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n " “Information concerning acoustic velocities plays an imporfant role:
. oIS i
in seismic analysis. Acoustu: ve]oclty of the medium can be apprcx—
imated by a pa]ynomla] ﬁmctmn ofgdepdh. The concept that veloctty -

varies hnear}y with depth has been considered by many researchers

amedium .l . P .
In this study, the linear vetocity praﬁﬂe approach has been\useﬂ to - *
e . ;- - )
. estimate the.parameters. of the med,ium. Thie nomal movenut relation-
B L ship for a single zern—d!pping Veﬂector has been derived: - A me\‘.hu—-,
dology for obtammg the pnraneters such as the reflector geometry
and the constant ve1uc1t’y “gradient of the medium from the surface

chservnb]e x -t data is pv‘esented.A .

,\ : Further, the linear velocity brofi]e model for.a sloping reflector has

been derived based on the normal ray ana’lysir Based. on the knowledge
sof the velocity profile the least squares techmque has beén used to

1dentify che reflector geunetry from reflection data. The x - t data

ABSTRACT - . ) ' o

“ has been” nbmned by s)nf;(ng the shot/receiver position yragressively -

A comparat-lve ana1ysis has been made to obtain the effect of constant

" N ve]ocn'.y gradient in seismic analysis.
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'Me present here a br1eF summary of the :nntentq the suhseqn&nt chapters.

e S Detariled heferences drthe Titeratureare not given here as they are |

présented at the appropriate piints in’the subsequent matena].

. % X . » .
) © " In Chaptefl I, the seismjc objectivés are briefly discussed in order to*

facilitate the n}derstandfng\ of the problem. Data gathering, processing,
nigration and irterpretation are. the min points considered. - Objectives

of the thesis are also présented.

i

In Chapter II; the fundamentals of acoustic wave propagation and“their .

relations to the parameters of the media are discus;ed The different
ray theoretical appruaches to the wave equation are presented The .
4 . behav.jour of the raypéth,s in a vertically inhomogeneous medium are
1 -considered.- The analysis pertaining" to the rnypm.s in a constant
velocity, mediun and in an one-d(mens{ona]]y continuous 'lmear veloclty Hart

grarhent medium is prgsented L . :

. ln ;he'cnn:]uding part of, this chapter the a:a]ysis of ;eflection

! phenomena at an inter_face is considéred. This an'alysisvgives some . H
undersu‘nding about the reflection coefficient and_ the acoustic 1mpédance A H
contrast re]atiunsmp at medmm boundaries, 1t shous the effect of '
incxdence angle on reﬂecﬂondnd truy\smission coeffiments. ' \

Chapter Hl is di'v'ilded |nto twm par‘ts -Aand B In'part A, the segment-

. N j wise constant ve1oc1ty profﬂ’multﬂnyered ned1um is considered. Also,

|
A « the methuds of estimating the reflector geometry from reflection data has
% ) . been pr;esented. pPart B is devoted to the analysls pertaining to the ’Hnear

b , T A -




xi

velocity profile model. A zero-dipping reflector is considered. The -
nnfmal moveout relationship is derived in the form yhich is suin.ble fo_r
obtaining the parameters of the medium. The least squarestechnigue is
used to obtain the parameters.. The simulation results are.presented.

In Chavte'r 1V, the-linear velocity profile model for a dipping reflector
has been cunsidered based on the normal ray nnnlysis A suttablez(th-
ematical model has been fom\u]nted for obtaining the reflector, geuletry

from reflection data. A method of nbta(ning reflection data 'ls presented.

Chapter V is devoted to an error ana1ysis of using the constant velocity

profile model to estimate the reflector geometry in & Tinear’ velocity
prnf‘fle mediuh. A linear ve‘loclq: profile medium- is considered in the «
forward computation, i.e..in ohta‘ining the data. In the reverse compu-
tation, i.e. in estimating the parameters of the medium an assumption is

made that thé velocity of the med ium is a cnnsnnt. equal to the average

. velocity of the data generating, systu. The resultant errors of the

estimates are obtained for the mise-free simulation data. -

In Chapter VI, the main conclusions and further areas of ressaeh are

presented.

I ;
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CHAPTER - T

O'BJECTIVES OF ~THE E‘XPDRATlQH'SElSMICS

¢




1.1 SEISMIC OBJECTIVES
Seismic encopasses the broad range of phenomeni invélving natural
or deliberate excitation of the earth or a Tocal section of the earth's
surface, the attendant wave propadation, and diverse signal and
mediun interactions involved in such phenanena. * Sefsmic phencnena

involve a broad range of physical principles, and a comprehension of

the phenomena ipvolves an interdisciplinary approach with aspects from .

geology, physical and mechanical properties of substances, rock

) A
mechanics, engineering, oceanography and sedimentology, data acquisition

and processing, mathematics and signal theory, and others. .
. \ \

One generally makes a distinction between seismology and gxplorat_lyn
sei;nii:s. Seismology is a branch of geophysics, which is concern;d
with deep-earth phenomena, strong ground motion and Felated earth-*
quake hazard, volcanoes and related man-caused disturbances, etc.
Exploration seismics is identified as pertains generally to the
search fér hydrocarbon ﬂnd'lﬂ\!"ﬂ] resources, and involving very deli-
berate probing signal and extensive sensing and |nterpretat:lon of the
med iun responses.‘ Other applications in exploration seismics pertain
to study of geological média in }genaral. study of deep nqd shallow
ocean sediments within the framework of oceanography, and geotechnical
and engineeulng shid'es.of media. - —
' . .
The br(* objective of exploratory ‘seismic analysis is to extract from
the responses, esumte; of medium geometry, composition, and parameters
which are influential in the intefn’ctlan of signal and media. Seismic

analysis is associated with geophysical modeling (model building is a




£
systematic coordination of theoretical and empirical elements of the
) knowledge into a joint construct). In seismics, the real earth is

approximated by a model in certain significant respects.

Our study is mainly concerned with the subsurface structure of the
seabed and of deep med‘ia with hydrocarbon potential. Seismic methods
have become 1ndispensﬂb1e"in the search of 0il and das. They are
utilized for the exp'ﬂnratmn of ‘new reservoirs and also Aﬂy\the eval-
uation of discoveries andfexisting fields. Drilling activities for
the search of hydrocarbén are generally guided by insight from the

deep seismic data and from bore~hnie‘infurmat1‘on. The engineering
criteria for design and sitingluf offshore structures l'nvollved in the *
drilling and extraction‘activities are based on the shallow, seismic

data. .

The seismic reflection method is an acoustic imaging technique. The

main objective is to collect inﬁoanatinn from the earth's subsurface

by measuring and analysing the response to seisnic excitations at the

earth's surface. Most of the analysis deals with compressional waves

(3150 known as p-vaves). Hovever, to obtain sone further proJeme's

Tike rigidity.modulus one must also”consider the shear waves [called
&

s-waves). {

In exploration seismics, the disturbance created by a seisific energy
: source propagates through ;he earth and is reflected from the medium
discontinuities. The reflected signal consists of the prifary reflectigns
' as well as multiple reflections. The arrival time of th:/primary

« reflections at thei surface contains information abowt prdpagation velocity



of the subsurface strata

“\\\

Reflection strengths contain informa tion

abwt contrast m characterlsnc impedances at the dwscontinuanes

Seismic lactivities can be divided into fourmain

sub classmcatiuns,

/

:

nanely, | / |
. data acquisition I, |
. data processing i f‘ [
. migration andﬂ ’
- interpretatjon. - 3 ;j g L
X [ B L ;
In Q(p'(nratwn seismics, arrays of transducers (are used to collect the “J ”

data, There are four pv'lnc‘lpi] types of trace‘gatners, namely, comon- |

source gather, common-receiver gather, CO'!IYID'I-?ffSet gather, and common- |

- | .
depth-point gather. The type ﬂather to be ysed depends on the objec-

tives. Usually, a total of 24 or 48 s’ensnrs_a“re used for each gather. 3

These sensor signals are first multiplexed todether and then recorded on

magnetic tapes. In view of the above, the redorded responses have to be

denul%w}exed before processing. Subsequently, somg time corrections

for varfous phenomena are carried out. The time carrention comprises ¢

static correction and dynamic correction. i Lough the static correction
alous conditions of the

\\,‘)§

u iied

one attempts to remove the variations from a
. !

earth, specifically, the elevation effects ai q effects of,greatly

. differing surface layer velocities. The static ‘correction is n::t reqt

for seismic recording at sea. The dynamic correction is the time:correc-

tion applied for the path differences. It depends on geometry of spread

and reflector depth. « '

|

The signal-to-noise ratio (SNR) of seismic [‘esponses can be enhanced N

B L
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greatly through superposition or stacking of a gather. Stacking
sngu,id“be done ‘after normal-move-out: correctton (i.e. the dynanic
-:urrect{on). In addition to the inherent enhancement of the signal-
to-noise ;atio, stacking reduces the effect of multiple reflections.
Among these gathers, the l:mmun<depth-pbmt gather is generally used .
' for constrution of the'velocity spectra plot used for obtaining th ~
estimates (}f velocities. It can also beused to obtain the interval-
velocities and the datum velocity. In addition, velocity spectra are
used fn applications 1ike checking'the presence /s Shale body or oi1
and gas reservoirs. - Further, the amount of multlples present in the

seismic gather can also be ohhnned using the ve'loc\ty spectra.

Data processmg\is caried out by using a model, which is developed,

based on the physical ms1ght of the phenomena.

In exp‘loration feimics, the reflection amplitudes, through their °
dependence on parameters for the media on the two sides of an interface - ———— —
can contribute to the interpretation of geological detail. In
practice, large anplitude effects known aé bright spots may indicate
an interface between a porous gas-bearing medium and an oil-or water-
bearing medium or a strongly reflecting cap rock. Such a- phenonenon
can_sometimes be seen on reflection seismografs and Bn‘vel‘ocity ‘spectra
\ displays. S v - )

~ .

If 1t were possible to probe the medium with an ideal impulse, the -
reflection response would be the inpulse response of the fediun, and
would contain impulses from the medium discontinuities. Jn practice, L |

the probing pu’lse is at best impulse-1ike and the pulse shape l’nay
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frequently hemnknovm: In order to enhance the ;;rimary reflections,.
which contain the information of interest about the mediun, one needs -
to remove the non-ideal pulse shape effects, as well as any strong’
reveberations, ghost and other multiple reflections. The method of
predictive deconvolution introduced by Robinson (1967) Jas been

successfully used for these tasks, A fundamental assunption for .

this-method is that the reflectivity at thé interfaces are statish‘cany

random so that the earth impu]se response can be cunsldered to be a B

. random signal. Wi th the addlt)una] assumptmns thaL the source wavelet

1s minimum phase and that the 1ayzr=d “earth is a linear systen it L
1s then possible to effect a decomposition of the source wavelet and .
the’ (random) innovation signal representing. the medium impulse response.
The effectivefiess of deconvolution filtering on'actual data depends on
the extent to which the inherent asEumpt!nns apply y‘in the actual
situation. In practice these assumptionsmay not bi;AuptLE'ld. The wide- )

spread applications of predictive deconvolution have proved its ability ,

for primary reflection enhancement. In a typical daté processing

sequence, the deconvolution proceduré follows a number of additional

digital filter applications to compress the source pulse and to provide

a greater emphasis to the-deeper reflections. This is achieved by

5 . i
Wiener shapiny filters. The variation in source pulse shape with travel l
time can be accounted for by wi»dowing the trace and applying the 1

i
Wiener Filter [Robinson et al (1960)) . 1

Homomorphic ﬁ'lterlmj is a generalization of linear filtering for
certain non-linear filtering problems. It can-be applied for the
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deconvolution. The results are satisfactory Under high signal-to-
noisp ratios [Tribolet (1979)1¢” This method can be used if the
frequency range; of the gx\eit_ation and the system response are
significantly different. Tﬂi\s‘:echvique has been considered as an
alternative apﬁraach for seismic ded‘onvoiution. The results are
generally unsatisfactory .since the \‘seis«u'c signals have usually Tow
signal-to-noise ratios (SWR). |
|

N |
The maximum entropy method Snm) has|been developed [Burg (1967)]
ki N .
for spectral analysis.. This technique produces a power spectral
. & ;

“estimate corresponding to the-ost randon and least predictable

" time series.” This estimation technique effects the minimization of

-

the prediction error and of the hindsight or retrospection error. For
a |a.rge number- of data points the results by this technique are very
similar to the results obtained by fhe‘ Wiener-Levinson method. The
maximum entropy representatién of the observed data is an ‘autor‘ggressive
process (AR) [Van den Bos (1971)1. This technique is applicable to
the observed data to the extent thlt.these satisfy the autoregressive’
model hypothesis. This technique is in general superior o the more
conventional spectral.analysis methods |[Lacoss (1971)., Burg (1970).,
Ulrych (1972)../U1rych (1975)]. Most of the usual metriod% of spectral
analysis have associated window functions which are independent of the
data or of the urop\erties of the random process. The max finum entropy
method (MEM) and max(Mm Tikelihood meapon (lsss).,‘Lacoss
(1971)] do not ha\{e fixed ‘window functions. It has been shown that the

__reciprocalof the max imum-11ikelihood spectrum is equal to the average

[ Y
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of the reciprocals of the maximum entropy spectra [Burg (1872). The

maximun entropy method has not been widely applied in exploration

- & (AR) process whereas the medium response is more appropriately modelled
as an autoregressive moving average (ARMA) process. The MEM technique

may be suitable for earthquake seismic analysis where the data are

reasonably consistent with an autoregressive proceﬁ_\ The MEM is of \
considerah!e 'mynrtam:e in simatmns where short time series are
encountered. A princlpﬂ difﬁcu‘ity in applying I‘IE!Sds th! chdice

L of .operator length. This technique has found many applications .

outside the seisnic area.

The state space approach has been suggested lor seisnic signal
analysis [Mendel (1978)., Bayless et al (1970)., Berkhout et al '(1976).'.

(ARMA) model can Be represented in state space form [Mendel (1977).,
& N Silvia et al (1979)1. In such a‘\rq)resentatiun. since the system
matrices are unknown, the task of estimating the medium impulse resporise
“becomes a state and parameter estimation problem. _lt seems that Ljung's
corrected extended Kalman filter [Ljung (1979)] can be used as a state
and parameter estimator in seismic applications. The Minimum Vardance -
[Mendel (1981)] and*Maxinum Likelihood [Kormylo et al (1983} techniques
L can also be used in selsnic applications based on state space model.

The main advantage in the state space appruaéh 1s that the assumptions

4

such as stationarity of the noise, the minimun delay concept, _’Hne- .

anjty and time invariance need not be made, as in other deconvolution

: s ]

seismics since in this method the data is matched with an autoregressive

F Crump (1974)., Ott et al (1972)]. The autoregressive and moving average



techniques. 1

ki * In processing of marine seismic data, 2 typical seqence of procedures
is as follows: [Robinson et al (1980)]. .
2 .ds«ltipluing
[} -.wefarmatt(@,_
. sorting f@i-’;]mve amp]it:ude scaling
. . bandpass filtering
O e . . predictive deconvolution

i i B . Wiéner fiitering

i ) . E COP sorting
: i . velocity analysis
. N0 correction . -
. 0P stacking T
. Wiener filtering .
- . modeling ’
. migration v
*. interpretation. *
Now, turning our attention to the migration, one of the basic problems
"in exploration sefsmology 5 to obtain the coordinates of the subsirface
structures.  The reflection seismogram does not give the information
about the true reflectiop point. The seismogram shows as if the reflec-
tion -occurs direct beneath ‘the CDP point when in reality, unless the
b E refl.ecear 1s horizontal, the reflection would'be-located elsewhére, To
i obtain the true ref’lecior point from the reflection se‘lgmng_ram, a
s knowledge of the ve]n;(ty profile is necessary. If !‘h‘e velocity profile
' is known 1t 1s possible to trace the rlylplth and hence - to determine
S g . . ' i il *

A i . -




W0, ! ) v
the true reflection point. In-our study, we havemade the assmption - - |
that the velocity of the medium is varyirg linearly to enable us to
estimate the true reflection point. The true reflector geometry i -
1denuf1cannn from the reflection dar,a is knovm as nngvatmn The B
m1grauon can be divided fnto twopain categories,: namely, geometrical

migration and wave equation migration. There are d1fferent techniques

under these :a?.egorles.. These techniques are dlscussed in the fol'lowmg S

paragraphs
There are tio geometrigal migration technique's, nmely, max imun'‘con-. -+ "
vexity.migration and wavefront migration. In. pincipie both the .
m1grntmn techniques are the same for a given .record @ectwn Tf!e
maxinm convexity migration takes the values of the record section,
aTong a hyperbolicarc and puts their sumat its apex [Robms‘on (1982)).
Wavefront migration takes the value of the reccord section at a point

and ts the value evenly along the gircu{ar arc that hasithis point

.as its deepest point [Hagendoorn (1954)., Hubral (197_7)., 'Rohiﬁg‘env et &
al (1980)., HcQuillin et al (1979)., Robinson (1%82)1. - : L o ~‘

The wave equation migration is closely related to the problem of
detemining the wave field that exists in the propagating medfa. In

" wave equation migration it is assined that the sources aré positioned .
along the reflector surface with strength proportional to' the refl ection B i
coefficients and all the surces are activated at time t = O [Herkhout
(1980)).. The receivers are on  the surface of the ground. Th‘ev:uiqraglnn

problen is considered as a depropagation from time t = t (surface,of

the ground) to’time t = 0 (surface of the reflector) in reverse



= >

“direction. There .are three different wave eqhatiun‘migrat(on tech-

! nfq‘:es. nan:ely, Fourier cra’nsfurm wave equation migratinn -finite ’
\difference approach and Kirchhof £ migrat%on ~The Four-er transfom s
technique does not allow any Tateral var{atlnn uf velocity along the .

)\v ?nﬂre sectlan. since it isa.non recursive‘techmque The non recurslve -
#

tecthues cannot be used’ uhh _the htarﬂ ve'locity variations.’ Eut =

. the vertical velocity variations &n be handled by recirsive application ~ .

! ..of.g::.e.?ourie:( transform tecnique (stg1t:(1978)., Robjnson. (1900 -
The hnite difference approacn is cummn'ly used in se1sm1c migratmnh

e It sa recursive “technique. The dnanward extrapolatmn ‘n;?blt at
depth Tevel ;= iazis c,anputgd from the prevmyns. extrapplatiq,n i i
result at zi_r= (1 -*1) az. This tgch;)we can’be used with Jateral

» i 2 velocity variations sir’lce,ﬂ is rearsive. The‘ error 1ﬁvo1vf3d is th’e‘ .

inajor problen fn thisctechnique. The error increases with depth. Fhe

. " errorsare fregericy dependent for+a'fixed extrapolation step z;, This™"
- leads to'an undesirable, effect called dispersion. By selecting’a float- s

'1ng time reference the errors can be made smaﬂ fdr small steps [Claer-

" bout (l 76)‘.. llerkhnut 1980)]1. This technique 15 most suitable for
© ' spatial] } bandl1m‘1ted recursive migratlom In selecting a migrannn, ¥
one can[use one"s own choice depend{ng cm the comp]ex)y\gf the.structure. ;
I_p is not poss‘b]e‘to rely on one particular migration Lechnlque. "

Expensive recursive m'ethcqs should not be used for simple suhsu‘rfaces: "

. simple nonrecursie methods cannot be used for camplicated structural

- situations. it of all migration dechiquessgne has to sei%ibthe most. r°

. @ :
summ \echn(que depending on the particular seismic situat
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5 naranieters‘of the médium fron'the reflection data. < R

. 5 rurther, a Hnear veMcity profile modeW for dxppmg reflectors is
» i * considered. The same prob]en s cons1dered by Michaels 1977. However,
Jn.our ana1)’s1s the. problem is cansldergd in a different way. A model
whic‘l relates r}he movmg shot/recewer d1stan’ce and travzl time to the '
- parameters of r,he med\um is derwed usmg normal ray ana]yﬂs.\ An E

\,,‘ ' " ¥ exphclt formula is, then derwed for obtainmg ‘the trﬁe ref\ectur point.

F W . Finaﬂy, the above made! |s use to obtain the resultant error due to

the %onstant ,velaciﬁy assumpﬂnn if, the medlurp nas a 1mear ve]nc1ty.

profi]e The averhge vp\uc nf the ﬂata enerat\ng systan s used

R =¥ as the constdnt v velocity of' the- madlmn R e s T p N

Stnce this’study is mainly démng"wm Taypath amalysis, it begirs

with the raypath approach to the soTutwn of ‘the uave equanon and : R

uses this stﬂutmn for thev raypatn analys(s in constant and hnear

e . velumty prnfi]e medla, hefore proceeding to the m;in study.
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1.2 OBJECTIVES OF THE THESIS

In seismics, a knowledge of the acoustic velocities is important.’ -

. Acoustic velocities are characterized by the proper;iesv of the media.
. T[\e ve]nc|‘ty (lzf a medium is réquired for estimating its reflector

geome‘try. The acoustiic propagation velocity and dep{h estimates are
' N * indicators of, the medi\.Jm cm;posjtion, 1ithology .aﬁd strategraphy{'

These factors are also necessary-in seismic response interpretation. :

’ ThL_trnf‘lectl'nq str‘engv.h plays-a major role in seismic anglysis. " In ' oy
z , " the case of the non-normal”incidences the, vﬂef1ec“tion strength
depends*on’.the ve'Ioc‘db’ cuntra'sg and the in;ide‘nce #g’le“. .The reflec-
tion strangth’fs_ a ful’vction of ‘the velocity cantr;st only-for the normal
# incidences. The acdusticvelocitiss are used o obtain the defisity - .

. and the elastic properties of the medium.

. The velocity of the medium can be approximated by a pa'lyngnia] function
E

L X of depth. The simplest-approximation to' the velocity profile is the ,

’ i constant’ velocity ‘profile‘ “The seégmentwi se 'cuns‘tqnt velocity »profﬂe

-is_v;\ore appropriate than the canstant \‘le]ocﬂ_y"»assumptla"n. S{nce the
velpcity in a medium is geher‘al]y increasing with dept-n it is more

/ . appropriate to consider the ve1uc‘(ty asa Tinear fum:tion of depth -

The nonnal movenut relation for a Hnear velocity: profile medlum was

41scussed by Slu\:nlck (1959)." That 'r-ehtlonsh!p 1s‘vnot 12 a form -

‘suituble to estimate ghe paraﬁeters of the "medium. ) 'I.'herefore. a '

"y /diffe‘rent equation Ltrubmré is deve]oped'to’ the normal, muvéout

velocity profile assumptlun. This enalﬂes the est{matinn of the . &

!
B r at(unshiy/for a sing1e zero-dipping reﬂector ‘using ‘the. Hnear j N
i



Acuusuc rnommo« AND' ITS.
RELATIONS(IIP T0 THE PAMTERS
OF THE MEDIUM




2.1, GENEPAL. s

Sound propagation is governed by a Tinear second order partial
differential equation known as the wave equation. The general three

dimensional wave equati;)n' can be wriften as [Officer (1958)1,

1 .22

V=S, iy &2.1) -
L o2 s
P
‘, where v}: is the scalar operator
g 3 : , B
2 2 2
Bt e By B e
ax? ay? 3z? <
. . —

. Vs the acoustic velocity of the medium
‘\ :
2.1.1 "RAY_THEORETICAL APPROACH TO THE WAVE EQUATION .

There are two approaches for obtaining a solution for the above wave

equation in terms of ray. thet;ry.

¥i%.s » . eikopal equation §

. Fermat's principle y

The eikonal equation is based on wave surfaces and ray theory. The

.
wave surfaces are the Toci of points which undergo the same motion in

!

. a one-to-one cnrresp\;ndence at a given instant of time. The rays are
normal to the wave surfaces and they give the direction of propagation
‘of energy through the medium. "I:QE Fem;at"s principle postulates ray < .
paths between Fwn points in a medium as the paths of minimum travel

*y may represent a pressure, a displacement, or velocity potential,
. or some other appropriate v;ria le.




B time. By solving the above ray equations between two points for a
given earth nudg'(, it is possible to knaw the trave] time.and ray

paths between the source and receiver. .These ray theory dﬂproacv;es
a’re particularly useful in solving the invers® problem in reflection
seismics and earthquake seismology. In the next section, each one :

of the ;pproaches is considered.

2.1.1.1 EIKONAL EQUATION

/ The wave equation can be transformed to a f\'?’st order parggal dif- .
' ferential equation known as the eikonal equation [Officer ‘(1958), Lee

et al (1981)]. The solution can be intev'-preted_ ‘in terms of wavefronts
«.o and rays. In general, the three-dimensional wave equition 2.1 has an

associated characteristic equation given by,

@'y @ @' .1 @yt ‘ .

(I (ay) % (o3 v (at) (2.2)
_where, - . P
d V.is the acoustic velocity. '

. In cases wherz V is not a constant, equation 2.2 does not represent
—the associated charaéteristic equation of ‘the wave equation 2.1.7 The
eikonal equation will be a good approximation to the wave equation if

the fr;ctiona{ change in the veJocity over a wavelength is small.

It can be shown that a more general solution for equation 2.1 or 2.2
takes the form.

A o




= YIn(y2) - Ygt) @3

w = function representing the wavefront surface

Vo = constant reference velocity.

¥ \ o
By substituting equation 2.3, in equation 2.2, we obtain an equation

known as the eikonal equation which is given below,

2 2 2 v 2
By B s e =t (2.9)

5 vV,
where n is the index of refraction and n = _vo_ .

The eikonal equation leads directly tovthe concept of rays. It is

particularly useful in solving problems in a heterogeneous medium
where the velocity is a funetion of the spatial co-ordinates. The
eikonal equation is a first order partial differential equation. It's

solution, for a specified time t, is given by
w(x,y,z) = constant P (2.5) 2

This represents a surface in three-dimensional space. For a given

value of w and at a given instant of time t, any variable at the

surface will be iﬁ phase, but not necessarily of the same amplitude.

This surface is talled 'wavefront' since it preserves a one to one

-correspondance of motion along the surface. The propagation can be

described by the time progression of the wavefront. le normal to-the
wavefront a’t any spatial coordinate defines the direction of propagation,

\
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and the loci traced out by these normal directidns are referred to

as rays. .,

The normals to the wavefront evolve in accordance with the incremental
path length relationship i
ds=_d = _dy = _dez I (2.6)
W/ X aw/ay BN;BI ’

where the denominator factors are the directioh numbers of the normal.

The digection cosines.are proportional to the direction numbers, so that

dx o oA . ((

s~
: | y . :
dy -y AW | s
Yoy I L
. 1 \Q
dz _ | -
s kA—Z ‘J \

1
where k is a constant and ds is an incrementdl element of the ray path.

Since an incremental segment 'ds' of a curve|in three-dimensional space

satisfies

¢ 2
dx dy. dz\2 5
@@ @ -, (2.8)
we obtain the fo]lowing from equations 2.4,’2.7 and 2.8:

i

o
AT B
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From equation 2.9,

It is also possible to rewrite equation 2.7 as given below:

PR ]
ds X
dy _ 3w

ng =%
dz‘naw

"Ew Cm

by considering the derivative S

rgypath we get,

d dx . d W

& ong - L@

d d); 3 W dx
s M)t ow Gxeow t

From equations 2.10.1 and 2.11 we obtain,

d dxy _ an
® e T ow -

w

Ay

‘§'X+

(2.10.1)

(2.10.2)

(2.10.3)

o‘f the equation 2.10.1, along the

w o dzy
2z * ds .

(2.11)"

-(2.12,1)

2 ; .
. similably, it is possible to get the ,f{z'lluwlng by considering 2.10.2
G W .

and 2.10.3. )
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S oPp -5 (2.12.2)
Lo -2, ' (2.12.3)

The above relations indicate ymt the refraction index n governs the
/ ray evolution and wavefront geometry.

2.1.1.2FERMAT'S PRINCIPLE

. The ray equation can be derived from Fermat's principle [0fficer (1958), *
Caruther’s (1977), Aki et al (1980)]. This is specifically appealing
A in ‘cases when the ray path and travel time between two end points is
to _he investigated. L4
A This deviation is based on the assumptions that the velocity is only
a function of spatial coordinates and that the velocity is continuous
and has éonh‘nuous first partial derivatives. The Fermat's princ1p1é
States that the path which a ray will trace between two points is such
qthat the travel time is an extremum. It actually means that the time
for a ray to travel between two point‘s must be stationary with resp.ect

‘ to small variations of the path [Pilant (1979)].

\ We have to find the stationary value of the integral I given as

B ' /




" ds is represented as a dumiy variable_do, one obtains, *

.
Substituting for dt, we have (
B v
ds E i
1=V s t
°a -
B Vn
=/ n ds, since = = n A2.13.1)
A v

where A and B are the two end points of the travel path. If the length 1

. . .
X2 L (Y92, (324243
a2 3%+ 0%+ 2% o (2.13.2)
’Equation 2.13.1 with 2,13.2 gives
1= s Batena) D7+ 07+ G0 e
SRR CRERE B (2.14)

For a stationary value of I, Euler's equations must be satisfied, namely,

] = 0, i#,2,3 . (2.15)

’

. *
which leads equation 2.14 to the following explicit form:

. n (3x/30)
@t @¥ @ . L. ¢ = -0
CIE? 4 @ e (B}

- x4y andvhidr g ek dy



It can be, further simplified to the i’c]lowing by virtue of the equatios
2.15 and 2.13.2.

d dx
w ) =m (2.16)
v The equation 2.16 is identical to equation 2.12, which had been obtained

through the eikonal equation. Hence Fermat's principle indicates that

the stationary time path is the ray path given by the eikonal equation.

2.2, RAYS IN A VERTICALLY INHOMOSENEOUS MEDIUM *

Proceeding further, the vert\ca'lly mhomogenenus medium is de-
fined as the one in which the medium parameters vary as a function uF
depth only. Oney can compute the time necessary for a disturbance to
propagate from a point A to point B along a ray path given by T(AB)
Pilant (1979)1,

B 2 2.3
. L A A
A A

[ ‘(Idz/dx)"’]i &
ifz' = a_. then -
Yo+ @4 R ’

In this case, for fravel time to be stationary, an extremum necessitates
that,

i Ry S5
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3z - .

<
d . v g Lo 3 aF vy o
But “[F(z.z,) st FlEtG -t Hp im0,

Using the stationary condition one obtains.

& ] @R e et e N
By cumbiningfz.u and 2.18 one obtains,
. N
' W3 1927 2
F(f.z)-zﬁ.—v['lir(z)] =P
where P is a constant which is known as :the ray para;!ter. If we desig-
nate the incident angle at depth zas &, then %5('- = z' = coteand

¥ i sin(e;l) &l 5 (2.19)
vz

This is the genera“xadjom of Snell's Law.

The ray parameter P can be related to two physically observable q'uav;tities
at the surface, namely incidence angle (ss) and acoustic velocity (Vs).

The relationship is, N

sng, 1 Lo
X
vs apparent . /
horizontal L]
. velocity
a~ .




’ u ’ )

where T is the travel-time to depth coordifate z encountered at a range

coordinate x. At the maximum depth of penetration of the ray, 6_= 90°
v '

and
N : 3 i
p o= . ~
' Vnax
- Hence,;*= % wead =G
! ' Vnax -

Based on the above, the apparent horizontal surface velocity is equal to % 3
the medium velocity at thedénth- of greatest penetration.

t
By differentiating equation 2.19 with respect to arc length ds along the

ray, one obtains, ¥ : .
2 _ooody -1 do _ 2
-V Sl‘nﬂa; +¥ 00s 0 g [N . (2.20)
v o_odv dz L dv '
But = T dT S q s
By sthstituting in 2.20
do _ dav > ; .
&g (2.21) >
" a}/ uf
This indicates that the curvafure of a ray in a vertically inhomogeneous
medium is directly proportional to the velocity gradient, :
From equation 2.19 and 2.21, one obtains, R . . . ‘
do _ sino . dv .
F e o z (2.22.1] I
: N |
' i
i
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By geometrical relationship, we know that

' A T .
daz s o ~
It is also possible to write 2.19 or 2.21 in the form,
3 3

f N »
. de _sine . $
cose - gy = —y— =P (2.22.2)

The relationships given by equations 2.19, 2.21 and 2.22 will be-used tdA
analyse the behaviour of tN\e raypaths in media having different velocity
profiles, especially constant velocity profile-and Tinear velocity profile..
3 o 5 .
RAYPATHS IN A CONSTANT VELOCITY MEDIUM

In a eonstant vélocity me&ium V(z) = constant hence %! =.0 and

-

therefore by the equation 2.21, %% = 0. Accordwngly o(z).= n’ = constants,
A constant velocity medium does not 'alter‘the\ray direction. The ray con-
.serves its initial incident angle. The minimum-time pith ‘between any twn

polnts Aand B a’long the raypdth Is a straight Hne.

. ~ < . b
IfA = (xA. Vo 2) 2l ¢ )
Bo= bgygezgd o,y . ey
then the path 'Iength between A and B is given by \
¢ . - I . &

T O - "A + (yg - ‘}'A)2 * (zg- zl‘)zl’ 3
. the travel time ¢ 13 given by

t = SN 5 and “




£
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the direction cosines for the ray AB are given by

UG ) o
s s s !

Hence, the anglexof ray departure at the source, 6 is given by

s ' <
- e=coss Tlzg-z)/81 . - :
So far we have been éoncerneﬂ 'with the ‘raypa;ths‘ in-a constant ve]oé'ity.

i N
model which \s the s1mp1est mnde‘l In the next section we will con-,

sider raypaths in a hnear velncnv profﬂe medium.

RAVPATMS IN ONE- DIMENSIONALLYCONTINUOUS LINEAR VELOCITY PRDFlLE MEDIA

The seismic velocity genera'l'ly increases with.depth in the carth's .‘ )
crust. It is very comon to conside® velocity to be a contmmSus functhm )
of depth rather than to use the constant velocity assumption [Vé:\tter (1981).,
Greenhalgh et al (1981 }l/., Telford et al (1978)., Hub}'al et al (1980).,

Slotnick (1959)1. The next simp'l‘est velé:c%ty profile to a constant
velocity profile is one where the velocity is a linear funcnqn';_jf depth,
In the situitions where the constant velocity gradient assumption is’
invalid, the medium can be considered to consist ‘of a number. of depth
}nt‘erva]s’. In each of these depth intervals, the velocity profile
might bé approximated by-a’ constant gradient profile:

\ .
The constant gradient velocity profile is given by

V(z) = Y% tgz (2.23)



where V and g are cnnsmn‘ts, the values of which depdpd upon the:
partlcuhr siwaunn. By taking the derivative with respect to z
“of the lbuve equation. we get,

 2ppi icable

Tdz o= ds .icoselz) . L a2
ds, = W(z) .4 L, L (2.28.3)
~ 2 y -

where 8(z) is the ray ngle 6f incidence at depth z.° The travel time

t i between two points A and B along the raypath can be represented

d[V(.Z).J‘ ST

g+ V(z), . cos o(z)

Tk s s s'ilnjs(z),_ el “~'Lz§?v)'
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“By integrating, we can obtain the raytime relationship
21y tan(8/2)
t(e,8,) = g m [m] o e (2.25)
'

Similarly, x(6) and z(e) can be found from equation 2.22.1 and

2.24, whence

2(0,0,) = pg Bg“ cos 0. do = g [sin o - sin o) (2.26)
x(6,00). = ',1—9 ldin 6 .do = p1—9 [cos 65 cos 0] . (2.21)

By eliminating the angle o from equations 2.26 and 2.27, the ray-

path is obtained as a function of x and z, as given below,

cos 6, 5
Pq

sin 8, >
Pg

Ly s (2.28)

+ (z+ %

By suitably substituting from equation 2.19, we get *

~
\ ’ ’ -V v,
0 2 042 ¢ o 2 3
- 5w r’0).' * zs 2 L (g_sin_ao) (2.29)

where, 9y = ray departure angle at the datum surface.
o dog . B
It will be seen from equation 2.29, that the raypath is circular,

s U, T e T -V
having radius —%— and center (—2— , —2)
g sin eo' g tan o, q
) A ‘» L3

% 1s positive for a ieg1on_ where the velocity 1s increasihg with
depth, so that from equation 2.21, g-:- 1s'pos(t1ve. Hence the ray

will curve upwards.




similarly, we can conclude that for a region where the velocity
is decreasing with depth, a ray will curve downwards, towards “a
region of minimum velocity. The same result is also to be ex-

pected from a qualitative consideration of the motion of the

. ‘wavefronts. The portion of the wavefront which is in a region of

higher velocity will tfavel faster than that in a lower velocity
.region and the wavefront will be bent toward the region of lower

velocity.

In petroleum expioration we are usually dealing with more-or-less -

flat-1lying bedding. As a result of slow changes in density and
’hstic properties of the beds the changes in seismic velocity

as we move horizontally are small. The horizontal variations are

generally much less rapid than the variations in the vertical direc-

tion. This may be due to lithological changes and the increasing

pressure with depth. Since. the horizonta] changes are gradual we

an take it into ac&unt by dividing the‘survey area into smaller

areas -n such a way that horizontal variations can be ignered.

Then the same vertical velocity distribution can be used with dif-

ferent parameters.

2.3 REFLEGTION - INTRODUCTION =

The seismic methuds exp]n'lt the e‘las?.u: prnperties of the material,
In seismic prospectlng for oil and gas one must consider the frequency
content of the probing signal. It is observed thgt the higher the
frequency, the higher is the resolution, but at the same time pene-

tration depth is Tower due to larger attenuation caused by absorption




and dispersTon. -Also, the converse s true i.e. the Tower the fre-, "
quency "the arger the penetration but fhe weaker the resolution.
Therefore there is a tradeoff between resolution and penetration.

Low frequencies ranging from 0.5 Hz - 60 Hz are of Ypractical inter- =~
est for the penetration depth of up to 10,000 meters in deep seismic,
exploration studies. In shallow seisnics and geotechiical seismics

up to 10 KHz or even 100 KHz is:used with penetr:ation of 10m to

100 meters.

Seismic velocities are very much dependent upon the media, in contrast
to radio waves. Hence the velotity information plays an important
role for extracting the propertiés of the media. In the case of nor-
mal incidence, the mode conversion such as compressional waves to com-
pressional and shear waves does not take place. But for non-normal
incidence, the reflected energy appears partly in the form of compres-,
sional waves and partly in the orm of shear waves. The compressional
and shear waves velocities are governed by the properties of the media.
For further extraction of mediun propérties one has to consider non-

normal incidences.

In exploration seismics ye aniﬁe the reflected signals which carry
information about the earth®
{th-s

ibsurface. ' The reflections of seismic,
waves occur at interfaces.with significant change of acoustic impedu‘nce.
The reflection coefficient is highly dependent on the incidence ang\b
which is the angle between a raypath Wnd the normal to the surface at
the incident point. Hence the re\f]ected energy depends on the incident
angle in the case of non-normal 1n}\idences. )

. \ < |
) \
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Now, we will attempt to derive the applicable relationships for the
e of acoustic media where we study the reflection at an interface
in the subsequent paragraph’ [Temkin (1981)., Caruthers (1977).,
Kinsler et al (1962)]. The corresponding relationships for elastic
media are considerably more complex and Virtu'a'l'ly intractable for
analytical insi'ght.“ The phenomena have been extensively studied by
Knott (1899) and Zoeppritz (1919), Cerveny and Revindra (1971),
Aki and Richards (1980) and many others.

The parametric dependencies for these situations are more cunv,em'ent'ly
studied on computer generated plots for reflection coefficients as a
function of incident angle [Young and Braile (1976)., Telford et al

v

(1976)., Aki and Richards (1980)].

REFLECTION AT AN INTERFACE

Consider the reflection and transmission of a plane acoustic wave at

a plane boundary between two media having different densities and
sound speeds. Referring to Figure 2, (x,y,z) is a coordinate systen
such that the boundary is the z = 0 plane. The X-axis is parallel to
Tines of intersection of the wavefronts and z = 0 plane. We shall con-
sider two conrdinat;;s y and z. We cnsider a single sinusoidal com-
p.or\entl?1 from the integral sum of the Fourier series representation

of the plane wave. .

i Aexp i (kg .-t (2.30)

P1 is an incident upon the z = 0 plane with an incident angle L

This incident wave generates reflected and transmitted waves Pr and Pz,
~
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which are given respectively by [Caruthers (1977)., Temkin (1381)],

e,
fs

B anc C may be

written as,

= Bexp(j(k. .r-o .t) (2.31)
= Cexp[j(ky.r- ?z t)] (2.32)

complex to account for phase shifts. The k's are the

- propagation vectors for the respective waves. The k . r 's can be

|

u
L ker s v% (y sin ‘o + 2 cos o) (2.33.1)
“l" -
kpnp = V]_ (y sin 8, - 2 cos ur-) (2.33.2)
=2 tydiney+ )
kor V; y Sin 8, + 2z cos 9, (2.33.3)
The P and P, are the Solutions of the wave equation 2.2,
where Py = Py 4 P ) (2.34)
The boundary conditions become ’
Py (¥,0) =:P, (y,0) (2.35)
aP. P,
i [ | - 1 2 (2.36)

]

Zlz=0 *2 "'z-o

M. the interface the boundary cond1t|nns are independent of time.
This is possible only if the freqvlencies of the transmitted and reflected

waves are the

i.e. wy

same as those of thé incident wave,

=t wp T




(2.37)

(2.39)

2
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The equation 2.36 shows that the normal particle velocities in the
two media be the Same at the boundary, i.e. 0 =9,
leto; = o = o
The equation- 2.35 gives the Snell's law relation
R P
in e, sing in e, 7
sin o5 . in e, . sin 8, -
B Yo
Equation 2.38 together with 2.37 gives the law of refraction,
sin 0y . sin 8y
L] H
The acoustic waves may be expressed by
y sin 9 z cos o)
Py = Aexp [Ju (—— — -
. 1 Y
y sin o z cos 8}
P. = Bexp[ju (—— - —— - t)]
. 1 Ly
y sin a] Z cos °2
Py = Coexp [ (——r —_ - t)
1 Y

Applying the boundary conditions at z =
-

0 one obtains

. (2.40)



£ 7/
34
) C
cos B] cos 52
e L I e (2.4
We define the “reflection coefficiens R by
P
R4 - . (2.42)
B .

and the "transmission coefficient" T b;l ;4
Py . \\
T oA i 0 (2.43) e
h
.1t can be easily shown that

T =R+ 1 . (2.44)

and ) .
cos E‘ cos 82 ®
=Ry = :—_& . 7T (2.45)
R ’ 2 Vp

In general R and T are complex. . -

By solving the above equations for R and T one obtains,

: {
. ’ cos 8 cos 8, * .
P T A T\ R it Bl
m . _“’i’g pzvz €05 8y + p.lv.l cos BZ
o1 Y 0y ¥y . .



Using Snell's law

cos 0

R B} 2 p)Vy cos &)
cos 8 cos 8, ppVp cOs 8y + oV cos 8,
1 2 7,

ppVy cos 0y - oy rv12 s VZZ sin? 91]i

relation it can be derived that

= ———3 (2.46)
poVp €os By + oy V{7 - V," sin® 8,1
2 pyV, cos 8
T - bz (2.47)
0oV c0s 8y + pp¥y [0 -(v%)z sin? 513!
At normal incidence 6, = 0, which reduces 2:46 to
“pa¥y = Yy
- (2.48)
AR )

The product of density and acoustic-velocity is defined as "acoustic

.impedance" of the medium, i.e.

By substituting ixj2.48

R =

2
Z

7 .
2 = b
3 vy

7= oV = acoustic impedance /
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I£ gV, = o)V the reflection coefficient for normal incidence becones
zero, whereas for oblique inci;}ence the reflection coefficient is not
equal to zero. For oblique incidence, the reflection coefficient vanishes
and one obtains total transmission for an angle of incidence &) which

is known as the angle of intromission. The value of @) is-obtained

from the relation '

i
.
pp tan 8, = oy tan 6,
* 02 V2 sin? o
T T B e
] (V‘ = Vy sin e,)
2 2
log¥p)? = (oq1)) \
[ & S : (2.49)
BT oo ’

Many inferences can be drawn from the above equation considering the
comparative values of velocities and densities of the media as given
|
below: .
Intromission is only possible if either:
DQVZ > p1V1 and v1 > Vz

DZVZ < a]‘l‘ and \I.| < Vz

The parameter combinations for an dir-water or a water-air interface
are such that there is no angle of incidence for which one can offer
total transmission.

If V; > V; at an interface, then there exists an angle o, = Berit?
such that the refiracted® ray has an angle of n/2 radians, i.e. it is

B e



coincident with the mediun boundary. Fran Snell's Law, this critical
angle 8. is governed By
v
sing, =1
e T

2
)

At critical incidence the refracted wave does not penetrate into the

second m‘edium. so that T=0 and R = 1, i.e. total reflection occurs.
Al

Again, if V, > Vy, there can be angles of incidence o, greater than
the critical angle.  In the ray-the;:reﬂc model the transmission .
coefficient T takes purely imaginary values. Tbi; 1ea\ds to the
interpretation of a lossless interface, wave propagating in the
second mediun along the boundary with a rapidly decaying penetration
depth. N .

So far we havé considered in detail the reflections at interfaces.
This study will be folloued by raypath analysis, which whl1 form the
fundamental basis for our fortr:caminé discussion on ‘the estimation of
acoustic velocities from the surface measurements proposed in the

next chapter. ’




. 38 %
5 R
-
s ' i
s
\
( ' i
) & g [
CHAPTER - 111

ESTIMATION OF ACOUSTIC MEDIUM VELOCITIES
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4 . %
COMMON DEPTH POINT STACKING (CDP)
This method is associated with a common mid point het:;n source and.
receiver. The gather is camposuted to get common source receiver mid-
point. In the horizontal parallel layer case this midpoint is alsoa
common reflection point (CRP). This sumning becomes §uccessfu] sin
prinary CRP reflections are in phase and add constructively, whereas
ambient noise and ‘other seismic signals which are not in phase tend to
cancel. lf we consider the number of traces in a gather is N, this’

method 1ncreases the sighal-to-noise ratio (SNR) by a factor of V.

Before stacking, CDP traces must be 'corrected for the travel

difference caused by varying raypath distani:es: This correction is’

referred to as normal-move out (NMO), This NMO depends on depth 'to the

reflecting ho;‘izon. It is also cplled as dynamic correction, ' The'

improved signal-to-noise rayiu {SNR) and attenuatjon of multiples

utilizing the CRP.cabe attained only by‘app'lying the proper NMO time
“

corrections. ! 5 5
, 2

‘T’he CRP method can be used «to obtain the' velncit‘y spectra. The ve]oci‘ty

spectra provide the basis for identifying primary reflections an‘d to

vqetem'ine stacking velocities which can be used to determine interval

velocities. They:are also useful to prédic_t information relevant to
cho]ogy. Further estimation of the da‘tum vefocity (i.e. the velocity

at Z f) can also be nbtalned using velocity spectra.

Before we get into the detans of the velocity spectra, it is_ necessary

to obtain travel time and source re,ceiver distance relationships Far the

) para'l'lel ’Iayers case.

'."..b ;s . \‘

' . % . \.1

)

]
|

|
!
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. 3.0 GENERAL

: In this se:t;on we discuss the segme’ntwi‘se <hurizoynta’|'ly parallel multi-
. Tayered rediun. The methods and relationships forsestinating depts,

’ Iayei- intervals and interval velocities through the-concepts of n‘nmﬂ

. . moveout (and stacking velocity), Dix's fomu]a,“’vel‘ocity spegtra etc.,

are presented, The results for the sim'lat'iqn data have‘ been given.
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3.2 TRAVEL TIME AND SOURCE-RECEIVER DISTANCE RELATIONSHIP FOR HORIZONTAttY

LAYERED EARTH

We shall select the x axis as horizontal and z axis as vertically down-
ward. The source is at point (0,0) and reciver is at (x,0). We m"l"l
assume n-layers of eerth [Taner et al (1969)., Dix (1955)] having
lajerwise constant propagation velocities, Using the method of ray-
paths, we ca} compute the time for a ray starting from the origin in
its travel through n-horizontal layers and after r‘ef]ection from the
n-interfaces, .return(;ng to the' surfa’ce at (x,O): The solution can be

obtained by use of Fermat's.principle. -

Let the thickness of the n-layers of earth be dy, dy, d il

and the compressional yelocities ¥y, Vo, Vgueuennn. Voo It s assumed
that the length of downward travelling ray within the‘Kth'layer is

M having horizontal component X and angle o, to the vertical.

The total down-upstravel time T, is then given by

n A
k
2 T —
x k1 Yk

which should be a m(nhn.um under the conditions. given by geometrical X

T (3.1)

' . relatipns,

(3.2)

20xy +xp e +xp) = x (sensnr\uffset) (3.3)
The condition for a minimum value for equation 3.!,\under the con-

straints 3.2 and 3.3 {s given by,




o (3.0)
sl om = %, k= n :
e AWk ;

where P is the Lagrange multiplier and it is given by,

podk_ o MO, k=ti2, 3.0
i k 2 .
This is the Snell's Law relationship, and P can be identified as
-the ray parameter for any particular ray. Equations 3.4 and 3.2
give the relation
Phs”
X" = — (3.5)

1-p Vk

From equations 3.1 and 3.3 together with 3.5, one obtains,

N Ve,
x=2 I @S (3.6)
k=1 2
- PV
N4/ .
T, =25 LK - (3.7)
. kel e

|
Now, considering the constant velocity medium we have
V1 = ‘l2 [prroe Vn. Let the constant compressional velocity be

equal to V. By using this condition in above equations 3:6 and 3.7,

one obtains, g / " .
2P vd
. P2 . .
1. 24N
X
-
. L -

’

R pa—



.

a
N _ [ 4
where, d = d1 i dz | . +d. .
Eliminating P from these x and T, relationships one obtains, .
2 2
2 _ ad X
T = +
K4 I
) .
2
LT 32 ) ~ (3.8)
where, T2 = 4d’
Z o e

From the above equation 3.8, we get thg-approx1nlated relation for the
normal moveout correction aTyy, for.x << d,l
P

BTy = T, = T =X
NMO X o 2T°V2

.
where T  is the two-way travel time f/zero offset. T is the two-way

X
traf1 tine for a trace of offset distance x.

In most of the cases, the velocities of each of the layers having thigkness

d.l, "2’ d3 dn. are different and they are given%y V1, VZ' V3 voess ¥

n
In vie‘w of the above, the travel time to offset distance x can be repre-

sented as an infinite series which is given below.
2

T

=g+ czxZ + caxd + c4x6 saees

4

« will depend on d;, dy,

-

The values of the coefficients S €

e d

n
and Vy, Vp eeeewn Voo The coefficients can be obtained [Taner et al (1969)1
by represemting the above series as a power ser!es of F2 and equating the

_coefficients.

|
;
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For the first two coefficients accordingly, we get

n
¢ = (2 ¢
1 P

A S

d
Let tk = Vk » which is the one-way travel time for a vertical ray to cross

the k" Tayer,

n n
$Vd . It
i Lkl KK C k1 K
C. ‘N n
2 i
I I
= ka1 K

<
o

The Wcz is the weighted average of the squares of the interval velocities.

The weights are vertical travel time in the respective 1ayeP§. . ®

Since the effect of higher order coefficients are small, a second order

approximation is normally used. The appmximaéed formula is given by

n 2
k 2 X'

T = @@ =)t
X k=1 Tk V

TMs' is the same fumu!a\i\ven by Dix 1955,

Having obtained the above relationship, we will use it as the basis in our

ensuing discussion on velocity spectra. -
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VELOCITY S'PECTRA

In'seismology the distances to subsurface reflectdrs are calculated
using travel times and the estimated velocities. Therefore the velocity
becomes a most important factor in seismic prospecting. Knowledge of
the velocities are so important since it is related to the properties of -
the medium. As it is observed from equation 3.8, hyperbolic character-
istics of reflection time-distance curves provide a means to establish
necessary velocity-time relationships. The velocity-time display is
called a velocity spectrum. This can be obtainéd by scanning COP .
ensembles along hyperbolic trajectories qualified by assumed V- rms
velocity values for sigiial coherence. The determination of velocities
becones a matter of scarhing various hyperbolic trajectories for maxi-
mum reflection coherency. The spectra can be generated as shown in
figure 3.3.1 by incrementing normal incidence travel time To and keeping
them constant while incrementing V at regular intervals between some
-mini.nmm and maximum value. Each (To. v ) pair defines a hyperbola.

The coherency of data contained in a time gate about this curve is
measured and plotted in a three dimensional space (time, vea'l'ocity,
coherency). From the set of trial V values for a particular To’ one
assigns that Vl—value—wmr.h\g'ives rise to the maximum coherency. Jf it
is plotted in a two dfmensi/ona'l space the coherency can be displayed as

contour Tlines, It is shnvgﬁ in figure 3.3.2.

/ .
In addjtion to the pr()z‘ry reflections, multiple reflections may align
along the hyperbolic trajectories, and therefore careful interpretation
N\ . ol ;
of velocity spectra is required. The above interpretation can be made

by \lo\catlng the, peak on the coherency surface which corresponds to ”
N
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primary reflections. The peaks can be joined carefully to obtain a pro-

file of the velocities. The estimates of the datum velocity V  can be

obtained by extending this profile (figure 3.3.2).

3.3.1 COHERENCY MEASUREMENTS

Cross-correlation and semblance are commonly used for coherence measure-

ments.

The coherency function S evaluated at zero lag is normally used

since it is-not sensitive to the rms signal amplitude variation between

» ;
channels. E

where,

-+S - is given by [Robinson et al 19801,

]
mnp— z b1
MM - 1) i=1 it

M = number of folds (traces in the gather),

R‘»‘-(D) = zero lag value of the autocorrelation function of

the 1t trace

. R‘»vi.(o) = zero lag value of the autocorrelation function

of the i't trace, o i
Rﬁ.(O) = zero lag Ya!ue ;f thé crosscorrelation funf:tit’m
of the it" and the 1' traces.
-1<8S<+1

$ =1 corresponds to perfect coherency.

The other useful coherency measure is semblance. The semblance coefficient -

Se is sensitive to channel amplitude differences.
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0<s <1
The value of S_ is given by,
5 : |
1
Va 3.4 USES OF THE VELOCITY SPECTRA e :
; !
. Uses of ‘the velocity spectra can be sumarized as follows. :
velocity spectra determines the velocity function for optimum stacking.
It helps to .determine the effects of multiple interference. In many
cases it can be used to determine the timing, order, apparent ve]aoity..
and relative power of multiples. By comparing this with primary re-
flections we can get the amount n‘fmul tiple content i‘n the stacked \

section. « 2
. We can obtain the interval velocities between major reflections using
r

the relationship

2 .
v2 o Y Toun ” ¥ Tonat
n T . -1 ;

o,n 0,n-1

The interval velocities can be used in calculating the reflection
depth, layer th\'ckness,ldip and other parameters for migration. The
interval-velocities are also the parameters used for lithotogical
correlation (geology).

* . Itcan be used t0 estimate stratigraphic and structural information.
Changes of character of primaries on velocity specjt‘:ra indicate the

changes in stratigraphy. Figure 3.2 shows‘%hat Nmaﬂes appear

]
'
w
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-up to 1.2 sec. In the region of 1.2 sec. to 2.4 sec. primaries -
dissappear and only the multiples are present. From 2.4 sec. omwards
H . primaries appear again. This disappearance of primariesbetween 1.2

sec. c&i—m sec. shows the stratigraphic change.

In order to obtain the acoustic velocities of the media using the
constant velocity gradient model one must obtain the value of the
datum velocity and the velocity gradient - g of the medium. It can

be seen from the figure 3.3.2 that the

Lim V- = datum velocity = Vo .
ts0

A
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3.5.0 GENERAL
In the previous section, the segmentwise constant acoustic velocity
profile model has been considered. l‘t is mDr‘eAapprupriate to con-
sider the linear velocity profile assumption since the ‘acoustic
.welocities are increasing with depth, which is very clear from the
figure 3.5.0.

In this section we develop a Tinear velocity profile model in the
;

form which is suitable for the estimation of the medium parameters

from the reflection data. A methodology for obtaining the Tinear

velocity gradient and the reflector geometry has been presented.
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3.5 NORMAL MOVEOUT RELATIONSHIP FOR THE LINEAR VELOCITY PROFILE MODELA"W

This problem has beenconsidered by Vetter 1983. In this section we
present a derivation of normal moveout relation for the linear velocity
model. Further, a method for obtaining the reflector geometry and the

velocity gradient is discussed with a sinulation example.

We shall consider zero dipping reflector for our proposed analy/’s.
Fégure 3.5.2 shows a‘raypath for the normal moveout in a Hﬁ'e'r_
velocity profile medium.
Now referring to Figure 3.5.2, we have, -

By Wi

N °

‘ 0 =¢+a (3.5.1)

where ¢ 1s the }ng]e of* the chord between source and the reflection point

on the reflector measured-from the vertical. . B

@
Using the Snell's Law re]ationp(quation‘z.wb. one obtains, .

Vo v, »
T o N (3.5.2)
sin (¢ sin (¢ + a)

where LA

Vo = datum velocity . N
- Vo = elocity.atthe reflector
. »

Equation 3.5.1 and 3.5.2 gives the relgc1on. . % ,
’ (3.5.3)

V- vy .
"‘Y‘“'[V'TTJ tan 4

ot e
- .




Since, Vr = \l‘7 + gz for the linear velocity profile model, one obtains

=

tana = g5 tan o
a

here, V.= (Vg V)/y

+ &

From figure 3.5.2 it can be seen that

Using‘ equations 3.5‘.1 and 2.25, one.can obtain the relationship [Vetter

(1983)1

X = ztan g .

tan a

exp (gt)

5

a

- (profile average velocity)

Therefore, equation 3.5.4 can be rewritten as,

sin ¢ + sin a

T sing-sina

Equation 3.5.8 can be rearrar;ﬁéd o the form

Equation 3.5.3 am‘i 3.5.9 can be then combined to give the relationship,

N

- reX
sin.a [ex

2+ 2}

Simplifying further, we have

(

(t) ]sino

cos a = [ex

- ex (t)
( 9

(t)-1 oy
15

-

e

¢

(3.5.0)
(3.5.5)
(3.5.6)
& (3.5.7) \:
i
i
3
& !
(3.5.8) 1
o =% )
g R |
: !
(.59 . &
- e
o a
. .
Gisan . P
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From equation 3.5.8 together with 3.5.4 one can obtain the one way
travel time,
0+ (302 %+ 20+ (2)ht
t o= o A = 9 = (3.5.11)
0+ (202 %t - 0+ (2%
a a

For a given medium with vertical linear velocity profile (Vo, g) and

reflector depth z, 235 becomes a parameter, which we designate as Q,
a

Q a 23? (3.5.12)

It can alsc be written in the form,

= e (3.5.13)

Vo (Vr/Vo) L

Vr_ -V (Vr/VO) -1

Q can also be considered as the velocity contrast of the medium.
Since 0< VE <w

o
the value of Q lies in the range,

-1=2Q<1.

By rearranging the equation 3.5.13 we get

\
S

=] and
Y

(3.5.14)
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" The graphs Which represent: the équations.!.S.]B and 3.5.19 are shown in

‘\. g 7
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For nqrmal incidence it can be shown that the oneway travel time i
is given by. (Appendix 3.5)
. ' .
@ 0 r
ty = gh N . (3508
Lo vy . i
i.e. Gy © . (3.5.8)
¥ o vy | E
It can also be-shown that,
- P Ay e ¥
T A I T .
= <[r -1, . . .. (357
'V; g v 7 o . B

The graphs representing the equations 3.5.16 and 3.5.17 are shown in
Figure 3.5:3.. The sag'lm mati'ons can “ representeq in a different

. manner using the' parameter Q and the profile average velocity V,, = af

(3.5.18)

(3.5.19)

.

" Figlre 3.5.4. It can be seen-that the ef\'ect of Q on trnve1 tine 1s ~
sma'l] for small vﬂu. of Q. whereas it 15 cons1derub'|e for 1arge Q.
I.lsh-xg ‘the parameter 'O'e travel t_lle n’lnl%u (equation 3.5.11) can be
rewritten as follows ' . . 3 : _— \
» . G . | T
= E ¥ - g
AN ity L

3
)
{
i
]
{
3
i
i
1




7 . (3.5.20)
A R L L N - S L L

Qxy2 3 X 42,3
) L1, D@ e ane 3

The travel time for normal incidence tye given by equation 3.5.15, can

be rewrittn in the form . .
4

g n OEp L (3.5.21)

. i The relationship for a normalized travel time t/, is ‘then
: N

e " n+(u-)3*+un+( X5
i Wzl TR E S
- 243 3 ] '
N > AR L N ARG S L

¥ 4TN' \ \j}'

gy o\

N

. Y : .
. - which displays the.parametric dependence Bn the single parameter Q as 'a

T
i
3 function of the ray chord tangent = = tan ¢.
e The graphical representation of equation 3.5.22 is shown in Figure %.5.5. 1,
: . It is seen that the effect of Q becomes considerable only. for the laFge i
) ’ ’
] offsets. L i *
- : '
J The apparent velocity can be defined as %,
.
(x,2) [x +z ]
. Vp ez t) 4 rr“r — (3.5.23)
' ,.‘ . ~where d = s zz)l o . §
. . s
T i :
-
' .
; ) . !
» 7 .
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The deviation of the apparent velocity from the average velocity of the’

medium 572 peasure of constant velocity gradient effect.

A normalized apparent velocity with’respect to average velocity v, s

then given by
Vapn & (v,
a0+ (5)h

= . 3.5.24
o eDE s qn s (AT 524y
n Z Z

DA - oo+ (2% .

The graphical representation of equation 3.5.24 is shown in Figure 3.5.6.

© If the apparent velocity V“ (x,z,t) is normalized with respect to the

apparent velocity for the normal incidence Vap “tx = 0, z, t), we obtain

N
V. (x,2z,t)
2 -y
Vop(%=0,2,t) TN
P
- t
e,

\’(\ oo+ mit

1+ (@ .22k o+ (A4
- s N

2%

- a0+ (D)

0+ @ 3
% (3.5.25)
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The graphical representation of the equation 3.5.25 is shown 11&F|gure
3,5.7. The above relationships can be used as the basis for estimating

the reflector depth z and the parameter Q.

I
3‘.5.1}ESTIMATION OF THE PARAMETERS DF THE MEDIUM FROM SURFACE MEASUREMENTS
USING NORMAL MOVEOUT RELATION -
Let us consider the equations 3.5.21 and 3.5.10,
gty = WY X (3.5.21)
F-0Q

N
Y 2 e let) <12y, 2. e (gt) 2
= - - 1,2 %2,
S KT T 2 G g (3800
Using the paraxﬁeter Q, equation 3.5.10 can be rewritten,

o, '
2o @ iEl ey L2 [—:}z @20 35

By multiplying the equation 3.5.21 by t and rearranging, one obtains,

’

7
1 exp () = (1) gy (3.5.27)

;f we define A as
aa D oy g (e 0. (3.5.28)
Substitution of. the eqult1an‘3.5.za in the equation 3.5.26 gives
Ce e G ‘-'zz t ;7({}%)2 S h (3829

’




Equation 3.5.29 can be further rearranged to the form shown below:

} 2 2 2
(A+h = (2 ) £+ 2120 (3.5.30)
g A - @
2
2 Ll *ox. (3.5.31)

t
2 1 1+0Q
- A+ g2 1Ty

L Sl

The equation 3.5.31 is suitable for estin\atigthe reflector depth z

from x - t moveout’'datd for a reflection event for seque‘ntiaﬂy altered
trial Q values. The above relationship has been used to estimate the Q
Qa]ue\s_lng simulated t Vs x data for a chosen system having Q = 0.5

and z - 500 meters. The graphiéﬂ?reymsentation of equation 3.5.31 for
different trial Q values are shown in Figure 3.5.87 The curve repre-_
senting the smallest variability of depth z against the offset x
cortesponds to the best esti[nate of parameters for the x - t data-gener-
ating medium. However, the above graph does not v"‘epresent an observable
deviation against small Q variations. ,Fair]y good di;gHmlnation can be
obtained using the $Mphs shown in Figure 3.5.9 and 3.;5.\0.' Figure 3.5.9
shows the error of the estimates for different Q values, whereas

Figure 3.5.10 §ive§ the estimated~depth against d1’fferen’t Q values.} It
can be’ observed that all the graphg\tersect together at the point which
cerresponds to the data-generating metﬂum. The Figure 3.5.10 is a very

( :
sensitive indicator of depth estimate and estimate of Q value. -

A Falrly,uccurat‘e estimate of*Q can be,-obtﬂned; if the data generating

system'Q value is. faiv"ly large as we have seen from the figure 3.5.4.
i ) \
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Once the Q values and the reflector depth z are obtained, and also the
datum velocity V‘; 4s obtainable from the velocity spectra, the constant

velocity gradient g can be obtained from the relation,

=, Q - % N 7
zvﬂ' .}
\ 2v,
1.e. g =il el
2 1-9

If the t" is known preshnably, estimates of/the velocity gradient g

and the average acoustic velocity Va can be obtained without the knowledge

" of v from the relations,

Therefore the linear velocity profile of the medium can be obtained.
This knowledge of the velocity profile will be used in-the next chapter
for identification of a dipping reflector and also for the error

analysis in the latter chapter. < i @ "
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THE ONEWAY TRAVEL TIME FOR NORMAL INCIDENCE

The oneway travel

,relation,

where V(z)

V(z)

t,

Y
time for normal incidence can be obtained from the _

t(z) ,
’
t(2=0)
. fz)v‘m- @- Ty &
220 20 ot 9

z d (Y, +g2)
9 20:(0*'92

. A vV o+qz
3 e
Yo
= 1, U2) /
Yo
Vot ez

datum velocity =
1linear velocity gradient (1 - D)

velocity at depth z
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CHAPTER IV
LINEAR VELOCITY PROFILE MODEL
FOR DIPPING REFLECTORS




4.0 GENERAL 4

The equations which have been developed f_or horizontal reflectors do not g

t apply to the sloping reflectors. We derive now the applicable relation-

: ships for raypath and travel time of the normal rays in a constant

velacity gradient model for this situgtion. These relationships can

then be used for gstimating reflector geameiry and velocity profile

parameters from- surface observed-two-way normal ray travel-time-as a - - =

5 ' function of progressive shot/receiver locations along a survey line. °

- The analysis to be detailed extends |nt?oductary work by Vetter (1981)

and some related work by Michaels (1977).
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4.‘ NORMAL RAY ANALYSIS ON A DIPPING REFLECTOR USING LINEAR VELOCITY PROFILE

MODEL

We assume that any geophysical reflector surface can be divided Yt
number of small linearized dipping segments. The parameters of sachiand
every segment is then obtained from the reflection data. In this parti-
cular method of analysis, transmitter and receiver have to be located at
the same point. If the medium has linear velocity profile,ray will
follow a circular path déscribed by equation 2.73. The receiver can
accept reflected signal if a ray meets a reflector at an angle of 90
degrees. The reflection path will be the same as the forward path.
Thesxrays are called n? N rays. The sloping reflector and raypaths

for this particular anaiysis “are' shown in Figure 4.1.1.

Referring to the Figure 4.1.1,

Lh = Tlinearized 4egment of the reflector surfice
0 = shot/receiver location '
tan § = the slope of the linearized reflector portion,

which is assumed to be constant within a small
*  segment of a reflector. N
R = the centre of the circle which describes the
raypath for linear velocity profile medium.

q(gfb) .

If g = 0, the normal ray takes the direct path OP, i.e. the direc® path _

perpemﬁcular to th& surface of the reflector. A Tinearized reflector

partion can be represented by the equation,/ "




Y =z, - xtn & (A .
i
: where,
] ,
z = depth measured downward from the datum
~ surface. 4
7, = the vertical depth measured from the datum .
surface to the point o'F interception,. S,
., - between the vertical line through the shot/- -
! ., receiver Tocation 0 and the extrapolated lin- y
X ' carized reflector M.
* The ’e_xtraptﬂated Tinearized reflector seg!rent - LM must pass through -
O the centre of the circle - R, that describes the raypath in the v
linear velocity profile. media, since the raypath 'ON' is perpendicular
“to the reflector segient at the.point N.
Let us-assune that the centre of the circle R = (x., z,).
The value of (xr. z;) is_given by .
. v X
i X = —— = .
Q‘ gtane, .
and,
. o 5, = .
. .
-
where 8, = ray departure angle - .
Vo = datum velocity ok . .
- - 4 7

e e 3 e o
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Ce £ . ‘o i
“The centre. point of the circle suq(sf(es equation 4.1, since the

* centre lies oy the Hne' described by equati_én &1 erefore, from

equation 4.1, we obfain £ .

= z_ - tan§ . —— ,
° gtan o

where‘tan & is the slope ef the Tlinearized reflector portion.

+ By rearcanging the above equation,”we bbtain

o A

Ctan @, = .-tansd £}

. a9z
Ttan? 5+ (1 +_v;2)?]!
W Yo o

By using the triangular geonetry relationship

. . T2 tnn‘abfz .
© tmne = —— o
. 1 --tan” o, /2 . o &
. 4 o .
equation 4.2 can be writtends . .
“2 tan /2 Fan, 8. . "
S G-tafe /2T 0 N

Referring to eqnal;ibl\

(4.2)

@

L na g B
.25, the travel time at any point on the raypath




I\ ;
| ¢ -
i = ! 7 o
g .
! : - ‘o~
5 is given by P ¥
f o B 2
; S g . e %0 :
£ 2 tan 8/2 2 e ”
: to,0,) = g In Fane,72] * : (4.8) - -l
i . . X . =
- Considering the diagram shown Sn Figure 4.1.1, we have the ray incident
! - angle at the reflector as 6 = 4. ‘ A
“ . . s . ¥ -,
¥ Let tyy = t(s,sp), where ty = the one way nunn?‘l ray travel time frog. * |
0ty N. . A\ . 'X .
. . - iy 2 :
s Then, equation 4.5 can be written a}s B K N e (
i I ;
it . * < 3 tan 6/2 .- g
i K g™ I:tar\ 8 /Z! ' -
i . - ) o R
b . L. . . ) ., -
Combining equation 4.6, with 4.2 we ‘get, < -4
| . " g o
‘ ty= g In ——tS 1. @n. -
L ‘ tan [% (tan"! b . :
H . 8 §% & s é
% This is the equatiqn de'scribjng the one way L&nvzl"}im relationship s
o . 3 s 5

in-terms of the parameters of the medium anc yéﬂectov geql\eéry‘ par_l‘-f B

meters. . . E 2 E 1 st o,

Equation 4,6 cambe rewritten in'the form,
tan-6/2 ‘= tan §/2'..exp (-gty) .




I ’
' -~ e
\ e "l 3

3 P e g

. 3 i

«° : IS
. B f

f 8 . . ' 5§

) having conrd'lnates x.l. Xps, )(3 cerdeaXy ultt; respe:t to shot/rece1ver

Y ] Ty oK e
Equation14.4, together with equation 4.8 gives,

|' "2 tan'(s/Z)‘. exp (-gty) i : .
N AT T £
cel- [tun‘(&/i) . exp‘(-gtu);lz n +ﬂ] Bl oY
&4 3 : : Vs . v ’ :
- O, . /
The above equation can be: restrnccured as,” v # B
ok L, :
A v g i
exp (gty) - "unz w2 e (-gt") =a ‘-v-) 0 -t 720, 9

v . . -3 J

data lec us conslder movlng shotlreveiver 1ocat|on U.'. 02...

. .4
-point - 0. .We assume that the short/recelver at all the above Tocations

structure. w5 s

Then z .€an be rep]aceﬁ by z = x‘ tan\for the 1"' shot/recelver
lncation whcre,_. . . B Tt

)& * distance to the l"‘
s -
« Any of the points on ‘the reﬂector can be uniquely described by its PR

. 1
mtera:ts Hith a parﬂcular llnearized d!pping segment of the geophysica'l J 4 i
shot/receivev'f lacatlon‘ from the polnt-u. . ‘

- .X' z cnunﬂnates together with, traveI tlke‘rml‘{ corresponding shot/- : B
- .

i recelver po{nc on the z=0, Tine. : ) /

(x“.x .t,,).




“where, t" is the “travel t(me corresponding to the

L

R T E

In the#ca‘s’e of moving sh;:tlreceiver Tocations, equation 4.9 becomes
g , K .

v

: e)_tp'(gtm)v - tgr{z (8/2) . exp (-gén'l ; (\

i *;_ i il .
= (1 4"z, - x, tan 8)) (1'- tan® §/2)  (4.10)
w . . ) 0 ,)(' , . 3 :

ith & shot/receiver

,_location. Th{s equatian relaths. the medium parameters to the travel .

t‘lme and dtstince characterist'lcs

The exact relationship given in equation 4.10 can be simplified to
¥ :

obtain an apy’n\ate relationship given below for the case when \

tan2 8/2 This agprox’}@ation would be possible even'up to

20° of & valies without much error, B

R ;
. . exbhtu') = T+ 3— (25 - %; tan 6) - i =
o :

By rearranging we gets, 7 ’ 3
. , . .

Y, ’ R % x
b [exp,(gtN’) S g -xptans (4.0

"This time-distance relationship can be used to obtain the io and tan §

. from truval time and distance data with the knw]edge of V “and 9.

The “above relationship 1s used in the comparative annysls copsidered .’

|n the next chapter.

In order t.o 1lr1vc a model for tho condition whcri qt“ <1, equatlon ({7

.10 un bo ﬂwﬂﬂm further using Tuylor s ur1 oxwuien. ' ,w—-x\
; P ‘ 4

)




The r.‘eilsnn!‘ velocity grad‘unt of medda, s usually snall
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(gt" )2 .(gtu )i
]'9'1( + z I [N SR

- 3l

(aty, Pt

- tan? 52 (1 - gty + o s TR, &
i 3l -
’ & ) )
i 9z " . w"”
= (-t a2+ —2 (1 - tand 6/2) \
vy \
\ - x; tans . (1= tan” 8/2) (4.12)
- L eh % wen N, W
: 3
Equation 4.12 can be comBacked to T . i
sinh gty -0 +tan® §) + (cosh gty = 101 - tan? §) . o
# B 4
.' 'd; (zq = xy tan 8)(1 - tan? !5-) " .

or

sinh gx"', + (cosh gl"' -3 cos s = a— (zg - x4 tale) cos 4. :
o

" especially fnr most of the deep se!smic mdh where’ 1t is typically

less than l f.e.. g<1 For smﬂ’l vn'luls of tN » the'above series can |
be approx!nted upto the second order ,tams’.u Then tmnntion 4.2 "

chun ’ R >




n

gty )2
.oty - tan? &/2 - 2"

tan” 412

iz ' g
o ol - tan? 72) AU tar§ 6/2)

. . / . ’ (gty )2
| i e (vt o) gy ¢ (-t o, T
9z gx
. _vi. (- tan? 5/2) - L tans . (1 - tand 62)
o %
5o\ .
gt" i— tan § - -,7,-—-) (o tan, &2 tar? 572,
) 1+ tan” /2
N 4 1-tanl 62
. Since, cos § = ————=
1+ tan® 8/2
R 2,2
' [ 4 f’l" o ]
: = ns - cos &
L S
] - & gv * - .
‘ y oty ® G- xiftan s - 52 e,’,' 1cos & “.13)
{ . For the situations where & /1; s]na'ﬂ. L;m cos &+ l, equation 4.13 becomes
- . o
i [ = . c s
: w
7 > 4 ne-Yo 2
' > Ve t"‘ = 2 x', tan § - '2" 1"1 (4.ll?
§ " I

§Y




4.2

This represents the approximated model for constant velocity gradient
media which relates the“travel time and distance to the parameters of
the media in cases where ch <, 1. This analytical model equation y

4.14 re]ates the parameters g, \Io, z, tan & with the nbservah]e

2 (tN x;J.gata. This is a suitable model for estimating the reflector

geome' fom the surfice observable data set if, the velncity prnfﬂe
parameizrs Vd and g are known. b P N

NORMAL RAY APPROACH TO THE REFLECTOR IDENTIFICATION

This method of true reflector identification can be used, where there
are siuv‘le'geophysiul structures such as slopes. In‘th),methed Vthe ~
Epparent dip in the reflection seismogram for the nﬂ'f;lm rays 1 con-
veried to the true reflegtdr geometry by using least squarstechnique.
A une-dimensionﬂ Tinear velocity profile model is considered‘ This
analysis can be applied equally to the constant velo:ity medfa. This
-amlﬁ:an also be used with the latera‘l velocity variatians by

dividing the survey area ‘into a number of small-areas which have con-

stant lateral velocity. : . -
. ¥ .
Consider the 1inear velocity profile model developed in the previous
section, i.e. equation 4.14., : i Lo
5 . [ -
v . Y tII| =y e xgtan . o= tN| LI (4.']9)
e, . .
Vo t“ + % tﬁ1 =z - x tans . (4.15)
’ . \
' : ) s 1

o



\ n
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s . ,
fuid If the velocity distribution of the medium is known, least squares =
technjqne can be used to estimate z, and tan &,

Once z5 and tan & have been »u!(sed. then the true reflector poirl

(x". z") can be}obtnned The mathematical relations for (xN. )

i . can be der'ved as follows:

The true reflector point (xys 2y) is 'the intersection pui’nt of the
raypath given by equ‘na.n 2.29 and the .segmentized linear refledtor
portion given by equation 4.1. Hence the solution of these two
equations gives the ‘common point (xN. l")

i . Consider the equations,

¢ . v v v, i

| ” - —2% + @+ 207 = (2 - (@29
3k ~ 9 tan g, g sin 8,
& | “\\x Yoz =2 - xtan 5’ & ) (a.1)

Also, from equations 4.2 and 4.3,

tan &

\

L tne, -t ) . @)
, - 0+ 2 i
P ¥ o
o . v * . N
Vi : e R
l 5 singy = ——08 L . .3)
! . 3 Etan ] 0\(1 + -v-) 3", e
\‘;

Since the ot (e 2y) 1§ comon to both equation 2. » md a1, ve
obtain, “ . e

A =



-

-4.5 describe the true reflection point.

i [Io = Vo (1 4.9z /V)) 2 gy + _]
tan & . ogtans ] . <
v 9z, i /
S—2 s+ (1+ %
g tan & vo_ £

*» -

"This represents a second order equation-in Zys which has the solution

) Vo2 A’ z, (2, + ZVo/g) M)

2, = =2 & [(-9 Ay (4.4)
oo =l 97 g (1 + tan®g) N

Since the depth nust be ﬁositlva valued, the right hand side of the
equation should be the positive squ;n root. Once zn_has been obtained,
the equation 4.1 can be used to obtain x, .

z =

(.5)

For a linear velogity profile medium the above equations, i.e. 4.4. and

For a constant vﬂoclty l!dhll.l and tan can be obtained using the
slmfﬂ as ‘was used in the linear velocity n?fﬂz case, i.e.

- equdtion 4.14 with g = 0. For this. case the truo raﬂectnr identifi- .
" cation task reduces to the estimation of (xp. zp) as shnm in figure

4.1.1.

The true reflector position for the constant velocity medtum can be
obtained using the simple geometric relationships given below:
.

el s B s




Z
x, = 2 sin2 s
L)

s 2
. .zp-zosin 8

By summarizing th‘ls- chapter, (:e cdn say that we have described ’a methm;o-
olgy for ohta1nii|g estimates of th’; true sloping reflector under a ﬁnear
it . velocity prnﬁ'le‘l\ediwn. As in the case of the horizontally stratified
medium, the constant g‘rad‘ient model might represent an approximation for
the velocity profile details of a cwosite of several medium layers
above the reflector. The estimation accuracy will then depend on the
¥ ' degree of applicability of the profile modql. Since the gradient’

; & velocity model has an addiubnal parameter over the constant velocity

o . model, one can éxpgct to have better eitimates for the true reflector
gemnétry by use of this model. !
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CHAPTER V _
.
f 3 ANALYSIS . OF ERRORS DUE TO/

* CONSTANT VELOCITY ASSUMPTION
IF THE MEDIUM HAS A LINEAR
VELOCITY PROFILE
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velocity gradient becomes negligible as the depth decreases.

ANALYSIS OB/ EE EFFECT OF CONSTANT VELOCITY GRADIENT ON TRAVEL TIME

The computer simulation was performed with an assumed reflector
geometry given by (Reference Figure 4.1.1)
zszu—x1tan6. ¢

The tr;vel time distance relatioh for a sloping reflector can be

obtained fron the equation 4.7 by substitutingz, - x; tan &

* instead of z,. The effect of g on travel fime is observed for

given Vd, 2, and &. The travel time - distance rgla:lons for
different values of velocity gradients g are obtained and given
in Figure5.1.1 and 5.1.2°for the slopes of 10 and 20 d.egrees.
The specification of - the med'um parameters are given under res-

pective graphs.

From the above graphs it is evident tha'; the velocity gradieﬁt
has a considerable influence on the travel. time. Also, it is )
observedht the effect cannot be disregarded even at the
depth of 500 meters. The figures indicate that the effect of

“ANALYSIS OF THE,EFFECT OF DONéTANT VELOCITY GRADIENT ON THE RAYPATH.

The constant slope'reflector has been used for the above analys!f. !

The specification for the parameters of the medium is given under

" the respective figures. *The equations 2.29, 4.1, 4.2 and 4.3 | .

Ius hen used to ohuﬂ(he effects of g on rqypaths for given 1
Vo' 4 and 5. From the, figures 5. .1 to 5.2.6 it is nbserved

that cnnstant velnchy gmdlmt has v;n considerable effect on the
ruypaths in the most puctlcn rlngl of 0 }_g < 1.0 at the dapth‘

P

O—




of 200 meters and slopes of 10 and even 20 degrees.

The influence of slope of the reflector is also observed to be_
considerable on the raypaths. If the slope is large'r, the
de!\'a‘ﬁon from the raypaths_under the constant wetocity assumption,

is also observed to be larger. . -~ /

This analysis indicates that the constantxﬂucity gradient has
a considerable influence on the raypaths .in the deep seismic
situations. However, the influence in shallow seismics are

negligible.,
>

ANALYSTS OF THE EFFECT OF CONSTANT VELOCXT, GRADIENT ON THE DEVIATION

COMPARED TO ‘CONSTANT VELOCITY ASSUMPTION ' -

In this analysis. the numerical values for (‘xp, zp), (XN. ZN),

(XF - zy) (zy - zp) n’n'd (z, - zy) are calculathd for ‘different velocity
gradients, g, to get an idea ubout the quantitative values of the
deviations. The co-ordinates of the points N (x’l ,z") P(x I3 ) are
obtained using the equations 4. 4, 4.5, 4.6 and 4.7 for given z N V and
6. The results for g = 0.5 are cabulated in the Table 5 ¢ 'The above
symbols are used keeping Fig. 4.1.1 as reference.. The devlanons

(x - XN)" (zN - IP) and (z - zN) with respect to depth are plotted
in Figures 5.3.7 to 5.3.12 for the slopes

% and* 20 degrees. This
'analys1s supports our -conclusion .in section 5, s, 1.e. if the medium

is'a 1inéar velocity profile one, the deviation of the raypaths. under
the constant velac{ty assumptlon are found ‘to be considerable 1n

d:ep saism‘lcu.



i The eStimated reﬂ'é'c.taors using the abovesanalysis for depths of 500.'
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Further, from table 5.3 a horizontal shift of about 100 meters
and a vertical shift of 36 meters are observed at the depth of
2000 meters and velocity gradient-of 0.5 is a result of the

constant velocity assumption.

" We consider the resu}{ant error e under the constant velocity

assumption is given by

o= Ly - xp)? + (g - 22
Then at the depth of 2000 meters_; muld be approximately 106 meters
for the mediun of g = 0.5. )
Sometimes, this error may be misleading to the |nter;;reter.

ANALYSIS OF THE EFFECTS OF CONSTANT VELOCITY GRADIENT ON THE -
ESTIMATION OF THE REFLECTOR GEOMETRY §

We use the linear velocity profile mode] equation 4.1 together with
equations 4.4 and 4.5 for this analysis.v The least squr.ﬁtechnime
is used for the true sloping reflector identjfication with equation
4.15. As in the previous cases, -!Mve considered a constant sloping
reflector. We generate t!\g x~t data for l constant velocity gradient

model. This data is us

estinate the parameters under the assump-

tion that the medium is one ;ﬁ nstant velocity eq-ua'l to the average

velbuity of the data geherating system. The specification of the i

medfun parameters are-given under "the respective grnyh’s. «
K )

Our interest is to s}udy the effect of g on the error that is generated
. . G v
due to the assumption that the veloctty of the medium is constants

’



i 2000 and 5000 meters are shown in figures 5.4.1 to 5.4.3. The err:vr

i _ is clearly brought out: in these graphs indicating that the error due

5 to the constant velocity assumpélnn is considerable. It is also
visible that the error becomes more cunsideralﬂe as we go deep;r and

deeper. This analysi’s_supports our conclusion in the previous u‘alysis.

I ' The estimated reflector- considered in the above figures does not
display the corresponding shift of t‘h’e dctual point on the reﬂegtor."
Therefore, we have de\feloped figures 5.4.4 for the case of. 500, meters
depth, which is more informative s'wuing the actual shift of the

'reflector points as a result of the assmptinn that the ‘velocity is

N

5 'constnnt. These figures leads us towconclude that the estimated
reflector points are at a lower depth compared to tl\e true reflector
> . >
- points on the reflector.
@ 5.5  IMPLICATIONS OF FINDINGS
Based on the above analysis, the follcvﬂng“!-pliations uv} be made

wr for deep seismic and shallow seismic separately.

5.5.1 DEEP SEISMIC EXPLORATI! 3 .

The effect’ of 1inear velm:it,v prnﬂ\e on uypaths are fairly

i / " considerable.

. Deviations from the constant veloclty ussumpﬂnn are falrly large.

i . ‘ . Estimation bnsa on consnnt velocity lssnmption g‘ve rige to n

i considerable effor. - - i

) g ‘m?w-m considerpble error of the estimates.the resul)s‘ml be -
: lisIeMing. in the lnterprent!on of geometry, 1ithology and |-
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during the drilling activities for oil and gas in seismics.” .. -

5. 5 2 SHAM.OW sngxc APPLICAT]ON

g1ve a fairly good- match e

>
On account of negligibk error effects the cnnstant ve1oc1ty /

mode'l may be used ‘for physical media with v locvty grad\lents.




CHAPTER VI

CONCLUSION AND FURTHER. _

. T/AREAS OF RESEARCH




CONCLUSTON: L o q

In virtually al] current seismic-data processing, the response data is ’ ]
1 Jnterpreted in 'the Tight of the seguentwise constant propagation velocity ~
hypnthes‘ls for medium segments. The Tjnear ye'lnc1ty profile hypothesis
~const1tute£ a further degree of freedom, and hence with the patentia'l to L

effect more~accurate estimates about the med\m\than can*be obtairn

§E the constant velocity: hypothesls.

In the ﬂrst part of our study we 'have glven a method for estimating\the

" reflector gemnetr{and the constant velo \{ty gradient from the s@rface
o)servab]e data for a zero-dipping ref]ector. “The. accuracy of the eshmates

1 depends cn the agcuracy of the trave] time - gﬂ'set data. An accurate °

estimate can be obtained from the simu]ated data although difficulties may .

s
be encountered due to the inherent noise associated with practical data. .

In the second part of our stud;lfwefhave developzd_a_ suitable linear .,
’ v_eln\;:ity pro’fﬂe model for dipping re\f\fé:tn\rs using the normal ray ana\ysis,
With the help of this fodel we have observed that. the errors due fo the =
Tinear velocity assumption are small in the ase of shallow seismic studies,
whereas in the case qf dz;ep seismic ap]ora.tinn the 1inear ve\oci’ty pmfi"le . 3 ‘b ',

approx imation gives rise to a considerable error.’ L

< A ‘. 2 P
The analysis; and insight from the simulation results improve our understanding
of velocity gradient effects in the estimates of ‘the pararieters. Thé analy-
tical results offer reﬂnenenés for the medium structures and parameters

: . «esg|m5t|°n_prob13n. for siw.tiun.s where the Tinear velocity profile model -

i is_appropriates:




>~

FURTHER AREAS OF RESEARCH

The extensinn of the linear velocity profile model to the multllayered

system and the develom\ent of the. we1ocity spectra for the linear velocity

prnﬁ'le mode] are some of the dlrectlons suggested for- further research.
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TABLE 5.3

i

ERRORS DUE TO CONSTANT VELOCITY ASSUMPTION IF

THE MEDIUM HAS A LINEAR VELOCITY PROFILE

Slope (Degrees)

VELOCITY GI’QDIEHT - g (1/sec) 0.5000000

*p

32,13939

64.27877
96.41815
128.5575
160. 6969
192.8363
224.9757
257.1151
289.2545
321.3939
353.5332
385. 6726
417.8120
449, 9514
482.0908
514.2302
546.3695
578.5089
610. 6483
642.7877

89.96252
9.13391 *

%

88,30222
176.6044
264.9066

"353.2089

441.5111
529.8133
618.1155
706.4177
79 00
8! 22
971.3244

1059. 627
1147.929

1236.231 °

1324.533
1412.835
1501.138
1589.440
1677.742
1766. 044

)

0.1262512
0.4946899

9. 8584
32174365
85.71777 .

20.00000

*n

31.79252
62.91964
93.42361
123.3440
152.7130

+ 181.5642
209.9285 -

237,8338
265.3046
292.3662
319.0387

345.3450 -

371.3052 -

396.9340
422.2502
447.2700
472.0066
496.4737
520.6858
544.6538

LTy
11.57153
22.90088
34.00342
44.89355
55.58301

66.08398
76.40771

¢

z
n

88.42847
177.0991
265.9966
355.1064
444.4170 «
533.9160
623.5923 *
713.4355
803.4370
893.5874
983.8794
1074.305
1164.856
1255.528
1346.313
1437.207
1528.204
1619.298
1710.486
1801.762
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