
Epigenome-Wide Scans Identify Differentially
Methylated Regions for Age and Age-Related
Phenotypes in a Healthy Ageing Population
Jordana T. Bell1,2.*, Pei-Chien Tsai2., Tsun-Po Yang3, Ruth Pidsley4, James Nisbet3, Daniel Glass2,

Massimo Mangino2, Guangju Zhai2,5, Feng Zhang2, Ana Valdes2, So-Youn Shin3, Emma L. Dempster4,

Robin M. Murray6, Elin Grundberg2,3, Asa K. Hedman1, Alexandra Nica7, Kerrin S. Small2, The MuTHER

Consortium{, Emmanouil T. Dermitzakis7, Mark I. McCarthy1,8,9, Jonathan Mill4, Tim D. Spector2"*,

Panos Deloukas3"*

1 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, 2 Department of Twin Research and Genetic Epidemiology, King’s College

London, London, United Kingdom, 3 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom, 4 MRC Social, Genetic, and

Developmental Psychiatry Centre, Institute of Psychiatry, King’s College London, London, United Kingdom, 5 Discipline of Genetics, Faculty of Medicine, Memorial

University of Newfoundland, St. John’s, Canada, 6 Department of Psychosis Studies, Institute of Psychiatry, King’s College London, London, United Kingdom, 7 Department

of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland, 8 Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford,

Churchill Hospital, Oxford, United Kingdom, 9 Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom

Abstract

Age-related changes in DNA methylation have been implicated in cellular senescence and longevity, yet the causes and
functional consequences of these variants remain unclear. To elucidate the role of age-related epigenetic changes in healthy
ageing and potential longevity, we tested for association between whole-blood DNA methylation patterns in 172 female
twins aged 32 to 80 with age and age-related phenotypes. Twin-based DNA methylation levels at 26,690 CpG-sites showed
evidence for mean genome-wide heritability of 18%, which was supported by the identification of 1,537 CpG-sites with
methylation QTLs in cis at FDR 5%. We performed genome-wide analyses to discover differentially methylated regions
(DMRs) for sixteen age-related phenotypes (ap-DMRs) and chronological age (a-DMRs). Epigenome-wide association scans
(EWAS) identified age-related phenotype DMRs (ap-DMRs) associated with LDL (STAT5A), lung function (WT1), and maternal
longevity (ARL4A, TBX20). In contrast, EWAS for chronological age identified hundreds of predominantly hyper-methylated
age DMRs (490 a-DMRs at FDR 5%), of which only one (TBX20) was also associated with an age-related phenotype.
Therefore, the majority of age-related changes in DNA methylation are not associated with phenotypic measures of healthy
ageing in later life. We replicated a large proportion of a-DMRs in a sample of 44 younger adult MZ twins aged 20 to 61,
suggesting that a-DMRs may initiate at an earlier age. We next explored potential genetic and environmental mechanisms
underlying a-DMRs and ap-DMRs. Genome-wide overlap across cis-meQTLs, genotype-phenotype associations, and EWAS
ap-DMRs identified CpG-sites that had cis-meQTLs with evidence for genotype–phenotype association, where the CpG-site
was also an ap-DMR for the same phenotype. Monozygotic twin methylation difference analyses identified one potential
environmentally-mediated ap-DMR associated with total cholesterol and LDL (CSMD1). Our results suggest that in a small
set of genes DNA methylation may be a candidate mechanism of mediating not only environmental, but also genetic effects
on age-related phenotypes.
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Introduction

DNA methylation is an epigenetic mechanism that plays an

important role in gene expression regulation, development, and

disease. Increasing evidence points to the distinct contributions of

genetic [1,2,3,4,5], environmental [6,7,8], and stochastic factors to

DNA methylation levels at individual genomic regions. In

addition, DNA methylation patterns at specific CpG-sites can

also vary over time within an individual [9,10] and correspond-

ingly, age-related methylation changes have been identified in

multiple tissues and organisms [11,12,13,14,15]. Although age-

related changes in methylation have been implicated in healthy

PLoS Genetics | www.plosgenetics.org 1 April 2012 | Volume 8 | Issue 4 | e1002629



ageing and longevity, the causes and functional consequences of

these remain unclear.

Ageing is a complex process, which represents the progression of

multiple degenerative processes within an individual. Studies in

different organisms have identified many factors that contribute to

lifespan and the rate of healthy ageing within an individual. These

include components of biological mechanisms involved in cellular

senescence, oxidative stress, DNA repair, protein glycation, and

others (see [16]). Taking these into account, the concept of

biological age has been proposed as a better predictor of lifespan

and functional capacity than chronological age alone. Previous

studies have proposed that certain traits can be used as measures of

biological age [17] and have put forward a stringent definition of

an ageing biomarker (see [18]). Here, we examined age-related

phenotypes that have previously been considered biomarkers of

ageing (see [19]), specifically white cell telomere length, blood

pressure, lung function, grip strength, bone mineral density,

parental longevity, parental age at reproduction, and serum levels

of 5-dehydroepiandrosterone (DHEAS), cholesterol, albumin, and

creatinine.

Epigenetic studies of age-related phenotypes can help identify

molecular changes that associate with the ageing process. Such

changes may include both biological markers of accumulated

stochastic damage in the organism, as well as specific susceptibility

factors that may play a regulatory role. We explored the

hypothesis that epigenetic changes contribute to the rate of ageing

and potential longevity in a sample of 172 middle-aged female

twins, where methylation profiles and age-DMRs were previously

characterized in 93 individuals from the sample [14]. We

compared DNA methylation patterns with chronological age in

the sample of 172 individuals and related epigenetic variation to

age-related phenotypes that have previously been used as

biomarkers of ageing. We identified phenotype-associated DNA

methylation changes and combined genetic, epigenetic, expres-

sion, and phenotype data to help understand the underlying

mechanism of association between epigenetic variation, chrono-

logical age, and ageing-related traits.

Results

DNA methylation patterns in twins associate with genetic
variants

We characterized DNA methylation patterns in a sample of 172

female twins at 26,690 promoter CpG-sites that map uniquely

across the genome. We observed that the majority of autosomal

CpG-sites were un-methylated (beta ,0.3, 69% of probes), unlike

X-chromosome CpG-sites, which were predominantly hemi-

methylated consistent with X-chromosome inactivation (Figure

S1). Comparisons of methylation rates within twin pairs indicated

that MZ twins had more similar DNA methylation patterns

compared to DZ twins, and methylation levels were more similar

within co-twins compared to unrelated pairs of individuals

(Figure 1A). Correspondingly, intra-class correlation coefficients

were significantly greater in MZ twin pairs compared to DZ pairs

(Figure S2) indicating evidence for DNA methylation heritability.

Estimates of DNA methylation heritability were obtained from

CpG-site specific distributions of the MZ and DZ correlation

differences. The average whole blood autosomal genome-wide

heritability rate was estimated to be 0.182 (genome-wide mean

estimate was between 0.176 (95%CI: 0.168–0.185) and 0.188

(95%CI: 0.180–0.196), see Figure S2).

We further investigated methylation heritability by identifying

genetic associations with DNA methylation, or methylation QTLs

(meQTLs). Methylation QTLs have previously been identified in

multiple samples and tissues, and the majority of reported

associations have been observed in cis and close to the probe

[1,3,20]. Therefore, we restricted our analyses to cis-meQTLs

only, that is, SNPs within 100 kb of the methylation probe. At a

permutation-based FDR of 5% (P = 1.061025), we identified

1,537 probes (6.3% of probes tested) that had cis-meQTLs

associations involving 22,849 SNPs (Figure 1B). The majority of

associations were obtained for SNPs within a few kb of the

methylation probe (Figure 1C). Altogether, of the 1,537 probes

with meQTLs identified in this study, 444 (28%) and 61 (34%)

were previously reported in brain [3] and lymphoblastoid cell lines

[1], respectively (Figure 1D).

Genetic variants that associate with methylation can also have

effects on gene expression variation. For the individuals in our

sample we also had available gene expression data [21]. We

compared the SNPs that were meQTLs in our data with eQTLs

from lymphoblastoid cell lines (LCLs) in these individuals, as

previously defined [21]. We observed that 10% of previously

reported eQTLs in LCLs also had significant meQTL signals in

whole blood, suggesting shared mechanisms of methylation and

gene-expression regulation in a small proportion of genes, which is

consistent with previous findings [1,3,5].

Identification of differentially methylated regions (DMRs)
for age and ageing-related phenotypes

We next compared DNA methylation patterns to age and age-

related phenotypes by conducting epigenome-wide association

scans (EWAS). We fitted a linear mixed effects model regressing

methylation levels at each probe on the chronological age of the

individuals and included fixed-effect (methylation chip and order

of the sample on the chip) and random-effect (family-structure and

zygosity) covariates. Differentially methylated regions (DMRs)

associated with age (a-DMRs) were identified as those that

surpassed the 5% FDR threshold (P = 3.961024). We identified

490 a-DMRs in the 172 females twins (Table S1, Figure 2A), of

which the majority (98%) exhibited increased methylation with

age (hyper-methylated a-DMRs). Of the 490 a-DMRs in our

study, 75 hyper-methylated a-DMRs were previously reported as

Author Summary

Epigenetic patterns vary during healthy ageing and
development. Age-related DNA methylation changes have
been implicated in cellular senescence and longevity, yet
the causes and functional consequences of these variants
remain unclear. To understand the biological mechanisms
involved in potential longevity and rate of healthy ageing,
we performed genome-wide association of epigenetic and
genetic variation with both chronological age and age-
related phenotypes. We identified hundreds of DNA
methylation variants significantly associated with age
and replicated these in an independent sample of young
adult twins. Only a small proportion of these variants were
also associated with age-related phenotypes. Therefore,
the majority of age-related epigenetic changes do not
contribute to rate of healthy ageing at later stages in life.
Our results suggest that age-related changes in methyla-
tion occur throughout an individual’s lifespan and that a
proportion of these may be initiated from an early age.
Intriguingly, a fraction of the age differentially methylated
regions also associated with genetic variants in our
sample, suggesting that DNA methylation may be a
candidate mechanism of mediating not only environmen-
tal but also genetic effects on age-related phenotypes.

Age-Related Changes in DNA Methylation
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hyper-methylated a-DMRs in a subset of these data (93 individuals

from [14]). Furthermore, 36 a-DMRs from our study replicated

with the same direction of effect as 88 a-DMRs identified in saliva

samples in male twins [11], and 3 a-DMRs were also in the top 10

reported a-DMRs from multiple brain tissues [13]. The a-DMR

probes had similar mean levels of methylation, but significantly

greater variability (Wilcoxon rank-sum test P,2.2610216) com-

pared to autosomal CpG-sites across the genome.

The phenotype EWAS DMR analyses focused on the

comparison between methylation and age-related phenotypes in

the linear mixed effects regression (LMER-DMRs) framework. We

examined sixteen phenotypes (Table 1, Figure S3, Table S2),

which have previously been studied as biomarkers of age. These

phenotypes included telomere length, systolic blood pressure

(SBP), diastolic blood pressure (DBP), FEV1 and FVC to examine

lung function, grip strength, bone mineral density (BMD), serum

levels of DHEAS, serum total cholesterol levels, serum high

density cholesterol levels (HDL), calculated levels of serum low

density cholesterol (LDL), serum albumin levels, serum creatinine

levels, maternal longevity (MLONG), paternal longevity

(PLONG), maternal age at reproduction (MREPROD), and

paternal age at reproduction (PREPROD). For each phenotype

we regressed methylation levels against the phenotype and

included methylation chip and order on the chip as fixed-effect

Figure 1. DNA methylation variation associates with genetic variation. A. Genome-wide pair-wise correlation coefficients in 21 pairs of MZ
twins, 31 pairs of DZ twins, and 1091 pairs of unrelated individuals. B. Histogram of the observed distribution of P-values (black bars) and the
expected distribution (red area indicates 90% confidence region) obtained from ten permutations of the data. C. Majority of SNPs that are cis-meQTLs
are located within few kb of the methylation probe. D. Overlap of probes that have cis-meQTLs from the current study (red) with probes reported to
have meQTLs in brain tissues (blue, [3]) and in LCLs (grey, [1]), not accounting for SNP overlap.
doi:10.1371/journal.pgen.1002629.g001

Age-Related Changes in DNA Methylation
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covariates and family and zygosity as random effects. We also

performed the analyses by including or excluding chronological

age as a fixed effect covariate. We examined the results using a

permutation-based significance threshold, by preserving twin-

structure and taking into account missing data patterns for each

phenotype and evidence of co-methylation and deviations from

normality in the DNA methylation data. We observed that four

ap-DMRs for LDL (cg03001305 in STAT5A with LDL: age-

corrected methylation,LDL beta = 4.7361023, se = 8.7561024,

P = 8.7261027), lung function (cg16463460 in WT1 with FEV1:

methylation,FEV1 beta = 20.035, se = 6.7261023, P = 5.3161027;

cg16463460 in WT1 with FVC: methylation,FVC beta =

20.0293, se = 5.5961023, P = 4.6761027), and maternal longevity

(cg09259772 in ARL4A with MLONG: methylation,MLONG

beta = 2.1161023, se = 4.2161024, P = 1.8361026; cg13870866 in

TBX20: methylation,MLONG beta = 1.1061023, se = 2.1161024,

P = 1.2161026) were genome-wide significant at a permutation-based

FDR of 5% (Figure 2, Figure S4). We repeated the LMER-DMR

analyses using normalized methylation levels and observed that the

reported FDR 5% ap-DMRs (Table 1) also fell in the top-ranked

results from the normalized methylation DMR analyses.

We compared the 490 a-DMRs to ap-DMRs. Only one of the

490 a-DMRs was also significantly associated with ageing-related

phenotypes, specifically ap-DMR for maternal longevity (TBX20).

We examined the genome-wide distribution of ap-DMR associ-

ation P-values in the set of a-DMRs, but did not observe an

enrichment of ap-DMRs in the set of a-DMRs compared to

random sets of probes (Figure S5).

We tested for correlation in DNA methylation (co-methylation)

between nearby CpG-sites both genome-wide and specifically at

the 490 a-DMR CpG-sites. We observed evidence for co-

methylation, that is, pairs of CpG-sites located within 1–2 kb

apart showed greater correlation in methylation patterns com-

pared to pairs of CpG-sites located further apart. The pattern of

co-methylation was also observed at the a-DMR CpG-sites, in

particular DNA methylation levels at CpG-sites located within

500 bp of an a-DMR were highly correlated with the a-DMR

DNA methylation levels compared to CpG-sites located further

away from a-DMRs (Figure S6).

To assess if the DMRs identified in our study capture

differential proportion of whole blood cell (WBC) sub-types we

compared DNA methylation levels with WBC sub-type propor-

tions for neutrophils, eosinophils, monocytes, and lymphocytes.

Blood count DMR analyses were performed at the 493 a-DMRs

and ap-DMRs, and results are presented at a DMR Bonferroni

corrected P-value = 0.05 (nominal P = 161024). We did not

observe significant associations between DNA methylation at the

490 a-DMR probes with proportion of neutrophils, eosinophils, or

monocytes in our data. However, at 19 a-DMRs (3.9% of a-

DMRs) DNA methylation levels were significantly associated with

Figure 2. Epigenome-wide association scans of age and age-related phenotypes. (A) Genome-wide results for chronological age at
FDR = 5% (a-DMRs). Red dashed line corresponds to FDR 5% significance level threshold. (B–E) Peak ap-DMRs were obtained for (B) LDL-DMR
cg03001305, (C) lung function (FVC) DMR cg16463460, and maternal longevity (MLONG) DMRs cg09259772 (D) and cg13870866 (E); grey lines
correspond to fitted linear regression models on these data.
doi:10.1371/journal.pgen.1002629.g002
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lymphocyte counts (Table S3), suggesting that the a-DMR effects

at these probes may in part reflect variability in the number of

lymphocytes over time. We did not observe significant associations

between DNA methylation levels at the four ap-DMRs with any of

the blood cell sub-types tested. We conclude that variability in

WBC sub-types does not have a major effect on age and age-

related DMRs in our study.

Genetic associations for age-related traits may be
mediated by DNA methylation

To explore potential mechanisms underlying a-DMRs and ap-

DMRs in our sample, we first considered the hypothesis that DMR

effects may mediate genetic-phenotype associations. We focused

specifically on the overall set of 493 identified DMRs for age (490 a-

DMRs) and age-related phenotypes (4 ap-DMRs). We observed

that 5% of these DMRs also had cis-meQTL effects, which was

lower than the genome-wide rate of 6.3% of probes on the array

with cis-meQTLs. Altogether, the DMRs with cis-meQTLs were

located in 26 genes and some of the genes had previously reported

genetic associations with longevity (a-DMR MEFV [22]) or had

been implicated in longevity and ageing (a-DMRs SMPD3 [23],

GALR1 [24,25], ID4 [26]; see Figure 3A). Therefore, genetic and

methylation effects may impact age-related phenotypes in a small

proportion of genes, either with independent effects or by mediating

genetic-phenotype associations through DNA methylation.

To explore this hypothesis further on a genome-wide level, we

estimated the extent to which cis-meQTLs, genotype-phenotype

associations, and ap-DMRs overlapped in our data. We performed

genome-wide association scans (GWAS) for 12 phenotypes in the

set of 172 twins. We assessed the overlap between: (1) SNPs that

were cis-meQTLs and were also phenotype-GWAS-QTLs, (2)

phenotypes with GWAS-QTLs that also had ap-DMRs, and (3)

CpG-sites with meQTLs that were also ap-DMRs. We compared

the overlap in the observed data to two genome-wide permutations

of the analyses.

There were 1,537 CpG-sites associated with 22,849 cis-meQTLs

SNPs in our data. Of the 22,849 SNPs, 344 SNPs (which were

originally cis-meQTLs for 111 CpG-sites) also showed modest

suggestive evidence for association in the phenotype-GWAS

analyses for each trait (at P = 0.001). Of the 111 CpG sites, 16

CpG-sites (with 53 SNPs) also had suggestive evidence for ap-

DMR signals (P = 0.01), where the CpG-site was associated with

the same phenotype as the GWAS QTL SNPs (which were also

cis-meQTLs for that CpG-site). Altogether, we observed 1% (16 of

1,537 probes) three-way overlap across the analyses combining the

12 phenotypes, and up to 0.2% overlap for individual phenotypes

(for BMD, Cholesterol, DBP, DHEAS, FVC, HDL, and Telomere

length; see Table S4). In all cases, a SNP genotype was associated

with both CpG-site methylation and phenotype, and the CpG-site

methylation was also associated with the phenotype, suggesting

that these are likely genotype-phenotype associations that may be

mediated through DNA methylation. We estimated the expected

overlap of results under the null hypothesis that methylation does

not mediate genotype-phenotype associations by permuting the

methylation data only, preserving twin structure and patterns of

co-methylation, for two genome-wide permutations. We selected

the top 1,537 CpG-sites that showed most associations with cis-

meQTL SNPs in the permutations, and assessed the proportion of

Table 1. Age and age-related phenotype EWAS DMR results.

Phenotypea Data (%) Age Effectb EWAS LMER-DMRsc EWAS MZ-DMRse

Age 100 NA 490 age DMRs NA

Telomere length 62.2 20.03060.009 - NA

SBP 100 0.66360.146 - -

DBP 100 20.01960.098 - -

Lung function 97.7 20.02860.006 cg16463460 (WT1) -

Grip strength 64.0 20.45160.081 - NA

BMD 86.7 20.00560.001 - -

Serum DHEAS 99.4 20.02360.007 - -

Cholesterol 97.1 0.05260.012 - cg01136458 (CSMD1)

HDL 97.1 0.01660.012 - -

LDL 94.8 0.01860.011 cg03001305 (STAT5A)d cg01136458 (CSMD1)

Serum Albumin 91.9 20.10260.030 - -

Serum Creatinine 86.0 0.12060.102 - -

MLONG 73.8 2.36102662.861024 cg09259772 (ARL4A)
cg13870866 (TBX20)

NA

PLONG 73.3 4.16102661.761024 - NA

MREPROD 80.8 6.36102665.361024 - NA

PREPROD 82.0 6.26102664.561024 - NA

aPhenotypes are listed as follows: Telomere length, systolic blood pressure (SBP), diastolic blood pressure (DBP), Lung function (FVC), grip strength, bone mineral
density (BMD), serum levels of DHEAS, serum total cholesterol, high density cholesterol (HDL), low density cholesterol (LDL), serum albumin, serum creatinine, maternal
longevity (MLONG), paternal longevity (PLONG), and maternal age at reproduction (MREPROD), and paternal age at reproduction (PREPROD).
bRegression coefficient estimate from the linear mixed effect regression model regressing raw phenotype on chronological age (age regression coefficient +/2 se).
cLMER-DMR results are shown at a permutation-based FDR threshold of 5%.
dResults were significant when age was included as a fixed-effect covariate.
eMZ-DMRs are shown at FDR 5% threshold, including age correction.
doi:10.1371/journal.pgen.1002629.t001
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CpG-sites that showed suggestive methylation-phenotype associ-

ations (P = 0.01) and had cis-meQTLs SNPs that showed

suggestive genotype-phenotype associations (P = 0.001). In both

replicates, we observed minimal overlap of probes across the three

sets of the analyses under the null hypothesis (mean overlap 0.36%

or 5.5 probes of 1,537 overlapped under the null).

Age-related DNA methylation differences in
monozygotic twins

Epigenetic variants may also accumulate independent of the

genetic sequence, because different lifestyle choices and environ-

ments may trigger epigenetic changes. The recently reported

association between smoking and methylation levels in F2RL3 is

likely to be an example of such effects [6]. Therefore, we next

tested for ageing-phenotype associated methylation variants that

appeared uncorrelated with genetic variation, by comparing

methylation and phenotype differences within monozygotic twin

pairs (MZ-DMRs). We limited analyses to 21 MZ twin pairs and

12 phenotypes for which at least 12 of the 21 pairs had phenotype

data available for both twins (Table 1). At a permutation-based

FDR of 5%, we observed one MZ-DMR (cg01136458,

P = 3.1261027) in the promoter of the CUB and Sushi multiple

domains 1 gene (CSMD1) that associated with total cholesterol and

LDL (Figure 3B). Genetic variants in CSMD1 have previously been

associated with several complex traits in multiple studies, but we

did not observe an enrichment of ap-DMR or MZ-DMR signals in

this gene for the other age-related phenotypes in our data.

Replication of age DMRs in younger adult twins
We pursued replication of the 490 a-DMRs in a sample of 44

younger adult MZ twins (age range 20–61, median age 28), who

were discordant for psychosis [27]. In the overall set of 44 twins,

Figure 3. Examples of age and age-related phenotype DMRs in the discovery and replication samples. (A) Example of an a-DMR probe
(cg00468146 in ID4), which also has cis-meQTLs. Individuals are coloured according to cis-meQTL rs12660828 genotype (AG = red, GG = blue). (B) MZ
twin methylation difference analyses identify potential environmentally-triggered DMR cg01136458 in CSMD1 associated with LDL. MZ co-twins are
linked by dark blue (positive DMR effect) or light blue (negative DMR effect) dashed lines. (C,D) The two most associated a-DMRs (in NHLRC1 (C) and
IRX5 (D)) in the discovery sample of 172 individuals (black dots) also replicate in the sample of 44 younger individuals (red triangles). Dashed lines
represent estimated effects within the discovery (black) and replication (red) sample.
doi:10.1371/journal.pgen.1002629.g003
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we replicated 184 a-DMRs (38%) with the same direction of effect

at a nominally significant threshold (P = 0.05). In the set of 22

unaffected unrelated individuals alone, 69 a-DMRs (14%)

replicated with the same direction of association at nominal

significance. Given the relatively modest sample size, we also

examined the direction of the association between methylation and

age without considering significance thresholds. We observed that

404 a-DMRs (82%) showed consistent effects in the overall set of

44 twins, and 369 a-DMRs (77%) had consistent effects in the set

22 unaffected unrelated individuals alone. The two most

significant a-DMRs (cg22736354 in NHLRC1 and cg05266781

in IRX5) showed consistent effects in both discovery and

replication samples (Figure 3C, 3D). Both a-DMRs were hyper-

methylated with age in the discovery (cg22736354 methylation,age

beta = 2.7661023, se = 3.7361024; cg05266781 methylation,age

beta = 2.0061023, se = 3.0361024) and replication (cg22736354

methylation,age beta = 2.0161023, se = 3.0361024; cg05266781

methylation,age beta = 2.0061023, se = 4.8761024) samples.

Functional characterization of age DMRs
We explored the functional role of a-DMRs by studying their

genome localization, by comparing the a-DMR methylation data

to gene expression estimates from LCLs, and by searching for gene

ontology terms associated with the a-DMR genes.

We first characterized the a-DMRs by examining their location

with respect to functional genomic annotations and other

epigenetic signature marks. We considered functional categories

with respect to CpG islands, histone modification marks in LCLs,

and DNA binding motifs. For each category we assessed the

enrichment or depletion of a-DMR probes relative to all 26,690

probes (Figure 4A). We found an enrichment of a-DMRs in CpG

islands (see Figure 4A), which is consistent with previous

observations for hyper-methylated a-DMRs [14,28]. We also

observed a depletion of a-DMRs in the presence of histone marks

that target active genes in LCLs (Figure 4A). For example, a-

DMRs were under-represented in H3K27ac, H3K4me3, and

H3K9ac peaks, which are indicative of enhancers or transcrip-

tional activity, and have been positively correlated with transcrip-

tion levels.

To search for an enrichment of DNA binding motifs in the set of

435 a-DMR genes, we used PSCAN [29] with the JASPAR

database [30]. We found a significant enrichment for 28

transcription factor binding sites, many of which could play a

role in ageing (Table S5). The transcription factors associated with

enriched DNA binding sites were involved in development

(PLAG1), cellular senescence (Mycn), regulation of cell cycle

(Egr1, CTCF, E2F1), or had also been associated with ageing (NF-

kappaB), age-related processes (NFKB1, Klf4, MIZF, Mafb,

ESR1) or other established ageing-related genes such as WRN

(SP1, TFAP2A, Myc, Mycn), TERT (Myc), and TORC1

(HIF1A::ARNT).

To explore the functional consequences of a-DMRs, we

examined gene-expression data at the a-DMR genes, using gene

expression estimates obtained in LCLs from the same individuals

[21]. We compared whole blood DNA methylation to LCL gene

expression in 168 individuals at 348 genes, which had methylation

CpG-sites within 2 kb of the transcription start site. We found

significant negative correlations between methylation and gene

expression in the set of a-DMR genes (Figure 4B), and an overall

trend towards low levels of expression at a-DMR genes. One

caveat applying to this analysis is that blood methylation

corresponds to multiple cell types including lymphocytes.

We performed gene ontology term enrichment analyses of

biological processes and molecular functions in the set of 435 a-

DMR genes [31]. The results indicated strong enrichment for

genes involved in the regulation of developmental morphological

processes, DNA binding, regulation of cell differentiation,

regulation of transcription, and regulation of metabolic and

biosynthetic processes (Table S6).

Discussion

We identify hundreds of CpG-sites that exhibit age-related

directional changes in methylation. The majority of these effects

are hyper-methylated with age, a large proportion replicate in an

independent sample, and some changes are observed in multiple

tissues. These findings indicate that a-DMRs are not likely

stochastic events, but instead may associate with biological

mechanisms involved in ageing and potential longevity. To

address this we compared methylation variants to measures of

biological ageing, focusing on markers like telomere length and

other age-associated phenotypes that have previously been linked

to ageing. However, our phenotype-methylation comparisons

identified only a small subset of a-DMRs that also associate with

ageing related traits. These findings suggest that although a-DMRs

do not appear to be random events, the majority of observed a-

DMRs may either be neutral (or of very small individual effect) to

measures of biological age at later stages in life, or may relate to as

yet unknown pathways that correlate with biological ageing.

The a-DMRs we detected in blood overlap with previously

reported a-DMRs obtained in saliva and brain samples, and

previous observations also show that some hyper-methylated a-

DMRs occur in both blood and buccal tissues [14]. These results

indicate that a proportion of a-DMRs are conserved across tissues

in samples of different ages and genders, and raise the question of

when such age related methylation changes occur during an

individual’s lifespan and what their functional role is. Functional

annotation of a-DMRs show an enrichment of genes involved in

regulation of development, morphology, regulation of transcrip-

tion, and DNA binding, which has also been previously observed

in brain samples [13]. The genes nearest to a-DMRs also showed

an enrichment of DNA binding motifs for transcription factors

linked to ageing. Functional genomic annotation indicated that a-

DMRs tend to associate with epigenetic marks targeting low levels

of transcription. Consistent with this, a-DMR genes showed

predominantly low levels of expression in LCLs and significant

negative correlations between methylation and gene expression.

Altogether, we find that a-DMRs are located in regions of the

genome that functionally link to development and ageing, and

tend to show low gene expression rates in our sample of middle-

aged individuals.

DNA methylation plays a key role in development and tissue

differentiation and therefore, it is plausible that at some a-DMRs

differential methylation patterns are established early on in

development prior to tissue differentiation and continue to

intensify over time. For example, CpG-sites that are methylated

during early development may become hyper-methylated over

time, either because such sites are more prone to methylation or

because cells carrying the methylated variant are more likely to

replicate. Our findings indicate that age-related changes in

methylation occur throughout life, but the timing of the initial

age-related trigger at each CpG-site remains unclear. Our results

are consistent with a model where at some CpG-sites the initial

change may occur during development and early life, but

specifically at an age prior to adulthood. Age DMR studies of

younger samples could be useful in establishing the proportion of

a-DMRs that are also observed at earlier stages in life. We were

able to replicate up to 38% of a-DMRs in a sample of younger
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adults, but samples from newborns or samples obtained prior to

tissue differentiation would help resolve the question of when a-

DMRs are established, especially tissue conserved a-DMRs.

We tested for methylation associations with age-related

phenotypes (ap-DMRs) to gain insight into potential mechanisms

underlying a-DMRs. We identified four ap-DMRs, of which only

one (cg13870866 in TBX20) was also an a-DMR. Two of the ap-

DMRs were in genes already implicated in ageing, longevity, or

cell senescence, STAT5A [32] and WT1 [33]. Our genotype-

methylation-phenotype overlap results suggest that in a small

proportion of genes DNA methylation may be a candidate

mechanism of mediating genetic association effects on ageing-

related phenotypes, however, we cannot exclude the possibility

that rare genetic variants in the methylation probe sequence drive

some of these associations. We also assayed DNA methylation

levels at the four ap-DMR probes in 48 of the individuals in the

current study using the new Illumina Infinium HumanMethyla-

tion450 BeadChip and obtained significant positive correlations in

Figure 4. Functional characterization of a-DMRs. A. Enrichment and depletion of a-DMRs in functional genomic categories. Enrichment is
calculated as the proportion of a-DMRs in each functional category (CpG islands (green) or HapMap CEPH LCL histone peaks (blue, black)) over the
proportion of 26,690 probe in that functional category. Bars represent the 95% bootstrap percentile confidence intervals. B. Whole blood methylation
and LCL gene expression estimates in the age DMR genes show significant negative correlation (histogram shows the distribution of gene-based rank
correlation coefficients between methylation and gene expression).
doi:10.1371/journal.pgen.1002629.g004
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DNA methylation levels at three ap-DMRs (cg16463460,

cg09259772, and cg13870866), indicating evidence for technical

validation at these probes.

A difficult question in epigenetic studies of phenotypic data is

establishing the timing of the epigenetic change relative to trait

progression. The age-related phenotype methylation changes

identified here may occur prior to the phenotypic change and

potentially contribute to phenotype variation, or they may occur

as a consequence of ageing processes in the cell. In this cross-

sectional study we cannot establish the timing of ap-DMRs with

respect to phenotype progression, but can use the findings as

potential markers of rate of ageing.

Regions that exhibit evidence for DNA methylation heritability,

such as the IGF2/H19 region, also exhibit more stable DNA

methylation levels over time and tend to occur in functionally

important promoter regions [4]. Epigenetic variants in heritable

methylation regions are likely to be present at birth, to be more

stable over time, and may be involved in regulating the rate of

ageing. In our study, 26 a-DMRs also had cis-meQTLs and

represent a candidate set of heritable DNA methylation regions

that are likely to be more stable and may be involved in longevity.

On the other hand, environment-dependent changes in DNA

methylation in MZ twins have been reported to occur preferen-

tially in gene-poor regions (see [34]). Here, we identify CSMD1 as

the most likely example of an environmentally driven DMR for

LDL, but this gene does not fall in a gene-poor locus.

The methylation heritability estimates obtained in our data,

0.176 and 0.188 (Figure S2), are slightly greater than those

previously reported for whole-blood methylation [4], which may

be due to the difference in regions assayed by the two arrays and to

the promoter locations of our probes. Correspondingly we identified

1,537 CpG-sites with meQTLs. It is possible that a proportion of the

meQTLs in our data are due to linkage disequilibrium between the

cis-meQTL SNPs and unknown genetic variants in the probe

sequence. Obtaining genetic sequences for these individuals will

establish the extent to which rare-probe variants exist and affect

meQTL findings. However, the overlap across probes with

meQTLs across studies and tissues suggests that a significant

proportion of the QTLs are conserved across tissues [35,36]. These

are likely to exhibit stable patterns of methylation across mitosis and

meiosis, and may be of functional importance.

Many factors will impact the power to detect differential

methylation effects related to age and age-related phenotypes.

One of these factors relates to the coverage and precision of the

methylation assay. In our case, the coverage of methylation sites on

the Illumina27k array is relatively sparse and promoter-specific, and

therefore limits power to detect age related methylation changes. It

is likely that additional age related changes in methylation may be

identified using higher resolution methylation assays in larger

sample sizes of wider age ranges.

In this study, we identified methylation changes associated with

chronological age and ageing-related phenotypes and we explored

mechanisms underlying ageing-related changes in DNA methyl-

ation. Both environmental and genetic factors are thought to

contribute to healthy ageing, and epigenetic mechanisms represent

a potential pathway of mediating these effects on ageing and age

related traits.

Materials and Methods

Ethics statement
All samples and information were collected with written and

signed informed consent. The study was approved by the local

research ethics committee.

Phenotype data
Phenotype data were obtained for 172 female twins from the

TwinsUK cohort. The TwinsUK cohort (St Thomas’ UK Adult

Twin Registry) comprises unselected volunteers ascertained from

the general population [37]. Means and ranges of quantitative

phenotypes in Twins UK were similar to age-matched samples from

the general population in the UK [38]. The 172 twins in this study

included 33 MZ pairs, 43 DZ pairs, and 20 singletons. Phenotypes

used in the current study included telomere length, systolic blood

pressure (SBP), diastolic blood pressure (DBP), forced expiratory

volume in one second (FEV1) and forced expiratory vital capacity

(FVC) to examine lung function, grip strength, bone mineral density

(BMD), serum levels of DHEAS (DHEAS), serum total cholesterol

levels, serum high density cholesterol levels (HDL), calculated levels

of serum low density cholesterol (LDL), serum albumin levels

(Albumin), serum creatinine levels (Creatinine), maternal longevity

(MLONG), paternal longevity (PLONG), maternal age at repro-

duction (MREPROD), and paternal age at reproduction (PRE-

PROD). Phenotype data used in the current study were previously

described in the Twins UK sample for the majority of phenotypes,

specifically for telomere length [39,40], blood pressure [41], lung

function [42], grip strength [43], BMD [43,44,45], DHEAS [46],

serum cholesterol [47,48], serum albumin [49] and serum

creatinine [50]. Parental longevity data were obtained by

questionnaire in 2011, and included parental age at death and

parental age at reproduction for each individual. In cases of missing

data, we used co-twin estimates to infer values. In rare cases parental

age at death estimates varied across co-twins, and if the estimates

were within one year we took the mean, otherwise data were

assigned as missing. In 171 of the individuals from our sample we

also obtained white blood cell (WBC) sub-type counts [51]. WBC

counts were derived from fluorescence activated cell sorting of

peripheral blood. WBC sub-type specific cell counts were calculated

by multiplying the proportion of the WBC count comprised by each

cell type by the total WBC cell count (estimated in thousands of cells

per ml), for four cell types in our sample: neutrophils, eosinophils,

monocytes, and lymphocytes.

Illumina Methylation27K data
DNA methylation levels were obtained in 172 middle-aged (age

range 32–80, median age 57) healthy female volunteers who were

twins, including monozygotic (MZ) twins, dizygotic (DZ) twins, and

unrelated individuals. DNA methylation patterns were assayed in

two batches of 93 [14] and 79 samples. We considered 26,690

probes that mapped uniquely to the human genome (hg18) within 2

mismatches (see [1]) and discarded probes with missing data,

resulting in a final set of 24,641 autosomal probes and 959 X-

chromosome probes. Methylation values are reported as betas,

which represent the ratio of array intensity signal obtained from the

methylated beads over the sum of methylated and unmethylated

bead signals. We performed principal components analysis (PCA) of

the methylation values (normalized to N(0,1) at each probe) and

correlated the first five principal component (PC) loadings to

covariates (age, methylation arrays, order of the sample on the

methylation array) to identify potential confounders. We observed

that both methylation array and order of the sample on the array

were significantly correlated with the first and second PCs and

therefore included these two variables as fixed-effect covariates in

the linear mixed effects models used in the majority of downstream

analyses. Further analyses of DNA methylation patterns within

twins were performed using intraclass correlation coefficients (ICC)

using the R package irr (v0.82). Twin-based DNA methylation

heritabilities were estimated as 2(ICC_MZ - ICC_DZ), and were

calculated within each batch of data separately.
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Genotype data
Direct genotypes were available for 171 samples on a

combination of Illumina platforms (HumanHap300, Human-

Hap610Q, 1M-Duo and 1.2MDuo 1M custom arrays) and

stringent quality control checks were applied to these genotype

data as previously described [21,52]. HapMap genotypes were

imputed in the set of 171 individuals. Imputation was performed in

Impute (v2 [53]) using two reference panels, P0 (HapMap2, rel 22,

combined CEU, YRI and, ASN panels) and P1 (610K+, including

the combined HumanHap610K and 1M array). After imputation,

SNPs were filtered at a MAF.5% and an Impute info value of

.0.8. Altogether, there were 2,054,344 directly genotyped and

imputed autosomal SNPs used in the QTL analyses.

Gene expression data
Gene expression estimates and eQTLs from lymphoblastoid cell

lines (LCLs) in the samples were obtained for 168 individuals in

the study [21]. Gene expression levels were measured using the

Illumina expression array HumanHT-12 version 3 as previously

described [21]. Each sample had three technical replicates and

log2 - transformed expression signals were quantile normalized

first across the 3 replicates of each individual, followed by quantile

normalization across all individuals [21]. We assigned methylation

and expression probes to the gene with the nearest transcription

start site using Refseq gene annotations. For each gene we

obtained the mean methylation (or gene expression) estimate, by

averaging values over multiple methylation (or gene expression)

probes if more than one probe was assigned to that gene. There

were altogether 435 genes nearest to the 490 age DMRs, of which

348 had transcription start sites within 2 kb of the methylation

CpG-sites and for which we also had whole blood methylation

data and LCLs gene expression data in 168 individuals. Linear

mixed effects models and Spearman rank correlations were used to

compare methylation and expression data per gene.

Methylation QTL analyses
We tested for methylation QTLs at 24,522 autosomal probes,

which had at least one SNP within 50 kb of the probe that passed

genotype QC criteria. We fitted a linear mixed-effects model,

regressing the methylation levels at each probe on fixed-effect

terms including genotype, methylation chip, and sample order on

the methylation chip, and random-effect terms denoting family

structure and zygosity. Prior to these analyses, the methylation

values at each CpG-site were normalized to N(0,1). Results from

meQTL analyses are presented at a false discovery rate (FDR) of

5%, estimated by permutation. Here, we permuted the methyl-

ation data at the 24,522 autosomal probes, performed cis

association analyses on the permuted and normalized methylation

data, and repeated this procedure for 10 replicates selecting the

most associated SNP per probe per replicate. FDR was calculated

as the fraction of significant hits in the permuted data compared to

the observed data at each p-value threshold.

DMR analyses
Linear mixed effects models were used to assess evidence for

DMRs. In the a-DMR analyses we regressed the raw methylation

levels at each probe on fixed-effect terms including age,

methylation chip, and sample order on the methylation chip,

and random-effect terms denoting family structure and zygosity.

To assess the significance of the a-DMRs we compared this model

to a null model, which excluded age from the fixed-effects terms.

In the ap-DMR analyses we regressed the raw methylation levels

at each probe on fixed-effect terms including phenotype,

methylation chip, and sample order on chip, and random-effect

for family and zygosity, and compared the fit of this model to a

null model which excluded the phenotype. We also performed the

ap-DMR analyses by including age as a fixed effect covariate in

both the null and alternative models. We also repeated both the a-

DMR and ap-DMR analyses using normalized methylation levels

(to N(0,1)) and observed that the reported DMRs were top-ranked

in the normalized analyses. To assess genome-wide significance we

performed 100 permutations and estimated FDR by calculating

the fraction of significant hits in the permuted data compared to

the observed data at a specific P-value threshold.

Monozygotic twin DMR effects were calculated in the set of 21

MZ twin pairs where both twins were assayed within the same

batch of methylation arrays. We estimated MZ-DMRs for 12

phenotypes where data were available in at least 12 MZ pairs. For

each phenotype of interest we fitted a linear model comparing

phenotype within-pair differences to methylation within-pair

differences and reported the P-values obtained from the F-statistics

from the overall regression. For the age-corrected analyses we

fitted the regression including age as a covariate and compared the

results to a null model, which included phenotype differences and

age alone. We performed 100 replicates to estimate FDR 5%

significant results as described above. At the FDR 5% significance

threshold (nominal P = 2.0361026), we estimated 35% power to

detect the observed correlation (Pearson correlation = 0.83)

between methylation MZ-differences at cg01136458 in CSMD1

(mean MZ-beta-difference = 5%) and LDL MZ-differences (mean

MZ-LDL-difference = 0.73 SD) in 20 MZ pairs.

Age DMR replication
The replication sample comprised 44 MZ twins discordant for

psychosis, that were profiled on the Illumina 27K array as

previously described [27]. The sample consisted of younger adults

(age range 20–61, median age 28), including both female and male

twin pairs. We compared methylation against age at the 490 a-

DMRs both in the entire set of 44 twins and in the set of 22

unaffected unrelated individuals. In the set of 44 twins we fitted

linear mixed effect models, regressing the normalized beta values

per probe (normalized to N(0,1)) against methylation chip, sample

order on the chip, sex, and age as fixed effects, and family as

random effect. In the set of 22 unaffected unrelated individuals

comprising the control twin from each pair we calculated

Spearman rank correlation coefficients on the untransformed

methylation beta values against age.

Genome-wide association scans
Genome-wide association scans were performed using linear

mixed effects models for 12 phenotypes including telomere length,

systolic blood pressure (SBP), diastolic blood pressure (DBP), FEV1

and FVC to examine lung function, grip strength, bone mineral

density (BMD), serum levels of DHEAS, serum total cholesterol

levels, serum high density cholesterol levels (HDL), calculated levels

of serum low density cholesterol (LDL), serum albumin levels, and

serum creatinine levels. Linear models were fit as described in the

meQTL analyses section substituting phenotype for methylation,

using an additive model. SNPs with evidence for association that

surpassed P = 0.001, were considered in the overlap across cis-

meQTL, genotype-phenotype, and DMR findings.

Functional characterization of DMRs
The 26,690 methylation probes were assigned to CpG islands

according to previous definitions [54], resulting in 11,299 CpG

sites that were in CpG islands and 15,391 that were outside of

CpG islands. Histone modification ChIP-seq data were obtained
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from the Encode project from one CEPH HapMap LCL

(GM12878) in the UCSC genome browser. Peaks in the

genome-wide read-depth distribution from ChIP-seq histone

modifications H3K9ac, H3K27ac, H3K27me3, H3K4me1,

H3K4me2, and H3K4me3 were obtained as previously described

(see [1]). Enrichment a-DMR estimates were calculated as the

proportion of a-DMRs in each functional category (CpG islands or

histone peaks) over the proportion of 26,690 probe in that

functional category. Enrichment 95% confidence intervals were

estimated using bootstrap percentile intervals of 1,000 re-

samplings of the a-DMR data per annotation category.

Gene ontology term enrichment analysis was performed using

the GOrilla tool for identifying enriched GO terms in the ranked

list of a-DMR genes [31], using Refseq gene annotations in the

entire set of 26,690 probes as background.

Supporting Information

Figure S1 Summary characteristics of DNA methylation patterns

in 172 female twins. Distribution of methylation scores (beta) in (A)

autosomal and (B) X-chromosomal probes in all individuals.

(PDF)

Figure S2 Distribution of intra-class correlation coefficients

(ICC) in twins. Density plots of ICC in MZ twins (red) and DZ

twins (blue) for two batches of methylation data (batch 1 consists of

93 twins (left) and batch 2 consists of 79 twins (right)). The mean

MZ-ICCs and DZ-ICCs were estimated as 0.257 and 0.168 in

batch 1 (MZ-ICC vs DZ-ICC P,2610216), and as 0.3557 and

0.261 in batch 2 (MZ-ICC vs DZ-ICC P,2610216). The

corresponding methylation probe heritabilities were calculated as

2(ICC_MZ - ICC_DZ) and the genome-wide estimates were 0.176

(95%CI:0.168–0.185) and 0.188 (95%CI:0.180–0.196) for the data

in batch 1 (left) and batch 2 (right), respectively.

(PDF)

Figure S3 Correlation across age-related phenotypes. Below

diagonal plots represent each pair of phenotypes and the corre-

sponding rank correlation coefficient is shown above the diagonal.

(PDF)

Figure S4 EWAS results for age-related phenotypes. FDR 5%

ap-DMRs were obtained for (A) LDL, (B) lung function (FVC),

and (C) maternal longevity (MLONG) with (green) and without

(blue) age-correction. Red dashed lines correspond to age-

corrected (A) and non-age-corrected (B,C) analysis FDR 5% levels.

(PDF)

Figure S5 Lack of enrichment of age-related phenotype DMR

association in the set of age DMRs.

(PDF)

Figure S6 Evidence for co-methylation. Spearman correlation

in methylation levels between all pair-wise CpG-sites (black) and

between a-DMR CpG-sites (red) in the sample of 172 related

individuals (solid line) and a subset of 96 unrelated individuals

(dotted line).

(PDF)

Table S1 List of 490 a-DMRs.

(XLS)

Table S2 Descriptive statistics of the age-related phenotypes.

(XLS)

Table S3 List of 19 a-DMRs associated with proportion of

lymphocytes.

(XLS)

Table S4 Overlap across genotype-methylation (cis-meQTLs),

methylation-phenotype (ap-DMRs), and genotype-phenotype

(GWAS) association results.

(XLS)

Table S5 JASPAR motif search results in the set of a-DMR

genes. Results are shown at P = 0.05 threshold.

(XLS)

Table S6 Gene Ontology term enrichment results in the set of a-

DMR genes. GO term enrichment in a-DMR genes was assessed

relative to the background set of 14,344 genes that map nearest to

the 26,690 probes tested. Results are shown at P = 1e-6 for

biological processes and molecular functions.

(XLS)
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