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ABSTRACT:

An integrated field and analytical study of three areas in NewfouDdland and Spain was

carried out to investigate the extent of the linkage between the geologica! evolution of the

Peri-Gondwanan margin of the laperus Ocean. n:corded in the southwest Hermitage

Aexure of the Newfoundland Appalachians. and tI\at of the Sierra de Guadarrama in the

Central Iberian Zone of the rberian Massif (European Variscan Belt). This srudy. while

resolving the timing and character of the respective Appalachian and Variscan overprints.

tUghligbts the major importance of the Early Ordovician (ca. 480470 Ma) magmatic

The Cioq-Cerf gneiss is pan of the westelllIl10St extent of the Late Pm=ambrian

basement block of the Hermitage Aex~. New data from the Cinq-Cerf gneiss

demonstmes that this is a composite unit formed by tUghly strained metasedimentary rocks

and 675+111-11 Ma granitic orthogneiss.. kxalJy intruded by weakly defomed 584+7/-6 Ma

HbI-beariDg granodiorite and a transitiona.lfvolcanic an:: tholeiitic 557+141-5 Ma

metagabbro. Although variably deformed during the intrusion of the synhnematic

43 L5±1 Ma Western Head granite and the subquent, 420 Ma. greenschist facies overprint.

this set of rocks preserve evidence of pre-5ilurian deformation. This is consistent with a

basement-cover relationship between the Cinq-Cerf-gneiss and the nearby low-grade 583­

570 Ma volcanosedimenwy rocks. lbe 675 Ma intrusive event provides a sttoog !.ink with

the Avalon Zone further demonstrating tllat Avalonian rocks (s.s.) were involved in the

Early Paleozoic evolution of the eastern margin of the Iapetus Ocean.

Further west the gneissic rocks of the Pon-aox-Basques complex. generally adscribed

to the Gander Zone. separate the Avalonian basement of the Hermitage Aexun: from the
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SU~ with the peri-Laurentian margin. New data shows that the oldest set of intrusives.

lIE Margan:e orthogneiss. represent a 20 Ian long. 474-465 Ma mafIC-felsic igneous

complex overprinled by Silurian (411-410 Ma) upper amphibolite facies metamorphism and

deformation. The geochemical signatures of the Margaree orthogneiss suggest that it:

formed in a b'anSitionai lU'CIbact art: setting at the time of the major" Late ~g-Uanvim

back-art: rifting event in the peri-Gondwanan margin of me Northern Appalachians.

In the Iberian Massif. the orthogneisses of the Siem de Guadarrama form me southern

portion ofan enigmatic belt of pte-Variscan augen-gneisses that extends 600 km along me

northern Central Iberian Zone (ClZ). Dating across the Berzosa·Riaza shear zone (BRSZ)

demonstrates the presence of 468 Ma granites in the shear zone. 480±2 Ma volcanism in

the low-medium grade hangingwall and coeval 488-417 Ma granitic batholiths in the high

grade footwall. The 480 volcanism bmckets the Sardic deformation in the CIZ between the

Mid-Late Arenig. The BRSZ has an oblique extensional movement coincident with peak

metamorphism (331-321 Ma). which developed during the Variscan D2 defonnation (330­

321 Mal. resulting in decom~ion and late·D2 growht of low P I high T assemblages

(322 Ma) in the infrastJ1JCt\Ue. The shallow intrusion of the posHectonic La Cabrera

granite. dated at 292±2 Ma, seals the BRSZ and marts the end of the Variscan

deformation.. This new dala demonstrates. for the fJ.m time. that the Earty-Mid

Carboniferous syn-collisionaJ extension in the CIZ was coeval with extension along the

entire hinterland oftbe Variscan belt.

1bese Ordovician orthogneisses of the Siem. de Guadamuna ale interpreted as reliCts

of a soon-lived magmatic arc coeval with the subduction-related break-Up of Avalonia from

Gondwana. This new data illusltates the striking parallelism between the Early Paleozoic

events in the Peri-Gondwanan side of the Northern Appalachians and the southern portion

oftbe European Variscan belt.

ill



ACKNOWLEDGMENTS:

My deepest gratitude 10 the people of Canada who funded this project Ihrough !he

NSERC operaling gmJl of Dr. Dunning and a MemoriaJ University Graduate Scholarship.

On a more persoaal level. I have 10 praise my lhesis supervisot" Prof. Greg Dunning and

my co-supervisors Prof. Aphrodite Indarcs and Sean CYBrien (Newfoundland Depattmenl

of Mines and Energy). for their continuous encouragement and guidance during all s[ages

of lhis project. and !heir fanatic obsession with field relationships!! Also. I have to thank

Dr. Peler Cawocxl for his guidance in !he early stages of lhis project.

Laboratory training by Prof. Dunning, Jim Connelly and. especially. Kathy Manser

was crucial to my mastering of the U-Pb geochronological technique. Kathy and Rod

Chwt:hill also shared the boredom and noise of the crushing room with me. Thanks 10 Pal

Horan for keeping an eye on the mass-spectrorneter and always being lhcre 10 answer my

questions. Pam King. Mike Turbett. l...akma.li Hewa and Maggy Piranhan helped

immensc:ly with XRF.ICP·MS analyses and microprobe EDS cIelenninations. lloyd and

Rick from the rock shop always had my thin sections ready on time. Pat Browne. Geny

Ford. Gerry Starkes. Maureen Moore. and Teresa lannon helped me with all the university

bureaucratic red tape.

[t was, thanks to Cees van Staal (GSe. Ottawa), thai. I had the chance of having !he

true Canadian field experience with helicopter. tent, black-flies. wet boots and memorable

open-water boat rides. He intrOduced me to !he geology of the Port-aux-Basques area and

was of great assistance and guidance during fieldwork in !he Margaree orthogneiss. Shoufa

Lin, Lindsay Hall and Dave Scholfield are thanked for field and general discussions on

Port-aux-Basques geology. Discussions on the geology of the Cinq-Cerf gneiss and its

surroundings with Brian O'Brien (Newfoundland Dept. of Mines and Energy) and Benoit

IV



Dubt (GSQ were of greal assistance. The boabnanship of Clyde Billard of Grand Bruit

was great.ly appreciated while navigating around Three Islands and Cinq-Cerf Bay.

Cccilio Quesada (Spanish Geological Survey, ITGE). Felix Bellido (ITGE). Enrique

Martinez (Univ. Oviedo) and Aorentioo Diaz (Univ. de Oviedo) provided a crucial two­

week field trip around !he Ossa-Morena Zone. the Sierra de Guadarrama and NW Spain in

1993, during which the Sierra de Guadarrama was selecled as a field area. Cecilio Quesada

and Roberto Rodriguez (ITGE) we~ instnnnental in organizing !he close collaboration with

the mapping crew of INYPSA. which partially covered field expenses in Spain. Pedro

Pablo Hemm (lNYPSA) and Javier Escuder (Univ. Complutense. Madrid) are thanked for

interesting field discussion. free exchange of ideas and general friendship. Antonio Azor

(Univ. de Granada) provided a copy of his unpublished "tesina de licenciatura~. Luis

Gonz.a.Iez (Univ. de Granada) pbotocopied and sent me a large amount of Spanish

bibliography (I owe you one. Luis!). Also. thanks 10 the people of Montejo de Ia Sierra

who enriched my field seasons with their animated character (specially to the patrons of

"Meson el HayedoW who provided occasional free-drinks!!) and to my sisler Ana for

allowing her car 10 be reroorselessly abused during two full field-seasons

Thanks to Dave Corrigan and John Ketchum who were ~assaulted" for geclogical

advise and bibliography during Ihc writing stages of this thesis. Special thanks to {ngo.

Joy, Sandy. Steve. Arden. Jeroen. Jason, Adam and again 10 Dave for their friendship and

companionship. and to my office-mate and fellow "lab rat" Richard Cox for making life

easier with his corrosive sense of humour, friendship and fly-tying tips!!..

Finally I would like to dedicate this work to my family and my girlfriend Pilar, who

have endured with me the loog separations, for their love and unconditional support.

v



TABLE OF CONTENTS

VOLUME I: Text

ABSTRACT .••...........•••••••••••.•....•.......••.....•...••..•••••••••....•. 11

ACKNOWLEDGMENTS 1V

LIST OF TABLES ••••••••....•..••••••••...•..•••.•...••.•.••..•••..•••••• XVI

LIST OF MAPS ....•..••••.•••......•.••.•••••••••••••.............•..•..•... XVII

LIST OF FIGURES XVIII

LIST OF ABBREVIATIONS XXXI

CHAPTER I

INTRODUcnON TO A STUDY OF THE PRECAMBRIAN AND

PALEOWIC EVOLUTION OF PERI·GONDWANA IN THE

NEWFOUNDLAND APPALACHIANS AND THE IBERIAN MASSIF••••• I

1.1.· PURPOSE AND SCOPE...... . 3

1.2.- ANATOMY OF THE ORCUM·NORTH All..ANTIC PAlEOZOrC OROOENS.

.........6

12.1.- The Appalachian -Caledonian belt... . 7

1.22.- The European Variscan belt.... . 9

1.3.- CONCEPTIJAL FRAMEWORK FOR PRECAMBRIAN AND PALEOZOIC

NORTH ATI..ANTlC RECONSl'RUcnONS. . . II

1.3.1.· Late Precambrian and Paleozoic Paleogeographic evolution of the circum-

North Atlantic Gondwanan terranes . 15

VI



CHAPTER n

THE NEWFOUNDLAND APPALACHIANS.••••••.•••.••.••.....••...••••••• 8

2.1.- UTHOTEcrONlC WNES OF TIlE NEWFOUNDLAND APPALAOflANS:

Gf1IlER.AL OVERVIEW.. . 19

2.1.1.- The laurentianlperi·laun:ntian margin of the Newfoundland Appalachian'>::

The Humber zone, the Notre Dame subzone and their equivalents 20

The Humber zone 21

The peri-laurentian Dunnage Zone 22

lbe Norn:; pmnc subzone; . 22

Ib!; pashwoocls !mbzom; . . 24

Ib!; Twjllingate subzone (Unknown afrinity) 25

2.1.2.- The peri-Gondwanan margin of the Newfoundland Appalachians: the

Exploits subzone and the Gander and Avalon zones 25

The peri-Gondwanan Dunnage Zone: The Exploits subzone 26

Jbe Indian Bay SUblOQ!; 28

The; Gander Zone:.. . 28

Gand<;r l..ale; Subzone 29

MOtlD! Coana!:;k SybzQOC;.... . 30

~I,*,SybzP'K . . . 30

The Avalon Zone:... . 30

2.1.3.- Middle and I..ate Paleozoic evolution of the Newfoundland Appalachians.

....32

2.2.- GEOlOOICAL ELEMFNTS OF THE SOlITHERN NEWFOUNDlAND

APPALACHIANS: TIlE HERMITAGE FLEXURE 34

The Laurentian Margin.. . . 34

lbe DaShwoods SUbzone 34

The Cape Ray [anlt !be Windsor Pain! Group j10d the BjIljards Brook

lilDnalilm.. . 35

The Gondwanan Margin... . 36
1$ Pon.ayx.8asqu;s complex (ARPA OF STIlpV Cbapler M 36

Jbe Bay du Nord Group mUnn'" Zpo; Exploits subz0"S) 36

vn



Jh:; La Poils BISin .. . 37

The: 1m; Px;camtman _Early Qulgvician bag""! block (AREA Of

mJDY Chapg:r un 38
Jb; WuJe PaMage pm;jM (Gandq Zqnc;l .. .. 39

The: timnitag; Bay falll! and ltv; Ayalon Zone; 39

2.3.- AVALONIAN EVENTS A."ID urnOLOOICAL CORRB..ATIONS IN THE

SOUTHERN NEWfOUNDLAND APPALACHIANS 40

CHAPTERm

THE CINQ.CERF GNEISS (SW Hermitage Fluure)............••..•..... 41

3.1.- INTRODUCTION.. . 42

3.2.- LOCATION. LOGISTICS AND OUTCROP 44

3.3.- PREVIOUS WORK._... .. .45
3.4.- GEOLOGICAL SETTING... . 46

Evidence for the Precambrian age of the Cinq-Cerf gneiss .48

3.5.- PROBLEMS AND OBJECTIVES.. . .49

3.6.- UTHOLOGICAL UNITS. FIELD RELATIONSHIPS AND ABSOLlIffi U-Pb

AGES.. . _ 50

3.6.1.· The composite Cinq-Cerf gneiss: ~finition . . 5 I

The Sandbank Point-East Diver Head section .. .._ 52

The Cinq-Cerf Bay and 1l1n:e Islands sections.. . 54

U-Pb geochronology.. . .. _.55

3.6.2.- The 584 Ma Sandbank granodiorite. . 56

U-Pb geochronology..... .. 57

3.6.3.-1lle 557 Ma Sandbank Point rnc:tagabbro... ...57

Field relationships ... ...59

V-Pb geochronology.... ...60

3.6.4.· The Silurian Western Head granite... . 61

U-Pb geochronology..... . ...63

3.6.5.- Lale dykes.. . 64

Felsic granitic dykes. . _.65

Grey-intennediate dykes.... . 65

Green-mafic dykes .. . 65

vm



Amphibole-plagioclase porpbyritic dykes .. . 66

3.7.- STRUCTURAL EVOLUTION 67

3.7.1.-01 deformaliooalevents(~-431Ma) 61

3.7.2.- Silurian 02 deformation 12

D2a. high temperature solidus-subsolidus defonnation 13

D2b.low-grade retrograde deformation .. ..14

3.1.3.- Discussion and conclusions... . 75

3.8.- GEOCHFMISffi.Y OF TIlE 551 Ma SANDBANK POII'IT METAGABBRO'

METADIORITE... . 18

3.8.1.- Geochemisuy.. . 78

3.8.2.- Discussion: geochemical signatures. leCtonic environment and petrogenetic

processes... . . .....79

3.9.- GEOLOGICAL EVOUJI1QN OF THE CINQ-CERF GNEISS AND THE LAlE

PRECAMBRIAN BASEMENT OF THE SOUTHWEST HERMITAGE FLEXURE....82

CHAPTER IV

THE MARGAREE ORTHOGNEISS (Port·lux-8ISqU6 complex. SW

Newfoundland Appalachians) ........•...••••••..•••••.•••..........•.•..•.•.• 86

4.1.- INTRODUCTION... ...86

4.2.- LOCATION. ACCESS AND LOGISTICS... . 88

4.3.- THE MARGAREE ORTHOGNEISS: DEFINT1l0N.. . 89

4.4.- PREV10US WORK... . 90

4.5.- GEOLOGICAL SEITING... . 91

4.5.1.- The Cape Ray Igneous Complex and the Windsor Point Group (l..aurentian

side).. . 92
4.5.2.- The Cape Ray Fault Zone... . 93

4.5.3.-lbe Port-aux·Basques gneiss of Brown (1971). Gondwanan side 93

Th; Ornnd Bay Complex (GBCl .. . 94

Thtt Pon-Dux.BMan;:; Compl;x (PoBQ .. .....•..94

The HDrbo"r Ie Cot! GmllnfHlCGl.. .. 9 5

IX



4.6.- MARGAREE ORTHOGNEISS, UfHOLOOICAL UNITS; description. internal

field relationships and age.. . 96

4.6.1.· Hornblende·bearing tooaJitic orthogneiss... . 97

Age (U-Pb); . . .........................•...................98

4.6.2.- Granitic gneiss... . 99

Age (U-Pb);.. . 99

4.6.3.· Amphibolite.. . 101

Age{U·Pb);. . 101

4.6.4.- Other lithologies.. . 103

Uhramafic rocks. . . I03

Banded gneiss . 104

~Migmatitic"gneiss.. . 10S

4.7.- THE COUNTRY ROCK PORT-AUX-BASQUES GNEISS AND TIlE LATE

lI"ITRUSrvE ROCKS: GENERAL DESCRIPTION, FIE...D RELATIONSHIPS AND

AGE.. .. 106

4.7.1.- Port·aux·Basques gneiss (paragneiss) 106

A~.. . 108

4.7.2.- The Port-aux-Basques granite (PaS granite)... . 108

4.7.3.- Late intrusive rocks; granitic and pegmatitic dykes 110

Late syn·DJ granitic dykes:... . 110

Age (U-Pb).. . 110

Pegrnatites.. . 111

Aplitic and granitic dykes (post-D3) . 112

PosHectonk mafic dyke...... . . 112

4.8.· STRUCTIJRAL EVOLlfIlON OF TIlE MARGAREE ORTHOONEISS AND TIlE

SURROUNDING PORT-AUX-BASQUES GNEiSS.... . 113

4.8.1.- Phases of defonnation: dertnition and characteristics... . 113

DI-D2deformation.. . 113

03 ductile deformation.. . 11 S

Late DJ·D4 brittle-ductile deformation.. . 116

4.8.2.- Microstructure . 117

472 granitic gneiss.. .. 117

474 gt1lDOdioritic orthogneiss .. ( 18

Amphloolite.. . I 19

x



Banded gneiss.. . 120

Port-aux-Basques gneiss (paragneiss) 121

D4 bci~uetile microstructures post-OJ uJtnmylonites 122

4.8.3.- Discussion: Timing and conditions of deformation 123

4.8.4.- Conclusions.. . 123

4.9.·GEOCHEMlSTRY OF THE MARGAREE ORTHOGNEISS 126

4.9.1.- Geochemical signatures .. . 126

Ultramafic rocks... . 126

Ortboamphibolites... . 127

474-472 Ma granodioritic and granitic gneisses 127

4.9.2.- Teclonic signalures:. . 129

Uhramafic rocks. a potential cumulate... . 129

Amphibolites... . . 129

Granodiorilic and granitic gneisses 130

4.9.3.- Discussion: Petrogenetic processes and teclonic signatures 130

4.10.- INTERPRETATION.. . 132

4.10.1.- The Margaree orthogneiss: its relationships with the Early Ordovician

Peoobscottian e...enlS and the Arenig-Early Uanvirn back-arc extension along the

peri-Gondwanan margin of the Newfoundland AppallChians I34

CHAPTER V

THE IBERIAN MASSIF: geological setting and general objectives••••. 137

5.1.- lNTRODUcrION... . 137

5.2.- LffiIOTECfONIC ZONES OF THE IBERIAN MASSIF: general o...erview 138

5.2.1.- The South Portuguese Zone (SP'Z) and lbe Pulo do Lobo Zone (PlZ}.. 139

5.2.2.- The Galicia Tras-os-Monles Zone (GTMZ)... .. 140

The Schistose Domain.. .. J40

The Domain of the Complexes.. . . t 41

5.2.3.- The Ossa-Morena-Zone (OMZ). . . 144

5.2.4.- The Central Iberian (C1Z), Wesl Asturian-Leonese CWALZ) and Cantabrian

(CZ) zones.. .. .. 147

The Centrallberian ZOne (CIZ) .. .. ......... 149

Xl



The West Asturian-Leonese Zone (WALZ).... . 152

The Cantabrian Zone (CZ).. . 153

5.3.- TIlE CENTRAL mERlAN ZONE. A CRITICAL AREA OF THE mERIAN

MASSIF: GENERAL OBJECTIVES... . 154

CHAPTER VI

GEOLOGICAL EVOLUTION OF
GUADARRAMA (Central Iberian
6.1.-INTRODUCTION....

6.2.~ LOCATION. LOGISTICS ..

6.3.- PREVIOUS WORK.....

6.4.-GEOLOGICAL SE1TING ...

THE EASTERN SIERRA DE
Zone)••.•••••••••••••.•••..••.••••••••••• I58

..158

. 160

. 161

..163

6.4.1.- Macrostructure of the Somosierra sector of the Sierra de Guadarrama I66

6.4.2.- Metamorphic zonation . . 168

6.5.- LITHOLOGICAL UNITS OF THE SOMOSIERRA SECTOR OF THE SIERRA DE

GUADARRAMA . . 169

6.5.I.·Eastern GuadaJTama Domain . . 169

The Annorican Quartzite .. . I 70

The ConslaEue Formation and the problem of the Sardic unconformity.. . .170

The "pre-Ordovician~rock sequence (EI Cardoso gneiss).. ..... 171

6.5.2.- The Berzosa-Riaza shear zone. upper levels of the Western Guadarrama

Domain ... .. 172

Metasedimentary rocks.. . . 172

Foliated megacrystic granites (augen-gneisses) 173

Foliated Ieucogranites (S-type granites).. . 174

Pegmatites .. . 175

6.5.3.- The Western Guadarrama Domain (Buitrago-Manjir6n area)..•........ 175

Gamet micaschists with black quartzites (Madarquillos shear zone) 176

Muscovite-sillimanite metapsammites.. . 177

Migmatitic paragneisses... .. 177

Calc-silicates and ampbibolites . . I 7 9

Marbles 180

El Villar biotite-bearing migmatite (non-anatectic migmatite).. . 180

Grnnitic augen gneisses I foliated megacrystic granites . 181

xn



Gneissic leucogranites.. . .. . I 82

6.5.4.- La Cabrera granite (Lale Variscan pluton) and lale inlrUsions 183

Other late intrusions.... . 184

6.6.-PRE-VARISCAN EVOLlJIlON: U-Pb evidence for a major Early Ordovician felsic

magmatic event in !he Siermde Guadarrama.. . . 185

6.6.1.- lnlroduction . 185

6.6.2.- V-Pb geochronological results . 186

Cardoso gneiss.. . I 86

Riaza gneiss.... . 187

Buiu-ago gneiss.. . 187

SaroD!!'! BU-I' foHated megagntjc granjte.. . 188

Sample 81 1_2' fgljalrd apljtic vein.. . 188

Sample PiB-I' fglja!ed leycogranjte.. . 188

Lozoya gneiss (LO-I): Augen gneiss I granitic onhogneiss .. . 189

6.6.3.- Discussion: Geological significance of the new U-Pb ages..... . 190

6.7.-YARISCAN TECTONOTHERMAL EVOLUTION OF THE SOMOSIERRA

SECTOR OF THE SIERRA DE GUADARRAMA: Structural, metamorphic and V-Pb

geochronological conSlraints... . 191

6.7.1.~ Inlroduction.. . 191

6.7.2.-SlrUcturai evolution... . 19 I

01 deformation... . 192

Eastern GuadaITjlIDa Domajn.. . . 193

Western Gyadarrnrna Porm!in .. . 194

D2 deformation.. . 196

El Cardoso antjfgnD and the 02 crenplarjon band . 196

The 6erzosa-Rjaz.a shear zon!'! .. . 197

The ManjjrPn amjfoDD Western Gyadarrama [)omajn .. .•....... 198

The Madarpllj!!Q<i shear zone Western Guadarrama Domain.. . .....•.. 200

Buitrago area Western Domain.. . 20 I

Late deformations (03).. . 203

Structural evolution. discussion.. . 204

6.7.3.- Microfabric development and metamorphism.. . 206

Chlorite, biOlite and gamet zones...... . 206

Staurolile zone.... . 207

xm



Sillimanite (kyanite) zone 209

Sillimanite + muscovite zone . 210

Sillimanite + K·feldspar zone 213

6.7.4.- U-Pb geochronology to constrain the timing of Variscan metamorphism and

defonnation . . 215

EAS1CRN GUADARRAMA OOMAIN (Cardoso antifonn)

Sample HH' Sl-Gn-<Odl mjcaschisc 2 16

Samp'e Pj.!·SI-Gn micaschjsc 216

Sample CA. I' plagjgd",_rich pan-amphjboljte 2 17

11IE BERZDSA-RlAZA SHEAR WNE

Sample 12_9' KY;Wixcmum!jte-gamct-sjlljmanj'e mjcaschjSIS 218

THE WESTERN GUADARRAMA DOMAIN (SW+Ms and SilI+Kfs zones)

Sample M26-2 (Sjll±MS zone)' Folded mjgmatixc Manjjmn antifo(DJ 218

Sample BU.2 fSj!!±Kf§ zgne)' 482 Ma apHlic Yejn Blljl@gognejss 219

Sample PiB.1 (Sjll±Kfs zone) 482 Ma foljated leucogranjte Byjtrago

~ .. . 220

Sample 10-1 (SjlI±KfS zgnr;)' Cgrdjedte.bearing 477 Ma augen-gneiss

O.ozqvuela glKjjssl... . 220

Braojos dy" fSjII±Kfs z.onc)' ampbjholj'c; 221

THE POST·TECfONIC LA CABRERA GRANITE 222

6.7.5.- Timing and character of the Variscan teetOOOlbenna.l events in the

Somosierra area of the Sierra de Guadamuna: conclusions and discusstoo ..... 223

6.8.-PALEOZOIC lCCfONOTIIERMAL EVOU]nON OF THE SOMOSlERRA

SECfOR OF THE S[ERRA DE GUADARRAMA: DlSCUSSION 227

6.8.1.· Arenig felsic magmatism in the Siena de Guadarrama and the narun: of the

~Sardic~ events in the Central. £herian Zooe: an Arenig continental magmatic arc

................................ 227

Coeval events in the Iberian Massif and speculative correlatives along the

Southern Variscides.. . 229

6.8.2.- Timing of Variscan tectonothermal events in the Sierra de Guadamuna:

tectonic significance for the evolution of the Central Iberian Zone and the Iberian

Massif... . 230

Timing of metamorpbism and plutonism. . 230

Timing of defonnalion: Early-Mid Carboniferous syn-eollisional extensioo.232

XIV



CHAPTER VII

DISCUSSION AND TECTONIC IMPLICATIONS: PRECAMBRIAN AND
PALEOZOIC EVOLUTION OF PERI-GONDWANA FROM A COMBINED

APPALACHIAN-VARISCAN PERSPECTIVE......••.••••.•........•.•... 234

7. I.-TECTONOTHERMAL EVENTS IN THE HERMITAGE FLEXURE (SOtITHERN

NEWFOUNDLAND APPALACHlANS): THE EVOLUTION OF WESTERNMOST

PERI-GQNDWANA .... ..235

7.2.- THE EARLY-MID ORDOVICIAN BREAK-UP OF PERl-GONDWANA: IS

THERE A CONNEcnON BETWEEN THE SARDIC EVENT IN THE SOtITHERN

VARISCIDES AND THE PENOBSCOTIlAN EVENT IN THE NORTHERN

APPALACHIANS?. ..240

7.2.1.- The subduction-related Jurassic break-up of Southern Gondwana during the

opening of the South Atlantic: An analog for the Early Ordovician events in the

Southern Variscides and Northern Appalachians... . .... 242

7.3.- FINAL REMARKS.. . ..243

7.4.- SUMMARY.. . 244

REFERENCES CITED •••••.•••••.........•...........••.•••••••..•..•.•.•••• 250

APPENDIX
ANALYTICAL TECHNIQUES •••.•••........•••..•.•.............•••....... 288

A.l.-U-Pb PROCEDURE . 288

A. I. 1.- Sample preparation ... . 288

A.l.2.· Sample cleaning. weighing. spiking. dissolution and U-Pb separation.289

A.I.3.· U-Pb isotopic analysis and age determination 290

A2.-MAJORANDTRACE ELEMENT ANALYSIS.. . .. 294

A.2.1.- X-ray fluorescence (XRF) analysis... . 295

A.2.2.- Inductively coupled plasma mass spectrometry (ICP-MS) trace element

analysis... . 296



LIST OF TABLES

Volume I: Text

APPENDIX

TABLE A.I.-Mineral dissolution procedure .. . 290

TABLE A.2.-Schcmatic U and Pb ion exchange chemical extraction procedure 293

TABLE A.3.- Resuhs of the ICP-MS Naz02 sinter duplicate analysis of samples G-MA-B

and G-MA-C (Margaree Complex) .....299

Volume II: Tables, Maps and Figures

TABLE 3.1.- V-Pb DATA CINQ-CERF GNEISS..... . 20

TABLE 3.2.- MAJOR AND TRACE ELEMENT ANALYSES OF THE SANDBANK

METAGABBRO I DIORITE.. . 39

TABLE 3.3.- Comparative table of post.675 Ma. Late Precambrian-Early Cambrian V-Ph

absolute ages from the Cinq-Ccrf gneiss and the adjacent Roo suite and the Whittle

Hill sandstone.. . .... 43

TABLE 4.1.- V-Ph DATA, MARGAREE ORTHOGNEISS... . .51

TABLE 4.2.- MAJOR AND TRACE ELEMENT ANALYSES, MARGAREE

ORTHOGNEISS.. . ..... 65

TABLE 6.1.· V-Ph DATA. PRE-VARISCAN PROTOLITH AGES, SIERRA DE

GUADARRAMA.. . . 94

TABLE 6.2.- V-Pb OATA. VARISCAN AGES, SIERRA DE GUADARRAMA.., .129

XVI



LIST OF MAPS

Volume n: Table, Maps and Figures

CHAPTER III.- THE CINQ-CERF GNEISS (SW Hermitage Aexure): The make up of a

polycicUc Avalonian gneissic complex.

Insened between pages·

MAP. 3.1.- Sandbank Point - East Diver Head section 45-46

MAP. 3.2.·Three Islands . .45-46

MAP. 3.3.-Cinq-Cerf Bay..

xvn

..............................45·46



LIST OF FIGURES:

Volume I: Text

APPENDIX

Fig.A.I..variatioD of ~ measurements of the 206Pb1204Pb and 201Pbl204Pb is<xopic
ratios of the NBS 981 common Pb slalldard with respect to the reponed ratios (TOOt.
1993). and calculated values of the Ph isotopic fractionation during mass spectrometry

................ 291

Fig.A.2.- Comparative chan of the Y XRF versus ICP·MS analyses 297

Fig.A.3.- Comparative chart of the XRF and ICP·MS Zr and Nb analyses 297

Volume n: Tables, Maps and Figures

CHAPTER I: INTRODUCTION.

Fig.I.I.- (A) Paleogeographic reconsuuction of the Nonh At.lamic at MI magnetic anomaly
(131 ~ Srivastava and Tapscott. 1986) showing the n:lative position of the
Appalachian-Caledonian orogen. the Variscan belt and the areas of study. (B)
Distribution of the circum-North Atlantic Avalonian·Monian-Cadomian terranes and
relicts of pre-eadomian I Avalonian basement. 1

Fig. 1.2.- Map of the Appalachian-CaJedonian orogen 2

Fig.I.3.- Distribution of the geological elements of the Variscan Belt 3

Fig. 1.4.- Early Paleozoic faunal domainsoftbe European Variscides and location of dated
ophiolitic units... . .... 3

Fig.1.5.- Early Cambrian reconstruction of Gondawana showing the relative positions of
Iberia and Avalonia (Courjault-Rade: et aI.• 1992) 4

Fig.1.6.- Paleogeographic reconstructions of Avalonia (A. Cadomian arc). Baltica (B),
Gondwana (G) and Laurentia (L) in the Late Precambrian (Torsvik et al.. 1996) and the
Ordovician (van der Pluijm et aI., 199:5)... .. 4

CHAPTER U: THE NEWFOUNDLAND APPALACHIANS.

Fig.2.1.- Subdivisions of the peri-Laun:ntian zones of the NewfoundJand Appalachians
(modified after Williams et aI., 1988) :5

xvm



Fig.2.2.- Subdivisions of the peri-Gondwanan lithotectonic zones of the Newfoundland
Appalachians (modified after Williams et al., 1988) 6

Fig.2.3.- Geological map of the Hermitage Aexure (showing the field areas). . 7

Fig.2.4.• Generalized geological map of southwestern Newfoundland (showing the field
areas)... . 8

CHAPTER m.- THE CINQ-CERF GNEISS (SW Hermitage Aexure)

Fig.3.!.- Dislribution of Avalonian terranes (patterned) in the Northern Appalachians
(modified after Barr and While, 1996). showing the position of the Cinq-Cerf gneiss
and the Late Precambrian basement of the Hennilage Aexure and the Late Precambrian
inliers in the ExploilS subzone 9

Fig.3.2.- Geological map of the western extent of the Late Precambrian basement block of
the Hermitage Flexure.... . 10

Fig.3.3.· Map of the main geological units in the Sandbank Point - East Diver Head and
Three Islands sections... .. ...... 11

Fig.3.4.- Outcrop plan view of the Cinq-Cerf gneiss. banded gneiss, showing the field
relationships between the older granitic orthogneisses (V-Pb sample 94-PV-12) and
mafic dykes, the younger mylonitic granite (V-Pb sample 94-PV-ll) and the late mafic
dykes. (B) ftOlder" granitic orthogneiss intrusive into metasedimentary banded gneiss
overprinted by 01 and cross-cut by "young" mylonitic granite with a D2 mylonitic
fabric.. . 12

Fig.3.5.- Composite Cinq-Cerf gneiss, cross-eutting relationships in the outcrop of figure
3.4 (V-Ph sampling site). field photographs A,B,C and D. . 13

Fig.3.6.- Sandbank Point· East Diver Head section, amphibolitic banded gneiss (Three
field photographs).. .... 14

Fig.3.7.- Cinq-Cerf gneiss, disharmonic folding of granite injections (Western Head
granite) and the country rock paragneiss suggesting viscous non-linear rl1e<llogical
behaviour due to {hennal soflening and syn-magmatic deformation 15

Fig.3.8.- Banded quartzo-feldspathic gneiss. dome and basin interference paner (Dl?)
overprinted by F2b folds... . 15

Fig.3.9.- Veined gneiss resembling an anatectic migmatite... ... 16

Fig.3.10.- Field relationships between the tourmaline-bearing veined paragneiss, weakly
defonned Sandbank granodiorite (V-Pb sample 94-PV·6) with mafic enclaves, an
intrusive aplitic vein and the syn-veining granite (undated).... ...... 16

Fig.3.ll.- Field relationships between the tourmaline-bearing paragneiss, the Sandbank
granodiorite (V-Pb sample 94-PV-6). the aplitic veins and the Western Head granite

XIX



(grnniteJgranodiorilC with mafic cnclaves). location as in Fig. 3.10. Field pbOlographs
A.B.C and D.. . I 7

Fig.3.12.~ Amphibole-rich. composite gnciss. Cinq-Cerf gneiss unit at Cinq-Cerf Bay.. 18

Fig.3.13.- Field appearance of U-Pb sample 94-PV-12. granitic orthogneiss part of the
banded gneiss in fig. 3.4 19

Fig.3.14.- U-Pb concordia diagram for the old granitic orthogneiss (V-Ph sample 94-PV-
12); Cinq-cerf gneiss. Sandbank Point - East Diver Head section..... . ..... 19

Fig.3.15.· U-Pb concordia diagram for the weakly foliated Sandbank granodiorite (U-Ph
sample 94-PV-6). intrusive into the tounnaline-bearing paragneiss (Cinq-Cerf gneiss).

......................................... 21

Fig.3.16.- Sandbank Point metagabbro: Mafic metagabbro intruded by felsic
metagabbro/diorite with mafic enclaves showing sharp to diffuse contacts 22

Fig.3.17.- Sandbank Point metagabbro (Three [slands). Left: Late mafic dykes cross­
cutting felsic folded dykes intrusive into mafic metagabbro. Right: Old granitoid !
intennediate dykes intrusive into meragabbro... ..22

Fig.3.18.- U-Ph concordia diagram for the mafic mctagabbro-diorilc at Sandbank. Point
(U-Pb sample 94-PV-4)..... . 23

Fig.3.19.- Westem Head granite! granodiorite (undated) with mafic and g~eissic enclaves
cross--eut by late mafic dykes (Sandbank Point - East Diver Head secnon) 24

Fig. 3.20.· Mingling of coeval (?) mafic and felsic magmas and high tcmpernture
dcfonnation. Westem Head granite at Sandbank Point. . 24

Fig.3.21.- U-Ph concordia diagrnm for the mylonitic facies of the Westcrn Head granite.
Granitic dyke intrusive into the Cinq-Cerf gneiss. Sandbank Point - East Diver Head.

........ 25

Fig. 3.22.- Microfabric in the 675 Ma onhogneiss (Two microphotographs) 26

Fig.3.23.- ToUt1Ilaline-bearing vcined gneiss. cross country rock to the 584 Ma
granodiorite (Two microphotographs) 27

Fig. 3.24.- Microtexture orthe 584 Sandbank granodiorite (Two microphotographs) 28

Fig.3.25.- Microtexture of the 557 Ma Sandbank Point metagabbro! diorite (Two
microphotographs) 29

Fig.3.26.- 547 Ma granitoid dyke. Three Islands. unpublished V·Ph samplc of B.H.
O'Brien and Dunning. Thin section courtesy of B.H. O'Brien (Two
m ic rophotograp bs). .. . 30

Fig.3.27.- Cinq-Cerf gneiss. paragneiss. Cinq-Cerf Bay section (Two field photographs).
................................................................................................... 31

xx



Fig.3.28.- Field sketches of high temperature D2a deformational features. Sandbank Point.
Western Head granite . 32

Fig.3.29.· Top: H.igb temperarute solidus folding (F2a) of lbc Western Head gnutitc at

Three Islands. Bottom: D2b low grade s.-C and C (shear bands) suuctuJ'eS in lhc:
Western Head granite indicating an apparent dcxual sbearsense.... . ..... 32

Fig.3.30.- Equal area lower hcmispbcrc: sterc:ond projections of lhc: S2b mylonitic fabric.
U lineation. S 1 gneissosity (compositional banding) and lhc: plunge of the F2 folds
{both F2a and F2b)... . 33

Fig.3.31.- Sandbank Point metagabbro: Discrete greenschist facies rc:trogradc shear zone
(10 em thick) with top to the left (i.e. thrusting) shear sense 34

Fig.3.32.- D2 rc:trograde grlCenschist facies deformation of the Sandbank Point mafic
metagabbro and felsic mctadiorile around late shear bands and fracture sets overprinted
by a later set of joints.... . 34

Fig.3.33.· S2b mylonitic fabric in the 431.5±1 Ma mylonitic granite dyke, Western Head
granite (Two microphotographs)... . 35

Fig.3.34.- Late mafic prophyritic dyke (post431 Ma) showing grc:enschist facies overprint
of the primary magmatic fabric (Microphotograph) 36

Fig.3.35.- TUlle and field consuaints on the teetonothcnnal evolution and timing of
deformation in the Cinq-Cerf gneiss 37

Fig·i~~t~~~~~~~):~~~~~S=na:;o
vs Si02 (Middkmost. 1975): (D) Na20 vs Si02 (MiddJernost. 1975): (E) AFM lICrnary
diagram (Miyashiro. 1978)... ..... 38

Fig.J.37.- 551 Ma Sandbank: metagabbro. Top: chondrite-noonalizcd multielement pattern.
Bottom: MORB (Pearce. 1983) -~ mJlticlemenl paLtcm fOf" the Sandbank
Point and Three Islands samples and modem day basalts (Pearce. 1983) .40

Fig.3.38.- Bivariate series discrimination diagrams: (A) ZrITi vs Nb'Y diagram
(Winchester and Aoyd 1977. modified by Pearce. 1996) ; (B) V vs TI diagram
(Shervais, 1982).. . .4 1

Fig.3.39.- Ternary tectonic discrimination diagrams for lhc: 557 Ma Sandbank
mctagabbm'diorillC: (A) LalID-Y/L5-Nb18 diagram (Cabanis and Lcc:olle. 1989); (B)
Zr/4-2Nb-Y diagram (Meehesdc, 1986); (C) Zr-TillOQ-Srn diagram (Pearce and Cann.
1973): (0) Zr-TilI0D-3Y diagram (pearce and Cann, 1973); (E) lOMnQ-Ti02-l0P205
diagram (Mullen, 1983); (F) Th-ZrIl17-NblI6 diagram (modified from Wood. 1980).
...................................................................................................42

Fig.3.40.- Model of the Late-Pl'ecambrian·Early Cambrian bascment-cover rc:lationship
between the Cinq·Cerf gneiss and the Whittle Hill sandstone .43

XXI



Fig.3.41.- Late Pm=ambrian 10 l....ate Paleozoic gec>logica1 evolution of the AvaJorual1
basement of the La Poile Bay - Coaleau Bay area of the Hermitage Aexure (Central
mobile bell. SW Newfoundland AppaJachians) 44

CHAPTER IV: THE MARGAREE ORTIIOONElSS (Port-aw:-Basques gneissk
complex. SW Newfoundland Appalachians).

Fig.4.1.- Geological map oflhe Ilea between Port-aux-Basques and Garia Bay .45

FigA.2.- Map of magnetic anomalies for the Port-aux-Basques area (Kilfoil. 1993),
including tbe lrace or the Margaree orthognelS.$ 46

FigA3.- Geological map of the MargarcelJsle-aux-Morts portion nf the Marg:aree
orthogneiss. . . 47

FigA.4.- Lithological map or the Fox Roost section of the Margaree orthogneiss including
U-Pb sampling locations... . 48

FigA.5.- Macro- and mesoscopic relationships between the amphibotite-rich ~tonalitic"

orthogneiss and the granitic gneiss of the Margaree orthogneiss. Fox Roost section (A,
B. C and 0, field photographs)... . 49

Fig.4.6.- Margaree orthogneiss. homblende-bearing granodioritic gneiss (U-Pb sample 93-
PY-3)... .. 50

Fig.4.7.- U-Pb concordia diagram for the granodioritic gneiss (U-Pb sample 93-PV-3).
.......................................... 50

FigA.8.- Granitic gllCiss (Fox Roost. U-Pb sample 9J..PV-5) and folded amphibolite
enclave.. . . 52

Fig.4.9.- Partially mingled amph.ibotite dyke intrusive into granitic gneiss (Fox: ROOSt)..S2

Fig.4.10.- U-Pb concordia diagram for sample 93-PY-S, granitic gneiss (Fox ROOSt)...S2

Fig.4.11.- Geological map of the lower part of the Grandys Brook section showing the
location of the U-Pb sample 94-PY-2 (granitic gneiss) and the intrusive contact between
the Margaree orthogneiss (M.D.) and the counuy rock PaB gneiss S3

Fig.4.12.- U-Pb concordia diagram for the granitic gneiss al Grandys Brook. (U-Pb sample
94-PY-2} S3

Fig.4.13.- Amphibotite dykes intrusive into 465 Ma granitic gneiss 53

FigA.14.- Fox Roost -Margaree. amphibolite (U-Pb sample 93-PY-6) intrusive inco
hornblende-bearing felsic granoclioritic orthogneiss S4

Fig.4.1S.- U-Pb concordia diagram for titanite from sample 93-PY-6 S4

FigA.16.- Titanite (410 Ma U·Pb cooling I recrystalliz.ation age) aligned with green
hornblende and biotite deflning the fabric in U~Pb sample 93-PY-6 54

xxn



Fig.4.L7.- Port-aux.-Basques gneiss - Margaree orthogneiss contact, quarry east of lsle-
aux-Morts.... . 55

Fig.4.18.- Grandys Brook. intrusive contact between Port-aux-Basques gneiss and granitic
Margaree orthogneiss (undated) 55

Fig.4.19.- Late syn-D3 granitic dyke intrusive into "migmatitic~ gneiss (Fox Roost. V-Pb
sample 92-GO-ll ) 56

Fig.4.20.- Detail of the intrusive contact and the syn-magmatic fabric in the granitic dyke.
.. .....56

Fig.4.21.- V-Pb concordia diagram for the late-syn 03 granitic dyke (V-Pb sample 92-
GO-II).. . 56

Fig.4.22.- Cross view. Margaree orthogneiss. Fox Roost: F2-F3 interference folding
pattern cross-cut by late pegmatites...... . .51

Fig.4.23.- Plan view. F3 overprint of a D2 boudin in the Port-aux-Basques paragneiss.
contael between the Port-aux-Basques gneiss and the Margaree orthogneiss at
Margaree... . ...57

Fig.4.24.- Plan view. closure of an F2 fold overprinted by F3 folding in migmatitic Port-
aux-Basques gneiss.... . 51

Fig.4.25.- Plan view. amphibolite in F3 ductile shear zone (Margarce orthogneiss.
Margaree - Fox Roost).. . ..57

Fig.4.26.- Equal area stereonets for the gneissosity. mineral lineation (90% amphibole) and
plunge ofF3 folds in the Margaree orthogneiss and the surrounding Pon-aux-Basques
gneiss.... . 58

Fig.4.21.- 03 ductile shear zone in the Port-aux-Basques gneiss 59

Fig.4.2&.- 03 deformation. detail of back rotated segments of a competent quartzo-
feldspathic layer in the Pon-aux-basques gneiss .59

Fig.4.29.- Margaree orthogneiss. microtexture of the 412 Magranitic gneiss.. . 60

Fig.4.30.- Margaree orthogneiss. granoblastic texture in amphibolite 60

Fig.4.31.- Margarce orthogneiss. D3 microstructural features in weakly recrystallized
banded gneiss 61

Fig.4.32.- Margaree orthogneiss. microtexture of late-I post-D3 mylonites 62

Fig.4.33.- Absolute time constraints for deformation of the Margarce orthogneiss and the
associated Port-aux-Basques gneiss 63

Fig.4.34.- P-T-t-d path for the Margaree orthogneiss and stable mineral assemblages....63

xxm



Fig.4.35.- Margaree orthogneiss: mafic and ultramafic rocks: (A) Alkalic Index ys. A120:3
classification (Middlernost., 1975); (B) K20 vs. Si02 classification (Middlemost.,
1975); (C) Na20 vs. Si02 (Middlemost. 1975)... . 64

Fig.4.36.* Margaree orthogneiss: mafic and ultramafic rocks. (A) REE multielement
patterns. (B) MORB (pearce, 1983) nonnalizcd multielement patterns.... . 64

Fig.4.37.* Margaree orrthogneiss. tooalitic and granitic onhogneiss. (A) REE element
multielement patterns. (B) Primitive mantle (Sun, 1980) nonnalized multielement
pattern.... . 66

FigA.38.- MORB (Pearce, (983) * nonnaIized multielemcnr patterns from modem tectonic
environments (after Pearce, 1983) superposed to the amphibolites from the Margaree
orthogneiss.. . .. 66

FigA.39.- Tectonic discrimination diagrams for the amphibolites of the Margaree
onhogneiss: (A) Ti-Zr-Sr diagram (Pearce and Cann, 1973); (B) Ti vs. Zr diagram
(Pearce and Cann, 1973); (0 Ti-Zr-Y diagram (Pearce and Cann. (973); (0) Zr-Th-Nb
diagram (Wood. 1980 with modifications in Jenner, 19(6); (E) Ti02·MnQ.P205
diagram (Mullen. 1983); (F) Nb-Zr-Y diagram (Mecbesde. 1986) 67

FigAAO.* Tectonic discrimination diagrams for granitic rocks, Margaree tonalitic and
granitic onhogneisses. (Pearce et aI., 1984; Maniar and Piccoli. 1989) 68

FigAAI.- ORG (Ocean Ridge granite; Pearce, 1984) - normalized multielement diagram.
. 68

Fig.4,42.- Margaree onhogneiss, amphibolites: (A, B. C and D) log-log highly compatible
(Ni. Cr) vs. incompatible (La. Zr, Yb. Nb) diagrams. (E) MgO vs. Si02 diagram..69

FigA,43.· Crystal fractionation REE modelling.... . 69

Fig.4.44.- MORB (Pearce, 1983) - normalized multielement diagram for the Margaree
onhogneiss (ultramafic rocks excluded).. . 70

Fig.4.45.- Interpretative model for the generation of the mafic-felsic Margaree igneous
complex. Coeval magmatism along the peri-Gondwanan margin of the Newfoundland
Appalachians (Exploits subzone and Gander Zone)... . 7 I

Fig.4A6.• Hypothetical tectonic sening for the Margaree igneous complex 7 I

CHAPTER V: THE mERIAN MASSIF: GEOLOGICAL SElTING AND GENERAL
OBJECfIVES.

Fig.5.1.* Location of the Iberian Massif in the European Variscides and lithotectonic zones
of the Iberian Massif... .. 72

Fig.5.2.- Geological constraints on the timing of the Variscan orogeny in the Iberian
Massif... .. ..... 73

XXIV



Fig.5.3.- Lilhotectooic units of the Iberian Massif with the location of the geoiogjca.l
elements described in sections 5.2.1.10 5.2.3... . 74

Fig.5.4.- Compiled pre-Variscan stratigrapbic sequences of the CIZ. WALZand cz. ...75

Fig.5.5.- Domains of the Central Iberian Zone (CIZ) and location of the maiD outcrops of
pre-Variscanorthogneisscs. including tbc available pre-Variscan absolute ages (Ma) in
the CIZ and the CZ and the off-shore granulitic basement 76

Fig.5.6.- Distribution of sillimanite-bearing mewnorpbic complexes (yeUow) and
Barrovian metamorpttic sequences (~) in the ClZ. WAI.Z. and C2 (blue) after
Martinez (199Oa, b) and Martinez Catalan et: aI. (1990). location of tbc Archean
basement granulites off-shore the Cantabrian Sea (Guerrol et aI., 1989) and relative
relationships between deformation. metamorphism and plutonism in the CIZ (1ulivert
and Martinez, 1987)... . 77

CHAPTER VI: NEW INSIGHTS INTO TIlE PALEOZOIC EVOltrrION OF TIrE
EASTERN SlERRA DE GUADARRAMA (Central Iberian Zone).

Fig.6.1.- Map of the lithoteclonic zones of the Iberian Massif showing the distribution of
the OUo de Sapo pre-Variscan orthognei.sses and the location of the area of study .... 78

Fig.6.2.- Geological map of the Spanish Central System, including main macrosuuctures
of the Siena de Guadarrama. also shown in cross-section (Modified after Macaya et
aI., 1991) and the location of the previous pre-Variscan absolute age detenninations.

.............................79

Fig.6.3.- Main suuctuta.I elements and distribution of the metamorphic isograd.s of the
Somosierra area of the Siemt de Guadarrama... . .....80

Fig.6A.- Lilbological map of the Somosierra area of tbc Siemt de Guadarrama. ..••....8 I

Fig.6.5.- Paleozoic stratigraphic sequence of the Easlem Guadarrama Domain 82

Fig.6.6.- Lilbologica.l map of the Mootejo-Berzosa-Buitrago-Lozoya area 83

Fig.6.7.- Lithological changes along the Berzosa-Riaza shear zone: A) chlorilOid micaschist
at the lOp of the: shear zone; B) St-Gn micaschisl. basal part of the Eastern Domain; C)
Ky-Grt metapsammite at the base of tIE sbeac zone; D) Migmatitic gneiss allhe footWall
oflhe shear zone 84

Fig.6.8.- Metasedimentary rocks in lhe Manjiron antifonn. Sill+Ms zone 85

Fig.6.9.- Quartzo.feldspathic paragoeisses of the Western Guadarrama Domain. Buitrago
area (Sill+Kfs zone. western side oftbe Puentes Viejas dam) 86

Fig.6.JO.- Anatectic melts in the Buitrago area. Sill+Kfs zone... ...................87

Fig.6.11.· Analectic migmatiles of the Weslern Guadarrama Domain..... . 88

Fig.6.12.- Calc-silicate lithologies... . 89

xxv



Fig.6.13.• El Villar biotite-bearing migmatites., solidus migmatitC$., Wcstern Guadarrama
Domain... . ..90

Fig.6.14.- Augen gneisses and foliated mcgacrystic granitcs of the Wcstern Guadarrama
Domain 91

Fig.6.15.- Gneissic Ieucogranites of the Western Guadarnma Domain. Manjiron antiform
(Ms+Sill zone) ...92

Ftg.6.16.- U-Ph concordia diagram for the Cantoso gneiss and a weakly deformed hand
sample showing the volcaniclastic character of this nx:k..•.•...•.........................93

Fig.6.17.- U·Pb coocordia diagram for the Riaza gneiss and field appearance of the
strongly mylonitized facies.. . 95

Fig.6.18.· Builrngo gneiss. outcrop relationships at tbe U·Pb sampling site for samples
BU-I (foliated megacrystic granite) and BU-2 (foliated aplitic vein) 96

Fig.6.l9.· U·Pb concordia diagram for the foliated megacrystic granite facies of the
Buitrago gneiss, sample BU-l.... ..97

Fig.6.20.- U-Pb concordia diagram for sample BU-2. foliated aplitic vein intrusive info
BU-I. Buitrago gneiss... . .. 97

Fig.6.21.- U-Pb conconiia diagram for sample pm·l, gamet·bearing foliated.leucogranire
in lhe Buitrago gneiss, and field characrer of the dated sample 98

Ftg.6.22.- U-Pb coococdia diagram for the Lozoya gneiss. sample LO-I, and field aspect
oftbeda.ledsarnple.. . 99

Fig.6.23.- Location of the new protolith U-Pb ages for lhe pre-Variscan orthogneisses of
the Sierra de Guadarrama... . 100

Fig.6.24.- Schematic geological map and interprewive cross-section of the Berzosa-Riaza
shear zone, the CaIdoso antifonn, the Majalrayo syncline and the western flank of lhe
Galbe the SortIe antiform (After Hemaiz Huertael a1.. 1996) 101

Fig.6.25.- Geological map of the Buitrago-Montejo-Berzosa~ .. ..102

Fig.6.26.- MiCfOleXtweS along the melamOrphic zoncs of the lower levels of the Eastern
Guadarrama domain and the upper levels of the Western domain (BRSZ): A) S2
crenulation of S I in a chloritoid black sla1e of the Bt zone; B) Partial 02 transposition
ofSl and lare-D2 growth of staurolite. St zone; C) Relict inter 01-02 winged kyanite
porphyroblast showing 02 growth of fibrolite and biotire in the pressure shadows.

....... 103

Fig.6.27.- Equal area lower hemisphere stereooet projections of the main foliation f
gneissosity, mineral and stretching lineation (L min) and F2 fold axis north of the area
shown in detail in fig.6.2S..... . . 104

XXV!



Fig.6.28.- Equal area lower hemisphere stereonet projections of the main foliations (Sp)
and gneissosity (Gn), mineral lineation (Lmin). F2 fold axis, C planes (extensional
shear bands) and best fit plane and theoretical fold axis for the Berzosa-Riaza shear
zone (BRS~ Sill (Ky) zone) and the Manjir6n antiform.... . 105

Fig.6.29.- Defonnation in the southern part of the Manjiron antiform 106

Fig.6.30.- Microtextures along the metamorphic zones of the Western Guadarrama Domain
in the area of study: A) D2 microfolding in a sillimanite+muscovite micaschist; B) S-C
microstructure with stable biotite+sillimanite+muscovite; C) stable SiII+Kfs rnicrofabric
with elongated and flattened garnet porphyroblasts.. . 107

Fig.6.31.- F2 folds and 01-02 relationships in the Madarquillos shear zone 108

Fig.6.32.- 02 microstructures in Sill+Ms rnicaschists 109

Fig.6.33.- Relationships between D2 boudinaged and F2 folding of a competent layer
during top down to the SE shearing..... . 110

Fig.6.34.- Stereonet projections of the structur'al data from the Madarquillos shear zone and
the Buitrago area..... . 111

Fig.6.3S.- Shear bands (C planes) in the MadarquiUos shear zone indicating a shear sense
of top down to the SE... . 112

Fig.6.36.· L-fabric band: L-fabric and associated quartz-rods... . .... 112

Fig.6.37.- Kinematic indicators with opposite top to the NW 02 shear sense in the western
margin of the Madarquillos shear zone.. . I L3

Fig.6.38.- 02 high temperarure deformation band in the Buitrago area, Puenles Viejas dam
(Sil1+Kfs zone)... . 114

Fig.6.39.- Relationship between F2 fold axis and mineral (stretching) lineation inside the
lenses of quartzo-fe1dspathic gneiss of the high temperature defonnation band..... 115

Fig.6AO.- Top to the SE sbear bands in the quamo-feldspathic gneisses of the Western
Guadarrama domain .. .•....... I l6

Fig.6.41.- Late 02 pegmatitic patches in the Buitrago area. Sill+Kfs zone . 117

Fig.6.42.- 03 structural features, Berzosa-Riaza shear zone... . 1l8

Fig.6.43.- Proposed alternative structural cross-section from Berzosa to the Rio Sequillo
dam of the BRSZ and the Western Guadamuna Domain (trace of the cross-section in
Fig.6.25) and previously interpretation of Azoret aI (1991a).. . ... 119

Fig.6.44.- Distnbution of mineral isograds and mineral assemblages in metapcl.ites in the
areaofsrudy 120

Fig.6.4S.- Mineral growth I deformation relationships in the arc3- of study.... ... 121

xxvn



Fig.6.46.- Staurolile growing al the expense of chloritoid while biotire apparently remains
stable., staurolite-chloritoid tl3Dsitioo.. . 122

Fig.6.47.- Simplified KFMASH petrogenetic grid (after Spear. 1993) for the metapclites of
the Berzosa-Riaza shearzooe.. . 123

Fig.6.48.- Kyanite and staurolite relicts in the SiJI+Ky micaschists of the BRSZ. ..... 124

Fig.6.49.- Staurolite inclusions in a garnet porphyroblast rimmed by fibrotitic sillimanite
.......... 125

Fig.6.50.. Granitic Ieucosomes in the SiJI+Ms woe (Manjir6n antiform) showing
interstitial quartz in contact with subhedra.l plagioclase (AnIG-15) laths and K-feldspar

................... 126

Fig.6.5!.- Biotite micafish with monazite inclusions (pleocroic l\aloes) in a Cld·St
micaschist. . . I 27

Fig.6.52.- Sample distribution and Variscan U-Pb prololith and metamorphic ages (Ma) for
the Somosieml area of the Sierra de Guadarrama.. . 128

Fig.653.- U-Ph concordia diagram for IT'IOnll2ite from sample Hi-t, St+Grt+(Cld)
micaschisl. Lower staurolite zone (Eastern Guadarrama domain) 130

Fig.6.54.- U-Pb concordia diagram for monazite from sample Pi-I. St+Grt+Bt micaschist.
Upper staurolite zone (Eastern Guadarrama domain) 130

Fig.655.- Sample Pi-I, St-Grt micaschist: A) Microc.exnn. biotite defming the S2 fabric:
B) Monazite inclusions in 52 biotite: C) Platy, subhedral monazite parallelograms.
fraction MI.. . 131

Fig.6.56.· U-Ph coocorWa diagram for titanite from. sample CA-l, para-amphibolite from
the core of the Cardoso antiform. and microtexture showing titanite associated with
randomiy oriented amphibole porpbyroblaslS (static post-{CCtonic porphyroblastesis).

........................................................ 132

Fig.6.S7.. U-Pb concon:lia diagram for monazite from sample 12-6. Ky+St+Gn+Sill
micaschist from the Sill (Ky) zone and detail of a IIlOr18%ite inclusion in a D2 biotite

...................... . 133

Fig.6.58.· U-Pb coocordia diagram for sample M26-2, leucosome from a folded (F2)

:~~:in~~f:re~~°f::ef~::f:~~.~~..~..~.~.~..~~e
Fig.6.59.- U-Pb concordia diagram of monazite fractions from sample BU-2 (482 Ma

foliated aplitic vein, Buitrago gneiss). Sm+Kfs zone l3S

Fig.6.60.· U-Ph concordia diagram of monazite and xenotime fractions from sample PiB-1
(482 Ma foliated leucogranite, Buitrago gneiss). SilI+Kfs zone 136

xxvm



Fig.6.61.- U-Pb concordia diagram of IDOI1aZite and xeootime fractions from [he 477 Ma
Lozoya gneiss (augen gneiss). Sill+Kfs zone. sillimanite+cordierite-bearing sample...

... 136

Fig.6.62.- U-Pb coocordia diagram for titanite separates from the Braojos dyke and
rrncrocexture of the U-Pb sample.. . 137

Fig.6.63.- U-Pb concordia diagnun for the post-tectonic La Cabrera granite and
microtexture of the V-Pb sample. HeterogranuJar undeformed Bt-granite/granodiorite..

........................ 138

Fig.6.64.- Time constraints on the Variscan !eCtonothermal evolution of the Somosierra
sector of the Sierra de Guadarrama 139

Fig.6.65.- Tectonotbennal evolution of the Somosierra sector of the Siem de Guadarrama.
OUo de Sapo domain. Central Iberian Zone. Iberian Massif (Central Spain) 140

Fig.6.66.- Comparative table of Ordovician U-Pb and Rb-Sr absolute ages from the
Central Iberian Zone and V-Ph ages from. other parts of the Iberian Massif and the
location oflhese areas within the European Variscides... . 141

Fig.6.67.- Map of the Iberian Massif showing the DeW time cOllSO'"aints on the
teetonothetmal events from the Somosierra sector of the Sierra de Guadatrama. other
time constraints on the timing of Variscan deformation and the distribution of the
Carboniferous Variscan metamorph.ism and p1utonism 142

Fig.6.68.- Timing and distribution of the Early -Mid Carboniferous syncoUisional
extension and metamorphism along the Variscan belL [43

CHAPTER VII: DISCUSSION AND TEcrONIC IMPLICATIONS: PRECAMBRIAN
AND PALEOZOIC EVOLUTION OF PERI-GONDWANA FROM A COMBlN'ED

APPALACHIAN-VARlSCAN PERSPEcrIVE..

Fig.7.J.- Teaonotbermal evolutioo of the Gondwanan margin of the Newfoundland
AppaJachians. Hermitage Flexure... . 144

Fig.7.2.-Geologic.al map of the Hermitage Rexure showing the location of the new V-Pb
data... . 145

Fig.7.3.- Comparative table of events in the Lare Precambrian. pe:ri-Goodwanan.
Cadomian I Avalonian belt and the Hermitage Aex~ of the Newfoundland
Appalachians... . . 146

Fig.7.4.- Distribution of the I....att: Ittcambrian Cadomian I Avalonian terranes on pre-drift
reconstruction of the circum-North Atlantic 147

Fig.7.5.- Comparison of the Early Ordovician events in the peri-Gondwanan margin of the
Nonhem Appalachians and the Southern Variscides 148

Fig.7.6.- Location of the interpreted relict Arenig felsic magmaric arc of the CIZ in the
Southern Variscides 149

XXIX



Fig.7.7.- Interpreted Paleozoic evolution of North Atlantic peri-GoDdwana 150

Fig.7.8.- Paleozoic reconstruetions of Avalonia. Baltica. Gondwana and Laurentia in the:
Late Pm::ambrian and the Ordovician (after Tonvik d aI.• 1996; van de!" Plu.ijm d al..
1995)... . 151

xxx



LIST OF ABBREVIATIONS:

Symbols for rock-fonning minendsCafter Bucher and Frey. 19(4)

Am amphibole Cn! cordierite Qlz qwutz

An anorthite Ep epidote Sill sillimanite

A"d andaJusite Gn gamel 51 staurolite

"' biotite K" K.feldspar T," titanite

Cam clinoamphibole Ky kyanite TO' tourmaline

ChI chlorite Mnz ~le Zm ri_

ad chloritoid Op, ortbopyro~ene

Cp, dinopyro~ene PI plagioclase

Other abbreviations (The rest of abbreviations are specified in the te~t):

centimetre Ut stretching lineation

e degrees Celsi us """"0 episode millimeter
of dcformatiOll N "orth

"" P pressure
fold. episode ppm parts per million

of folding 5 south

HP high pressure T temperature

HT high temperature W

Kb kilobar 0 di",""""

Ian kilometer approJoimately

!min rninemliDeatiOll ... weight Jmodal

LP low pressure p=cn<ag<

XXXI



CHAYI'ER I

INTRODUCTION TO A STUDY OF THE PRECAMBRIAN

AND PALEOZOIC GEOLOGICAL EVOLUTION OF

PERIGONDWANA IN THE NEWFOUNDLAND

APPALACHIANS AND THE mERIAN MASSIF.

This thesis was originally conceived 10 assess the extent of the similarities between the

Precambrian and Paleozoic geological evolution of the peri-Gondwanan elements of the

Newfoundland Appalachians (e.g. O'Brien et aI., 1996) and the Iberian Massif (Fig.I.IA)

and, in doing so. to attempt to frnd the prc-CadomianiAvalonian basement in both areas.

Reported Late Precambrian events from the Iberian Massif and the Avalon Zone of the

Newfoundland Appalachians suggested a similar Late Precambrian geological evolution

(Fig.UB; lberian Massif: Quesada. 199Oa; Quesada. 199Ob; Avalon Zone: O'Brien et aJ ..

1983; O'Brien et aI., 1990: O'Brien et aI.• 1996). This Precambrian evolution was

connected with the development of the Pan-African orogens around the margins of

Gondwana (Strachan and Taylor. 1990; Rogers, 1996). Two main areas. both with

reported vestiges of CadomianiAvalonian events, were selected for this study (Fig.l.t).

The one in the Newfoundland Appalachians is in the western Hermitage flexure (Williams

et al., 1970; Brown, 1975; Dunning and O'Brien. 1989; O'Brien et aI., 1991; O'Brien et

aI., 1993), which conrains some of the most outboard relicts of Avalonian rocks of the

Appalachian-Calc:donian orogen (Fig.I.l). In the Ibc:rian Massif. the: medium· and high·

grade rocks of the eastern Sierra de Guadarrama (Fig. 1.1 ; Fern<1ndez Casals, 1979; Macaya

etal.,I99I;Viale:ttec:tal., 1986;Vialeuec:tal., 1987; Wildbergc:tal., 1989; Amrc:tal.,



1992), in the Central Iberian Zone (l.otzc. 1945; Julivert et aI .• 1972; Quesada. 1991) wen:

selected for study. AdditionaLly, the study involved the unraveling of the intensity and the

charncter of the AppaJachian and Variscan ovcrprinlS in these differenl areas and offen:d an

opportunity to further uOOcl'5laod Ibcse PaIcozoic events. responsible for the

rearnalgamation of the Late Precambrian pcri-Gondwanan relicts of the North Atlantic.

This study also provides a series of differenl strategies 10 constrain absolute timing of

deformation in medium· and high-grade terranes. lbcsc srnuegics are based on the

combination of detailed classic fICld and pcuographic work with high-precision U-Pb

geoc:!uooology. whicb allows tbe inlCgralion of precise U-Pb proIolith and mewnorphic

ages wilh clear field and petrographic: relationships. MetamOrphic conditions were assessed

using stable minc.ral assemblages. It should be noted that the emphasis was placed more 00

assessing lhe conditions during deformation rather than having a precise estimation of the

PT conditions. Additionally, whole rock. major- and t:raee-elemcnt geocbemistry of a

selected number of samples was delennincd to rtllUimize the information obtained from the

protolilh ages from the field areas in !he Newfoundland Appalachians.

This thesis has three main partS. The flISt part deals with tbe areas in !he southwCS!

Newfoundland Appalachians (Chapters m and M, and includes a general introduction 10

!he geology of the Newfoundland Appalachians (01apler m. The second part covers the

Sierra de Guadarrama in !he Central Iberian Zooc (Chapter YO; an inuoduc:tion to the

geology of tI:JC Iberian Massif is also provided (Cbapter V). The third and flJla1 part focuses

on !he significance of the contributions of the data from southwest Newfoundland and

Central Spain to the understanding of the evolution of the Paleozoic circum-North Atlantic

orogens (Chapter Vll).



The following introductory sections provide justiftcation for the field aru selection. as

well as a general. geologic overview of the Paleozoic circum-North A1la.ntic orogens. Also.

to clarify further discussions. a series of paleogeographic concepts are defined. followed

by a synopsis of the evolution of the peri-Gondwanan circum-North Atlantic Icmme5. and

an assessment of the possible connections between the Newfoundland Appalachians and

thc Iberian Massif.

1.1.- PURPOSE AND SCOPE.-

The rationale behind seJocting gneissic complexes for this study is !hat these are in

IIlOSI cases blocks of lower or middle crust wilh a complex and in places prolonged

teetonolhennal evolution. constiwting poIeIltiai ~licts of pre-orogenic crystalline basement

in any orogenic belt. By unraveling the timing and characlcr of the different defonnational,

metamorphic and intrusive events. it could be possible nOI only 10 assess the

contemporaneity of the teclonic processes that operated at different crustal levels within the

same segment of the orogen or along differenl parts of the orogen bot to l'eCOD$UUCt pan of

its p!e-omgcnic evolution. II is this pre-orogenic evolution wtlich forms the basis of this

compar.Uive swdy of the exlent of the peri-Goodwanan linkage between gneissic

complexc:s in !be hinlerland of !he Newfoundland AppaIachians and Iberian Massif.

Basement in the peri-Gondwanan margin of the Newfoundland Appalachians and most

of the Iberian Massif is formed by Late ~rian rocks deformed during the

AvalonianlCadomian orogeny and variably reworked during !he subsequent Paleozoic

orogenies (Fig.I.I). Archean-Proterozoic granulites oUlcrop offshore the Iberian Massif in

the Cantabrian sea (nonbwesl Spain; Guerrotet aI., 1989) and 2.1 Ga gncisses are known

from the Cadomian block in the Armorican Massif (Clava and Vidal, 1918). Such pre-



Cadomian/AvaJonian aystalline basement. aJthough suspected. bas yet to be identified in

both the peri-Gondawanan margin or the Newfoundland Appalachians and !he lberian

Massif. The gneissic complexes selc:cted ror this study offem:1 the highest chance of

finding such relicts. so a great deal ofeffort was put into sean:hing ror the oldest members

or these complexes.

In the Newroundland Appalachians. there is no evidence or gneissic basement to Ulte

Precambrian volcanosedimentary sequences or the peri-Gondwanan Avalon Zone nor

gneissic country rock. to its Late fucambrian plutons, except ror a small area or low P I

nigh T metasedimentary rocks in the island or Miquelon (France) (Dunning et aI., 1995).

However, funher west, gneissic roeles are described as the oldest members or a I...ate

Precambrian Avalonian basement (Dunning and O'Brien, 1989) within the Hermitage

Flexure (Fig. I. I). or these gneissic rocles. the best candidate to host pre.Avalonian rocks

was the Cinq-Cerf gneiss (Chapter III). This gneissic complex is in contad with a low·

grade l...ate Precambrian volcanosedimentary sequence and its contact reportedly stitched by

570 Magranite (Dunning and O'Brien. 1989; D.H. O'Brien et aI•• 1991: B.H. O'Brien et

aI.. 1993). Separating the Cinq-Cerf gneiss from the SUlUJ'e with the Laurentian margin.

then: is a 100 KIn wide belt or amphibolite to upper amphibolite racies rocks.

met.amorpbosed during the Silurian Salinic orogeny (Dunning et al.. 1990), with pre­

Silurian intrusive rocles and local evidence ror pre-4TI Ma teetonic imbrication (fucker et

aI. 1994). To investigate the evolution or this western extent or the peri-Gondwanan

margin or the southwestern Newroundland Appalachians a gneissic paclcage with

lithological resemblance to the Cinq-eerf gneiss, the Margaree orthogneiss (Chapter TV)

was selected for study. lbe combined new data rrom these two field areas is expected to

rurther the understanding or the tectonothermal record or the marginal edge or l...a1c:

Precambrian northwest Gondwana (Fig.l.lA) and its Paleozoic evolution.



In the Iberian Massif. Lare Pm=ambrian rocks and evidence for Late Precambrian

events is widespread (Quesada. 1991). Cadomian gneissic rocks ~ known 10 oulCTOp as

fauJt bounded blocks within a large megashear zone in lhe Ossa-Morena Zone (Fig. I. I :

Badajoz-Cordoba shear zone: Schafer. 1990), where Cadomian Iedonothenna.l events are

weU documented (e.g. Quesada. 1991; Ochsner. t993). and in the metamorphic complexes

of the Central Iberian Zone (Lancelot el aL 1985; Wildberg et aI.• 1989). Stratigraphic and

faunal evidence (chapter V) indicales lhallhe Central Iberian (C1Z). West Aswrian·I...eooese

(WAlZ) and the Cantabrian Zones {CZ; Fig.I.I} formed a single Paleozoic Iberian terrane

against which other elements like the Ossa-Morena (OMZ). the South Ponuguese (SPZ)

and Galicia-Tras-os-Montes (GTMZ) zones were accreted during the Late Paleozoic.

Variscandefonnation was traDsferred from the CIZ towards the more external WALZ and

CZ. Work in the CIZ had a IWO fold objective, 10 resolve the timing of !he pre-Variscan

events while scarching for relicts of a pre-Cadomian basement and 10 unravel lhe timing

and characlCr of the Variscan overprinl.

The Siena de Guadamuna in the CIZ was selected for lhis srudy (Fig. I. I ) because it is

the largesl single massif ofpn:·variscan ortbogneisses in the lberian Massif and it is pan of

an enigmatic 600 Km long bell of onhogneisses which eXlends from the Sierra de

Guadarrama in central Spain 10 tbe NW coast of Spain (e.g.• A:lDr et aI.• 1992). These

orthogneisses are below an Ordovician unconformity (Sardic unconformity; Diez BaIda C:I

ai., 1990). This Ordovician uncoofonnitiy is characlCristic of tbe elZ. In !he CIZ. there is

also local evidence for a weU~fUlCd Late ~ambrian Cadomian unconfonnity. which is

also common 10 the WAlZ and the cz. The age of these ormogneisses in the Siena de

Guadarrama bas remained controversial due to a limited and unreliable age data SCi (Early

Ordovician. Rb-Sr. Vialene et aI., 1986, 1987; vs. PTecambrian-Cambrian. U-Pb:

WiJdberg et al., 1989). Zircon analyses with large degrees of Proterozoic-Archean



inheritance indicate the presence of 2.0 Ga crustal sources (Wikfberg el al.• 1989) and the

poIential for Ihe presence of a pre-<:adomian basement (Quesada. 19(2). Additionally !he

Siem de Guadarrama conlains a poorly daled (Wildberg et aI.• 1989) rcl.icr: Barrovian

melamOrphic sequeoce. partially overprinted by a Variscan low P I high T metamorphic

event. and la1e Variscan post<ollisiooal plulOl\S (Bellido et aI.• 1981). Therefore. ir:

provides Ihe ideal area fOf a delailed combined investigation of die pre-Variscan and

Variscan evolution of Ihe ClZ.

Lale Cretaceous paleogeographic reconslruCtion of the North Atlantic shows that the

Avalon Zone oflhc: NewfoundJand Appalachians was facing the lberian Massif prior to !he

opening of the Nonh Atlantic ocean (Fig. I. I ). indicating that lberia collided againsl

Avalonia during the Variscan orogeny. It is possible thai exotic Appalachian elements were

amalgamated to the Iberian Massif as a result of !he Variscan collision. This thesis.

however. attempts [0 explore if !here was a common Precambrian-Early Paleozoic

connection prior to the separation of Avalonia from Gondwana (see section 13).

1.2.-ANATOMY OF THE CIRCUM-NORTH ATLANTIC PALEOZOIC

OROGENS.-

The Paleozoic geology of the cil'tWll-Atlantic realm is characterized by the presence of fWO

Paleozoic orogenic belts, the: Caledonian-Appalachian bell and the Variscan belt. These

belts are separate and well defrned [0 !he north. but merge 10wards the south. as a result of

the flnal amalgamation of Pangea (Fig.I.1 and 1.2). The following is a brief description of

the most fundamenlal fea~ of these belts. to famil.iari1.e the Appalachian reader with the

Variscan and Iberian geology and vice versa.



1.2.1.- Tbe: Appala(:blan·Cale:donian belt.-

The Appalacbian-CaJedooian bdt (Fig.I.2) is a linear orogenic system Iha! extends

from southern Alabama (USA) through the eastern seaboard of the USA and Atlantic

Canada co Newfoundland. mland. the U.K.• Norway and eascern Greenland. This belt

records the amalgamation of difreR:nl elements co Laurentia (i.e. North American craton) as

a result of Paleozoic development and closure of a protO-Atlantic ocean (Wilson. 1966). the

Iapetus ocean (Harland and Gayer. 1972). Initiation of the Iapetus ocean is marked by L..ate

Precambrian rifting in the Laurentian margin (e.g.• Williams.. 1979) and in the opposing

margin in the Scandinavian CaIedonidcs (e.g.. Andriasson. 1994). The situation is

however more complica1ed in the British Caledonides and the Northern Appalachians since

the presently opposing margin. Avalon Zone (e.g.• Williams. 1979: Nance and Thompson.

1996) was Undergoihg art: magmatism and deformation al that time (Avalonian-Cadomian

events: e.g., O'Brien et aI.• 1996; O'Lemos et aI.(eds.), 1990; Strachan and Taylor (eds.),

1990). During most of the Cambrian there was a pause in tectonic activity on all sides of

the Iapetus Ocean and major paleontological diff'eR:OCCS were established between all

margins of me Iapetus (Cocks and Foncy. 1982; Faney and Cocks. 1986: Cocks and

Fortey. 1990; Neuman and Harper. 1992; Williams S.H. ec aI .• 1995; Landing, 1996). In

the Ordovician tectonic activity was renewed. The Northern and Southern Appalachians

record Ordovician~ of volcanic an: elements to the Laurentian margin. known as

the Taconic orogeny (Williams. 1979; Williams and Hatcher, 1983); the Grampian orogeny

is the equivalent event in the British Caledonides (Rast and Crimes. 1969: Rast et aI.,

1988). Early-Mid Ordovician compressional events also took. place in the opposing side,

the Finnmarkian orogeny in the Scandinavian Caledonides (Stun, 1978; Oallmeyer. 1988:

Andreasson. 1994) and the Penobscottian orogeny in the Northern Appalachians (Neuman,

1967; Neumann and Max. 1989: Coiman·Sadd et aI.• 1992a; Van Staal and de Roo. 1995;



Van Staal et aI.. 19900). During the Lare Oniovician...silurian the final closure of the

Iapetus involved a continent-continent collision which is ~ponsible for the Salinic - 1are

Caledonian - Scandian orogenies (Dunning et aI., 1990; Barnes d aJ.. 1989; Gee. 1915:

Robinson d at. 1988). The colfuioo in the Norwegian CaJledonides was between Baltica

and Laun:ntia whereas in the British Caledonides and the Northern Appalachians it was

between Laurentia and Avalonia (a peri-Gondwanan terrane; Fig.I.I). This collision is

apparently slightly diachronous in the New England Appalach.ians (USA) (Devonian

Acadian orogeny. Dewey. 1969; Robinson d aI.• 1988; Eusdcn and Lyons, 1993) .

However new precise geochronology from Maine (Stewart et aI., 1995; Osberg et aI.,

1995) and Massachusetts (Hepburn et al., 1995) points to a Silurian peak of orogeny in

parts of New England. The Southern Appalachians also record a Taconic event wh.ich is

foUowed by a continent-continent collision between Laurentia and Gondwana (i.e. African

craton) during the Carboniferous-Early Permian (Alkghenian orogeny; Bailey. 1935:

Williams and Halcher, 1983).

All the geological elements of the Northern AppaJachians are best exposed in the island

of Newfoundland (Canada). This isJand is kated in the center of the orogenic bel[ and

offers the mosl complete: cross·section of the orogen. excepc. for the Meguma Zone

(Fig.I.2). The zooes and subzooes of the Newfoundland Appalachians can be traced along

the Northern Appalachians and the British Caledonides (Dewey. 1969: Williams, 1978 a.b;

Colman-8add et aI.• 1mb; Winchester and van Staal, 1995: van Staal et aI.• 1996a). For

this reason tectonic models for both the Nonhern Appalachians and the British Caledonides

have relied nOt only on the local geology but also on the constraints provided by the rocks

exposed in the Newfoundland Appalachians (Wilson, 1966: Williams, [978b: Williams

and Hatcher. 1983: Colman·Sadd et aI., 1992b: Williams. S.H. et aI., 1995).



1.2.2.- The European Variscan belt (Fig.1.3 and 1.4)•.

1be Varisc:an Belt e:ttends from Morroco to the Carpathian Mountains. Compared to

the Appalachians. the European Varisc:ides (Fig. 1.3) are not a continuous belt but a series

of massifs separated by Mesozoic-Cenozoic basins and areas with alpine deformation.

containing a variably reworked Variscan basement (Betics. Pyrenees. Alps. Carpathians).

1be Iberian Massif is the largest of the Variscan blocks unreworked by the alpine orogeny.

It is only in this part of the Variscan Belt that there is continuous outcrop showing the two­

sided structural vergence of the bell ( Parga Ponda! et aI., [983: Dallmeyer and Martinez­

Garcia (eds.). 1990; Ma[le. (995)

1be Variscan belt is characterized by thrust nappe tectonics with opposite vergence

towards opposite forelands, suggesting a continent..c;ontinent collision (Fig. 1.4).

Compared to the Appalachians the presence of oceanic sutures is quire conspicuous. True

ophiolitic sequences are sc:arce. although mafic-ultramafic comple:tes throughout the belt

have been interpreted as ophiolitic remanants (Ziegler. 1986; Matte, 1986; Pin. 1990;

Menot and Paquette. 1993). These mafic/ultramafic comple:tes ~ commonly

polydefonned and metamorphosed and they tend to occupy an axial position in the chain

(Matte. (986). The few reliable and precise ophiolite ages indicate two periods of ophiolite

generation. Early~Mid Ordovician and Late Silurian-Early Devonian (Fig. 1.4; Menot et al..

1988; Pin and Carme. 1987; Pin. 1990; Oliver. et aI.• [993; Dunning. unpublished).

Although the geochemistry of most of these ophiolites is indicative of a back-arc setting.

they are generally interpreted as ocean floor spreading associated with continental rifting

(Pin. 1990). Classic volcanic arc sequences are also absent of most places in the chain

(Mane. 1995).



The opposite structural vergence and the metamorphic grade in the northern part of the

belt bas lead to the classic subdivision (Fig.1.4; Kosman, 1927: Franke. 1989) into:

Rheno-Hercynian Zone: (nonhem foreland); Suo-Thuringian Zone (axial zone) and

Moldanubian Zone (axial zone + southern margin). 1ll.is classic subdivision is however

difficuJl to follow in Cenllai and Southern Europe. cvcnthougb in the case of the Iberian

Massif the two opposite forelands are particularly well developed (Lotze. 1945: Juliven et

aI.. 1972: Mane, 1986). The Rheno-Hercynian Zone (RHZ) is ~Iated with the

Ardennes Massif in Belgium and France and southern England: these areas. liJce partS of

the RHZ. have recorded Caledonian deformation and have faunas with Mid Paleozoic

Baltic affinities (Soper. 1988: Franke. 1989; Paris and Robardet. (990). The Saxo­

Thuringian and Moldanubian zones. the Central Massif. the Armorican Massif, the [herian

Massif, Sardinia and the Paleozoic of the Alps had paleontological similarities with those of

Gondwana (Fig.IA.; Paris and Robardet. 1990; Robardel et aJ .• 1990; Young. 1990).

Cambrian·Early Ordovician faunal similarities along the bell progressively disappear

during the Mid Ordovician - Silurian 10 be regained in the Lace Devonian-Early

Carboniferous (Paris and Robardet. 1990). Mjd Paleozoic pal~tOlogicaJ.

sedimentological and paJeomagnetic da1a suggest the: presence of an ocean (Rhc:ic ocean:

Paris and Robardel, 1990). separating a oorthcm domain (Rhenohercynian Zone) from a

southem domain (Saxothuriogian and Moldanubian lOnes and equivaleots in southem

Europe; Fig.1.4). 'The rocks of these two domains were amalgamated as a result of the

Variscan orogeny.

Timing of Variscan orogenesis is classically defined. as Late Devonian-Late

Carboniferous (360-290 Ma; Stille. 1924). However. some authors (e.g.• Perez Estaun et

al .• 1991) also consider Variscan the Late Silurian-Mid Devonian (-420 Ma-380 Ma)

deformation and mewnorphism associated with the so called. Ligerian or Eo-Hercynian
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event (e.g.. Lefort. 1989). Thtoughoullhc chain there is evidence of earlier pn:.Variscan

events. including Ute Precambrian Cadomian 1«C0D0lhermaI events (Fig. I.): Strachan

and Taylor (eds.). 1990: D'Lemos et aJ.(eds.). 1990) ;IS weU as Lare Cambrian-Early

Ordovician tectonothennal events of obscure significance (Ziegler. 1986: Matte. 1986:

Gebauer. 1993).

1.3.- CONCEPTUAL FRAMEWORK FOR PRECAMBRIAN & PALEOZOIC

NORTH ATLANTIC PALEOGEOGRAPmC RECONSTRUCTIONS.-

The following is a definition of the paleogeographic ICnns thal wiU be used in this

thesis. The purpose of this description is to clarify further discussions and avoid confusion

regarding me use of tllis tenninology.

Gondwana (Fig. J.5): This term is used [0 define the supercontinent resultanl of plate

amalgamation during the Pan-African orogenic events (800-500 Ma; Rogers, [995). These

events lead to the formation of Late Neoproterozoic interior and exterior orogenic bellS in

Gondwana (Murphy and Nance. 1991). The core of this continenl is formed by Soulh

America.. Africa.. Madagascar. lndia and Ausrnilia (du Toit. 1937: Scalese and McKerrow.

1990). Paleontological and paleomagnetic dala indicaIe thai: during the Late~an

and Early Paleozoic, Gondwana was bortIem:1 by the peri-Gondwanan elements of tbe

Appalachian-ealedonides (Hutchinson, 1962; Cocks and Fortey, 1982; Cocks and FOrley,

1990; Scotese and McKerrow, 1990; Williams S.H. et al., 1995), South and Cenlra1

Europe (Southern Variscides; Robardet et aI., 1990; Paris and Robardet, 1990; Young,

1990) as well as the Cimmerian terranes of the Midd!e East and Southeast Asia (Scotese

and McKerrow, 1990).
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Peri-Gondwana (Fig. I./): This refers to the Late Precambrian-Early Ordovician

Gondwanan margin of the Iapetus Ocean (Exploits subzone. Gander Zone, Avalon Zone

and equivalents in the Newfoundland Appalachians). Peri-Goodwana also includes all

Precambrian and Early Paleozoic elements with Goodwanan affinities in the Variscan Bell.

since they~ not proven to have been permanently attached to the African craton (Paris and

Robardet. 1990).

A.valonian - Manion- Codomian ~lls (Fig.I.18): lbese are 680-540 Ma orogenic

bellS on the periphery of Gondwana (sec general references in Slnlchan and Taylor (cds.),

1990; D'Lemos et a1. (cds.). 1990). 1be Avalonian belt refers to the Late Precambrian ­

Cambrian rocks of the Avalon Zone (s.s; O'Brien cl aI.. 1996) and their correlatives in the

Northern Appalachians (Rast and Skehan, 1988) and British Isles (Tucker and Pharaoh,

1991: Strachan et aI., 1996). The Monian Belt covers the Precambrian rocks of NW Wales

and SE Ireland (Gibbons. 1990; Gibbons and Horak. 1990; Winchester et aI.• 1990). The

Cadomian belt includes the Late Precambrian - Cambrian rocks of the northern Annorican

Massif CO'Lemos el aI.(ed$.), 1990}. the lberian Massif (Ossa-Morena and Central [herian

Zones; Quesada.. 1990). the Bohemian Massif (ChalOllPSIcy. 1990) and the Eastern Alps

(Frisch and Nebauer. 1989). The Avalonian I Cadomian events consist of a 68()..620 Ma

tectonothermal event (active margin 1) foUowed by 620-570 Ma development of an

Andean-type an:: with associated caIc-a1kaIine magmatism and defonnation (Cadomian l I

Avalonian events) and 560.-S40 Ma crosta.I anatexis. calc-alkaline magmatism. H-P

metamorphism and deformation (Cadomian II I Monian events). During the Cambrian.

tectonic activity ceasod in most of the belt (Quesada. 1990; Went and Andrews. 1990;

Landing. 1995). However. Cambrian events in the Armorican Massif (magmatism; Brown

et aI.• 1990) and the Ossa·MoR:na Zone of the Iberian Massif ( Low P I high T

metamorphism. deformation and magmatism; Ochsner. 1993) have been also ascribed to
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the Cadomian cycle. Contemporaneity and sUnilarity of events in these bellS has lead to

group them inlo an Avalonian superterrane (Rast and Skehan. 1988). although a direc:l

conncctioo between the Avalonian and Cadomian bellS has yet 10 be demonstrated

(Gibbons and H6rak. 1990). The basement of the Cadomian bell is formed by 2.7 Ga (0

1.8 Ga gneisses (Cave%. and Vidal. 1978; GucrTOl Cl at. 1989: Wendt et al.• 1993).

Basement for the Avalonian belt is unknown.

Avalonia (Fig.I.5): The concepc: of Avalonia is based on a temme with Late

Precambrian peri-Gondwanan affinities (i.e. with Avalonian events) accreted (0 Laurentia

during the final closure of the Iapetus ocean (Williams. 1979). According to ScOlese and

McKerrow (1990). Avalonia extends to the Ardennes (Belgium and France), England. SE

lreland. the Avalon Zone and the peri-Gondwanan margin of the fapetus of the northern

Appalachians (Fig.l.2. and 1.3). These areas are characterized by a Late Precambrian

Avalonian basement, Cambrian to Early Ordovician cold water faunas with Gondwanan

affInities and Baltic and l...aurentian faunas during the Mid-late Ordovician and Silurian

(Cocks and Fortey. 1982: Cocks and Fortey, 1990; Williams S.H.. et aI., 1995).

Paleomagnetic data indic3res an Early-Mid Paleozoic movement of A valonia towards

warmer latitudes (Scocese and McKerrow, 199(); Torsvik et :11.,1996)

l..muouia (Fig.l.l): This is North American C'alon formed by an Atcbean and

Prorerzoic basement. with distinctive Grmvillian (-1000 Ma) events. againsl: which

different temncs~ accn::ted during me development of me Appalacbian-Caledonian belt

(Williams.. 1918). As a result of the opening of the Iapetus Oc:ean. Laurentia developed

endemic faunas (Cocks and Fortcy, 1982; Nowlan and Neuman. 199L and ref, within;

Williams et aJ.. 1995). The warm water character of these faunas is consistent with a l...aIe

Precambrian-Paleozoic paleomagnetic position near the equator (Scotese and McKerrow,

1990; Torsviket a1., 1996)
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Peri-lmut:ntia (Fig. J. J): This refers to the Laurentian Margin of the lapetus Oc:ean (

Humber Zone. Notre Dame subzone and equivaJents; Fig.I.2),

Baltica (Fig.l.lJ: Late Pn:cambrian 10 Mid Pakcnoic contineru rifted away from

~ntia during the opening of lbe Iapetus Ocean. This continent is bounded to the west

by the Iapetus suture (Scandinavian Caledonides), to lhe SE by the Tornquist line (roughJy

!he surun: of the Tornquist sea; Cocks and Fancy, 1982) and to the East by the Urals

(Devono-Carboniferous suture; Matte. 1995). According to Cocks and Foney (1990).

Baltica bas its own distinctive Ordovician faunas. Paleomagnetic data ([arsvik ct aI.,

1996), also, suggest a Late Precambrian to Ordovician paleogeographic position distinct

from those ofGondwana, Laurentia and Avalonia.

Nonhun Variscides (Fig.I.3 and 1.4): This is used in the sense of Paris and Robardet

(1990) and includes me Rheno-Hercynian Zone. the ArdeMes. Brabant Massif. Cornwall

and southern Ireland. 1be term refers lO the areas of the Variscan Bell with Avalonian·

Baltic faunal characteristics (Coclcs and Fortey. 1990; Paris and Robatdet. 1990) in the Mid

10 lale Paleozoic time.

Sou/hun Variscides (Fig. 1.3 and 1.4): This is also used in the sense of Paris and

Robardct (1990). It includes the lberian Massif (with the possible exception of the South

POlTUguese Zone). the Annorican Massif. the Massif CenuaJ. Sardinia. COl'5ica., Vosges.

Black Forest. exlemal Alps. Saxothuringian and Moldanubian Zones. These areas are

characterized by close faunal similarities with Morrocan Gondwanan faunas during the

Early Paleozoic. indicating pro.timity with Gondwana. Middle-Late Paleozoic faunas from

the Central Iberian ZOne to the Bobemian Massif. however. have a distinct character.

Asghill diamictites suggest a Mid Paleozoic lower latitude (Brenchley et al., 199().

Paleomagnetic data seem to 5uppon a lower latitude position. close to Gondwana, during
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lhe Lar.e Precambrian and MiddJe Paleozoic (ScOleSt: and McKerrow. 1990). During !he

Devonian the Southern Variscides moved to higher paleomagnetic latitudes and warmer

paleobiogeographic conditions (McKerrow and Scotese cds.. 1990).

1.3.1.- Late Preambrian and Paleozoic Paleogeographic evolution of the

circum-North Atlantic Gondwanan lerraRes (Flg.1.6).•

Gondwana is generally viewed as a supercontinent amalgamated during the Pan­

African orogeny (800-550 Ma). This continent was assembled with pieces from the

dismembered Rodinia (8 single supen:ontinent formed as a result of the Grenvillian

orogeny (-1000 Ma); e.g.• Hoffman. 1991). Most I..alc Proterozoic paleogeographic

recoosttuetions show a ooUage of three major plates: La~ntja. Baltica and Gondwana

(e.g.• TOBVik ct al.. 1996). Laurentia and Baltica were rifted from each other as a result of

the opening of the Iapetus Oc:ean (circa 650-580 Ma). During the same time an active

margin was developed on the margin of Gondawana (680-540 Ma), the Avalonian­

Cadomian Belt. This bell is a unique feature of Gondwana.

This plale configuration resulted in important faunal differences between these three

major continents at lbe onset of !he Cambrian. landing (19%) points out that faW13l

differences between Avalonia (Fig. 1.5) and Morrocan and Armorican faunas are significanl

enough lO suggcslS lhal Avalonia was already detached from Gondwana. However. bolh

paleontological and paJeomagnetic data suggest thai: dJc: peri-Gondwanan elemenlS of lhe

Appalachians and me southern Variscides were at similar latitudes and relatively close to

Gondwana (McKerrow and Scalese eds., 1990: Cocks, 1993; Torsvik el al. 1996).

During the Early Paleozoic (Tremadoc, Arenig) faunal differences between peri­

Laurentia and peri-Gondwana peaked. reflecting t:he widening of dJc: (aperus Ocean (Cocb

and FoI1eY. 1982; Williams. S.H. el at .• 1995). This coincides wilh island arc developmenr
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on both sides (Notte Dame and Exploits subzones of the Newfoundland Appalachians) and

with Arenig ophiolite obduction and volcanic an:: (Exploits Subzone}-passive margin

(Gander Zone) collision in the Gondwanan margin of (apetus (Peoobscottian evenl:;

Colman-Sadd c:l aI.• 19923: van Staal, 1996 and ref. within), The Mid Ordovician Taconic

orogeny in the l.awt'nlian side of Iapetus also re~ntS a passive lI'IallPn-volcanic arc

collision (Williams. 1979: Williams ed., 1995). Contempcnneous events also took place in

the Baltic side of laperus (Finnmark.ian. high P events and ophiolite generation: e.g.,

Andreassen. 1994; Dunning and Pedersen. 1997). The Avalon Zone (s.s.) and similar

correlatives in the British Isles (Midlands block; Tucker and Pharaoh. [991) seem to have

escaped these Early Ordovician events. However, the Southern Variscides regislcrcd

granitic plutonism, ophiolite generation. high P melaJllorphism. calc-alkaline magmatism

(Pin, 1990: Gebauer, 1990. 1993) and alroost coeval alkaline magmatism within an

apparent extensional selting (e.g., Ziegler. 1986; Ochsner. 1993). Therefore. the Early

Ordovician seems to coincide with subduction along all margins of the Iapcrus Ocean and

with a period of major plate reorganization.

During the Mid and L.ate Ordovician. faunal differences between all sides of the

Iapetus O:::ean dimini.sbed as a result of ocean closure (McKerrow and ScOlese eds.• 1990:

Williams S.H. et aI., I99S). However. fawW differences berween the Northern and

Southern Variscides became apparent. indicating the presence of a faunal barrier (Rheic

Ocean; Paris and Robardet. 1990). It is in this period that Avalonia and the nonhem

Variscides migrated IOwards warmer latirutes (McKerrow and ScOlese eds.. 1990:

Williams. S.H. et aI., 1995) whereas the Southern Variscides remained at lower latilUtes

(Ashgill diamictites).

In the Silurian the Iapetus Ocean closed and a major continent-continent collision took

place (Scandian, Late Caledonian and Salinic orogenies; Dunning et aI.. 1990 and ref.
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within). As ~Sull of the collision between Laurentia. Baltica and Avalonia the Old Red

Sandstone continent was formed (McKerrow and Scalese cds.. 1990). 1be Northern

Variscides show acontinent-ocean lrend which indicates they represent the external areas of

such a continent (Paris and Robardet. 1990). Contemporaneously, (Silurian-Early

Devonian) an event involving h..igh P I high T metamorphism (subduction). ophiolite

generation and obduction, deformation and plutonism took place in the Southern

Variscides. This event is known in the Annorican Massif as the Ligerian event (e.g.,

Lefort. 1989) and in the Iberian Massif is considered as Eo-Variscan (Arenas ct aI., 1986:

Santos Zalduegui et aI., 1996). Silurian~Early Devonian faunal difference between the

Northern and Southern Variscides disappear in the Mid Devonian (Givetian) suggesting the

closure of the Rhcic Ocean (Paris and Robardet. 1990). Variscan (5.5.) deformation.

metamorphism and plutonism took place during the Late Devonian until the Permo­

Carboniferous (Stille. 1924). The Variscan and Alleghenian orogenies resulled in the final

amalgamation of Pangea (Rast. 1988).
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CHAPTER n

THE NEWFOUNDLAND APPALACHIANS:

This thesis was partially conceived as a comparative slUdy of the geological evolution

of the peri-Gondwanan elements of the Newfoundland Appalachians and the Iberian

Massif. Therefore. some of the readers might not be familiar with the most current

understanding of the geology of the Newfoundland Appalachians. It is to £hose readers that

the fIrst introductmy section is directed.. The classic zonal divisions and subdivisions of the

Newfoundland Appalachians have been grouped in two subsections. according 10 their

linkage to the peri-l...aurenrian or the peri-Gondwanan margin of the Iapetus ocean. This

coocepl: of peri-Laureotian versus peri-Gondwaoan margin is also used as a reference in the

description of the main geological dements of the Southern Newfoundland Appalachians

(Hermitage Aexure). This description is aimed at all readers, since it serves to place within

a regional geological framewor1l: the elements of the Avalonian basement block: of the

Hermitage Aexure studied in chapter m(Cinq-Cerl' gneiss). as well as the rationale behind

their potential western elUent into the Port-aux-Basquc complex (Margarec: orthogneiss.

ChapterIV).
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2.1.- LITHOTECTONIC ZONES OF THE NEWFOUNDLAND

APPALACHIANS: GENERAL OVERVIEW.

The geology of the Newfoundland Appalachians can be viewed in terms of accretion

of terranes with peri.Laurentian and peri-Gondwanan affinities 10 Laurentia. the North

American craton (Williams. 1979; Cawood et aI., 1988: Williams. 1995a.j). The pre·

Silurian rocks allow the division of the belt into four classic lilhoteetonic zones. Humber,

Dunnage, Gander and Avalon (Fig.2.1: Williams. 1979). Seismic rcnection (Keen et a1..

1986) indicates the presence of three crustal blocks: Grenville, Central and Avalon [ower

crusta! blocks. The Grenville lower crustal block.. which is expressed at the surface by the

Humber Zone. e:ttends from the North American craton under pan of the Dunnage Zone to

meet the Central lower crustal block.. 1be Dunnage Zone is allochthonous over these two

blocks. The Gander Zone represents the surface cltpression of the Central lower crustal

block. A third crustal block, the Avalon crustal block. is marked by a sharp boundary which

coincides with the boundary between the Gander and the Avalon zones and extends to !he

continental edge of the Grand Banks.

Early Ordovician faunal differences divide tl1e oceanic rocks of the Dunnage Zone into

the peri·Laurentian Notre Dame Subzone and tlle peri-Gondwanan Exploits Subzone

(Fig.2.1; S.H. williams et al.. 1995), this division is also conftrmed by different Pb

isotopic signatures (Williams et al., 1988). These subzones are separated by the Red Indian

Line and its southern continuation along the Cape Ray Fault (Lin et aI., 1994). This suture

zone effectively separates the Laurentian margin fonned by the Humber Zone and the Notre

Dame Subzone from the peri-Gondwanan margin of the Iapetus ocean (Exploits Subzone

and Gander and Avalon zones). The profound faunal differences in the Arenig mark the

peak of faunal provincialism, suggesting the presence of an ocean traet more than 2000 Km
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wide separating both margins (S.H. Williams et aI.• 1995), which is also supported by

paJeomagnetic data (Van der Pluijrn et aI., 1995). This indicates that the peri·Laurentian and

the peri-Gondwanan margins of the Newfoundland Appalachians had separate geological

evolutions until the Late Ordovician-Early Silurian or early stages of the Silurian Salinic

orogeny, which marks the climax in the Newfoundland Appalacruans (Dunning et al..

1990). In the following description the different lilhoteetonic zones and subzones of the

Newfoundland Appalachians have been grouped according to their linkage to either margin

of the- Iapetus Ocean. whereas their common Mid to Late Paleozoic evolution is treated in a

separate subsection.

2.l.l.-The Laurentian/peri-Laurentian margin of the Newfoundland

Appalachians: The Humber Zone, the Notre Dame Subzone and their

equivalents:

The Humber Zone (Williams, 1995b) represents the edge of the Laurentian continent

against which the peri~Laurentian oceanic elements of the Dunnage Zone (Williams. 1995e)

were accreted during the Middle Ordovician Taconic event. while the Iapetus ocean was

still open (Fig.2.1). These elements are the Notre Darn: Subzone and the Dashwoods

Subzone or Central Gneiss Terrane. The lower Paleozoic faunas (S.H. Williams el al..

1995) and the paleomagnetic data (Van der Pluijm et aI., 1995) from the Notte Dame

Subzone indicate its Laurentian affmities. The Twillingate Subzone (Fig.2.1) is included in

the peri~Laurentian margin because it lies within the Notre Dame Subzone.
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The Humber Zoae:

The Humber Zone is the westernmost zone of the NewfoundJand Appalachians

(Fig.2..l). It has a GmlVillian basemenl (e.g. En:imer and Williams, 1995) and a Late

Precambrian-Qrdovician cover (e.g. Williams et aI., I99Sd). which can be correlated with

other rocks west of the Appalacttian deformational front. These features tie the Humber

Zone willi Laurentia (i.e. Nonh American craton). lbe main charncteristics of this zone

reflect a Late: Precambrian rifting evenl, attributed to the opening of the Iapetus Ocean,

which was foUowed by me development of a passive margin during the Cambrian and

Early-Middle Ordovician (Williams. 1995b). During the Middle Ordovician Taconic event,

the advance of the Taconic nappes transfonned the passive margin imo a foreland basin

which was partiaUy incorporated into the advancing allochthons.

There are four main Taconic alJlXhthons: the Humber Arm. Hare Bay. Old Mans Pond

and Southern White Bay allochthons (Fig.2.1: Williams. 1995c). The allochthons corllain

tectonic slivers from the advancing flysch. from the passive margin carbonate platform (St.

George and Table Head groups), as well as Cambn>Or'dovician melanges and ophiolite

suites wilh preserved metamorphic soles. Age of ophiolite fonnation in the Humber Arm

alloc:btbon ranges from 505+31-2 Ma for the Little Port Complex (Jenner d. al .• 1991) to

485.7 +1.9/4 1.2 Ma for lhe Bay of Islands Complex (Dunning and Krogh. 1985). The

Little Port Complex is inle~ted as generated in a volcanic an:: setting wnereas lhe Bay of

Islands is interpreted as produced in a supra4 subduction setting (back-an::), indicating lhe

presence of a subduction zone out board of Laurentia. 4OAr/39Ar cooling ages of 469±S

Ma to 464±9 Ma from !he metamorphic sole of the Bay of Islands Complex (Dallmeyer

and Williams, 1975; Archibald and Fanar. 1976) provide a younger age limit for !he

ophiolite obduction. A UandeiJo cover over the Bay of Islands Complex and a Caradoc
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cover over the Humber Ann alIochlhon indicate that the tectonic imbrication associated with

the Taconic event was over by the Middle-Late Ordovician. Fmal emplacement of the

Humber Arm and Hare Bay allochthons is related to gravity sliding (Cawood, 1989: 1990)

after peak. orogenesis in the Mid Paleozoic (Salinic orogeny).

The Humber Zone also conlains polydefonned and regionally melamorphosed rocks.

which locally overlie Grenville basement. They fonn the Baie Vette or Reur de Lys block

and the Comer Brook Lake block (Fig. 2.1; Cawood ct aI., 1995; Hibbard el aI., (995)

and they are referred 10 as the internal Humber Zone (Hibbard et aI., 1995), since they are

located between the external allochthons and the Dwmage Zone. These rocks are mostly

siliciclastic with minor metavolcanic rocks and marble (Aeur de Lys Supergroup)

intercalated willi maflC~ultramafic rocks of ophiolitic affmity. Peak metamorphic conditions

in both blocks reached high-pressure amphibolite facies (7-9 Kb and 7QO-75QOC in Baie

Vette; Jamieson, 1990; 7-9 ICb and 65<rC in the Comer Brook. Lake; Cawood et aI.,

1995), with local peak pressure conditions in the eclogite facies (Baie Vene, 10-12 Kb and

4S0-5QOoC; Jamieson, 1990). 'The available absolute time constraints indicate that regional

metamorphism and deformation in these two blocks are Early Silurian, ca. 430425 Ma

(Cawood et aI., (995) and not Taconian as previously thought (Hibbard et al ., 1995).

The peri.Laurentian Dunnage Zone:

The NOIre Qame Subzone'

This subzone contains Early Paleozoic thick sequences of marine volcano-sedimentary

rocks which contain lower Ordovician Laurentian warm water fauna (S.H.Williams et aI.,

1995 and ref within) and associated volcanogenic sulphide deposits with non-radiogenic Pb

isotopic signatures, together with ophiolitic complexes broadly coeval with the Bay of

Islands ophiolite in the Humber Zone (Fig.2.1; Williams, 1995d,e). These rocks are
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interpreted as remnants of a peri-Laurentian Tremadocian 10 Early Uanvim arcIback arc

system.

TIle ophiolitic complexes include the Birt:hy. Advocate and Point Rousse complexes in

the Baie Verte area (Fig.2.t). which ~ pllydeformed. dismembered and locally

metamorphosed (Bitchy complex; peak P 9 Kb and SOO"C; Jamieson and O'Bieme-Ryan.

1991). as weU as other disrupted ophiolites. sucb as the Pynns Brook: and Grand Ul:ke

Complexes and the Hungry Mountain tonalite-gabbro complex. The more complete Betts

Cove ophiolite (Fig.2.1) has been dated at 488.6 +3.11-1.8 Ma (Dunning and Krogh.

1985) and is conformably covered by volcanics and sediments of the An:nig Snooks Ann

Group (c.r. Williams. 1995e). The most extensive ophiolite is the Annieopsquotch

Complex. which has been dated at 477.5 +2.61-2 Ma and 48[+4/-2 Ma (Dunning and

Krogh. 1985). This data confines the timing of ophiolite generation to the l...ate Tremadoc·

An:nig.

1be volcanic and sedimentary rocks of the Notre Dame Subzone have been divided in

two belts: a northern mafic volcanic belt and a southern belt of bimodal volcanics

(Williams, 1995e). The northern belt contains lhick mafic pillow lavas. associated dykes

and sills. clastic sedimentary rocks (greywackes. slates and cherts) and scarc:e limestone

lenses with Late Arenig-Uanvirn fauna. These rocks, like me Snooks Arm Grotlp. locally

overlie me Tremadoc-Arenig ophiolitic: complexes. To the south, the belt of bimodal

volcanics contains abundant basalt and rhyolite inten:alated with marine and terresaial

sedimentary rocks. This belt is divided in two major units, the Roberts Ann Group to the

nonh and the Buchans Group to the south (Fig.Z.I). both with calc·alkaline igneous rocks

which are interpreted as arc-derived (Swinden et at.• 1990; cr. Williams. 1995e).

Conodonts from the Buchans Group are Late Arenig-Llanvirn which agrees with an age of
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473+31·2 Maora rhyolite: in this group. A coeval rhyotite from the lop of the Roberts Arm

Group bas also been dated at473±2 Ma (Dunning et ai.. 1987).

Jb; Qashwgpd-s SlIbzOO<!'

This subzone (Fig.2.1), fonnerfy the Central Gneiss Terrane (van Bertel and Cume.

1988). includes psammitic and pelitic scltists. migmatitic gneiss and minor marble in

tectonic contact with mafic and ultr.unaflC tectonic slivers with ophiolitic affInities: both the

mcwedimeDls and the ophiolitic rocks are intruded by abundant foliated 10 massive diorites

and granodiorites of arc afrmity (c.r. Williams. 1995e). The ages of these plutons range

from 488 Ma (Dube et aI., 1996) to 456±3 Ma (zircon+titanite. least defonned tonalite:

Dunning ct al.. 1989) and are imerp~ted as coeval with the tectonic imbrication of the

metasedimentary and ultramafic units. An undefonned Early Silurian gabbroic intrusion

cross-<:utting the tectonic fabric in Ordovician tonalites (431±2 Ma; Main Gut Gabbro:

Dunning et aI•• 1990) and a KiAr metamorphic hornblende cooling age of 455±14 Ma in

rocks from this subzone (Stevens et aI., 1982) conflml the Taconian age of deformation

and metamorphism in these rocks. Silurian reactivation within the Dashwoods Subzone is

limired to the area around the Cape Ray fault (Dubt et aI .• 1996). Williams (I99Se)

correlates tltis subzone with the Dunnage Zone on the basis of the ophiolite-like mafIC and

uJttamafic rocks and the Ordovician tonalites. whereas Cawood et aL (1995) COIttlate the

paragneisscs wilh the Aeur de Lys SUpeTgIOup. placing the subzone in the internal Humber

Zone. Because the presence of Grenvillian basement has not been proven. the medium to

high grade rocks of the Dashwoods Subzone are more correctly iocluded in the Dunnage

Zone as a metamorphic equivalent of the Notte Dame Subzone.
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Twjlljogatc Sybzope" (Unknown affinity)

This is a small subzone within Notre Dame Subzone at Twillingatc and New World

Islands at the nonhern boundary between the Notre Dame and the Exploits subzones

(Fig.2.1). It is formed by mafIC volcanics. including pillow lavas. and non-fossiliferous

silicic pyroclastic rocks locally deformed and melalnOrphosed in amphibolite facies. These

volcanic rocks were intruded by the 5(J7+31·2 Ma lonalitic Twillingate granite (Elli0i d al..

199\). This tonalite was subsequently deformed and intruded by mafIC dykes with

4OArt39Ar amphibole ages around 470 Ma (Williams et al.• 1976). Even though this

subzone is surrounded by Noue Dame Subzone rocks with Silurian deformation (Elliot et

aJ .• 1991), the presence or Late Cambrian-Early Ordovician deformation is more typical of

the Exploits Subzone (Penobsconian event) and therefore its affinity remains unknown.

2.1.2.· The peri·Gondwanan margin of the Newfoundland Appalachians:

the Exploits Subzone aDd the Gander and Avalon %Ones:

The peri-Gondwanan margin of the Newfound.land Appalachians is characrerizc:d by

me cold water Acado-Baltic faunas of the Avalon Zone. the Early Ordovician cold-water

Celtic faunas of the Exploits Subzone (S.H-Williams et aI.• 1995) and~ significantly

by Uw: Larc Precambrian Avalonian rocks. These Avalonian rocks record the evolution of

an active margin on the periphery of Nco-Proterozoic Gondwana (O'Brien et at.• 1996),

which is coeval with the Late Precambrian rifting event in the Laurentian margin. The Late

Precambrian Avalonian rocks are not restricted to the Avalon Zone. they also appear in

tectonic windows under the Exploits Subzone in central Newfoundland and as basement

inlier.; in southern NewfoundJand, where the intense Silurian overprint makes the
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distinction between the rocks of the Exploits Subzone and the Gander Zone difficult

(Fig.2.l). These southern basement inliers are the objective of this study since they

repn:scnt some of the most outboard relicts of the Late Pm:ambrian margin of Gondwana.

The: fuploits Sub%one is inlCqmted as a peripheral Cambro-Ordovician an:: which was

accreted to a Cambrian passive margin ~ted by the Gander Zone during the Arenig

Penobsrottian event (Neuman and Max. 1989). lbc: Avalon Zone escaped these Early

Ordovician events and was juxtaposed against the Gander Zone during the Silurian Salinic

orogeny. These relicts of Avalonian basement in southern and central Newfoundland.

which. might represent basement 10 the Gander Zone, provide a strong linkage with the

Avalon ZOne or a similar Avalonian terrane (O'Brien et aI., 1996: van Staal c:t aI .• (996a).

The presence of late Arenig-Uanvim trilobites with Gondwanan-Avalonian affInities in the

Exploits Subzone (S.H. Williams et aI, 1995) also indicates a certain proximity with the

Avalon Zone.

The peri-Gondwanan Dunnage Zone: The Exploits Subzone

This subzone contains relicts of ophiolitic suites and volcano-sedimentary rocks which

were part of Cambro-Ordovician arc and bade-an: systems (Fig.l.2). AJthough

lithologically similar 10 the peri-LaweDtian Nom: Dame Subzone. the volcano-sedimentary

rocks are dominated by sedimenwy members. T'bt: volcanogenic massive sulphide deposits

of this subzone have a contrasting radiogenic Pb isol:opic signature. different from those of

the Notre Dame Subzone (Williams et aI .• 1988). Melanges are common and are interpreted

as accretionary prisms (Carmanville Melange. Lee and Williams, 1995) and as slopdtrench

deposits (Dunnage Melange; Williams, 1995e). Small Precambrian inliers (563±2 Ma

Valentine Lake and 565+41·2 Ma Cripple Back: Lake intIUSions; Evans et al., 1990) outcrop

in lectooic windows under Exploits Sub:zooe rocks of the Victoria Lake Group in ccntr.Jl
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Newfoundland. confltm.ing the peri-Goodwanan linkage provided by the distinctive Early

Ordovician Celtic faunas of this subzone (S.H. Williams et a1.• 1995)

The main ophiolitic suileS of lhe Exploits Subzone an:: the Pipestone Pond (494+31·2

Mil: Dunning and Krogh. 1985), Coy Pond (489 Ma; Dunning and Krogh. 1985) and

Great Bend complexes in cenual Newfoundland (Fig.2.2: Jenner and Swinden. 1993) and

the incomplete ophiolite suire of the South Lake Complex in the Weslem Arm of the Bay of

Exploits in northern Newfoundland. lbe mafic and ultramafic txxIies of the Gander River

Complex and their southward continuation along strike into me Baie d'Espoir and Bay du

Nord groups are interpreted as disrupted ophiolites (GRUB line: Fig.Z.ll. The 494 Ma

Pipestone Pond ophiolite was abducted over the sedimentary rocks of the Mount ContUlCk

Subzone of the Gander Zone and this leCtonic contact was stitched by the 474+6/·3 Ma

Panridgeberry Hills granite (Colman-Sadd et a1 .• 1992a). This indicates an Armig age for

the Penobscottian ophiolile obduction. which is consistent with the unconformable

deposition of Late Arenig sedimentary rocks over lhe 489 Ma Coy Pond ophiolite at Mount

Cormack. and over the GRUB ophiolite at Gander Lake.

Tbe volcanic and sedimenwy rocks of the Exploits Subzone have been divided into

several groups: the Wild Bight and the Exploits groups to the northwest and iLS eqwvaknl

in centtal Newfoundland the YICtOria LaIct Group. the Davidsville and Baie d'Espoir

groups to the east and the Bay du Nord Group in the south (Fig.2.2). These groups contain

felsie and mafic volcanic rocks. including pillow lava wil.h associated diabase and gabbro

intrusions. alternating with siliciclastic rocks. The 513±2 Ma Tally Pond volcanic rocks in

the Victoria LaIct group may marlc the inception of arc magmatism. The extrusion of the

498+61-4 Ma Tulks Hill volcanics in the Victoria Lake Group and the 486±3 Ma Tea Arm

tuff in the Exploits Group indicate thal are magmatism (O'Brien et aI•• 1997) was

contemporaneous with Tremadocian ophiolite formation. Tbe AJeaig Penobscottian event is
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marked by the pre-4TI Ma imbricatioo of ophiolitic-like gabbro and voIcano-sedimenwy

nxlts in the southern Bay du Nord Group (fucker et al.• 1994) but there is 00 evidence for

it in the Exploits Group (013rien et aI.. 1997). The ~nig Pcnobscon.ian event was

foUowed by a Late ~nig.Uanvimmajor back-an: rifting event. This cYent is marked by

back.-arc bimodal volcanism. extensional deformation and siliciclastic sedimentation

(462+4/-2 Ma. Victoria Lake Group; 468±2 Ma. Bale d'Espoir Group: 466±3 Ma. Bay du

Nord Group; cr.Colman-Sadd et aI .• 1992a: Late Arenig·Uanvim gnlp(olite faunas in the

Davidsville and Exploits groups. d. O'Brieo et aI., 1997). This is followed by the

conformable deposition of Upper Uanvim-Uandeilo limeslones and Caradoc shales and

greywac:kes at the lop of the Exploits Group (e.g. Williams. 1995e). marlring a Middle·

Upper Ordovician period of tt:etonic inactivity which coincides with me inuoductioo of

wann waler Laurentian faunas (S.H. Williams et aI., 1995).

Indian Bay Sybzooe- _

According to Williams (1995e) the volcanic and sedimenwy rocks at Indian Pond

form a separate subzone and overlay the low-grade Gander Group of the Gander Zone.

lbese rodes contain l....alt: Asenig Celtic fauna indicative of the peri-Gondwana realm

(Wooderley and Neuman. 1984; Williams S.H. et a.l., 1995) and are lilhok>gical.ly

equivalent to the basal strata of the Davidsville Group of the Exploits Subzone.. Because the

cootad is not exposed. it is uncertain if lbey represent an overlap sequence on ro the

Gander Group or a leCtOllic stice of the Exploits Subzone, bur local Sllatigraphic

relationships seem to support an overlapping relationship (e.g. Williams, 1995e).

The Gander Zone:

The Gander Zone was classically interpreta:l as the opposing margin to the Humber

Zone (Williams, 1964). This zone is bounded to the west by the Exploits Subzone and to
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the: east by die Avalon Zone. This lOne is characterized by low-grade. quartNlch

siliciclastic rocks and medium- to high-grade: micaschists and q~fcldspalhicgneisses.

It has been divided in three separate subzooes: the northeastern Gander Lake. the central

Mount Cormack and the southwestern Meelpaeg subzones (fig.Z.2l. These last two zones

are interJRted as teetoruc windows of lhe Gander Zone under the ExploilS Subzone

(Williams et ai.• 1988). The Meelpacg Subzone is inlerpreted EO continue in soothc.m

Newfoundland along the Pon-aux-Basques area (Fig.2.2l. however, this is controversial

as demonstrated in chaIXcr rv of this thesis.

Gander Icake Sybzone'

This subzone has the type sequences of the Gander Zone (Williams. 1979. 19950. It

is underlain by the low grade rocks of the Gander Group and the mediumlhigh-grade

Square Pond and Hare Bay gneisses (Fig.2.2). which are interpreted as melamOrphic

equivalenlS of the Gander Group. The Gander Group contains non-fossiliferous

gn:enscbist facies psanunires. pelites and quartzites. A 569 Ma detrital zirt:on and a reported

overlapping relationship with the I...are Arenig Indian Bay Subzone provide the older and

younger age limilS for the depositiOD afme group (O'Neill. 1991). which is intcrprelCd as a

siliciclastic Cambrian passive margin deposit. The Square Pond Gneiss forms a 12 Km

wide and 150 Km long band east of the: Gander Group. with increasing Silurian Barrovian

type: melamorphism from greenschist facies in the: wesl 10 upper amphioolite in the east

(King etal.• 1995). East of the Square Pond Gneiss. the Hare Bay Gneiss forms a 10 Km

by 140 Km band of pttragneisses. amphibolites and orthogneisses. which has been

cortelaled with the Little Passage Gneiss to the south (Fig.2.2: Colman-Sadd, 1980). The

onhogneisses in the Hare Bay Gneiss have been dated at 487 Ma (megacrystic granite) and

476 Ma (tonalitic orthogneiss: Dunning. unpublished).
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Moun! Cormack Subzone"

This subzone outcrops in oentral Newfoundland and it is inlerpl'eled as a tectonic

window rimmed by the voicanl;so:limentary rocks of the Exploits Subzone and the

Pipestone. Coy Pond and Great Bend ophiolitic complexes (Fig.2.2l. This subzone is

formed by sandstones. shales and siltstones. which are correlated with the Gander Group

(Williams et aI., 1988). 1bese rocks show a metamorphic gradation from sub-biotite f:1Cies

up to migmatite in the core of the~. Migmatization (465±2 Ma: Colman-Sadd et al..

19913) was coeval with granite: intrusion (464+41~3 Ma Through Hill granite: Colman-Sadd

et aI., 19914) and post-dates the intrusion of the Partridgeberry Hills granite (474+61-3

Ma), which stitches the contact between the low grade rim of this subzone and the ExplOits

Subzone, cross-cutting the Coy Pond Complex (Colman-Sadd and Swinden. 1984).

The Meelpaeg Suhzoos'

This subzone comains amphibolite facies p.wnmitic rocks and ~uivalent high-grade

migmatites (Fig.2.2). This subzone is 5Cpanued from the Mount Cormack Subzone by the

Pipestone complex. bul interlaycm:1 quartzite. psanunite and metapelite provide a

Iilhological ~Iatioo. between the subzones (Williams el al.• 1988) which is also

StlPlXl"Cd by the coeval granitic plutonism (464±2 Ma Great Burnt granite: Colman-5add et

aI.• 19923). The abundance of amphibolite in the southern part of the complex forms the

basis for the lithological correlation with the PoI1-Aux-Basques complex (Olapter fV) in

southern Newfoundland.

The AvalOD Zone:

The Avalon Zone (Sl!'nsu strict(); e.g. O'Brien et aI., 1996) contains low-grade

volcanic. clastic and plutonic rocb of Late Precambrian to Early Paleozoic age (Fig.2.2).
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These rocks were juxtaposed against the high grade Hare Bay and J..jttk Passage gneisses

of the Gander ZOne during the Silurian (O'Brien et aI .• 1996). The rcrm AvaJon Zone

(sensu laIo:. e.g. O'Brien et aI., 19%) has been used to include the l...i1e Precambrian

basement rocks that outcrop in the southern Hermitage Aelture in southern Newfoundland

as part oCtile Avaloo Zone (Fig.2.2). These rocks in the HemUtage Aexure. which are the

objective of study in chapler lD (Cinq-Cerf gneiss). have: been overprinted by the Early­

MJd Paleozoic tc:etonothermal events common to the ExploilS Subzone and the Gander

Zone. Such Early-Mid Paleozoic overprint is nOl present in the Avalon Zone.

The oldest rock sequences of the Avalon Zone (s.s.) are the basal breccia with

limestone blocks and the sequence of pillow basalts. tuffs and mafic breccia of the Burin

Group. in the Burin Peninsula (Fig.l.l), which are imercalated with a 763±3 Ma complex:

of gabbro. quartz-diorite and plagiogranite (Krogh et aI., 1988). In the nearby Hennitage

Peninsula (Fig.l.ll 682 Ma felsic volcanics inten::alared with limestones are intruded by

bimcdaJ plutonic complexes (673±3 Ma Furby Cove suite: O'Brien et aI., 1996). which

were unconfonnabk covered by 630-610 Ma volcanic and siliciclatic rocks. following a

deformational event (e.g. O'Brien et aI.• 1996). 1bese 630-610 volcarUc roelcs have calc­

a1lcaJine and tholeiitic afftnities and a wide disaibution over me Avalon Zone (Love Cove

and Connecting Point groups), and arein~ as volcanic ate. 1be 630-620 volcano­

sedimentary rocks are inuuded by me 621±3 Ma Simmons Brook inallSive suite in me

Hermitage Bay area and by the 620 Ma Holyrood calc-alkaline granite in me Avalon

Peninsula (e.g. O'Brien el aI., 1996). These events are coeval with granite intrusion of

616+5/-4 Ma granite (Dunning ct a1.• 1995) in low P I high. T biotilC<ordicrite micascttists

at Miquclon island (France), south of me Burin Peninsula. Following a post-620 Ma

leCronic evcnt, there is development of extensioaal basins witll coeval deposition of deep

water nubidite, g1aciogenic debris flows and tillite. as well as subaerial sedimentation and
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bimodal volcanism (570+31-2 Ma. Musgravetown group: 568±5 and 551±6 Ma. Long

HaIbour group: 565±3 Ma. $1. John's and Signal Hill groups: O'Brien et aJ..I996) and

intrusion of Sn+31·2 Ma gr.uUle into the~y deformed 61().620 Ma marine volcanic

and sihciclastic rocks of the BonaviSla Bay area (Nonhem Avalon Peninsula). 11Jese Late

Precambrian rocks were weakly deformed and unconformably covered by Cambrian rocks.

The Cambrian sequence has been described in detail by Landing (1996) and consists of

basal red sandstones and siliciclastics alternating wilh red limestones (Lower Cambrian),

lha1 are followed by Middle Cambrian-Early Ordovician siliciclastic sedimentation

alternating with ash-flow tuffs in the MMJdJe Cambrian. 1be top of the sequence is ~nig

and consists of quartz-rich siliciclastics with oolitic ironstone. This Cambrian-Early

Ordovician sequence records se~ unconformities which are interpreted as eustatic

changes related to basin development (Landing. 1996). A 441±3 Ma defonned mafic sill in

the Avalon peninsula indicates the presence of Middle Paleozoic defonnation.

Unconformable Early Devonian basins and plulons dated at 394+61-4 MOl (KIogh et OIl..

1988) to 374±2 Ma (Kerr et aI., 1993) constrain the younger limit for this Mid Paleozoic

defonnation.

2.1.3.- Middle and Lale Paleozoic evolution of (he Newfoundland

Appalachians:

Following the Early -Middle Ordovician leCtonothenna.l events, major tectonic activity

ceased on both sides of the Iapetus Ocean until the late Ordovician - Silurian. Middle and

Late Ordovician rock sequences in the Exploits Subzone record the introduction of

laurentian faunas. suggesting the movemenl of the peri-Gondwanan elements of the

Dunnage and Gander Zones towards wanner latitudes (S.H. Williams et at., 1995). Fmal
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IXCal1 closure look: place in the l....ak: Ordovician -Early Silurian. leading to the Silurian

collision between the opposing matgiD of the Iapetus. The effects of the Silurian Salinic

orogeny~ most intense in the margins of the Dunnage and Gander zones and the internal

pans of the Humber Zone (Fig.l,I), Extensive Silurian volcanic (429420 Ma) and

sedimenuuy rocks (Uandovery-WendJoc:k) kxally overlie lhe~ and Early

Paleozoic elements of the Humber, Dunnage. Gander zones and Late Precambrian

basement of the Hermilage Flexun: (Dunning et aI., 1990; O'Brien et al.. 1991; Wllliams

1995g-i: Williams et aI .. 1995a-c,.e; Williams and O'Brien. 1995). This sedimentation and

volcanism is coeval with rnttarnotpbism and deformation at all crustal levels and thc

generation of extensive 1- and $.typc: plutons in the 431· 415 Ma interval (Dunning et al.,

1990). This plutonism is syn-kinemalic in most areas. except in the Dashwoods Subzone

(431 Ma post-kinematic gabbros). During this period syn·magmatic and subsolidu$

deformation of the Silurian granites of the northeastern Gander Zone, and their counlry

rock.. record lateral movement associated with the fmal docking of the Avalon Zone along

the Dover Faull (Fig.2.2.: Holdswonh Cl aI., 1993; Holdsworth. 1994; Scholfield and

O'Lemos, 1995; D'Lemos el aI., 1995). Post-kinematic plutons intrude during a futal

magmatic pulse between 395 and 375 Ma. although most pluloos group around 390 Ma:

the Ackley granite (378-374 Ma, 4OArf39Ar, Kontaket aJ., 1988) intrudes both the Gander

and Avaloo Zone stitching the Hermitage-Dover Fault system. This Early Devonian

plutonism is coeval with formatioo of post-Collisional basins with terrestrial .sedimcnts and

volcanics in the Humber, Dunnage and Avalon Zones (Chorlton et aI.• 1995; Williams

1995g-i; Williams et 31., 1995e; Williams and O'Brien. 1995). Therefore. peak orogenesis

in the Newfoundland Appalachians took place during the Silurian (Salinic orogeny:

Dunning et aI., 1990). Dcvono-Carboniferous transcurrent activity along the Cabot Fault

system (Hyde, 1995) lead 10 the opening of the Deer l...aIce and Bay St. Georges basins

(Fig.2.1; Late DcvoniaD·Middie Carboniferous). PaleoOloiogical data indicate the preseoce
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of European forms during this period (European Carboniferous floras: Nowlan and

Neuman. 1991. and ref. within).

2.2.- GEOLOGICAL ELEMENTS OF THE SOUTHERN

NEWFOUNDLAND APPALACHIANS: THE HERMITAGE FLEXURE

The Hennitage Aexure is the characteristic Z shaped structural trend of the southern

NewfoundJand Appalachians (WiJliams et aI.• 197<t, Fig. 2.1 and 2.3). It is in this area thai

the classic subdivisions ofche Newfoundland Appalachians into Humber. Dunnage (Notre

J:);um: and ~ploilS subzones). Gander and Avalon zones become obscured by intense

plutonism. metamorphism and late major faulting (Fig.2.3). These major fault zones bring

together blocks with different geological h.islories. which are from west to east: the

Dashwoods Subzone, the gneissic rocks of the Port-aux-Basques area. the Bay du Nord

Group, the Silurian La Paile basin with its Late Precambrian-Early Ordovician basement

block, the Little Passage gneiss and the Avalon Zone (Fig. 2.3). The Dashwoods Subzone

is pan of the Laurentian margin of the Iapetus Ocean whereas the other blocks are assigned

10 the pe:ri-Gondwanan margin. The following is a brief description of these blocks. the

main fault systems and the time constraints provided by me abundant syn- and post­

collisional plutons. More detailed descriptions of the areas of study are given in chapters rn

"'" IV.

The Laurentian Margin:

The D35hwood§ Subzone'

This subzone has already heen described in section 2.1.1. It consists of extensive

tooalitic complexes of Early to Middle Ordovician age (Dunning et at.• 1990: Dube et at.,
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19%). mafic-ultramaflC complexes (Long Range ultramafic complex) and medium- to high­

grade paragneisses (Keeplngs gneiss; CborItOD. 1984). Time constraints (see section

2..1.1) indicale Middle Ordovician Taconian deformation and metamorphism.

The Cafl(; Ray fault lhe Windsor Poim Group and 1m Bjlljiak Bl1X!k Fonnarion'

The Cape Ray fault (Fig.2.3) forms the southern eXlen! of the fault lineament defined

by the Red lndian Line. which marks the boundary between tbe relicts of the opposite

margins of the Iapetus Ocean. In the cenual part of the Hennitage Aexure the Cape Ray

fault splays into a northern track which fonns pan of the Red Indian Line and an eastern

track. the Gunflap HiUs fault splay (Fig.2A). 4OArf39Ar dating of synkinematic

hornblende (407±4 Ma) and biotite (405±4 Ma) indicates that the main movement along the

fault. which maries the suturing between lhe peri-Laurentian Dashwoods Subzone and the

rocks of the peri-Gondwanan margin. was Lare Silurian.Early Devonian (Clube et aI.,

1996). Two groups of defonned low grade rocks are associated with the Cape Ray Fault:

the Wmdsor Point Group (Brown, 19TI) and the Billiards Brook Formation (Chorlton.

1980). The Windsor Point Group includes Middle Ordovician volcanics (Dube et al..

19%). whereas the Billiards Brook formation conlains Mid Devonian flora (Cooper. 1954:

Cho.-Iloo. 1984). Deformation of me Billiards Brook Fom1ation and transeurttnt shearing

of 386-384 Ma post-uetonic plutons along the southern extent of the faull indic:aIe lh:u the

Cape Ray fault remained active past me peak of the Silurian Salinic orogenesis. Funher

constraints on the timing of defonnation along the Cape Ray Fault m: given in chapter rv.
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The Gondwanan Margin:

The Pon~aux_BasqUCiSGneiss CBmwg 1m· AREA OF STUDy chqqtcrln

This gneissic package is bounded to the: west by the Cape Ray Fault and to the east

by the Bay Ie Moine shear zone and the 416 Ma La Poile batholith. which separates it from

Bay du Nord Group of the Exploits Subzone <Fig.2.4). These are medium- to high-gmde

metamorphic rocks defonned and metamorphosed during the Silurian Salinic orogeny

(D.mni.ng et aI., 1990; Bwgess et a1., 1995). Lithological correlations with the Gander

Zone (Meelpaeg Subzone. c,r. Williams. et aI.. 1995g; uttle Passage Gneiss. Brown.

1977) or the Exploits Subzone's Bay du Nord Group (Charlton. 1984) an: hampered by

the absence of pre-5ilurian absolute ages. but these correlations suggest an affinily with the

rocks from the peri-Gondwanan margin of the NewfoundJand AppaJac:::hians. The Port­

aux-Basques Gneiss of Brown (1977) has been recently divided imo Grand Bay and Port­

aux-Basques complexes and the redefined Harbour Lc COll Group (Fig. 2.4) by van Staal

el aI. (19% b. c).

1( is thn~rminology olvan Staal eta!. (J992: 1996b; /996c) thnJ is going to bt used

ill lh~ following chapters.

The Bay du Nord Group ([)uooagr; Zoor;l.

This is a volcano-sedimentary unillocaJly metamOrphosed 10 amphibolire facies which

has had a polycyclic evolution. Tucker et aJ. (1994) demonsuated that pan of the Bay du

Nord Group was already deposited and imbricated with ophiolitic-like gabbro prior to !he

intrusion of the 477 .6±1.8 Ma Baggs Hill granite (Charlton, 1980, Fig.2.3 and 2.4). A

Bay du Nord tuff level in the central part of the Hermitage Aexure has been dated at 466±3

Ma (Dunning et aJ., 1990; Fig.2.3), indicating the composite na~of this group. OasIS of
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the Baggs Hill gmlllC~ inc:orpornted into conglomerates (Charlton. 1980) of the

younger Dolman Cove belt. but a U-Pb age of a tuff in this belt indicates thaI at 1easl certain

parts oftbe belt~ Silwian (Dunning, pers comm.).

The Bay du Nord Group has been melamOCphosed to Barrovian amphibolite facies

conditions (Fig.2.4). Polymictic conglomerates with clasts of the Baggs Hill granite

(Charlton, 1980) indicate that the Barrovian metamorphism is post-477 Ma. According to

Chorlton (1980). the migmatitic rocks in the Bay du Nord Group were produced by

granitic injections 3S9Xiated with the Rose Blanche granite (419 Ma: Dunning

unpublished). lbe Bay du Nord Group is also intruded by the Iale-kinematic La PoiIe

batholith (416±4 Ma: Choriton and Dallmeyer. 1986) which. with the Rose Blanche

granite. provides the youngest constraints for the Barroviao metamorphic event and the

initiation of the post-466 Ma defonnation.

The Bay du Nord Group contains massive sulphide deposits with primitive Ph

isotopic signatures characteristic of the Exploits Subzone (Swinden and Thorpe. 1984).

According to Dunning et aJ (1990). the Bay du Nord Group can be regionally correlated

with the coeval Bay d'Espoir Group (Exploits Subzone) on the basis of lithology, type of

mineral deposits and Ph isotopic signatures and geological evolution.

lb; La Poile Basin·

lbis is a syn-orogenic basin formed by volcano-sedimentary rocks in ~oschis[

facies conditions (Chorllon, 1980). U-Pb dating of lUff levels al the base and the top of the

sequence indicates that it developed between 428 and 420 Ma (O'Brien et al.• 1993). Oasts

of the La1c: Precambrian.Early Ordovician basement block were incorporated into

conglomeratic levels indicating a basement-cover relationship (Chorlton. 1984; O'Brien eI

al.• 1993). During the subsequent deforma.tion. the basement block was thrust o~r the
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basin along the Cinq-cerf fawt zone. which is sealed by the 390±3 Ma Cbetwynd granite

(Fig. 2.4; O'Brien et aI.• 1993). The cootaet betw~n the La Poi1e Basin and the Bay du

Nord Group is the Bay d' Est fault zone, wb.ich Chortton (1984) interpreted as an

exrensiona.l fault and O'Brien et al (1991) tcinterpreted as Uuust fault of die La Peile Basin

and its basement over the Bay du Nord Group. This brinJe fault zone cuts the 390 Ma

Chetwynd granite and the Ironbound plUiOO (361±5 Ma. 4OArl39Ar hornblende. 3.5O±S

Ma. 4OArl39Ar biotite; Chorllon and Dallmeyer. 1986). indicating 1:1 post-390 Ma and a

possible post-361 Ma fault movement (Fig.2.4).

The La" Precambrian _f.arly Ordgyjcian basement block (AREA OF SUWY Chqmt:r

This is a composite block of [ow grade rocks and gneisses which have recorded Lale

Precambrian Avalonian. Early Ordov1cian and Silurian magmatic and defonnational evcnls.

LaIe Pm:ambrian rocks have been lXJSitivdy identified in three localities: Cinq-Cerf ­

Grand Bruit, Grandys Brook and Grey River (Rg.l.3), Undated fragments of Ehis

basement an: also~ed as mega-eoclaves of mica. schist and migmatitic gneiss within

the Silurian Burgeo baIho!im (429+51-3 Ma. 415±2 Ma: Dunning et a1.. 1990). One of

lhcse enclaves. an agmaritic gneiss at Sandbanks. near Burgeo. contains disrupc:ed

amphibolite injc:cted by 453±3 Ma leucosome cutting the fabric (Fox Point agmatite:.

Dunning. unpublished in O'Brien and O'Brien. 1992).

The rocks at Cinq-Cerf - Grand Bruit and Grandys Brook af1: basemeot to the La Poile

basin (O'Brien et al.. 1991). This basement contains both I....ate ~ambrian (ow grade

volcano-sedimentary rocks and the undated gneissic rocks of the Cinq-Cerf gneiss. which

are the objective of study in chapler m (Fig. 2.3 and 2.4). The low-grade Late Precambrian

rocks were intruded by a 518-566 Ma plutonic suite (Roo suite) and by Early Ordovician
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plutons and deformed during the Late Precambrian and the Silurian (O'Brien et aI.• 1991.

1993).

The Late Precambrian nx:ks at Grey River (Fig.2.3) are mcravolcarUcs.

metasedimenlS. amph.ibolites and migmaIitic gneisses (Blad::wood. 1985). A dated

migmatitic gneiss wirh a procolith age of 686+331-15 Ma and 579±10 Ma mctaIIlCXphic

tilanite and unconformable S44±3 Ma tuff confinn the presence of Late Precambrian

Avalonian tectonothennal events (Dunning and O'Brien, 1989).

The Ijnk; Passage Gneiss (Gander 2'.00e).

This gneiss is formed by sillimanite-bearing mica schists. merapsanuniles.

amphibolites and tonalitic migmatiteS intruded by leucogranites. including the synkincmatic

Gaullois granite (421±2 Ma: Dunning et aI .• 1990). This gneiss is considered as the

southern prolongation of the Hare Bay Gneiss of the northeastern Gander Zone (e.g .•

Willi~ Colman·Sadd and O'Neill, 1995). and was correlated with the Pon-aux·Basques

Gneiss on the basis of lithology and style of defonnaIion by Brown (1975). Mosr of the

deformation is syn-melamorphic (P:iaseclri. 1988) and is dated at 423+51-3 Ma (zircon age:

from a tonalitic migmatile: Dunning et aI.•1990). The gneiss is faul!ed to the north against

the Mid Ordoviciarl Baie D'Espoir Group of the Exploits Subzone along the Day Cove

thrusL To the south the gneiss is juxlapOSCd against the Avalon Zone along £he Hermitage

Bay Fault.

The Hennjlage eay FaJl" and II!!!! Avalon Zone:

The Hermitge Bay Fault separates the Little Passage gneiss and the Gaultois granite

from the rocks of £he Avalon Zone (5.5.) in the Hermitage Peninsula (Fig.2.3). This fault

zone is imerpreled as the southern extent of Ule Dover fault. lbese twO faults were intruded
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by the Ackley granite (378-374 Ma, 4OArf39Ar, Kanlak et: al .• 1988). The rocks of the

Avalon Zone (Section 2.1.2) have escaped Silurian metamorphism but are localJy inuuded

by Early Devonian granites (c.g.. O'Brien et: aI .• 1996). The Avaklnian rocks in the

Hcmtitage Peninsula have recorded 685-670 Ma., 630-620 Ma and 580-550 Ma magmatic:.

deformational and depositional events. some of wllich are coeval with those in the Late

Precambrian basement of the Hennitage Flexure (O'Brien et aJ.. 19%).

2.3.- AVALONIAN EVENTS AND LImOLOGICAL CORRELATIONS IN

THE SOUTHERN NEWFOUNDLAND APPALACHIANS.-

The following two chapters deal with the tectonOthermal evolution of two different

rock units in the southwest Hcnnitage flexure: the Cinq-<:erf gneiss (Chapter rrn and the

MaIgame orthogneiss (Chapler IV). These two rock units were sckcted with the aim of

unn.velling me ICClonothennal evolution of some aCme most OUtboard elements of the peri­

Gondwanan margin of the Iapetus ocean with proven Avak>n.ian affmities. while searching

for a pre-Avalonian basement.

The Cinq-cerf gneiss (01apcr Ill) is the westenunost gneissic complex of the I...aIe

Precambrian basement block of the Hem1itage Flexure and according 10 O'Brien Cl a1

(1996) is equivalent to the 686 Ma Grey River gneiss (Fig.2.3). The evidence for l....are

Precambrian, Early Ordovician and Silurian overprints in the nearby rocks suggested thac

these could be some of the oldest rocks along the peri-Gondwanan margin of Iapetus.

overprinled by Avalonian events and the Paleozoic Penobscottian and Salinic evenlS which

are characteristic of the Exploits Subzone and the Gander Zone.
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Rocks of the Port-aux·BasquescomplcK Conn pan of the westernmost segment of me

peri-Goodwanan margin of the Iapetus ocean in the Newfoundland Appalachians

(Fig.2.). The upper amphibolite facies Margaree orthogneiss (01apler fV) of the: Port­

aux.-Basques complex resembles the Cinq-Cerf gneiss. whereas the counuy rock

paragoeisses resemble the amphibolite-rich rocks in the pre-477 Ma Bay du Nord Group

(Fig.2.4; ChortloD. (984). This would suggest lhal if there is a Port-aux.-Basques complex

I Bay du Nord group connection. some of the rocks and the defonnation in the Pon-aux.­

Basques complex could be pre477 Ma or even older. A test of these correlations is

provided by the Margarec orthogneiss (Chapter IV), which contains the oldest pre-tectonic

inuusive rocks inco the metasedimentary members of the Polt-Aux.-Basques complex

(Brown. 1977). 1be age of these rocks and the teetonothennaJ events recorded in them will

provide the first absolute time constraints on the pre-Silurian tectonothennal evolution of

tbe POI1-aux.-Basques complex.
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CHAPTER ID.

THE CINQ·CERF GNEISS (SOUTHWEST Hermitage Flexure):

3.1.· INTRODUCTION:

Some of the strongest evidence for the Gondwanan linkage of the eastern margin of

the Iaperus Ocean came from the Late ~an rocks of the Hcmtitage Acxure.

Southem Newfoundland. lbese rocks are Avalonian relicts variably overprinted by the

Early Ordovician and Silurian ltttonothermaJ events recorded in the Central Mobile belt of

the Newfoundland Appalachians (Fig.J.I: O'Brien et at., 1996). 1bese relicts comprise

Late Precambrian low-grade volcano-sedimentary sequences. plutonic suites and gneissic

complexes. the GteY4River and Cinq-Cerf gneisses (Dunning and O'Brien. 1989; Chapter

2). These Larc Pm:ambrian rocks form two extensive outcrops at Grey River and Grand

Bruit-Cinq Cerf. and appear in tectonic windows under Silurian volcanosedimenwy rocks

(La PoiJe Basin. O'Brien et aI•• 1991) and as megaeoclaves in the Silurian Bucgeo g:ranite

(O'Brien et aI., 1996). fonning the so-called la1e Prt.cambrian-Early Paleozoic basement

block of the Hennitage Aexure (Fig. 3.1; O'Brien et at., 1991). Late ~ambrian plutons

also appear in two small basement inlier.; in the Exploits subzone in central Newfoundland

(Fig. 3.1), suggesting thaI this Late Precambrian basement extends fanber north (O'Brien

el aI., 1996).
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These Late Precambrian vok:aoosedimcntary and plutonic toea are coeval with simi.lar

rocks in the Avaloo Zone (Fig.J.t: O'Brien et aI., 1996). However, me Precambrian

gneissic complexes of the Hermitage flexure. the Grey River and Cinq--Cerf gneisses. do

not have Iithologica1 equivalents in the Avalon Zone (O'Brien et at. 1996). Prior to tlUs

study, Precambrian absolute ages were only available from the Grey River gneiss (686 Ma

protolith. 575 Ma metamorphism; Dunning and O'Brien, 1989). whereas the Cinq-Cerf

gneiss was inferred to be intruded by 570 Ma plutonic rocks (Dunning and O'Brien. 1989;

O'Brien et aJ.. 1993). The Cinq-Cerf gneiss. the westernmost of the two gneissic

complexes, was also interpreted to be basement to a nearby. pre-570 Ma. low-grade

volcano-sedimentary sequence (O'Brien et aI •• 1996). This suggested that the Cinq.Cerf

gneiss, as defined by a.H. O'Brien (1988.1989, (990). could contain some of the oldest.

undated. Precambrian peri-Gondwanan rocks in the southwestern Hennitage Aexure.

Therefore. making the Cinq-Cerf gneiss an important wget to unravel the Precambrian

lCCtoncxhennal evolution of the westernmost Hennitage flexure and the 5ubsequcm

Paleozoic overprints.

The SllUClUCailineaments in the SOUthwestern Hermitage Flexure define a convergence

of the main zonal divisions of the Newfoundland Appalachians. 1besc: zones are difficult to

correlate aCIOSS the Cabal suail with the ternlDe divisions in Cape Bn:ton Island and the rest

of the nonbem AppaJachians (Fig3.1; Barr and White. 1996). Therefore the dara presented

in this cbapler will be critical 10 assess lbese correlations. particularly those between the

Avalonian terranes of Cape Brelon and the Newfoundland Appalachians (Barr and White.

1996; Van Staal et al., 1996a). Since the Cinq-Cerf gneiss is pan of the westernmost

proven extent of Avalonian rocks in the Newfoundland Appalachians. this study will

provide a unique opportunity 10 forward the understanding of the geological evolution of

the Gondwanan elementS along the eastern margin of the Iaperus Ocean. lbese correlations
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and the implications for the Precambrian and Paleomic evolution of North Atlantic peri­

Gondwana will be discussed in Chapter vn of die lbesis.

In this study a combination of detailed mapping. petrography. high precision U-Pb

geochronology and major and ur.e element geochemistry bas been used to demonstrate the

presence of previously unreported la.Ie Precambrian events in the Cinq-Cerf gneiss. These

l1ewly rqx>rted Precambrian events further strengthen the linkage with the Avalon Zone of

the Newfoundland Appalachians. The following data also highlight the intensity of the

Silurian overprint in the make-up of the gneissic complex. chaUenging the previous

interpretation of these rocks as high-grade gneisses produced by Precambrian regional

metamorpbism (O'Brien et al.. 1993).

3.2.- LOCATION, LOGISTICS AND OUTCROP

The Cinq Cerf gneiss is located in the southwestern coast of Newfoundland (Canada)

3 Km east of Grand Bruit. 80 K.m east of Port-Aux-Basques and 40 K.rn west of Burgee.

Three sections along the coast were studied: a 2 Km long by 0.5 Krn wide section between

Sandbank Point and East Olver Head, the largest island in the Three Island group and a 200

m section at Cinq-Cerf Bay (Fig.3.2). Most of the work. however, was concentrated in the

largest and most accessible Sandbank-East Diver Head section. which is the one with the

best field relationships.

lbe communitY of Grand Bruit was used as a field base. Year round access to the

community is provided by Marine Atlantic coastal boats. The Sandbank Point - East Diver

Head section is easily accessible by foot from Grand Bruit. A boat was used to reach the

outcrops at Three Islands and Cinq-Cerf Bay. Boat services can be obtained by hiring a
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lo:aI flSherman from Grand BruiL II is recomrnende.d that the area be visited during lhe

summer or early in the fal.l when weather is the best. OuriDg this time foggy and wei:

conditions tend 10 Jnvail.

The area is characterized by barren land with exlenSive rock. exposure covered by thin

peal bogs and scarce. sma1J ~l\ICkarrtore~ patches. Overall outcrop quality is excellent and

the shoreline offers a wide exposure of fresh outcrop.

3.3.- PREVIOUS WORK:

This package of gneisses has been previously mapped as part of 1:63,360 (Cooper.

1954) and 1:50.000 scale regional maps (Chorlton, 1978. 1980; B.H. O'Brien, 1988.

1989). Cooper (1954) was the first 10 describe these rocks and grouped them with other

rock types as part of his ~coastal belt~. He also mapped several lithological units in lhe

Sandbank area (Cioq-Cetf gneiss of O'Brien. 1988) which have been corroborated in this

study. Cborlton (1978; 1980) studied these rocks wilhin a wider regional study of the

geology of southwest Newfoundland as pan of her Ph.D. thesis ar: Memorial University

(Chorilon. 1984). She made the rust detailed desaiption of this set of gneisses which she

interpreted as an Early Ordovician igneous complex. the Cinq-Cerf complex (Charlton.

1980: 1984). Delailed mapping in the La Poile-Grand Bruit area (S.H.O'Brien • 1987;

1988; 1989; 1990) coupled with extensive U-Pb geoctU'onQlogy (Dunning and S.J.

O'Brien, 1989; B.H. O'Brien et aI., 1991; B.H. O'Brien et aI., 1993) demonstrated that

the Cinq-Cerf gneiss is part of a polydefonned Late Precambrian-Ordovician basement with

Avalonian affinities. B.H. O'Brien (1989; 1990) and B.H. O'Brien et aJ. (1993) mapped

the areal. dislribution of the gneissic complex. and defined the natw'e of its boundaries. But

due to their scale of work they did not map the complex in detail or define any intemal

45



units. U-Pb geochronology in the complex is limited (0 the unpublished data of G.R.

Dunning and B.H. O'Brien from Three lslands.

3.4.- GEOLOGICAL SEllING:

The Cinq-Cerf gneiss COfislitutes part of the Late Precambrian-Early Ordovician

basemen! which OUiCrops south of the Bay d'Est fault in the La PoiJe-Burgeo area of the

Hermitage Aexure (Fig.3.2 : B.H. O'Brien et al., 1991). 1llis basemenl and its Silurian

volcanosedimentary cover (The La Poile Basin; B.H. O'Brien d: aI .• 1991) are part of a

composilc block, which is separated by the Bay db fault from the Bay du Nord Group of

the Dunnage Zone to the north (fig.3.2: B.H. O'Brien d: aI.• 1991). Both basement and

Silurian cover were deformed during the Silurian Salinic orogeny and intnJded by Siluro­

Devonian plutonic rocks (Dunning ct ai, 1990; B.H. O'Brien et aI., 199 I). This composite

block is going to be described following a N-S trend (Fig.3.2). i.e. from the Silurian cover

to the Late Precambrian - Early Paleozoic basement. wiUl emphasis on the field and

absolulc age constraints.

The CO~ Silurian volcanosedimenwy rocks of the La Poile Basin are fault bounded

to the north by the Bay d'Est fault and to the south by the Cinq-Cerf rawt (Fig.3.2). LaIe

Precambrian rocks also outcrop in lCCtOIlic windows wilhin the Silurian La Poile Basin

between the Bay d'Est and the Cinq-Cerf faults. These tectonic windows and the p~nce,

in conglomerates of the La Poile Basin, of clasts derived from the nearby Late

Precambrian-Early Paleozoic roclcs indicate a basement-cover relationship (B.H. O'Brien d:

aI.,1991).
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The area south of the Cinq-eerf fault (Fig. 3.2) is dominaled by Lare Precambrian,

low~grade volcano-sedimentary and inttusive rocks and med.ium- 10 high-grade gneisses.

the Cinq-Cerf gneiss of O'Brien et ai. (1988). Dube and Dunning (in press) dated a luff

level from the volcanosedimentary sequence, formed by the Whittle Hill sandstone and

Third Pond tuff (8.H. O'Brien, 1988; Dwming and O'Brien, 1989), at 585±5 Ma This

sequence hosts the Late Precambrian gold-mineralization at Hope Brook mine (S.H.

O'Brien, 1987; Dube and Dunning, in press) and was intruded by 570 to 563 Ma granitic

and gabbroic rocks (Roti suite, Dunning and O'Brien, 1989; S.H.O'Brien et aI., 199[;

S.H. O'Brien et aI., 1993, Dube and Dunning, in press). Early Ordovician bimodal

plutons (499+3/--4 Ma Wild Cove granite, 495±2 Ma Emie Pond gabbro; Dunning and

O'Brien, 1989; S.H. O'Brien et aI.• 1991) intruded and cross-cut folds in the low.grade

Late Precambrian volcanosedimentary sequence, demonstrating the presence of pre-495Ma

deformation in the Lace Precambrian block (B.H. O'Brien, 1988: S.H. O'Brien. pets

comm: B. DubC, peTS comm).

The Cinq..cerf gneiss of B.H. O'Brien (1988) is defined as composite gneissic

complex of migmatite, psammitic paragneiss, schist. amphibolite gneiss and abundant

homblendite and metagabbro. According to the map of S.H. O'Brien (1990), it outcrops as

roof pendants in the 390 Ma Cbetwynd granite and the 570 Ma Roo granite, and along a

strip south of the Grand Bruit fault (Fig.3.2; Cooper. 1954: Chorlton, 1980; S.H. O'Brien

et al., 1991). The Grand Bruit fault juxtaposes the 585 Ma low-grade volcanosedimentary

rocks and the ca. 570-560 Ma Roti suite with the Cinq-Cerf gneiss (Fig.3.2). According to

a.H. O'Brien et aI. (1993), this fault is a polycyclic structure whicb was stitebc:d at. 568

Ma by the Roti granite and variably reworked during the Precambrian and the Silurian.

Silurian defonnation resulted in fmal thrusting of the: Late Precambrian basement block

over the La Poile Basin along the Cinq-Cerf fault, and tectonic juxtaposition along the
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Grand Broit fauJl of the Cinq~Cerf gneiss against the Roti granite and the Whittle Hill

sandstone. 1be 422±2 Ma Gallyboy Harbour tuff in the La Poile Basin and the stitching

Chetwynd granite (390±3 Ma) provide the older and younger limits for tllrusting along t.'~

Cinq~Cerf fault (O'Brien c:1 aJ.. 1991). The 429±2 to 430±2 Ma Western Head granite

(D.H. O'Brien et aI., 1991) was defonned during thrusting along me Grand Bruit fault,

indicating that the thrusting was syn- to 1'051-429 Ma. 1be Western Head granite intruded

into the Cinq-Cerf gneiss and was subsequently intruded by the 419±2 Ma Otter Point

granite: and the 390±2 Ma Chetwynd granite (B.H. O'Brien et aI., 1991).

Evidence for tbe Precambrian age of the Cinq.Cerf gneiss:

The Precambrian age of the Cinq-Cerf gneiss (Dunning and O'Brien, 1989) is based

on an unpublished age of 547 Ma from Three Islands (Dunning and B.H. O'Brien,

unpublished) and indirect evidence which relies on the interpretation of the

gneissic/schistose megaenclaves in 563 Ma Roo granite as roof pendants of the Cinq-Cerf

gneiss (Fig.3.2). the p~sence of gneissic clasts in the low.grade Late Precambrian

votcanosedirnentary sequence (B.H. O'Brien, pers comm.) and mo~ importantly the

timing of movement along the Grand Bruit fault. According to B.H. O'Brien et al. (1993).

the Grand Bruil fault (Fig.3.2) is a Late: Precambrian .C'ructure along which the Cinq-Cerf

gneiss was thrust over the low grade volcanosedimenwy sequence and was stitched by the

568 Ma Roti granite and reactivated by mylonitic defonnation at 566 Ma and in the Silurian.

This interpretation is based on the intrusion of a 566±2 Ma aplitic dyk.e (with 543 Ma

monazite and 414±3 Ma titanite ages), which is interpreted to be syn-kinematic. into

mylonitic 568±3 Ma Roti granite and a reponed undated intrusive contacl between the Roti

granite and the Cinq-Cerf gneiss. All these relationships are reported from the Grand Bruit

fault at the contact between the Roti granite and the Cinq-Cerf gneiss in Cinq-Cerf Bay

(Fig.3.2). On the basis of this contact. they interpreted that the 568 Ma Roti granite was
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stitching the contact between the Cinq-Cerf gneiss and the Whittle Hill sandstone. The 543

Ma monazite was interpreted as metamorphic and produced by a significant regional

thermal event associated with the pre-499 Ma defannation of the Whittle Hill sandstone.

O'Brien et aI. (1996) also reported a 448+9/-3 Ma metamorphic titanile from the 547+21-7

Ma Cinq-Cerf gneiss dated at 11lree Islands (Dunning and B.H. O'Brien. unpublished).

3.5.- PROBLEMS AND OBJECTIVES:

The objective of this study is to search for the oldest members of the Cinq-Cerf gneiss

of a.H. O'Brien (1990) in the type localities of Sandbank Point.~ Islands and Cinq­

Cerf Bay, and in the process to unravel the tectonothermal events recorded in these

sections. Field relationships suggest thai this is a p:>lycydic unit, but it is uncertain how

much of me gneissic character is due to Precambrian or to Paleozoic events. TIle existance

of the Precambrian high-grade metamorphic character that B.H. O'Brien (1988) attribmcd

to this gneissic complex remains to be proven, as it is not evident from the work of

Charlton (1984).

The previous work shows sevcral problcms such as the reported inErUsivc field

relationship between the 570 Ma Roo granite and the Cinq-«rf gneiss of B.H. O'Brien et

al. (1993). Such a direct relationship needs to be dated to demonstrate the Precambrian age

of the gneiss. given the strong lithological resemblance between the Late Precambrian.

Early Ordovician and Silurian intrusive rocks in the field area. The interpretation of the 540

Ma monazite in the 566 Ma aplitic vein of the Roo suite as a "significant regional thermal

event" (B.H. O'Brien e[ ai, 1993), when the country rock to the Roti suitc is in the

greenschist facies (Whittle Hill sandstone; O'Bricn et at.. 1993). remains questionable. The

reported 448 Ma titanite age from Cinq·Cerf gneiss (Dunning. unpublished in B.H.
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O'Brien et at, 1993 and SJ. O'Brien et ai, 1996) suggests a Late Ordovician overprint in

the Cinq-Cerr gneiss in addition to the Late Precambrian and Silurian tectonothermal

overprints in nearby rocks.

Therefore, there is a certain degree of uncertainty about the cbaracter and timing of the

different overprints in the Cinq-Ccrf gneiss and surrounding rocks. This shows the

necessity of 1) finding clear field relationships which can be precisely dated to constrain the

different tectonothermal events in the Cinq-Cerf gneiss. and 2) making a detailed

description of the different lithologies in the complex. limited major and trace element

geochemistry was gathered to test lithological correlations and to help elucidate the

Precambrian evolution of the Late Precambrian basement block.

3.6. LITHOLOGICAL UNITS, FIELD RELATIONSHIPS AND ABSOLUTE

V-Pb AGES.

As a result of the detailed mapping, several units were differentiated in the Cinq-Cerf

gneiss unit of S.H. O'Brien (1988. 1989. (990). 1be oldest is a composite gneissic unit.

with several gneissic subunits, for which the name Cinq·Cerf gneiss is preserved. A

Precambrian grnnodiorite (Sandbank granodiorite) and a metagabbro unit (Sandbank Point

metagabbro) were separated from the Cinq-Cerf gneiss unit of B.H. O'Brien. The areal

extent of the ca. 430 Ma Western Head granite was refined. including dykes of mylonitic

granite which were previously com::lated with the 570-560 Ma Roti suite by B.H. O'Brien

(1990. Fig. 3.3). The post-Western Head granite, mafic dyke swarms were also mapped

and described as a separate unit. All these units were defined in the Sandbank. Point· East

Diver Head section. but most of them can also be found at the Three Islands and Cinq-Cerf

bay sections.
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The lithological units were originally separated on field criteria. These cri:eria and

particularly outcrop relationships are stressed in the ronowing description. This might make

the description a bit cumbersome. however. it is necessary given the geological complexity

of the area, with rocks and structural fabrics with different ages which resemble each other.

Dunning and O'Brien (1989) and O'Brien et al (1993) demonstrated the presence of Late

Precambrian, Early Ordovician and Silurian mafic and felsic intrusive rocks in close

proximity or in contact with each other. Also the similarity of lhe style of the Late

Precambrian and Paleozoic deformational events (O'Brien et aI., 1993) restricts the use of

structural criteria to identify these rocks. [t is only on the basis of wcU defined and daled

intrusive field-relationships that some of these bodies can be separated. Intrusive and

structural overprinting field-relationsbips were used (0 defme a relative sequence of Holder"

and "younger" intrusive rocks and structural fabrics. which was tested with U-Pb absolute

ages. Both the relative and the U-Pb absolute ages of the different rock. types have been

included with the unit description. lbis description goes from older to younger units.

Nole: To avoid confusion, the rums "o/der~ and "youngu'" in the following

description refu to the relative ages provided by the field relationships. Details of the U-Pb

analytical procedure. including sample preparation, are provided in appendix A.l.

3.6.1.-The composite Cinq-Cerf gneiss: redefinition.

This unit comprises all gneissic rock types that pre-date the 429 Ma Western Head

granite (Fig.3.3). They alI show a complex deformation involving boudinage and complex

refolding which is not present in the Western Head granite. The main characteristics of

these rock types will be described in each of the three sections studied. but with particular

emphasis in the Sandbank Point·East Diver Head section.
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Sandbank Point-East Diver Head section:

This section contains different lithologies which will be described from east to west.

from East Diver Head towards Sandbank Point (Fig.3.3). Near Easl Diver Head. Ehere is

an exceptional outcrop of tlle Cinq-Cerf gneiss with cross-cutting relationships among

different mylonitic fabrics and several generations of intrusive rocks (Fig.3.4). In this

outcrop the older (composite) mylonitic fabric. which is responsible for the gneissic

banding, is cross-cut by several "younger" granitic dykes (U-Pb sample 94-PV~ II). These

"young" granite dykes are overprinted by a laler mylonitic fabric, whose strain the gneiss

has escaped (Fig.3.5). Although in the old mylonitic fabric me strain is quite intense, it is

possible to recognize slivers of older granitic orthogneisses (V-Pb sample 94-PV-[2)

intrusive into rnctapsammitic paragneissfschist (Fig.3.4). and an earlier set of amphibolite

dykes intrusive into both (Fig.3.5). As a result of the overprint by the old mylonitic fabric.

these lithologies. including the amphibolite dykes. fonn a composite banded gneiss. 1lt.is

composite banded gneiss is cross cut by dykes of ~younger" mylonitic granite and a lalesl:

set of mafic dykes (Fig. 3.5). These mafic dykes also intrude the "younger" mylonitic

granite and have been weakly overprinted by the strain associated with the late

mylonitization. Nott: Th~ lott mafic d}"u swarm Uquirt txttn.siv~ north of th~ !ampling locality of lj.

Ph !amplt 94·PV·/l (Fig.J.4). rht .fWarm was nO! nprDDlltd on MAP J.l nor Fig.J.4 ro simplifY tM

gtolog}".

To the west. the composite banded parngneiss grades into an amphibole-rich banded

gneiss. which resembles a metavolcanic rock (Fig.3.6). Layering in this rock is defined by

centimetric to millimetric irregular alternations of fme-grained.. amphibole-ricb green and

grey layers and feldspar-rich felsic layers. In the felsic layers. amphibole (green

clinoamphibole) porphyroblasts reach 0.5 to I em in length. suggesting a metasomatic

origin (I.e. mewnorphic differentiation). 'There are also metric-scale gabbroic pods
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intercalated in the gneiss (Fig.3.6), but there are no granitic orthogneisses or early mafic

dykes. These gabbroic pods are fonned by coarse-grained plagioclase and amphibole.

There is no apparent fabric in them and locally they are porphyritic. TIte compositional

banding in the surrounding banded gneiss wraps around these gabbroic pods. which might

represenl apophyses of metagabbro and seem to have been boudinage<! and folded

(Fig.3.6). The contacts with tbe banded gneiss are sharp to diffuse suggesting metasomatic

processes during metamorphism. This is consistent with the chaotic porphyritic texhJre of

some of the pods and the same texture was observed in metasomatized areas of the nearby

Sandbank metagabbro.

Farther west, in the rocky point west of East Diver Head (Fig.3.7). occurs a veined­

gneiss fonned by the intrusion of late massive granitic dykes into the paragneiss.

Disharmonic folding of the granitic dykes at the fold hinges suggests syn-magmatic

defannation (Mclellan. 1983, 1984).

The rest of the gneissic outcrops west of this rocky point are relatively similar to one

another. They comprise a strained quartzo-feldspathic gneiss (Fig.3.B) of uncertain

pMolith with defonnc:d boudins of undated granite alternating with metric pods of

competent metagabbro (Sandbank metagabbro). This part of the section also contains an

outcrop with ex.ceptionally weU preserved cross-cutting relationships. In this outcrop a

tounnaline-bearing schisl/paragneiss with greenschist facies mineral assemblages

(Bt+Ms+ChI+Qtz+Kfs+PI (oligoclase)+Ep+Tur) is intruded by a set of aplitidpegmatitic

veins (mineral assemblage, Qtt+Kfs+PI) along the planes of the schiSIOSity (Fig.3.9),

resembling an anatectic migmatite and fanning a composite veined-gneiss. One of these

aplitic veins. showing ptygmatic folding. cross-cuts an older granodiorile (Sandbank

granodiorite; U-Pb sample) and merges with the aplitic veins in the paragneiss (Fig.3.10

and 3.11). The aplitic veins in the paragneiss merge with a granite with gabbroic x.enoliths
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which is also intrusive into the paragneiss. suggesting that they represent granite injections.

This composite: veined-gneiss is intruded by a "younger" granite/granodiorite wh.ich is

variably mylonitized and intruded by a set of late mafic dykes.

Clnq-Cerf Bay aDd Three Islands:

The Cinq-Cerf gneiss at the type locali[y of Cinq-Cerf Bay consists of a

polydefonned. green-grey banded gneiss with epidote-rich and locally amphibole-rich

layers (Fig.3.12). This rock resembles the amphibole·rich banded gneiss and the

tourmaline-bearing schistlparagneiss at Sandbank Point. but no lounnaline was identified in

this section. Also, there is no evidence of older granitic orthogneiss.

At the Three Islands. the Cinq-Cerf gneiss comprises a veined-gneiss with abundant

refolded granitic dykes. responsible for the veining. The counlry rock to the dykes is a fine

grained mica-bearing grey rock of uncertain protolith (schist! paragneiss ?). The granitic

dykes are also intrusive into metagabbro. Although! the metagabbro constitutes a massive

unit, there are some deformed centimetre-scale gabbroic pods incorporated inlo the gneiss.

In this section the scale of the mapping did not allow separation of the counby rock from

the refolded gnmitidgranitoid dykes, and born are merged togelher as a single gneissic urnl

(Map.3.2).

The Cinq-Cerf gneiss is therefore redefined as a composite unit of psammitic

paragneisslschist, amphibole-rich banded pacagneiss and quartzo-feldspathic gneiss with

slivers of highly strained granitic orthogneiss. defonned amphibotile dykes and gabbroic

pods. Locally !he melaSCdimeowy lithologies are veined by aplitic and intennediarc: dykes

and deformed. producing a veined-gneiss which resembles anatectic migmatile.
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U~Pb geoc:bronology:

The geochronology in this unit has been focused on the two high quality outcrops of

the Sandbank Point-East Diver Head section (Fig.3.4 and 3.10 ). In dlese two outcrops.

the intrusive older granitic onhognciss and the Sandbank granodiorite: (Next section)

provide a younger Limit for the depositional age of the metasedimentary members of the

gneiss.

lHtaiis of the U-Pb analytical procedure. including somph pnparotion, an provided in

apptndix. A.I.

Older granitic orthogneiss: nus sample comes from the contact between the

older granitic orthogneiss and the younger granitic dykes (Fig.3.5 and 3.13), The gnm.itic

onhogneiss has been intruded by a set of mafic dykes which predate the intrusion of the

latc granite dykes (Fig.3.5 and 3.13). This rock provides a younger limit for the deposition

of the country rock paragneiss and an older limit for the gneissic banding and the inlrUsion

of the older mafic dykes.

1lUs rock yielded large amounts of high quality euhedral zircon. All fractions are

formed of srubby (1:3 widtMength ratio), multifaceted. sharp. clear. inclusion-free prisms.

Of seven zircon fractions analyzed. five have error ellipses touching the coocordia curve

(Fig.3.14: table 3.1). The small euhedraI prisms or rraction Z6 were nO( abraded to

constraint the lower intercept or the discordia line. Fractions ZI to Z6 defme a discordia

line with a 93% probability or fit and an upper intercept: at 676 Ma and a lower intercept: at

433 Ma. 'The lower intercept coincides with the age or the cross-cutting younger granile

dykes (Western Head granite). suggesting that these: are responsible ror the Pb loss. With

the lower intercept pinned at 431±2 Ma, the resulting discordia line (97% probability or fill

55



has an upper intereepl of 675+121·11 Ma. This upper intm:ept is imerpreted as the

intrusion age. Fraction Z7 suggests the presence of 2.0 Ga inheritance. projected from 675

ML

3.6.2.- The S84 Ma Sandbank Granodiorite.

This is a weakly defonned. amphibole-bearing granodiorite (U-Pb sample 94-PV-6)

with mafic inclusions. ~sembling some of the nearby granodiorite facies of the 430 Ma

Western Head granite. It fonns a small outcrop of about 100 m2 between Sandbank Point

and East Diver Head (Map 3.1: Fig. 3.3). The country rock consists of tounnaline-bcaring

paragneisses with abundant aplitic veins (Fig.3.9). The strain gradient in the country rock

paragneiss increases towards the contact with the granodiorite with the foliation wrapping

around the granodiorite. This indicates that the granodiorite predates the development of the

main foliation in the paragneiss (Fig.3.10 and 3.11). II is not possible [0 assess if the~

was an older pre-intrusive fabric in the country rock: paragneiss due to the rnillimeter-scaJe

of the compositional banding. the high strain following empl.acemenl of the granodiorite

and the absence of cross<utting relationships. An aplitic vein cross-culS the granodiorile

and merges with the aplitic dyk.es in the counuy rock. paragneisses (Fig.3.1O: 3.11).

indicating that !he veining and the deformation of the veined·gneiss look place after the

intrusion of the granodiorite. According to the Held relationships (Fig_3.IO; 3.11), the

protolith age of this rock will provide a younger absolute age limit for !he country rock.

paragneiss aDd an older limit for the aplitic veining and subsequent deformation of the

aplitic veins and the tourma1ine-bearing paragneiss.

This rock consislS of plagioclase (An2D-30). K·feldspar, quartz, biotite. ~n

amphibole (hornblende) and opaques, and secondary actinolite, chlorite. epidote,
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zoisitelclinozoisite and titanite. Zircon and apatite ~ accesscxy minerals. There is wide

preservation of primary igneous rea~ such as concentric wning in plagioclase. which

suggests lhat the Cinq--Cerf gneiss was not affected by a IUgh grade regional IeCtOnOthermaI

event after the inlrUSion of this rock. In band sample the rock has a weak subsolidus fabric

with no apparent penetrntive cleavages except for late. high angle. discrete (>0.5 mm thick)

joints filled with chlorite +epidOle+zoisitc

V-Ph geochronology:

Th.is rock yielded high qualiry z.ircons. Fractions ZI. Z2 and Z3 are focmed by stubby

euhedtal, inclusion-free prisms: fraction Z4 consists of small euhedral elongated (1:5

length/width ratio) prisms. 1be four zircon fractions analyzed define a discordia line

(14.8111 probability of fit) with an upper interceptor 584 +71-6 Ma and a lower intercepl:

of 326 Ma (Fig.3.t5: table 3.1). 1be upper intercclX is interpreted as the crystallization age:

whereas the lower intercept apparently does not have a real geological meaning. The large

Pb loss in fmetion Z4 can be explained by greater radiation damage due to the higher U

concentration (205 ppm: twice thai of the other fractions) and lead diffusion facilitated by

the Iaeger lengthfwidth ratio. compared with the other fractions (Table 3.1).

3.6.3.- The 557 Ma Sandbank Point metagabbro.

This rock type is common to aU areas. including the Cinq-Cerf Bay section.

outcropping as small stocks (Fig.3.3: Map 3.1. 3.2 and 3.3). The largest outcrop is the one

at Sandbank Point. wh..ich was already mapped by Cooper (1954). Therefore. il is

proposed to name this rock type the Sandbank Point metagabbro. This is a mafic rock

dominated by amphibole (0-lrnm) with about 20.30% felsic phenocrysts (0 ... 2-3 mm).
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giving a porphyritic texture. lbe melagabbro does not show any penetrative fabric, cxcepl

in retrogreSSed areas and discrete high strain zones when:: the amphiboles have a preferred

orientation dcnning the gneissosiry. Thn:e main facies wen:: observed in the field:

A) Mafic metagabb~ta-diorite (Fig.J./6): This is the most typical rock. type. It

dominates the ex.posures al Sandbank Point, Cinq·Cerf Bay as well as Three Islands. TIle

main mineralogy is 65-70% green clinoamphibole (Hornblende-Actinolite)+- 30%

plagioclase (An30-55)+ • 5% opaques ± minOf' quartz ± K-feldspar? + epidolc·+

c1inozotsile~carbona(e·)±titani(e(* s«ondary minerals). Accessocy minerals are apatite

and zircon. Texturally the rock. still preserves some igneous features like weak concentric

zoning in some: plagioclase crystals and large plagioclase (0-2-3mm) with subhedraJ

tabular shape. The amphibole. however, is metamorphK: and the dominant texture is

grnnoblastic. Th.is granoblastic texture has been overprinted by grecnsch.ist facies

metamorpl\icJdefonnationai events. At~ Islands low strain areas also show a

granoblastic texture with complete ra:rystaUization of most plagioclase and a minimal

greenschislS facies overprinl.

B) uuco-meradiorite (Fig.J.16); This rock rype is restricted to Sandbank Point. It

appears as irregular dykes inuusive inlO the mafIC metadiorile. These dykes show

gradational to sharp contacts., suggesting that the inuusion (ook place when the host was in

a subsoliduslsolidus state. and that they probably represent a late diff~rentia.te of the mafIC

intrusion.This rock is formed by -60% plagioclase (oligoclase-andesine) + -35% green

clinoamphibole +-5% opaques, and minor quam. Most plagioclases still preserve a weak.

concentric zoning and a eubedrallsubhedral tabular shape. The amphibol~ and the opaques

coexist in interstitial positions between the plagioclase laths. The amphibole accumulations.

homblende-actinolite. show granoblastic textures, indicating a met.amotphic origin. Late
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retrogression was associated with growth of minor chloritc. epKlol:e and while mica

(sericite?).

q Cocuu hombkndirt! : This rock type oute1'OpS in Three Islands where me

mctagabbro-diorite: is generally rrxxe amphibole-rich than the equivalent rock types at

Sandbank Point. willi the homblendite representing the most eJt'Ra1C case. This rock type

contains 65-70% green clinoamphibole (actinolilc-tremoliIC). 5-10% clear orthoamphibole

(anthophyllite?), 1~IS% biotite and 5·10% opaques wilh minor relicts of plagiCM:lase (An

50). The clinoamphibole. orthoamphibole and biotite show euhedral-subhedra.l shapes and

appear in contact. suggesting that they grew in equilibrium. Some c1inoamphiboles show

opaque rich cores which might be relict pyroxene. The rock has a decussate texrure with

Sm.m long clinoamphibole defining the framework.

Field relationships:

Sandbank Point-East Diwr Head (Fig.J.J; Map 3.1): The meladioritdrnctagabbro

forms a relatively large body wtUch is cut by the Grand Bruit fault and intruded by the

Silurian Western Head granite-granodiorite and a swann of late dykes. This metagabbro

and other gabbroic apophyses arc: intrusive into the composite Cinq-Cen gneiss (Map 3.3).

Three Islands (Fig.J'): Map 3.2): The metagabbro at Three lslands resembles thai: at

Sandbank Point bul it is dominated by mafic rock types. from mafic metadiorite to

homblendite. The metagabbro is intruded by refolded felsic to intermediate pre.Western

Head granitoid dykes (Fig.3.11). These felsic dykes and their highly strained country roclc.

fonn a veined gneiss which was mapped as Cinq-Cerf gneiss (Map 3.2). Dunning and

B.H. O'Brien dated one of these intermediate dykes at 541+21-1 Ma (unpublished),

suggesting that the metagabbro at Three lslands is older than 541 Ma. Both the gneiss and
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the metagabbro are intruded by the Silurian Western Head granite and a series of lace marc

and aplitic dykes.

Cinq-Cerf Bay (Map 3.3): This section conlains (wo metagabbroK: stocks wtUch

resemble the mafIC metadiorites aI Sandbank Point. These: rocks were probably intrusive

into me highly deformed metasedimenlS. The intn1Sive comaets have been rcworlted by

brink deformatioa. which has wiped out the primary inuusive relationships. lbese

metagabbros an:: intruded by granitic dykes with mafIC enclaves which resemble both the

Late Precambrian Roo suite and the Silurian Western Head granite. One of the rncugabbros

is also cross-cut by a late mafic dyke (post-Western Head granite?).

V-Pb geochronology:

The Sandbank Point mafic metagabbrolmetadiorite was chosen for V-Ph daLing

because it is the most extensive and common facies of the Sandbank metagabbro. It is

intrusive into the composite Cinq-Cerf gneiss and is intruded by the Western Head granite.

The sampling lcxality aa: Sandbank Point (Map 3.1) shows a clear intrusive rdaIionship

with the Western Head granite and it coincides with an atU of important higtHemperature

(syn-magmatic?) deformation in the Western Hcad granite:. Texturally, the U-Pb sample

has the characteristics described in the mafIc metadiorite but aU grain contacts have~

modified by £he D2 deformation (syn-lale-Westem Head granite). with mafic and feisic

elongate patches (0.5 10 Imm long and Imm lhick) defining a weak gneissic banding. 11lis

rock is quartz-bearing, which suggests that it might represent a more evolved part of the

mafic intrusion and therefore more likely to be zircon-bearing.

Four fractions of gem quality zircon were separaled from this rock (Table 3. [).

Fraction Z4 was not abraded to belp constraint the discordia line. Fractions Zl. Z2, 13 are

between 0.37% and 0.73 % discordant (Fig.3.18) and the discordia line defined by aU
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fractions (46% probability of fit) bas an upper intercept of 557 Ma and a lower inten::epr: of

321 Ma. The upper intercept is interpreted-as the crystallization age (SS7+14f.S Mal. The

large positive error of the upper intercept is due to the shallow angle of intersection bclWeen

the discordia line and the concordia curve. 1lIc lower intercept at 321 Ma apparently does

not have any geological significance. but it is indicative of an Late Paleozoic disturbance.

3.6.4.- The Silurian Western Head granite (2 Fades):

"The laler Western Head gr.mite is a 15 Icm long intrusive body which defines !he

southem boundary of the Cinq.cerf gneiss between Cinq-Cerf Bay and Grand Bruit

(Fig.3.2; O'Brien et aI., 1991). This rock [}'pC was originally included in the Cinq-t:erf

gneiss unit of a.H. O'Brien (1990) by Cooper (954) and later reported by Cborllon

(1980). But it was only Cooper (1954) who mapped the oU!crops of the Western Head

granite between Sandbank Point and East Diver Head in detail. During the present study.

the rocks mapped by Coo~r (1954) were confirmed and (wo facies of this gnmilc were

identified in the Sandbank Point·East Diver Head section. 1be first one is the "young"

mylonitic granile (fig.3.5) which was previously corre1aled with the Roti granite by D.H.

O'Brien (1990). U~Pb dating tIowever shows lhaI: il is coeval with the Weslem Head

granite. The second facies is a granite-granodiorite with mafic and gneissic enclaves

(Fig.3.19 and 3.20), whicb is the lithological equivalent of the: Western Head granite or

B.H. O'Brien (1990) in Grand BNil and Three Islands.

Mylonitic granite· This rock type oUlcrops near East Diver Head (Fig.3.4 and 3.5),

very close to outcrops of the Roti granite (D.H. O'Brieo, 1990). It consislS or several 1 to

3 m wide granite dykes which are emplaced cross-cuning earlier stnIctures in the: coumry

rock (banded gneiss and 675 Ma granitic orthogneiss). The kJcal incorporation or angular
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blocks of the country rock aI the from of some of the dykes is indicative of stoping.

althought the dykes were probably emp{accd by dilatalion (Part.. 1983). AI the nearest

rocky point west of East Diver Head lhe granite can be rtaeed 10 gnmiUc injections which

an: disharmonically folded mimicking a migmatitc (Fig.3.7). Laler low-grade

heterogeneous mylonitic deformation was concentr.ued in the granite. rather thaI the

country rock. (Fig.3.5), and resulted in intense mylonitization and perva<;ive retrogression

of the primary mineral assemblages. The granite is crosS-cU! by a swarm of late mafic

dykes which are also variably overprimed by the lOW-grade shearing.

Texrwally lhe rock is a mylonite with a weU developed S-C fabric around partially to

loWly sericitittd 2 nun (03'0') feldspar porpbynx:lasts. These porphyroclaslS have chloritc

and white mica inclusions. The porpbyroclaslS form around JO....4O% of the rock. The

mylonitic matrix (0av"" O.05mm) consists of 30% phyUosilieates (Chlorite. while mica)

and epidote and 70% quanzo-feldspathic material.

Granite.granodiorite with mafic and gneissic enclaYes' In the area of study, tltis rock

type outcrops between Sandbank Point and East Diver Head and at Three Islands. Detail

mapping at Three Islands CJL:panded the extent of the Western Head granite unit of B.H.

O'Brien (1990). The lilhologicaJ similarities of !his granite in 111Iee Islands and Sandbank

Point with the WCSl:em Head granite at Grand Bruit are such. that they permit a secure

correlation with the 429±2 Ma Weslem Head granite (O'Brien et al.. 1991). It should be

nOled that Cooper (1954) also mapped the same outcrops in map 3.2 as Western Head

granite. The field aspect is that of a felsic granitoid with abundant mafic and gneissic

enclaves (Fig.3.19). Locally. these enclaves are isoclinally folded. shean::d and stretched,

indicating magmatic or high temperature subsolidus deformation. At Sandbank Point there

are abundant felsic injections backveirung mafic material and mafic dykes showing a

complCJL: deformation. which is not present in the country ro:::k metagabbro (Fig.3.20).
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This suggests the presence of coeval mafic magmatism and deformation during the

intrusion of the Western Head granite. The high temperanu~ deformation is foUowed by

low-grade heterogeneous mylonitization along disc~te shear zones.

This rock. is composed of plagioclase (An25). quartz. K-feldspar. biotite,

±Clinoamphibole. opaques and secondary epidote. cttlorite. titanite and white mica. with

apatite and zircon as accessory phases. According 10 the relal.ive modaI proportions of

plagioclase. feldspar and quartz. the rock can be classified as a grnnodioritelgrnnite.

The presence of 1-2 mm wide plagioclase and feldspar crystals suggests that the rock

had a primary equignmular texture. Although. the superimposed subsolidus deformation

has produced areas with extensive gnUn reduction (0- 0.2 mm), mosl of the strain has

been taken by the quartz grains and by the biotite-rich levels. It is in the biotite-rich levels

that epidote group minerals, titanite., cttloritc and while mica are concentrated., and these are

also areas of important quartz grain reduction. Plagioclase shows local prinwy concentric

zoning. Both plagioclase and feldspar have irregular grain boundaries with variable grain

reduction and rccrystallizal.ion and, in the case of the feldspar. some of the recrystallized

areas show microdine twins and mantie-lilce suucnues around larger crystals.

U·Pb geochronology:

1be dated sample of the mylonitic granite was collected from the same outcrop as the

sample from the old granitic orthogneiss (Fig.3.4 and 3.5). The granite dyke cross-euts the

gneissosity in the 675 Ma granitic orthogneiss and the surrounding banded gneiss.

including the old ampllibolite dykes. 1be granite is overprinted by a later mylonitic event

and cross-eut by a swarm of late mafic dykes. Therefore, the protolith age of this rock

provides a younger age limit for the deformational evenl(S) responsible for the gneissic

banding, and for the intrusion of old amphibolite dykes. It also provides an older limit for
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the late mylonitization. the gra:nschist facies retrogression and the inllUSion of the late

mafic dykes. as weU as a direct date of the syn-magmatic deformation of the granite

injections in figure 3.7.

The five zin:on fractions analyttd deflne an unpinned discordia line (68% probability

of fit) with an upper intercept of 431+Sf·2 Ma and a lower intercept of -17 Ma. If the lower

imercepl is pinned at 0±17 Ma. the resuham discordia line has an upper intercept of 43 1.5

±I Ma (Fig.3.21). This upper intercept reflects the crystallization age. the ~ision of the

age is also consistem with that of the 207Pb1206Pb ages. All zircon fractions ~ U-rich

(792 to 489 ppm; lable 3.1) wtuch ~ulted in slightly discordant analyses. even though

some fractions were strongly abraded (Table 3.1).

NQ(~; The 311 Ma and 326 Ma /owtr ill/f!rupts of samplf!1 94-PV-l rSS] Mo: ~tadioritf!1 ard 94-

(411 Majand milforPb tou liU lhalofw Wuttm HwdgrtVlift(samplt 94_PV·l/1.

3.6.5.- Late dykes.-

These dykes cross-cut the 431-429 Ma Western Head granite and post-date the syn­

magmatic I high temperature subsoLidus deformation observed in it. 1bey Conn imponant

swanns at the contact of the Western Head granite. both near East Diver Head and at Three

Islands (Map 3.1 and 3.2). AlJ these dykes cross-cut folds in both the Western Head

granite and the Cinq-Cerf gneiss. Although they are variably sheared in places. these dyk.es

are not folded. 11lere are four major types of late dykes: felsic·granitic. green-mafic. grey-
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inler1Ilediate and porphyritic dykes. The porphyritic dykes ~presenl the fmal inttusive

pulse in the aIU..

Felsic.granitic dykes:

These dykes ate intntsive into lace mafic dykes as well as the 557 Ma Sandbank

metagabbro. but they do not: CUi lhe Western Head granite. They are aptitic and although

relatively scarce they should not be confused with the pre-Western Head granite folded

aplitic dykes at Three Islands.

Grey-Intermediate dykes:

1bese dykes are relatively common in Three Islands. but only intruding into the pre­

Western Head portion of the island. These dykes are cross-cUI by mafic dykes. They show

a well developed fabric (0 av._ 0.2 nun) of oriented green clinoamphibole (Actinolite­

Hornblende), plagioclase (oligoclase). brown-green biotite. quam. K-feldspar (?) and

opaques. This fabric is not: penetrative. however the plagioclascs show tapered twins and

undulosc exlinctioo. iDdicating intraerystallioe deformation. Grain boundaries an: stmght

to Iobatc: and with lripk: junctions. La1e growth of epidote around opaque-rich areas and

chlorite after biotite suggest: thai the fabric was produced in the amphibolite facies. probably

during cooling.

Green·mafic dykes:

These are dark green to grey-green and intrusive in all rock types. including the

Western Head granite. They aR:, however, inuudcd by the porphyritic dykes and, al: lhrce

Islands, by aplitic dykes. Dated field relationships indicate thllt they are younger than 431

Ma (Fig.3.4 and 3.5). Some of these dykes contain ultrnmafic and granodioritic enclaves

(both in the same dyke) and rounded, centimcttic quartz enclaves. These mafic dykes with
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quartz enclaves appear both at Sandbank Point and 11u= Islands. Cross-cutting

~Iationsbipsindicate the presence orat least fWO geomuions of post-431 Ma mafic dykes.

allhough they might represent different injections during the same intrusive event.

Deformation tends to be concentrated in the thinner dykes and it is associated with

fonnation of a penetrutive greenschisl-subgreenschisl facies foliation.

Amphibole-plagioclase porphyrUlc dykes:

These dykes intrude the mafic dykes (Fig.3.4) and ~ the youngest intrusions in the

area They consist of plagioclase (An40-50) phenocrysts (2 10 3 nun long) and

glomc:roporphyritic accumulations (3 mm long) of green clinoamphibole (Actinolite?) +

chlorite + biotite (minor) and an oriented matrix (0 av. O.lmm) of plagioclase (oligoclase)

+ green clinoamphibole + opaques + chlorite* + epickxc* + titanite* (·uconJary minerals).

Titanite commonly grows lale aftcr opaques (ilmenite?). The plagioclase laths are oriented

and although variably sericitized they still preserve the primary concenuic zoning and the

c:uhedral tabular shapes. Greenschist deformation and retrogression resulted in the

tnlnsfonnation of the primary mafic minernls iDlO clinoamphibole accumulations and

variable development of a penetrative fabric. including discrete C shear planes.

Titanite from a mafIC porphyritic dyke at Thrtt lslands has provided an age of 4Z0±3

Ma (Dunning and S.H. O'Brien, unpublished). Since titanite is growing during the final

greenschist facies overprint. this age provides a younger limit for dyke emplacement and

dates the greenschist facies retrogression.

66



3.7.- STRUCTURAL EVOLUTION:

Two main phases of deformation can be distinguished in the Cinq-Ccrf gneiss. The

flrstone. 01 includes all deformation predating the intrusion of the Silurian Western Head

granite. 02 covers the syn-Weslcm Head granite soliduslsubsolidu5 deformation and the

following low grade Silurian mylonitization. 02 is bracketed by the intrusion of the 430 Ma

Western Head grnnilC and by the 420 Ma greenschist fac)es titanite in the Ia1e porphyritic

dykes. However, some laic-brittle features could be younger dian 420 Ma.. These phases of

deformation were divided into 5ubphases. 10 differentiate the overprinting structural

elements that occur in each outcrop.

3.7.1.- Dl deformational events (pre·43I):

The earliest event recognized in the Sandbtullt Point - &sr Divf!r Head sectiotl is the

01 deformation which affects the composite Cinq-<:erf gneiss. including the 675 Ma

orthogneiss. This event resulted in a composiu~ peocuar..ive fabric with a mylonitic aspect.

This fabric also affects the old mafic dykes which intrude the 675 Ma orthogneiss. Later

boudinage (01) affected both the mafic dykes and the fabric in the surrounding rocks.

These boudins were subsequently openly folded during 02 (Fig.3.4 and 3.5).

A hand sample ·scale and microscopic examina1ion of the composite S I fabric in the

675 Ma orthogneiss indicates lhe jnSellCe of three cryptic fabric elements: an early S 1a

fabric (compositional banding) is cross cu[ by discrete millimeoic polycrystalline quartz

veins (SIb?). both of which are folded by Flc folds with an axial planar SIC fabric. Flc

folds are millimelric [0 cenlrimelric in scale and very cryptic (Fig.3.22). lbe old mafic

dykes. which intrUde the 675 Ma orthogneiss. do not show evidence for FtC folds but have

a fabric parallel to SIc in the orthogneiss. which is interpeted as SIc. This wouJd suggest
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that the mafic dykes intruded after lhe S Ia fabric was produced in the 675 Ma orthogneiss.

It is unclear if the Dlboudinage observed in the mafic dykes wascontemponmeous wilh the

Fie folding. but lhese boudins ~ subparallel with the orientation of the dominant

composile S,a..Slc fabric.

l1Jc: S Ia fabric is a compositiooal banding defined by the orientation of the biotite

Oakes (0.3 mm long). areas willi slightly different abundances of oxides, phyUosilicates

and epidote and slight differences in lhc grnin size (0-0.1-0.3 mm) of the quanzo..

fc:ldspathic loacH:lCaring framework (Handy, 1990). SIc is a wide cleavage defmed by

oriented new grown biotite and chlorite. Both quartz and feldspar have a weak preferred

orientation paralleJ to the S Ie micas, undu10se extinction. lobate grain boundaries and

extensive evidence for 5ubgrain development and recrystallization. Recrystallization

ap~ntly took: place by subgrain rotation (Passchicr and Trouw, 1994). Pre-SIc

aggregates (0-0.9 ·0.1 mm) of plagioclase (0-0.3 mm) and minor quam and feldspar

(0-0.1 mm) probably represent core-and-mantle suuctwes (Passchier and Troow. 1994).

This plagioclase has abundant small quartz inclusions which are nol observed elsewhcn: in

the section. This suggests that this plagioclase is me product of a pre-S Ie deformation and.

therefcn. indicates a tectonic origin for me SII fabric. Uue joints filkd with epidore.

zoisite and chlorite an: ascribed to lhe 52 Silurian defonnation.

The amphibol~·rich bandf!d gnf!W also shows a tight complex folding of the:

compositional banding (5I a'n. Millimetric 10 centimetric Flc folds can be identified but

they have an intense 02 overprint (Fig.3.7). The charal:ter of the D2 overprint is complex

due 10 the rheological contrast between the competent gabbroic pods and the surrounding

paragneiss. This bas resulted in local incoherent D2 folding due to the deflection of the

gneissosity (composite 51 fabric) around the competent gabbroic pods (fig.3.7).
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1be COlUltry rock to the 584 Ma wealdy dqo",,~d gronodion"te. the tourmaline bearing

paragneiss. shows one weU defmed composite schisloselgneissose fabric (5 I). There are

some very cryptic inuafolial folds (Fie folds?), but they can not: be positively identified as

Fl folds. The D2 reworltins: of the S I fame has defkcred it around the IIlOI'e competent:

S84 Ma grnnodiorite (Fig.3.11). Bc:cause the S 1 fabric and the inttusive contact were

brought into parallelism. it is not possible 10 assess a clear cross-cutting relationship

between the 584 Ma granodiorite and the S 1 fabric in the country rock paragneiss. The

po51-584 Ma aplitic dykes intruded along the planes of the 51 schistose fabric, locally

cross-eutting S I and. indicating that the S I schistose fabric prc:-dates the aplitic dykes

(Fig.3.11). 1llc: aplitic dykes were tightly folded and sheared. under greenschist facies

conditions. This resulted in the deflection of the resulWit composite S 1-52 fabric around

the 584 Ma granodiorite. The Tc:working of the contact between the 430 Ma Western Head

granite and the paragneiss (Fig.3.ll) indicates that r.hc: composite 51-52 fabric is post-430

Ma. i.e. 02. 1berefore. the subsequent small scale open folding. crc:nulation. of the

composite 5 I-52 fabric is post430 Ma (i.e. 02).

The fabric in the tourmaline-bearing paragneisses consists of a compositional banding

(5 I) of uncertain orig:in (SO+51?). The 51 bandingisfocmed byS to I mm thiclc irregular

phyUosilicate-rich (Biotite+chlorite+white mica) and quanzo.-feldspathic layers (0 '" 0.2 •

0.6mm). Some of the quart:z.l>feldspathic layers define tight inuafol.ial folds (FlC?), with

limbs CUt at a shallow angle by the aplitic veins. In the compositional bands (51) the

phyUosilicates were realigned during D2 defining an 5 I+52 fabric with chlorite: and white:

mica overgrowing biotite (Fig.3.23). Grecn tourmaline porphyroblasts (~ O.S-2 rum) are

concentrated in the phyUosilicate:-rich layers and postdate the S I+52 fabric. The aplitic

veins are 1 to 0.5 cm wide, have granitic modal compositions with minor plagioclase and

average grain size of2 mm of diameter (0 max '" 7 mm) and they cootain blue tourmaline.
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K.feldspar and quartz fonn a two phase load bearing framework (Fig.J.23; Handy. 1990).

Q.lartz with senated boundaries. subgr.lins and pat3lJel deformation bands is the weak:

phase and shows dynamic recrystallization. K-feldspars show new grains (0-0.3 mm)

with microcline twins produced by grain reduction at the borders of the crystal (Fig.3.2J).

1bese new grains are partially recrystallized forming core-and·mantle SU'UCIUres. A tater

event is recorded by the growth of new white mica associaled with sericitization of

plagioclase. fracturing of tourmaline and defonnation of 52 white mica. This is probably

related 10 the Iolle open folding of the composite S 1·52 fabric. The nearby 584 Ma

granodiorite (Fig.3.10 and 3.11) still preserves a primary equigranular texrwe with

plagioclase. K-feldspar and quartz (0- 1-3 mm) forming the main framework and biotite,

clinoamphibole. chlorite. epidote and oxides in interstitial positions (0av • 0.5 mm). Both

plagioclase and feldspar have subhedral tabular shapes with irregular grain boundaries and

small mantles of a quanzo-feldspathic matrix. plagioclascs also show well defined primary

concemric zoning (Fig.3.24). The quartz grains with subgrains and parallel defonnation

bands have anhedral sbapes with lobate boundaries. indicating that it is the weak phase of

the framework.. Biotite. chlorite. epidote. clinoamphibole and opaques an: concentrated in

imergranular positions in areas of grain reduction defining a weak fabric (52? Fig.3.24).

The: quaTtz/)-[eldspathic gneiss with gTtlTf.iJe boudins also shows an 51

schistosity/compositional banding overprinted by D2 folding. Locally. the quanzo...

feldspathic gneiss shows a cryptic dome and basin fold interference (two generations of Fl

folds or a fish-book fold?) of the compositional banding (5 I). overprinted by F2 folds

(Fig. 3.8). It is uncenain if the granite boudins are Silurian or not. The boudins pre-date

the Silurian greenschist facies mylonitization. but they could bave been associated with the

high temperature Silurian D2 defonnation.
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AI Tltru Isillruu. the LaIe Precambrian graniloKf dykes show two apparent phases

of folding. also presenl in some of the metagabbros. The 547 Ma groniJoid dybs have a

gneissic compositional banding (51 3• primary?) defmed by the alternation of plagioclase

(oligoclase) and green amphibole·rich bands with a granoblastic rexrure (0av - 0.2 mm).

Biotite flakes define a discontinuous. spaced foliation (5 Ib) cross-cutting the compositional

banding, and axial planar 10 the FI b folds affecting the S ,3 banding (Fig.3.26). Titanite

(448+9/-3 Ma.: Dunning and e.H. O'Brien. unpublished) appears as inclusions in both

biotite and amphibole, as well as in intergrnnular positions. and is locally aligned with

biotite. This suggests thar the fabric defmed by the biotite predates recrystaUization and is

older than 448 Ma. Discrete shear bands cross cutting the Sib biotites and deformation of

quartz that postdates recryslallization indicate a weak brittle overprint (S2).The Silurian D2

shearing is axial planar 10 the last phase. therefore indicating that this fmal folding is

Silurian. However. the relationship of the pre-F2 fabric and earlier folding with the 01

elements described in the Sandbank Point-East Diver Head section is uncertain. Lack. of

detailed slrUCtW1.l mapping prevents any further interpretation.

Tbe metagabbros aJ: Sandbank Point and Three Islands gcnernlJy have granoblastic

textures with oiple point junctions between plagioclase and green clinoamphibole, some

plagioclase laths preserve subbedr.ll tabular shapes and a weaJc concenlric zoning. These

textures are variably overprinted by 1a1er D2 defonnatioo: lobate: grnin boundaries, gr.tin

reduction with growth of epidote and chlorite, small con::·and-mantle suuc:tures in

plagioclase, brittle displacement of plagioclase twins and dynamic ~rystalliza.tionof quartz

(fig.3.25). Locally there is a gneissic banding defined by 0.5 to I cm elongated plagioclase

and amphibole-rich domains with oriented amphiboles (green hornblende, Fig.3.25) which

at Sandbank Point is probably related to the intrusion of the Western Head g:rnnite (52

fabric).
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At Cinq-Cuf Bay the contact between the Silurian Western Head granite and the

Cinq-Cerf gneiss has been ~wodod by a lalc brittle raull zone. The Western Head granite

shows some evidence of syn-magmatic deformation but does l)()( show any internal folding

Of important D2 soliduslsubsolidus deformation. as in the other [wo previous sections.

Gneissic enclaves of amphibolitic banded gneiss in the nearby 568 Ma Roo granite suggest

me presence of a pre-568 Ma event. It is assumed. however, that the: brittle dcfonnalion

and possibly the lalest folding in the Cinq-Cerf gneiss (Fig.3.27) ~ Silurian. L..ocally. the

compositional banding (SO+SI~la) is folded by 3 phases of folding, Fib. Fie and F2.

Interference paltems are best seen in the hinges of F2 folds (Fig.3.27), although they can

also be identified in areas under 02 shearing. F2 folds have steep plunges (5IJ'.70") which

are consistent wilh the Sleep dip of the main gnc:issosity ( average 7(0). In cross-section,

the S I gneissosity is boudinaged. In plan view. small boudins are locaUy sheared by 02.

but any relationship between these (Wo types of boudins is uncertain. It should be nor:ed

that the Cinq-eerf Bay section prcsenlS several problems: a) the compositional banding is

cryptic and given lbe small.scale structural complexity. il is very difficult 10 lrace structures

even al outcrop scale (Fig.3.12 and 3.27); b) the effect oflhe Slnlin partitioning creared by

the three (unda1ed) gabbroic bodies in lhe section is uncertain (Map 33): c) there is an

important late brinle overprinL

3.7.2.- Silurian D2 deformation.·

TIle D2 Silurian deformation is subdivided into D2a and D2b subphases. D2a is the

high temperature soliduslsubsolidus deformation associated with the emplacement of the

430 Ma Western Head granite. High temperature F2a folds have an a.:tiaI planar mylonitic

fabric, S2b, The 02 mylonitic fabric was associated with heterogeneous greenschist facies

shearing of the Western Head granite and ilS country rock. This shearing produced F2b

folds which arc: t:ranseeted by late mafic dykes. 1besc: late mafIC dykes arc: also variably
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sheared depending on their degree of retrogression. and they usually follow the tnICl: of the

mylonitic foliation. This suggests thai the same stress field was preset1t alI along during the

intrusion and cooling of the Western Head granite and intrusion ofthc latc dykes.

D2a, high.temperatur-e solidus-subsolidus deformation:

This deformalion is associated wilh the emplacement of the 430 Ma Western Head

granite:. indicating the syn-lCClonic charactc:r of this intrusion. This deformation is best

expressed in the Western Head granite at Sandbank Point, Three lslands and Grand Bruit,

the last area is 2 Km west of the field area.

The high-temperature D2a ddonnation is characterized by tight isoclinal asynunetric

folding and shearing of the enclaves in the Western Head granite. AI Sandbank Point. the

Western Head granite and coeval mafic dykes show a complex. folding. the mafic dykes ~

ductily sheared and folded (Fig. 3.28). Well exposed cross sections of these structures at

Grand Bruit show a compositional fabric defined by aplitic and mafIC dykes and gneissic

and maftc eoclaves. 1be U1:nd of the fabric bas an anasIomosed character typical of ductile

deformation. with strain partitioning around stiff granitic domains and ductile shearing and

folding of amphibolite enclaves in me less competent swroundings. These features indicaIe

lhat the granite was already in a solid state and lhat defonnatioo took place aI high

ternperatwe (Fig.3.29). Local disharmonic folding of Western Head injections inlo !he

Cinq-Cer gneiss (Fig. 3.1) indicate that deformation also took place while !he granite was

in a magmatidsubmagmatic stale (McLeUan. 1984: Palerson et al.. 1989).

The high lemperature asymmetric folding is consistent wilh the intrusion pattern of the

Western Head granile into the Cinq-Cerf gneiss. as weU as with the local folding of the

gneissosily in the country rock gneiss. Outcrop pattern suggests a rougb noob-south stress
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field whicb is compatible with the one deduced from the overprinting lower grade

mylonitization. D2b deformation (Fig.3.29).

OZb, low~gradc retrograde ddormatlon:

This subphase of the D2 deformation is charnc:terized by a heterogeneous

mylonitization of both the Western Head granile and the Cinq-Cerf gneiss. 'The mylonitic

foliation (02) is axial. planar to the FIa tligh-tcmperanue folds in the Western Head grnnitc.

The mineral and stretching lineations (ll) associated with the 52 mylonitic foliation and the

associated S-C fabrics indicate a shear sense of top 10 the north-northeast (Fig.3.30).

Also, associated with the mylonitization there is ductile folding of the less competent layers

(F2 folds). The plunge of the F2 folds. oblique 10 L2. and the fold asymmetry arc:

consistent with the shear sense (Fig. 3.30 ). F2 axial planes are parallel 10 the 52 mylonitic

foliation. This n b folding is concenwlted in the gneiss where the contrasl of competencies

is ITl()(C significant. The plunge of the F2b folds is coosi.sl:cnt with the folding of the: S 1

gneissosity (Fig.3.30). In the metagabbros lhis defonnation is associated with

retrogression and it is restricted to discrete shear zones (Fig. 3.31) and conjugate fracture

systems (Fig.3.32),

1l1e map pattern shows tha1 the late mafic dykes are in many cases subparallel to the

mylonitic foliation (Map 3.1 and 3.2: Fig.3.1). These dykes also have developed non­

coaxial fabrics subparallel 10 S2. boch magmatic and mylonitic. 1be last ones are associated

with imponanl reuoglUSion. AJthought some of these dykes have enclaves. there is no

evidence for Sloping but for emplacement by dilatation. However the orientation of the

dykes. SUbparallel to S2b• is apparently incompatible with dilatational emplacement (Park.

1983). This can be solved if the space for emplacemenl is created by previous an.i.sotropies

such as fracwres and shear planes (S2, C-planes). This would require the S2 planes to aa
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as brittle thrust planes creating a space between me hangingwall and me footwall and the

additional hydrostatic pressure from the dyke to favour the: propagation of the dyke

(Fig.3.30). Cooling of the dyke would stop its propagarion. and the associated

retrogression would favour the development of ductile shearing with mylonitic fabrics

parallel to the mylonitic 52. This process would require thai: these dykes were emplaced

during the late-D2 stages. This is compatible with me fact that me late dykes Cross-cUI F2

folds. However. further fieldwork is necessary [ocoofinn this hypothesis.

The most characteristic microtextura.l fea~ of me D2b deformation is its mylonitic

foliation (Fig.3.29 and 3.33). This mylonitic foliation is well developed in the Silurian

intrusions. particularly in the 431 Ma granitic dyke. In this rock the primary granitic

framework has collapsed iOla a boudin-matrix microstructure (Handy. 1990). lbe quartzo­

feldspathic matrix (0< 0.05 nun) with white mica and chlorite surrounds winged

retrograde feldspar and quartz porpnyroclasts. defining S-e struetu~ (Fig.3.33). Otlorilc

and white mica an: both suble in the S-C and C' planes and are associated with eJllensive

grain reduction and subgrain rotation dynamic recrySla1li2.at.ion of quartz (Passduer and

Trouw. 1996). indicating lhc: greenschist facies character of this fabric. On UIc: late mafIC

dykes. UIc: D2b fabrics vary between recrystallized. amphibolile facies. continuous

foliations to lower amphibolite-uppc:r greenschist overpr1m of the magmatic: fabrics

(Fig.3.34) and greenschisl facies mylonitization. nus textural variation refJc:cts lhc:

heterogeneous character of !he DZb mylonitization and Ihc: close relationship between

retrogression and mylonitization.

3.7.3.- Discussion and conclusions:

The: defonnational evenlS within the Cinq-Cerf gneiss have been grouped in IWO main

phases. OJ and DZ. 01 is pre-Silurian and can be: divided in different subphases. all of
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which pre-date the inuusion of the 430 Ma Western Head gnmite. D2 is Silurian and

resulled in the thnJsting of the Cioq-Cerf gneiss along the Grand Bruit fault. A [)23

subphase of high-tempernlUre deformation. mostly in the Western Head granite. was

separated from a later heterogeneous greenschist facies overprint. the D2b subphase.

01 has a polyphase character. It is unclear how individual fabrics relate between

outcrops. The pre.584 Ma lithologies have an Sia compositionaJ banding which in the case

of the 675 Ma onhogneiss is teclonic. S Ia is locally cut by small polycrystalline quartz

veins (Sib) which might rcp~nt tension cracks. Sla and Sib are tightly folded by Fie

folds and cross cut by an axial planar SIC foliation. The resultant composite 5la·Slc

fabric forms the dominam fabric in the Precambrian members of the gneissic complex.

These fabrics have a small grain size and do not show evidence for coarsening during

recrystalliz.ation. Chlorite, biotite and green clinoamphibole are stable in the SIC fabric in

the paragneisses. This suggests lower amphibol..ite conditions which is consistent with the

preponderance of grain rotation recrystallization (Passchier and Trouw. 1996). Conditions

of formation of 5 Ia fabric are more diffK:U.lt [0 estimate but the extensive grain reduction.

the small size of the phyUosilicates and die absence of coarsening after recrystallizati

suggest that this is nOt a high.g:rade fabric.

Timing of the 51 fabrics is unclear (Fig.3.35). S la is post-675 Ma. it is bracketed by

the undated old mafic dykes and it is not: present in the 584 Ma and 557 Ma intrusions. The

gabbroic pods in the banded gneiss also seem to postdate the compositional banding. SIc

fabrics are synchronous or postdate the old mafic dykes and are older than 430 Ma. lbey

are not present in the 587 and 557 Ma intrusions. The 547 Ma granitoid dykes at Three

Islands were defonned between 547 and 448 Ma under amphibolite facies conditions.

However. the relationship between the S Ie fabrics and the 547-448 Ma deformation 31

Three Islands is unclear. The 587 and 557 Ma inuusions escaped most of the Silurian and
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the post-547 Ma 01 deConnalion. Therefore. they do not provlde a valid upper constraint

for the DI deformation but they ~uire reassessment of the 543 Ma major regional

ICCtonotberma.I event proposed by a.H. OlJrien et aI. (1993) 10 explain their monazite

data. In the case of the Sandbank Point-East Di~ Head section the younger age limit for

the DI deformation is provided by the dated 430 Ma late granite wh.ich cros.s-eulS the old

mafIC dykes and the S,a..Slc fabrics in the 675 Ma orthogneiss. The (pre-Silurian?)

metamorphism of the 5S7 Ma Sandbank metagabbro is problematic. PaniaHy preserved

concentric zoning in plagioclase suggests thaI it took place under stItic conditions. But it is

uncertain if this was due to automelamorphism during cooling. regional amphibolite facies

burial metamorphism or if it was induced by a later intrusion. It is also uncertain if the 448

Ma titanite from Three lslands grew in response 10 a nearby, unidentified 450 Ma intrusion

or if it is the product of prolonged cooling and recrystallization after earlier deformation.

The Silurian fabrics have been grouped into a single phase D2 divided into two D2a

and D2b subphases. 1be 023 5ubphase is associated with the intrusion of the c.430 Ma

Western Head granite and includes aU syn+magrna1ic: and h.igh tempenuure subsolidus

rabrics. Heterogeneous mylonitization. brin1e-ductile deformation and lower amphibolite •

greenschist racies re~ion followed the inttusion of lhe W~m Head granite. This

D2b deformaIion was broadJy coeval with the inlNSion or various swarms of 1ate dykes.

The rl.Dai stages of the D2b defonnatioo ~ constrained by 420 Ma titanite asscx:iated with

greensch.ist racies overprint of a lale mafIC porphyritic dyke. IGnematic indicators and the

orientation of the S2b mylonitic fabric and the L2 lineation indicate that the D2b

heterogeneous deformation was related to thrusting along the Grnnd Bruit fault.
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3.8.- GEOCHEMISTRY OF THE 557 Ma SANDBANK METAGABBRO­

METADIORITE:

This geochemical sampling has been carried 001 10 gather information about the

tectonic environment at lhe time of intrusion of the .557 Ma Sandbank metagabbro. as well

as 10 asses the field-based correlations between the dated mafic melagabbros and the felsic

metadiorites at Sandbank Point and similar lithologies o.t Three Islands.

Major dement whole rock tlIUl/yses were performed by XRF on glass ~llets. The tnxr

demerits were ONlly..zd by XRF 011 press p.!Uets and by ICP-MS. Details of the unofyricaJ

techniques, including p~dsion cmd limits 0{det«tiOlU are presented in appendix A.2.

3.8.1.- Geochemistry:

The sample suite (Table 3.2) ranges from basaltic (44.86% Si02) to basaltic-andesitic

compositions (53.32% Si02: Fig.3.36). The highest MgO concentration ([3.96%)

corresponds to the homblendite at Three Islands and the lowest to the leuco-dioriteS

(3.99% to 5.59%), the mafic metagabbros range from 5.52% to 9.34% (Fig. 3.36). Al203

concenlration rnnges from tholeiitic (15.20%) to h..igh alumina compositions (19.59%). The:

h..igbesl: alumina concentnUions an: lhose of the plagjoclase+ricb metadiorires (Fig.3.36).

Ti02 (0.47-1.65%) is variable although seems to show an increase with decreasing MgO.

P205 shows a well defmed lreOO ofenrichment with decreasing MgO. except for the MgO

ricb samples. K20 is low (0.18..Q.68%). except for the MgO ricb samples (1.1%: Fig

3.36). Na20 varies between alkalic and sub-alkalic values, with h..ighest values for the

plagioclase-rich ffietadiorites (Fig.3.36).

Most trace elements in the suile do not show a well defmed trend with major element

variation. wh..ich coWd be an effect of a small sample set combined with sampling bias. The
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exception is a positive correlation between Ni (355 to 5 ppm) and Cr (7SS [0 26 ppm) with

MgO and a negative com:lation betwcc:n Sr and MgO. 11E REE pattc:ms show a relatiycly

flat cboodrile-normalized patlem with a slight enrichment in LREE (Fig. 3.37). Sample G·

CQ-7A (mafic metad.iorite. Sandbank) constitutes an exception. showing a LREE depleted

and small Eu negative anomaly. 1be Eu anomaly is a~n( in most samples or is poorly

developed with both negative and a positive characters (Fig. 3.37). The REE rich patterns

in both the Sandbank Point and 'Three Islands samples correspond 10 the felsic:

metadiorites. Although parallel 10 lhose of Sandbank. Point. the patterns from~ Islands

~ REE depleted regardless of lithology. MORB (Pearce, 1983) - nonnalized multielement

patterns are charnclerized by a slight depletion in HFSE with respect [0 MORB and a weak

Nb anomaly (Fig.3.3?). Mobile elements (Pearce. 1983: Jenner, 1996 and ref. within)

were not plotted to avoid any .scattering due to partial element mobility during secondary

processes. TIle patterns show a gooddc~ of consistency among the different lithologies.

The samples from Three lsl:1Ods are also slightly depleted in Ti and Y. but this seems to be

an effect of the sample bias towards maflC-ricb lithologies. 1be panem of sample GCQ7A

(mafic metagabbro. Sandbank Poiot) departs from the rest showing a MORB·like panem

(Fig.3.37).

3.8.2.· Discussion: geochemical signatures, tectonic environments and

petrogenetic processes.·

1bere is no significant difference between the samples from Three Islands and

Sandbank Point. el(cept for a slight depletion in HFSE and REE, suggesting that they are

pan of the same suite. This also reinforces the notion that the leuco-diorites are cogcnetic

with the mafic tnetagabbros. even though they intn.ldc:d the former in a soliduslsubsolidus

state. Given the difference in major clement concentrations. the similarity of the

geochemical signatures suggests thai any effccts in the uaee clement signatures derived
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from possible cumulates are minimal. Thus the sample suite as a whole can be: safely used

for tectonic discrimination purposes.

The major elements point towards a lholeiitic character for the suite (FigJ.36) but they

do not offer a reliable characteriuuion of the suite. due (0 the metamorphic overprint.

Inmobile elements like Zr. Ti. Nb.Y. La and V (Hellman et aI•• 1979: Merriman d al..

1986) conftrm the subalkaline character of the suite (Fig.3.38),

REE element patterns, except for sample G4CQ-7A, are quile similar 10 those of an::.

tholeiites (a1thoughllacking a negative Eu anomaly) and back arc basin basalts (6-30 times

chondrilc enriched nat paltems with a slight tendency 10 LREE enrichment and no Eu

anomalies; Wilson, 1989). The LREE-depleted pattern of sample GCQ7A (Fig.3.3?) is

typical of MORB-like tholeiitic magmas. and this is also reflected in the MORB (Pearce.

1983)-nonnaJized multielement patterns (Fig.3.37). 1bc: other samples show MORR·

nonnalized multielement patterns wtUch are~ charncteristic of volcanic an:: tholeiites.

with a slight negative Nb anomaly. HFSE depletion and a small Th enrictunenl with

respect to MORB. lbese patterns could also resemble those of back arc basalt (Wilson.

(989).

Bivariale tectonic discrimination diagrams (Fig. 3.38) confllnt the tholeiitic character

oftbe suite and indicate a U'3nSitionai character between volcanic ale and MORS lholeiites.

Ternary discrimination plots also indicate a uansitional chardCler. Samples plot in tholeiitic

fields both of volcanic ale and MORB (Fig.3.39), in most teclonic discrimination

diagrams. However, they plot exclusively in the island arc tholeiite field of the Ti02-MnD-

?l05 diagram (Mullen, (983).

The geochemical characteristics of the whole sample set are typical of a tholeiitic suite

with transitional character. Sample G-CQ-7A (44.8% SiOz. 8.6% MgO) bas MORB
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characteristics and it could represent a primary magma derived from an asthenospheric

MORB source. possibly a spinel lherzolite. 1be other samples could be explained in tenns

of interaction between lithospberelMORB mantle sources (Wilson. 1989), which is

characteristic of transitional basalIS. It could be argued that the same effect can be achieved

by lower crust contamination. Si02 and MgO concentrations do not suggest a large degree

of crustal contamination. althought isotopic data will be needed to test lhese hypothesis.

The tholeiitic character of the samples requires a tectonic setting which could produce

the shallow aslhenospheric melting responsible for the REE patterns of the suite. The most

simple one is an ensialic arcIback arc environment, which could explain the weak volcanic~

arc signatures of most of the sample set and the MOR8-like signatures of sample G-CQ-

7A.
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3.9.- GEOLOGICAL EVOLUTION OF THE CINQ-CERF GNEISS AND

THE LATE PRECAMBRIAN BASEMENT OF THE SOUTHWEST

HERMITAGE FLEXURE.-

1bc: metasedimentary members of the Cinq-Cerf gneiss and the intrusive 675 Ma

granitic onhogneiss constitute the oldest rocks of this part of the Hennitage ACllure.

FOOaled clasts resembling the Cinq-Cerf gneiss arc present in lhc~ conglomer<lIes of

the Whittle Hill sandstone (8.H. O'Brien. 1988; pers comm). These basal sequences were

overlain by 585-584 Ma yolcanic tuffs which are coeval with the 584 Ma granodiorite in the

Cinq·Cerf gneiss (Table 3.3). These field relationships suggest that the prc-584 Ma Cinq­

Cerf gneiss was basement to the Whittle Hill sandstone and that the 584 Ma granodiorite

probably represents an intrusive equivaJcnI of the coeval tuffs. This also suggests the

~nce of an early event(s) between 675 and 584 Ma. Some of the c.585 Ma tuffs arc

CfOSS-<:ut by the 576-573 Ma felsic porphyries. which preceded the 573-566 Ma Au­

porphyry-Cu miner.llization of the Whittle Hill sandstone (Dubt and Dunning. in press).

According to D.H. O'Brien et aI (1993), the 563·568 Ma Roo granitic suite intruded both

the Whittle Hill sandslone and the Cinq-Cerf gneiss. with a fragment of Cinq-Cetf gneiss

forming a roof pendanl (B.H. O'Brien, 1988). Such relationships of the Roo granite suile

require subsidence of the sedimentary basin in which the Whittle Hill sandstone was

deposited. This could be accomplished by normal faulting. This would help to bring the

Whime Hill sandstone to the same cruslai level as its basement (Fig.3.40). so that both

could be contemporoneously intruded by the 568·563 Ma Roo suite. According to Dubt

and Dunning (in press), the Whittle Hill sandstone is also intruded by another set of mafic

and intermediate dykes at 565-566 Ma. These are maximum 207pb/206pb ages, the error

ellipses of less than 1% discordanl fractions intercept the concordia curve a1 c. 560 Ma

This makes this set of dykes in the Whittle Hill sandstone coeval within error with the
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inlnJSion of the 557 Ma Sandbank metagabbro. This metagabbro is intruded at Three

lstands by a 547 Ma granitoid (B.H. O'Brien and Dunning. unpublished). This shows thai

lhc Whittle Hill sandslooc and its basement. the Cinq-Ccrf gneiss. had a prottacted hiSl:ory

of inuusive activity. (rom lhe inception of the sedimentary basin. at c.585 Ma. [0 547 Ma.

The extensive 570-560 Ma inuusive activiry is inl~led as arc~rdalcd (Dubt and

Dunning, in press). as is me genetically--related Au-porphyry Cu mineralization at Hope

Brook.1be geochemical signalu£eS of the Sandbank metagabbro are indicative of shallow

asthenospheric melting at c.557 Ma and. therefore. an extensional setting. The weak

volcanic arc signatures in the ffiCtagabbros suggest a back-arc I arc trnnsitionaJ environment

as the most simple hypothesis. If subduction was continuous from 585 Ma to 547 Ma. this

could have led to regional extension which would facilitate basin formation. subsidence and

sedimentation. as weU as volcanism and pluton emplacement during differem episodes al

585·584 Ma, 576-573 Ma. 568-563 Ma, 557 Ma and 547 Ma. Although al smaller scale.

this rectonic scenario resembles that proposed by Dallmeyer d a1 (1996) for the Andean

Mesozoic evolulion of Nonhem Chile.

Direct dating of Late Pm:ambrian deformation both in the Cinq-Cerf gneiss and lhe

surrounding Late Precambrian rocks has proved 10 be difficult. B.H. O'Brien et al (1993)

inte~teda concon:lant 566 Ma aplite within a shear zone hosled by 568 Ma Roo granite

as syn-lcinematic. The same field relationship. however. could be interpreted to resuh from

a contrast of competencies during the Silurian mylonitization. These authors also reponed

two monazite analysis (0.7 and 1.4% discordanl) and a concordant 414 Ma titanite age

from the same aplite. The 0.7 % discordant monazite was interpreted as dating a

"significant regional metamorphic evenl". As already discussed there is no geological

evidence for such an event. This monazite age could represent a local !henna! dislUlbance

created by a c.545 Ma inlrUSion or il could be an artifact produced by a sballow discordia
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line due to the Silurian disturbance. Bur more analyses from the same mineral separales will

be needed to test either hypothesis.~ is, however, strong field evidence to infer prc:-

585 Ma and post-585 Ma Precambrian defannation, particularly if the 568-563 Ma Roti

granite intruded the Whittle Hill sandstone with the Cinq-Cerf gneiss fomUng a roof

pendant (Fig. 3.40: S.H. O'Brien, 1988: 1990). Although in an arc environment. this

deformation is interpreted as extensional, which is a conunon feature in such settings

(Hamilton. 1994). in order to produce the 585 Ma sedimentary basin and to create the room

for the 585-547 Ma intrusions. This is consistent with the extensional environment required

for the geochemical signatures of the 557 Ma Sandbank metagabbro. This extension is

followed by folding of the Whittle Hill sandstone. These folds are cross-cut by 499495

Ma intrusions (S.H. O'Brien et aI., 1991), indicating a pre-Tremadocian age for the

folding event and suggesting an Avalonian compression. It should be noted that there is no

well defined lower limit for this deformation. Therefore, the data from the Cinq-Cerf gneiss

combined with that of the low grade Late Precambrian voicanoclastics and intrusions

provide evidence for three Precambrian deformations: an earlier evenl{sJ between 675 and

585 Ma; an extensional deformation associated with the 585-584 deposition of the

volcanosedimentary sequences of the Whittle Hill sandstone and the prolonged intrusive

activity; and a final folding of the Whittle Hill sandstone (Fig.3.4ll. The ,eons extension

and compression are used in a wide sense. the same effects could also be achieved by

transtension and transpression. But overall this tectonic activity is viewed to occur along

the overriding plate of an active margin.

The 499 Ma granodiorile and 495 rvta. gabbro (Dunning and O'Brien. 1989: B.H.

O'Brien et aI., 1991) intruded !he deformed low-grade Whittle Hill sandstone

contemporaneously with the generation of Tremadocian ophiolites in suprasubduction

environmenlS along the Gondwanan iIlaIlPn of laperus (Colman-Sadd el aI., 1992: Jenner
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and Swinden. 1993). Temporally (Fig.3.41), these intrusions could be ascribed 10 the

Penobscottian event but there is no evidence for Penobsconian deformation. unlike in the

nearby composite Bay du Nord Group (Tucker et aL. (994). This agrees with the

observations from the northern Exploits Group (B.H. O'Brien ct aI.• 1997) which has also

escaped the Penobsconian evenls. otherwise well preserved in Cemral Newfoundland

(Colman-Sadd et aI .• 1992).

The 448+9/-3 Ma tiranite from the 547 Ma granitoid dyke at~ Islands (Dunning

and B.H. O'Brien. unpublished) is diffICult to inlcrprel. This is a cooling age after a

deformational and metamorphic event of unknown significance. The southwest part of the

Hermitage Aexure contains c.450 Ma intrusions and metamorphic rocks (Dunning

unpublished in a.H. O'Brien and SJ. O'Brien. 1992: Van Staal el al.. 1994: Dunning,

unpublished). But no evidence for such a OOdy was found in the Cinq-Cerf gneiss.

The Silurian intrusion of the Western Head granodiorite-granite (431-429 Ma) is

contemporaneous with the opening of the La Poile Basin, to which the Late Precambrian

block is basement (Fig,3.41: B.H. O'Brien et aI.• 1991). This took place in a complex

tectonic sening during the climax of the Silurian, Salinic. continent-continent collision

(Dunning et al., 1989). The opening of the basin continued while the Western Head granite

and the Cinq-Cerf gneiss were undergoing defonnation associated with thrusting along the

Grand Bruit fault. This basin was finally inverted and deformed between 423Ma and 419

Ma contemporaneously with the intrusion of the 419 Ma Otter Point granite into the

Western Head granite and final thmsting of the Cinq-Cerf gneiss along the Grand Bruit

fault. Finally the 390±3 Ma Chetwynd granite inuuded po5teollisionaJly stitching all

tectonic and intrusive contacts between the Late Precambrian basement. the La Poile basin

and the Silurian intrusions (Fig.3.41).
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CHAPTER rv

THE MARGAREE ORTHOGNEISS (Port-aux-Basques complex,
southwest Newfoundland Appalachians).

4.1.- INTRODUCTlON :

1be Port-aux-Basques complex (van Staal et aI.• 1992) occupies one of the most

critical positions in the Newfoundland Appalachians. east of the suture zone defined by the

Cape Ray Fault zone (Fig.4.1: Brown.1975: Lin et aI., 1994; DubC et aI., 19%).

separating the peri-Laurentian Dashwoods Subzone from the peri-Gondwanan Bay du

Nord Group and the Avalonian basement aCthe Hennitage flexure. The assessment of the

age and tectonic linkage of the Port-aux-Basques complex has always been problematic.

This gneissic complex and the nearby Gnw.d Bay complex (van Staal et aI. 1996b) have

been depicted with a question mart. on most lithou:ctonic maps of the Newfoundland

Appalachians (Williams et aI.• 1988). and has been interpreted as a Pm:ambrian basement

(Brown. 1975) and as an Ordovician island arc (Charlton. 1984)

The Pon-aux-Basques and the Grand Bay complexes comprise a set of lower to upper

amphibolite facies mica schists, paragneisses. amphiboLites and onhogneisses with local

massive sulphide deposits. These rocks have an anomalous tectonic position. they are

situated east of the Cape Ray Fault on the peri..Qondwanan margin of the Iapetus ocean.

but on the edge of the seisrnically-defmcd Grenvillian crustal block (Keen et al.. 1986). Pb
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isotopic signarures of the associated massh-e su.lphides are also anomalous. in between

those of the Notre Dame and Exploits subzooes (lsle-aux-MOI1S prospect; O'Neill. 1985).

Tbese two complexes and the nearby rocks of the Harbour Ie Coo Group have been

corrdated with the Lillie Passage Gneiss in the Hermitage Bay area (Brown. 1975). the

Bay du Nord Group and !he La Poile Group (Chorllon. 1984), as well as with the

Mc:elpaeg Subzone of the Gander Zone (Colman·Sadd et at. compilers. 1990) and with

both the Bay du Nord Group (Exploits Subzone) and the Gander Zone (lln et aI.• 1994).

1be assigrunenl of the Pon-aux-Basques complex to any of these zonal divisions is

problematic. simply because its age and pre-Silurian geological evolution is unknown.

The following data set constitutes the flrst constraints on me age and tectonic linkage

of the Port-aux-Basques complex. This dala is based on regional and detailed mapping

coupled with precise U-Pb geochronology of a set of otthogneisses known as the Margaree

orthogneiss (van Sr.aaI et aJ.. 1996b,c). According to Brown (1977), these rocks pre-dale

deformation and metamorphism of the Port-aux-Basques complex and. suuclUrally. an: the

oldest rocks in the an:a. Reconnaissance geochemistry was carried out 10 provide a

geochemica.l characterization of the main rocks types and 10 gather SOrrlC infonnation about

!he type of tectonic environment.

G~nera/ stat~m~nt:

1M nomenclature in tM field amJ is confusing due to the US~ 0/ tM !Deal I1aI11e 0/

Port-aux-Bosques to describe different individual rock typrs aNi seU 0/ rocks. particularly

gneissic rock types. Van Staal et aJ. (1992) divided the Port-aux-Basques Gneiss unit 0/

Brown (/973; 1975,. 19n) into the three divisions: Grand Bay complex. Pon-aux-Basq~s

complex and part of the Harbour Ie Cou Group; reserving the name Pon+(Jux-Basq~s

gneiss/or the metasedimentary paragneisses and schau in the Pon.aux-Basques complex.
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It is the renninology alvan Staal etal. (1992; 1996b; 1996<:) that is going to be used in the

following sections. Port-a~-Basquu gneiss will refer only to the ~tasedimentary rocks

(paragneisses and schists) of 1M Porr-au.-r-Basques compkx and (M nearby Grand Bay

complex (van Staal et aI., 1992).

4.2.- LOCATION, ACCESS AND LOGISTICS:

1be area of study is located in southweslem Newfoundland (Canada) in an area

between the localities of Port-aux-Basques and IsJe-Aux~Morts occupying the SE

quadrangle of the 1:50,000 Port-aux-Basques sheet and the NW quadrangle of the

neighbouring Rose Blanche sheet.

Coastal sections have been accessed by foot and are characterized by a 5 to 20 meter

wide fresh outcrop along the shoreline. River sections also display good quality outcrop,

although they are more difficult to access, particularly the one at Grandys Brook:. This

section was accessed with helicopter support, and to reach the upper third of the gorge it

was necessary to use rock climbing skills. 1be Grandys Brook section is only

recommended to be visited when lhe river is low. In general. the whole area is banen land

covered by thin peat bogs. therefore the overall rock exposure is quite good. Excellent

outcrops of the Margaree orthogneiss can be found in the quarries along the road to lsle­

Aux-Morts, the Dolphin road and near Margaree.

Field work was carried out as part of a Geological Survey of Canada (GSC) project

team under me direction ofCees van Staal. whicb mapped the Pon~aux-Basques and Rose

Blanche areas at 1:25,000 scale (van Staal et al.• 1996 b,c). The opportunity of teaming up

with lhe GSC allowed the author 10 use their logistics and to integrate his mapping within

the regional GSC mapping. Field work was canied ou! in two field seasons. During the
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first season (August 1993) the author mapped and dermed the main units of the composite

Margaree orthogneiss. During this time, the coastal section around Fox Roost was mapped

at I:5000 scale and the extension of the: Margaree orthogneiss up to Grandy's Brook was

recognized. In July 1994 the section at Grandys Brook was mapped in detail by the author

and the orthogneiss was mapped. in the nearby highlands. during a week and a half fly­

camp. TIle northeastern extent of the complex beyond Grandys Brook was mapped by the

GSC (c. van Staal and L. HaJl). At the end of August and early September 1994 the author

mapped with the GSC outside the field area. both in the Port-aux-Basques and the Rose

Blanche sheets. which helped him to realize the regional complexities of the an:a.

4.3.- THE MARGAREE ORTHOGNEISS : DEFINITION

TIle Marg~ orthogneiss is a composite gneissic unit within the Port-aux-Basques

complex. It comprises biotite ± hornblende-bearing felsic and mafic orthogneisses.

amphibolite dykes and ultramafic rocks. This gneiss extends from Channel Island, in Port­

aux-Basques, westward to the coastline of Margaree and Fox Roost forming a 2 Km wide

band that can be: traced at least 15 Km inland beyond Grandys Brook (Fig.4.I). TIle

outcrop panc:m of the: Margaree onhogneiss closely follows the trend of a weU derIDed

positive regional magnetic anomaly (Fig.4.Z), which is a good indication of the: consistency

of the field mapping and the lithological conrrast with the: surrounding paragneiss. A

contrasting lithological character with the: surrounding, sc:dimenwy-derived, Port-aux­

Basques gneiss is the absence of gamet, AlZSiOS polymorphs or muscovite. Also in the

Margaree orthogneiss there is no clear evidence for anatexis.
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4.4.- PREVIOUS WORK :

Compared with other pans of the Newfoundland AppaJachians the southwest coast. in

lhis case the Port-Aux Basques aru. has not received much attention tuttiJ recent times.

Gillis (1972) included for the first time the Port-aux.-Basques area as part of a 1:250.000

~aisancc regional map of southwest Newfoundland. Brown (1973) ma:ppc:d the area

around Port-aux-Basques. including part of the rlCld area, al 1:20.000 scale as pan of an

M.Sc. project al Memorial UniveBity. He later expanded the mapping al 1:50.000 scale to

cover the area up to Garia Bay as part of his Ph.D. thesis at Memorial University (Brown.

[975). All this mapping is compiled in the work of Brown for the Geological Survey of

Newfoundland (1:50.000 Port-aux-Basques and Rose Blanche sheets; Brown. 1977).

Chorlton (1984) compiled the geology of southwest Newfoundland as part of a PhD thesis

at Memorial University involving extensive fieldwork in the neighOOuring Bay du Nord

Group and the peri-Laurentian Dashwoods Subzone. Sbe correlated the Port-aux.-Basques

gneiss of Brown (1971) with her Bunker Hill gneiss in the Bay du Nord Group, and

noticed the similarities with the amphibolitc-rich gneisses north of the Gunflaps Hill faull

splay. Therdett. she assumed !hat the Port-aux.-Basques gneiss was pan of the OrdovM::ian

arc sequences preserved in the Bay du Nord Group. O'Neill (1985) mapped dlc arcl

around the Isle·aux-Mons prospect and srudied the rnineralization and regional

mewnorpbism as part of an M.Sc. ar Memorial University. WLlton (1984) and IJube and

Lauziere (1996) mapped the mineraJ occwrenccs and suucrures around the Cape Ray Fault

zone. In 1992 Cees van Staal (GSC) began the 1:25.000 remapping of the POrt-aux­

Basques and Rose Blanche sheets (van Staal el aI., 1996b,c). Apart from the present thesis

two other theses were done in Ihe Port-aux-Basques area in conjunction wi!h the GSC

mapping, cosupervised by van Staal D. Scholfield's Ph.D thesis aI Keele Univ. (U.K.)
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deals with the general geochemistry of the area whereas 1. Burgess' M.Sc. thesis (Univ. of

Maryland. U.S.A.) focused on the metamorphism of the area (Burgess et aI.• (993: 1995).

Age determinations in the area are limited to K-Ar data from Gillis (1972). V-Pb

titanite dating (Dunning et al.. 1990) and the data of Burgess ci aI. (V.Pb titanite.

4OAr/39Ar; 1995). Dub6 et a1. ([996) reponed V-Pb and 4OAr/39Ar dam which constrain

the timing of deformation around the Cape Ray Fault zone. Van Staal et aJ. (1994) reponed

preliminary V-Ph data of this thesis and other geochronological studies in the surrounding

lbe composite Margaree orthogneiss was differentiated from the Port-aux-Basques

Gneiss of Brown (1977) during the fieldwork carried out by ase in 1992 (van Staal. pers

carom). Even though Brown (1977) merged these rocks with the ncarby paragneisses. he

recognized the presence of relics of an earlier gneissic banding in ~a set of migmatites and

granitic slivers" in the Margaree· Fox Roost area.

4.5.-GEOLOGICAL SETTING:

The Margaree orthogneiss forms part of the rocks of the Pon-aux-Basques area

adscribed to the peri-Gondwanan margin of the Newfoundland Appalachians. According to

Brown (1977) these rocks (Grand Bay and Pon-aux-Basques complexes of van Staal et

aI.• 1996b.c) were the crystalline basement to eastern continental margin of the Iaperus

Ocean and were separated by a cryptic suture. the Cape Ray Fault zone. from the

Laurentian basement (Cape Ray Igneous Complex). While this interpretanon has changed.

it is held that the Cape Ray Fault is a suture separating a block of Early Paleozoic rocks

with Laurentian affinities (Dunning et aI., 1989) from one with Gondwanan affinities (Lin

et aI.. 1994: Burgess et aI. 1995; Williams. 1995; Dube et aI.• 1996). These two blocks
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were juxtaposed during the Silurian Salinic orogeny (Dunning et aI.• 1990: Lin et aI., 1994:

Dube el aI., 1996).

4.5.1.- The Cape Ray Igneous Complex and the Windsor Point Group

(Laurentian side; Fig. 4.1.):

The Cape Ray Igneous Complex (eRIC) constiMes part of the Dunnage Zone

(Dunning et aI., 1989). Dash-woods Subzone (Williams. 1995). The eRIC comprises

tonalitic 10 grunitic orthogneisses. which intrude metamorphosed ultramafic-mafic rocks

(Long Range Mafic-Ultramafic complex: Charllon. (984) and sillimanite-bearing

parugneisses with marble layers. The CRJC and ilS country rock are interpreted as the

metamorphic equivalent of the NOlre Dame arc (Lin et a1., 1994). Dube et aI. (1996)

reported a 488±3 Ma age for a megacrystic granite and a 469±2 Ma age for a tonalite within

the CRIC near its contact with the Windsor Point Group.

The low grade rocks of the Windsor Point Group (wpG) separate the eRIC from the

metasedirnantary Port-au;l;:-Basques gneiss. The WPG consists of bimodal volcanics and

sediments including conglomerate beds which contain CRIC clasts (Dube et aI., 1996). The

WPG rests unconfonnably on the CRIC (Brown, 1975; Wilton, 1983; Chorlton. 1984). A

black rhyolite, interiayered with the conglomerates at the base of the group, has provided

an age of 453+5/-4 Ma. The intrusion of pre-kinematic gabbro sills (424+41-3 Ma)

provides a younger age limit for the whole sedimentary package. The pre-kinematic gabbro

is intruded by the coeval pre-kinematic Windowglass Hill granite (424±2 Ma.: Dube et al..

1996).
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4.5.2.· The Cape Ray Fault ZODe (Fig.4.1.):

Deformal.ion along the Cape Ray Fault Zone (CRfZ) affects both the Windsor Pain!

Group and the metasedimentary Pon-aux-Basques gneiss and resulted in oblique lhrusting

of the Pon-aux-Basques gneiss over the WPG. 4OArf39Ar ages of synkinematic

hornblende (407±4 Ma) and biotite (403±4 Ma), from CRf2 mylonites affecting the Port­

aux-Basques gneiss are interpreted to date the thrusting (Dube et aI.. 1996). 1be northern

sector of the CRFZ was [aler reactivated as part of a system of sinistral transcurrent faults

(403±6 - 399±6 Ma; K-Ar Ms; Dub6etal., 1996: 385±5 - 384±5 Ma. 4OAr/39At Hbl. Bt;

Charllon and Dallmeyer. 1986). The post-collisional Isle-Aux-Mons granite (386±3 Ma)

and Strawberry Hill granite (384±2 Ma, Dube el aI., 1996) intruded the CRF2 and provide

the youngest limit for deformation along the CRFZ (Dube et aI., 1996).

4.5.3.- The gneissic lithologies of the Port-aux-Basques area (Gondwanan

side, Fig.4.1.):

These gneissic rocks, originall1y grouped under the Port-aux-Sasques Gneiss (Brown,

1977), have been divided in three units (Fig.4.1 Van Staal et aI.• 1992): Grand Bay

complex (GBC). Port.aux-Basques complex (PaBC) and Harbour Ie COll Group (HICG).

These divisions have tcctonic boundaries; the CRFZ separates the GBC from the Windsor

Group, the Grand Bay Thrust separates the GBC from the PaBC and the Isle-aux·Morts

Fault separates the PaBC from the HlGC. The regional metamorphic grade shows a west to

east increase from the lower amphibolite Grand Bay Complex to the upper amphibolite

Harbour Ie Coo Group which sharply ends against the Bay Ie Moine shear zone (Fig.4.I;

Burgess et aI .• 1993; 1995).
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lJx; Grand Bay complex; <GBQ' This unit comprises gedrilc-bearing schists.

fTEtapsammites (g:reywackes and fcJsic volcan.ics?). metapc:lites and coticuk: beds

(melavolcanic~ van Staal d: aI., 1996b). Pyritiferous zones are COffiIIKlfl in d:J!: complex.

the largest one is associated with the Zn-Pb-Cu-Ag massive sulphide deposit of me Isle·

AuJt-Morts prospect (O'Neill, 1985). Arnphiboli~ and ultramafic bodies 3le commonly

intercalated with the metasediments. Th.is unit also contains abundant mafic and felsic

onhogneis.ses (Grand Bay granodiorite and Kelby Cove oMognciss. Fig. 4.1 ; van Staal eI

aI .• 1996b) as well as intruSions of the Pon-aux-Basques granite (Brown. 1973. O'Neill,

1985; van Staal et aI.• 1996b). Mineral assemblages in AI·rich petites are Grt+St+ChI+Bt

and Grt+Ky+Bt±St (Brown. 1973; 1975; O'Neill, [985; Burgess et aI.• 1993), gamet­

biotite geothennometry indicates peak lemperalurcs of 580±5O"C (Burgess ci at.. 1995).

4OArl39Arcooling ages in amphibole range from 401Ma to 393 Ma (Burgess et aI., 1995).

Dunning et aI. (1990) reponed a 412±2 Ma 206Pb1238U titanite age from the viciniry aCthe

lsle-Aux-Mons prospect. U·Pb monazite dating in this unit suggests that peak

mewnorphism was reached at 415 Ma (Dunning. unpublished).

The Psxt-aux-Ragllles romp!ex (PaRO: This complex contains a metasedimentary

unit. Port·aux-Basques gneiss (van Staal et al.. 1996b.cl which is inmtded by abundant

amphibolite dykes. the Pon-aux-Basques granite. lhe Kelby Cove orthogneiss. me

Margaree orthogneiss and Ia1e granite sheets and pe:grnatites. Acconling to Brown

(1977) and van Staal ct aJ. (l996b.c). the rocks of the Margaree orthogneiss are the oldest

set of inuusions intO the metasedimentary Port-aux-Basques gneiss. In the PaBC. the Pon­

aux-Basques gneiss contains metapelites. rnetapsammites. amphibole rich layers (para­

amphibolites) and local epidote-rich layers: although present. coticules are very scarce. Van

Staal ct al. (1996b.c) interpreted the gradation from quartz-rich psammites to micaceous

and feldspathic psanunites as a variation upwards through stratigraphy. There is an increase
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in metamorphic grade in the unit from the kyanile zone in the west to the second sillimanite

zone in the east. The second sillimanite zone is cbmdcrized by analeCtic migmatites.

produced by Ms-out reactions. which an: aligned with lhe 52 foliation and folded by F3

(Brown. 1975: Burgess et aI.• 1993: Burgess et aI., 1995). Peak metamOrphic conditions

are of 1Q.8Kb and approximately 7OCJ>C (Owen. 1992: Burgcss cl aI., 1995). 4()Ar/39Ar

cooling ages in this unit range from 407 - 399 Ma (Hornblende) to 394-391 Ma

(Muscovite: Burgess c:t aI .• 1995). Reponed U·Pb monazite data range from 420 to 415 Ma

(van Staal ct aI.. 1994).

]be Harbour Ie Coo Group (HICG)- The HlCG (Lincl aI., 1993) is an cxtension of

the Harbour Ie Coo unit of Brown (Brown, 1975). This group is separ.lIed from the: Port­

aux-Basques Comp/eJt by the lsJe-aux-Morts shear zooe (Brown. 1977; van Staal et al..

1993: Piasecki, 1995). 'The lack of amphibolite dykes and pre-tectonic granitic

orthogneisses indicates that this group represents a different geological unit from the GBC

and the paSe and this led Brown (1975) to consider it as a cover sequence to the PaB

gneiss. Thc HICG has been divided into the Otter Bay fonnation and the Grandy's

fonnation (van Staal et aI.• 199&). 1be Otter Bay ronnation comprises gamet-bearing

metapsammites. rusty pyrite-rich metapeliles. caJc-silicale pods and narrow bod.ies of

onboamph.iboLites. AI the conlaCl with the overlying Grandy's fonnation then: &Ie

metamorphosed pillow lavas with tholeiitic basaltic composition (Lin el 31.. 1993:

Scholfield CI aI .• 1993). The Grandy's formation is composed of rusty metapelites, schists.

rnetapsammites and coticule layers. The HlCG has extensive developmem of anatectic

migmatites. Reported peak metamorphic conditions involved temperatures in excess of

7CffC and 6.6 to 5.2 Kb pressure (Burgess et aI., 1995). 4OAr/39Ar cooling ages range

from 419 to 404 Ma in amphibole and 391 Ma for muscovite (Burgess et aI.. 1995).

Burgess et aI. (1995) also reponed a titanite V-Pb age of 418±9 Ma. 1be eastern HleG is
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inlJUded by the late-OZ. early-D3. gamet-bearing. two mica granite sheets of the Rose

Blanche granite (HeM et aI .• 1993; 419 Ma. Dunning unpublished). The HleG is bounded

to the east by the Rose Blanche granite and the Bay l.e Moine shear zone (Chortton and

Dallmeyer. 1986: Lin et aI.• 1993).

The GBC. PaBe and HICG shale the same SltUCturaJ history which consists of lhroe

main phases of regional deformation (0 I, D2 and OJ). all of which affected the Marga.ree

orthogneiss. DI structures are scarce recumbent folds (F I) with associated axial planar

schistosity ($ I). During 02, SO and S I were transposed. leading to the fonnation of the

dominant gneissosity (50.51·52): F2 folds are recumbent. 03 transpression is

characterized by upright to steeply inclined periclinal folds (F3), Icx:aI oblique ductile shear

zones and dexual. transcurrent major shear zones; an 53 schistosity is developed locally.

03 is responsible for the dome and basin interference pattern of the regional

macrostruetures. Locally there is development of a D4 phase: which consists of a low grade

overprint of 03 strUCtures (Van Staal et aI., 1992: Burgess et al .• 1995). Peak

metamorphism was reached during 02.

4.6.- MARGAREE ORTHOGNEISS, LITHOLOGICAL UNITS: descripClon,

internal field relationships and age:

Two type sections of the Margaree orthogneiss. one at Margarec-Fox Roost and

another at Grandys Brook, were studied in detail. Pan of the Margaree-Fox Roost section

(Fig.4.3.) was mapped at 1:6000 scale (Fig.4.4) whereas pan of the Grandys Brook

section was mapped at 1:15000 scale. The Margaree-Fox Roost section is characterized by

variably deformed hornblende-bearing ~tonalitic" orthogneisscs. grnnitic orthogneisses.

ampbibolites. ulmunafjc rocks and ~migmatitic~ gneisses. The Grandys Brook section is
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similar but mafIC dioritic intrusions are common. whereas 00 ultramafic rocks were

observed. Tbc surrounding PaR gneiss is a variably migmarized quartzo-fcklspath.ic

paragnciss. Detailed mapping of the Margasee orthogneiss aJJowed the distinction of il set

of lithological units which will be described neXL Some of lhese units were directly dated

by U-Pb gec:x:hronology. lbe:se absolute ages provide a limit for the undated units. on the

basis of the relative chronology constrained by the field relationships.

Details ofthe V-Pb lUU'J/ytica/ procedure. including sample preparation. are provided in

appendix AI.

4.6.1.- Hornblende.bearlng tonalitic orthogneiss:

Several amphibole-bearing rock. types have been grouped in this unit; these are

granodioritic orthogneisses with mafIC enclaves and a mafIC unit in the Fox Roost section

with an overall tonalitic character. TIlls mafic unit aI Fox Roost is different from the

relatively homogeneous graoodioritic onhogneisses. It consists of mafIC sheets of dioritic

orthogneisses. amphibolile5 and small u1lnlII1a.fic pods back. veined by partially hybridized

felsic centimetre to metre-wide granitic veins (FigA.S). These granitic veins merge with

granitic orthogocisses suggesting that both are coeval (Fig.4.5).

The granodioritic onhogneisses are well exposed in Margarec at the nearest quany at

the side of the road. along the Dolphin road (FigA.3) and in the Grandys Brook section.

These: gneisses ate. in general. fme (0 medium grained (0- 1 mm) and they usually contain

amphibole-bearing felsic veins. mafic (amphibole + biotite) banding. amphibolite rich

enclaves and folded and boudinaged amphibolite dykes. The ampllibole in tl1e felsic veins

(Fig.4.6) grew as poikiloblasts. this and the diffuse contacts of lhese veins suggest that

they were produced by metamorphic differenciation. The gneissic foliation is defrned by

mafic lay~ and thin discontinuous felsic bands of plagioclase. quartz ± hornblende
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(Fig.4.6). Amphiboles are preferably oriented in the foliation plane defIning a mineral

lineation. The modal miner.llogy is approximalely 35-30% plagioclase (An2o-JO). 30%

green hornblende. lD-ISli. pale-dark brown biotite. 20% quartz. >10% K.feldspar.

Epidote, apatite. tin::on and opaques an: the main accessory minerals. in some cascs tilanite

occurs as an accessory phase.

Age:

Dioritic sheets of the mafic tonalitic orthogneiss at Fol!, Roost were unsuccessfully

sampled for zircon. 1be field relationships at FOll Roost suggest that they are older or

coeval with the granitic onhognciss (U-Pb sample 93-PY·5: Fig.4.4 and 4.5.). Therefore.

the granitic orthogneiss at Fox Roost provides at least a minimum age for the dioritic

sheets. The extensive back· ...eining of the amphibolite.rich sheets suggests Uw both mafIC

and silicic magmas were probably coeval (Fig. 4.5; Fernandez and Barl>arin. 1991).

Grnn04iOO1c oahQgnei£i CU-Pb sample 9l-rV-)' A hornblcnde-bearing felsic

granodioritic orthogneiss was sampled in the quarry on thc side of the road outside

Margarce (Fig.4.6l. The same rock. was also sampled for geochemical anaJysis (sample G·

MA-B). It has a weU dcvt:loped foliation and contains tightly folded amphibolite exhibiting

Straight contacts. The orthogneiss is inllUded by an unddormed. lale. coar;;e~graincd pink

granite and a pink pegmatite.

Four zircon fmetioRS were analyzed (fable 4.1). The fractions were composed of

elongated (I:7~1:5; widtMength ratio) sharp prisms with no cracks. few inclusions and

rounded tips. Fractions ZI. Z2 and Z3 were air abraded (Krogh. (982); fraction Z4 was

not abraded. These four frnctions define a discordia line with an upper intercept of

474+141-4 Ma with a lower inten:ept of 141 Ma (Fig.4.7). 1bc age 474+14/·4 Ma is

interpreted as the proIoLith age oCtbe granodioritic onhogneiss.
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4.6.2.- Granitic orthogneiss:

This rock. type constitutes about 30 to 4O'il of the gneissic compkx exposed in the

Marg~·Fox Roost section. In both the M~·Fox Roost and the Grandys Brook

sections they appear 10 be injected into both types of tonalitic gneisses earlier described and

contain discrete amphibolite enclaves/dykes, which have been boudinaged and folded

(Fig.4.8 and 4.9). In many instances the ductile defonnation and the contrast of

competencies do not allow to assert whether or not some of the amphiboliles represent uue

dyk.es or enclaves. The pale grey colour, the absence of garnet. muscovite or sillimanite

and the appaien[ higher stnLin (smaller grain size:) differentiate this granitic orthogneiss

from the pinkish. 450 Ma. foliated. locally [Wo-mica Pon.aux-Basques granite, as well as

the fact that the granite is clearly intrusive imo the PaD gneiss and generally does IJO( have

mafic dykes..

This granitic orthogneiss is mediwn grained (0- Imm) and has a gneissic foliation

defined by biotite rich layers and I to 3 mm thick granoblastic bands of quartz, plagioclase

and K·{eldspar. Most oUlcrops have thin (less than Scm wide) coarse-grained felsic veins

with diffuse contacts (rnetaJ'TlOtPb.ic differentiation?: Fig.4.5.d, 4.8 and 4.9). The mOOaI

composition of lhese orthognei.sscs is approximately 40% quartz. 25% plagioclase (An 15­

25), 15% K-feldspar and - 20% brown biotite. Epidote, opaques. apatite and zircon are the

most common accessory phases. although tilaD..ile is in places presenl

Age:

This lithology has been sampled bolh in the Margaree·Fox Roost and Grnndys Brook

sections to lest field correlations. and because it provides the youngest relative age within

the complex, except for some amphibolile dykes.
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Margaa:e_F9I: Roost Kdjoo (Samok 93=PY·5l- This granitic orthogneiss bas a felsic

composition and contains amphibolite enclaves/dykes wtuch have been boudinaged and

folded by F3 (Fig.4.8). The main gncissosiry (granoblastic fabric) in the orthogneiss has

also been folded by FJ. The granitic orthogneiss merges with the felsic veins and dykes.

which mingle with the amphibolices in the mafic tonalitic orthogneiss. and with the felsic

veins of the "migmatitic gneiss". These two units show minor F2 folds. However. F2

folds have not been recognized in the granitic orthogneiss.

Five ziIt:on fractions were analyzed (Table 4.1). Fractions ZI. n. ZJ and Z4 were air

abraded: fraction Z5 was unabraded. The ziJron morphology of the selected fractions is

very similar to the granodioritic orthogneiss. Fractions ZI. Z4 and Z5 dc:rtne a discordia

line wilh an upper intercept of 47)+[61-6 Ma: however because of the low probability of fit

the age provided by 21 is preferred. Fraction 21 is concordant and provides a best age

estimate of 472±2.5 Ma (FigA.IO). Fractions Z2 and Z3 fallout of the discordia Iinc: due

to a combination of lead loss and a small degree of inheritance. The age 472±2.5 Ma is

imcrpreted as the protolith age for the granitic onhognciss.

Grandys Brook section (Sample 94-PV_21' This is a medium grained biotile-bearing

rode with granitic modal composition. It has been dearly intrUded by mafic dykes

(amphibolites) which have been boudinaged and folded (FigA.11 and 4.13).

Three :titton fractions (Z1,Z2 and z) and lWO titanile fractions (fl and 1'2) have been

analyzed (Table 4.1). The two titanite fractions are concon1ant and provide: an age of

411±2 Ma which is interpreted as a cooling melaII10rpruc age (FigA.12). Zircon fractions

2 I. Z2 and Z3 define a discordia Line with an upper intercept of 466.8 Ma for a lower

intercept pinned at 5±5 Ma. TIle upper intercept is in agreement with the age of fraction 21
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(465±3 Ma) which is concordant and provides a more reliable age estimate (Fig.4.12). This

46S±3 Ma age is interpreted as the proIolim age of the granitic onhognciss.

4.6.3.- Amphibolite:

The amplUbolites outcrop as tighJy folded. stretched and boudinaged dykes or enclaves

(Fig. 4.5.• 4.8., 4.9., 4.11,4.13 and 4.14). Because they are too many and too small to

be mapped alone they have been combined with the tonalitic and granite onhogneisses

(Fig.4.4 and 4.11). Usually they are 30 to 60 em wide and can be up to several metres

long. They have a homogeneous aspect with an L·S fabric defined by recrystallized

hornblende (up 10 1.7 nun long) and biotite (0.3 nun long). Their modal composition varies

from 8Q%..90% green homblende + 10%-20% plagioclase (An3S) to S()-6()% green

hornblende + 5-10% brown biotite +. 3O'il plagioclase (An 30) + quam. The accessory

phases are rutile. apatite and opaques in the hornblende-rich varieties and titanite. apatite

and opaques in the biotite (quam.,..rich varieties. EpidOlC. with allanite cores. in xcessory

proportion is found after late reuogression of green hornblende and minor chlorile and

sericite are also produced during retrogression of biotite and plagioclase. respectively.

Age:

The presence of abundant cenli.rtlcm:-scale amphibolite enclaves in the 474 Ma

granodiorite suggests bimodal magmatism at the time. indicating lhal some amphibolites

could be coeval with [he granodiorites. Abundant amphibolite enclaves were also observed

in pre-466 Ma tonalites at the Grandys Brook section. This would be consistent with field

relationships observed in the "tonalitic gneisses~ at Fox Roost. sueD as the 472 Ma felsic

granites back-veining amphibolite SbeelS (Fig4.5) and dispersing them as enclaves and

disrupted amphibolite dykes with diffuse contacts (Fig.4.9: partial assimilation. mingling.
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hybridization?). lbesc features~ commonly displayed in uluamaflClmafic--silicic inuusive

complexes (Sutcliffe et aI.• IC}(X); Sha, 1995) or in coeval intrusion of mafic: magmas in

felsic magma chambers (Fc:nWKIez and Barbarin. 1991; Wiebe. 1991; Bateman. 1995).

Field n:lationships of individuaJ ampbibolitcs are in places diffICUlt to interpret due 10 the

contrasl of competencies with the gn:nitic orthogneiss. with most amphibolite bodies in the

Margaree orthogneiss occurring as variably sheared and folded boudins (FigA.S: 4.8).

Although some could be ideDWIed as intruSive dykes (Fig.4.9), most of them could

represent mafic enclaves. In the Grandys Brook section, amphibolite dykes inuude the 46S

Ma granitic orthogneiss and were affected by 03 indicating that this generation of dykes is

post-465 Ma and pre-D3. Some of these dykes CUI compositional banding in the 465 Ma

orthogneiss. Therefore there are, at least. two generations of orthoamphibolite in the

Margaree orthogneiss. one probably coeval with the 474-472Ma felsic orthogneisses and

another post-465 Ma and pre-D3.

Margaree_Fox Roost (Sample 93PV6)' This sample is a QUart2-bearing amphibolite

dyke intrusive into felsic lonalitiC onhogneis5es (Fig.4.14). The minernJogicaI COfDJXlSiuon

oflhis sample is~n hornblende., plagioclase (oligoclase) and brown biotite with quartz,

opaques and titanite in minor proportions: apatite is the main accessory mineraL These

minerals (except apatite) are recrysIa1liz.ed and me amphibole defmes a mineraJ. Lineation

wtuch is parallel to the plunge of the minor F3 folds. No zitt::on was e"traeted from this

sample nor from a previous sample collected by G.R. Dunning from a similar lithology.

One fraction of brown titanite was analyzed from this sample (fable 4.1). This fraction

provided a concordant age of 410±2 Ma (FigA.15.). lltis is a metamorphic age. It is

uncertain whether it is a cooling age (fc 6OJ'·55O"C: Heaman and Parrish, 1990) or a

crystallization age after post-D) ~stallization (Fig.4.16). But in either case this age

provides the youngest age limit for the amphibolite dykes.
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4.6.4.· Other litbologles:

Ultram.nc: rocks:

1l1ese rocks are quite common in the Margaree·Fox Roost section but were not

observed in the Grandys Brook section. They outcrop as pods (0: 5 to 10 metres) of

coarse grained (0:::: 0.3 to I em) mafic minerals. which appears to be primarily amphibole

in hand sample. They are associated with the most mafic-rich areas of the diorile­

amphibolite sheets in the mafIC lonalitic orthogneisses. which suggests that lhcy might

represent cumulates. In the field. they do not show an internal fabric and they act as stiff

material in ductile shear zones. with the granitic orthogncisses wrapping around them.

Small pods~ usually retrogressed to epidote.

1be samples slUdied have an acicular-dccussatc texnll~ defined by colourless ~molite

and pale-green Mg-rich actinolite: (?) crystals (>70%) and partially oriented a~gates of a

micaceous (0- 0.2 mm) mineral tentatively identified as chlorite (*). possibly Mg-rich

(<30%). Apatite. rutile and opaques are accessory minerals. Burgess ct aI. (1992)

described another varicly of ultramafic pod wim actinolite-spinel-c1inopyroxene which has

not been observed in this slUdy. They also reported clinopyroxene replaced by taUc.

(*) Micaceous to fibrous. colourless. non pleocroic. low ~lief (lower than ~molite).

fUSl <X'der white birdrigence. parallel extinction and length-fast.

The ultramafic pods are associated with the amphibolite rich areas in the Fox Roost

section (Fig.4.4). Such a relationship is also found in u1trnmafidmafic·silicic intruSive

complexes (Snoke et al.• 1981; Kelemen and Ghiorso. 1986: Sha, 1995). 1be~fore if the

ultramafIC rocks represent an ultrabasic cumulate of the amphibolite. then they are coeval

103



with the amphibotilcs. The amphibolites are back-veined by cA72 Ma granitic

ortbogneisses. suggesting. by field correlation. lhat the ultnmalk rocks are cA12 Ma.

Banded gneiss:

This gneiss coincides with an:as of high strain ductile shearing in the Fox Roost

section (Fig.4.5d and Fig.4.9l. The protolith of the banded gneiss is uncertain. wtuch

prompted its definition as a separate wtit during the small scale mapping of the Fox Roost

section. In the Grandy's Brook section, IkIn upstream from the section mapped in detail.

banded gneisses like those of Fox Roost were identified in a high strain ductile shear zone

and mapped as Margaree orthogneiss (Fig4.1).

1llis gneiss consists of centimelte-wide !eucocratic bands of quanz, plagioclase (An

25-30) and minor K-feldspar alternating with mafiC bands of green amph.ibole and brown­

greenish biotite. 1bese bands are melle-long and discontinuous. The mafIC bands also

contain felsic minerals as well as minor epidote. tilanile and opaques. ZiJuln and apatite are

accessory minerals. Average grain size is Imm. Locally. there are quanz-rich bands and

leucocratic bands with small garnets which resemble the q~feldspathic counuy·rock

paragneisses. Small malIC. epidote-rich pods (0- JO..SO em) show asymmeuic wings

produced by ductile flow of the surrounding rock around them. Their stiff meologicaJ

behaviour suggest that they might be retrogressed uilramafic men.

These high strain zones arc: located in !be flanks of F3 folds (Fig4.5b,d and 4.9). In

the case of the Fa" Roost section the banded gneisses are related to apparent oblique,

ductile, de"trai shear zones (Fig4.9). The presence of stable epidote in the fabric but the

absence of chlorite suggests that some of the transposition took place in the amphibolite
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factes. possibly in the epidole-amplUboIite subfacies. This indicates rhal the gneissic

banding was produced by 03 transposition of the main gneissosity (FigA.5d).

"Mlgmatltlc" gneiss:

This rock type is adusive [() the Fox-Roost section. It consists of I to 10 em lhrl:

Ieucocratic bands with suboniinatc: melanocratic bands and mafic rafts resembling diatex.itic

migmatites (Mehnert. 1968). This rock type appc:an in areas of Iel.a1ively low OJ strain.

1be banding in this rock has been folded and sheared during 02 and 03: it usually shows a

complex fold and inlcrferencc pattern resembling disharmonic folding. lbc boundaries of

this unit with the surrounding granitic and torlalitic onhogneisses an: diffuse and felsic

veins from the gneiss merge with the granitic orthogneiss. The amount of leucocratic

material (70%-80%) however contrasts with a 20%-40% abundance of true anateCtic

patches in metapclites of the SlllTOlmding paragneisses.

The felsic domains contain K·feldspar (40%). quam. (S()II,). plagioclase (10%). Grain

size can be up to 7-4 mm. 'The melanocr.lric domains :ue formed by brown biotite (4O'il).

plagioclase (25%. Oligoclase). K-feldspar (IQ'1,) and quartz (15lf.1. Minor epidoce

overgrew biotite during retrogression. Apatite and W«xt ~ accessory minerals. In

amphibole-rich areas titanite is p~1 as an accessory phase. Allbought the uansition

between the felsic and melanocratic: domains is ~Ialively sharp at mesoscopic scale. At the

microscopic scale. it is gndationaJ and individual quartz and K-feldspar crystals an:

embedded in lxlth domains. It should be noted that there is no gamet. sillimanite, cordierite

or orthopyroxene in the mafic bands. These features suggest that this rock. type is not an

anatectic migmatite. 1be texwraJ features coupled with the field evidence of felsic veins

merging with the granitic onhogneisses suggest thai this rock type represents a set of

ductily deformed aplitic granitic dykes and back-veined maficltonalitic rock types.
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Stroetural rdationships inllicate that lhis rock is pre.D2. Felsic veins in one locality

(around U-Pb sample 92--G().3) merge with the 472 Ma granitic orthogneiss. indicating an

age of 472 Ma. This rock type is locally inlruded by 417 Ma latc·syn-D3 granitic dykes

(chapter 4.5.2.3).

4.7.- THE COUNTRY ROCK PORT·AUX.BASQUES GNEISS AND THE

LATE INTRUSIONS: GENERAL DESCRIPTION, FIELD

RELAnONSIDPS AND AGE.

What follows is a general description of the paragneisses (Port-aux.-Basques gneiss of van

Staal ct a1.. 1996b,c) that constitute the country rock to the Margaree orthogneiss and other

granitic intrusive types wh.ich are younger than the Margaree orthogneiss (Port-aux­

Basques grnnitc and late syn-D3 and post-D3 minor intrusions).

4.7.1.- Port.aux-Basques gneiss (paragneiss).

In the area of study the Pott-aux.-Basques gneiss is in the sillimanilt: isograd (Burgess

et aI., 1995). The gneiss is dominated by quanzo-fcldspathic lithologies (mcupsammires)

with subordinate amphibolite and metapelite. Burgess et a1. (1995) determined peak

metamorphic conditions of .7000c and 9 Kb using stable mineral assemblages and

lhermobaromeuy in pelitic rock types and amphibotileS.

Around Margaree-Fox Roost., the Port-aux-Basques gneiss is dominantcd by quartzo.

feldspathic paragneisses and amphibolites. The presence of garnet-rich and quartz-rich

layers sets apart these gneisses from the Margaree orthogneiss. They m: composed of
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biotite., plagioclase (An20), K-feldspar. quartz . ± garnet. ± sillimanite (fibrolite) and

opaques. modal proportions vary among layer.>. Sillimanite is scarce and partially

n:trograded to muscovite and chlorite and epidote gn:w during retrogression. Chlorite grew

after mrogression of biotite and garnet whcrus epidote is associated with amphibok

relrogression or associated with bioole and in most places tIM an allanite core. Zircon.

monazite (?) and apatite are ~nt in accessory proportions. Average grain size is 0.9

mm, although varies from 0.1 mm 10 4 mm. lbe gneissosity is defined by the allemation. of

biotite-rich levels. usually less than I em thick. with plagioclasc-quartz rich layers. Gamet

lends to appear in restricted biotite and plagioclase·bearing layers defining a compositional

banding. The fabric in these rocks will be described in delail in section 4.6.

[0 the outcrops on the Dolphin road near the road to Isle·aux.-Mons {Fig4.3l, the Port­

aux-Basques gneiss is more pelitic. has anarcctic patches. '-2 melle thick gamet.bearing

foliated granites and a rusty appearance. lbe anatectic leucosome patches can be up to )()..

40% of the outcrop. The leucosomes have a granitic composition and ~ bordered by

biotite + sillimanite ± garnet selvedges. These leucosomes (1-5 em lhick and up to 2S em

long) are aligned with Ute gncissosity (52) with stromatic SUUCtUte. Migmaritc is also

abundant in the Grandys Brook section particUlarly along the more pelitic NW border of the

Macgacce orthogneiss (Fig4.1).

TIle amphibolites in the Pon-aux-Basques gneiss are hornblende-rich massive mafIC

boudins and panially boudinaged layers and amph.ibole-rich quartzo-feldspathic layers. 'The

massive arnphibolites are composed of hornblende + plagioclase ± biotite ± clinopyroxene

± gamet + titanite and probably ~ptesent mafic dykes. The arnph.ibole-bearing quanzo­

feldspatbic levels are composed of amphibole + biotite + plagioclase + quartz ± K-feldspar

+ opaques + epidote and probably are para-derived arnphibolites. These two t)'pes of

arnphibolites are variably recrystaIliu:d and have an average grain size of I to 3 nun. Other
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minor" lithologies in the Port-aux-Basques gneiss are epidote-rich bands and scarce COlicu.le

levels.

Age:

1be map panem of me Margam: orthogneiss (Fig4.3) indicates lhat the orthogncisses

are interleaved wilh the Port·aux.-Basques gneiss. 1be contacts betwccn the Margaree

orthogneiss and the Port-aux-Basques gneiss are leCtorucally reworked. Locally the

contacts coincide with late-brittle ductile shear zones (eastern contact of the Margarce-Fox

Roost section, Fig4.4). but in most cases the contacts are straight due to the intensity of 03

(Fig.4.17). True intrusive relationships have only been observed al Grandys Brook

(Fig.4,IS). Such relationsh.ips and the map pattern suggest that the Margaree onhogneiss

intruded the Port-aux·Basques gneiss. 1berefore the paragneisses and mica schists of the

Pon-aux-Basques gneiss are pre- 474 Ma (pre-Mid Arenig).

4.7.2.- Portoaux.Basques granite:

This is a foliated. coarse grained. fresh pink: granitic gneiss (Brown. 1973) and

generally has an equigranular (() porpbyroblastic IUr;un: with 2cm porphyroblaslS.

Acccxd.ing to Brown (1973) the essential mineralogy is quartz: + plagioclase + K-feJdspar

+ biotite: ± muscovite ± gamel ± (amphibole). In !he area of sludy, this granite can be

diffeR:ntiated from !he grnnitic: varieties of the Margaree orthogneiss by its general field

appearance and homogeneous aspect, the presence of minor muscovite and garnet and !he

absence of mafic enclaves.

The Port-aux-Basques granite oUlcrops as granite sheets usually nOI exceeding 100 m

of thickness. The continuity of some kilometre-long granitic sheets proVided a reliable

marker level. Outcrop pattern sbows that die Port-aux-Basques granite was folded by F2
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and F3 folds (Fig. 4.1). [n the~ of study. minor F3 folds were observed folding and

kx:ally cn:Dulating the foliation in the granite, indicating thai this foliation is pre-D3. The

goeissose solid-state S2 fabric in the Port-aux-Basques granite is panillcl to the main

gncissosity in the parngneiss (52), which is also CTenuiared at the F3 fold hinges. In

outcrop. the granite is generaJ1y concordant with the regional gneissosity. However in the

easternmost part of the Fox Roost section a slightly discordant. undated. strongJy foliated.

gamet--bearing granitic gneiss intrudes the Margaree orthogneiss and the nearby

paragneisses (Fig.4.4). In the vicinity of Isle-aux-Mons and according to outcrop paltern.

the eastern border of the Margaree onhogneiss is intnlded by a pre-D3 pink foliated granitic

gneiss (Fig 4.3). Field relationships in the area of study indicate thai the Port-aux-Basques

granite is pre-D3 and pte-to syn·D2. and apparently postdates the inuusion of mafic dykes

in the Margaree onhogneiss.

According to Brown (1917) and van Staal el al. (1994). west of the area of siudy. the

Port·aux-Basques granite cross<Uts 51 foliations, but the internal foliation in the granile is

folded by F2 folds. These authors consider lhat the Pon·aux·Basques grarUle is inler-DI·

D2 or [ate syn-Dl. Van Staal et aI (1994) rqx>rted an age of 453±3 Ma for a tmndhjemitic

unit of the PorHux·Basques granite between Port-aux-Basques and Margan:e (FigA.I). II

should be noted that this panicular rock type is atypica.1 of the Port..aux-Basques granile.

It is possible that different generalioos of granite might have been lumped as Port-aux­

Basques granite in the field area. inclLKling some Rose Blanche-like pre·D3 granites. In

some cases. however. all that can be seen in outcrop is an undated biotite-bearing, pink.

fme-medium grain granite folded by minor F3 folds, that is intrusive into the paragneisses

(FigA.3). The foliation in the biotite-rich enclaves in the granite is axial planar to the folds

deforming the granite and in many cases 53 is the dominant foliation. These field

~Iationships are similar to those of ana1eCtic Ieucomes in the country rock paragneiss.
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wltich are par.illello 52 defining me gneissosity and ~ folded by FJ. According to these

fteld relationships. in the area of snJdy lbe Port-aux.-Basques granile is clearly P£e-DJ but il

could be syn- to late·D2. This suggests that some granites c:ouJd have been generated

contemporaneously with the peak metamorphism. during 02.

4.7.3.- Late inlrusions: granitic and pegmatilic dykes.

The lale inuusions in the area of study~ constituted by s1O-to late-D3 granitic dyk.es.

pegmatilcs and post-tectonic dioritic dykes.

Late syn.D3 granitic dykes:

White. late syn-D3. granites outcrop in the Grandy's Brook section. The largest of

these granites contains abundant rafts of ductily deformed country rocks including quanzo­

feldspathic paragneiss. onhogneiss and amphibolite. Generally. they have a syn-magmatic

to early solid-state foliation which is variably folded by FJ. In apperance the syn.D)

granites of the Grnndys BI'OOk section resembletbc Rose Blardlegranite (ca. 419 Ma: van

Staal et aI.• 1994). Late syn-D3 granitic dykes are also well exposed in the Fox ROOSt

section and the mouth ofthc Isle-aux.-Morts River. In Fox Roost (Fig.4.4. 4.19). a fme­

grained Ialc syn-D3 granitic dyke was dated (ll-Pb sample 92-Go..ll). Brown (1973)

reported similar lare-D3 aptiLic: dykes in the vicinity of Port-aux-Basques.

Late nn-DJ granjljc dyke (Sample 92_0Q_2)· This is a ~y fme-medium grained

equigranular_ biotite-bearing granitic dyke. The dyke cuts the main gneissosity (FigA.19.

4.20). including tight F3 folds. it is folded and contains a weakly developed. foliation

(magmatic fabric?) which has been folded. The dyke is. therefore. interpa:ted to have

intruded during the late slages of 03.
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Six zircon and one titanite fraction have been analyzed (Table 4.1). The titanite fraction

(TI) is V-poor (64.6 ppm) arid 8% discordant due to the effects of the common Pb

correction. V-Pb ages of 407 Ma and 412 Ma for this titanite are. however. in good

agreement and are consistent with the concordant 410±2 Ma tilanile age from the nearby

amphibolitcs (section 4.6.1). Most zircons extracted from this rock are heavily cracked,

even the best quality prisms and needles (fractions ZI, Z2, Z3, Z4 and Z5) show cracks.

Fraction Z6 consists of prisms and prism fragments. All fractions were strongly air

abraded, except fmetion Z5 (unabraded). Z6 has the oldest 207pbf206pb age but it is the

most discordant fraction (5%), which suggests the presence of inheritance. Fractions Zl.

Z2, Z3, Z4 and Z5 are closely clustered along a discordia line with an upper intercept of

417.3 Maand a lowerinlcrcept of 18.9 Ma. A discordia line (64% probability of fit) traced

pinning the lower intercept at 17±30 Ma provides an upper intercept of 417+71-4 Ma

(Fig.4.2l). This upper imercept is in agreemem with the 207pbf206Pb ages of the

individual fractions (fable 4.!). This age of 417+71-4 Ma is interpreted as the intrusion age

and, therdore. the age of the final stages of the 03 defonnation.

PegmaCites:

Two generations ofpegmatiles arc present in the area of study, pre- and post-D3. 1be

mineralogy of these rocks was already described by Brown (1913). 1bey consist of K­

feldspar (up to 10 cm 0). muscovite. biotite. quanz and tourmaline.

The pre-D3 pegmatites are concordant with or cut the main gneissosity. 1bey were

sheared and boudinaged during 03. but there is no evidence of F2 folding. These

pegmatites are well exposed in the road outcrops close 10 Isle-aux.-Morts (FigA.17).
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Post-OJ ~gmatit~s ~ common in Fox Roost section. They usually intrude along

extensional cr.K:ks while the Margaroe onhogneiss had a brittle behaviour. and many have

an aplitic core (Fig.4.Sd).

Aplitic and granitic dyku (post-D3):

The aplitic dykes are grey. fine to medium grained. biotite-bearing and locally gamet­

bearing. They resemble the late syn-D3 dyke da1ed at Fox Roost. but they do not have a

fabric. They intrude as small bodies. less than 5 mc:~ thick. cUlting OJ structures. In !.he

west side of the mouth of the [sIc-aux.-Morts River onc of these dykes stitcbes the contact

between the M~.rg~ orthogneiss and the surrounding paragneiss. but it is reworked

within a late brittle.-duetile shear zone. This suggests that these dykes are post-D3 and

probably pre- local 04.

A post-OJ granite dykfl outcrops in the quarry outside Margaree. sample locality of

sample 93-PV-J (lonaLitic orthogneiss). This is a 2 to 3 tnelte thick coarse-grained pink

granite. Also in the same locality there are some late pink granitic patches in the Margaree

orthogneiss. This laIc gnuJitc is probably associated with the post-03 pcgmatites.

Post-tectonic mafic dyke:

This is a rme grained ~n dioritic dyk.e (Brown. (973). It outcrops east or Fox

Roost. in the coastal section. It is underormed. it cross cuts the structures in the complex

and has chilled margins.
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4.8.-STRUCTURAL EVOLUTION OF THE MARGAREE ORTHOGNEISS

AND SURROUNDING PORT-AUX-BASQUES GNEISS:

lbc: Margaree onhognc:iss has a compositional banding wl1ich derIDeS the main

gneissosity. This gneissosity has been stretched. folded and. locally, transposed as a result

of a series of deformational events. lbc: following is a description of the strueturaI

characteristics of the Margaree onhogneiss and the surrounding paragneiss. This part of

the study will attempt 10 bridge the time: constraints and conditions of deformation in the

Margaree orthogneiss with those in the PaB gneiss (Burgess et aI.• 1995).

4.8.1.- Phases of deformalion: definition and characteristics:

Brown (1975) and van Staal et al. (1992) n::cognized four deformational events in the

Port-aux-Basques area. 1be main ones are 02 and 03. 01 is a conspicuous event only

rttegnizable in F2 fold closures in the Icyanite zone and as an intemal schistosity in syn­

D2 garners in the nrst sillimanite zone. D4 is a late ductile-brittle episode.

01·0Z de£ormation:

In the Margaree orthogneiss. like everywhere in the second sillimanite zone. neither

01 fabrics nor SU\Jctures are ~rved.However.siocc the gneissosity is being folded by

F2 it should be inlcrpn:ted as a prc-D2 fearure. most likely SO-S I (Fig.4.22 ).

lbc gneissosity is folded by minor folds (F2) which ~ refolded by F3 folds. This

interference produces an apparent F2 sheath-fold geometry (Fig.4.22). These F2 folds are

the best indicator of a 02 event. Amphibolite boudins are tightly folded by F3 folds

suggesting that the boudinage was part of a previous defonnation (Fig.4.8). this is

consistent with the local 03 shearing of felsic D2 boudins in the nearby panlgneiss
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(FigA.23). 1be contrast of competencies between the amphibolite and the granitic

orthogneiss is quite variable but overall the amphibolite is less competent and develops

mullions during the boudinage. indicating high-temperature deformation (Talbot and

Sokoutis. 1995). 1bese mullions are probably D2 structures. although some could be

primary syn-magmatic features, and were subsequently folded by F3. II should be noted

thai in one locality. at the mouth of the Isle-aux-Morts River. Fox Roost like "tonalitic"

gneisses have developed a pre-F3 foliation in the amphibolite boudins suggesting that the

boudins pre-dalc this foliation. This brings the possibility that some mafic boudin-like

features could also be apophyses of mafic dykes propagated by echelon offset of the

countty rock and deformed by D2 and 03 or that they were: produced during a previous

evenl(DI?).

In the surrounding paragneiss. 52 fabrics are well preserved panicularly in the pelitic

layers. where leucosomes in stromatic migmatites are aligned with the S2 foliation and are

folded by F3 (FigA.24). As already poimed out by Burgess et aJ. (1995), this suggests

that D2 took place during peak metamorphism. lbe same authors interpreted the gneissic

banding as a product of 02 transposition of original compositional banding (SO) and the S I

fabric. Exceptionally, So-S2 relationships are preserved in psammitic lithologies. F2 folds

are relatively abundant. but due to the imense 03 overprint it is not possible to follow the

trace of 02 macrostructures in the field. Some macrostructures like the kilometer-scale

refolded ribbon of paragneiss in the easternmost package of Marg~ orthogneiss.

however, could be interpreted as a 02 structures (EgA. I). This interpretation is supponed

by similar 02-D3 interference pauerns defined by the Port-aux-Basques granite west of the

area of study (FigA.l).

114



D3 ductile deformation :

03 is the final major event recorded in the Margaree orthogneiss and the surrounding

paragneiss. It is characterized by high temperature ductile deformation (Fig.4.25). foUowed

by amphibolite facies retrogression. D3 prCKlllced minor tight asymmetrical isoclinal folds

plunging 45° to the NE, on average. which steepened the main gneissosity (FigA.5b.

4.26). Mineral lineation (90% amphibole lineations) are parallel to the F3 fold axis

(FigA.26). The 03 folding produced the main outcrop pattern of the Margaree orthogneiss

with minor F3 folds defining the fold closures (Fig.4,3). D3 high.-tempcrature ductile shear

zones were developed in areas under shearing during the F3 kilometer-scale folding. nus

shearing is acconunodated by ductile-flow, slrelching and thinning of the gneiss without

any field evidence for mylonitization, although microstructural evidence indicates the

development of a compoSite fabric. In the Fox Roost area. this shearing generated the

banded gneiss. with asymmetrical boudins indicating an overall oblique dextral shear

sense. Evidence for boudinage associated with 03 duclile shear zones is also widespread in

the section along the road 10 Isle-aux-Morts, both in the Margaree Complex and the PaB

gneiss (Fig.4.27). In these shear zones the boudinage is produced by non-coaxial

deformation during oblique duclile shearing (Fig.4.28l. Both pegmatitic and mafic dykes

develo~dasymmetric boudins. In the Grandys Brook section, pegmatiles were generated

in the boudin necks during the D3 boudinage of mafic dykes (Fig.4.13). Associated

overprint of F2 folds indicates that the shearing and boudinage is 03 (Fig4.11).

In the paragneiss. F3 folding in pelitic lithologies is usually associated with an axial

planar crenulation cleavage (S3; Burgess et aI., 1993) affecting S2 but il is generally absent

in quartzo.feldspatruc gneisses. It is only in one locality thai an S3 axial planar crenulation

cleavage was observed in the Margaree orthogneiss; this crenulation was produced by cm-

115



scale F3 microfolding afthe gneissosity. 1be Port-alJX-Basques granite has been folded by

F3 (Fig.43) and contains a wtU deYeIoped 53 axial planar fabric in biotite-rich enclaves.

D3 crenuJation cleavage of the main solid state fabric in the Port-aux-Basques granite is

also found in F3 fold closures.

As it is shown in Fig.4.26 !here is no difference in the ~nd of the gneissosity. F3

fold plunges and mineral lineation between the Margan:e onhogneiss and the sUITOOnding

parogneiss. D3 folding of leucosomes in the paragnciss indicates that D3 is post-peak.

metamorphism. TIle ductile .style of D3 deformation is typical of high-grade conditions.

suggesting that high temperat\ms were maintained between D2 and 03.

Lale brittle-ductile deformation:

D4 or IaIc-03 structures can be found along the southern border of the Margaree

onhogneiss (FigA.). 4.4). In this area a series of discrete braided brittle-doctile shear

zones separate the Margaree orthogneiss from the metasedimentary Port-aux-Basqoes

gneiss. These shear zones could potentially be related to the [sle -aux-Morts raul! zone.

Late brittle faullS~ common in the Margaree-Fox Roost section as well as in the Grandys

brook section (FigA.II).

In the Margaree·Fox Roost section, tWO metric·sca1e u1uamylonite bands were

recognized. developed around pegmatites (Fig.4.3). It is however unclear whether these

bands should be assigned 10 !he 03 or D4 phase. The mylonitic bands are characlerized by

0.5 to I cm K-feldspar and plagioclase poq>hyroclasts flfloa1ing~ in a dark micaceous

matrix with quartz-rich bands (Imm lhick and> 5 cm long quartz ribbons). The rock has a

composite fabric. Amphibolite layers in these mylonite bands are boudinaged and folded.

TIle same folding affects the layering defined by the quartz ribbons. 1be fabric in these
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ultramylonites is slightly discordanl .... ith the gneissosiry in the surrounding granitic

orthogneisses.

4.8.2.- Microstructure:

nus is a description of the microstnX:tural features of the rock fabric in the main rock types

of the Margaree orthogneiss. These microstruetural features will be compared with lOOse in

the metasedimentary quanzo-feldspathic lithologies of the nearby Port-au,;-Basques

paragneiss. 1bese lithologies should have had a rheological behaviour comparable 10 that of

the felsic orthogneiss. allowing an assessment of the conditions of fabric development in

the Margaree orthogneiss from those of the nearby Port-aux-Basques gneiss (Burgess et

al.. 1995). The lerminology used is that of Shelley (1993) and Passchier and Trouw

(1996).

472 Ma granitic orthogneiss:

In hand sample this rock has a gneissic planar fabric: dermed by oriented biotite,

biotite-rich domains separate: irregular )-5 mm thick: quartzl>feldspathic laye~ with a

sugary texture. The gncissosity in the rock is defmed by the alternation of the biotite-rich

and quanzo.feldspar.hic domains. The aligned biotites (I mrn long). although recryst.al.lize.

wrap around plagioclase and feldspar porphyroclasts (0 .. 1.5 to 2.5 mm). suggesting a

stage of oon-coaxial deformation (Fig.4.29). large quartz grains (0=1.5 mm) have

subgrains with parallel deformation bands indicating recovery. [n areas of quartz grain

reduction (0= 0.2 - 0.4 mm )• .such as contactS with feldspar porphyroclastS. quartz·

quartz contacts are ameoboid suggesting dynamic recrystallization. These areas of grain

reduction usually coincide with biotite-ricb domains and are marked by oriented biotite

grains. Plagioclase crystals commonly have deformed twins and contain biotite and quartz

inclusions. Locally some plagioclase crystals seem [0 be ·pinningM quartz and biotite
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grains. which might be indicative of grain boundary migration recrystallization (Fig.4.29),

Overall plagioclase - quartz • K.feldspac contaels ~ lobate. l...ocaL1y K-feldspar crystals

have undulatory extinction indicating intracrystalline deformation. Anhedra1 eptdoIe with

allanite cores grows laIe. ~ntly overgrowing biotile. Accessory titanite is associated

with the biotite-rich layers and aligned with the biotite; it is euhedta.l-subhc:dra.l and it is in

most places in contact with opaque minerals (ilmenite?).

This fabric has been partially ~rysta1lized after 03 deformation. This recrystallization

took place within the stabilily field of cpid()(e and titanite. There is no growth of chlorite

which. suggests conditions wilhin the amphibolite facies.

474 Ma granodior'itlc orthogneiss:

In hand sample this rock.lype (V.Ph Sample 93·PV·3) has a single gneissic banding.

The gneissosiry is defined by 1 102 em long and '-2 nun thick alternations of mafic and

felsic agregales with a sugary textw"e.

]be petrography shows the presence of two fabrics. The main gneissic. granoblastic

fabric is cut by discrete high stmn areas (53?). 1bese high suain areas are developed

around amph1bole-rich domains with a granoblastic polygonal texture between gre:n

homblende. plagioclase (An2S·30). K-feldspac and quartz (static recrystallization?). The

granoblastic domains can be in excess of 5 nun of diameter. with a~ grain size

between 0.5 and 1 mm. Individual amphibole crystals can be up to 3.6 mm long; they are

anhedr11l and in most cases they have a rounded quartz inclusions and oriented biotite

inclusions. These granoblastic domains grade into areas where most crystals have lobme to

amoeboid contacts, suggesting dynamic recystallization by grain boundary migration. The

h.igh strain areas are up to 1.7 rom wide. In the high strain areas there is grnin reduction of

quartz, feldspar (microclme) and plagioclase (0<0.5 nun) and mynnekite (quartz in
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microcline). The contacts between these phases are amoeboid (serrated), and there is

extensive development of 5Ubgrains suggesting dynamic recrystallization. Also in the high

strain areas. biotite is recrystallized. preferably orienled and associated wilh growth of

euhedraJ.-subhcdrnl epidole with allaniu: cores after amphibole. It should be noted lhal:

chlorite is absenl. Outside the granoblastic domains. plagioclase twins are bent. sheared

and have tapering edges. indicating inlr.lcrystalline defonnation (D3?). Quartz grains with

5ubgrains showing parallel deformation bands are ~Ialively common. indicating recovery.

K-feldspar usually has undulatory extinction.

All this suggests that dynamic recrystallization in the late weak fabric took. place in the

epidote - amphibolite subfacies (approx. 500"-6OO"C). The granoblastic texture preserved in

the amphibole-rich domains could represent a post-peak T (post·02-early 03) initial stage

ofrecrysla1lization.

Amphiboille:

This rock type has an L-dominant L-S fabric defined by elongated amphibole and

oriented biotite (biotite-bearing amphibolite; Fig.4.16) and plagioclase:tquanz-bearing

domains (>Imm thick and 3mm long). The minen.llineation is pacalJel to the plunge of the

F3 minor folds. On average the amphibole crystals (~n hornblende) are up to 1.7 mm

long wbereas biotite crystals are 0.5 nun loog. Triple point junctions are common at grain

boundaries defining a polygonal fabric. Gmin boundaries show straight amphibole­

amphibole and plagioclase-plagioclase con[JICts and slightly lobate [0 straigbt amphibole­

plagioclase con[JICts (Fig. 4.30). Plagioclase cryS[a1s (AnlO-30) in most places have

defenned twins (bent. tapered [wins). Subbedral (0 anhedral titanite in sample 93-PV-6

(410±2 Ma; Fig.4.16) is elongated parallel to amphibole aggregates and has straight

contacts with amphibole.
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These observations indicate recrystallization, following 03. by grain boundary~

reduction in the amphibolite facies. Epidole. chlorite and sericite onJy appear as 1alc

~trogrnde products. commonly associated with brittle fr.M::ture$.

Banded gneiss:

The banded gneisses al Fox Roo:;( are the product of 03 ductiJc shearing. 1be Sludy

has focused on the ~ronaljtic~ lithologies. Samples colkcled 200m apart show a variable

degree of recryslallization. The fe~ of the Ieasl recrystallized sample: provide the best

insight into the conditions and mechanisms of defonnation during 03, As in the

granodioritic gneisses. this sample shows a composite: fabric which is not recognizable in

hand specimen. Thin (approximately 0.5 mm wide) high strain zones isolate: amphibo[e~

and plagioclase-rich domains. wnich locally preserve a granoblastic fabric (Fig.4.31). In

these high suain zones there is exlcnsive grain reduction of biotite. quartz and locally

amphibole (average 0 == 0.2 nun), with associated dynamic recrystallization of quartz and

growth of epidote. Epidote gn:w in association with biotite at the expense of amphibole

(Fig.4.31). Outside these high strain areas. quam (0 aV'S Imm) has lobate cootaetS with

other phases. suggesting recrysWlization by grain boundary migration. and has subgrains

wil.b parallel defcxmation bands indicating recovery. Both plagioclase and K-feldspar (0­

0.8 mrn) have lobate boundaries wil.b other phases. except in grain reduction areas whe~

!.bey are ameoboid. Plagioclase shows tape~ and bent twins. indicating intracrystalline

defonnation (fig.4.31). Amphibole has straight extinction. Euhedral to subhedral titanite is

present as inclusions in plagioclase and amphibole as weU as in areas with extensive quartz

recrystallization; it seems to predate the high strain zones (i.e. pre-OJ).

In Ute recrystallized sample the higb suain zones have disappeared. grain boundaries

are lobate: and quanz is recryslallized into JXJlygonal subgrains wil.b few defonnation bands
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left. lbe fabric is derIDed by elongated agregaleS of biotite + green amphibole + epidol:e +

minor titanite. There are euhedraJ titanite grains included in biotite suggesting lhat they

migbl have~izedwith biotite.

Port*au:I*Basques gneiss (paragneisses):

The quartzo-feldspathic lithologies in the Pon-aux-Basqucs gneiss show similar

features to the Margaree onhognciss. Grain size varies between 0,2 and 1.5 mm.

In lithologies dominated by plagioclase (An 20-30). K-feldspar, quartz and biotile,

the latter is recrystallized and shows a preferred dimension orientation defining the fabric.

These biotite grains wrap around gamet and plagioclase-rich domains. Plagioclase shows

deformed Iwins and K·feJdspar has undulalOry extinction, indicating inuacryslalline

defonnation of these phases. Quartz grains show evidence for both recovery and dynamic

recrystallization by grain boundary migration. The fabric in amphibole bearing lithologies

(Plagioclase (_An 35) + quartz + hornblende + biotite + K-feldspar + titanite + epidOlC)

resembles tba1 described in the banded gneiss: the fabric is variably ~stallized but

shows evideoce for grain ~uction along discrete high strain zones (OJ). EpidCJ(e-lich

lithologies (quartz + epidCMe+ (plagioclase) +(homblende) + titanite) have a polygonal

granoblastic texruce. with quartz grains showing evidence of recovery. Muscovite-bearing

lithologies show muscovite and biotite defining the fabric. Locally. muscovite overgrows

sillimanite (fibrolile) probably as part of the retrograde reaction sillimanite + K-feldspar +

(H20) = muscovite. this muscovite is also recrystallized. In the same muscovite-sillimante-

bearing rock. anatectic (?) leucosomes (Qlz + plagioclase (An25) + K-feldspar ± biotite)

have a larger grain (0=2mm) than the mesosome (0-1 mm) with lobate to ameboid grain

boundaries, suggesting dynamic recrystallization. lbe plagioclase in the leucosomes does

not show deformed Iwins but these are conunon in plagioclase in the mesosome. Chlorite

is in most places present in these lithologies as a late retrograde product after biotite and
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garnet. and it can be associated with areas with minoc quartz-grain R:duction. 1bere is also

partial sericitization ofplagioclasc: as past of this laic n::trogression.

These features indicate the amphibolite-facies retrograde char.Icter of the rmaJ stages of

the 03 defonnation and the foUowin1! partial ra=rystallization. Plagioclase and feldspar

intnerystalline deformation suggests amphibolite facies deformation prior 10

~rystallizat.ion. Sillimanite: retrogression. widespread epidote. stable muscovite and

absence of chlorite suggest that the recrystallization look place in the lower amphibolite:

facies, below lhe stability field of sillimanite.

04 brittle-ductile microstructures: post-D3 ultramylonites:

1be fabric is defined by quartz ribbons and a composite fabric (0a'o' .. 0.1 mm) of

biotite: + quartz + muscovite + epidolelzoisilc. This fabric wraps around plagioclase: and K·

feldspar porphyroclaslS (0 = 1 to 7 nun) which behave as stiff panicles (FigA.32). Some

of these porphyroclasts ate composite and indicate a stlgc of lttfySlaIlization prior to the

mylonitization. Quartz in the ribbons (I 102 nun thick) has ameboid COOlaClS and subgrains

with parallel deformation bands. Gmn boundary mignttion seems to be the dominant

rttJ)'Stallizaton process (Fig.4.32). Ollorite: is sc:artt and usually late as a product of

retrogression of biotile flakes.

The preponderance of grain boundary migration n:crySla.llization in me quartz ribbons

suggeslS tempenliUle in excess of 4()()OC during defonnation, whereas the stiff behaviour of

plagioclase would indicate low to medium grade conditions (Passchier and Trouw, 1995).

Biotite is stable in the main fabric with minimum retrogression into chlorite, this would be

consistent with lemperarures in excess of 4QOOc. Chlorite. however. is weU developed in

other D4 narrow brittle sh.eac zones. Therefore. these u1tramylonites were probably
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developed in a stage between OJ and 04. coinciding willi the recrystallization in the lower

amphibolite facies.

4.8.3.- Discussion: Timing and conditions or deformatioD

In the area of study~ is no evidence for deformation which p~leS lhe intrusion

of the Margaree orthogneiss. Thn=e main phases of c\erormation can be recognized in the

Macgaree orthogneiss which are correlated with the main regional D I. D2 and OJ phases

(Brown. 1977: Burgess et aI., 1995), lure britt1e-ductile fe:llUR:5 are ascribed to a D4

phase. Therefore, the 474-465 Ma protolith ages of the Margaree orthogneiss provide the

older limit for the: defonnation in the area (FigA.33),

The regional D [ defonnation postdates the intrusion of the Margaree orthogneiss and.

therefore. it is younger than 465 Ma. According to van Staal et aI. (1994). the 453±3 Ma

Port-aux.-Basques granite. which is 5yo-01 and dates the 01 phase. is folded by the D2

and 03 phases. D2 loole place during peak metamorphism (FigA.33). According [0

Burgess c:t aI (1995), lhe 02 deformation was associated with migmatization and intrusion

ofttle anatectic granites like the Rose Blanche: granite: (Boen et aI., 1993). which has been

dated c. 419 Ma (Dunning. unpublished). In the area of study, monazites from a migmaIite

near Margaree have been dated al 417±2 Ma (Dunning, unpublished), providing the closest

metamorphic age constrnint to the time of peak. mewnoephism and D2 defocmalion. 03

deformation in the Margaree orthogneiss and surrounding paragneiss was associated with

high. temperature duelilt: defonnation. 1ne 03 folding of anatectic leucosomes and granile

dykes indicate chat OJ postdates the peak. metamorphism. The fmal scages of the OJ

deformation in the Margaree orthogneiss are dated by the 417+7/-4 Ma protolith age of a

late syn-03 granitic dyke (FigA.33). 03 is followed by partial recryscallization; mineral

assemblages (Fig.4.34) indicate that the recryscalliution took place in !he amphibolite

123



facies. Recrysta.llized titanite in both amphibolite and granitic orthogneiss has a 410±2 Ma

U-Pb age. 1bercfore.lhe tilanite age could be interpreted &Scooting age ere - 55O"-6OO'"C)

or as age of~tion.Rccrystlllizati is taking place aI conditions close to titanite

bkx:king temperature .so either of the two interpretations implies lhat the D4 brinle-ductik:

structures~ younger than 410 Ma (Fig.4.J3: 4.34) and 03 defocmation is older !han 410

ML

The P-T conditions of deformation in the Margaroe orthogneiss cannOl be estimated.

The mineral assemblages are nOI suitable for thennobaromt:try (fig.4.34). but it is possible

to infer that temperatures were never above the reaction biotite + plagioclase + quartz '"

onhopyroxene + K-feldspar + melt (T<75O"-800<'C: Fig.ID-16 of Spear. 1993) during peak

metamorphism. 1be similarities in the style of the D2 and 03 defannations. between the

Margaree orthogneiss and the country rock: paragneiss. suggest thai the P-T-d conditions of

Burgess et aL (1995) for the surrounding Pon-aux.-Basques gneiss could be extrapolated to

the Margaree orthogneiss. The lower viscosity of the amphibolite boudins with respect to

the granitic onbogneis.ses during 02 (development of mullion structures) is consistent with

the temperatureS of 7CX1'·7YrC at S8 Kbar proposed by Burgess et a1. (1994) for peaJc.

metamorphism. 1be conditions for 03 are difficu!t to estimate. but the preponderance of

grain 00undary migration~ of plagioclase. K-feldspar and quartz and the

bending of plagioclase twins are consistent with upper to middle amphibolite conditions.

The absence of chlorite in the mafic lirbol.ogies indicates lempera~ for n:crysullizatioo

above the slabili[y of chlorite (-SSO"C. chapter II of Spear. 1993). Epidote is widespread

during recrystallization in the tonalitic orthogneisses and banded gneisses but generally

absent in amphibolite: this could indicate temperatures below 650"C (epidote out reaction in

mafic rocks; chapter 11 of Spear. 1993). This upper lemper.nure limit would be consislent

with the sillimanite =muscovite retrogression in the PaS gneiss. i.e recrysrallization within
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the muscovilc stability field. Therdore. the widespread ~on seems to have

taken place: in the amphibolite facies. Chlorite appears as a retrograde product. In the case

of D4 suuetu~ chlorite forms part of the microfabric indicating lower amphibolite [(l

gn:cnschist facies conditions.

4.8.4.- Condus[ons:

The Margarcc orthogneiss records three main phases of defonnation which are

correlated with the regioaal 01. D2 and 03 phases (Brown. 1m; Burgess et aI., 1994).

01 is represented by the compositional banding which is imcrpreted as an SO-51 fearure

and therefore is younger than 465 Ma. During D2 there is deveJopT'l'lt:nl of shcalh-like folds

(F2) and boudinage. coinciding with peak melamorphism (c.419-417 Ma). D3 followed

peak metamorphism and is responsible for the main outcrop pattern of the Margaree

orthogneiss. F3 minor folding and shearing was widespread in the Margaree onhogneiss

and the surrounding paragneiss. D3 was characterized by high-temper.uure ductile

dcfonnalion wtuch was accommodated by initial gmn redlJCt.ion and grain boundary

migration recrystallization of plagioclase and K-fcldspar: deformed plagioclase (Wins also

indicate inuaerystalline deformation. A la1e syn-D3 granitic: dyke constrains the OJ

deformation al 417+7/-4 Ma. 03 deformation took place in amphioolite facies and was

(ollowed by partial recryslalliution. 410:t2 Ma titanilc: ages couJd be inlc:rpreted to date the

recrystallization process and they also provide an older age limil for the D4 brinle-ductile

SlI'Ucrures. These Ia1c mylonitic bands and brittle-ductile shear zones (fault zones) have

been grouped within a D4 phase. "The D4 SlrUctures were generalc:d within lower

amphibolite to greenschist facies conditions.
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4.9.- GEOCHEMISTRY OF THE MARGAREE ORTHOGNEISS:

This geochemical study was designed to gather a fltSt insight into the geochemical

signatures of the most representative rock types of the Margaree orthogneiss. For this

purpose ultramafic rocks, amphibolite5. grancxiioritic and granitic orthogneisses of the

Margaree orthogneiss were sampled along the Margaree - Fox Roost section. Allbaugh the

sample set is quite limited it can provide some constraints to allow an evaluation of the

tectonic setting and to dismiss certain petrogenetic hypolheses.

Major element whole rock anaLyses were performed by XRF on glass pellets. The trace

dements were analyZed by XRF on press pellets and by /CP-MS. Details o[ the annlyticaJ

techniques. including precisil!fl and limits ofthtections are presenud in appendix A.2.

4.9.1.4 Geochemical signatures:

Ultramafic rocks (Table 4.2):

These rocks are characterized by low Si02 compositions (45.6%; FigA.35). low Ti02

("'().5%), tola! alkalis (Na20 + K20= 1.62-(31) and Al20:3 (.. 15%); h.igh MgO (..

18.5%) and relatively high Fe203* (... 10.5%). They are enricbed with respect to other

lithologies in Ni (452-382 ppm) and Cr (888-846 ppm). AJthough tlley are REE poor (La '"

2.39; Lu .. 0.11); REE elements patterns (FigA.36A) are slightly enriched in LREE and

show a small positive Eu anomaly. MORB (Pearce, 1973) normalized patterns (Fig4.36B)

show a general depletion in high field strength elements (HFSE), a relative enrichment in

large ion lithophile elements (Lll.E) and the presence of a small Nb negative anomaly but

no Ti anomaly.
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Orthoamphlbolites (Table 4.2.)

Tbc:se rocks have basaltic compositions (47.7·50.2% 5lO2; Fig.4.35). This set of

amphibolites show low AlzOJ (17.63 • 14.02~) and total alkalis. high MgO (11.24 •

5.37%) and Ti0:2 between 2.02" - 0.79%. Ni (283 to 24 ppm) and Cr (772 10 62 ppm)

are quite variable in the sample set, showing a positive com::Jation with the MgO

concentration. This variation in compatible e1emenlS is also reflected in the REE elc:ment

paltcms. the sample sel shows REE and LREE enrichment with decreasing MgO

(FigA.36A). Samples with high MgD. Ni, Cr and low Ti02 show lREE depleted patterns

(Fig.4.36A). MORB (Pearce. 1973) nonnalized patterns (Fig.4.36B) show an enrichmem

in LILE. a negative Nb anomaly, an overall depletion in HFSE and a poorly defined n
negative anomaly. HFSE variations in the sample set are similar to those observed in the

REE. i.e. they increase with decreasing MgO.

414 -472 Ma granodioriUc and granitic: onhogne[sses;

The 474 Ma homblende-bearing tonaliticJgranodioritic orthogneisses. have intermediate

compositions (62.17 to 64.85% SiOV wbe~ the 472 Ma granites have felsic

compositions (71.12 to 74.07% Si02). 1llis set shows a decrease in Ti02 (0.61-0.32%).

A1203 (17.01 • 12.92%). FqOJ- (5.46 . 1.9%). MgO (2.73 - 0.54%). MnO (0.1 •

0.03%), Cao (5.31 • 1.5%) and P205 (0.2 - 0.05%) with incrusing Si02. Only the

alkalis do DOl seem to show a systematic variation. REE panems (Fig4.37A) are enriched

in LREE and show a minor Eu anomaly. The granodiorites are more enriched in R£E than

the granites. have a better deHned Eu anomaly and have almost flat HREE. Primitive

mantle·nonnalized (Sun, 1980) multielement panems (Fig.4.37B) are characterized by

enriched LILE. Nb, P and Ti negative anomalies with granodiorites panems sbowing an

enrichment over granites.
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4.9.1.- Tec:tonlc signatures:

U1tramanc rocks. a potential cumulate:

1lle low REE concencration. wilh lREE enrichment and positive Eu anomaly in the

ultramafic bodies arc compatible with the primary mineralogy of a c1inopyroxene­

plagioclase cumulate. In oUlcrop. these rocles are associated with the amphibolite-rich

areas, suggesting that they might represcnl a cumulate phase separated from the mafic

magma responsible for the ampbibolites. lsotoPK: data would be needed 10 confirm the

hypothetical relationship between the ultramafIC rocks and the surrounding amphiboliles.

Due to lbeir suspectedcumulalc nature. the ge«hemistry afttle uhramaflC rocks will l1()[ be

used to assess possible tectonic environments.

Ampbibolltcs:

Althought potentially modified by metamOrphic proces!ieS, the major element

characteristics of the amphibolites are indicative of tholeiitic affinities (FigA.35;

Middlemost. 1975). This is consistent with the LREE-poor paucms of the least evolved

samples (Fig4.36A). indicating derivation from a depleted mantle source (likely

asthenosphere; Wilson, 1989). Multielement MORB-norma1ized spidergrams (Fig4.38B)

sbow a slight Lll..E enrichment with a variably deflned Nb negative anomaly and a poorly

dermed 1i anomaly. This could suggest the presence of minor vokanic arc mantle

component or crusral contamination. lbe high MgO. Cr and Ni concentrations suggest that

these geochemical characteristics are from a mantle source. rather than crusraI

contamination (Pearce. 1983). A battery of tectonic discrimination diagrams (Fig. 4.39)

indicate the tholeiitic nature of the amphiboliles and the volcanic arc character of the sample

set. This is panicuJarly well reflected in the diagrams based on immobile rrace elements

(Fig 4.39C. Ti-Zr-Y; Pearce and Cann.• 1973; Fig4.39D. Zr-Th·Nb; Wood. 1980:
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Fig4.39F. Nb-Zr-Y; Meehesde. 1986). 1besc: diagnuns also show a shift of the samples 10

the V AB (volcanic arc basalts) lick! with decreasing MgO COntenL This shift [0 V AS is also

observed in the shape of the MORB-normalizcd IIU!liekmenl diagrams (Fig4.36B). These:

multielement patterns resemble those of volcanic arc tholeiites (Fig4.38B). Secondary

element mobility is probably responsible for !be relative variations of K20. Rb and Sa

among samples (Jenner. 1996). However, the relative enrictunenl in Lll.E with respect to

MORB is likely 10 be a primary feature, partic:u.larly since the variations in Sr and Th

concentrations are consistenl with the variation of inunobilc elements, like the HFSE.

Granodioritic and granitic orthognei.sses:

Althought the number of samples is quite small and with a wide range of SiOz contcnt

(62%·74%), the geochemical signanrres are strikingly similar. When classified following

the schemes of Maniar and Piccoli (1989) and Pearce et al. ((984) they correspond [0

volcanic an:: granitoids (VAG; Fig4.40). Ocean ridge granite (ORO: Peara: et aL, 1984)­

normalized multielement patlems show a Nb negative anomaly wiU1 a Ce peak and UI...E

enrichmeot (Fig.4.41). This pattern resembles lhaJ of the Chilean volcanic arc granitoids

but the lD..E side of the panc:m has similarities with lhaJ of the granitoids from the

Skaergaard intrusion (tholeiitic Iayemj intrusion; Hyndman. 1985). The panems are

however quite different from the syn-<:ollisjonal Variscan granites of southwest England

which are derived from maNre crustal sources.

4.9.3•• Discussion: Petrogenetic processes and tectonic signatures.

The Mg-rich amphibolites have a geo::hemical signanue typical of tholeiitic basaltic

magmas. 1be high MgO. Ni and Cr and low Si02 concentrntions suggest that there was

little crustal interaCtion. and the geochemical signatures are a function of the mantle source

(Pearce,1983). The LREE depleted patterns (Fig4.36A) are indicative ofsballow melting of

an Sp-lhc:rwlite mantle sowa: (Wilson. 1989; ElIam, 1992); probably from mantle

130



asthenosphe~ slightly affected by a subduction zone component. This is consistent with

the LREE-poor and HFSE·poor patterns with r:cspect to MORB. which are typical of

primary magmas pnxIuced by a tLigh degree of partial melting of a depleted mantle source

(Pearce, 1983). The progressive enrichment in LREE with decreasing MgO and the

relatively straight variations of the log-log compatible V5. incompatible element diagrams

n:semble the: effects of crystal fractionation (Fig. 4.36A. 4.42). However. crystal

fractionation modelling (Fig.4.43) shows that the: LREE-cnrichcd and REE-Oat

amphibolites cannot be generated by fractionation of the Mg-rich and lREE-poor

amphibolites. Also the comparison of the MORB·nonnal.ized patterns of the felsic

orthogneisses with those of the arnphibolites indicates the trace element variation was not

produced by simple binary mixing between felsic and mafic magmas (FigA.44).

Therefore, the variation could reflect both a change of mantle sources or the effects of

complex petrogenetic processes such as assirnilation-ccystal fractionation. assuming that aU

samples are pan of the same magma batch. This assumption is unlikely since the presence

ofsyn-412 Ma and posl-465 Ma mafK: suites is demonstrated. Field relationships indicate

that the LREE-poor amphiboliteS an: coeval with me 412 Ma granitic ortbogneisses.

However, it is not possible 10 assess if the: lREE~nriched amphibolite is part of a post-465

Ma mafic suile. This sample has a Mg number of29 which indicates that it is evolved. from

a source enriched with respect 10 that of the LREE·poot'" amphibolites. If there was no

crustal inleraction. it would indicaJe melting of a deeper mantle source (gamet-lherzolite?:

EUam. 1992). The Nb-anomaly of Ibis sample and the HFSE enrichment defme an

attenuated volcanic arc signalUte (Fig4.38B), which might be indicative of a transitional

setting.

The trace element multielement patterns of the grnnodioritic ortbogneisses (60-62%

Si02) indicate that the intermediate compositions are not a product of simple mixing

between granitic and basaltic magmas (Fig4.44). 1bese geochemical characteristics are like
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mosc of volcanic arc andesites (Gill. 1981). The lraCC element depletiOfi of me granites with

respect to the gnnodiorile5 suggests lhal the fUSl could have evolved by crystal

fractionation from an intermediate melt.. On the other hand. if the granites were the product

of crustal partial melting. the small enridunent in Lll..E would suggCSl lhat they were

generated from an immature cfUSlal source. lbcse hypotheses ~ impossible 10 evaluate

sina: the size of sample set prevents any modelling. Also. iSOl:opic data ~ needed (0 make

the concct petrogenetic assessment. since the concentrations of the most reliable traCe

elements for granite modelling (Rb, Sr. Ba: Sea, 1996) were probably modified by

secondary processes (metamorphism). Even with these limitations. the contemporaneity of

tonalitic and granitic melts (474-472 Ma), the consistency of the geochemical signatures.

the variability of magma types and the relative abundance of tonalitic inuusions over

granitic ones are features consistent with the origin of the suite in a volcanic arc root

(Dallmeycr et al.. 1996: Hyndman. 1985; Gill. 1981). 1be intermediate-felsic magmas

were coeval with thokiitic marK: magmas. suggesting that such an an:: root was located in

an area undergoing important extension and upwelling of as!henospheric material (shallow

melting). A vokanic an:: I baclt-arc transitional environmenl would be consistenl with such

char.lcteristics (Hamilton. 1994; Oift el aI., 1994).

4.10.·INTERPRETATION.

The reported field relationships from the Margarec orthogneiss indicate that intrusion

of mafic and felsic magmas was coeval. V-Pb crystallization ages from both the lOOa.I.itic

(474 Ma) and granitic (472-465 Ma) rock. types place the intrusion of the Marg~

orthogneiss in the Late A«nig·Early Uanvim (Time scale of Tucker and McKerrow,

1995). The variety of coeval magma types suggests !hal the Margm:e onhogneiss
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~nts an ultramafic/mafic-felsic inuusive complex dominated by tonaLilic rock l)'pes.

1be abundance of mafic enclaves in the: tonalitic rock types suggests coeval injection of

basic magmas into lhe same magma chamber. 1be granitic orthognc:isses generally Iact

mafic enclaves and back-vein maflc-lonaIitic orthogncisses. suggesting that they ~

apparently intruding intO partially solidified mafic magmas. An alternative interpretation is

that the mafic·rich bands in Fox Roost represent injections into a partially crystallized felsic

magma chamber. The presence of meier-scale ultramafic (cumulate) enclaves indicates

crystalliz.at.ion of thc: mafIC magma. This would provide iI mechanism to superheat the

surrounding granite, so it back-veins the crystallizing mafic magma (Wiebe. 1991: Barbarin

and Didier. 1991; Fernandez and Barbarin. 1991). Since all textural evidence has been

wiped 001 by overprinting metan'lOrphic and deformational events. it is I'lOl possible to reject

any of lhese inlcrprclations. The last interprewion is consistenl with certain field

relationsbips which suggests the inllUsion of mafIC dykes into partially solidified granite.

AI Grandys Brook. a generation of mafic dykes is intrusive imo 465 Ma granitic

onhogneisses. indicating that mafic magmatism continued after the intrusion of the

Margaree onhogneiss. Therefore. it is possible to speculate that mafIC magmatism was

coeval during all stages of intnlSion and crystaIl.izat.ion of the tonalitic and felsic members

of the Margaree orthogneiss.

The geochemistry of the main rock types does l1OlSUpport magma rni.ting. This can be

explained by the compositional contrast between mafic and felsic magmas. Such contraSt

would prevent any imponant cherrUcal mix.ing (e.g.• Bateman. 1995). Therefore. the

mingling observed in the complex is better explained by vigorous free convection and

mecbanica.l mixing as a result of mafic injections into the magma chamber. The volcanic

arc geochemistry of the tonalites and granites and the volcanic arc tholeiitic character of

most mafic magmas can be: explained by shallow melting of a spinel·lherzolite mantle
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SOWt:C in a supra-subduction environment. lbe abundance of basaltic magma could also

explain the generation of the intermediate tonalitic magmas by magmatic underplating and

partial melting of crustal material. that is assuming that these are crustal-derived melts

(Fig.4.45). This hypothesis. however. should be confl.llt'ed in the future by gathering it

larger geochemical data base. including Nd isotopic data. However, the dominance of

tonalitic: rock-types. at c. 474 Ma. is consistent with a volcanic an: environment on

continental crust. 1be inferred shallow depths of the coeval tholeiitic basaltic magmas

would suggest the presence of a 474-472 Ma transitional continental arc'baclr:·arc

environment analogous 10 that of the Taupo volcanic zone in Nonhern New uland

(Gamble et aI., 1994). 1be 465 Ma. granitic magmas and the cross-cutting amphibolilcs

indicate that magmatic activity and high geothermal gradients continued. at least. into the

Early Llanvirn. How, the LREE-rich amphibolites relale to this magmatism is unknown. it

is also uncertain at this stage if they are rully derived from an enriched mantle source.

4.10.1.- The Margal"H orthogneiss: its relationship with the Early

Ordovician Penobscottian events and tbe Arenig-Early Llanvirn bac:k-arc:

extension along the peri-Gondwanan margin or the Newfoundland

Appalac:hians.

lbe geoc:hemisay and field-relationships of the Marg:~orthogneiss suggest thaI it is

a Late Arenig-Early Uanvim alCIbac:k-an; mafic:-felsic: intrusive c:omplex. lbe timing of

intrusion is contemporaneous with the main back-an; rifting event in the Canadian

Appalachians (Swinden et aI. 1990: Van Staal et aI.• 1991) and c:oincides with coeval

magmatic ac:tivity in both the Dunnage (Exploits) and the Gander Zone (Chapter U.). The

Margaree onhogneiss is coeval within error with the stitching 477 Ma Baggs Hill and 474

Ma Partridgeberry Hill granites thaI post-<late the Pe:nobscottian ophiolite-an; imbrication

and ophiolite obduction over the peri..Qondwanan margin of the Iapetus Oc:ean in the:
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Newfoundland Appalachians (Fig.4.45: Colman-Sadd et al., 1992a: Tucker et aI.• 1994).

The ge01ogicai evolution of the Pon·aux.Basques area. unravelled from the study of the

Margaree orthogneiss. postdates lbc Penobscoaian amalgamation of the Early On:Sovician

Exploits Subzone with the Gander Zone. lber"efore, it is I10l possible 10 assign the counr.ry

rock paragneisses 10 the Dunnage or Gander Zone. or to reject the hypothesis that their

metasedimenlary protoliths were deposited during the Penobsconian imbrication.

Ages of volcanism coeval with the intrusion of the 474-465 Ma Margarce orthogneiss

are also present in the Exploits Group (O'Brien et aI., 1997) and along strike in the

composite Bay du Nord Group (466±3 Ma ruff; Dunning CI aI., 1990) and the Baie

d'Espoirs Group (Fig.4.45: 468±2 Ma; Colman-Sadd et al .. 1992a). The geochemistry of

the syn-472 Ma tholeiitic amphibolites in the Margarec onhogneiss resembles that of coeval

basalts in the Lawrence Head Formation. northern Exploits Group (O'Brien et aI.• 1991).

The evolution of this pan of the Exploits group is related to back-an:: cJl:tension after the

fonnation of the Tremadcx-Early Amtig Tea Ann arc. This arc was followed by Mid­

Arenig extension and fomw..ion of a Lale Arenig-Early Uanvim back: arc. Low P I rugh T

anatexis at 465±2 Ma and 464 Ma intrusion of anate:etic granites in the Mounl Cormack and

nearby MceJpaeg Subzone of the Gander ZDnc (Fig.4.45: Co!man·Sadd et aJ.. 1992)

indicate the presence of a high geothermal gradient as would be expected in a continetllal

back-arc environment.

If the Bay du Nord Group is the equivalent in southweSt Newfoundland of the

Exploits Group. the arcJback ate transition must be n:presented by the po5t-477 Ma

volcano-sedimeotary sequences nosting the 466 Ma ruff in the Bay du Nord group

(Dunning et at.. 1990: Tucker et at.• 1994). "The western position of the Margaree

onbogneiss. near the SiJurian suture zooe. and the difference in Ph signatures of the

associated VMS dep:tsits between the Grand Bay I Port-aux-Basques complexes and the

135



Bay du Nord Group (O'Neil. 1985) suggest thai the Margaree orthogneiss occupied an

external position along the peri-Gondwanan margin or Iapetus. Such position couJd explain

the lalc knig transitional an;:Ibaclt..an:: environment. as the Early Ordovician arc retreated

ocean-wards. during the Arenig back-arc extension (Fig.4.46).
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CHAPTER V

THE mERIAN MASSIF: geological setting and general

objectives.

S.I.INTRODUCTION:

The aim of this chapler is 10 provide a concise overview of the geology of the

commonly accepted lithotectonic zones of the Iberian Massif 10 those readers who are not

familiar with its geology. The emphasis of £his review is on the currently available age

constraints on the timing of the pre-Variscan and Variscan teetooothermaJ events. This

overview also serves to introduce the area of study in the Central Iberian Zone (Sierra de

Guadarrama., Chapter YO in the wider regional geological context of the Iberian Massif.

The: rationale behind selecting the Central Iberian Zone (Of" this kind of comparative study

between the Iberian Massif and the Goodwanan side of the Newfoundland AppaJacbians. is

a1soexplained.
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5.2.- UmOTECTONIC WNFS OF THE rBERIAN MASSlF: general

overview.

The Iberian Massif constitutes d1e southern portion of the European Variscides. It has

been divided in several tectono-stratigraphic zones (c.g.. Quesada. 199 [). which are from

nonh to south and east to west (Fig. S. [.): Cantabrian Zone CCZ), Wcsl-AslUrian leonese

Zone (WALZ). Central Iberian Zone (CIZ). GaIicia-Trh-os-Montes Zone (GTMZ), Ossa­

Morena Zone (OMZ). Pula do Lobo Zone CPU) and South Portuguese Zone (SPZ).

Quesada (1991) considered the Galicia-Tnis-os-Montes. Pula do lobo and South

Portuguese Zones as exotic terranes accreted to an Iberian Autochthon terrane

(OMZ+CIZ+WAlZ+CZ) during the Variscan orogeny. This view is disputed by some

authors, who consider that the border between the OMZ and the CIZ is an "Early Variscan

surure~ (Mane. 1986: Azoret al.• 1994). This is suptXlftOd by the Morrocan affmilies ofthc

Ordovician fauna in the DMZ and a different Paleozoic lithostratigraphy from that of the

CIZ. lbe Paleozoic lithostratigraphic and faunal similarities between the ClZ. WAU and

Cz. are SO strong that they effectively indicate that these three zones formed the single most

extensive Paleozoic terrane of the Variscan bell. Accotding to Paris and Robardct (1991),

the Ordovician faunas of the az dec"oe lhc Cenual Iberian fau.nal domain of the Southern

Variscides, which eXlends into me central Annorican Massif: whereas the Ordovician

faunas of the WAl.2 and the CZ have more affinities with the Ebfo..Aquitanian fau.nal

domain, which occupies most of the soulhern Variscides (Fig.5.0. This shows that the

Iberian terrane defined by lhe CIZ. WAlZ and CZ has signific:an[ and ~liabIe

paleogeographic links wid! the rest of the Southern Variscides.

TIle following is a description of these zones with a panicuIar emphasis on the pre­

Variscan evolution and the available constraints on the timing of the: Variscan events

(Fig.5.2). [[ will start with a description of the so-called exotic [enanes (SPZ. PlZ and
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GTMZ) followed by a description of the woes that fonn the Iberian Autochthon terrane of

Quesada (I99I; OMZ. CIZ. WAlZ and CZ). but creating the DMZ as a porential

independent terrane..

5.1.1· The South Portuguese Zone (SPZ) and the Pula do Lobo Zone (PLZ)

11Jese twO zones an: located in the somhwestemmost extent of the lberian Massif and

represcntexotic elements accreted against lberia (DMZ) during the Variscan orogeny (Fig.

5.1 and 5.3). Previously grouped in the classic South Portuguese Zone of Lotze (1945)

and lulivert et a1. (I979). the oceanic affinities of the PLZ have prompted this separation

(c.f. Oliveira. (990). The vergence of the Variscan structures indicates a southwest IC:Ctonic

transport. i.e. towards the more external Soulh Portuguese zone (Silva et aI.. 1990). lbe

contact between these two zones and the 0f\.1Z is a suture zone defmed by the trace of the

Beja-Accbuches ophiolite (Fig.5.I).

The Soulh Portugue$l! Zone (Fig.5.l: e.g.• Oliveira. 1990) has an unknown

basement~ oldest rocks dw OUlClOp in this zone an: pre-orogenic sedimentary rocks

with Famenian Cu.Devonian) fauna. Syn-orogenic sequences in lhis zone range from the

Late Famenian to the Early Visean (L Carboniferous; Fig. 5.2). As a result of the Variscan

collision a foreland basin was developed from the La!c: Visean to lhc: Early Westphalian

(Mid Carboniferous; Fig. S.2).

The Pulo do Lobo Zone (Fig.5.l: e.g., Oliveira. 1990) is fo~d by sedimentary

rocks intercalated with bimodal volcanic rocks (N-MORa tholeiites) that host the massive

sulphide depositS of me Iberian Pyrite belt. Blocks in melanges of this zone have provided

Upper Devonian fossils. Overstepping sequences, according to Quesada (1991), have

Famenian fauna (Fig.S.2). These rocks were intruded at 330 Ma by the syn-k.inematic Gil

Marquez composite pluton (Rb-Sr, Giese eI al., 1993). 1lle back-arc Beja-Aceboches
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ophiolite separntes the volcaJ»sedimenlal}' PLZ from the <::>NrZ along a narrow band in

which the ophiolitic sequence has been condensed (e.g.• Oliveira. 1990: Silva et aI., 1990).

This ophiolitic sequence has been affected by deformation and a low P I high T

metamorphic even[ ranging from greenschist [0 granulite: facies. with local n:ticts of garnet·

clinopyroxene assemblages (e.g.• Munha. 1990). Dallmeyer et aI. (1993) reported an

4OAr/39Ar hornblende metamorphic cooling age of 340 Ma from the ophiolite:. which

provides a minimum age (0(" the ophiolitic protoliths and the metamorphic event (Fig.S.2

and 5.3).

5.2.2.· The Galicia Tras-os·Montes Zone (GTMZ):

TheGTMZ is located in the nonhwest comer of the Iberian Massif (Fig.5. I and 5.3).

This zone is interpreted as a composite allochthonous unit emplaced over the Central

Iberian Zone (Farias et aI.• 1986). The zone has been divided in two domains charnclerized

by different lithologies and ttttonOlhennal events: the Schistose Domain and the Domain of

the Complexes. 1be Schistose Domain is interpreted as the western alent of the Central

Iberian Zone (Farias. 1992). whereas the Domain of the Complexes is interpreted as a

mixture of Iberian and exotic units (Arenas et aI., 1986).

The Schistose Domain

This domain (Fig.5.3) is formed by variably metamorphosed siliciclastic rocks with

abundant volcanic rocks. ranging from tholeiitic and alkaline basalt to peralkaline rhyolile

(e.g. Northeastern Portugal: Riberiro. 1987). According to Farias (1992), lbe basal

volcano-sedimentary units could be Late Ordovician. Uandovery to Wenlock graplolites

indicate a Silurian age for moSt of the rock sequence (Matte. 1968: Romariz. 1969:

Fem4ndez Tomas. 1981). TIle lOp of the sequence is considered to be Early Devonian on

the basis of the 387±16 Ma age of the volcaniclastic Mamoa orthogneiss (Rb-Sr:
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Marquinez. 1984). Locally. lhese Middle Paleozoic rocks rest on orthogoeis.sc:s. but the

nature ofttle contact is unknown (Farias et a1.. 1986. 1992). 0rth0gncis5es in this domain

(Fig.53) are poorly dated and ages t2nge from 378 Ma (Noya migmatitic augen gneiss

lower intcrcept: U-Pb Zm: Kuijpcr et aI., 1982) to 57Qtl4 Ma (5isacgas orthogneiss upper

intc:rcept U-Pb Zm: Allcgret and Iglesias Ponce de Leon. 1981).

MOSt of the rocks of the Schistose Domain were variably metal1lOq)hosed from

greenschist to upper amphibolite facies under low pressure conditions. but there are some

local blueschist facies occurences under the Morais complex (e.g.. Farias. 1992). 1be

minimum age formetarnorphism is constrained by 31610 307 Ma 4OAr/39Ar whole rock.

and muscovite metamorphic cooling ages (Martinez Calaian et al.. 1993). The two-mica S­

type granites in this domain are also Late Carboniferous (318±21 Ma La Guardia granite.

Rb-Sr, Van Calsteren et aJ" 1979). "The blueschist facies (4200C, II Kb)

volcanosedimentary correlatives aCttle Sch.istose Domain. underlying the Morais Complex

(Fig.5.3; NE Portugal), have provided a conuoversial 40ArJ39Ar white mica age of 336±2

Ma (Gil Ibarguchi and DaUmeyer, 1991; c.£. Martinez Catalan el al.• 1996)

According to Farias (1992), the Mid Paleozoic rocks of the Schistose Domain

correlate with similar Upper Ordovician - Silurian volcanosMimenwy rocks in the Central

Iberian Zoae. These blueschim although ascribed fO the SchiStose Domain are considered

by Farias (1992) as an allochthonous unit.

The Domain of the Complexes

lbis domain (Fig.S.3) comprises the allochthonous complex;es of NW Iberia: Cabo

Onegal. Ordenes, Morais, Braganza complex;es and the rocks of the Malpica-Tuy band

(ARnasetal., 1986). According 10 Arenas el aI. (1986) these complexes represent klippen

of the same tectonic stack. 1be stack consists of a basal ttigh Pllow T wtit. locallly reaching
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eclogite factes. overlain by a low-medium grnde ophiolitic unit and a high Plhigh T upper

allochthonous unit. The Malpica-Tuy band contains onJy the basal pan of this stacie. By

contrast. the Ordenes and MOOlis complexes have an extnl unit overlaying the upper ttigh

Plhigh T unit. This uppermosl unit is interpreted as a fragment of lhe continental land-mass

which collided against lhe Iberian Autocthon lemuJe.

Following Arenas et aI (1986) the base of the ICClonic stack is formed by per-alkaline.

alkaline and cak:-aIJcalinc (480 Ma. U-Pb: Santos Zalduegui et aJ.• 1995) orthogneiss.

metasedimentary rocks and partially retrogressed eclogite and high P I low T rocks. White

mica ages from eclogile lenses in the Malpica-Tuy band (Fig.5.3) range from 324 10 358

Ma(K·Arj and 37010 378 MaCRb-Sr: Van Calsteren ct aI., 1979). According to Arenas et

aI. (1986), these two units were part of the Iberian margin.

Tectonically on lOp of these ~lberian~ units. there is a series of teetooic slices of

greenschist 10 amphibolite facies rocks with ophiolitic affmities. 4OAr/39Ar amphibole

cooling ages from this unit range from 397 (0 380 Ma and ~ interpreted to date ophiolite

obduction (v. Cabo Ortega!. PeucaI et a1.. 1990; Morais. Dallmeyer and Gil lbarguchi.

1991: Braganza., Dallmeyer et aI.. 1991). Santos ZaJduegui et aI. (1996) dated a meta­

plagiogranile from !he ophiolite wUt of !he Cabo Onegal Complex at 472±3 Ma (Fig.S.3:

U-Pb, Zm); this rock was mctamocphosed up 10 700"C and 11 Kb. This age CODU1lStS with

m Early Devonian protolith age from a greenschist facies ophiolitic gabbro in me ophiolitic

unit of the Ordenes Complex (Fig.53: 395±2 Ma. U-Pb zircon; Dunning el aI .• 1997).

The ophiolitic unit is overlain by a composite upper aIIochlbon made of high PI high T

gneisses, mafic eclogite and peridotite. the granulite unit. This unit contains high P I high

T fabrics overprinted by amphibolite facies assemblages during the imbrication of the unit

(Fernandez. 1994). In Cabo Ortega! (Fig.5.3), the protoliths of the mafic eclogites are
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interpreted as arc or back-arc products (Pcucat et at. 1990). PcUCal Cl at (1990) reported

480-490 Ma U-Pb rircon ages from !he mafIC eclogites. SHRIMP U-Pb anaJysis of me

same ziIt:on separates indicaled an Early Ordovician prototilh age and an Early Devonian

{390 Mal age roc the metamorphic event (Schafer et aI.• 1993). 'This high PI high T event is

constr.linted by precise U·Pb dating of zircon (406±4 Ma : 388±3 Mal and tilani.~ (389±2

to 383±3 Mal from the tugh P mafIC grnnuliteS (Santos Zalducgui Cl aI.. 1996). A garnet

pyroxenite from lhe Cabo Ortega! peridotilC dated at 392±4 Ma (Pc:ucal et aI .. (990)

provides an older limit for the iIOOrication of this complex: the tectonic fabric in lhis

peridotite is cross-cut by a 388±2 Ma pegmatite (zircon and monazite: Santos Zalduegui.

1996). Rutile U-Pb ages at 383±1 and 382±3 Ma (Sanlos ZaJduegui et aI.., 1996; Valverde

Vaquero and Fernandez. (996) and 315 Ma 4OAr/39Ar muscovite (Peucat et at.. 1990)

provide greenschist facies cooling ages and me youngest age limit for the imbrication of the

Cabo Onega! Complex.

lbe uppermost unit in the Ordenes and Morais Complexes (Fig.5.3) is an exotic slice

composed of metabasiles. mewedimentary rocks and orthogneiss (augen-gneisses). which

is inccrpreled as the opposing margin of the Iberian Massif (Arenas et at. 1986). These

ortbogneisscs have Early Ordovician protolith ages (ca. 490 Mol; Kuijper et aJ .• 1982:

0aUmeyer and Tucker, 1993: Dunning, per'S conun.). Muscovite 370-373 Ma 4OAr/39Ar

cooling ages from these orthogneisses and the underlying ophiolitic unit in the Morais

complex (Dallmeyer et al., 1991) provide a younger limit for the imbrication of this exotic

unit.

Dallmeyeret al. (1993) interpreted the 365 Ma whole rock 4OArf39Ar age from a

phyllonite at the: base of the Cabo Ortegal Complex. as the age of the final emplacement of

the allochchonous complexes. The peraluminous 310 Ma Espenuca granite (U-Pb monazite:

Kuijper et al., 1982) stitches the contact between the Ordenes Complexes and the ClZ
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(Fig.5.3l and provides the more reliable younger limit for final emplacement of the

complexes over the CIZ.

5.2.3.- The Ossa-Morena Zone (OMZ):

Accofding 10 Quesada (1991). the OMZ was accreted to rberia (CIZ+WALZ+CZ)

along the Badajoz-C6rdoba shear zone CBCSZ) during the Late Precambrian Cadomian

orogeny (Fig.5.I). However the complex and distinctive l...ate Precambrian and Cambrian

tectonothermal events. the Morrocan affInities of the Paleozoic faunas and the different

Paleozoic lichoslmtigraphy of the OMZ reflects a separate Paleozoic paleogeographic

position from thai of Iberia (ClZ, WAU and CZ).

1be DMZ is bounded 10 the south by the Pula do Lobo Zone along a transpressional

zone (Fig.5.3: Quesada. 1991). The Badajoz-Cordoba shear zone (Fig.5.3: BCS~ v.

Quesada.1991) forms the northemtxMlndary wilh theClZ. TIle BCSZ is lens of ltilorne~

wide and 400 Km long and is bounded 10 the north by the Peraleda fault (Fig.5.3: Abalos.

1992). 1llis macrostructure has conjugate thrusts and a core of ductile deformation (BCSZ

in Fig.5.3.). aU overprinted by Variscan tnLnSCurrent faults. and hosts variably retrogressed

eclogite and granulite (Abalos. 1992). These feanues have lead some workers [0 interpm

the BCSZ as a reworked suture zone (Burg el aI.• 1981: Mane. 1986: Quesada. 1991). but

it is disputed whether it represents a ~WOfked Cadomian (Abalos. 1992) or Variscan suture

(Azor el al .• 1994). This ~hcar zone had an cstimalcd, Variscan, minimwn sinistral

movemcnl of 400 Km (Abalos. 1992) [0 200 Km (Azor et al., 1994), but it should be

nOled Ihat Ihere are no markers to make a proper estimation.

The gneisses of Ihe A1:uaga group arc the oldest rocks in the DMZ and are inlCrpreted

by Quesada (l99Oa.b) as basement 10 the DMZ. These gneisses. wltich outcrop in the

BCSZ (Fig.53), bave been rnclamOrpboscd to eclogite/granulite facies and retrograded 10
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amphibolite: fades (Abalos. 1992). The Amaga group consists of orthogneiss (Azuaga

gneiss). amphibolite. paragneiss and minor cak-silicate roclts. black chert and marbie. An

amphibolite from this unit has provided the oldest proIolith age in the OMZ (611+17/·11

Ma . V·Pb Zm; Schafer. 199(T. Sdwer et aI.• 1993). The variably metamorphosed

siliciclastic rocks of the Scric: Negra (leCtonically ?) overlay the Amaga group. The $erie

Negra is a siliciclastic rock sequence wilh abundant black chen and amphibolite dykes in its

lower member and siliciclastic with volcanklastic rocks in its upper member (v. Quesada.

1990a.b). In the BCSZ (Fig.5.3), the amphibolite grade rocks of the Lower Serle: Negra

have: provided 4OAr/39Ar amphibole and muscovite metamorphic cooling ages of 560-550

Ma(Dallmeyerand Quesada. 1992). South of the BCSZ, the Upper Serle Negra contains

565 Ma detrital zircon (V-Pb SHRIMP: Schafer ct al.. (993), indicating that the Sene

Negra is a composite: rock sequence. Reliable prorolith ages of Lale Precambrian Cadomian

magmatism arescacce (585±5 Maand 544+61-5 Ma. V-Pb Zm; Schafer. 1990: Ochsner,

1993). According 10 Ochsner (1993). tlUs magmatism has a calc-alkaline character.

South of the BCSZ. the p~oceof c1l1SlS of deformed Serie Negra black. chen in the

basal lower Cambrian conglomerates indicate the ~nce of a Late PrecambrianlCambrian

unconformity and a defonned Precambrian basement underlying the OMZ. lower

Cambrian carbonates overlie the basal p:>Iymicti<: conglomerate. sandstone and interleaved

acid volcanic nxlc.s of the Torrdrboles formation (Liihin and Quesada. 1990). These

carbonates are overlain by the Mid Cambrian volcano-sedimentary Complex (Oliveira et

aI., 1992). These Mid Cambrian volcanic roclc.s range from basalt to rhyolite and have

tholeiitic to alIc.aline-peralkaline charncter. Their eruption coincides with the intruSion of

syn·kinematic anatectic granites associated with low P I high T metamorphism and

defonnation in the central OMZ, south of the BCSZ (527+101.7 Ma. U-Pb. Monesterio

anatectic granodiorite: Ochsner. 1993: Eguiluz and Abalos. 1992). The intruSion of 525·
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510 Ma calc-alkaline plUions and the coeval andesitic: volcanism of the syn-orogenic

Makocinado Formation (Ochsner. 1993) follows the low P I high T metamOrphic event.

South of the BCSZ and wilhin the Malcocinado fomwion there an: oliSloliths of

serpentinite which might~t a dismembered ophiolite (Quesada. 199Oa. b). Mid­

Upper Cambrian Barrovian lTIeIamorphism is locally preserved in the BCSZ (Fig.S.),

including the migmatization of the basal levels of the Serie Negra in the Mina Afortunada

gneissic dome (6SOOC, 6-7 Kb; Abalos. 1992;:520 Ma. V-Pb. Zm: Dunning. unpublished:

5<17+9/-6 Ma., U-Ph. Mnz. Ochsner. 1993). This would indicate the effects of a poorly

understood Mid Cambrian orogenic event, which is interpreted to have occurred in a

contincnlal arc (Ochsner, 1993). The Mid Cambrian calc-alkaline magmatism in lhe OMZ is

followed by Cambro-Ordovician alkaline plulOnism along the southern border of the BCSZ

(Fig.5.3; A-type granitoids, 503+41-2 Ma to 498+101-7 Ma: Ochsner, 1993). A final pulse

of pre.variscan peralkalinc (riebek.itc-clinopyroxene orthogneiss) to metalpern.lwninous

plutonism is restricted to the 8CSZ (Fig.5.3: 47()..48() Ma. U·Pb Zr. Ochsner. 1993). and

is coeval with Early Ordovician acid volcanism soulb. of the BCSZ (Oliveira et al.. 1992).

TIle Paleozoic sequences in the OMZ have a very distinct character north and south of

the BCSZ (Fig.5.3: Robardet and Gutierrez Marco. 1990). To the north. between the

BCSZ and the Pedroches batholilh. the Paleozoic sequence is similar to thai of the

neighbouring CIZ. containing the Arenig Armorican quartzite and Uanvim to Caradoc

black shales and siliciclastic rocks with fawtal affInities with the CIZ (e.g. Perej6n and

Moreno-Eiris. 1992). This suggests that these rocks might rtptesent slices of an outboard

part of the CIZ incorporated inco the BCSZ. 1be Ordovician sedimentary sequences south

of the BCSZ (Fig.5.3) contain distinctive Ordovician faunas with Morrocan rather than

Centrnl Iberian afflnities. which define the Ordovician South Iberian faunal domain (e.g.

Robardet and Gutierrez Marco. 1990). This Early Paleozoic sequeDCe rests unconfonnably
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on the Mid Cambrian and contains Am1ig ~y-green shales instead of the An:nig

Armorican quartzite characteristic of the CIZ. WAlZ and the CZ: faunal and

sedimentological differences with me CIZ persisted during the Silurian and Devonian

indicating the: distinct char.lcter of the DMZ (Paris and Robardet. 1990; Robardel and

Gutienu Marco. 1990: Percj6n and Moreno-Eiris. 1992).

The o~t of lhe Variscan orogeny is matted by syn-orogenic deposits with local

volcanic inlcn::alations (Quesada et aI.• 1990). The basal age of these deposits varies

between Frasnian (Upper Devonian) and Lower Visean (Lower Carboniferous). local

4OAr/39Ar metamorphic COOling ages at 360--368 Ma in homblendes and 331·340 Ma in

muscovites of the BCSZ (Dallmeyer and Quesada., 1989) indicate Famenian to Visean

(scale of Odin. (990) Variscan movement along the BCSZ(Fig.5.3). The BCSZ is stitched

with the CIZ by an Upper Toumasian (Lower Carboniferous) to Namurian (Middle

Carboniferous) syn-orogenic basin (Fig.5.2 and 5.3). Earliest Variscan magmatism in the

DMZ is Upper Toumasian bul most plutonism seems to be Upper Visean-Namurian 10

MiddJe Weslphalian (Sanchez Carretero et aI., 1990).

5.2.4.- Tbe Central Iberian (CIZ), West Asturian-Leonese (WALZ) and the

Cantabrian (CZ) Zones:

These lhtte zones (Fig.S.I) are characterized by a PrecambrianlCambrian

unconfonnity. a Cambrian miogeocline with Lower Cambrian siliciclastic rocks overlain by

Lower-Middle Cambrian limestones, an Early Ordovician transgression with deposition of

the Arenig Annorican quartzite and Uanvim black shales (Fig.S.4). As well. these zones

have significant Paleozoic faunal similarities which indicate that the CIZ. WAl.Z and CZ

were part of the same pre-Variscan terrane (Fig.5.l). The Centnl.l Iberian ZOne (ClZ)

represents the most outboard part of this terrane. The intensity of the Variscan
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tectonothennal events (metamorphism and plutonism) decreases from the CIZ towards the

Cantabrian Zone. The thickness of the Paleozoic sedimentary sequences indicate thaI the

WAl.Z was a Cambro-Ordovician sedimentary trough between the CIZ and cz. The

tapering of the Paleozoic sedimentary wedge towards the CZ indicates its foreland position

(e.g.. Perez Estaun et al.. 1990). Therefore, these three zones can be interpreted in lenns of

a hinterland (CIZ), intennediatc: zone (WAU) and foreland (CZ) against which terranes

were accreted during the Variscan orogeny.

Archean 2.7 Oa granulites overprinted by 1.8 Ga and 0.6 Ga events have been

sampled off-shore of these three zones in the Cantabrian sea (Fig.5.S ; Guerrol et aJ..

1989). Such basement has never been directly identified on the mainland. bul it could be

present in some of the high grade metamorphic complexes of the CIZ. The oldest mainland

rocks in the CIZ. WAl2 and CZ are Late Precambrian low-grade siliciclastic rocks,

penetrativcly defonned during the Precambrian Cadomian orogeny <e.g., Quesada, 1991),

with minor volcaniclastic and plutonic rocks (Fig.5.5: e.g.. ca. 610 Ma diorite in the

WALZ-Cl boundary: 1. Fernandez Suarez per. comm.) and high-grade Precambrian

olthogneisses in the CIZ (Fig.5.5: 617±1O Ma Miranda do Douro orthogneiss: Lancelot et:

al.. 1985). In the northern half of the CIZ there are large oUlcrops of pre.Variscan augen­

gneiss which. although containing dated Early Ordovician intrusions (Fig.5.3; Lancelot et

aI., 1985; Gebauer et al., 1993). have been assigned a Proterozoic age (e.g.. Azor et: al..

1992). The volcanic rocks intercalated in the Paleozoic sequence indicate local Cambrian.

Cambro-Ordovician. Arenig, Llanvirn and Late Ordovician-Early Silurian pre-Variscan

magmatic pulses, which had been generally considered as rift-related minor pulses (e.g .•

Quesada, 1991). However, some of these views will have to be reassessed as a result of

the new data gathered from the pre-Variscan gneisses of the Sierra de Guadarrama (CIZ;

Fig. 5.1) in chapter VI of this thesis.
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The Central Iberian Zone (CIZ)

This zone is characterized by me abundant Variscan plutonism (poorly constrained

between 344-287 Ma. Serrano-Pinto el aI .• 1987), the local preservation of a Barrovian

mewnorphic sequence. areas of high-grade metamorphism (low P I high n alternating

with low-grade areas and a widespread Early Ordovician "Sardic" unconfonnity and

deformation, which are exclusive to the CIZ (v. Julivert and Martinez. 1987). The CIZ is

bounded 10 the south by the Badajoz-Cordoba shear zone against the OMZ. to the NW by

the allochthonous units of the Galicia -Tras-os-Momes Zone and 10 the east by the WAlZ

(Fig.5.S), This zone has been divided according 10 the style of the Variscan deformation

into a northern Domain of Recumbent Folds, also known as DUo de Sapo Domain, and a

southern Domain of Vertical Folds (Fig.5.S; Dfez Balda et aI .• 1990), this division also

reflects significant differences in the pre-Ordovician stratigraphy (de San Jose et aI.• 1992).

Low-grade Precambrian rocks occupy extensive areas in the southern Domain of Venical

Folds. By constrast in the northern Domain of Recumbent Folds or DUo de Sapo Domain,

Ordovician rocks rest unconformably on low grade augen-gneisses (0110 de Sapo gneisses)

or tectonically on top of medium-, high-grade metamorphic complexes with abundant

orthogneisses (Fig.5A and 5.5; e.g., lulivert and Martinez, 1987).

The Precambrian rocks in the southern Domain of Venical Folds consist of basal

slumps and turbidites with abundant greywackes. known as the Scmst-Greywacke

complex (Fig.5A; de San lose et al., 1992). Their age ranges from Late Precambrian to,

possibly, Early Cambrian in NE Portugal (Oliveira et aI., L992). L6pez Dfaz (1995) has

demonstrated the presence of two low~grade Late Precambrian Cadomian (?), penetrative,

compressional deformations, the latest of which is pre-Late Vendian (pre-540 Ma; time

scale of Odin, 1990). An unconformable Lower Cambrian miogeocline sequence of

siliciclastic and carbonate rocks covers the deformed Late Precambrian (Fig.5.4). In the
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Montes de Toledo (Fig.5.5). a non-fossiliferous. calc-alkaline vokano-sedimentaty

complex unconfonnably overlies the Cambrian (Martin Escona.. !917a; Munoz et al..

1985).

In the northern 0110 de Sapo Domain (Fig.5.S). the gneissic rocks of the DUo de Sapo

formation were traditionally considered as Precambrian (Parga Pondal d: aI., 1964; e.g..

Azoret al., 1992), althoughl some aulhocs considered them Cambrian or Ordovician in age

(c.r. Martinez Garcia. 197). These rocks were originally defined as greenschist facies

mylonitic volcaniclastic rocks (Parga Ponda! et aL. 1964), but most authors correlate them

with the rest of the medium and high-grade pre.variscan nugen4gneisses in this domain

(Fig.5.5; e.g., Azor et aL. 1992; Navidad et 0.1.. 1992). These pre-Variscan gneissic

formations are particularly extensive in the selected field area of the Sierra de Guadarrama.

when: they are basement 10 the Paleozoic sequence. 1be absolute ages for these pre­

Variscan augen-gneisses varies from Laic Prttambrian to Early Ordovician (Fig.5.5:

LanceJot et aI., 1985: Vialette et 0.1. 1986; 1987: Wildberg et al .. 1989: Gebauer et al..

1993). bul the relative importance of the Precambrian versus the Early Ordovician

magmatic pulses remains controversial (c.f. Azoret at 1992: Gebaueret al .• 1993).

An Early Ordovicinn unconformity associated with weak C;.K:tensionai Cambro­

Ordovician deformation is widespread throughout the CIZ CFig5.4: e.g.. Diez Balda et al..

1990: Gutierrez Maceo et al., 1990; LOpez Diu. 1995). This event is refered, as HSardic H by

comparison with similar Ordovician events in Sardinia (Italy; Sardic event of Stille. 1927).

Lower Ordovician siliclastic rocks above the Sardic unconfonnity overlie the augen·

gneisses of the 0110 de Sapo Domain, as well as, deformed Precambrian. tilted Cambrian

rocks and the Cambro-Ordovician volcano-sedimentary complelt of the Montes de Toledo

in the southern domain of Vertical Folds (Fig.5.4). lbis widespread angular unconformity

is hidden by the Arenig Armorican Q,wtzite (e.g.• Gutierrez Marco et al .• 1990) which
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blankets theentiR: ctz. as well as the WAlZ and the CZ (Fig.S.4). 1be overlying Middle

to Upper Ordovician stl3tigraphic sequence of the CIZ aJso resembles those of the WALZ

and CZ (Fig.5.4.; e.g.. Gu~nu Marco et aI.• 1990) and has equivalents in the Central

Armorican Massif (Fig.S.!: France; Young. 1990). A discrete but :ueally eXlCnsive

Llanvirn ruff level in the southern Domain of Vertical Folds indicates a local pre-variscan

magmatic event (MartIn Escorza.. 1977). lbe Upper Ordovician and Silurian nxks of the

Western az also record severa! stratigrapruc discontinuities, associated with volcanic and

volcaniclastic rocks (e.g.. AJrnaeten. Bu~; Gutierrez Marco et aI.. 1990), indicating

important local pre-Variscan tectonothermal events which eventually lead to the breakdown

of the Ordovician Cenlra1 Ibcnan faunaVpaleogeographic domain between the CentrnJ

Iberian Zone and the Central Armorican Massif (Paris and Robardet. 1990; Robardct et al.,

1990; Robardet and Gutierrez Marco, 1990). 1be top of the pn:-Variscan Paleozoic

stratigraphic sequence in the C1Z locally reaches the Mid Devonian (v. Gutierrez Marco et

at, 1990).

Variscan deformation is marlccd by syn-orogcnic Upper Famenian -Visean deposits

and Visean - Lower Namurian nysch sequences. The Variscan deform.arion has been

grouped in lhree main phases (01. 02 and OJ) followed by a late extensional event.~

are aJso numerous, appan:ntly late, wrench sllear zones; but their interplay .....ith the

deformational phases remains obscure (Fig.S.6; e.g., Die:z Bakia et aI.• 1990). Early

Variscan metamorphism in the CIZ is of Barrnvian type. It is particularly well preserved in

the selected field area in the Sierra de Guadarrama (Chapler VI), and was developed after

the initial DI defonnation (Fig.S.S). A second low P , high T metamorphic episode

overprinted the initial Barrovian metamorphism. This low P I high T event was associated

with anatexis and intrusion of S·type granites (Martinez and Rolet, 1988). gneissic doming

and extension during the D2 Variscan deformational episode (Fig.S.6; e.g., Mirando do
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DouroITonnes antiform: E.scudet" Viruete et aI.• 1994: Salamanca area, [)fez BaJda et al..

1995: Toledo anatectic complex. Barbero. 19(5).

11x: earliest Variscan magmatism is marked by local bimodal Frasnian and Toumasian

andesites and ruffs in the wesu:m CIZ (Fig.S.2; Gutierrez Marco. 1990). This is consistent

wilhreponed Late Devonian plutonism from the weslem CIZ in Portugal {379±12 Ma 10

358±20 Ma. Rb-Sr. e.g.• $emma Pinto et aI.. 198?}. However. the main pulses of

Variscan plutonism an::~d to the 344 Ma - 278 Ma interval (e.g., Serrano Pima et

aI., 1987). Syn-kinematic. S·type two mica an:uectic granites usually range from 327-320

Ma (Rb-Sr) whereas latc posl-eollisional granites and granodiorites group around 310-270

Ma (Rb-Sr. K-Ar; e.g.. Semma Pinto et aI., 1987; Venes et aI .• [996). The post­

collisional volcnnism is restricted to nigh-K andesites locally associated with the Penna­

Carboniferous post-orogenic deposits in the eastern Sierra de Guadarrama (Ancochea el aI.•

1981).

The West-Asturian Leonese Zone (WALZ)

TbeWAl..Z{Lotte. 1945: JulivenetaL. 1972) is kxa1ed between the Centra.llberian

Zone and the external Cantabrian Zone (FigS I ). The oldest rocks in this zone are the

Precambrian SChiSlS and psanunile5 with minoc volcaniclastic levels of tbe Villalba series

(Fig. 5.4). An unconformable Lower Cambrian miogeocline sequence marks the base of

the Paleozoic stratigrapllic sequence. and it is overlain by a thick Upper Cambrian 10 Arenig

siliciclastic sedimenwy package (Serie de los Cabos) and Llanvirn black shales like those

of the CIZ (Fig.S.4). This Paleozoic pre-orogenic sequence is topped by Upper Devonian

sedimentary rocks (Fig.S.2; Perez-Estaun et al.. 1990).

1be Variscan deformation in the WAlZis characlerized by east vergent DI ~nt

folds, local D2 east vergent ductile shearing (e.g., basal thrust of the Mondoiiedo nappe)
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and OJ steep open folding (e.g.• Martfne::z Ca1aIan et al.• 1990). These three phases of

deformation constitute the classic model f« the Variscan deformation in the ~m

(herian Massif (Perez Estaun er al., 1991). which has beeen exuapotated into areas of the

CIZ (e.g.• Sierra de Guadarrama; Gonz.a1ez Lodeiro, 1981), Variscan greenschist (0 suI)..

grcenschisrs facies regional metamorphism dominates the W AI.Z. but along the western

border with the CIZ it reacl'les amphibolite facies with relicts of a prograde Barrovian

zonation (Fig. 5.6: Martinez et aI.. 1990). Discrete Variscan granites appear associated with

local belts of LPIHT contact metamorphism but most granites are concentrated along the

amphibolite facies border with the CIZ (Fig. 5.6). 1be plutonism is constrained by the

main phases of Variscan deformation. post-Ol - syn·D2 and post-D3. but there is no

reliable absolute age contrOl for the plutonism (317·274 Ma. Rb-Sr. K-Ar. e.g.. Serrano

Pinto et aI., 1987). The timing of Variscan defonnation is constrained by the syn-orogenic

deposits of the San Clodio fm. (Lower Carboniferous) which have been affected by all

main phases of deformation and by the Upper Westphalian B deposits post-dating 03

S~ in the Sierra de la Demanda (Fig.S.l: Perez Estaun el aI.. 1990). Posl:-orogenic

basins are Slephanian S.c. These age constraints are consistent with ~ported 300 to 275

Ma 4OAr/39Ar. whole rock and muscovite: metalIlOIphic cooling ages (Martinez CaEalan d

aI.• [993). A whole rock 4OAr/39Ar age of 321 Ma from a phyUonite: in a sbear zone is

considcm:l. to date: dcfonnation at the border between the WA12 and the Cantabrian Zone

(Fig.5.6; Narcea mofonn: Martinez Catalan er aI•• 1993).

The Cantabrian Zone (CZ)

The CZ constitutes the fo~[and of the Variscan orogen in the northern Iberian Massif

(Fig.S.!). It lacks Variscan metamorphism. and Variscan plutonism is ~strieted 10 discrete

post<ollisionai plulons associated with Perm<rCarboniferous volcanism (Valverde·

Vaquero. 1993). lbe Paleozoic pre~nic sequence is the most complete: of the lberi:ln
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Massif and was deposited unconfonnably over defonned Precambrian strata (Fig.SA). The:

Precambrian rocks outcrop in the Narcea antiform along the border with the WAU

(Fig.5.6), and contain volcaniclastic inlercalations and discrete plutonic stocks (ca.61 a Ma:

J. Fernandez Suarez, per comm.) indicative of a discrete CadomianiAvalonian magmatic

event. 1be volcanic intercalations in the Paleozoic sequence also indicate a series of pre­

Variscan magmatic pulses: very minor Cambrian volcanism (eg.• Corretge and Suarez.

1990), discrete CambfO'-Ordovician and Arenig alkaline bimodal magmatism (GaUastegui el

aI.• [992), local Upper Ordovician·Lowcr Silurian alkaline basalts (Valverde Vaquero and

Hepburn. 1995) and very restricted Devonian tholeiitic volcanism (e.g.. Corretge and

suarez, 1990). The lOp of the preooQrogenic sequence is Lower Carboniferous (Fig.SA),

although the Upper Devonian-Lower Carboniferous change in sedimentary environment

and ~tion of sediment It'anSport might be associated with the onset of the Variscan

orogeny. The flISl Lale Visean· Early Namurian syn-orogenic sequences (Fig.5.2) mark

the onset of the Variscan deformation, but thrust-related sedimentary wedges did nOI

developed until the Westphalian B. Final thrusting look: place in the Stephanian B (Perez­

ESlaun and Bastida. 1990).

5.3.- THE CENTRAL IBERIAN ZONE. A CRITICAL AREA OF THE

mERIAN MASSIF: GENERAL OBJECTIVES,

The Central Iberian ZOne (CIZ) is pan. with the WAlZ and the CZ. of the largest

single terrane in the Southern Variscides. This terrane contains evidence of Lalt:

Precambrian Cadomian defonnation and an unconformable Lower Cambrian miogeocline

(Fig.5.4); which is common to the circum-Atlantic AvalonianlCadomian belt (v. Chapter O·

154



Unlike the peri-Gondwanan elements of the Appalachians. this lberian lerrane has remained

in the peri-Gondwanan realm during the Paleozoic (e.g.. Paris and Robardet. 1990).

Recent geochronological resean:h in the Iberian Massif has generally overlooked the

CentrnJ lberian Zone. even though this zone contains large outcrops of pre-Variscan

orthogneisses (Fig.5.S) with Variscan mc:ramorphic and deformational overprinlS

(Fig.5.6). The study undertaken (chapler vn of the Sierra de Guadamma was designed 10

unravel some of the controversies surrounding the pre~Variscan and Variscan evolution of

lhe Central Iberian zone. which an: outlined below.

Pre-Variscan basement and pre-Variscan tectonothemwl ~t:nts:

Extensive pre-Variscan augen-gneisses outcrop in the cores of the antiforms of the

northern Central Iberian Zone. in the OUo de Sapo Domain (Fig.5.S). with no trace of the

Cambrian miogeocline sequences of the southern ClZ. WAlZ and cz. 1bese augen­

gneisses are generally interpreted as a Precambrian basemern upon which the

unconformable Ordovician sequences were deposited (Parga et aL 1964: Julivcrt et al..

1972: Amr et aI., 1992). 11'Iis view is. however, disputed by Ferragne (1%8) and

Maninez Garcia (1972), who suggested a Ca.m.bn>Ordovidan age for these roclts. The

available geochronological data is scarce and COOtr3dicIOry. indicating both ~ambrian

and Early Ordovician ages for dlese rocks (Fig.5.5). Pan of this dispute comes fcom !he

fact chat megacrystic graniles, grnnitic orthogneisses and felsk volcaniclastic rocks have

been rneJEed together under !he name ~OUo de Sapo" gneisses and given the status of 1l;

stratigraphical fonnation (Pargael aI.• 1964; Gutierrez Marco et aI.• !99O). To complicate

matlCrs. low and high grade augen-gneisses have been correlated in many instances. Some

of chese pre-Variscan onhogneisses are the deepeSI rocks in the Central Iberian Zone,

outcropping in the core of the metam<>rpbic complexes of the 000 de Sapo antiform.
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Miranda do Douro antiform. the Spanish Central System and the Toledo anatectic complex

(Capote ct aI.• 1982; Diez BaJda ct aI•• 1990: Barbero. 1995). Therefore. it is possible lhat

some of these rocks might be pan of a Proterozoic, 2,0.1.8 Ga crysW1ine basement like

thal sampled in the off·shore Cantabrian Zone (Fig.5.S: GueJTO( er: aI., 1989). However.

me intense Variscan overprint seems to have obliterated the lr.M:C of any earlier stJUCtures.

Vamcan t~cronorMrmaJt'VUllS:

10e absolute timing of the deformational and metamorphic eventS in the CentraJ Iberian

Zone is poorly constrained. it is generally based on relative relationships between

deformation I tnelaIl10rphism (Fig.5.6) and dated plutons with K-Ar and Rb-Sr ages (c.g ..

Martinez et ai, 1990). 50 far there are no reliable direct ages on fabrics or metamorphism.

However, reliable and precise ages are critical to understand when and how the Variscan

deformation was transferred from the hinterland of the orogen towards the foreland. 1be

Variscan deformation along the northern brnnch of the Iberian Massif has been generally

viewed as a continum. from the Late Silurian -Early Devonian to the Late Carboniferous

(Perez £Staun et aI .• 1991: DobIas et al.. 1994: MartinezCa1alan CI a1.• 1996). According to

this interpretation. it is the overthickening produced by the empllll:elDetl[ of the

allochthonous units of the Galicia Tras-os-MonleS Zone lhal led to the Banovian

metamorphism of the Central Iberian Zone. This seems contradictory. since the 385-375

Ma, Mid Devonian cooling ages from the allochthonous complexes are coeval with the final

deposition of the pre-orogenic sequence in the Central Iberian Zone. and the pte-D I syn­

orogenic deposits were not deposited until the Late Devonian*Ear1y Carboniferous

(Fig.S.l). Despite this. poorly defmed ca. 380 Ma V-Pb zircon lower intercepts from the

Sierra de Guadarrama have been interpreted to dale the Barroviao metamOrphism on the

basis of this model-driven scheme (WiJdberg et al.• 1989).
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Tuning of the: low P I high T metamorphism in lhe CIZ is also uncertain. as it has

never been diJect.ly dated. This melamOrphism is seen as lhe cause of the ca. 320 Ma S·

type anatectic granites (Martfnet. ci aI., 1990; Escuder Vituete et ai.• 1994; Barbero. 1995).

However, according 10 Wildberg el aI. (1989) and DobIas eI aI. (1994) the low P I high T

metamorphism is relaled 10 the inlrUsion of the voluminous 300-290 Ma post-collisionaI

plutons. The first in~rpmation suggests a single metarnorptUc cycle of Basrovian peak

pressure conditions and decompression to low·PI high-T conditions (e.g.. Tonnes dome:

Escuder Viruc:tc: ct aI., 1994). The second interpretation however implies that there are two

metamorphic cycles. a syn-collisional Barrovian metamorphism and a separate: Jafc:­

orogenic low P I high T one: closely associated with the voluminous post-collisional

plutonism and lale extension (Dobias et al.. 1994a,b).
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CHAPTER VI

GEOLOGICAL EVOLUTION OF THE EASTERN SIERRA DE

GUADARRAMA (Central Iberian Zone).

6.1.~ INTRODUCTION:

'The Siem de Guadarrama contains some of the most cxrcnsivc: and best exposed

outcrops of pre-Variscan orthogneissc:s oftbc entire Iberian Massif(OLapter V). The age of

these: gneisses has remained conttovenial and unresolved (Wildberg et aI.. 1989 YS.

Vialette et aI., [986; 1987). Two metamorphic overprin~ and a complex defonnalional

pattern suggest that these gneisses could be a potential crystalline basement to the Central

Iberian Zone (Quesada., 1992). Timing of deformation and metamorphism in the area and

the uue extent ortbe Variscan overprint an: also unknown (Bellido et aI .• 1980; Dobias Cl

aI.,I994).

1bc: gneisses of the Siem. de Guadamuna have been corn:lated with litbological..ly

similar gneisses in the QUo de Sapo and the Mirnnda do Douro Antifonns (Azoc et al.,

1992 and ref. within; Gebauc:rci aI .• 1993). suggesting th3t they are part of a 6(X) Km loog

belt of pre-Variscan orthogneisses wbich extends fromet:otral to NW Spain (Fig. 6.1). The

most important structure of the eastern Sierra de Guadarrama is the Berzosa~Riaza shear

zone (Fig.6.2; Fernandez Casals. 1979). This major. ductile shear zone puts in contact a

high grade gneissic infrastructure with abundant pre-Variscan orthogneisses (Guadarrama
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Complex. Capol:e et aI .• 1982: Western Guadarrama Domain; Macaya et aI.. 1991) against

an overlying medium-low grade sUpr.lSlnJclural cover. also with pre-variscan orthogoeisses

(Somosiena·Ayllon Complex. Capote ci at.• 1982: Eastern Guadamuna Domain; Macaya et

aI., 1991). The $heM zone preserves a condensed undated Barrovian mc:tamorphic

sequence (MI) partially overprinted by low-P I high-T ~tamorphism (Ml). The shear

zone is sealed by the La Cabrera post-collisional granite. ThercfO£e. the area around the

BRSZ offers an exccUent opportunity (0 tacldc both the timing of pre-Variscan and

Variscan events as part of a singJe study using a variety of U·Pb thermochronometers in

combination with detailed fieldwork and petrography.

The research in the Sierra de Guadarrama had two clear and different objectives: (A) to

obtain the pro£Olith ages of the pre-Variscan orthogneisses and (8) to constrain the time of

defonnation and mewnorph.ism in the Somosierra sector. 1lle results obtained on the pre­

Variscan and Variscan events Conn two independent data scts. wlUch for the sake of clarity

will be presented separately. lbc information in the foUowing sections (6.3. 6.4 and 6.5) is

aimed to provide ac~ understanding of the main geological elements of the area of srudy.

Not~: Th~ arm of study CO~n eM conIOCt ~twUll the W~surn and ~rn

GuadaTramtJ Domains (Moarya n a/.• 1(91). also known as th~ Guadarroma and

Somosi~rro.-Ay/lOOComp/ens of th~ Spanish CmtraJ Sysrem (Capote et al.. /982). /ll

ord~r to avoid confusion the lenn Somosi~rra s~ctor will be us~d with a gmgraphical

connotation and th~ unninology ofMacll'Ja et al. (/99/) will be followed.
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6.Z.· LOCATION, LOGISTICS.·

The area of study is located in Ceo[r'3j Spain approximately 90 Krn north of Madrid ar

the border between the provinces of Segovia. Guadalajara and Madrid. This area is the

border betwttn the Sierra de Guadarrama and lhe Sierra de AyUon of the Spanish Central

System mountain chain. It is also known as the Somosierra. which is the most significant

mountain pass of the area. 1lJe field ORa covers approximately a north-south rectangle:

defined by Riaza to the NE and Bultr.l.go del Lozoya to the southwest (Fig. 6.2). with

a1tirudes between 1000 and 2000 meters above sea-level.

TIle area of study covers pan of the I: 50.000 geological map sheets of Riaza.

Tamajon (Hemaiz Huerta et aI., in press). Pradena (Azor et at, 1991) and Buiuago

(BeUido et aI., 1991). The 1: 50.000 sheets of Riaza and Tamajon (Hemaiz-Hucrta c:1 aL

in press) were mapped as pan of an ITGE (Spanish geological survey) mapping project

during 1993-1995. Close collaborative worX with the mapping crew allowed the author to

cover a large portion of ground with reliable field control during the rock sampling for the

V-Pb dating. Some of the following geochronological data was incorponted in the

memoirs of these 1: 50.000 map sheets (Hemaiz Huerta el aI., in press a.b). This close

coUa.booJ.tion was also reflected in joint publicaI.ioos (Hernaiz. Huerta d aI.• 1996; Escuder

Virue[e et al.. 1996: Valverde Vaquero e[ al .• 1996).

1bc author's field mapping was concentrated in the Builtago map shee[, outside the

an:a covered by the ITGE team, and particuJarly in the vicinity of the Rio Sequillo. Puentes

Viejas. el Tenebroso and EI Villar dams. which offer excellent outcrops. Outcrop quality is

generally good. although in the southern part of the a.'"Ca the lack of e)[p05urc makes it

difficult to trace ccnain structures. Fieldwork was carried out in two field scasons during

spring of 1994 and 1995 with Mootejo de 1a Sierra as field base. Most mapping was done
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using the 1:10.000 topographic maps and the 1991. 1:18.000 aerial photographs of the

Conununity of Madrid (Communiry of Madrid cartographic servK:es).

6.3.· PREVIOUS WORK.-

Early work in the Sicrm de GuadarTama slarterl in the last ttntury with the work of del

Prado (1884) and MacPherson (1883: 1901). Wort up 10 the early 1980's has been

reviewed in a compilation by Bellido et aI. (1981). It should be noted thai this area has been

studied by different groups from the Universidad Complutense of Madrid for several

decades. A great part of this work: is. however. in the form of unpublished theses.

Therefore. it is only the most significant and accessible work which is going to be reviewed

below.

The srratigrophy of the Sim"Q de Guodarroma. including other pans of the Spanish

Cenual system nas been described in the works of L..oae (1929), Schroeder (1930).

Sommer (1965), Schafer (1969). Hamman and Schmidt (1972), Soen; (1972), Bischoff d

a1. (1973). Capote and Fernandez Ca.sa1s (1975). Bellido et aI. (1981). Gonzalez Loderiro

(1981) and the compilation of GutielTtt Marco et al. (1990).

The pn-Variscan gneisses o{ the Sierra de GuoJarroma and the Cmrral System have

boen studied by De Waard (1950). Febrel et at. (958). Bischoff et at (1973. 1978).

Fernandez Casals (1974). Capole and Fernandez Casals (1975). Navidad and Peinado

(1976: 1981). Navidad (1975, 1979). Peinado and Alvaro (1981). Fuster et at (1981),

Navidad and L6pez Ramos (1981). The compilation work of Navidad et at (1992) includes

major and trace element geochemistry of the main types of ortbogneisses.

Geochronologu:al studies of these roclcs are limited to the data of Biscboff et at (K-Ar and
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Rb-Sr, 1913: Rb-Sr. 1978), Vialette et aI (Rb-Sr. 1986; 1987) and Wildberg c[ aI (U-Pb:

1989).

The ~tamorphism of/he Somos~rrasector ofthe Sierra de GuadatTOnla was studied

by Heirn (1952), Fuster et 11. (1974), L6pez Ruiz et 11. (1975), Casquet and Ferruindez

Casals (1981), Arenas ct aI. (1980; 1982), Gonzalez Casado (I987a.b). Gonzalez Casado

and Casquet (1987), Azr)c et al. (1991), BeUido et aJ. (1991) and Escuder VinJelc (in

Hemaiz Huerta et aI., in press. a. b). Quantitative P·T estimations are limited to garnet·

biotite thermometry (Casquet and Navidad. 1985) and fluid inclusion dara (Casquel. (986).

It is walth mentioning me description of relicts of eclogilelgranulitc assemblages in the

Sierra de Guadarrama east oflhe area of study (Fig. 6.2) by Villaseca(1983, in Casquet

and Navidad. 1985) and the work. of Casquet and Tomos (1981) in the Sierra de

Guadarrama ncar the eastern side of the area of study.

1'hesrruetun aCthe Sierra de Guadarrama has been described by Bard et aI. (1970).

Fcm4ndez CasaIs and Capote (1970). Soer'S (1972). Capo<e et aI. (1977). Fernandez

Casals(1979). Alvaro et aI. (1981). Bellidoet aI. (1981), Capote et aI. (19SI), Gonzak:z

Lodeiro (1981), Arenas el a1. (1982), Capote el a1. (1982), Gonzalez Casado (1986),

Gonzalez Casado and Casquet (19873., 1987b), Gonzalez Lodeiro el aJ. (1988), Martin

Escona (1988), Azor el al. (1991&., 1991b), Ma:aya d: a1. (1991), Bcllido d: al. (1991).

Fem4ndez Rodriguez (1992) and Hemaiz Huenad: aJ. (1996). It is also wonb mentioning

the description of extensional suuetures by Manin Esc:orza (1977 and 1981) in the B

&corial Massif (Fig. 6.2). Tectonic models for the Sierra de GuadatTama and the Spanish

Central System have been proposed by Capote et al (1982), Macaya et a1. (1991), Dobias

(1991), Azoret at. (1992) and Dobias et at. (1994 a, b).
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The main characteristics of the UJ Cabrero gnmire and the Variscan p[uUHlisnl in

other parts of the Spanish Cenlra.l System ~ summariz.ed in Alvaro et aI. (1981). Bellido

et aI. (1981, 1991) and Ugidos (1990). The only geochronological cIala on La Cabrera

granite is that of Vialette c:t aL (Rb-Sr: [981). Serrano Pinto et aI. (1987) and Ycnes et a1.

(1996) have summarized the available geochronologica.l data on the granitoids of the

Spanish Centr.l1 System (Rb-Sr. K·Ar). Hernando cI aI. (K-Ar. 1980) dated lhe post­

collisional volcanism of Atienza. east of the area of study ( Fig. 6.2).

6.4.- GEOLOGICAL SETTING.-

The Siem1 de Guadarrnma forms the easternmost part of the Spanish Central System

(Fig. 6.2). This is an alpine horsl which exposes the basement of the Mesozoic cover

sequences of the Spanish Meseta. This pre-Mesozoic basemen! is focmed by voluminous

Variscan graniu:$ and gneissic massifs to the west (Ojos A1bos-La Canada. El Escorial. B

Calooo. Sierra de Guadarrama) and Paleozoic stl1l1a (Sierra de Guadarrama) to the east

(Bellido et a! .. 1981). All these rocks an: part of the already discussed Central [herian

Zone (Section 5.2.4.).

The geology of the Siem de Guadarrama is best described in tenns of a gneissic

infrastructun:: (Western Guadarrama Domain) and a low-medium grade suprastructure

(Easrem Guadarrama Domain), separated by a major ductile sbcar zone (Berzosa·Riaza

shearzonc; FemlindezCasals, 1919, Mx:ayaet aI., 1991). Apart from this shear zone, the

most significant macrostruetures are: the Majalrayo syncline and the Cardoso and

Hiendelacncina antifonns in tile Eastern Domain, and the Cervunal detachment and tile

Robregordo faull in the Western Domain (Fig. 6.2). The Cervunal dclaChment (Berzosa

Fault of Gonzalez Lodeiro et aI., 1988) is a !ale extensional faull along the trace of the
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BetzOSa-Riaza shear zone. and it is Iaken as the boundary line between the two domains

(Bellido et aI., 1981; Macaya et al.. 1991). "The area of study is Iocaled between the

Western flank of the Majaltayo syncline and the Robregordo fault. It covers the Berzosa­

R.iaza shear zone. the Cardoso antiform and upper levels of the Western Guadatrama

Domain (Fig. 6.2 and 6.3).

According to most authors the Variscan macrostruetures were produced by three main

phases of Variscan deformation and Iatc: extensional faulting (Capolc et aI., 1982; Macaya

et aI., 1991: Dobias et aJ.. 1994). 01 affects both domains, but it is more evident in the

suprastruclUre. It is west vergent and has a compressional charncter. During D2 major

shear zones were produced in the Western Domain and the lower sttueturaJ levels of the

Eastern Domain, including the: Berzosa-Riaza shear zone. 03 is interpreted as a stage of

backfolding. producing relrQvergence of the D2 Sl1Uctures and overprinting the 01

macrostructure of the SUpra$tnJclUraJ Eastern Domain. 03 is followed by late brittle-ductile

extension and is responsible for tale struerures like the Robregordo fault and the Cervunal

detachments. A polyphase metamorphism was developed in association wil.h these phases

of deformation. l! COO5ists of an inter-DIID2 Barrovian stage (MI) and a syn-D"...Jlatc:·D3

stage of low pressureJh.igh temperatute metamorphism (M2). The B&m:lvlan mewnorphic

zonation is best pr-eserved in a band along the Benosa·R.iau shear zone and me Io.....er

stnlCtlJCal levels of the Eastern Domain. Cardoso and ffiendelaencina antiforms. In the

Western Domain. the 10..... pressure I high temperature M2 stage reachedte~ in

excess of 7fX1>C (Tomas and Casquet. 1981; O1squet and Navidad. 1985). leaving only

relicts of the Barrovian assemblages.

TM Eastern GUDLiarrama Domain lacks Variscan plutonism and has a well defined

Early Ordovician to Lo.....er Devonian. fossil-bearing. stratigraphic sequence underlain by

pre-Variscan ortbogneisses. mostly volcanic-derived (Fig. 6.2: Navidad et al.• 1992). This
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Paleozoic sequence rests unconformably on the pre-Variscan gneissic sequences of the

Cardoso and Hiendelaencina antiforms (e.g.. Bellido d at.• 1981). lbis unconformity is

defmed by the Bomova micnx:onglomemte in the fliendeJaencina antiform (Soers. 1972).

which has been correlated with d.i.scmc microcong.lomeme levels between the AmwJrican

quartzite (Arenig) and the underlying Cardoso gneiss in the Cardoso antiform (Gonzalez

Casado. 1981). According 10 8ellido et at (1981). this uncoofonniry is equivalent [0 the

Sardic unconfonnity of the rest of the Central [herian Zone.

MetalnOfpbism in this domain varies from lower greenschist facies. pyrophyllite­

bearing assemblages in the upper structural levels of the Majalrayo synform. (0 the

staurolite zone in the core of the Cardoso and Hiendelaencina antifonns (Bellido et aI.,

1981). In the core of the Hiendclaencina antiform a D2 shear zone exposes augen-gneisses

of the kyanite zone in its footWall ( Fig.6.2: Hiendelaenc:ina thrust of Gonzalez Lode:iro.

1981; Navidad and Peinado. 1981). Bellido d aI (1981) correlated these gneisses with the

pre-Variscan mylonitic granites that outcrop in the 8erzosa·Riaza shear zone.

The Berzosa-RiatA shmr lOIIe is a Variscan D2 structure with a Pf'CSC-nt day east

vergence and a top down 10 the SE shear sense (Femaodez CasaIs. 1979: Macaya d aL

1991). This shear zooc: contains a condensed Barrovian metamorpbic sequence partially

overprinlCd by low pressure assemblages during D2 defomwion. This shear zone includes

the kyanite-sillimanite bearing metasedimentary nx:ks and onbogneisses of the upper levels

of the Western Guadatrarna domain and the staurolite and gamet-chloritoid zone

metasedimentary rocks and orthogneisses of the lower pan of the Eastern Guadamuna

Domain (Fig. 6.3). The late brittle -ductile Cervunal detachment marks the only Significant

metamorphic break. thai is between the sillimanite lone with relict Icyanite to the weSI and

s!aW'Otite zooe to the easl. To the south the intrusion or the post-lcinematic La Cabrera
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pluton seals lhe shear zone and stilCbes the contact between the two domains of the Sierra

de Guadarrama. but with no dear evidence tllat il cross-cUIS the Cervunal detachment.

The Western Guadarrrzrrta Domain (Fig.6.2 and 6.3) is (onned by extensive massifs

of pn:-Variscan orthogneisses (augen-gneisses. foliaIed megacrystic granites and foliated

lcucogranitesl and quartzo-feldspathic paragneisses. mica schists and minor calc-silicates

and marbles. These rocks are intruded by Variscan granilcs. particularly along me western

border (Fig.6.2), most of which are post-kinematic (Bellido et at. 1981). Metamorphic

grade increases towards the west with increasing analexis. from the ftrst sillimanite to the

second sillimanite zone and a western zone with cordieritc + sillimanite parngenesis

(Bellido el aI., 1981; Tomas and Casquet. 1981; Casquet and Navidad. 1985).

Lithologically the Western domain has been divided into a Lower and Upper Series

(Bellido ct aI., 1991). This division roughly coincides with the lraCe of the Robregordo

fault and the trace of the cordierite-in isograd. The Lower Series. to the west, consists of

extensive massifs of augen-gneisses (granitic orthogneisses) with minor paragneisses. and

corresponds to the deepesl: suuctura.I levels. The Upper Series is dominated by

meta.sedimenlaf)' rocks. although lbcre are abundant onhogneisses. These orthogneisses

are. b.owever. comparable with those in the Lower Series. The Upper Series fonns me

eastern border of this domain and is covered in this srudy.

6.4.1.· Macrostructure of tbe Sornosiernl S«.tOi of the Sierra de

Guadarrama.·

This section provides a frame of reference for the main macrostnJetures within the area.

of study. These elemenLS will be described from east to west. i.e. from the upper structural

levels towards the lower ones (Fig. 6.3).
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TIle upper levels of the aru of study are occupied by a C1?1Udtuio:1 band (Hernaiz

Huena et 31.. 1996) which overprints the Dl fabrics of the Majalrayo syncline and can

reach up to 10 Km in widlh (Gonzalez Casado and Casquet.. 1987: Hemaiz Huerta et al..

1996). This band roughly coincides with the trace of the Armorican Quartzite. which

defines the outline of the Cardoso antifonn and the southwest extent of the Majalrayo

syncline (Fig. 6.3). A5 the inlcnsity of the D2 defonnation increases the crenulation band

grndually passes into the Buzosa·Ritu.,a shear zone. This transition into mylonitic fabrics

takes place over 2 to 4 KIn in the wider parts of the Cardoso antiform bot over a narrow

and shazp band of tens of meters in the northern part of the antiform and the southwest

flank of the Majalrayo syncline. This sbear zone dips approximately 45° to the east and has

a width between 8 and 3 K.m over a continuous, SO KIn long, N-S outcrop. The eastern

part of the shear zone was reactivated by a N-5 extensional detachment. 1M CervuruJi

detachment. (Hemaiz Huena ct 31., 1996). This delaChment cuts the mylonitic fabrics in the

shear zone at a higher angle. apparently along the whole length of the Berzosa-R..iaza shear

zone (Gonzalez Casado et aI., 1988). The weslern border of the Berzosa-Riaza shear zone

is marked by a high strain zone wiLb fabrics in the 1Sl. sillimanite isograd. This weslern

boundary has been locally reactivaled. particularly along its northern eXlent. by a

discontinuous eXlensional delaCNnent, the Monujo detachment. (Hernaiz Huena et al..

1996).

In the Builn1go-ManjinSn area, $U\JCttIr.llly underneath the Berzosa·Riaza shear zone,

the gneissic rocks of the Western Guadarrama Domain form. a domaJ SltUcnue, the

ManjirOn antiform (Fig. 6.3; Fern!ndez Casals. 1979). A complex shear zone, about I

KIn wide, separates tlIese gneisses from the gneisses of the Buitrago area to the west. It

will be referred to as the Madarquillos shLar zone (Fig. 6.3), but it is also known as the

Madarquillos synform. (Fem.andez Casals. 1979) or the Madarcos antiform (Azor et aI.,

167



1991). The Madarquillos shear:tOne has a complex northern extent. as it a~ndy merges

with the Ben:osa-Riaza shear zone. Wesr of this shear zone. lbe gneisses of lhe Buittago

~ exposed along the Puentes Viejas dam show a compIeJl deformational pattern. with

megaboudins and structures pnxI.uced in the stability field of the 2nd Sillimanite zone.

6.4.2.· Metamorphic: zonatlon.-

1be distribution of the metamorphic i5Ogr.lds shows a DOnna] metamorphic sequence

of increasing metamorphic gradient towards the lower suuctural levels of the Eastern

Domain and the upper ones of the Western Domain (Fig.6.3). These isograds marie the flr.>t

appearance, Of disappearance. of the index mineral. The ones in the uwer structural levels.

the cbJoritoid and garnet isograds were produced syn- to lale-OJ and are folded following

the trace of the Cardoso Antifonn. The staurolite-isograd is also partially folded. Staurolite

and chloritoid coexist along a 500 to 700 m wide band (Gonzalez Casado. 1987) which

corresponds to the trace of the isograd. Final growth of staurolite took place after 02.

Sillimanite and andalusite coexist as late-D2 minerals along a narrow band east of the

Cervunal detachment (Gonzalez Casado, 1987; Escuder Viruete in Hemaiz Huena et aI., in

press). Within the Benosa-Riaza shear zone in tbe sillimanite zooc. there is a 3 to 5 Km

wide band with abundant Icyanite produced during the interVal berween the 01-02

deformational phases. This kyanite was partially uansformed into sillimanite (fibrolite)

during D2 (GonzaJez Casado. 1987). The western border of lhc: Madarquillos shear z.ooc

marks the disappearance of muscovile and the presence of sillimanite + K-feldspar

paragenesis. It should be noted thar the ManjinSn antiform contains abundant migmaJ:ites

and other lithologies apparentlyre~ in the sillimanite: + muscovire lone during 02.

Cordierite assemblages are Iimired In the westemmosl pan of the area of study. and they are

lare-kinematic to post-kinematic. 1bese late: low pressure I nigh te:mper;uure mineral

assemblages are consisteOl with local evidence for minor post-lrinematic anatexis and
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migmatization (Bellido et aI., 1991). The regional cordierite-in and muscovtle-out isograds

and the sillirnanile (kyanitc:) zone ~ cut by the post-kinematic La Cabrera granite and

overprinted by its Contae1 metamorphjc aweole (65QOC. (·2 Kb: Bellido. 1980).

The ftnal metamorphic zonation is the product of the partial overprint by low·pressure

assemblages of the initial Barrovian paragenesis during the D2 deformational event. and the

subsequent deformation. As already mentioned the D2 event was responsible for the

Berzosa·R..iua shear zone and the condensation of the metanlOfphic isograds. 1be

relationships between metamorphism and deformation. however. will be discussed later in

the section dedicated to the Variscan leCtoootherma.l processes.

6.S.-LlTHOLOGICAL UNITS OF THE SOMOSIERRA SECTOR OF THE

SIERRA DE GUADARRAMA.-

The different lithological units of the area of study are going to be presented from east

to west, Le. stnJenua.l.ly downwards (Fig.6.4). This description will be concentn11ed

mainly on the rocks tbal were studied in detail as part of this stUdy.

6.5.1.- Eastern Guadarrama Domain (Fig. 6.4 and 6.5).-

All roclcs stUdied~ structuralJy below the Armorican quartzite. and they form the

stratigraphy of the Cardoso antiform. 1llese rocks are in the garnet and staurolite zones. In

the Cardoso antifonn. below the Armorican quartzite then: is a non fossiliferous siliclastic

roele sequence with a characleristic felsic mylonitic volcaniclastidvolcanic level. the

Cardoso gneiss. An Ordovician ftSardic" unconfonnity has been inferred between the

Cardoso gneiss and the overlying sedimenlaly rocks (Gonzalez Lodeiro. 1981). These

rocks will be described from lOp to bottom.
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The Armorican quamile:

It is also known as the AJto Rey Formation (Schlfer, 1%9). This is a massive unit of

while quartzite with beds of meter scale showing cross-lamination. It has a thiclmc:ss of

approximalely 80 meters. but locally it has been duplicated by tight isoclinal folds

(Fernandez Casals, 1979). It is inferred to be ~nig in age by lithological correlation with

similar levels on the opposite limb of the Maja1n.yo syncline which contain Early

Ordovician trnee fossiJs. The Armig age of these 0"aCe fossils is also based on correlation

with other areas of the northern Iberian Massif where the Armorican quartzite contains

Upper Arenig graptolites (Gutienez Marco et aI., 1990).

The Constanle Formalion and the problem ot the "Sardic" unconformity:

The: Constante Fonnation (Schafer. 1969: Gonzalez Lodeiro. 1981) is the

slratigraphic equivalent of the Bomoya FormaLiOD (Soers. 1972) in the opposite limb of

the Majalmyo syncline (Fig.6.2 and 6.5). This is a sequence of light and dark grey mica

schists with brown and black slates. alternating with quartzites and minor

microcoogJomerate beds. Gonzalez Casado (1987) also included in lhis formalion the mic:a

SChiSlS. meupsammites, quartzites and minor para-amphibolites inmcdiately above the

Cardoso gneiss. Thc: quarttile levels increase in abundance towards me upper pan of me

formation. which seems to have a gradual transition 10 the overlying Armorican quanzite.

These quartzite levels have individual thickness between 1 and 2 meters. TIle age of me

formation is believed 10 be Trcmackx:, based on crutiarra from the Bomova FonnaLion. It

should be nOled. however. that dear paleontological evidence of Tremadocian faunas have

not been found in the Cenual Iberian Zone nor the West Asturian·Leonese and Cantabrian

Zones (G. Garda Alcalde, pers comm.).
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The base of the ConSWlIc Formatioo is problematic. Gonzalez Lodeiro (1981) puts it

in the microconglomerate beds above the ItUca schists which overlay the Cardoso gneiss.

Gonzalez Casado (1987). however. prefers the contact with the Cardoso gneiss.. These two

inlerpretations are based on the supposedly Precambrian age of tbe Cardoso gneiss. and

extrapolations of the relationstUps between the Bomova Formation and the underlying

gneissic porphyroids in the Hiendelaencina anlifonn (Fig. 6.5.). This illustmes the

problem of the lack of substantial field evidence to support the presence of an unconformity

in the rock sequence between the Cardoso gneiss and the overlying Armorican Quartzite.

During this study and those of Hemaiz Huerta et aI (in press a • b), no field relationships

were found with which to substantiate the presence of the Sardic unconformity. This.

however, might be explained by the intensity of the mylonitic Variscan D2 defannation

which could have obliterated any evidence of an angular or erosive unconformity.

The "pre-Ordovician" rock sequence (EI Cardoso gneiss):

This rock sequence constitutes the core of the Cardoso antifonn (Fig. 6.4). It is

composed of mica schists. metapsanmUtes. quartzites. para-amphibolifes and a distinct

porphyroid unit known as the Cardoso gneiss. The sequences above and below the

Cardoso gneiss an: ~1atively similar. although. para-amphibolileS are ~latively more

abundant as intercalations in the Cardoso gneiss and me strata below. lbese para ­

amphibolites form small lenses with an average thickness of 10 10 20 em, and are

composed of plagioclase + quartz + green amphibole + (titanite) ± epidote.

The Cardoso gn~i$$ (Schltfer, 1969) is a variably sheared. leucocratic. porphyritic

rock formed mostly by plagioclase + quartz + biotite + muscovite ± (K-feldspar).

Porpbyroclasts form 30 - 40% of the rock. ranging in size from 0.1 10 5 cm and are mostly

rounded blue quartz and fragments of plagioclase, microgranile and fiamme-like darlt.
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micaceous fragments. In the fine-grained facies, the porphyroclasts range from 5 to 7 mm

in diameter and are only 5 to 10'% of the rock. The porphynx:lasts show an unsorted

granulometric distribution 8floating" in a micaceous Ieucocrntic ma1rix.. All these

characterisitics. and the intetcalations of lenses of mica scltists and para-amphibolites.

indicate lha1: the Cardoso gneiss was origina1ly a felsic pyroclastic rock... as proposed by

Schafer (1969). The heterogeneous D2 defonnation has lIansfQCTllCd the rocks into a

mylonitic augen-gneiss. but the charal::ter previously described is weU JmSCrved in low

strain areas. WLldberg et aI. (1989) repxted a lower intercept age of 540±30 Ma (U·Pb

zircon). which they interpreted as the protollm age of the Cardoso gneiss. This age is

based on a poorly fitted discordia line defined by highly discordant zircon fractions.

However, their best quality zircon (ie. the more concordant fractions) suggested an Early

Ordovician age. which questions the validity of their interpretation.

6.5.2.- The Benosa·Rlan shear zone, upper levels of the Western

Guadarrama Domaln.-

The lithologies described next are part of the N-5 trending band defmod by the B

Cervunal and Montejo detachmems (Fig.6.4 and 6.6). This band is 3 to 5 Km wide and

has an estimaled thickness of ISOO m. based on the dip of the main foliation. All these

rocks an: in the sillimanite zone and the relict M1 Icyanile Subzone. These metasedimentary

and plutonic rocks have been suongly defonnc:d during the development of the Benosa·

Riaza shear zone. Three intrusive types can be differenlialed in the field: folialed

megacrystic granites (augen gneisses). foliated S-type leucogranitcs and pegmalites.

Metasedimentary rocks:

The main lithologies an: mica schists and quartz-rich psammites with minor

amphibolite (Casquct and FenWldeZ Casal. 1981). The psammites. in 30 em thick: bands.
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usually alternate wjth 5 10 10 em tltick layers of mica schists forming a relatively

homogeneous sequence and tend to dominate towards the lower struclUr.l1 levels (Fig.6.7).

The amphiboliles outcrop as meter-scale boudins but they wen: only identified in the

northern extreme of the shear zone (Herom Hl.Ietta el aI.• in press a.b).

Foliated megac:rysllc granites (augen-gneisses):

lbese axe mylonitic two mica granites dominated by a megacrystic facies with 2 to 4

em long K.feldspar/plagioclase crystals. and minor foliated leucogranite. They are

composed of K·feldspar + plagioclase + biotite + muscovite + quanz. with apatite. zircon

and opaques as accessory phases. They outcrop as elongate kilometer-scale bodies along

the (oo[WalI of the CervunaJ detachment. Three of these bodies have been studied in detail.

the Riaza. Nazare! and Berzosa gneisses (Fig. 6.4). The Nazp.nt and Berzosa gneissfls

outcrop in the soulhem part of the Berzosa-Riaza shear zone. within the sillimanite zone

(Fig.6.6). They show heterogeneous ddonnatioo with a penetriUive S-fabric isolating K·

feldspar and plagioclase augen. some of which are ductily defonned. Locally there are high

strain areas with weU developed L-fabrics (Ieucogranites in the Benosa gneiss) and low

strain areas showing a crenulation of the main foliation (Nazaret gneiss). The RiDm gn.eiss

is located in the northern part of the shear lOne between the sillimanite and the SlaUrolite

wnes. It has been strongly mylonitized. particularly along its eastern side where it is

tranfonned into a mylonitic gneiss. Otherwise it shows megacrystic facies alternating with

minor leucogranjte (Arenas et aI., 1982). Due to the bigh strain in the area it is not possible

to be cenain whether the Riaz.a gneiss belongs to the sill.imanite or the staurolite zone. The

problem of the obliteration of the original intrusive relationships is conunon to all these

orthogneisses. Overall they are considered pre-Variscan. however there are no published

absolute ages to confum this view (Bellido et aI.• 1981; Navidad et aI.• 1992).
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Foliated leucogranltes (S-Iype granites):

These are medium-grained, gamet-bearing. Iwo mica Ieucoc:ratic granites. with quartz

+ K-feldspar + plagioclase + muscovite + biotite and garnet. tourmaline. apatite and

opaques as minor phases. 1bcy are weak.ly 10 strongJy foliated and have clear intrusive

relationships with the sWTOlInding metasedimentary rocks. They usually outcrop as discrete

bodies. IO to 20 meters lhic:k on average. with a well defined planar fabric and parallel

contacts with the surrounding country rock.. These field characters make them different

from the. otherwise lithologically similar. leucogranice5 in the foliated megacrystic granites.

Discrete bodies of gamet-bearing lcucogmnites have been described. west of the CcrvunaI

detachment. all along the Berzosa-Riaza shear zone as Icucogneisses and interpreted as

pre-Variscan (Arenasel aI.• 1982: Azore[ aI .• 1991: Bellidoet aI., 1991: Hemaiz Huerta et

aI., in press a, b).

Two of these discrete bodies of leucogranite are well ClIposed along the road from

Paredes to Berzosa (Fig.6.6). The: rlm one:. the Paredes S-type granite. is close to the

western border of the Berzosa-lUaza shear zone. and it is a representative example of these

bodies. It has been boudinaged and shows a well deftned foliation with flattened and

~tehed 5 an thick pegmatitic veins. These pegmatite veins do nor. show a subsolidus

fabric. but it is uncertain if this is a syn.lcinematic leucogranite. This is not the case of the

Serrada S-type granite which has an aplitic to pegmatitic texture with a weak subsolidus

fabric. It cross<uts fabric in [he country rock: metasedimentary rocks, suggesting a syn­

lcinematic (02) emplacemenL TIleR: are 00 absolute ages for these bodies but it is possible

that they might represent both pre-Variscan and Variscan magmatic pulses.
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Pegmatitl!$:

West of the Cervuna! deucbmenl. there are widespread pegznaritic dykes with a syn I

latc-lcinematic charncter with respect to the Ber7osa-Riaza shear :woe. They have modal

granitic compositions with K-fcldspar + quartz + plagioclase + muscovite + biotite +

tourmaline ± sillimanite ± andalusitc. These pegmatitic dykes Cr0s5<U1 the main fabric in

the metasedimentary rocks and arc: variably deformed with and without a penetrative

subsolidus fabric. TIle late-kinematic character indicates thai they are Variscan.

6.5.3.- The Western Guadarrama Domain (Buitrago-Manjir6n area ):

The complexity of the area and the CQIltradictions found in recent geological maps

(Azor et at. 1991; Be1lidoel al., 1991) forced tbecreat.ion of a new set of lilhologica1 units

by the author. The criteria.. upon which the units were defined. were developed exclusively

on f.ekl basis and emphasize the separation between igneous and sedimenwy (i.e.

supracrustal) protoliths. After field work it was found that these criteria closely resemble

those of Fernandez Casa!s (1979). and in addition acknowledges the presence of unusual

biotite-bearing migmatites. which might be non-analeCtic in origin and derived from an

igneous protolith (Dellielo et aI., 1991).

Uthological units (Fig.6.6);
MadarquiJ/os skar WM:

• Gamel mica schists and black quartzites:
• Muscovite-sillimanite rnetapsammites:

Manjiron anti/onn and Buitrago area (gneissic areas)
Metasedimentary rocks

• Migmatitic paragneisses (Fig.6.1d)
- Quartzo-feldspathic paragneisses:
~ Ana1ectic migmatites:

* Cak-silieates:
• Marble:
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Unbwwn origin.:
• El Villar biotitic migmar.itic gneiss (oon-anatectic migmatires)

Onhogneisses:
• Granitic augen-gneisses I foliated megacrystic granites
• Gneissic gamet-bearing 1eucogranires (Two types)

(ntrwive roc1a:
• Pegmarile5

These lithological units have been divided along lilhoJogicai and metamOrphic criteria

inlo metasedimentary units with siable muscovite (1st sillimanite-zone, i.e. those in the

Madarquillos shear zone) and gneissic units (Manjir6n antiform and the rocks in the 2nd

sillimanite-zone west of the: Madarquillos shear zone). It should be nol:ed that. in the

Manjir6n antiform. muscovite and sillimanite are stable in the deformational fabrics dw:

posI-date migmatization.

METASEDIMENTARY ROCKS:

Garnet mica schists with black quarttites (Madarquillos shear zone;

Fig.6.6):

This urnl is weU exposed on the eastern side of the Puentes Viejas dam, forming a

narrow, 500 meter wide band separating the muscovite·sillimanite melapSaJTVTlileS from the

gneisses of the Manjir6n antiform. This unit is characleriud by abundant garnet

porphyroblasts up 10 I em in~ and centimetric sillimanite (fibrolite) patches

growing in a biotite-muscovite mica schist (fig. 6.8). 1be mica schist is dominated by Bt­

Ms rich domains with ~folded fibrolite patebcs and minor. discontinuous. 2 rom thick..

quartzo.fcldspathic laye~. These mica schists allemate with minor mica-rich psammitic

levels (> 10 em thick). 1bese lithologies are cross cut by refolded quartz-veins and by

deformed pegmatitic veins. Some of !he centrimeter·scale pegmatiles mighl rep~nt

analeCtic: mehs generated in situ. A well developed creouJatioo cleavage overprinting Ibe

schisl:osily is characteristic of this uniL Black quartzite beds are locally inll:rcalated with Ibe
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mica schists. The most distinctive ones ate those that outcrop in the oorthem c1osun: of the

Manjir60 antiform (Bischoff et at. 1973). Other good examples are also found near the:

Puentes Vlejasdam. lbeseare bands of meter-scale thicknes$ with 3 to 10 an thick layers

of fine-grained quartz., minor white mica and opaque minerals (graphite?).

This whole unit. although very distinctive in field appearance. is dimcull to map because of

its apparent discontinuous nature and the lack of continuous outcrop. The outcrops along

the N-NE border of the Manjir6n antiform (Fig.6.4.) can be correlated with lhose along the

eastern Puentes Viejas dam. confirming tbaJ: these rocks are along the contact between the

Madarquillos shear zont and the gneisses of the Manjir6n antifonn.

Muscovite-sillimanite metapsammites:

1bese rocks fonn a weU dermed band about 800 m wide which runs north-south

along the Madarquillos shear lone (Fernandez Casals. 1979). This rnetapSamItliteS are

dominated by quanzo..feJdspathic lithologies composed of quanz + K-feldspar +

plagioclase + muscovite + biotite + sillimanite (fibrolite) ± gamet. including quartzitic

layers. and have minor intercalations of mica schists and discrete levels of bLac.k quanzitt.

At the Puentes Viejas dam. there is a normal contact with the garnet mica schists. To the

west there is a gradual appearance of leucosomes and migmatization.

Migmatitic paragnei..sses (Fig 6.7d):

This urnl groups felsic quartzo..feldspathic paragneisses and rDelapsammires.

allemating with migmatite-rich areas. Also conunon is the presence of minor inlercalations

of calc·silicate. metaquanzite and rare marble.

• Quarrzoleldspathic paragneisses (Fig.6.8: 6.9): These gneisses are formed by

layers of variable thickness consisting of quartz + K-feldspar + plagioclase + biotite +
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sillimanite ± garnet ± muscovite in different modal proportions. but generally biotite-poor.

which alternate with bands of stromatic migmatites. These paragneisses arc weU exposed

on the western side of the Puentes Viejas dam, in general they have granitic composition

with the most massive layers resembling granite sills. [0 the Manjir6n antiform side of the

Puentes Viejas dam (sillimanite+muscovitc zone). muscovite-bearing quartzo-feldspathic

gneisses a1!emale with migmatites. There is also a homogeneous. medium~grained

quanzo-feldspathic gneiss of uncertain protolith. but the rheological behaviour and the

presence of abundant quartz-veins contrast with the nearby gneissic [cocogranites.

suggesting that it might be a highly strained paragneiss.

• Anarecticmigmarites (Fig.6,lO: 6.1 [) are weU exposed along the southern shore of

the head of the Puentes Viejas dam, in the Manjir6n antiform (sillimanite + muscovite

zone). These arc stromatic types with 20% to >60% leucosome of granitic composition

(quartz + K-feldspar + plagioclase ± garnet) in a paragneissic neosome. Most leucosornes

are about I em thick and <10 cm long and they are interconnected in the diatexitic types.

The rneianosomes are formed by biotite + sillimanite (fibrolite) + muscovite ± tourmaline,

with sillimanite overgrowing muscovite. In the ManjinSn antiform. north of the Puentes

Viejas dam, some of these migmatitic areas are associated with large bodies of gneissic

leucogranites.

In the Buitrago area (SiII+Kfs zone), there is also a variable degree of migmatization

with local areas with 40% to >60% melt (i.e. leucosome). Most of these migmatites

correspond to stromatic types but there are nebulitic facies in low strain areas. These

leucosomes are also of granitic composition and in general are garnet-bearing. Most

leucosomes are medium-grained and have ccntimetric proponions. 1be melanosomes are

formed by biotite + sillimanite (fibrolite) ± garnet. Even though melting was relatively

extensive, there are very few anatectic granitic dykes associated with the migmatiteS. 1be
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leucosomes. although in places contorted. are generally concordant with the compositional

banding in the host neosome. dertning lbe gneissosity. In this area !be gncissosity is in

cases cut by latc: tourmaline-bearing aplitic to pegmatitic patches. located along shear bands.

boudin neclcs and tension cracks (Fig.6. 10).

Calc·sllkates and ampbibolites (Fig. 6.12.):

Most amphibole-bearing lithologies are partially amphibolitizaled gamet-pyroxc:nites

with centimeter co millimeter·scaJe gamet- and clinopyroxene-rich bands. 1bcse rocks

generally outcrop as houdins. some up to 15 melers long, associated with the migmatitic

paragneisses. Thcy are ~Jatively scarce but common 10 both the: sillimanite + muscovite:

and the sillimanite: + K·feldspar ZOnes. These calc-silicates are best exposed at the base of

the wall of tile Puentes Viejas dam and correspond to the "Paredes-type: para-arnphiboliles"

of Casquel and Fernandez-CasaJs (1981). Their mineralogy is clinopyroxene + garnet +

plagioclase + tilan.ite ± quartz ± calcite ± zoisitc ± (rutile) ± green amphibole. In the

sillimanite + K·(eldspar zone some of the caIc-silM:::ues preserve mineral associations of

quanz + clinopyroxene + garnet. Amphibole grew during Il:tmgreSSion coc:vally with lhe

boudinage. Some: of lhe lenses ~ve internal boodins with lhe quartz + plagioc:l~ +

amphibole in the DeCks and tension cracks. Locally some. of the cak-silicales are

reuogrcssed by a skarn [)'pe of alteration.

The: Braojos dyke (Azoc et al., 1991) is kx:ated north of the area of study along the

eastern border of the Robregordo fault, this is a 2 K.m long, deformed dyke which is

interpreted as an orthoamphibotite (Azor et al., 1991). It is composed of clinopyroxene +

plagioclase + green amphibole + titanite + (chlorite) + (epidote) + apatite ± rutile. Green

amphibole was fanned after retrogression of clinopyroxene during deformation. Chlorite

and epidote are also retrograde products.
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Marbles:

They have oruy been found at the base of the Puentes Viejas dam (wlUte diopsidc +

zoisile + calcite + tremolite?) in as5(Xiation with caic-silicate layers. and near Pinilla de

Builn.go at the mouth of the stream Arroyo de Pinilla. In the last case they are associated

with migmatites. Small wollastonite-bearing marble layers have also been reported to the

north, near Pinuecar (Casquet and Fernandez Casals. 1981) and Somosiena (Azor ct aI.,

1991).

UNCERTAIN PROTOLfIl{:

EI Villar biotite-bearing mlgmatitc (non-anatectic migmatite):

These gneisses wen: previously known as Ieucogneisses I dialexites (Fernandez

Casals. 1979) or banded gneisses (BeLlido et aI., 1991). In the rust case they were grouped

with the folialed lcucogranitcs and in the second they wen:: merged with the paragneisses.

However. as noticed by Bellido et aI (1991) they have a distinctive character and could be

derived from an igneous protolith. These rocks are well exposed in the Manjir6n Antiform

(SilI+Ms zone). as well as in the Buitrago area (SiU+Kfs zone) between el CuadrOn and

Cincovillas (Fig.6.6: 6.13). In !he Manjir6n antifonn they outcrop in 8 Villar dam and •

the tail of the Tenebroso dam. In thc: J..ana location these gneisses form a single massive

megaboudin (tOO's of meters Ioog) surrounded by an envelope of less competeot

migmatitic paragneisses. within thc: same structural level as thc: boudins of gamel­

clinopyroxene calc-silicau:.

These rocks are massive. highly strained, biotite-bearing. quanzo-feldspalhic gneisses

of granitic modal composition. with highly strained felsic aplitic 10 pegmatitic dykes. The

mineralogy is n:latively simple with plagioclase + quartz + K-feldspar + biotite ± muscovite
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as major phases and minor sillimanire and g~t. The gneissosity is defined by

discoratinuous. medium-grained, felsic layers allemating with fine-grained granitic. 1riot.i1e­

rich domains wilh aligned micas defining the fabric. As a result. the rock resembles a

flanened stromalic migmatite. However. lhe biotite-ricb levels around the felsic domains an:

no diffen:nt in tenns of mineral assemblages 3Dd grain size from the ooes defining the

fabric in the more homogeneous gr.mjtic domains. cxcepl for the abundance of biotite.

calling into question me presence of a restitic melanosome. Also, in contrast with the

nearby anatectic migmatites lhcre is no significant sillimanite or gamet in the rock. not even

associated with the biotite-rich [ayers. In many instances. such as around el Cuadr6n. the

felsic domains ~mble strained pegmatitic veins or flallcned and strained feld~par

megacrysts; or, such as at the EJ Villar dam. they have a medium-. coarse-grained teXlUl'e

which does l1Q( differ from that of the nearby apl.itic dykes (Fig.6.13), TIlereFore it is

difficult to interpn:t these gneisses as diatexites or anatectic migmatites. The rdatively

homogeneous aspect in all outcrops. with no evidence of metasedimenlal)' layers. and the

local~ of feldspar megacrysts (El Tcnebroso). suggest that lhis gneiss type might

be a highly strained granitic orthogneiss.

GRANmC ORTHOONEISSES:

Granitic: augen gneisses I roliated megacrystic granites (Fig.6.14):

"These rocks show a variation from augen gneisses 10 folia1ed megacrystic granites

depending on the amounl of strain. They have a simple mineralogy with quartz, K-feldspar

and plagioclase (AnIQ.IS) in granitic modal proponions and a variable proportion of

bioble. Also common is the presence of metamOrphic sillimanite (fibrolitc), garnet and

cordierite and relIOgrade muscovite. 1be megacrysts and augen are fonned by tabular

primary K-feldspars with Carlsbald lWinning. Bellido el aI (1991) also reported plagioclase
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megacrystS in some of these roele. types. Tbe size of the megacrysts varies between 2 and 8

em. with ~ceptiooaI individuals in excess of 10 em. Tbe density (20% to 5%) of

megacrysts. their size and the variable content of biotite in the matrix have prompted a

complex c1assificationschc:me for these rocks (Azorcl at., 1991; Bellidoc[ at .. 1991). This

classification was nol used because it is biased by the local amount of strain. However.

mere: is a variation from biotite-rich facies 10 biotite-poor leucogranitic facies. which in the

case of the Buitrago gneiss is observed within the same body.

These gneisses (onn distinct bodies (massifs) in the SiU+Kfs zone and outcrop over

extensive areas aU over the Western Domain of the SicmJ. de Guadarrama. Outcrops of

similar looking augen-gneiss have also been found in the southwest comer of the Manjin5n

antifonn. Three of these bodies have beeD studied in detail in the Buitrago area:: the

Buitnlgo. Cincovillas and Lozoya gneisses (fig.6.6). The rust one is a composite body of

leucogranite and megacrystic granite whereas the other two are megacrystic granites.

Gneissic: leucogranltes (Flg.6.1S):

These are gamel-bearing foliated granites. similar to the foli.:ued Ieucogranites

described in the Berzosa-Riaza shear zone. They have a widespread distribution both in me

Manjiiron antiform (SW+Ms zone) and in the Buitr.l.go area (SiU+Kfs zone). They range

from.50 em thick dykes to kilomeuic bodies. 1bey in most places appear in two different

situations: as dykes or late intruSions in gr.mitic augen-gneisses; as independent bodies

intruding intO the migmatitic paragneisscs. The mineralogy in both cases is very similar

with quartz + K·feldspar + plagioclase in granitic modal proponions. minor biotite and

garnet. and scarce muscovite and sillimanite (fibrolite). In the largest bodies. variably

strained feldspar megacrysts. 2 em long on average. are commonly present. The fabric is

defined by the orientation of the mica flakes and a gneissosiry defined by feldspar-rich
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domains. In constrast with the augen gneisses. lhere is no dear evidence of migrnatizalion

in these rocks.

1be gneissic leucogranites associated with the au~n gneisses are very common in the

BuilRgO gneiss. where they make up to >30% of the exposure (Fig.6.6). In general they

have aplitic 10 equigranulat facies and in most cases contain garnet porphyroblasts. 1bey

range from small metric aplilic dyk.es, clearly intrusive into country rock augen-gneiss. to

kilometer scale leucogranite. These leucograniles have been imcrpreted as pre-Variscan late

stage diffcreociates of the augen gneisses (Bcllido et aI., 1981: 1991).

The second type appears as individual decameter to kilometer-scale intrusions. The

largest one is the Horcajuelo orthogneiss (Fig. 6.6), which occupies the nonhero half of

the Manjir6n antifonn (SiU+Ms zone). from Paredes to Horcajuelo. This is a 7 Km long

leucogranjte with a weU defined gneissosity and a migmatitic envelope, locally resembling a

diatex.itc. South of Gandullas. along the Puentes Viejas clam. there is a similar body of

smaller scale but also with a migmatitic envelope (SiIl+Ms zone). In this case the

migmatites merge with the leocogranitc. both of which are deformed by the D2 phase.

Therefore, it is possible that some of the migmatites around these bodies might have been

generated during the intrusion of the leucogranites. eilher by local anatexis ()(" by grnnitic

injections. Ahhougb geoenilly considered pre-Variscan. it is possible that some of lhese

leucogranites might be granitic mobilizates produced during Variscan peak metamorphism.

6.5.4.- La Cabrera granite (Late Variscan pluton) and late intrusions:

TIle La Cabrera granite (Bellido etal.. 1981; 1991)oulcrops in thesouthem part of the

area of study over a 20 Km long and 10 Km wide area. II is undefonned and has a poSI-
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tectonic character. sealing me Berzosa-R!aza shear zone and cross cutting the suucnu-es and

metamorphic isograds of the Western Guadarrama domain (Fig. 6.3). Conditions of I Kb

and ff:n'C for its conlaCt metamorphism indicate thai: it was emplaced when both the

Easu:m and Western Guadarrama domains wen:: at the same austalleveL

This felsic pluton has tWO main facies: a coarse-medium grained granite and a flJ'le­

grained leucogranite. 1be dominant coarse - mediwn-grained granitic: facies is composed

of quaru.. K-feldspar. plagioclase {An20-30} and biotite, and bas an equigranuJar texture

with local heterogranular and megacrystic facies. as well as minor granodioritic end

members. This facies has a Rb-Sr whole rock isochron age of 315±14 Ma (Vialene et al..

1981). 1be fine-grained leucogranite outcrops in the core of the intrusion. and has an

equigranular texture composed of quartz. K-feldspar. plagioclase (AnIJ.17) and biotite. It

has a Rb-Sr whole rock isochron age of 288±S Ma (Via/cue et aI.• 1981).

Other late intrusions:

• PorpJryriIic dyk~$: lhese are brown I green porphyritic dykes with K-feldspar and

plagioclase phenocrysts and chilled margins. They contain quartz. K.feldspar. plagioclase

(An 12-33) and biotite in graoodioritic modal proportions (Bellido Cl aI.• 1991). LocaLly

they also nave minor amphibole and orthopyroxene. These dykes form a NW-5E swarm

which cross-ails the La Cabrera granite and its gneissic country rock; there are also rninoc

antithetic dykes with a NE-SW trend. According to Bellido et aI. (1991) they are flO(

genetically related with the La CabR:ta granite.

• Quam: veins: Late large-scale quartz veins have been only found in the Buitrago

gneiss. These are 2 to 3 meters wide and less than 500 meters loog veins with a~-SE

trend. Bellido et al (1991) also reported similar veins with a NE·SW trend and considered

these two set of meter-scale veins to be associated with late fracturing.
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6.6.·PRE·VARISCAN EVOLUTION: V-Ph evidence for a major Early

Onlovidan felsic magmatic event in the Siern de Guadarrama.-

6.6.1.- Introduction.-

1be Sierra de Guadarrama has a wide variety of pre-Variscan onhogneisses. which

have been com:lated with similar rock rypes along the QUo de Sapo Domain of the Cenbal

Iberian Zone (Azor et aI .• 1992). The Precambrian (Cadomian) versus the Early Ordovician

protolith age of these rocks is controversial in the Sierra de Guadarrama (WiJdberg et al.

1989 YS. Vialette et aI., 1986. 1987) and lhe rest of the 0110 de Sapo domain (Gebauer et

aI., 1993 vs. A:r.ar el aI., 1992). Given the variety of rock types. it was important not only

10 resolve the prololith ages but to clarify the potential problems derived from speculative

correlations between rocks from different crustal levels with different volcanic and plutonic

protoliths (e.g.• AzorCI aI., 1992; Navidad et aI., 1992). For this reason the area around

the 8erzosa-Riaz.a shear zone (BRSZ) was selected foc this Itind of study.

The BRSZ exposes an attenuated mid-crustal section (Sm·Ky zone) separating the

supnstructura1 Eastern Domain (ChllO 51 zones) from the high-gJOOc infrnstructuJe of the

Western Guadarrama Domain (Sill+Kfs zone)_ Therefore. this area offers an exceptional

opportunity 10 sample. in a single cross-section, pre-Variscan gneisses from different

crustal levels_ The roclcs selected for Uris study are representative of !he main types of pre·

Variscan orthogneisses of the Siem de GuadarTama (DeWeIo et al.• 1981: Navidad et aI.,

1992): the volcaniclastic Cardoso gneiss is the equivalent of the upper crustal DUo de Sapo

fonnation and Hiendelaencina gneiss; the Riaza gneiss is a lithological and structural

correlalive of the medium grade Nazaret-Berzosa-Pedrezuela orthogneisses in the BRSZ

and similar gneisses in the Hiendelaeocina antiform; the Buitrago gneiss clearly shows the

complex relationships in the so-called -Ieucogneisses" of the SilI+Kfs zone; and the Lozoya
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gneiss is also a classic example of the so-<:alled Aglandular gneisses - or -Mort=UCra

gneisses- of the deeperslrUCturallevels of the Sierra de Guadarrama.

Regarding zimln morphology. the previous work of Wildbc:rg et al (1989) in the

Sierra de Guadarrama showed the P~lICC of significant amounts of older zircon

inheritance in these rocks. Therefore. only the best euhedral zircons were hand-picked

under the microscope for analysis. To minimize: the problems arising from zircon

inheritance, the zircon selcction was ~eted to the: best qualily. four-sided. needle-like.

euhedral prisms with a length/width ratio of 1:7 to I: 10. This [)'pe of zircon morphology is

unlikely 10 grow over an inheritedcoce (GDelss type IV ziroJn of Vavra, 1990). However.

their large surface to volume ratio makes them more susceptible 10 diffusive Pb-Ioss. This

was minimi%od with cxtenSive use of the air abrasion tcchnique of Krogh (1982), by

mecbanically removing the outer surface of the crystals. Unabraded fractions were analyzed

to assure the defmitioo and trace of the discordia lines.

lktails afthe U-Pb analytical procedure. including sample preparation. are provided in

appendix A. J.

6.6.2.- V·Pb geocbronologlcal results (Table 6.1):

fASTERN GUADARRAMA DOMAIN:

Cardoso Gneiss:

This roele has bocn heterogeneously sheam:t and metamorphosed to SWltOlite grade.

PorphyroclastS consisting of 10 [0 2 mm fragmentS of plagioclase. K-feldspar.

microgranite and subrounded primary blue quartz an: distributed in a micaceous matrix

(Fig. 6.16). This. plus the gradual uansition into the overlying and underlying
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metasedimentary rocks. coupled with the interealations of mica schists and para_

amphibolites. indicate a volcanogenic origin. possibly as a felsic tuff.

Of eight zircon fractions analysed.. Zl is concordant anchoring the Zl-Z4 discordia line

al 480±2 Ma. the interpreted age of extrusion (Fig. 6.16). The upper intercept al 2645 Ma

and intercepts of ZI·Z7 and ZI-ZS (not shown) suggest the presence of 2.0-2.6 Ga

inheritmee.

Rina Gneiss:

This is a heterogeneously mylonitized megacrystic granitic onhogneiss (Fig. 6.17)

with minor leucogranitic facies (Arenas et aI., 1982). This gneiss is in contact with both the

metasedimentary rocks of the staurolite and sillimanite (kyanitc) zones along a high strain

zone which has lranSposed any primary relationships. 1be U-Pb sample is a mylonitic (WOo

mica megacrystic granite with 2em long K-feldspar megacrysts.

Fractions ZI, 21. Z). Z5 and ZJi have been intensively abraded and define two

independent discordia lines. line ZI-24 and line ZI-Z6. The line Zl to Z4 provides an

upper intett:ept of468+161-8 Ma which is interpreted as the best estimate for the prowlith

age. The tine ZI to ZJi suggests the presence of Att:bean (2.6 Gal inberitmee (Fig.6.17).

Analyses LJ and Z8 ~ interpreled to coolain a miDOC" inheriled compooem and have

undergone Ph loss.

WESTERN GUADARRAMA DOMAIN:

Buitrago gneiss:

This rock has been interpreted born as a pre-Variscan orthogneiss (Bellido el aI.. 1991)

and a Variscan anatexite (Fern4ndez Casa1s, 1979). TraditiooaUy called a ~leucogneiss~
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(BeUido et aI., 1981; A2JX et al., 1990). the Buimago gneiss is composed of two nxk

types. a biotite-bearing augen-g:oeiss (Sample BU·I) and a gamet-bearing foliated

leucogranite (Samples 8U-2 and pm-I). The augen gneiss has a composite solid-state

fabric deflJ'led by stiff primary K-fcldspar porphyroclasts (0 = 24 em) and ductily

deformed quartzo.fcldspathic domains. Sample 8U-2 is an aplitic vein intrusive in sample

8U-[ which mimics an anatectic vein (Fig.6.18). Sample pm-! is a foliated leucogranite

dyke intnlsive inlo the: augen-gneiss. Although samples 8U-2 and PIB-l have clear

intrusive relationships. cross<Utting relationships with the teCtOnic fabric in the augen

gncissarc: not seen.

Sarop!s; BU.! (Fig 618- 619)' fQliated OXWi¥'J'YSiG mnju;(Buirragod!; ImOYa)

The discordia line ZI-Z6 (25% probability of fil; v. Davis. 1982) has an upper

intelo:pl of 488+101-8 Ma which is the best estimate for thc protolith age (Fig.6.19).

Analysis Z3 was not included in the R:gression of the discordia line as it is interpreted to

show the combined effect of Pb loss and minor inheritance.

Sample 811.2 (Eig 618· 620>' fnljat¢ gplitic vs:jn jm01sivc inlP 811_1 (Bgitrago de

With error expansion all five fractions define a discordia line (58'*' probabilily of fit)

with an upper inte:n:ept of 482+161-12 Ma. However. 11 ZI-Z2-Z5 discon1ia line with a

higher probabilily of fit (76%) and an upper intercept of 482+81·7 Ma is preferred for lhe

protolith age (Fig.6.20).

Sample pm_I' Foliated leucogranite; (Pjnj!!ade Buitrago' fig 621)

Five fractions of abmded oeedle-Iike zircon (Table I). define a discordia line with an

upper intercept of 482+91-8 Ma for igneous crysWlization (Fig.6.21). This protoI.ith age
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is coeval with samples BU·I and BU-2 suggesting that the foliated Ieucognutiles are a late

magmatic phase differentiate. This is also consisl:enl with the high U content of the zi.rt:ons

compared to those of sample BU-I (Table 6.1)

Lozoya gneiss (LO-I): Augen gneiss I granilie orthogneiss (Fig. 6.22).

This is a ductiJy«fonned biotite-bearing augen gneiss containing primary feldspar

augen up to 7cm in diameter. lltis rock type covers most of the Western Guadamuna

Domain with an approximate ~ ~tem of 1000 km2. h is also locally known as

~Morcueragneiss· (Fernandez Casais. 1974) or -feldspalhic: glandular gneiss· (Navidad et

aI .• 1992) and "meso-melanocnuic orthogneiss·, where strongly defanned (Navidad et aI.,

1992). The dated sample was collected from the type locality proposed for the Morcuera

gneiss by Casquet ct aI. (SlOp 3.1. and figure 16 of Alvaro et aI .. 1981). The sample has

metamorphic conlierite and sillimanite (2IIl sillimanite I cordierite zone).

Of five zircon fractions analyzed. ZI is concordant providing a protolitb age of 477±4

Ma (Fig. 6.22a). Three monazite and one xenotime frnction define an independent

discordia line with an upper inten::ept of 480±40 Ma conftrming the prorolith age (Fig.

6.22b). The concordant monazite and xeootime pin the lower interccpc:. aI 3ZZ±2 Ma.

whicb represenlS the age of Variscan LPIHT metamorphism. 1be large grain size of the

concordant monazite (MI. Table 6.1) suggests that the mona%ite-xeootime discordia line is

a mixing line between igneous and metamorphic monazite. (1l,ther than variable resetting of

igneous monazile. 1be ZI·Z2-Z3 discordia line has a lower intercept of 221 Ma with no

appan:nt geological meaning. possibly due to a combination of Variscan partial resetting

and Mesozoic Pb-Ioss (Fig.6.22b). Analysis Z4 refleclS combined Pb loss and inheriunce;

a line Zl-ZS (Fig.6.22c) suggests the presence of2.6 Ga inheritance.
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6.6.3.- Discussion: Geological slgnincance of the new V-Pb ages:

The U-Pb zim)n ages foe the Riaza gneiss (468+161-8 Ma). the BUitr.1go gneiss

(488+101-8 Ma. megacrystic facies: 482+81-7 Ma and 482+9/-8 Ma. aplitic and

leucogranitic fal:ies) and the Lozoya gneiss (4TI±4 Mal are representative of the main typeS

of pre-Variscan orthogneisses of the Sierra de Guadarrama (Fig.6.23). indicating the

presence cran imponant granitic intrusiV1: event in the Arenig (485-470 Ma; tim: scale of

Tucker and McKerrow, 1995). The concordant 480±2 Ma U-Pb zircon age of the

volcaniclastic Cardoso gneiss invalidates the previously accelXed age of 54Q±30 Ma

(Wildberg et aI.• 1989). This new age indicates that volcanism and plutonism were coeval

and constrains the lower limit of the Mnig "Satdic" unconformity in the Sierra de

Guadarrama (Soers. 1972; Gonzalez Lodeiro, 1981). indicating a close relationship

between the Sardic deformation and the Arenig felsic magmatism. It also indicates that the

overlying Constance focmation is 004: Tremadocian bul Arenig in age. The mixing line

between igneous and metamorphic monazite and xenotime of the Lozoya gneiss not only

conflnnS the Arenig protolith age, but provides the fmt Irliabk: age. 322±2 Ma., for lhe

Variscan low P I high T mewnorphic overprint of the gneisses of the Western Guadarrama

Domain. This last point wiU be furtberdiscussed in the Variscan section.

These U-Pb ages suppon the: Rb-Srdata of Vialene et aI (1986; 1987). suggesting thai:

most of the pre-Variscan onhogneisses of the $iern. de Guadarrama are Early Ordovician.

This. however. does not exclude me presence of unidentified. older orthogoeisses.
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6.7.- VARJSCAN TECTONOTHERMAL EVOLUTION OF THE

SOMOSIERRA SECTOR OF THE SIERRA DE GUADARRAMA: Structural.

metamorpblc and U·Pb geochronological coostraiots.

6.7.1.- Introduction

This seroOR presents the StnlCtural, metamorphic and geochronological data used to

constrain the Variscan tc:ctonothennal evolution of the Somosierra area of the Sierra de

Guadarrama The data are presented in the order outlined before and wiU be followed by a

discussion focusing on the timing and character of the Variscan metamorphic and

defonnational events.

6.7.2.- Structural evolution:

1be struCtural evolution of the Somosierra sector of the Sierra de Guadamuna can be

described in cenns of two major deformational events. 0 I and 02. 0 I had a compressional

character and was responsible for the regional crustal ovenhickening (Femindez CauJs.

1979; Macaya et at., 1991). In the area of study. the 01 macrostructure has been

completely obliterated by the 02 event. 02 is a majOl" ductile shearing event. during which

the Berzosa-Riaza shear zone was produced. This evcnI is widespread in the gneissic

infrastructure, Western Domain. and in the lower structural levels of the Eastern

Guadarrnma domain. D2 is coeval with a low pressure !high rempernrure overprint of the

inter 01-02 Barrovian melamorphic mineral assemblages (Fernandez Casals, 1979; BeUido

el aJ., 198L; Casquetet al., 1983; Macayae[ aJ., 1991: Hemaiz. Huenaet al., 1996).

HistoricallY, the firsl detailed sUUeturaJ analysis of this area of the Sierra de

Guadarrama (Fernandez Casals, 1979) considered only tYm main phases of deformation

(DL and 02), foUowed by minor late defonnatioo (03). Gonzalez Lodeiro (1981)
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incorporated the model from the West Asturian l...eonese Zone (WAlZ) of three main

phases of Variscan deformatton. inleqRting the 03 phase. as in the WAlZ. as

bacldolding. It should be noted that in the Siema de Guadamuna. like in the WAI..Z. only

FI-F3 fold interference patterns were recognized in the low grade: rocks (GonzaJez Casado,

1988). 1be D2 phase was. as in the WAlZ (Basal shear zone of the Mondofiedo nappe.

Martinez Catalan et: al .. 1990), restricted to major shear~ such as the Betzosa-Riaza

shear zone. Subsequent workers extended the 03 backfolding to the gneissic infrastrucnue

(Capote et aJ.• 1983; Macayaetal.. 1991: AzoretaJ.• 1991 a.b: Bellidoetal.• 1991). This

scheme however. was questioned by Hemaiz Huerta et aI. (1996) who interpreted the

Berzosa-Riaza shear zone as a major ductile extensional shear lone. Such a possibility was

timidly advanced by Gonzalez Casado and Casquel (1987). This new interpretation

eliminates the necessity of 03 baclcfolding 10 explain the west vergence of the regional

In the following description. the so-called high tem~ OJ structures (Casquel et

aI., 1983; Macay3. el: aI., 1991; Azrxet at. 1991; Bellido et ai., 1991) ate inlerpreled to be

formed by progressive defonnation during 02. 1lIe IC:ml OJ is used 10 described late, low

grade defonnational feanues. This scheme coincides with the one independently developed

by Hemaiz Huerta et: aJ. (in press.a and b) in the Cardoso antiform (Fig. 6.24), and it is

similar to me one initially proposed by Fernandez Casals (1979). Mosl of me aUlhor's

strucwral work was concentrated in the area between lhe Hiruela mountain pass, upper

levels of Ihe BRSZ. and the Rio Sequillo dam. west of Buitrago (Fig.6.25).

01 deformation:

The D1 even! is well defined in the supracrustal Eastern Guadarrama Domain, wbere it

deforms the Mid Paleozoic sedimenwy sequence. In the gneissic Western Guadamuna
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domain. this deformation preceded the Banovian melamorphism and the low pressure I

high temper.llule metamorphic overprinL Therefln. all fabrics preceding peak.

metamorphic l."OOdi.tions are considem:t to be D I. This might include liCVCraI subphases of

deformation which could not be properly defIned due to the intense 02 overprint.

DI in the gneissic infrastructure is considered Variscan in age. ~Variscan fabrics

could not be identified during this study or in previous srudies (eg. Macaya et aJ.. 1991).

BUI as a cautionary note, this docs not mean that relicts of them might not be present in

certain pans of the Sierra de Guadarrama or in other gneissic complexes of the Spanish

Central System (Macayaet aI .• (991).

Easlern Guadarrama [)groain'

This domain contains twO well derIDed 01 macrostructures. the Maja!layo synctine

and the Galbe de Sobre anticline (Fig.6.2: Macaya;1 aI., 1991: Hemaiz Huerta el al..

1996). Both suucnues are east of the area of srudy and have an axial planar. S I. shU)'

cleavage and associated minor FI folds indicating an east vergence during the 01 Vari5can

compression.

In the area of SlUdy. the 01 structures are overprinted by the D2 deformation. In the

upper suucnual levels of the eastern flank of the El Cardoso antifonn. the S I fabrics are

crenulated by 02 (Fig. 6.24; crenuJation band of Hemaiz Hucna el at. 1996). Towards the

lower strUCtural levels of the Eastern domain. in the Cardoso Mtifonn. the S1 fabrics are

complelely transposed by the 02 deformation. Relicts of the S I fabric are only preserved as

a partially transposed fabric in low strain areas. fold hinges in F1-F2 interference folds and

as imemal inclusion trails (5i) in pre-D2 porphyroblasts. Therefore. the resultant main

fabric (Sp) is an SO-51-52 composite fabric (Fig. 6.7a).
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West of the an:a of sludy. Macaya et al (1991) described disc~te DI shear zones.

affecting mostly metased.imenwy rocks. separating IriIometer-sca1e wedges of augen·

gneisses. They infem:d that these easl-vergent wedges of augen-gneisses and me

associated 01 shear zones formed the D1 macrostructure of this domain.

In me aceaofsrudy. Aroret aI. «(99tb) suggescedthe presence of an FI ~mben(

syncline in the Buitr3go area. However. such structu~ was inferred on the assumption of

an oversimplified stratigraphy formed by orthogneisses overlain by metasedimentary

rocks. without taking into accounl the constraints imposed by the melamorphic zonation.

During this srudy no major FI macrostructures were recognized in the field due to the

intense 02 overprint. this also coincides with the observations of Fernandez Casais (t979).

AJthough 01 macrostruelUreS could nOI be reconstnlcled. there is abundanl evidence

for DI SlruClUres in all struetwa! levels of the Western Guadarrama Domain. In the

following description the main gncissosity (Gn), or compositional banding, is considered

as a composite SO-S I fabric (Fig.6.S).

In the sillimanite·k:yanite-bearing metasedimenwy cocks of the Berzosa-Riaza shear

zone. DI structural features are preserved as intrafoliaJ folds in the main roliation (S2: Fig.

6.7c). Inclusion lrails (Si) in garnet and Icyanite porphyroblasts also in<ticate the presence

or an earlier S 1 rabric.

Relicts or 01 struerutes are best preserved in discn::te levels or the Sill+Ms

metapsammites or the Madarquillos shear zone. Locally. it is possible to observe a

penetrative S I fabric cross cutting SO, both being overprinted by f2 asymmetric folds willi

an axial planar S2 fabric. However, there is not enough high quality OUtcrop 10
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convincingJy trace the 01 structure. In this Iilhological band there are also abundant FI·F2

inlerference figures.

In the sillimanite-mica schists and the sillimanife+muscovite metasedimentary nxks of

the ManjinSn antirann. the presence of variably refolded quartz veins is also common.

Some of these veins cross-all SO forming pan of a composite SO-S 1-52 fabri<:. and are

variably refolded by thn:e local phases of folding. The SlJUCtural Significance of these veins

is uncertain. i.e: dilatational veins or quartz segregations along a preexisting foliation. It

should be noted that such veins were not observed in the migmatitic lithologies.

In the gneissic and migmatitic lithologies of the Manjir6n antirann and the Buitrago

area. the D1 structural fealUfCS ~ best preserved inside the metric-scale calc-silicate

boudins. They consisl of a gneissosity (So.-S 11) defmed by compositional alternations of

gamet-rich and clinopyroxene-rich layers with grnnoblastic texlW"e. wruch has also been

folded (Ft) under thc same high grade conditions (Fig. 6.12). In the quanzo-feldspathic

IithologiesthereareFI-F2intcrfercncc:panc:mswithcentrimetric scale. Fl. isoclinal folds

(Fig.6.7: 6.S). [n many cases. these are inlrafolial folds which evidence the composilC (SO­

S I) character of the main gneissosiry. Also the main gneissic fabric in the B Villar type

biotite-bearing migmatites (wbsolidus migmatites'?: section 6.S.3) is oveJPrinted and

partially transposed by the 02 event. suggesting lhaIlbe gneissosity is partially 01.

lbe leucosornes of the arwectic migmatites of the Buitrago aru (Fig. 6.1 L SiII+Kfs

zone) form stromatic migmatites which are aligned wim the compositional banding in me

nearby quartzo-feldspathic limologies. and bave been folded and sheared during 02. Most

of memo as already recognized by Fernandez Casals (1919), appear to be 1ate:- to post-O I

and some show refolding suggesting that they might have already formed during 0 I.
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However, as poinled OUI by Mcl...el.lan (1984)• .such ~rolding is common during syn­

magmatic deformation of migmatites with moo: than .3&ll mel!.

02 deformation:

This major ductile shearing even! affeeted the gneissic Western Guadarrama Domain

and the deeper structural levels of the Eastern Guadarran10l Domain. All previous authors

agree that the juxtaposition of the Eastern and Western Guadarrama Domains look. place

along lhe Berzosa-Riaza shear zone during Ibis event (i.e. Fernandez Casals. 1979: 8e1liOO

etal.• 1981; Macayaet aI.• 1991: Hemaiz Huerta et aI .• 1996). Other SUUCtu~ developed

during D2 are the: Cardoso anofomt in the Eastern Domain (Hemaiz Huena et aI.• 1996)

and the Manjin'Sn antifonn and the Madarquillos shear zone in the Wesrem Domain

(Fernandez. Casals. 1979).

E! CardQIiO notjroOD and tbe 02 crenY!Mioo hand (Eastern Guadarrama Domain)'

1be Cardoso antifonn is the result of the overprint of the D2 deformation on the

supnstructural Eastern Guadatrama Domain. whereas the crenuIation band (Hemaiz Huerta

eI al.. 1996) is the uppennost part of the D2 deformational fronL The ekmenlS of the

crenulation band have been described in detail by FenW1dez Casal (1979). Gonzalez

Casado and Casque! (1987) and Hemaiz Huerta el aJ. (1996). all of which considered to be

a 02 structure. Gonzalez Lodeiro ct aJ. (1988). however. suggested that the crenulation

band was a 03 structure and interpreted the Cardoso antiform as 03. but indicared the D2

character of the shear zone in the core and western limb of the antiform.

Across the crenulation band. the strain of the D2 deformation increases suu:umilly

dowDwards. where the 02 CIeflulation cleavage (Fig. 6.26) passes into a D2 ductile
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mylonitic fabric (52; Fig.6.7a.b: 6.26). The 52 mylonitic: fabric transposes the SO and the

S I fabrics. defining the Berzosa-Riaza shear zone. The 52 myionitic: foliation is axial

planar 10 the Cardoso antiform. indicating its ill character (fig.624: Hemaiz Huerta et al..

1996) and it is nOl: folded by a later 03 evenl as proposed by Gonzalez Lodeiro et aI.

(1988). This last point was confinned during an east-west ~onnaissance traverse passing

through lhe core of the antiform. nonh of El Cardoso.

The Berzpsa.Rjaza shear zone CEas.tem and Western Guadarrama dornain:il'

1b:: Berzosa-Riaza shear zone is characterized by a well developed ductiIc mylonitic

foliation (52). which tranSposes the previous suuctun:s into parallelism.. This foliation

~nds '7"w 18" N in both lhe Eastem(St-zone) and the Wc::ste:m Domains (Sill·Ky zone).

In the: Cardoso antiform and the Eastern Domain. 52 plunges 54"E on average (Hemaiz

Huerta et aI.• 1996); whereas in the Sill (Ky) zone it is shallower, plunging 3O"E on

average (Fig.6.27 and 6.28).

In the Sf-zone (Eastern Guadarrama domain) the 52 foliation is defined by the

orientation of biotite and muscovite (Fig.6.26). This fabric is coeval with the growth of

staurolite, indicating amphibolite facies conditions. 1be minera.I lineation and stretching

lineation eL2) are defined by quartz-ricb pressure shadows with a mica-rich envelope

around garnet, staurolite and chloritoid porphyroblasts (Fig.6.7b). 1be staUrOlite

porphyroblaslS are in most cases subparallel to the lineation. This lineation is oblique (Q the

dip of the 52 foliation and has an average orientation and dip of 150147. There is extensive

development of asymmetric pressure shadows around porphyroblasts in the

melasedimentary rocks and the porphyroclasrs of the Cardoso gneiss. They all indicate a

shear sense of top down to the 5E wbicb is also consistent with SoC and micafish

SbUCtures. Towards the top of the shear zooe there are abundant uaiIs of sheath folds in the
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more competent quartzitic lithologies. wilh the same shear sensc (Hemaiz Huerta et aJ..

1996). Boudinage is also parallel (0 the lineation.

In the Sill-Ky zone. the 52 fabric is defined by oriented fibroUte and biotite which m

growing at the expense of tile inter D1.D2Icyanite. Muscovite is stable and also defines the

52 foliation in association with sillimanite + biotite. TlJerefDa'. in this zone the 52 is a 1st ­

Sill zone fabric (Fig.6.26). The mi.nera.llincation in the melaSedimcnwy rocks is defmed

by elongated fibrolilc. quam-rich pressure shadows. reoricnled kyanite porphyroblasts and

quartz ribbons and striations in sheared quartz-veins. [11 the orthogneisses. particularly the

augen-gneisses. the lineation is defined by quanzo-fetdspalhic ribbons around feldspar

porph.yroclasts. In this zone boudinage parallel 10 the mineral lineation (Lmin) is

widespread. indicating thai this is a stretching lineation. This lineation is oblique to the dip

afme 52 foliation and has an average orientation and dip of 151126 (Fig.6.27 and 6.28).

Kinematic indicators such as asymmetric pressure shadows. winged JXlrphyoclasts.

asymmetric boudinaged. SIC struCtures and shear bands (C planes: Hanmer and

Passchier, 1991). indicate a shcarsensc of lOp down 10 the 5E.

The; ManjjnSn antifOfTD Wes,,:m Guad;w;una Qomajn

TIle Manjir6n antifonn is a dome-like struewrc whose: nocthem haIf is formed by the

Horcajuclo gneissic leucogranile and its mjgmaIiti<: envelope. The southern half is focmed

by migmatitic: paragncisses. minor calc-silicate rocks and leucogranitcs. and the E1 Villar

type biotite-bearing migmatitcs (subsolidus migmatites? section 6.5.3). This structure. Iilce

the BRSZ. is cross-cut to the south by the La Cabrera granite (Fig.6.3: 6.25).

In the northern closure of the Manjir6n antiform, the suucturnl data from the

metasedimentary rocks in the limbs and the orthogneisscs and mjgmatites in the core

indicate that the main foliation (51) defines a theoretical fold with a fold axis (144137)
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parallel to thaI of the minor F2 folds (Fig.6.27). These minor F2 folds crenulate S I in the

mica schist Lithologies and overprint fl folds in the psammitic Lithologies. The plunge of

the F2 folds is also paraUello lhe minerallinealions (L min av.• 139133; Fig.6.27). The

same ~Iationshipsare also found in the cross section along the CociniUas river (Fig.6.28).

In this case the gneissosiry in the migmatites (Go) is folded with a good agreement between

the F2 fold axis and the theoretical fold. This is also coofttmed by the distribution of the

foliation in the Horcajuelo orthogneiss (Fig.6.28). To the south. in the area around the

head of the Puentes Viejas dam. gneissosity and F2 folds display the same relationsnips.

with parallelism between the F2 fold axis and the mineral lineatiOfl defined by siltimanite

and qua..1Z (Fig.6.28). It should be noted that south of Paredes the contact between !he

BRSZ and the migmatitic gneisses is a high strain zone with an intense D2 transposition of

the migmatites into a straight gneiss. Planar fabrics are also dominant south of Manjir6n in

the EI ViUar type biotite-bearing migmatites and the associated lithologies (Fig.6.29).

Most of the asynunetric folds in the ManjirOn antiform ~ Z-shaped (Fig.6.S),

suggesting a shear sense of lop [() tbe S-SE. These folds have muscovite and sillimanite

stable and folded anatectic leucosomes (Fig.6.11). This shear sense is also confinned by

shear bands (C planes) with siJlimanite.. This indicates thai movement lOOk place in

metamorphic conditions between the 1St and the 2nd sillimanite isograds. But the best

kinematic indicators for the D2 deformation are provided by the asymmetric calc-silicate

boudins at the base of the Puentes Viejas dam. The reuogression of the gamet­

clinopyroxene mineral assemblages to plagioclase-amphibole coofums the amphibolite

facies metamorphic conditions of the D2 defonnation. Boudin asymmetry and amphibole

mineral lineations indicate a shear sense of top to the south. 1be D2 mylonitic foliation in

the migmatites surrounds these boudins and is paralJcl to the large limbs of the asymmeU'ic

F2 folds. Trails of asymmeU'ic folds develop around the largest boudins • which partially
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controllhe plunge of the fold axis. It should be noted lhat the 02 foliation also surrounds a

large megaboudin of EI Villar type bioolc-bearing rnigmatile associated wilh the caIc'"5ilicale

boudins.

The Madarquj!!O:; shear ZQOC Wsqem Gujliarrama DomajP'

The Madarquillos shear zone is a structure originally defined by Fernandez Casals

(1979) as a 02 shear zone. even lhough she calJed it a synform. This StnlCtute is presently

defined by the trace of the sillimanite + muscovite mc:tapsammites and mica schistS. II

extends from south of Manjir6n. where it is poorly exposed. 10 the northern closure of the

Manjir6n antiform (Fig. 6.3 and 6.25). At the Puentes Viejas dam the structure is bordered

to the east by a high-temperature (sillimanite -bearing fabric). subvenical. strike-slip shear

zone (Fig.6.25 ). and to the west it presents a gradual rransition to migmatitic lithologies

which are sharply separated from the gneisses of the Buitrago area by a 10 10 30 meter

wide band dominated by L·fabrics and quartz-rods (the L-fabric band. Fig.6.25). In the

Madarquillos river section and farther north. the weslem bon:Ser of the Madarquillos shear

zone is a high-strain 02 shear zone overprinting the SiU+Kfs zone gneissic and migmacitic

lithologies of the Buitrago area (Fig. 6.25).

The main foliation in this shear woe is an $2 SChiSlOSiEy I compositional banding

produced by the uanspositioo and crenulation of SO and SI(Fig.6.30). The 52 fabric is

ax.ial planar to me F2 folds in the metapsammites (Fig.6.31). In the sillimanite + muscovite

mica schists there are clear relationships between the 02 boudins and the F2 folds.

suggesting tbaJ: both were coeval (Fig.6.32 and 6.33). The F2 folds are tight [0 isoclinal

folds with 50 generally parallel to 52 along the fold limbs (Fig. 6.31). The main foliation

(SO-52) bas an average trend and dip of l7138E to 8135E (Fig.6.34). The mineral lineation

is defined by centimeaic elongated patches of fibrolitic sillimanite and quartz oblique to the
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dip afthe main foliation (15G'24 10 138132 on average: Fig.6.34). 1be uis of the F2 folds

~ subparallel to the rnineraI Iincation (154128 10 135130 on average: Fig.6.34). Shear

bands with stable sillimanite (C planes: Fig.6.3S) are also commonly developed with an

average trend and dip of 22157E (Fig. 6.34). In the ~L·rabric band" the linear fabric

plunges ISln6 (Fig.6.34: 6.36), the shear sense is poorly defined but seems to be top up

to the NW. It is. however, unclear if this is a 02 structureora later reworking.

In the Mardarquillos synfonn there are abundant kinematic indicators such as SIC

structures wilh a very small angle betwoen Sande planes. shear bands (C planes),

asymmetric boudinage and asymmetric folding of variably orien!ed quartz and pegma.titic

veins (Fig.6.32). This variety of kinematic indicators permitted the independent

confltll'lation of the shear sense. In the .:astern side and center of the Madarquillos shear

zone the shear sense is lop down to the SE (Fig.6.J2: 6.35). In the Madarquillos river

section. although locally there are a few ltinematic indiCalOl5 suggesting lop up [0 the NW

(Fig.6.37), most of them are consistent with lOp down (0 the SE tectonic transport

(Fig.6.35). There is. however, a significant area with 02 shear sense top-up to the NW in

the Puentes Viejas dam between the metapsammiteS and the L-fabric band (Fig. 6.25:

6.37). StruecuraJly below, in the Rio Madarquillos section. the migmatites and gneisses of

the Buitnlgo area were transposed intO suaight gneisses during a top down to the SE

shearing (Fig. 6.33). This shearing, like the one in the Madarquillos shear zone took place

in mewnoephic cooditions of the SiU+Ms zone.

BlIjt@go area. We.~rem Domain'

This area corresponds to the sillimanite + K-feldspar gneisses west of the

Madarquillos shear zone. 1be D2 defonnation in this area has a heterogeneous character.

The deformation in the migmatitic: paragneisses produced complex shear zones such as the
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"high temperature deformation bandH exposed along the: Puentes Viejas dam. between

Buitl3gO and the L- fabric band (Fig.6.25), This is a band with a compb ductiJe

deformation and fabrics developed under metamorphic conditions of the SiII+Kfs zone.

1be granitic orthogneis5es in the Buitnlgo area. a1lhough heterogeneously deformed. do nor:

show the complex folding observed in the surrounding paragneisses.

The migmatites and quanzo-feldspathic paragneisses in the "high temperature

defonnation bandH fonn metric-to decamelric-scalc. boudin-like. lenses separated by ductile

shear zones (Fig.6.38). Inside these lenses the gneissosiry is folded whereas to the oulSide

it is transposed by 02 shear zones. indicating an important flattening component associated

with the D2 non-coaxial shearing (Fig. 6.39). Some of these lenses show complex fold

inleffcmx:e patterns and disharmonic folding bot most anatectic migmatiteS are

harmonically folded and sheared. Muscovite is noc present in the fabric indicating

conditions for the D2 deformation in the SilI+Kfs zone (Fig.6.30). In me shear zones the

gneissosiry (52 mylonitic fabrics plus transposed SQ.S I) has a NE trend and a shallow

plunge to the SE (Fig.6.34). The minernJlineations. defined by fibrolitc. are almost parallel

to the dip of the 52 ductile fabrics, plunging 147122 on average (Fig.6.34). The

distribution of the poles to the gncissosity suggests folding along a 145123 tbeorWca! fold

axis. This lhecxetical fold axis is paraUcllO the orientation of the F2 folds (151m;

Fig.6.34). 1bese F2 folds were prodooed inside the more c:ornpetent lenses. and are also

paraUel to tbe minc1aIIsUetehing lineation in the shear zones (Fig.6.39). Shear bands

(Cplanes) are conunon particularly in the IllOIe competent quartzo-fckispamic Iilbologies

(Fig.6.38; 6.40). They have an average trend and dip of 461445. almost DOnna! to the

mineral lineations (Fig.6.34). These shear bands or C' planes have sillimanite stable in !he

shear planes. and locally are filled by Ialc pegmatiteS (Fig.6.40). These late pegmatites arc
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relatively common and cross<Ut the 52 foliation (Fig. 6.41). conflITTling the high

tcmpernrun:cond.itions.

The granitic orthogneissc:s an:: char3c1erized by a composite planar fabric which formed

around the l'I"iCR competent feldspar porphyroclasts. and an associaled minera!lsueu:hing

Iincatioo dermed by fibrolite and quanzo.feldspathic aggregates (Fig. 6.14). Merrie

boudins. parallel 10 the lmin. wen: formed during the heterogeneous D2 deformation.

Antithetic shear bands are common near the boudin necks; the dominant shear bands have

an average ~d and plunge of 37/SOE (Fig.6.34). Folding is restricted to the nearby

migmatitic lithologies (Fig.6.11). In general the stretching lineation in both the Buitrago

and Cincovillas gneisses shows a remarkable similarity plunging 160126 on average. This

is slighUy oblique to the dip of the average gneissosity in the Buitrago gneiss. 20132E.

which is similar [0 that in the high suain zone in the CincoviUas gneiss. whereas the low

strain zones of the CincovilJas gneiss have a nat lying foliation (Fig.6.34). The: F2 (old

axis in the nearby migmatitic gneisses ale subparallel 10 the Lmin in the orthogneisses

(153/32; Fig.6.34). lbis is consistent with the D2 character of the deformation in !he

orthogneisses, as already stated by Fernandez Casals (1979). In the area around EJ

Cu.adr6n (Fig.6.33), the scatter of the strueturaI data has been attribuce:d lO the intrusion of

the La Cabrera granite (Fernandez Casals. 1979).

Late deformations (03):

11le later deformational events have been grouped under a 03 deformational phase.

This phase has a greenschist facies reuograde character and a minor importance compared

to the main Oland 02 phases.

The most common suuctures are kink-folds. upright creoulations and discrete brittle

faults (Fig.6.42). The most significant macrostruCtureS are the greenschist facies Montejo
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and El Cervunal detachments.. 1be Moolejo detachment is a minor reactivation of the

western border of the Berwsa·Riaza shear zone. MOSt of this reworking look place along a

phyllonite band in the northern ex~ of the BRSZ, in the Arroyo de fa Garganra

(Hcmaiz Huena and Escuder Viroete. peB comm.). In the area of study. only small

discrete reactivations were recogniz.ed (Fig.6.42). The Cervunal detachment however. is a

continuous greenschist facies brittle-ductiJe fault zone which can be traced from Riaza to

Berzosa (Fig.6.3). II has a band of elongated augen.gneisses (Ilian. Nazaret and Berzosa

gneisses) in its footwall. whereas the hangingwall is Conned by the staurolite-mica schists

of the Eastern Guadarrama Domain. This fault zone is well u!X>SCd west of EJ Cardoso,

where an east-dipping high angle fouation cross-cuts the 52 fabric. Also near the Hermita

de Nazaret a metric mylonite zone can be recognized separating the Nazarel gneiss from

the staurolite-mica schists. Gonzalez Casado and Casquel (1987; 1988) reponed

greenschist facies shear bands along the lraCC of the delaChmenl but their relationship wid!

the detachment is uncenain.

Strudural evolution. discussioD.-

lhe proposed sequence of deformational events is very similar to the one originally

proposed by Fernandez Casals (1979). lbc: 01. ~ponsible for the crustal overthickening.

has been obliterated by lhe later D2 event, and it is only well preserved in !he

supnastruelUr3.l. Eastern Domain. east of !he area of slUdy. lbe 02 event in !be area of study

was associated with large scale ductile shearing. This shearing was COClCrnlraled along the

Berzosa-Riaza shear zone but it is also widespread in the gneissic infrastructure. as

recognized by other workers (i.e. Macaya et al .• 199(; A10ret al .• (991). The field area

covers staurolile-chloritoid mica schists in the Eastern Domain to sillimanite + K-feldspac

migmatitic gneisses in !he Western Domain. 1be 02 foliation. L2 lineation and F2 fold

axes in all these rocks have a similar trend with a consistent SDear sense of top 10 the SE
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(Fig.6.25. 6.27, 6.28, 6.34). This suggests that the D2 deformation was associated with

an oblique extensional event.

An imerpretative E-W cross section along the ~a of study (Fig.6.43) shows that the

structural features can be explained considering D2 as a progressive extensional event. This

could account for the metric-scale, east vergem F2 folds in the gneisses of the Western

Domain without ~quiring the D3 back-folding event proposed by Ca(Xlte el aI. (1982),

Macayactal. (J99I) and Azor et aI. (199Ia). These authors have indicaled the parallelism

between their L21ineations and F3 folds and the consistent lOp to the SE tectonic transport

of the D2 shearing. Such observations, however, arc inconsistent with the 03 backfolding

along N-S axis proposed by Azor et aI. (199[a). since there is only a single set of SE

trending L2 lineations and not two sets as expected (Fig. 6.28. 6.27. 6.34). The cross­

section proposed here also accouO[s for the observations of imponant strain panitioning,

with anastomosed shear zones separating competenl lenses of quartzo-fc:ldspalhic gneisses.

and resolves the thickness and extenl of the lenses of augen-gneisses without large

recumbent folds (Azoret aI., 1991; Fig.6.43).

The interpretation of the 02 event as a progressive extensional shearing also explains

the parallelism between L2 lineation and the F2 fold axes in the gneissic infrastructure by

flattening combined with rotation and shearing of layers oblique to the shear plane. The

similarity of trends between different structural levels implies thai while extension took

place, the deformation migrated to deeper and hotter structural levc:ls under the same

oblique extensional regime. This explains the common refolding of anatectic leucosomes

and migmatites in both the Manjii'6n antiform and the Buitrago area. Some of these

migmatites show disbannonic folding, suggesting that deformation took place in a

magmatic state (McLeUan, 1984). Given the post-DI character of the anatexis, it is likely

that anatexis took place during early stages of the ill deformation and as the leucosomes
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crystallized the migmatites began to behave like a Newtonian solid. developing harmonic

folds.

03 and latc defonnations act: downplayed as minor reactivations and modifICations of

the 02 macrostJUCture. such as the Iale extenSional reactivations along the Montejo and

Ccrvunal detachments.

6.7.3.- Microfabric development and metamorphism.-

The relationships between metamorphic mineral growth and deformation are presented

in this section. These relationships in the Buitrag~Riaza area have been described by

L6pez Ruiz et aI (1975), Arenas el a1. (1980). Casq~t and Navidad (1985). Gonza.Iez

Casado (1987). Bellido cl al. (1991), AzOtel aI. (1991). Escuder Viruete e! al. (1996) and

Hemaiz Huena et aI (in press). It should be noted thai the emphasis in this section is being

put on the area mapped in detail (Fig. 6.25), Le. from the chloritotd-S(aurolite transition 10

the SiU+Kfs zone.

Chlorite, biotite and garnet zones:

1bese three~ are located at the upper strueturaI levels of the Somosierra sector of

the Sierra de Guadarrama. outside the Berzosa-Riaza shear zone. 11Je lnID:: of the mineral

isograds is defonned by the D2 event (Fig.6.44). confllTtling the syn-DI oc inter 01-02

character of the mineral assemblages (Gonzalez Casado. 1987: Escuder Viruele el al..

1996). Garda Cacho (1973; in l..6pez Ruiz e[ at.• 1975) described a rare ocunence of

kyanite within the biotite zone. wtlich suggests pressures above 2.5 Kb (Chapter 10 of

Spear. 1993).
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Staurolite zone:

The staurolite-in isograd follows the trend of the mylonitic front of the Berzosa-Riaza

shear zone. The staurolite tone outcrops between the mylonitic front and the Cervunal

detachment (Fig.6.44). Sooth of the Cardoso antiform the transition in to lhe Slawolite

zone is very sharp but within the antiform~ is a wider zone (500 meier. approx.) with

coexisting chlantoid and staurolite (Gonzalez Casado d. aI., 1987). This uansition is well

exposed in the Hiruela mountain pass. where chloritoid porphyroblasts up 10 3 em long are

partially trnnsformed inlO Fe-chJorile. gamet and staurolite. There are also biotite

porphyroblasts. Both biotite and chloritoid have an internal schistosity (5 I?) defined by

trails of quartz and opaque inclusions. In the case of chloritoid the internal schistosity is

only partially transposed by the external schistosity (52). indicating an inter 01-02 and

possibly an early 02 character (Fig.6.45). The gamet porphyroblasts also have an internal

schistosity which is early· to 5yo-02.~ also are smaU euhcdral garnets overgrowing

ch.loritoid. 1bese garnets are usually rinuned by chlorite. but they can be in direct contact

with chloritoid. Staurolile is usually associated with chlorite and biotite, althougb locally it

can be in direct contact with chlorilOid (Fig.6.46). It should be noted that there is no new

growth of biotite. The coeJlislanoe of biotite and chIoritoid is perplexing because one of

lhem should have been f1:moved by reaction:

Chloritoid + biotite :: garnel + chlorite

This suggests thai this reaction has been overslepped but the effect of any extra

components such as Mn (Droop and Harte, 1995; Mahar et al., 1997) is uncenain on the

stability of biotite in this area. The new growth of staurolite, chlorite and gamel suggests

removal of chloritoid by the discontinuous reaction:

ChIorilOid:: gamel + chlorite + staurolite + H20
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This reaction takes place between 51(1" and 56()DC for pressures in the mnge between 3

and 8 Kb (Fig.6.47); these ~ m.inimJm temperarure estimales ac:cording to the ICFASH

system. CasqUel and Navidad (1985) reported biotile-gamet FelMg exchange temperarures

between S74'"C and 588'"C (or this tnnsition. lb: newly formed staurolite overgrowths the

52 foliation. This D2 foliation transposes the previous DI foliation. which was defined by

quartz and muscovite recrystallized following peak.tem~ conditions. This indicates

that peak temperature conditions in the staurolile-ehloritoid lrnnSition were lale-D2.

In the stnlCrucally higher pans of the staurolite zone. chlorite and staurolite are siable

suggesting temperatures between SlO"·55O"C (3 Kb) and 560"'·S9O"C (8 Kb: Fig. 6.47)

during D2. In the lower parts of the staurolite zone. the garnets have irregular shapes and a

pre-D2 character. chlorite has been removed and there is new growth of syn- to late·D2

biotite and staurolite. 1be new-grown biotite defines the 52 foliation. in association with

quartz and muscovite. whereas the new stallrolite paniaJly overgrows the 52. There is also

a previous generation of staurolite with an internal schistosity (early-syn D2?) which

predates the external 52 (Fig.6.45). This suggests DeW growth of staurolite and biotite

during D2 after reaction:

garnet + chlorite = SlaWOlite + biotite + H20

According to Spear (Chapter 10. 1993) this reaction takes place at around 58O"C

(Fig.6.47). This mini.mwn temperature estimale in lhe KFASH system is consistent with

reported Bt..(Jn (feIMg) excbange tempenllUteS of596"C and 616°C for the smurolile zone

(Casquet and Navidad. (985).

Casquet and Navidad (1985) and Gonzalez Casado (1987) reported the presence of

1ate·D2 sillimanite growing in the staUrolite zone. as well as post-D2 growth of andaJusite

(Fig.6.44). The presence of sillimanite could not be confumed. AndaIusite however. was
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identified in metasomatic veins cross-eutting the 52 foliation and overprinted by the OJ

deformation associated with the Cervuoal detaChment. 1bis indicates tlw low pressure

conditions were reached after 02 and before 03. and suggests a qualilative clockwise P-T

path for the St·zone (Path I. Fig. 6.47). It is uncertain if the sillimanite fanned after

staurolite and chlorite, in which. case the higher temperanues would have been achieved. as

well as if peak pressures were in the kyanilc or the sillimanite stability field.

Sillimanite (kyanite) lone:

This zone contains ~-D2 kyanilc partially replaced by syn~D2 fibrolitic sillimanite. It

covers the whole alent of the BRSZ west of the Cervunal dctaehmenL forming a 3 KIn

wide band (fig.6.44). The main foliation in this zone is an $2 resulting from the complete

transposition of S I and SO. 52 is defIDed by biotite. fibrolitic siJlimaniu: and muscovite

(Fig.6.45). The sillimanite post-dates porph.yroblasts of kyanilC. garnet and slaurolitc.

which arc inler 0 I~D2 (Gonzalez Casado. 1987).

Staurolite is common in the center and eastern part of the band. wbere it appears in the

matrix in contact with kyanite and quam. as pan of a Ky+St+Bl±Gn+PI paragenesis

(Fig.6.48). Both Icyanite and staurolile have inclusions of rutile and quacu. derming an

internal schislosily (5 I). Gamet main.ly contains inclusions of ilmenite and quartz that also

define an internal schislosity and only r.uely contains rutile inclusions. The kyanite and

sla1Ut)lite relicts ~ partiaUy corroded and SUITOUnded by syn-D2 muscovite. The Icyanite

porphyroblaslS ~ locaI1y bent and boudinage<! and in pl~ show undulose extinction.

[ntraerystalline deformation is also common in the plagioclase, indicating a pre-D2 growth.

TIle presence of staurolite, kyanile and quartz in contact. in !be pre-D2 matrix, and me

absence of chJorite, suggest formation of Icyanite by the reaction:

staurolite + chJorite =biotite + kyanite
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This ~on indicates temper.wres in excess of f:J.'XrC and pressures above 6.2 Kb

<Fig.6.41: Cbapter 10 of Spear. 1993) during the inter 01-02 interval. II is only in the

deeper parts of the shear zone. with no kyanite. that there are staurolite inclusions in garnet:

(Fig.6.49J. indicative of the reaction:

staurolite = garnet + biotite + AJ·silicate

This reaction was ~rved in a rock with the: paragenesis Sill+Grt+Bl±St+Ms+Qtz.

In the lower pans of the shear zone the pre-D2 assemblage Ky+Grt+Bt is common. but it is

uncertain if it is a result of staurolite consumption. Therefore. the only constraint on the

demise of staurolite: is that it took place during D2 in the sillimanite stability field at

conditions below 8 Kb and 6800C. as indicated by the previous reaction (Chaptcr 10 of

Spear. 1993; Fig.6.41). This is consistent with uansfonnation of Icyanite into sillimanite:

during 02, indicating lhe decompressional character of !.his deformation. The exact

trajectory of the P-T path during the decompression is uncertain (Path 2. Fig.6.47), 001 the

p~ of Iate- to post-D2 metasomatic veins with andalusite and reported KY:::And and

Sill=And replacements (Arenas eI at. 1980: Gonzalez Casado. 1987; Escuder Viruete in

Hemaiz Huerta et a1., in press) indicate die andalusi!e stability field was reached after 02.

Even though pegmatite veins are common in this zone, me lack of evidence of melting

further restricts lbe trajectory of the P·T path.

Sillimanite + muscovite zone:

This zone occupies the Madarquillos shear zone and the Manjir6n antifonn (Fig.6.44).

In the Madarquillos shear zone both the rnetapsammites and the mica schists have the same

mineral assemblage with Sill+Bt+Grt+Ms+Qtz±PI, although in diffe~nt modal

proportions. The sillimanite is fibrol.ite and defmes both gneissosiry and the S2 fabric in

association with biotite and muscovite. The fibrolite in the gneissosiry is folded (F2),
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rt:erysWlized biotite and muscovite have a decussate feAture defullng the Illnges of the F1

folds. quartz is also recrystallized and annealed conlaining muscovite. Tbcse texrutal

~Iationships indicate that both muscovite and sillimanite. as well as gamel.., were .sW>k

during the recrystallization !hat followed the D2 event. This suggests conditions in the

stability field of sillimanite and probably above the bfealcdown of staurolite (620" to 680"C:

Fig. 6.47). Pegmatitic: veins are conunon in the sillimanite + muscovite psammilcs and

mica SChislS but it is uncertain if they rep~nl minor anatexis. These veins. however.

differ from the anatectic migmatites in the ae.arby Manjir6n antiform.

The migmatites of the ManjirOn antifonn are well exposed at the head of the Puentes

Viejas dam (Fig.6.11). They contain 20% to moo: than 60% leucosome with the mineral

assemblage PI (An 15)+Kfs+Qtz±Gn. These leucosomes still preserve magmatic textures

sucb as concentric zoning of plagioclase and [ale interstitial crystallization of quartz among

euhedral·subhcdraJ plagioclase laths (Fig.6.50). The melanosome consislS of the

assemblage Bt + Ms + Sill. It should be 00led thai there is abundant tourmaline associated

with the melanosomes but not in the leucosomes. Gamel is growing in both the leucosome

and the melanosome. Nearby paragneisses consist of the assemblage

Ms+Bt+Sill+Gn+PI+Qtz+(Kfs?). In Ihe5e paragneisses. muscovite is stable in the maoix

and it is also pcesenl as inclusions in plagioclase poiltiloblaslS. This suggests th3t

anhydrous melting of muscovite (Ms+PI+Qtz:= Kfs+AlZSiOS+ melt; Chapter 10 of Spear.

1993) did nOllake place in these rocks.

TIle presence of garnet in the anatectic migmatites and the large volumes of anarecUc

melt would suggest that anatexis, if anhydrous, took place by melting of biotite

(Bt+A1ZSiOS+PI+Qtz:c: Grt+Kfs+melt; Le Breton and Thompson. 1987) at temperatures in

excess of 720°C (Fig.IQ-16 of Spear. 1993). The presence of tourmaline restricted to the

melanosome questions the effect of any boron solubility in the melt, which could have
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lowered me granite solidus (Johannes, 1985). There is a problem explaining the large

relative volumes of anatectic melt in the migmatites when nearby rocks do not have clear

evidence for biotite melting or breakdown and melting of muscovite. This field relationship

could be explained if. during the 02 extensional shearing, there was juxtaposition of lenses

of hotter/deeper rocks undergoing anatexis against rocks in me Sill+Ms stability zone. In

the Si1l+Ms zone during D2, the replacement of gamet by intergrowths of fibrolitic

sillimanite and biotite and the rannalian of sillimanite clusters pseudomorph.ing garnet is

common. This indicates the presence of mass transfer at mineral scale during 02. Therefore

significant arnprubolite facies retrogression of the migmatites in the Manjir6n antifonn may

have occurred after fluid release from the crystallizing anatectic melts, followed by

recrystallization in the Si11+Ms stability field (Fig.6.45: 6.47). This hypothesis. however,

has to be evaluated with quantitative thennobarometry. It could also be speculated that these

migmatites were part of a pre-variscan orogenic event, but such possibility is invalidated by

V-Pb dating (Section 6.7.4).

In the Manjir6n antiform, calc-silicate rocks are particularly weU exposed at the base of

the Puentes Viejas dam (Fig.6.12). They consist of the inter 01-02 assemblage Grt + Cpx

+ Qtz ± Cal ± Zo+Ttn± Rt, with plagioclase and amphibole growing after 02 retrogression

of clinopyroxene and gamet. According to Casquet and Fernandez Casa1s (1981) these

imer-DI-D2 Grt-Cpx parageneses might represent a high grade, eclogite or granulite facies,

event foUowed by syn-D2 amphiboliti2ation. This corroborates the presence in the

Manjir6n antifonn of an earlier (inter D L-00) high grade event roUowed by syn-D2 mid

amphibolite facies retrogression in the Sill+Ms zone.
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Sillimanite + K·reldspar ZODe (Fig.6.44):

West. of the Madarquillos sbear zooe the gneissic infrastructure of the Western

Guadamuna Domain is all in lhe Sill+Kfs zone. In this aru relicts of IDler DI-02 kyanite

and staurolite have been described by other workers (BeJlido et al.. 1991; A2J::Jtel: OIl..

199tb) but were not observed in this study. The mineraJ assemblage in the meupelites of

this zone is Sill (fibrolitc)+Bt+Kfs+Gn±P1 in association with granitic leucosomes. which

previous workers considered to be syn-D2. This indicates the breakdown of muscovite

following the vapor absem melting reaction:

muscovite + quartz:: K-feldspar + A12SiOS + melt

This indicates temperatures aOOve 650"-75O"C in the pressure range between 3.5 and

10 Kb for the anatexis (Chapter IOof Spear. 1993). In some of the migmaritic rock types

the percentage of melt is 40% 10 60% of the rock. If this melting took place under vapor

absent cooditions. such volumes of melt would ~u~ additional partial melting by biotite

breakdown (Clemc:~ and Vielzeuf. 1987). possibly a.fto'" tbe rcICtion (l..c: BretOn and

Thompson. 1988):

biotite + AJ2SiOs + plagioclase + quartz =garnet + K-feldspar + melt

Such a reaction would req~ temperarwes in excess of 1'2frC (Fig.IQ-16 of Spear.

1993). The absence of orthopyroxene in the mineral assemblage places a limit of

approximarely 800"C for the peak Iemperamte conditions (Fig.l()"(6 of Chapter 10 of

Spear. 1993).

TIle relationships between migmatizatioo and deformation. as already described. ow:

!lOt simple. TIle leucosomes are post-Dl and arc folded and locally sheared by me D2

event. TIle sillimanite is stable in the D2 mylonitic fabric and is pan of the suble
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paragenesis Sill + Kfs +81. Gamel is in places deformed conftmting the high-lempen.lUlt:

character of the fmal D2 deformation. 1be Ieucosomes are folded. some with disarmonic

folds. suggesting that lhey~ generated at high IcmpemuR: during anatexis. 11tis would

imply that migmatization took place during 02. and deformation continued (0 progress

while the leucosomcs crystallized in the SiII+Kfs tone stability field and underwent

subsolidus deformation. 1be presence of late: melts cross-cuuing the D2 fabrics is common

in this area. These are tourmaline-bearing graniticlpegmatitic melts. indjcating [hat boron

was dissolved in the melt. Johannes (1985) indicated that boron can significantJy lower the

granile solidus. bul these melts suggest that Icmperatures above 600"C were mantained after

D2.

Cordic:rilc-bearing assemblages (Crd-Bt-Sill·Ms·Kfs-PI-Qtz) were identified in the

Lozoya orthogneiss (Fig.6.6 and 6.44). west of the ~a mapped in detail. LOpez Ruiz et

aJ. (1975) and Bellido et al. (1991) reponed the lXCurrence of cordierite in the surrounding

paragneisses. According 10 Bellido c:l aI (1991). cordierile grew during the fmal stages of

the 02 dcfonnation (as deftned in this study). This indicateS lhallow pressure conditions

were achieved in the fmal stages of D2 wtWe still maintaning highte~ conditions.

It is also during these fmal stages of 02 that thete is signifICant amphibolitizaIion of the.

scarce, Cpx4rich marlC dykes such as the Braojos dyke (NW of the area map in detail).

Reports of wOUaslOrute in marble (Beilido et aI.• 1991) also confum the low-P f high-T

conditions achieved during the fmal stages of the D2 defonnation. There is also significanl

lateiposl402 growth of muscovite indicating that fluids were available during the (mal

stages of the 02 defonnation.
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6.7.4.- U-Pb geoc:hronology to t:Oll5lrain lbe liming of Varist:an

metamorphism and defonnalion:

The D2 atensional deformation in the Bc:aosa-Riaza shear zone (BRSZ) roincided

with peak melamOrphic conditions in the amphibolite facies. Under these circumstances. it

is possible 10 constnlin the timing ofbodl metamorphism and defocmation by combining U­

Pb thennochronomclers with diffe~nt closure temperalWeS (Tc). such as monazite (Te _

700"C: Heaman and Parrish. 1991) and titanile (Te -S5O"--6OO"C; Heaman and Parrish.

1991). with detailed petrography (Fig.6.SI). Smith and Barreiro (1990) and Kingsbury ICI

a1. (1993) have shown thaI monazite grows as a metamorphic mineral after soft phosphates

during regional metamorphism al the ehloritoid-slaurolite transition.

Mica schists were sampled from several localities in the Eastern Domain and the

BRSZ. where peak temperatures were below 6SOOC. 10 usc monazite as a prograde:

thermochronometer (Fig.6.SI. 6.52). Additionally. amphibolites. showing static

amphibole growth, were sampled for titanite 10 brackel the: 02 defonnation. In the Weslffll

Domain. rocks were sampled for monazite in both the: Sill+Ms and the Si1l+Kfs zone 10

obtain the age of peak meramorpbism and/or- cooling ages, including an ana.teetic kucosome

in the Sill+Ms zone 10 date the migmatizmion in the Manjir6n antifonn. An amphibolite in

the Sill+Kfs zooc: was sampled to obtain a titanite cooling age with which 10 provide a

younger limit for the peak metamorphism and the high temperature defonnation. FmaUy .

the post-collisional La Cabrera granite was sampled 10 provide a younger age limit for the

Variscan metamorphism and defonnation and to assess any relationship between the L:uc:

Variscan plutonism and the lare:·02 low pressurelhigh temperature mineral metamorphic

growth.
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lHrails 0{the U-Pb onolytical procftlurl'. including sample preparation. are provided in

apfH!ndix A./.

EAS1ERN GUADARRAMA OOMAIN (Cardoso antiform):

Sample Hi·! (St in (Cld ()t1II@OSj!joo)' St-Grt,Od) mica schisr

This sample was collected above the Cervunal detachment. in the Puerto de La

Hiruela. at the Cld-5, U'anSition (Fig.6.26: 6.52). The minernl assemblage is

SI+Grt+Bt±(Cld)+Ms+Qtz which indicates peak temperarures between 5JO"-55O"C

(Fig.6.47). Staurolite in this sample gn:w during 02 transposition of the S I fabric and final

growth overprinted the 52 fabric. Monazite has been identified as inclusions within 52

biotite.

lbe two monazile fractions analyzed are slightly discordanl above and below

concordia. invalidating a pn:liminary 334±3 Ma 207Pb/206Pb age for this rock (Valverde­

Vaqueroetal.. 1995). However. 206Pbl238U and 207pbl235 U ages from both fractions

are in good agreement and provide a growth age for the monazite of 327±3 Ma (Fig.

6.53; Table 6.2)

Sample Pi.! eSI.woe)' 51-0" mig schist

This sample was coUccted in the SI zone. above the Cervunal detachment. along the

road 10 the ski ~rt of La Pinilla (Fig.6.52). 1be minera! assemblage is St + Grt + Bt +

Ms + Qtz (fig.6.55). 1be 52 fabric (biotite+ muscovite + quam) wraps around the gamet.

Gamet contains an internal schistosity (51) and has corroded rims. Staurolite grew in two

stages, pre-D2 and syn- to post-D2. lbe last stage was probably associated with the

reaction Grt + ChI = St + Bt (S7()O • 6100 C ; Chapter 10 of Spear. 1993). Monazite

inclusions have been observed in 52 biotite (Fig.6.55) and syn- post-D2 staurolite. Two
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analyzed monazile fractions (Fig.6.55) have provided a growth age of 330±2 Ma (Fig.

6.54: 6.52; Table 6.2).

Sample CA-! (Core of lbc Cardoso antiform St -mnc;)- p1agins1ag-rich para-amphibnlixc,-

This rock was coUected in the core of the Cardoso antifonn. within the 51-zone

(Fig.6.52). This a felsic amphibolite. which outcrops as small boudins. The IeXIW'e is

formed by a granoblastic matrix of plagioclase (AnJO) and quartz with. up lem long.

porphyroblasts of posl-02 green clinoamphibole (hornblende) growing with an acicular

random orientation. Titanite grew in association with the amphibole. both as euhedral

inclusions in the amphibole and as individual crystals in the lTlaIrix (Fig.6.56). There is

also very minor chlorile (retrogression?). 1be random orientation of the amphiboles

suggesl a post-D2 static growth which is consislCnt with the final. post-02. growth of

slaurolite in the surrounding mica schists.

Four titanite fractions were separated foc analysis. Two fractions of colourless rilanite

produced meaningless results due 10 the low conc:enualions of U (10 10 17 ppm) and

radiogenic Pb (0.5 to 0.8 ppm). TIle results of fraction TI (colourless) were confumed

with a fraction of pale brown titanile (TI). Both fractions show a reprodocible 206Pb1238U

iSOlopic age of 32Z±2 Ma (Fig.6.56). This age can be inle~led as die growth age of

titanite or as a cooling age. althought the Tc for titlnite (550'"-600"0 is very close 10 peak

temperature conditions in the 51-zone (575°-610"C). Either of these illleqntations indicates

that 322±2 Ma is the younger absolute age limit for !be D2 mylonitic deformation in the

Cardoso antifonn (Fig.6.52). and for the amphibolite facies metamorphism.
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THE BERZOSA-RlAZA SHEAR WNE (SlLl.•+KY ZONE):

Sampk; 12-9- Kyanjle -sayrolite_gamet_sjlljffi3njte mjca schist·

This sample was collected from the sillimanite-zone with kyanile relicts in between the

Montejo and Cervunal detadunc:nts (Fig.6.52). The mineral assemblage: contains Ort + Ky

+ Sill(fibrolite) ± St +Bt + Ms + PI + Qtt (Fig. 6.26). Kyanite and staurolite are pre-OZ.

The 52 fabric is defined by fibrolile and biotite. Gt-Bt exchange geothennomcuy indicates

a peak temperature: of 63QtIQOC (Valverde-Vaquero. unpublished). Monazite has been

recognized as inclusions in 52 bioLites (Fig.657).

Monazite and rutile were extracted for analysis. Two fractions of brown rutile yielded

meaningless results due (0 the low U concentration and the smalJ percentage of radiogenic

Ph.

The two monazite fractions consisted of pale yellow euhedral to subhedral

parallelogram-like: crystals. The purity of these fractions was checked by EDS analysis with

the electron microprobe aI Memorial University prior to analysis. Although the fractions

are slighrJy discordant. the 206Pb1238U and 207Pb/DSU isotopic ages of these (WO

monazite fractions are in agreement. providing a growth a.,,<re of 326±3 Ma (Fig. 6.57:

Table 62)

THE WESTERN GUADARRAMA DOMAIN (Sill+Ms and Sill+Kfs woes)

Sample M26-2 (Sj!l±Ms zone)' folded mjgmatire Maniir6n antifoun (Fig 6 52· 658):

Two monazite and six zircon fuK:tions were selected from this sample. The two

fractions of clear. inclusion free. yellow lIJO[Iazite resulted in coocordant analyses. These

two raooarite fractions plot slightly above concordia. ~ting in younger 206Pb/207Pb
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ages.. The UIPb ages are, however, in agreement and provide a R:liab£e isotopic age of

325±2 Ma r~ the closure of lbe U-Pb system. The least discordant zim:Jn fractions (Z I.

Z2. 1.4 and Z5) are formed by small. clear. eubedraI. sharp. zircon needles and elongaled

prisms. These fractions and the concordant monazileS define a discordia line with a 36%

probability of fil. The lower inleteepC: of the discordia line is fixed by the concordant

monazites at 3ZS.6±2 Ma (Fig.6.58), The upper inlereepl at 627+141-10 Ma has a

dubious geological meaning btU suggests that presence of tale Precambrian. Cadomian.

inheritance. Zircon fractions ZJ and Z6 (00l plooed) also indicate older inheritance:.

These migmatites are gamet-bearing and contain more than 40% melt, which suggests

that they were produced at ICmperacures above the anhydrous muscovile"OUl melting

reaction probably in part by anhydrous biotite-out melting at Icmperacures possibly in

excess of nrrc (section 6.7.3). Most of the monazites a-ppear in the melanosomes as

inclusions in the biotites (Fig. 6.58). The high closure temperature ofmonazilc (Te-700"C)

and the high quality of the crystals analyzed suggest that the monazite ages date mineral

growth. This interpretation is supponed by the diSCOC'dia Iinc defined by the zircon fractions

ZI. n. Z4 and Z5. 11Jerefore. the lower intercept age al 325.6 ± 2 Ma probabiy reflects

the age of crystallization of the migmalitic melt. although this needs further conflltnluion

with concordan! zircon analyses.

Sample BII-2 fSjII + Kfs zooc;). 482 M.a aplitic vein Blljt@goWis.,!"

Four monazite fractions of diffeR:Dt size have been processed from a 482 Ma apLitic vein in

the Buitrago gneiss (Fig.6.18; 6.52). Large (MI; 70-200 mesh size) rounded, air abraded.

monazites have a concordant age of 337±3 Ma. This age however could not be

reproduced by a second fraction of similar monazites (M2) which have a concordant age of
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332±2 Ma. The small platy monazites. without air abrasion (M) atId M4: >200 mesh)

!lave provided ages of 331±3 Ma and 3Z9±2 Ma. respectively (Fig.6. 59: Table 6.2).

lbese ages suggest possible multiple growth of monazite: at ca. 337 Ma and ca. 332·

329 Ma. but the flISl age needs further conftrmation. 11lese ages ~presenl a minimum age

for metamorphism. With the CWR:nt age data base. it is diffICUlt 10 interpret them in rcnns

of growth or coo(jng ages. However. the relative good agreement of fractions M2. M3 and

M4 suggests that the age of 332 Ma does Dol: represent cooling. Given the high closure

temperarute of monazite (Te-7000c; Heamann and Parrish. 1991). it is likely that these

monazile ages indicate the timing of peak rnetamorphislIL

Sample PjB_! <Sill + Kfs zone)' 48" Ma foliated h;ycogrnnjte Pjnjl!a de Bnilrngo Buitrago

gnejssfFjg 6 21' 652\

Two fractions of rnona1ile and one fraction of mctamia xenotime defll1e a discordia

line with an upper intercept of 322±3 Ma (Fig.6.60). This age could be conservatively

interpreted as a cooling age reflecting tem~ below 650-7ocrC. 1ltis tem~

range is. however. consistent with an altemarive interpretaLion as a mewnorphic growth

age associated with the small laic: anatectic: meltS which cut the main gneissosi[y in me

surrounding augen·gneisses.

Sample J 0-1 (Sj!I± Kfs lOnc;)· Cordjeri,,:_bt;aring 477 M3 ayr<n·grx;iS:$ l! ployvela gnejss-

fig 622 652)

Both monazite and xenotime have been separated from this granitic orthogneiss.

Monazite can be easily identified in biotite-rich areas associated with biotite ± fibrolile +

muscovite +cordierite. Muscovite shows signs of instability.

220



Three monaz.ite and one xenotime fraction define a discordia line (74% probability of

fit) with a lower inrero:pl: anchored at 322±2 Ma by a concordant analysis of euhcdtal

xenotime (Xl) and two large monazite aystals (MI). (Fig. 6.61: Table 6.2). The upper

intcrecpt 31480+421-41 coincides with the pnxolith age of the rock (471±4 Ma; Fig.6.22).

This suggests that the discordia line represents a mixing line between primary igneous and

metamorphic monazite. which is consistent with thr: lower U coocentnllions in frncuon

MJ(*). Therefore, JZ2±2 Ma probably represents the age of monazite and xenotime

growth associated witll the: cordierite-bcaring low P I high T paragenesis. effectively dnting

the low P f high T metamorphic overprint.

C'CIf1II1Gn the U ClHlUfIlrarions of the ignlWus mO/VJl.ites from Lo Cabrtra grcuritr with tlrou ol,h,

Br;tg;osdYkc lDr&w levc!soflbr; Sill + Kfs zoD!'j)· AmMjboljlefFjg 6 52)

This dyke is formed mostly by plagioclase and green amphibole growing at the

Cltpense of clinopyroxene during retrogression and D2 deformation (Fig.6.62). Titanite is

common in 2SSQCiation wilh the grttn amphibole and as inclusions in the clinopyroxene.

1ben: is scarce rutile preserved as inclusions in titanite. suggesting chat titanite grew

partially after rutile possibly during rettogressioo.

Two tilanite fractions. pale brown and colourless. were analyzed. TIley both had

similar low U concentrations. The resultant analyses are slightly discordant. 1'2 overlaps

concordia within uncertainties. As already discussed this is an effect of the model common

Pb correction used (Stacey and Kramers. 1975). In rocks of this age. however. this effect

is minimal for the case of the 206PbJ238U isotopic ages. This is confIrmed by the

dupucatioQ of the 206Pb1238U ages in fractions TI and n. whicb provide an age of
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32l±3 Ma (Fig.6.62). This age is takcn as the age of c10$~ of lhe U·Pb system in these

titanile5. II is interprelCd as a cooling age ere- 600".5.5O"C) reflecting lhe amphibolitization

associated with tbe 02 deformation in the viciniry of the Robregordo fault.

TIlE POST·TEcroNIC LA CABRERA GRANITE;

This is a composite plulon fanned by granitic and granodioritic facies which are

thought to be coeval (Bellido et aI.. 1981). Published whole rock Rb-Sr isochrons

provided an age of 310±14 Ma for the granOOioritic facies and 287±5 Ma for the

leucograniles (Vialeue el aI., 1981). It is the external granodioritic facies lhal was sampled

for V-Pb dating (Fig.6.52. 6.63).

Four zirt:on fractions and three monazlle fractions were separated (Of" analysis. The

zircon fractions consisted of euhedral multifaceted. clear. prims separated by size (Table

6.2). Although intensively abraded. !.hey all show between 4% and 10% discordance. This

discordance could be attributed 10 a combined effect of minor Pb loss aIld inheritance.

Fraction Z4. zircon prisms with inclusions, is not reponed since: this analysis was

contaminated with common Pb from the fluid inclusions in the zircons.

All three monazite fractions arc: concordant (Fig.6.63). Fmctions M I and M2 have the

smallest error ellipses and provide a combined age of 292±2 Ma, which agrees with the

isotopic ages from all three fractions (Fig.6.63). This age of 292±2 Ma is interpreted :IS

the age of intrusion of the granodioritic facies of the La Cabrera granite
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6.7.5.- Timing and character or tbe Variscan tectonothermal nents In the

Somosierra area or tbe Sinn de Guadarrama: conclusions and discussion.

The structural and metamorphic data presented indicate that the earlier Variscan

deformation (01) was responsible for thc CIUSlaI thickening and me Barrovian

metamorphism in the inter 01-02 interval (Fig.6.64). In the area of study, the 01

macroslnJetutes have been obliterated by the D2 deformation. However, to the east in the

Majalrayo syncline and the Galbe de Sorbe anticline. the 01 deformation produced east

vergent structures {Gonzalez Lodeiro. 1988: Hemaiz Huerta et aI.• 1996). East of the area

of study. in the Hiendelaencina area. Lower Devonian sedimenlary rocks are deformed by

the OJ event. therefore providing an older limit for the 01 defonnation in the

suprastructuraJ Eastern Guadarrama Domain. This deformation is also responsible for the

greenschist facies mewnorphic wnation observed in the upper structural levels of the area

of study (Chi. Bt and Gn zones). The unconfumed ~ncc: of kyanilc in the BHone

(Garcia Cacho. 1913; in L6pez Ruiz et at. 1975) suggestS that a Barrovian mewnorphic

gradient was achieved after Ol. lberefore the U-Ph monazite growth ages of 330:1:2 Ma

and 327±3 Ma from the upper and lower staurolite zone could be taUn as a younger age

limit for the D1 deformation in the suprastruetural Eastern Guadarrama Domain (Fig.

6.64).

11le inter 01-02 Barrovian kyanite-staurolite:-bcaring mineral assemblages preserved

in the Berzosa-Riaza shear zone (BRSZ) indicate pressun:s above 6.2 Kb and lemperatures

between fI:XJ' and 65O"C (Fig.6.47) during rhe 01-02 interval. confinning the

compressional charncler of the 01 deformation (Fig.6.64). In Ihc gneissic infrastruclure of

the Western Guadarrama Domain there are only relicts of the 01 SIrUCtureS. TIle Qtz-Cpx.

Grt-(Zo)-(RI) assemblages preserved in calc-silicare boudins could suggest high pressure

223



mewnorphic conditions after 0 I (Casque! and Feml1ndex Casals. 1981). bul it is WlCCttain

if they~t~ I1lelllmorphic conditions.

The D2 deformational event produced [he juxtaposiloo of the: Eastern and Western

Guadam.ma Domains along the Berzosa.Riaza shear zone (BRSZ) fonning a set of

associated macrostn.lClU~ in the: Eastern (Cardoso antifocm) and Western domains

(Manjin'in antiform and Madarquillos shear zone). In the upper structuraJ levels of the:~

of study. the D2 defonnation crenulaled the 01 structures (02 crenulation band of Hemaiz

Huerta et aI.• 1996) and folded the ChI. Bt . Cld and Ort isograds. The strain of the D2

deformation increases sUUClurally downwards, leading to a complete transposition of the

o I structures and fabrics by the 02 ductile shearing. The 02 ductile shearing was

concentrated along the BRSZ. Peak metamorphism in the lower suuetural level of the

suprastruetural Eastern Domain. uppermost part of the BRSZ. coincides with the final

stages of the 02 defonnation. In the central parts aCthe BRSZ. relict inter 01-02 Icyanite is

transformed ima syn-D2 sillimanite. and in lhe lower partS of lhe shear zone slaUrOlite is

consumed to produce syn-D2 sillimanite and gamet. Posl-D2 growth of sillimanite in the

lowermost St-zone, Eastern Guadarrama domain. was followed by growth of andalusile_

Post-D2 andaIusite also grew after Icyanite and sillirnanite in the central parts of the BRSZ.

This indicates that all levels of the Berzosa-Riaza shear zone reached the andalusite stabililY

fJc:ld after the D2 defonnation. The kinematic indicalors in the Berzosa-Riaza shear zone

show a consistent shear sense of lOp down to the SE. A single population of L1 mineraJ

and stretching lineations was produced under different p.T conditions. indicating that the

BRSZ was a west vergent. oblique. extensional shear zone.

TIle 330±2 Ma and 327±3 Ma U-Pb monazite ages from the 5t -zone provide an older

age limit for the D2 defonnation and peak of metamorphism in the upper parts of the shear

zone, whereas the 322±2 Ma titanite age. associated with the post-D2 static growth of
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amphibole. provides the younger age constraint. The 326±3 Ma age from the monazite in

the Sill (Ky) zone probably ~nts the age of peak mcwnorphism and the D2

deformation in the cenual parts aClhe BRSZ (Fig.6.52. 6.57. 6.64).

In the gneissic infrastruettm:: of the Western GuadarTama Domain. rocks in the Ms+SiII

zone stability field form the footwall of the BRSZ. These rocks were sheared and folded

during the 02 event and are characterized by the parallelism of the L2 mineral lineation and

the F2 fold axis. Migmatites in lhis area (325.6 Mal and ~liCLS of high grade assemblages

in calc-silicates boudins indicate that some rocks were at h.igher grudc and subsequently

deformed in the Si11+Ms field during the D2 extensional event (Fig.6.64). In the deeper

level of the Western Domain. within the SilI+Kfs zone, anatexis was probably reached

during the early !itages of the D2 defonnation and as the D2 defannation progressed the

migmatites were folded and sheared in a subsolidus state at high tcmpcrnture in the

SiII+Kfs stability field. A 337 Ma mooazitc age from the Buitrago gneiss provides the best

estimate for peak metamorphism. 332 to 329 Ma monazite ages from the same rock also

provide a younger limit for peak metamoqXtism (Fig.6.64). 1be lale 02 deformation was

associated with growth of low P I high T mineral assemblages (322 Ma monazite.

xenotime) and amphibolitization of the scarce mafic lithologies (321 Ma tilanite. Braojos

dyke; Fig. 6.64).

"The 322 Ma monazite a~ characterize the westernmost pan of the area of study,

suggesting a transfer of the extensional deformation towards deeper and hotter levels with

time. This implies a progressive extensional defonnation during the D2 event. which is

consistent with the parn.llelism of the structural trends observed between aU levels of the

Berzosa-Riaza shear zone and its gneissic footwalL These ages also indicate that high

temperatures were still maintained during the fmal stages of the 02 extensional

deformation, while there was the new growth of low pressurelhigb temperature mineral
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assemblages (Bellido el aJ.• 1991). The 321 Ma titanite age from the Braojos dyke also

indic.a1es the ICtrograde character of these assemblages. Therefore. the D2 extensional

deformation in the gneissic Western Guadarrama Domain is bracketed between 337 Ma and

321 Ma (Fig.6.64).

The late growth of posl-D2 ~-D3 andaJusitc in the lower levels of the Eastern

Guadarrama domain (Gon%aJez Casado. 1987) and the Sill -Ky zone (.>uc:nas. 1980:

Gonzalez Casado. 1981) indicates that low pressure conditions were achieved after the D2

extensional defonnation. The 03 deformation includes all post-D2 greenschist facies

deformations. including the formation of late brittle/ductile extensional delaChments

(Montejo and Cervunal decachments). The Cervunal detachment separates the Sill(Ky) zone

from the lower levels of the Eastern Guadarrama domain (51-zone). the presence of pre­

detaebelIM:nl andalusilc on both sides of the faull suggests thai. this could be a minor

reactivation nucleated around the elongated bodies of pee-Variscan augen-gneisses of the

Sill (Ky) zonc.

The 292 Ma post-tectonic La Cabrera granite sealed the Bcrzosa·Riaza shear zone.

cross cutting the 02 rnacrostruetun: and the regional metamorphic isograds. This incficald

the presence of a 30 Ma gap separ.W.ng the 322 Ma low P , high T mewnorphism from the

Laic Variscan posl-collisional plutonism (Fig.6.52: 6.64). According 10 Fernandez Casa1s

(1979). the La Catm:ra granite provides a younger Iimil for the greenschist facies OJ

Variscan defonnation (Fig.6.64). Ie should be noted that there is no reported evidence thai:

the La Cabrera granile intruded into mica scbists of the 51-tone, therefoce it does not:

provide a real time constraint on the timing of the Cervunal detachment.
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6.8.- PALEOZOIC TECTONOTHERMAL EVOLUTION OF THE

SOMOSIERRA SECTOR OF THE SIERRA DE GUADARRAMA:

DISCUSSION.

This section discusses the leCtortic and regional signifJCaJlCe of the differall

tectonothermal events unravelled in the Somosiem sector of the Sierra de Guadarnma

(Fig.6.65). FIrst the tectonic significance of the pre-Variscan events will be: discussed.

including contemporaneous events elsewhere in the Iberian Massif and ptJ(entiai

correlatives along the Southern Variscides. This will be followed by a discussion of the

significance of the Variscan events both at regional and orogen scale.

6.8.1.- Arenig felsic: magmatism in the Sierra de Guadarrama and the nature

of the "Sardic" events In the Central Iberian Zone: An Arenig conUnental

magmatic arc.

TIle ~Sardic~ deformation in the Cenu-a.l Iberian Zone consists mainly of tilting of

blocks and has an overall extensional character (e.g.• L6pez Dfaz. 1995: Diez Balda et al.,

1990). This has led mosl aulhors 10 consider thai: the Sardic unconformity represents a

break-up unconformity associated with a passive margin and the Early Ordovician

magmatism as rift-relared (e.g.. Quesada. 1991). Gebauer et aI. (1993), however,

imerpr-eted this magmatism as a post-collisional episode rdated to a hypothetical 1.aIe

Cambrian collisional event.

1be new U·Pb data. validates regional corn:lations between the gneisses or the Sierra

de Guadarrama and those in the DUo de Sapo antironn (46S±1O Ma Viana de Bolio

orthogneiss, U·Pb zircon; Lance[ot et al., 1985; 488 Ma 0110 de Sapo augen-gneiss, U-Pb

SHRIMP; Gebauer et al, 1993), as suggested by previous authors (Parga et aI., 1964; Die%

Balda et aI .• 1990; Azor et aI., 1992; Gebauer et aI., 1993). Accordiog to these corn:lations
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the Early Ordovician orthogneisses of the Sierra de Guadarrama are pan of a 600 Km long

and 5 to 100 Km wide felsic magmatic arc of batholithic proportions. which extends from

Central Spain 10 its NW coast. Additional possible correlatives are the undated calc-alkaline

Cambro-Ordovician volcanosedimentary complex of the Montes de Toledo in the southern

half aCthe CIZ (Martin Escorza, 1976; 1977; Munoz et aI., 1985) and the porphyroid levels

aClhe PortUguese side of the az (Gutierrez Marco et aJ.. 1990: Oliveira et aI., 1992), all

of which outcrop below the Sardic unconformity.

The available geochemistry on lhese rock.s both in the Sierra de Guadarrama and in

zamora(NW Spain) is relatively limited but includes dioritic to granitic compositions (57­

73% Si02) with volcanic-arcIpost-collisionai trace element characteristics (Navidad ct al..

1992; Gebauer et al.• 1993). They are predominantly of dacitidgranodioritic composition.

The significant 2.0 to 2.6 Ga zircon inheritance in some samples confirms the involvement

of a Prolcrozoic crustal source in the genesis of these magmas (Lancelol el a1., (985;

Wilberg et aI., 1989).

The batholithic proportions of !he felsic magmatism. the scarcity of associated basic

magmas, and a minimum 60 Ma age difference from any previous orogenic evenl in the

crz (Late Vendian Cadomian compression; L6pez Dfaz, 1995) suggest that this Arenig

magmatism represents a short-lived continental magmatic: arc. In such a model, the weak

extensional defonnation associated with !he Sardic phase would be related to eXlension

during batholith emplacement (Hamilton, 1995; Cordillera: Tobisch et a1., 1995: Chilean

Andes: Dallmeyer et 31., 1996).
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Coeval events in the Iberian Massif and speculative correlatives along the

SoutbUD Variscides:

Coeval magmatism is also found in the Ossa Morena Zone (OMZ) and the

AUochthonous Complexes of Galicia TraHlS-Monte:s (G1"MZ: Fig. 6.66). This includes

alkaline and peraluminous plutonism in the DMZ (U-Pb dala; LanceIOl and AJIegret. 1982:

Ochsner. 1993). and mafte and felsic igneous rocks. some with ophiolitic affinities. in the

alIochlhonous unirs of the GTMZ (V-Ph data; Kuijper et al .• 1982: Peucal et a1. 1990:

Dallmeyerand Tucker. 1993: Santos Zalducgui et aI.• 1995; 1996). The Early Ordovician

magmatism is not an exclusive characteristic of the ClZ. Mnig volcanism associated with

deposition of the Annorican Quartzite: as well as a weak Sardic unconformity an: also

present in the CZ(ArambunJ and Garcia Ramos, 1993: Gallastegui ct aI .. 1992). but with

no signs of Sardic deformation. Contemporaneously. the WAU formed a deep. graben­

like. sedimentary trough separating the CIZ from the cz. This zone underwent active

subsidence resulting in the deposition of a lhick siliciclastic sequence (Series de los Cabos:

Marcos. 1973) with no evidence for Sard.ic deformation or WlCOnfonnities

The weU deftned. Arenig to Ashgill. faunal and lithostratigraphic similarities between

!he Centra! Armorican Massif and the Central fberian Zone (Young. 1990: Paris and

Robardet, 1990; Robardet and Gutierrez Marco. 1990) suggest a linkage between the

coeval felsic magmatism in both areas. In that sense me similarity of the T~madoc I Lower

Arenig syndepositional acid volcanism of the Cap de la Chtvre formation in Central

Brittany (Fig.6.66: Bonjour and Chauvel. 1988) with me volcaniclastic Cardoso gneiss,

both of which predate me Armorican quartzite, is noteworthy. However, the U-Pb age data

on !he Early Ordovician calc-alkaline and alkaline granitic orthogneisses of Central Brittany

(legouzo et al., 1986 and ref. within; Thieblemont et aI" 1989; Le Com: et aI., 1989) are

too limited to establish correlations. Pre-Caradocian felsic magmatism is also abundant
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aloag the southern Variscides (Fig. 6.66; Eastern Pyrenees. Na'lidad and Carreras. 1995;

Sardinia. Cannigniani et aI•• 1994; oortbcm Apennines. Conti et at. 1993; Ligurian AJps.

Cortesogno et aI., 1993) but there are DO reliable age data to establish a contemporaneity of

events.

6.8.2· Timing of Variscan tec::tonothennal events in the Sierra de

Guadarrama: tectonic significance for the evolution of the Central Iberian

Zone and the Iberian Massif.

According 10 Martinez et aI. (1990) the metamorphism of the Central Iberian Zone is

characterized by an initial Barrovian mineral growth overprinted by low P I high T mineral

assemblages and associated S-type plutonism. 1bese relationships between defonnation

and the Barrovian and low P Illigh T metamorphism in the CIZ are best preserved in the

Siemde Guadamlma (JuJiven andM~ 1987; Martinez et aI .. 1990; Ugidos. 1990:

Dobias d aI.• 1994 a,b), which highlighlS the majoc significance of the data obtained

during this study (Fig.6.64: 6.65).

Timing of metamorphism and plutonism:

The monazite U-Pb ages indicate that the peak metamorphism associated wid! the

Barrovian event took place berween 337-329 Ma in the Western domain and 330-326 Ma in

the lower parts of the Eastern domain and the Berzosa-Riaza shear zone (Fig.6.60). This

was foUowed by growth of low P I high T assemblages in the deepest levels of the Western

domain at 322 Ma. The 322-321 Ma titanite cooling ages from the Eastern and Western

domain indicate thai the metamorphism in the Sierra de Guadarrama was pan of a single

Lower 10 Middle Carboniferous metamorphic cycle involving two stages of mineral
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growth. lbis was advanced as a hypothesis by Martfnez el aI (1990). who proposed an age

of 330-315 Ma for the low pressure metamorphic growth on the basis of the field

relationships with me S-rype granites of the CIZ (Rb-Sr ages; Semmo Pinto et aI.• 1987).

The pre-Variscan prototitb and the Variscan metamoe'pbic ages obl:ained in this study

demonstrate that the c.a. 380 Ma lower intercepts of Wildbcrg tt a1 (1989) in the Sierra de

Guadarrama are geologically meaningless. These aulhors interpreted these intercepts as the

age of Barrovian metamorphism. even though lhis was unlikely given the presence of

Emsian (390-385 Ma. Odin et aI .• 1990) sedimentary rocks in the pre-orogenic sequence of

the Eastern Sierra de Guadarrama Domain (Gutie~ Man:o et al., 1990). Wilberg CI at

(1989) also wrongly interpreted their unpublished 300-280 Ma monazite and zircon ages

from the Variscan granites of the Sierra de Guadarrama as the age of the low P f Iligh T

overprint. This also invalidates the tectonic models of Dobias et aI (1994. a .b) which relied

heavily on the data of Wildberg et al (1989).

To the knowledge of the author. the 292±2 Ma age of the J:M)St-lectonic La Cabrera

granite is the fll'St precise U-Pb age available for the Late Variscan plutonism in the CenU21

Iberian Zone. This age is coeval within error with me 287±12 Ma high-K cak-a1kaline

andc:sitic volc:mism in Atienza (easternmost Sierra de Guadarrama: K-At: Hernando d al .•

1980). This indicateS thai eXlensive Late-Variscan post-Ieclonic plulonism was coevaJ with

the post-tectonic Permo-Carboniferous volcanism. however a larger number of reliable and

precise U-Ph ages would be needed 10 confIrm this h.ypoIh.esis. Such. a U-Ph data base

would also allow to lest if the current scatter of protolith ages (310-270 Ma. Rb-Sr; K·Ar,

Yenes el aI., 1996) for the posHectonic plutonism in the ClZ is real or a result of a mixnm:

of imprecise protolith and cooling ages.
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The 30 Ma gap between the JX)St-leCtonic plUlonism and the low presswVhigh

temperarure overprint in the Sierra de Guadarrama indicates a dissociation between the

processes of synkinematic migmatization and post-Unematic plutonism. This would

suggest that the post-tectonic plutonism in the Sierra de Guadamuna and Spanish Cenual

System could have been produced by melting reactions induced by magmaric heat from

mantIe-derived magmas. Due to the large volumes of posl-ltttonic magmas. one can noI

dismiss the possibility of a local low PJ high T overprint in certain parts of the CIZ.

Timing of derormallon: Early-Mid Carbonirerous syn-collisional extension:

Structural and metamorphic evidence for Variscan syn-collisional eltlcnsion has been

recently reponed from several pans of the CIZ (Fig. 6.67: Miranda Douro antifonn,

Escuder Viroete ct aI., 1994: the Salamanca detachment zone. Di'az BaIda et aJ.. 1995: the

Toledo anatectic complex, Barbero. 1995). This study also confirms the extensional

character of the D2 deformation, providing foc the fust time, direct constraints on the

timing of extension in the Central lberian Zone (Fig.6.64). lbe 337-321 Ma extension is

Visean to Namurian (Fig.6.6S). This coincides with the flm thrusting in the forelands of

the lberian Massif (Cantabrian and South Portuguese zone: Fig.6.67l, confIrming the syn­

collisional character of the extensional process. This is also contemporaneous with the fmal

movement along the Badajoz-Cocdoba shear z.ooe (OMZ-CIZ boundary: Fig.6.67l,

indicating the presence of coeval ~nching and extension. coupled with early thrusting in

the opposing forelands, at the scale of the orogen. 1bere are major wrench post-D I shear

zones in the Central [herian Zone (Central Extremadura and IU2baclo-Penaiva do Castelo

shear zones. Fig.6.64: e.g.. orez Balda et aI., 1990). However. there are no reliable

constraints on the timing of movement to make a corttlation with the oblique extension

along the Berzosa-Riaza shear zone.
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The OJ folding is Upper Carboniferous (section 6.7.5). The laIe brittle-duetile

extensional detaelunent reactivation in the Somosiem could be Upper Carboniferous or

even Penman. Similar discrete brittle-ductile ddachrncnl in cxher pans of the: Central

Iberian~ Cross-CUI posr:<olIisiooal plutons (Hernandez Henrile. 1991: Dobias. 1991).

On the basis of these observations. and anaJogies with the metamorphic core-cornplexes of

the Basin and Range (USA). Deblaset aJ. (1988). DobIas (1991) and Debiase! aJ (1994 a.

b) suggested a process of late-orogenic extensional collapse with coeval low pressure

metamorphism and plUlonism 10 explain the late extensional detaelunents cross-cutting the

post-collisional plutons intrusive into the low P I high T metamorphic complexes of lhe

crz. The new time constraints from the Somosierra invalid:lIc this hypothesis for the 5ieml

de Guadarrama.

The time constraints from the Sicml de Guadarrama demonstrate. for the rlCSt time.

that peak metamocphism and syncoU..i.sional extension in the Central iberian Zone were

broadly coeval wilh ca 340 Ma high P I high T (Vosges: Bohemian MassiO and Barrovian

(Massif Centrnl) metamorphism. Visean (0 Namurian extension and exhumation of

mewnorphic complexes along the Variscan Bdt (Fig. 6.68). II is uncertain if the Visean­

early Namurian syncollisional eXlension in lhe Central. Iberian zone is a simple case of

coUapse of a thickened orogenic wedge (Plan. 1986; Dewey, 1988) or part of a complex

setting involving collision and IranSpression and/or lateral extrUSion with associated

eXlension (Rarschbacheret a1.• 1989; Mancktelow and Pavlis. 1994). BUI this study in the

Iberian Massif conftrnlS the presence of major. orogenic-SCale. Lale-Middle Carboniferous

syncollisional extension all along the hinterlands of the Variscan belt ( Fig. 6.68).
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CHAPTER VII

DISCUSSION AND TECTONIC IMPLICATIONS:

PRECAMBRIAN AND PALEOZOIC EVOLUTION OF PERI·

GONDWANA FROM A COMBINED APPALACHIAN­

VARISCAN PERSPECTIVE.

This chapter outlines the major contributions of this study 10 the understanding of the

evolution of North Atlantic peri.<Jondwana. The following discussion begins with an

assessment of the tectonothermal evolution of the Hennitage Aexure (Fig.7.1 and 7.2)

which integrates the results from the Cinq-Cerf gneiss (Chapter m) and the MMgaree

orthogneiss (Chapter M within the wider regional conle:U of the Newfoundland

Appalachians. Then the contemporaneity and major" importance: of lhc: Early Ordovician

(Arenig), ca. 480-470 Ma magmatic events in the Appalachian Hermitage Aexure and

lhc: Variscan Central lberian Zone, is discussed. This new data highlights the magnitude

and hitherto unrecognized parallelism of the Early Ordovio::ian events along the Gondwanan

margin of the Iapetus Ocean in the Newfoundland Appalachians with those in the Southern

Variscides.
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1.i.·TECTONOTHERMAL EVENTS IN THE HERMITAGE FLEXURE

(SOUTHERN NEWFOUNDLAND APPALACffiANS): THE EVOLUTION

OF WESTERNMOST PERJ·GONDWANA.

The Avalonian basement in lhe Hermitage Aexure (Chapter n & UI) is one or the

westernmost. inboard. proven. AvaIonianlCadomian terranes in the Appalachians. The

Hcnnitagc Flexure (Chapter m: Fig. 7.1 and 1.2) is one of the few areas in the

CadomianfAva!onian belt with weU ~dcd 680 Ma magmatism (Fig. 7.3 and 7.4).

Coeval U-Ph, prololith ages have only been reported from the Connaigre Peninsula of the

Avalon Zone (685-670 Ma, e.g. O'Brien el aI., [996), the Mira terrane (682 Ma., Cape

Breton: Bevieret al .. 1993) and the Malvern Complex (677 Ma. southern England: Tucker

and Pharaoh, 1991). 1be characteristic 635.600 Ma Avalonian magmatism has not been

reported from the Hennilage Aexure. but the 590-540 Ma magmatic and defoonational

episodes have equivalents in the post-590 Ma calc-alkaline magmadsm and 570-550

bimodal volcanism in Conmugn: and Burin Peninsulas (Avalon Zone: O'Brien et al..

1996). the 570-560 Ma late an: magmatism of the British Avalon (Gibbons and Horak.

1996) and the S7S-S60 Ma calc-alkaline and thokjjtic bimodal magmatism in the Mira

Terrane (Fig. 7.3 and 7.4; Barr and White. 1996). This ~inforces the correlation between

the La1e Prttambrian basement of the Hennitage Aexu~ and the Avalon Zone and its

equivalents. the British Avalon (Gibbons and Horik. 1996) and the MitaICaledonia

temnesofthe Maritime Provinces of Canada (Barr and White. 1996). The combined data

from the Hermitage flexure refutes the hypothetical correlation of Barr and White (1996)

between the Late Precambrian basement block of the Hennitage flex.ure and the 550-530

Ma volcanic arc ITUlgmatism and early Cambrian deformation and metamorphism of the

Bras d'Or and Brookville terranes of Cape Breton and Nova Scotia (Fig.7.3 and 7.4).
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Small Precambrian inJiers of ca. 565 Ma intrusive rocks (Evans et al., 1990) in central

Newfoundland suggesl that me l...aIe Precambrian basement of the Hermitage Flexure

extends farther north. The presence of S69 Ma detrital zircon and 545 Ma detrital titanile in

the Gander Group (O'Neill. 1991) indicates an Early Cambrian older limit for the

deposition of this siliciclastic sequence. The Gander Group is classically interpreted as a

passive margin sedimenlaty prism formed along the easlcm margin of the raperus Ocean

(Williams. 1979). The presence of a basemenllo the Gander Group remains 10 be proven.

001 the ages of the detrill1l minerals aUowone 10 suggest thaI there may be an Avalonian

basement like the one of the Hermitage flexure.

Magmatic activity in the Hermitage flexure (Fig.J.t) was renewed in the

Tremadocian. with the intrusion of 499±2 Ma granodiorite and 496±3 Ma gabbro (S.H.

O'Brien el al., 1991) into the previously defonned lace Precambrian low grade

volcanosedimenuuy cover 10 the Cinq.ccrf gneiss (Fig.7.2: chapler III). This magmatic

pulse coincided wilh the fonnation of Tremadocian ophioliles (Dunning and Krogh. 1985)

in an oulboard 5uprasubduction environment along the eastern margin of lhe Iaperus Ocean

in conjunction with the formation of the l...aIe Cambrian-Early Ordovician volcanic arcs of

the Exploits Subzone (see chapler m. The Early Ordovician Penobsconian event (Neuman

and Max, 1989) resu.l~ in ophiolite obduction (Cenual Newfoundland; Colman·Sadd et

al., 1992) and passive margin (peri--Gondwanan margin) I arc: (Exploits Subzone)

juxtaposition. In the Hennilage Aexun: the Penobscottian event is marked by the p£e-477

Ma imbrication of ~ophiolitic" gabbros and volcanosedimc:ntary rocks in me Bay du Nord

Group (Fig.?!; Tucker et al., 1994). This event, however. was not recorded in the

nearby Cinq·Cerf block.

Ophiolite obduction was followed by Arenig arc plutonism. volcanism and

sedimentation along the pcri-Gondwanan margin of the Newfoundland Appalachians iUld
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by a major~ Arenig-Early Uanvim back arc rifting event which marked me separ.ation

of Avalonia from Gondwana (van Staal. 1994: S.H. Williams Cl aI.• 1995: O'Brien Cl a!..

1997}.1be back arc rifting event coincided with me 474-465 Ma intrusion of me bimodal

arc I back: an: Margan::e onhogneiss (Fig.?I) intO lhc sedimentary protoliths of the Poet·

aux-Basques paragneiss (Chapler lV). The 414+141-5 Ma and 472±2.5 Ma members of the

Margaree onhogneiss are broadly coeval with the inttusioo of lhe 4TI±1 Ma Baggs HiU

gr-..nitc (Tuckercl aI., 1994) in the nearby Bay du Nord Group (Fig.7.2) and the intrusion

of the 474+61-4 Ma Partridgebcrry Hills granite in cenuaJ Newfoundland (Colman-Sadd el

aI .. 1992). which mark the end of the Pcnobscottian imbrication. The intrusion of the

465±3 Ma member of the Margaree orthogneiss was coeval with widespread bimodal back

arc volcanism in the Exploits Subzone. including the Bay du Nord Group (Fig.7.2). and

local low pressure I high temperature metamorphism and anateltis of the Gander Zone in

cenual Newfoundland (see Chapter IV).

lbe intrusion oftbc 450 Ma Port-aux-Basques granite (van Staal et a1.. 1994) indicates

the presence of a major magmatic: pulse which seems to be exclusive 10 !he southwestern

Hennilage Aex~ (Fig.7.1 and 7.2). This coincides with !he enigmatic tilanite age of

448+9/-3 Ma in the Cinq-Cerf gneiss (Dunning and O'Brien. unpublished: see chapter [Il).

Whether or 001 !he intrusion of !he Port-aux-Basques gmnite m.arlcs the inception of

deformation in the Pon-aux-Basques Complex (van 5[33.( et aJ.• 1994) is uncertain 10 this

author (see chapter IV). [£ tbaJ. was !he case it would indic:ue a local Caradocian collision

between certain elements of !he Lawentian and peri-Gondwanan margins of the [aperus

Ocean. The notion of a local evenl is reinforced by the lectonic inactivity and the

confonnable deposition of Caradocian shales and greywackes in the central and northern

parts of the Exploits Subzone (see cbapter fI).
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The Early Silurian syn-k.inematic inuusion of the Western Head granite into the Cinq­

Cerf gneiss at 431.5± I Ma is the first reliable recotd of the Salinic orogeny in the

southwesl Henni!age Aexure (Fig.7.1 and 1.2). The thrusting of the Cinq-Cerf gneiss

over its Late Precambrian cover (cha(l(er lIT) at 430 10 420 Ma coincided with the opening

of the Silurian La Poile Basin. indicating local transtension wilh abundant mafIC and fel.sic

magmatism in this pan aCme Hennilagc Aexure. 1beca. 418 Ma inversion of the Silurian

La Poile Basin is coeval wilh 420418 Ma D2 deformation and peak metarnoTphism in the

Pon-aux-Basques complex (Fig.7.1: chapter IV). The intnlsion of the 417+7/-4 Ma late­

syn-D3 dyke in Margaree orthogneiss and the 410±2 Ma titanite cooling ages from the

Margaree orthogneiss record the cooling and exhumation of the Pan-aux-Basques complex

(see chapter fV). 1be suturing of the peri-Laurentian Dashwoods Subzone and the Grand

BaylPon-aux-Basques complexes at 415 to 390 Ma along the Cape Ray Fault (Dubi et al ..

1996) was followed by widespread Early Devonian at 390-384 Ma posl<ollisional

plutonism in the Hermitage Aexure (see chapter D). Early Devonian deformation appears to

be ~ted [0 movement along brittle-ductiJe wrench faults (Fig.7.1 and 7.2).

The Silurian mewnorphism and synmetamorphic deformation retlect the climax of lhe

collision between ~tia and Avalonia (Salinic orogeny of Dunning el aI., 1990).

Timing of melatllOrphism and deformation in the Poct-awt-Basques Complex (cbaplef M

parallels tbar of the Linle Passage gneiss (Fig.7 .2) on the soumeasrem side of the

Hennitage Aexure (ca. 423 Ma migmatizatioo; see chapter [I). This indicaIes thai:

Hennitage Aexure was undergoing crustal thickening, metamorphism and clefonnation

while syn-orogenic sedimentary basins (Silurian La Poile basin) were fonned in its upper

crustal levels (Fig.7 .2; Cinq-Cerf block.; chaprer III). According to the available age data

(sec chapter IT), the Dashwood Subzone escaped the Silurian tectonothermal events in the

opposing Grand BaylPort-aux-Basques Complex (Fig.7.2). Upper amphibolite facies
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Silurian Barrovian metamorphism howcvcrovcrprinted the Laurentian rocks of the Comer

Brook lake block al 430-425 Ma (sec chapter m. north of the Dashwoods Subzone. These

tectonothermal events in the Henn.itagc Aexwe coincided with the docking of the Avalon

Zone along the Hermitage·Oover fault (sec chapter U) and Silurian RlClalIlOI'Phism and

intrusion of syn-kinematic anarc:ctic gnnllCS along the easu:m side of the Gander Zone.

This revives the question of a possible Late Ordovician inception of the continent-continent

collision. The ca. 430 Ma synkinematic bimodal magmatism observed in the Hennitage

Flexure suggests the presence of an abnormal h.igh geothennal gradient with possible

mantle involvemcnr. which might be consistent with a 30 Ma gap (England and Thompson.

1984) separating peak metamorphism (ca. 420 Ma) and the possible inception of

defonnation in the Port-aux-Basques Complex at 450 Ma as proposed by van Staal et aI

(1994). Whalen. et aI. (1987), Whalen et aI. (1994) and Kerret aI. (1995) have argued for

extensive crustal melting at ca. 43Q-400 Ma due to lithospheric delamination and lower

crustal underplating by mantJe-derived mafic magmas. If this was the case the time gap for

the onset of the collision might be shorter than 30 Ma However. magmaric heat lnlnSfer

from the 430 Ma bimodal magmas on the Silurian (ca420 Ma) Barrovian geothermal

gradient of areas like~ Port-aux.-Basques complex remains 10 be proven.

It is wonh mentioning thaltbe Avalon Zone (Fig.7.4) does not record any of the

Paleozoic events discussed above and thai Siluro-Devonian plutonism is restricted to the

border with the Gander Zone. AJthough the Precambrian evolution of the Hennitage

Aexure suggests a close link with the Avalon Zone, the subsequent Paleozoic evolution

indicales that the Avalon Zone escaped the events (fig.7. t) that shaped the evolution of the

peri-Gondwanan margin of the Iapetus Ocean. It is uncertain if the relative position of the

Avalon Zone with respect 10 the Hennitage Aexure and the Gander Zone might be

analogous to thai of the MidJanc1s microcralon in the British Avalon (Fig.7.4; Soper,
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1988). which escaped Paleozoic overprint. But the new data on the L.arc: Precambrian and

Paleozoic polycyclic evolution of the Hermitage Aexure (Fig. 1.1) effectively demonsualCS

the involvement of Avalonian crust in lhe Early Ordovician and Silurian evolution of the

Gondwanan margin of the central mobile belt of the NewfoundJand Appalachians.

7.1.· THE EARLY·MlD ORDOVICIAN BREAK-UP OF PERI­

GONDWANA: IS THERE A CONNECTION BETWEEN THE SARDIC

EVENT IN THE SOUTHERN VARISCIDES AND THE PENOBSCOTTIAN

EVENT IN THE NORTHERN APPALACHIANS?

1be Sardic event in the southern Variscides is generally interpreted as Early Ordovician

continental rifting (Weber. 1984). 'This hypothesis is difficult 10~ik with the magniwde

of the felsic magmatism in the Sierra de Guadamma (chapter VI). 1be striking

contemporaneity between thc Sardic event in the Centnl lbe:rian Zone {chapter vn and the

southern Variscides (Stille. 1927) with the Penobscottian event (Neuman and Max. 1989) on

the Iapetus side of the Gondwanan margin of the Northern Appalachians and the similarity of

the Early Ordovician events in both areas suggests an alternative hypothesis.

The Peoobsconian even!.. as ~y discussed. involved an Arenig arc-passive margin

collision with obduction of 497 Ma ophiolites. arc magmatism and local metamorphism and

deformation followed by a major Late Arenig - Early Uanvirn back arc rifting event (Fig. 7.5 :

Dunning and Krogh. 1985; Colman·Sadd et aI., 1992; Tucker et aI .• 1994; van Staal. 1994;

van Staal and de Roo. 1995; Winchester and van Staal. 1995; O'Brien et a1.. 1997).These

events in the northern Appalachians are broadly coeval with fonnation of the Tremadocian
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BeUedone ophiolite (Fig.7.S and 7.6; 496 Ma. Menot et aI.• 1988; Pin. 1990: Menor and

Paquenc. 1993), die weak Arenig Sardic deformation in the Cenbal Iberian Zone (chaplet VI)

and local high-P metamorphism and bimodal (leptino.amphiboLitic group). alkaline and cak:4

alkaline magmatism in lberia. and the Southern Variscides (Fig.7.6; Weber. 1984; Matte. 1986;

Ziegler. 1986: Gcbauerc:l aI .• 1981; Pin and lanceJot. 1982: SantaUier et aI., 1988; Gebauer.

1990. 1993; Neubauer and von Raumer. 1993; Carmignani c:t aI .• 1994: Biino et aI .• 1994).

These events in the southern Variscides an: similar 10 the Early Paleozoic events described in

the Polish Variscides by Oliver et al. (1993) and suggestive of an active margin. Such an

active margin couJd be an extension along the southem Variscides of the peri-Gondwanan

margin of the Iapetus Ocean.

This hypothesis is consistent with Early Ordovician faunal (Paris and Robardcl. 1990:

Neuman and Harper. 1992; Cocks. 1993; S.H. Williams et al.. 1995). paleomagnetic

(e.g.•van der Pluijmc:t aL. 1995) and sedimentological (Noblet and Lefort. 1990: Prigmore et

aI .• 1997) dala, which indicate close proximity between the peri·Gondwanan elements of the

Appa.lachian-Caledonides and the Variscides. These faunal similarities disawear after me major

back·an: rifting event in the Late Arenig-Early Uanvim in the nonhem Appalachians (Fig. 7.5

and 7.7 ; van Staal, 1994: O'Brien el at., 1997). This event marks the drifting of Avalonia

from Gondwana and the opening (or widening) of the Rhejc Ocean separating Avalonia.

including part of tile northern Variscides (Fig.7.7 and 7.8: Paris and Robardet, 1990: Scotese

and McKerrow, 1990), from Gondwana (Cocks and Foney. 1982; Paris and Robardet. 1990:

Scotese and McKerrow: 1990: van der Pluijmet aI., 1995: TO£svik et al .. 1996).
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1.2.1.· The subdudion-nlated Jurassic break-up of Southern Gondwana

during the opening ot the South Atlantic: An analog for the Early Ordo.ician

events in the Southern V...iscides and Northern Appalacbians ?

The proposed Early Ordovician IectOnic scenario for the southern Variscides may be

similar to the 5ubduction·~Ii11cd Jurassic extension and break up of the Pacific side of

Southern Gondwana in Pll.lagonia and Antarctica during opening of the Sooth AtIaOOc

(Storey et aI.• 1992). Such a setting (Hamilton, 1994) could account for the Earty

Ordovician arc magmatism. back-arc spreading leading to ophiol.ite generation. local

extensive felsic magmatism. weak extensional deformation (Sardic phase) and the

coexistence of alkaline. bimodal and arc magmatism without invoking far-travelled suspect·

terranes. Although at a smaller scale, the proposed Arenig magmatic arc in the Sierra de

Guadarrama and NW Iberia could be an analog of the Jurassic Marifll felsic volcanism and

the associated batholith of Cenllal Patagonia which was associated with transtension and

graben formation along the overiding plate of an active margin (Rapela and Pankhurst,

1992). According 10 !his "South AtJantic" back arc rifting model. the rifting of New uland

from Anlartica is a poIential analog for the rifting of Avalonia from Gondwana (Fig. 7.8).

11lis hypothesis implies thai Avalonia. and the Southern Variscides lay along a single

margin facing the same ocean (lapelUS?: Fig. 7.8).



7.J.- FINAL REMARKS

The Variscan collision resulted in the closure of the Rheic ocean and the

reama1gamalion of the peri-Goodwanan IcrmJeS of the circum-North Atlantic to their

prescntday n:lative position (Fig.7.4 and 7.7). These terranes ex~nced pnxracted and

complex Paleozoic evolutions. as is demonstr.l.Ied in this thesis in the case of the Hennilagc

Flexure and the Siem de Guadamuna While this thesis has answered some questions it

has also posed others. Testing the hypotheses outlined above would require reliable pin­

pointing of the: different pn:~Variscan magmatic pulses along the Variscan belt. and

comparative faunal studies between the Iberian Massif and the Northern Appalachians. It is

particularly imponant to differentiate between Early and U1le Ordovician magmatism along

the Southern Variscides, the lauer being apparently UllI'eJated 10 the Iapetus cycle (Fig.7.7

and 1.8). In this sense. it is the view of this author thai the te:nn -Caledonian- should be

avoided when describing Ordovician events in the Variscides. since mOSl of the Sconish

Caledonides were: on the Laurentian side aCme Iapetus Ocean. From a Variscan perspective

a term like ·Sardic· should be mote appropiate: 10 define these Early Ordovician events.

which ate different from me earlier AvaloniantC'adomian events.

I would like 10 finish on a different note. [was wondering aboutlhe common 20 10 30

Ma gap between the time of peak DlelamOrphism and the onset of the voluminous post·

tectonic plutonism in both the Hennitage Aexure and the Sierrot de Guadamlma.. It is nOl:

my inlention 10 speculate about why lhis is, but to poinl 10 Ihe wealtll and detail of data 10

be gained about tlle timing of orogenic processes in medium and high grade !erranes from

the detailed integration of field observations and pelrograph.y witll precise and reliable

geocluonology. where one is lucky to find good field relationsh.ips!!
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7.4.- SUMMARY.-

The foUowing is a SUITiIllary' of lhc main conclusions from each of the Uu= study

areas. The suggested connection between these areas is no!: addressed since it has been

discussed in chapler VD.

The Cinq-Cerf gneiss (southwest Hermitage Flexure, Newfoundland

Appalachians);

The youngest dated unit in the Cinq-Cerf complex is the variably defonned 431.5± I

Ma Western Head granite. which contains amphibolite and gneissic enclaves and is cross­

cut by mafic dykes defonned in upper greenschist facies at 420 Ma (titanite). Syn-magmatic

deformatioo (D2a) of the ca. 430 Ma Western Head gmnile followed by variable

greenschist facies mylonitization (D2b) gives the complex iLS high-grade gneissic

appeannce.

The 431 Ma granite intruded into older rocks. including the weaIdy deformed.

hornblende-bearing Sandbank granodiorite (584+71-6 Ma) and the: Sandbank Poinl

metagabbro (557+14/-5 Ma). Both the 584 Ma granodiorite and the 557 melagabbros are

intrusive into [be redefined composite Cinq-<:erf gneiss: which includes amphibole-rich and

quartz-rich metasedimentary rocks locally inuudcd by highly slrained 675+121·11 Ma

granitic orthogneiss.

A dated field relationship demonstrates that the 431 M.a granite: cross-euts the gneissic

fabric (01) in the strongly defonned 675 Ma granitic orthogneiss. The ~rvation of

primary magmatic features and the weak defonnation of the 584 Ma Sandbank granodiorite

indicate the absence of a high-grade n:gional teetonothennal overprint in the immediate area

of this inlnlSion, and suggest rnal the 01 composite gneissic fabric, or some of ilS

elements. could be 584-675 Ma in age. TIle 584 Ma Sandbank granodiorite is coeval with

!he 584±5 basal volcanic ruffs in the nearby low-grade La1e Precambrian
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volcanosedimenuuy rock sequence. which contains gneissic clasts in the basal

conglomerates. thus confuming a pre-584 Ma deformationaJ episode and indicating a

basemcnt-co~r relationship between the Cioq-eerf gneiss and the low.gnde l....aIe

Pttcambrian volcanosedimenr.ary rocks.

The unpublished lbLa of Dunning and O'Brien from Three Islands. a 447 Ma titanite

age from a 547 Ma deformed granitoid dyke. remains difficull 10 explain. btl! it is

consistent with the amphibolite facies granoblastic textu~ observed in the 55? Ma

Sandbank Point metagabbro and the IXJSt-584 and pre-499 Ma defonnation of the nearby

low-grade Late Precambrian vo[canosedimenwy rocks.

The major and trace element geochemistry of the 557 Ma Sandbank Point metagabbro

is characteristic of manlle-derivcd volcanic ardtransitionat tholeiitic magmas. This

metagabbro is broadly coeval with the introsion of 560-565 Ma mafiC dykes and 560-570

granites (Roo suite) in the nearby low-grade volcanosedimentaIy rocks. which are

interpreted as volcanic arc-derived.

It is suggesrcd that the Cinq-<:erf gneiss and the nearby Late Precambrian rocks record

me evolution of a 585-550 Ma Avalonian volcanic arc. 1bese Precambrian rocks can be

com:lated with those in the Avalonian and Cadomian belts of North America and Europe,

effc:eti\'ely demonsuating the involvement of Avalonian crust in the: early Ordovician

Penobscottian evenlS of the Nonhern Appalachians.

The Margaree orthogneiss (Port-au)[-Basques complex, southwest

Hermitage Flexure, Newfoundland Appalachians)

Detailed fieldwork. UlPb geochronology and major and trnl:e element geochemistry

indicate lhat the: Margaree onhogneiss rcpresenlS an Early On:iovician mafic-felsic intnlsive
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complex. This composite: orthogneiss. which has been traced inland from Margaree for

ITJ()£e than 20 Km. is formed by amphibotites. mafIC dioritic orthogneisses., 474+141-4 Ma

hornblende-bearing lonalitic orthogneiss with mafIC enclaves. 472±2.5 Ma and 465±3 Ma

biotitc-bearing gmnitic orthogneisses and~ uJtr.unafJC rodes.

Despite: the Silurian upper amphibolite facies overprint. the fJeld relationships suggest

that the 4n Ma granites are coeval with extensive mafJC magmas. A second gener.u:ion of

amphibolite dykes intruded the 465 Ma granites.

Most of the: arnphibolilcs have basaltic compositions and the trace element signarure of

volcanic are tholeiites. The 474 Ma tonalites (6()..62% Si02) and the 472 Ma granites (70­

72% Si02) have identical geochemical signatures which correspond to volcanic art:

granitoids.

Timing of the Salinic Silurian overprint of the Marg~ orthogneiss is constrained by

a 417+41-7 Ma late syn-D3 granitic dyk.e and 411±2 and 410±2 Ma titanite. ~ titanite

ages are inlCrpr!:ted as amphibolite facies rccrystaIlizati ages following the 03 event.

These time constrainlS indic:aJe lhal the 0 I. and the syn~peak melalnlJq>hi.sm D2

deformational events took place between 465 and 417 Ma. This is consistent with nearby

data which suggest a syn· 10 po$I-450 Ma age for 01 and ca 420 Ma for 02.

1be Margaree orthogneiss intruded the scdimenwy rocks of the Port-aux-Basques

complex coevally, witl>jn error, with the stiu;bing plutOl1S thai. postdate the Penobsconian

Early Ordovician ophiotile obduction (477±1 Ma Baggs Hill granite; Tucker el aI., 1994;

474+61-4 Ma Partridgeberry Hills granile; Colman.sadd et a1.. 1992), Arenig-Early

Llanvirn volcanism in the Exploits, Baie d'Espoir (468±2 Ma; Colman-Sadd el aI., 1992.)

and Bay du Nord (466±3 Ma: Dunning et al.• 1990) groups and with anatexis and grnn.ite

intrusion in the ML Connack (465±2 and 464+4/·3 Ma; Colman.sadd el al., 1992) and

Mc:elpaeg subzones (464±2 Ma: Colman.sadd el al., 1992). It is suggested that the
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Marg~ orthogneiss was in an an:/back-an.: transitional setting at the time of the major

back-arc rifting event on the peri-Gondwanan margin of the Northern Appalachian<;.

roUowing the Penobscottian arc-continent collision.

The Sierra de Guadarrama, Central lberian Zone (Iberian MassiO.

Pre-Variscan evolutjon" Early Ordgvician "Sardjc" magmatism

V-Pb protolith ages of the main types of pre-Variscan orthogneisses of the Somosierra

area of the Sierra de Guadarrama demonstrate the presence of an imponant Early

Ordovician felsic magmatic event recorded in the high-grade Western Domain. the

overlying [ow - medium-grade Eastern Domain of the Sierra de Guadarrama and the

boundary zone defined by the Variscan. extensional Berzosa-Riaza shear zone (BR5Z).

U-Pb zircon dating of the onhogneisses of the high-grade Western Domain has

provided an age of 477±4 Ma (Lozoya gneiss) for the augen gneisses I foliated megacrystic

granites. which Conn the extensive: batholithic Morcuera (Glandular) gneiss: it also indicates

that the so<alied leucogneisses of this domain consist of 488+ 101-8 Ma megacrystic granite

intruded by 482+81-7 Ma aplitic veins and 482+9/-8 Ma leucogranitic dykes (Buitrago

gneiss). These granitic orthogneiS5eS are contemporaneous with the 4800 rvta

volcaniclastic Cardoso gneiss. which outcrops below the Ordovician "Sardic"

unconformity in the Eastern Guadarrama Domain. The pre-Variscan granitic orthogneisses

within the BRSZ have a slightly younger age of 468+161-8 Ma (Riaza gneiss).

In the Sierra de Guadarrama and the rest of the CIZ the Arenig Annorican Quartzite

was deposited on top of the Sardic unconformity: therefore. the 480±2 Ma age of the

Cardoso gneiss limits the age of the unconfonnity and the associated Sardic defonnation to

the Mid-Late Arenig, suggesting a strong linkage with the Arenig felsic magmatism..

247



The new U-Ph ages corroborale the ~vious 492-470 Ma whole rock: Rb-Sr ages fOT

similar gneisses in other partS of the Siem de GuadaJTama (VaaJene et aI.. 1986: 1987).

suggesting that ttIOSI of the pr-e-Variscan orthogneisses of the Sterra de Guadarrama were

generated during the Early Ordovician. These onbogneisses are inteqn!ed as the relicts of

a short-lived Early Ordovician continental magmatic arc. The new U·Pb ages also validale

regional correlations along strike with the pre-Variscan orthogneisses in !he QUo de Sapo

asuifonn. suggesting IhaI they are pan of a 600 Km long relict Early Ordovician felsic

magmatic belt which extenlS from Ihc Siena de Guadarrama to the nonhwesl coast of

Spain.

Vadsgm evg!lnjon of fhl; Sierra eM; G1l3daqam;r farly.Mjdd!; Carboniferoys p;ak

melanJocpbjsm and svn-cgl!jsjonal ;xlensjon and PerrncrC3rbonjfernuli oost-colljsigna!

In the area of slUdy the low-medium grade Eastern Guadarrama Domain (St. C1d. Gn

and Bt zones) is juxtaposed against the high grade Western Guadarrama Domain (I <l Sill ­

2nd Sill zones) along the BRSZ (Ky-I" Sill and St zones). In the field area theIe is no

evidence of large-scale 01 compressional structures but an inlCr-Dl-D2 Barrovian

metamorphic sequence is well preserved within the BRSZ. with relicts of Ky-Sf.Qtt

mineral assemblages indicating metamOrphic conditions in excess of 6.5 Kb and 600"c.

The Dl deformation was followed by a major D2 extensional event with genernJized

ductile shearing and fonnation of the BRSZ. The D2 defonnation took place during the

thermal peak of the Barrovian event in the lower level of the Eastern Domain. and during

peak metamorphism. anatexis and growth of low-pressure assemblages in the high-grade

Western Domain.
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The close relationship between defonnation and metamorphic mineral growth allowed

the usc of V-Ph monazite. xenotime and titanite dating in combination with texturnJ

relationships to obtain prograde and cooling ages. 1bese ages constrain peak

metamorphism at 337±3 10 329±3 Ma (V-Pb monazite) and the D2 extensional defonnation

between 337±3 Ma(U.Pb monazitc) and 321±3 Ma (li-Ph titanite) in the Sill+Kfs zone of

the Western Domain, at 325.6±2 Ma (V-Pb monazite. zircon) in the Sill+Ms zone. at

316±3 Ma (V-Ph monazite) in the relict kyanilc Subzone of the BRSZ and between 330±2

- 327±3Ma (V-Pb monazite) and 322±2 Ma (V-Ph titanite) in the SI zone and the

chloritoid-slaurolite transition of the Eastern Domain. The growth of low Plhigh T

cordierite-bearing mineral assemblages during the late stages of the D2 defonnation in the

Western Domain has been dated a1322±2 Ma (V-Ph monazite and xenotime).

Following the main 02 extensional event lhe area was reworked by greenschist facies

03 defonnation and lalc extensional detachments. The shallow level intrusion of the post·

collisional 292±3 Ma (V-Pb monazite) La Cabrera granite stitches the BRSZ. providing an

upper limit for the 03 defonnation and. possibly. for the late extensional detachments.

This new data demonstrates for the first time the syn-collisional character of the Late

Visean - Early Namurian extension in the Centra! Iberian Zone. which is also common to

other parts of the Variscan belt. and provides the first reliable constraints for the time of

peak metamorphism (337-326 Ma). It also shows the presence of a 30 Ma interval between

the [ow P I high T mineral growth and the posi-collisional plutonism. indicating that there is

no relationship between these two processes in the Sierra de Guadarrama.
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APPENDIX

ANALYTICAL METHODS

A.I.· V·Pb PROCEDURE.·

This is a brief description of the analytical procedure used for the U-Pb analysis of

tircon. monazite. xenotime, titanite and rutile.

A.I.t.- Sample preparation.

The rock sample (5 to 25 kg. average !l)..15 kg) was washed and any din removed

with running water and a wire brush. 1be sample was dried and pulverized using a

hydraulic press. a jaw-crushcr and a steel plate pulverizer. All crushing equipmem was

dismantled and cleaned using alcohol and compressed air:. the crushing plates were

SCTUbbed with a powerbrush and then cleaned between samples. A tim separation of light

and heavy minerals was done using a WLlfley panning table. The WLlf1ey table was

previously cleaned with IN He!. soap and water and me acxessory equipment was cleaned

with soap and water. alcohol and compressed air. 1be heavy fraction and a portion of the

light mineral fraction were kepi; both fractions were washed with alcohol and dried on a hot

plate. HighJy magnetic minerals such as magnetite and small iron filings from thc pulverizer

plates were removed by dropping the sample pasl an e1eetromagnet. The remaining heavy

fraction was sieved to a -40 mesh size. The fine fraction was separaled twice intO light and

heavy fractions using bromoform and methylene iodide. Finally the heavy fraction was

separated according 10 magnetic characler using a Frantz isodynamic magnetic separator.

Separation of the different accessory mineral phases was achieved by changing the till and

current intensity of the Frantz. This separation also yielded separate fractions with different
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paramagnetic properties for some of the minerals of interest. like zircon. MineraI fractions

for U-Pb analysis were hand-picked from the magnetic sepanues under a microscope on the

basis of morpho{ogy. colour, size and crystal quatiry. Crystal selection was very strict 10

ass~ the homogeneity of the fractions. In several~ the purity of the monazite and

xenotime fractions was checked by EDS analysis (CAMECA SX 50 microprobe) of the

whole mincrn.I fraction. In order to minimize discordance. due to lhc effects of alter.ltion

and Pb loss. most mineral fractions were air abraded (Krogh. 1982). The abr.lded and

unabradcd mineral fmc:tions were washed with 4N HNOJ (5 minutes on a hoi plate al

120"C). H20 and alcohol. A second selection of the beSt grains was done under the

microscope after which they were placed in a clean Pyrex crystal beaker with alcohol.

A.1.2.- Sample cleaning, weighing, spiking, dissolution and U·Pb

separation.

This part of the procedure took place in a clean air laboratory and within clean boxes

wilh an outward laminar now; all reagents were double distilled and clean-lab sample.

handling procedu~were observed..

The mineral fractions were washed with 2xH20. 4N liND) (20 minutes on a hot plate

at 1000· 120"C). 2ullO and twice with acetone and 2xHz<) and dried; during each wash the

sample was ultrasonic for 10 seconds. The mineral fractions were weighed with a five digit

balance with an uncertainty of ±2 micrograms. mixed with a 20SPb - 2JSU spike (Parrish

and Krogh. 1987) inside Teflon<!> Krogh-type dissolution bombs (Krogh. [973) or

TeflonlXl Savillex containen and dissolved (Table A.I). 1be samples were spiked

according to me sample weight and the expected age and U concentration in the sample.

Table A.I.: Mineral dissolution procedure
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Min=J.,o..e Dissolution vessel Reagents Tcmperan.trel

"""Zin::on.rotile Krogh-type dissolution HF. AN HND) 2u)3Covenl
Ten~ bombs and 5 days

minibombs
lit::Ln.i1C Savillcx screw lop Teflon1!l HF. 8N HNOJ 12O"Chot

containers plate/5 days
Monazite. Savilla screw top Teflo~ 6.2NHCI l2O"Cho<
,,,,,,,",,,, containers plate/5days

Once dissolved. the samples were dried on a hot plate (120'"0 and re-dissolved with

3.1 N Hel at the same temperature conditions of lable A.I for 24 hours. U and Pb were

separnted through ion exchange chemistry following modified procedures for zircon

chemistry after Krogh (1973) and HBr chemistry after Manh~ et al. (1978) for rutile.

titanite. monazite and xenotime (Table A.2).

Pnx'edure blanks during the period of anaI)'5is ranged (rom I pg U and 2 to 12 Pi

conunon Pb (depending on the minibomb sel) for tin=on and I pg U and 12 10 20 pg

common Pb for rutile. titanite. monazite and xenotimc.

A.L3 ,. U·Pb isotopic analysis and age determination.

The U and Pb j5()(opic ratios were measured by thetmaI ionizalioll mass-specuometry

(TIMS) using a Finnigan MAT 262 mass spcctrnmt:ter equipped with an ion<ol..mting

secondary elccrron multiplier (SEM). U and Pb wen:: 10aded together with H)P04 and silica

gel on a previously outgassed single rhenium ftlament in a clean box. Both U and Pb wen::

measured in static mode on the Faraday cups, 204Pb was measured in the previously

calibrated, axial SEMiion counter. The SEM is calibrated with respect to the Faraday cups

berore and after each analysis. Small Pb fractions (Less than 3mv signal or 20SPb or 201Pb
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Standard /Todt et al.. 1993). 16.9322±8 (2sigma) "'"

-<}o-<}-9-i-l*Jti-Q-9il+L,91}?_Q-f-i-t1
Average. 16.892±9{ ISO)

0.117%0.027 % a.m.o. fractionation

Slandard.15.4855:t:IO{2sigma)~

0.116:1:0.019 % a.OLu. fractionation +

,-;-.+H-t-+/f'--+;-;-~7-t-,~-.-t--T+
f Average. 15.432.:9 {I SD) T

1:'i.JK

t~
1: I 1 ~ ~r ~ I ~

FIg.A.l•• Variation of the measurements of the 206Pb /204Pb aDd 207Pb
I 204Pb isotopic Rttios of the NBS 981 wmmoa Pb standard with respect
10 the reported ratios (Toot, 1993), aodcalculaled values or the Pb
isotopic fractiooation during mass spectrometry. The measured ratios
were taken from 27 randomly selected analyses between May 14th 1997 and
March 26th 1996. The calculated isotopic fractionation in the 206Pbl204Pb
ratio is slightly higher but has a smaller error than the one used in the age
calculations (O.I±O.04). The elimination of some of the outliers would bring
tbe fractionation value closer to the one used in the age calculations. This
new fractionation value, if applied, would not change the isotopic ages but it
would result in narrower error ellipses.
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in the Faraday cups) we~ measured in dynamic mode using the SEM (peak jumping on the

SEM). these isotopic ratios were checked and calibrated against Faraday-derived data

during the same run. 1nese measurements were performed in single blocks of 10 scans

each.. outliers were identir~ and elimina1ed from the fmal mean of the ~ment

(Finnigan MAT 262 soFlware). The best Pb emissions were usually obtained between

1400" and 15SOOC. and for U between 155O'"-165O"C. The intensity of the emission was

monitored on a chart recorder. which allowed. in the case of static collection. manuaJ

increase or decrease of the tempera~ of the ftlament during the measurcmenl 10 keep a

stable emission.

The isotopic ages have been calculated using the accepted disintegration constants for

235U and 238U (Jaffey Ct aI., 1971). The isotopic ages and the error on IDe isotopic ratios

have been calculated using unpublished Royal Ontario Museum (ROM) soflwlltt by Larry

Heaman. The errors on the isocopic ratios are given 31 2 sigma level and are the result of

propagating two-sigma etTOrs from the amount of isotopic fractionation (O.ltO.04 % a.m.u

for Pb and O.OS±O.04% a.m.u for U: Fig. A.I), total blanks in the analysis. laboratory

blanks (206PbJ204Pb = 18.33; 207Pb1206Pb = 0.855; 208Pb1206Pb = 2.056). amount of

initial common Pb and uncertainties on the measurements. 1be initial common Pb was

C'(XRCted after the model ofSracey and Krarners (1975). The U and Pb concenumions were

estimated from the absolule sample and spike weights. TIle linear regressions for the

discordia lines were cakuJared after the method of Davis (1982). 1be discordia line is

defined by the besl fit line. this method also provides the probability of fil of the data points

10 the discordia line and the probability of each individual data point filting the line. If the

U-Pb data does not fit the discordia line within error. the error ellipses of the data (Xlints are

then expanded with an error proportional to the degree of discordance of each data (Xlint (v.

Davis. 1982). The error on the intercepts of the discordia line are based on the Bayesian
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Wash columns x2 H2O and 6.2N HO
Loud prt!-washed if", ~.:fchangf!nsin

IDowex AG Ix8. 20()..4()() mesh)
in the minicolumn

ZIRCON

Small Tenon8 minicolumns

wash c:alumn IJIId rt!sin
6.2N Hel de x2 H20

Co/'kli/ioflcolumn 3.IN HO

Load sample

Zr wash 3.1 N Hel
(Purification of U ""d Ph}

Elute Pb 6.2N Hel
EluieU x2H20

,CoIlttl U and Pb in
the same bcahr)

Add JdmpnfHJP04
WId dry to a single

Jrnp

MONAZITE, XENOfIME.
TITANITE. RUTILE

Tenonl8l columns

Wash c:alumn 6.2NHCI & x.2H20
I...nad ion exchange fJ!.f;"

IPre·washed DowexAGlx8resin)
Wash cn/umn and resin

6.2N HO & xl H20
Cflndilion column 3.1 N Hel

Load sample

Zrunc1 REE wash 3.INHCl
(Purification of U and Ph!

r-- Re~~u::tJ:1.I~B~CI
Dry to tl dmp in a Elute Ph 6.2N Hel

hot pfulealUl
re-Ji.uolve Cleun ('o/umn xl H20

in (j.2N HCI Crmditinn en/umn 6.2N HCI
L--- Relo4d U

2nd U puri/ictJ.l;ofl
6.2N Hel
8N HN03
6.2N HO

Elute U (info Ph ~r'
H20

Add JdropofH3P04
unJ dry.' to u .fjf1Rf~

drop
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Table A.2.. &hematic U and Pb ion excltange chemical extraction prucedUft.
The Teno~colulMs are similar in dimension 10 those of Krogh (1m3). the volume of

Tenon@minicolumnswasscaled down to 1110 of the columns. All acids are double
distilled (X2 H2O. double distilled H20).



inlcrvals of the probability function of me age of the best fit line (i.e. imeJttpr. of the

discordia~ with the concord..ia curve) at a 95% confidence level. 11tis method is differem

from lhat of the common!y used program of Ludwig (1980). which estimates the age

intercepc error from the hyperbolic error band of lhe discon1ia Line after a least-squares

YOfk fil (York. 1969) of lhc data points. In should be DOled thai for lower probabilities of

fit the Davis method generally gives larger age intercept errors than the program of Ludwig

(1980). This is due 10 the fact lhat the method of Davis takes into account the degree of

discordance of the individual data points. so the best fit tine relies more on the Jess

discordant dala points (i.e. geologically. lhe more reliable data) even if other poinlS are

more precise. Age errors are given at a 95% confidence level.

A.2.· MAJOR AND TRACE ELEMENT ANALYSIS.-

This is a description of the analytical techniques used (0 obuUn lhe major and uaee

clement whole rock analyses presented in chaplers III and IV of this thesis. including the

sample preparation.

1be rock samples weighed between 10 to 20 Kg depending on the average grain sitt

(1.5 10 0.5 nun). resulting in sampling errors of around 5%. The weathering surfaces of

the rock sample we~ ~moved prior to rock crushing. The rock crushers were cleaned

be[Ween samples. and small portion of the sample was crushed and discarded prior to the

final crushing to avoid cross-eontamination. After crushing. the rock chips were quanered

to assure the representativeness of the sample. Randomly selected rock chips were powered

10 <200 mesh size using a carbon-tungsten rock mill. The rock mill was cleaned be[Wecn

samples. Before the fmal powdering and to avoid cross-contamination. rock chips from !he
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sample were pulverized and the powder discarded. lbe rmal powder was stored in a clean

plastic sample viaL

1l1e loss on ignition were calculated by placing 2 g of fresh rock powder in a cern:mic

cnx:ible. lbe powder and the crucible were: weighed and then placed in an oven aI 45O"C

roc 12 hour.; and the weight loss measured afterwards.

A.2.t.· X-ray nuoresc:enc:e (XRF) analysis.

The major elements were analyzed on fused glass beads (fused pellets). lbe glass

beads were made by mixing 1.5000 g of ignited rock powder with a flux of 6.0lXXl g of

Lithium metabornte and 1.5()(X) g of Lithium teuaborate. The half of the homogenized

powder was placed in a clean. dry platinum crucible and 0.02 g of Lithium Bromide

solution added to the powder. afler which the remaining powder was placed in the crucible.

The glass beads were aUlomaticaUy made wim a LECO FX 200 burner in sets of six. The

burner was programmed to progressively reach temperatures of 15OO"C over 12.5 minutes.

lbe uace elements were analyzed on press pellets made of 5.00 g of fresh rock:

powder and 0.70 g of phenolic resin (BRP-59]3 Bakelite phenolic resin). 1be rock: powder

and the resin were homogenized for 10 minutes in a toUer mixer and the resulting mixed

powder was pressed in a H~nog peUet press for 5 seconds at a pressu.re of 20 IOns. 1be

resulting pressed pell~ts were placed in a ov~n at 2OO"C for 15 minules. Further details on

the sample preparation can be obtained from the internal procedures of the XRF analytical

facilities of the department of earth sciences at Memorial University of Newfoundland.

1be XRF major and trace element analyses were performed using the FisonslARL

8420+ sequential wav~length-d.ispersive X-ray spectrometer. This spectrometer has one
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goniometer and is capable of holding six analyzing crystals. For uace element analysis five

crystals W~ used, including a LiF200H cryst.aI specially treated for heavy element

sensitivity. Also either an 3CgOIl flow-proportional detector (FPC) or a scintillation esC)

detector was used with the rhodium anode end-window X-ray lUbe operated at 3 lew. 1be

analytical procedure. including the calJ.br.ltion and matrix correction pnx:edures. and the

precision and accumcy have been described in detail by Longerich (1995). The limits of

detection for the major elements an: 0.02% for Si02. 0.01 % for TiD:!. 0.06% for A120].

0.01% (OriOla! Fe as FC203. 0.00% for MnO, 0.03% for MgO. 0.01% for CaD. 0.04%

for Na20.0.01% for K20 and 0.01% (orP20s. The analysis of five standards in each run

has allowed to delennine a precision and accuracy of <I % for concentrations above 1% and

<3% for concentrations below 1%. for the major element analysis. The limits of detection

for the trace elements an: in brackets in ppm: Sc (6). V(6). Cr(7). Ni(5). Cu(4). Zn(3).

Ga(J), Rb(O.7), 5r(1.2), Y(O.1), Zl(1.2). Nb(O.7). 841.(23). Pb(4). The precision and

accuracy of the lrnCe elemenl analysis is below I'll for masl e1emenlS. exc:epl forZn (4%).

A.2.2.· Inductively ~oupled plasma mass spectrometry (ICP.MS) trace

element analysis.

ICP-MS analysis using Na202 sinler sample dissolution was used for the

delennination of the Lanthanides (REE) and Th because il dissolves resislant accessory

mineral phases. such as zircon. which contain significant concentrations of these elernenlS.

The linear fit between the XRF and the ICP-MS analyses for Y (Fig.A.2) shows the good

agreemenlS between the analytical techniques. and suggests that there were no dissolution

problems with the heavy·REE. The high field strength e1emenlS (Zr. Nb. Hf and Ta) were

also delennined by ICP·MS analysis. But there is a scaner belWeen the ICP·MS and the
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XRF analyses (Fig.A.) which could be doe 10 solution instability and polcntiaJ memory

problems with these e1emenlS (Jenner d aJ.• 1990). For lhis~ onJy the XRF resullS

for Zc and Nb were reponed in the analysis tables.

The samples were prepared by mixing 0.2 g of fresh rock powder in a Ni crucible with

0.8 g of N3202 and sinrering the mixture in a muffle fumacc: al 48O"C for 1.5 hours. The

crucibles were cooled and 10 mI of distilled H2O were added unlil reaction slopped. 1lle

mixture was diluted wilh distilled H20. ccnuifuged and dissolved in 8N HNOJ and oxalic

acid. The solution was diluted with distilled H20 prior to ICP·MS analysis. This solution

was latter mixed with an on·[ine standard spike.

The analytical data was acquired with an SCIEX ELAN 250 ICP·MS modified at

Memorial University and equipped with an autosampler. Eolch run consisted of 56

unknown samples distributed in 8 cycles. each cycle containing 7 unknowns. 4 standards

and I calibration blank. A wy~ tube was used 10 spike the samples with a standard solution

of Rb. Cs. TI and U at a I part of spike /2 parts of sample ratio. The calibration blank W:l5

used 10 make the background correction. oxide interferences were corrected using the

UOIU r:uio in the standards and the mass interpolated rnrio of the intensity of the spike in

the samples and the standards was used to correct the matrix. effeclS. Funher details of the

data acquisition and processing. including the calibration techniques. can be found in

Jenner et aI (1990). The analyLicailimilS of delection~ at the sub-ppm level: 0.02 ppm for

Nd. Zc*. and Hf*'; 0.01 ppm for Sm. Eu. ad. Dy. Er. Vb and Ta·; below 0.00 ppm for

Y·. La. Ceo Pr. Th. Ho. Tm. Lu and Th (. elemenlS analyzed but nOl reported in the final

analysis tables). The precision of the technique is generally between) and 10% for the

REE and Y. between 10 and 15% for Zr and Hf. more than 20% for Nb and Ta and in

excess of 40% forTh (Longerich perscomm.). The low precision of the HFSE is due to a

dissolution problem plus the added difficulty of keeping them in solution. The low
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precision of Th is due moslJy to machine memory problems (Longerich. pers comm.).

Duplicalcs of two rock: samples were dissolved and analyzed separately during the same

run to show the reproducibility of me technique (Table A.3). The apparent good

reproducibility of TIl led to ilS use for tectonic discrimination purposes in some

discrimination diagrams of chaplets m and IV. These resullS wen: always backed up by

diagrams using more reliable elements.

Sam Ie GMA-B N-2 Sam Ie GMA·C N 2
M~an SD RSO %) Mean SD JRSO (%oj

Y 19.45 0.13 0.67 15.66 0.11 ! 0.70
Z, 289.29 7.94 2.74 288.53 9.09 3.15

Nb 9.26 2.70 29.15 11.10 0.00 ! 0.00
Ba 414.29 7.03 1.70 824.48 1.24 0.15
La 37.25 2.16 5.81 26.05 0.36 1.37

C. 71.01 3.33 4.69 51.06 0.59 1.15
p, 7.52 0.35 4.72 5.59 0.11 1.95

Nd 26.75 1.07 4.02 20.04 0.32 i 1.59
8m 4.43 0.25 5.62 3.67 0.18 4.81
Eu 1.01 0.07 7.21 0.95 0.04 , 4.25
Gd 3.85 0.11 4.39 3.08 0.07 2.32
Tb 0.58 0.02 4.25 0.47 0.01 ! 2.53
0 3.70 0.15 4.16 2.89 0.04 i 1.35
Ho 0.75 0.01 I 2.53 0.55 0.02 3.36

& 2.13 0.06 ! 2.65 1.66 0.03 i 1.88

Tm 0.33 0.01 3.26 0.26 0.00 1.37
Yb 2.10 0.15 7.00 1.79 0.01 0.36
Lu 0.28 0.01 3.25 0.28 0.00 0.51

HI 7.28 0.10 1.40 7.16 0.21 3.81

Ta 2.79 0.36 12.98 3.00 O.OS I 1.60

Tb 13.72 0.66 4.84 12.04 0.36 2.96

Table A.3. Results or the ICP-MS NazOz sinter duplicate analysis of

samples G-MA-B and G-MA·C (Margaree Complex). The percentage RSD.

although not statistically significant. offers an insight into the reproducibili[}' of the

technique but should not be taken as indicative o(the technique's precision.

299



IMAGE EVALUATION
TEST TARGET (QA-3)

11111

1.0 ~~ W== a:: Iii, W- ~~

111111.1 t"':i
~ 11

.4 ~

0--.------ 6" --------<0..

~_. - 1S0mm --------1.\
APPLIED ~ IMAGE .Inc

~=~=US'.==F..=i!!!!iF«>::7'~











~
~



AN INTEGRATED FIELD, GEOCHEMJCAL AND U-Pb GEOCHRONOLOGICAL

STUDY OF THE SOUTHWEST HERMITAGE FLEXURE (NEWFOUNDLAND

APPALACHIANS, CANADA) AND THE SlERRA DE GUADARRAMA (IBERIAN

MASSIF, CENTRAL SPAIN): A CONTRJBUTION TO THE UNDERSTANDING OF

THE GEOLOGICAL EVOLlJTlON OF ClRCUM-ATLANfIC PERJ-GONDWANA

VOLUME II: Tables, Maps and Figures

By:

© PABLO VALVERDE-VAQUERO; Lie.; M.Sc.

A thesis submitted to the School of Graduate Studies

in partial fulfilment of the requiremenlS for the degree

of Doctor of Philosophy

Department of Earth Sciences

Memorial University of Newfoundland

September 1997

St. John's Newfoundland





LIST OF TABLES

Volume 1I: Tables, Maps and Figures

TABLE 3.1.- V-Ph DATA CINQ-CERF GNEISS 20

TABLE 3.2.- MAJOR AND TRACE ELEMEI\'T ANALYSES OF THE SANDBANK

METAGABBRO/DIORrrE 39

TABLE 3.3.- Comparative lable ofpost-675 Ma, Lale Precambrian-Early Cambrian V-Pb

absolute ages from !he Cinq-Ccrf gneiss and the adjacent Roo suile and the Whitl.le

Hill sandstone.. . 43

TABLE 4.1.- V-Pb DATA, MARGAREE ORTHOGNEISS 51

TABLE 4.2.- MAJOR AND TRACE ELEMENT ANALYSES, MARGAREE

ORTHOGNEISS 65

TABLE 6.1.- U-Pb DATA, PRE-VARISCAN PROTOLITH AGES, SIERRA DE

GUADARRAMA 94

TABLE 6.2.- V-Pb DATA. VARISCAN AGES, SlERRA DE GUADARRAMA ..... 129

III





LIST OF FIGURES,

Volume II: Tables, Maps and Figures

CHAPTER I: lNTRODUCfION.

Fig.l.1.- (A) Paleogeographic reconstruction of the North Atlantic at M I magnetic anomaly
(131 Ma; Srivastava and Tapscoll, 1986) showing the relative position of the
Appalachian-Caledonian orogen, the Variscan belt and the areas of study. (8)
Distribution of the circum-North Atlantic Avalonian-Monian-Cadomian terranes and
relicts of pre-Cadomian I Avalonian basement. I

Fig.l.2.- Map of the Appalachian-Caledonian orogen 2

Fig.l.3.- Dislfibmion of the geological elements of the Variscan Belt 3

Fig.l.4.~ I..:o,wer ~aleozoic faunal domains of the European Variscides and location of dated
OphiolitiC Units 3

Fig.I.5.- Early Cambrian reconstruction of Gondawana showing the relative positions of
Iberia and Avalonia (Courjaull-Rade et aI., 1992) .4

Fig.1.6.- Paleogeographic reconstructions of Avalonia (A, Cadomian arc), Baltica (B),
Gondwana (G) and Laurentia (L) in the Late Precambrian (Torsvik et al., 1996) and the
Ordovician (van der Pluijm et al., 1995).. . 4

CHAPTER U: THE NEWFOUNDLAND APPALACHIANS.

Fig.2.1.- Subdivisions of the peri-Laurentian zones of the Newfoundland Appalachians
(modified after Williams et aI., 1988) 5

Fig.2.2.- Subdivisions of the peri-Gondwanan lithotectonic zones of the Newfoundland
Appalachians (modified after Williams et aI., 1988) 6

Fig.2.3.- Geological map of the Hermitage Flellure (showing the field areas) 7

Fig.2.4.- Generalized geological map of southwestern Newfoundland (showing the
areas) 8

CHAPTER m.- THE CINQ-CERF GNEISS (SW Hermitage Flexure):

Fig.3.1.- Distribution of Avalonian terranes (panerned) in the Northern Appalachians
• ~(mooified after Barr and White, 1996), showing the position of the Cinq-Cerf gneiss

and the Late Precambrian basemen! of the Hennitage Flexure and the Late Precambrian
inliers in the Exploits subzone 9

v



Fig.3.2.- Geological map of the western extent of the Late Precambrian basement block of
the Hermitage Flexure... .... 10

Fig.3.3.- Map of the main geological units in the Sandbank Point - East Diver Head and
Three Islands sections... . ... 11

Fig.3.4.- Outcrop plan view of the Cinq-Cerf gneiss, banded gneiss, showing the field
relationships between the older granitic onhogneisses (U-Pb sample 94-PV-12) and
mafic dykes, the younger mylonitic granite (U-Pb sample 94-PV-II) and the latc mafic
dykes. (B) "Older" granitic onhogneiss intrusive into metasedimentary banded gneiss
overprinted by D1 and cross-cut by "young" mylonitic granite with a 02 mylonitic
fabric 12

Fig.3.5.- Composite Cinq-Cerf gneiss, cross-cutting relationships in the outcrop of figure
3.4 (U-Pb sampling site), field phOlographs A,B,C and O. . .. 13

Fig.3.6.- Sandbank Point· East Diver Head section, amphibolitic banded gneiss (Three
field photographs).. . .. 14

Fig.3.7.- Cinq-Cerf gneiss, disharmonic folding of granite injections (Western Head
granite) and the country rock paragneiss suggesting viscous non-linear rheological
behaviour due to thermal softening and syn-magmatic deformation... ..... 15

Fig.3.8.- Banded quanzo-feldspathic gneiss, dome and basin interference patter (OJ?)
overprinted by F2b folds... . .. 15

Fig.3.9.- Veined gneiss resembling an anatectic migmatite... ... 16

Fig.3.10.· Field relationships between the tounnaline-bearing veined paragneiss, weakly
defonned Sandbank granooiorite (U·Pb sample 94-PV-6) with mafic enclaves, an
intrusive aplitic vein and the syn-veining granite (undated)... ..... 16

Fig.3.11.- Field relationships belWeen the tounnaline-bearing paragneiss, the Sandbank
granooiorite (U·Pb sample 94-PV-6), the aplitic veins and the Western Head granite
(granitelgranooiorite with mafic enclaves), location as in Fig. 3.10. Field photographs
A,B,C and 0.. . .. 17

Fig.3.12.- Amphibole-rich, composite gneiss. Cinq-Cerf gneiss unit at Cinq-Cerf Bay.. 18

Fig.3.13.· Field appearance of U·Pb sample 94.PV.12, granitic onhogneiss pan of the
banded gneiss in fig. 3.4 19

Fig.3.14.- U-Pb concordia diagram for the old granitic onhogneiss (U·Pb sample 94-PV-
12); Cinq-Cerf gneiss. Sandbank Point- East Diver Head section 19

Fig.3.15.- U-Pb concordia diagram for the weakly foliated Sandbank granooiorite (U·Pb
sample 94-PV-6), intrusive into the tounnaline-bearing paragneiss (Cinq-Cerf g~~~~~\

VI



Fig.3.l6.- Sandbank Point metagabbro: Mafic mctagabbro intruded by felsic
metagabbro/diorite with mafic enclaves showing sharp to diffuse contacts 22

Fig.3.l7.- Sandbank Point metagabbro (lbree Islands). Left: Late mafic dykes cross­
cutting felsic folded dykes intrusive into mafic metagabbro. Right: Old granitoid /
intcrmediate dykes intrusive into metagabbro 22

Fig.3.18.- V-Pb concordia diagram for the mafic metagabbro-diorite at Sandbank Point
(U-Pb sample 94-PV-4).... . 23

Fig.3.19.- Western Head granite / granodiorite (undated) with mafic and gneissic enclaves
cross-cut by late mafic dykes (Sandbank Point - East Diver Head section) 24

Fig. 3.20.- Mingling of coeval (?) mafic and felsic magmas and high temperature
deformation, Western Head granite at Sandbank Point 24

Fig.3.21.- V-Pb concordia diagrnm for the mylonitic facies of the Western Head granite.
Granitic dyke intrusive into the Cinq-Cerf gneiss, Sandbank Point - East Diver Head.
..................................................................................................25

Fig. 3.22.- Microfabric in the 675 Ma orthogneiss (Two microphotographs) 26

Fig.3.23.- Tourmaline-bearing veined gneiss, cross country rock to the 584 Ma
granodiorite (Two microphotogrnphs) 27

Fig. 3.24.- Microtexture of the 584 Sandbank granodiorite (Two microphotographs) 28

Fig.3.25.- MiCrol:exture of the 557 Ma Sandbank Point metagabbro / diorite (Two
microphotographs).. . 29

Fig.3.26.- 547 Ma granitoid dyke, Three Islands, unpublished V-Pb sample of B.H.
O'Brien and Dunning. Thin section courtesy of B.H. O'Brien (Two
microphotographs) 30

Fig.3.27.- Cinq-Cerf gneiss, paragneiss, Cinq-Cerf Bay section (Two field photographs).
...................................................................................... 31

Fig.3.28.- Field sketches of high temperature D2a deformational features, Sandbank Point,
Western Head granite 32

Fig.3.29.- Top: High temperature solidus folding (F2a) of the Western Head granite at

Three lslands. Boltom: D2b low grade S-C and C' (shear bands) structures in the
Western Head granite indicating an apparent dextral shear sense 32

Fig.3.30.- Equal area lower hemisphere stereonet projections of the S2b mylonitic fabric,
L2 lineation, S I gneissosity (compositional banding) and the plunge of the F2 folds
(both F2a and F2b).. . 33

vo



Fig.3.31.- Sandbank Point metagabbro: Discrete greenschist facies retrograde shear zone
(10 cm thick) with top to the left (i.e. thrusting) shear sense .34

Fig.3.32.- D2 retrograde greenschist facies deformation of the Sandbank Point mafic
metagabbro and felsic metadiorite around late shear bands and fracture sets overprinted
by a later set of joints 34

Fig.3.33.- S2b mylonitic fabric in the 431.5±1 Ma mylonitic granite dyke. Western Head
granite (Two microphotographs) 35

Fig.3.34.- Late mafic prophyritic dyke (post-43I Ma) showing greenschist facies overprint
of the primary magmatic fabric (Microphotograph) 36

Fig.3.35.- Time and field constraints on the tectonothennal evolUlion and timing of
deformation in the Cinq-Cerf gneiss 37

Fig.3.36.- Cinq-Cerf gneiss. metadiorites-metagabbros major element series discrimination
diagrams: (A) Alkali index vs AI203 (Middlemost. 1975); (B) MgO vs Si02; (C) K20
vs Si02 (Middlemost. 1975); (D) Na20 vs Si02 (Middlemost. 1975); (E) AFM ternary
diagram (Miyashiro, 1978).. . 38

Fig.3.37.- 557 Ma Sandbank metagabbro. Top: chondrite-nonnalized multielement pattern.
Bottom: MORE (Pearce, 1983) • nornmlized multielement pattern for the Sandbank
Point and Three lslands samples and modem day basalts (pearce, 1983) 40

Fig.3.38.- Bivariate series discrimination diagrams: (A) ZrITi vs NblY diagram
(Winchester and Floyd 1977, modified by Pearce, 1996) ; (8) V vs Ti diagram
(Shervais. 1982) 41

Fig.3.39.- Ternary tectonic discrimination diagrams for the 557 Ma Sandbank
metagabbro/diorite: (A) La/lo-YI15-Nb/8 diagram (Cabanis and Lecolle. 1989); (B)
Zr/4-2Nb-Y diagram (Mechesde. 1986); (C) Zr-Ti/IOO-Srn diagram (Pearce and Cann.
1973); CD) Zr-Ti/l00-3Y diagram (Pearce and Cann, 1973); (E) IOMnO-Ti02-IOPz05
diagram (Mullen, 1983); (F) Th-ZrI117-Nb/16 diagram (modified from Wood. 1980).

................................................................................ 42

Fig.3.40.- Model of the Late-Precambrian-Early Cambrian basement--eover relationship
between the Cinq-Cerf gneiss and the Whittle Hill sandstone 43

Fig.3.4J.- Late Precambrian 10 Late Paleozoic geological evolution of the Avalonian
basement of the La Poile Bay - Conteau Bay area of the Hermitage Aexure (Central
mobile belt. SW Newfoundland Appalachians) 44

CHAPTER lV: THE MARGAREE ORTHOGNEISS (Port-aux-Basques gneissic
complex. SW Newfoundland Appalachians).

Fig.4.I.- Geological map of the area between Port-aux-Basques and Garia Bay 45

Fig.4.2.- Map of magnelic anomalies for the Port-aux-Basques area (Kilfoil. 1993).
{neluding the trace of the Margaree orthogneiss .46

VlIJ



Fig.4.3.· Geological map of the Margareellsle-aux-Mor1S portion of the Margaree
orthogneiss 47

Fig.4.4.· Lithological map of the Fox Roost section of the Margaree onhogneiss including
U·Pb sampling locations.... . .48

Fig.4.5.- Macro- and mesoscopic relationships between the amphibolite-rich "tonalitic­
orthogneiss and the granitic gneiss of the Margaree onhogneiss. Fox Roost section (A.
B. C and D. field photographs) 49

Fig.4.6.- Margaree orthogneiss. homblende~bearing granodioritic gneiss (V-Ph sample 93·
PY.).. . 50

Fig.4.7.- U-Ph concordia diagram for the granodioritic gneiss (U·Ph sample 93·PV-3).
..................................................................................... 50

FigA.8.- Granitic gneiss (Fox Roost. U-Pb sample 93·PV-5) and folded amphibolite
enclave 52

Fig.4.9.- Partially mingled amphibolite dyke intrusive into granitic gneiss (Fox Roost)..52

Fig.4.10.- U-Pb concordia diagram for sample 93-PV-5. granitic gneiss (Fox Roost)...52

FigA.ll.- Geological map of the lower pan of the Grandys Brook section showing the
location of the U-Ph sample 94--PV-2 (granitic gneiss) and the intrusive contact between
the Margaree orthogneiss (M.O.) and the country rock PaB gneiss 53

FigA.12.- U-Ph concordia diagram for the granitic gneiss at Grandys Brook (V-Pb sample
94·PV·2).. . 53

FigA.13.- Amphibolite dykes intrusive into 465 Ma granitic gneiss 53

FigA.14.- Fox Roost ·Margaree. amphibolite (V·Pb sample 93·PV-6) inuusive into
homblende-bearing felsic granodioritic orthogneiss 54

Fig.4.l5.- U·Pb concordia diagram for titanite from sample 93-PV-6 54

FigA.16.- Titanite (410 Ma U-Pb cooling I rt:Crystallization age) aligned with green
homblende and biotite defining the fabric in U-Ph sample 93·PV-6 54

FigA.17.- Port-aux-Basques gneiss - Margaree onhogneiss contact. quarry east of Isle·
aux-Morts.. .. 55

FigA.18.- Grandys Brook. intrusive contact between Pon-nux-Basques gneiss and granitic
Margaree orthogneiss (undated) 55

Fig.4.19.- Late syn-D3 granitic dyke intrusive into "migmatitic" gneiss (Fox Roost. U·Pb
sample 92-GD-II).. .. 56

Fig.'4.20.• Detail of the intrusive contact and the syn-magmatic fabric in the granitic dyke.
... . .. 56

lX



Fig.4.21.- U-Pb concordia diagram for the late-syn D3 granitic dyke (U-Pb sample 92-
GO-II).. . 56

Fig.4.22.- Cross view, Margaree orthogneiss, Fox Roost: F2-F3 interference folding
pattern cross-cut by late pegmatites 57

Fig.4.23.- Plan view, F3 overprint of a D2 boudin in the Port-aux-Basques paragneiss,
contact between the Port-aux~Basques gneiss and the Margaree orthogneiss at
Margaree.. . 57

Fig.4.24.- Plan view, closure of an F2 fold overprinted by F3 folding in migmatitic Port-
aux-Basques gneiss.. . 57

Fig.4.25.- Plan view, amphibolite in F3 duclile shear zone (Margaree orthogneiss,
Margaree - Fox Roost).. . 57

Fig.4.26.- Equal area stereonets for the gneissosity, mineral lineation (90% amphioole) and
plunge ofF3 folds in the Margaree orthogneiss and the surrounding Port-aux-Basques
gneiss.. . 58

Fig.4.27.- D3 ductile shear zone in the Port-aux-Basques gneiss 59

Fig.4.28.- D3 deformation, detail of back rotated segments of a competent quartzo--
feldspathic layer in the Port-aux-basques gneiss 59

Fig.4.Z9.- Margaree orthogneiss, microtexture of the 472 Ma granitic gneiss 60

Fig.4.30.- Margaree orthogneiss, granoblastic texture in amphibolite 60

Fig.4.31.- Margaree orthogneiss, D3 microstructural features in weakly recrystallized
banded gneiss.. . . 6 I

Fig.4.32.- Margaree orthogneiss, microtexture of late-I post-D3 mylonites 62

Fig.4.33.- Absolute time constraints for deformation of the Margaree orthogneiss and the
associated Port-au x-Basques gneiss 63

Fig.4.34.- P-T-t-d path for the Margaree orthogneiss and stable mineral assemblages....63

Fig.4.35.- Margaree orthogneiss: mafic and ultramafic rocks: (A) Alkalic Index vs. AlZ03
classification (Middlemost, 1975); (B) K20 vs. Si02 classification (Middlemosl,
1975); (C) Na20 vs. Si02 (Middlemost, 1975)... . 64

Fig.4.36.· Margaree orthogneiss: mafic and ultramafic rocks. (A) REB multielement
panems. (B) MORB (Pearce, 1983) normalized multielement patterns 64

Fig.4.37.- Margaree orrthogneiss, tonalitic and granitic orthogneiss. (A) REB element
~multielemcnt patterns. (B) Primitive mantle (Sun, 1980) normalized multielement

, pattern... ..66

x



FigA.38.- MORB (Pearce, 1983) - normalized multielement patterns from mcxlern tectonic
environments (after Pearce, 1983) superposed to the amphibolites from the Margaree
orthogneiss 66

FigA.39.- Tectonic discrimination diagrams for the amphibolites of the Margaree
ol1hogneiss: (A) Ti-Zr-Sr diagram (Pearce and Cann, 1973); (8) Ti vs. Zr diagram
(Pearce and Cann, 1973); (C) Ti-Zr-Y diagram (Pearce and Cann, 1973); (0) Zr-Th-Nb
diagram (Wood, 1980 with mcxlifications in Jenner, 1996); (E) Ti02-MnO-P205
diagram (Mullen, 1983); (F) Nb-Zr-Y diagram (Mechesde, 1986) 67

FigAAO.- Tectonic discrimination diagrams for granitic rocks, Margaree tonalitic and
granitic orthogneisses. (Pearce et aL, 1984; Maniar and Piccoli, 1989) 68

Fig.4.41.- ORG (Ocean Ridge granite; Pearce, 1984) - normalized multielement diagram.
......................................... . 68

Fig.4A2.- Margaree orthogneiss, amphibolites: (A, B, C and D) log-log highly compatible
(Ni, Cr) vs. incompatible (La, Zr, Vb, Nb) diagrams. (E) MgO vs. Si02 diagram..69

Fig.4.43.- Crystal fractionation REE modelling 69

Fig.4.44.- MORB (Pearce, 1983) - normalized multielement diagram for the Margaree
orthogneiss (ultramafic rocks excluded).. .. 70

FigA.45.· Interpretative model for the generation of the mafic-felsic Margaree igneous
complex. Coeval magmatism along the peri-Gondwanan margin of the Newfoundland
Appalachians (Exploits subzone and Gander Zone) 71

FigA.46.- Hypothetical tectonic setting for the Margaree igneous complex 71

CHAPTER V: THE ffiERlAN MASSIF: geological seuing and general objectives.

Fig.5.1.- Location of the Iberian Massif in the European Variscides and lithotectonic zones
of the Iberian Massif. 72

Fig.5.2.- Geological constraints on the timing of the Variscan orogeny in the lberian
Massif.... . 73

Fig.5.3.- Lithotectonic units of the lberian Massif with the location of the geological
elements described in sections 5.2.1. to 5.2.3.. .. 74

Fig.5.4.- Compiled pre-Variscan stratigraphic sequences of the ClZ, WALZ and CZ.... 75

Fig.5.5.- Domains of the Central Iberian Zone (CIZ) and location of the main outcrops of
pre-Variscan ol1hogneisses. including the available pre-Variscan absolute ages (Ma) in
the CIZ and the CZ and the off-shore granulitic basement... . 76

Fig.5.6.- Distribution of sillimanite-bearing metamorphic complexes (yellow) and
• Barrovian metamorphic sequences (red) in the CIZ, WAlZ and CZ (blue) after

Martinez (l990a, b) and Martinez Catalan et al. (1990), location of the Archean

XI



basement granulites off-shore the Cantabrian Sea (Guerrot et al., 1989) and relative
relationships between defonnation. metamoJphism and plutonism in the CIZ (Julivert
and Martinez, 1987)... . 77

CHAPTER V1: NEW LNSIGHTS lNTO THE PALEOZOIC EVOLtITION OF THE
EASTERN SIERRA DE GUADARRAMA (Centrailberian Zone).

Fig.6.1.- Map of the lithotectonic zones of the Iberian Massif showing the distribution of
the Ollo de Sapo pre-Variscan orthogneisses and the location of the area of study ....78

Fig.6.2.- Geological map of the Spanish Central System, including main macrostroetures
of the Sierra de Guadamuna , also shown in cross·section (Modified after Macaya d
aI., 1991) and the location of the previous pre-Variscan absolute age detenninations.

..............................................79

Fig.6.3.- Main structural elements and distribution of the metamorphic isograds of the
Somosicrra area of the Sierra de Guadarrama 80

Fig.6.4.- Lithological map of the Somosierra area of the Sierra de Guadarrama 81

Fig.6.S.- Paleozoic stratigraphic sequence of the Eastern Guadarrama Domain 82

Fig.6.6.- Lithological map of the Montejo-Berzosa-Buitrago-Lozoya area 83

Fig.6.7.- Lithological changes along the Berzosa-Riaza shear zone: A) chloritoid micaschist
at the top of the shear zone: B) St-Grt micaschist. basal pan of the Eastern Domain: C)
Ky-Grt metapsammite at the base of the shear zone: D) Migmatitic gneiss al the fOOlwail
of the shear zone.... . 84

Fig.6.8.- Metasedimentary rocks in the Manjiron antiform. Sill+Ms zone 85

Fig.6.9.- Quanzo-feldspathic paragneisses of the Western Guadarrama Domain. Buitrago
area (Sill+Kfs zone. western side of the Puentes Viejas dam) 86

Fig.6.l0.- Anatectic meils in the Buitrago area. Sill+Kfs zone 87

Fig.6.11.- Anatectic migmatites of the Western Guadarrama Domain 88

Fig.6.l2.- Calc-silicate lithologies .. . 89

Fig.6.l3.- EI ViIIllI' biotite-bearing migmatites, solidus migmatites, Western Guadarrama
Domain 90

Fig.6.14.- Augen gneisses and foliated megacrystic granites of the Western Guadarrama
Domain 91

Fig.6.l5.- Gneissic leucogranitts of the Western Guadarrama Domain, Manjiron antiform
.(Ms+Sill zone) 92

Fig.'6.16.• V.Ph concordia diagram for the Cardoso gneiss and a weakly deformed hand
sample showing the volcaniclastic character of this rock 93

Xil



Fig.6.17.- U-Pb concordia diagram for the Riaza gneiss and field appearance of the
strongly mylonitized facies.. ..95

Fig.6.18.· Buitrago gneiss, outcrop relationships at the U-Pb sampling site for samples
BU-I (foliated megacrystic granite) and BU-2 (foliated aplitic vein)... ...96

Fig.6.19.- U-Pb concordia diagram for the foliated megacrystic granite facies of the
Buitrago gneiss, sample BU-I.. ..97

Fig.6.20.- U-Pb concordia diagram for sample BU-2, foliated aplitic vein intrusive into
BU-I, Buitrago gneiss.. ..97

Fig.6.21.- U·Pb concordia diagram for sample pm· I, gamet-bearing foliated leucogranite
in the Buitrago gneiss, and field character of the dated sample... ...98

Fig.6.22.· U·Pb concordia diagram for the Lozoya gneiss, sample LO-I, and field aspect
of the dated sample.. ..99

Fig.6.23.- Location of the new protolith U-Pb ages for the pre-Variscan orthogneisses of
the Sierra de Guadarrama... ..... 100

Fig.6.24.- Schematic geological map and interpretative cross-section of the Berzosa-Riaza
shear zone, the Cardoso antiform, the Majalrayo syncline and the western flank of the
Galbe the 50rbe antiform (After Hernaiz Huerta et aI., 1996) 101

Fig.6.25.- Geological map of the Buitrago-Montejo-Berzosa area 102

Fig.6.26.- Microtextures along the metamorphic zones of the lower levels of the Eastern
Guadarrama domain and the upper levels of the Western domain (BR5Z): A) 52
crenulation of 5 1 in a chloritoid black slate of the Bt zone; B) Partial D2 transposition
of 5 I and late-02 growth of staurolite. 5t zone; C) Relict inter DI·D2 winged kyanite
porphyroblast showing D2 growth of fibrolite and biotite in the pressure shadows.
................................................................................................. 103

Fig.6.27.· Equal area lower hemisphere stereonet projections of the main foliation I
gneissosity, mineral and stretching lineation (L min) and F2 fold axis north of the area
shown in detail in fig.6.25 104

Fig.6.28.- Equal area lower hemisphere stereonet projections of the main foliations (5p)
and gneissosity (Gn), mineral lineation (Lmin), F2 fold axis, C· planes (extensional
shear bands) and best fit plane and theoretical fold axis for the Berzosa-Riaza shear
lOne (BRSZ; Sill (Ky) lOne) and the Manjir6n antiform 105

Fig.6.29.- Deformation in the southern part of the Manjiron antiform 106

Fig.6.30.- Microtextures along the metamorphic zones of the Western Guadarrama Domain
in the area of study: A) D2 microfolding in a sillimanite+muscovile micaschist; B) S-C
microstructure with stable biotite+sillimanite+muscovite; C) stable 5ill+Kfs microfabric

• ~ith elongated and flattened gamet porphyroblasts.. . I07

Fig.6.31.· F2 folds and 01-02 relationships in the Madarquillos shear zone 108

XIII



Fig.6.32.- 02 microstructures in SilJ+Ms micaschists 109

Fig.6.33.- Relationships between D2 boudinaged and F2 folding of a competent layer
during top down to the SE shearing 110

Rg.6.34.- Stereonet projections of the structurnl data from the MadarquiUos shear zone and
the Buitrago area 111

Rg.6.35.- Shear bands (C planes) in the MadarquiJlos shear zone indicating a shear sense
of top down to the SE 112

Rg.6.36.- L-fabric band: L-fabric and associated quartz-rods 112

Fig.6.37.- Kinematic indicators with opPJsite top to the NW 02 shear sense in the western
margin of the Madarquillos shear zone.. . I I3

Fig.6.38.- 02 high temperature deformation band in the Buitrago area. Puentes Viejas dam.
(Sill+Kfs zone).. .. I 14

Fig.6.39.- Relationship between F2 fold axis and mineral (stretching) lineation inside the
lenses of quartzo.feldspathie gneiss of the high temperature deformation band 115

Fig.6.40.- Top to the SE shear bands in the quartzo-feldspathie gneisses of the Western
Guadarrama domain I 16

Fig.6.41.- Late 02 pegmatitic patches in the Buitrago area. Sill+Kfs zone 117

Fig.6.42.- 03 structural features. Berzosa-Riaza shear zone 118

Fig.6.43.- Proposed alternative stlUCtural cross-section from Benosa to the Rio Sequillo
dam of the BRSZ and the Western Guadarrama Domain (trace of the cross-section in
Fig.6.25) and previously interpretation of Azor et aI (199la).. . 119

Fig.6.44.- Distribution of minernl isograds and minernl assemblages in metapelites in the
area of study 120

Fig.6.45.- Minernl growth I deformation relationships in the area of study 121

Fig.6.46.- Staurolite growing at the expense of chloritoid while biotite apparemly remains
stable. staurolite-chloritoid trnnsition.. . 122

Fig.6.47.- Simplified KFMASH petrogenetic grid (after Spear. 1993) for the ITlCtapelites of
the Berzosa-Riaza shear zone.. . 123

Fig.6.48.- Kyanite and staurolite relicts in the Sill+Ky micaschists of the BRSZ 124

Fig.6.49.- Staurolite inclusions in a gamet porphyroblast rimmed by fibroJitic sillimanite
.................................................................................................. 125

XIV



Fig.6.50.- Granitic leucosomes in the Sill+Ms zone (Manjir6n antifonn) showing
interstitial quartz in contact with subhedral plagioclase (AnlO-15) laths and K-feldspar

......................................................................... 126

Fig.6.51.- Biotite micafish with monazite inclusions (pleocroic haloes) in a Cld-St
micaschist.... . 127

Fig.6.52.- Sample distribution and Variscan U-Pb protolith and metamorphic ages (Ma) for
the Somosierra area of the Sierra de Guadarrama 128

Fig.6.53.- U-Pb concordia diagram for monazite from sample Hi-I, St+<Jn+(Cld)
micaschisL Lower staurolite zone (Eastern Guadarrama domain) 130

Fig.6.54.- U-Pbconcordia diagram for monazite from sample Pi-I, St+GJ1+Bt micaschist.
Upper staurolite zone (Eastern Guadarrama domain) I 30

Fig.6.55.- Sample Pi·l, St-Gn micaschist: A) MicrolexlUre, biotite defining the S2 fabric;
B) Monazite inclusions in S2 biotite; C) Platy, subhedral monazite parallelogmms,
fraction MI.. . 131

Fig.6.56.- U-Pb concordia diagram for titanite from sample CA-I, para-amphibolite from
the core of the Cardoso antifonn, and microtexture showing titanite associated with
randomly oriented amphibole porphyroblasts (static post-tectonic porphyroblastesis).

.................................. 132

Fig.6.57.- U-Pb concordia diagrJ.m for monazite from sample 12-6, Ky+St+GJ1+Sili
micaschist from the Sill (Ky) zone and detail of a monazite inclusion in a 02 biotite

............................. 133

Fig.6.58.- U-Pb concordia diagram for sample M26-2, leucosome from a folded (F2)
migmatite. Outcrop photograph of the sampled leucosome and detail of a monazite
inclusion in a biotite from the melanosome, Sill+Ms zone.... . 134

Fig.6.59.- V-Pb concordia diagram of monazite fractions from sample BU-2 (482 Ma
foliated aplitic vein, Buitrago gneiss), Sill+K.fs zone 135

Fig.6.60.- U-Pb concordia diagram of monazite and xenotime fractions from sample PiB-I
(482 Ma foliated leucogranite, Buitrago gneiss), Sill+Kfs zone... ... 136

Fig.6.61.- U-Pb concordia diagram of monazite and xenotime fructions from the 477 Ma
Lozoya gneiss (augen gneiss), SiU+Kfs zone, sillimanite+cordierite-bearing sample...
.................................................................................................. 136

Fig.6.62.· U-Pb concordia diagram for titanite separates from the Braojos dyke and
microtexture of the V-Pb sample 137

Fig.6.63.- U-Pb concordia diagram for the post-tectonic La Cabrera granite and
microtcxture of the U-Pb sample. Heterogranular undefonned Bt-granite/granodiorite..

.. . 138

xv



Fig.6.64.- T1I1le constraints on the Variscan tectonothermal evolution of the Somosierra
sector of the Sierra de Guadarrama... . 139

Fig.6.65.- TectollOlhermal evolution of the Somosierra sector of the Sierra de Guadarrama,
0110 de Sapo domain, Cenual Iberian Zone, Iberian Massif (Central Spain) 140

Fig.6.66.- Comparative table of Ordovician U-Ph and Rb-Sr absolute ages from the
Central Iberian Zone and V-Ph ages from other parts of the Iberian Massif and the
location of these areas within the European Variscides 141

Fig.6.67.- Map of the Iberian Massif showing the new time constraints on the
tectonothermal events from the Somosierra sector of the Sierra de Guadarrama, other
time constraints on the timing of Variscan deformation and the distribution of the
Carbonjferous Variscan metamorphism and pIUionism 142

Fig.6.68.- Timing and distribution of the Early -Mid Carboniferous syncollisional
extension and metamorph.ism along th.e Variscan belt 143

CHAPTER VB: DISCUSSION ANDTECfONIC IMPLICATIONS: PRECAMBRIAN
AND PALEOZOIC EVOLUTION OF PERI-GONDWANA FROM A COMBINED

APPALACHIAN-VARISCAN PERSPECfrvE.

Fig.7.1.- Tectonothermal evolution of the Gondwanan margin of the Newfoundland
Appalachians, Hennitage Flexure.. . 144

Fig.7.2.- Geological map of the Hennitage Flexure showing the location of the new U-Pb
data.. . 145

Fig.7.3.- Comparative table of events in the l.aIe Precambrian, peri-Gondwanan.
Cadomian I Avalonian belt and the Hermitage Flexure of the Newfoundland
Appalachians.. .. .. 146

Fig.7.4.- Distribution of the I...aIe Precambrian Cadomian I Avalonian terranes on pre-drift
reconstruction of the circum-Nonh Atlantic 147

Fig.7.5.- Comparison of the Early Ordovician events in the peri-Gondwanan margin of the
Northern Appalachians and the Southern Variscides 148

Fig.7.6.- Location of the interpreted relict Arenig felsic magmatic arc of the CIZ in the
Southern Variscides... . ......... 149

Fig.7.7.- Interpreted Paleozoic evolution of North Atlantic peri-Gondwana 150

Fig.7.8.- Paleozoic reconstructions of Avalonia, Baltica, Gondwana and Laurentia in the
Late Precambrian and the Ordovician (after Torsvik et al., 1996; van der Pluijm et al..
1995).. . 151

XVI



-----

• Study areas 0 Appalachian-Caledonian belt
• Variscan beltO North Atlantic pre-M I oceanic crust

Fig.I,I.- (A) Paleogeographic rcconstruclton of the Nor1.h Atlantic at MI magnetic anomaly (131 Ma; Srivashlva lind Tapscott, 1986)
showing the ('('lative position of the Appalachian-Caledonian orogen, the Variscan Belt and the lll"ClIS of study. The red Ilne marb the

~~j~=c:::~~-=~~:tll~)~I=~~a=~II~Jr:~:~a:r;;:e~:~:~etl~:Ncz.f~:~~::CW~~~:BrilJSh
ASlurilUl-Uonese ZOne; CIZ, Cenlnll Jbenan ZOne: OTM'Z, Galicia Tru-oe-Montes Zone; OMZ. Ossa-Morell8. Zone; Spz' Sooth Portllgllelle 'Zone. NewfoolldJand
Appillacllial15: A.2., Avalon Zone: H.F., Henmtage Re!lllrt.
(B) Distribution of the circum-Nor1.h Atlantic Avalonlon-Monian-Cadomian terranes and ('('licts ofpre-CadomlanlAvalon.lan
basement: ....voloni/1llbdr. Avalon Zooeand Hermltaae AeXllre(O'Brien elal., 1996 and ref. within), Midlands Craton (Soper, 1988; Tucker and Pharaoh, 1991;
SlflI(:hanelal.,I996), RosslareComplell(Winchctteretal..199O);MOIIi/1llCOII!pkx(Oibbons, 199O;Oibbonsand Horak, 1990); CtJdomionb.tll: Cadoiman block (ref. 10 .....
D'Lemol elal. eds. (1990) and SlfaChan and Ta)'loredt.(I990);Bohemlan Massif {Chaloupsky, 1990; Kroner el a1., 1994);OUa-Morena Zone (Quesada, 19901; 199Ob;
o.chner, 1993):CIZ. WAlland CZ, rderenocs In DaJlmeyerand MartlllCZ Garciaeds. (1990). Prottrowic bou~tI1(C1avezandVidal, 1978; Allvray 1:1 aI .• I98>;
Guerrot el aI., 1989; Wendt el aI., 1993)



Fig. 1.2.- Map otthe Appalachian-Caledonian orogen. Correlation between
lhe Newfoundland Appalachians and the British Caledonides after
Colman-Sadd el al. (1992). Correlation between Newfoundland and the
Maritimes taken from Lin et al. (1994). U.S. Appalachians modified after
Williams (compiler, 1978).



Fig.I.J•.- Distribution orthe elements orthe Variscan Belt. Areas with proven Cadomian
tectonod1ennal events (plutonism, metamorphism and deformation) in red (Modified after
Franke, 1989). Zonal division dtbeCeotral European Variscides (Kossmat, 1927): R-H..z..
Rheoo-Hercynian Zone; S..z.. SaxOlhuringian Zone; M..z., Moidanubiam Zone

Fig. 1.4.- Lower Paleozoic faunal domains of European Variscides and location of dated
ophiolitic: units. Faunal domains after Paris and Robardet (1990) and Robardet et al. (1990):
N.V. Northern Variscides; SID, South Iberian Domain (Ossa-Morena); CID, Central Iberian
Domain; LD, Ligerian Domain; EAD, Ebro-Aquitanian Domain. Red circles: matching
Arenig to Asghill biostratigraphic successions (Young, 1990). Areas with Caledonian
defonnation after Franke (1989). Dated ophiolitic units after Men6t et aJ. (1988), Peueat el al.
(1990) Pin (1990), Oliver et aI. (1993), Santos Zalduegui et aI. (1996) and Dunning
(unpublished). Ordovician mafic-ultramafic complexes with Silurian HP metamorphism
(Ligerian Domain,Alps and NW Spain) omitted for simplicity (e.g., Pin, 1990; von Raumer
and Neubauer, 1993)



Fig. 1.5.- Early Cambrian reconstruction of Gondwana showing the relative
positions of Iberia and Avalonia (Courjault-Rad~et aL, 1992).

Late Precambrian (Vendian)

(I)
Middle Ordovician Late Ordovidan

Fix. 1.6.- Paleogeographic reronstructions or Avalonia (A, Cadomian arc::),
Baltica (8), Gondwana (G) and Laurentia (L) in the Late Precambrian

,. (forsvik et aL, 1996) and the Ordovician (van der P.uijm et at, 1995).
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Fig.2,3.- Geological map of the Hermitage Flexure (modified after Dunning et aI., 1990)
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Fig. :Z.4.·Gencr~lized 8eologic~1 map of southwestern Newfoundland
(modified from Lin et al., 1994; Tuckerel aI., 1994; Dube el aI., 1996). UlPb
zircon ages from Charlton and Dallmeyer(I986), Dunning et al. (1990), Van
Staal et a!. (1994), Tucker el al. (1994) and Dube et al. (1996). Ar/Ardata from
Charlton and Dallmeyer (1986). Metamorphic data after Brown (1975), Chorlton
(1980), O'Neill (1985) and Owen (1992); open arrow, increasing metamorphic
gradient. Field areas in yellow; blue rectangle. general study areas.



Fig. 3.1.· Distribution of Avakmian terranes (patterned) in the Northern Appalachians (Illodirled
after Barr and While, 1996), showinX the position of (he Cinq·Cerf 8neiss and lhe Late Precambrian
basement of the Herntitaxe Flexure and lhe Lale Precambrian inlierl In Ihe Exploits subzone(red).
The thick boundary line marks the separation between the peri-Laurentian and the peri-Gondwanan
margins of the Iapetus Ocean.



-=--­o km 5

LA POU,£ BASIN (Sdunan) . II!!]ChclWYnd gnullle Ord.1i ~e Food gabbro I§hJltle HIli sands100e
Tuff,andmyollles 5.1.-" HawbNe$tporphyry WlldCovearalllte P.C. NN hmiPondtuff

Il!volcunoclasucrockJ Dev. ~OtlerPolnlgtwllle p.C.I·.·. RotJgralllte(porphyry) Clnq-Cerrgn"'lss
~werterntleadgraolle •• Roogr.uute

Fig. 3.2.- Geological map of the western extent or the Lale Precambrian basemenl block of the Hermitage Flexure
(area between La Poile Bay and COleau Bay, modified after B.H.O'Brien, 1989; and a.H. O'Brien el aI., 19(1). U/Pb
absolute ages aflerChorlton and Dallmeyer, 1986; Dunning and O'Brien, 1989; B.H. O'Brien el al., 1991; B.H. O'Brien et
aI., 1993). Field areas (red numbers): I) Sandbank-Point EAst Diver Head; 2) Three Islands; 3) Cinq-Cerf Bay. Red cross,
Hope Brook gold mine. Dev, Devonian; Sil, Silurian; Ord, Ordovician; P.C., Precambrian
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Fig.J.3•• Map ot the main geological units in the Sandbank Point·East
Diver Head and Three Islands sections, including location or maps 3.1
and 3.2, figure captions of the Cinq·Cerf gneiss (composite gneiss) and
U-Pb sample locations.
Legend: l) Western Head granite/granodiorite with mafic enclaves; 2) Felsic
mylonitic granite (Western Head); 3) Sandbank melagabbro (diorite); 4)
Composite Cinq-Cerf gneiss. a) Roo granite (Precambrian?); b) Wbinle Hill
sandstone (Precambrian). The map area outside maps 3.1 and 3.2 is after
a.H. O'Brien (1990).
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Fig. 3.4.- Outcrop plan view or the Cinq-Cerf gneiss, banded gneiss, showing the
fteld reaJtionships between the older granitk: orthogneisses and mark dykes, the
younger mylonitic granite and the late mafk dykes. (B) "Older" granitic

~ orthogneiss intrusive into metasedimentary banded gneiss overprinted by DI and
cross~utby ·young" mylonitic granite with a D2 mylonitic fabric. CeQ, Cinq-Cerf
gneiss; WHG, Western Head granite.
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Fig. 3.5.- Composite Cinq-Cerf gneiss, cross-cutling relationships in the

outcrop of figure 3.4.

(A)Top left. late granitic dyke (~younger~ mylonitic granite; UlPb sample 94-PV-II,

431.S±1 Ma) cross cutting the composite Cinq-Cerf gneiss with a sliver of old granitic

orthogneiss (UlPb sample 94-PV-12; 675+121-11 Ma).

(B)Top right, detail of the cross~culting relationship between the gneissic mylonitic

fabric in the banded gneiss (composite S Ia..S IC foliation), the late granite and the mylonitic

foliation (52b) in the granite. Note that there is no 02 overprint in the gneiss. except for

briule offsets of the gneissic banding.

(C) Botlom left, old amphibolite dykes (undated) intrusive into older granitic

orthogneiss (UlPb sample 94-PV-12). These dykes have a weak fabric (5 I) parallel to the

composite S la-5 Ic fabric in the orthogneiss and are cross-cut by the 431.5 Ma granite

dyke.

(D) BoUom right, late mafic dyke cross-culling a stretched enclave in the 431.5 Ma

granite dyke. This mafic dyke is then cross-cut by late amphibole porphyry dyke in fig.

3.4.
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Fig.J.6•• Sandbank Point·East Diver Head section, amphibolilk banded
gneiss. Top len: tufT·like level with green clinoamphibole porphyroblasts with diffuse
contacts with the fine grain gneiss (upper left). The banding in the gneiss (SI) is offset by a
discrete late, greenschist facies, shear zone (02). Top right: Late mafic dyke (with a 02b
fabric) cross--cutting gabbroic blob in the banded gneiss (without a penetrative internal
fabric) and Fie isoclinal folds in the banded gneiss. The discontinuous mafic rim around
the gabbroic blob suggests a metasomatic origin rather than a chill-margin. Bottom:
Gneissic banding warping around coarse-grained gabbroic pods. boudinaged gabbroic
apo"hysis7. Photos courtesy of B.H. O'Brien

I4



Fig. 3.7.- Cinq-Cerf gneiss. disharmonic folding of Rranite injections
(Western Head granite) and tbe country rock paragneis.! suggesting a
viscous non-linear rheological behaviour due to thermal softening and
synmagmatic deformation. Hinge of an F28fold in the rocky point west of East Diver
Head (location in fig.3.3),

Fig. ~J.8.- Banded quartzo.feldstathic gneiss, dome and basin interference
pattern (D!?) overprinted by F2 folds. Note the axial planar foliation to the F2
folds in the granite vein (Western Head granite),

15



FiJ;c. 3.9.- Veined gneiss resembling an anatectic migmatite. The felsic
vems are variably folded aplitic injections. The country rock to the aplitic
veins is a greenschist facies lounnaline-bearing schist. Cinq-Cerf gneiss
near location in fig3.10

Fig.3.10.- Field relationships between the tourmaline.bearing veined
paragneiss (yellow), weakly derormed Sandbank granodiorite with mafic
codaves (V·Pb sample 94-PV.6). an intrusive aplitk vein and the

• "!".veining granite (undated).
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Fig.3.11.. Field relationships between tourmaline· bearing paragneiss. Sandbank granodiorite (V·Pb

sample 94·PV·6). aplitic veins and the Weslern Head granite (granite/granodiorite with mafic enclaves),

location as in fig.3.IO.

(A)Top lert: Aplitic vein with ptygmatic folding intruding the Sandbank granodiorite (arrow) and the tourmaline-bearing

paragneiss.

(B)Top right: Same aplitic vein merging with other veins in the schistose paragneiss and cross-cutting older fabric (5 1; arrow)

in the paragneiss.

(C)Boltom left: Contact between the Sandbank granodiorite and the country rock paragneiss. The strain gradient in the

paragneiss increases towards the contact (composite 51-S2 fabric) whereas the granodiorite remains almost undefonned.

(D)BoUom right: Reworked contact between the veined gneiss and the Western Head granite/granodiorite showing the

composite 01-02 character of the gneissosity in the veined-gneiss. The Western Head granite is apparently post-aplitic veins, but

it can nOl be unequivocally confirmed by a clearfield relationship.
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FiR.J.n.- Asp«t of the Cinq-Cut gneiss at Cinq-Cerr Bay (Field

photograph courtesy of B.H. O'Brien). Note the lithological similarity between the

gneiss and the country rock gneiss to the gabbroic pods in the Sandbank-Easl Diver

Head section (Fig. 3.6).
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FiB·l.lJ.. Field appearance of sample 94-PV-IZ, lranitic orthosneiss
part of the baaded Inels. in fl•.J .•.

94-PV-12: Granitic orthogneiss,
intrusive into paragneiss

."'.
-Pb
;;;y

-:/' r=,="":-::-=;-:-7":;-;;o .""

Fig.3.14.- UlPb concordia diagram for the old granitic orthogneiss; Cinq-Cerf gneiss.
Sandbank Point-East Diver Head section. Upper inset, upper and lower inte~ections of the

~~;~~~~~~~~e::~ot>;:~~~ei~:'~~ :f~:n~~~ ~~:t~~~e of
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TABLE 3.1.- U·Pb DATA, CINQ-CERFGNEISS.
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94-PV-6: Weakly foliated granodiorite.
Intruded by folded apUtic vein.

Sandbank
granodiorite

::flI
~u

1584+7/-6 Mal
::flI

·~~s"L,----"c:--.",...---:c:-----:~-::-,-u-=---:'

Fi&-J.15.- UlPb concordia diagnm for the wukly folilted
Sliadbank cnaodioritt (sample 94PV6>t intrusive ia.o tile
tourmaiine-buriDI par_peil. (CiDq--Cerf Bned.). Z, .ircoll.
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Fil. J."i.- Sandbank Point metagabbro: Metagabbro intruded by
metadiorite with mafic: enclaves showing sharp to diffuse e.ontacts, both are
cross-<::ut by a late g~y mafic-intennediate dyke (NW side of the cobble bar at Sandbank
Point).

Fig.3.1?- Sandbank Point metagabbro (Three Islands). Left: Late mafic
dykes cross-cutting folded felsic. dykes intrusive into mafic metagabbro.
Rig".: Old lranitoidlintermedl.te dykes ibtrusin into metagabbro, sbowing
refolded compositional banding lik.e the 547 Ma U-Pb sample from Three Islands of
Dunning and B.H. O'Brien (unpublished).
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94-PV4: Sandbank Point
metagabbrc>metadiorite

Sandbank Point
metagabbro

::f>
~u

~

·~u~,---:::--:::---:::,---,---~:-u'-----:::--~

3.11.- UlPb concordia diagram for tbe m.rtr mtt•••bbro-diorilt.1
Sudbuk Point (nmple 9-4PV4). Z. :r.itCOJl.
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FiX.J.19.- Western Head granite/granodiorite (undated) with mafic and

gneissIc enclaves cross-cut by late mafic dykes (Sandbank Point-East Diver

Head section). Note the weak solidus foliation in the granite and the sharp dyke

boundaries, suggesting brittle behaviour of the granite during dyke emplacement.

Flg.3.20.- Mingling of coeval (1) mafic and felsic magmas and h1lh

temperature deformation, Western Head granite at Sandbank Point.
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94·PV·11: Mylonitic granite intrusive
into 94-PV-12.

Western Head granite '"

Z41431.5 +/- 1 Mal
::!!l
~u

Fie- 3.21 •• UlPb concordia dia&ram for the mylonitic rada: ortbe Weste...
Head granite. Granitic dyke intrusive into the Cinq-Cerfgneiss. Sandbank
Point·East Diver BUid. Z, zirc:on.
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Fig. 3.23.- Tourmaline-bearing veined gneiss, country rock to the 584 Ma
granodiorite. Conlact between an apliticJpegmatitic vein and the tounnaline-bearing
schisl Tourmaline growths late overprinting the composite St-52 foliation defined by the
phyJlosilieates (chlorite. white mica and biotite) in the schist. This fabric is parallel to the
contact with the aplite. The aplite (post·584 Ma) shows a partial collapse of the primary
igneous framework (bottom): grain reduction, dynamic recrystallization of quartz and
mantle 3tIUctU1CS with recrystallization of microcline around primary feldspar phenocrysts.
Field of view is 5.21 mm wide
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Fis· 3.14.- Microtexture of tbe 584 Ma Sandbank granodiorite. Top: Primary
igneous concentric zoning in plagioclase. grain reduction in the inrcrgranular spaces with
growth of epidore. white mica, chlorite, green clinoamphibole and biotite. Bottom:
PtiRl8ry hornblende (?). Field of view is 132 mm wide

2.



,f'
Fig. 3.25.- Microtexture or the 557 Ma Sandbank Point metagabbro/diorite.
Top: D2 greenschist overprint of the earlier metamorphic fabric. Note: grain raluctlon, growth
of chlbnle and britUcoffse( olamptubole aloog a dillCrtleshear blind (Anow). Otherdefamational features
.reo dMcussed m the lelL Field of vIew lIS 5.21 mm wide. Bottom: mantle-core structure in
plagioclase with subgrain rotation recrystallization. Field of view is 132 nun.
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Fig. 3.16.- 547 Ma granitoid dyke (Three Islands, unpublished ~1Pb
sample or B.H. O'Brien and DUDDing). Top: SIB compositional banding and
biot1todefining a second foliation (5 Ib). Field of view is 5.21 mm wide Bottom: Titanite
(448+91-3 Ma; Dunning, unpublished) in interstitiaJ positions with recrystallized
plagioclase and green hornblende. field or view is 1.32 mm.
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FII.J.1:?" Cinq-Cerl Inelas, paUlDeiss. Cinq-Cerf Bay seetion. Top:

EpidQle-.rich layer showing F2 refolding of an Fl basin interference pattern (Fla..FI b).

Bottom: Syn-D2 granitic dyke (Western Head?) and F2 folding of the Sl

compositional banding by rotation of competent layers. The en echelon intrusion of the

granite dyke along tensional cracks and the sense of rotation of the competent layers

indicate a dextral shear sense.

31



32

3
"~

N.'

laIc mafic dyke (B)

Fig.3.18 ." Field sketches of high temperature D2u deformational features,
Sandbank Point, Western Head granite. A) Plan view of ductile shearing of
mafic dykes ill Western Head granite. B) F2a folding of felsic veins ill mafic-rich
area (fig.3.21).

Y"J.3.Z9•• Top: High temperuture sub-solidus folding (F'-a) of the Western Hcad
VlfDite at Three Islands. Cuspate and lobate folds and boudins of the granite veins
suggest thai the granite was more competent than the amphibolite during the F2a
folding. The 2-D strain ellipsoid indicates an apparent dextral shear sense.
Bottom: D2b low vade SoC and C' (shear bancb) structures in the Western
Head sranite indicating an apparent des:tral shear sense (Sandbank Point-East
Diver Head section)
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Apparenl rdationshipofthc JulC Relatiooshipbetween
mafic dykes with the F2 Folds lind 51 (1..2)

D2bshcaring.

Fig.J.30.• Equal area lower bemisphere slereonct projections or the S2b
mylonitic fabric. Ulineation, 81 gneissosity (compositional banding)
and plunge or the F2 folds (both F2a and F2b). Block diagmms show the
relationships between the 02 folds, lineation, and mylonitic foliation and the
late mafic dykes. Geological map as in fig33.



Fig.J.Jl.. Sandbank Point metagabbro: Discrete greenschist facies

retrograde shear zone (10 em thick) with top to the left (i.e. thrusting)

shear sense.Sandbank. Point -East Diver Head seclion.

.
~.'1'Z'I!"' ... ,t..~\'

~··l·l.lr' .• f ..•.. .••.• ,:;"'. ':" r;w
.:.1, _"'_:',~

i .,

l..:,\ .
t~'k)

Fig.3.32.- D2 retrograde greenschist facies deformation of the Sandbank

Point metagabbro. small dyke of leuco-diorite and country rock metagabbro

deformed by late-D2 shear bands and fractures overprinted by a final set of

joints. Upper left, imrusive contact with Western Head granite. Sandbank Point-East

piver Head section.
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Fig.3.34.. Late mane porphyritic: dyke (p05t.431 Ma) showing

grecDsc"ist f.des overprint of the primary magmatic fabric. Chlorite +
epidote+titanite form asymmetric tails around partially retrogressed (sericilized)

plagioclase pbenocrysts. The primary mafic phenocrysts are replaced by accumulations

of actinolite (bottom right). Titanite is growing late after opaques (ilmenite?). Titanite

from a similar dyke has been dated at 420±3 Ma (Dunning and a.H. O'Brien,

unpublished).
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Deposition of the sedimentary protolith of the Cinq-eerf paragneiss

Fic. J.35.,. Time: and field coDJtrabab on the tectonothermal evoladM aad
timiDl ofdetonDlldoa ba ..Ciaq-Cerfpin. Ales in bold (this study); agcs in
bold italics (Dunning and 8.H. O'Brien. unpublished). Other ages: Weslem Heal
granite (429t2 Ma: 430±2 Ma; B.H. OBrien et &l.t 1991); Otter Point granite
(419±2 Ma; 8.H. O'Brien et aI., 1991). Thick lines mart the absolute time
CODSlJ1lints provided by this study. DiJOODtinuous lines., relative time COGStraiots
provided by individual field rdaliOllShips..
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n,...QP7l~nyl'b!tO!"i
..... 3.37.. 5J7Mos.-_bbn>.Top, __
maIt:idtmeIIt pattera. Sample symbols and Si02 md MaO ooocenlratioos i.D the
table below. Bottom: MaRS (Pan:e, 1983). DOnIIaIir.ed ....1emtM

c=.-~~~ti~~i~=t:'~b1i:;'ctnld8'
calc·alkaJine; SHOt shoshonitic; VAB. volcanic arc ba5a.l1; WPB. within plare
basalt; MORa; Mid Ocean Ridge basalt
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Zrffi

QQI

(A)

L-_-;~:":,--tI'1-11-:'0NbIY

subalka1lDe alkaline u1ua.
alkaline

(8)

600

500

l400
>300

200

100

10 20
TI(ppm)/l00

"".3.38.. Blvari8te Itrin disttimilUltioa diap'aDII: (A) Zrffl n. NbIY
dIaorom or Winchester and floyd (1977) modilled by P..... (I!196).
The arrows correspond to fractionation vectors; mineral symbols after Kretz
(1983); filled triangles. Sandbank Point; open triangles. Three Islands. (8)
V VI. TldJaaram(Sllervala, 1982). AT, arc tholeiite; BAS back. arc basalt;
MORB. Mid Ocean Ridge basaJt
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Fig.3.J9.- Ternary tec:toak discrimination diq;ralDl for the 557 Ma Sandbank
metallibbroldiorite. (A) Lall()"Y/l5-Nb18 diagram (Cabanis and l...e<:olle, 1989). (8)
Zr/4-2Nb-Y diagram (Meschede, 1986). (C) Zr-TilIOO-Sr12 diagram (Pearce and
Cano, 1973). (D) Zr-Till00-3Y diagram (Pearce and Cann, 1973). (E) IOMnO - Ti02
• tOP2GS diagram (Mullen. 1983). (F) Th·Zr/117-Nbl16 diagram (modification of the
Tb·Hff3·Ta di.agram of Wood, 1980). Filled lriangles. Sandbank Point; open triangles.
Thtee Islands, except diagram A (not differentiated).
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'75Ma,..

~ Cinq-Cerf gneiss D Whittle Hill sandstone

~ Basal conglomerate with clasts of Cinq-Cerf gneiss

Fig.3.40.- Model or the Late P.rec:ambrian-Early Cambrian basement-cover
relationship between the Cinq·Cerf gneiss and the Whittle Hill sandstone.

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Table 3.3.- Comparative table of the post-67S Ma, Late Precambrian-Early
Cambrian U·Pb absolute ages from the Cinq-cerl gneiss (This study and
Dunning and B.H. O'Brien, unpublished) and the adjacent Rod suite
(Dunning and S..J. O'Brien, 1989; B.H. O'Brien et al, 1991; B.H. O'Brien et
al., 1993) and the Whittle Hill sandstone (DoW and Dunning, in press) .
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WI-lITTLE lOLL SANDSTONE CINQ·CERF GNEISS

J90 Ala CUETWYND GRANITE (Slltehing p1U101l)

Intru5ton or S57 ~b S.ndbank Pmnl
. .., ...__.. _.: ........metagllbbn> (transitional volcanic arc tholeiite)

:~El Enclaves of Clllq::n~:nelSSIn 568 Itt" I
Volcanism (585-S8J AlafUffs) andclasuc I ~
sedmlenuuion

FoIialOd gneissic clasts III the basal conglomeme
I EllriYAvaJ.onlanCotnprtSSlonaleventsl

Flg.3.41..- Late Pret:ambrian to Late Paleozoic geological evolution or lhe Avalonian basement or the La Poile
Hay-Cotcllo Bay area of the He.rmitage Flexure (Cenlrlll mobile bell, SW Newfoundland AI)palachilllu)
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MAP 3.3.- Cinq-Cerr Bay ~

429Ma ~
Western Head ++::+
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"Brittle
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E3 Windsor Poinl Group (laiC OrdoYician)~Kelby and Grand Bayorthogneisses c;::±j Silurian granites (Iyn-kinematic, S-lype).
I . ,Pon-aux-BasqueJ aneiss (paragneiSl) _ Margaree orthogneiss l+;~ Silurian granitcs (Iale-kinematic)

[2!] Harbour Ie Coo Group ill PaS granite (c. 450 Ma) c:=: , Devooian plutons (post-kinematic)
~ Baydu Nord Group -

Fi&A.I •• Gcotogkal map of the area bel"-et:n Pori allx Basques and Carla Bay (compiled after van Staal et aI .• 1996 b. c and Dub! et
aI .• 1996). GcochroooIoeical data after Chorllon and OaIJmeyer(I986), Dunning ct aI. (1990), Van Staal et aI. (1994), Burien et aI. (1995)
and Dubt et al. (1996). Metamorphic isograds aflerO'Neill (1985) aocl Burgen et aI. (1995), in red. GBC, Grand Bay complex: PaBC,
PM-aux-Basques complex.
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Fig.4.S.- Macro- and mesoscopic relationships between the amphibolite-rich "Ionalitic" gneisses and the

granitic orthogneisses of the Margaree orthogneiss, Fox Roost.

A) Contact between amphibolite-rich "tonalitic" onhogneisses and granitic orthogneisses (L.Hall for scale). Felsic granitic veins

in the "tonalitic· orthogneiss merge with the granitic orthogneisses.

B) Cross-section view of a strained contact between "tonalitic· orthogneiss and granitic orthogneiss with some pegmatitic patches

(Hammer for scale). Note minor asymmetric folds with venicallimbs and ductile shearing in the fold limbs (03 defonnation).

C) Detail of back-veining of the amphibole-rich" mafic tonalitic· orthogneiss by the granitic orthogneiss (472 Ma).

D) Plan view, straight contact between "tonalitic" and granitic orthogneisses with a late pegmatite. with an undeformed aplitic

core, cross-cutting the gneissosity. Felsic veins in the mafic "tonalite" merge with the granitic orthogneiss. Well developed

compositional banding in the granitic orthogneiss (bottom) is isoclinally folded and is partially transposed by an axial planar

fabric. At the top the compositional banding is transposed into parallelism. The pegmatite intruded late during the ductile

shearing, approximately perpendicular to the extension direction (note small stretched felsic pegmatitic vein. upper left comer).





Fig.4.6,- Margaree orthogneiss, hornblende-bearing granodioritic

orthogneiss (UlPb sample 93·PV.J). Location: quarry outside Margaree (UTM, 2IT

UC 345200 52714(0). Typical aspect of the gneiss showing a hornblende-bearing felsic

vein (metamorphic differentiation) isoclinally folded and transposed into parallelism with

the rest of the gneissosity. Pen for scale is 13 em long.

MARGAREE CQ:MPLEX (Margaree)
GRANODIORITIC ORTHOGNEISS

.0156 93PV3 HO

Z4

1;'47;::;-4"""+"'-14""",""'-4"""M"""""'a1

~

.061~5·"L =---:c:--~·"~U_--,----,J

Fig.4.7.- V-Pb concordia diagram for the granodioritic orthogneiss

(Sutqple 93-PV.3). Z; zircon.
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Fig.4.8.- Top: Granitic: orthogneiss (Fox Roost, U/Pb sample 9J-PV-5)

and rolded amphibolite endan. ptan view, folded amphibolite enc:lave in granitic:

orthogneiss with mullion-like struclUres at its terminations. In the bottom half (arrow). a~

axial planar fabric is partially developed in the granitic orthogneiss. Weak gneissic

compositional banding in the orthogneiss is also folded and locally transposed by an

apparent dextraJ shear (03 deformation).

Fig. 4.9.- Middle: Partially mingled amphibolite dyke intrusive into

granitic orthogneiss (Fox Roost). 472 Ma granitic orthogneiss and partially

disrupted amphibolite dyke back·veined by felsic magma in a low strain area; the front of

the dyke (bonom right) is disrupted as small enc:laves in the surrounding felsic material,

some cnc:laves show a compositional banding suggesting mingling. This field relationship

could be interpreted either as anatectic melting of the amphibolite or as a mafic dyke

intruding into a partially crystallized felsic magma chamber (Fernandez and Barbarin.

1991). The lack of evidence for amphibole-out reactions and anatexis in the 472 Ma granitic

orthogneiss favours tbe second hypothesis. Note high-strain ductile shear zone (03) in the

lefi of the picture.

Fig.4.IO.-Bollom: UlPb concordia diagram ror sample 9J·PV·5, granitic

orthogneiss (Fox Roost): Z. z.ircon.
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Margaree oMhogneiss • Grandys Brook s~tion:

Fig.4.11.- (Top) Geological map or the lower pari or the Grandys 8roo"

section showing the location of the UlPb sample and the intrusive contact

belween Ihe Margaree orthogneiss (M.O.) and Ihe country rock PoM-aux­

Basques gneiss. Small insels: A) Field sketch of the F2-F3 folding of the compositional

banding, including leucosomeI'. in the Port-aux-Basques gneiss (nol to scale). B) Field

relationships between the melasedimenlary Port-aux-Basques gneiss, the Port-aux-Basques

granite and a late syn-D3 granite (not to scale). C) Boudinaged and folded amphibolite dyke

intrusive into the granitic members of the Margaree orthogneiss at the V-Pb sampling

location. (Legend: PaB, Port-nux-Basques).

Fig.4.12.- (Boltom lerl) U/I)b concordia diagram for the granitic

orthogneiss al Grandys Brook (U/Pb sample 94-PV.2). Z, zircon; T, titanite.

Fig.4.IJ. (Bottom righI)- Amphibolite dykes intrusin into 46S Ma granitic

orthogneiss. Tbe dyke on right of the picture has been boudinaged during ductile

shearing (03?). The pegmatite palches in the boudin necks are evidence for bigb­

temperature shearing. Field notebook for scale is 20.5 cm long and 12 em wide.
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Fig.4.14. (Top left) • Fox Roost·Margaree. amphibolite (V.Pb sample 93­

PV·6) intrusive into hornblende-bearing felsic granodioritic orthogneiss.,

Fig.4.15. (Top right) - U·Pb concordia diagram for titanite from sample

93-PV-6•

•'ig.4.16. (Bottom) - Titanite (410 Ma U·Pb cooling/recryslaUizatioD age)

aligned with green hornblende and biotite defining the fabric in sample 93·

PV·6. Mineral assemblage: hornblende + plagioclase (=:-An 30) + biotite+ titanite + quartz.

Most titanites occupy interstitial positions (arrow) and have straight boundaries suggesting

that they have recrystal1ized with the rest of the mineral assemblage following D3. L

mineral (amphibole) in this sample is parallel to the plunge of the F3 folds.



9JPV6: Fox Roost
.__ Ampbibolitt: in "lonaJitic" gil .

Titanite

..,
Tl

1410+1-2 Ma I
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Fig.4.19.(Top) • Late syn-D3 granitic dyke intrusive into "migmatilic"

gneiss (Fox Roost, UlPb sample 92-GD-II). Pen for scale is 14 cm long.•

Fig.4.20. (Middle) • Detail of the intrusin t.ontat.t and the syn.magmatic

fabric in the granitit. d)'ke.

Fig.4.21. (Hollom) - U/Pb t.oncordia diagram for the late-syn 03 granitic

dyke (sample 92-GD-II): Z, zircon; T, litanite.
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Fig. 4.22. (Top len) - Cross-vie,",', Margan!~ orthogneiss, Fox Roost: Fl·F3

interference folding uoss-c:ut b)' late pegmatites.

Fig.4.:n. (Top rigbl)-Plan view, F3 overprint of a 02 boudin in a quartzo­

feldspathic paragneiss, contact between the Port-aux-Oasques gneiss and

the Margaree orthogneiss at Margaree.

Fig.4.24. (Bottom right)- Plan ,'iew, closure of an Fl fold overprinted by F3

folding in migmalilic Port-aux-Oasques gneiss. Dolphin road, only 20 m apan

from Margaree onhogneiss outcrops. Both the analectic granitic: dyke and the leucosomes

are aligned wilh gneissosity (SO-52?). The leucosomes were produced by muscovite-out

reactions (Burgess el aI., 1995), nole the contrast in the abund..'lnce of felsic material in the

~rnigmatitic" gneiss at Folt Roost (fig. 4.19).

Flg.4.25. (Bottom left)- I'lun view, amphibolite in F3 ductile shear zone

(Margaree orlhogneiss, Margaree-Fox Roost). Asymmetric amphibolite

boudin/enclave indicates an apparent dcJttra.l shear sense, this is also supponed by the small

C-like offsets of the amphibolite.
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PAB gneiss
Isle aux Morts river

Fig. 4.26.- Equal area stereooets for the gneissosily, mineral lineation (90% amphibole) and plunge or F3
folds in tbe Margaree orthogne.iss and the sUrTOunding Port-IIUX.BasqUes gneiss.
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5.

Fig. 4.27 .- D3 ductile shear zone in the Port-aux-Basques gneiss. Kinematic
indicators suggest an oblique top to the southwest motion. Blac~ amphibolite;
pattern, pegmatite (pre-.D3). Location; road cut before the IsIe-auJt-Morts welcome
post. Approximate total length of the outcrop is 30 meter.>.

Fig.4.28.- OJ deformation, detail or back rotated segments or a competent
quartzo..reklspathic: Ia)-er in the Port au Basques gneiss. Asymmetrical extensional
shear band, indicating a relative thrusting motion are responsible for the asymmetric
boudinage.



FiI.4.2' (Top).. Marlaree ortllolllei88, mic::rotes.ture or the 472 MalraDjOe
orthogneiu. I...arF p1ag..:dllllC a')'lI18J ptnnlDg small quartz and bloclle (arrows), suggesting Iugh
1Cm~ gram boundary IDIgJaUOn I"CCl)'MaIhlallOn. The quam gJalM.!how .-aile! ~0flllalI0n bIIodI

~n>Oand c::~::;:'.th ~~=aJl~h~;:i~s~dg~:::b~;'~ti~OIItesture ill
amphibolite. Mineml assemblage: green hornblende, p/atpoclll9C (andesme) and ruble. Arrow: ruule
inclUSIon in homblenllc. Field of vIew 1.3 mm long.
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":F~;:-•.'::'4.";3":'1."."l'M~.::r::••::re::.~or::tfho:::.::D::1.;~..~."iDi'i3--=:icro"';tructural features in weakly
recrystallized banded loeiss: (Top) C'-like high '!nUn bands wiUl grain reductiOll aDd
~ic: recrysaallization of quartz. The p1agioctage in the center shows s1ighlJy benl and tapered twins
indicatlllllnuxrysWlinc deformation. Field 0( view is 5.2 mm Ioag. (Bottom) Shear bmd. anlilhdic:
10 the C'-like banda. 5howing ;mea,led growth of biolite and epoo.e Field of view is 5.2 mm long.
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Fig.4.JZ.- Mar.aree ortholaeiss, mierotnture of late-/post.DJ myRoDites:
(Top) Plaglocia!le porpnyrodast wilh WlDgcd quanz-neh lilJbool: surrounded by a lm&lI gram mylonlUc
malh~Armw.detaJledareashownin botlom figure. Ficldoll'iew i,S,2mm long. (Bottom) Dewl of
qUlll1Z subgrains and ameboid-lobnle quartz-quartz llOOlaCtlI 8uggCllll.ng dynamIC rocrystalliZlltioo in the quartz
ribbons. Lower pertlon, fine gr.un matrix fonnc:d by aligned biotite, epidote and wtule mica, and qUill17.,
p1aglocl_and fddsplr (1). Field of View IS 132 mm long.
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Brittle-ductile late-post OJ and
D4 deformation (amphibolite­
greenschist facies)

D3 ductile deformation ~

7+ D2 deforma~on and peak 0J metamorphism

Fig.4.3J.- Absolute time constraints for deformation of the Margaree
orthogneiss and the associated Port-aux-Basques gneiss. GBe, Grand Bay
Complex, PaBC. Port-aux-Basques complex; MOl Margaree orthogneiss; HICG,
Harbour leeou Group. ATIAr data after Burgess etal. (1995) and Dubtel al. (1996).
Zr data: MO, this study; PaBC (Van Staal et al., 1994 and Dube et aI., 1996). Mnz
data: Dunning unpublished. Tto data: GBC (Dunning et aL, 1990); MO, this study;
HICG (Burgess et aI., 1995).
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FigA.34.- P-T-t-d path for the Margaree orthogneiss and stable mineral
assemblages: P-T-t path after Burgess et a1. (1995). Pattern area, stability field for
the mineral assemplages of the Margaree orthogneiss and surrounding PaB gneiss.
Tn·ple point and reaction curves afler figures 10-16and 11·16 of Spear (1993). (.)
Growth during 03.



f1t.4.35.- MarIIUft orthogneiss: malk and ultramafk tlXu: (A) Alkalic Index
(A.I.) VS. AI203 basalt classification (Middlemost. 1975), G-MA-3 is the sample
classified in the high-alumina field. Classification of alkalic and subalkalic basalts (8)
K20 YS. Si02 and (C) Na20 vs. Si02 (Middlemost., 1975). Triangles. ultramafic
rocks; filled circles, amphibolites.

..

~
~::::

Sr KRbBaTb NbCe P Zr Sm Ti YYbSc Cr Ni

Sampk Si02IMJO
• c;.MA~4S.6'IU

• G-MA-S43.6/llL1
c ().MA.l~.lIll.24

,. Q.MA·A 49.918.1

• O-MA-316.6J 7.7
.. c;.MA,·948.9I'1.2
... Q.MA-8SO.2J.5.4

Fla. 06.· Marl................ ' malk ODd a1........nc ........ (A) REE
multielement patterns. (8) MORS (Pearce, 1983) normalized multielement
pauerns. Filled elrdes, ultramafics; ocher symbols. ampbiboHtes.



TABLE ....2.. MAJOR AND TRACE ELEMENT ANALYSFS, MARGAREE
ORTHOGNEISS.
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Fag. 4.37.- Margaree orthogneiss, tonalitk and granitic orthogneisses.
(A) REE element multielement patterns. (B) Primitive manUe (Sun,
1980)normaliz.ed multielement pattern. Circles, Hbl-bearing tonalitic
orthogneiss (474+41-14 Ma); squares, Bt-bearing granitic orthogneiss
(472±2.5 M.).

Fig. 4.38•• MORS (Pearce, 1983). normalized multielement patterns from
modern tectonic environments (black; after Pearce, 1983) superposed to the
amphibolites from the Margaree orthogneiss (red). Th., tholeiitic; Tr., transitional;
Alk, alkaline; Ca, calc-alkaline; Sho, shoshonitic; MORS, mid ocean ridge basalt;
WPB, within plate basalt; VAB, volcanic arc basalt. Symbols for the Margaree
IJrlPhibolites as in fig. 436.

"



Ti!IOO

MOO '-~(A) ::: (8)

~"':_" -~
Zl Srl2 so z:~uo zoo

Zrll17

• Eastern UU spreading centre

TI02 Ngatoro Basin 2Nb

Fig. 4.39.- Tectonic discrimination diagrams for the amphibolites of the
Margaree orthogneiss: (A) Ti·Zr-Sr diagram (pearce and CanD, 1973); (8) Ti
vs. Zr diagram (pearce and Cann, 1973); (C) Tl·Zr-Y diagram (pearce and
Cnnn, 1973); (D) Zr·Th·Nb diagram (Wood, 1980 with modifications in
Jenner, 1996); (E) Ti02·MnQ.P20S diagram (Mullen, 1983); (F) Nb·Zr- Y
diagram (Mcchesde, 1986). Amphibolites, filled circles; filled square, LREE
enriched amphibolite (50.2% Si02, 5.4% MgO). Tonalitic and granitic
onhogneisses, open squares in diagram D. Ultramafics also included in D.
Modem back-arc basalts from the SW Pacific Eastern Lau spreading centre (Lau
Basin; Pearce et aI., 1995) and the Ngaloro Basin (Gamble el aI., 1995) for
comparison.
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Fig. 4.43••- Crystal frac:tionation REE element modeWIlI: REE element patterns
nonnalized to cbondrite (Nakamura, 1974). Crystal fractionation equations after
Hanson (1989 ): Kd's for olivine and c1inopyroltcne after Henderson (1984). Source
(sample G-MA-I. 11.2% MgO), filled squares; model fractionates (15% fractionation
intervals), open squares; Sample G·MA-8 (50.2% Si02. 5.4% MgO), filled circles.
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F"JI.4.44.- MQRB (Pearce, 198J) - DOnDlIlized moltielemeat dialram for the
MarJaree orthopeisses (ultramafic rocks excluded). Black, amphibolites; blue,
granitic orthogneisses; red, tonalitic orthogneisses. The tonalitic orthogneisses have
the most enriched patterns indicating that they are nOl a product of simple binary
mixing between mafic and felsic (granitic) magmas. The amphibolite G-MA-8 is
enriched in HFSE, mid and HREE with respecllo the rest of the samples, indicating
that was not conlaminated by the tonalitic and/or granitic sources (or magmas).



Basic-felsic magma chamber
(Margaree orthogneiss, 474-465 Ma) 0

474MaPartridgeberryHillsgranite
stichlillg494 Ma ophiolite (Pipestone Comple1l)

PfRI-GONDWANA

Underplating (tholeiitic magmas)

Fig.4.4S.·( Left) Interpretative model for the generation of the mafic-felsic
igneous complex, Margaree orthogneiss. (Right) Coeval magmatism along the
peri-Gondwanan margin of the Newfoundland Appalachians (Exploits subzone
and Gander Zone). Avalonian basement, striped pattern.

MID ARENIG·EARLY LLANVIRN (474465 Ma)

BACK ARC

and crustal meltin ?)

Crost (Exploits +
Gander Zone)

Mantle lithosphere

Shallow melting of
Sp-Iherzolite (LREE-poor
tholeiitic magmas)

Fig.4.46.- Hypothetical Mid Arenig· Early Llanvirn tectonic setting for the
Mfrgaree orthogneiss (igneous complex): Shallow melting of asthenospheric
mantle in an arclback-arc setting with coeval crustal extension and basin fonnation.
Subduction polarity based on Van Staal (1994).
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mnjExoDclC:naDelollbe ... Veaorofleal:lPiclranspofto MlUwm Iberian Mas!if I_ 0U0 de Sapo formalion and up-p_

I~Alkx:hthooous (l()m~es az ~ 0110 de Sapo (nlCWDbc:nt foldl) Domain

GTMZ ill Schistose Domain ~ Domain ofvenical folds

Fig. 5.1.- Location or tile Iberian MassitiD the European Variscides aDd
lithotectonic zones of the Iberian Massif.
Ordovician faunistical domains in the Southern Variscides after Paris and
Robardet (1990) and Robardet et al. (1990): C1D, Central Iberian Domain; FAD,
Ebro-Aquitanian Domain; DMZ, Ossa-Morena Domain.
Lithotectonic zones aCthe Iberian Massif (Julivert et al, 1972; Farias et ai, 1986):
SPZ, South Portuguese Zone; PLZ. Pulo do Lobo Zone (former Spz); DMZ,
Ossa-Morena Zone; ClZ, Central Iberian Zone: 0110 de Sapo (recumbent folds)
domain and domain of vertical folds (Din Balcia et aI., 1990); GTMZ; Galicia
TJ"aS-<)S-Monte3 zooe: domains after Farias eta!. (1987); WAlL West
Asturian-Leooese Zone; cz. Cantabrian Zone.
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FiI. 5.2..· Geologkal constraints on the timinz or the VariKan
oroteDY in tbe Iberian Massif: SPZ. South Portuguese Zone:
PLZ. Pula do lobo Zone: DMZ. Ossa-Morena Zooe; BCSZ,
Badajoz.-Cordoba shear zone; GTMZ, Galicia Tras-os-Montes
Zone; OZ. Central Iberian Zone; WALZ. West Asturian·Leonese
Zone; CZ, Cantabrian Zone. References in text. Time scale Odin
etaJ. (1990)
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~ Badajoz-Cordobu. shear zone (OMZ) • Allochthonous Complexes (OTMZ)
EZa Ossa-Morena zooe (OMZ) ~ Schistose domain (GTMZ)

• Beja-Acebuches ophiolite E;:;3 Variscan granitods

o PulodoLobozooc 0 CIZ, WALZandCZ
DSouthPorlguesezooc

Fig. 5.3.- Lithotectonic units of the Iberian Massif with the location or the
geologkal elements described in set:tions 5.2.1 to 5.2.3. (. cooling age).
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Fig. 5.4.- Compiled pre-Variscan stratigraphic: 5t.'quences of the CIZ, WALZ and CZ. (1) CZ: Cantabrian Zone (e.g.,
Truyols ci aI., 1990; Sanchez Posada ci aI., 1990); (2) WAl.Z: West Asturian -Leonese Zone (e.g., Perez Estaun et aI., 1990);

(3): CIZ: Central Iberian Zone, 0110 de Sapo domain (e.g., Gutierrez Marco et al., 1990); (4) CIZ: Cenlrallberian Zone,
northern Domain of Vertical Folds in the Salamanca area (e.g., GUlierrez Marco el aI., 1990); (5) CIZ: Central Iberian Zooe,

southern Domain of Vertical Folds (e.g., Gutierrez Marco el aI., 1990). L, Lower; M., Medium; U" Upper; P'C., Precambrian; C.,
Cambrian. ORO., Ordovician: Tr., Tremadoc; Ar., Arenig; Unv., Uanvirn; Und., LJandcilo; Car., CanJdoc;Asg., A.ghill; SIL., Silurian; Uandy.,
Uandovery; Wen.; Wenlock; Lud., Ludlow. DEV., Deyooian: Lochk., Lochkovian; Em., Emsian; Sr., Eifelian; Giv., Giyetian; Fras., Frasnian.

Caiboniferous: Tour., Touma.sian; Vit., VillClUl; Nam.; Namurian.
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DD.V.F.•o-;.~v ....... r- gA~CoaIpIuu(U11oCZ)
Do.s.n.OlII>."'-'(ClZ)~~__(8CSZ)

• 000 de s.po goa. aDd equivakIlI rocb (mdudiDJ
bigh-grade.up-gnciaMdpanilicortbogneils)

Fig. 5.S.- Domains of the Central Iberian Zone (ClZ) and loealition of
the main outcrops of pre--varisean orthogneisses, including the available
pre-variscan absolute ages (Ma) in the CIZ and the CZ, and the
off.shore granulitic: basement. Bold, U~Pb ages; Plain, Rb-Sr ages.
(l)U·Pb Zm. Lancelot et aI. (1985); (2) U-Ph Zrn, Wildberg et a1. (1989);
(3) V-Pb Zm SHRIMP, Gebauer et al" 1993; (4) WR Rb-Sr. Vialene et aJ.
(1986); (5)WR Rb-Sr, Vialett.eet aI. (1987); (6) V-Pb Zm LAM ICP-MS (J.
Fernandez Suarez, per comm.)
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METAHOUIIlSM·PLl1rONlSM.DEFOUlATlON
RELATIONS11II'S IN THE CENTRAL LB2UAN ZONS

Uul.m. and MwllDa, 1J87)

,\*"-,.,..110ranitelandgnulilOids
D3 (major pulse)

01 diorites (diSl;:rcle pulse

Fig. 5.6.- Distribution of SiD-bearing metamorphic complexes (yellow)
and Barrovian metamorphic sequences (red) in the CIZt WALZ and CZ
(blue) after Martinez et al. (l99Oa. b) and Martinez Catalan et at (1990);
location of the Archean basement granulites olr·shore the Cantabrian
Sea (Guerrat et aL, 1989); and relative relationships between
deformation, metamorphism and plutonism in the CIZ. Major wrench
shear zones in the CIZ after Diez Bahia et aI. (1990). Note: most plutonism is
315-270 Ma (Rb-Sr; K-Ar, e.g., Serrano Pinto el at. 1987), except for
pointed exceptions. Timing of deformation in the WAU after Martinez
Catalan et al. (1990) and Martinez Catalan et aI. (1993) and in the cz. after
Perez Estaun et aI. (1990).
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OllodeSap;:l

8nIifOrmi ~ 0110 de Sapo gneiss and equivalent rocks
(augen-gneisses and felsic porphyroids)
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~ Badajoz-Cordoba shear zone (OMZ)~ Allochthonous Comple;o;es (GTMZ)

~ Ossa-Morena zone (OMZ) B Schistosedomain(OTMZ)
_ Beja-AcebllCbesophiolilC [II] Variscangranitods

rn Pula do Lobo zone OUo de Sapo domain (CIZ)
[8) South Portguesezone

Fig. 6.1.- Map of the lithotectonic zones of the Iher-ian Massif showing
the distribution of the 0110 de Sapo pre-variscan gneisses and the
location of the area of study.



Honrubia Massif~ EJ Cardoso
antiform

Fig. 6.2.- Geological map or the Spanish Central System. Including main macrostructure! of the Sierra de
Guadarrama. also shown in cross seelion (I-II. mainly Eastern Domain; modUJed from Macaya et at. 1.991). Legend:
(I) Variscan granites; (2) fre-.Variscan orthogneiss; (3) Paleozoic of the Eastern Guadarrama Domain; (4) Metasedimentary
rocks; (5) Berrosa-Riaza sbear wne; (6) Armorican quartzite (Arenig?); red square, area of study. location of previous
~~~te age detenninatioos in Ma: •• U-Pb lower intercept (Wildberg et al.• 1989); italics, WR Rb-Sr (Vialeue et al, 1986; ~



41°10'

C],
D2
~3••~5
T""T" 12
-13

Fig. 6.3.- Main structural elements (Fernandez Casal, 1979; Awr et aL,
199th; Hernah Huerta et al, 1996) and distribution of the metamorphic
isograds (eg Lopez Ruiz et al., 1975; Gonzalez Casado, 1987; Escuder Viruete
et aI., 1996) of the Somosierra area of the Sierra de Guadarrama. Legend:
pre-variscan orthogneisses (1) and metasedimentary rocks (2) of the Westem
Domain; 3) 02 crenulation band; 4) Berzosa-Riaza shear zone (BRSZ, ductile
mylonitic fabrics); 5) Madarquillos synform (high strain zone, shear zone). B,
Buitrago; C, EI Cardoso; M. Montejo; L. Lozoya; P, Pradena; R, Riaza.
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Fig. 6.4.- Lithological map of the Somosierra area of the Sierra de
GWldarrama. Legend: Eastern Domain: I) Rodada Op. (Ullnvim); 2) Armolican Quartzite,
Alto rey fm.(Arenig1); 3) Micaschisl, metnpsammite, quartzite and minor para-amphibolite
(Constanlt (OfTIlatiOll); 4) ClIfdoso gneiss. felsic melavolcnnoclastic rock. Bel7.OA·Rill7..a shear
zone: S) metas«limentary rockll ollhe SiIl+Ky woe; 6) Ductile mylOllitic fabrics; 7) Foliated
megacrystic granite, Riaza-Nazaret- Bermsa-Pedrezucla gneisses. Western Domain.: 8)
Paragneiss, SChisland analeCbc migmatite; 9) Augen-gneisse. foliated megacrystic gr.uU1C; 10)
I...euoognciJa.mainlypre-VariJt&nI~te..II)Post-tec&onicl.aCabrenagranite..12)Late

• eJ\:lcrISional delaChmenlS; 13). Late faults (Paicomic and MC8CI'tOic). B, Builra&O;C. E1 Cardc:B);

L.., l...ozoyII; M, Montejo; P, Pnwkna; R. Riaza.

81
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Rodad. Group (1700 m): Bloc" shalCl

Alto R,y Fm. (80-130 m.): Massive Yo'hite quarl1jte (Arcnlg qUarl7.iIC)
I

Const...ttl BonIOV. Frn. (2Cll)..(,(X) m); pelitic SChlSl!l alternating Wilh
quarltJtes and minor pur<l-amphibolitcs. and biL'lal microcol1glomcfUtes Yo'ith
clasL~ from 11M: ulllkrlying gnclS~
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Precam",",,, 1 ~ _ ~rdoso BMW P"tcambria"1~. lIitolHl<lolHndn.gn,1M

• ,. M1Cl1!lChiSlS. pslllnm;\C:lI &. AnloIIJta gnei511 /5(J(H,26 M.. pnitic
P"f1I-amphiOOlile'! orthogneiss, WR RIrSr; VWcttedal., 1986)

CARDOSO ANTIFORM HIENDEL\ENCINA ANTIFORM
(Westc:rn nank of 11M: Majalrayo Syncline) (Eastern Oank of the MajaJrayo SYlICline)

FiR. 6.5.· Paleozoic stratigraphic sequence of the Eastern Guadarrama Domain. Ref. in text, for
geographic locations see fig. 6.2.
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Fig. 6.6.- Lithological map or the Montejo-Berwsa.Ou.ltraso-Lowya area. Topographic base after Fernandez Casals
(1979). Geological map west of the Rio Sequillo dam and the trace of the Annorican quartzite after Fernandez Casals
(1979). HT.d.b., high temperature defonnatlon band; Lf.b., L-fabric band. Calc-silicates (blue)
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Fig.6.7.- Lithological changes along the Berzosa-Riuzu shear zone.

(A) Eastern Guadarrama domain, Chloritoid mica schist between the Cardoso gneiss and the Armorican

Quartzite, top of the Berzosa-Riazu shear zone. Note the penelrative $2 mylonilic fabric with pressure shadows around

the chloritoid porphyroblasls. St-Cld transilion, shear sense of top down to the SE. Location in Fig. 6.6.

(B) Basal Eastern Guadarrama Domain, St-Grt micaschist, structurally below the Cardoso gneiss. S2

foliation plane showing a well defined L2 mineral (St) and stretclting lineation.

(C) Base of the SiIl+Ky zone, Berzosa-Riaza shear zone. Ky-Grt bearing metapsammite showing Fl

intrafolial folds in a D2 boudin. Tail of El Villar dam, at the contact with the migmatitic gneisses of the Manjir6n antifonn.

Location in Fig. 6.6.

(D) SiII+Ms zone, migmatitic gneiss at the footwall of the Berzosa-Riazu shear zone, with D2 shear bands

indicating a shear sense of top down to the S-SE (Manjiron antiform, location in Fig. 6.6).
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Fig.6.8.- Metasediments in the Manjiron antiform, Sill+Ms zone. Top:

Quartzo-feldspalhic paragneiss showing DI-D2 refolding of the SO compositional banding,

plan view. Bottom: Asymmetric Z-folds in garnet-micaschist (Grt-BI-Ms-PI-Qtz)

indicating a top-down to the SE shear sense. View parallel to Ls.
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Fig.6.10.- Anatectic melts in the Buitrago area, SiIl+Kfs zone. Top: Pre­
early syn-D2 stromatic migmatite with granitic leucosomes and Bt+Sill melanosomes

defining the gneissosity. Bottom: Late post-D2 granitic melt intruding along a shear band

in the Buitrago gneiss. Western side of the Rio Sequillo dam.
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Fig.6.11.- Anatedic migmatites of lhe Western Guadarrama domain.

TOI).· Migmatites in the SiII+Ms zone, Manjiron antUorm, head of lhe Puenles Vlejos dam.

(A) 1-"2 folding of granitic leucosomeSCOllcordant with the gneissosity in the paleosollle. It is uncertain if these are anatectic melts

or metamorphic differentiates. The rnclanosomes are fonned by sillimanite + bi()(ite + llluscovite ± garnet:

(U) Diatexitic migmatite with interconnected leucosomes showing a complcx dishannonic refolding. The leucosomes contain

minor gamet, have granitic compositions and preserve relicts of magmatic textures. View perpendicular to Ls.

80110111.- Migmatites in the SiII+K(s zone, eastern side of the Rio Setluillo dum.

(C) Gamet-bearing stromatic migmalite folded by F'2 with more than 40% leucosome. migmatitic paragneiss. Note the

dishunnonic refolding of the leucosomes.

(D) Detail of leucosome in the hinge of a D2 fold suggesting melt migration during F'2 folding.

..
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Fig. 6.12.- Cak-siliute lithologies.-

Top: Complex FI folding of garnel and clinopyroxene-rich layers (SO-SO inside a 02

boudin, late tension cracks (02) are filled with plagioclase. The grey centimetric speckles in

the rock are composed of calcite, plagioclase and epidote. Manjiron antifonn (Sill+Ms

ZOfle), base of the Puentes Viejas dam.

Middle: Calc-silicate, quartZ-free. garnet-clinopyroxene assemblage with new growth of

plagioclase (Pt) after clinopyroxene. The inclusions in the garnet are zoisite and rutile.

Titanite is restricted 10 the matrix. Field of view is 1.32 rom loog. Manjiron aotifonn,

Puentes Viejas dam.

1I0110m: Isolated calc-silicate lense, defonned boudin, surrounded by migmatitic

pllragneisses showing D2 strain partitioning with F2 folding and 02 shearing and

transposition of the compositional banding. View oblique to Ls. Buitrago area (Sill+Kfs

zone), high temperature defonnlltion band, western Puentes Viejas dam.
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Fig.6.13•. EI Villar biotite-bearing migmatites, non-anatectic migmatites,

Western Guadarrama Donmin. •

A) Foliated aplitic dyke subparallel to the gneissosity defined by quartz + K-feldspar +

plagioclase rich domains. EI Villar dam. SE border of the Manjiron antiform (Sill+Ms

zone).

B) Sub-solidus migmatites near eI Cuadr6n (Sill+Kfs zone). The absence of well defined

melanosomes and the pegmatoid character of the leucosomes suggest that they are derived

from strained pegmatitic veins or deformed and recrystallized feldspar porphyroclasts.

C) EI Villar dam, coarse-grained leucosome with no melanosome in a highly strained

granitic paleosome with leucocratic domains suggesting that this is a sub-solidus migmatite.

The rock consists of biotite + muscovite + K-feldspar + plagioclase (An 15-20) + quartz,

with very scarce garnet and no sillimanite.
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Fig. 6.14.- Augen gnel.sses and foliated meK8uyslic granites of the Western Guadarrama domain.

A) Heterogeneously defomled foliated megacrystic grnnite. Cincovillas gneiss.

8) Augen-gneiss, megacrystic facies of the Buitrngo gneiss showing primary feldspar porphyroclasts surrounded by a ductily

defonned sillimanite-bearing qU9r1zo-feldspathic matrix. Weakly developed SoC structures and discrete shear bands (below the

pen) indicate a top down to the SE (dextml) 02 shear sense.

C) Highly strained augen-gneiss, Cincovi1las gneiss, showing an intense 02 flattening and deformation of the primary feldspar

megacrysts. The strain partitioning around the feldspar megncrysts and the symmetry of the porphyroclast tails do not allow

reliable detemlinntiOTl oflhe shellr sense; view parallel to the stretching lineation.





Fig.6.15.· Gneissic leucograniles of the Western Guadarrama Domain,

Manjiron lIntiform (Ms+SiII 'lone). Top: Foliated leucogranite with a diatexitic

apperance. Horcajuelo gneiss, Rio Coeloillas section. Bottom: Gamet·bearing strongly

foliated leucogranite, Puentes Viejas dam.
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CARDOSO GNEISS,
Felsic mdavolcanic tufT

1480+/-2 Mal
~
-u

Fig.6.16.-U-Pb concordia diagram for the Cardoso gneiss and a weakly
ddormed hand sample showing the volcaniclastic charader of this rock.
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RIAZA GNEISS,
Mylonitic megacrystic granite

Fig.6.17.- U-Pb concordia diagram for the Riaza gneiss and field apperance of the
strongly mylonitrzed facies. Hammer shaft is approximately 60 em. long.
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Fig.6d8•• Buitrago gneiss. Left: Samplins sHe for samples BU·. (foliated megacrystic Junite) and BU·2
(foliated aplitic vein) showing BU·2 intrusive Into BU·., the view is orthogonal to the stretching linealion. Righi:
Concordant deformation of the thin end 01 the aplitic dyke (BU.2) and the counlry rock (BU-.). This
relationship indicates that the apparent fabric/dyke cross-cutling relalionshipon the sampling site (left) is an effect of the contrast
of competencies and the composite character of the fabric in the megacrystic sample au-I. Both pictures are from the same
continuous outcrop. abandoned quarry SW of Builrago.
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BU-I: Buitnlgo gntiss
Folialtd mrpcryslic gran itt

Fig. 6.19.- U-Pb concordia dillgram for tht fonattd megacrystic granite fadtt
of the Buitrago gntds, sample BU-1. z.. zlrtolL

BU-2: Buitrago gDeiss
Foliattd aplitic veiD intrusive into BU-I

:u
Z5'* 1-:-48:-:-2-"+8""-/-=7"'-M'-aI

:fll
·w:3L,-------,...----,~-:.u-----'

• Fig. 6. 20.~ U~Pb concordia dlap'am ror umple BU~2, roliattel aplilic vein
inlrusive into BU-I, Buitrago gneiss. Z., zircon; M. monnltt.



PIB-l: BUITRAGO GNEISS
Pinillll de Buitrago, Rio Sequillo dam 480

Foliated leucogranite

ZI
Z2

Z3

Z4 1482+9/_8 Mal
Z5

=..e.Jz
.OS36 '----------'".:::"---­

.•Z6

Fig.6.21.- U-Pb concordia diagram for sample PIB-l, garnet-bearing foliated
leucogranite in the Buitrago gneiss, and field character of the dated sample.
Pen for scale is 13.5 em long. Location: western side of the Rio Sequillo dam in the
vicinity of Pinilla de Buitrago.
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.O~H I -- U !
.351 .~Ol .~45 .489 .533 •••

Fig.6.22.- U-Pb concordia diagram for the Lozoya gneiss: (A) Detail of the upper intercept ofthe two independent zircon and
monazite discordia lines and the concordant single crystal analysis Zl. (B) Zircon and monazite dlscordia lines. (e) Inset
concordia diagram showing the position of the highly discordant zircon fraction Z5. Right: Field aspect of sample LO-l. Pen
for scale is 14 em long.
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Fig. 6.23.·Location of the new protolith U-Pb ages for the pre- Variscan

orthogneisses of the Sierra de Guadarrama. (A) Tectono-stratigraphic zones' of

the northern Iberian Massif showing the distribution of pre-Mid Ordovician augen-gneisses

and coarse felsic volcaniclastics (0110 de Sapo gneisses) and the location of relevant

published geochronological data: bold, V-Pb data (Lancelot et aI., 1985; Gebauer et aI.,

1993); bold italics, Rb-Sr data (Vialette et aI., 1987). (8) Geological map of the field area

(modified after Hemaiz Huerta et aI., in press) with the location of the new V-Pb zircon

ages.

Legend:

I, Mesozoic deposits. Eastern Guadarrama Domain: 2, Rodada series, black shales and

siliciclastic rocks (Uanvirn-AshgilJ); 3, Armorican quartzite (Alto Rey fm., Arenig?); 4,

pre-Mid Ordovician micaschists, metapsammites and metaquartzites with minor para­

amphibolite (including the Constante formation); 5, metavolcanic Cardoso gneiss. Berzosa­

Riaza shear zone (BRSZ): 6, mylonitic fabrics in the BRSZ; 7, mylonitic megacrystic

granites within the BRSZ (Riaz.a, Nazaret and Berzosa gneisses). Western Guadarrama

domain: 8. micaschists. paragneisses and migmatites; 9. augen-gneisses and foliated

megacrystic granites; 10, leucogneisses (might include undated Variscan foliated S-type

granites). II, post-collisional (La Cabrera) granite-granodiorite. 12, Variscan greenschist

facies extensional detachments. 13, brittle faults including both Variscan and Mesozoic

faults. B, Buitrago; C, El Cardoso; L, Lozoya; M, Montcjo; P, Pradena; R, Riaza
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SlllClion
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Monlejo EI CervuDal

delllument etelllcbmeal
Silunan­

LowcrDev<:JIu3n

Rodada rm.
(Upper member,
~Io-A5ghlll)

Rodadarm.
(Lowermcmbcr,

U. A=Bg-U-anVlm)

Sl-in isogr.ld

Fig. 6.24.- Schematic geologicol map and interpretative cross-seetion of the
Berzosa·Riaza shear zone (BRSZ), the Cardoso antiform, the Majalrayo syncline and
the western flank of the Galbe de Sorbe antifonn (After Hernaiz Huerta et aI., 1996).
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~ Gneissosity I main foliation

t Mineral I stretching lineation (L2)

o UlPb sampling siteIHigh strain zones (discrete shear zones)

Fig. 6.25.- GookJgkal map or the Buitrago-Montejo-Berzosa area. Topographic base after Fernandez Casals (1979)

o Paragneisses and anatectic migmatites

o Sill+Ms metapsammites

U SiU+Ms garnet micaschists

o EI Villar type BHnigmatite5 (solidus migmatites?)

Cl Calc--silicate

o SilI+Ky metasedimentary rocks

D St z.one and Grt zone metasedimentary rocks (Constante formation)

• Arenig Armorican Quartzite (Alto Rey formation)

~ Uanvirn black slates (Rodada group)

~ Augen-gneisses and foliated megacrystic granitesrn Augen-gneisses and foliated megacrystic granites (BRSZ)

Granitic orthogneisses (undifferentiated)

~ Foliated leucogranites

• Pegmatites

Quaternary

II -I : cross section (Fig. 6.43)
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Fig.6.26.- Microtextures along the metamorphic zones of the 10l"er levels

of the Eastern Guadarrama domain and the upper lenls of the Western

domain (BRSZ).

Top: Chloritoid-bearing black slate showing a spaced 52 crenulation

cleavage affecting the 51 fabric and the inter 01-D2 chlorit.oid (Cld)

porphyroblasts. Eastern Guadarrama domain, 02 crenulation of the S I fabric. Bt-zone

(Llanvirn black slates of the Rodada group I km east of Robfedillo de la Jara; Fig.6.25).

Field of view is 5.21 mm long.

Middle: Eastern Guadarrama domain, upper levels of the BR5Z, 5t-zone,

lale-D2 growth of staurolite and partial D2 transposition of the 51 fabric.

U-Pb sample Hi-I (Fig.6.25), La Hjruela mountain pass. Field of view is 9 mm long.

BoHom: Western Guadarrama domain, BR5Z, SUI (Ky) zone. quartz +

muscovite-bearing micaschist with relict staurolite and kyanite. The winged kyanite

porphyroblasts are inter 01-02, indicate a top down to the SE shear sense (ie. dextral) and

show 02 pressure shadows with new growth of sillimanite (fibrolite) and biotite. The 02

fabric is defined by oriented Bt+Sill (fibrolite)+Ms. U-Pb sample 12-9 (Fig.6.25). Field of

view is 5.2 mm long.
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Bcrzosa-Riazashearzonc

SiIl(K )~:;~~;:~jOl""'s;,~

:'.'•• +

oo~

a <p~" :..--------.

51-zone. ncar EJ Cardoeo
BRSZ(W. nankol'S CardoIoanlirorm)

BRSZ, St-zone
East of El Cervunal detachmen
52. av_, 17/54 E (0=30)
Lmin,av.,1'!i)/47(n=J2)

l
eMaiD foliation (Sp)/gneissosity (gn)

Stereonet • F2 folds axis
symbols c L min (Ll)

*Fold axis to best fit circle
o C planes (extensional shear bands)

rig. 6.27." Equal area, lower hemisphere stereonet projections
orthe main roliationlgneissosity, mineral and stretching
lineation (L min) and F2 fold axis north of the area shown in
detail in Fig. 6.25 (red area). B, Builrago; C. EI Cardoso.
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Flg.6.28.- Equal llrea, lower liemisphe~,stcrconel projections oflbe main foliation (SI) and gllcissosily (Go), mmeml
IinCllllOI1 O~m[n), 1"2 fold am, C' planes (extensional shear bands) and besl ftt plane llnd Ihl,.'O~tical fold axis for Lhe
Ik'-I.osu-Rinza shcar zone (BRSZ; Sill (Ky) zone) and Ihe Manjir6n anliform.
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Fig.6.29.. Deforotation in the southern part of the Manjiron anlifornl. Top:

Isoclinal folding (D2?) of the gneissosily in the EI Villar biotite-bearing

mil]:lIlatites (solidus migmatites), SE border of the Manjiron antiform. Bottom:

Apparently dextral D:Z ductile shear zone in the granitic orthogneisses at the

SW border of the Manjiron antiform. View slightly oblique to the stretching

lineation.
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Fig.6.30.- Miuotextures along the metamorphk zones or Western

Guadarrama domain in tbtl area or Sludy.

Top: Manjiron antiform, sillimanite+muscovite micaschist showing refolded fibrolite(Sill)

patches and recryta.llized muscovite defining D2 microfolds. Field of view is 9 mm long.

MKldlc: Madarquillos shear zone, sillimanite+mu$C()vite metapsammites, oriented sample.

D2 fabric with S-C slructures wilh stable biotite+sillimanile+ muscovite indicaling a shear

sense of top down to the SE (ie.dextral). Field of view is II rom long.

Bottom: Buitrngo area, Sill+Kfs zone. D2 fabric in migmatitic parngneiss with alternating

biotile+sillimanite and K-feldspar+quartt+(plagioclase) layers, and elongated and nallened

garnet porphyroblasts. Field of view is 5.2 mm long.
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Fig.6.31.- F2 folds and 01-02 relalionships in the Madarquitlos shear
zone. Top: Isoclinal F2 fold in Sill+Ms mctapsammites. Bottom: Sill+Ms
mClapsammites. Asymmetrical F2 fold with axial planar 52 foliation ovcrprinling SO
cdmpositional banding and oblique S I foliation (parallel to quartz veins).
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Fig.6.32•. D2 microstructures in SUI+Ms micaschisls. Top: Orthogonal view

to the minerallinealion (centimetric fibrolile patches) showing 02 crenulation of an earlier

foliation (517). Bottom: Same outcrop, parallel view to the mineral lineation (Sill)

showing flattened 02 SoC structures, 02 boudinage of quartz veins and associated 02

shear bands (Cplanes, arrow showing the shear sense) with stable fibrolite. Top to the S­

SE (dextral) shear sense.
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Fig. 6.33.- Relationships between DZ boudinage (X directed) and F2 (X-Y)
rolding of a competent layer during top down to the SE shearing. In the field
photograph, the shaft of the hammer is oriented parallel to the stretching
lineation. Manjiron antiform-Madarquillos shear zone border. Sill + Ms
micaschislS in the eastern Puentes Viejas dam.
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Fig.6.35.. Shear bands (erplaoes) in the MadarquilIos sbear zone
indicating a shear sense of top down to the SE. Pen for scale (top) is 15 em
IOD8·

Fig.6.J6•• L-fabrie band: L·fahric and associated quartz-rods. Puentes Viejas

dam.
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Flg.'.37." Kinematic Indicators witb opposite top to tbe NW DZ shear

sense (ie. sinistral) in the western margin of the Madarquillos sbear zone,

view paraDel to Ls. Top: Discrete level with opposite shear sense in a top to the SE

dominated area, Madarquillos river road section. Bottom: Sinistral asymmelrical

boudinage in the Puentes Viejas dam, area dominated by top to the NW shear sense. The

head of the hammer is orienled parallel to the stretching lineation.
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Fig.6.38.- D2 High temperature deformation band in the Buitrago I area,
Puentes Viejas dam (SiII+Kfs zone). Top: Lenses of quart'Zo-feldsJSpathic
paragneiss separated by anastomosed ductile high strain zones, showing the stron8!g strain
partitioning associated with the D2 deformation. The compositional banding (nobtebook
location) is folded inside the lenses, with the F2 fold axis parallel to the stretching linmeation.
The book for scale is 18 em long. Bottom: D2 shear bands (C'planes), with top ddown to
the SE (dextral) shear sense, developed inside a competent quartzo-feldspathiac lense
bounded by a high strain D2 shear zone (top of the picture). Note the complex defonrmation
inside the lense with rootless, isoclinal intrafolial folds (Dl?, early D2?) and a slsheared
pegmatite (arrow). Pen for scale is 13.5 em long.
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F'ig.6.J9.- Relationship between F2 fold. axis and mineral (stretcbina)
lineation inside the lenses ofquartzo..feldspathic 80ms of the high
temperature deformation band. Field photograph: metric IeDse of
competent quartzo.fe.ldspathic paragneiss showing asymmetric F2 folding
and 02 coaxial flattening. (View perpendicular to the minera11ineation and
F2 fold axis. Western Puentes Viejas dam).
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Fig.6.40.. Top to the SE shear bands in the quartzo.feldspathic gneisses of the Western Guadarrama

domain. Left: Discrete shear band offsetting a leucosome in the h.igh strain zone in the Rio Madarquillos, boundary with the

Madarquillos shear zone. The leucosomes are parallel to the main mylonitic fabric (52). Right: Well developed shear bands

cross-cutting the main foliation (52), note the presence of a small pegmatitic patch at the bottom of the shear band (arrow).

Western Puentes Viejas dam, high temperature defonnation band.
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Fig.6.42•. D3 strudural features, Benosa-Riaza shear zone. Top: D3 upright

crenulation of the 02 eltlensional fabric (note sheared quartz vein), Sill (Ky) lone.

Bottom: 1.5 m thick briule/ductile greenschist facies fault zone (near the pack) affecting

th'c metasedimcDls of the Sill (Ky) zone west of El Villar dam. late Variscan reactivation

along the Montejo detachment'!

11'



11,



0'
IJllIJJl 2

~3••
T"T'" 5
-6

Fig. 6.44.- Distribution ofmi.neral isograds (Lopez Ruiz., 1975; Gonzalez
Casado, 1987; Escuder Viruete et aI., 1996) and mineral assemblages in
metapelites. (.) Ky in the BI-zone after Garcia Cacho (1973, in Lopez Ruiz et
at,; 1975), unconfinned in this study. (-*) Chi is consumed in the lower part of
the St zone. Legend: 1) Pre-Variscan onhogneisses; 2) Berzosa-Riaza shear
zone; 3) Madarquillos synform (D2 shear wne); 4) Annorican Quartzite
(Arenig?); 5) Lale elttensional detachments; 6) Late Variscan and Mesozoic
faults. B, Builnlgo; C, EI Cardoso; M • Monlejo; .... Lozoya; R. Riaza.
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Fig.6.46.- Staurolite growing at the expense of chloritoid while biotite
apparently remains stable, staurolite-chloritoid transition. This staurollte­
chloritoid micaschist conlainsquartz, muscovite. gamet, chlorite and opaques. Gamet and
chlorite are also in conlact with chloritoid. Location: La Hiruela mounlain pass. The field of
view is 1.32 rom long.
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Fig. 6.47.- Simplified KFMASH petrogenetic grid (afte.. figs. 10·15 and 10-16 in
chapter 10 ofSpear, 1993) for the metapelites or the Benosa-Riaza shear zone. (a)
Post-D2 growth of sillimanite in the deeper parts of the St-zone, east of the Cervunal
detachment. (b) Syo.D2 conditions in the Sill (Ky) zone.The arrows indicate lhe parts of
qualitative P-T path deduced for the lower levels of the Eastern Guadarrama domain
(Path 1; 5t lone) and the upper levels of the Western Guadarrama domain (Path 2; BRSZ,
Sill (Ky) zone).



Fil.6.48.· Ky••ite and staurolite relicts i.n t.e SiU+K,.. micaschists of the
BRSZ.
Top: Staurolite and kyanile relicts in contact with quartz. Field of view is 132 rom long.
Bottom: Mutual contact belWeen quartz, slaurolite and Icyanite. Field of view is 0.76 rom
long.
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Fi•.6,49.. Staurolite iaelusions in a garnet porphyroblast rimmed by

ribrolitic sillimanite. Deeper structural levels of the BRSZ. FieJd of view is 132 mm
long.
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Fig.ii.SO.- Granitic leucolJomes in the SilI+Ms zone (Manjiron antiform)
showing interstitial quartz in contact with subhedral plagioclase (AnIO.IS)
laths and K-feldspar. Top. field of view is 5.21 mm long; bottom, field of view is
1.32 mm long
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Fig. 6.51.- Biotite micafish with monazite inclusions (pleocroic haloes) in

a Cld·St micaschisL The micafish was formed during the D2 transposition of the S I

fabric and indicates a 02 shear sense of top down to the SE (ie. dextral). Therefore, the

monazite inclusions are syn-D2 (je,syn-biotile) or pre-D2 (ie. pre-biotite). Using the most

conselValive interpretation (as in this study), U/Pb dating of this monazite would provide

an older age constraint for the lower amphibolite facies. 02 extensional fabric. Field of

view is 17 mm long.
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Fig. 6.52.- Sample distribution and Variscan V-Ph protoJilh and
metamorphic ages (Ma) for the Somosicrra area or the Sierra de
Guadarrama. Legend: Western Domain, (I) pre-variscan orthogneisses, (2)
metasediments; 3) 02 crenulation band; 4) Benosa-Riaza shear zone (BRSZ.
ductile mylonitic fabrics); 5) Madarquillos synform (high strain zone, shear zone).
B.d.• Braojos dyke. B, Buitrago; C, El Cardoso; M, Montejo; L, Lozoya; P;

.Pradena; R, Riaza.
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TABLE U. U·Pb DATA. VARISCAN AGES, SIERRA DE GUADARRAMA.
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lfi..l: St (C1d)-ml~••cbbt
St-Cld t"BsttiOD
LaHizwlalllOlmtaUlptU

c:f?- M2(...)

MI(oolbr)

1327+1-3 Mal

Fig. 6.53.- V-Pb cODcordia dilgram for monazite from simple Hi-i,
St+Grt+(Cld) micIs~bi.st.Lower stlurolite zone (Eastern Guadarraml
domlin).

Pi-I: St-Gt-Btmkuc:bbt
IloedIOIaPinillI(skimot!).
_tbes.8ezUtochappel

Moanlte

M2
MI

1330+/-2 Ma I

Fig. 6.54.- U-Pb concordia dilcram for monazite from simple Pa-i.
SI+Grt+BI miuschist. Upper staurolite zone (Eastern GUldlrrlma
dO~lin).
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CA-l, core Cardoso antiform
Para-amphibolite

~ Titanite,. u

T2
T

12061238: 322+1-2 Mal
'''Pb

.o4a~3"L_- -_----':'-:""U~--,-----,J

Fig.6.S6.- U-Pb concordia diagram (or titanite (rom sample CA-l.
para-amphibolite (rom the core of the Cardoso antiform and microte::rture
showing titanite associated with the randomly oriented amphibole porpbyroblast.s
(static post-tectonic porphyrobbutesi.s). Field of view is 5.2 mm long.
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J2-9: Gt-Ky-St-Sill mit:Afebist
..' Sill (Ky) 'Zone ...

M2(DOUlr)

Ml(lIOUlr)

I 326+/-3 Mal
~

~.L....;;;;--:;;;---=--=-,,"--;;;-----=

Fig. 6.~7.- U·Pb concordia diavam for aample J2-6, KytSt+Grt+Sm
mitiSCbist (Fig.6.26c) from the Sill (Ky) ZODt. Benosa-Riaza shear zone
(BRSZ), tipper levels oltbe Western Guadarrama domain. Detail ofa
monazite inclwion iD a D2 biotite out to • lubhedral tourmaliue. Field of
view is 1.32 m.m Ionl.
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M26-2: Folded migmatite, leucosome
Puentes Vieja! Dam (SiII+Ms zone) m ~
Manjiron antiform Z2Z~M.1

~

,IW4' :.f!!..3U I ", '" '''u ." .. !

Plg.6.5&.- U-Pb concordia dbgram lor umple M26-1, leucosome from a folded (F2) miputlte. Outuop pbotOlnph
of the lample<! leucosome and detail or. monazite Inclusion lo • biotite from the mdanosome (Field ofvicw is 1.32
mm..long). Sill+Ms ZODe, MaQiiron antiform (Puentes Viejas dam).



BU-2: 482 Ma CoUated .ptitle vela 1U

Buitneo &Deiss (Sill+Kfs zODe)

::til
'~)I::-s----::--::;---:::----:~::'u,------:-~

f'I£'-!:t•• U·Pb tobC=Ordla dlacnm of...... frKtIolII fro.. sample BU.l em
Ma rolPted aplitk na. Bmnl'O peiss; 4'-11 ud 6.10). M, Dlouzite; Ir.,
larp; sa., mWl; .br., air abraded.S~I..mp~SiD+K& ZOM,
Westen CuduTima do.......
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pm.-t. 482 Ma ka~ocnDite

Pinilla de Buitrago, Buitrago gneiss
(Sill+K!s zone) J1:I

~

.I).l~~,:-.--=--::::---::::---,-~''---::::---:!

FlC.6.60.- U-Pb co.cordia dlacnm ofmollUfle ..d unotlme rractiou
from .ample PlB-l (482 Ma folilled 1eacoerutte, B1lttnIco pew; fie.
6.11). SW+KIs %ODe., Westen Guadarnma domaia. M. D1oaa:dte; X,
::Ie.abe.

1322+1-2 Mal
~

.oq.'36-tL.-----:c-----:c-----:c-----:'.o"'----o:---J.

Fic.6.61.- U-Pb to.cordia d.laCnm. ofmouzite aDd xeaotime
fndlODS from the 477 Ma Lozoya lOW (..zeD pms; fie. 6.11).
SlD+Kts zoae, slDimanht+tordJtrite-beariaC ...ple, Westen.
Guadarrama domaiD. M. monazite; X, xenotlme.
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Branjns dyke (Sill+Kfs zone):
Cpx-Pl-Am amphibolite

Titanite

206/238: 321+/-3 Ma

Fig. 6.62.- U-Pb concordia diagram for titanite separates from the Braojos dyke
and microtexture of the U-Pb sample. Amphibole is growing after syn-D2
amphibolitization of clinopyroxene, TItanite is associated with both amphibole and the
PI+Cpx levels. Field of view is 1.32 mm long
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La Cabrera granite
(post-<:olfuional)
Granodioritic facies

I 292+1-2 Ma I
::f>

.ou~3·"L,---:::::--=---:::,---::M..C!-U_-:::----!

Fig.6.63.- V-Pb concordb diBenm for the post-tectonic La Cabrera c:ranite
(M, monazite; Z, nrcoo) and microstructure of the V-Pb sample.
Undeformed Bt-grallitelgranodiorite with. heterograDnlar igneous tntun.
Field oCvlew is 17mm long.
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Fig.6.64. Time constraints on the Variscan tedonothernwl evolution or the SomOSterra sedor or the Sierra de
Guadarrama



Lower 290
P.~

Westphalian 310

Namurian 320

330
V,",U

340i.~~~~
TOtimuian350~.-~

Deposition of lhe Armorican Quartzite
Sardic unconfonnit

Felsic magmatism
(plutonism and vokanism)

..... --' rSH;cicla.tiC"""",,Ot>tiOO

c.a. 617 Ma magmatism? (Zircon inheritance in 326 Ma migmatites)

Proterozoic 2.0 - 2.6 Ga crustal soun:es

Fig.6.6S.- Tectonothermal evolution or the Somosiern sector or the
Sierra de GuadarTama, OlIo de Sapo domaiD. Central Iberian Zone,
Iberian Mass;! (Ceotra1 Spain).
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Sierra de
Guadarrama O.S. DMZ A.C. (GTMZ)

l41

:t
: li...... H
495 ••••

Llanvirn

Arenig

Fig.6.66•• Comparative table of Ordovician V-Pb and Rb-S.. absolute ages
from the Central Iberian Zone (grey area) and V-Pb ages from other
parts of the Iberian Massif (Time scale ofTucker and McKerrow, 1995)
and location of these areas within the European Variscides. Table: open
circles, V-Ph ages this study; open rectangles, V-Ph ages of Laneelot el al
(1985) and Gebauer et al (1993); filled rectangles, Rb-Sr ages (Vialette el al.,
1986; 1986); filled circles, V-Ph ages from the DMZ and the allochthonous
complexes (A.C.) of the GTMZ (References in chapter V).
Map legend: 1) Pre-Variscan orthogneisses of the 0110 de Sapo domain; 2)
Allocthonous complexes of the GTMZ. Early-Mid Paleozoic faunal domains
(Paris and Robardet, 1990): 3) Ossa-Morena domain; 4) Central Iberian
domain; 5) Ebro-Aquitanian domaio.
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m PulodoLobozone D CIZ, WALZandCZ
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Fig. 6.67.- Map of the Iberian Massif showing the new time constraints
OD the Variscan tectonothermal events from the Somosierra sector or
the Sierra de Guadarrama, other time constraints on the timing of the
Variscan deformation and the distribution of the Carboniferous
Variscan metamorphism and plutonism (References in chapter V,·
melamOrphic cooling ages; time scale after Odin, 1990).
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~Areas(nappes)with
~Silurian

deformation and HP
metamorphism

Fig.6.68.- Timing and distribution of the Early-Mid Carboniferous syncollisional extension and metamorphism along
the Variscan bell (Burg et al., 1994; Krohe, 1996).• Data from the Massif Central (Faure, 1995; Costa, 1991); Vosges
(Schaltegger et al., 1996); Black Forest (Kalt et aI., 1994); Saxonian granulites (Reinhardt and Kleeman, 1994);
Bohemian Massif (AftalioD et al, 1989; van Breemen et aL, 1982); Iberian Massif (ref. in text except: Sierra de la
Demanda, V'illena and Pardo, 1983; Iberian ranges, Melendez et at., 1983). Red areas of reported syD-collisional
extension in the CIZ. HP, high-pressure; LP, low-pressure; HT, high-temperature.
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Fig. 7.6.- Location of the interpreted relict Arenig relsic magmutic arc of the CIZ In the Southern Variscides. Legend: I)
Pre-Variscan orthogneisses of lhe Sierra de Guadarrama and correlatives along the 0110 de Sapo Domain (Arenig magmatic arc?);
2)Allochthonous complexes of NW Iberia; Ordovician faunal domains (Robardet et ai., 1990): (3) South Iberian (OMZ), (4)
Central Iberian and (5) Ebro-Aquitanian domains; 6) Northern Variscides (Paris and Robardet, 1990). Open circles, matching
Arenig to Ashgill stratigraphic sequences (Buyao and Crozon; Young, 1990) and location of the Belledone ophiolite (U-Pb age;
M~not et aI., 1988). Cap de la Chtvre, Early Ordovician volcaniclastics (continuation in the Annorican Massif of the 0110 de Sapo
domain?). Uthotectonic zones of the Iberian Massif(Julivert et aI., 1m; Farias et aI., 1987): (SPZ) South Portuguese, (OMI)
Ossa-Morena, (CIZ) Central Iberian, (GTMZ) Galicia Tras-os-Montes, (WALZ) West Aswrian Leonese and (CZ) Cantabrian 'lanes.
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