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ABSTRACT

Nonlinear dynamic structure-medium interaction for 'cut-and-
cover' type underground nuclear reactor containments is studied for
earthquake excitation. The structure considered is a reinforced concrete
containment for a 1100 - MWe power plant buried in a dense sand medium.
The analysis has been carried out using the recently developed computer
programmes: LUSH (plane-strain finite element), and SHAKE (one-dimen-
sional wave propagation analysis). The high frequency ranges, which
must be considered in the study of soil-structure interaction for
nuclear power plants, and the nonlinear soil behaviour during strong
earthquakes are adequately taken into account in this study.

Parametric studies for the response of the containment and the
surrounding medium are carried out for: 1) containment shape (high
horseshoe, flat horseshoe and semi-circular roof-vertical walls),

2) relative stiffness of the containment and the medium, 3) depth of
burial of the containment (shallow, intermediate and deep embedments),
4) relative stiffness of the medium and filling material (original

fill, loose sand, stabilized sand and reinforced earth), 5) thickness

of the backfill jackets (10ft. and 70ft.), 6) isolation of the contain-
ment using energy absorbing jackets around the containment (polyurethane
foam and foamed concrete), and 7) type of surrounding medium (sand and
rock). Comparative studies are presented for rock vs. sand siting and
aboveground vs. underground siting in sand.

The response values determined are: i) time history of accelerationm,
displacement and stresses, ii) maximum stresses and maximum accele-
rations, and iii) acceleration response spectra. Plotting of these

results using the CALCOMP Plotter involved writing of twelve computer
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programmes .
The results indicate that: i) The high horseshoe shape is the
best among the three shapes considered decreasing the containment stress-—

es by 10-20%, ii) Flexible containments are better than rigid ones,
iii) Successive reductions in containment stresses to 67% of the initial
values are associated with each additional 70ft. embedment depth,
iv) The relative stiffness of the filling material and the medium has
the most significant effect on the response. The lower the modulus
of elasticity of the filling material, the greater is the reduction in
the containment and medium stresses. A filling material with stiffness
30% lower than that of the medium, reduces the stresses by 30% in the
containment, and about 20% in the medium, v) Using a jacket of energy
absorbing material (polyurethane foam) in a sand medium reduces the
containment and medium stresses by 65% and 40% respectively, vi) A
reduction in the containment stresses of about 20% is achieved using a
reinforced earth jacket, vii) Increasing the width of the backfill
side-cover increases the stresses in the containment and the medium,
viii) The respomse values of the medium near the containment are
considerably affected by the interaction. The interaction effect is
larger for aboveground siting, and ix) A containment in the sand medium
is subjected to dynamic loading higher than that for a rock medium.
Recommendations are made for further studies to account for more
realistic modelling and material behaviour, and more complex plant

configuration and structural details.
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CHAPTER T

INTRODUCTION

1.1 General

Underground siting has been suggested as an effective alternative
to the aboveground siting in view of the "inherent general reduction
to complexity of seismic amplification, benefits of structural and
biological integrity, and possibilities of urban siting, ecological
considerations, reduced effects on the landscape, ability to design
three-dimensionally, seperation of component facilities, support capa-
bility to equipment, reduced power transmission costs, increased number
of acceptable units and power capability from a single location, and
reduction of decommissioning problemd' (Reddy and Kierams [75]).

The problem of analysing large underground nuclear reactor con—
tainments to resist dynamic excitation by nuclear explosions or earth-
quakes is of considerable interest. In contrast to aboveground siting,
engineers are restricted, to a certain extent, by a lack of adequate
literature and limited actual experiences (only four small underground
nuclear reactors have been constructed, all in Europe). The 'cut-and-
cover' technique is of considerable importance specially for central
Europe as only this conceptcan contribute to a solution of the siting

problems.

1.2 Statement of the Problem
The purpose of this investigation is to analyse the nonlinear

dynamic r of the 'cut-and r' type underground nuclear reactor

containments to earthquake excitation taking into consideration the soil



nonlinear behaviour, and to study the effect of containment geometry,
burial depth, and 'filling material' properties.
Acceleration time histories and response spectra, and displacements

and stresses, are obtained and plotted using the CALCOMP plotter.

1.3 Layout

Chapter I presents a general description of the problem.

Chapter II reviews the literature on underground nuclear reactor
containments with emphasis on the 'cut-and-cover' concept.

Chapter III presents the analysis procedure, modelling and the
response of free field and soil-structure systems. The methods used
to determine the values of all the parameters needed for the analysis,
including the details of the finite element model, are discussed in
detail.

Chapter IV presents parametric studies and the results obtained
for variable geometry of the containment, depth of burial, relative
stiffness of the medium and the filling material, thickness of the
backfill jackets, isolation of the containment using energy absorbing
jackets, and the type of the surrounding medium. Comparative studies
are also presented for rock vs. sand siting and aboveground vs. under-
ground siting.

Chapter V compares the results obtained in Chapter III and IV.
The conclusions from this investigation and recommendations for further
Tresearch are presented at the end of this chapter.

Appendix A presents listings of sample plotting programmes written
to plot the results of this investigation using the CALCOMP plotter.

Appendix B presents brief descriptions of the programmes used

in the analyses (LUSH and SHAKE).



CHAPTER IT

REVIEW OF LITERATURE

2.1 Genmeral

Underground and underwater sitings have been suggested as possible
alternatives to surface siting to provide increased containment protection;
this study deals with underground siting. The concept of the under-
ground siting of nuclear reactors for power generation is not new; in
the mid-1950"s Beck [8] carried out studies to evaluate the potential
for underground siting. In Europe, a total of four nuclear reactors
have been located underground, the details of which have been described
by Watson, Kammer, Lange, Selzer and Beck [98]. Studies on the under-
ground siting of large nuclear power plants are under way in the U.S.A.,
Sweden, Norway, and Switzerland. A cut-and-cover nuclear reactor is
being designed for Israel and there is considerable interest in the

same concept in other countries like West Germany.

2.2 Underground Siting Concept

Since 1958 several studies have been conducted into the feasibility
of placing nuclear power plants underground. Most of these studies deal
with the concept of placing a large size reactor in a covern excavated
in massive rock. United Engineers Inc. [97] have summarized the feasibi-
lity studies carried out by Refs. 8 and 98, Blake et al [13], United
Engineers and Acres Inc. [96], Swiger [89], Chester [21], Smernoff [87],
Rogers [77], Norsk [67], Oak Ridge National Laboratory [70], Holmes and
Narver Co. [43], and Brekke and Glass [15]. The general conclusions made

in these reports and a comparison between these studies are listed in



Table 1. A summary of the assessment studies of underground siting
(with emphasis on the 'cut-and-cover' concept) which have been carried
out by Krdger and Altes [53] is presented in Table 2. The discussion
of the advantages and disadvantages of the underground siting by Crowley
[29] and Buclin [16], based on field experience and practical problems,
is of considerable interest. The conclusions are that the underground
siting concept should receive greater attention in siting consideration,
research and development. Reddy and Kierans [75] have summarized the
advantage of the underground nuclear reactors as follows:

"(1) Potential improvement in containment fail-safeness by virtue
of the protection of several hundred feet of media impervious to radio-
activity notwithstanding functional penetrations.

(2) Reduction of structural change from deliberate or accidental
damage due to

(a) military attacks;

(b) nuclear or other blasts;

(c) vandalism; and

(d) air and sea vehicle impacts and explosions.

(3) Improvement in plant cunfiguration by the ability to design

1ly as to structure two-dimensionally.
(4) Separation of component facilities such as containment structure
and turbine plant structure.

(5) Current exploratory techniques for the location of an under-
ground site involving tunnels and shafts will expose faults. This is
not so in the case of surface siting which may involve the risk of an
undetected hidden fault in or close to an alluvium covered surface site.

(6) The surrounding medium provides three-dimensional support
capability to functional structures such as a turbine-generator system
and allows for the bracing of secondary equipment over the full height.

(a) Power transmission costs and construction periods may be

reduced by location close to load centers.

(b) Savings in buildings, substructures and foundations.

(c) Excavated rock can be used as construction material.

(d) No holdups in construction schedule due to adverse weather.

(8) Use of a single underground site with provision for multiple
units involving increased power capability would be more economical
than a surface site with limitations on size and number of units. There
would be a general reduction of decommissioning problems due to more
effective isolation.

(9) Systems and technology of cooling arrangements are essentially
the same as for surface plants with modifications needed only in confi-
guration and control".




2.2.1 Alternate Underground Concepts

Fig. 2.1 presents the configuration given by Ref. 53, and described
in Ref. 97, as follows:

i) Surface Mounded Type [21]: A plant constructed at ground level with

backfill material mounded around the structure.

ii) Cut-and-Cover in Soil or Rock: A plant constructed in open cut
excavation in an unconsolidated soil [13] or in rock [89] subse-
quently backfilled over the contaimment to the ground surface.

iii) Underground in Rock [96]: A plant constructed in a covern
excavated at depth in rock, either in a hillside or below general
grade level.

Kierans, Reddy, and Heale [51] have described the basic types of under-

ground openings in rock and soil (Fig. 2.2).

2.2.2 Cut-and-Cover Type

Cut-and-Cover type underground nuclear reactor containments are
suitable for siting in soils and weak rock. The cut-and-cover concept
can be used in any geological formation and sometimes it is the only
configuration which can contribute to a solution of siting problems
under the natural environmental conditions of many regions like central
Europe and specially Germany. Ref. 13 indicated that not only is the
cut-and-cover technique feasible and suitable for all reactor types,
but also appears to introduce little additional cost while accomplishing
the objective of confinement of radioactivity most effectively (by
controlling the permeability of the filling material).

Fig. 2.3 presents the semi-embedment and the total embedment config-

urations proposed by Ref. 53 as alternative concepts for the cut-and-cover



type i s

2.2.2.1 Construction

The techni of the d: does not

propose any extensive modifications of plant design so that most of

the experience acquired to date with aboveground plants can be trans-—

ferred to the new si [53]. to the state-of-

the-art, slurry t hes and may be used for the

vertical walls of the excavation [54].

2.3 Seismic Loading

2.3.1 General

The determination of the of any to ear!

excitation is complicated by the dependence on a large number of factors,
such as nature and intensity of the earthquake, structural details
(shape, thickness ...etc.), construction materials, siting (aboveground

or underground), and the surrounding medium (rock or soil).

2.3.2 Effect of Depth
Theoretical studies carried out by Krishna and Arya [52] indicate

that displacements are greater in soft soil than in rock. However, it
is possible that for a large soil layer a great deal of the energy would
be absorbed in the subsoil layers and the motion felt at the surface
could be small. Observations of the El Centro Earthquake revealed that
if the thickness of the clay layer had been only 30 ft., rather than
100 ft., the maximum acceleration could have been about 0.5 to 0.6g
instead of 0.13g [97]. The results of the measurements during earth-

quakes in Japan show that the underground acceleration is 1/2 to 1/3



that at the surface, while at similar depths there is little difference
in displacement between the surface and underground [97]. Similar
observations were obtained by Saita and Suzuki [80]. Nasu [66] has
observed that the amplification of earthquake motion aboveground, compared
to that in a tunnel 500 ft. below the ground surface decreases as the
period of the earthquake increases. Ref. 75 indicated that the seismic
loading on an underground structure located in a rock continuum is not
affected by the amplification of body (P and S) and surface (L) waves

due to soil layers. Glass [38] indicated that "when the cavity is located
deeper than about one quarter wave length from the surface, the structure
is not affected by the doubling of displacement amplitude which occurs

upon reflection of body waves at the earth's surface".

2.3.3 Type of Medium

It has been noticed during all strong earthquakes that within the
same locality even similar structures suffer unequal damage. Structures
on, or in rock usually suffer the least (Tandon [91] and Kanai [49]), while
those on loose soil or on the surface suffer the worst damage (Okamoto
[71] and Kanai [50]).

In the study carried out by Ref. 91, on seismic intensity for
foundations on the soil surface and on rock, for the Assam Earthquake,
it has been found that the intensities experienced in rock are far less
than those of soil foundations. During the Anjar Earthquake of 1956,
the eastern portions of the town of Bhuj, in which the buildings were
founded on alluvium, suffered extensive damage, while the western portion
of the town founded on rock suffered very little damage. Ref. 97 pointed
out that soft soil amplifies the motion due to its low density and stiff-
ness (elasticity modulus). A detailed study by Mithal and Srivastava

[63] indicated that areas with compact, massive and consolidated



rocks, and dense and compact boulder strata with low water content,

behave as stable masses during earthquakes.

2.3.4 Tunnel Damage During Earthquakes

Experiments carried out by Bulson [17] on square tubes buried in
compacted sand and subjected to static and dynamic (blast) loadings
indicated that "although flexible structures have definite advantages
statically, rigid tunnels might be more suited to the carrying of
dynamic loads".

Ref. 71 has made an extensive study of tunnel damage due to the
earthquake loading in Japan. The findings of this study are: i) for
the same type of medium, the damage ratio is higher in tunnel sectors
with thick lining than in sections with thin lining, ii) regardless of
the type of medium, the damage ratio is also higher in thick linings,
and iii) the damage ratio is higher for tunnels with poor ground geology.
The conclusions from the study indicate that the safety of a tunnel at
the time of an earthquake is influenced by the conditions of the natural
ground, and that when these conditions are poor, they cannot be over-

come by an increase in the lining thickness.

2.3.5 Conclusion

Generally, displacements, accelerations, and velocities are higher
at the ground surface than those below it. Structures in, or on a weak
medium, will be subjected to larger seismic effects than those for a
relatively stiff medium. Although it is thought that an increase of
lining thickness can better resist seismic forces, in some cases, it
Tesults in an increase in seismic stresses producing a reverse effect.

However, the deep underground siting concept offers definite seismic



this investigation is restricted to 'cut-and-cover' type nuclear

_containments in soil, the review of amalytical procedures

in this section will be confined to soil siting.

lyses for underground siting in rock have been presented in

‘erences. Ref. 75 presented comprehensive review with extensive
phy. Static analyses have been presented by Sigvaldason [86],

Kierans and Sigvaldason [9], Yu and Coates [102], Kulhawy [57-59],

issi and Ranken [37], Chang, Nair and Karwoski [20], Ghaboussi,
and Isenberg [36], and Ref. 2. Dynamic Analyses have been

out by Blakey [14], Moselhi [64], Sheha [70], Heale and Reddy

and Heale [74], Murthy and Reddy [65], and Forrestal, Reddy

[351.

tic Analysis

pared to the relatively new field of geotechnical engineering,
structure interaction problem is very old. The limitations
e Coulomb [28] and Rankine [73] theories in determining the resultant
Pressure acting on a simple retaining wall are due to high
ation of the soil and the wall; besides, the deformation of the
ot be obtained. ,

nation about wall deformation associated with more realistic
s been obtained only through experimental work such as

£ Terzaghi [92-94], Rove and Peaker [79], and James and Bransby
astic analyses (Hetenyi [42] and Finn [34]) and limit theories

B 01 Drucke: [32] and Sokolovski [88]) have been developed to



10

account for the effect of wall deformations. For underground structures,
Burns [18] developed a theory for an elastic cylinder in an isotropic
linearly elastic field loaded by a uniform static surface pressure.
Allgood [3, 4] simplified the equations governing elastic behaviour and
indicate their applicability to design if proper effective soil moduli
are used. In view of the limitations of the above analytical solutions
in simulating real problems (e.g. real material behaviour, foundation
deformation and the effect of construction sequence), empirical and

semi-empirical technique are generally used to design many earth support

systems other than retaining walls. Peck [72] and Deere, Monsees and
Schmidt [31] have updated the available empirical techniques in the case
of lined tunnels.

Atkinson and Cairncross [6] studied the stability of a shallow
unlined circular tunnel supported by a uniform internal pressure
using theory of plasticity. Neglecting the soil self-weight, they
obtained relatively simple solution for the particualr case of a
uniform pressure applied at the soil surface. The solution obtained
is of limited use in evaluating the stabllity’of tunnels in real soils
whose self-weight may itself cause instability in tunnels. To investi-
gate this problem further, Atkinson, Brown and Potts [7] carried out
a series of laboratory tests on unlined circular tunnels in dense sand.
The results indicated that the stability of a tunnel in dense sand is
approximately independent of its depth.

With the advent of the high-speed computer and the rapid development
of numerical method of analysis, the finite element method proves to be
one of the most powerful numerical techniques for the stress analysis

of complex structural systems because of its ability to simulate realistic
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s0il or rock behaviour and complicated boundary conditions and construc-
tion sequences. Clough [23] presented a state-of-the-art report on the
application of the finite element method to earth-structure interaction
in which he concluded that the finite element method is "an analytical
tool which can realistically simulate almost any class of earth-structure
interaction problem'". The finite element programmes developed by Wilson
[99, 100] and Farhoomand [33] have been modified and used by Nossier
and Takahashi [68] to study the behaviour of buried cylinders in soil
and the effectiveness of backpacking due to static and dynamic surface
loadings. Bjerrum, Frimann and Duncan [12] have presented a state-of-
the-art report on earth pressure on flexible structures in which the
behaviour of anchored sheet pile walls has been examined in the light

of model tests, field observations, theoretical analyses and the finite

element method.

2.4.2 Dynamic Analysis

2.4.2.1 General

External dynamic excitations for totally embedded structures are
from ground motion due to nuclear blasts or natural earthquakes. Com—
parison of earthquake and blast-induced ground motion presented in Ref.
75 indicate remarkable similarity in the character, intensity, duration,
frequency content and spectral shapes of the two motions.

Allgood [5] presented a summary of the available knowledge of soil-
structure interaction as it pertains to facilities that provide pro-
tection from nuclear weapons effects. Howard, Ibifiez and Smith [44]
presented a review and evaluation of the design standards and the

analytical and experimental methods used in the seismic design of
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nuclear power plants.
Various factors that affect the seismic loading on aboveground

and underground structures are discussed in detail in Sec. 2.3.

2.4.2.2 Methods of Analysis

Four different analytical procedures can be used for soil-structure
interaction problems. Analytical and semi-analytical solutions, the
lumped parameter method, and the finite element method.

Analytical and semi-analytical methods available up to the present
time (1977) are applicable only for simple geometry and loading (e.g.
Yoshihara, Robinson and Merritt [101], Dawkins [30], Ali-Akbarian [2],
Novak and Beredugo [69], and Tajimi [90]). Therefore, they are not
practical for the complex configuration of a cut-and-cover structure

in media with varying properties.

2.4.2.2.1 Lumped Parameter Method

Soil-structure interaction is represented by a system of lumped
masses, springs and dashpots whose constants may be determined from
the elastic half-space theory (e.g. Bielak [11] and Ref. 69). The
applicability of this approach to soil-structure interaction of the
underground structure, specially the 'cut-and-cover' type, seems to be
very limited because i) available solutions for large media have only
been derived for horizontally layered media configurations, ii) impedance
functions have been derived only for simple foundations [44], and iii)
it is difficult to simulate the surrounding medium and filling material.
Hall and Kissenpfennig [39] presented a comparative study on the responses
of deeply embedded foundations obtained by the finite element and the

lumped parameter analyses and concluded that 'complex soil sites where
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the soils are not horizontal layered must normally be analysed using the

finite element approach'.

2.4.2.2.2 Finite Element Method

The finite element method offers a powerful tool in interaction
problems involving foundation embedment, soil media with non-horizontal
layers and other geometric irregularities, and the coupling between
adjacent structures.

The solution of soil-structure interaction problems by the finite
element method currently follows one of the two alternatives: i) solution
with the structure and soil coupled as a single large model, or ii) solu-—
tion using the sub-structure approach. Ref. 44 indicated that "due to
the substructure method of separately performing modal extraction on
the soil and the super structure, and then performing a coupled analysis
using modal synthesis, there are apparent cost advantages to the tech-
nique for the large dynamic model often required for nuclear power
systems'.

Three numerical methods are used in the solution of the equations
of motion; modal analysis, direct integration and the complex response
(transform) method [62]. In contrast to the modal analysis method,
the complex response and the direct integration methods permit using
variable damping in each element.

Although the finite element method is capable of solving non-linear
three-dimensional dynamic analysis problems, analyses carried out to
date have been mainly two-dimensional for reasons of economy and
computer size. Investigations carried out by Luco and Hadijian [61]

have indicated that it is not possible to obtain a two-dimensional
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P ion which app both the dynamic stiffness and the

radiation damping of the three-dimensional model, and that two-dimensional
models for analysis of nuclé;: power plants lead to underestimation of

the maximum response. Ref. 83 pointed out that errors up to 20-30%

may occur due to the two-dimensional analysis of three-dimensional

systems. Berger, Lysmer and Seed [10] indicated that good agreement

two and th di ional models of the response for points

below the soil surface.
Analysis of the soil-structure interaction using the finite

element method assumes that the motions in the system are generated
by shear waves travelling upward. Ref. 83 indicated that while this
assumption is a potential source of error, it is consistent with the
normal simplification of complex engineering analysis purpose; and
it is a reasonable representation of the actual conditions. Ref. 44
indicated that non-vertically travelling seismic waves may be significant

in some cases.

2.4.2.2.3 Finite Element Modelling

Ref. 61 indicated that extreme care must be taken in modelling the
actual soil-structure system with a two-dimensional finite element for
dynamic analysis. Model dimension, mesh size, and soil properties
should be carefully chosen to simulate the actual system properly.

(a) Boundaries

To overcome the problem of reflection at rigid boundaries, Ref. 14
carried out the analysis of an underground cavity subjected to a short-
duration step pulse of few milliseconds so that the wave does not

reflect from the boundary before the analysis ends. For longer time
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durations, Kuhlemeyer [56] and Castellani [19] used viscous absorbing
(transmitting) boundaries. Ref. 54 used displaced boundaries to simulate
an infinite space. Ref. 62 indicated that if the soil damping is high
(12% or more), energy radiating outwards from the vicinity of the struc-
ture is absorbed quickly, and the free field conditions are developed
within a distance of 2 to 2 1/2 times the model depth. Other studies
[61], based on continuum and finite element comparisons, indicated that
placement of the boundary at 4 to 6 times the foundation width is
required.

(b) Mesh Size

In applying the finite element approach to dynamic problems, the
element size should be small compared to the wave length. A fine mesh
is required to achieve adequate frequency transmission capability within
the frequency band of interest. Investigations carried out by Costantino
and Lufiano [26] indicated that the mesh must be able to transmit two
or more times the required upper frequency of interest to enable adequate
computation of motion. To simulate the propagation of waves adequately,
Kuhlemeyer and Lysmer [55] proposed an empirical formula that the
element size should not be larger than 1/4 or preferably 1/8 of the
shortest wave length. Ref. 62 suggested that a value of 1/5 the
shortest wave length gives acceptable results. Comparison of the results
of the finite element analysis for fine and coarse meshes, and wave
propagation analysis carried out by Ref. 83 indicate that while the
fine mesh gave the same response spectra as that of the wave propagation,
the spectral values for the coarse mesh were less than those of the

fine mesh and wave propagation, especially at high frequencies.
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A typical procedure often used in finite element analyses uses
coarse elements away from the structure to minimize the number of
degrees of freedom in the mesh. Costantino, Miller and Lufrano [27]
pointed out that "these coarse elements are opaque to the higher fre-
quencies transmitted through the finer elements, i.e., higher frequencies
will be transmitted back into the mesh. Thus, the coarse elements will
act as conventional boundaries at the higher frequencies thereby elim-
inating any advantages thought to be gained by the coarse elements'.

(c) Dynamic Material Properties

Material properties required for the finite element analysis are

ing ratios, shear moduli, unit weight and Poisson's ratio.
damping s s 3:4

Soil non-linear behaviour during strong earthquak can be
for, in an approximate manner, using "the equivalent linear method",
described by Idriss, Dezfulian and Seed [45], and based on experimental
data collected from resonant column or triaxial test data for cyclic
loading conditions [82].

Material damping is commonly introduced by defining Rayleigh
damping matrix as a linear combination of the mass and stiffness matrices.
According to this approach, the damping ratio, B, is frequency
dependent; has large value at high and low frequencies and hence modes
of vibrations at high and low frequencies are damped out. This can
be a serious limitation in the analysis of structures containing critical
equipment with high frequency characteristics such as nuclear power
plants [83]. Recent development to eliminate this effect have been

described by Ref. 62 by using a complex modulus, G*, defined as
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G¥ = G(17282 =+ 2)'3/1?') salsesieanesasinseaenesenasneessiesnee 201
where G = shear modulus. Ref. 39 indicated that the controlled damping, cal-
culated according to Eqn 2.1,agrees very well with the measured values.

Ref. 83 studied the free field response of a layered soil using
wave propagation analysis and the finite element method with i) controlled
damping, and ii) Rayleigh damping. The results indicate that while
the response spectra of the wave propagation analysis and the finite
element method using controlled damping were the same, the results of
the finite element method using Rayleigh damping were very different from
those of the wave propagation analysis. This implies that the high
frequency components are damped out when using the frequency dependent
Rayleigh damping.

The above discussion indicates that the analysis of soil-structure
interaction using the equivalent linear method and the controlled damping

ratios (complex moduli) seems to lead to more realistic response values.

2.4.2.3 Finite Difference Approach

Ref. 44 pointed out that finite difference methods offer a power-
ful potential numerical tool for treating wave propagation/soil-structure
interaction problems in the seismic analysis of nuclear containment
structures and are also completely general with respect to media
constitutive properties. However, these methods have received little
attention to date by analysts dealing with soil-structure interaction
problems in nuclear power plant design in spite of their "higher

computational efficiency than finite element methods for certain classes
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of dynamic problems" [44]. A two-dimensional axisymmetric finite
difference computer programme - AFTON [95] — has been developed and
used by Agbabian-Jackson Associates [1] to examine the tramsient
response of non-uniform axisymmetric structures embedded in layered
media when subjected to uniform transient pressure pulses.

Table 3 presents a brief comparison between finite difference,

finite element, and continuum methods presented in Ref. 1.

2.5 Review of the Previous Work

Investigations carried out on the dynamic analysis of cut-and-
cover type underground nuclear reactor containments are presented in
some detail in this section.

An initial study was carried out by Blake, Karpenko, McCauley and
Walter [13] for a cut-and-cover type underground nuclear reactor con-
tainment. The study was based on a postulated 1100-MWe power plant
containment constructed in an open pit in soil and then backfilled
with selected material. The backfill was chosen for its well-defined
low permeability so that it will confine, within a small envelope, any
radioactivity release that might result from a rupture of the containment.
The containment foundation was placed 340 ft. below the ground level.
The soil cover was 160 ft. so as to provide a nominal 70-psia static
overburden pressure to balance the internal design pressure. The rein-
forced concrete containment, with steel lining, studied had a semi-
circular roof of a diameter of 130 ft. and vertical walls 90 ft. high.

The seismic and overburden effects on the contaimment were determined
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using finite element analysis. The finite element model was 500 ft.
dPGP and the side boundaries were placed 500 ft. from the axis of
symmetry. Two types of loading were considered: an overburden loading
and horizontal earthquake loading. The stresses in the medium and the
containment were obtained from static and dynamic analyses. The results

indicated that the static ov loading d much

greater than those produced by the earthquake loading. Analyses were
made to verify contaimment after a catastrophic reactor accident followed
by failure of the containment structure. Since the proposed method

of excavation permits selection of backfill materials, a good selection
of low permeability fill results in preventing radioactive releases in
even the worst cases of nuclear accident. The conclusions from this
study were: 1) the additional costs of undergrounding are negligible,

ii) harmful radiation can be confined, iii) no new technology is required,
and iv) static loading produces greater stresses in the containment
compared to earthquake loading.

Moselhi [64] studied the response of an underground cavity in rock
to a step pulse plane wave. The cavity was lined with a 1 inch thick
steel lining. Parametric studies were carried out on the shape of the
‘containment, isolation of the structure using energy absorbing material,
and properties of the backfill for a cut-and-cover type structure.

The plane-strain finite element model was 42' long and 38' deep. The
structure used for the cut-and-cover had a semi-circular roof and
vertical walls. The model boundaries were of the rigid type and the

duration of the analysis was confined to 3 milliseconds to restrict
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the analysis to the time period before the first wave reached the
nearest boundary.

For the cut-and-cover structure, normal and heavy weight concrete -
each with 3 different elastic moduli - were used as backfill. The
results of the effect of the density and the stiffness on the structure
and the medium response indicated that neither the density of the filling

1 nor its as values can greatly affect the in-

ternal forces in the structure, but a proper combination of the values
of the two properties can lead to a significant reduction in the strain-
ing actions of the structure and the stresses in the medium. The results
of the analysis of the underground cavity indicated that the high
horseshoe shape is the best. A reduction, as high as 80%, in the
stresses in the crown element of the structure was achieved by isolating
the structure using energy absorbing material.

Krdger, Altes, Escherich, and Kasper [54] used LUSH to study the
effect of embedment depth of the containment on the soil-structure
interaction. Three configurations were used: aboveground, semi-embed-
ment and total embedment. A pressurized water reactor (1300-MWe) of
Kraftwerkunion-design served as a reference plant for which a cut-and-
cover plant design was to be developed. Three different acceleration -
time histories, derived from actual measurements and from artificial
synthesis, were used to simulate earthquake excitation. The results
of the analysis indicate that i) the three acceleration time histories
give different peak stresses due to different spectral intensities,

but the acceleration patterns, as functions of depth, are similar.
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They do not change significantly even with variations in the dynamic
shear modulus and critical damping of the soil layers, ii) high shear

moduli and low damping ratios give larger iii) the accel

patterns are strongly influnced by the thickness of the soil layer between
the rigid base and the foundation of the containment. This phenomenon
is independent of the level of the embedment, iv) in general, the embed-
ded containment is less stressed than the aboveground one, and v) the
shift of higher for

depth of embedment, was confirmed by this study.

2.6 Summary
A review of the underground concepts, factors affecting seismic

loading on the structure, analysis procedures, and previous work on the

cuf d type d nuclear containments have been
presented. Additional literature reviews are presented in Chapters

III and IV.



CHAPTER III

PROBLEM FORMULATION

3.1 General Description
The state-of-the-art for underground siting lags considerably

behind that for aboveground siting. As indicated in Chapter II, there

are many questions that have yet to be d in the

siting concept. This project attempts to answer some of these questions
by a study of the dynamic response of cut-and-cover type underground
nuclear reactor containments, subjected to earthquake or blast-type
excitation.
The structure considered is a reinforced concrete containment for

‘a 1100-MWe power plant buried in dense sand medium. The containment
structure, excavation and back fill for a typical case are shown in

Fig. 3-1(a). The profile of the site and the soil properties are shown

in Fig. 3-1(b).

3.2 Computer Programmes Used in the Analyses

In the analyses described herein, computations were made using the
recently developed programmes that permit the use of variable shear
moduli and variable damping in the soil. The free field response and
the response of the soil-structure system were determined by the plane
strain finite element programme, LUSH, developed by Lysmer, Udaka, Seed
and Huang [62]. The nonlinear soil properties are taken into account
in LUSH by a combination of the equivalent linear method described by
Ref. 45, and the method of complex response with complex moduli developed

in Ref. 62. The latter method makes it possible to use different

22
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damping properties for each element of the finite element model. The
high frequency ranges, which must be consdiered in the study of soil-
structure interaction for nuclear power plants, are also taken into
consideration in this approach.

The free field response obtained by the finite element method
using LUSH was checked using the computer programme, SHAKE, developed
by Schnabel, Lysmer and Seed [81]. SHAKE is based on a one-dimensional
vertical wave propagation method for horizontal soil layers taking the
non-linear soil properties into account.

The equations of motion of a soil-structure system, excited by
earthquake, and their soiution using the two-dimensional plane strain
finite element programme, LUSH, are described in the following sections.

Brief descriptions of LUSH and SHAKE are presented in Appendix B.
3.3 Analytical Procedure

3.3.1 Equations of Motion
The equations of motion for undamped vibrations of a soil-structure

finite element system, excited by earthquake, can be written as

[MI{6} + [K]{u} = = {(m}P(L) vevvvrnnnnncarenns 3.1

u} = the nodal point displacements relative to the fixed base,

= the stiffness matrix,

= the mass matrix (lumped or consistent),

= the given input acceleration at the rigid base with the horizontal

and vertical components:



24

h(t) = ¢, . ¥(r)

v(®) = ¢, . ¥(t)

in which Ch and Cv are scaler constants, and

{m} = the load vector corresponding to y = 1 related to the mass matrix

M] through
{m} = MI(C IV} +C VD ceeiriniiiniiiinin 3.3
1 0
0 51
in which V, =].p and v =3.
0 0
I 1

As each nodal point has two degrees of freedom, all the above

have the d on NF = 2 x the number of free nodal points,

‘and the matrices [M] and [K] have the dimension NF*NF.

3.3.2 Response to Harmonic Input Motion

The method of complex response [62], in its basic form, assumes

that the input motion is c with the freq w (radian/sec.)
s L R e e e R

jhere the amplitude ¥ may be complex. This implies that the response

s also harmonic

[ 20T 8 e s Al ve s s 1355

ere {U} is a constant, perhaps a complex vector. Substitution of
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of Eqn. 3.5 into the equations of motion 3.1 gives

(IK] - w? [M]) {0} = -

which is nothing but a set of linear equations in the unknowns {U}.
Eqn. 3.6 can be solved by Gaussian elimination if w is not a natural
frequency of the system, and the time-dependent response {u} follows
Eqn. 3.5 which provides the complex response to the complex input
motion in Eqn. 3.4. Since the real part of the output corresponds to

the real part of the input, the response to

) = Re(¥) cos ut - In(¥) sin 0 ceeenenen. 3.7

F(t) = Re(¥ .
is

u(t) = Re({U} . %) = Re {U} cos wt - In {U} sin wt .

3.3.3 Damped Vibrations

Viscous damping can be considered in the method of complex response
by using complex moduli in the formulation of the stiffness matrix [K].
‘Ref. 62 shows that by application to a simple damped oscillator, the use

‘of the complex shear modulus
I

G*=G(l—282+ZiB V{-ﬁ Yipoinenswonnnsmuanonsas I

‘will lead to the exactly the same amplitudes as nodal analysis with a
uniform damping ratio, f. This approach enables representation of

iable damping by using different values of G and B in each element.

3.3.4 Response to Actual Earthquake

Actual earthquake motions are not harmonic. However, if the motion
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is input as a digitized record with N points, at time intervals At, it
can be decomposed into N/2+1 harmonics of complex amplitudes, ?s’ and

frequencies

2ms
w =

N
- SR 2 8 = 0, 1y ceres g eeenaes sesssssssnassansanss 3,10

The computation of the complex amplitudes from the given real values
is most conveniently made by a superfast algorithm known as the "Fast
Fourier Transform" by Cooley and Tukey [24].

Having decomposed the earthquake motion into harmonic motions,
Eqs. 3.6 have to be solved N/2+1 times for each value of the (N/2+l)
frequency. In view of linear viscoelastic behaviour, the complete
solution can be obtained by simple superposition as follows:

N/2 iw_t
fufe)3 = Re 25 AU} " ® Lieaue. A o St
=0 A

3.3.5 Solution of the Equation of Motion

The computer programme LUSH solves Eqn. 3.6 using the Method of
Complex Response [62]. In order to save computation time, the required
number of solutions to Eqn. 3.6 can be reduced according to the maximum
frequency used in the analysis, and the value of the interpolation factor
in the frequency domain. Usually, the input motion contains frequencies
as high as 100 Hz which are usually not of interest and can be neglected.
Thus Eqs. 3.6 have to be solved for only frequencies less than the max-
imum required frequency (8-25 Hz).

The number of required solutions can be further reduced by inter-

polation in the freq domain. Eqn. 3.6 is written in the form
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T GO ) A —aiia s g A e B e e s 3.12

The components of {A} are called amplification functions with smooth
functional dependence on w. {A}ﬁ can be evaluated at, say, every
fourth frequency ws, =0, 4, 8, ..., and then the intermediate amp-
lification functions can be obtained by interpolation. The actual number
of interpolated points which can be used without the introduction of
significant errors should be determined by trial and error as shown in
the analysis described herein.

Having determined all the amplification functions, (A}s, s=0,1,

. N/2, either by solution of Eqns. 3.12 with interpolation, or by
setting them equal to zero above the cut-off frequency, the displacements

at the times k.At are determined from

N/2 . o kit
U =Re I (A} .Y)e s =0, Ay Bl sesnvees 3613
s=0

‘which can be evaluated by the Inverse Fast Fourier transform method.

3.3.6 Soil Non-Linear Behaviour

! The above solution is applicable only to linear viscoelastic
systems but large shear deformations which occur in soils during strong
earthquakes introduce significant non-linear effects. This problem has
‘been solved in LUSH using the equivalent linear method by Ref. 45.
According to this method, an approximate nonlinear solution can be ob-
‘tained by a linear analysis provided the stiffness and damping used in
'

‘the analysis are compatible with the effective shear strain amplitudes

at all points of the system. Data on strain-compatible soil properties



28

published by Seed and Idriss [82] is provided within subroutine CURV52
of LUSH. The strain-compatible soil properties are obtained by an iter-

ation procedure using the 'one-dimensional column study' described below.

3.3.7 One-Dimensional Column Study

The free field response to the horizontal component of input motion
can be determined by application of LUSH to a single column of rectangular
elements representing the soil layers in the free field. If all nodal
points are allowed to move only in the horizontal direction, and if the
element dimensions are small enough (as described in Sec. 3.4.4.1), the
model will simulate the vertical propagation of shear waves in the free
field, and iteration will lead to the nonlinear response of the model in

the free field.

3.4 Modelling

3.4.1 General Description

The containment structure is placed in an open pit in 3 horizontal
layers of sand of total depth of 500' followed by a semi-infinite rock
layer. The side boundaries are placed 1010' from the structure centre
line. Because of symmetry, only one half of the soil-structure system
is studied after introducing boundary conditions compatible with the
horizontal input motion. A typical finite element discretization of the
soil-structure system is shown in Fig. 3.2, Details of the element

disceretization of the containment structure is shown in Fig. 3.3.

3.4.2 Factors Affecting Computation Time

Execution time, actual CPU and equivalent CPU times required for

one run by the programme LUSH are functions of many parameters, including
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a) the geometry of the finite element mesh (total number of elements
and band width of the stiffness matrix), b) duration and time step of
the input motion, c) maximum frequency used in the analysis, d) number
of iterations on soil properties, and e) the interpolation coefficient
in the frequency domain. Special care should be given in numbering

nodal points and choosing the dimensions of the finite element model,

element size, £ and the i polation coefficient in
order to save computer time. After all possible minimizations of
computer time and storage, the analysis of a typical case needed 1100K
computer storage, 53 min. actual CPU time and about 13 hrs. equivalent
CPU. The computer time would have been increased to at least 8 times
the above values if all the above parameters had not been carefully
chosen.

In the following sections, the procedures followed to determine

all the parameters needed in the analysis are described.

3.4.3 Model Dimensions

The overall dimensions of the finite element mesh influence the
response of the structure due to the action of the waves reflecting
Itm the boundaries. As discussed in Chapter II, this problem can
be overcome either by the use of energy absorbing boundaries or by
‘the use of a sufficiently extensive mesh. LUSH uses the latter approach.
‘For aboveground nuclear plant structures, it has been found that if the
‘material damping in the soil is relatively high (approx. 12% of
eritical), energy radiating outwards from the vicinity of the structure
is absorbed relatively quickly, and free field conditions are developed

within a distance of approximately 2 to 2 1/2 times the depth of the
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model away from the structure [62]. In the analysis described herein,
the side boundaries of the model are placed 1010' away from the centre
line of the structure.

The rigid base should be placed below the foundation of the structure
at a distance greater than or equal to the width of the structure [62].
In the model considered, the rigid base is placed 150' below the
structure fol_mdation for a structure width of 95'.

The check on the adequacy of the extent of the mesh was made for
each case studied by comparing the computed motion at an ample distance
from the structure with the free field motion obtained from the one-
dimensional column studies at the same elevation as explained in Sec.

3.5.
3.4.4 Details of the Finite Element Mesh

3.4.4.1 Size of the Elements

The choice of element size in the finite element mesh for cases
where high frequency effects are important needs careful control.
Element sizes should be small compared to the wave length of shear

‘waves propagating through the model. Large elements are unable to

transmit motion with high £ ies and pondi short wave

lengths. Because a significant part of the earthquake motion d;

to vertical wave propagation, the vertical size of the element is very
important. As indicated in Chapter II, Ref. 55 proposed an empirical
rule that the vertical element size should not be larger than one-

quarter, or preferably, one-eighth of the wave length of motion. For
analysis using LUSH, Ref. 62 suggests a maximum vertical element size,

'Ilm, as follows:
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v
s

T cecesesessseeseceacaees 3.14

max

Ly =
hmx 5)‘5

=

where Aa is the wave length of the shortest wave, Vs is the shear wave
velocity in the element, and fm is the highest frequency of the analysis.
The guideline given by Eqn. 3.14, is followed in this study to determine
the vertical element sizes. Because the shear wave velocity in each
element is dependent on the strain-compatible shear modulus of the
element, which in turn is dependent on the element strain and the depth

of the element from the ground surface, the maximum vertical element

size varies from one element to the other (Fig. 3.24).

The variable vertical element sizes are determined by trail and
error using the one-dimensional column study analysis, as described
in section 3.5. The adequacy of the selected mesh size is further
checked by comparing the results of the one-dimensional column studies
using LUSH with the solution obtained using SHAKE [81]. SHAKE computes
the free field response using continuum (wave propagation) theory,
thus eliminating the errors introduced by discretization. Comparisons
of maximum accelerations, maximum shear stresses and acceleration response
spectra obtained for the free field response using LUSH and SHAKE are
presented in Figs. 3.4, 3.5, and 3.6 respectively.

The vertical element sizes of the two dimensional finite element
mesh (soil-structure system) were chosen using the results of the one-
dimensional column studies described above. Ref. 62 indicates that the
computed response is less sensitive to the horizontal element size, which
can be chosen several times larger than the vertical element size.
However, care must be taken to avoid very elongated elements (in the

horizontal direction) in the vicinity of the structure as indicated by
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Idriss and Sadigh [47]. The analysis carried out by Ref. 47 used
small aspect ratios (typically 3-4) in the vicinity of the structure;
higher aspect ratios farther away from the structure have been used.

In the studies presented herein, the horizontal element size is
chosen to have aspect ratios of about 3 near the structure and higher
values near the side boundaries as shown in Fig. 3.2. The basic model
has 508 nodal points and 498 elements (449 soil elements and 49 concrete

elements) .

3.4.4.2 Numbering the Nodal Points
Since the computation time for LUSH increases porportionally with

the square of the band width of the stiffness matrix, great care is
required in numbering the nodal points of the finite element mesh of
the soil-structure system in order to minimize the band width. Also,

a high degree of refinement in modelling the containment structure will
result in an increase of band width and, thus, an increase in the exe-
cution time [47]. Extensive care has been taken in numbering the nodal
points in the soil structure system, and many trials were made to get

the least possible value of the band width in each model (as low as 40).

3.4.4.3 Boundary Conditions

1If the finite element model is symmetrical, only one half of the
structure can be analyzed using the appropriate boundary conditions,
described in Ref. 62, to simulate the input motion and the horizontal
soil layers outside the vertical boundaries. In the cases studied
herein, the model is symmetrical and the input motion is horizontal.
Therefore, one half of the soil-structure system was studied and all the

nodal points at the vertical boundaries were allowed to move only in the
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horizontal direction to simulate the horizontal motion of the points

in the free field due to the vertical wave propogation.

3.4.5 Interpolation Coefficient KINT

As discussed in Section 3.3.5, considerable saving in computation
time can be achieved by interpolation of the transfer function in the
frequency domain. The controlling parameter used in LUSH is the inter-
polation control number, KINT, which is an integer number with values
of power of 2 (1, 2, 8, ... etc.). For example, if the KINT value
chosen is eight, every eighth point of the amplification functions will
be computed from Eqn. 3.12 and the remaining values will be obtained by
interpolation. Ref. 62 suggests typical values of KINT as 4, 8 or 16.
In the analysis carried out by Ref. 47 using LUSH, it has been found
that values of 16 in some cases and 8 in the others are acceptable for
the analysis. To determine the highest value of KINT acceptable for the
analysis carried out in this study, one-dimensional column studies were
carried out using values of 4, 8, 16 and 32. Comparisons of accelera-
tion response spectra at nodal point 11 and the maximum accelerations
in the soil profile using the above values of KINT, as shown in Figs.

3.7 and 3.8, indicate the maximum acceptable value to be 16.

3.4.6 Maximum Frequency

A most important decision to be made is the choice of the maximum
frequency to be included in the analysis. This frequency will, more
than anything else, influence the accuracy, the finite element dimensions
and the cost of the analysis. The computation time is proportional to
the maximum frequency considered during the analysis, furthermore,

smaller elements are required for high frequency amalysis. It has been
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shown that the computation time is proportional to at least the fourth
power of the maximum frequency [62]. Hence, it is very important not
to consider frequencies higher than those that are absolutely necessary.
Ref. 47 pointed out that typical frequency values of 15 to 25 Hz are
used in the soil-structure analysis involving nuclear power plants, and

that most interaction effects between the st and the sur

so0il would involve frequencies well below 20 Hz. Taking the above
factors into account for this analysis, it was decided to retain fre-
quencies up to 20 Hz as used by Ref. 47. To save some computer time,
lower values of maximum frequency (10 and 15 Hz) have been used for

the initial steps of the iterative procedure.

3.4.7 Dynamic Properties of Soil

The basic material properties to be specified for each element
using LUSH are: the unit weight, Poisson's ratio and shear modulus at
Bmall strains (107°7). In addition, estimates of the strain-compatible
values of shear modulus and the damping ratios in each element are
needed to take into account nonlinear soil behaviour.

The shear modulus at small strains in an element at depth y, below
the ground surface, is obtained using the modulus parameter sz and

ax
the following equation:

1
= 1
Grax(¥) = 1000 K, ["m("’] o o I I e Ve
in which
G = the shear modulus at small strain in lh/ftz,

c.'l(y) = effective mean normal stress in 1b/it2 at depth

y which can be obtained from the equation
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G-+ ZKO)

a‘;(y) = GU) e 3016

lo is the coefficeint of lateral pressure at rest,
and U; is the effective vertical pressure at depth y. Values of Poisson's
ratio, unit weight, KO and 12 for each soil layer are shown in Fig.

3.1.b.

Initial estimation of thestrain- ible soil to be
used in the soil-structure model was obtained by an iterative procedure
using the one-dimensional column study. These values were considered
as initial soil properties (shear modulus and fractional damping) in the
finite element model. The actual compatible moduli and damping ratios
for the soil in the soil-structure interaction analysis were determined
within a few iterations (typically one to three). Strain-compatible
damping and modulus values obtained by the one-dimensional column

study are shown in Figs. 3.9a and 3.9b.

3.4.8 Input Motion

The finite element analysis requires a base motion for excitation
of the two-dimensional model. Because the control motion is typically
specified at some point in the free field, it is necessary to determine
the motion that would have to develop in an underlying rock-like formation
to produce the specified motions at the control point [83]. This can be
accomplished by using SHAKE.

As SHAKE was not available at the commencement of the work, the
base motion of the sample problem in QUAD-4 by Idriss, Lysmer, Hwang
and Seed [46] was chosen as the base motion of the finite element model.
The base motion in Ref. 46 was due to the acceleration time history

recorded at Taft during the 1952 Kern County earthquake. When SHAKE
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became available, it was used to check the free field response obtained
by LUSH. The time history, acceleration spectrum and Fourier spectrum
for the computed base motion using SHAKE are shown in Figs. 3.10, 3.11,

and 3.12 respectively.

3.4.8.1 Time Interval

The time interval of the digitized acceleration values should be
small enough to ensure that the earthquake record contains frequencies
higher than the maximum frequency used in the analysis. The highest

frequency contained in the record, bf, is
hf = LJ2AE cuvanssssassmrsnsneerasesvssenssas Jeki

As the input motion is digitized at a time interval, At = 0.01 sec.,
the highest frequency is 1/2 x 0.01 = 50 Hz which is higher than the
chosen maximum frequency (20 Hz). Then the time interval of the earth-
quake record is small enough to obtain frequencies higher than the

maximum frequency.

3.4.8.2 Input Motion Duration and Quiet Zone

In order to simulate the finite duration of actual earthquakes,
it is necessary to introducea "quiet zone'" at the end of each cycle
to allow sufficient time for the viscous damping of the system to
attenuate the response before the commencement of the next cycle.
Ref. 62 states that because soil damping is high, the quiet zone
usually needs to be only a few seconds long. The number of trailing

zeros required

on the fr h istics and the damping
of the system; it must be determined by trial and error using the one-

dimensional column study. The number of zeros is considered sufficient
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if the output motions are attenuated within the period of the motion.
It has been found from the results of column studies, shown in Figs.
3.13 to 3.17, that a quiet zone of 3 sec. length is sufficient to
attenuate the motion.

As the total number of the digitized earthquake values for analysis
using LUSH must be a power of two (1024, 2048, 4096, ... etc.), it was
decided to use 2048 points including 348 zeros which means that the total
duration of the earthquake is 20.48 sec. including 3.48 sec. quite
zone.

The base motion was considered horizontal with a maximum accel-

eration of 0.15g.

3.5 Numerical Illustrations

This section presents numerical illustrations for a) the free
field response of sand medium using the one-dimensional column study,
b) the effect of the vertical size of the element on the transmission
of the vertically propagating shear waves in the free field, and c)

the response of the soil-structure system for a typical model.

3.5.1 The Free Field Response

The free field response of the sand medium has been obtained by
the one-dimensional finite element column study using LUSH and checked
by the wave propagation analysis using SHAKE. The modelling is shown
in Figs. 3.18(i) and 3.19. The strain-compatible soil properties
(shear moduli and damping ratios), used in the finite element analysis,
are presented in Figs. 3.9a and 3.9b. The strain-compatible soil
properties were determined as described in section 3.4.7 in four ite-

rations. Comparisons of the maximum horizontal accelerations, maximum
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shear stresses and response spectra, obtained by SHAKE and LUSH, are
presented in Figs. 3.4, 3.5 and 3.6. Time histories of the displace-
ments, accelerations and shear stresses, and acceleration spectra at
different depths are presented in Figs. 3.13 to 3,17 and 3.20. Plots
of the maximum shear stresses, maximum shear strains and shear wave
velocities are presented in Figs. 3.21, 3.22 and 3.23.

3.5.2 Effect of Element Size on the Transmission of the Vertically
propagating shear waves

Vertical element sizes for the one-dimensional column studies
were determined by trial and error using a simple mesh with a constant
element height of 15 ft. (Fig. 3.18ii) as the initial mesh to determine
the minimum number of elements. This has been achieved by choosing the
maximum element size that satisfies Eqn. 3.14. Comparison of the maximum
element heights, computed from Eqn. 3.14, and the chosen element heights
for the free field response (Mesh No. 1 Fig. 3.18) is presented in
Fig. 3.24. The free field response obtained using this mesh was checked
using SHAKE as explained in section 3.4.4.1. However, to study the
effect of element size on the transmission-of the vertically propagating
shear waves in the medium, and on the free field response, the responses
with two other meshes, of constant element heights of 15 and 20 ft.,
(Fig. 3.18) were compared to the variable element size mesh used before.
Comparisons of i) the maximum shear stresses, ii) the maximum horizontal
accelerations, and iii) acceleration spectra at the ground surface and
at a depth of 40 ft. for the three meshes, shown in Fig. 3.18, are
presented in Figs. 3.25, 3.26 and 3.27-3.28 respectively.

The results indicate that the spectral accelerations for meshes

Nos. 1 and 2, are in close agreement at depths greater than 40 ft.,
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and those of meshes, Nos. 2 and 3, at the ground surface. The spectral
accelerations of meshes, Nos. 2 and 3, are less than those for mesh No.
1 for frequencies higher than 10 Hz at both locations. This means that
elements with heights larger than those specified by Eqn. 3.14, and
plotted in Fig. 3.24, are not able to transmit shear waves with short

wave lengths (high frequencies).

3.5.3 Soil-Structure Interaction For a Typical Case

Selected results for the typical case, shown in Fig. 3.la, and
comparisons of the response of the soil-structure system and the free
field are presented in this section. The finite element representation
of the soil-structure system for this case is shown in Fig. 3.2. The
strain-compatible soil properties to account for the soil non-linear
behaviour were determined as described in section 3.4.7. The maximum
principal stresses in the containment and the maximum horizontal and
vertical accelerations in the soil and containment are presented in
Figs. 3.29, 3.30 and 3.31. Time histories of the horizontal acceler-
ation and the displacement at the middle of the containment floor are
presented in Figs. 3.32 and 3.33. Plots of the maximum horizontal
accelerations, the maximum shear stresses, and the acceleration spectra
at different depths (Fig. 3.34) are presented in Figs. 3.35 to 3.39.
Comparisons of the maximum horizontal accelerations and the maximum
shear stresses in the soil near the containment, and in the free field
are presented in Figs. 3.40 and 3.41. The accelerations and stresses
in the soil at the model boundaries and in the free field are presented
in Figs. 3.42 and 3.43.

The results indicate that i) the maximum shear stresses, the maximum
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horizontal accelerations, and the maximum spectral accelerations in
the soil near the structure are less than those in the free field, and

ii) the boundaries are sufficiently far to reach the free field respomse.

The analysis procedure, modelling and the response of the free
field and the soil-structure system are presented. The methods used
to determine the v‘alues of all the parameters needed for the analyses,
including _r.ha details of the finite element model, are discussed in
detail. '

The response of a typical model is presented to illustrate the
results that can be obtained for each model. Because of the large
number of the results that can be obtained in each case; the comparison

_presentation is restricted to a few characteristic values. The maximum

rincipal in the shear and

accelerations in the soil near the containment, and the acceleration
‘spectra at two points in the containment are the only values compared

in the parametric studies presented in Chapter IV.



CHAPTER IV
PARAMETRIC STUDIES

4.1 General

Parametric studies are described for a) the most convenient shape
and depth of burial of the containment structure for earthquake resis-
tance, b) effects of the density, stiffness and side thickness of the
backfill material on the structure-medium interaction, c) the effect
of the relative stiffnesses of the containment and the medium on the
structure-medium interaction, and d) isolation of the containment
structure from the surrounding medium using a soft energy absorbing

material.

4.2 Shape of the Containment Structure
Studies carried out by Ref. 98 and Szechy [22] indicated the
horseshoe shape to be the most suitable for an underground cavity under
static loading conditions. For a blast type of dynamic loading, Ref.
64 found the horseshoe shape to be the best among four different shapes,
and the high horseshoe shape to be better than the flat horseshoe
from the viewpoint of stresses in the lining of the underground cavity.
To find out the best containment shape for earthquake resistance,
three different shapes of the same area were investigated (Fig. 4.1)
1) semi-circular roof with vertical walls, ii) high horseshoe with
rise-to-span ratio of 1/2, and iii) flat horseshoe with rise-to-span
ratio of 1/4. To compare the high horseshoe with the vertical walled
‘and cylindrical roof shape, the analyis was carried out for the two shapes,

‘with the backfill properties the same as those of the medium. Maximum
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principal stresses in each containment are presented in Figs. 4.3 and

4.4. Comparisons of i) the maximum principal stresses in the containments,
ii) the maximum shear stresses in the soil at a vertical plame 40 ft.

away from the containment, iii) the maximum horizontal accelerations in

the soil at a vertical plane 70ft. away from the containment, and iv)

the acceleration spectra at the centre of the foundation, and at the
mid-point of the wall for each shape are presented in Figs. 4.5, 4.6

and 4.7-4.8 respectively. The results indicate the horseshoe shape to

be better than the one with semi-circular roof and vertical walls.

In order to determine the better rise-to-span ratio for the horse-
shoe shape, analysis was carried out for the flat and the high horseshoe
shapes covered by loose sand as backfill (Fig. 4.1). The plots of
maximum principal stresses for the high and flat horseshoe structures
are presented in Figs. 4.9 and 4.10. Comparisons of i) the maximum
shear stresses in the soil at a vertical plane 40 ft. away from the
structure, ii) the maximum horizontal accelerations in the soil at a
vertical plane 10 ft. away from the structure, and iii) the acceleration
spectra at mid-span of the wall and the foundation centre are presented
in Figs. 4.11, 4.12 and 4.13-4.14 respectively.

The results indicate that while the stresses in the flat horse-
shoe structure are slightly less than those for the high horseshoe,
the stresses in the soil medium near the flat containment are slightly
higher than those near the high contaimment. However, the saving in
the cost of the structure due to small reduction in stresses for the
high horseshoe shape is very small compared to the additional cost of
the excavation for the flat horseshoe shape (Fig. 4.1). Therefore, the

rest of the studies were restricted to the high horseshoe shape. For
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simplicity, the high horseshoe shape will be referred to in the follow-

ing parametric study as the containment.

4.3 Stiffness of the Containment Structure

The dynamic of any is on its stiffness.
For an ordinary structure subjected to a certain load, the stresses
will be reduced by 50% to 75% if the dimensions of its sections are
doubled. For an underground structure subjected to earthquake excita—
tion, an increase of the structure thickness will decrease structural
deformations, thereby increasing the load exerted by the soil on the
structure. On the other hand, the thickness increase in the structure
will reduce the stresses in the structure. But this increases the
load on the structure and thereby the stresses. To determine the net
effect of increasing the containment thickness, the analysis was
carried out for the high horseshoe containment shown in Fig. 4.1ii
by increasing the thickness of the arch walls and arch roof from 5 ft.
to 10 ft. keeping the floor thickness (10 ft.) unchanged. Comparisons
of the results for the thin and thick containment structures are pre-
sented in Figs. 4.15 to 4.19.

The results show that while doubling the wall and roof thickness
reduces the stresses in the walls and roof of the structure by only
15%, it increases the stresses in the floor of the structure and in

the soil by nearly the same amount which implies that the soil loading

on the has been d by additional thickness.

4.4 Depth of Burial
As discussed in Chapter II, underground siting provides protection

against natural and man-caused damage to structures and reduction of the
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seismic motion. Ref. 98 pointed out that the depth of burial in rock
must be sufficient to prevent cracks from opening the surface under
the influence of increased cavity pressure following a reactor loss-
of-coolant accident. Results of the analysis carried out by Ref. 98
for an underground horseshoe cavity in rock suggested depths of cover
of 150-200 ft. In the analysis carried out by Ref. 13 for a cut-and-
cover containment in soil, it has been found that the depth required
to provide a static overburden pressure to balance the internal
pressure is 150 ft. The experience in mining and transportation fields
suggest deep soil locations as preferable to surface soil locations
to provide the additional protection from harmful radiation in the
event of a seismic incident or a major internal accident [75]. Ref.
54 pointed out that protection against conventional weapons requires
a coverage of soil of 25-60 ft. with a superimposed shield plate made
of concrete.

To investigate the effect of the depth of burial of the structure
on its response to earthquake excitations, analysis was carried out
for three values of the depth of soil cover of 70, 150 and 220 ft.
(Fig. 4.20). Comparisons of the maximum principal stresses and the
maximum horizontal and vertical accelerations in the structure for the
three cases are presented in Figs. 4.21 and 4.22a-4.22b. Comparisons
of i) maximum shear stresses in the soil at vertical plane 40 ft.
away from the structure, and ii) acceleration spectra at the roof centre,
the mid-point of the wall and the floor centre of the structure, are
presented in Figs. 4.23, and 4.24, 4.25 and 4.26 respectively.

The results show reduction in maximum principal stresses in the

containment, the maximum shear stresses in the soil and the maximum
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accelerations in the containment due to the increase of the depth of

burial.

4.5 Backfill

As shown in Chapter II, the effect of backfill material for actual
containments has not been studied adequately. This section discusses
the investigation of the effect of backfill properties and the thickness
of side cover on the soil-structure interaction. The term "jacket" is
used to refer to the part of the filling material between the walls of
the structure and the vertical edges of the excavations and the cover
over structure up to certain height. The materials used for the study
are: a) same material as the original medium to fill the whole pit,
b) loose sand with thin (10 ft.) and thick (70 ft.) side covers, c)
jackets of stabilized sand with thin and thick side covers, and d) a
reinforced earth jacket. The configurations and properties of the
filling materials used for the analysis are shown in Figs. 4.27, 4.28
and 4.29.

Comparisons of the response of the soil-structure system to
earthquake excitation for the above cases of filling materials are

- presented in the following sections.

4,5.1 Original and Loose Backfill

Original and loose backfills for the configuration shown in Fig.
4.27i were studied. Comparisons of i) maximum principal stresses in
the structure, ii) maximum shear stresses in the soil at a distance of
40 ft. away from the structure, iii) maximum horizontal accelerations
4in soil at a vertical plane 70 ft. away from the structure, and iv) the

leration spectra at the mid-point of the wall and at the floor centre
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of the containment are presented in Figs. 4.30, 4.31, 4.32 and 4.33-
4.34.

The results indicate that both the maximum stresses in the soil
and the containment are reduced for filling material softer than the

medium.

4.5.2 Loose and Stabilized Jackets

The effect of the density and stiffness of the backfill material
on the response of the soil-structure system was studied by comparing
the behaviour of a stabilized sand fill with that of a loose backfill
(Figs. 4.27 and 4.28). The comparative values of i) maximum principal
stresses in the containment, ii) maximum shear stresses in the soil,
iii) maximum acceleration in the soil, and iv) acceleration spectra at
two locations in the containment are presented in Figs. 4.35 to 4.39
for thin jackets, and Figs. 4.40 to 4.44 for thick jackets.

The results indicate that in both cases (thin and thick jackets),
the maximum principal stresses and accelerations in the containment
and the maximum shear stresses and accelerations in the soil for the

case of loose fill are less than those for the stabilized fill.

4.5.3 Effect of Jacket Thickness (Loose and Stabilized)

Figs. 4.45 to 4.49 and 4.50 to 4.54 show response comparisons for

doose (thick vs. thin) and stabilized (thick vs. thin) jackets - prin-
‘cipal stresses in the structure, maximum shear stresses and accelerations
in the soil, and acceleration spectra at two points in the structure.

The results indicate the maximum stresses and accelerations in

‘the structure and in the soil for thin jackets to be less than those for

the thick jackets.
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4.5.4 Reinforced Earth Jacket

Reinforced earth implies the use of strong bars, rods, fibres or
nets that are embedded in soil to provide additional load-carrying
strength. The bonding between the soil and the ties is developed through
friction. The concept of strengthening the soil with added rods or
fibres is not new and it is now extensively used in the construction of
retaining walls. Reinforced earth walls constructed, to date, have
mainly used thin galvanized steel strips for the ties and materials
such as plastics, various fabrics, lightweight steel panels and precast
concrete blocks for the outerskin, which is required to maintain the
integrity of the sand and the outside face. Experimental and analytical
(FEM) studies on the static and dynamic behaviour of reinforced earth

structures carried out by Lee, Adams and [60], Richard

and Lee [76], Romstad, Herrmann and Shen [78] and Shen, Romstad and
Herrmann [85] are of considerable interest.
The case shown in Fig. 4.29 has been studied to determine the
~ effect of introducing a reinforced earth jacket around the containment
structure on soil-structure interaction. The properties of the soil
jacket were modified to account for the weight and stiffness of the
reinforcing bars. Rigid ties were provided at the edges of the elements
in the jacket area to simulate the reinforcing bars as shown in Fig.
4.2911.
The walls of the structure were considered adequate to act as the
\ outer skin. The results in Figs. 4.55 to 4.60 indicate that the rein-
forced earth reduces the maximum stresses and accelerations in the con-

tainment and in the soil near it.
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4.6 Isolation of the Structure

Stresses in underground structures subjected to dynamic loadings
(nuclear blast or earthquake excitation) can be greatly reduced by
using a soft, elastic energy absorbing material between the structure
and the surrounding medium. This isolating material is easily deformed
to absorb the energy produced by the exciting load, i.e. acting almost
like a rubber ring protecting the structure from any disturbance in the
surrounding medium. On the othe hand, a crushable material could be
used for the same purpose. In this case when the stresses in the iso-
lating material reach the crushing strength, no more load will be
transmitted to the structure through the medium.

The concept of reducing the stresses in an underground cylindrical
pipes by isolating the pipe with polyurethane foam, studied by Costantino
and Mariano [25], indicates the beneficial effect of the isolation layer
in reducing the liner-shell membrane forces and bending moments. The
studies of Ref. 64 indicated that a surrounding medium of soft, energy
absorbing material (considered by Ref. 25) reduces by about 80% the liner
membrane forces and bending moments.

To study the effect of isolating the containment structure, two
different materials were used to isolate the structure: a) closed cell
polyurethane foam and b) foamed light weight concrete. The results

for each case are presented in the following sections.

4.6.1 Isolation Using Polyurethane Foam
The structure was isolated by a 10 ft. thick jacket of polyurethane
foam. The configuration and properties of the isolation material are

shown in Fig. 4.61i.
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The effect of the polyurethane foam on the maximum stresses and
accelerations in the containment and the soil, and the computed accele-
ration spectra at two points in the structure are presented in Figs.
4.62 to 4.67.

The results show considerable reduction in the maximum principal
stresses and accelerations in the containment, and the maximum shear

stresses and accelerations in the soil.

4.6.2 Isolation Using Foamed Concrete
The configuration and properties of the foamed concrete jacket

are shown in Fig. 4.61b. The effect of the foamed concrete jacket

on the s in the s and the soil is presented in

Figs. 4.68 and 4.69. A comparison of the maximum principal stresses
in the structure for foamed concrete and polyurethane foam jackets is
presented in Fig. 4.70. The effect of the foamed concrete jacket on
‘the maximum horizontal acceleration in the soil and the acceleration
spectra at two points in the contaimnment structure are presented in
‘Figs. 4.71, 4.72 and 4.73.

The results indicate that compared to loose fill, the foam concrete
Jjacket in a sand medium increases the maximum stresses in the structure

and the maximum stresses and accelerations in the soil.

4.7 Effect of Medium Stiffness

In order to study the effect of the stiffness of the medium on
‘structure-medium interaction, and the response of the structure-medium
system to earthquake excitation, the finite element model for the sand
um, described in Chapter III, was used to study the response in a

rock medium. The structure was isolated by a jacket of foamed concrete
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with the same configuration as that shown in Fig. 4.61ii.

4.7.1 The Free Field Regg’ onse

The free field response has been obtained using the one-dimensional
column study using LUSH, and checked by the results obtained using SHAKE.
Comparisons of the maximum stresses, strains and acceleration spectra
in the free field, obtained by LUSH and SHAKE, are presented in Figs.
4.74, 4.75 and 4.76 respectively.

Comparisons of the free field response of the rock and sand media
are presented in Figs. 4.77 to 4.82. The time-histories of horizontal
accelerations, shear stresses and horizontal displacements at a depth
of 44 ft. in the rock free field are presented in Figs. 4.83, 4.84 and
4.85 respectively.

The results indicate the stresses, accelerations and spectral
values to be higher in rock than in sand media. The peak spectral
values occur at higher frequencies in rock than in sand. But displace-

ments are the same in both cases.

4.7.2 Rock-Structure Interaction

A comparative study of the responses of the structure medium
system (stresses and accelerations in the containment and in the medium,
‘and acceleration spectra at two locations in the containment) for
sand and rock media are presented in Figs. 4.86, 4.87, 4.88, 4.89 and
4.90-4.91 respectively.

The results indicate that for a structure in a rock medium the
stresses (structure) are lower, and accelerations (structure and rock)
are higher compared to a structure in a sand medium. In contradis—

tinction to a sand medium, the stresses and the spectral accelerations
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in rock are higher occurring at higher frequencies.

.

4.8 Summary

Parametric studies have been presented in this chapter for a)
shape and stiffness of the contaimment, b) depth of burial, c¢) backfill
material, d) isolation of the structure, and e) stiffness of the medium.
Comparative studies have been discussed briefly for each case and the

- results will be discussed in greater detail in Chapter V.



CHAPTER V

DISCUSSION AND CONCLUSIONS

5.1 General

The results of the free field response and the soil-structure
interaction, presented in Chapter III, and the results of the para-
metric studies, étesented in Chapter IV, are discussed. The cases
considered are: i) the free field response obtained by the one-
dimensional finite element column study using LUSH, and the continuum
(wave propagation) solution using SHAKE, for rock and sand media,
1i) containment geometry (containment shape and thickness of the con=
tainment walls and roof), iii) burial depth, iv) properties of the
backfill (4 different filling materials and two types of energy absorbing

jackets) , and v) medium-structure interaction for rock and sand media.

5.2 The Free Field Response

The free field responses obtained by finite element analysis
using LUSH are very close to those obtained by the wave propagation
analysis using SHAKE for both rock and sand media (Figs. 3.4 to 3.6
and 4.74 to 4.76). This implies that the parameters used in finite
element analysis (element sizes and the interpolation coefficient)
have been adequately chosen.

The results in Figs. 4.77 to 4.82 show that i) Maximum shear
stresses in the sand medium increase from the ground surface down to
~depth of 75 ft., then remain constant down to the rigid base (at
ft.), while they increase in the rock medium with the depth, ii)

maximum horizontal accelerations in the sand medium are approximatly
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uniform from the rigid base up to the 200 ft. depth, and then increase
towards the surface, while in the rock medium, they increase from the
base towards the ground surface, iii) Spectral accelerations (from the
response spectrum) decrease with depth in both sand and rock media and
the frequency of the peak spectral acceleration does not vary with depth
for rock, while it increases with depth in sand because of the change
in the stiffness of the sand layers, iv) Accelerations, stresses and
spectral accelerations are higher in rock than in sand, and the peak
spectral accelerations in rock occur at higher frequencies than in

sand, v) Shear strains in sand are very much higher than those in rock.
The peak strain for the rock is at the rigid base, and near the surface,
at about a depth of 100 ft., for sand, and vi) Displacement time his-
tories are similar for rock and sand.

The above results indicate that the stiffness of the medium
greatly affects the free field response, and that the accelerationms,
stresses, spectral accelerations and the frequencies of the peak
spectral accelerations are higher; the strains are lower in a medium
with a higher shear modulus. Comparisons of time histories of accel-
erations and stresses in rock and sand indicate that as the damping
of the sand is higher than that of rock, stresses and accelerations

in rock change their signs more frequently compared to those in sand.

5.3 Containment Geometry

5.3.1 Shape of-the Containment

The three shapes in Fig. 4.1 were investigated to compare the
shape effects on the response of the soil-structure system. The area

of the containment was kept almost constant. The results, presented in
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Figs. 4.2 to 4.14, indicate that i) the maximum shear stresses and
accelerations in the soil and the spectral accelerations at two loca-
tions in the containment for the high horseshoe shape are less than
those in the other two shapes, ii) the maximum principal stresses in
the high horseshoe are generally 10-20%Z lower than those in the
-circular roof-vertical wall containment, iii) the maximum principal
stresses in the roof of the flat horseshoe are lower, and those in the
walls and the floor are higher than the corresponding values for the
high horseshoe, and iv) the soil reaction maxima under the foundation
of the high horseshoe containment are about 30% lower than those for

the

i-circular roof containment. The conclusion form the above
results is that the high horseshoe shape is the best for earthquake
excitation, taking into consideration the larger amount of excavation
required for the flat horseshoe compared to the high horseshoe. This
observation confirms the findings of Refs. 98, 22 and 64 for static

and step pulse loadings for the rock medium.

5.3.2 Stiffness of the Containment

As described in sec. 4.3, the thickness of the containment walls
and roof was increased from 5 to 10 ft., keeping the floor thickness
(10 ft.) unchanged, in order to study the effect of increasing con-
tainment thickness on the response of the soil-structure system. The
results in Figs. 4.15 to 4.19 show that doubling the thickness of the

 containment roof and walls, i) red the pr 1 in the

roof and the walls by about 15-25%, and increases them in the floor by

about 20%, ii) increases shear stresses in the soil near the contain-

walls by about 15%, and above the roof by about 70%, iii) reduces
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the accelerations in the soil near the containment by about 8%, and
iv) increases the accelerations and the spectral accelerations :in the
upper half of the containment by about 5%.

The small reduction of the stresses in the containment, and
the increase of the stresses in the containment floor and in the soil,
imply that the load exerted on the containment is increased by addi-
tional thickness. This can be easily interpreted as follows: doubling
the thickness increases containment rigidity, and hence reduces its
deformation which increases the load exerted by the soil on the structure.
So, it seems better to use a flexible structure rather than a rigid ome

for earthquake resistance.

5.4 Depth of Burial

For the same site, three burial depths were considered; shallow,
intermediate and deep with soil cover depths of 70, 150 and 220 ft.
(Fig. 4.20). The results in Figs. 4.21 to 4.26 indicate that, compared
to the containment at intermediate depth: i) The average increase in
the maximum principal stresses in the containment for shallow embedment
is about 50% with an increase in the peak value of 33%, and the average
stress decrease in deep embedment is 20% with a decrease in the peak
value of 33%, ii) The maximum horizontal accelerations in the contaimment
are about 40% higher in the lower half, and almost equal for the upper
half for the shallow depth; they are about 25% lower in the upper half
and almost equal in the lower half for the deep embedment, iii) The
maximum shear stresses in the soil near the containment are 45% higher
for the shallow depth, and almost the same for deep embedment. The shear

stresses near the ground surface are lower for ‘the shallow embedment
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and higher for the deep embedment, and iv) The spectral accelerations
at the three locations in the contaimment (top of the roof, mid-height
of the wall, and foundation mid-point) are higher for the shallow em-
bedment and lower for the deep embedment, but the difference is larger
in the case of the shallow embedment. The peak spectral acceleration
at the top of the roof occurs at lower frequencies for the shallow
embedment .

As the accelerations and spectral accelerations in the free field
are high near the ground surface, very shallow embedment causes high
stresses and accelerations in the containment and the surrounding
medium. Taking into account all the factors discussed in Sec. 4.4,

a soil cover of a depth of 150-200 ft. above the contaimment is recom-
mended to i) protect the containment against major earthquakes, conven-
tional weapons and man-caused damage, ii) to provide a static overburden
pressure to balance the internal pressure, and iii) to provide addi-
tional protection from harmful radiation in the event of a seismic

incident or a major accident.

5.5 The Medium Adjacent to the Containment

The medium adjacent to the structure was investigated for two
different cases: i) backfill, and ii) isolation of the containment

with a soft energy absorbing jacket.

5.5.1 Backfill

As described in Sec. 4.5 and outlined in Figs. 4.27, 4.28 and 4.29,
four different materials are considered for the backfill: i) same as
the original medium (excavated soil compacted enough to have the same

properties as the original medium), ii) loose sand (excavated soil not
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compacted enough), iii) stabilized sand (using cement), and iv) rein-
forced earth. These materials have stiffnesses and densities i) equal
to, ii) less than, and iii-iv) higher than those of the medium.

The results in Figs. 4.30 to 4.60 show that, compared to the loose
fill, i) The maximum principal stresses in the containment are about 30%
higher for the original fill, 20% higher for the stabilized jacket, and
about 20% lower for the reinforced earth jacket, ii) The maximum shear
stresses in the soil near the containment are about 20% higher for the
original fill, 25% higher for the stabilized jacket and 10% lower for
reinforced earth at the level of the containment and about 80% higher
below the level of the containment foundation, iii) The maximum hori-
zontal accelerations in the soil near the containment are about 8%
lower for the original fill, 7% higher for the stabilized jacket, and
10% lower for the reinforced earth jacket, and iv) The spectral accel-
erations at two points in the containment are about 5% lower for the
original f£ill, 20%Z lower for the stabilized jacket, and 20-50% higher
at low frequencies (0.5-3 Hz) and 20-30%Z lower at high frequencies (4-20
Hz) for the reinforced earth jacket.

Results for the original fill, the loose fill and the stabilized
jacket indicate that, compared to the original fill, the loose fill
reduces the stresses in both the containment and the medium; the stabi-
lized jacket increases stresses in the medium and the containment walls
and floor, and reduces the stresses in the middle part of the containment
roof. This means that a considerable reduction in the maximum stresses
in the contaimment can be achieved by introducing a filling material
with a shear modulus less than that of the medium. This is because the

deformations of the soft material between the medium and the containment



58

are larger than those of the n;edilm, and hence part of the energy of the
medium is absorbed and the load transmitted to the containment is reduced.
The opposite is the case for a stiffer filling material. The conclusion
from the above discussion is that the loose fill proved to be better

than both the original fill and the stabilized jacket.

The reinforced earth jacket seems to be better than the loose fill
as it reduces and redistributes the stresses in the containment, and
reduces the maximum stresses and accelerations in the medium near the
containment. The interpretation of the above findings is that the rein-
forcing bars bond the containment with the surrounding medium which
allows the contaimment and a part of the surrounding medium to move as
one integrated unit. This reduces the stresses and accelerations in

both the containment and the medium. The considerable increase of the

spectral accelerations in the at low fr ies supports

this interpretation.

5.5.2 Effect of the Width of the backfill

The results in Figs. 4.45 to 4.54 indicate that increasing the
width of the backfill between the contaimment and the surrounding medium
from 10 to 70 ft., i) increases the soil and containment stresses by
about 10% for loose fill, and 20% for the stabilized jacket, ii) reduces
the accelerations in the soil at the containment level, and increases
them near the ground surface for both the loose fill and the stabilized
jacket, and iii) increases the spectral accelerations in the containment
at low frequencies and reduces them at high frequencies for the stabi-
lized jacket, while no significant variations are obtained for the case

of the loose fill. In the case of the stabilized jacket, the increase
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in the contaimment and medium stresses is due to the effect of the thin
stabilized jacket described in Sec. 5.5.1. For the case of the loose
£il1, the increase in the medium and containment stresses is due to

the existence of a considerably large region of loose material between
the medium and the containment, which acts as an additional load on
both the medium and the containment thereby increasing the stresses.
The conclusion form the above discussion is that a relatively thin side

cover of the filling material seems to be better than a thick ome.

5.5.3 1Isolation Jackets

Two types of crushable energy absorbing materials (polyurethane
foam and foamed concrete) are used to isolate the containment in the
sand medium (Fig. 4.61). The results in Figs. 4.62 to 4.73 indicate
that, compared to the case of the loose fill (no isolation), i) Con-
tainment stresses are 65% lower for the polyurethane foam jacket, and
10% higher for the foamed concrete jacket, ii) Soil stresses at the
containment level are 40% lower for the polyurethane foam jacket, and
15% higher for the foamed concrete jacket, iii) Soil accelerations at
the containment level are lower by 15% for the polyurethane foam jacket,
and 7% for the foamed concrete jacket, and iv) For the polyurethane
foam jacket, the containment accelerations are 20% lower and 10% higher
~ in the upper and lower containment halves respectively. The containment
spectral accelerations are lower for the high frequencies while there
are no significant differences in the accelerations or the spectral
accelerations for the foamed concrete jacket.

The considerable reduction in the containment and medium stresses

- when using the polyurethane foam jacket, and the stress increase for the
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case of the foamed concrete jacket are due to the same reason as that
discussed in Section 5.5.1. As the stiffness of the polyurethane foam
is very small compared to that of the medium, and the stiffness of the
foamed concrete is relatively higher, the deformations of the polyure-
thane foam are considerably greater than those of the adjacent medium;
those for the foamed concrete will be less than those of the medium which
reduces the load transmitted to the containment for the polyurethane
foam lining and increases it for the foamed concrete.

As described in Sec. 4.7, the containment in the rock medium was

isolated by a jacket of foamed . The of in

the medium near the foamed concrete-lined contaimment in the rock
medium is the same as that for the polyurethane foam-lined containment
in the sand medium. This implies that the role of the foamed concrete
jacket in the rock medium is similar to that for the polyurethane foam
in the sand medium. As the stiffness of the foamed concrete is higher
than that of the sand medium, and lower than that of the rock medium,
the containment and medium stresses increased for the sand medium, and

reduced in the rock medium for foamed concrete jackets.

5.5.4 General Conclusion
The materials used as backfill and isolating jackets are: i) loose
£ill (E = 150,000 to 240,000 psi and w = 95 pef), ii) stabilized fill
(E = 1.5 X 106 psi and w = 145 pcf), iii) polyurethane foam (E = 319
psi and w = 1.5 pef), and iv) foamed concrete (E = 375,000 psi and
w = 50 pcf). The conclusions from the discussion of the results in
Sec. 5.5.1 to 5.5.3 indicate that the relative stiffness of the filling

material and the medium has a very significant effect on the stresses
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in the containment and the medium. If the stiffness of the filling
material is less than that of the medium, stresses in both the contain-
ment and medium will be reduced and vice versa. The lower the modulus
of elasticity of the filling material, the greater is the reduction in
the stresses. A reduction in the containment stresses, as much as 65%,
can be achieved using a polyurethane foam jacket for the sand medium.
Considerable reduction in containment stresses could be achieved in
rock siting using a foamed concrete jacket. Using a reinforced earth
jacket in a sand medium reduces containment stresses by 20%. Relatively

thin jackets are better than thick ones.
5.6 Structure-Medium Interaction

5.6.1 Soil-Structure Interaction

The selected results of the typical case, described in Sec. 3.5.3
and outlined in Fig. 4.27(i), are used to study the degree of inter-
action of the soil-structure system. Figs. 3.35 to 3.39 show the inter—
action effects on response values at various depths in the soil profile,
and Figs. 3.40 and 3.41 on the soil accelerations and stresses at ver-
tical planes near the containment. As indicated in Figs. 3.35 to 3.41,
the maximum soil accelerations, shear stresses and acceleration response
spectra are considerably affected by the interaction specially near the
structure. The presence of the containment reduces the free field soil
stresses and accelerations. Comparison of the results of the underground
siting presented herein and similar results for aboveground siting,
presented in Ref. 47, indicate the interaction effect in the above-
ground siting to be larger than that for underground siting. As a) the

spectral and the maximum accelerations at the ground surface are consid-
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erably larger than those below the ground surface, and b) the above-
ground structure represents an additional mass and stiffness to the
so0il, while the underground structure substitutes the mass and stiff-
ness of the excavated soil, the disturbance in the medium caused by the
existence of the aboveground structure is greater than that caused by

the underground one.

5.6.2 Rock Structure Interaction

The results, presented in Figs. 4.86 to 4.91 for a containment
isolated by a foamed concrete jacket in a rock medium, indicate that
in a sand medium the containment is subjected to higher stresses and
lower accelerations compared to that in a rock medium. This means that,
as the rock stiffness is higher than that of sand, a containment in a

sand medium will be subjected to a higher dynamic loading.

5.7 Examination of Accuracy of Results

The accuracy of the free field response was checked by comparing
the computed response obtained by LUSH (finite element) and SHAKE (wave
propagation). As shown in Figs. 3.6 and 4.76 for sand and rock media
respectively, there is good agreement between responses obtained by the
finite element and wave propagation solutions.

The accuracy of the results of the soil-structure response, for
each case studied, was checked by comparing the computed response at
an ample distance away from the containment with the free field response
obtained from the one-dimensional column studies. This also provides
a check on the adequacy of the extent of the finite element mesh. As
described in section 3.5, good agreement between the response values

near the boundaries of the two-dimensional finite element model and the
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one-dimensional column studies was obtained in each case.

5.8 Conclusions

The following conclusions are drawn from this study:

1. The response values of the medium near the containment are
considerably affected by the interaction. Stresses, accelerations and
spectral accelerations in the medium near the containment are lower than
those in the free field.

2. The interaction affect in aboveground siting is larger than that
for underground siting.

3. The dynamic load exerted by the medium on the containment in
sand is larger than that for rock, but the containment accelerations
are lower.

4. The shape of the contaimment affects the response of the con-
tainment and the medium. The horseshoe shape proves to be better than
the one with a semi-circular roof and vertical walls - a reduction in
the containment stresses of 10-20%. The high horseshoe containment
(rise-to-span ratio of 1/2) is better than the flat horseshoe (rise-
to-span ratio of 1/4) taking into consideration that the latter needs
a larger amount of excavation due to the need for a wider pit.

5. Dynamic loading of the medium on the containment increases by
a rise in the containment stiffness. So, it seems better to use a
flexible containment rather than a rigid one.

6. The containment stresses and accelerations can be signifi-
cantly reduced if the containment is placed in deeper locations.
Successive reductions in containment stresses to 67% of the initial

values are associated with each additional 70 ft. embedment depth.
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7. The relative stiffness of the filling material and the medium
has a significant effect on the containment and medium responses.
Material with stiffness lower than that of the medium reduces the stress-
es in both the medium and the containment and vice versa. A filling
material, with stiffness 30% lower than that of the medium, reduces the
stresses by about 30% in the containment and about 20% in the medium.

8. A considerable reduction in the containment stresses can be
achieved by isolating the containment from the surrounding medium by
a jacket of energy absorbing material. The stiffness of the jacket
material should be very small compared to that of the medium. This can
be achieved by using a jacket of polyurethane foam in a sand medium,
and foamed concrete or polyurethane foam jacket in a rock medium.

9. A reduction of 65% in the containment stresses and 40% in
the medium stresses was accomplished using a polyurethane foam jacket
in a sand medium.

10. Introducing a system of steel bars or nets around the contain-
ment to form a reinforced earth jacket reduces the stresses in the con-
tainment by about 20%.

11. Increasing the width of the side cover of the filling material
form 10 ft. to 70 ft., increases the stresses in the medium and the
containment by about 10-20% for both stiffer and softer filling material.
So, it seems better to provide a relatively small side cover width.

12. Vertical element size affects the response of the finite
element model. Elements with larger vertical element size are unable

to transmit shear waves with short wave lenghts (high frequencies).
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5.9 Contributions

1. Development of a finite element model for soil-structure inter-
action analysis of a full-scale cut-and-cover type underground nuclear
reactor containment subjected to earthquake excitation.

2. Study of soil structure interaction taking into account soil
non-linear behaviour and variable damping in each element.

3. Application of LUSH for underground analysis.

4. A study of the effect of the following parameters on the dynamic
response and earthquake resistance:

a) containment shape,

b) depth of burial,

¢) relative stiffness of the containment and the medium,

d) relative stiffness of the filling material and the medium, and

e) isolation of the containment.

5. Evaluation of the effectiveness of a reinforced earth jacket
around the containment to reduce its stresses.

6. Indication that the relative stiffness of the filling material
has the most significant effect on the containment stresses (Ref. 64
did not make a clear conclusion of this nature).

7. Comparison of the response and the degree of interaction:

a) in rock and sand siting and b) for aboveground and underground

siting in sand.
8. Study of the effect of the vertical element size on the free

field response.

5.10 Summary

A finite element model has been established to study the response
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of a 1100-MWe cut-and-cover type underground nuclear reactor contain-
ment to earthquake excitation. The analyses have been carried out using
two available computer programmes, LUSH and SHAKE, taking into account
the strong non-linear effects which occur in soil masses subjected to
strong earthquake motions. All the parameters needed for the analysis,
including the details of the finite element model, have been investigated
and carefully chosen. The extensive care taken to minimize the compu-
tation time enabled a considerable saving in the cost of the analysis.

Parametric studies have been carried out for the shape, stiffness
and burial depth of the containment, and the relative stiffness of the
filling material and the medium, including isolating jackets.

Comparative studies are presented for rock vs. sand siting and
aboveground vs. underground siting.

The accuracies of the response for the free field and structure-

medium interaction have been verified.

5.11 Recommendations for Further Research

1. Analysis of multi-structure-soil interaction by considering
the actual configuration of the underground power plants (reactor con-
tainment, turbine generator building ... etc.).

2. TIncreased complexity of structural detail in the reactor
structure (variable thickness, layout of steel reinforcement, configu-
ration of prestressing cables ... etc.).

3. The analysis of the crushable materials used in the isolation
jackets by eliminating the cracked and crushed elements from the system.

4. More exact non-linear analysis to account for the actual soil

stress-strain characteristics. (This study considered the non-linear
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i 'soil behaviour in an approximate manner i.e. the equivalent linear
‘method) .

5. Inclusion of a capability for node separation due to the poor
tensile strength of soil, or separation of the reactor structure from
the surrounding medium.

6. Study of the effect of liquefacation of saturated sand layers
during strong earthquakes.

7. Study of the feasibility of introducing new artificial absorbing
boundaries with elements of considerably high damping and low stiffness
(possibly using the variable damping analysis provided in LUSH).

8. Application of three-dimensional finite element analysis.
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[Study By Concept Criteria and Conclusions Unresolved
Features Issues
(1) Ref. 8 |General under-— To evaluate both (a) 3 to 7% more costly; e
(1958) |ground advantages and (b) Effective concontainment;
disadvantages (c) Extensive site investigation;
(d) Limited expansion capabi-
lities
(2) Ref. 70 [Annular space To withstand (a) Further studies required (a) Tilting and rotations
(1966) |around struc- differential to assess feasibility; caused by earthquakes;
ture filled ground dis- (b) No cost comparison with (b) additional engineering
with water or displacement surface sites; systems and require-
mud (c) No safety conclusions ments
(3) Ref. 67|Within a hill- (a) Good quality (a) Feasible; (a) Seismic effects;
(1969) |side (hori- rock; (b) Construction costs less (b) Use of rock as
zontal access) (b) 500 Mw BWR and/ than 3% more for under- containment;
or AGR ground; (e) Ground water conta-
(c) Safe mination
(4) Ref. 77450 feet below (a) Good quality (a) Feasible; (a) Possible elimination
(1971) |ground level rock; (b) Additional $6 to $10 per of primary contain-
(b) 2,000 Mw EWR in kw on construction costs; ment;
2 units (c) Added safety; (b) Use of ultimate
(d) Incentive for urban flooding system in

siting

worst emergency
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Ezhdy By Concept Criteria and Conclusions Unresolved
Features A Issues
(5) Ref. 96|Deep rock (a) Good quality (a) Feasible; (a) Geotechnical and
(1971/72) | cavity rock; (b) Construction costs 5 to seismic design
below grade (b) 1,000 Mw PWR 20% more for underground criteria
(6) Ref. 89|2 alternatives: (a) Good quality rock |(a) Feasible; (a) Possible reduction
(1971) |(a) Totally for totally under-|(b) Safe, increased protection in earthquake design
underground; ground option, from surface hazards force
(b) Near sur- wider variety of
face reactor rock quality for
only under- near surface option;
ground (b) 1,000 to 1,500 Mw BWR
(7) Ref. 98|Deep rock (a) Good quality (a) Feasible; (a) Seismic response;
(1972) |cavity rock; (b) Underground cost penalty (b) Population-distance
(b) 1,000 Mw BWR about 5% of total cost; criteria

(c) Safe, should allow reduction|(c) Contianment criteria
in population distance s

(8) Ref. 87|Underground (a) LMFBR (a) Distinct advantage with = |———=———mmmmmmm e
(1972) |generally demonstration underground concept
plant, Oakridge, because of consequences
Tennessee of LMFBR accident
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Study By Concept Criteria and Conclusions Unresolved
Fo Issues
(9) Ref. 15|General (a) Proof of fault
(1973) | Underground inactivity;
concepts (b) Lack of measurements.
or studies on the
frequency characteris—
tics of strong earth-
quake motion at depth
(10)Ref.21 |Above grade =  |-———————————uv (a) Improved safety, less e —
(1973) |construction susceptible to surface
with crushed phenomena and sabotage,
rock and earth minor radioactivity
cover to a releases are made less
minimm of 50" severe
(11)Ref.43 |General study, Deep Rock Cavity (a) Few sites available in (a) Lack of seismic
(1973) |variety of under-|(a) Good quality California for deep rock field data regarding
ground and above- rock, no faults. cavities; possibility of
ground concepts. |Cut and Cover (b) Generally more sites reducing seismic
Underground (a) Variety of rock available inland for loadings underground
types include and soil conditions surface plants;
deep rock cavity & allowable. Pos-— (c). A1l options technically
"eut and cover" sibly allow for feasible;
concepts. faulted rocks. (d) Improved safety compared

(¢) All studies based
on 1,000 Mw LWR.

with surface plants
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Study By Concept Criteria and Conclusions Unresolved
Features Issues
(12) Ref.3| Cut and cover (a) Variety of (a) Feasible; e
(1973) | selected back- ground condi- (b) Additional costs of
f111 material tions; undergrounding are
(b) 1,100 Mw reactor, negligible;
no limitations on | (c) Harmful radiation from
type worst possible accident
can be confined

General conclusions of the above studies regarding the underground
siting of nuclear power plants can be summarized as follows [97]

(a) Placing nuclear power plants underground is technically feasible
without an excessive economic penalty compared with surface plants.

(b) There are potential safety advantages which may permit such plants
to be sited closer to population (and load) centers.

(¢) There is a potential for a reduction in the design seismic loads
on various components of the plant. However, at present there is
a lack of field data to substantiate the design approach of
reducing seismic loads.

(d) Conm onal excavation h would be satisfactory for caverns
of the sizes required.
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Potential advantages

Potential disadvantages

1. Additional confinement of radioactive materials
with leakproof sealing of containment penetra-
tions-possibilities for controlling hypothetical
accidents and thus reducing the distance from
densely populated areas required for safety

2. Elimination of the load cases 'airplane crash',
'pressure wave', 'extreme effects of weather'-
possible protection from attack with weapons

3. Additional protection from direct radiation

4. Protection from leaking combustible liquids

5. Better response in the event of an earthquake
when the surrounding soil is sufficiently
compact

6. Better protection from the possibilities and
effects of serious sabotage-greater assurance
of supply in times of war as the result of
underground siting of the entire plant

7. Better adaptability to future requirements by
increasing the earth fill

8. Additional freedom in designing and site
selection, including lower land acquisition
costs

9. Defined surrounding conditions

10. Simplification of the problems resulting on
termination of reactor operation

1. Limitation of the height of the structure
(rock caverns)

2. Ground water problems-particularly
during construction

3. Higher costs and longer construction
periods with indefinite data as to their
extent

4. Less flexibility within the plant for
later changes and technical innovations

5. Insufficient experience with commercial
nuclear power plants

6. Less accessibility-extension of supply
lines might be necessary

Unclarified aspects

1. Effect on public opinion and licensing
procedure

2. Questions of landscape preservation and
aesthetics

3. Effects of soil and water pressure

4. Possibilities for subsequent use of the
containment for storing radioactive
materials
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Approach

Advantages

Disadvantages

Closed form
solution

Valuable for indicating trends
regarding the effects of various
parameters on soil-structure
interaction under earthquake
loading. Some three-dimensional
problems have been solved.

Solutions limited to simplified representations

of structure geometry, soil material properties,

and loading conditions.

Finite difference
techniques

Attractive approach for studying
soil-structure interaction. Can
accommodate complicated boundar-
ies, partial loading, nonlinear
material properties, and layered
sites. Satisfactory model of soil
mass and stiffness is provided.
Quiet boundary adaptations
currently being developed.

Displ 5 defined by interpola-
tion except at finite number of points. In-
creased computer run time and associated
technical effort required for analysis. Many
refined finite difference codes, although
widely used in nuclear weapons effects prob-
lems, have never been applied to earthquake
problems. At present, practical use in dyna-
mic problems is limited to two-dimensional
idealizations,

Finite element
techniques

Same advantages as indicated above
for finite difference technique.
Generally, wider application to
earthquake response calculations
than many finite difference tech-
niques.

Unless quiet boundary techniques are available,
radiation damping not accounted for. Except
for some non-linear codes, internal damping
simulated by approximate viscous damping mech-
anism. Increased computer run time and assoc-
iated technical effort required for analysis.
Relatively few studies of convergence of sol-
ution. At present practical use in dynamic
problems is limited to two-dimensional ideali-
zations.
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FIG. 3.29 MAXIMUM PRINCIPAL STRESS DIAGRAM FOR R
HIGH HORSESHOE CUNTRXNMENT = LUUSE FILL
( SCALE: 1 INCH = 400 P.
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% VERTICAL RCCEL.
o HORIZONTAL RCCEL.

FIG. 3.30 MRXIMUM HBRIZANTAL AND VERTICAL RACCELE-
TIGNS [N THE HIGH HORSESHOE-LOOSE FILL
(SCALE: 1 INCH=0.2G)
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- FIG. 3.31 MAXIMUM HORIZONTAL AND VERTICAL ACCELE-
[ RATIONS RT A VERTICAL PLANE 10 FT RAWAY
FROM THE HIGH HORSESHOE CONTAINMENT -
THIN LOBSE FILL
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FREE FIELD
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FIG.4.1 THREE CONTAINMENT SHAPES CONSIDERED IN THE ANALYSIS



G. 4.2 MRXIMUM PRINCIPAL STRESS DIRGRAM Fﬂﬁ A
CONTRINMENT WITH CYLINDRICAL ROOF RN
VERTICAL WALLS - ORIGINAL F!LL
( SCALE: 1 INCH = Y00 P.S.I.
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FIG. 4.3 MAXIMUM PRINCIPAL STRESS DIRGRAM FOR THE
HIGH HORSESHOE CONTRINMENT- ORIGINAL FILL
( SCALE: 1 INCH = 400 P.S.I.
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% HORSESHOE SHAPE
@ VL. WALLS & CYL. ROBF

FIG. 4.4 MAXIMUM PRINCIPAL STRESS DIRGRAMS FBR HIGH
HORSESHBE AND VERTICAL WALL-CYLINDRICAL
RBBF CONTAINMENTS - BRIGINAL FILL
U SCALE: 1 INCH = u00 P.S.I. )
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FIG. 4.8 MAXIMUM PRINCIPAL STRESS DIAGRAM FOR A
HIGH HORSESHOE CONTRAINMENT - LOOGSE FILL
( SCALE: 1 INCH = 400 P.S.I. )



FIG. 4.10 MRXIMUM PRINCIPAL STRESS DIARGRAM FOR THE
FLAT HORSESHOE CONTRINMENT - LOOGSE FILL
( SCALE: 1 INCH = 400 P.S.I. )
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FIG. 4.11 MAXIMUM SHERR STRESSES IN THE SOIL AT R
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x - THICKNESS
® THICKNESS

10 FT
S¥T

FIG. 4.15 EFFECT OF CONTRINMENT THICKNESS ON MAXIMUM
PRINCIPAL STRESSES IN THE CONTAINMENT
( SCALE: 1 INCH = 400 P.S.I. )
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o DEEP EMBEDMENT
% INTERMEDIRTE EMBEDMENNT,
% SHALLOW EMBEOMENT

FIG. 4.21 MAXIMUM PRINCIPAL STRESS DIRGRAMS FOR
CONTRINMENTS AT SHALLOW, INTERMEDIRTE
AND DEEP EMBEDMENTS
( SCALE: 1 INCH = u00 P.S.I. )
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IG 4.22R HHXIHUH HORIZONTAL ACCELERATIONS OF
CONTRINMENTS FOR THREE EMBEDMENT DEPTHS
( SCALE: 1 INCH = 0.2G)
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x INTERMEDIATE EMBEDMENNT
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FIG. 4.22B MAXIMUM VERTICAL ACCELERATIONS OF
CONTRINMENTS FOR THHEE EHEEDHENT DEPTHS
( SCALE: 1 INCH =
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FIG. 4.23 MAXIMUM SHERR STRESSES IN THE SOGIL AT A
VERTICAL PLANE 40 FT RWAY FROM THE
CONTAINMENT FOR SHALLOW. INTERMEDIATE
AND DEEP EMBEDMENTS
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o THIN LBOSE FILL
x DRIGINAL FILL

FIG. 4.30 MAXIMUM PRINCIPAL STRESSES IN THE CONT-
b AINMENT FOR ORIGINAL AND THIN LOOSE FILL
( SCALE: 1 INCH = 400 P.S.I. )
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FIG. 4,31 MAXIMUM SHERAR STRESSES IN THE SOIL AT R
VERTICAL PLANE 40 FT RWAY FROM THE
CONTRAINMENT - ORIGINAL AND THIN
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x THIN STRBILIZED JACKET
@ THIN LOOSE FILL

FIG. 4.35 MAXIMUM PRINCIPAL STRESSES IN THE CONT-
AINMENT FOR THIN STRBILIZED JRCKET RAND
THIN LOOSE FILL
( SCALE: 1 INCH = 400 P.S.I. )
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FIG. 4.37 MAXIMUM HORIZONTAL RCCELERATIONS 1IN THE
SOIL AT R VERTICAL PLANE 10 FEET AWAY
FROM THE CONTAINMENT - THIN LOOSE FILL
AND THIN STABILIZED JACKET
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@ THICK LOOSE FILL
% THICK STRB. JACKET

FIG. 4.40 MAXIMUM PRINCIPAL STRESSES IN THE CONT-
ARINMENT FOR THICK STABILIZED SAND JRACKET
AND THICK LBOSE FILL
( SCALE: 1 INCH = 400 P.S.I. )
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FIG. 4.41 MAXIMUM SHERR STRESSES IN THE SOIL AT A
VERTICAL PLANE 100 FT AWAY FROM THE
CONTAINMENT - THICK LOOSE FILL RND
THICK STABILIZED JRCKET
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FIG 4.42 MARXIMUM HORIZONTRL RCCELERATIONS IN THE
SOIL AT R VERTICAL PLANE 10 FEET RWAY
FROM THE CONTAINMENT - THICK LOOSE FILL
AND THICK STABILIZED JACKET
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% 10 FT JRCKET|
® 70 FT JACKET

I6. 4.uS EFFECT OF THE THICKNESS OF THE LOOSE
3 FILL JRCKET ON THE MRXIMUM PRINCIPAL
STRESSES IN THE CONTRINMENT

( SCALE: 1 INCH = u00 P.S.I. )
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FIG. 4.46 MAXIMUM SHEAR STRESSES IN THE SOIL AT R
VERTICAL PLANE 100 FT AWAY FROM THE
CONTRINMENT - THICK AND THIN LOOSE FILL
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% 10 FT JACKET
@ 70 FT JACKET

FIG. 4.50 EFFECT OF THE THICKNESS OF THE STRBILIZED
SAND JRCKET @N THE MRXIMUM PRINCIPAL
STRESSES IN THE CONTAINMENT
( SCALE: 1 INCH = 400 P.S.I. )
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FIG. 4.51 MAXIMUM SHERR STRESSES IN THE SOIL AT A
VERTICAL PLANE 100 FT RWAY FROM THE
CONTAINMENT - THIN AND THICK
STABILIZED JACKETS
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x REINF. ERRTH JRCKET
@ THIN LOOSE FILL

FIG. 4.S5 MAXIMUM PRINCIPAL STRESSES I[N THE CONT-
RINMENT FOR REINFORCED ERRTH JACKET RND
THIN LOOSE FILL
(- SCALE: 1 INCH = 400 P.S.I. )
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@ REINF. ERRTH JRCKET
x THICK STRB. JRCKET

FIG. 4.56 MAXIMUM PRINCIPAL STRESSES IN THE CONT-
AINMENT FOR REINFORCED ERRTH RAND STRBIL-
IZED SAND JACKETS
( SCALE: 1 INCH = 400 P.S.I. )
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FIG. 4.57 MAXIMUM SHERR STRESSES IN THE SOIL AT R
VERTICAL PLANE 100 FT AWAY FROM THE
CONTAINMENT - LOOSE FILL AND REINFORCED
EARTH JRCKET
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FIG. 4.58 MAXIMUM HORIZONTAL RCCELERATIONS IN THE
SOIL AT R VERTICAL PLANE 10 FEET RWAY
FROM THE CONTAINMENT - LODSE FILL AND
REINFORCED EARTH JRCKET
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[ Loose sand
Polque(hane Foam:

w=1.5 pef
E = 319 psi

Loose sand =

{2 Foamed concrete:

w = 50 pcf
E = 375,000 psi

(n

77,

POLYURETHANE FOAM JRCKET

FIG. 4.6l CONFIGURATION AND PROPERTIES

7

(I'l) FORMED CONCRETE JRCKET

781

OF THE [SOLATION JACKETS
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x POLYURETHRNE FORM JRCKET
o THIN LOOSE FILL

FIG. 4.62 EFFECT OF THE ENERGY RBSORBING JACKET
(POLYURETHRANE FORM) ON MRXIMUM PRINCIPAL
STRESSES IN THE CONTRINMENT
( SCALE: 1 INCH = 400 P.S.I.)
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o POLYURETHANE FORM JRCKET
% THIN LDOSE FILL

FIG. U.B3 EFFECT @F THE ENERGY ABSORBING JACKET
(PALYURETHANE FOBAM) ON MAXIMUM HORIZ-
ONTAL ACCELERATIBNS IN THE CONTRINMENT

(SCALE: 1 INCH=0.26)
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FI1G. 4.64 MAXIMUM SHEAR STRESSES IN THE SOIL AT R
VERTICAL PLANE 40 FT RWAY FROM THE
CONTAINMENT - LODSE FILL AND
POLYURETHRANE FOAM JACKET
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FIG. 4.65 MAXIMUM HORIZONTAL ACCELERATIONS IN THE
SOJL AT R VERTICAL PLANE 10 FEET AWAY
FROM THE CONTAINMENT - LOOSE FILL AND
POLTURETHANE FOAM JRCKET
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® THIN LOOSE FILL
% FORMED CONCRETE JRCKET |

FIG. 4.B8 EFFECT OF THE FOAMED CONCRETE JACKET ON
] MAXIMUM PRINCIPAL STRESSES IN THE CONT-
AINMENT ( SCALE: 1 INCH = 400 P.S.I. )
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FIG. 4.68 MAXIMUM SHEAR STRESSES IN THE SOIL AT R
" VERTICAL PLANE 40 FT AWAY FROM THE
CONTRINMENT - LOOSE FILL AND
FORMED CONCRETE JACKET
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% POLYURETHRNE FORM JRACKET
o FORMED CONCRETE JRCKET

FIG. 4.70 MAXIMUM PRINCIPAL STRESSES IN THE CONT-
AINMENT FOR FOAMED CONCRETE AND POLYURE-
THANE FOAM JACKETS
( SCALE: 1 INCH = 400 P.S.I. )
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FIG. 4.71 MAXIMUM HORIZONTAL RCCELERATIONS IN THE
- S01L AT R VERTICAL PLANE 10 FEET RAWAY
FROM THE CONTAINMENT - LOOSE FILL AND
FOAMED CONCRETE JRCKET
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FIG. 4.74 MAXIMUM FREE FIELD SHEAR STRAIN IN ROCK
COMPUTED FROM LUSH RAND SHRKE
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FIG. 4.75 MAXIMUM FREE FIELD SHEAR STRESSES IN
ROCK - COMPUTED FROM LUSH RAND SHRKE
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FIG. 4.77 MAXIMUM FREE FIELD SHERR STRESSES IN
ROCK AND SAND MEDIR
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x ROCK MEDIUM
@ SAND MEDIUM

FIG. 4.B86 MAXIMUM PRINCIPAL STRESSES IN THE CONT-
AINMENT FOR ROBCK AND SAND MEDIR WITH
FORAMED CANCRETE JACKETS
( SCALE: 1 INCH = 400 P.S.I. )
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@ SAND MEDIUM
% ROCK MEDIUM

FIG. 4.87 MAXIMUM HORIZONTAL ACCELERATIONS FOR
CONTAINMENTS IN ROCK AND SAND MEDIR
(SCALE: 1 INCH=0.4G)
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CONCRETE JACKET
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FIG. 4.88 MAXIMUM HORIZONTAL RCCELERATIONS IN SAND
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AWAY FAROM THE CONTRINMENT - FORMED
CONCRETE JACKET
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List of Sample Plotting Programmes




APPENDIX A

Listing of Sample Plotting Programmes

Twelve computer programmes have been written to plot the results
of this investigation using the CALCOMP plotter. Listing of sample
programmes used to plot the following results are presented in this
Appendix:

1. Acceleration or displacement time history,

2. Acceleration response spectra,

3. Stresses and accelerations in the contaimment,

4. Stresses and accelerations in the medium, and

5. Finite element meshes.
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L
L= PLOTTING OF ACCELERATION CR DISPLACEMENT TIME HISTCRY
T

L e
DATA CARDS

CARD(1) NC CF POINTS TO BE READ IN TINE HISTORY
1-5 NP

CARD (2) INFORMATICN OF HCRIZCNTAL AXIS
1-10 LENGTH OF HORIZ.AXIS
11-20 FIRST VALUE ON KRORIZe AXIS
21=-3C INTERVAL CN HORIZ. AXIS

CARC (3) TITLE OF HCRIZ. AXIS
1=76 TITLE
77-83 NO OF CHARACTERS(=-VE)

CARD(4) SAME AS CARC 2 FOR VERTICAL AXIS

CARD (S) SANE FCR VERTICAL AXIS (NCe.OF CHARACTERS (#VE)

CARC(6) 1-5 NC OF CURVES TO BE DRAWN CN THE SAME GRAFF
16=-25 AND 26=-35 COORDINATES OF LEGEND

CARC(7) TITLE CF THE CURVE *%% LEAVE IF NSAME=1
1-5 CODE FOR SHPE OF MARK
€6=1C NO CF FCINTS FOF SYMEOL
11=-15 N3 OF CHARACTERS IN TITLE
16-75 TITLE CF THE CURVE

CARD (B) AND FOLLOWING CARDSE ==-==THE DATA OF VERTICAL AXIS
CARDI(9) 1=5 NO OF LINES IN THE GRAPH TITLE
CARDI(1C) TITLE CF THZ GRAFF
1=5 NC OF CHARACTERS IN TITLE
6=77 TITLE OF THE GRAPH
L

FCLLCWING CARCS ARE FOR THE NEW PLCTTING (NEW GFAPH)
D e o

ADOBOAANANNAONNANDNOOOANONOANNANNNDNNNAODN

CINENSICN T(3020),G(3020),IRUF(1000)
DIMENSIUN IVT(19)41SMB(15)+IHT(1S) +ICARD(500) 4 ISMF(18)
CALL FLCTS(IEUF,100046)
CALL FLCT(04040404=3)

1 CONTINUE
REAC(S5,100)INP

10C FCRMAT(IS)

IF(NPJEG4C)GOTOSSS
N=hP

T T(1)=0.0
bCZz0 I=2.N



20

T(I)=T(I-1)40.04E83
CONTINUE

C READ HCRIZCNTAL AXIS INFCRMATICN

o

200

300

READ(S+20C ) FXLs+FhsDH

FCRMAT (3F10.44)

READ (S+s300)IFTWNHT

FORMAT (19444 14)
NHT==NHT

READ VERTICAL AXIS INFORMATION

500
600

99

800

READ (5420C) VXLJsFViDV

READ (54300) IVTNVT

CALL AXIS(0404s040¢TFTsNHT sHXL s0s0sFH,DH)
CALL AXIS(Ca04040+IVTaNVT 4VXL+90.05FV,CV)
READ (S+101) NSAME +0S +DSY

FOFMAT (1542F1044)

NDRW=0

1sv=0

DC 80C 1=1,NSANE
IF(NSAME.EQ+1)GCTO6ECD

READ(5+500) ISMNDRW.NCR, ISMB

FORMAT (315.15A4)

NCARD=(NP=1)/8+1

JJ=0

DO99IC=1 4NCARDC
READ(5,10)(G(JJ+J) 1 J=1+8

FORMAT (6F1046 )

JI=JUtE

CONT INUE

TIN+1)=FH

GI(N+1)=FV

T(N+2)=Ch

G(N+2) =DV

CALL LINE(T4GuNs14NDRW,ISM)
IF(NSANELEC.1)GCTO700

CSX=DS

CSY=CSY+40.21

CALL SYMECL{(CSXsCSY304074ISNM,0404~1)
DEX=DSX +0.2

CALL SYMEGL(C3XsD5Y»0407 ISMBE,0404NCR)

READ NAME OF EACH CURVE

700

900

READ(S+100)INS

csy= 70

DC 950 I=1,NS

READ (E£4SCO)NN, ISMP
FCRMAT (1541844)
DSX=(HXL=Cel4%NN) /2.0
LEY=CSY=C.2
DIST=VXL/2.0

CALL SYMBOL(CSX4DSYs0e145ISMP,0¢0sNN)
CALL FLOT (0e0sVXL+2)
CALL FLOT(FXLsVXL42)
CALL PLOT(FXL+Ce0s2)
DIST= HXL#10.0

CALL PLOT (DIST+0+04-3)
caTo1

CALL PLOT(G4C+0404999)
sTOP

ENC
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[ e e s et
(4 PLCTTING CF RESPONSE SPECTRA (LCCG X AXIS & LINEAR Y AXIS)
CHAFRFEFIRIURECRRRRRE S xR E rrExR

ey
CATA CARDS

CARD(0) NC OF POINTS TO BE READ
1-5 NP

CARC(1) VALUES OF FREQUENCY EF 10 .4
R R R e
THE ABOVE SET CF CARDS ARE TO BE PROVIDED CALY CNCE EACH RUN

nnoOnnOABOO

€ THE FCLLCWING CARDS ARE TO EE REPEATED FCR EACH GRAPH
CHFRAR AR RIR AR TR R R KK E I RARBE R R XA R E R RIOR R R RAR KR KRR R R Xk
CARD (2) INFCRMATICN CF HCRIZCNTAL AXIS
1-10 LENGTH OF HORIZ.AXIS
11-20 FIRST VALUE ON HORIZ. AXIS
21=30 INTERVAL CN HORIZ. AXIS

CARC (3) TITLE CF HORIZ. AXIS
1-7€ TITLE
77-8C NO OF CHARACTERS(-VE)

CARD(4) SAME AS CARC 2 FOR VERTICAL AXIS

CARD (8) SAME FCF VERTICAL AXIS (NC.OF CHARACTERS (+VE)
CARC(6) 1-5 NC DOF CURVES TO BE DRAWN CN THE SAME GRAFF

CARC(7) TITLE OF THE CURVE #%% LEAVE IF NSAME=1
1-5 CCOE FOR SHFE OF MARK
€=-1C NO OF POINTS FOR SYMBOL
11-15 NC OF CHARACTERS IN TITLE
16=75 TITLE CF THE CURVE

CARD (8) AND FCLLOWING CARCS ==-==THE DATA OF VERTICAL AXIS
CARC(9) 1-5 NO OF LINES IN THE GRAPH TITLE
CARD(10) TITLE CF THE GRAPH
1-S NO OF CHARACTERS IN TITLE
€=77 TITLE CF THE GRAPH
B 2

FOLLOWING CARCS ARE FOR THE NEw FLCTTING (NEW GRAPH)
e R e

0OABOAONONNOOADAANNNONDONODONANDOOOD

DIMENSICN T(3020)+G(3020)+IBUF(1000)
DIMENSION IVT(19), ISMB(15)sIHT(19) + ICARD(500), ISMF(18)
CALL FLCTS(IBUF,10CC+5)
CALL FLCT(0404040s=3)
FEAD(S,4444)N
4444 FORMAT(IS)



a

READ(S5+330) (T(I)sI=1.N)
330 FCRMAT(8F1044)
REAC HCRIZCNTAL AXIS INFORMATICN
1 CCONTINUE
REAC(54200 ) KXLsFHWDH
IF(FXLEC+0.0)GCTO999
200 FORMAT (3F10.4)
READ (S+300)IFT4NHT
NHT==NHT

300 FGRMAT (19A4,14)

READ VERTICAL AXIS INFORMATICN
READ (5,200) VXLJFV,DV
READ(S4+300) IVT.NVT
CALLLGAXS(CeCs0s0s IFTINHT 4HXL 4040 4FH4DF)

NCHECK= 1
WRITE(€41001) NCHECK
CALL AXIS(GCe030eCoIVT oNVT 3VXL +G040+FV4DV)
NCHECK= 2
WRITE(641001) NCHECK
READ (5,101) NSAME +DS +DSY
101 FORMAT (I542F10.4)
NDRw=2
1sm=1
DO 8CCII=1 NSANE
IF(NSAME.EQ.1)GOTO600
READ(5,500) ISMsNDRWNCRsISMB
S00 FCRMAT (3154+15A4)
600 REAC(S5+220) (G(I)sI=1sN)
99 CONTINUE
TIN+1)=FH

G(N+2)=DV
M=N+2
WRITECE,33C)(TUI)o1=14M)
400 CALLLGLIN(TsGosNs1+NCRA4ISMs=1)
NCHECK= 3
WRITE(€+1001) NCHECK
IF(NSAME «EC.1)GCTO700
DEX=pSs
DSY=DSY+0.21
CALL SYMEOL(CSXsCSYs0e10sISMs040,=1)
NCHECK= 4
WRITE(E,1001) NCHECK
DEX=CSX +0.2
80C CALL SYMBOL(DSX+CSYs0e10+ISMB40404NCR)
NCHECK= s
WRITE(€41001) NCHECK
REAC NAME OF EACH CURVE
700 READ(5+1CO)INS
100 FORMAT(1%)
CSY==0.9
DC 9SC I=1.NS
READ (S£+S00)NN, ISMP
900 FCRMAT(1S5,18A4)
DSX=(HXL=Cesl5%NN) /240
CSY=CSY=0.24
.DIST=VXL/2.0
95C CALL SYMBOL(CSXsDSY40415+1SNMP0404NN)
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1001

218
NCHECK=

6
WRITE(64+1001) NCHECK
CALL FLCT {(0.04sVXL4+3)
NCHECK= 7
WRITE(641001) NCHECK
CALL PLOT(HXLsVXL+2)
NCHECK= &
WRITE(Es10C1) NCHECK
CALL PLOT(HXL+0.042)
NCHECK= S
WRITE(64+1001) NCHECK
DIST= HXL+10.0
CALL FLCT (DIST+0404=3)

GeTC1

CALL PLOT(040e¢040s555)

FCORMAT g * NCHECK= *,415)
sToP

ENC
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c PLCTTING OF STRESSES IN THE HIGH HORSESHCE CONTATNMENT
CRAREEFRFEER TR R XA FE TR AR RN EEERF LT RN ENRRRF AR AR ER R RRRE TR IR R ARk N

c
C
<
DIMENSICN IBUF(1C00) +ORD(30)+X(30) Y (30)+XN(32)+YN(32),T(30),
* IST(1S)
FX(X)=180s =0.025%X%¥X
FX1(X)= =0s05%x

FY(Y)= 40+ +0.5%Y=1.0/280.0%Y%Y
FYI(Y)= 1.0/(0,5-1.0/1404%Y)
CALL PLCTS(IBUF,.1CCCs5)
CALL FACTOR(C.025)
CALL PLCT(Q4CsCa0,y=3)
REZD (5,€0) NPRE
DC 333 IF=1,NPRB
CALL PLOT (400440404=3)
CALLCURVX (0144040318040 40004=0402532404CeCeCa030.Cs0.C)
A==1./280.0
CALL CURVY(+0151404C+4040+0¢040453140+5A424C4C20+040)
CALLFLCT (0.04040,3)
CALL PLOT(40.0,0.0,42)
333 CCATINUE
CALL FLCT(04040404=3)
707 CONTINUE
READ (5+5) NXyNY,NF
IFINX 4EGC.J) GOTO99
FORMAT(2185)
READ(S+10) (X(I)eI=14NX)
10 FORMAT(EF1044)
REAC(5+10) (Y(I4NX)sI=14NY)
REAC(S+1C) (X(T+NX+NY) s I=1 ¢NF)
CO 20 I=1.NX
TCII=FXL(X(1))
20 vY(I)= FX(X(I))
CC30 J=14NY
I=Jehx
=FYL(Y(1))
=FY(Y(I))
1 CONTINUE
READ (5£,40) FACT
40 FORMAT(F10.44)
IF(FACT.EC.0.,0)GCTC707
CALL PLCT(04042004043)
CALL PLCT(D040s=2040,2)
CALL FACTOR(1.00)
N=NX +NY
READ(5460) NSAME
FORMAT( 1%5)
NDFw=1
1sv=1
CY=2.25
CO 100 II=1,NSANE
IF(NSAME«EQ.01) GOTO7D
REZD(S,50) ISM,NDRWeNCRIST
50 FORMAT(31S.15A4)
DXx==0e1%(NCR)
70 N1=N#NH

v

6

o
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80

120

100
130

110

288

289
2%0

<9

220
READ(5+10)( CRC(I)sI=1,4N1)
DO7SI=1,4N1
CRC(I1)=0RC(I)*FACT
YN(1)= 180.0 + CRD(1)
XN(1)=0.0
DC 80J=2.N
ALFA= ATAN2 (1.0,1./7(J))
YN(J)= Y(J)= CRD(J)*COS(ALFA)
XN(J) = X (J) #CRD(J)* SIN(ALFA)
CONTINUE
CO 120 I=1.NH
J=EI4N
XN(J)= X(J)
Y (J)=0.0
YN(J) ==CRD(J)
XN(N1+41)=0.0
XN(N142)=40.0
YN(NI+1)=0.0
YN(N1+42)=40.0
CALL FLINE(XNsYNs=N1+14NDRW,ISH)
IF(NSAME.EQ.1) GOTC130
CY=DY=0.2

A

CALL SYMBOL(DXsDYs0eleISMeOs=1 )
Cx=Dx+4C.2000

CALL SYMECL(DXsDYsCal +IST 4040 4NCR)
CONT INUE

CALL FACTOR(C.025)

DO110I=1,4N1

CALL PLOT(X(I)s¥(1),3)

CALL FLCT(XN(I)sYN(I)s2)

READ (S54€0) NS
IFCYNIN)=YN(N+1))289,289,288
JL=N#1

GCTo2s0

JL=N

CONTINLE

DY=YN(JL)=20.0

OC 205 1=1,NS

READ (£+210) IST.NN
WRITE(64210) IST.NN
FCRMAT(1EA4,415)
CX==40 +% (0 41 2%NN/24+0 )
DY=DY=7.2

CALL SYMEBOL(DX+DYs4sB4IST40.04NN)
CALL FLOT(=400¢40404~3)

GeCTC1

CALL PLOT(0«CsCa0sS55)

sTCP

END
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[ e e e
PLOTTING OF SHEAR STRESSES ANC ACCELERATICAS IN SCIL
CHARA AR A AR RS E R I I I IR IR IR ARSI ER T IR T ETI R RS S SR RT RS RARR SRR SR ¥

c

c
=

TEE

909
100

20

.

DIMENSION T(3020),6(3020),1BUF(1000)
DIMENSION IVT(19)sISMB(15),IHT(19) s+ ICARD(S00) . ISMP(18)
CALL PLOTS(IBUF,+1000+6)

CALL FLDT(040+040+4=3)

CONTINLE

READ(S¢SCSINFFF

FORMAT (IS,F10.5)

FORMAT(IS)

IF(N «EC«0)GOTOSSS

REAC(5520) (G(II),I11=1,N)

FORMAT (EF1044)

C READ FCRIZCONTAL AXIS INFORMATION

e}

200

300

READ(S+2C0 ) HXLsFH,CH
FORMAT (3F10.4)

REAC (5+300)IRToNHT
FCFEMAT (15A4,14)

REAC VERTICAL AX1S INFORMATION

500
€0c

292
99

goo

REAL (54203) VXLsFV,DV

READ(S+300) IVT(NVT

CONT INUE

CALL FACTCR(O0.7)

DIST= HXL+10.0 4
CALL PLUT(EIST-O-OO--B)

CALL AXIS(O-G-VXL.IFV-NHTcHKL-G-O.FH.Dr)

CALL AXIS(04040404sIVTINVT 4VXL+9030+FV4DV)

NDRW=1

I1smM=1

REZC (54101) NSAME +DE ,DSY

IF(NSANEEC.D)GCTD777

FORMAT(IE,2F1G.4)

CC 800 I=1,NSAME

IF(NSANELEC.1)GCTC600

READ(54500) ISM,NDFW.NCRsISMB

FCRMAT (315,1544)

CONTINUE

REAC (5420) (T(K)sK=14N)

DO 292 JC=1sN

T(JO)= T(JO)/FFF

CONT INUE

T(N+1)
G(N+1
T(N#2)=0H

G(N+2)=DV

M==N

CALLFLINE(T+GeNMel oNCRW,ISM)
IF(NSANEEQ.1)GOTO700

Csx=Ccs

LEY=CSY=0.21

CALL SYMBOL(DSXsCSYs0e1241ISM30,.04=1)
CEX=CSX +0.2

CALL SYMBOL(CSX4DSYe0e1241SVMBe0.04NCR)

REAC NAME OF EACH CURVE

70C

READ(S,1CO)INS
DSY==C.7C




s00

950

CALL PLOT (0e040.0,3)

CALL PLOT(FXL+040+2)

CALL FLOT(HXLsVXL+2)

DO 950 I=1,NS

REAC (5+900)NN, ISMP
WRITE(6+500) NN ISMF

FOFMAT (IS.18A4)
DSX=045% (HXL=0 417 %AN)

DEY=DSY=0.27

CALL SYMEOL (CSXCSY 04174 ISMP,0.04NN)
CALL FACTOR(.014)

CALL PLOT(0e01€S44=3)
CALLCURVXA(+01434040+180403040+=04025+2404Ce04C204040,0.0)
==1e/2E8C.C

CALL CURVY(+0141404044040+0404045+1400A42¢040404CaC)
CALLFLLT(0.040.0,3)

CALL PLOT(40404Ce042)

CALL PLOT(0.0s=1654+3)

GCTOo1

CALL PLOT(04Cy040455G)

sToP

END
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4 PLOTTING OF FINITE ELEMENT MESH OF THE MOCEL g
L R

30

20

40

&8

L.

DIMENSICON IBUF(1000)

CALL PLOTS(IEUF,1000+6)
CALL PLCT(Ces04ey=3)
CONTINUE
READ(S+10)N,FACT,ICOCE,DDD
FORMAT(1S+F1CeSeISeF10.5)
IF(N.EC.0) GDTOS9

CALL FACTCR(FACT)
IF(ICODE«EQ.2) GOTO 333
DO 20 I=1,N

READ(S5430) X1,Y1
READ(S5430) Xx2,Y2
FOFMAT(SX42F1043)
IF(X1eEQe10504)%1=1010.
IF(X2.EQ+1050.0) x2=1010C.
IF(ICCCESEGs0) X2=1,5%x2
CALL FLOT(X1sY143)

CALL PLOT(X2.,Y2+2)
CCONTINUE

IF (ICCOE.NE.1) GOTOE®
CALL FLCT(0.4+DCC +=3)
CALLCURVX( 401 44040418040 4040+-02025424040404¢Ce030e0+4040)
A==1./280.0

CALL CURVY(20141404044Ce0+040¢045214C0A4240,Ce0,040)
CALLPLOT (0.040404+3)

CALL FLOT(404C+0404+2)

CONTINUE

CALL FLOT(2000++~DCCy=3)

GOoTC1

CONT INUE

DC 4441=1,N

CALLCURVX (401 +404041E04040404=04025+2404C2030+040.0,0.0)
A==1.,/280.0

CALL CURVY(401414040440404040+04591404A4240,C40,0,0)
CALLFLOT(040404043)

CALL PLOT(4040404042)

CALLFLCT(600404+044=3)

CONTINUE

GOTO1

CCATINUE

CALL FLOT(044044555)

sSToP

ENC




APPENDIX B

Brief Description of LUSH and SHAKE

(Summarized from Refs. 62 and 81)

224



B.1 PROGRAMME LUSH [62]

General

The computer programme LUSH was developed in the Department of
Civil Engineering at the University of California, Berkeley, California
by a group of faculty members and graduate students of geotechnical
engineering. LUSH is basically a finite element programme designed for
earthquake analysis of plane structures of the type shown in Fig. B.l.
The programme, in an approximate manner, takes into account the strong
nonlinear effects which occur in soil masses subjected to strong earth—
quake motions. This is achieved by a combination of the equivalent
linear method described by Ref. 45 and the method of complex response
with complex moduli. The latter method makes it possible to work with
different damping properties in all elements of the finite element model,
even in the high frequency ranges which must be considered in the study
of soil-structure interaction for nuclear power plants.

The physical problem which can be solved by LUSH is illustrated
by Fig. B.l. The mathematical model consists of plane quadrilateral
or triangular elements. The model is excited by a specified acceleration
time history at the rigid base. The base does not have to be horizontal
and the specified motion can have any direction in the plane of the model.
A special provision makes it possible to specify that selected nodal
points can move only in the horizontal or the vertical direction and
it is also possible to connect any pair of nodal points by a rigid element
such that they will have the same displacement at all times.

The stiffness and damping of the materials in the model can be

chosen to be constant or to vary with the effective shear strain
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amplitude in each element. Typical relationships between stiffness,
damping and effective shear strains for sand and clay are provided
within the programme (Table B.1l).

The mass distribution within the model can be either distributed
(consistent mass matrix) or concentrated at the nodal points (lumped
mass matrix), or it can be any combination of these choices.

Many options are available for output which may consist of time
histories or response spectra for selected nodal points. A special
option provides for a permanent record on magnetic tape of both input

and basic information on the complete solution.

Equations of Motion

Equations of motion and the numerical procedure followed by LUSH

to solve these equations are described in Chapter III.

Summary of Numerical Procedure
The following is a summary of the procedure as it is used in LUSH.

Only the most basic operations are included.
A. Define input motion
Transform to frequency domain
B. Define finite element model
1. Nodal points
2. Boundary conditions
3. Elements
4. Estimate material properties
€. Form mass matrix
D. Form stiffness matrix

E. Determine amplification functions



Table B.1l - Strain-compatible Soil Properties.[45]

Shear Modulus Fraction of Critical

Effective Reduction Factor* Damping (%)
Shear Strain | log (Y ¢¢)

Yets (¢3) Clay Sand Clay Sand
<1, x 107" -4.0 1.000 1.000 2.50 0.50
3.16 x 10-* -3.5 0.913 0.984 2.50 0.80
1.00 x 10-} -3.0 0.761 0.934 2.50 1.70
3.16 x 1072 -2.5 0.565 0.826 3.50 3.20
1.00 x 10~° -2.0 0.400 0.656 4.75 5.60
3.16 x 10~° -1.5 0.261 0.443 6.50 10.0
1.00 x 10~* -1.0 0.152 0.246 9.25 15.5

0.316 -0.5 0.076 0.115 13.8 21.0
1.00 0. 0.037 0.049 20.0 24.6
3.16 0.5 0.013 0.049 26.0 24.6
210.00 1.0 0.004 0.049 29.0 24.6

*This is the factor which has to be applied to the shear modulus at
low shear strain amplitudes (here defined as 10~* percent) to obtain
the modulus at higher strain levels_.‘
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1. Solve Eqn. 3.12 for required frequencies
2. Interpolate in frequency domain
F. Determine effective shear strains in all elements
1. Compute strains in frequency domain
2. Convert to time domain
3. Determine Yeff =>factor L A
G. Compute strain-compatible soil properties
1. Enter Table B.1 for all elements
2. Compare with properties used in analysis
a. If differences too large, repeat analysis from D.
with new properties
b. If differences small, go to H.
H. Convert displacements to time domain

I. End of analysis.

B.2 PROGRAMME SHAKE [81]

Programme SHAKE computes the responses in a system of homogeneous,
viscoelastic layers of infinite horizontal extent subjected to vertically
travelling shear waves. The system is shown in Fig. B.2. The programme
is based on the continuous solution to the wave-equation adapted for
use with transient motions through the Fast Fourier Transform algorithm
[24] is accounted for by the use of equivalent linear soil properties
[82] using an iterative procedure to obtain values for modulus and
damping compatible with the effective strains in each layer. The follow-
ing assumptions are implied in the analysis:

1. The soil system extends infinitely in the horizontal direction.

2. Each layer in the system is completely defined by its value of
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shear modulus, critical damping ratio, demsity, and thickness.
These values are independent of frequency.

3. The responses in the system are caused by the upward propagation
of shear waves from the underlying rock formation.

4. The shear waves are given as acceleration values of equally
spaced time intervals. Cyclic repetition of the acceleration
time history is implied in the solution.

5. The strain dependence of modulus and damping is accounted for
by an equivalent linear procedure based on an average effective
strain level computed for each layer.

The programme is able to handle systems with variation in both
moduli and damping and takes into account the effect of the elastic
base. The motion used as a basis for the analysis, the object motion,
can be given in any one layer in the system and new motions can be com-
puted in any other layer.

The following set of operations can be performed by SHAKE:

1. Read the input motion, find the maximum acceleration, scale

the values up or down, and compute the predominant period.

2. Read data for the soil deposit and compute the fundamental
period of the deposit.

3. Compute the maximum stresses and strains in the middle of each
sublayer and obtain new values for modulus and damping compatible
with a specified percentage of the maximum strain.

4. Compute new motions at the top of any sublayer inside the
system or outcropping from the system.

5. Print, plot and punch the motions developed at the top of any

sublayer.



6. Plot Fourier Spectra for the motions.

7. Compute, print and plot response spectra for motions.

8. Compute, print and plot the amplification function between any
two sublayers.

9. Increase or decrease the time interval without changing the
predominant period or duration of the record.

10. Set a computed motion as a new object motion. Change the
acceleration level and predominant period of the object motion.

11. Compute, print and plot the stress or strain time-history in
the middle of any sublayer.

These operations are performed by exercising the various available

options in the programme.



10.

11.

12.

13.
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