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Figure 9. Instantaneous streamlines of the flow for R = 500: S = π/2, αm = 1.0: (a) t = 8, (b) t = 9,
(c) t = 10, (d) t = 11, (e) t = 12, (f) t = 12.5, (g) t = 13,(h) t = 24, (i) t = 25, (j) t = 26, (k) t = 27,
(l) t = 28, (m) t = 29, (n) t = 30, (o) t = 31, (p) t = 32.

further downstream. This seems to delay the development of the periodic flow pattern
in the near wake.

When f is lower than the natural shedding frequency, an initial clockwise vortex
is formed on the lower half of the cylinder when the cylinder is rotated in the
counterclockwise direction and a counterclockwise vortex is formed on the upper half
when the clockwise rotation starts. This leads to a non-synchronized vortex formation
mode and as a result of this the lift and drag are affected by the frequencies f0 and



140 S. C. R. Dennis, P. Nguyen and S. Kocabiyik

4

3

2

1

0

–1

–2

–3

–4
0 8 16 32 40

t

CL

CD

24

Figure 10. Variation of the drag and lift coefficients, CD and CL with t at R = 500,
S = π/2 and αm = 1.0.
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Figure 11. Instantaneous streamlines of the flow for R = 103: S = π/2, αm = 1.0: (a) t = 12,
(b) t = 13, (c) t = 14, (d) t = 16.

2f0, respectively. A salient vortex formation mode change was observed when the
forcing oscillation frequency f approximates the natural shedding frequency, namely
a synchronized vortex mode is found to be locked to the cylinder oscillations. When
f is higher than the Kármán vortex-shedding frequency (f0 = 0.1) an initial reactive
clockwise vortex is formed on the upper half of the cylinder when the cylinder is
rotated in the counterclockwise direction and a counterclockwise vortex is formed on
the lower half when the clockwise rotation starts. This leads to a synchronized vortex
mode as the vortices in the near wake are shed at the same frequency as the cylinder
oscillation.

In addition, the lift coefficients vary at the cylinder oscillation frequency, and the
drag coefficients oscillate at twice the cylinder oscillation frequency. In the case of
S = π/2 or f/f0 = 2.5 we observe an interesting behaviour of the drag coefficient:
the CD curve oscillates at twice the frequency of the cylinder oscillation until t = 32;
beyond this time it oscillates at the same frequency as that of the cylinder oscillation.
We believe that this behaviour is due to coalescence of the vortices of the same sign
observed in the flow patterns when S = π/2. This kind of behaviour in the drag
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Figure 12. Variation of (a) the drag coefficients, CD and (b) the lift coefficients, CL, with t at
R = 103, S = π/4.

coefficient in this type of flow has not been observed previously and seems to make
a quite new contribution to the fluid mechanics of the problem. It is also observed
that as the forcing oscillation frequency increases from S = π/6 to S = π/2 the value
of the drag coefficient decreases by about 50%. Drag reduction was also obtained
by Tokumaru & Dimotakis (1991), among other phenomena, when both the forcing
frequency and the peak-rotational rate are somehow higher than usual.

In the case of R = 103 results are obtained at S = π/4 and π/2 or f/f0 = 1.25 and
2.5 when the peak-rotational rate is α = 1.0. For S = π/4, the near-wake structure is
nearly the same as in the case of R = 500. It is found that for S = π/2 the near wake
does not involve adjacent co-rotating vortex coalescence and as a result of this the
usual behaviour of the drag coefficient is observed unlike when R = 500. Thus the
Reynolds number seems to have more influence on the structures and the fluid forces
at higher values of S than at lower values, which is in contrast with the findings of
Lu & Sato (1996). In their work it is reported that the large-scale vortex structures
in the near wake remain nearly the same for R = 200, 103 and 3× 103.
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Figure 13. As figure 12 but for S = π/2.

In summary, therefore, we have observed some new fluid mechanical phenomena in
this type of flow, particularly with regard to the periodicity of the double co-rotating
vortex shedding and the behaviour of the drag coefficient for certain values of R
and S . We have also confirmed instances of drag reduction with increasing Strouhal
number found by others but have found more influence of the Reynolds number of
the fluid structures than that found in previous work.
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Sümer, B. M. & Fredsøe, J. 1997 Hydrodynamics around Cylindrical Structures. World Scientific.

Taneda, S. 1978 Visual observations of the flow past a circular cylinder perfoming a rotatory
oscillation. J. Phys. Soc. Japan 45, 1038–1043.

Tokumaru, P. T. & Dimotakis, P. E. 1991 Rotary oscillation control of a cylinder wake. J. Fluid
Mech. 224, 77–90.

Williamson, C. H. K. 1988 The existence of two stages in the transition to three-dimensionality of
a cylinder wake. Phys. Fluids 31, 3165–3168.

Wu, J., Mo, J. & Vakili, A. 1989 On the wake of a cylinder with rotational oscillations. AIAA
Paper 89-1024.


