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" ABSTRACT 3 B ¥

S ructural ‘equation model buflding has. been enennvely

N ° wsed im~the social selences. The ordinn‘y 1&“ équures (os)

£

eullinunrlc which.is Atttihuta.ble 1o an ubsence et fombrel:

‘o¥er the‘ sum damtc

— TR
< ouratish 2026154 . THe {nadequacy ‘of the 0L regression ‘techmique

inbrinsic prcygﬂ:y of structur

.vheén lppii-ed ca"xn €onditioned date was discussed in chapter -
[ Ridge regres! iom, deveIoped by Hoerl and xcqmnra (1970),
= u the most promising cecnn.xqua tnr coping with the multicol-‘ .

11nenrity problem‘ Eovever,. che techniquu is inadmigsible dua i

to the Btochlitlcity of the e!!imltion criterion» An gx.positiun

“of .ridge . ragression theory. vas giv:n in. chapber I In chnpter g

v, the dllemzm ot ridge regrusion was analyzed a.nd & newv

:ri!eriun, cllled the v-riu::e normunuon erscerlun was L

developed. wnhjm; c_gxeex-znn a1l the difffculties encountered

‘& by Hoerl snd-Kenmard's version of iridge regression ars ‘avolted.

n chapter V, simple ridge regresuion ‘dth the varisnce =

‘o &-5oekags Lunen cayitsl R

normulizstinn criterion ves -rénu.e

“ ; problen which, dsed e Miind data, Thruugh this exanple and,
thruugh the cheeuucu argumng? du:ussed ta chnptér rx ux,
.and VIV, the o:  Loving goals ot the ‘study vere Jachieved: - (1)the

5 yeri&rxty et szmplg ridge regressi«:n ovpr ’ordinury le, st

_'square.regrésiioniyas demonstr ed, (2) Hoerl:and Kennurd'




W

',‘procedpre 2

Vversion of ridge regression uis modified in order %o achieve

dore s.nszu:nry;esulea, and (3) P s \iemonst at d ‘thiat ;.

Asimple ridge negx;gnnn with the v.uance nurnuli fon

Leriterton 18 sup:rlwx‘ both to f1ag regreus,i.an umuuan

procedures m.ng the mesn square’ error crlteriﬂn ax\d the' OLS
s .
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" Estimate, theé Ridge Eptimate, and he ;. -
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thencu, that. 1: can Be deueribed as's stenddrd natiutical Y

““control aver the Variublsﬂ, ‘the uu of leta of neuly

U s eine tiat the pEaules

£ k& - 5
scruccural/{iuanon model huild,{ug‘, usa knovu u <l

[esugal mnﬂelling or path Anllynia hu/bern extenWely ised

in 50c1e1§9§.cﬂ rele\rch m e pan/ﬁecsau The vasie '~., fe i

»U!chnfque used m this type of dodel/builaing 15 anunuy

least !qllarea (ons) r(greuibn. In [fact),” ordinary least S

'squuea Fegression has been soextehsivey used a ail the e

“technigie (M:Cahe.l?TB). N ettty © B S e R :

3 The 1e\ut squax‘es techniquL is. ﬁzenteticnlly souna,

hovever, empix—zuu{u 15 inaﬂm Bii%lh One ot the mosc

: im];artunt empirica.l dlfficultlea 4s. the multicallinenricy

prohlem'which can be efined as xhe d!parture Of the pre

‘dintdz vaetou AxXvg trom arﬂmgaulny or, equiv&lently

ehe exl-tence or 11ngsrity, mung the explunstary vsrisbles.

In saeiulogicul resesx‘eh liue to the luk of teseurcher

indeyendent GEeiloter var ables 1s vutuny unknuvn, ﬂ:\us, ot A

m\lltico).linea.ri!y is. In unlvoidsbl! prablem.

vin Btr\xctursl equnian model building,‘the mulc -

:Olllnenri&y prnblem i! tvofo a; firsﬁ as’, hus bzen mentioued‘

mltlcnllineuz‘ity is nnavaidable dlle %o the‘ lack of cantrol

“over: the exp].ann.or'y verdiables; aa second nul.tlco.\linearity

an inkx’insic propur:y of nrucmru eq\xatian model's due to




ﬂage ehe leu)the 11k=11hoo§ ¢

+. of linear inde endencs at sub!e’quent‘ sﬂages. Ther}fcx‘e. it

s xmﬁutan thnt the ‘a,mllyst be Aw;lre of the. exu\.ceme or

ot prnmlsing +6

hnique “tor reaueing the haraful an‘ecta az‘

; nunicolunurny is uue& "ridge regression”, (nn) vnidh as?

\iuveluped i.n 1970 by Huarl and. Kennerd (1970!, 197017) ;I'h_e_ "

s H
ri%Re Yegreasion procedurg; 1uvalves susmenting the dugonu g R
i

i

- of ‘the normal equation mntrix with.e small po-itive guantity 4 ]

4 "k" n; order Zo produce rzgrye,a!ion cm-fﬂci:nts wieh amnllzr

vnr‘iance n thu experise of hmrud\xcing 8 sm 11 ‘bias

mui.n d“’feremm betwaen OLE fogzession” unﬁ ridge re;resuan B

.~ lies’ in tue cricerion of gnqdnesa of estimaﬂan In ridge _' i A
regrasxlan, the Jeriterion “La, the ‘misimus catu neen lque.rqd R

-érrors, (MSE}“ as opyused to the minimum sim ar squnred exvrorl

(SBE) used in ordinsry lemst squares.. - _' A s N

ST %

minimum €0t11 ‘mean lquaterl 4rrnr5., Theereticnlly, hr an:

ugrepﬂnn prohlem thefe always: exists an optiml




thi¢ field have been pursuing methods of estimating an
5 9p§im§a1 k vhich’ gives = minimum MSE, end thaugh mere then
fifteen methods hhve been suggested, none can be considgred
; satisfactory. ,The purpose of this resgarch is not to add
. another method to the extant methods of "solving’ this
_viftually unsolvable problem. Instead, as the substantive

dimepsion of the resedrch, the minimum MSE criterion is

abandoned in favour of a "weaker' ‘unifunctional cFiterien |
S~

as an ‘alternative in arder to achieve more ututaccary

empirical resylts. : Further; it is also the purpose of, this

research to-demonstrate the superiofity of ridge regression

over 018 regressivn both through’ theoretical argument and

through the application or ridgée regressioch to. model building

o © " r#seerch in education.

Significdnce of the study :

It is well known that the erdinury least squaru

Jregression pmneaun does not produée satisfactory results
(Stein, 19557, especially when the data set has high degree
[ of mu;cxccllxn:arhy {Hoerl & Ken’nlrd, 1970e, Marquardt, 1370).
It .is also well knowp that multicollinearity is always present
e By . in sy miltiple regression problew, sad.that Lte seriousness
' e matter of degree (fmenta,’1971). Tt has also been pointed

ottt the previous section ‘that multicollinearity is as

% Futriusic prohlem of the multistage structural .equation model:
. the better specified the model, . the higher its degree of the
i " multicollipearity. The ill-effect of the problem im the

< general cgge will-produce estimates with large varisnces and
. i f i ¥




‘any statistical-inference or oLatn.

e
this in tyrn leads to cstinates that are unreliable¥even of
vrong sign) an% senfitrve to sampling error or model mis-
spacit‘iiution (Hoerl 8;\1 Kennard 1970a). It is therefore of
the utmost importance .for the statistical analyst to realize
the existence and seriousness of this problem before meking

Apong all slternatives to OLS (Dempster’et.al: 1977, have

studied 56 of them) it has been generally eftablished that

‘ridge regression, which is desigzjd to cope with the .problem

of multicollinearity, is the bes¢ and most promising one, as
compared to those alternatives currently under Bt.\xdy, such
as shrunken estimators, and principal component estimators.
Like all ;lt&natives to OLé, the, ridge estimator is a biased
one; hcvev’er, it generally has much smaller variance ant\
therefore is less semsitive .to sampling fluctuation or model
misspecification and possesses more accurate predicting power
" Due tp the seriousness of the inadequacy of OLS
regression, research in ridge regression is of interest to all

sciences, social, natural, or applied. Further, the modi-

fication develclbped in this

tudy would render the application

of ridge regression appropriate, indeed necessary, to any

.multiple regression problem in the interests of scientific

parsimony end accuracy, not just to those problems with a high
degree of multicollinearity as was originally intended.

To summarize, this study is of utmost import;n;e since
(i) the widely used regression techmigue, that is oﬁs regression,

is ipedmisseble, (ii) ridge regression is the most promising




’
alternative to OLS regression, (iii) the modification qf Hoerl

and Kennard's ridge regression would widen and even replage
OLS regression, (iv) the theoretical results are of interest
to researchers in the natursl and social sciences, both pure

and applied. -

. Limitation of rthe study .
Ridge regression developed by m—— Kennard in
1970, is of two types, simple ridge regression (SRR) and
generalized ridge regression (GRR). Simple ridge regression
is a procedure which involves. augmenting all the diagomal
ejements of the noraal equstion metrix with the same constant,
while in generalized ridge regression the diagonal elements

of the canonical normal equation matrix are augmented with

daifferent constants.” Hogking, Speed and Lynm (1976) have
proved that theoretically gemeralized ridge regression is
superio¥ to simplé ridge regression; however, empirically it
could be just the opposite. In this study, the research is
linited to simple ridge regression. The modification of
. generalized ridge regression in the same manner as proposed
here for simp}a‘ ridge regression will be pursued in further
research. ’ .
The ‘modificetion of simple nidge Tegreision suggasted
in this study requires the replacement of the minimum MSE
criterion with s wesker criterion, called the "variance
Tormelizetion criterion”, which is justified by its single
purpose - the minimization of the effect of multicqllinearity

through normalizing the variance inflation facter. Id this

~ o




Way most of the estimation dilemma encountered by ridge
regression using the minimum MSE criterion becomes avoidable.
The normalization cr‘i‘teri_on ia ok @ poyel dhesy; 16 Tn m
development stemming .rram Marquardt's rule of thumb (Marguardt,
1970). This modified ridge regression has not been examimed - S
‘using Monté Carlo simulation methods. Althoigh this. is
desirable, it is beyond the scope of present study..

Dueé- to the nature of the .p.resent rese;\rch, the appli- _ *
cation of ridge regressiel‘l is limltnedr to educationel examples,
Vhich often have a much lower degree of multicollinearity than

tmany problens 1n engineering oF economics.

"In short; this study is limited to simple ridge
regression and to educational exaiples. It lacks rigorous -
exantautips by sisg @ Honte Carle simuletion wethod, ad it

is only the'first stage of a series of research studies

designed to refine, to generalize and to extend through

application, the theory of ridge regression analysis.
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CHAPTER II "
THEORY (I)

Multicollinearity and jts Effects on OLS Regressiom Procedure
The classical multiple regression model is given by:
(2.1)

y=X8 4 e

Where y is an (a x 1) ‘(ectar of abler\mtiens on. the dependent iy
variable, X is an (& p) mAnbrlx of observationsion p exp).unatcry
veriables; where fof convenience X'and y are scaled so that!X'X

and X'y give“the ccrrelntion matrices; and vhere-8 is ‘ehe (k' 1)
vector of regresuinn coefficients and € is qn.(n x 1) veetor of '

the random error of y. \

/In ordinary least squares estimation it is assumed

(1) that the X's are nonstochasti
(2) that there are no¥(exact)'linear relationships
between the explanatory variables; i.e., X is
of. full rank; end
(3) that.the error terms have independent normal ~i
distribution with zero mesn and constant vuiance,
that is € - NID(o,0?) - Ea »
The robustness, and the effects of the violation of these i
assunptions have been thoroughly discussed by many researchers
in more advanced texts. Here ve are intérested in the secdnd

assumption. Mathematically, insofar as there is no exact linear

Lonis assumption caa be relaxed to sccommodate sthchastic
variables (see Johnston, 1972, ch. 9, pp. 267)

.




e o8 s
rélnticyshxp between sny two predictors, the model can be solved.
Hc_wevex". from-a _prsc\{xcal point of view this i not enough. If
a neafly linear relationship exists -amowg’tle predictors, the
"solution" will pmnabiy prove unacceptable,.in that such a .
/"solution" will be unstadle, \mreliuble, and hard, .if not impos-

‘'sitle, to. Lnterpret. % This,,problem is gemerally culled the muln~ o el

uollinearity provles. g

"o practice, snd eapeciallr in.the’ socinl seiences, mcst

T . predictor varisble sets are intereorr:lnted thus, the problem

“‘severity is a maner ot degree. As pointed out by Kmeqtu (1971), S
multicollinearity is a'matter o,r'de'gue ot of kimd.
The OLS solubion of the regression model can be written as:
(%071 xty, ’ (2,2§ +
vith the verignce = covariance matrix,
“eov(B) = o2 (x'X) 7L ©@ls)
When there is o high level of multicollinearity, the determindnt
]x"xl w111 bé very small smd (XiX)™! will have very large o o
entries (in the extreme case, [X'X|= 0 un.d (x'x)7 would not
‘exinc), there!nre, each estimated naefficient vould have & very
large variance and eovuiﬁce, which is the case for all the
problems associated vith,multicollirearity as will be diﬁcussed
“belov. ' .
ihere are several.vays of miasuring the severity of
multicollinearity. Merquardt snd Smee (1975) nave pointed out
Eha, T s vELAEeE THELESIaE . SReteE LR the best single
aedvurs The veriance infletion factors. (VIF) are the diagonmsl”
elements of the inverse or.ghevéimyxe:cbx’éenné;: matrix. . The
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vartinoe (6144108 Tasteh ‘or eanh eral Ma &' BeasUSe 0T CHE Bols
lective impact of the inherdependen‘cy of the explanatory
variables on the variance or the regression cosfficient of that
térm; and its value gives us an indicnticn of the number of

times the variance hu béen, Antisted. ' When maxisum VIF ts useq  “

< to measuu the level of multicollinenrity, sie havel'for no . TS

g3 coluneuxcy and intinity, for parfec'c gollinearity. ' The. "degree”

. 'of multicollinésrity cen) nowever, te/ traastorned Lato a scale

of zero to ome by defining the degree of multicgllinearity.

-ast

D Dyay = Lt,an“ (Voayx =1 (2.4)

vhere we have used me fox' the mnxinum Vlriunue lnflation

factor, and have D = 0 for no collinearity and D= 1 for perfect
e

With this scale, D 2 0.7 may_ be generally con-

collinesrity.
’ fetkived sertous, (Collinearity of thls megnitude {s common in the
social sciences. ' '
The claim that D 3 0.7 is generally serious: is Yather K e
subjective. Whether the degree of multz:ollineuity ts]sartbhs *
_or not somet}meu dépends on the size of ‘the true regression co-

efficients of the problem;'ev'en for D= 0.5 (eﬁuivalenh to

Vs & 2) or amaller, if opne of the regreusiqn coerrxclenns ig
small.gnough ‘sdch that:the inflated varishes spand-zero, fhe . Ll .
estimatyd OLS regression. coe:rxciem can be of the vrong élgn.

In this case the e!fect\ of mnlcicallineurity is d:finitely B

Sten™H(v - 1) s measuréd in radfans - :




serious. Therefore, the D value megnitude indicative of the
extent to which the problem of multicollinearity may be con-

sidered .serious depends on the case. Generally, u-h'en D =-0.7,

e msximum vu.rlnnce 1n£‘15t10n factor is about 3 and the x‘elntion

between —V and D’ 'be:ouea steeper. - In these lnsbances D Veluea

>

| regression cdeftictonts, T i s

In view of the fact thnt the maximum eft‘ect of multil:ol- ¥

linearity 1% manif:st An Xactcr !pac: vhen the model 5 expresl:d

-in. &ts canonical 'form, it may be best to measure the absolute

degree of mult&cellineﬁricy in racear spact, for which Yo

v
Tmin *0¢ 4 ‘
i, -1 1 3 « L2
#0<p tanTt (fy,- 1) (2.5)
. A p ’
vhere Amin. 15- the sn’fﬁmn eigenvalue, i =

7 The airferince betveen Dy~ena D, x is that, D %s an
absolute medsure of the deared of multisolitneasisi. It is
fixed value for s data et vnich do8s nct change with any
menipulation or cechnique used to,enalyze. the data. It depends
sulely on the structire bf the dita'set in the fackor space. On

the

ther hani, Dm“‘_ is & relaclve measure in the sense that it 4

ﬂ!pem‘ls on the orlentutiun of the axes of the Vnrinhle V&cto’rs.

Its valué changes with the data’ nendling fachnigis wuc

8 ridge

regression. Simply speaking Dc is @n absolute measure andp, ..

--is & relative méasure of the degree of multicollinearity whose

-‘value is Teduced by ridge regression. It is always true that *

nc_g i:»mx, Where. in the upec,;al case, when ome of ‘the vur!nhle

vectors lies on the major prineipnl ‘exis ‘of ‘the data set, the:

2.0.7.can be consxds&ed as !eriuua regnrdless of the size of the




. . —
¢ equal sign holds.

The AdVADC?gQ OAf the vme.x measure of multicollinearity
ts that 1t 1fs linear scale while the Demeasure s not. Hows
‘ever, the D-measure gives a rangé of 0 to 1 .for no collinéarity
to perfect collinearity, and is the same ‘typ‘e of measure as & .

’dif:erenn

iy 8 .. correlation coefﬁ.cient. Theae nw meastres hav

. meunings end both sxmuld ‘be provided by the, y(lyst Anorder to'
asgess the condnxug of ‘the date on-hand. !

"hen s data set has @ high degree of multicollineuity .
g R by the#fact that. the smallést eigenvalue of
its correlatlan matrix (X'X) is much !mallez‘ than unity (Hoerl
and Ksnnard 1970a). ' This condition gen(erntes at least the six
foillowing heraful -effects on the OLE estimates of 8.
(1) The estimsted regnsa‘iqn coe{ticient! will have very large

L3
VoL saxpling ¥agtesce,, " :

The totel sampling vériance for 07.5 esbinates s given

‘as rollows.(Hoerl and Kennard 1970a): st g
tvar(f) = o?rr(x'x)7} ©o v (2.6)7
A p = u‘z\;:i > 0*/tnin - . - (2.7)
By v

Hh;re, and hereefter, I représents the summation from i = 1 %o
1= p, the number of pre‘z.uetora, and Agin 15 tHe smalisst
¥ e}g’e‘nv'nlue of the, P e o (x'x),3 vhich approsches
zero’ for data sets spproacking perfect collimearity. 'phere{o;‘e,

the total varience; and, hénce, the sampling veriance of the .|

314 rlage; regression (x'xJ represents. the correlation matrix,see
chapter IIT.




individual predictors cen pe ver;} lerge and msy spprosch infinity
when the data approaches perfect collipearity.

Prom e geometrical polnt of ‘viev, the totel variance can
be Pegardéd.as the quered digtance from the estimated co- :
ef:xuisnt~vactov)_3, to the true vee;or B, and lxrge tntal

: ’Iariance means that the ﬂlstan:e from 8 ta B ‘is too lnng, "ence,

the' guuek the culIineurlty she ionger the B to’f distance.

O A ame es\‘.tmated cnern:une ve{mr B s far too’ long 1h

general ror date sets. with bigh degree of multfcollinesrity.

1 & « o ‘genaral; theé expected squars length of the estimated

coef!‘inlent vectors E are far tDO long inm ill=conditioned (highs

D-value) dafa sets as Hoerl and Kennara (19708) havd pointed out,

That is:

8 G |
L(B“B) = 878 + vfz*i < - L ow N . |
> B8+ 0*/Anin . o (2.8) i

‘When“tne acgree ot multicollinesfity fncredses Apip decressds, ~ ~ .«
and the, situation deteriorates such thatsthe estmueed*/::eet- . et

ficient vectat E is far too lomg.,
L

It day be concluded from properties: (1) and $11) that' | .3

p: L]
for “\35

the estimsted cosfficient vector, B, vill be "Gff" mot omly in '

—condi‘tioned data set there id a high probability that " .

: . megnitude but also in direction; and'this in.turn leads to the

conclusion that the estimated coerticients ¥ill be overly

) sensitive to the :nmpllag error ‘or model mislyeciﬂ.nution due to J i
7 the, larle variance. : '

Under these Canﬂition! the inflated g eatlmltes cf




Lincarity is & prablem for the estimated coefﬂcune to v B
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predigtor equations will not accurately reflect the net re:.an.ve'
importance, of the Vnrisbles under Ccnsideration SY the same
token some non- sxsuifICQnt coefficients may in fact be inter-
preted ‘as important ones he:ause they will be' spuriously hlgh_.

It is.-not unknown, for’ exanple, in situations where multiuul-

larger than the correlution ccerficient begween the pr:ﬂictoz‘
and tHe dependent varidble. In\ieeﬂ oLS regresnon cuer:icienns'

may sometimes- he larger than one.

'(115) When an estimatigc data set is ill-conditioned OL¥ regres-

sion’models do not, providé sccurate prediction even vh-jn"the r?

1e391 is high: B e
This is a well x)A/vi; fact among-deta.analysts: In fact)

frou the sbove discussion about the régression coefficients '

estimated from illigonditioned date we know that' such coefficients -

. erefunstable and .unreliable; end therefore capnot produce an

accl;n-atg predi,c'uon.'\nuku' this conclusion <can Ye formulated.

explicitly as follows. Yo i i

~
The fox'e::lsting eri-or vériance, "r' of & multiple ldneu

y'® xg + e. can be wrinen asr .’

regression

2
£

To} = gt {l+x’Vx] ¢ 5 ty (2.9)

where x xs e (p xl/) column vector at a single nhservlhiun ot

L
- the predictor variasbles, X‘s, V is the variance~covariance matrix

of the estimated reg;esamn&euiricxucs. which ‘s (1x)"% for oIS

estimates, and 0° is'thel variance of the random errbr in y.
Therefore, for OLS estimated forecasting error varismce can be

expressed as: i




i (X'\)ﬁ), such ‘that P’(X‘X)P

“'and F‘P = pp'is

,eigenvalue. Anins than %o n‘ Thxs 1s “why el ons regreaaion.

‘ucion vhen the duaa set'is ill-candiclanud. R "‘-

‘(uee Eq.o2. 7). The. -mnling Yeriance v!ll nppr’n:h intinity

“when the dua let lpyroleh:u perfsct ccllinasrity. Euentuny, v

: 'fl\letultion4

@0 |

L. T % i - x#2 2> 3
S g e P e Ry 1(1 a‘)* :
“fé m.y_.[?fPﬁ ?’ ; 4219pw

vhere x" = P x und P !.! ‘the Orthogan!l trnnafurmatlon mat 1x o

A5 the eigenvulue mnnx ef (x'x),

From:

ha above: éxpression, ot {nrecusting e

error an‘!.a,nce, it is clnr thet (o) wha foredasting error

RETRRR L
varisnce ian'be: veryilarge for ill-cund{iioned data for vhic&

Amin i3 very small, s (5) 6 is more :e’:izive $othe’ shallest

.

when the pr\:blem hl a hlgh degree ot multi:ullineuri‘ty, high

B does nn§>yrudnne accurate predlction o i

(iv) “The oLs.: snimnes, Brs, are. uenanive to umpung rlucm ;

e Have- seex: clearly (proper;y/f) ehuc for an, 111 con-

attioned’ datpiset e 018 estimates have: very lnrse llnpling

s ‘to their inverse telntienship vith ‘the’ uig:nvalueu

this implizs thet thu OLS e!tim’tz! are sensitive to’ l‘!.mpllng

(v) The esgxmaeeQ:regréagian'eo@fgiegbpé night be highly

ependent and therefore ar

ata set has

As.has been pointed.out earlier, whén the |




Tty th

= HEs-shovn that this

“gehegally ‘promighly ebireiided estinates,  This'is

Especiully true for these predictors ﬁhat are highly cerrela.teﬂ.

Due’ ta thiu hlgh depe‘ndency if. Sne’ is errnneo}./

e ctljjr Will -

. also be

‘erronésus. - It s generwaaé*thu when tuwm

i tnts nigh

¢orrelation bewgen estimates, “pLis the large vnriance of ‘the

i3
estimates clearly accounts: for! Why the OLS estims.tes 5enerully\

Have too 1nge a sud of sq_uares 8 B, and; wh’y they mighc even.

_Have the wrong sign. R T E

(vid) The OLS aitimatea are sen!itive tn madel

pecification

“when the daﬁa set .ls 111-cqnditioned Bl

5 well known thn rar orthogonal data aet. the

A regressinu :eef{‘inienzs B's are not Af!'ected by ‘model: misspeci-
f1gation” due o the thelusion or exelusioh of ceruin relavunt .

By yariab;u. “That isp #hd Brs are invariaay of the model apec!.-

'fica.tiun. chever, vhen the date set is ill ccnditioned the

b ot B‘s are highly correlated and conuquuely ‘no longer, 1nvu1uc

of the ods ayecif’.catlun :

“Mds, the regression’ cuelricients.

of 1“1“;.1 variables might chnnge aruuuny as-sone relevant

"'varubles are dropped from, or: add.ed to the model. To whnt

eitent these nnerneienes ch‘anew dgpenrlent on the

'impex‘tance of the varis.hle, and ‘the, exterk cc vhﬂc

4 agrects

the vsrlance ,inflstlun fbccer of aanh variahl: ln the ptedictcr




vrelaarchex‘ -8 mnéh too esece!‘ic a. ccnsidel‘lti

aisi‘:“‘“%“’“
siTable problem. in
be avoiged whenever possible, Kowever, im

n’acu:i:.- séxen-cu‘ dt4s imposalble £5 1mposg mm-uk “oter’ the

overly senaitive, unrelinhle and hnrd to Lnterptee. The ext;nt
of the seriouaness d=pends on cne Tivel'of the mulﬁmuiuuuy

»ef the pru'blem. Thus,, with ons regression the key queltibn A

it vhat Tevel, of multicallineatity are the resylts unaccepuuev

The subjectivq~ anavu’: \iepen,d on “the’ predilectians ot cne'

\




CHEAPTER III

THEORY (II)
A _DESCRIPTION OF RID& REGRESSION
The Simple Ridge Regression 5

As has been pointed out earlier, ordinary least squares
tegrasston based on the minimum residual sum of squares
criterfon does not produce satisfactory results, hecause their
acceptability depends on the degree of multicollipearity of
theec‘iata set which worsens as the degree of mplticn’llinenrlty
incresses. oerl end Kennard (1970a) have developed &

promising technique, called "ridge regressio ‘which s vased

on a sinimum tctsl mean square error criterion.

In ridge regression, the statistical model and its
assumptions ere the same as those for OLS regression-as pre-
sented in the previous chipter. However, for convenience in
development, the variables (the X's and y) are standardized
so thet X'X gives the correlation matrix of the predictors
and X'v gives the vector of correlation coefficients of the
dependent and independent variables. P

" In Hoerl and Kemmard's ridge regression the criterion
for measuring the guedness of an estimator " is the total
mean square error lMSE) function defined by

NSE = E[(B* - 8)7(B* - )] - (3.1)

. " .
There sre two MSE criteria used in ridge regression, wveighted
and unveighted (see Hocking et. al., 1976). In this study
only the unweighted one is used. . s
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MSE is the sum of the mean square error of the individusl
regression coefficients, and it can be proved (Pihdyck and
Rubinfeld, 1976, p. 22, or see property vii iz this chapter)
that it can be decomposed into the sum of the total variance
and the total squared bias of each regression coefficient,
that is . '
NSE = Ivar(f)) + Bias®(E¥) - (3.2)
From & geometrical point of view, MSE represents the expected
squared distance betveen §* and the true vector B, thus, &
"good" estimator would be the ome thet minimizes this distance
- that is, minimizes the MSE. Furthermore, since the ordimary
least square estimator, B, gives the minimum residual sum of
squares; B%, the estifiator based on the minimum MSE criterion,’
will give an inflated residual sum of squares, vhich can be
written as B '
¢ =e'es (y - xBY) (y - xB%) .
=y - xB) (v - xB)+ @*-8) x'x(@s -B)
= ouun * 6,(B%) (3.3)
Where
‘ o, (B%) = (B» - B) sxx(Br - By €3.1)
is the inflation in the, residual sum of squeres. Geometrically
it gives the surface of .a family of hyperellipsoids centered at
B, vhich is the OLS estimate of §.
) The so called ridge estimator, A%, is the one which
mininizes the squared length of the coefficiemt vector sub-
Jected to constamt inflation in the residual sum of squares,

ootﬁ'), which is deterﬂed by the minimum MSE. . Thet is, B




is a solution to minimizing B* 6* subjected to i

. (B* - B)'x'x (B* - B) 6, (o conmstant determined

by the minimum ‘MSELS
The solution of this problem is obtained by minimizing the
Lagrangian function

£(B%) = e Br + LI(B*-B)x (B*-B) -e1  (3.5)

.
where 1/k is the Lagrangisn multiplier. At.minimum f(B*), we
N

have -
. <8 p(B%) = 2B% + Lex'x (B* - B) = o . :
Y Ea 3 .
(x'x + kI)B% = x'xB = X'y
therefore .
N B = (xz + kD)7 X0y ’ (3.6)
vhere k is a parameter determined by Eq (3.4), w;ich is.in turn R

determined by minimum usE® (see Hoerl and Kennard, 1970s).
Graphically, the geometrical relation of the ridge

.procedure in two dimensional parameter space can be depicted

’ o

51n the Varience Wormalization Simple Ridge Regression proposed
by this study, ¢, is determined indirectly by normalizing the

. average VIF, -

Sbue to the cyclic relationship between k, ¢, and B%, minimum
MSE alone cannot complete th¥ ridge procedure without using

& different method to pre-dgtermine k or ¢,. Therefore, in
practice, numerous methods have teen-devised for determining .
k. However, nome of these can guarantee to give the true k Y

vhich minimizes MSE.
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ty Figure (1). Where the ellipse is the hyperellipsoid of

hyperellipsoid of
4,18%) = 0

Figure 1: The Geometrical Relationship of the OLS Estimate,
the Ridge Estimate, 'and the Inflation in the
Residual Sum of Squares.

¢, (B¥) = ¢, = constant, and the ridge estimator B* 1§ a.vector

which Ls shortest amomg those that have comstant inflated

residual sum of squares 6. . ! . °

From the above srgument we have seen that the minimum

square length of the coefficient vector, or the minimum sum of
. squared regression coefficients determine the form of the ridge

estimator and the.minimum MSE deteraines the value of the

parameter K. It should be moted that the form of the ridge

estimator, i.e.,

» ~
B* = (x'x + kI)"'x'y

is the seme as that derived by Lindly and Smith (1972) using
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Beyesian methods under the assumption of an exchangeable prior
dgistribution for B.
The Properties of Simple Ridge Regrassion
Most of the pr‘operties of ridge regression have been
- tho‘x:c\lghly discussed by many researchers such as foerl and
Kennard (“1970a), and Marquardt (1970).. liere, some sixteen
properties of ridge regression are sumnarized. In several
‘places the observations of others havé been extefided.
(1) Hidge regression gives a shérter regression
coefficient veitor than that of OLS regression.
Proof: For OLS regression, since B = (X'%)7! X'y, we have

BB = y'X(x'X)72'y = y'XPAT'P'X'y

_ (x* '3}
B T R (3.9
i . .
v
Where X* = XP and P is the eigenvector metrix of X'X which.is
an orthogonel trensformation matrix satisfying P'P =1,
and A is the eigenvector matrix of X!'X with eigenvalues Xk -
teeendp, sstisfying X'X = P AP'.
For ridge regression, §* = .(X'X + kI)7' X'y, snd
, B*7B* = yrx(x'x +kI)Tix'y . X
. = yrxs(A 4 kI)TPyrry
» - -
(x*'y)}
N > 7
L 1 k20 (3.8)

From the above two relations, it is obvious that, B* f¢< °8;
8 :

" hence, ridge regression (k > 0).gi

es a shorter regression g

coefficient vector.
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(11) The ridge estimator ¢ is s Linear tramsformation

of the OLS estimator f, which is .
g% - 28 (3.9)
Where Z = (X'X .+ kI)”!X'X - or Z =P Diag Dy /70y + K)IP7, wign

i it is expressed in terms of the eigenvalues of X'X, and where

dlag I, 7(h + k) Fepresents a_ disgonal matrix with ith
disgonal. element A/lay #x).
Proof: The ridge estimator:

g PHN

B* = (X' + kI)7'x'y

S exbRD) e (B« §) ’ i

= (X'x + k1) x'xB (3.105" ,
where ve heve been using the fact that, in OLS regression, the
reaidusl vector is perpendicular to all independent veriables

" 5 »
X's, that is X'€ = 0. Tigefcre, the linear trensforimation

- matrix is
Zo= (X' + k17X . (3.12)
: " end when expressed in terms of the eigenvalues of X'X, we have

Z = P(A + xI)7 AP°

= PDiag (A, /() ¥ k)]P" (3.12)

vhere Diag (A /(A + Kk} = /Ohg + k)

.
A, /(A +x)
s 81 . g
s
\ Apfp +¥)
~ . -
(111) The ridge estimator §* has s varisnce - covariance

g i ) Y

metrix

cov (%) = o?(VIF] (3.13)
- - ) - "4




where [VIF] is the”variance inflation factor,matrix, end
a [VIF] = (X'X + kI)7IX'X(X'X + xI)7! (3.1%4)
or, when expressed in terms of the eigenvalues of the cor-

relation matrix X'X

i IVIF] =P Disg [A /(A + k)*]P" (3.15)
vhere Diag [N;/(X; + k)?] is a diagonal metrix with A;/(A, + k)?

ds 1ts ith element.

Proof: Sifice the ridge estimator is a linesr trensformation of

‘ i =28 :
we heve
cov(f*) = cov(zh)
. L N - - 5
=7 cov(f)z ! .
= GZZ(X'X)_lZ' 2 ¥,
/ . = o?(X'X o'gf)“x'x(x'x +x1)71,
Therefore ' -

[VIF] = (XX + kD™ X X(X'X + kI)7,
Jhen it is. exp;essed in 'terms of the eigepvalues of X'X, we
apply X'X = PA P”,.and obtein .
[VIF) = P(A + kI)™! Alh+ kI)™'P
© - wotas D/ +x)2e”

(iv) Rldgu regression prcduces smaller veriances of

the regression coefficients than th;t of QLS .regression; howevar

©1it does not necessarily reduée the covariance or correlition

betveen them. &

Proof: The variance - covariance matrix of ridge estimstes is .

cov(BY) = ¢?[VIF] . co.




r's * -
d ’ 2y
Where : ’
[VIF) ='P Diag [A, /(A" +k) %P L4 ;
! " is the variance - coveriance inflation factor matrix with
elements *
A4
‘ viryy =£u1+_k)2p“p“ for 11 ;31 £2,2,..-
§ and where pd;,' Whi¢h can be positive. or n‘eg&t;ive, feHre_qents' S, S i
the it} element of ‘the Jth eiganvector'ih or:nogena’_':rus-
formation matrix P. “since X >.0 Yor ridge regession andik = 0
for OLS .resression, “the varianees - &
‘ \ Ay g ¥
vm“;z'mp“ for all J =1, 2, ....p (3.16)
5] .are reduced by the ridge procedure, Hovever, the covariances "
’ R .
. ‘””31 =1 m PjyPyy Tor 371 end allfil =1,2,...p 5
(3.a1) ¢ .
{ ’ “can be fnflated or deflated dud to the uncertainty ip the sien . .
of "By;pyj", @s compered to that,of OLS regréssion., ) )
From the above, $ is cleef then, that the @rreletiop
‘between B} ana A, Snten 1 P . “__A E
s NEFay # - . “ . .
" ATESATEL S
cun aleg be taflated or gerlatea. !
*  Commgnts: 1. : When & simple ridge procedure is ;\f‘sed, its B 7
3 ¥ , . effects on the correlation betveen the regression coefficients
R , should be’ checked andnthe gnelyst should interpret the estimated
5 T g coefficients with caution. If the correlastion coefficients are
significantly different from zero, the statistical gont¥ol of
[ " the variabBles will not have been achieved. : ’
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2. Ina generalized ridge regression therefore,

one should look not only &t the varfance but also at the co-
|

variance in order to x:iuj_e/c\h: correlation coefficicnts

between the regression nuermgxenta}. This generalized ridge
procedure cllled the "Genarquzed l‘l}crmalization Ridge Regres-
ston" is under deveopment. / - .

5 . o
(sv) :The total variance of n.age estimates

J:Var(s )iz o DA /Gy w0 = (3.18)

is & monotonic decteasing ‘function of k.

Broof: The varisnge

variance mtnx (prcperty 1&1) of
N
ridge estimates is . )

.
coviB*) = 0P Dlag [}y /(X k) ?1er

Theretord, the total varisnce c:.f‘”tb‘zﬁ e¥tinates is v/
tvery) = fx cov(@m s f .

F ot poprEg Dy, + K2 TR0

= a}er"n}u_g [);1/0.1 f;k)z]P'P

= g2z *1”31‘\’ k) . d -
Tt 1s obviohs then, sinee k and a.u Ay for i = i,iz...... By
are po:itivs vuluns, the tot rluritnc! s a u;noﬁonic g
deireasing function: of k. Lo . ! i '
)Cnm.ments- 1 The weu var{ance Jhas a2 runge of (o2 ’:M’ o)
vhex k varibsfror 0 o infigity.. This meens thet the total’
variance reduces to zero "vhen % dpprbachin intinity). Zowever, - d

at large k, the variance reduces &t & much slower rate. s
- 2. The decressing rate st k 0, thnc/'is WY

lim

e b —k. Zvar(By) | =
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.

can be very large for problems with e high degree of multicol-
linearity. This implies that ridge regression is more effective
for problems with & high degree of multicollineerity.

¢ o
(vi) The ridge estimator f* is a negatively biased

estimator vith e bias given by 2
Bias(B*) = -k(X'X + kI)T'8 (3.20)
K : .
or ’ P .
. z 3
Bles(B¥) = -k 2 Dieg (170 + K)1P78 © 13.21)

‘When it 1s expréssed in terms of the eigenvalues of the cor-
relation matrix.
Proot:

"Bias(B%) = E(§%) - 8= 28 - 8

= [(x'x% kI)TPx'% - I)8

= -k(X'x + kI)718
In terms of the eigenvalues, éy substituting, X'X = PAP” . and
PP = I, we have . .
B 3 5 RS
¢ " Bies(g®) = -k P Diag(1/(A, + k)IP78

‘Comment: 1. It is obvious that the bias produced by ridge

‘regression is a function of an unknown population regression

4 - . ERS s
_’caefﬂcf_ent vector 875 and hence the bias cannot be calculated.

“ 2" Since B* is negatively biased, if we ate able §o

_ provel 8 or E(B*) s significant, then the hrue valus 8, must
3 - :

be significant

(v11) 7 The total square bias of ridge estimates

“slast(Be) - x’zr——g‘—kv . . (3.22)

is a monotonié increéasing function of k with a range ‘of (0, £8})
forlk = 0 to fafinity. . - . w T

Lae L . .
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Proof: From property (vi) we have the square bias of the

estimates

Bias?(8%) = x28°7 Dieg(1/(h; + k)] Diag(1/(A; + K)IPB.
é

= x'a"Diagl1/ (A, + x)?]a

2

where a = P”B 1s ‘the. true regression coefficient vector in

cenonical form'y = X*a +'€, and vhere X* = XP. -It.is obvious
therefore, that Bias?(8%)is a momptonic increasing funetion of

k. Further, since

2

L3

3 i
lin Bias?(B*@m= lim kL =0
ko el ol e ,

and - .
2
(%) = 1im kir
lim Bies = lin
o i, T, + &1

=limE

kv

- Ta?
= Zog

2

8}

the total square bias of ridge estimates has a rangé ot (0, £8}).

Comment: The total square bias depends on the unkmown population
«© .

regression coefficient vector B; therefore, it can never be

obtained.

(viii) The ridge estimator f* has a total medn square

error of &
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2 Mg i el
MSE =o Em X TmTanE ¢ (3.23)
- Proof: The total mean sguare ‘srror

s = E(B* - s)‘ -2 B E(am +EER). sr}
i R EBW - z(a*n‘ ! [E(B*) -8t

“=etr eGv(BR) ¢ Biasi(Re)

= Zprip niag[A ”“1 i K)? ]p +x? a'ﬂin‘g[l‘/{)\r-ik‘)z']a

Cunmentﬁ‘ 1. From this relati.im, it is obvioul that the totll i
meean sq\mre error of ridge regression d!pends on th: true‘ unknavn

paremeters 02 and G's,. Therefore, the total mean squére error

cennot belobteined. ) : . |
2. The first comporent of MSE is.tha total v-ri;.nce ,;_‘.‘
of estimation, i.e. : e P " o ‘ s »

e PRIV . e !

. : R CHER AL o v 2 LRI oo

.which describes the rendom portion of the erfor, vhile the o
second ‘component is the square bids, 1.é.
& e el 04 ] i % ’ i
: i
S Biag? (B*) kL T F . s Y s

) i " g
which is ‘the systematic portion of 'the srror, .

i n (ix) jxﬁage,regres;x givas minlm‘um distence. heween

% and. the true vector B; which in this sense nakea a“ a better
estimator. then that of é, the [0LS es!’,imltax‘- coa .

Proof: . The ridge regrusion criterion’ demands an =n1matian ¢

procedure minxmiung the. mean sq\xue ertnr- Prcm a 5ecmetrical o




' sdudres of,

point of uev MSE is the squareﬂ dxsnnce from B" w B;
therefore, the ridge satiuntor gxus e ninimm distance trom

B* tc the -brue vector-B. . - ¥ .

" Comment: Sincé the MSE u‘f ridge resreﬂsion depenﬂs on'’ the

unknoin pxrameters v* and a

“the minimun MSE or thc minlmﬂm ¥

rliuta.nce rrom s' to B cannot be obtained Y 4k o

) mdge regression Intiates. the residuul qum ot

4y ="K e*‘(x;x)“e*

(a 25)

By = KPLEFT/A,
vhere a* = P “B% 15 the rirlge regression coerﬂc;ent vector m
& factor .space defined By orthogonal Arans forngtion X% =:XF,

in vhich tbe m\llt!.ple lineer regreision model in cunonicni

form s given by ¥ = I¥a ¥ e, £ g, G g e
Proof: é;x;ce f* = 28,08 § = 27 ve mave e
4 LIENE 2 z-“‘-)Bf‘ ey .
= 0T - (XTI kD)IR

N ) e k(X)) TURR . o

Therefore

s B Eex a2 B) L Ea (3.0)
= k’ﬁ"‘(x!x)‘iﬁ‘*, o

In'terms of eigenvalues, by substituting X'X.= PAP'

we have

Baer fT10k = Rigan2
(KR ATIGN = KTaY 2/
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(xi) Ridge regressinn produces a smaller Mltiple y iy

" R square ﬂmn that: of OLS regression umeh canbe expressed as

RN = Baxexper o ) 13. 26)
S = Bty -'k'ﬁ*'ﬁ' ) L (3 27) .

or, ‘irhen expressea 1n termr or the eigenvulues of x'x as ‘.

(3:2%‘1

s % m*’

i 4 : ; a
% h;ua,r. 'l‘he multiple R squue % }f
A : ‘ x’. ‘REg ghISH §~'x-x§* ﬁﬁ'-x.-);ﬁ* Ay 1 2
. 9 "Tss' ¥y yyﬁ./ '-»' \J
I
B . vhere We Bave been using y! 1i/s1inter in ridge regresum

“all variables are standardizeéd t¢ give unit lengthy - m—thep,

i
bylsubstituting A% = (XX + KI)7'X'y end using a little. - -

algebra, we have S T o

¥ 8 R = Berxexpe B*‘x'x(x'x+ x1)” ‘x'

LA B‘“[(x')uu) - kI](x'x + k:[)"x'

2 BRiypry kgl'ﬂn‘

g e g Aﬁ by using X'¥ PAP' and Prn = u* e ‘obtaih - the =xpx’e!ainn

A Y T4 terml of the zigenvalues of ‘X'X, 1.5. - s oty ¥

=9--xvx§u=mnmun=nu* ol S D

27), it can- be aeen ‘tlearly t’h’-t‘, Tor OLs

From Eq 2l

0 .ng

The R? for ridge regrel fon i & manatnnic

function uf K. This can ‘e seen from the zact RY can, be ex

' pressed e




which is obtained from substituting af = (X*'y) /Oy + k)
into Eq. (3.28).

TRt THE BUOEE SEELHEGE.. GO0 TiNs WARELIELEE te
sampling fluctuation as compared to Ege OLS estimate.
. From property (iv) we know that the ridge procedure
produces smaller sampling variance. Essentially, this implies
thet the rigge estimate is less semsitive to sampling fluctu-
etion.

(x111) The ridge estimate Produces a more sccurate

ction equation than the OLS regression procedure, e
S

the bias introduced is not too lerge:

Pr(gnf It is well knovn that for unvﬁused estimates the

varinnce of the forecssting error is
: of = o?[1 .+ x'Vx]

where 02V is the vaeriance - covariencé matrix of the estimated
parameters. 'fur a biased estimate, such as a ridge estimate,

the square bias should be added to the forecasting error

vaniance; that is " .
o%* = a; + Biasz(ﬂ')
©= o1+ x'Vx] + Bias®(§*)

‘Theréfore, when it is expressed explic¢itly, we have

o3t = ot fl v 2P Diasll, /Oy ¢ k)z]'P‘;j} + Bias?(f*)

(3.33)




For OLS estimates, we set k = O an¢ derive the forecesting

error variance as

(3.34)

which is much larger than u;‘ if (the bias produced by ridge

procedure s not large relative to the reduction in variance.
Comments: 1. The forefasting error vuwn‘.an;:e'c;l consists of
wa perts, the first part is the veriance term, which'describes
(the random portion f the error, end the second part (the bias
term) describes the systematic gmyuen of the error.

2“ In the case where the bias term is relnti‘vely\
large, more accurste prediction can still be obtained by
gl‘ividing the sample (if large enough) into two sets, one is
used to e‘!timute the biased pnrumeter, and the other is used
to estimate the bias in the prediction of the dependent
variable. The sccuracy of this empirically estimated bias in
pr‘e‘di:cion can be improved by repeating the Froceéure vith
different ways of dividing the data set.

(xiv) There exists a wide ramge of, k, 0 < k <kpgy, vhich
¥ill give ‘s set of ridge esumtes B%; and which will produce
smiller MSE than that of OLS éstimates. ) ’
.Froof: Define the effectiveness Tndex (En) of ridge regres- "
‘sion as the ratio of reduction in total varience to the total

‘square bias introduced by the ridge regression; that-is

_ Reduction in total variance
R A€ L) B (3.39)
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Since the totsl varience of ridge regreseion ii a monotonic
decreasing function snd Bias?(#%) is.a monotonic incressing
function of k, then Eft is a decreasing function 'Df k. It
can be proved easily thet, the effectiveness of ridge regres-
sion has a range of infinity to zero when k varies from zero,

to infinity. Further, we have

MSE(R) - MSE(B*) = Ivar(f) - IVvar(f*) - Bias?(B*)
- Ert x Bias?(d) - 31as?(B%)
= (Eft - 1) Bias?(B%)
then, for any k which gives Eft > 1, we have
MSE(R) - MSE(B*) > o :
That is, the ridge regression procedure produces smaller MSE.
If we set k =k . (maximum k) for, Eft(k) = 1, then ell k's

that are less than k "would give smaller MSE.
max g

Comments: 1. Any valid ridge procedure should produce’en
optimal k which is less them ki, .

E B
2. The maximum k defined here is a functiom of

unknown paresmeters o? and a's,- and bence the true value will

never be obtained. However, if ve use the OLS estimgte of

o and a's, we would ottain.e conservative estimate of By

(called K, ), due to the fact that a's are gemerally over-

estinated by OLS regression. [
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. Since k servativ 1 Lk <k
3. since K . is a con ive estimate, k < K .

is a sufficient btut not necessary condition for .a vslid ridge

procedure.

- ~
k. k., end the maximum k (called k. ) defined

by Vinod (1976, 1978) refer to the same theoretical maximum k,

A 3 &
o howeyer empirically ki, . > ky .. That is K . 1s a more
a nccurute estimate :71' kmﬂx
. 2 « 5. The OLS estimate of the effectiveness index

E£t (k)

may be used to indicate the performande of a ridge procedure.
1f Bft(k)'> 1, the ridge procedure is a valia ong/,‘nnwev'r
as in comment (2), zr:(x) is a conserx}z’fe & estimate of the

true effectiveness index, ferefore Eft (k) >1 is a suf-

ficient not a necessary condition. v
For sty problew there exista s positive "optimal
Called ka) which gives & minimum MSE.
Proof*: Since

¥SE = Ivar(8)) + Biaa?(B%)

& B 4 2(g
i Fomse = & ovan(fy) + & Bras?(En)

2
= -20? x:rr_.—’,.Ai L
i + k (X + k T

*This proof follows Kasarda and Shih (1977).
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" a
. i 2 2
to2z [eveman (6 - raj) (3.3&))%
Based on Rolle's Theorem (Widder 1963), since
in & MSE = —202 Iy <0 -
ko OE . XX g .
the optimal k is a positive value. Further since
2 a »a2 - L
4, MSE = 602 T 1 il ;- 2k) (3.40)
dak? i
and
2 3 a?
Lim S MSE = 602 L 3+ 25 >0 . (3.51)
kvo K Xy M "

According to the theorem of minimur (Widder 1963), this positive
velue lesds to the con::l\uiop thet o minimum exist for MSE
(Kasarde aid Shih, 1977). ’

Comment: This is what Hoerl-and Kennard (1970a) called the
Mexistence theorem”. It is true even for-en orthogonal system
for which the dagres of multicellinearity, D, is zete. I

this cese, A, = 1 for all i = 1,2,....

i and ve have
b ’ :
d _ i 2 29 _
% MSE = -2Iry—yy (0% - kail =0

This strange phenomenon has one important mdvantage and one

important disadvantage. The advantage is that if we accept
B
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the minimum MSE criterion es a measure of the goodness of an
estimator, for any problem, the.OLS procedure is always
inferior. The disadvantage is that it renders Hoerl-and
Kennard's ridge procedure based on minimum MSE rather absurd.
(xvi) For any problem the optimal k depends on the
true regression coefficient vector, B, and the variance of

2

the Tesiduel of the linesr model, ide. o

Proof; From Eq. (3.39), at minimum MSE
q o Xy 2 2 2

-~ GEMSE s 2 ipy—rgyr (0f - kel) =0 (3.43)
Although thé explicit form of the optimel k cannot be solved
from this complex non-linear equation, 'SI: is obvious thet the
optimel k is & runcyien'ox.:ne true regression coefficieat
vector, & or B, and the variance of the residusl of the linear
regression model, i.e. g2.
Comment: The multicollinearity problem arises from the inter-
dependency among the explanatory variables not from the
dependency between the dependent variable y, and the éxplan-
atéry vériables X's. Therefore, if the task of ridge regres-

sion is to reduce the harmful effect of multicolldnearity, the

optimal k should not depend on any parameter which depends on

the y variable such as B or o?; that is, the optimal k should

be a nonstochastic parameter.

The Optimal k X
As has been defined in & previous section, the optimal k

is the one which gives the minimum YSE for the date on hend,
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t has been pointed out that for any problem there is

and
one optimel k, and a vide range of k, 0 < k < k .., which
give smaller MSE than that of OLS regression. Un{ortunCQS} 3
the optimal k depends on' the true regression coefficient

vector, 8, end the varience of the residual, o2, in the

linear regression model. These two perameters are population
parapeters not-universal constants, and due to this nature of
the optimal k, it is impossible for it ta be calculated.
Instead, it has to be estimated from the sample data. So far
more than fifteen methods have been described; for example,

see Hoerl and Kennard (1970a), Hoerl,| Kehuard snd Baldvin
(1975), Vinoa (1976), Ovenchain (1975), Hocking et. al. (1976)
McDonald and Galarnesus (1975), Kasarda and Shih (1977),
Hemmerle (1975), Hemmerle and Braatle (1978), Guilkey and

Murphy (1975), Lawless and Wang (1976), Allen (197L). Each

ot iese metNody Hua ta 6w sdvantages end disadventages.
_However, none can guarantee to give a better k or even a

smaller MSE compared to that of OLS regression. This aif-
ficulty has unfortunately marred the superiority of ridge
regression over OLS regression procedure. In the following
section thred distinctive methods of estimating the optimal ' .
k will be discussed.

1. Hoerl and Kemnard's Ridge Trace Method. In Hoerl.

and Kennard's version of simple ridge .regression, the optimal
k is determined visually from the "ridge trace” which is the
plot of E; 's and the residuel sum of squares A{::fncticns'

\

actor &

of k. An example below is a ridge trace of a 10
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problem obtained from Hoerl ané Kenrard (1970b).
i
i o
:
W
»
o
Figure 2: The Ridge Trace of the 10-Factor Problenm
from Hoerl end Kennard (1970b)., .
The ridge trace depicts the effect of multicollinearity

on each of the regression coefficients. From the trace it cen

be seen that when k increases the effect of multicollinmearity

is dampened and the regression coefficients are stebilized.
The optimal k is then selected visuaelly at the region which
starts to give stabilized regression coefficients. - . i

In the Hoerl and Kennard (1970a) article four guidelihes

were suggested for the selection of the optimal k.

(1) At a certain value of k the system will stabilize
and heve the general charscteristics of an

orthogonal system. .
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(2) Coefficients will not have unreasonable absolute
values with respect to the factors for which they
represent rates of change.

(3) Coefficients with apparently incorrect signs at
ok = 0 will have been changed to the proper sign.

(4) The residusl sum of squares will not have been
inflated to &n unreasonable value. It will not
vd large relative $o the minimum residusl sum of
squares or l;rge relative to vhat would be &
reasonable varimnce of the process genen‘txné the
data. o

It is obvious that these four guidelines are vague,

subjective, need prior knovledge of the regression coefficients
end hrould prove“very difficult to apply. Furthermore, the
trace appeuzs_"to be. more stable at higher k and hence has a
tendency to lead one to select a k that might pe too high.

Due to these drgwbacks, the obtained "optimal k" cannot
guarantee to give estimates that are better than the OLS ones.
In spite of these limitations, the ridge trace is still a
useful plot. It distinctively displays the characteristics
of the explanatory data set, the effectiveness of ridge pro-
cedure in stablizing the regression coeffigtenfs, and cam,
also be used to check the optimal®k estimated by using verious
aethods tq see if they fall in the stable region of the ridge
trace as desired by a good estimator.

2. Kasards end Shih's Method. As has been pointed

’ % £
out, theoretically the true optimel k is one which minimizes
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the total mean square error of the estimates of regression
coefficients. However, the MSE [depends on the unkmown tiue
regression coefficients and ché/vsrinncF of the residuals
(see prop(;cy viii). Mathematically or technically it is
not aifficult to obtain the optimsl k from Eq. (3.43), even
for very high p, if the two parameters were known. Kasarda

and Shih (1977) have argued that since the OLS estimates of
2

and B, under the normality assumption, ere unbimsed and
comsistent; and, further, since § has the minimum varishce
‘Enomg &1l unbiased estimitors, then the two OLS estimates,

? and §, may be used to replace their true values in order

g
to obtein the optimel’ k by minimizing the OLS estimete of
MSE; which is written as ’
MSE(R®) = Ev;}(é;)‘+ Blas?(A%)
Cn X a?
POt ot e

The validity of this method obviously rests on the
velidity of-replacing g2 end a by their OLS estimates. The
replacam;n: of 7“ is not problemetic (Johmstom 1972, p. 163),
however the replacement of n(&r B) by & (or B) definitely

is, because the OLS estimates of a, (or B) could be far off

due to the high degree of multicollineerity in the problem

(see harmful effect (ii) in chapter II). .The replacement of

a by & would definityly produce oo isrge w Nghiafe Hins dn

‘the estimate of MSE, and this in turn would produce an estimste
of k (c;lled kg) smaller than the true optimal k (kgy), due to

the fact that the variepce component in MSE is a momotonic

. [\
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decreasing function and the square bias component is a mono-

tonic increasing function with B“8 as its upper limit.

dithout a rigorous proof, t:hisjux‘gument can be depicted

" graphically by Figure 3. . B

tvar(f,)

Figure 3: The mean square error function MSE and its OIS estimate, MSE, ~
where ks is Kasarda. & Shih's k, and kD is the true optimal k.
Summerized briefly, Kasards snd Shih's OLS estimation
method heve the following.disadvantages:
£ (1) 1 ‘produces & k which is an underestimate of
the true optimal k, the higher the degree of
multicollinearity, the worse the estimation;

and

(ii) it produces a stochastic k, while optimal k
. should be domstochastic due to the fact that
nulticdllinearity is a nomstochestic problem

caised by the interdependency in the predictors.
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Hovever, the first disedvantage, can also be regarded as an
advantage from a different poimt of view; that is, it will % el
never W& an overestimate of k and thus produce ¥oo high a

blas as some of the proposed method of estimating k do. In

other words, Kassrds and Shih's method slvays produces.en

estimate with smaller MSE than that 0’! OLS‘rggrenionA

" 3.. Vinod's Index of Sthbilitx H:éhod. < As polnted out

earlier, the ridge ucimtar a' = (X'X * xl)“‘x'y has &

veriance - covariance matrix of

L cov(B*) = o?[VIF) : /

where

[VIF].= P Diag [x
) B
is the yariance inflation factor matrix. For a completely

orthogonal system, Ax = A ;.......= l = 1, it can be easily
seen :hu the VIF metrik is equel to a constant mstrix with’ 2

el:ments

5 2 i ' !
B v LBCEL I cx > LU

" and therefore the matrix

T

-Ai+.k

is en identity mltrlx. e )

For a nen-cx‘thogun!l system the l.'bove propaxty of thg
VIF will ‘not be satisfied, and the absolute values of .the

elements will be large. This suggests & numerical measure,

which Vinod (1976) celled the Index of Stability of Relative




Magnitude (ISRM) of B*, defined by
1SRN = I [pA./(A; + kPS5 - 1]2
; & A/ (A 2
Where s =AY +K) )
This numerical measure represents the quantificetion .. .. 3
of Hoerliand Kennard's concept ot stability which will be
ze76 for.a completely orthogonal systen. Since’in. ridge
regression 1t u “desired, %0 minimize the effects of the mon=.-
orthogonality of the ‘system, the index of stebility (for:

short) should Be minimized; ‘that is, for Optimul k, ISEM has

& minimum velue.
f Due to the complexity 0f the stability fimction, it is

impossible to solve for the optimal k as an explicit function

of )., and therefore it has to be solved graphically by
$ plotting ‘the ISRM as & function of k or by using an iterative

App!each.

This method mly seen Kok e of. the best compared ta/.
. most of the ‘methods that HavA veEs preposed. However, it has
= not been very satisfactory in this study. To summarize it

has at least the folloving a.dvantagzu and disadvantages.

_Kaventages: (1) ‘It qunntiti:s Hoerl and Kennard's concept
of stable region and estimstes k-objectively.
(2). It gives s 'more definitive k than the ridge

ur'see method. J ) 2

s ! SU3) Tt giv:s a non-stochastic ki

. Disedvantages: ' (1) . It.was not proved that the opnml X giv‘es
" the minim\uﬂ mean ‘aquere arrar as required

f-the nriterinn of ridge regreusinn. N
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(2) mhgre s no guarantee that/the optimal
k obtained will not be larger than k

.. L i (see property' xiv), as required by any.’

valia ri lge procegure. .
¥ E L (3) 1a some cases (sequppendix ‘A), the o
i ' .. index of atabuny ‘givés more”than one:

min!mun peinz, vhlla cheurnxc-uy Y.here

5 :
uhould \:e ¢nly one 6pt1ma1 k thlt givel =

tha nxnimnm MSE (groperty xv).
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CHARTER IV
THEORY (III)

THE VARIANCE NORMALIZATION CRITERION

Introduction
From what have been discussed about the properties of
ridge regression in chapter III: we have seen four dilemmas
of ridge regression based on the minimum MSE criterion. That
is (i) the theoretical value of optimal k is stogchastic while
1t should be' a nomstochastic ome iffthe tesk &f ridge regres-
sion is to reduce the harmful effect of multicollinearity,
(11) the brue optimel k depends on population parameters and

renders the problem unsolvable, (iii) even for an ortFogonal

system there is an optimal k at vhich the MSE is mixfmudy and

(iv) the bias of the ridge estimates cen never be obtained;
and, thus the performance 'of ridge regression cannot be
accurptely evaluated. If ve study the properties of ridge

regression carefully, especially property (viti), (xv) and

(xvi), is clear that ell these dilemmas stem from one
source,’the‘ minimum MSE, due to the fact that because the mean
squere error is a function of 8 and 0?, 1t is a stochastic
function and cannot be evaluated accuretely. ’ '

If we observe the minimum MSE criterion closely we
would see that we might accomplish three tasks by using it"
with ridge regression. The level of sécomplishmeit depends
entirely on ‘the size of the estimated k. In the nemainder of

this chapter we propose to use a weaker criterion inm the sense

. '
that it is limited to the sccomplishment of a single task;

e




namely, to reduce the effects of multicollinegrity. Through
the use of this criterion, celled the variande normalization
criterion, the first three of the above dilemmas would be

avoided.

inalysis of the Problem ;

" The total varisnce of the €stimated repression co-

T h T — as:
tvar(8) = or(x'x)7!

»f‘—l;cr(x‘xi" (%.1)
where € is the rendom error of y in the regression I;Aodei
¥ = XBo+ £, n is the-sample size, p is the number of explan-
 atory variables and tr(X'X)7! is the sum of the diagonal

elements of (X'X)™!, the inverse bf the correlation matrix.

From this xpression it is obvicus that the total variance

. depends on three independent factors, namely:
(1) "The random error: This is the purely random part
of the dependent variable y, and it generally
consists of two parts, the measurement error €
and the stochastic error €., vhich can be regarded
s the influence of the incompleteness of the
designed model and some unknown inberent irrepro-
ductble fluctustion (Wennacott 4969, . 7).
These two errors € and’e sre assumed to be
‘uncorrelated and hnvcynormal distrihucicx_x with
zero mean. The sum of the squares of the random

error €'c can therefore be expressed as




e * Eifs ' (b.2)
The random errors can be reduced but not ellminated
(11) The sample size m, or to be more specific, the
Segiee of freedom of the sum of square érror (n-p).
®1ne toral variance may be. reduced by imcreasing
the sample size.

(411) The Degree of Multicollinearity: The effect of
the degree of zulticollxn;nricy EntEEs AbremEN
tr(X'X)7!, which is the trace of (X'X)”! and it
is the sum of the vnr‘iance inflation factor of
each Var%‘lble due to its interralsti‘onahip with
’the rest of the explanatory variables. ‘The
inflation of variance by multicollinearity may be
"normalized" by ridge regression d;belapee Ty
Hoerl and Kennard (1970a) if the k is cpnstruin;ﬁ
according to the variance normelization criterion
as given in this chapter.

”In any statistical procedure, it is desirable to have

veriance as lov as pos¥ible. From the above discussion, it is

obvious that for multiple linear regression, we may reduce’'the

total variance of the estimeted coefficients by improving the

measurement, the specification of the hodel, the sample size

and most important by reducing the inflation of v_ax‘i&nce due' to
multicollinearity, because as has been pointed out in chapter
III, the total veriance may be inflated to infimity (in the

case discussed by Marquardt and Snee (1975), the VIF vas as

.high as 6563). Due to the seriousness of the effect of multi-
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collinearity, the enelyst should'locate their sources (see

Mason, Gunet,.and Webster, 1975) and try to'eliminate them if

physically possidle, othervise ve have to resoft to ridge

regressi:on to.reduee the harmful effects of the multicol-

linearity problem, /[fter all, to eliminate the ceauses is far

better than to treat the symptom. N
The ridge regression developed by Hoerl, and Kennard

(1970a) was orlginal‘ly intended to do just ome task namely

to reduce the inflatfon of variance of the estimates due to

multicollinearity. This task is definitely a'monstochastic

one (see the comment under property (xvi) in. chapter III),-

However, use of the minimus NSE criterlon for deteraining k

1a sffectively to uss an omaibus procedure. This i3 because

ridge regression in :u;)preuing the VIF to less than unity is

also suppressing the vaeriance attributable to other causes of

variance - measurement error, model incompleténess or system

misspecification snd small sample size. It is the cznibus or

m\xlti‘[unctionul nature of the procedure which has forced the Foa

ridge regression procedure’'to be a stochastic one. This is”

why the theoreticel vu];ue of optimal k based on minimum MSE

is stochestic (depends on B and o), and why eveh‘ for an

orthogonal system there is an optimal k which generates

minimum MSE (see the comment under property (xv) in chapter III).
s

The Veriance Normelization Criterion

From the above argument, it is obvious, therefore, if

.
we want to limit the simple ridge procedure to perform the
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single task of reducing the infletion of veriance due to

sulticollineerity, the lovest permissible total variance is

2

po?, which is the value for the best condition; namely, that

present in an orthogonal system. That is,

Ivar(g*) = po?

Ay
2 i P : &
E e LA

‘and therefore
.,

rig—tpre (.3)
Put into words we cen say that in order to perform the single
tesk of reducing verience inflstion due to multicollinmesrity,
and only multicollinearity, one should normalize the average

veriance inflation factor (VIF) such that it is equal to one.
The value of k (called ky) Which satisfies this condition is

the k which satisfies Eq. (k.3).

By using this procedure, if the resultant variance is
still too large for practical application of the regreuiu\n
model; and if it is desirable to further reduce the varfance,
it should be accomplished mrou'gnlimprovement in messurement
error, model specification and sample size; and mot by further
suppression of the veriamce inflation factor. !
The Underlying Assumption, Limitations and Advanteges

' It was stated earlier in this chapter that the x:xdge
regression with the minimun MSE criterion fight accomplish

three tasks, and that the level of accomplishment depends
= &




that ky is less than kmu

3

e 8

entirely on the size of the estimated k. To be more specific,
this is when the estimated k is larger than kN’ cr the k value
which normalized the averege VIF equal to one. In the develop-
ment of the normalization criterion, we did not and do not fimd
it necessary to assume thet ky is alvays less then the optimal
k. Hovever, like any other method of estimating k, the
variance normalization criterion has an underlying adwumption
x* which ‘is the k value for which the
reduction in the total variance ia|equal to the total square
bies introduded by the ridge proc@dure. I term of effective-

pess index, Eft, k is the k value vhich gives Eft =1 (see

nax
property xiv in chapter III).

With simple ridge regression, due to the crudeness of
the procesg, the underlying essumption will not slvays be true.
i Monte C:hﬂmuicn experiment is desirable in order to
evaluate where it stands. A further refinement, and general-
ization of ‘this criterion, in order to achieve still Detter
Tesults, is definitely nec Yewsy, T RHLEE jué these limitetions
the normalization criterion has the following advantages:

. (1) The parameter ky can be calculated Accurately’ and

it is nonstochastic as required.

(2)  The average variance inflation factor will neve;'

be suppressed.

(3) It is more conservative than some proposed methods.

© ' (b)) It nelps to arrow down or even locate the source

of variasnce in a model.
-
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To illustrate the last advantege, let us sssume there
1s & model with & very large date set; and further assuze the
wSdEL 4aWELLsBeEssisd based on information from other
sources; then, after the date set is analyzed by using ridge
regression with the variance normalization criterion, if the
veriance is still too large, its source most likely is from
measurement ejror. This feature might become a helpful method
to evaluate the crudeness of measurement in educstional

research.




> CHAPTER V
EDUCATIONAL APPLICATION

»
Introduction

Thg purpose of this chapter is to demonstrate the
superiority of ridge regression over OLS regression as claimed
in the theoretical portion (ehapt;r 2-h). The problem used
for this purppse. is the "human capital" problem, tased on &
modification and replication of Jencks' model (Bulcock et.el.,
1974) 1& a Swedish context, through use of the Malmd data set.

“Due to the fact that nulticollinearity is most severe
1n the last stage of & structural equation model, the dis-
cussion here centers largely on the last stage of the model,
although the whole,xiddel is analyzed for the sake of complete-
ness. As stated earlier, the purpose of this chapter is to
provide empirical support for the theoretical arguments about
the superiority of simple ridge regression. Becduse this
purpose 1is Largely pedagogical, not substentive, the simplest
- not necessarily the best - model was chosen. Thus, the
interaction terms called for by resource conversion theory
(Coleman’ 1971, Buleock et’al., 1975, Figerlind 1975) - an
extension of humen capital theory - were not included in the
model used here for illustrative purposes. Furthermore,
simple ridge regression is still mot the perfect tec.l';n.{que.
Although the "noiee" due to multicollinearity vas reduced,
the "distortion" (bias) may not be optimal. Therefore, at

this point in time, there will be no statistical inference

7/
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or claim sbout sny fact or "truth of neture"'. In subsequent
reseerch, +hen better models and more perfect techniques,

such as the Generalized Ridge Regression (GER) based on the
varisnce normalization criterion currently under development
are used, then statisticael inference about the "n%" will

be stated.

The Malmd Data

The world famous Malnd date set is & longitudinel date
set first collected in 1938 from ell. 1,54k grade three pupils
in private and public schools of the city of Melmd ir’l southern
Sweden. The ‘date gathering which vas wconducted in six dif-

ferent follow-up phases xs"iummnzed in Table 1.

Table 1 Abcut Here

The details of the Malmj data set-can be found in meny articles
such as those of the researchers that collected the data as
given in Table 1, The Melmd Gata set has been widely used by
econonists, sociologists and educators to study humen capital
problems, asd most recently by de Wolff and Vam Slijpe (1973),

Hause (1972, 1975), and Fdgerlind (1975).

The Career Aciievement Model \

The caereer achievement process was first studied by
Blau end Duncen (1967), end extended by Jencks et.al. in 1972.
The model was replicated and further modified by Bulcock et.al.

(1974), Fégerlind (1975) in the Swedish context by using the

- o o
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regression model, econometric theory has pointed out. fhat,

56
elm$ data. The snalysis in this study is based mainly on
Bulcock's ‘model with two modifications, namely: (1) the'
icteraction terms between varisbles weére not included for the
seke of simplicity; and {2) the outcome varlable at esch stage "
ves regressed on all independent variables at that ‘stage
without hypothes{zing &b to whether each veriable was going
to effect the outcome or not: Any analyais is designed to
find out the truth about natur;, and if a relation does not
axiat; ths werulbs of = Pelleble aneivbical bethalque should
igiicate it explicitly. If we falsely hypothesize that a
certain Yariuhl: does not affect the outcome, the exclusion
of that variable would produce s seriously blased estimate
(Johnston 1972, pp. 168). Based on the sertousasss of tie

effect of excluding any important or relevant variable from e

when dats and degrees of freedom permit, -it is better to err
of the side of including variables in regression analysis
rather than excluding then (Johnston 1972, pp. 169). Therefore,

the path diagran used in this study can Pe depicted as Figure k.

. ~ B
Where M'Txxn(gl) is father's eflucation; F}mmc(x‘) is-the family
income (FAMINC included -both. father's and mother's income plus
income frow all other sources); FATHOCC(X ) is father's f
octupation (& composite Variable heavily dependent on Gcoupe~ .

tiomel ‘classification); FAMSI(X ) is “the Family size composed

RS
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INCTL

(xg)

Figure

Path Diagram of the MalmG Model of fhe Socioeconomic Career where FATHED = father's education;

FAMINC = family income; FATHOC = father's occupation; FAMSZ = family size; 1Q38. = respondent's

mentel ability at age 10 (1938); EDUC = respondent's educstion level; IQU8.= respondent's mental -

sbility et age 19 (1948); OCCT1'= occupatioal status in 19T1; INCTL = respondent's i{hcome in
1971. : ’ i A

P
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solely of the number of. sLblings, mas(x ) im the IQ score

bised on Hallgren's (1939) grnup intelligence fest; znuc(x )
is ‘the educational nnsnmem measured of a four point. scales

* mhs(x 1 ta-the” mnul Ahtlity ats ma.turiw (a.hu\lt age 1.9)

v based dh the svedun muieuy inte}ligenca t:nt‘ occ'{l(x ) u
the reapnndents' occuputional sl{}us classifiad ona six point

‘sesle] end INC'D.(X )’ 1s"the, vaw income ‘dats obteined from tie

central tax Tegister and vhich included income from sll sources.

The detells of these variehles can be obtained from Tigerlind
&(1915). : .

.
Die Analyeis st the Resites. ,

™ 0LS regression npnly!u snd’ several’ siuple udn

regression mnlysu vere perfurmed on the Malmd dats set siven’

in Bulcock €tial. (mh). The data is sh'o\m in m1= 2.

Table 2 About xu! N

i B .

Althbugh only four umple ttage; regression dethots were ats- ;
cussed in the” theorevical chapters, rsavexg ne!hqdn were used -

in the enalysés presented in this chapter. The tiree extra

are: Hocking, Speed and Lynn‘

\(1975) methuﬂ Lwles- and

11975) .

In thsuq methods the ultim.tarl “for che uygim

methotﬂi . 1k

adeiat i i ke
"‘gz)‘iui" . ik

Hotking et.el. &

: A1 &

AR TR S AL
EEv ., ¢ S ol

= 2T ¥
s TAET T

‘dnd Wang’,

Lavless
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2
Hoerl, Kennard'& Baldwin k= 2o
< - Eui ..
The path coefficients for the different stages of the
humen capital model are tabulated in Teble'3 to Table T, and
the characteristics and performance indices of each method

are summarized in Tables 8 éhrough 12.

Tebles 3 - 12 About Here

Discussion

A. - The Condit#bn of the Data Set: For ease of com-
perison the measure of the degree of multicollinearity for

both V and D,

max max® the Teduction of veriance, end some othe

performance indices of simple ridge regression based on the
Wartance normalization criterios (ébbreviated to SRR(ky) ) for
each stage of the Malmd modkl were retabulated together in

‘Table 13.

& F}om the D-measure of ;mlticulkinelrity. ve‘ know that
* each stage has about a 0.8 degree ct‘multicnllin‘zarity. P{cm -
the V. -measure, ve See that the maximum variance inflation
.« . fdctor in each stage is about b, and if we inspect the VIF:
matrix for each stege given in appendix B, ve see that the
third variable FATHOCC is the ome that elways hes the highest
VIF. Therefore, the multicollinearity i:roblan} in this model

ceaters ‘mainly on the FATHOCC(X ) verisble. From the correlstion -
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Dependent Variable

Teble B

The Cheracteristics and Performance Indices of

OLS Regression and SRR Procedures.

‘138
& E.E. 2 2
x T 9 Rotis | FVAR. | AmsS o R Eft
oLs .0 .06 0.799 1.00 0 [} 1.00 0.119 | NA
§ Normalization k(“ 0.146 | 1.17 0.120 | 0.069 | 59.9% | 0.38% | 0.536 | 0.096 | 0.3
i
! Kesarda & Shin [kg [ 0.016 [ 3.35 0.7k 0.665 | 13.8% 0.023% { 0.999 0.115 | 2.09
s
Hocking, Speed” |x
and Lynn B 0.027 2.96 0.699 0.509 21.6% 0.033% 0.991- 0.113 1.‘27
Hoerl, Kennard P
and Baldwin e 0.033 2.6} 0.678 0.455 2. 7% 0.044% | 0.985 0.112 1.09
=
lavless &-Yang L. 0,036 291 .66 0.h2h 26.5% 0.052% | 0.980 0.111 1.00
Vizod | k, | 0538 | o2y |<0.33% | o0.0037| 85.2% | 2.38% | 0:022 | 0.068 | 0.183
Where k .= biasing parameter RVAR = reletive reduction in varience
. = maximun variance inflation ARSS = inflation in residuel sum of
o faotpr 4 squaras
D = raximum relative degree of @-ucceptance leval
m multicollinearity % multiple R squard
E.S. Ratia = empirical sensitivity ratio The OLS estimate of effectivencss

index
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Table 11

The Cheracteristics end Performance Indices of
OLS Regression and SRR Procedures.
Dependent Varisble: 0CC 71

i E.S. 2
k T Dl Ratio | FVAR ARSS o R Eft

0LS 0 422 | 0.808 1.00 0 0 1.0 0.%06 | na

Normelization |k | 0.160 | 1.12 0.078 0.11% | 59.7% 1128 | 0.233 0.338 [ 0.453

Kesarda & Shih kg | 0.031 f 2.96 0.699 0.k90 | 21.6% 0.071% | 0.999 0.389 | 2.29

Hocking, Speed
£ v Ty “w | 0008 | 3681 |o.782 | 0.023 | 6.77% | 0.0065| 1.00 | o.bo1 | 6.78
By Hoerl, Kennerd i .
! ané Boddwin 0.017 | 3.43 0.751 0.658 | 13.3% c.czlhﬁ 1.00 0.396 [ k.15
i, Lewléss & Vang K, | 0.012 | 3.63 0.769 0.734 9.86% | 0.012% | 1.00 0.399 | 5.82
Virod ky | 0-611 f 0.38 |-0.352 | 0.068 | 86.5% | 6.01% | 0.00 | o0.243 | 0.155
£ Where k = biasing parameter RVAR = relative reduction in veriance
Vigx ° = meximm variance inflatlon ARSS = inflation in residusl sum of o
s fector . squeres ©
i B daximun relative degrée of = G-acceptance level
| e milticollinearity R = multiple R square
5.5, Ratlo = empirical sensitiyity ratio Eft = the OLS éstimmté of effectiveness _
) index
i . - o

e
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S8t esch s

matrix (Table 2), it is clear thet the multicollinesrity is
attributable to the high correlption between FATHOCC(X) and

x-‘munc‘(x ). (Note that bigh co};elntlan is & sufficient b@t'

no: neceaury condition, Tor severe multicollinearity).;

‘;l‘herefore, 1t mny be wise to yallapse these two var lble! in."

nultxcullxnenny prnblem. SAELawit it"is of heurlstic

intarest. S

. B... The Thange Pteduced by 8RR (ky): | From the second”

" part of Table, 137 we can clearly see’ that, all che harmful ;

etfectq of multicollinearity st esch stage have been greatly
reduced by simple.ridge regrecaton bued on the: narmalizstidn
eriterion. The maxin\m VIFs at cach !tuge heve. heen reduced
to about 1.2; the relative degree. of mnlticcllinenrityﬁlt each
stage husjropped trom about 0; 8 to about 0.1; the varisnces 5

lage have ‘been reduced by 55-60 guunt; and the

,-,nena“n{vuy %o fluctustion at éach stage .due.to sampling error

; A s .
has dropped to'very small values (by a factor of 48 'for the

last stage to s factor of 1000 for the second stage). A1

these indices ﬂll\ucrute the gALA" produced by SRR(k

Un:onunaeely,

"trlda-otf" u

" even be ;ure vn ther ‘the MSE hns been reduced. Ir we look n

the' OLS -estimats of the effectivenes

{ndex, Eft un“Iy the

second stage hed a value laFger th.n'uuy; that u; ix:e

|
reduction in var“lnnce “ia% greuu than the; toul"nquan bu

or  stated difterbntly, +he_ MSE hos beeniradicsd. - For the:




remaining stages, the E;t"s are less than one. However, as
was pointed out in chapter 3 Eft > 1 is a sufficient but not
necessary condftion for proving the MSE has been reduced.
Therefore, except for the second stage, we cannot be positive
that ve have obtained better estimates. Based on the theo-
retical argument .in chapter L, '1r ve assumed thet SRR(ky ) ¥
produced more sccurate enmnu, then the ridge estimete of
the etrestivatons index, Bft%, for all stages would have an .
average greater tham unity. Although there is no clear cut

index ensuring that the SRR(kN) frocedure has really improved

‘the estimates, from the smell emount of imflation in the
residual sun of squares end the large reduction in _variance;

intuitively, it 1a believed that, the SRR(ky) procedure Has

produced better estimates.

C. The Change in Peth Coefficients Produced by SRR(kg):

The path coefficiedts produced :hy oLs, SRR(kﬂ) &nd other methods
wers tabulated in Table 3 to 7 for sé_sge 1 to stage 5 respec- .
tively. If e compare the path coefficients produced by OLS
end SRB(k ) praczdurgs, we would observe the following. = 2
A g&n the first stage (Table 3, IQ:B as dependent
varieble), the negative effect of rAumc(x ) on
138 becme lnuigniticent et the 0.05 level.

2. In the second stage (Teble L, EDUC as dependedt Ll

variable), no, dramatic change in path coefficients

. . resulted from SRR(ky).

In the third stage (Teble 5, IQLS 'as dapendene
variable), 'the effect of FaTHOCC(X ) on QL8

becant ‘significant at about the 0.01 level.




Figures 5A and ‘B. Figure 5A gives the OLS regression results,

[

4. In the fourth stage (Table 6, OCCTL as dependent
variable), the effect °r~m36 on OCCT1l became
insignificant.- .

5. 1In the last stage (Table 7, INCT1 as dependent .

" variable), the effect of IQB on INCTL became

o) stenificent st bout the 0.005 level.

6. At each stage, theré was no major change in the
raik order of mugni:u@e of the estimsted path
coefficients. Hovever, the overall SRR(ky) path
estimates were _significantly different from those
of the 01‘43 enimn(tes. This can be seen from the
8o called "sccep'tance\level" or "associated
probability" which is 1109 for OLS. The devistion,
from unity shovs the level of deviatfon from the
OL§ estimates (Obenchain 1978, McCabe 1978).

Based on the above changes, those variables that are
not significent at the 0.05 level were dropped and the model
was resnalyzed by using both OLS regression and SRR(kyk. The
results are summarized. in the path diagrems depicted fn - .

.}

end Figure 5B presents the results for simple ridge regression

besed on the normalization criterio:

characterigtics and pe tormun:e tndices of OLS regre!!iuu ana

dlf{eten! Cypel ot 8RR” rur \iifferent ltlgut vere tlbullted 1n

s iRy
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Taple 8 to Table 12. The disgussion here will follow the
ameters or indices ligted in the tables.

1. The bies parameter k: It is obvious from Tables
8-12, that Vinod's mé&dhod produced the largest k,

that -the varience, normalizetion method produced
moderaté k, and all othér SRR methods gemerally

\{raducéd much smaller k.

2. The maximum VIF (V_ . ): The maximum variance in-

max

~ flation factor is & linear measure of the .severity

of multicdllinearity in the data set. ch" perfectly
" . ortdbgonal dsteiit is equal to ome. From'eolumn 2
in tables'.8 <12, it is obvious that the variance
ncrﬁli‘zation ‘method is alvays the more appropriste ey
. B one.: Vinod's method always produced a V, . far less
than unity -and hemce might produce oo large a bias,

vhile -the rest of the SRR procedures have not pro-

duced enough rBduction in VIF; that is, have not

winimi%ed the harmful effeécts of multicoliimearity.

3. - The D-measure of multicollineerity (D, ):  As has

mex :
h

p T -
béen pointeéd out in chapter 2, the D-measure of

3 milticollinearity  has e range of O -to 1; D'=

. 2 tor nc{ m\llticqllinelrlty, and D = ?mlx = 1 for

Wy T yex‘fel:t multl"ollinelritw From column 3. in tables

%20 .8-12, ye see that the vaitange hebuaiisat lon, uabhod
| uuxs produces & D o close o zerd. as desired;

M < - ‘H.nod’s m{thod always resul{g:u i Dy, ax sm:.ller than

26103

and the et §f the SRR pibcedires alvays hed
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k._ The Empirical Sensitivity Ratio (E.S. Ratio): The
empirical- sensitivity sabils nay be measured by the 1
_ratio of the sum of squares of the fluctuation of

< estimated ridge regression coefficients (SSF*%)

over those of OLS regression (SSF), that is’

regression cosfficient and that of {ne ridge

regression coefficient respectively} ind vhere,
the perturbed coefficients are obtained by {ntrof
_ . ducihg a $msll perturbation Ar to the 1 gegt

- . correlation coefficient in the correlation matrix

. A s - \
- & xa'x. The amount of pergjurbation used in the 1

. . 4 analysis is |Ar| = 0401, vhich is a reasonsble .

spproximetion to the precision'of a correlation

coefficient in most mu.uumene. " R
Fron'thes vn).ge of E.S. Rntin Ln tebles 8 - 12 .

it 1s obvious that the \]Qrignca normel¥Tzation -

I‘Qethod hes very lovE.s. Ragto vnlu;l compered to

. most of the SRR preaedurea vith the exeepnnn or

» vuoa'- machad. . : 2 R .
5. . The. Reletive xeauencn in Varience (nvng HThe’ ) <
5 relative redistion 1 varisncé is a neasure of / g

. the percentpge reduct ‘of ‘the.total variance in




T9

the parameter estimates generated by the Tidge -

7 procedure-over the OLS regression prodeduré. By 4
. definition it can be expressed ast v *
% i x : . -
. )=
Ryap = ER(X'X) = tr(VIF) )
4 . 5 v .,
) ) _(vIr) : .
t.ré)('x)“ , g
Fiom column 5.in tebles 8512, it is obvious that i o

the normalization method elweys produces a large
awount of mgduction (55-60%); and wlthough it is
not th€ highest, it is usually higher than the | .

* other SRR procedures included in.this study. o B

% 6. The Inflation in the Residuel Sum of Squares: Thé

OLS regression is based on the minimum residusl sum

of squares critérign. The usedf a different criterion
suc as NSE would produce a larger residual sum of "

. £ .squares’. Frém colwmn 6+in the tebles ve see thatu
'exnept_Qr 'vxqud'a methbdd, the variance nox-man.uti{an .-
-, ' “method ard‘the other SRR procedures produce tifvisl :

amounts of \infldtion in the residuel sum of 'squares.

‘ The'mcceptance level: The acceptance level of e

- T,
®» g . 5 . i -
‘ . . ridge estimate, ¥, is d¥fined by 'McCebe (1978) as .
Bt
5 .
4 & — |
; ' D Tpnop,(1ma)
£ : . 7" A riege jestimate is celled adcéptable” if'the

estimate s in the (1'- ) 100% confidence région:




LY

According ;to McCabe (1978) and Obenchain (19TT) it
w is desirable for an estimate tohave a high scceptance
\ level. Although the author does not agree with
‘ : their argiment, the a acceptance levels at each : )
stagey sivapy whnge 3, ror shE vardanos mosiliss L e o ¥
" weibE desEed ive acceptably high.
8. The multiple R sguére: - From column 9 in ‘& diian
8-12, it is obvious'that, except for Vinod's'and B

| the variance normalization method, the remaining

SRR procedures still maintained & high R* (rélative E:

to that of OLS regression). Por the normalizstion

method, the reduction.et dach stage ~nmmugn net
" ae large as those for V!‘.—nud“s‘ mtt.ho’d, were fairly ’ \
[ . large. This reduction in R? might meke some people |
3 |~ i . Besitate to' use r!:d_ge,!’egrun;cn due to their misd .

: ¥ : understanding over ‘the importance of R?, They might

| - & = erroneotisly believe'that the reduction ia R® indicates
s * thet the ridge procedure provides a poprér fif, with

: shbuquen:-‘reuuctlnn in £ne predictive pover of tue

. regression NQQ!I. Thil cuncluaion is deﬂnitd(’ BOZ

correct for it least the following three readops.

Vo Fxntly, even 1£ we uu:oLs ragtauinn, whether we

‘dan’use R as a meaSure of .uodneu of.fit 1s

vdcuhtful (Barr!tt, 19745 P!ndy:x 13 Rubiufeld, 1976
o J 'yp. 61). ‘Secondly; the minteud restdual sum of

. ‘,squ.res (equiv-lent to naxisizing, R?), crltux‘ian has

. been ghown mpt to pergorm well empiridally.’. Tiraly,
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1 . it hes been pointed out by many researchers, and
s a has-been mathematically proven in this study
(chapter 2) that \;x;ile to have large R? is .
" "L“\ desirable, it is not' sufficiest %o ensure that i

« W fodel will have high predictive pover. ;M(hu.l

@ " o been skown, the predictive pover of a regressicn
nodel s very semsitivé to the variance' of the
estimates or the degree of the multicollinearity
of the data set.. If we compare the reduction in
R? and the amount of varianmce reduced, we would

" see that (from Eq. 3.33) if the total squere bias
is mot too large, the ridge estimates would have

D , auch better predictive sowers duivine the reduction

o Bog in R?, and the reduction. in V(ar;lanee, that the bims

% parameter k introduced, we would conclude thet thel’

- -normalization method is more conservative than

Vinod's method, and has & much better chance of .- J

R perforning \:ener in prediction. — -

The OLS' estimate. of the’ erfecuveness 1-miex BT

- The arfectiveueq. tndex is® deﬁqeﬂ aa the ;ratio of

reduction 'in total varunce over: elu :otal aqu.re

DI | bias. Ttstrue valué’ cAnnet b:‘cnlculatgd due to

* v "o ‘na a d on inovi. populatisn pumuers. T L

e W\ 3 As hag. been pointed, out ;n ehpcer 3. 1ts an g




‘procedures,

Bas lower NS

in this sense. From bolumn 9 in tables B-12,.1t

is obvious that only Kaserda and Shih's, Hocking

et.el.'s, HKB's and Lavless and Wang's methods .
: have Eft greater than unity; thet i, can assure
\ us the MSE is not larger then that of OLS. However,

\ as has been pointed out previously, these methods
\ actually do not produce significant differences !for
the better in all respects as compared to QLS
, estimates. Stated differently, these methods have
. not performed well in the reduction of the harmful

\ effects of multicollinearity.

\ E. The Riage Trece:. In this section, only the ridge

trace for the last stage in the Malmd model was plotted. The

purpose| of the trace was not to determine the optimal k due |

to the theceluneu of the ridge trace method, {nstead it is

used co ?lsplly the cnuneurini:a of ﬂm date .ec. and to

The ridge trace for the last stage is given inm

Figure 6 About ‘Hare ' <

uuted by Wbcking etial. (k ). xan rlu.

That is, it is e better estimate Q

N

i i bt i e
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& .. Vinol's method: (k) definitely “gives too high an estimate,

« and it seems that the varience norsalization method'(ky) is-. !
the only one that satisfies the guidelines. i .
From the comparison of ‘the k' values. obtained:by rdif- '

ferent methods for various stages (see tables 8'=12), 1t is

obvious r,n.e, u the rldge. traces vere plotted, similar results .»

end connlusions as that for the lasf stage would be resched: by

To further support :this conclusion, the riagu trace vith"

various k's for the ].D-factat problem deseribved By Hoerl and

Kennard (19706), snd the S-tactor probles given by Price [(197T)

are presented u appendix C. From the.comparison of -u_ shese

. ' traces, it is clm- that the varianne normalizetion methoﬂ

& ; seems to eunustenuy produce & Biising parameter’ which

sstisfies Hoerl and Kegnard!s guidelines for abu.;nug Spe"nu' 14

mhu evidence Xndxontss that the varismde nornnlluticu ¢

method is superior to- the other metheds 18

s cmiy

uded in this

Summary and Conclusion

3ased on the ‘amalysis of;

using the Mals§ date uz, we' observed the ronmng mpor'

B i facts lbnut\uimple uage rea e

on Xued on 'the varisace

nnmannuon n:iunon‘ . A



It prodhced enly & Small amcunt ﬂf infl

./.

g Bl the z-en.duu sum ot -qu.rn

b It yrud\xced the unl

qu v.ml the variance norma.

11' tion method

(1) the i éen be eueulgead acnurnely,
(u.)-

1!‘. J.s no)utochnscic und aqllnl to zez-e ‘for an

orthcganll duta Bet 8 required, &nd

I
1 requtum,ém
of optimal k uuggened by Hosx-l and Kennard,

(£14) 44 consistently enunas the enpiuu

the v-xunce nauuliutien methnd :Ls ukely tobe !uperlnr ta

the' cther methodﬂ exlmlned 111 thls study
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» - (CHAPTER. VI. - g
o <
it concwsxo‘« _AYD FURTHER: msmxcx 5 ;
4 'tonclision. . " A Wl ¢

s It was atated 1!! -chlptex‘ 5 thlt ﬁhi!
¥ policwiik pusmosast | (1) te demunutrut_ev tne»-sqpsrioglc;é or

iosimple’#dge’ pegiension ovey .0L§ -regresalon through theos

. retical .rgu’meAc a5t empirical example,. (2) o moasty. ridge

regreuion thruugh use of the vAriance normuuznxnn erd.zerto

resression astihstqs based on mnlmum mesn ‘square erruzl.. e

) tneoreuul discussion, in nnapter II, III end IV and he

}




B L ) o1’

IV we ag.mwed bhst rxde regression based on the minimum MSE

eriterion hes several limitations: (1) tht,theer:tlcal value.
of optimal k, ‘Which gives the minimim MSE, is, stur:i:utic -

though it skould be nun-nocuuuc. (2)" ‘the true optimal koo 4

‘deperids on populatinn paume:eu nf cannot. be obtained; (3) L

{oven; for Rg orthogonl‘l data set eneu s “optinal x Enidn "

producés mininum” HSE, aid () ‘the i

prodn:ed by the widge. ~
‘u order *o

: prnaedurei’vhich 16 the’ "e.uda-eff' Tequired
uehieve sll the \ielira'ble propertsu ot ridge regu .mn, b

" that the origin of these limitations ies in uppnc-uen or =t P
the MSE criterion. i 5 : ¢ 7 Sy
7 Further, through the analysis of the source.of variancel i

_produced by OLS regression, we have pointeéd out that ‘ridge

regreasion”based onrthe minimum MBE s multifunctionali Thus, ;

it iy reducethe viriance from three sources: that o:}gu.ngg
fron tife. fandom errors in the aelignzd model; that.die tolsmall '

sample size. and:the varianee 1nflated by the multlcnlllnaarlty

proﬁlem, From this .nalyu- ve uue duvelnped e unuunntionu"

‘ridge x’egrossion pnaeduu destgned !nlely to normul!ze the -

R AL A

,vlrltnce u\nnea by the’ mun:con:u rity. probien. : The,

.“eriterion, cnllud “the v-rllnc! notmslizltipn =ti erinn, ‘Y,Didl»

the first three limitttienn, thlt il, thru\lgh use of the %
variafice narmsl!z&titm critericn e ruulnn k is nnucechunc.
"".1% éan be cnlculu'.ed exactly, ua for orthnganal data la\‘-u it is

equal to’ zero., s

Threugh tnrmnlltion snd eutimltlan of & azru:mnl




‘8t each stage of the model, obtlined by’ ridge rsgrellion hnﬂed

the zocu vatiencs. nuu,

we have avoided thrﬁ eut of.the rnur

;and accirately. Theréfore, sohmetimes (vhen Eft > ior k'ts

) équu.ti.cn model dealing vitb oot B Guank cnpltnl theory,

and thrungh use_ of the longitudinal ‘Milm3 dsta set, we have .

provided support for the th_!ox‘,eticnl- arguments’ presented in

chapter FII and chapter IV; we have sldo shown- that the esulti.

on the va.ri‘nce normulizuinn cri.terimx,v drlsticnlly r:duced

the relults were tar less. senlltlve

or’ nosc ar che MSE ‘ridge: prnced\ues included Ln this study

ointed om -earlier; with the cmquzucian crueriun

? lemmas of rld.ge regres-

- sion. Hien regara b the four h dilemnd; nemely, tha eltimation

of n:e cutu squaz@il vias, dueto 1ts dependﬂ-‘ca on papull.tien

sk, 1 solution-1s possible. i

%o xl.mpli.ng '}-rur. l:nmpa!‘eli to thnse genex‘ntéﬂ by’ OLS regression .;

Although -,11 rese-rch studies h-ve indicatod that theo~' ®

reucuuy, ‘ridge reg.reiaign i sypertor: to those llt.ernltives
currently under invenigacion, 167 eiample,’ the prlnciyll ‘som

Ponent ‘wethdd, Stein's shiunken estimator, (uee for lexample

Dempﬂ‘ax: et:al. 1971 Marq\urdt 1970, Hocking, Speed,.and Lynn.

1976), empsric.uy it.is a ccmpletely different mat ter.” Due to

pouuﬂvle to ‘shov the, per{armnnce of any ridge procedure- dinctly

not id the admissible range 0 < xi< koo )i we cnnnne he.-ure

‘whether the ridge estimates are really better chu oLE enimates

However, it has 'been argued (Mu—quudt end. Snee 1976) nut due

. %o the wide ramge ofik which produce amlller MSE. ost methods_

_the fact that v»—cannut estmntt the 4:1;5 accurately, : 1& is im-

o




vh.h conservative k vnuld produce better estluht!a then OLS N
X ragmsian. o ‘: N . v ~

From the ‘example stnﬂed in ch-pter V, we have seen

that' all metho

except . the normalization s ru.iled to

r
_oynmiu the red\ictiﬂn oF the! humrul et:bcu of multicols oy

>lin=lrity

Altigueh r.ha e-nu- are’nét preunted here, more:

.‘exu:plen nave A\mn studied Jer Bull:ack end Lee 19718;

iand muemx 1975) Theae M\ldies hav: shows thet the nom.’

izn.\‘.lun mettiod. . vays produces. more accep!n‘hle regults ch.n

any of the’ evhen included in Jthis study If.one u:cepn the

underlying nlsumpticn ot the ‘normelization. cHterion: that xp

15 1ess" than km“, the trua Rexinum, k, the, theoretical "argu-’

menn an\i the empirical results nave clenrly‘ 1nucute¥‘t

ridn rtgre!lten uuing Ehe vu‘iame normnl&zatian ctiteriu

is-superior to other’ ridge regrennn estimating procédures

B TR flnal commeiit 1t is worth noung that- this ‘study

1s ot to be 1nterpret=ﬂ s 1hplying thu ridge regre!aian iw C e

!
1
i
}
-a-solution to tnd multicollinsarity proviens 1o:fs yist o F i, %

'or Jthe,

‘precedure af Tast resort for reducing the il1leffec

probles. ' If phylinllly possible, fhe scurce,nf uuuuunuurny

.lhrmld be 1nutgd and éliminated. Bovever, this 1 leldon A0 B we

feasible.” !’urther, the normalization crlterian i1tselr does nut

B n:nmys per{urn hecter ‘than Jhe minimum/HSB vcrilerion. e 298
0

sted

_depend! on the . p\u‘puae “of . tha uudy. I we mre int

o mlinly in the axpunnan ar Pheomencn, which 1s usuaily the’

tase in the: soci, 1 ucience i then the nafuuuuon o




estilltaz‘ vieh laver varianae' und 1lrg=r bias (vh!.eh my

2t be efpirically z!tlnlted). may be moze lpprapriite. Fe\' thl!

e R purposu Vined‘s meehad m.y be more suitable

as it 5azz,erllly,

g 9i proaucea & puck 151-5" billing perameter x.

runher Résemre .70 T

There are at ‘least two J.mmedll'ae exunuom’ o

e Cstudy thet haveto be, perrormed i e ‘nedr !ut\xrml First EY

the Monti Carla sinulstian test of theﬂalidlty ot th.g normal-

> xnuon crlterian. As as been po’intel o\n elrlier, the

nncuny :ny x’idg: regreuinn is perior tc oLs regreu!lan

Cirit e be ensured thed the. red crien in “the tnul vartance

is grsster than, the emcul lqusje

as, 1ntroduced by \‘.he/rldgz

yraced\lre. In terms of_ the etteativeneu 1ndex. r

“conditdon is gquuu nt zp Etc > ;, or k < kmu. Due to’the "

' 'aepenadnge of the ‘total squarsd b'iu‘u on population 'p'u'.maéeu,'

:the superinricy condition" ot ridge regression cannot be.

evuuuced accurweiy. In chapter III e Have shown thnt

i iy ngnuex-vsqxve ”zut'f vhich give evidence of the supuioney

Gondition"is »bnsﬂih which Eft > 1 or kg km.x, vhere the "hat'

':indica.tes that it u based on OLS- eatinates (see’ property xiv

-

{n chaptu III) From ﬂu empixxcl -ppuuuen dtlcnued 1n,

chaptér ¥, we' Hhve Eeih that," thet ridge pracedurel wniel

2 sau’aty this eou‘rvn‘ive testiare those. which: do not ‘perforn

Well'in the reduotion of the haraful effect ut the nmltical—

nneuuy pmbug The ome that upunueu cha reduction

nofial1f@tion mevhod <=’ fails tma conservative . “nn

alternative 15 to ‘apsly







. ‘sufticie

v Beeause of ‘the, r:rudnnens of siaple ridge regresaiun,
i ;
where all the! augomx elementa are uug*:nl;eﬂ yith the rgdne. : A

'ccnnnn.t k the simulstion test- 18 not Tikely to 'h= 8 hundred

Upercetit atfirmative.’ Kewever. At u s4i11 o nauruuc

tngerest to £1a out hos

slmple ridge regresuion \\alﬂg ﬁhe ky

'crueﬂé&umpuu 40 othek? estimltlng grnced\usa‘ .45 ;

y varth ging thaty, this "superiorny coudltiun“ is ilso 2

t cond tinn no'. n!ce!slry cend}.tinn Aiue to th

ttct that che oL§.estitate nsen is empirlcl].ly lesed, The 7

GI.S e!timuﬁe 1 unbiused cnly Wh!n the, mmi‘el is'a true mud!l

(Johucan 1972\ pp. 169, m—.pez- & Snith 1966 <pp.; 81y, and

empirically’ ragru,uon nod,elu are usu-ny ntaspEodried, There-

fore, the superiurity condltian" is one ‘in vhich ore bs.ued

asumce is compued to -nothu‘ Diased: euxmne. In ghity . f RSN k

uituntio,n even'if the’ raduutiun i vsx‘innce’ 1s'leas tlun the

uqu,nred bi“, we cannot ve11 vhlch Jone’ u :1o=u to; the uue Ra. B4

vnlue, unlo 8 both are bll.serl 4n.the same ﬂirectian. Altbough &

ve kaow thn a ridge citimatd is alveys negatxvaly‘ binsad we

\ic nM: know the; direction of ‘the Ddias ln oLs eut!.mu.tes pradueed

by the Apeclflcahion ‘error (lee Jchn:ton 9723 ‘3 169 Eau 5-T02).

There!ore, 1 the uimul.uon test fails, tha last

lternative

s to au‘bjecc the model to ampiriui ten‘,'

The aeco d meenmt couinu-clcn or this st\rdy u the

' onsugred. h‘nm che aucuuien
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Appendix B >
filevement Model 1 (From the. Firgt, t6 the Fifth Stage).
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