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Abstract

In carly 2000, Chameleon Systems Incorporated and Memorial University formed
a rescarch agreement to evaluate the viability of the Chameleon Systems CS2112
Reconfigurable Communications Processor (RCP) for use in implementing popular
cryptographic algorithms. The CS2112 has a coarse grain reconfigurable architecture,
capable of run time reconfigurability.

The benefit of coarse grain reconfigurable architectures is that they can offer

many of the flexibilities found in software, such as reprogrammability and ease of

dification to i ion, while giving of speed and

hardware encapsulation.

This research involves examining the i i istics of two popu-
lar symmetric key block ciphers, RC5 and RC6, and two popular cryptographic hash
algorithms, MD5 and SHA-1 with respect to the CS2112.

RC5 was designed as an itcrative loop and then expanded to provide a parallel
pipeline to maximize the usage of the reconfigurable fabric. RC6 was designed as an
iterative loop and a pipeline. For both hash algorithws, initial designs were draficd

and performance figures were estimated from i gained through si

and testing on a CS2112 development board.
By implementing these algorithms, the architecture of the CS2112 was evaluated

for its suitability for cr; i icati Moreover, the reconfigurable fabric

of the C'S2112 was evaluated with respect to its support for the primitive operations

that are required for cryptographic algorithms.



The conclusions of this research and reccomendations for future research are di-
rectly related to resource use on the CS2112. In particular, support for control and

datapath logic, memory space, and global communication resources within the CS2112

were all design ints. More it would be to have direct
support for accessing memory without using datapath resources. Also hardware sup-
port for data dependent logical rotations and unsigned integer multiplications would
greatly save resource usage and increase performance. Finally the design process for
the (2112 was sometimes time intensive and cumbersome, especially with respect
to layout and placement of reconfigurable logic. Advances in the area of automatic
placement and layout for coarse grain primitives would benefit the design process for

the CS2112 greatly.
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Chapter 1

Introduction

Tt is hard to imagine today’s society without modern communication systems. While
it is a necessity for people to communicate with each other to share information, the
way in which this is undertaken has changed dramatically since the advent of global
voice and data networks.

The Internet has grown at an exponential rate in the last decade. Not only are
people using the Internet as a medium for communication, but the transmission and
storage of sensitive data has also seen increased usage. Online banking is a good
example of both the transmission and storage of sensitive data. A person must trans-
‘mil, their account number along with a password to access their personal information
and accounts stored on the bank’s computers. By the year 2007 it is estimated that
30% of Americans will use online banking and in the salary range of $50,000-$75,000,
usage will be 50% [1]. With respect to the Internet economy, quarterly growth figures
between 1999 and 2000 were estimated to be between 20% and 30% [2]. Corporta-
tions are utilizing Virtual Private Networks (VPNs) to connect remote locations to
the private infrastructure of the company network.

While modern communication through global networks has increased communi-
cation efficiency, it has also become easy for people to intercept data traveling across

shared networks such as the Internet. For example, a packet sniffer is a system that



Tooks at traffic flowing across a network so that a third party can view private infor-
mation. A packet sniffer is a common way to obtain user IDs and passwords [3].
Cryptography can be used to provide security to information flowing through a
publicly accessible network. Most cryptographic applications lie in the digital world of
computers, but cryptography has a much older past. Given below are some interesting

facts about the history of cryptography [4]:

o The first known of a cr hil itution cipher occurred

around 1900 B.C. in a town called Meneu Khufu, near the river Nile. Some

unique hieroglyphic symbols were used in place of normal ones.

o Ancient Egyptians used substitutions of hieroglyphs, and the use became more

popular with the increasing occurrence of tombs.

® Mechanical encryption devices were used extensively in World War II for the

encryption of military and political messages.

e Some of the first mechanical computers were invented and used by Marian
Rejewski to break codes produced from the German WWII Enigma machine

[s]-

The use of data networks has been increasing at an astonishing rate and with
this growth in use, there is a need to secure private information across the network.
Within the scope of data security, encryption plays a large role. Encryption provides

data confidentiality, but there is also a need for the following security services [6]:
® Access Control: Maintains privileged access to information.
o Data Integrity: Prevents unauthorized modification of information.

o Authentication and Replay Prevention: Verifies a sender’s identity and prevents

of i




o Scalable Key M: Allows the 1 ofer ic keys.

and N iati Maintains the identity of sender and pre-

vents deniability.

The support of data integrity within a data network prevents the modification
of data while it is in transit across the network. A data integrity service over a
network often uses a hash function to produce a Message Digest (MD) of a message.
A digital signature technique such as the Digital Signature Algorithm (DSA) also
uses a hash algorithm in its operation [7]. Figure 1 is a typical hierarchy with respect

to encryption in a data network.

Application and Host Layer
Encryption

Link Layer Encryption

Figure 1.1: Description of encryption with respect to a data network.

Encryption algorithms, or ciphers, can be implemented in hardware or software.
Some examples of popular secure communication protocols that are targeted for soft-
ware encryption are: Secure Hypertext Transfer Protocol (S-HTTP), Pretty Good

Privacy (PGP), Message Security Protocol (MSP), Secure Sockets Layer (SSL) and

3



IP Security Protocol (IPSec). Software encryption implementations are slower than

hardware impl

Hardware i ions are used in high bandwidth,

low latency environments such as the link layer of a data network [6]. In addition to

jally higher pared to software, hardware based encryption can

often be more secure than software. It is harder for an attacker to obtain information
about the cipher during operation [8]

There are various ways of implementing encryption algorithms in hardware. One

way is through a special cryptographic processor that can be configured for various al-

gorithms. One example can be found in the Cr iac device [9]. Cr

is a cryptographic co-processor and is designed to speed software encryption. Broad-
com offers two cryptographic co-processors (BCM35840/41) that work at the host level
to aid encryption speeds of software [10]. Another way to use hardware encryption
iis through an Application-Specific Integrated Circuit (ASIC) or Field-Programmable
Cate Array (FPGA) technology.

The field of ASICs is a broad one. ASICs can be full custom integrated circuits or
semi-custom. A full-custom ASIC engineer will design some or all of the logic, circuits
and layout for a particular chip. In most application arcas full-custom ASICs are not
as popular as they once were, but they are growing in the arca of integrated analog and
digital ASICs [11]. Semi-custom ASICs are designed using standard cells that provide
functionality as simple as logic gates to the level of complexity of microprocessor cores.
Once the design is simulated and laid out it can be fabricated. The fabrication of
an ASIC involves the masking of layers of silicon similarly to standard integrated
circuits. Once the design is fabricated it cannot be changed.

An ASIC implementation is specifically designed for the cipher(s) of choice and
has the main advantage of speed. Another advantage of ASIC is that the designer
has complete control over placoment, and is limited only by the design rules im-

posed by the fabrication process. Cost, design time and lack of flexibility are some



disadvantages of ASIC design.

FPGAs are a more flexible way of designing algorithms in hardware. FPGAs were
developed initially as a fast way to prototype cells to be used in ASIC designs. Since
then FPGAs have grown in size and capability allowing designers to implement market
products in FPGAs. FPGASs contain programmable logic devices that are set by anti-
fuse or static random access memory technology. The matrix of programmable logic
cells are connected together by a network of wires allowing communication between
cells [12].

An FPGA solution is considered to be a fine grain reconfigurable solution and
will allow faster design cycles because designs can be re-burned or reconfigured with-
out restarting the whole design process as with ASICs. A disadvantage of FPGA
implementation is that routing can have overhead and can be problematic [13].

Newer coarse grain architectures are emerging to exploit the advantages of hard-
ware while simultaneously offering the flexibility of software. Run-time reconfigurable
processing, ease of modification, and quick turn around times in design and testing,
are advantages of coarse grain architectures. Unlike an FPGA, coarse grain architec-

tures can use datapaths that are greater than 1-bit [13].

1.1 Motivation for Research

The Chameleon Systems Inc. CS2112 RCP is a coarse grain reconfigurable architec-
ture [14] designed for communication and Digital Signal Processing (DSP) applica-
tions. The performance of coarse grain reconfigurable architectures with respect to

Ty hi ications can be on resources and characteristics offered

by the specific reconfigurable product. With the increased need for secure communica-
tion, commerce, faster transmission speeds, and increased traffic over public networks,

there is a need for implementation of new ciphers in hardware. A survey of companies



in 2003 shows that medium to large sized businesses utilize hardware based security
services over software based methods [15].

The Chameleon Systems CS2112 offers a reconfigurable environment for encryp-
tion that gives the security and performance of hardware while offering the fexibilities
of software. Since the CS2112 is a general purpose communications processor with
support for any of the arithmetic and logical operation found in encryption, a research
agreement was developed between Memorial University and Chameleon Systems to
investigate and evaluate the performance of popular ciphers on the CS2112 [16].

It is the purpose of this research to not only investigate the performance of pop-
ular encryption algorithms on the CS2112, but to investigate where the CS2112's
architecture is inadequate to support these algorithms efficiently and to determine
the advantages of using the CS2112 for security applications. Results of this research

were reported back to Chameleon Systems Inc. for future design considerations.

1.2 Research Scope

The purpose of this thesis is to investigate the suitability of ic key encryption

and cr ic hash algorithms on the Ch Systems RCP. Two symmetric
key block ciphers that were explored are RC5 [17] and RC6 [18]. Hash functions
that were explored are MD5 [19] and SHA-1 [7]. Various design methods of these
algorithms were addressed along with testing and performance evaluation.

Before addressing the topic of this research, the reader will be given adequate

in hardware i i ies for encryption
algorithms, and a high level description of the CS2112 architecture. RCS was the
first algorithm to be investigated and this focused on an iterative approach to cipher
implementation. Optimizations to this design were carried out to maximize use of

the CS2112. Next, RC6 was evaluated with a pipelined design optimized for high



speed operation. MD5 and SHA-1 were designed based on information gained from

designing RC5 and RC6 on the CS2112. When design and testing were completed

the CS2112 is evaluated for its suitability for supporting the selected algorithms with

respect to its processing resources and support for cryptographic primitives.

1.3 Thesis Outline

This thesis follows the outline below:

Chapter One is an introduction to the research conducted with the CS2112.

Chapter Two will introduce the reader to symmetric key block ciphers, crypto-
graphic hash functions, and give an example of a popular protocol that makes

use of both types of algorithms.

Chapter Three will focus on different hardware implementation technologies

while giving some examples of cr i ications and

The CS2112 is also introduced in Chapter Three outlining its architecture and

target application areas.

Chapter Four describes i fon and p of symmetric key

block ciphers on the CS2112.

Chapter Five describes the design and performance of hash functions on the

CS2112.

Chapter Six provides conclusions with respect to the CS2112 and gives some

recommendations on coarse grain archi 1 support for cr hy in re-

lation to the CS2112.



Chapter 2

Block Ciphers, Hash Functions and

Applications

The purpose of this chapter is to give an overview of symmetric key block ciphers,
hash functions, and their applications such as the IP Security Protocol. Primitive

operations that ciphers and hash functions utilize also will be discussed.

2.1 Symmetric Key Block Ciphers

When a message or plaintext is encrypted using an encryption algorithm, it is com-
putationally infeasible to extract the information from the ciphertext unless the cor-

responding decryption algorithm is used. Cryptology is the field that is made up of

Cryptography and Cr is. Cr hy is the field that involves mapping
plaintext to ciphertext in a secure fashion. The purpose of Cryptanalysis is to test
the security of ciphers by decrypting encrypted messages in a method not intended
by the decryption algorithm, in effect testing the security of the encryption. A block
cipher is a function that mathematically maps an n-bit, plaintext block to an n-bit
ciphertext block, with the block size defined to be n [20].

Extra information, called a key, is required to execute an encryption algorithm.

If the same key is used for both encryption and decryption it is called a symmetric

8



key cipher [17]. The use of a symmetric key block cipher to transmit an encrypted
message is illustrated in Figure 2.1 [20].

The total possible number of keys is defined as the keyspace and the security of
a cipher is related to both the keyspace and n. A cipher is unconditionally secure if
ciphertext blocks and plaintext blocks are statistically independent. In general, an
increase in block size and/or in size of the keyspace will increase the implementation

cost of the cipher [20].

message message
(msg) Deenption (msg)
Agutnin
Lo
T 3rd party observer T
Key sees Ek(msg) ey
® e ®

Figure 2.1: Block diagram of secure communications.

Tterated round ciphers involve a sequential loop of an internal function (a round),
involving blocks of plaintext. A round consists of simple cryptographic operations
such as additions and data dependent rotations. Each round uses a subkey that is
derived from the original key that is mixed with the data. Virtually all block ciphers
are iterated, and RC5 and RC6 operate in this fashion.

Block ciphers may be used in different modes of operation. Modes of operation
arise when encrypting a message that is longer than n-bits [20]. Two modes of opera-
tion will be discussed, Electronic Codebook Mode (ECB) and Cipher-block Chaining
Mode (CBC). ECB is a mode that does not involve feedback of a previous operation,
while CBC requires feedback from its previous operation. For the two modes of oper-

ation discussed, a briel ion of the ad and di with respect

to security and error recovery will be presented.



2.1.1 Electronic Codebook Mode (ECB)

ECB is illustrated in Figure 2.2. The symbol n is the block size in bits, X, represents
the i-th block of plaintext, C; represents the i-th block of ciphertext, () represents

the encryption function, d() represents the decryption function, and k represents the

key.
Xi
n
[Tt
Kk ——n} ef) B d() SO
| E—— ,t n
4]
Xi

Figure 2.2: ECB mode.

When a message is more then n-bits long, it is sectioned into n-bit blocks, each
block is encrypted separately, and decryption is carried out in a similar fashion. ECB
mode has the advantage of being the simplest encryption mode. An error in a trans-
‘mitted encrypted block will result in a full plaintext block being decrypted in error
on the receiver’s end. ECB mode has the disadvantage that it does not hide data
patterns [20]. In ECB mode an observer can view ciphertext across an insecure net-
work and may sometimes have knowledge of the plaintext that is being transmitted.
The observer can then build a library of plaintext-ciphertext pairs allowing partial

decryption of future messages

2.1.2 Cipher-block Chaining Mode (CBC)

CBC is illustrated in Figure 2.3. CBC mode starts with an initial value or IV vector

and subsequent encryptions are carried out with the use of the previous ciphertext

10



block. The 1V vector is required because this mode uses feedback. When the first
plaintext block is encrypted there is no previous ciphertext block to use, therefore a
value is provided externally so that the operation can proceed. CBC has the advantage

of hiding patterns in plaintext values.

Xi = e

e

Xi
Figure 2.3: CBC mode.

Some of the disadvantages of CBC mode are that an error in the transmitted
ciphertext block will result in an incorrect deciphering of C, and Ciy;. In addition,
the order of plaintext blocks matter because the decryption requires the receiver to

have the previous block of ciphertext.

2.2 Hash Functions

Hash functions take a finite arbitrary length input and output a fixed length message
digest or simply a hash of the message. In other words, a hash function will map an
arbitrary ranged input to a fixed and smaller ranged output [20]. Hash functions are

used in both cr; and non-cry hi




Cryptographic hash functions are one way functions, meaning that you cannot
get the original input based solely on the output. A collision occurs when two inputs
map to the same output value. The output value of a hash function is regarded
as a compact digital image or representation of the input data. For cryptographic
applications, a hash function must exhibit strong and weak collision avoidance. To
explore the concept, of strong and weak collision avoidance, the hash function will be
defined as h(), the input to the function is & and another input to the function is
' (different than z). Strong collision avoidance is observed if it is computationally
infeasible to find both @ and a’ such that h(z) = h(s"). Weak collision avoidance is
observed if given z, finding 2’ such that h(z) = h(') is infeasible [20].

Hash functions are primarily used in data integrity schemes and may be keyed or
not keyed. A keyed hash function will take two inputs (data and a secret key) and
produce one output referred to as a Message Authentication Code (MAC). A hash
function that is not keyed can be configured as MACs producing an Hashed Message
Authentication Code (HMAC).

Tor the purposes of this research single input, single output hash functions used

for schemes will be addressed

2.3 Description of an HMAC

HMAC s a ism for message authentication that utilizes a cryptographic hash

fanction. MACs provide a way to check the integrity of information transmitted across
an insecure medium [21]. The HMAC scheme uses a cryptographic hash function and
a secret key. The input information to an HMAC is the message to be authenticated,
and the secret key. It is assumed that only the sender and receiver has access to the
secret key. To describe the operation of HMAC, the following definitions are made
[21):



o H(), a cryptographic hash function that processes an arbitrary length message
formatted into length B-byte blocks.

L, byte length of hash function output. It is assumed that L will be less than
B.

K, the secret key used in the HMAC. The secret key is of variable length and
any length that is less than B will have zero bytes appended to the end of
the key. For key (K1) with length greater than B the following will occur,
H(K1) = K2. K2 has a length of L, and will be used as the secret key.

o ipad, the value 0236 repeated B times.

opad, the value Oz5c repeated B times.

Figure 2.4 illustrates the operation of an HMAC. In illustrations, adjoining blocks
of data represent the appending of two blocks into a single, larger block. The &
operator is the bit-wise XOR operation.

The construction of an HMAC provides two functions. The integrity of the mes-
sage is protected because the cryptographic hash function provides a digital finger-
print of the original text. A message cannot be forged because a secret key is mixed
into the HMAC. HMACs are used in the Authentication Header (AH) protocol within
IPSec.

The performance of the HMAC depends on the underlying hash function and it
is desired to use hash functions that will perform well in software. The main goal is

to make HMAGs scalable to faster or more secure hash functions in the future [21].
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Figure 2.4: Operation of HMAC.



2.4 The RC5 Block Cipher

Ronald L. Rivest developed RC5 (17] at the MIT Laboratory for Computer Science
and it is a trademark of RSA Data Security. RC5 is an extremely compact cipher and
is suitable for both hardware and software implementations. Listed below are some

more notable characteristics of RC5 [17]:

© RC5 is a symmetric block cipher. The same cryptographic key is used for both

encryption and decryption. The ciphertext and plaintext are of fixed bit length.

RCS uses operations and instructions that are commonly found on typical mi-

CTOPTOCessors.

® RC5 is iterative and can have a variable number of rounds.

RCS uses little memory so that it is useful with smart cards, mobile computing

platforms, micro controllers, and other low memory environments.

e RC5 makes use of data dependent rotations as one of its diffusion primitives.

RC5 is parameterized as RC5 - w/r/b. The word size is defined as w and the
block size is 2w. The number of iterative rounds is given by r, and b specifies

the key size in bytes. For this research RC5-32/12/16 will be used.

The RC5 cipher is illustrated in Figure 2.5. The parameters A and B are 32-
bit blocks of plaintext. The array S{0..2r + 1] is composed of 32-bit words that are
created by manipulation of the initial key. The + operation is mod 2%? addition and
L << R is the data dependent bit-wise left rotation of L by the amount R. To further
illustrate the process of a data dependent left rotation, a simplified operation is given
in Figure 2.6.

The bit-wise XOR operation is defined as @. The i parameter is used to indicate

which round the algorithm is in: for example, the statement repeat i = 1.7 is the
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Repeat
i=1tor times

sfaiv1]

Figure 2.5: Flow diagram of the RCS block cipher.

90 (base 10) <<< 2(base 10) = 106 (base 10)

10011010 <<< 00000010 = 01101010
Figure 2.6: Illustration of a simplified 8-bit left data dependent rotation.

equivalent, of a loop where the variable i is incremented by one each round. Therefore

in the second round of RC5, S[4] and S[5] are used in the algorithm.

2.5 The RC6 Block Cipher

RC6 was a submission to the National Institute of Standards and Technology (NIST)
for consideration as a candidate for the Advanced Encryption Standard (AES) in 1998
(Rijndael was chosen to be the algorithm for AES [22]). RC6 was also considered

for the New European Schemes for Signatures, Integrity, and Encryption (NESSIE)



specification, but did not make it through to the final round of selections due to

ongoing intellectual property rights issues [23]. RC6 is a direct evolution of RC5.

ol e Sz [+ s+

Note:
1) = x(2x+1)

Figure 2.7: Flow diagram of the RC6 block cipher.

Since RC6 is an advancement of RC3 there are various similarities. RC6 is pa-
rameterizable like RC5 with the same parameter format, namely, RC6-w/r/b. All of
the operations that are used in RC5 are also found in RC6. The operation of RCG is
shown in Figure 2.7 [18]. From the flow diagram the differences in RC6 are evident.
There is a left rotation by lg(w), where lg() is the loga() operation. The use of four
w-bit input, blocks of plaintext denoted as A, B, C and D make RC6 a 128-bit block

cipher when w=32. There is a permutation of the data blocks at the end of each
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round. The biggest difference, especially from the viewpoint of performance is the
operation f(), which represents the following relationship, f(z) = #(2z+1) mod 2%2.
Hence, f() requires an unsigned integer multiplication operation. For this research,

RC6-32/20/16 will be used.

2.6 The MDS5 Algorithm

MD5 is a cryptographic hash function that takes a message of arbitrary length and
produces a 128-bit message digest. MD5 exhibits weak and strong collision avoidance,
and is a popular hash algorithm that has found much use in Internet based message

authentication [19].

Formatied Message
- A\ (Padded
Arbitrary Length Length is an
integer muliple of 512 bits

1st512 bt
block

o a
A 01234567 " .

3 1 H.Mps | ABCD,
C: fodobad8. |
D: 76543210 )

Figure 2.8: Procedure of initial processing arbitrary length message.

Once the message of arbitrary length has been formatted into N 512-bit blocks as
shown in Figure 2.8, it is passed into the compression algorithm denoted as H.MDS.
The inputs to the compression fnction are one 512-bit block of the formatted ar-
bitrary length message, and four initialized registers, A, B, C, and D. The outputs
of the function are the modified values of the registers that were used by the input.
These four registers act as temporary buffers for subsequent calls to the compression
function. The values 0, r1,r2...r- — 1 are used to denote the state of the four reg-

isters before and after a call to the compression function where N — 1 would be the
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last call to H-MD5. When each block of the message is processed in this fashion, the

values of the registers make up the 128-bit message digest or hash value [19].

r(0):
[A.B,C.D]

128it

[ oo ]

‘ [AB.C.D) G(x.y:2) XIK Tib} S (16 steps b = 16 10 31) J

WE.CD]
XM
v

R

WE.CD)

[ recommmmmimsem ]

¥
mod(2+32)
AR

r(1):
AB.CD

Figure 2.9: Looking into the H.MD5 function.

There are 64 steps involved with the execution of H MD5, as shown in Figure 2.9.
Each grouping of 16 steps are abstracted into a block showing inputs, outputs, and
data values involved. The F,G,H and I functions denote auxiliary functions that take
in three 32-bit values and output a single 32-bit value. These operations are solely

made up of bit-wise operations (AN D, OR and XOR). The registers are re-assigned
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to during the execution represented by a superscript “* 7. The final operation is to

add the old values of the 32-bit registers to the new modified values.

I e |

Figure 2.10: Operations involved in a single step of H-MD5.

The array T[0..63] is an array of 32-bit values derived from the sin() function.
The array 5(0..63] contains values for the data dependent rotation operation. The
array X[0..15] contains 32-bit words of the 512-bit message block that was passed
into the compression function. The mapping of b to k is accomplished by using a
permutation mod 16 operation, therefore elements of X are used and reused during

the execution of H-MD5.
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2.7 The SHA-1 Algorithm

SHA-1[7} is a hash algorithm nsed in digital signature schemes and for HMACs within
IPSec [24]. SHA-1 uses primitives from MD4, and there are similarities between MD5
and SHA-1. SHA-1 generates a 160-bit message digest from & message of arbitrary

length [7] and this process is illustrated in Figure 2.11.

Formatted Message
(Padded and Appended)
Lengthis an

integer multiple of 512 bits

151512 bit 2nd 512 bit 3d 512 bit
block block block
0
AST452301 I e
BEEFCDABSY ABCDE, \B.CD!
e m H_SHAT [~ H smq—.
76 e

1032547
EC3D2E1FO

Figure 2.11: Procedure of processing arbitrary length message.

The compression function is defined as H.SHAL. With each call to the compression
function, five 32-bit registers arc used as input, labeled A,B,C,D, and E. A 512-bit
block of the arbitrary length message is also used as an input to the compression
function. The output of the function are the five registers modified from their original
values and they are used as the input to the next call to H.SHAL Once all of the
message blocks are processed the final value of the registers make up the 160-bit
message digest [7).

The compressing function is decomposed in Figure 2.12. The 512-bit block is
stored in the 32-bit array clement W[0..15], and is expanded to a 80 clement array
of 32-bit values. The process of expanding W is recursive and only depends on W.
There are 80 steps in total for running the compression function. The 80 steps have
been further divided into groups of 20 steps. Each one of these sub-groupings is

illustrated as a rectangle with input, output and other parameters listed inside. The
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Figure 2.12: A decomposition of the H.SHA1 function.



functions F0,F1,F2, and F'3, take as input three 32-bit values and output a single
32-bit value using bit-wise operations. The K parameter is a 32-bit constant that is
used for that particular grouping of steps. The operation of the first block is further
decomposed in Figure 2.13 to show the operations that take place in each step. The
specific operations involved are addition, rotation, and bit-wise logical operations

contained in FO [7]. The other three groupings use 1, F'2, and F3 respectively.

Figure 2.13: A decomposition of a step in the H_SHA1 function.

For the purposes of this research it is important to look directly at the implemen-

tation of the H.SHA1 function.



2.8 An Example Application: The IP Security
Protocol (IPSec)

The following section is an overview of how symmetric key block ciphers and hash
algorithms are used in popular applications to provide general security to communi-
cations over the Internet. IPSec is the proposed standard with respect to the security
architecture for the Internet protocol (IP) [25]. TPSec allows the implementation of
VPNs through the establishment of sccure tunnels [26]. The biggest advantage of
a VPN over the Internet is that businesses can abandon private dialin and leased
communication lines in favor of using more popular public connection methods. Part-

vers, suppliers, and can be d over a private network

that is based upon a public medium [26]. TPSec will be examined in terms of how
and where symmetric block ciphers and hash functions are utilized. IPSec is designed
to be algorithm-independent while offering a set of required algorithms for operation
on different platforms [25]. 1PSec provides the following functionality to IP based

networks, including the Internet [25]:
e Access Control
o Connectionless Integrity
® Data Origin Authentication
o Protection Against Replay Attacks
o Confidentiality

For the purpose of this research it is important to look at how and where IPSec is
implemented. [PSec can be applied to the host level (often in software) or in conjunc-
tion with an Internet gateway or router (possibly in hardware). Three implementation

possibilities arise:



1. Into the native Internet Protocol (IP) implementation at the host level or at

the gateway level, requiring access to IP source code [25].

~

Underneath the existing P protocol stack referred to as “Bump-in-the-stack”
or BITS. o s to existing archi 3.

3. In external hardware referred to as “Bump-in-the-wire” or BITW. BITW is
often used in business and military applications and is usually TP addressable.
The BITW arrangement can act s a host o a security gateway (possibly both)
[25]. The BITW scheme will often require high throughput and a hardware

solution.

IPSec works in either a transport mode or tunnel mode. In either case there are

Security iations (SAs) i with each ion. In the creation of SAs

there are three types of protocols that work together to provide security services:
Encapsulating Security Payload (ESP), AH, and various key management protocols
26]-

2.8.1 Authentication Header Protocol

The role of the IP Authentication Header is to provide data origin authentication, data
integrity, and protection against replay attacks. To protect against replay attacks,
the receiver must check the sequence number of the incoming packets [24].
Algorithm options for the AH protocol are: HMAC MD5 or HMAC SHA-1. The
protocol authenticates the entire packet with the exception of the destination address
[26]. The format of the AH contains various fields as described in Figure 2.14. The
field “Authentication Data” contains the computation of the Integrity Check Value
(ICV). The ICV is the output of the specific HMAC algorithm used. The length

of the “Authentication Data” field is variable but its length must be a multiple of
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32-bits for IP version-4 or 64-bits for IP version-6 [24], while non-multiple lengths are
explicitly padded [24].

Next Header Payload Length RESERVED
8-bits 8-bits 16-bits

Security Parameters Index (SP1)
32-bits

Sequence Number Field
its

Authentication Data
Variable Length

Figure 2.14: AH packet format.

HMACs are distinguished by underlying cryptographic hash functions. HMACs
are keyed algorithms and they provide data origin authentication and data integrity
that are dependent on the distribution of their key. In other words, if a packet is
sent from one party to another, and the, receiver uses its key and deems the HMAC
is correct it shows two things: first that the HMAC must have been added by the
sender (and is not a forgery) [27), and second, the data within the packet has not

been modified. The p of a HMAC is on the p ce of the

underlying cryptographic hash function [27] which is within the scope of this research.

2.8.2 Encapsulating Security Payload Protocol

The ESP protacol provides confidentiality, data origin authenticati fonl

integrity, an anti-replay service, and limited traffic flow confidentiality [28]. ESP is
designed to be algorithm-independent and some cipher options are: Data Encryption
Standard (DES), 3DES, RC5, Blowfish, IDEA, and Cast and RC6 [26] [8]. ESP also
supports optional message authentication within its protocol. To provide interop-

erability between different i ions the following algorithms are mandatory

[28):
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* DES in CBC mode.

o HMAC MD5

 HMAC SHA-1

o Null Authentication Algorithm

o Null Encryption Algorithm

Security Parameters Index
-bits

Sequence Number H
32.bits H

Payload Data <
variable lengih H
Padding H

0 to 2040-bits 5

PadLength | NextHeader
B-bits 8-bits

Authentication Data
Variable Length

Figure 2.15: ESP packet format.

The format for the ESP packet is outlined in Figure 2.15 and is provided to
illustrate the steps involved when using the ESP protocol. When encrypting an ESP

packet the following steps take place [28]:

1. The original data packet is encapsulated into the ESP Payload field. If in trans-
port mode, only the upper layer transport protocol information is encapsulated.

In tunnel mode the entire data packet is encapsulated into the ESP packet.
2. The Padding field is added as required by the protocol.

3. The result is encrypted using a specified cipher in a specific mode, such as CBC.

Encrypted fields are Payload Data, Padding, Pad Length, and Next Header

27



fields. An IV vector may or may not be added to the Payload field. This
depends on the mode of operation and settings defined when the SA is created

by the specific connection.

The speed of the cipher is variable depending on the type, and how it is used
internally (e.g. number of rounds executed). For BITW implementations of IPSec, it
is advantageous to have fast cipher designs available so that data throughput can be

high.

2.9 Concluding Remarks

In this chapter, block ciphers and hash algorithms were introduced and explained

in basic detail to provide the reader an ing of some of the

that take place when implementing these algorithms. TPSec was also described to
provide a general view of why there is a need for fast hardware based ciphers and
hash functions. It is important next to focus on hardware implementation methods

and how they can be applied to cryptographic applications.



Chapter 3

Hardware Architecture

In this chapter, various hardware platforms for encryption algorithms and hash func-

tions are discussed. The p of hardware verses software appli-

cations of encryption will be discussed briefly. Next ASIC, FPGA, and coarse grain
technologies will be outlined and illustrated, with applications to encryption algo-
rithms that are of interest to this research. A high level description of the Chameleon

Systems CS2112 RCP is given with the design process required by the architecture.

3.1 Software vs. Hardware Algorithms

Cry i ications can be i 1 in many different forms and across
various levels within a data network. The previous chapter showed that ciphers

and hash algorithms use many aritk

(such as iplication) and
bit-wise manipulations (such as rotation and permutation). For these applications,
specialized hardware is a faster choice than the use of software, which uses general
purpose processors. For example, a 600 MHz processor is incapable of encrypting
a T3 communications line (45 Mbit/s) with 3DES [20]. There is cryptographic co-
processor hardware that can aid the encryption speeds of general software platforms

with respect to protocols such as IPSec. For example, Broadcom's CryptoNetX line
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of products offer full IPSec support at speeds up to 4.8 Gbit/s [10].

The lack of architectural support for some cryptographic operations is one reason
software based encryption on general purpose processors is relatively slow compared
to direct hardware implementations. It has been shown that adding architectural

support to a general purpose processor has improved encryption speeds. For instance,

59%-74% speed up in encryption was d by adding instruction set support
for fast substitutions, general permutations, rotates and modular arithmetic [29].
Overall, ciphers that rely heavily upon substitutions and permutations (such as DES)
benefit from having higher memory access times and bandwidth, while ciphers that
are based heavily upon arithmetic operations (such as RC5 and RC6) benefit from

architectural support for their operations, such as rotation and multiplication [29].

3.2 Application-Specific Integrated Circuits

ASICs are a technology that is applicable to a wide variety of design areas. When
implementing a design using ASIC technology, a designer will use computer libraries
and simulation tools typically encapsulated within a Hardware Description Language
(HDL). Once simulation of the design is complete, the design enters the placement
a routing phase. The placement and routing phase is highly dependent upon the
technology and process used to fabricate the chip. A gencral design flow can be seen

in Figure 3.1 [30]. Two of the most popular HDLs are Verilog and VHDL. In the

stages, a of the design is created. The designer can
then break each block down into smaller units, possibly to the level of transistors and
gates [30]. There are many design processes that can automate certain parts of this
process depending on the particular process and provided libraries. The final stage

of the design process is to send the placed design for fabrication. Once the chip is

fabricated it can be tested and depending on the results the whole process may need
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to be repeated if re-design is required. Industry examples of ASIC designs show that
it takes on average two to three repetitions of the design flow in Figure 3.1 to meet

design specifications [31].

Wirelength
Effects

Customer
Requirements

Tost
Figure 3.1: A view of the ASIC design process.

There are both advantages and disadvantages to using ASICs for implementation.
The use of standard cells in a design allow the designer to be removed from some of
the underlying technology that is used for fabrication.

ASICs work at higher operating speeds than other technologies and work well
with integrated technologies such as analog cores, microprocessor cores, and high
speed 10 [32]. ASICs also usc less power than other implementation methods [31].
There are industry arguments that there is a widening gap between process technol-
ogy, speed of operation, and ASIC cells that make the process of ASIC design more
difficult and expensive [31]. Problems arise with an increase in operating speed. As
speed increases, transmission line effects start emerging into the connections between
cells. With older technological processes, many of the effects could be hidden inside
the standard cells provided by the manufacturer. Expansion of tool sets and tool
automation are required to address this problem [31]. Long design and fabrication

times are the biggest drawbacks to ASIC technology.

31



3.2.1 Designs and Performance

While the DES cipher is a popular algorithm to consider for implementation and
performance, there are other algorithms that have been gaining much attention for
their applicability to ASIC technology. There has been ongoing work with the finalists
for the AES to replace DES. Of these ciphers, the Rijndael algorithm was chosen
over ciphers such as RC6, IDEA, Serpent, Mars and Twofish. In the evaluation of

these ciphers, si i ‘were d d using Mi ishi Electric’s 0.35 micron

Compl y Metal Oxide Semi (CMOS) ASIC design library [33]. The

AES candidates were designed and simulated to explore bottlenecks in performance
with respect to ASICs, and they do not represent optimizations for performance. The
figures in Table 3.1 are important for exploring what primitive operations affect the

performance of popular ciphers [33]

Cipher | Performance (Gbit/s)
[ MARS 0.2256
RC6 0.204
Rijndael 1.95
Serpent 0.9316
Twofish 0.3941

Table 3.1: Results from AES candidates in ASIC technology.

This study also made particular mention to operations were most time consuming
and had the largest cffect on performance [33]. With respect to Rijndael, substi-
tutions, unsigned addition, and bit-wise logical operations had the biggest impact.
With respect to RC6, unsigned integer multiplications had the biggest impact to per-
formance [33]. The unsigned integer multiplication within RC6 is of interest to this
research.

Another investigation into the suitability of RC6 in ASIC technology was con-

ducted (34] [35]. Two versions of RC6 were used, a pipelined version optimized for



performance, and an iterative version that allows different modes of operation. Sim-
ulations were performed using 0.5 micron CMOS technology [35], and were evaluated
with respect to throughput, number of transistors used, and chip area used. The
evaluations are given in Table 3.2.1 [35]. Results from the simulations suggest that

the performance of RC6 was on the iplication operation.

[RC6 Design | Max Speed (Gbit/s) | Transi: [ Max Area (sq mm)
0

| Teerative | .10 | 450000 | 0.023
[ Pipelined | 2.10 | 9000000 | 0.52 |

Table 3.2: Simulation results from RC6 ASIC designs using 128 bit keys.

3.3 Field-Programmable Gate Arrays

Field-programmable gate arrays (FPGAs) provide a hardware platform that can be

considered a cross between software (use of le general purpose

units), and specific hardware implementations (ASICs). FPGAs are an example of a

hardware solutions can potentially provide
a faster operating platform than software, while offering greater flexibility than ASIC
technology [36).

FPGAs were conceptually designed to fit between programmable array logic (PAL)
devices and maskable programmable gate arrays or MPGAs. FPGAs are like PAL
devices in that they can be programmed using an electrical current. FPGAs are
similar to MPGAs in that they can accommodate complex designs within a single
device while utilizing arrays of logical gates (36]. Usually an FPGA is connected to a
SRAM device that contains configuration bits for the design. When the configuration
bits are transferred to the appropriate points on the chip, gates are configured for

use depending on where the software mapper places the design within the chips

Overall the p penalty for designs in an FPGA

versus an ASIC are on an order of five to ten times [37].
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Figure 3.2: Abstracted internal FPGA structure.

The structure of the basic building blocks within a typical FPGA are illustrated in
Figure 3.2 [38]. This is taken from the Spartan family FPGA data sheet from Xilinx
Inc. The Configurable Logic Blocks (CLBs) illustrated are used to implement the
users logic, and the Input Output Blocks (I0Bs) are used to provide communication
between the internal structure of the FPGA and its external pins [38]. FPGAs are
deemed to be fine grain reconfigurable devices.

While FPGAs do not perform as fast as ASICs, their reconfigurable characteristics

make FPGAs a very ive platform for

In today’s the
development cycle of an ASIC is often longer than the market lifetime of a product.
For instance, the time required to prototype an FPGA is a few weeks while it takes
months to fabricate an ASIC. Another advantage of FPGAs are that they can be
reprogrammed, whereas an ASIC needs to be replaced with a new chip when design

modifications are required (3]



‘With ASICs, a design is first si and ized for a particular

and then the netlist is passed to an ASIC design house for physical placement and
routing. All FPGA design, simulation, and implementation is done by the designer.
The placement, and routing stage is accomplished by software called a mapper and is
dependent on the particular FPGA used. The process of mapping can be problematic

depending on application needs [39].

3.3.1 Implementations and Performance

Preliminary design of AES finalists was conducted in a similar fashion to Section 3.2.
The ciphers were designed to analyze potential bottlenecks in performance based on
primitive operations. The results shown in Table 3.3 are without the presence of
performance enhancing structures such as pipelining [40]. As shown earlier, the main
bottleneck observed for RC6 was the multiplication operation and this is of specific

interest with the design of RC6.

Cipher | Performance Gbit/s
Serpent
Rijndacl 0.3315
Twofish 01773

RC6 0.1039
MARS 0.0308

Table 3.3: Some results of FPGA simulations of AES candidates.

A detailed survey of the design of the AES candidates on FPGAs was con-
ducted using various methodologies. The evaluations were based on the Xilinx Virtex
XCV1000 device with a 40 MHz design constraint. Iterative designs of RC6 using
feedback and non-feedback modes, and optimized pipelines using feedback and non-
feedback modes are given in Table 3.4 [8].

The findings show how pi only has an geto when non-

feedback modes are used, such as ECB cipher mode. During this study the authors
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RC6 Design Speed (Mbit/s) | CLBs Used (%)
Tterative Non-feedback 974 52.1

Tterative Feedback 97.4 52.1
Pipelined Non-feedback 2400 88.3
Pipelined Feedback 126.5 26

Table 3.4: Some results of FPGA implementations of RC6.

found that the two biggest architectural challenges for RC6 were the implementation

of the iplication and data d dent rotation jons. The authors made note

that the multiplication operation is actually a squaring and an addition operation
(X(2X + 1) = 2X2 + X). Within an FPGA the operation can be created with an
array squarer with summed partial products [8]. Summed partial products are used
in a different manner for the analysis of the multiplication operation used in this
research.

An evaluation of the suitability of RC6 and CAST-256 for the Xilinx XC4000
family of FPGA is also conducted [41]. This study achieved an RC6 implementation
with a speed of 37 Mbit/s utilizing 91% of the resources of the device. With respect

to the target device, the overall conclusions were the following [41]:
o The multiplication operation was a primary source for resource utilization.
o Performance was affected by the multiplication operation.
o Pipelining is difficult due to hardware complexity.

o Larger devices will be needed to achieve faster performance.

3.4 Coarse Grain Reconfigurable Architecture

Coarse grain reconfigurable hardware offers a new approach to designs in a hard-
ware environment. FPGAs were defined to be fine grain architectures because their

reconfigurable elements (CLBs) had datapath widths of one bit [13]. The biggest
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problem with FPGAs is that their fine grain nature yields much routing overhead
[13]. Figure 3.3 illustrates the fexibility vs. performance relationship between hard-

ware technologies [13].

Flexibity

Figure 3.3: Flexibility verses performance of hardware technologies.

Coarse grain architectures commonly support Processing Elements (PEs) that
have word level operations (for example, addition and subtraction may be supported
within one PE). Fast reconfiguration times can allow runtime reconfiguration. Some
coarse grain architectures allow multiple PEs to be combined to make larger data
width PEs. Combining two 32-bit adders to make a 64 bit adder is an example of
this. Coarse grain architectures allow combining PEs with much less overhead than
fine grain platforms, yielding a multi-granular architecture [13].

One of the biggest design challenges of coarse grain architectures is the way in
which the PEs communicate with each other. The connection of multiple PEs form
what is often referred to as a “fabric’. A fabric may be mesh based as shown in
Figure 3.4, where PEs will have connection to their neighbors, either side by side,
four ways or eight ways.

Processing elements can also be connected in linear arrays, illustrated in Fig-

ure 3.5. Within the linear array, each element is connected to its neighbour in a line,
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Fourway nearest Eightway nearest
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(NN) connections. (BNN)

connections
Figure 3.4: Examples of 2D mesh connections.

and this arrangement can be used for of pipelined archi Ifa
pipeline must branch, the PEs must have some type of two dimensional realization

in their structure [13].

PE PE 1 PE 1 PE ] PE
I
- L L] =
PE PE PE PE PE

Figure 3.5: An example of a linear array configuration.

Finally, multiple layer crossbar switching can be used to connect PEs together,
shown in Figure 3.6. While a crossbar can enable many PEs in a fabric to communi-

cate with each other, it is usually costly to do this. Some coarse grain architectures

use partial crossbars to icate. In Figure 3.6, bidirectional pathways are es-

tablished where communi

tion pathways overlap.



(I

Figure 3.6: An example of a crossbar configuration.

HEGEE

Processing elements may exhibit one or more of the described types of interconnec-
tion and communication pathways, and they may be unidirectional or bi-directional
in nature. The use of local and global communication buses can also be used in com-
bination with these structures. A KressArray style of architecture will support, this

particular arrangement, and is illustrated in Figure 3.7 [42].

A [FAFE
[]
)

[
[ F
I
[HH
e HH

Using Local Using Local Using Gl
Nearest Neighbor Busses for Busses ior
icatic i ‘Communication
Figure 3.7: An example of a KressArray jon. Multiple

schemes between processing elements are used.

Coarse grain archi have varying appli One ion area is DSP

[42]. Many operations and algorithms used in DSP utilize multiplication and addition
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operations. For example, to create a Finite Impulse Response (FIR) filter, a designer

could configure and connect processing elements together and then flow the input

signal through the datapath [14]. If the i is runtime the
filter parameters could be changed while processing data, creating an adaptive filter.

‘With respect to symmetric ciphers and hash functions, many operations are similar
to that of DSP. An array of PEs can form an encryption array or a pipeline to
implement the cipher of choice. While being runtime reconfigurable, keys can be
changed or a new cipher put into place while running. Limiting factors for use with
respect to ciphers and hash functions consist of lack of support within the PEs for
some required operations, lack of PE resources to accommodate the cipher, and lack

of communication resources within the reconfigurable fabric.

Coarse grain archi begin to show a from their fine grain cousins
when addressing application space. A fine grain technology is rather universal in

nature and is meant for deployment in many areas such as DSP, cryptography, control

and icati icati Coarse grain architectures will be
more suited for a particular area, that is, one architecture may be suited for DSP

while another will be more suited for multimedia applications [13].

Coarse grain archi exhibit some disad over fine grain architec-
tures. As with FPC!As, processing clements can be left unused if there are not enough
communication resources available. An unused PE in a reconfigurable architecture
is a greater loss of computational resources than in an FPGA, since PEs are larger
than CLBs and are far fewer in number [42]. Another problem can arise if operations
and bit-manipulations require word lengths different than the data width supported
by the PEs, resulting in a waste of computational resources. Power consumption in
general should be less than that of FPGA on a per implementation basis, but the com-
munication network must be carefully designed to support low power consumption

42].



There are various methods for mapping designs onto a reconfigurable fabric. From
the examination of various architectures, the mapping method is highly dependent on

the type of PEs and the ication ar used. Some i will

go from a HDL description of an algorithm and automatically placed PE elements to
implement the design (with possible user interaction). Other architectures will try to

translate a high level description of a design in C or C:+-+ to a hardware configuration

within the chip [13].

3.4.1 Survey of Existing Technologies

Surveys of existing coarse grain technologies exist and Table 3.5 is a compilation of
some existing technologies [13] [14]. The architecture field in the table represents
the general communication structure within the reconfigurable fabric and granularity

refers to the communication word width between processing clements.

Name Archi Gr
MorphiCs 2D Array Undisclosed
Chameleon CS2112 2D Array 32-bit
DReAM 2D Array 8 and 16-bit
CHESS Hexagon Mesh 4-bit
MorphoSys 2D Mesh
REMARC 2D Mesh
PipeRench 1D Array
Pleiades Mesh and Crossbar multi granular
Garp 2D Mesh 2-bit
RAW 2D Mesh 8-bit multi granular
Matrix 2D Mesh 8-bit multi granular
RaPID 1D Array 16-bit
Colt 2D Array 1 and 16-bit inhomogeneous
KressArray 2D Mesh selectable multiple NN
DP-FPGA 2D Array 1 and 4-bit
PADDI-2 Crossbar 16-bit
PADDI Crossbar 16-bit

Table 3.5: Survey of existing coarse grain reconfigurable technologies.



3.4.2 Cryptographic Applications

Thus far, there has not been a for the

design
use of cryptography. DSP is a large field that requires many bit-level operations and
often requires high speeds of operation.

There has been some work into dynamically reconfigurable cipher cores in which
the reconfigurable nature of the chip has had cryptography as a primary design goal.

Chameleon (not to be confused with Chameleon Systems and the CS2112) is a cipher

implemented on a chip with archi that contains features specif-
ically for bit-level encryption operations [43]. A block diagram illustrating important

components of the Chameleon cipher chip is given in Figure 3.8.

Loft data
x|

‘Context index sequence generators.

1285t
Sacret key

Pbitregiser

Je—— One lteration

e Subkey generation  ~———=tte=Encryption datapath =1

Figure 3.8: Chameleon cipher chip, designed for encryption.

The Chameleon cipher operates on 64-bits of plaintext and uses a 64-bit key. The
reconfigurable blocks within the architecture are used to generate new subkeys during

execution. The purpose of the Chameleon cipher chip was to add flexibility to the

bardware design, a benefit of utilizing a coarse grain reconfigurable architecture [43].



3.5 Chameleon Systems CS2112

The Chameleon Systems CS2112, also referred to as a Reconfigurable Communica-
tions Processor, is an integrated system on a chip that contains a 32-bit coarse grain
reconfigurable fabric. The CS2112 was designed in 2000 with high speed signal pro-
cessing applications in mind. The architecture is designed to allow high speed parallel
processing of information, fast design to market time, and fiexibility with respect to
individual application needs.

The benefit of the CS2112 is that it is a coarse grain reconfigurable system on
a chip. As discussed in Section 3.4, runtime reconfigurability allows the designer to
apply different algorithms during operation of the chip. The CS2112 incorporates
two reconfigurable fabrics; one is not currently processing and is referred to as the
background plane, while the other is actively processing and is referred to as the
active plane. The swapping of active and background planes is described in Figure
3.9 and can be accomplished in one clock cycle [14]. The swapping of planes allows

the user to load the background plane from external memory during runtime.

Lad background plane Background Configuration Plane

3 usec por sice Active Configuration Plane.

‘Swap background pians to active piane: one clock cycle

Figure 3.9: Process of swapping active and background fabrics.



The CS2112 coarse grain processing clements can also be reconfigured individually
during runtime based on control logic that is associated with each section of the
reconfigurable fabric. One of the advantages that the CS2112 has over traditional

ASICs is that it is and that it is at runtime makes it

more useful than FPGAs.

3.5.1 (CS2112 High Level Architecture Description

A high level description of the CS2112 is illustrated in Figure 3.10. The components
of the CS2112 over a 128-bit Bus. The RISC

Core (ARC) processor provides the CS2112 with a general microprocessor on chip to
control the reconfigurable fabric, run user code, and control the other components
of the C$2112. The ARC processor has been optimized for the CS2112, and it em-
ploys a four-stage pipeline and 64 general purpose 32-bit registers. There is a 8k byte
instruction cache, and a 4k byte data memory. The Direct Memory Access (DMA)
subsystem contains sixteen channels for transferring data amongst the various mod-

ules within the CS2112 [14]

e T
[essis] o

BCl 32t ARC
Controller Processor

Configuration Reconfigurable
System Fabric

DMA
Subsystem

o P 10

Figure 3.10: High level block diagram of CS2112 components



The CS2112 has four banks of 40 Programmable Input Output (PIO) pins which
give the chip its highest IO bandwidth of 3.2 Gbit/s. When all four banks are used
the total bandwidth of the CS2112 is 12.8 Gbit/s and is the highest data transfer
speed of the RCP. The PIO pins of the CS2112 allow it to be integrated into larger
systems such as interfaces with FPGAs, analog to digital /digital to analog blocks and
external memory modules.

The reconfigurable fabric illustrated in Figure 3.1 is broken into four slices, each
containing three tiles. Each tile contains seven Data Path Units (DPUs) and two 16 by
24-bit multipliers. The basic PE building blocks within the fabric are the DPUs, with
added support from multipliers and memories. The Local Store Memorys (LSMs) in
the €212 fabric provides a memory structure so the DPUs can store and retrieve

data.

Reconfigurable Fabric

Data Path Unit

Data Path Unit

Data Path Unit
€LY | (o Pain Ui ]

Figure 3.11: High level decomposition of reconfigurable fabric.

Slice Slice Slice

-

The (2112 DPU structure has multiple inputs from local, global, and feedback
communication pathways and buses, giving a communication arrangement shown in
Figure 3.12 [14]. A DPU can communicate locally with 8 DPUs downward or 7
upward, otherwise global routing must be used through vertical and horizontal buses.
If global routing is used, each tile has cight 32-bit data buses while each slice has

three groups of three 32-bit data buses (one per-tile). The process of placing DPUs
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in a design is done through a graphical floor planner that comes with the software

tool set (C~SIDE tools) for the CS2112.

Giobal Communication
Local Communication
Vetical Buses

| rom e 8 oPuMLT sbove

From the 7 DPUMULT belon

g

Horizortal Buses

Figure 3.12: C i between ing elements.

Each tile contains a Control Logic Unit (CLU) that provides support for design of
Finite State Machines (FSMs). FSMs are used to control the flow and sequencing of
the DPUs that make up the datapath. Each DPU also has an associated Control Store
Memory (CSM) (located in the CLU). The CSM stores the various configurations
for the DPU and during runtime the DPU can be reconfigured by the CLU. The
Programmable Logic Array (PLA) is a component within the CLU that provides

combinational logic for the user’s FSMs.

3.5.2 (CS2112 Data Path Unit

The most important functional building block within the CS2112 fabric is the DPU.
Figure 3.13 is a detailed block diagram illustrating the various inputs, outputs, and
functional blocks within a DPU.

The inputs to a DPU are abstracted to eight inputs on both the A and B sides.
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Depending on the routing setup, these sixteen inputs originate from the local and
global interconnects illustrated in Figure 3.13. To use a local interconnect the input
must come from the output register of a DPU that is within seven DPUs below, or
eight DPUs above, otherwise a global interconnect must be used. When implementing
for the CS2112, the designer must keep in mind that communication resources will
place restrictions on the design. It is important to note that a DPU must be used to
address and transfer data from an LSM. In this process only even numbered DPUs

can read from an LSM, and odd numbered DPUs can write to an LSM.

¥Egisi 8 § £8 1.
HEIERLE L
£8p380 8 £ g3 7
AP & § g

CanmyALU  Ouput
Address Output

Figure 3.13: Datapath unit block diagram.
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The CS2112 DPU contains three 32-bit registers, one on each input, and one on
the output of the DPU. These registers can be configured to hold their value or to load
a new value. The registers on the inputs can be bypassed while the output register
cannot [14). The delay of data flowing through a DPU is dependent on whether the
input registers are loaded or not. The delay will be two clock cycles if the registers
are enabled, or one clock cycle if they are bypassed.

The Arithmetic Logic Unit (ALU) within the DPU structure supports C and Ver-
ilog operations. Some of the bit-level operations that the ALU supports are addition,
subtraction, bit-wise logical operations, and equality testing. The ALU can also be
set to pass data through without modification. In addition to ALU functionality,
each DPU contains a 32-bit barrel shifter that is also capable of bit-wise AND/OR
masking, word swapping, byte swapping, and word duplication. The configuration of
a DPU is done through the Verilog HDL. Section 3.5.6 provides a more detailed look
at how the fabric is programmed during the design phase.

3.5.3 (CS2112 Local Store Memory

Within each tile on the CS2112 fabric are four LSMs. Each LSM is 32-bits wide and
128 locations deep. The LSM primitive can be connected together to provide deeper
memories (using a special chain input /output). With the assistance of an extra DPU,
wider memories can also be configured, but for the purposes of this research these

special memory configurations were not utilized.

3.5.4 (CS2112 Multiplier

While many DSP algorithms require multiplication, it is not common in the area of
cryptography due to the fact that it is a computationally intensive operation. For
this research, the CS2112 multipliers will be used with the RC6 cipher. Each tile
within the fabric contains two multipliers illustrated in Figure 3.14 [44].
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Figure 3.14: Multiplier block diagram

Since the CS2112 was designed with DSP applications in mind, the hardware
multipliers on the fabric are designed to operate on fixed point two’s complement
numbers [14]. The multipliers on the fabric will use two 16-bit operands to produce
a signed 32-bit operand. With respect to RC6, the multiplication operation required
is an unsigned integer multiplication (mod 22). There will be further discussion on

how the multiply operation was implemented on the fabric for RC6 in Section 4.3.1.



3.5.5 (CS2112 Control Logic Unit
The CLU is the control mechanism for the reconfigurable fabric of the CS2112. The
CLU provides control over the DPU configurations, synchronous state machines and
conditional operation. There is one CLU in each tile on the fabric and communication
pathways are illustrated in Figure 3.15 [14]. The following are key components of the
CLU.

® Control Store Memories (CSMs)

o State Register Blocks (SRBs)

® PLAs

o MUXing Plane

ol

o g
:

CONTROL

LOGIC
UNIT s 8
DPU Fiags o2
M2

1Y kv
hemeeaedl
Figure 3.15: CLU ication and i fon with elements.



The CSM stores the configuration information for each DPU. They are eight loca-
tions deep and provide eight different DPU ions per DPU. The

also have CSMs associated with them which allow four configurations per multiplier.
There are cight SRBs in a CLU and the SRBs are used to register the PLA outputs.
The PLA has 16 inputs, 32 outputs and 32 product terms that make up the required
control logic. The MUXing plane controls the inputs to the PLA and inputs can come
from various sources including outputs from other PLAs in the same slice (local com-
munication), PLAs in another slice (global communication), or feed back from DPU
flag signals. For example, if a DPU was implemented as a counter, when the count
was completed the DPU can communicate back to the CLU through a flag signal.

PLAs can communicate with each other globally by the use of broadcast registers.

3.5.6 Design Process For The CS2112 Fabric

Designing for the CS2112 involves the use of a Verilog simulator, waveform viewer,
and GNU C programming language tools (gcc, gdb etc.), and the C~SIDE software
tool set developed for the CS2112. Figure 3.16 is a block diagram illustrating the
design flow for the CS2112.

Chameleon recommends that the starting point for development is a C function
of the algorithm that will be used [14]. The development process illustrated in Fig-
ure 3.16 occurs in a Unix environment, with the exception of testing with the the
(52112 development board which is based in a Windows NT4 environment.

There are certain guidelines which are required when converting a C function to
a fabric function. The C function must not call any functions itself and if other
functions are called, the code must be restructured. Data can be passed by the use
of function arguments aligned to 128-bit boundaries, and the use of global values are
invalid. Finally, there is no floating point between the conversion from a C function

to a fabric function.
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Figure 3.16: Design flow for the CS2112.

The ARC processor is responsible for setting up and running the fabric. Fabric
parameters are set up through CS2112 BIOS function calls. Data is passed into
the fabric through streaming DMA (transfer while the fabric is running), or through
independent DMA (transfer before and after the fabric has run). Once the fabric is
set up, a start signal is sent telling the control logic it can begin the operation. Once
the fabric is finished, it sends a done signal to the ARC. Data is transferred out of
the fabric in the same manner it was passed in [14]. To execute the fabric fanction
the ARC calls a function that is defined by a #pragma statement. Appendix B.1

and Appendix B.2 are examples of C code that the ARC processor runs within the



CS2112 to control the fabric.

The implementation stage in Verilog requires the writing of structural Verilog code
to represent the function. The designer has much flexibility at this point because the
basic building blocks are DPUs, LSMs, and MULTs. Once the datapath is created
by wiring together the primitives, control logic is written as Register Transfer Level
(RTL) state machines with input signals coming from DPU flag outputs. The DPU

module is by ORing i ? ics together to give a

bit stream that is stored within a CSM. The CSM will use the bit stream to configure
the fabric at runtime. Designing for the CS2112 requires that all Verilog code be
encapsulated within a top level module that only receives only start, done, reset and
clock signals. Appendix A.2 gives an example of a top level module definition. Within
the top level module is the logic for the datapath and controller. Appendix A.3 gives
example Verilog code for controller design, and Appendix A4 gives example Verilog

code for datapath implementation.
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Figure 3.17: Screen capture of the graphical foorplanner.

Once the Verilog design is tested and deemed to be correct through a waveform
viewer, the appropriate Verilog modules are loaded into the C~SIDE tools. Using
these tools, the design is checked for timing violations and it can be carried on to the

layout phase. The software tool sel tries to place cells for layout within the fabric
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using a simplistic approach that is successful for small designs.

Larger designs require the user to layout the design by hand. Figure 3.17 is
an illustration of the C~SIDE interactive graphical floorplanner. Once the design
is laid out and is deemed fo be “routable” by the floorplanner, the design can be
cither simulated with the chip simulator that comes with the tools, or tested on a
development board provided by Chameleon Systems. Both methods were used to test

implemented designs in this research.



Chapter 4

Symmetric Block Cipher Design and

Implementation

Tn this chapter, the designs and results of RC5 and RC6 are given. Various design
methodologies and issues with the architecture of the CS2112 are discussed and there
are a total of five different designs between RC5 and RC6. Conventions used within
diagrams of datapath and control structures are outlined.

For the purpose of research conducted with the CS2112, two design strategies were
employed for the implementation of each cipher. Both strategies provided a wide sur-
vey of performance, ease of implementation, and efficient use of fabric resources. With
RCS5, an iterative design approach was used as well as a pseudo-pipelined approach
that used an iterative design as its basic building block. With respect to RC6, a more
efficient pipelined approach was employed, a design method that lends itself toward

the intended structure of the CS2112.

4.1 Diagram Use

For designs on the CS2112, many diagrams are used to describe algorithm design in
the fabric. Design structures within the reconfigurable fabric are illustrated as block

diagrams to show component interaction. Figure 4.1 shows some examples of how



DPUs are used in design diagrams.

Input Multplexors

32-bit Logical Mask
Enabled

32-bit Inpu/Output

Regiters
Labolod Aceording To [0
Topat 0

A
(instruction labeled inside)

Figure 4.1: Examples of configured DPU structures

Ifa within a DPU is the ion is shown inside

the structure. The barrel shifter (illustrated on the left) is configured to shift the

input word twenty-seven bits to the right. The logical mask structure (illustrated on

the right) is configured for an AND mask with a vector that is initialized in the A
side register. Tnitialized registers are shown with an arrow intersecting horizontally
with the value labeled. ALU instructions are labeled within the structure and if an
ALU has multiple configurations they are all illustrated within the diagram. A flag
output from the ALU is represented by a horizontal arrow coming out of the ALU,
while DPU CSM instructions are given by a horizontal arrow into the ALU structure.

Memory structures are abstracted in two different forms, as shown in Figure 4.2.
Both structures contain a fabric LSM for memory space, and a DPU for memory
address generation. Within the structure, information is given about the memory
module and its particular use to the algorithm being implemented. For the purposes

of this research, all array elements within the memory are 32-bit words.
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Figure 4.2: Two methods for describing memory structures containing one LSM and
one DPU.

Some complex multiple DPU structures within a datapath are illustrated as blocks,
with their respective operation labeled within. This is to reduce the complexity of

the descriptions and to aid in the legibility of the diagrams,

4.2 RC5 Designs

The following subsections illustrate various implementations of RC5 on the C52112.
The designs are presented in the order in which they were created, with subsequent
designs developed as more experience was gained with the C~SIDE tools and in

simulation with Cadence VerilogXL.

4.2.1 RC5 Simple Iterative Design

For the first design and analysis of RC5 on the CS2112, a simplistic design approach

was used to both gain familiarity with the i , and maximize

the chances of a successful design. The simple iterative design of RU5 operates as

follows:

1. Two 32-bit words of plaintext are used as input into the cipher as scalars from
the ARC processor. These words of plaintext are stored in DPU input registers

for simplicity, and are immediately accessible by the datapath.
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2. A half of a round of RC5 is implemented in the fabric.

3

. The associated control logic either configures a DPU to operate on the data and

pass the information to the next stage or it configures a DPU to hold its value.

'S

Once a half round is completed the values swap and are loaded into the top of
the datapath for the next half round. Once both half rounds are completed, the

round description given in Figure 2.5 is finished.

o

. When an appropriate number of rounds have been processed the controller will
assert the done signal and the ARC processor will transfer the ciphertext from

the appropriate registers as return values from the fabric function call.

A high level abstraction of the controller and datapath for the simple iterative RCS
design is shown in Figure 4.3. The data dependent rotation is shown with inputs,
outputs, and control signals labeled. The controller is an FSM in Verilog, and was
mapped to the CLU within the fabric through the C~SIDE tools.

Initially the datapath was designed based on the required operations of the al-
gorithm. Multiple DPUs were used to build the data dependent rotation module
because this operation is not supported within the architecture of a single DPU. By
using an iterative approach, each operation in the algorithm can be translated to a
DPU configuration. As lines of cade are excouted in a sequential program, data flows
through the datapath in the form of a hot spot of activity, while DPUs above and
below the datapath mostly hold previous values.

The roles of the datapath elements for implementation of the algorithm described

in Figure 2.5 are as follows:
« DPUI: A+ 5[0] and holds the modified value for the completion of the round.
o DPU2: A+ S[1] and holds the modified value for the completion of the round.
o DPU3: Bit-wisc exclusive OR () operation required by RCS.
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Figure 4.3: Abstracted block digram of simple iterative RC5 design

o DPU4: Addition of a subkey value to the data.

There are advantages to using this iterative approach in the design. Firstly, since
many DPUs are holding previous values, problems with race hazards and mistiming
due to latency in the datapath are simplified. Overall fower DPUs are used than in &
pipelined approach becanse DPUs are not used solely for the purpose of delay, as is
required for a pipelined design.

A disadvantage to a simple iterative approach is that the datapath needs to be
configured while running by the controller as the hot spot of activity progresses. A
complex controller results from timing the configuration of the datapath in this fash-

ion. For example, the two DPUs that store the initial words of plaintext, A and B,
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must initially add the first two subkeys to the plaintext and then hold the result.
Later in the execution of a round, these DPUs must load in the processed words
from the bottom of the datapath and store the values in their registers. These are
three different roles that the same physical structures must play during the opera-
tion of RC5. The controller must be synchronized to switch configurations with the
progression of these roles. The task of designing a complex controller can become
quite cumbersome for the CS2112 and should be avoided for larger designs. Smaller
sub-controllers should be used or a less complex datapath should be designed. Also
since there is usually a hot spot of activity traveling through the datapath, the fabric
is under-utilized, which results in a lower performance than a pipelined approach.

The performance of a design on the CS2112 can be estimated based on the amount,
of latency through the datapath. If a DPU uses its input registers, it takes two clock
cycles to provide the output. It takes one clock cycle to load the output register with
the output (this register cannot by bypassed), and one clock cycle to load the input
registers. If the input registers are not used it takes one clock cycle for a DPU to
produce its output. If data is to be accessed from a LSM it takes three clock cycles
for the address generator DPU to prodnce the data from when the address was input
to the DPU. Writing to a LSM is immediate and takes one clock cycle.

For the imple ion of the data rotation, five DPUs were used.

Since there is not a data dependent rotation primitive in C, the following definition

was used for the left data dependent rotation [17].

‘;ﬁeﬁne ROTL(x,y) (((x)<<(yl(w=1))) | ((x)>>(w—(y&(w-1)))))

The < is the left logical shift operation, > is the right logical shift operation, &
is the bit-wise logical AND operation, and | is the bitwise logical OR operation. The
definition for the rotation module within RC5 was taken directly from the above C

declaration.



Left Operand <<< Right Operand

Figure 4.4: Structural diagram of data dependent rotation.

There are two possible inputs for the right operand into the rotation module.
The control logic was designed to use right operand one during the first round, then
use right operand two during subsequent rounds. This design choice was made to
correct a glitch that would occur due to mistiming in the datapath. To control this
behaviour, a control signal is used from the CLU into the appropriate DPU and can
be seen in Figure 4.4. The initial values of registers are labeled within the register

and are in hexadecil The BBA ion of the barrel shifter will
shift the input by the value on the A input. If bit six of the input is one, the shift

will be left. f bit 6 s set to 1, then the shift is right. The following is a more detailed

61



explanation of the function of each structure within the rotation module:

® DPUIL: y&(w— 1) required by the rotation. ALU.OR is used here to set bit six
to ‘1.

* DPU2: (z) << (y&(w—1).

® DPU3: w — (y&(w — 1), and uses an AND mask to set bit six to ‘0’ for a right
shift.

o DPUL: (2) >> (w — (y&(w — 1))).
« DPUS: The final bit-wise OR operation for the rotation.

The control logic and the above datapath were simulated using Cadence Ver-
ilogXL. The design was then imported into the C~SIDE tools and timing and de-
sign rules were checked. Automatic Placement was attempted but was unsuccessful,
therefore manual routing of DPUs, LSMs, and control state registers was performed.
The C~SIDE tools do not attempt to re-arrange placement upon encountering a non-
routable design. A design will be deemed routable if all communication paths between
DPUs, LSMs through local and global communication are available and valid. An
annotated illustration of the floor plan layout of the simple iterative design of RC5 is
given in Figure 4.5.

After routing of the design, the C code was modified to generate ciphertext from
within the ARC processor and from a call to the fabric function. The ciphertext was
then compared to verify correct operation. The design was verified with the chip
simulator for the CS2112 and on the Chameleon Systems CS2112 development mod-
ule. The resource usage of the simple iterative version of RC5 is given in Table 4.1.
Section A.4 is the Verilog description of the datapath. The control logic for the dat-
apath required 13 states with seven 3-bit output signals, and two 1-bit flag signals
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Figure 4.5: C~SIDE floorplanner screen shot of simple iterative RC5 design.

from the datapath (not including start and done signals), and is illustrated in Sec-
tion A.3. Both the datapath and controller are abstracted to a top level module that
the C~SIDE tools will interpret as the fabric function, and this module is described
in Section A.2.

Resource Count Total
Slice 0 [ Slice 1 [ Slice 2 [ Slice 3

DPU 12 0 0 0 12

LSM 1 0 0 0 1

MUL 0 0 0 0 0

Table 4.1: Resource usage for the simple iterative version of RCS.

After the testing of this design, simulation results and waveforms from the de-
velopment module were used to measure the performance of the design. Table 4.2
shows both the total number of clock cycles from the start of the fabric to when the
done signal is sent to the ARC processor and the number of clock cycles required for

the data dependent rotation. The time required for the rotation is variable between
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two and three clock cycles because the operands may arrive at the module inputs at.

different times changing the critical path through the module.

[ ROC5 terative | Clock Cydles |
Start To Done Time 157
Data Dependent Rotation 2t03

Table 4.2: Timing information for the simple iterative version of RC5.

Based on a 100 MHz clock in the fabric, the number of clock cycles between the
start and done signal and considering that 64 bits of data are being processed during
operation, the simple iterative version of RC5 was determined to operate at 40.7

Mbit/s.

4.2.2 Two Half-Round, Full Slice Version of RC5

The next phase of research involved the application of RC5 such that it more ef-
ficiently used the resources of the reconfigurable fabric. Using a variation of the
design in Section 4.2.1, two half rounds were placed onto a slice allowing two separate
plaintext pairs to be processed in parallel. A high-level abstraction of the two round
implementation of RCS is given in Figure 4.6.

Based on the simple iterative design, some changes had to be made to allow this
design to fit into one slice. The simple half-round uses twelve DPUs in total. A slice
in the fabric contains 21 DPUs over three tiles. The following changes were needed

to fit the design into a single slice:

® One DPU was removed from the data dependent rotation.

o The control state machine was re-designed to operate with only one counter,

removing one DPU from the design.
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Figure 4.6: High level abstraction of the two half-round design of RCS5.
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A DPU was removed from the data dependent rotation by feeding back and chang-
ing configurations of another DPU within the rotation module. To do this, a DPU
within the the rotation module must be sequenced by the controller during the ex-
ecution of every round. An illustration of the four DPU data dependent rotation is
given in Figure 4.7. From the modification of the rotation, the controller and the
datapath elements required by the control logic, the full slice implementation of RC5
was accomplished using 19 DPUs in total. Resource usage is given in Table 4.3 for

this design.

Left Operand <<< Right Operand

Figure 4.7: Four DPU impl ion of the data dent rotation.
The DPUs described in Figure 4.7 have the following roles:

® DPUI: y&(w — 1) required by the rotation. ALU.OR is used here to set bit six

to ‘1.

* DPU2: (7) << (y&(w —1).



o DPU3: (2) >> (w— (y&(w — 1))

« DPU4: Configurations: (1)

uses bit-wise OR to provide the final rotation out-

put, (2) provides DPU3 with (w — (y&(w — 1)) and (3) uses an AND mask to
set bit six to ‘0" for a right shift.

Tile 2 Tile 1

Tile 3

F

Figure 4.8: Screen capture

of the two half-round RC5 fabric function.

By interleaving and mixing the locations of DPUs from both half rounds, the

entire datapath makes use of local communication. Global broadcasting should only

be used when needed, and requires receiving DPUs to have registered inputs.

Resource Count, Total
Slice 0 [ Slice 1 [ Slice 2 | Slice 3

DPU 19 0 0 0 19

LSM 2 0 0 0 2

MUL 0 0 0 0 0

Table 4.3: Resource usage for the two hall-round design of RCS.

The design was fully implemented in Verilog and successfully laid out with the
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floor planner in the C~SIDE tool set. Simulation results were used to measure
performance. Table 4.4 shows both the total number of clock cycles from the start of

the fabric to when the done signal is sent to the ARC processor and the number of

clock cycles required for the data dependent rotation.

RC5 Full Slice Clock Cycles

Start To Done Time 196
Data Dependent Rotation 3

Table 4.4: Timing for the full slice design of RC5.

The full slice version takes two blocks of 64-bit plaintext (128-bit total input)
and has a throughput of 65.3 Mbit/s (with a fabric operating frequency of 100MHz).
The performance figure is not quite double of the simple iterative design because
processing time is lost when the top level controller receives a count done signal from
the counter, and when the control signals are sent to the datapath to start the next

round.

4.2.3 Full Fabric RC5 Design

Maximum use of the fabric was investigated by copying the design from Section 4.2.2

to the remaining three slices. Each slice iterates for three rounds and passes its data

off to the next stage. This style is a pipelined method that uses an iterative design
as its basic building block. The function of each half round module is different from
Section 4.2.2. Instead of passing the data down locally to a half round module in
the same slice, it broadcasts the data to the next slice. Therefore this design can be
considered to be two separate RC5 pipelines. A floor plan layout of the full fabric
design with the top-level control logic excluded is shown in Figure 4.9.

Simulation of this design was carried out by using the datapath and control logic

associated with each half round. Top level control was done by the assertion of the
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Figure 4.9: Screen capture of the full fabric RC5 implementation.

control signals from the test bench. The test bench for the design is given in Sec-
tion A.7 to illustrate the role a top level controller would need to play if implemented
on the CS2112 and to allow for full simulation of the datapath. From the simulation
results, it takes 214 clock cycles to receive the done signal from the fabric, and since
the pipeline accommodates a total of 512 bits of plaintext, a throughput of 237 Mbit/s
is achieved.

Resource Count Total
Slice 0 | Slice 1 [ Slice 2 [ Slice 3

DPU 18 18 18 18 72

LSM 2 2 2 2 8

MUL 0 0 0 0 0

Table 4.5: Resource use for the full fabric version of RC5 (control logic excluded).

4.2.4 Summary of RC5 Results

The three versions of RC5 thus far have all used an iterative half-round building
block. The first simple iterated version utilized 14.3% of the total DPUs within

the fabric. RC5 was designed for operation on a 32-bit general processing platform,
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such as in desktop computers and smartcards [17]. The fabric of the CS2112 applies
RC5 well because the data width between its processing elements is 32-bits wide and
the operations supported within the DPU are also 32-bit operations. The biggest
restriction to a fast iterative RC5 design is that there is no data dependent rotation
operation contained within a DPU. The data dependent rotation accounts for roughly
42% of the resources used by all three designs. Performance is increased by arranging
the iterative half-rounds to provide a multistage pipeline. This method of encryption

does not allow the cipher to be used in a feedback mode such as CBC mode.

4.3 RC6 Designs

The following sections describe the work done with RCG on the C$2112. The fully
implemented design of RC6 uses knowledge gained from RC5 on the CS2112. The
most challenging component of the design of RC6 on the CS2112 is performing the
X(2X + 1) mod2* operation during the execution of a round. There are more
operations to be performed in a round of RC6 than in RCS, therefore it will be

assumed that more resources will be used on the fabric of the CS2112.

4.3.1 Unsigned 32-bit Integer Multiplication

The reconfigurable fabric of the CS2112 has two multipliers present in each tile.
These multipliers operate on signed floating point values. With respect to RC6,
the multipliers were used in the 16-bit mode, where two 16-bit operands multiply
to generate a signed 32-bit result. The operation in RC6 is the unsigned integer
multiplication mod 2%2. That is, two 32-bit operands multiply together to give a 32-
bit result. To produce a mod 232 result, just the least significant 32-bits are taken.
To produce a 32-bit unsigned multiplier out of 16-bit signed multipliers, the

operands must undergo special processing comprised of two steps. The first step
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forms a partial product with the sign bits masked. The second step is to incorporate
the effect of the sign bits into the partial product. The 32-bit operands must be split
into four 16-bit operands. The most significant bit of each 16-bit operand must be
masked because these represent sign bits to the multipliers on the fabric, and not
magnitude bits. The 16-bit masked operands must. then be multiplied and the results
summed together after appropriate shifting to preserve magnitude of the intended
multiplication. This process is illustrated in Figure 4.10 with the results of the 16-bit

‘multiplications represented by 32-bit variables templ, temp2, and temp3.

sign bit masked

high 16 bits. low 16 bits
[32 bit operand | [0 15bit | [O] 15bit |
X = tempt Tempz  AtemP3

32 bit operand [0] 15 bit 15 bit

Figure 4.10: Creating a 32-bit unsigned integer multiplier.

Variables temp1 and temp2 must be logically shifted by 16-bit positions to account
for the magnitude of the result. When templ, temp2, and temp3 are summed we have
a partial result that represents the unsigned integer multiplication mod 2% of two 32-
bit numbers, without the contribution of the sign bits that were masked off.

Consider now the effect of the sign bits that were masked off to obtain the initial
partial product. The multiplication operation in RC6 is X (2X+1) mod 2% = (2X?+
X) mod 2% and can be viewed as squaring X, left shifting the result by one and an
addition operation. Consider now the contribution of the sign bits to the operation
X?mod 2%. First let X' be defined as X with bits 16 and 32 being set to zero. The

following expressions can be written:



X2mod 2% = (X'+ 852" + Sy2™) (X' + S.2'° + $42%") mod 2% (4.1)
X?mod 2% = (X' +SL(2¥X’) + Su (2 X') + 5.(2%)

+SL.S5u(2'°) + SL(2"X') + Su(2X")

+SuS1(2°X") + Sp(2%) mod 2% (42)
X?mod 22 = (X')?+Sp(2"°X") + Sp(2PX') + Sp(2°) mod 22 (4.3)

X?mod 22 = (X')*+5.(2°X") + S;,(2%) mod 2% (4.4)

Sy, and Sy are the values of the sign bits of X. Any terms with powers higher
than 2%1 drop out because the multiplication is mod 2%2. The final result of the X?
simplifies to a X term, and depending on the state of the sign bit, the addition of a
shifted version of X’ and a constant. The value (X')? is the partial product developed
by the addition of shifted templ, shifted temp2, and temp3. Sy has no effect in
calculating X?. It is worth noting that templ and temp?2 are equivalent because we

are calculating X2, Based on the above result the following can be applied

X(2X +1)mod 22 = 2(X?) + X mod 2 (4.5)
X(2X +1)mod 22 = 2((X')*+ Su(2"°X") + S1(2%)) + X mod 2 (4.6)

X(2X +1)mod 22 = 2(X')2+Sp(2X’) + S1(2*) + X mod 2 (4.7)

Given the arithmetic expression in Equation 4.7 for performing the X (2X + 1)
operation with the sign bits masked, the datapath for the 32-bit unsigned integer
multiplication using signed floating point 16-bit multipliers can be created in the

reconfigurable fabric.



4.3.2 Tterative RC6 Design

Based on design expericnce with RCS, an investigation of performance of an iterative
design of RC6 was undertaken. Many of the operations in RC6 are similar to RCS,
therefore resource utilization and performance estimates can provide a rough guide
when making implementation decisions. Figure 4.1 is au iterative design of a DPU
configuration of Equation 4.7 from Section 4.3.1. The control logic resource usage
was not addressed for the multiplier because datapath resources were deemed to be

the biggest design restriction.

000080000 e

sign_flag
(to control)
—

partial_sum_2_cti
partial_sum_3_ctl

partial_sum_1_ctl

DPU3

X*(2X+1)

Figure 4.11: Iterative multiplier setup.

The number of DPUs required for the design of the multiplication module is
estimated to be seven. Five DPUs are used in the multiplication, while 2 more

are used for the fixed rotation of <& Ilg(w) required right after the multiplication
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operation [17]. The following are the specific datapath elements required for an

iterative unsigned multiplier:

© DPUI: Tests the state of bit 16. This information must be passed to the control

module for the multiplier so that Equation 4.7 can be implemented.

DPU2: Masks the sign bits of the input operand. The DPU set bit 16 and 32

to zero.

« DPUS3: Creates the summation of templ, temp2, and temp3. The DPU also

provides the 16-bit left shift to add the proper magnitude to temp! and temp2

DPU4: Adds in contribution of the sign bit. The DPU must either add or pass

data depending on value of the sign bit.

DPUS: Adds S(277X") + S,(2%) from Equation 4.7

o MULI: Multiplies high and low segments of the operand and produces templ
and temp2 from Section 4.3.1. The operation being performed is 2(X’)2, there-

fore temp! and temp? are equivalent

© MUL2: Multiplics low segments of the operand and produces temp3 from Sec-

tion 4.3.1.

A preliminary iterative datapath was designed. The resource usage for a single
slice of RC6 is outlined in Table 4.6, Some DPUs can be removed by using one data
dependent rotation module and by introducing control logic allowing it to accept
‘multiple inputs from the datapath. Overall throughput would be decreased by such a
choice because the rotation would be used for one part of the round and then another,
effectively doubling the amount of time required by the rotation.

Based on Figures 4.7 and 4.1 it will take approximately 14 clock cycles for one
round of RC6. Based on a 100MHz clock for the fabric and 20 rounds of operation, the
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Resource Count. Total
Slice 0 | Slice 1 Slice 3

DPU 20 0 0 20

LSM 2 0 0 2

MUL 2 0 0 2

Table 4.6: Resource estimates for a single slice of RC6 in the fabric.

upper limit is 45.7 Mbit/s. If this design were to be copied to the remaining 4 slices
and implemented to a parallel pipelined design as in Section 4.2.3, the throughput
would be 182.8 Mbit/s.

4.3.3 Pipeline Primitives

Thus far, all designs have been designed in an iterative approach, or have used an
iterative design as a basic building block. An investigation of a pipelined approach
for RC6 was conducted. By considering a pipelined or rolled out approach, the most,
important design focus is to maximize the use of DPUs within a design. One of
the main applications of the CS2112 is to focus on DSP applications where data.
flows through the fabric. An example of this type of application would be the use
of a multiple tap, finite impulse response digital filter. For a pipelined version of
RCS, ideally plaintext data blocks will enter the pipeline every elock cycle. With
each clock cycle, each DPU will perform some operation on the data, and pass it on
by the next clock cycle. The difference between this type of design approach and
that of Section 4.2.3 is that the pipelined elements are individual DPUs, rather than
groupings of DPUs.

A pipelined approach can provide an easier design approach with respect to the
fabric of the CS2112. With a pipelined approach, most DPUs will have only one
configuration in that they will perform the operation on new data every clack cy-
cle, unless the pipeline is stalled waiting for information. Therefore, control logic is

simplified from the viewpoint of managing various DPUs. Control resources may be
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occupied with respect to the specific state of data on the pipeline. For example, in

the case of the unsigned integer multiplication in RC6, it is ad to have the

data stream throngh the multiplier.

In Section 4.3.2, the iterative multiplier would send sign bit information back to
the controller which would then use control signals back to the datapath for correct
operation. To prevent stalling the data flowing throngh the multiplier, the controller
for the multiplier needs to retain sign bit information of incoming data. When the
data reaches the part of the pipeline where the sign bit state matters, the controller
will switch the DPU configuration. The controller needs a FIFO queue that is N
spaces deep where N represents the number of clock cycles from when the sign bit is
detected to where the information is relevant in the pipeline. It will be seen how this
requirement is satisfied in the design of the pipelined RC6 multiplier module.

With an iterative design there is a hot spot of computational activity traveling
through the datapath. Some DPUs are conducting relevant work while others are
just holding their value for use elsewhere in the datapath. A pipelined approach also
has DPU elements such that their sole purpose is to hold data. These DPUs are
provided to delay data flowing through the pipeline so that it reaches all portions of
the datapath at the proper times. Figure 4.12 illustrates a pipeline that will perform
the following operation D = A + (B + C) with and without DPUs used for delay.

The output values on the left pipeline are incorrect because there is no delay on
the A operand. The addition of B and (' takes one clock cycle and A must be delayed
by one cycle as well. Since adding clock cycle delays to a pipeline is an important
part of synchronizing the data flowing through the pipeline, it is important to see
how delay was used in the design of a pipelined version of RC6. A one clock cycle
delay is employed by using a DPU to pass its input value and load the output register
{14]. Two clock cycle delays are created by using one DPU and having it load its

respective input register, pass its value on, and load its output register. It takes one

76



PO

o0
’;’ Incorrect

CEEEER o
R
2
i
g
g
CEERER. o

Figure 4.12: Need of delay in a pipeline.

clock cycle to load a DPU register, and by stringing together DPUs we can create an
arbitrary NV clock cycle delay [14].

DPUs are a fundamental resource within the fabric of the C$2112 and it is wasteful
to create a 20 clock cycle delay using 10 DPUs. Not only would this occupy approx-
imately 12% of DPUs in the fabric but it would add to the complexity of creating a
routable design. A more space efficient way to implement an arbitrary length clock
cycle delay is to usc two DPUs and an LSM to create a first-in, first-out data queue.
Data can be read from an LSM every clock cycle, therefore the queue must be N
spaces deep with each space holding a 32-bit data value. Figure 4.13 is an illustration
of the fabric resources involved with the creation of a FIFO data queue.

The DPU illustrated on the loft side of the LSM in Figure 4.13 is a write address

generator that writes to addresses 4N ahead of the read address generator, which
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Figure 4.13: First-in, first-out queue sctup.

is illustrated to the right of the LSM. The LSMs are addressed in byte wide loca-
tions, when the port size is set to 32-bits the address must be incremented by four
places. Physical addressing for the LSMs is mod 2 allowing the FIFO queue to op-
erate without any control logic. The FIFO queue can be 128 spaces deep resulting
in & maximum delay of 128 clock cycles with this setup. There is a three clock cycle
latency from when a read request is given and when information comes out of the read
address generator accessing the LSM. A minimum of a three clock cycle delay can be
used with the setup illustrated in Figure 4.13, but since it requires more resources
than using DPUs for such a small delay (two DPUs and a LSM verses two DPUs),

this setup is only useful for delays greater than four clock cycles.

4.3.4 Pipelined Multiplication

Figure 4.14 is a block diagram illustrating the pipelined unsigned integer multiplica-
tion module and a Verilog description can be found in Section A.6. The square blocks
represent delay clements with their delay value illustrated within the block.

The multiplication module did not use the FIFO data queue structure as illus-
trated in Figure 4.13. These structures will be needed in the RC6 datapath, due
to long delay requirements. The function of the remaining DPUs are described as

follows:
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o DPUL: Tests the state of bit 16. This information must be passed to the control

module for the multiplier so that Equation 4.7 can be implemented.

o DPU2: Masks the sign bits of the input operand. The DPU will set bits 16 and

32 to zero.
X
TFFFTFFFh
DPUS
sign.bit control w bPUT
(from
controller)

X(2X+1)

Figure 4.14: Pipelined multiplier module.
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© DPU3: Adds S;(2'7X") + 5,(2) from Equation 4.7.

DPU4: Adds temp! and temp3 variable in the multiplication process.

DPUS5: Adds temp2 to the partial sum of templ and temp3.

DPUS6: Adds the contribution of the sign bit. The DPU passes through X only
if the sign bit is 0 and adds S (27X’) + S1(2") from DPU3 if sign bit is 1.

DPUT: Creates the final summation to produce X(2X + 1) mod 2%

MULL: Creates templ and temp2 partial multiplication products because

templ is equivalent to temp2.
 MUL2: Creates temp3 partial multiplication products.

An important part of the multiplier module is the control logic associated with
controlling the process of the multiplication depending on the state of the sign bit.
As stated previously, there is need for a control queue that will keep track of the
sign bit of incoming data. Figure 4.15 is a high level illustration of how the pipelined
multiplier and controller interact.

The control module was created by defining a finite state machine that took the
sign bit in as an input. The quene assigns to three state registers within the controller,
with the third state register being the output of the controller back into the datapath.
The Verilog description of the multiplier controller is in Section A.5.

The control register queue actually contains the required CSM instructions for the
multiplier datapath. In all states within the controller, the sign flag is checked and
then the first position within the control queue is assigned. With each clock cycle
the CSM instructions are moved forward and assignment to the next state register is
made. The output of the control queue can then be tied directly into the controlling

DPU in the multiplier datapath.
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Figure 4.15: Multiplier and controller interaction.

After the operation of X (2X + 1) is performed, RC6 calls for a static rotation of
the product of the multiplier module. The rotation is X (2X + 1) << lg(w) where
lg(w) is the log base 2 of w (which is 32 in this implementation), resulting in a rotation

by five bit positions to the left. Figure 4.16 illustrates the fixed rotation structure.

4.3.5 RC6 Full Pipelined Design

A good way to conceptualize the pipelined datapath for RC6 is an assembly line
with a finite amount of space. Given the available resources of the reconfigurable
fabric, the pipeline was designed to allow one round of RC6. The pipeline can fill
up with independent plaintext blocks until the depth of the pipeline is reached. If it
takes N clock eycles for an input block to reach the end of the pipeline, we can fit
an additional N — 1 blocks of data in behind the initial block. Once the pipeline is
filled, the output block and every block thereafter will feed back into the input of the
pipeline until each block of data has been passed through the appropriate number
of rounds. In effect the pipeline becomes circular for the remaining rounds. Top

level control logic is required to increment subkey values, initialize input and output
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X*(2X+1)

X*(2X+1)<<<Ig32
Figure 4.16: Fixed logical rotation by five bits.

‘memories and broadcast other datapath control signals across the fabric. The RC6
pipeline assumes that the key is the same for all words in the pipeline. If different
keys were required for data inside the pipeline, redesign of the datapath, controller
and C code, that the ARC processor uses to derive the subkeys, would be required.

Figure 4.17 is an abstracted diagram of the RC6 datapath. Delay elements are
given as square blocks, multiplier/fixed rotation, and data dependent rotations are
abstracted as blocks with their respective operations labeled within, Other elements
are drawn as DPU structures. The input words of 32-bit plaintext are labeled 4,B,C,
and D with the output blocks labeled in the same fashion. The diagram illustrates
one round of RC6 and does not show the feedback of the output of the datapath
into the input, nor does it show the input and output memories involved with the

operation.
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Figure 4.17: One full round of RC6.
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The function of the following DPUs in the pipeline of Figure 4.17 are described

as follows:

o DPUI: Adds S[0] to B of the plaintext in the first pass and in subsequent passes
it will register the data.

o DPU2: Adds S[1] to D of the plaintext in the first pass and in subsequent
passes it will register the data.

 DPU3: Executes XOR operation required in Figure 2.7.
o DPU4: The bit-wise exclusive OR operation required in Figure 2.7.
o DPUS: Adds the S[2i] subkey to the data.

® DPU6: Adds the S[2i + 1] subkey to the data.

Figure 4.18 is high level block diagram showing all control logic and how they
communicate with the datapath module. Since the RC6 pipeline is spread across the
entire fabric, some signals from the top level controller must be broadcast across the
fabric. In Figure 4.18, these signals are shown as dashed lines. Broadcasted signals
enter into a small controller (two or three states) that control their local DPUs.

The pipeline for RC6 is 19 clock cycles deep. This is evident from the enabled
registers on the initial DPU (input and output, giving two clock cycles of delay) and
the 17 clock cycle delay element that provides the output. The timing information
for this datapath can be found in Table 4.7.

RC6 Pipeline Timing Cluck Cycles
Start to Done Time

Data Dependent Rotation 3
Multiplication 9
Fixed Rotation 2

Table 4.7: Timing information for the RC6 pipeline.



0 count fag.

Subkey
Control

Read Memory
Controfler
RC6 sant] RC6 Datapath
Top Level ey
Controller [~ }detay input
L Variable Delay
1 Controller
i
I eline
| Proa
1_soniel ] Iniial Controller
otoce

Figure 4.18: Description of control and datapath interaction.

Figure 4.19 is a layout foor plan of the reconfigurable fabric captured from the
floorplanner in the C~SIDE tool set. Slices two and three are mainly used for the
pipelined multipliers. Slices one and four contain counters and datapath logic for
rotation, addition, and read/write memories for operation. Slice four contains read

and write memories for operation and remaining datapath logic.

Resource Count Total
Slice 0 [ Slice 1 | Slice 2 [ Slice 3

i) 21 21 6] 77

1 3 3 T 14

0 2 2 0 1

8: Resource usage for a fully pipelined RC6.

Table 4.8 is a summary of the resources used within the fabric for the pipelined

RC6. This version heavily ntilizes the fabric, especially with respect to DPU usage,

85



s1ice 1

T4le 2 T8le 1

416 3

Figure 4.19: RC6 pipeline floorplan.

and in general would constrain larger designs of this nature. Control logic for the
pipelined version of RC6 consisted of the resources illustrated in Table 4.9. The C
code for RC6, along with the hardware call to the CS2112, for testing within Chipsim

or in the development module, can be found in Section B.2.

Controler FSM Tati States Tnternal Registers Tuputs _Outputs
Maultiplier b 7 G (3-bit) T(bit) 1 (30w
Read LSM 4 2 2 (3-bit), 2 (1-bit) 1(1- mc 1 (3-bit)
Wite LSM 4 2 2 (3-bit), 2 (1-bit) 1 (3-bit

Subkey 2 5 2 (3-bit), 2 (1-bit) 1 (3-bit;
Delay g 1 2 (3-bit), 2 (1-bit) 1 1 (3-bit
RC6 Top 1 24 2 (5-bit), 6 (3-bit), 12 (1-bit) 3 (I- i) 5 (it

Table 4.9: Control logic resource usage for a fully pipelined RC6 design.

The pipelined version of RC6 was fully simulated, tested using the CS2112 simu-
Iator, and the development board. Based on waveform output support of the C52112
development board and simulation results, the RS pipeline operates at 597.5 Mbit/s,

encrypting 19 sets of plaintext at once in the circular pipeline.
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4.3.6 Summary of RC6 Designs

The CS2112s architecture works well with a pipelined design because the datapath
is more efficiently used. With an iterative design, a hot spot of activity iterates
through the datapath with only a small portion of the datapath elements performing
operations while the rest are holding data. With respect to the pipelined version of
RCS, the datapath is more efficiently used because most of the DPUs are doing useful
work each clock cycle, with the exception of DPUs and LSMs used for delay.

The biggest restriction to the performance of RC6 is that the unsigned integer
multipliers take up roughly 50% of the resources of the fabric. Having unsigned
integer multipliers on the fabric would save resources. It would be advantageous to
have a method of accessing LSMs without using DPUs to generate read and write
addresses. If this were the case, 18 DPUs (8 for read/write memories, 8 for FIFO
delay elements, and 2 for subkey storage) accounting for 21.4% of the DPUs on the
fabric, would be available for computational purposes.

4.4 Summary

This chapter contained various methods and design philosophies for implementing
symmetric block ciphers on the CS2112. As illustrated in Table 4.10, RC5 was de-
signed with an iterative nature in mind. RC5 first started with a simplistic version,
and built up to a design that fully utilized the resources of the reconfigurable fabric.
Fabric resources were used more effectively with a pipelined version (with an iterative
core) of RCS, and speed increased significantly.

RC6 was evaluated in both an iterative and a pipelined fashion. A full fabric
pipelined design was implemented once it was deemed that fabric resources would be
adequate to accommodate a full pipelined round of RC6. The pipelined structure of
RC6 yielded the highest speed of all designs.
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DPUs Used | Speed Mbit/s
RC5 Simple Tterative 07
RC5 Two Half Round 19 653
RCS5 Full Fabric 72 237
RCG Tterative Ful Slice 20 45
RC6 Iterative Full Fabric 80 1828
RC6 Pipelined Full Fabric bl 5075

Table 4.10: Summary of block ciphers on the CS2112.

The next chapter will explore the viability of hash algorithms within the recon-
figurable fabric of the CS2112. While hash functions have many of the primitive
operations of symmetric block ciphers, due to the amount of processing required only

the compression function of SHA-1 and MD5 were implemented.



Chapter 5

Evaluation of Message Digest Algorithms

Tt is the purpose of this chapter to provide an evaluation of the suitability of the
reconfigurable architecture of the CS2112 with respect to two popular message digest
algorithms. MD5, as discussed in Section 2.6, will be the first algorithm explored.
SHA-1 which was discussed in Section 2.7 will be the second algorithm discussed.
‘With respect to both algorithms, an estimate of resource usage along with implemen-

tation issues will be addressed.

5.1 MDS5 Implementation

Based on the complexity of the MD5 algorithm, it is feasible to use an iterative
kernel that will provide functionality for the compression function H-MD5 only. The
ARC processor will have to properly format the arbitrary length message for use with
the fabric function. Within the function, there are a set of auxiliary functions that
are bit-wise operation and are used within different steps of H.MD5. The auxiliary

functions are defined as follows [19]:
o F(X,Y,Z) = X&Y INOT(X)&Z

o G(X,Y,Z) = X&Z|Y&NOT(Z)



cHXY,Z) =X0Y0Z
o I(X,Y,Z) =Y & (XINOT(2))

The reconfigurable fabric can be used for these functions, according to the depic-
tion in Figures 5.1 and 5.2, showing the datapath of the auxiliary functions. The solid
black lines represent clock cycle delays of data flow. Where possible, data should be

synchronized for casier timing of the datapath.

Flxy2)

v
Flxyz) Glxyz)

Figure 5.1: Implementation of F' and G functions.

A preliminary design of the datapath for the compression function H-MD5 with
the variable rotation and auxiliary function abstracted, is shown in Figure 5.3. The
variable rotation is the version used in RC6 using five DPUs. The five DPU version
of the variable rotation uses one more than the iterative version found in the RC5
designs, but does not require control logic. The rotation amounts for the execution
of H-MD5 are values that are stored within a LSM. The setup of 7" and X are done

by the ARC processor initially when the kernel call is made. In Figure 5.3 it is the
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Figure 5.2: Implementation of H and I functions.

role of four DPUs to store the registered values A, B, C, and D. The role of these
four DPUs is to buffer and permute the A, B, C, and D in each step and to do the
final addition after the four rounds are completed. The original value is stored in the
A register of each DPU while the permuted and feedback values are stored in the B

register of the DPUs. The addition is performed by adding the registers together.

5.1.1 Performance and Usage Estimates for MD5

A rough estimate of hardware usage is given in Table 5.1. These estimates are based
upon preliminary investigation of a datapath. As the final design was not imple-
mented, estimates of CLU resource usage for the MD5 datapath are not available.
The design almost fills up an entire slice in the fabric. As was discovered with
RC5 and RCS, an iterative solution does not make efficient use of the fabric from a
computational point of view, but the size of the fabric and the nature of MD3 does

mot allow for a fully pipelined version of the algorithm. This preliminary analysis
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Figure 5.3: A proposed MD5 datapath for one step of H-MD5.

does not take into account, the DPUs used for control purposes, such as counters.
There is a strong possibility that a solely finite state machine controller will not be
realized within the state bits of one slice’s CLU, and the MD5 design will span two
slices. The nuraber of DPUs in the critical path of data flow will determine how fast
MDS will run when the hardware function call is made. Table 5.2 is an analysis of
the number of clock cycles required to get through the flow of the datapath.

It takes approximately 13 clock cycles to get through one of sixteen steps in
a round, with four total rounds in MD5. Therefore, it will take about 832 clock

cycles to process one 512-bit block of the formatted message. Assuming a 100 MHz
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Function Number of DPUs
Rotation
Auxiliary Function
Registered Inputs for Inits
Other DPUs For Other Arithmetic Ops
DPUs for LSM Address Generators

LSM Memories Used

TOTAL

8] o cof i i | enl

1l

Table 5.1: Resource usage for preliminary MD5 implementation.

Delay Through Datapath | Clock Cycles
Tnitial Stage 2 dlk
Ruxiliary Function 3 elk
Three Additions 3ok
Variable Rotation Tk
Final Addition Tdk
Total 13 clk

Table 5.2: Delay through MD5 datapath.

clock in the fabric and operating on a 512-bit message block, the throughput is 61.5
Mbit/s. Software calls to the hardware function H-MD will be made in processing
the arbitrary length message, therefore the actual performance of the algorithm will
be considerably slower due to latency in the ARC processors’ execution, and DMA

Iatency of transferring the appropriate data to and from the fabric.

5.2 SHA-1 Implementation

SHA-1 is partially based on MD5 and as a result has many similarities. Section 2.7

outlines the SHA-1 algorithm. As with MDS, it is practical to implement one of 80

s involved with compression function H.SHA1 as an iterative fabric function.

5.2.1 Recursive Array Expansion

During the execution of H.SHA1, W|0..15] is recursively expanded into an 80 element.

array by the following operation:



Wi =Wt — 3@ W[t — 8@ Wit — 14] & W[t — 16] (¢ > 15)

Since this oceurs with each call to H.SHAT, it makes sense to provide this function

into the hardware of H.SHAL. Figure 5.4 illustrates a datapath for the expansion of

i 1 ¥
LsM LsM LsM
& Addr Gen & Addr Gen & Addr Gen

Figure 5.4: Recursive expansion of W|0..15] to W[0..79].

The operation of this module can be considered in two ways: first the expansion
of W can be performed, and then the rest of the algorithm can be carried out. A total
of 64 entries (entries 16 to 79) need to be filled, with each entry taking 4 clock cycles.
The overhead of reading from an LSM is only at the start resulting in a one-time cost
of three clock cycles. Therefore the total time to fill W is 259 clock cycles.

The second method of filling W is that it can be performed while other parts of the
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datapath are processing. For performance analysis, it must be determined whether
the module that expands W will be able to stay ahead and supply W|¢] values for
all 80 steps of the kernel function. This point of view looks to expand W in parallel
with the main datapath of H.SHA-1. The module contains W] values for ¢ = 0 to
15, so for the first 15 steps the datapath can proceed. During this time a entry in
W can be filled every 4 clock cycles. The timing of the rest of the datapath must be
determined next.

5.2.2 SHA-1 Auxiliary Function Design

As with MD5, SHA-1 makes use of bitwise auxiliary functions during its execution.
These are defined as follows [7]:

® FO(X,Y,Z) = (X&Y)|((NOT(Y))&Z)
o FIX,Y,Z)=X6Y®Z

o F2(X.Y.Z) = (X&Y)|(X&2Z)|(Y&Z)
* F3(X,Y.Z)=X0Y&Z

Figure 5.5 and 5.6 are flow diagrams illustrating configurations of each DPU in-
volved with the implementation. The black line separates clock cycles of timing. Note
that F2 reuses a DPU by using a feedback to the ALU.

A significant difference with respect to SHA-1 from MD5 is the auxiliary function
F3. The computation takes 4 clock cycles for 3 because ALU feedback is utilized so
that a DPU can be reused. The choice to use ALU feedback was made to minimize
resource usage. With respect to a performance analysis it will be assumed that four
clock cycles are needed to execute the auxiliary function, since this is the worst case

time for this execution.
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Figure 5.5: Auxiliary function implementation.
5.2.3 Full SHA-1 Datapath

Figure 5.7 illustrates a full iterative design for one step of 80 for the H.SHA1 kernel
function. Some of the differences between MD5 and the SHA-1 that cause SHA-1 to

use more resources than MD5 are:

e The use of static rotation instead of a variable rotation. This will use less

resources than a data dependent rotation.

o A different auxiliary function definition than MD5. In the case of SHA-1, the
auxiliary function takes one extra clock cycle, and requires some control logic

for ALU feedback mode. This will affect performance.
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Figure 5.6: Auxiliary function implementation.

The recursive expansion of the W array which is derived from formatted arbi-
trary length message. The method of expanding W is recursive and is derived
from the 512-bit message block. The implementation of this requires a sizable

portion of resources within the fabric.

The use of five 32-bit registers to produce a 160-bit message digest adds some

extra complexity and resource usage to the design.
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Figure 5.7: SHA-1 datapath design.
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5.2.4 Performance and Resource Usage of SHA-1

Table 5.3 is a summary of the resource utilization of the design outlined in Sec-
tion 5.2.3. A considerable amount of control logic will be required to operate the
configuration changes of the auxiliary functions and to operate the expansion of W.
Two slices will be used with SHA-1, including the expansion of W. There is enough
time (four clock cycles are required to provide one W entry) for the expansion of W
to occur while the datapath is processing through the rest of the compression func-
tion, which takes approximately 10 clock cycles. Therefore, each call to the kernel
function will take 800 clock cycles if the expansion of W is conducted in parallel.
Assuming 100MHz clock for the fabric we can expect about, 64 Mbit/s of throughput

by processing a 512-bit message block in 800 clock eycles.

Function Number of DPUs Used
W] Expansion 0
Auxiliary Function 4
Top Level Datapath 16
Total 30
TSMs Used 5

Table 5.3: Resource utilization of SHA-1.

5.3 Comparison of SHA-1 and MD5 Implementa-
tions

Since MD5 and SHA-1 are similar algorithms, it is useful to make comparisons be-
tween their implementations in evaluating the CS2112. The performance of both
SHA-1 and MD5 are similar and are in the range of 60 Mbit/s to 65 Mbit/s. The
biggest deviation is the amount of resources used when implementing the algorithm.

MDS5 uses an array of 32-bit words from the sin(), function while SHA-1 uses an



array of 32-bit words from a recursive expansion of elements from the 512-bit mes-
sage block. The implementation of expanding W in the fabric function is the reason

SHA-1 has more resource utilization than MD5.

5.4 Summary

This chapter explored the design of hash algorithms on the CS2112. Resource usage
and performance figures are given in Table 5.4. Hash algorithms exhibit many of the
primitive operations that can be found in symmetric key block ciphers. Due to the
size of the compression functions used in both algorithms in this chapter, an iterative
solution was the only design choice. The next chapter will summarize the results of
this research and provide some insight into algorithm implementation, optimization,

and specific architectural considerations for the CS2112.

( Design [ DPUs Used | Speed Mbit/s |
MD5 Tierative Single Shice 20 615
SHA-1 Iterative Two Slice 30 64

Table 5.4: Summary hash algorithms on the CS2112.
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Chapter 6

Summary and Conclusions

6.1 Summary of Results

The results for all cryptographic algorithms on the CS2112 are found in Table 6.1.

i DPUs Used | % of Total DPUs Mbit/s
RC5 Simple Tterative 2 1430% X
RC5 Two Half Round Full Slice 19 22.60% 65.3
RC5 Full Fabric 72 85.70% 237
RCG Iterative Full Slice 20 23.80% 45
RCE Iterative Full Fabric 80 95.20% 182.8
RC6 Pipelined Full Fabs 7 91.70% 597.5
MD5 Iterative Single Sk 20 23.80% 615
SHA-1 Iterative Two Slice 30 35.70% 64

Table 6.1: Summary of designs on the CS2112.

The pipelined version of RC6 was the best performer of the block ciphers with
a speed more than twice that of the pipelined (with an iterative core) version of
RCS5. Both versions used roughly the same amount of DPUs, while RC5 has a more
simplistic iterative round structure than RC6.

The structure of the CS2112 fabric is more suited to the pipelined or unrolled

of ciphers. The application space for the CS2112 is for streaming DSP

[14], and telecommunications applications [13], making pipelining the most efficient.
use of resources.

The performance of the hash algorithms in this research was almost equivalent.
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However, SHA-1 used more resources due to extra processing within the fabric. The
hash algorithms were similar in structure and were iterative in nature due to limita-

tions imposed by the available resources within the fabric.

6.2 (CS2112 Architectural and Support Features

The fabric of the CS2112 is rich in operational features and many of these features
can be applied to the area of cryptography. Many of the arithmetic operations can
be found within one reconfigurable unit in the fabric, the datapath unit. Operations
such as the bit-wise exclusive OR, logical masking operations, and barrel shifting can
also be accomplished with one DPU.

With respect to the (52112 the following features were found to be lacking within

the reconfigurable fabric:

© Support for a single clock cycle data dependent rotation within one DPU. The
designs required 5 DPUs or 4 DPUs with possible associated control logic to
implement a data dependent rotation. The design of a data dependent rotation
also took more than one clock cycle to complete the operation. If this could be
accomplished within one clock cycle, the speedup of the data dependent rotation

would be 2 to 3 times, and resource usage will be decreased by 75%-80%.

Support for a unsigned 32-bit integer multiplication structure. RC6 requires this
operation and of all the resources used for the pipelined RC6 design, roughly
50% of the fabric was utilized for the unsigned integer multipliers. If a one-
clock cycle 32-bit unsigned multiplication module were to be used, a speedup

of 9 times would be achieved for the multiplication.

* While memory requirements were adequate for iterative block ciphers, the need

of a DPU for address generation when accessing an LSM is wasteful.
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All algorithms implemented in this research were originally designed to perform
well on general purpose processors. The algorithms use 32-bit words, with 32-bit
operations and manipulations. The fabric of the CS2112 has features which exploit
the characteristics of algorithms that were created with software in mind. The results
from this research cannot be expanded to algorithms designed for specific architectures
and platforms because no such algorithms were investigated.

Communication within the fabric is a mix of local and global buses in a two di-
mensional arrangement, allowing for the creation of pipelined and iterative structures.
With respect to reconfigurable architectures in general, the data width of processing
elements is an important feature. For all algorithms explored in this research, primi-
tive operations were all carried out as 32-bit operations, allowing easy translation to
the reconfigurable fabric of the CS2112.

The use of communication and control resources was a design consideration for all
the algorithms, but did not cause problems that required redesign of the datapath.
The C~SIDE tool set provided by Chameleon Systems gives a full implementation
platform, including simulation fabric mapping tools. The biggest drawback with using
the C~SIDE tools was that the mapper did not use any intelligent mapping algorithms
and for designs exceeding five or more DPUs, all mapping was done manually. The

process of mapping also included placement. of control logic.

6.3 Considerations For Future Work

The study of symmetric key block ciphers and hash algorithms was carried out for

the purposes of ining the suitability of the Chameleon Systems CS2112 for

hardware based cr i In 2003 Ch I Systems ceased to

exist as a corporate entity, and the CS2112 and related technology from Chameleon

has not found its way into the market. The suitability of coarse grain architecture
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with respect to run time reconfigurability, quick design, shorter time to market, and
functional flexibility, remain as motivating factors for further research in the design

of cryptographic algorithms in coarse grain environments.

104



References

(1] Online Banking Goes Muainstream in United States. NUA Web Site:

http://www.nua.ie/surveys.

(2] The Internet Economy Indicators. Web Site: http:// www. internetindicators.

com/keyfindings html.

13 E. A. Fisch and G. B. White, Secure Computers and Networks: Analysis, Design,
and Implementation. CRC Press, 2000.

[4] D. Kahn, The Code Breakers: The Story of Secret Writing. Scriber, 1996.
5] S. Singh, The Code Book. Doubleday, 1996.

6] S. E. Forrester, “Security in data networks,” BT Technology Journal, vol. 16,
no. 1, pp. 5275, 1998.

7] Federal Information Processing Standards Publication 180-1 1995 April 17 An-
nouncing the Standard for Secure Hash Standard. Nation Institute of Standards

and Technology, 1995.

[8] B. C. AJ Elbrit, W Yip and C. Paar, “An FPGA implementation and perfor-
mance evaluation of AES block cipher candidate algorithm finalists,” in AES3:

The Third Advanced Encryption Standard Candidate Conference, 2000.

[9] L. Wu, C. Weaver, and T. Austin, “Cry daniac: a fast flexible

105



for secure communication,” in Proceedings of the 28th annual international sym-

posium on on Computer architecture, pp. 110-119, ACM Press, 2001.

[10] L. E. Frenzel, “Cryptochips: Help eliminate the security bottleneck,” Electronic
Design, March 2003.

[11] M. J. S. Smith, ASICs..The Web Site. http:// www-ee.enghawaii.edu /
msmith/ASICs /HTML/ASICs.htm.

[12] A. Dandalis, V. K. Prasanna, and J. D. P. Rolim, “A comparative study of per-
formance of aes final candidates using FPGAs,” in AES3: The Third Advanced
Encryption Standard Candidate Conference, 2000

[13] R. Hartenstein, “Coarse grain reconfigurable architecture (embedded tutorial),”
in Proceedings of the conference on Asia South Pacific Design Automation Con-

Jerence, pp. 564-570, ACM Press, 2001.

[14] Chameleon Systems CS2112 User Manual. Chameleon Systems Incorporated,
2001.

[15] Integrated IPSec/MPLS Services and SSL-Based VPNs Fuel Solid Growth in

VPN. Infonetics Research: http: // www.infonetics.com/ resources/.

[16] Chameleon Systems Inc. - Memorial University Rescarch A t. Chameleon

Systems Inc., October 2000

[17] R. L. Rivest, “The RC5 encryption algorithim,” in Proceedings of the 1994 Leu-
ven Workshop on Fast Software Encryption, pp. 86-96, 1995.

[18] R. L. Rivest, M. Robshaw, R. Sidney, and Y. Yin, The RC6 Block Cipher. 1998.

[19] R. L. Rivest, The MD5 Message Digest Algorithm. 1992

106



[20] S. A. V. Alfred J. Menezes, Paul C. van Oorschot, Handbook of Applied Cryp-
tography. CRC Press, 1997.

[21] H. Krawezyk, M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for Message
Authentication. RFC Editor, 1997.

[22] National Institute of Standards and Technology. NIST Website: http://

www.nist.gov.

[23) Computer Security and Industrial Cryptography. NESSIE Web Site: https://

www.cosic.esat kulenven.ac.be/.
[24] S. Kent and R. Atkinson, IP Authentication Header. RFC Editor, 1998.

[25] S. Kent and R. Atkinson, Security Architecture for the Internet Protocol. RFC
Editor, 1998.

[26] R. Younglove, IPSec: What Makes It Work. 2000.

[27] C. Madson and R. Glenn, The Use of HMAC-MD5-96 within ESP and AH. RFC
Editor, 1998.

28] S. Kent and R. Atkinson, /P Encapsulating Security Payload (ESP). RFC Editor,
1998.

[29] J. Burke, J. McDonald, and T. Austin, “Architectural support for fast
symmetric-key cryptography,” in Proceedings of the ninth international confer-
ence on Architectural support for programming languages and operating systems,

pp. 178-189, ACM Press, 2000.

[30] J. P. Huber and M. W. Rosneck, Successful ASIC' Design The First Time
Through. Van Nostrand Reinhold, 1991

107



[31]

[32)

33]

[34)

36]

37

[38]

[39]

(40}

L. Stok and J. Cohn, “There is life left in ASICs,” in Proceedings of the 2003

international symposium on physical design, pp. 48-50, ACM Press, 2003.

R. A. Rutenbar, M. Baron, T. Daniel, R. Jayaraman, Z. Or-Bach, J. Rose, and
C. Sechen, “(when) will FPGAs kill ASICs? (panel session),” in Proceedings of
the 38th conference on Design automation, pp. 321-322, ACM Press, 2001.

T. K. Tetsuya Ichikawa and M. Matsui, “Hardware evaluation of the AES final-
ists,” in AESS: The Third Advanced Encryption Standard Candidate Conference,
2000.

T. R. Bryan Weeks, Mark Bean and C. Ficke, “Hardware performance simula-
tions of round 2 advanced encryption standard algorithms,” in AES3: The Third
Advanced Encryption Standard Candidate Conference, 2000.

T. R. Bryan Weeks, Mark Bean and C. Ficke, “Hardware performance simula-
tions of round 2 advanced encryption standard algorithms (presentation),” in

AES3: The Third Advanced Encryption Standard Candidate Conference, 2000.

K. Compton and S. Hauck, “Reconfigurable computing: a survey of systems and

software,” ACM Computing Surveys (CSUR), vol. 34, no. 2, pp. 171210, 2002.

R. Tessier and W. Burleson, “Reconfigurable computing for digital signal pro-

cessing: A survey,” Journal of VLSI Signal Processing, vol. 28, pp. 7-27, 2001.

Spartan and Spartan-XL Famalies Field Programmable Gate Array Datasheet.
Xilinx Incorporated, 2002

C. Ajluni, “Field programmable gate arrays just aren’t for prototyping any-

more.,” Electronic Design, April 2000.

K. Gaj and P. Chodowiec, “Comparison of the hardware performance of the

108



141

142]

143]

[44]

AFS candidates using reconfigurable hardware,” in AES3: The Third Advanced
Encryption Standard Candidate Conference, 2000.

M. Riaz and H. Heys, “The FPGA implementation of the RC6 and CAST-

256 encryption algorithms,” in IEEE Canadian Conference on Electrical and

Computer Engineering, May 1999.

R. W. Hartenstein, T. Hoff and U. Nadeldi “Design-space explo-
ration of low power coarse grained reconfigurable datapath array architectures,”
in Proceedings of the 10th International Workshop on Integrated Circuit De-
sign, Power and Timing Modeling, Optimization and Simulation, pp. 118-128,

Springer-Verlag, 2000.

Y. Mitsuyama, Z. Andales, T. Onoye, and 1. Shirakawa, “A dynamically recon-
figurable hardware-based cipher chip,” in Proceedings of the conference on Asia
South Pacific Design Automation Conference, pp. 11-12, ACM Press, 2001.

Chameleon Systems CS2112 Data Book. Chameleon Systems Incorporated, 2001.

109



Appendix A

Sample Verilog Code for Selected Modules

A.1 RC5 Testbench

// TESTBEXCH FOR RCS CIPHER KERVEL
7/ Dsed with Verilog to verify operation before synthesis.
/1 3ason Ruinelander

Bodule xc5t

rog clk,rat.
wire done;
rebtop reb(CIK.zet,stast. done);
initial clk

vy 00e0 <l <= ¥5 “cik:
initial begin

#

“include "rcSKeys. include”

Anitial begin
$Sshm_open("rcStop. sha®) ;
Sshn_probe("AS", rcs):

//instial begin

//snonitor ($8tine, ,,"rst=hb start=ib dono=/o",rst,start,done);
/e
endnodule

A.2 Iterative RC5 Top Level Module

// TOP LEVEL MODULE REQUIRED BY CS2112 ARCHITECTURE
module rctop(clx,rst, start done) ;

suput start;
output done;

wire [2:0] LSM_ctl waiter_ctl,iblockl _ctl,shifter_ctl, iblock2_ctl
1, counter_ct1;
wire vait done_flag, count_done




gorm3 <

gorm 3 =

gorm3 <=

gorm3 <

gorm 3 <

go_run3 <=

e

1750;

ey

1780;

o1

180;

e

100;

go_run_external 4
#10

go_run_extornal 4

go_run 4 <=

b1;

gormn 4 <=

gorm t <=

gorm g <

gorun 4 <
go_rum d <=

et

1700

181

180

e

150;

e

150;

Stinisn;

ena

initial begin
Saha_open(*test.sha");
$sha_probe("AS*, rc5_pipeline_tb);

end
cndmodule

< bty

<= 170



resap ap(
Lelk(el),
_rst(rse),
~iblockl_ct1(iblockt _ct1),

_count_done_flag(count_done_flag)

resetl cr1(

tart),

iblockt_ctl (iblocki_ct1),
-1blocka_ctl(iblock2_ctl),
-addr_ct1 (addr_ct1),

LSM_ce1 (LS _ct1)
-shifter_ctl(shifter_ctl),
_waiter_ctl(uaiter_ct1),
~counter_ct1(comter_ctl)
-vait_done_flag(uait_done_flag),
_count_done_flag(count_done_flag) ,
-dono(done)

endnodule

A.3 Iterative RC5 Controller Module

11 ACS Datapath controler

/7 Jasen Ruinelander

Bodul reScel (el et start LSW-ct], wadtar.ctl, iblockd-exl, d6lockd ol st
1, shifter_ctl, vait_done_flag, count_done_flag,don:

”
Just as a refence, just assign to next_state;

ontput [2:0)
cutput. (2:0]
output done.

input vate_done_ f1ug;
snput count_done. flag




e S

rog n
ey szqumm BLOCK FOR THE CONTROLLER
Ly ©(posedge c;

b

block2 e,
counter_ctl <= next_counter_ctl;
addr_ct] <=

end
/1 Combinatorial block for the controler modulo
aluays @(current_state or start or wait_done_flag or count_done_flag) begin




4750100: bey
1£(vatt_dono_flag) begin
next_state = 4’50103

next.

done = 1780;

A



end
4751000

next_state = 4'b1001;

Fhioot: begin
1f (count._

next_state = 4°b1010;
next_LSH_ctl = 3'b010;
next_iblockl_ctl = 3'b010;
28T o1« Sihedoy




next._ mnm el = 3760103

next_iblock2_ctl = 3'b010;
i v
next_counter_ctl = 35001

ext_addr_ct] = 37b001;
next_shifter_ctl = 3°b000;
next_done = 1'b;
end
endcase

end

endnodule

A.4 Iterative RC5 Datapath Module

17 ¥c5 encryption data path dafinitions.
77 Jume 5t 2001

”
7/ Jason Bhinelande

{include "CS2112 Tnstructions. include"
Template inst:

Gatparem dput A RBO.TNITIAL VALUE = 32°30;
defparan dput.B_REG_INITIAL_VALUE = 32'h0;
dofparan dpul .0_REG_INITIAL VALUE = 32'h0;

defparas dput .INSTRUCTION 0 =
©52112_DP dput ¢

TpuTS

BINENE

orst(rst),

“ain00),

bm00),

DPU DUTPUT
~apu_output ),

CSH ADDRESS
cem_aadr(),

FLAG OUTPUTS



flag high0),
“flag 10500,

LSH CONIECTIONS

CARRY LOGIC
-carry.in0),
carry_out)

b

o

//Module doscription for a variable circular shifter.
nodule hifter_ct,l

anput.
input rst;
apus (31:0) 10p;

input [31: o rops
fapet L350 Wittt
output

1 outdata;
Do o s, shm, s, stz

// DATA PATH olements for variable circular shifting.

dofparan variable_cir_shift_A.B_REC_INITTAL_VALUE = 32’h000000LT;
dofparan variable_cir_shitt_A.A_REG_INITIAL_VALUE = 327h00000020;
defparan varisble_cir_shifs_A INSTRUCTION.O = (‘A_ZERD_IK | ‘OPA_REG |
“BO_TN | 'SHIFT_OFF | ‘OPB_AND_MASK | ALU_OR |‘OUT_ALD | ‘LOAD_D_REG);

dotparaa vaciable.cir_ahift. A TUSTROCTION.1 = (A.ZO.IN | ‘OPAIES | “BL.IN |
s PB_AND_MASK | ‘ALU_OR |
Frrr

cir_shife AC
(e,
rat(st),
5200,
b 1nl)(rﬂp).
b_int(re
p“-.nw:cm)

-cen_addr (shifter_ct1),

dofparan variable_cir_shift B.INSTRUCTION.0 = (‘AO_IH | ‘OPA_NO_REG |
“S0IN 1| ‘0P N0_REG | "SHIFT.SBA | ‘OUT ALY | LOKD.OLREG):
CS2112_DPU variable_cir_shift B(

S e (eies),
00,

-flag 10v0),
“data to_1mn(),



data_tron_tsn(),
1sm_addr(),
ste_on:

~carry_outQ
i

//NEED T0 MODIFY THIS BLOCK SO THAT BIT 6 OF (Y&(4-1)) IS CLEARED
defparan variable_cir_shift_C.A_REG_INITIAL_VALUE = 327h00000020;

flag 10v0),
.data_to_1sm(),
.data_fros_1sn0),
C1om_aaar(y,
Cem_urit

o0,
Lcarry.in0),
~carry_outQ

B

Gt VAARIA. o ahsee D TMSTHGTINACD S (1A0T) {OPACNO.ARD | “BO_IY | “OPBLNOLARG |
“SHIFT_BBA | ‘OUT_AL | ‘LOAD_O_REG);
Con112,00% vestabie st AL

el

rst(rsn),
a_in0(cir2),
“b1m0(1op),
el
375000)

_data_tron_1m0),
“1sm_aadr(),
Asmwrite_en(),
arry_in0),
arry.ous

{7 08 the tm values cogetier, Ciniuhed circalar shitt e

Gotparan variable.cir. shite.E. IISTRIGTION.0 = (-AOLIN | ‘OPA NO_REG | 50.11 |
“0PB_NO_REG | ‘SHIFT_OFF | ‘ALUOR | ‘OUT_ALU | ‘LOAD_O_REG)
052112_DPU variable_cir_shift EC

i
~carry_in0),

A-8



-carry_out()
endmodule

// MODULE DESCRIPTION FOR THE RCS DATA PATH

module rcbdp(clk, rst, iblocki_ctl, iblock2 ctl,
addr_ct1,shifter ctl,L9N_ctl, vaiter_ctl, cownter_ctl,
watt_done_flag, coust_dome_f1:

2
output. count_done_flag;

7/ internal wiri:
hre 13101 w1, %2, 3, v, vE;
wire [31:0] lsn_read.data, lan_read.addr, memData;

7/ 4D contiguration.
7/ CAY USE THE A AND B REGS TO LOAD I THE VALUES FOR PLATNTEXT (A) AND S[0]
dotparam iblock1.A_REG_INITIAL VALUE = 32'hObbbdScs;

defparan 1block1.B_REG_INTTIAL VALUE = 32"

L B SR o A e
etparen iblock!. DSTRUCTION0 = ('A0.1% | PLIEG | B0.18 | ‘060805
FF | ‘ALU_ADD | ‘OVT_ALU | ‘LOAD_O_REG);
/1 pas:
rtharen Solocki TNSTRUCTION.1 = (‘4113 | “0PANDREG | ‘LOAD_AREG |
‘BO_TN | ‘OPB_NO_REG |‘SHIFT_OFF | ‘ALU_PASSA | ‘OUT_ALU | ‘LOAD_

// HOLD TNSTRUCTION

eyl B
‘SHIFT_OFF | ‘ALU_PASSA | ‘OUT_ALU | 'LOAD_O_REG);

csate2.0p0 sbloak1(
1k(elk),

iy

-earry_out Q)

% configuration.
7/ CAM USE THE A AND B REGS T0 LOAD IN THE VALUES FOR PLAINTEXT (8) AMD S[1].
ety e L b T AU < X niaaeh;

defparan iblock?.B_RES_INITIAL_VALUE

A Dl GPERATION TO LOAD VALUES
e Imloost STHTIOE 0 o (LY, (eI | B i e
‘SHIFT_OFF | ALUADD | ‘OUT_ALU | ‘LOAD.

1/ pass &



dofparan iblock2. THSTRUCTION 1 = (‘AL_IN | ‘OPA_NO_REG! ‘LOAD_A_REG |
“BO_TN | 0PB_NO_REG |‘SHIFT_OFF | ‘ALUPASSA | ‘OUT_ALU | ‘LOAD_O_REG);

1/ o o8

St tparan iolock? NSTRICTION.2 = C*A_KLU_IN | “OPA_REG | “LOKD.A_WES
| ‘BO_IN |‘SHIFT_OFF | ‘ALU_PASSA | ‘OVT_ALU | 'LOAD.C
CS2112_DPU 1block2(

N

egurig
~carry_in()
~carry_out O

7/ 40D contiguratio
Geparan ada TNSTRUGTION.0 = (‘A0_TN | “OPA_NO_RES | “LOAD.A_REG | il
“0PB_NO_REG| LOAD_B_REG |'SRIFT_OFF | 'ALU_ADD | ‘OUT_ALU | ‘LOAD_O.

7/ HOLD nstruction
defparan add1.INSTRUGTTON_1 = (‘AO_IN | ‘OPAREG | “OPB_REG | ‘BO_TN |
HIFT_OFF | ‘ALU_ADD | ‘OUT_ALU | ‘LOAD_O_REG)

o im0Ces),

an_adar (adr_ce1),

carry_out O

%
77 XOR contiguration. ..
dafparan zort.INSTRUCTION.O = (AO_IN | “OPA_NO_REG | BO_IN | “OPB_NO_REG |
“SHIFT_OFF | ‘ALU_XOR | ‘OUT_ALD | ‘LOAD_O_REG)
csanialbr sord(
1K

“lem_addr (),
snvrite_en(),
~carry_in0),
carry_out()

2

7/ LW Address generat

atpatan aderden.A_RBO. TTTAL VALLE = 52°

detparon sddrGen. B_REG_INITIAL VALUE = 52°h0; //LOAD VALUE OF STARTING ADDRESS

A-10



defparan addxGen.0_REG_INITIAL VALUE = 32'h0;

1/ 1034 instruction
futheren strvin ETRICHIN. 0o (UKL TR ke JCnea  fopic
“OPB_REG| ‘ALU_PASSB | ‘OUT_LSH | ‘LOAD_O_REG)

// Ban instruction

dofparan addrGen.INSTRUCTION 1 = (‘A_ALU_IN | ‘LOAD_A_REG | ‘OPAREG |
“OPB_NO_REG| ‘ALU_ADD | ‘OUT_LSH | ‘LOAD_O_REG | ‘KN_4);

11 ¥old smstruction

dofparan addrGen. INSTRUCTION 2 = (‘A_ALU_IN | ‘HOLD_A_REG | ‘OPAREG |
“OPB_NO_REG | 'Aw PASSA | OUT_LSH | ‘KN_4);

~con_addr (1SH_ct1) ,

carry_out ()

12 w5 it S 15wy

defparan memkr:

dofparan memArray. ADDR. i T

defparan memkrray.ADDR_MATCH_ENABLE_MASK = 4°h(

de!pﬂrn eheeay VRITE. PORT NIDTH = LSH_PORT 128,525
an memkrray READ_PORT_VIDTH = ‘LSN_PORT_SIZE_32;

S22 t5n memhrrayC

Lek(eln),

Lsn_write_addr(),
lsn_vrite_data(),
“lsn_vrite_enQ),
“lom_read_addr (1sm_read_addr) ,
“1sn_read_data(1sm_read_data),
chain_data_in(32'50)

//Counter is used for keeping track of the musber of Tounds completed.

defparan counter.B_REG_INITIAL_VALUE = 32’h0000000C;
/1 inc instructio
Safpd comte DTICIOES S CCATO 0 | D, Acpmd ([ ceiama
“OPB_NO_REG | ALU_ADD | ‘OUT_ALU | ‘LOAD_O_REG |
71 S bisveucii

an counter. INSTRUCTION.1 = (‘A_ALU_IN | ‘LOAD_A_REG |*OPA_REG |
Caphgn | IMDLPASSH | (A | SLADL0LABG | PLAGLED)S
7/ roset instruction
defparan counter. INSTRUCTION_2 = (‘A_ZERO_IN | ‘LOKD_AREG | “OPA_REG |
“0PB_WO_REG | ‘ALU_PASSA | ‘OUT_ALU | ‘LOAD_0_REG);
©52112.DP0 counter (

write_en(),
-carry_in0),



~carry_out O
%

77 Weed a vaiting Block for the controller to wait for the cireular
1/snitt to be conpleted

defparan vaiter.A_REG_INITIAL VALUE = 32’0

fpssen weltes TSTRIGHIIN. 0.« U 0002 1o R 14Eiio 0 i
1°ALU_PASS | ‘OUT_ALD) ;

// run instructio

Gatpara vaster. INSTRUCTION1 = (‘B_ALU_TN | “HOLD_A_REG | ‘LOKD_B_REG
| “OPA_REG | ‘OPB_REG |‘ALU_TNC | ‘OUT_ALU | ‘FLAG_EQ);

),
Aputpur,

sn_addr (vaiter_ctl),
iag high(uate.done. 1ag)

_carry_out Q)

endnodule

A.5 Unsigned Integer Multiplier Module Con-
troller

(MR bt L1
“define TDLE 3

Db

“define WUL2 3'42

‘define MULG 3°d5
module us_multiplier_ctl(
clk,

siga_flag,
output_ctl);

input clk;

rog [2:0] sign_tlag delayt;
reg [2:0] sign_flag delay2;
rog [2:0] siga flag delay3;

//DEFINE. THE SEQUENTIAL BLOCK FOR THE CONTROLLER
always @(posedge c1K)

ogin
if (rat==1) begin



current_state <= ‘IDLE:
sign_flag delayl = 3'b000;
sign_flag delay2 = 3'5000;
.,.._n.&u.,: - 375000

£ ctl = 375000.

siga_flag delay2,
sign_flag delay? = siga_flag delayl:
end
ena
7 Combizatorial block for the comtroler module
alvays e(currest_state) begin

_state)

casel

//ASSIGN TO OUTPUT LINES
“IDLE: begin

next_star

if(sign_lag==1"b1) begin

sign_flag delayt = 3700013
elze begis

M tlag duiayt = 310000)

ate = ‘WUL2:
3t(sign_flag==1'b1) begin
siga_flag delayl = 37b001;
end clse begin

e = 35000;
e

begin
next_state =

1f(sign_flag=1"b1) begin
sign_flag delayl = 3'M001;

begin
sign_flag_delayl = 3'6000;
end

end

begin
next_state = ‘IDLE:



4£(sign_tlag==1"b1) begin
cign_flag delagl = 37001;
end else beg

sign_flag delayl = 3°b000;
ond

end

A.6 Unsigned Integer Multiplier Module Datap-
ath

i G a4 o RS S

“include "CS2112_Instructions. inc!
ol St e (o Fopein,stgn.t1ag, xes_2_ce1 mulsipiier ouspus
ex!

13
Ve T31.01 VE-u2,08 ek 55 e, 0,40, 410, w11, 412,13, w14, delay:

dofparan sign_detect1.B_REG_INITIAL_VALUE = 32’h00008000:
dofparan sign_detect1.A_REG_INITIAL_VALUE = 32’h00008000;
Bktpares atgaderacel TISTAICTION. 0o(1AG N1 TpA_AND ke o 1 -gen e

(G| ‘HOLD_B_REG| ‘SHIFT_OFF| “ALU_PASSA| ‘OUT_ALU| ‘OLD_O_REG| ‘FLAC_EQ);
200D siga.aseacr(

carry_out()

defparan sign_detect2.A_REC_INITIAL VALUE = 32'hTEST12€
defparan sign_detect2. INSTRUCTION_0=(*A0_TN| ‘OPA_AND_KASKI ‘B0_IN|
“OPB_REG| “HOLD_A_KEG) HOLD_8_REG | ‘SNIFT_OFF | ‘ALU_PASSA| ‘OUT_AL| ‘LOAD_O_REG) ;
©52112_DPU sign_detect2(
“elx(eli),
rstlrst),
-a_in0(op_in),
b_in0()
~dpu_output (ut),
~con_addr (3'5000) ,

Len_srite.en0),

A-14



Lcarry_in(),
~carry_out()
%

defparas lov_lov_mul. TUSTRUCTION O = (‘NUL_AO_TN | “MUL_LOAD_A_REG

oo TH oA AR ‘Wl L0 L1005 ] WO O0T1 L L0AD_ 080§
dotparan low_low_mul.A_REG_INITIAL_VALUE = 327h00000000;

defparan lov_lov_mil B_REG_INITIAL_VALUE = 32°500000000:

52112 MUL Low_low_m1(
Ik(eTn),
_ratest),
“a_in0(en),
b_in0(u1),
mult_output(v3),
can_addx (375000

)

dofparas high lou_mul.INSTRUCTION_O » (‘MUL_AO_IN |‘MUL_LOAD_A.
om0 o1 WL aD.BLRER. 1A 816 | TOL 5L 16 | -FOLLAUT | R LokD_0_8E0):
dofparan high_lou_mul.A_REG_INITIAL VALUE = 32’h00000000;
dofparas high_low_mul.B_REG_INITIAL_VALUE = 32’h00000000;
02112 NUL high_low_mul(

~elk(en),

Crst(rst),

a_in0(e1),

“b_1n0(a),

“mult_output (s2),

com_addr (36000)

¥

1/ DRU WAME: delay_
satperes e SSTRUCTION 0mC: 0141 ‘0PA_K0_REG1 “50_1 ‘0P._Rec!

*LOAD_B_REG] ‘SHTFT_OFF | ‘ALU_PASSE| ‘OUT_ALU] ‘LOAD_0_REG) ;
By outay.i¢

oo o
+a_in00),
bin0(s2),
~dpu_output (wd)
~con_addr (3'5000) ,

“aata_to_1a0),
iata_fron_1sa0),

carry_in
~carry_out()

7/ DPU NANE: delay
dotparmm dtsinar. ASTRICTION o0+ 0_ i1 ‘0PA_REG] ‘. N1 90
REGI ‘LOAD, | SHIFT_OFF| *ALU_PASSB] ‘OUT_ALD| ‘LOAD_O_REG) ;

CERAL3DRY aadsaeinn(

im0

“len_write_en().
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~carry_in0),
_carry_out()
%

1/ 2 cix delay

INSTRUCTION_O=(*AO_TN| *OPA_REG| ‘50_IN) 'OPB_REG! ‘LOAD_A_REG|'LOAD_8_REGI

77 2 cix delay
defpares delay 2. _0=(*40_T¥| ‘OPA_KECI *B0_IN| *0PB_REG| *LOAD_A_REG| ‘LOAD._8_REG
“SHIFT_OFF|*ALD_PASSB| ‘OUT_ALDILOAD_0_REG) ;

// 1 ek dotay
defparsn delay_4. INSTRUCTION.
_REG| *SRIFT_OFF| *ALU.
S2112_DPU delay_4(
(1),

0-(*A0_IN|'OPA_NO_RE| ‘BO_IN| ‘OPB_NO_REG| ‘LOAD_A_REG|
ASSB| ‘OUT_AL| ‘LDAD_0_REG) ;

%

defparan add_t.INSTRUCTION_O=(*A0_T¥I ‘OPA_REG| ‘50_I| ‘OPB_REGI'LOAD_A_REG ‘LOAD_3_REG|
“LSL|‘SHFT_ANT_161 ‘ALU_ADD| ‘OUT_ALU| LOAD_O_REG):
CS2112.DP 2dd_1(

-clk(em),



rst(rst),

Ty,
“carcy_out )
03
dofparan add_2. INSTRUCTION_0=(*AO_IN| ‘OPA_REGI ‘BO_IN| ‘OPB_REG| ‘LOAD_A_REG|
‘LOAD_B_REG! ‘LSL| ‘SHFT_ANT_16|‘ALU_ADD] ‘OUT_ALU| ‘L0AD_0_REG)
€52112.DPY add_2(
clx(e1n),
rstlrst),
a_in0(u5) ,

_iz00u),
“dpu_output s6),

datoaran add. 3 TUSTROCTIC. (A0 TAI P4 ARG 50,5105, 880) 100,850
REG| “LSL| ‘SHFT_AMT_1| ‘ALU_ADD| *OUT_ALU| ‘LOAD_0_REG);

_rot(r
~a_in0(delay),
“b_in0(s6),
dpu_output (#12),
_adar (3

flag high(),

carry_out ()

1

defparan Tos_1.A_REG_INITIAL VALUE = 32’h8000000K
dotparan ros_1. INSTRUCTION_O=(‘AO_IN| ‘0PA_REG] ‘BO_IN| 0PB_REG| ‘HOLD_A_REG|
“LOAD_B_REGI ‘LSLI ‘SHFT_ANT_171°ALU_ADD| ‘OUT_ALU| ‘LOAD_O_REG) ;

©52112_DPU res_1(

~con_addr (375000) ,



“Lsn_urite_en0),
~carry_in0),
carry_out()
]

datyucan ros. 2. JHSTRIGTIIN.0=(' A0 LN| ‘GPA_8O.REDY 50. | 00,40 Bgc(
“LOAD_A_REG| “HOLD_B_REG| SHIFT_OFF | *ALU_PASSA| ‘OUT_ALU|*

defparan res_2. INSTRUCTION_1=(* AO_IN| ‘0PA_NO_REG| ‘EO_TN | ‘i ope_ub. 1
“LOAD_A_REG| ‘HOLD_B_REG| ‘SHIFT_OFF | ‘ALU_ADD] ‘OUT_ALU] ‘LOAD_O_REG) ;
€52112_DPU res_2(

L2 1n0(:8),
~dpu_output (v7)
~cam_sadr (res_2.ct1),
_flag high(),

“flag 1ow0),
~data_to_lsn(),
-data_tron_lsn0),

carzy_in(),
~carry_out()

defparan fixed]. INSTRUCTION_O=(*AO_IN| ‘OPA_NO_REG| ‘BO_IN| ‘OPB_N0_REG|
"HOLD_A_REG! ‘HOLD_B_REG| ‘LSL| ‘SHFT_ANT_S| ‘ALU_PASSB| ‘OUT_ALUI ‘LOAD_O_REG) ;
082112_DPU fixed(

elxCen),

rst(rst),

“ain00),

b n0(u12),

~dpu_output (v13),

csm_addr (3'b000),

~carry_outO)
)

defparan fixed2. TNSTRUCTION_O=(*AO_IN|‘0PA_NO_REG] ‘BO_IN| ‘OP3_NO_REGI
“HOLD_o_REG| ‘HOLD_B_REG| ‘LSR| ‘SHFT_ANT_27|ALU_PASSB| ‘OUT_ALU] ‘LOKD_0_REG);
€2112_DPU 1xea2(

ClkCeR),

rst(zst),

~ain00),
b 1n0(212),
“dpu_output (w14,
_cem_addr(376000) ,

~carry_out()
43

dofparan f1xed3. TNSTRUCTION_O=(*A0_IN|‘OPA_NO_REG| ‘BO_IN | ‘OP3_NO_REG| ‘HOLD_A _REGI
“HOLD_B_REG| ‘SHIFT_OFF | ‘ALU_OR| ‘OUT_ALU| ‘LOAD_0_REG) ;

52112 DPU fixea3(



A.7 Verilog Testbench For Controlling RC5 Itera-
tive Pipeline
aotule res_pipaline_th

reg clk;
reg rst;

vire [31:0) stagel_to_2a;

il o

wire [31:0] bomsprgd

v o g s

reg go_tnit.1,
gorwn_t,
go_run_external_;

reg go.init.2,
go_run.2,
go_run_external 2;
reg go_init 3,
go.run3,
go_run_external 3;

reg go_init4,



wire half_done_3;

rch_balf_rownd_ctl ctl1(
PR

CrstGrst),

-go_tnit(go_tait 1),

~go_runlgo_rua_1),

-go_ren_external (go_run_extersal 1),

Sl g e ),

“iblecki_cel(iblocki_ct11),

-iblock2_ctl(iblock2_ctl_1),

-addr_ctl(addr_ct1 1),

-shifter_ct12(shifter_ct12 1),
Balf_done(bal_done_1)

),

re5_half_rouad_cel ct12(

Lelx(an),

ratcest),

_go_tatt(go_tnit 2),
go_run(go_run 2),

go_ren. (go_run_extersal 2),
LS ctl (¢ ;

~1blockl_ct)(1blockl _ce1.2),
-iblock2_ctl(iblock2_ctl 2),
<t (addr_ct1.2),
Lehifter_ct12(ebitter_ct12.2),
half_done(half_done_2)

)

reb_balf_rownd_ct1 ct13(

Lelk(eri),

Lrstlran),

“go_init (go_init_3),

wammn,
1go_run_oxternal 3),

Eon e o eal 5

“iblock1_ce1(iblocki_ct1.3),

iblocia_cer(sblockz c1 3),

ot (addr_cv)_3)..



_shifter_ct12(shifter_ct12.3),
halt_done(half_done_3)

re5_slicet_dp stage1(
“elx(eR),
_rst(rst)
ven_blocki_ctl(iblocki_ctl_1),
oven_iblock2_ctl(iblock2_ctl_1) ,
ron. adde. ot e ot 1),
en_shifter_ct12(ahifter_ct12.1),
~even_LSH_ctl(LS_ct1.1),
iblockt_ctl(iblocki ctl_1),
-00d_{blockz_ct1 (sbockz_ct1_1),
addr_ctl(addr_ct1_1),
Codd_ahifter_ct12(shifter ct12 1),

<5 _slice dp stage2(

~eI(emm) .

rstlest),
even_iblocki_ctl(iblockl.ctl 2),

odd_shifter_ct12(shifter_ct12.2),
o0dd_LSH_cel(LSH_ct1.2),

- tnput1 (stagel_to_2a),
inputatesagel_to.2),
-inputa(stage
.x.mu.:.‘-n 0_24),

-out(stage2_to_34)
%

res_eliced.dp stages(
),

Lrst(rst),
~evea_iblocki_ctl (iblocki_ctl 3),
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~even_iblock2_ctl(1block2 ct1 3),
-even_addr_ctl(addr_ct1 3),
-even_shifter_ct12(shifter_ct12 3),
~even_LS_ct1 (LM _ct1_3),
-o4d_iblock1_ctl(iblocki_ctl 3),
-0dd_iblock2_ctl(1blockz_ct]_3),
-0dd_addr_ctl(addr_ct1.3),

_out3 ),

-outd(stage3_to_4d)

reb_sliced_dp staged(

Lelk(eK),

Lrstlrst),

~even_iblock1_ctl(iblocki_ctl_4),

v loda-en (MloekLot) 0,
even_addr_ct(addr.

~even_shifter._ n:u(nuux ct12.4),

fperyroiipey e

“odd_iblock2_ce1 (1blockz_ct1_4)

-0dd_addr_ct] (addr_ct)_4),

-0dd_shifter_ct12(shifter_ct12.4),

imitial ax <= 1
alvays @(clk) clx <= 85 “clk:
inttial begin

0

“include “rcSKeysStagela. inclode"
“include "rcSKeysStagelb. include®
“inclade “rcSKeysStageZa.include®
“include “rcSKeysStage2b. includ

‘include “rcSKeysStageda. include”
“include “rcSKeyaStagedb. includ

“include "rcSKeysStageda. includ
“include “rcSKeysStagoedb. include

ot <= 1750;
#10

ot <= 1'b1;

#20

rat <= 1760;

0

external_inputl <= 32'h9bbbdAcE;
external_input3 <= 32'h9bbbdcs;

go_run_external 1 <= 1'b1;
external_tnput2 <= $2'h1a37471b;



external_isputd <= 32'AIASTETEN;

10
go_run_extermal 1
100
gormn1 <= 17B1;
0
go_run_1 <= 1700;
2100
go_rum 1 <= 1'B1;

10
go_run 1 <= 1700;

#100

e

1750;

b

1750;

e

1750;

go_run_external 2
20
go_run_external 2
100
gorun 2 <= 1°b1;
20
gorm 2 <= 170;
100
gorm 2 <= 1b1;
10
go_rm 2 <= 1°00;

s100
gorm 2 <= 17b1;
0

go_run_2 <= 1°0;

100
go_rm_2 <= 1'b1;

go_run_2 <= 1°b0;

go_run_2 <= 1°b1;

go_run_2 <= 1700;

go_run_external 3
0
go_run_external 3

#100
go_run 3 < 1°b1;
o

go_run_3 <= 1°b0;

<= 10;

<= 101

<= 1750;

< 11

<= 1160



Appendix B

ANSI C Code for Select Implementations

B.1 RC5 C Code For Testing

/e

ANSI C Inplmentation of RC5-w/r/b encryption cipher.

Taken from "The RC5 Encryption Algorithim", Ronald L. Rivest
MIT Laboratory for Computer Science.

Modified May 25th, 2001
Jason Rhinelander

Modified July 9th, 2001

Jason Rhinelander

C code will make function call and verify correct output.
%

#include <stdio.h>
typedef unsigned long int WORD;  // 4 bytes in WORD

#define w 32 // word size in bits
#define r 12 // number of rounds

#define b 16 // mumber of bytes in key
#define c 4 // mumber of words in key

1/ ¢ = max(1,ciel(8+b/w)

#define t 26 // size of table § = 2¢(r+1)

WORD S[128) __attribute__((aligned (16)));

WORD $2[128] __attribute__((aligned (16)));

WORD pt[2] __attribute__((aligned (16)));

WORD ce1(2] ((aligoed (16)));

int ct2[2) __attribute ((aligned (16)));
attribute__((aligned (16)));

WORD Q=0x9e3779b9; // Magic constants for gemeration of
/7 the subkeys.
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#pragma CMLN_FUNC_DEF rcStop(int in dp.iblockl.dpu.a,
int in dp.iblock2.dpu.a,int in dp.memArray.lsm[128],
int out *dp.iblockl.dpu.o ,int out *dp.addl.dpu.o)

/7 Need to define rotation operators. Note x must be unsigned to get
1/ logical right shift.

#define ROTL(x,y) (((x)<<(y&(w-1))) | ((x)>>(w-(y&(u-1)))))

#define ROTR(x,y) ((G>>(y&G-1))) | ((x)<<(e=(y&=1)))))

// The encryption function.

void Tcb_encrypt(WORD *pt, WORD +ct) // NB: 2 words in pt and ct

{

for (i=1;i<
ROTL(A"B,B))+5[2+i];
B=(ROTL(B"A,A))+8[2¥i+1];
}

ct0] = A;
ctl1] =
b |

// The Decryption functio
void rcs_decrypt (WORD ¥ct, ™ vom +pt)

{
WORD 1,A=ct[0] ,B=ct[1];

for (i=r;1>0;1--){
B=ROTR(B-S[2+i+11,A)"A;
A=ROTR(A-S[2+i] ,B)"B;

1

ptl1] = B-S[1];
ptlo] = A-s[0];
3

/7 Setup function for the § array.
void Tc5_setup(unsigned char *Key)

WORD L[c]

// Init L and then S then mix key into
for(i=b-1,Llc-11=0; il=-1; M L(x/u] (L[i/u]<<8)+Key[il; }
Ji=1; i<t; 140 S0 = SH-1140; }

<3xtikre, 1= (1417, = (1) %E)
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= S[i] = ROTL(S[i]+A+B,3);

{
A
B = L[] = ROTL(L[j]+A+B, (A+B));
3

for(i=0;i<t-2;1++){52[i]=S[i+2];}
}

/+ hny other code following this is for testing purposes
(ex generation the S[] array) */

int mainO{

int i;
pt[1]=0x21A5DBEE;
pt [0]=0x154BEF6D;

//for(i = 0; i<b; i++){key[i] = 0x00;}

key[15] = 0x91;
key[14] = Ox5F;
key[13] = 0x46;

key[12] = 0x19;
key[11] = OxBE;
key[10] = Oxd1;
key[9] = 0xB2;

key(8] = 0x51;
key[7] = 0x63;
key[6] = 0x55;
key[s] = 0xs;
key[4] = 0x01;
key[3] = 0x10;
key[2] xA9;
key(1]

XCE;

keyl[0] = 0x91;

rc5_setup(key);

/% Put the S[] into the lsm for the hardvare call +/
re5_encrypt (pt,ctl);

#pragna GMLN_FUNC_CALL rcStop() SLICES=(0:1)
rcbtop(S[01,811],52,4ct2[0] ,&ct2[1])5
i£((ct1[0]==ct2[0]) && (ct1[1]==ct2(1])){asm volatile ("mov r8, 0x10");}
else{asn volatile ("mov r8, 0x20");}

}

B.2 RC6 C Code For Testing

//#include "RC6.cmln.h"
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7%

ANSI C Implmentation of RC6-w/r/b encryption cipher.
KERNAL MODIFIED CODE for testing

10/10/02

This file is a full testable implementation of RC6
The key must be the same for all blocks of plaintext.

In the Main() an easy way to change the plaintext values
that are going into the cipher are to change tl
arithuetic parameters that are modifying the

seed values.

*/

#include <stdio.h>

typedef unsigned long int WORD;  // 4 bytes in WORD

#define w 32 // word size in bits
#define r 20 // number of rounds

#define b 16 // number of bytes in key
#define ¢ 4 // number of words in a byte
/1 ¢ = max(1,ciel (8+b/w)

#define t 44 // size of table § = 2x(r+1)

WORD $[128] __attribute__((aligned (16))); // global visibility
WORD evenS[128] __attribute__((aligned (16)));
attribute__((aligned (16)));
((ahgned 1e);
((aligned (16)));

attribute__((aligned (16)));
WORD D[128] __attribute__((aligned (16)));

WORD ctA[128] __attribute__((aligned (16)));
((aligned (16)));
((aligned (16)));
WORD ctD[128) __au_ribn\‘_e__((aligned aeN;

WORD ctAfab[128]
WORD ctBfab[128]
WORD ctCfab[128]
WORD ctDfab[128]

((aligned (16)));
((aligned (16)));
((aligned (16)));
((aligned (16)));

// Magic constants for generation of
/7 the 801
WORD P=0xb7e15163, Q = 0x9e3779b9;

#tpragna CMLN_FUNC_DEF rc6top(in int dp.rcounter.dpu.a,

in int dp.Ardien.rdWesLSM.1su[128],

in int dp.BrdMem.rdMemLSM.1su[128],in int dp.CrdMem.rdMemLSH.lem(128],
in int dp.DrdMen.rdMenlSH.1sn[126],in int dp.initl.dpu.a,

in int dp.init2.dpu.a,in int dp.finall.dpu.a,

in int dp.final2.dpu.a,in int d 1sn[128]),
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in int dp.evenSubkeyMen.lsm[128],
out int dp.AurMen.urMen.lsm[128] out int dp.BurMen.wrMem.lsn[128],
out int dp.CurMen.urMen.1sn[128] ,out int dp.DwrMem.vrMen.lsm(128])

// Need to define rotation operators. Note x must be unsigned to get
// logical right shift.

#define ROTL(x,y) (((0)<<(y&(v-1))) | ((x)>>(w-(y&(¥-1)))))

#define ROTR(x,y) ((()>>(yE(w-1))) | (()<<(u-(yk(-1)))))

// The encryption function.
void rc6_encrypt(WORD *pt, WORD #ct) // NB: 2 words in pt and ct
{

WORD i, B=pt[1]+5[0],D=pt[3]+S[1],A=pt[0],C=pt(2];
WORD tempt,temp2, temp3;

for (i=1;i<=r;it+){
‘templ = ROTL((B*(24B+1)),5);
temp2 = ROTL((Dx(2#D+1)),5);
A=(ROTL(A"templ, temp2))+S[2+i];
C=(ROTL(C"temp2, temp1)) +S[2%i+1];

A=A+ S[2ere2];
C = C + S[2+r+3];
ctfo] = A;

ctl1] = B;

ctl2] = C;

ctl3] = D;

}

// Setup function for the § array.
void rc6_setup(unsigned char +Key)

{
// WOTE ENTER KEY HERE!
WORD L[

WORD A,B;
int a=0,5%0,1=0, j=0,v=0,u=w/8;
sfo]=p;

i a<=(2+r+3); a+t){S[al=S[a-1140;}

B=0;
v = 3 * max0f(c,2¢4r+4);
for(s = 1;5<=v;s+0){
A = ROTL(S[i)+A+B,3);

SM) = A;
B = ROTL(L[j]+A+B,A+B);
LG31
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i = (+1)%(2+r44);
3= Gedle;

3

3

int maxOf(int opl, imt op2){
if (opt>op2){return opi:}
else{return op2;}

b

/hny other code following this is for testing purposes (
ex generation the S[] array)s/
int main(void){
1/ create arrays for input buffers
1,53
WORD ptIn(4];
WORD ctOut[4];

rounds = 0x00000014;
pass = 0;

//pseudo randon plaintext

clo! y
D[0]=0xf£455980;

for(i=1;3<128;i+0){
(A[i-1]+0xef456234) YOI FLL£L1S;
BLi]=(0x459001££+A (1] LOXLLLLL£1S;
C[1]=(0x023e£031+B(1]) LOxEL£115£S;
DLi]=(0x00260081+C (1)) 40Xt £L£££2E;

}

rc6_setup(key) ;
for(i=2;1<(£-2);i+4){
1£((i%2)==0){evenS((i-2)/2) = S[il;}
elsefoddS[(i-3)/2] = S(il;}

}

for(i=0;i<19;1+4){

prin[01=ALil;
ptin(1]=Blil;
ptIn[2]=Clil;
ptIn(3]=D(il;

6_encrypt (ptIn,ctOut)
ctA[il=ctOut[0] ;
ctBlil=ctOut[1];
ctClil=ctOut [2!
ctD[i]=ctOut[3];
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3

// now make the hardware cal.

#pragna CMLN_FUNC_CALL rcﬁtop() SLICES=(0:4)
rc6top(rounds,A,B,C,D,5(01,8(1],8(t-2],8[t-1] ,0ddS, evenS, ctAfab,
ctBfab, ctCfab, ctDfab) ;

/* Ve will now compare values for correctness
Range of valid data [blockO -> block18]:

ctAfab[25] -> ctAfab(43]
ctBfab[23] -> ctBfab[41]
ctCfab[25] -> ctCfab(43]
ctbfab[23] -> ctDtab[41]

+/
for (1=0;1<19; 1+4){

if (ctA[il==ctAfab[2+i] 2& ctBlil==ctBfab[i] && ctCli]
&& ctD[i)==ctDfab[i]){

pass=pass+1;

}

if (pass==19){asm volatile ("mov r8, 0x10");}
else{asn volatile ("mov r8, 0x20");}

return 0;

¥
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