over the ranges 0<¢<2r
" and -1<n<1. .
The construction of the matrices given in (5.78) - (5.81) from the row vectors M
will be clear if the format of the row vectors in (E.1) for matching of (+1)¢ and
(~1)¢ harmonics are also derived. ~ * . e
For matching of (+1)¢ harmonic, both sides of (E.1) should be multiplied by
j2oF (E’—q’)m Son(hy) . €3%/27 and integrated over the ranges 0<¢<2# and #
-1<n<1. By considering the orthogo;mlity of exponential harmonic functions
and angle functions, the row vectors after matching can be written as
+{1)

(T a(1)

MUBtba) = 1011015 [ Xeiba] [ X000 01 o] 0] (0]...]  (12)
Myisy = (101101101 [ X551 t0) [ XiR] o] [ XaN] (0] o] 0] .. JE.13)
Mo, = [or10): [ X8 (Xl ool ol ,] @ae)
Mk, = (101 f0]: [, Xe) ["x;‘L [0 o) (o] f0] ... e

forN=0,1,2,...., with

x 1 2r
|M(&2N,,(hz' L { 3§ F(E0)"? Son(b) Mty (b dn dé (E.16a) -
4 .

and |
2

. 1
Moy = - fl [ "‘izFlf*-q"”an(h.)MiL’dqd¢ o m
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0T N . Z
where Ml refers to the three row vectors Moy Miany 824 Moy
Next if matching conditions for (~1)¢ harmonic.in (E.1) is considered, then the

multiplying factor will be j 2F (€%-1%)"/* Syn(b,) . e4/27. Considering the ortho-

gonality properties as i above for hing of (+1)¢ h ic, the row

vectors after matching can be given as

AMUdalbs) = [10] (0] (0] 01 [ Xoina] [ XIhGa)] 10 o). ] (B17)

M, = [(01 101101 [0} [ XN] (o) XN to] [l .]  (Bas)_
My = (1011013 101 0] [ Xo] [ XN stoi ol .. (E.10)
MU, = ([0) 10 [o) (0] [ X'3a] [ Xon] < (0140} . ] (E20)

for N =0, l,2,....,witli
1 2x X .
MU by = = f f o § 2P(€2-n)"" Sqp(hy) Mo (by) dn d (E21a)
-1 0
and h
1 2r / - £
iT + i}
M= L [ [0 forien” sonto) MY dn o (E21b)
L :

where hl(:;;r,, are the same defined for matching of +(1)¢ harmonic.
Al the row vectors [X] are defined in appendix C.’ ’
Referring to the row vectors obtained for matching of (0)¢, (+1)¢ and (~1)¢ har-
monics, it is possible to construct the matrices [Ppa), [Rypal, [Qmal and [Ryal

* defined in (5.82) for the more general case.

e
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Each of these matrices is quasi-diagonal, having null matrices as the off disgonal _
submatrices. The diagonal submatrices of [Py ] can be given by [Pya].,

m=0,1,2,... and the off diagonal submatrices are null matrices having the

same size as diagonal submatrices. Hence b -
[XCihna] [Nea)] | _ N
[Praa]o = ' ®2)

+(1)

AXihiba)] [ X3

2
+(1) 1(1)

.[r,_xm-n,)«(hz)] [ Xmn(B2)] T s
o] ’

PR LN [P TS :
[ ’f‘]“_ i [Xlmgtha)) [ Xbg) | B2
1o )
L [oxj,‘.Lx),N(ha)] [Oxﬂrll?N(hz)]
for m>1. -~
[Pualo f0] (0] [0 \
(0] [Praals [Plol [o] - |
0]...
[P = | (o 01 Pkl D,
. ”
For [RMBA] the submatrices are
[XERm] [ Xama)] [ Xiinton)] -
[Real, i il i (E.25)
[XCintbo)] [ Xon(by)] [ Xinle)]
| [Realw 0] .
[Realn = . o (E.36)

0 [Rea)ns



‘o

~

e
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where .
(X b)) 0] [ XN, )] (0] [ Xauatby)] (0]

(Roalar = | Ly ) -m (e

L1 )] 10) [ XERe)] (0] [ Xauatb)] (0]

and \)
10] [ Xiimsryaft)] [0] [ Xomn(u] (0] [ Xyt

(Raa].; = 1) ) -, E47)
[0] [ X imenatbo)] 10] [ X (b)) (0] [ XCiu )]

form>1. i

For [QMA]- the submatrices are

_ [[.pC.‘_‘&(h.)] [ o] J
[Q o = =

(E28)
[ Xintb)] (a5 T
X b [ XE%ema] >
L] [Xahe] " e
(@l = | [0 ) [ XN [ B2
. (0] ’
\ . [ﬁd::-u.N(hl)] [ox:(:n(h-)] s
'I'or m>1.
) For [Rm], the submatrices are-
: [XNma)] [ Xino)] :
LN (E30)
ox-l.N(hl)] [OXI,N(hI)]
» -
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]
[ X atba)) [ Ko )] ' N
+(1) (1) - Co
Rua]. = [ttt [ Xanvitho] +(1) 1) E.31)*
(Rl ~ . [ menton)] [ Xy nen)] | E2Y

o

? (X2 )] [ S )]

for m>1. |
The matrices [PN,J [Rm] [ﬁ""] and [Rm] are analogous to [PMA] {Rm]

jn X in the diagonal submatrices rephced by Y;

[QMA] and [Rm] with elem
where X and Y are both define:
The matrices l‘Pm] [Rm],'\[Qm] [Rwa]: [Pna), {RNM;] [Qm] and [Ryp)
are similar t0 [Pras], [Rumals [Qaea] [Rase) [Proa]. [Frm]: \

3 R
[QNA] and [Rf“] rupectivT‘ly, bat the elements of the diagonal \snbmalrica

in a,ypen dix C.

evaluated with respect to prinjed vo-ordinates.
|

|
|
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