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Nonlinear dynam ic structure-me dium i nteraction for ' cu t-a nd-

cover' t yp e underground n uc l e a r reactor containments is s tudied for

earthquake excitation . The structure considered is a reinforced concrete

containment for a 1100 - MWe powe r plan t buried i n a de nse sand medium.

The analysis has been carr ied out us ing the r e c ently deve loped computer

p rogrammes : LUSH (p l ane-s t rain finite e lement), and SHAKE ( one-di men­

sional wave propagation analys is) . The high frequency r an ge s . which

must be conside red i n t h e study of soil-structure interaction for

nuclear power plants, an d t h e no nlinear soil behaviour during s trong

earthquakes are adequa tely taken into accoun t in t his s t udy .

Parametric studies for the response of the con tainment and the

surrounding medium are carried ou t for: 1) containment shape (high

horseshoe . f lat h o r s e s h o e and semi-circula r roof-vertical wal ls) ,

2) relative s tiffness of the containmen t and the medium , 3) depth of

b uria l of th e containment (shal low , i nte rmed i a t e a nd dee p embedments) ,

4) relative s tiffness of th e medium and fil ling material (original

fil l . loose sand, stabilized sand and reinforced ear th) , 5) t hickness

of the backfill jackets (lOft. and 70fto), 6) i s o l a tion of the co ntain-

ment using e nergy abso rbing jackets around the contain men t (polyurethane

foam and foamed concrete) , and 7) t yp e of s urroun d ing med ium (sand and

r o ck ) . Comparative studies are presen ted for r ock VB. sand siting and

aboveground vs • un derg r ound si tin g i n sand .

The response va lues de t e rmine d are : L) t ime history of acceleration.

displacement and stresses , ii ) maximum s t resses and maximum accele­

rations , an d i i i ) accelera tion response spec tra . Plotting of these

resul ts using t he CALCOMP Plo t ter involved writing of twe lve computer
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programmes.

The results indicate that: i) The high horseshoe shape is the

best among the three shapes considered decreasing the containment stress­

es by 10-20%, ii) Flexible containments are better than rigid ones.

iii) Successive reductions in containment stresses to 67% of the initial

values are associated with each additional 70ft. embedment depth,

iv) The relative stiffness of the filling material and the medium has

the most significant effect on the response . The lower the modulus

of elasticity of the filling material. the greater is the reduction in

the containment and medium stresses. A filling material with stiffness

30% lower than that of the medium. reduces the stresses by 30% in the

containment, and about 20% in the medium, v) Using a jacket of energy

absorbing material (polyurethane foam) in a sand medium reduces the

containment and medium stresses by 65 % and 40 % respectively. vi) A

reduction in the containment stresses of about 20% is achieved using a

reinforced earth jacket, vii) Increasing the width of the backfill

side-cover increases the stresses in the containment and the medium,

viii) The response values of the medium near the containment are

considerably affected by the interaction. The interaction effect is

larger for aboveground siting. and ix) A containment in the sand medium

is subjected to dynamic loading higher than that for a rock medium.

Recommendations are made for further studies to account for more

realistic modelling and material behaviour, and more complex plant

configuration and structural details.
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INTRODUCTION

1.1 General

Underground siting has been suggested as an effective al ternative

to the aboveground si ting in view of th e " i nh e r en t ge neral reduction

to complexity of seismic amplification , be ne fi ts of struc t ural and

biological integri ty, and possibilities of urban si ting , ecological

considera tions . reduced effects on the landscape, ability to design

three-dimensionally . sepera tion of compo ne nt facili t i e s , support capa­

bility to equipment , reduced power t r a ns mi s s i on costs . increased number

of acceptable units an d power capability from a sing le location , and

reduction of decommissioning probl ems ' (Re ddy and Kierans (75».

The p roblem of an alysing la rge underground nuclear reac t or con­

tainments to resis t dyn ami c excitation by nuclear explosions or earth­

quakes is of conside rab le interest. In con trast to aboveground siting ,

engineers are restricted, to a certain ex tent , by a l a ck of adequate

literature and l i mi t e d actual experiences ( on l y four smal l underground

nuclear reactors have been cons tructed . a ll i n Europe). The ' cu t -and­

cover ' technique is of considerable imp ortance specially for central

Eu r ope as on ly this concep t can con tribute to a solution of t h e siting

problems .

1.2 Statement of the Prob lem

The purpose of t his inves tigation is to analyse the nonlinear

dynamic response of the 1 cut-and-cover ' type underground nuclear reac tor

con tainments t o earthquake exci tation taking into consideration the soil



nonlinear behaviour, and to study the effect of containment geometry.

burial depth, and 'filling material ' properties.

Acceleration time histories and response spectra, and displacements

and stresses, are obtained and plotted using the CALCOMP plotter.

1.3 Layout

Chapter I presents a general description of the problem.

Chap tie r II reviews the literature on underground nuclear reactor

con tainments with emphasis on the 'cut-and-cover ' concept .

Chap t.e r- III presents the analysis procedure, modelling and the

response of free field and soil-structure systems . The methods used

to determine the values of all the parameters needed for the analysis,

including the details of the finite element model, are discussed in

detail.

Chapter IV presents parametric studies and the results obtained

for variable geometry of the containment, depth of burial, relative

stiffness of the medium and the filling material, thickness of the

backfill jackets. isolation of the containment using energy absorbing

jackets. and the type of the surrounding medium . Comparative studies

are also presented for rock vs • sand siting and aboveground vs • under­

ground siting.

Chapter V compares the results obtained in Chapter III and IV.

The conclusions from this investigation and recommendations for further

research are presented at the end of this chapter.

Appendix A presents listings of sample plotting programmes written

to plot the results of this investigation using the CALCOMP plotter.

Appendix B presents brief descriptions of the programmes used

in the analyses (LUSH and SHAKE).



REVIEW OF LITERATURE

2 .1 General

Underground and underwater sitings have been suggested as possible

alternatives to surface siting to provide increased containment protection;

this study deals with unde r gro und siting . The concept of the under-

ground siting of nuclear reactors for power generation is not new; in

the mid-1950 ' s Beck [8 ] carried out studies to evaluate the potential

for underground siting. In Europe , a total of four nuclear reactors

have been located underground , the details of which have been described

by Watson . Kammer , Lange. Selzer and Beck [98] . Studies on the under­

ground siting of large nuclear power plants are under way in the U.S .A ••

Sweden, Norway . and Switzerland. A cut-and-cover nuclear reactor is

being designed for Israel and there is considerable interest in the

same concept in other countries like West Germany .

2.2 Underground Siting Concept

Since 1958 several studies have been conducted into the feasibility

of placing nuclear power plants underground. Most of these studies deal

with the concept of placing a large size reactor in a covern excavated

in massive rock. United Engineers Inc. [9 7] have summarized the feasibi ­

lity studies carried out by Refs. 8 and 98. Blake et al [1 3] , United

Engineers and Acres Inc . [96] , Swiger [89] , Chester [211. Smemoff [87],

Rogers [ 77], Norsk [67 ], Oak Ridge National Laboratory [ 70 ] . Holmes and

Narver Co. [43], and Brekke and Glass [15]. The general conclusions made

in these reports and a comparison between these studies are listed in



Tab le 1. A summary of t he assessment studies of unde rground siting

(with emphasis on the ' cu t-an d- c ove r' concep t) which have been ca rried

out by Kr6ger and Altes [5 3] is p resented in Table 2. The discussion

of the a dv a ntages a nd d i s a dvanta ge s of th e undergrou nd s iting by Crow ley

[29] and Budin [ 16], based on field experience and practical prob lems ,

is of considerable interest. The conclusions are that the underground

siting co ncept s ho ul d r e ceive g re ate r a t ten t i on in sit i ng co nsidera tion,

research and development. Reddy and Kierans [75 ] have summarized the

advantage of the unde rground nuclear reactors as follows:

"(1) Po t e ntial i mpr o vement in c o n tai nmen t fa il-saf eness by v i rtue
of the protect ion of several h un dred feet of med ia impe rvious to radio­
activity notwithstanding functional penetrations.

(2) Reduction of structural change from deliberate or accidental
damage due to

(a) mili tary attacks ;
(b) nu c l ear or othe r b las ts ;
(c ) vandalism; and
(d) air and sea vehicle impacts and explosions.
(3) Imp rovement in plant configuration by the ability to design

three-d imensional ly as opposed to surface structure two-dimensionally .
(4 ) Se pa ra t ion of co mpo nent faci l i ties s uch as co n t ainmen t structure

and turbine plant st r uc ture.
(5) Current exploratory techniques fo r t he l o c a tion of an under­

ground si te involving tunnels and shafts will expose faults. This is
not so in the case of surface siting which may involve the r i s k of an
unde tected h i d de n fau l t i n or c lose t o an a lluvium cove red s u rface site .

(6) The surround i ng medi um pr ov ides th ree- dimensiona l support
capabili ty to f unctional s tructures such as a t u rbine-genera to r system
and allows fo r the bracing of secondary equipment over the f ull height.

(a) Power transmission costs and cons t ruction periods may be
reduced by location close to load cente rs .

(b) Sav ings i n b uildings , s ubs t ruc t ures and fo unda tions.
(c) Excava ted r ock ca n be used as constr uction mate r ial .
(d) No ho ldups i n cons truction sc hedule due to adve rse wea ther.
(8) Use of a single underground site wi th provision for II1Iltiple

units i nvo l v i ng increased powe r capability would be more economical
than a surface site with l i mi t a tions on size and number of uni ts. There
wouId be a ge ne ral reduction of decommiss ioning problems d ue t o more
effective isolation .

(9) Systems and t e ch nolo gy of cooling a r rangements a re essentially
the Sallie as fo r surface plants wi th modifica tions needed only in confi­
guration and control".



2.2.1 Alte r nate Undergr o un d Concep ts

Fig. 2 . 1 presents the configuration given by Ref. 53 , an d described

in Ref . 97 , as follows:

i) Surface Mounde d Type [21] : A plant const ruc ted a t ground leve l with

backf i ll material mounded aro und the structure .

ii) Cut -and -Cove r in Soil o r Rock : A plant co ns tructed in open cut

excavation i n an unconsolidated soil [13] or in r ock [89] s ubse­

quently backfilled ove r t he con tainment to the ground surface .

iii) Unde rground in Rock [96} : A p lant const ructed in a ccve rn

excavated at depth in rock, either i n a hillside or be low ge ne ral

grade level.

Kierans , Reddy , a nd Hea le [51] have describe d the basic types of un der­

ground openings in r o ck and soil (Fig. 2 .2).

2.2.2 Cut-and-Cove r Type

Cut-and-Cover type und erg r ound nu cle ar reac tor containments are

suitable for siting in soils and weak r o c k. The cut-and-cove r concept

can be used in a ny geological fo rmation and some times it is th e on ly

configuration which can contribute to a solu tion of siti ng problems

under the na t ural environmental conditions of many r e g i ons like cen tral

Europe and special ly Germany. Ref. 1 3 indicated that not only is the

cut-and-cove r technique feasible and s uitable f o r a ll reactor types.

bu t a lso a ppears t o i ntroduce lit tle additional cost whi le accomplishing

t he objective of confineme n t of radioactivity most effectively (by

controlling the permea b i li t y of the filli ng material) .

Fig. 2 .3 p r e s en t s t he semi-embedment and the total embedment config-

urations proposed by Ref . 53 as a lternative concep ts for th e cu t -and-cover



type underground reacto r conta inments.

2.2.2.1 Construction

The construc tion technique of the cut-and-cover reactors does not

propose any ex tens ive modifications of plant design so that most of

the experience acqui red to da te with aboveground plants can be t rans­

fe r re d to t he new si t ua tion [53] . Acco rding to t he present s tate-of-

th e- art, s lu rry tre n ch es an d f reez i ng t echni que s may be us ed for the

vertical walls of t he excava tion [54] .

2. 3 Seismic Loa di ng

2.3. 1 Gene ral

The dete rmi na tion of the r e s ponse of any s tructure to ea r thquake

excitation is complicated by the dependence on a l a r ge number of facto rs,

such as nature and intensity of the ea rthquake , structural details

(shape , thickness ... etc .). const ruction materials, siting (aboveground

or underground) . and the surrounding medium (rock or soil) .

2.3.2 Effect of Dep th

Theo retical s tudies car ried out by Krishna and Arya [52 ] indi ca t e

that displacements a re greate r i n sof t soi l t ha n in rock . However . i t

is pos s ible that fo r a l arge 8011 l a yer a grea t deal o f t he e ne rgy wou ld

be absorbed i n th e subsoi l l aye r s an d the motion fel t a t the s ur face

co uld be small. Observations of th e El Cen t ro Ear thquake r ev eal ed th at

if the t h i ckne s s of the clay laye r had been only 30 ft. , ra ther than

100 ft., the maximum acceleration could have been about 0 .5 t o 0.6g

instead of 0 .13g [97] . The r es ult s of the measurements during ea rth­

quakes in Japan show that the unde rground acceleration is 1/2 to 1 / 3



that at the surface , while at similar depths there is little difference

in displacement between the surface and underground [97 ] . Similar

observations were obtained by Saita and Suzuki [ 80] . Nasu [66] has

observed that the amplification of earthquake motion aboveground, compared

to that in a tunnel 500 ft . below the ground surface decreases as the

period of the earthquake i ncreases . Ref . 75 indicated that the seismic

loading on an underground structure located in a rock continuum is not

affected by the amplification of body (P and S) and surface (L) waves

due to soil l a ye r s. Glass [38] indicated that " whe n the cavity is located

deeper than about one quarter wave l e ng t h from the surface , the structure

is not affected by the doubling of displacemen t amplitude which occurs

upon reflection of body waves at the earth's surface".

2.3.3 Type of Medium

It has been noticed during all strong earthquakes that within the

same locality even similar structures suffer unequal damage . Structures

on , or in rock usually suffer the least (Tandon [91] and Kanai [ 49 ] ), while

those on loose soil or on the surface suffer the worst damage (Okamoto

[71 ] and Kanal [ SO] ) .

In the study carried out by Ref . 91, on seismic intensity for

foundations on the soil surface and on rock , for the Assam Earthquake.

it has been found that the intensities experienced in rock are far less

than those of soil foundations. During the Anjar Earthquake of 1956 ,

the eastern portions of the town of Bhuj, in which the buildings were

founded on alluvium, suffered extensive damage , while the western portion

of the town founded on rock suffered very little damage . Ref . 97 pointed

out that soft soil amplifies the motion due to its low density and stiff­

ness (elasticity modulus). A detailed study by Mithal and Srivastava

[63] indicated that areas with compact, massive and consolidated



rocks, and de nse and compact boulder strata wi th low water content,

be have as stable masses du ring earthquakes .

2 .3 .4 Tunnel Damage During Earthguakes

Experimen ts ca rried out by Bulson [1 7] on sq uare tubes buried in

compac ted sand and subjected to static and dynamic (b last) loadings

i nd i ca t ed that "al thou gh flexible structures have definite advantages

statical ly , rigi d t unn e j s migh t be more suited to t h e ca rrying o f

dynamic loads".

Ref . 71 has made an extensive study of tunnel damage due to t he

earthquake loading i n Japan . The find ings of this study are : i) for

the same type of medium, t he damage ra tio is highe r in tunnel sectors

with t h i ck lining than in sections with thi n lining , it) r e ga r dl e s s of

the type of medium, t he damage r a tio is also highe r in thick lin ings,

and iii) t he da mage ratio is higher fo r t unnels wi th poor ground geology.

The conclusions f r om the s tudy indicate that the safety of a t un ne l at

the time of an earthquake is i nfluenced by t he co n di t i on s of t h e na tu ral

ground, and t ha t whe n t hese co ndi t ions are poor, they cannot be over­

come by an i n c r ea s e in t he lining thickness .

2.3.5 Conc l us ion

Gene rally , displacements, accele rations , and veloci ties are higher

at the ground s urface than t hose be low it . Structures in, or on a weak

medium , will be subjected to l arge r seismic effects than t hos e for a

relatively stiff medium . Although it is t hought tha t an increase of

l i n i ng thickness can better resist seismic forces, in some cases, it

results i n an increase in seismic stresses producing a reve rse effect .

Howe ver , t he deep underground siting concept offers definite seismic



load r e duc t i on .

2 .4 Analysis

As this investigation is restricted to ' cut - a nd- c ove r ' type nuclear

r e acto r containments in soil. the review of analytical procedures

di s cus s e d in this section will be confined to soi l si ting.

Analyses for underground siting in r o c k have been presented in

many r e f e r e nc es . Ref . 75 presented comprehensive r e v i ew with extensive

bibliography. Static analyses hav e been presented by Sigvaldason [86 ],

Bens on , Kierans and Sigvaldason [9) , Yu and Coates [102 ) , Kulhawy [57-59 ) .

Ghabou s s i and Ranken [3 71 , Chang. Nair and Karwoski [20 ) , Chabouas f ,

Wil s on and I s enbe r g [ 36] , and Ref . 2. Dynamic Analyses have been

carri ed o ut by Blakey [ 14 ] , Moselhi [64 ). Sheha (70 ) . Beale and Reddy

(41], Reddy and Bea le [74], Murthy a nd Reddy [65 ] , and For res ea .l , Reddy

an d Her rma nn [35].

2 . 4 . 1 Sta tic Analysis

Compared to the relative ly new fie ld of geotechnical engineering.

the earth-structure interaction problem is very old. The limitations

of t he Coulomb [28 ] and Rankine [ 73 ] theories in determining the resultant

of ea r t h pressure acting on a simple retaining wall are due to high

i deali za t i on of the so11 and the wall; besides, the deformation of the

wall cannot be obtained .

Information about wall deformation associated with more realistic

conditions has been obtained only through experimental work such as

that of Terzaghi [92 -94 ]. Rowe and Peaker [ 79 ] . and James and Bransby

[48 ] . Elastic analyses (Betenyi [42 ] and Finn [34 ]) and limit t he o r i e s

(Hans en [40] , Drucker [3 2] and Sokolovski [ 88 ]) have been deve loped to
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account fo r the effect of wal l deformations . Fo r unde rground structures,

Bu rns [18] developed a the ory for a n e lastic cy lin de r in a n i s o trop i c

linearly e lastic field l oade d by a unifo rm static su rface pressure.

Allgood [ 3 , 4 ] simplif ied the equations governing elas t ic behaviour and

indicate the ir applicabili ty t o design if proper effective soil moduli

are used. In vi ew of t he limitations of th e a bove a na lytica l solutions

in simulating r e al p rob lems [e cg , real material behaviour , foundation

deformation and the effect of construction sequence). empirical and

semi-empirica l t echniq ue are genera l ly us e d to design many earth support

systems o t her t ha n r etaining wa l ls . P e ck [ 72] a nd Dee re, Monsees a nd

Schmidt [ 31] have updated t he available empirical techniques in the case

of lined t un ne l s .

At k i nson a nd Cai r ncross [6] s t ud ied the s tabi lity of a s hallow

unline d circula r t unnel s uppo r ted by a unifo rm in ternal pressure

using theory of plasticity. Neg lecting the soi l self-weight, they

obtained relatively s imple solution f o r the pa r t icual r case of a

uni fo rm p ress ure a p plied a t the soil s u rface. The solution ob taine d

is of limi ted use in evalua ting th e stability of t unnels in r eal soi ls

whose self-weight may itself cause instability in tunnels . To inves t i ­

gate this p roblem fu rther. Atkinson , Brown and Potts [ 7] carried out

a series of l a bora t o ry t e sts on un l ined c i rcu l a r t unnel s i n dens e s an d .

The res u lts indicated that t he s tabili ty of a tunne l in de nse sand is

approximately independent of its depth.

With the advent of the h i gh-s pe e d compute r and t he r a p i d deve l op me n t

o f nume r ical me th od o f an alys i s, t he f i nite e lement me th od pr ov e s to b e

one of t he IDOst powerful nume rical techniques fo r t he stress analysis

of complex structural systems because of its ability to silllJlate r eali s t i c
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sailor rock behaviour and complicated boundary conditions and construc­

tion sequences . Clough [23 ] presented a state-of-the-art report on the

application of the finite element method to earth-structure interaction

in which he concluded that the finite element method is " a n analytical

tool which can realistically simulate almost any class of earth-structure

interaction problem". The finite element programmes developed by Wilson

[99, 100 ] and Farhoomand [33] have been modified and used by Nossier

and Takahashi [68] to study the behaviour of buried cylinders in soil

and the effectiveness of backpacking due to static and dynamic surface

l oadings . Bjerrum. Frimann and Duncan [12J have presented a s t ate-of-.

the-art report on earth pressure on flexible structures in which the

behaviour of anchored sheet pile walls has been examined in the light

of model tests, field observations, theoretical analyses and the finite

element method .

2.4.2 Dynamic Analysis

2 .4 .2.1 General

External dynamic excitations for totally embedded structures are

from ground motion due to nuclear blasts or na t ut-af earthquakes. Com­

parison of earthquake and blast-induced ground motion presented in Ref.

75 indicate remarkable similarity in the character, intensity, duration ,

frequency content and spectral shapes of the two motions.

Allgood (5 ] presented a summary of the available knowledge of so11­

structure interaction as it pertains to facilities that provide pro­

tection from nuclear weapons effects. Howard, Ibanez and Smith ( 44]

presented a review and evaluation of the design standards and the

analytical and experimental methods used in the seismic design of



12

nuclear power plan ts .

Various factors that affect the seismic loading on aboveground

and underground structures are discussed in detail in Sec. 2 .3 .

2.4 .2.2 Methods of Analysis

Four different analytical procedures can be used for soil-structure

interaction problems. Analytical and semi-analytical solutions, the

lumped parameter method , and the finite element method.

Analytical and semi-analytical methods available up to the present

time (1977) are applicable only for simple geometry and loading (e s g ,

Yoshthara , Robinson and Merritt ( I OI] . Dawkins [30 ] t Ali-Akbarian [2] .

Novak and Beredugo [69 ] . and Tajimi [90 ] ) . Therefore, they are not

practical for the complex configuration of a cut-and-cover structure

in media wi th varying properties.

2.4.2.2.1 Lumped Parameter Method

Soil-structure interaction is represented by a system of lumped

masses. springs and dashpots whose constants may be determined from

the elastic half-space theory (e .g . Bielak [ 11 J and Ref. 69). The

applicability of this approach to soil-structure interaction of the

underground structure, specially the 'cut-and-cover' type, seems to be

very limited because f) available solutions for large media have only

been derived for horizontally layered media configurations. 11) impedance

functions have been derived only for simple foundations [44 J, and iii)

it is difficult to simulate the surrounding medium and filling material.

Hall and Kissenpfennig [39 J presented a comparative study on the responses

of deeply embedded foundations obtained by the finite element and the

lumped parameter analyses and concluded that ' comp l e x soil sites where
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the soils are not horizontal layered must normally be analysed using the

finite element approach ' .

2.4 .2.2.2 Finite Element Method

The fini te element method offers a powerful tool in interaction

problems involving foundation embedment, soil media with non-horizontal

layers and other geometric irregularities . and the coupling between

adjacent structures.

The solution of soil-structure interaction problems by the finite

e lement method currently fo llows one of the two a lternatives : L) solution

with the structure and soil coupled as a single large model, or if) solu­

tion using the sub-structure approach. Ref . 44 indicated that " due to

the substructure method of separately performing modal extraction on

the soil and the super structure, and then performing a coupled analysis

using modal synthesis , t h e r e are apparent cost advantages to the tech­

nique for the large dynamic model often required for nuclear power

systems" •

Three numerical methods are used in the solution of the equations

of motion; modal analysis, direct integration and the complex response

(transform) method [6 2] . In contrast to the modal analysis method,

the complex response and the direct integration methods permit using

variable damping in each element.

Although the finite element method is capable of solving non-linear

three-dimensional dynamic analysis problems, analyses carried out to

date have been mainly two -dimensional for reasons of economy and

computer size . Investigations carried out by Lu co a nd Hadijian [61]

have indicated that it is not possible to obtain a two-dimensional
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re pr es e ntat i on which app roximates both the dynamic stiffness and the

radiation damping of the three-dimensional model . and that t wo-d ime ns i onal

ecdeIs for analysis of n uclear pove r plants lead to unde restimation of

the maximum response. Ref. 83 pointed ou t t ha t errors up to 20-30%

may occur due t o the two-dimensional analysis of three-dimensional

systems. Berge r . Lysme r and Seed [10] i ndicated that goo d ag reement

be tween two an d thre e-dime ns i onal mode ls of t h e r e s pon s e for po ints

be low t he so i l s ur face.

Ana lysis o f th e soil-s t r uc t ure interaction u s ing the f inite

e lement method ass umes that the moti on s in t he system a re genera ted

by s hear waves tra vell i ng upwa r d . Ref. 83 i ndicated t hat while t h is

assumpt ion is a po tential sou rce of e r ror , i t is consis ten t with t he

normal simplification of complex e ngineering analysis purpose ; and

it is a r ea s ona ble r e p r e s e n tat i on of t he actual conditions . Ref. 44

i nd i ca t ed that non-vertically t ravelling seismic wave s may be significant

in some cases .

2 .4 .2 .2.3 Finite Elemen t Modelling

Ref . 61 i nd ica ted t hat ex t reme ca re must be t ak e n i n mode lling t he

ac tu al so i l -s t r uc t u re sys tem wi t h a two-dimens i on al fi ni te e lemen t fo r

dynami c an aly s i s . Model dimen sion, mesh s ize , a nd s oil properti e s

should be carefully chosen t o simula te t he ac tual system prop erly .

(a) Boundaries

To overcome the problem of r e fl ec tion at rigid bo undaries , Ref. 14

carried out the analysis of an underground cavity subjected to a short­

duration step pulse of few milliseconds so t ha t t h e wave does not

re fl ec t from t he boundary before the analysis ends. For l on ge r time
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durations, Kuhlemeyer [5 6J and Castellani [19 ] us e d viscous absorbing

(transmitting) boundaries . Ref. 54 used displaced boundaries to simulate

an infinite space . Ref . 62 indicated t ha t if the soil damping is h i gh

(12 % or more), energy radiating outwards from the vicinity of t he struc­

ture is absorbed quickly , and t he free fie ld condi tions are developed

within a distance of 2 to 2 1/2 t i me s the mode l de pth. Other studies

[61], based on continuum and finite element comparisons . indicated tha t

placement of the boundary at 4 t o 6 time s the fo undation width is

required.

(b) Mesh Size

In applying the fini te element approach to dynamic problems, the

e lement size should be small compared to the wave length. A fine mesh

is required to ac h ieve a dequate frequency transmission capability within

the frequency band of i nterest. Investigations carried ou t by Costantino

and Lufiano [ 26} indicated t ha t the mes h mus t be able t o transmit two

or more times t he required upper frequency of interest to enable adequate

computation of motion. To simulate the propagation of waves adequately ,

Kuhlemeyer and Lysmer [55] proposed an empirical formula tha t the

e lement size should not be larger than 1/4 or preferably 1/8 of the

shortes t wave length. Ref . 62 suggested that a va l ue of 1/5 t h e

shortes t wave l e ngth gives acceptable results. Comparison of the resul t s

of the f ini te e lement analysis fo r fi ne and coarse meshes , an d wave

pr opa ga t i on analysis ca rried ou t by Ref. 83 indicate that while the

fine mesh gave the same response spectra as that of t h e wave propagation ,

the spectral values for the coarse mesh were less than those of the

fine mesh and wave propagation , especially at high frequencies .
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A typical proc e dure of ten us ed i n finite e lement an a lys es uses

coa rse e lements away from the s t ructu re t o minimize the numbe r of

deg rees of f reedom i n the eeeb, Cos t an tino. Ki ller and Lufran o [27]

poin ted out t hat "the s e coarse e lements a re opaque t o the h i gh er f re­

quencies t ransm i t ted thro ugh t he finer e lemen ts , i.e. , higher f requencies

wi ll be transmitted ba ck i n to th e mesh . Thus, the coa r s e elements wi l l

act as con ve ntiona l boundarie s a t the higher f req ue nc i es t h e r eby e lim­

inating a ny advantag es thou ght to be gained by the coa rs e elements" .

(c ) Dynamic Materi al Pr ope r t ies

Mater i al properti e s r equired f or the finite e lemen t ana lysis a re

damping ratios . s hear moduli . uni t weigh t an d Po isson 's r atio .

Soil non-linear behaviour du ring s t rong ea rthquakes can be accoun ted

fo r , i n an app roximate manne r . using "the equivalent linear method",

described by t drf.ss , Dezfulian and Seed [451. and based on experimental

data co llected f rom r es o nan t column o r tri ax i al t est da ta fo r cyc lic

l oad ing conditions [82] .

Mat erial da mping is commonly i n t ro duced by de fining Rayle i gh

dampi ng matrix as a l inear combina tion o f th e ma s s and s ti ffness matric es.

According t o this a ppro ac h . th e damping r atio . B, is f req uency

dep ende n t; has l arge va l ue a t high a nd low f req ue ncies and hen ce modes

of vib ra tions a t h i gh and l ow f req uencies a re damped ou t. This ca n

be a serious limita tion i n the analysis of structures co ntai ning critical

equ ipment wi th high frequency charac teristics such as nuclea r powe r

plants [83]. Recent development to eliminate this effec t have been

described by Ref. 62 by usi~ a complex modulus . G*. defined as
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G* ~ G(l~2B2 + 2i1l~ 2.1

where G'" shear modulus. Ref. 39 indicated t hat the controlled damping , cal ­

cu la ted a c co r di n g to Eqn 2.1.aprees very well with the measured va l ues.

Ref. 83 studied the free field response of a l ay e r e d soil using

wave propagation analysis and t he fini te e lement method with L) con trolled

damping, and ii) Ray leigh damping. The res ults i nd icate that while

t h e r e s pons e spec tra of the wave propaga tion analysis and the fi ni te

e lement method us ing co ntrol led damping were the same , t h e results of

the finite element method us i ng Rayleigh damping were very diff eren t from

those of t h e wave propagation ana lys is. This implies tha t the high

frequency components are damped out when us ing the f r equ ency dependent

Rayleigh damping .

The above discussion i ndicates t hat t he analysis of soil-structure

interaction us ing the equivalent linear me t hod and the cont rolled damping

r a tios (comp lex moduli) seems to l e a d to more realistic response va lues .

2.4.2.3 Finite Difference Approach

Ref . 44 po inted ou t t hat fi nite difference met hods offer a power­

f ul potential nume r i ca l too l for treating wave propagation/soil-structure

interact ion p roblems i n t he seismic analysis of nuclear containment

structures and a re also completely ge ne ral wi t h respect to media

cons titutive properties. However , the s e met hods have received little

a ttention to date by analys ts dealing with so i l-structure interaction

problems in nuclear power plant design in spite of thei r "higher

computationa l e fficiency t h an finite e lement methods for certain c lasses
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of dynamic problems" [44]. A two -dimensional axisymmet ric finite

difference computer programme - AFTON [95] - ha s been developed and

used by Agbabian-Jackson Associates II] to examine t he t ransien t

response of non-un i f o rm axisymmetric structures embedded i n l ay e r e d

media when s ubjected to un i form transient pre s su r e pulses.

Table 3 presents a bri e f comparison between finite diffe re nce .

finite elemen t , and contin uum methods p r e s e n t e d in Ref. 1.

2.5 Review of the Previous Work

Investigations ca rried out on the dy namic a na lysis of cut-and ­

cover type un de r ground nuclear reactor containments are p r es en t e d in

some detai l in t h i s section.

An i nitial s tudy was carried out by Blake , Ka'r'penko , McCauley and

Walter [1 3] fo r a c ur -end-cover t ype und e r gro un d nuc lear reactor con ­

tainment. The study was based on a postulated 1l00- MWe powe r plant

containment constr uc ted in a n ope n pit in soil and then backfilled

wtth selec ted material. The backfill was chosen fo r its well-defined

10\00' permeability so tha t it will confine , wi thi n a small envelope, any

r adioac tiv i t y r ele a s e that might result f r om a r upture of the co ntainment.

The containment foundation was p laced 340 ft. be low the ground level.

The soil cover was 160 ft. so as to provide a n omi na l 70-psia static

ove rburden pressure t o ba lance the internal design pressure . The rein­

forced co ncre te co ntainment, with stee l lining, s t udied had a semi­

circular roo f of a di ame t er of 130 ft . and ve rtical walls 90 f t. h i gh .

The seismic and overb u rden effects on the contaimnen t were determined
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using finite element analysis. The fini te elemen t mode l vas 500 ft .

dee p and t he side boundaries were p laced 500 ft. f rom t he axis of

syumetry. Two types of l oa d i ng were cons idered : an ove rburden l oa d i ng

and horizontal ea rthqu ake l oad i ng. The st resses i n t he medi um an d the

con t a i nmen t were ob tai ned from s ta t ic and dynami c ana lyses . The r esults

indicat ed tha t t he s ta tic ove rb ur den l oading p roduces s t resses much

greate r th a n thos e produced by the ear thquake l oa ding. Ana lyses were

sade to ve rify containment afte r a catas t rophic r e ac t or accident followed

by fai lu re of the containment structure . Since the proposed method

of excavation permits selec tion of backfill mate rials , a good selection

of low permeability fi ll r e su l t s i n preventing radioactive r el eas es i n

even t he wors t cases of nu clear accide n t . The co nc l us ions f ro m t h is

s t udy were: i ) the ad dit ional costs o f und ergrounding a r e n egligible,

it) harmful r a di ation ca n be con fine d . iii ) no n ew t e chnology is r equired,

and t v ) s tatic loading produces greater stresses i n t he containment

compared to earthquake l oad i ng .

Moselhi {64] studied t he r e s pons e o f an underground cavity in r oc k

to a s tep pu lse plane wave . The cavi ty was lined wi t h a 1 i nch thick

s t ee l l ining . Pa rame t r ic s t udies were ca rried out on the shape of t he

cont a i nme n t , i s olation of th e structure using e ne rgy ab sorbing mat erial,

and pr operties o f the ba ckf ill fo r a c ut -and -cove r type s truc t u re.

The plane-strain fin i te e lement lDOde l was 42 ' l on g and 38 ' deep . The

structure used fo r the cu t -and-cover had a semi-circular roof and

ve r tical walls . The ecde.t boundaries were of the rigid t ype and t he

du ration of t he ana lysis was confined to 3 milliseconds t o res t ric t
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the analys is t o th e time period before the fi rst wave reached the

nearest bou ndary.

For the cu t -nnd- cov er structure , normal an d h ea vy weigh t co nc r e t e ­

eac h with 3 dif feren t e las tic moduli - were used as backfi l L The

r esu lts of the effect of the density and the stiffness on t he structure

and t he medium r es po ns e indicated that neithe r the density of the filling

mate rial nor i t s s tiffness as separa te va l ues can grea tly affec t t he in­

t ernal fo rces i n t he s t ruc tur e , but a prope r comb i na tion o f t he values

of th e two prop er ties ca n l ead to a signific ant r educt i on i n t he s t r a i n­

i ng actions of the structure and t he s t resses I n t he medium. The r es ul ts

of t he analysis of the underground cavi ty indicated t h a t the high

horseshoe shape is t he best . A reduction. as high as 80 %. in t he

stres s es in t he crown element of the s t ruc ture was ac hieved by isola ting

the structur e us ing ene rgy ab sorbing mat er i a l.

Kro·ger . Altes. Eache 'rfch , and Kas pe r (54 ] us ed LUSH to study the

effect of embedment dep th of t he con tainment on t h e soil-structure

in terac tion. Three configurations were used: aboveground , semi -embed­

ment a nd total embedment. A pressu rized wate r reac tor (1300-HWe) of

Kraf twerkun i on-design se rved as a r eference plant f or which a c ut -and­

cover plant design was t o be developed . Thr ee different ac ce l era tion

t ime histories . de rived f rom actua l measuremen ts and from artific ial

syn t hesis , were used to s imu la te ea r thquake excitation. The r e s u l t s

of the analysis indica te that i) the three acceleration time histories

gi ve dif f ere nt peak stresses due t o di f fe r ent spec t ral intensities .

but th e acceler ation pa r t e rns , a s fu nc t ions o f depth . a re s i milar .
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They do not change significantly even with variations in the dynamic

shear modulus and critical damping of the soil layers , it) high shear

moduli and low damping ratios give larger stresses . iii) the acceleration

patterns are strongly influnced by the thickness of the soil layer between

the rigid base and the foundation of t he containment. This phenomenon

Is independent of the level of the embedment, tv) in general . the embed ­

ded containment is less stressed than the aboveground one. and v) the

shift of maximum response towards higher frequencies . for increasing

depth of embedment, was confirmed by this study.

2.6 Summary

A review of the underground concepts. factors affecting seismic

loading on the structure. analysis procedures. and previous work on the

cut-and-cover type underground nuc lear reactor containments have been

presented . Additional literature reviews are presented in Chapters

III and IV.



PROBLEM FORMULATION

3 . 1 General Description

The state-of-the-art for underground siting l a gs considerably

behind that for aboveground siting. As indicated in Chapter II , there

a re many questions tha t have yet to be answered in t he underground

siting co ncep t. This project a ttempts t o answer some o f these questions

by a study of the dynamic response of cut-and-cover type underground

nucl ear reactor containments , s ubjec ted to earthquake or b last- type

excitation.

The structure considered is a reinforced concrete containmen t for

a 1IOO-MWe power plant buried in de nse sand medi um. The containment

s t r uc t ur e , excavation an d b a ck fill for a ty pical case are shown in

Fig . 3-l(a) . The profile of t he s i te and the soil properties are shown

in Fig . 3-l(b).

3.2 Computer Programmes Used in the Analyses

In the ana lyses described here in , computa tions were made us ing the

recently developed prog ranunes t hat pe rmit t he us e of variable shear

moduli and variable damping in the soil. The free field response and

the response of t he soi l -s tructure system were determined by the plane

s t rain finite element prog r anme , LUSH, developed by Lysme r , Udaka , Seed

and Huang [62). The nonlinear soi l properties are taken in to account

in LUSH by a combination of t he equivalent linear method described by

Ref . 45, and t h e method of complex r e s pons e with complex moduli developed

i n Ref . 62 . The lat ter method makes it possible t o use different

22
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damping properties for each element of the finite element mode L The

high frequency ranges , wh i ch must be consdiered in t h e s tudy of 80 11­

s t ruc t ure intera cti on f or nu clea r powe r plants . are a lso t ak en into

cons i de r a t ion in t hi s ap p r oach .

The f r e e f ield r espons e ob tai ne d b y the finite element met ho d

us i ng LUSH was checked using t he compu ter progr amme, SHAKE, developed

by Sch nabel , Lys me r an d Seed [8 1 ) . SHAKE is based on a one-dimensional

vertical vave propagation method for horizontal soil l a ye r s t ak i n g t h e

non-linear soil prope r ties in to aCCOWlt .

The equa tions of mot ion of a soi l -s t ruc ture sys tem . exc i ted by

earthqu ak e. an d t he ir sol u t ion using the t wo- dimen sion a l plane s t r a i n

Unite elemen t pr o gramme . LUSH. a re described in th e following sec t ions .

Brief descrip t ions of LUSH and SHAKE a re presen ted i n Appendix B.

3 .3 Analytical Procedure

3.3. 1 Equa tions of Motion

The equations of motion for undamped vibra tions o f a soi l -s truc ture

finite e l ement sys tem , exci ted by ear thquake . can b e wri t ten as

[M]{U) + [K]{ u } • - {m}, ( t ) • . . . . . . . . . . . • .. • . . 3.1

whe r e

{uJ • the noda l poin t d i s p l a c emen t s relative to the fixe d base .

{K] • t he s tiffness matrix .

[H] • the mass matrix (lumped or consis ten t) .

Y(t ) .. th e give n input a c cele r a tion a t t h e rigid ba s e with the h ori zon t a l

and ver t ical comp one n ts:
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•. . . . . .• ..• •. .. . . .• ..• . . . ..•. 3.2

in which C
h

and C
v

are seater cons t an ts . and

{m] - t h e load vecto r co rresponding t o ; - 1 related t o t he mass matrix

[M] through

{m} • [H](e,, (V
h

} + C.tV)} • • • . • • • •• .• • • • . .• • • 3 .3

As each nodal point has two degrees of freedom . a ll t h e above

vectors have the dimension NF • 2 x the numer of free nodal points .

and the matrices [H] and [K] have the dimension NF*NF.

3.3.2 Response to Harmon ic Input Motion

The met hod of complex r esponse [6 2]. In its basic fonn, assumes

that th e input mot i on is ha rmonic wi th th e freque ncy w ( radi an / s ec. )

)t( t) _ Y.ei wt
. • • • • . • • . . • • . . • . . • . • • .. • . • . • . . . . 3.4

where t h e amplitude Y may b e complex . This implies that the response

is also harmoni c

{ u} _ {u } • e i wt • . .• .•. •• •. • .• •••• . •• • ••• . . . • 3 .5

wher e {U} i s a co ns tant. pe rh a ps a complex vec tor. Substitu tion of
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of Eqn . 3 .5 in t o t h e e qua tions of motion 3 .1 gives

([K) - .2 [MJ) {u} = -Y . { m] • •• • • • • • • •• • ••• ••• • •••• • •• • •• • 3 .6

which i s no thing but a set of linear eq uat ions i n the unknown s t ui .

Eqn . 3.6 can be solved by Gaussian e limination if w is not a natural

frequency of t h e system , and the t i me-depe nden t response {u ] fol lows

Eqn. 3 .5 wh i ch provides the complex response t o t h e complex inpu t

motion i n Eqn , 3 .4 . Si n ce t h e real part of the outpu t corresponds to

the real part o f t he input . the response t o

ye t) .. Re(Y • e i wt
) "" Re (Y) cos wt - Im<y) sin wt • • • • ••• • • • 3.7

"
u(t) = Re( {U } • e

i wt ) s Re { U} cos wt - Im { U} sin we ••• •• , 3 .8

3.3.3 Damped Vibrations

Viscous damping can be considered in t he method of complex res ponse

by us ing comp lex moduli i n the formulation of t h e stiffness matrix [K] .

Ref. 62 shows t h at by application t o a simple damped oscillator , the use

of the complex shear modul us

G* = G(1-2S 2 + 2iB Q) 3.9

will l e ad to the exactly the same ampl itudes as nodal ana lysis with a

uniform damping ratio , e. This a pproach enab les representation of

var iable damping by us i ng differen t values of G and e i n each e lement .

3. 3.4 Response to Actual Ear thquake

Actual earthquake motions are no t harmonic . Howeve r , if the motion
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is input. as a digitized record with N points, at time intervals li t . it

can be decomposed into N/2+1 harmonics of complex amplitudes, Y
s

' and

frequencies

IllS .. N:~~' S" 0, I, ..... ~ ......• . .• .. ...•....•....•. 3.10

The computation of the complex amplitudes from the given real values

is most conveniently made by a superfast algorithm known as the "Fast

Fourier Transform" by Cooley and Tukey [241.

Having decomposed the earthquake motion into harmonic motions.

EqS. 3 .6 have to be solved N/2+! times for each value of the (N/2+1)

frequency. In view of linear viscoelastic behaviour. the complete

solution can be obtained by simple superposition as follows:

N/2 till t
( u ( t )} :> Re 8=0 {U}s e S

3.3.5 Solution of the Equation of Motion

. . .. . . . . ... ... .... 3 .11

The computer progrannne LUSH solves Eqn , 3.6 using the Method of

Complex Response [62 1. In order to save computation time. the required

number of solutions to Eqn , 3.6 can be reduced according to the maximum

frequency used in the analysis. and the value of the interpolation factor

in the frequency domain . Usually. the input motion contains frequencies

as high as 100 Hz which are usually not of interest and can be neglected .

Thus Eqs. 3.6 have to be solved for only frequencies less than the max-

imum required frequency (8-25 Hz).

The number of required solutions can be further reduced by inter-

polation in the frequency domain. Suppose Eqn . 3.6 is written in the form
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([K l - w
2

[M]) {A} • - {m] . •• • •••• •••••• ••• •• • •• •••• • ••• • • • 3.12

The components of {A} are called amp lification functions with smooth

functional dep endence on w. {A}s can be evaluated at, say , every

fourth frequency w
s

' 5 = O. 4 , 8•. •. • and then the intermediate amp­

lification functions can be obta ined by interpolation. The actual number

of interpolated points which can be used without the introduction of

significant errors should b e determined by trial and e r r or as shown in

the analysis described herein.

Having determined all th e amplification functions, {A}s ' 5 .. O. I,

• •••• N/2 , e i t her by solution of Eqns . 3.12 with interpolation, or by

setting them equal t o zero above the c u t - of f frequency , th e displacements

at the times k. ll.t are determined f rom

N/2 i w
s

k l1t
{U}k = Re 5=0 ( {Al s . Y.s ) e • k = O. I , N-l . ...•.. ... 3 . 13

which can be e v a l ua ted by the Inverse Fast Fourier transform me th od.

3.3 .6 Soil Non-Linear Behaviour

The above solution is applicable only to linear viscoelastic

systems but large s h ear deformations which occur in soils during strong

earthquakes introduce significant non -linear e ffe cts . Thi s problem has

been solved in LUSH using th e e qu i va l e n t linear method by Ref. 45 .

According to this method, an approximate non l i n ea r solution ca n be ob -

t a t ned by a linear analysis provided th e stiffness and damping us ed in

the analysis are compa t i b l e with th e e ffe c t i ve sh ear strain amplitudes

at all points of the s ystem . Data on s t r a i n -compa t i b l e soil propertie s
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published by Seed and IdrLss [821 is provided within subroutine CURV52

of LUSH. The strain-compatible soil properties are obtained by an iter­

ation procedure using the 'one-dimensional column study ' described below .

3.3.7 One-Dimensional Column Study

The free field response to the horizontal component of input motion

can be determined by application of LUSH to a single column of rectangular

elements representing the soil layers in the free field. If all nodal

points are allowed to move only in the horizontal direction. and if the

element dimensions are small enough (as described in Sec. 3 .4.4 .1), the

model will simulate the vertical propagation of shear waves in the free

field, and iteration will lead to the nonlinear response of the model in

the free field .

3.4 Modelling

3 .4 .1 General Description

The containment structure is placed in an open pit in 3 horizontal

layers of sand of total depth of 500' followed by a semi-infinite rock

layer. The side boundaries are placed 1010' from the structure centre

line. Because of syuunetry, only one half of the soil-structure system

is studied after introducing boundary conditions compatible with the

horizontal input motion. A typical finite element discretization of the

soil-structure system is shown in Fig. 3.2. Details of the element

disceretization of the containment structure is shown in Fig. 3 .3.

3.4 .2 Factors Affecting Computation Time

Execution time, actual CPU and equivalent CPU times required for

one run by the progranune LUSH are functions of many parameters , including
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a) the geome try o f t h e fini te e lemen t mesh ( to tal n umber of e lemen t s

an d band wi d th of the s tiffness mat r ix) . b) dura tion and t i me s tep of

t he i n put mot ion . c) maximWD freq uency use d in the analysis , d) number

of iterations on so i l proper t i e s . and e) t h e interpolation coeff ic i en t

in th e frequency domain . Specia l ca re sh ould b e gi ve n in numbering

noda l po i n ts and choos i ng th e dimen sions of the finite e lemen t model ,

element size , maximum f reque ncy and the in terpola t ion coefficient i n

o rde r t o save computer t i me. Af ter all possible minimizations of

computer t ime and s torage . the analysis of a t ypi cal case needed n OOK

computer sto r a ge. 53 min . ac tual CPU t i me and abo u t 13 hre , equivalent

CPU. The compu ter time would have be en incr e as e d t o at l e ast 8 time s

th e abo ve va l ues i f a l l the ab ove parameters h ad not b een ca re f u l ly

chosen .

I n t he fo l lowing sections , the procedures followe d to de termine

all the parameters needed in the analysis are described .

3.4 .3 Model Dimensions

The overal l dimens ions of the finite element mesh influence t he

response of the s t r uc t ur e due to t h e ac tion of the wav es ref lecting

fr om th e bounda r i es . As dis cu s s ed in Chapter II. this problem c an

be ove rcome ei t her b y t he use of ene rgy abs orb i ng b oun da ries or by

the us e of a sufficien t ly ex tensive mesh. LUSH uses the lat ter approach.

For aboveground nuclear plan t structures , it has been found that i f the

aa te rial damping in the soil is relatively high (approx. 12% of

c r it ical) , energy r a diati n g ou twards from the vicini ty of the s truc ture

i s abs orb ed relative ly quickly, and free fie ld conditions a re developed

within a distan ce of approxima te ly 2 to 2 1 / 2 t i mes th e depth of the
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model away from the structure [62 ]. I n t he analysis described herein.

the side boundaries of the model are placed 1010 ' away from the centre

line of the s tructure.

The rigid base should be placed below the foundation of the structure

at a distance grea te r than or equal to the width of the structure [62].

In the model considered , the rigid b a s e is placed 150 ' b e l ow the

s t r ucture fo unda tion for a s t r uc t ure wi dth of 95 ' .

The check on t he adeq uacy of th e exten t of t h e mesh was made for

each case studied b y comparing th e compu ted motion a t an ampl e d istance

from t he struc t u re with the f ree fie ld motion obtained f rom th e one ­

dime nsional column s tud ies a t the same e levation as explai ne d i n Sec.

3.5 .

3.4.4 Details of the Finite Element Mesh

3 .4.4 .1 Size of the Elements

The choice of e lement size in the finite e lement mesh for cases

where high frequency effects are impor tan t needs careful con trol.

Eleme nt s izes should be smal l compa red t o t h e wave l en g th o f shear

waves propagat i ng throu gh th e model. La r ge e lements are unabl e t o

transmi t mot i on wi th h igh f re que nc ies and corresponding sho r t wave

l engths . Because a s ignificant par t of the earthquake motion corresponds

to ver t ical wave propagation, the vert ical s ize of the e lement is very

important. As indicated in Chapter II , Ref . $5 proposed an empirical

rule that the ve r tical element size should not be larger than one­

quarter . or preferably , one-eighth of t h e wave length of motion . For

analysis using LUSH, Ref . 62 suggests a maximum vertical element size ,

h
llaX

• as follows :



31

h • ! A • 1 Vs . . . . . . . . . . . •• • . •.•• . • .••
max 5 s 5" f

max
3 . 14

where AS is the wave length of the shortes t wave . Va is the shear wave

ve locity in the eleme n t. and f
ma x

is the highest frequency of the analysis.

The guideline given by Eqn . 3.14, Is f ollowe d i n t his s tudy t o de termine

t he ver tical e leme n t sizes . Because the shear wave ve loci ty i n each

element is de pe n den t on the strain-compatible shea r modulus of the

e leme n t , which in t um i s de pe nden t on the e lemen t s t rai n and th e de p t h

of th e e lemen t from the g ro und s urface, the max imum ve r t ica l e leme n t

size va ri es f rom one e lement t o the ot he r (Fig . 3 .24) .

The var iable ve rtical e lement sizes are de termi ned by t r a i l and

e r ror using the one -dimensional co lumn s tudy analysis , as described

in section 3 .5 . The adequacy of t h e selected mesh size is f urther

checked by comparing t he resul ts of the one-dimensional column s tudies

using LUSH with the solution obtained using SHAKE. [81] . SHAKE computes

the free fie ld r es pons e using continuum (wave propagation) theory,

thus eliminating t.h e e rrors introdu ce d by discretization . Comparisons

of maximum accelera t ions . maximum shear s tresses and acceleration response

s pectra ob tai ne d f or the free field response using LUSH an d SHAKE are

presen ted in Figs. 3. 4 , 3.5. and 3.6 r e sp ect i vely .

The ver tical e lemen t sizes of the two d i mens i on al fini t e elemen t

eesh (soi l -s truc ture system) were chosen us ing the resu l ts of t h e one -

dimens ional coluan studies descr ibed above. Ref. 62 Indfca t.ea that the

computed response is less sensitive to the horizon tal e lemen t size , which

can be chosen several t i mes larger t h an the vertical element s ize .

However , care must be taken to avoid very e longated elements (in the

horizontal direc tion) in t h e vicini t.y of the struc ture as i ndic a t e d by
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ldriss an d Sadigh [ 47] . The analysis carried ou t b y Ref. 47 used

small aspect ra tios (typica lly ] -4) in the vicinity of the structure ;

higher aspec t ratios farther away f rom the struc ture have been used .

I n the s tudies presented herein , the h or i zon t al e lement size is

chosen to h ave aspec t ra tios of abo u t 3 near th e structure and higher

values near the side boundaries as shown in Fig. 3 .2 . The basic mode l

has 508 nodal points and 498 e lements (44 9 soil elements and 49 concrete

elements) •

3 .4 .4 .2 Nurubedng the Nodal Points

Since the computation t i me f o r LUSH inc r ea s e s porportionally with

the sq uare of t h e band width of t h e stiffness matrix , great care is

required i n numbering the nodal po ints of t h e finite e lement mesh o f

the so il-structure system in order t o minimize t h e band width. Also,

a high degree of ref i neme nt in modelling the containment s tructure wi ll

result in an increase of b and width an d, thus , an increase in the exe­

cut ion time [ 47] . Extensive ca r e has been taken i n n umbe rin g the nodal

points in the soi l structure sys tem , and many t r i al s were made to get

th e least possible value of the band width in each model (as low as 40).

3.4.4 .3 Boundary Conditions

If the fini te e lement mode l is symmetrical , only one half of the

structure can be analyzed using the appropriate bo undary condi tions ,

described i n Ref. 62, to simulate the inpu t motion an d t h e horizontal

soil layers outs ide the ve r t i cal boundaries . I n the cases studied

herei n, the model is symmetrical and the i nput motion is horizontal.

Therefore , one half of t h e soil-structure system was s tudied a nd all the

nodal po i n ts a t the vertical bo undaries were allowed to move on ly in t he
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horizon tal direc tion t o simulate the ho rizontal motion of the points

in the free field due t o t he vertical wave propagation .

3 .4 .5 Interpolati on Coefficien t KINT

As dis cu s s ed in Sec t i on 3.3 .5 , co ns i derab le s aving in compu t a t i on

time can be achieved b y inte rp o l a t i on o f the t r an sfer function In the

frequency domain . The con trolling paramete r used i n LUSH i s t he i n te r ­

polation con trol number. KINT . which is an in teger number with va lues

of power of 2 (1 , 2 . 8 • • • . etc .) . For example , if the KINT value

chosen is e ight , eve ry e ighth po i nt of the amplificat ion func tions will

be compu ted from Eqn , 3. 12 and the remaining va lues will be obta i ned by

interpolation. Ref . 62 s ugges ts t ypi cal va l ues of KI NT as 4 , 8 or 16 .

I n the ana lysis car r ie d ou t by Ref. 4 7 using LUSH. it h a s been fo un d

tha t values of 16 in some cases and 8 in t he others a re accep tab le for

the analysis . To de termine the highes t value of KINT acceptable for t h e

analys is carried out in t h i s study, one -dimensional column studies were

carried out using values of 4 , 8, 16 and 32 . Compar isons of accelera­

t ion r e s pon s e spec tra a t nodal po i n t 11 and the maximum accelerations

in the soil pr ofile using th e above v a l ues of KINT , as s h own in Figs .

3.7 and 3.8 , i ndica te the maximum a c c eptable va l ue t o be 16 .

3 .4.6 Maximum Frequency

A mos t importan t decision to be made is the choice of the maximum

frequency to be included in the analysis . This frequency will , more

than anything else , i nf luence the accuracy, the fini te element dimensions

and t he cos t of th e analysis. The compu tat ion time is proport ional to

t he maximum f reque ncy cons i dered du ring the ana lys i s , fur the rmore ,

smalle r e lements a re requi red f or h igh f r equen cy analysis. It h as been
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shown t hat t he compu tation time Is propor tiona l to a t l e a st the fou r th

power of t h e maximlllll frequency (6 2J . Hence , it Is very importan t not

to conside r freq uencies h igher t han those that are absolutely n e ce s s a ry.

Ref . 47 pointed ou t tha t t yp i cal freq ue ncy va lues of 15 t o 25 Hz are

used in the soi l -s truc t ure analysis involv ing nuclear power plants, and

t hat most inte raction effects between the struc ture and t h e s urround i ng

so U woul d i nvo lve freque nc ies well b elow 20 Hz . Tak i ng the ab ov e

f actors into a c count fo r this an a lysis . i t wa s decided t o r etain fre-

quen ci e s up t o 20 Hz a s us ed b y Ref. 47. To save some co mpu te r time,

l ower va lues o f maximum f r eque n cy (10 and 15 Hz) have be en us e d fo r

the i nitial s teps of t he iterative procedu re .

3 .4 .7 Dynamic Proper ties of Soil

The basic material properties t o be specified for each element

using LUSH are : the unit weight . Poisson 's r a t i o and shear modulus at

small s trains (10- 4%) . I n addition , estimates of the strain-compatible

va lues of shea r modulus and th e damping ratios i n each e lemen t are

neede d t o t ak e i n to account nonl inea r s oi l beh aviou r .

The shear modu l us a t smal l s trai ns in an e lemen t a t dep th y , be low

th e ground s urface , i s ob tai ne d using the modul us pa r ameter K
2max

and

t he fo llowi ng equation:

Gmax(Y) '" 1000 K2max [ o~ (y )] ~ . . . . • .• . .•• • . • .• . • . .•• . . . .••• 3 . 15

i n which

G
max

• the shear modulus at small strain i n lb/f t 2 •

o~ (y) • effective mean nomal stress in Ib / ft
2

at dep th

y which can be ob tained f rom the e qua tion
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3 .16

K
O

is the coeff icein t of late ral pr es s u r e a t res t .

and a~ is t he e f fec tive ve r tical pressu r e at dep th y. Val ues of Poisson's

rat io , uni t we i ght, K
O

and K
2max

for e ach soil layer are shown i n Fig .

a.i .s.

Ini t ial e s t i ma tion of th e s t raIn-compa t i b le so f I proper t ies t o be

us ed in th e s o i l - s t r uc t ure model was ob t a i ne d by an iterative pro ce dure

using th e on e-dimensional co l umn s t udy . The s e values were considered

as ini tial soil properties ( sh ea r modulus and fra c tional damping) in th e

finite e lemen t mode l. The actual comp a t i ble mod ul i a nd da mping ratios

f o r t he so l I i n the so i l -st ruc ture intera ct i on analysis were de t e r mined

wi t hi n a few i terations (typically one t o three) . Strain-compa t i ble

damping and modul us values obtained by t h e one-dimensional column

s tudy a re shewn in Figs. 3.9a and 3 .9b.

3.4 .8 In put Hot ion

The fini te e lemen t analysis r eq uire s a base motion f or excita t ion

of t he two-dimen sion al mode l. Because th e con t ro l motion i s t ypica lly

s pecif ied a t s ome point in t he f ree f ie l d , i t i s n e ces s ary to dete rmine

th e motion tha t would h av e to dev elop in an underlying rock-like formation

t o pr odu ce th e s peci fie d motions at th e co n trol point (83). This can b e

accoop lish ed by us ing SHAKE .

As SHAKE was not available a t the commenceme n t of t he work , t h e

base 1II0 t ion of t h e samp le problem in QUAD-4 by ldriss , Lys me r, Hwan g

and Seed [46 ) was chosen as the base motion of the finite elemen t model.

The base motion in Ref. 46 was due to the acceleration t ime history

reco rded at Ta f t during the 1952 Kern Coun ty earthquake . When SHAKE
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became avai lab le. i t was used to check the free field response ob tained

by LUSH. The t i me his tory , accelera tion spec trum and Fourier spectrum

for the compu ted base motion us i ng SHAKE are shOW'll in Figs. 3.10 . 3. 11 .

and 3.12 respec t ively .

3 .4 .8 .1 Time In te rval

The t i me interval of the di gitized acce lera tion va l ues should he

small eno ugh to ens ure t hat th e eart hquake record co n tains frequencies

higher than the maximum f reque ncy us ed in th e ana lysis . The highest

freq ue ncy con t a i ned in the r eco rd , h f' i s

h
f

- l/2!J.t •••••• . . .•••• • . .• . . .•• . . .• . .• . . . .• 3 .17

As the i n put motion is digitized a t a t ime interval, ~ t • 0.01 sec .•

the highes t frequency is 1/2 x 0 .01 • 50 Hz which Is h igher than the

chosen maximum frequency (20 Hz). Then the time in terval of t he earth­

quake record is small enough to ob tain frequencies highe r than t h e

maximum f requency .

3. 4.8 .2 In put Motion Dura tion and Qui et Zone

In o r de r t o s i mulate th e fin i te durati on of ac t ua l ea r th quakes .

i t is ne ce s s ary to introdu ce a " qu i e t zon e" a t the e nd of e ach cycle

t o allow s uff icien t time for th e viscous da mping of the sys tem to

at tenuate th e response b e f or e t he commencement of the n e xt cycle .

Ref. 62 states tha t because soil damping is high. the quie t zone

usually needs t o be on ly a few seconds long. The number of trailing

zeros required depends on the frequency characteristics and the damping

of the sys tem ; it mus t be determined by tr i al and error using the one ­

dimensional co lumn s t udy . The numbe r of ze ros i s considered s uff icient
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if the output motions are attenuated within the period of the motion.

It has been found from the results of column studies, shown in Figs.

3.13 to 3 .17. that a quiet zone of 3 sec. length is sufficient to

attenuate the motion.

As the total number of the digitized earthquake values for analysis

using LUSH must be a power of two (1024, 2048, 4096 •. . . etc.). it was

decided to use 2048 points including 348 zeros which means that the total

duration of the earthquake is 20.48 sec. including 3.48 sec. quite

The base motion was considered horizontal with a maximum accel­

eration of 0.15g.

3.5 Numerical Illustrations

This section presents numerical illustrations for a) the free

field response of sand medium using the one -dimensional column study .

b) the effect of the vertical size of the element on the transmission

of the vertically propagating shear waves in the free field, and c)

the response of the soil-structure system for a typical model.

3.5 .1 The Free Field Response

The free field response of the sand medium has been obtained by

the one-dimensional finite element column study using LUSH and checked

by the wave propagation analysis using SHAKE. The modelling is shown

in Figs. a.isu) and 3.19 . The strain-compatible soil properties

(shear moduli and damping ratios), used in the finite element analysis,

are presented in Figs . 3.9a and 3.9b. The strain-compatible soil

properties were determined as described in section 3 .4.7 in four ite­

rations . Comparisons of the maximum horizontal accelerations, maximum
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shear stresses and response spectra, obtained by SHAKE and LUSH. are

presented in Figs. 3.4 , 3.5 and 3 .6. Time histories of the displace-

ments, accelerations and shear stresses , and acceleration spectra at

different depths are presented in Figs. 3.13 to 3.17 and 3.20 . Plots

of the maximum shear stresses, maximum shear strains and shear wave

velocities are presented in Figs. 3.21 , 3.22 and 3.23.

3 .5.2 Effect of Element Size on the Transmission of the Vertically
propagating shear waves

Vertical element sizes for the one -dimensional column studies

were determined by trial and error using a simple mesh with a constant

element height of 15 it. (Fig . 3.1811) as the initial mesh to determine

the minimum number of elements. This has been achieved by choosing the

maximum element size that satisfies Eqn. 3.14. Comparison of the maximum

element heights, computed from Eqn . 3. 14, and the chosen element heights

for the free field response (Mesh No.1 Fig. 3.18) is presented in

Fig . 3 .24 . The free field response obtained using this mesh was checked

using SHAKE as explained in section 3.4.4.1. However, to study the

effect of element size on the transmission of the vertically propagating

shear waves in the medium, and on the free field response, the responses

with two other meshes, of constant element heights of 15 and 20 f t , ,

(Fig. 3 .18) were compared to the variable element size mesh used before.

Comparisons of i) the maximum shear stresses . ii) the maximum horizontal

accelerations, and iii) acceleration spectra at t h e ground surface and

at a depth of 40 ft. for the three meshes , shown in Fig. 3.18,

presented in Figs . 3.25, 3.26 and 3.27-3.28 respectively.

The results indicate that the spectral accelerations for meshes

Nos. 1 and 2, are in close agreement at depths greater than 40 f t . ,
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and those of meshes, Nos. 2 and 3. at the ground surface. The spectral

accelerations of meshes , Nos. 2 and 3. are less than those for mesh No.

1 for frequencies higher than 10 Hz at both locations. This means that

elements with heights larger than those specified by Eqn. 3.14, and

plotted in Fig. 3.24, are not able to transmit shear waves with short

wave lengths (high frequencies).

3.5.3 Soil-Structure Interaction For a Typical Case

Selected results for the typical case, shown in Fig. 3 .1a, and

comparisons of the response of the soil-structure system and the free

field are presented in this section. The finite element representation

of the soil-structure system for this case is shown in Fig . 3 .2 . The

strain-compatible soil properties to account for the soil non -linear

behaviour were determined as described in section 3 .4 .7 . The maximum

principal stresses in the containment and the maximum horizontal and

vertical accelerations in the soil and containment are presented in

Figs . 3 .29. 3.30 and 3.31. Time histories of the horizontal acceler­

ation and the displacement at the middle of the containment floor are

presented in Figs. 3 .32 and 3.33. Plots of the maximum horizontal

accelerations. the maximum shear stresses, and the acceleration spectra

at different depths (Fig. 3.34) are presented in Figs. 3 .35 to 3.39.

Comparisons of the maximum horizontal accelerations and the maximum

shear stresses in the soil near the containment, and in the free field

are presented in Figs. 3.40 and 3 .41. The accelerations and stresses

in the soil at the model boundaries and in the free field are presented

in Figs . 3.42 and 3.43 .

The results indicate that i) the maximum shear stresses, the maximum
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horizon tal acce lerations, and the maximum spectral accelerations in

the soil near the s truc ture are less than those in the free field, and

11) the boundaries are sufficient ly far to reach the free field response .

3 .6 Summary

The analys is procedure, modelling and th e response of t he free

field and the soi l -s t ructure sys tem are pre s ente d . The meth ods used

t o determine t he va lues of a l l t h e paramete r s n e ed ed for the analyses ,

including th e details of th e finite e l eme n t mode l , a re dis cuss ed in

de t ail.

The r e s pons e of a t ypical mode l i s p r es ented t o illustrate the

results that can be ob tained for each model. Because of th e large

nUDiler of the results t h a t can be ob tained in each case , the comparison

presentation is restric ted to a few characteristic va lues. The maximum

principal stresses in the containment, maximum shear stresses and

accelerations i n the soil near the cont.ainment, and the accelera t.ion

spectra at two po i n ts i n the con tainmen t are t h e only values compared

in t he pa rame tric s tudies presented i n Chapter IV.



PARAMETRIC S'l1JDIES

4.1 General

Parame tric studies are de s c r i b ed for a) t he most convenient shape

and depth of burial of the containment structure for earthquake resis­

tance , b) effects of the density, stiffness and side thickness of the

backfill material on the structure-medium interaction, c) the effect

of the relative stiffnesses of the containment and the medium on the

structure-medium interaction . and d) isolation of the containment

structure from the surrounding medium using a soft energy absorbing

material.

4.2 Shape of the Containment Structure

Studies carried out by Ref. 98 and Szechy [ 22 ] indicated the

horseshoe shape to be the most suitable for an underground cavity under

static loading conditions. For a blast type of dynamic loading, Ref.

64 found the horseshoe shape to be the best among four different shapes .

and the high horseshoe shape to be bet ter than the flat horseshoe

from the viewpoint of s tresses in t h e lining of t h e underground cavity.

To find out the best containment shape for ear thquake resistance,

three different shapes of the same area were investigated (Fig. 4 .1)

i) semi-circular roof with vertical walls. 11) high horseshoe with

rfse-cc-span ratio of 1/2 . and i11) flat horseshoe with rise-to-span

ratio of 1/4. To compare the high horseshoe with the vertical walled

and cylindrical roof shape, the analyis was carried out for the two shapes ,

wi t h the backfill p r ope r t i es the same as those of the medium . Maximum

41
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pr incipal s tresses i n each containme n t are presented in Figs . 4.3 and

4 .4 . Comparisons of i) t he maximum princ i pal s tresses in th e containments ,

ii) the maximum shea r stresses i n the soil a t a vertical plane 40 it .

away from t he con tainment , i i i ) t he maximum horizontal accelerations in

the soil at a ver tical plane 70f t . away from the conta i nment , and dv )

the acce leration spectra a t the centre of t he foundation , and a t the

mid-point of the wall for each shape are presented in Figs . 4 .5 . 4.6

and 4 .7 -4.8 r e s pect i vely . The results indicate the horseshoe shape to

be be tter than the one with semi-circular r oo f an d vertical wal ls.

I n or der t o de termine t h e be t ter rise-ta-span ratio for the h or s e­

shoe shape . analys is was carried out f o r t h e fla t and the high horseshoe

sh apes covered by loose sand as ba ck fi ll (F ig . 4 . 1) . The p lo ts of

maximum principal stresses for the high an d f lat ho rseshoe s t ruc tures

ar e presented in Figs. 4.9 and 4 . 10 . Comparisons of i) the maximum

shear s tresses i n the so i l a t a vertical plane 40 ft. away from t he

s tructure, ii) the maximum horizon tal accelerat ions i n t h e soil at a

vertical plane 10 f t. away from the s truc ture , an d iii) t h e acceleration

spec tra at mid-span of t he wall an d the founda tion ce n tre are presented

in Figs. 4.11 , 4. 12 and 4.13-4.14 respectively .

The resul ts i ndicate that whi le t h e stresses i n the flat horse­

shoe struc t ure are sl igh t ly l e s s than t hose for the high ho r s esh oe ,

th e s tresses in the so i l medium ne a r t h e flat containmen t are s lightly

higher than t h os e ne a r the high contai nment. Howeve r , the saving in

the cost of the struct ure due to small reduc tion in stresses for the

high horseshoe shape is very small compared to the addi tional cos t of

the excava tion for the flat horseshoe shape (Fig . 4.1). Therefore , t he

r es t of the studies were res tricted to t he h i gh h o r s e sh oe shape. For
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simplicity. the high horseshoe shape will be referred to in the follow­

ing parametric study as the containment.

4 .3 Stiffness of the Containment Structure

The dynamic response of any structure Is dependent on its stiffness .

For an ordinary structure subjected to a certain load , the stresses

will be reduced by 50% to 75% if the dimensions of its sections are

doubled. For an underground structure subjected to earthquake excita­

tion . an increase of t he struc ture thickness wil l decrease struc tural

deformations. thereby increasing the l oa d exerted by the soil on the

structure. On the other band . the thickness increase in the structure

will reduce the stresses in the structure. But this increases the

load on the structure and thereby the stresses. To determine the net

effect of i ncreasing the containment t h i ckne ss, the ana lysis vas

carried out for the high horseshoe containment shown i n Fig. 4.11i

by increasing the thickness of the arch walls and arch roof from 5 ft.

to 10 ft. keeping the floor thickness (10 ft.) unchanged. Comparisons

of the results for the thin and thick containment structures are pre­

sen ted in Figs. 4.15 to 4 .19.

The results show tha t while doubling the wall and roof thickness

reduces the stresses i n the va Ha and roof of the structure by only

15%. it increases the stresses in the floor of the structure and in

the soil by nearly the same amount which implies that the soil loading

on the structure has been increased by additional thickness.

4.4 Depth of Burial

As discussed in Chapter II , underground siting provides protection

against natural and man-caused damage to structures and reduction of the
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sei s mi c mot ion. Ref. 98 pointed ou t tha t the dep th of b urial in rock

must be s ufficient to prevent cracks from opening the surface under

the i nfluence of i ncreased cavi ty pressure following a reactor loss­

of - coo lan t acciden t . Res ul ts of the analysis carried out by Ref. 98

fo r an underground horseshoe cavity i n rock suggested depths of cover

of 150-200 ft. In the analysis carried ou t by Ref. 13 for a cut-and­

cover con tainmen t in soil , it has been fo und that t he depth required

to provide a static overburden p r es sure to balance the internal

pressure is 150 ft. The experience in mi n i ng and transportation fields

suggest deep soil locations as p referable to surface soi l locations

to provide t he addit ional p r ot e c t i on from harmf ul radiation i n th e

eve n t of a seismic i ncide nt or a major in ternal accident [ 75] . Ref .

54 pointed out that protection against conven tional weapons requires

a coverage of soil of 25-60 ft. wi t h a s uperimposed shield pl a t e made

of concrete.

To investigate the effec t of t h e depth of burial of t h e s tructure

on i ts response to ear thquake excitations, analysis was carried out

for three va lue s of t he de pth of soil cover of 70, 150 and 220 ft.

(Fig. 4.20) . Compar isons of the maximum principal stresses an d the

maximum horizonta l and ver tical acce lerations in the structure for the

three cases are pre s en ted i n Figs. 4.21 an d 4. 22a -4. 22b . Comparisons

of L) maximum shear stresses in t he soi l at vertical plane 40 f t.

away from t h e s truc t ure , and Lf ) accelerat ion spectra a t the roof centre ,

the mid -point of the wall an d the floor centre of t he structure ,

presented in Figs . 4 .23, an d 4 .24, 4.25 an d 4 .26 r e s pe c t i v el y.

The results show reduction in maximum principal stresses in the

containment. the maximum shear stresses in t h e soil and the maximum
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acc elerations i n th e con tainment due to the increase of the depth of

burial.

4 .5 Backfill

As shown in Chap te r II , the e f f e c t of b ack f ill material for ac t ua l

con tainmen ts has n o t been s tudied adequately . This section discusses

the investigation of the effect of backfill properties and the thickness

of side cover on th e soil-structure interaction. The t erm "jacket" is

us ed to refer t o th e part of the filling mat erial between the walls of

th e structure and the vertical e dge s of the e x cav a t i ons and the co ve r

over structure up t o certain heigh t . The mat erials used for th e study

are: a) same mat erial as the original medium t o fll1 t he whole pit ,

h) l oos e s and with thin (1 0 ft.) and th ick (70 f t , ) side covers . c)

jackets of stabilized sand with thin and thick s ide covers. and d) a

reinfor ced earth j ack et. The co n figu r a t i ons and propertie s o f th e

filling mat eri als used for the analysis are shown in Figs . 4. 2 7 . 4 .28

and 4.29 .

Compa r i s ons o f the respons e of the soil- structure s ys tem t o

ea rthquake ex citation for the above cases of f illi ng materials are

presented in the fo llowi ng sections .

4.5.1 Original and Loose Backfill

Original and l oose ba ckfills fo r the c on fi gurat i on shown in Fig .

4.271 were studied . Compa risons of 1) maximum principal s t resses in

the structure. ii) maximum sh ear stresses in the s o i l at a d istance of

40 ft. away from the s tructure . iii) maximum horizontal a ccelerations

in soil at a vertical plane 70 ft. away from the structure. and iv) the

accelera t ion spectra a t t h e mid -poin t of t he wall an d a t the floor centre
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of the containmen t a re presented i n Figs. 4.30, 4.31, 4 .32 and 4.33­

4.34 .

The r e s ults indi c a t e that bo th t he maximum stresses i n the aof I

and the containment a re reduced for fil ling mater ial softer than t he

medium.

4.5 .2 Loos e an d Stabilized Jacke ts

The effec t of the den sity an d s t if f ne ss of t he b ackfill material

on th e r e sp ons e of the soil -s truc t ure s ystem was s t ud ied by compar i ng

th e beh av i ou r of a s tab ilized s and fill with t ha t of a l oos e back f ill

(Fi gs. 4.27 and 4 .28). The comparative values of i) maximum principal

s tresses in the con tainment. if) maximum shear s tresses i n the soi l .

iii) maximum acceleration in the soi l , and tv) acceleration spectra at

two l oca tion s in the containment are presented in Figs. 4 .35 t o 4.39

for thin jacke ts . and Figs. 4.40 to 4.44 for thick jackets.

The r e s ul t s indicate that in both cases ( thin and th ick jackets) .

t he maximum principal stresses and accele rations in the containment

and t he maximum she a r s tresses an d accelerations i n the soil for the

case of l oos e fi ll a re l es s t han thos e fo r th e stabilized fil l.

4. 5.3 Effec t of Jacket Thi ckn es s (Loose and Stabilized)

Figs. 4 .45 t o 4 .49 and 4. 50 t o 4.54 show r e s pon s e compa risons for

l oos e (thick vs . thin) and stabilized ( thick vs . thin) jackets - prin-

cipal stresses in the structure. maximum shear stresses and accelerations

in the soil. and acceleration spectra at two po ints in the s tructure.

The resul ts indicate the maximum stresses and accelerations in

the structure and in the soil for thin jackets to be less than those for

the th i ck jacke ts .
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4 .5 .4 Rein forced Ear t h Jacke t

Reinforced eart h imp lies the us e o f stron g b a r s, rods, f i b res or

ne ts tha t a re embedded in soil to provide additional l oad-ca r r ying

s trength . The bonding between the soil and t h e ties Is developed through

f r iction. The concep t of strengthening the soil with added rods or

fib res is not n ew an d i t i s now ex te ns ive ly us e d in th e co ns truc tion of

retaini ng walls. Rein f or ce d earth wal ls cons truc ted. to da t e . h av e

mainly used thin galvanized steel s t rips for the t i e s and materials

such as plastics . various fabr ics , lightweigh t s teel panels and precast

concrete b locks for the ou te rakf n , which is re q ui red t o main tain t he

integri t y o f the sand and the outside face . Expe rimen tal a nd an alyti cal

(FfJi) s tudies on the s tatic and dynamic behaviour o f reinforced ear th

structures carried ou t by Lee , Adams and Vangheron [60] . Richardson

an d Lee [ 76], Romstad , Herrmann and Shen [ 78 ] an d Shen, Ra mstad and

Herrm an n [8 5] are of considerable i nterest.

The case shown in Fig. 4.29 has been studied t o determine t h e

effect of in troduc ing a re inforced earth jacket around the containment

s t ructure on soil-s tructure i n t e r a c t i on. The properties of the soi l

jacket ....ere rrodified to acco un t for t h e ....eigh t an d stiffness of t he

r einfo r cin g bars . Rigid ties were p rovided a t t he edges of the elements

in the jacket area to simulate the reinforcing bars as shown in Fig .

4 .29i1.

The wal ls of t h e st ruc t u re ....ere considered adeq uate t o ac t as t he

ou t e r skin. The r esults i n Figs . 4 .5 5 t o 4. 60 indicate t ha t th e rein­

fo rced earth reduces the maximum stresses and acce lerations in t he con-

t ainment and in the soil near it.
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4.6 Isolation of the Structure

Stresses in underground structures subjected to dynamic loadings

(nuclear blast or earthquake excitation) can he greatly reduced by

using a soft. elastic energy absorbing material between the structure

and the s ur roundf ng medium . This isolating material is easily deformed

to absorb the energy produced by the exciting load , Le. acting almost

like a rubber ring protecting the structure from any disturbance in the

surrounding medium. On the othe hand, a crushable material could be

used for the same purpose. In this case when the stresses in the iso­

lating material reach the crushing strength, no more load will be

transmitted to the structure through the medium.

The concept of reducing the stresses in an underground cylindrical

pipes by isolating the pipe with polyurethane foam . studied by Costantino

and Mariano [ 25], indicates the beneficial effect of the isolation layer

in reducing the liner-shell membrane forces and bending moments. The

studies of Ref. 64 indicated that a surrounding medium of soft, energy

absorbing material (considered by Ref. 25) reduces by about 80% the liner

membrane forces and bending moments.

To study the effect of isolating the containment structure, two

different materials were used to isolate the structure: a) closed cell

polyurethane foam and b) foamed light weight concrete. The results

for each case are presented in the following sections.

4.6.1 Isolation Using Polyurethane Foam

The structure was isolated by a 10 ft . thick jacket of polyurethane

foam. The configuration and properties of the isolation material are

shown in Fig. 4 .6li.
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The e f f ect of the polyure thane foam on t he maximum stresses and

acce l eratio ns i n the co n tainment and the soi l. and t h e coeputed accele­

rati on spec t ra a t two po i n ts in th e s t r uc ture a re presented i n Figs.

4.6 2 t o 4 .6 7.

The re sults show cons i de ra b le r eduction in the maximum principal

s t resses an d accelerations in the co n tainmen t , a nd the maximum shea r

s t resses and accelerations i n the soi l.

4 .6 .2 I s o l a tion Dsin g Foamed Concrete

The configuration and prope rties of the foamed concrete jacket

a re shown i n Fi g . 4.6 1b. The effec t o f the fo ame d conc re te jacke t

on the maximu m s t resses in th e s t r uc t ur e and th e soi l is p resente d in

Fig s. 4.68 and 4 .69 . A compari s on of th e max imum p rin c ipa l s t resse s

i n th e s t r uc t u re for f oamed co nc re te and po lyu re thane foam jacke ts i s

presented i n Fig . 4 . 70 . The e ffect of t he foamed concre te jacket on

t he maximum horizontal acceleration in the soil and t h e acceleration

spect ra a t two poin ts in t h e containment structure a re presented in

Fi gs . 4 .71,4 .72 a nd 4.73 .

The r e sults i ndica t e tha t co mpare d t o l oos e f ill. the foam co nc r e te

jacket in a s and mediun increa s e s the maximum s t resses in the s t r uctu re

and the maximum s t resses a nd accelera t ions i n the soil .

4. 7 Effect of Medium St iffness

In o rde r to study the effect of the stiffness of t he medium on

s t ructure-medium interac tion . and t he r e s pons e of t he s tructure- medium

sys te m t o ear thquake exct t at.ton, t h e fin ite e leme n t model fo r t he s and

medium. described in Chapter III . was us ed t o s tudy the r e spons e in a

rock medium . The s t r uc t u re was i s olated by a jacke t o f foamed co nc r e t e
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vt t.h the same configuration as that shown in Fig. 4.61ft.

4.7 .1 The Free Field Response

The free field response has been obtained using the one-dimensional

co Lumn study using LUSH. and checked by the results obtained using SHAKE.

Comparisons of the maximum stresses . strains and acceleration spectra

in the free field, obtained by LUSH and SHAKE, are presented in Figs.

4.74,4.75 and 4.76 respectively .

Comparisons of the free field response of the rock and sand media

are presented In Figs. 4.77 to 4 .82. The time-histories of horizontal

accelerations, shear stresses and horizontal displacements at a depth

of 44 ft. in the rock free field are presented In Figs. 4.83. 4.84 and

4 .85 respect!vely.

The results indicate the stresses, accelerations and spectral

values to be higher in rock than in sand media. The peak spectral

values occur at higher frequencies in rock than in sand. But displace­

ments are the same in both cases.

4.7.2 Rock-Structure Interaction

A comparative study of the responses of the structure medium

system (stresses and accelerations in the containment and in the medium ,

and acceleration spectra at two locations in the containment) for

sand and rock media are presented in Figs . 4.86, 4.87,4.88, 4.89 and

4.90-4 .91 respectively.

The results indicate that for a structure in a rock medium the

stresses (structure) are lower, and accelerations (structure and rock)

are higher compared to a structure in a sand mediwo. In contradis­

tinction to a sand medLum, the stresses and the spectral accelerations
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in rock are higher occurring at higher frequencies.

4.8 Summary

Parametric studies have been presented in this chapter for a)

shape and stiffness of the containment. b) depth of burial, c) backfill

material, d} isolation of the structure, and e) stiffness of the medium.

Comparative studies ha ve been discussed briefly for each case and the

results will be discussed in greater detail in Chapter V.



DISCUSSION AND CONCLUS IONS

5 . 1 General

The resul t s o f the f ree fie l d r e spons e and th e s oi l -struc t ure

interac tion , pre s ent ed i n Chapter Ill, and th e r es u l t s of t he para­

metric s tudies , presented in Chapte r IV, a re d iscussed. The cases

considered are: r) the f ree field response obtained by the one ­

dimensional finite e lemen t column s t udy using LUSH, and the continuum

(wave p r opagat i on) so lution using SHAKE , fo r r ock an d sand media ,

ii) con tainment geome t ry (con ta inme nt shape and thickn e s s of t he co n­

t ainment walls and r oof ) , iii) buria l depth , Iv ) properties o f the

backfill (4 different filling ma t e rials and t wo ty pes o f ene rgy absor b ing

jackets) , and v) me di um-st r uc t ur e interaction for r ock and sand me di a .

5.2 The Free Field Res ponse

The free field responses obtained by finite element analysis

us i ng LUSH a re ve ry c lose to those ob tained by t h e wave p ropaga tion

analys is us ing SHAKE fo r both rock and s and media (F i gs . 3.4 t o 3.6

and 4 . 74 t o 4. 76). This impl i e s th at the pa r amete r s us ed in fin i te

el ement analys i s (elem en t sizes and the in terpolat ion coeffic ien t)

have bee n adequate ly chosen .

The r es ul t s in Figs . 4 .77 t o 4.82 show that i) Maximum shear

s t resses i n the sand medium increase from the g round s urface down to

a depth of 75 f t. , t he n r ema i n co nstan t down t o t he r i g i d base (at

500 f t.) , while t hey i ncrease i n t he r ock medium. with the de pth, it)

The maximum h or izontal a c celerat ions in th e sand medium are app ro x i ma t ly

52
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uniform from the rigid base up to t h e 200 ft. depth. an d then i ncrease

towards t he s urface , wh ile in the rock medium, they increase f rom the

base towards the groun d surface , iii) Spectral accelerations (f rom the

r es pons e s pectrum) decrease wi t h depth in both sand and rock media and

th e frequency of the peak spect ral acceleration does no t vary with dept h

fo r rock , while it increases wi t h depth in sand because of t he change

in the stiffness of the sand layers , tv) Accelerations , stresses and

spectral accelerations are higher in rock than in sand , and the peak

spect ral accelerations in r ock occur at h i gh er frequencies than in

sand. v) Shear s tra ins in sand are very much higher t han those in rock .

The peak strain for the rock is at the rigid base, and near the surface,

at abo ut a depth of 100 f t . , fo r sand , and vi) Displacement time his­

t or i es are similar for rock and sand .

The above res ults indicate that the stiffness of the medium

great ly affects t he free field response, and t hat the accelerations,

stresses , spectral accelerations and the frequencies of the peak

spectral accelerations are higher; the strains are lower in a medium

with a h i gh e r shear modulus. Comparisons of time h i s t o r i e s of accel­

erations and stresses i n rock and sand indicate that as the damping

of t he sand is higher than that of rock, stresses and accelerations

in rock change their signs more frequently compared to those in sand.

5.3 Containment Geometry

5.3.1 Shape of - the Containment

The three shapes in Fig. 4. 1 were investigated to compare t h e

shape effects on t he response of the soil-structure system. Th e area

of the containment was kept almost constant . The resul ts, presented in
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Figs. 4 .2 to 4 .1 4 , i nd icate that i) t he maximum shear stresses and

accele rations in t he soil and the spectral accelerat ions at two loca­

t i ons in t he con tainmen t fo r th e high ho rseshoe shape are l ess than

t hos e in the othe r two shapes . ii) t h e maximum principal s t resses in

t he high horseshoe a re generally 10-20% l ower than those in the

circular roof-vert ical wall co n tainment, iii) t he maximum principal

s t resses in t h e ro of of t he f la t hors esh oe are l ower. and thos e i n t he

walls and t he f loor are h i gh e r t han the co r res pond ing va l ues for the

high hor s eshoe, an d tv ) the soil r ea ction maxima und er the foundation

of th e h i gh hors e sh oe contai nmen t a r e about 30% l ower t han t hose f or

th e semi-circular r oof containment . The conc l usion fO nD the above

results is that the high horseshoe s hape is th e bes t for earthquake

excitation , taking into consideration the larger amoun t of excava tion

re qu i r ed fo r the flat horseshoe compa red t o t he high horseshoe. This

observat ion confirms the findings of Refs . 98 . 22 and 64 for static

and step pulse l oad i ngs for the rock medium.

5 .3 .2 Stiffness of the Containment

As described i n sec . 4 .3 , t he th i ck n e s s of the con tainmen t walls

and roof was i nc r eased f rom 5 t o 10 ft., keeping t he floo r thickn e s s

(10 ft.) un changed , i n or de r t o s t udy the e ffect of increas i ng con ­

ta inmen t t h ickness on t he r e sp ons e of t he soil-structure sys tem . The

r esul ts in Figs . 4.15 t o 4. 19 show that doubling the t h i ckne s s of the

con tainment r oo f and walls . i ) reduces the principal stresses in the

roof and t h e walls by about 15-25%. and increases them in the floor by

about 20%. ii) increases shear stresses in the soil nea r the con tain­

E Dt walls by about 15 %. and above t he roof by about 70%. 11i) reduces
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the accelerations in the soil near the containment by about 8%, and

iv) increases the accelerations and the spectral accelerations .Ln the

upper half of the containment by about 5%.

The small reduction of the stresses in the containment, and

the increase of the stresses in the containment floor and in the soil,

imply that the load exerted on the containment is increased by addi­

tional thickness. This can be easily interpreted as follows: doubling

the thickness increases containment rigidity . and hence reduces its

deformation which increases the load exerted by the soil on the structure .

So, it seems better to use a flexible structure rather than a rigid one

for earthquake resistance .

5.4 Depth of Burial

For the same site. three burial depths were considered; shallow.

intermediate and deep with soil cover depths of 70, 150 and 220 Et; ,

(Fig. 4 .20) . The results in Figs . 4 .21 to 4.26 indicate that. compared

to the containment at intermediate depth: i) The average increase in

the maximum principal stresses in the containment. for shallow embedment

is about 50% with an increase in the peak value of 33%, and the average

stress decrease in deep embedment is 20% with a decrease in the peak

value of 33%. Lf.) The maximum horizont.al accelerations in the containment.

are about 40% higher in the lower half. and almost equal for the upper

half for the shallow depth; they are about 25% lower in the upper half

and almost equal in the lower half for the deep embedment, iii) The

maximum shear stresses in the soil near the containment are 45% higher

for the shallow depth, and almost the same for deep embedment . The shear

stresses near the ground surface are lower for the shallow embedment
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and higher for the deep embedment. and tv) The spectral accelerations

at the three locations in the containment (top of the roof. mid-height

of the wall, and foundation mid-point) are higher for the shallow em­

bedment and lower for the deep embedment, but the difference is larger

in the case of the shallow embedment. The peak spectral acceleration

at the top of the roof occurs at lower frequencies for the shallow

embedment.

As the accelerations and spectral accelerations in the free field

are high near the ground surface, very shallow embedment causes high

stresses and accelerations in the containment and the surrounding

medium. Taking Into account all the factors discussed in Sec. 4.4 .

a so11 cover of a depth of 150-200 it. above the containment is recom­

mended to i) protect the containment against major earthquakes, conven­

tional weapons and man-caused damage, ii) to provide a static overburden

pressure to balance the internal pressure, and iii) to pr'ov Lde addi­

tional protection from ha'rtafu L radiation in the event of a seismic

incident or a major accident.

5.5 The Medium Adjacent to the Containment

The medium adjacent to the structure was investigated for two

different cases : i) backfill, and il) isolation of the containment

with a soft energy absorbing jacket.

5.5.1 Backfill

As described in Sec. 4.5 and outlined in Figs. 4.27, 4.28 and 4.29,

four different materials are considered for the backfill: f) same as

the original medium (excavated soil compacted enough to have the same

properties as the original medium), il) loose sand (excavated soil not



57

COlllpacted enough) . iii) stabilized sand (using cement). and iv) rein­

forced earth. These materials have stiffnesses and densities i) equal

to, if) less than, and iii-Iv) higher than those of the medium.

The results in Figs. 4.30 to 4 .60 show that. compared to the loose

fill, i) The maximum principal stresses in the containment are about 30%

higher for the original fill, 20 % higher for the stabilized jacke t, and

about 20% lower for the reinforced earth jacket. 11) The maximum shear

stresses in the soil near the containment are about 20% higher for the

or iginal fill , 25% higher for the stabilized jacket and 10% lower for

reinforced earth at the level of the containment and about 80% higher

below the level of the containment foundation, iii) The maximum hori­

zontal accelerations in the soil near the containment are about 8%

lower for the original fill, 7% higher for the stabilized jacket, and

10% lower for the reinforced earth jacket , and Iv) The spectral accel ­

erations at two points in the containment are about 5% lower for the

original fill, 20% lower for the stabilized jacket, and 20-50% higher

at low frequencies (0.5-3 Hz) and 20-30% lower at high frequencies (4-20

Hz) for the reinforced earth jacket .

Results for the original fill, the loose fill and the stabilized

jacket indicate that, compared to the original fill, the loose fill

reduces the stresses in both the containment and the medium; the stabi­

lized jacket increases stresses in the medium and the containment walls

and floor, and reduces the stresses in the middle part of the containment

roof. This means that a considerable reduction in the maximum stresses

in the containment can be achieved by introducing a filling material

with a shear modulus less than that of the medium. This is because the

deformations of the soft material between the medium and the containment
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are larger than those of the medium, and hence part of the energy of the

medium is absorbed and the load transmitted to the containment is reduced.

The opposite is the case for a stiffer filling material. The conclusion

from the above discussion is that the loose fill proved to be better

than both the original fill and the stabilized jacket.

The reinforced earth jacket. seems to be better than the loose fill

as it reduces and redistributes the stresses in the containment. and

reduces the maximum stresses and accelerations in the medium near the

containment. The interpretation of the above findings is that the rein­

forcing bars bond the containment with the surrounding medium which

allovs the containment and a part of the surrounding medium to move as

one integrated unit. This reduces the stresses and accelerations in

both the containment and the medium. The considerable increase of the

spectral accelerations in the containment at low frequencies supports

this interpretation.

5.5.2 Effect of the Width of the backfill

The results in Figs . 4.45 to 4.54 indicate that increasing the

width of the backfill between the containment and the surrounding medium

from 10 to 70 ft • • L) increases the soil and containment stresses by

about 10% for loose fill. and 20% for the stabilized jacket. 11) reduces

the accelerations in the soil at the containment level, and increases

them near the ground surface for both the loose fill and the stabilized

jacket . and iii) increases the spectral accelerations in the containment

at 10'01 frequencies and reduces them at high frequencies for the stabi­

lized jacket, while no significant variations are obtained for the case

of the loose fill. In the case of the stabilized jacket . the increase
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i n t he coa t afrsaent; and medium stresses is due to t he effect of the thin

s tabilized jacket desc r i be d i n Sec. 5 .5.1. For t he case of the l oo s e

fill, the increase in the med ium and c on t ainmen t stresses is due to

th e ex is tence of a co ns i de r ab ly l arge r e g i on of loos e mate r i a l between

t he med ium and t he co ntainment . which ac ts as an ad ditional l oad on

both the medium and t he con tainmen t t hereby increasing the stresses .

The co nclusion form the above discussion is that a r e l a t i vely thin side

cove r of the f ill i ng materia l s e ems to be bet t e r than a t hick one.

5 . 5 .3 I so l at i on J a ckets

1.\ro t y pe s o f c rushable energy absorbing mate r ials (polyure thane

foam and foamed concre te) a re used to isola te the con tainmen t in the

san d medium (Fig. 4 .61) . The r e s ults in Figs . 4 . 62 t o 4 .73 indicate

th a t, compa red t o the case of t he l oos e f il l (no i s ol at i on ), f) Con­

t ainment s tresses a re 65% low er for the polyurethane fo am j ac ke t , a nd

10% h ig he r fo r t h e foamed concrete jacket , 11) Soil s tresses at t he

con tainment level are 40% lower for the po lyurethane foam jacke t , and

l SI higher for t he foamed concrete jacket , i11) Soil accelerations at

th e co ntainment l evel are l ower by 15% for the poly ur e t han e foam jacket ,

and 7% f or the foam ed co nc re te j ac ke t , and t v ) For t he polyure than e

fo am jacket , t he co ntai nmen t accelera t ions a re 20% l ower and 10% h i gh er

In th e upper an d l ower containment halves respec tively. The containment

spec tra l accelerations are l ower for t he high frequencies while there

are no significant d i ffere nce s i n t he accele ra tions or the s pectral

accelera t i ons fo r the foame d co ncre te jac ke t.

The conside rable re duc tion i n the co ntainmen t an d medium s tresses

....hen using the polyurethane foam jacket , and the s tress increase for t he
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case o f the f oamed c onc rete j acket a re due t o the s ame r e a son as that

d i s cu s s ed in Sec t ion 5 .5 .1. As the s tiffness of the polyu r ethane f oam

is ve ry small compared to that of the med ium . and the stiffness of t h e

foamed concrete is relatively h i gh er . the de formations of the polyu re ­

thane f oam a re con siderably g r eate r t h an those o f the adjace nt medium ;

th os e fo r the foamed concre te will be l es s than t hose of the medium which

r educe s t he load transmi tted to the containment for the polyurethane

foam lining and i nc reases it fo r the foamed co ncrete .

As de s cr i bed i n Sec . 4 .7, the co n tainment i n t he r oc k med ium was

isolated by a jacket of foamed concre te. The pa t tern of s tresses in

the medium near t he foamed concrete-lined con tainment in the rock

medi um i s the s ame as t hat fo r the polyurethane foam - lined c on tainmen t

i n th e s an d medium . This implies t hat t he role of t he foamed concre te

jacket i n the r ock med ium is similar to that for the polyurethane foam

in the sand medium . As the stiffness of the f oame d concrete is h i gh er

than t ha t o f the sand med i um, and l ower than t hat of the r ock medium .

the con tainment and med i um s tresses increased for the sand medium. and

r ed uced in the r oc k medium fo r foamed concre te jackets.

5 .5 .4 Gene ral Conc l us i on

The materials used as backfill an d isolating jackets are : i) loose

fill (E • 150 .000 to 240 .000 psi and w '" 95 pcf) . ii) stabilized fill

(E • 1. 5 X 10 6 psi and w • 145 pcf), iii) polyurethan e foam (E • 319

psi and w • 1. 5 pcf ) , an d i v ) f oamed co nc re te (E • 375 . 000 psi and

w '" 50 pcf). The conclusions from the discussion of the results in

Sec. 5 .5 .1 to 5 .5.3 indicate that the relative stiffness of the filling

material and the med i um ha s a ve ry s ignifican t effec t on t he stre s s e s
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in the containment and the medium. If the stiffness of the filling

material is less than that of the medium, stresses in both the contain­

ment and medium ....ill be reduced and vice versa. The lower the modulus

of elasticity of the filling material . the greater is the reduction in

the stresses. A reduction in the containment stresses, as much as 65%.

can be achieved using a polyurethane foam jacket for the sand medium.

Considerable reduction in containment stresses could be achieved in

rock siting using a foamed concrete jacket. Using a reinforced earth

jacket in a sand medium reduces containment stresses by 20%. Relatively

thin jackets are better than thick ones.

5.6 Structure-Medium Interaction

5.6.1 Soil-Structure Interaction

The selected results of the typical case. described in Sec. 3.5.3

and outlined in Fig. 4.27(i). are used to study the degree of inter­

action of the soil-struct·ure system. Figs. 3.35 to 3.39 show the inter-

action effects on response values at various depths in the soil profile.

and Figs . 3 .40 and 3.41 on the soil accelerations and stresses at ver­

tical planes near the containment. As indicated in Figs. 3 .35 to 3.41 ,

the maximum soil accelerations. shear stresses and acceleration response

spectra are considerably affected by the interaction specially near the

structure. The presence of the containment reduces the free field soil

stresses and accelerations. Comparison of the results of the underground

siting presented herein and similar results for aboveground siting,

presented in Ref. 47. indicate the interaction effect in the above­

ground siting to be larger than that for underground siting. As a) the

spectral and the maximum accelerations at the ground surface are consid-
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erably larger than those below the ground surface , and b) the above­

ground structure represents an additional mass and stiffness to the

soil, while the underground structure substitutes the mass and stiff­

ness of the excavated soil, the disturbance in the medium caused by the

existence of the aboveground structure is greater than that caused by

the underground one.

5.6.2 Rock Structure Interaction

The results, presented in Figs. 4.86 to 4.91 for a containment

isolated by a foamed concrete jacket in a rock medium, indicate that

in a sand medium the containment is subjected to higher stresses and

lower accelerations compared to that in a rock medium. This means that,

as the rock stiffness is higher than that of sand, a containment in a

sand medium will be subjected to a higher dynamic loading.

5.7 Examination of Accuracy of Results

The accuracy of the free field response was checked by comparing

the computed response obtained by LUSH (finite element) and SHAKE (wave

propagation) . As shown in Figs. 3.6 and 4.76 for sand and rock media

respectively. there is good agreement between responses obtained by the

finite element and wave propagation solutions .

The accuracy of the results of the soil-structure response. for

each case studied, was checked by comparing the computed response at

an ample distance away from the containment with the free field response

obtained from the one-dimensional column studies. This also provides

a check on the adequacy of the extent of the finite element mesh. As

described in section 3.5. good agreement between the response values

near the boundaries of the two-dimensional finite element model and the
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one-dimensional column studies was obtained in each case.

5.8 Conclusions

The following conclusions are drawn from this study:

1. The response values of the medium near the containment are

considerably affected by the interaction. Stresses. accelerations and

spectral accelerations in the medium near the containment are lower than

those in the free field .

2 . The interaction affect in aboveground siting is larger than that

for underground siting.

3. The dynamic load exerted by the medium on the containment in

sand is larger than that for rock. but the containment accelerations

are lower.

4. The shape of the containment affects the response of the con­

tainment and the medium. The horseshoe shape proves to be better than

the one with a semi-circular roof and vertical walls - a reduction in

the containment stresses of 10-20%. The high horseshoe containment

(rise-to-span ratio of 1/2) is better than the flat horseshoe (rise­

to-span ratio of 1/4) taking into consideration that the latter needs

a larger amount of excavation due to the need for a wider pit.

5 . Dynamic loading of the medium on the containment increases by

a rise in the containment stiffness. So, it seems better to use a

flexible containment rather than a rigid one.

6 . The containment stresses and accelerations can be signifi­

cantly reduced if the containment is placed in deeper locations.

Successive reductions in containment stresses to 67% of the initial

values are associated with each additional 70 ft . embedment depth.
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7. The relative stiffness of the filling material and the medium

has a significant effect on the containment and medium responses.

Material with stiffness lower than that of the medium reduces the stress­

es in both the medium. and the containment and vice versa . A filling

material, with stiffness 30% lower than that of the medium, reduces the

stresses by about 30% in the containment and about 20% in the medium.

8. A considerable reduction in the containment stresses can be

achieved by isoLating the containment from the surrounding medium by

a jacket of energy absorbing materiaL The stiffness of the jacket

material should be very small compared to that of the medium . This can

be achieved by using a jacket of polyurethane foam in a sand medium,

and foamed concrete or polyurethane foam jacket in a rock medium .

9. A reduction of 65 % in the containment stresses and 40% in

the medium stresses was accomplished using a polyurethane foam jacket

in a sand medium .

10 . Introducing a system of steel bars or nets around the contain­

ment to form a reinforced earth jacket reduces the stresses in the con­

tainment by about 20%.

11. Increasing the width of the side cover of the filling material

form 10 ft. to 70 ft ., increases the stresses in the medium and the

containment by about 10 -20% for both stiffer and softer filling material.

So, it seems better to provide a relatively small side cover width.

12. Vertical element size affects the response of the finite

element model. Elements with larger vertical element size are unable

to transmit shear waves with short wave lenghts (high frequencies).
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5.9 Contributions

1 . Development of a finite element model for soil-structure i n t er­

action analysis o f a full -scale cut - en d- c cv e r type underground nuclear

reactor containment subjected to earthquake excitation.

2 . Study of soil structure interaction taking into account soil

non -linear behaviour and va riable damping in each e lement.

3. Applica t ion of LUSH fo r underground analysis .

4 . A study of t he effect of t he fo l lowing pa rame ters on t he dynamic

response a nd ea r t h qua ke r esis t an c e :

a) containment s ha pe ,

b) dep th of bu r i a l ,

c) relative stiffness of the containment and the medium.

d) relative s tiffness of the fill ing material and the medium, and

e) isolation of t h e containment .

5 . Evaluation of the effectiveness of a r e i n f o r c ed ear th jacke t

around t he containment t o reduce i ts s t resses .

6 . Indication t h a t t he re lative s tiffness of the filling material

has t h e mos t significan t effec t on the con t ainment s t resses ( Ref. 64

did n o t make a c l e a r co ncl us ion of t h i s na ture ) .

7. Comparison of t he response an d t he de gre e of i n teract ion :

a) in rock and sand siting and b) f o r aboveground and underground

siting in sand .

8. Study of the effect of the ve rtical element size on the free

field response.

5 .10 Summary

A finite e lement mode l has been established to study t h e response
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of a 110Q- MWe cu e-end -cover type un de r ground nuclear reactor co ntain­

ment to earthq uake exci t ation . The an alys e s have been carried out us i ng

two available computer programmes, LUSH and SHAKE , taking into account

th e str ong non- linear effects which occu r in soil ma s s e s sub jected to

strong earthquake motions . Al l the parameters needed for t h e analysis ,

i nclud i ng t he details of the fini te element mode l , have been investigated

and careful ly chosen. The extensive ca re taken to mi n imize the compu ­

tation time enabled a considerable saving in the cost of the analysis.

Parametric studies h ave been carried out for the shape , stiffness

and burial de p t h of the containment, an d the relative stiffness of the

filling material and the medium , i nc luding isolating jackets.

Comparative stud ies are presented for rock vs . sand siting an d

aboveground vs . unde rground siting.

The accuracies of t he response for the fre e field and structure ­

medium interaction h av e been verified .

5 .1 1 Recommendations for Further Research

1 . Ana lysis of multi-structure-soil i n t e r a c t i on by considering

t he actual c onfiguration of t he underground powe r plants ( r e a c t or con­

tainmen t, t ur bin e ge nerator build ing .. . etc .) .

2. I ncre a s ed complexi ty of structural de tail in the reactor

structure (variable thickness, layout of s teel reinforcement, configu­

rat ion of prestressing cables . . . etc .) .

3 . The analysis of t he crushable materials used in t he isolation

j ackets by e liminating t he cracked an d crushed elements from the system .

4 . More exact no n - linear ana lys is to account fo r the actua l soil

stress-strain cha racteristics. (Th is study considered the n on-l inea r
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soil behaviour in an approximate manner L.e . the equivalent linear

method) •

5. Inclusion of a capability for node separation due to the poor

tensile strength of soil. or separation of the reactor structure from

the surrounding medium .

6. Study of the effect of liquefacation of saturated sand layers

during strong earthquakes.

7. Study of the feasibility of introducing new artificial absorbing

boundaries with elements of considerably high damping and low stiffness

(possibly using the variable damping analysis provided in LUSH) .

8. Application of three-dimensional finite element analysis.



TABLES AND FIGURES

68



Table 1. Summary of Unde rground Nuclea r Powe r Plant: FeBBib :Ll:L t:y S t:ud:Lea [ 9 7 J .

Study By Concept Cri teria and Conclusions Unresolved
Features Issues

(1) Ref. 8 General under- To evaluate both (a) 3 to 7% more costly; ------- - - --- ----
(1958) ground advantages and (b) Effective concontainment ;

disadvantages (c) Extensive site investigation;
(d) Limited expansion capabi-

l iti e s

(2) Ref. 70 Annular space To wi ths tand (a) Further studies required (a) Tilting and rotations
(1966) around s t ruc- differential to assess feasibility ; caused by earthquakes;

ture filled ground dis- (b) No cost comparison with (b) additional engineering
with water or disp lacement surface sitea; sys terns and requi re-
mud (c) No safety conclusions menta

(3) Ref. 67 Within a hUI- (a) Good quali ty (a) Feasible ; (a) Seismic effects ;
(1969) side (hod- rock; (b) Construction costs l e s s (b) Use of r oc k as

zontal access) (b) 500 Mw BWR andl than 3% more for under- co ntainment;
or AGR ground; (c) Ground water con t a-

(c) Safe mination

(4) Ref. 77 450 feet below (8) Good quali ty (a) Feasible; (a) Possible elimination
( 1971) ground level rock ; (b) Additional $6 to $10 per of p rimary contain-

(b) 2 .000 Mw EWR in lew on construction costs; ment;
2 units (c) Added safety; (b) Use of ultimate

(d) Incentive for urban flooding sys tern i n
siting wors t emergency

~

~



Table 1. (co nt.:lnued)

Study By Concept Cri teria and Conclusions Unreso lved
Features Issues

(5) Ref . 96 Deep rock (a) Good quali ty (a) Feasible ; (a) Geotechnical and
(1971/72) cavity rock; (b) Construction costs 5 to seismic design

below grade (b) 1,000 Mw PWR 20% more for underground criteria

(6) Ref. 89 2 alternatives : (a) Good quality rock (a) Feasible; (a) Possible reduction
(1971) (a) Totally for totally under- (b) Safe, increased protection in earthquake design

underground ; ground option. from surface hazards force
(b) Near sur- wider variety of
face reactor rock quality for
only under- near surface option;
ground (b) 1 . 000 to 1 . 500 Mw BWR

(7) Ref. 98 Deep rock (a) Good quality (a) Feasible; (a) Seismic response;
(1972) cavity rock; (b) Underground cost penalty (b) Population-distance

(b) 1,000 Mw BWR abou t 5% of t o t a l cost; criteria
(c) Safe. should allow reduction (c) Contianment criteria

in po pula tion dis tance

(8) Ref. 87 Underground (a) LMFBR (a) Distinct advantage with -----------------------
(1972) generally demonstration underground concept

plant, Oakridge. because of co nsequences
Tennessee of LMFBR accident

2:



Table 1 (co nt i nued)

Study By Concept Criteria an d Conclusions Unresolved
Features Issues

(9) Ref. 15 General --------- --- ------------- (a) Proof of fault
(1973) Underground inactivity;

concepts (b) Lack of measurements
or stud ies on the
frequency characteris-
tics of strong earth-
quake motion at depth

(10)Ref.2l Above grade -------------- (a) Improved safety , less -- - - ------------ - - ---
(1973) construction susceptible to surface

wi th crushed phenomena and sabotage,
rock and earth minor radioactivity
cover to a releases are made less
minimum of 50 ' severe

(ll)Ref .43 General study , Deep Rock Cavi tv (a) Few sites available in (a) Lack of seismic
(1973) variety of under- (a) Good quali ty California fo r deep rock field data regarding

ground and above- rock, no faults . cavities ; possibili ty of
ground concepts . Cut and Cover (b) Generally more sites reducing seismic
Underground (a) Variety of rock available inland for loadings underground
types include and soil conditions surface plants;
, ••, 'rock cevt ty [ .U_O,. . eo" (c) All options technically
" c u t and cover" sibly allow for feasible;
concepts. faul ted rocks. (d) Improved safety compared

(c) All studies based with surface plants
on 1,000 Mw LWR.
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Tab l'" 1 (cunLlnu.. <.l)

Study By Concep t Cr i t eri a an d Conc l us ions Unresolved
Fea ture s Issues

(1 2) Ref. 3 Cut a nd co ve r (a) Variety of (a) Feasible; -------------------
(1 9 73) se lec ted back- ground co ndi- (b) Add itiona l cos ts of

f 11 l mate rial t i ons; unde r g r oundf ng a re
(b) 1,100 Mw r e actor, negligible ;

no limitation s on ( c) Harmful r adiation f ro m
t ype wors t pos sible acc iden t

can be confine d

Gene ra l co nc l us i ons of th e above s tud ies re garding t he unde rg ro und
s it i ng of nuc lea r powe r pl ant s can be s ummar ized as f ollows [97]

( a) Plac ing nu clear power plan t s und erground i s techni cally feas ible
witho ut an exce s s i ve ec onomic pen alty co mpa r ed with s ur face plants.

( b) There a re potential safety a dva n tages which may permit s uc h plan t s
t o be s i ted c l os e r to popula t ion ( and l oad) ce nt e rs.

( c) The re is a po t e n t ia l for a reduction in the des ign seismic loa ds
on va r ious co mpone nts o f th e plan t . However, at pre sen t t here i s
a lack of fi e l d data t o substantiate th e design approach of
r educ ing sei s mi c l oads .

(d) Conv ention al excavation method s woul d be s a ti s fac to ry f or ca ve rns
of th e s izes required.

;:



Tab l e 2 . Ae e e e eeien e of underground BItIng [53 ]

Potential advantages Potential disadvan tages

1. Additional confinement of radioactive materials l. Limitation of the he i gh t of the structure
with leakproof sealing of containment penetra- (rock caverns)
tions-possibili ties for controlling hypothetical 2 . Ground water problems-particularly
accidents and thus reducing the distance from during const ruction
densely populated areas required for safety 3. Highe r costs and longer construction

2 . Elimination of the load cases ' a i r pl a n e crash I , periods with indefinite data as to their
'pressure wave ' , ' ex t r eme effects of weather' - extent
possible protection from attack with weapons 4 . Less flexibility wi thin the p lant for

3. Additional protection from direct radiation l a t e r changes and technical i nnovations
4 . Protection from l e a ki ng combustible l i qu i d s s. I n s u f f i cie nt experience with commercial
s . Better r e s pon s e in the event of an eart hquake nuclea r powe r plants

when t he sur rounding soil is sufficiently 6. Less accessibility-extension of supply
compact lines mig ht be necessary

6 . Better protection from the pos s i b i l i ti es and
effects of serious sabotage-greater assurance Unclarified aspects
of supply in t imes of war as the resul t of
underground siting of t he entire plant 1. Effect on public opinion a nd licensing

7 . Better adaptability to future requi rements by procedure
increasing the earth £.111 2 . Ques tions of l a nds ca pe preserva tion and

8. Additional freedom i n designing and site aesthetics
selection , including l owe r land acquisition 3 . Effects of soil and water pressure
costs 4 . Possibilities for subsequent use o f th e

9 . Defi ned surrounding conditions containment for storing radioact ive
10. Simp lification of t he problems resul ting on materials

termination of r e ac t o r operation

:::



TlIb1 ft 3. S UDmL.Bry of As .. e ....ment of So1 1-atructure I ntera ction Technique s [ 1 ]

-
App roach Adva n tages Disadv an tages

Closed fo rm Val uable fo r i ndicating tre nd s So l u t ions limite d t o s imp lified r epre s entation s
s o l u t ion r e garding t he e ffec ts of various of st r uc t u re geomet ry , soi l material properties,

parametera on so i l -s t r uc t ure an d l oading cond i tion s.
i n te rac tion und er ear t hquake
load i ng . Some three-dimen s i on al
problems have be en solved .

Finite dif f e re nce At t ra c tive app ro a ch for s t udy ing Displacements , s t re s ses de fine d by i nterpola-
t e ch nique s soil-s t r uc t u re intera c tion . Can t i on e xcep t at fin i te numbe r of po ints . In-

accormnoda t e co mpl i cated bo unda r - c re as e d co mputer run t ime a nd asso ci ated
ies , partial l oading, no n line a r t e ch n i cal e ffo r t required fo r analys i s. Many
material p roper ti e s , and l a yered r e fined finite dif fe re nce codes , a l tho ugh
e t re s , Sa tisfac t o ry mode l of so il wi de ly us ed in nu clear weap on s e ffec ts prob-
mass and s t i ffness i s prov ided . l ems, ha ve nev er been app lied to ea r t hq ua ke
Quie t bo unda ry a da p tations problems . At pre sent, pra c t i cal us e i n dyn a-
cu r re n t ly being de v e l oped . mic p r ob lems i s limited t o two-dimen sion al

i dealiza t i on s.

Finite element Same ad vanta ge s a s ind i cated abov e Unl e s s quiet boundary t e chn i ques a r e ava ilab l e ,
te ch ni qu e s fo r finite d ifference technique. r ad i ation da mp i ng not accoun ted f or . Exce pt

Gene r a lly , wide r ap pli cation to for some non-linear codes , i n t e rn a l da mp i ng
ea r t h qu ake r e sp onse ca lcu la t ions simula t e d by a pp ro x i mate viscous damping eecb-
t han many finite differe n c e t e ch- a niam . Incre as ed compu ter run time an d assoc -
ni ques . fa ted t e chni cal effo r t r e quired f or ana lys is .

Relatively few s t udi es of co nve rge nce of s o l -
u t i o n . At presen t pr a c t i cal us e i n dynamic
problems i a limited t o two -di mensiona l ideali-
za t ions .
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fIG. ~.9 MAXIMUM PRINCIPAL STRESS DIAGRAM fOR A
HIGH HORSESHOE CONTAINMENT - LOOSE fILL

( SCALE: I INCH = ~OO P.S .1. )
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( SCRLE : I INCH = 400 P, S. I. )



162

SHEAR STRESS IrSlI
10.00 ZO.OO '0 .00 "10.00 50.00

)I( LOOSE FILL
C!I STABIlIZED .JRCKEl

o
o
,;

fIG. 4 .41 MAXIMUM SHEAR STRESSES IN THE SOIL AT
VER1ICAL PLANE 100 fl AHAY FRDM lHE
CON1AINMENl - THICK L005E FILL AND
THICK 5TRBILIZEO JACKEl



16 3

~+. O:.:O_----"=-_"":O';=--_=,-O----=i..:.:.~__'i0. so

o

g

o

o

• LOOSE Fi ll
C) STRBILl2ED .JRCKET

o

§.1-__-<~-----------'

FIG. 4 . 42 MAXIMUM HORIZONTAL ACCELERATIONS IN THE
SOIL AT A VERTICAL PLANE 10 FEET AHAT
FROM THE CONTAINMENT - THICK LOOSE FI LL
AND TH ICK STRB IL I ZED JACKE T



o
o
."1",------------------------------ - - --,

\I s • Hold

l:!l La09E fIll
II SHHU LI ZED .JFlCI'l:ET

-ll 2 ~ 4 s 15i ~gllOI

FREQ UENCY (HZI
: '1 0.

'
.!.. 1. .~ 1. .!. ' .! ! l Iii I I I I I

'"Z
~~
a:o
a:
w
...J
W
WO
U~

a:c
...J
a:
a:
>-0
UN

~O'
lI"l

§:

FIG . 4.4 3 RCC ELERRTION RESPONSE SPEC TRR RT MID -HEIGHT OF
THE CONTRINMENT WRLL - THICK LOOSE FILL RND
THI CK STRBILIZED SAND JACKE T

I SPECTARL DRMPING = ~Z )

~

'"s»



4 50 7 a ,, \ d

C!) ceeee F ILL
• SHlQI LI ZEO ..IRCI'l:ET

4 5 0 ;3 3 \ 0'
rREQUE NO (Hll

L;~
-0

'"z

~:
c:
w
-'
w
U o
u ,,:
"'0

-'
rr;
rr;
'-0
UN

~~
In

0
0

~ 1
0

. ,

F IG. 4. 44 RCCELERRT ION RE5PON5 E 5PECTRR RT THE CO NTRINME NT
FOUNDRTION MID-POINT · THICK LOOSE FIL L RND
THICK 5TRBILIZED 5RND JRCKET

I SPECTRRL DRMPINC = cZ ]

~

~

~



II( 10fT JRCKETI
C1 70 fT JRCKET

fI G. ~ . ~ 5 EFFECT ~ F THE THICKNESS ~F THE L~~ SE

FILL JACKET ~N THE MAXI MUM PRINCIPAL
STRESSES IN THE C~NTAIN MENT

( SCALE: I INCH = ~OO P. S. I. )

1 6 6



l67

5HEAR 5TRE5S 1r5l1
10. 0 0 zO .oa "0 .00 "0.00 SO. DO

D

g

o THICK Fill
• THJN FJ LL

g

§:-'--- - -------------'

FIG. 4. 46 MRXIMUM SHERR STRESSES IN THE SOIL RT R
VERTICRL PLRNE 100 FT RHRT FROM THE
CONTRINME NT - THICK AND THIN LOOSE FILL



168

~:t. ",oo,-M_A....:X':L.. l:.:~_O_A_!l-=~L:.~::.J_AL_=":P~='-~O. so

g
g

o THICIt FILL
• THJN FI LL

o

§

o

~-'-----+-----------'

FIG . 4 .47 MR XIMU M HDRIZO NT RL RCC EL ERRTID NS IN THE
SOIL RT R VERTI CRL PLRN E \0 FEE T R~RY

FROM THE CONTRI NMENT - THI N RNO THICK
LOOSE FILL



g

-2eo
'"z
::0....~
a:o
a:
w.....
w
Wo
w~

a: o
.....
a:
a:
....0
WN
w ·,,-0

'"
s
OL 0· ' •

FREQUENCT

<y THIN JRCKET
• THJex JRCKET

r!

FIG. 4.48 ACCELERATION RE SPONSE SPECTRA AT MID-HEIGHT OF
THE CONTAINMENT WALL - THIN AND THICK LOOSE FILL

( SPECTRAL DAMPING = 27. J

....
~

~



g

§~

'"z
~o....~
er o
a:

'"-'
'"Wo
W~

er,;

-'er
a:
.... 0
WN'" .,,-0

<J)

g
O L 0-1

e THIN JACK[T
II T"ilCK JACKET

r:f

FTG. 4.49 RCCELERRTION RESPONSE SPECTRR RT THE CONTRINMENT
FOUNDRTION MID-POINT - THIN RND THICK LOOSE FILL

I SPECTRAL DAMPING = 27. J

....
o



171

lIE 10 fT JRCKETI
c 70 fT J RCKET
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FIG. 4.55 MAXIMUM PRINCrPAL STRESSES IN THE CONT­
AINMENT FOR REINFORCED EARTH JACKET AND
THIN LOOSE FILL
(SCALE: I [NCH= 400P.S.1. )
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FIG. ~ . 62 EFFECT OF THE ENERGT RBSORBING JRCKET
(POLTURET HRNE FORM) ON MRX[MUM PRINCIPRL
STRESSES [N THE CON TR INM ENT
( SCRLE, I INCH = ~OO P. S. l. )
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FIG. ~.89 MAXIM UM HDRIZO NTAL AC CELER ATIDN S IN SAND
AND ROCK MEDIA AT A VE RTICAL FLANE \0 FT
A~AT FR OM TH E CONTAIN MENT - FOAMED
CONCRETE JACKET
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APPENDIX A

Listing of Sample Plotting Programmes

Twelve computer programmes have been written to plot the results

of this i nve s tiga t i on us ing the CALCOMP plo tter . Lis ting of sample

programmes used t o plot the follow i ng resul ts a re presen ted in t his

Appe ndix:

1. Accelera tion or displacemen t time h is tory.

2. Acceleration response spect ra .

3. Stresses and accelerations in the containment.

4. Stresses and accelerations in the medium. and

5. Finite element meshes .

213
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R E,4 C I tl. 2 01 (T(I<..I,K.:l . NJ

DO 292 J C .:l . "
292 T(JO)= TIJ O) / F I'"F

99 C O " TI NU E
T( "" 1) .:F H
«N t 1 J .: F V
T ( r, .. 2 ) ,: CH

G (f\; "Z ) .: Qv
"'l= -N

400 CA L LFL l"E (T .G .", . I ."C ~lIIl .l S ~ )

IF(N 5 /. ", ( . E a .II GO TQ7 ClO
C5 )(.:.C 5

C 5 '\' = C5 V-0 .Z I
CALL S YMAOL (O SJll .Cs v .0 . 12 . ISM .O .o . - I J
C S )l.. .: C'S JIl t'). 2

eo o C .ALL S VY f1 0 L (C SJIl . CS V . 0 . 1 ~ , ISlta .o .o ."C:; J

C RE p.C h .aME OF EACH CU GVE
70C ~E AD (5 .tCO )NS

OS Y.: -C .7C



CA LL PL OT ( O.O. C . O • .J)

'.AL L 1=1.,.0 1 ( I-)(L . O . O . l)
( .ALL ~L C l ( ....XL .vxL . 2 »
DO (,ISO I=l .N~

RfA C ( 5 . 9 0 0) ,.,, ~ . I S M P

.. RIT E( b . t;iO'J HI,"" I S MF
900 F QFo"U,T (I!; .lS.\4)

DSx::.O . 5*(HXL - O . 1 7 "''''' )
OS'Y=- O SV -C . 27

9~C C "LL s r ....eO L ( Cs x .CS V . O . 1 7 . IS Iol P . O . O. NN )
CAL L ""'C l OFo( , C lit)
C....L L F'LG TC O . . Ye e • • - 3 )
C ALL CU ':;V A ( . 0 1 , q Q. ;) .1 tl O . O . O . O .-0 . 0 2 5 . 2 . C . C. O . C. C . 0. 0 , 0 . 0)
,I,=- I . / 2 8 C . C
CJ. LL CUt:o:VV(.O I . lilO . O . q O .O .O .O .O .5 . 1 .0 . .... c .O .O .O .C .C )
C ALL FL CT ( O. ? O . O . J )
,.aLL 1'1.,.01 (40 . 0 .C .O, 2 '
C ALL PLOT (O .') . - lb~ • • J l
cc t o r

fi9Q (.A LL PLO T IO .C .O .o .<;o;c; ,
S Tep
..0

222



223

c•••••••• •••• •• • ••• ..• •• ••••• • • • •• ••••• • • •• • • • • • •••• •••••••••••• ••••
PL OTTI NG O F FI NIT E i! LE'lENT ME SH 0 ' TH E MOCE L, .

O I"'E" SI C N I B l,:F{I DO D)
CALL PLO TS Ilf:UF. IO CO .6 J
CALL PL CTt C • • O •• - 3)
CONT I N Ur
,:;fA D t s , I C U\o F ACT . I COCE. OOO

1 0 FOJ;: ... J;T (l5 .F I C .5 . 1~ .F IO .5 J

I F ( N . E C . O I GO T099
'lolL fA CT C,"( F ,f,C T )
IF(l COCE . eO . 2') GOT a 3.J :J
CO 2 0 1 =I . N
RE.AO ( 5 . 3 CI lo;.l .Yl
FlEA D I 5 . J O } X2 . Y2

30 FO~M.AT I 5x . 2FI J.3 )

IF ( X I . Ea. l os o , ) )1(1 :1 0 10.
I F ( X2'. [ Q. I 0 5 0. (' 1 lt2= 10 IO .
I F {l C C CE . E C. O ) )(2= 1 .5 *x2
C,ALL F LO T (X l . v l .J J
C" LL P LOT (X2 . v2 .2' 1

20 C CI\ TI "' LE
I F (J e CCE. " !::.l) co r ce e

40 CALL ~ LC T (O • • DCC .-J)
(ALL CUJ<IIX ( . 0 1 . 4 0 . e . l e 'J .c .o .o . - 0. 0 2 5 . 2. 0 . c ; c , c-c , 0 .0. 0 . O J
_"'-1 ./ 2 8 C . 0
C"LL C loI'<VY{ .O t , 1 4 0. 0 . 4 C. 0. O . O. 0 . 5.I . C . I>. 2.0.C.0. 0. O)
CALLPLC T ( 0. 0 . 0 . 0. 3)
C_LL ~ LGT ( 40 .C .0 .O .2)

&8 C C NT I ~ V::

CALL F LO T { 20 00 •• - DC C . - 3 J
GOT CI

333 CQ!\iT I NUE
0 ( 4 44 I = 1 ,N
(ALL ( U F-IIx( . 01 . 4 0. 0 . 1 e o . C'. C. O . - 0 . 0 2 5. 2 . 0 . C .O . C . O. C . 1). I) . 0 )
_ = -I ./ 2 8 C . 0

CALL Clo F"VY (. 01 .1 4 0. 0, 4 0.0 . C . O. O . 5. 1. 0, "'. 2 .0 .C. 0 . 0 . 0)
CALLFL G T ( C. 0. O . O. 3)
(I>L L P L C T (4 0 .0 .0 .0 .2 J
(ALLI=L (T ( 6 0 0 . 0. 0 •• - 3 J
c e NT 1 NuE
GO TO I

99 C C t. T I N\; ':.:
C AL L F-'LO T r o • • o •• C;C;C; )

ST e p

"' 0



APPENDIX B

Brief Description of LUSH and SHAKE

(Swmnarized from Refs. 62 and 81)
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B.l PROGRAMME LUSH I62]

General

The computer programme LUSH was developed in the Department of

Civil Engineering at the University of California, Berkeley. California

by a group of faculty members and graduate students of geotechnical

engineering. LUSH is basically a finite element programme designed for

earthquake analysis of plane structures of the type shown in Fig. B.!.

The programme, in an approximate manner, takes into account the strong

nonlinear effects which occur in soil masses subjected to strong earth­

quake motions. This is achieved by a combination of the equivalent

linear method described by Ref. 45 and the method of complex response

with complex moduli. The latter method makes it possible to work with

different damping properties in all elements of the finite element model.

even in the high frequency ranges which must be considered in the study

of soil-structure interaction for nuclear power plants.

The physical problem which can be solved by LUSH is illustrated

by Fig. B.!. The mathematical model consists of plane quadrilateral

or triangular elements . The model is excited by a specified acceleration

time history at the rigid base. The base does not have to be horizontal

and the epecI Hed motion can have any direction in the plane of the model.

A special provision makes it possible to specify that selected nodal

points can move only in the horizontal or the vertical direction and

it is also possible to connect any pair of nodal points by a rigid element

such that they will have the same displacement at a l l times.

The stiffness and damping of the material s in the model can be

chosen to be constant or to vary with the effe ctive shear strain

225



t2i+ Y

specif ied accel era tion

y

L

Rigid ba se

25 I --uZi_,1"n
J

X @
26 k I

27
I

-....J~19
CD

28
0 0 ®292 8

'0 '0 --I--<ID c 3 1
I

@)
II 32;

®
; 12 18 24 33

® 8
I NBI+I /" NOPT-l NDPT..

4

NB

FI G, B, 1 TYPI CAL F I NITE ELEMENT MO DEL FOR LUSH [ 6 2 1
~



227

amplitude In each e lement. Typical r e l a t i o ns h i ps between stiffness .

damping and effective shea r strains fo r sand and clay a re provided

wi t h i n the progranne (Table B. 1 ) •

The mass dis tribution within the mode l can be eithe r dis tributed

(consis tent mass matrix) or concent rated at the nodal points (lumpe d

mass mat rix) . o r it can be any combination of t hese choices.

Many op t ions a re available fo r outpu t which may consis t o f time

hi s t orie s o r r e s ponse s pec t ra fo r selec ted nod al points. A s pecial

op t ion prov ides f or a perman en t r e cord on ma gnetic t a pe of both input

a nd basic i nfo rma tion o n t he comple te sol u tion.

Equat i on s of Hotion

Equa t ions of IDOt tOD and the nume rica l procedu re fo l lowed by LUSH

to solve these equations a re desc ribed in Chapter III.

Sunmary of Numerical Procedure

The fol lowing is a summary of the procedure aa it is used in LUSH.

Only t he most basic opera t ions a re included.

A. Define i npu t motion

Trans fo rm to freq ue ncy doma in

B. De fine finite e lement mod el

1. Nodal po i nts

2 . Boundary cond i tions

3 . Elements

4 . Es timate mate ria l properties

C. Form mass mat rix

D. Fo rm stiffness matrix

E. Determine amplification functions
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Shear Modulus Fraction of Cri t i c a l
Effective Reduction Fact or1\" Damping (%)

Sh e a r Strain log (1 eff)
r e ft

( %) Clay Sand Clay Sand

~l. x 10 -" - 4 . 0 1.000 1 .000 2 .50 0.50

3.16 x 10-" - 3. 5 0.913 0.984 2 .50 0.80

1.00 x 10- 3
- 3 .0 0 .761 0.934 2 .50 1. 70

3.16 X 10- 3
-2.5 0.565 0 .826 3 .50 3 . 20

1. 0 0 x 10- 2
-2.0 0 . 400 0 .656 4.75 5.60

3.16 x 10 - 2
- 1. 5 0 .261 0 . 44 3 6.50 10 .0

1. 00 x 1 0- 1
-1.0 0 . 1 52 0 . 246 9.25 15 .5

0 .316 -0 .5 0 . 076 0.115 13 .8 21. 0

1.00 O. 0 .037 0 . 0 ' 9 20.0 24.6

3.16 0.5 0 .013 0.049 26 .0 24 .6

?ol O. OO 1.0 0 .004 0.049 29, (\ 24 .6

· Th i s 1s the factor which has to be applied to the shear modulus at
low sh e a r strain amplitudes (here defined 35 10- " percent) to ob t a i n
the modu l us at higher strain l e ve l s .:.



229

1. Solve Bqn , 3 .12 for required frequencies

2. Interpolate In frequency domain

F. Determine effective shear strains In all elements

1. Compute strains in frequency domain

2. Convert to time domain

3. Determine Y
e f f

- factor x Ymax

G. Compute strain-compatible soil properties

1. Enter Table B.1 for all elements

2 . Compare with properties used in analysis

If differences too large. repeat analysis from D.

vt th new properties

b. If differences small, go to H.

H. Convert displacements to time domain

1. End of analysis.

8.2 PROGRAMME SHAKE [81]

Programme SHAKE computes the responses in a system of homogeneous,

viscoelastic layers of infinite horizontal extent subjected to vertically

travelling shear waves. The system is shown in Fig. B.2. The p rograeee

is based on the continuous solution to the wave-equation adapted for

use with transient motions through the Fast Fourier Transform algorithm

[24] is accounted for by the use of equivalent linear soil properties

[82] using an iterative procedure to obtain values for modulus and

damping compatible with the effective strains in each layer. The follow-

ing assumptions are implied in the analysis:

1. The soU system extends infinitely in the horizontal direction .

2. Each layer in the system is completely defined by its value of
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shear modu lus . c r t tical damping ratio . densi ty , and thickness.

These values are independent of f requency .

3 . The r e s pon ses i n the system a re caused by the upwa rd propagation

of shear waves f rom the unde rlying r o ck formation.

4 . The shear waves are given as a cc e l erat i on values of equally

spaced t i me i n t e rv a ls . Cyc lic r e pe t l tion of t he acceleration

time history is imp lied i n the so l u tion .

5. The s t rain dep end ence o f modul us a nd dampi ng i s accoun ted fo r

by an equ i valent line ar proc edure based on an average effec t ive

s t rain level co mputed fo r each l a yer .

The prograume i s ab le t o ha ndle sys tems wi t h va riat ion in both

moduli and da mping and takes in to accoun t the effec t o f the e lastic

base . The motion us e d 8S a basis for the analys is. the objec t motion ,

can be given in anyone laye r in t he sys tem and new motions can be com­

puted in any o ther layer.

The fo llowing se t of ope ra tions can be pe rformed by SHAKE :

1. Rea d t he i nput mot ion , find the maximum accelera tion . scale

t he va l ues up o r down . a nd co mpute t he predomi na n t pe r iod .

2 . Rea d da ta f or the soil dep os it a nd co mpu te th e fundamental

period of the de pos it.

3 . Compu te the maximum s tresses and str ains i n the mi ddle of each

s ub laye r an d obtain new values f o r modul us and damp i ng compatible

wi th a specified percen tage of the maximum strain .

4 . Compute new motions at the top of any s ublayer inside the

system or outcropping from the system.

5 . Print . plot and punch the motions developed at the t op of any

sublaye r .
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6. Plot Fourier Spectra for the eo r tons ,

7. Compute, print and plot response spectra for IIlOtions .

8. Compute, prin t and plot the amplification function between any

two sublayers.

9. Increase or decrease the time interval without changing the

predominant period or duration of the record.

10. Set a computed motion as a new object motion. Change the

acceleration level and predominant period of the object motion.

11. Compute , print and plot the stress or strain time-history in

the middle of any sublayer.

These operations are performed by exercising the various available

options in the programme.
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