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Abstract

A mobile computing environment is characterized by limited execution capability
at the mobile hosts. low bandwidth and the relatively high costs of wireless connection,
and frequent disconnections and mobility of the mobile hosts. Such an environment

naturally suggests an optimistic mode of execution, where the mobile host caches data

and does the computation in di: 1 mode and. on ion, the transaction

is cither committed or aborted based oun the current values in the fixed network.
We propose a new transaction execution model. based on optimistic concurrency
control mechanism. which dynamically adjusts the transaction execution status at the

mobile host to be consistent with the database state on the mobile support station.

This increases the possibility of the transaction to commit successfully and hence
makes the computation on the mobile host more meaningful. A detailed algorithm is
presented and its adaptability to various aspects of the mobile environment discussed.

We further strengthen the computation at the mobile host by facilitating partial
guarantee against invalidation. This is accomplished by using a flexible concurrency
control scheme which integrates optimistic and pessimistic approaches to access data

items based on Read/Write and Write/Write-conflicts.

Keywords : Mobile computing. Transaction processing, Concurrency control. Opti-

mistic approach. Re-execution.
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Chapter 1
NTRODUCTION

In traditional database s

s interact with the database through transactions
which are assumed to be Atomic. Consistent. [solated and Durable. abbreviated as
satisfving ACID properties [8. 18]. Specifically. atomicity refers to the all or nothing
property. namely. that either all the operations of a transaction are exccuted or none

of them is executed. That is. a transaction is to be treated as a single unit of

execution. Consistency requires a transaction to be correct. that is. if executed alone

the transaction will take the database from one consistent state to another. Isolation

property does not allow transactions to read intermediate results of other transactions.

that

ecach transaction should observe a consistent datab: Finally. y
requires the results of a committed transaction to be made permanent in the database
in spite of possible failures. The ACID properties are ensured using two different
protocols. one that ensures ezecution atomicity and the other which ensures failure
atomicity. Execution atomicity refers to the problem of ensuring the consistency and
isolation properties even when the transactions are executed concurrently. Protocols
ensuring execution atomicity are referred to as concurrency control protocols. On the

other hand. failure atomicity ensures atomi

ity and durability properties. Protocols



that ensure failure atomicity are called recovery protocols. Both these protocols are
discussed in depth in [8].

With the emerging trend of database use in advanced applications like software
development. book writing, office automation. CAD/CAM databases. cooperative
applications, control flow systems, etc., the traditional transaction ACID properties
seem either inappropriate or too restrictive and need to be relaxed as per application
requirements. Some of the advanced transaction models presented in the literature
acldressing this issue are: Nested Transactions [42]. Sagas (21]. Acta {13]. Cooperative

Transaction Hierarchy [44]. ConTract Model [52

. Cooperative SEE (Software Engi-
neering Environments) Transactions (18], Split-Transactions [49]. and Flex Transac-
tiou Model {18].

The introduction of computer networks [62] led to distributed database technology

which became one of the most important developments of the eightics. A distributed

database i

database where objects may be stared at different sites and users may

issue transactions at any site in the system [8. 61]. Further. the data objects may

be replicated across sites to increase availability. Special replica control protocols
have been designed to manage copies of data items across the network (3. 63]. ln
addition to homogeneous database systems connected across the network. integration
of multiple. heterogeneous database systems was researched and proper consistency

criteria for transaction execution proposed [7. 8. 9. 18. 23. 53. 57. 59. 61].

The nineties have seen advances in both wireless communication, which promise

an ubiquitous computing envil and handheld like pal and

laptops which allow the user to carry his/her work anywhere. It is predicted that by

the new millennium. tens of millions of users will be able to have access to information




from anywhere at any time. These emerging trends in wireless communications and
hardware will change the way we compute and communicate. Some of the applica-
tion areas are: emergency services (fire engines, accident reporting, ambulances. etc.),
mobile users (news reporters. businessmen, traders. tourists), weather reporters (hur-
ricane watches). banking applications (making purchases and booking tickets while
travelling). military. transport (air. road). traffic regulations. etc..

Wireless networks introduce a new dimension in transaction processing. The lim-

ited execution capabilities of the mobile de:

2

s. varving degrees of connection (fre-
quent disconnections. weak connections, occasional strong connections. and asymmet-
ric connection). the relatively high costs in wireless access. and mobility of the devices

raise a number of new research issues in the processing of transactions. Several new

transaction models have been proposed addressing such issues. They are reviewed in

Chapter

1.1 Gist of the Thesis

In this the:

we propose a new transaction execution model {39] for mobile envi-
ronments. Due to the limited execution capability and memory restrictions of the
mobile devices. and varying degrees of connection. the concurrency control mecha-
nism most appropriate for mobile computation seems to be the optimistic approach.
In the optimistic approach {34]. the transactions are allowed to access data concur-
rently without any restrictions and the validation of the data read by the transaction
is done only when the transaction comes for the final commit. Any modifications to
the data items are done locally on a private copy and only after successful validation

at the end are they made global. If validation fails. the transaction is rolled back




and restarted. More explicitly, in a mobile environment the mobile devices, while
connected to the fixed network, hoard data required for continuing the computation
in the disconnected mode in a cache. While disconnected. the computation is done
at the mobile host using cached data. and later validated and committed at the end
in the fixed network. Mobile transactions tend to get longer due first to the mo-
bility of both data sources and data consumers, second to their interactive nature,

pause for input from user, and thirdly to the frequent and unpredictable peri-
ods of disconnection. Thus. when the transaction comes for the final commit. there
is a high possibility that the data it has read has become stale and hence it gets
invalidated and aborted. In this thesis. we propose a transaction execution model
that decreases the possibility of invalidations at the end of the transaction execution.
We do this by validating (partial) computation at various intermediate stages. and
“adjusting” the computation. if required. to some extent. This approach not only
keeps the computation at the mobile devices in accordance with database changes on
the fixed network. but also increases the possibility of the long running transaction
to commit successfully.

Due to the inherent nature of the optimistic approach. despite frequent validations

and re-exccutions at intermediate stages of the transaction execution. the transaction

could still get aborted when it comes for the final commit. That is, the mobile

host’s computation is not guaranteed until it gets committed on the fixed network.
We facilitate further reduction in the possibility of transaction abort by providing

partial guarantees against invalidation. This is done by moving the computation to-

wards pessimistic mode by "locking” some data items. A flexible concurrency control

scheme which integrates optimistic and pessimistic approaches to access data items



based on Read/Write and Write/Writ: flicts is employed. With this t

the transaction execution at the mobile host is made more credible.

1.2 Outline of the Thes:

Chapter 2 describes the mobile computing environment. the issues introduced hence-
forth and the general transaction processing mechanisms in the target environment.

Chapter 3 surve

s different mobile transaction models that have been proposed ear-
lier. Chapter 4 introduces the need for validation and re-execution at intermediate
stages of the transaction execution and provides a transaction execution model to
achieve the same. Chapter 5 extends the proposed model by providing a concurrency
control mechanism that integrates both the optimistic and pessimistic approaches to
aceess data items. A detailed algorithm and the correctness proof follow. Chapter 6

concludes the thesis.

o



Chapter 2

CHARACTERISTICS OF
MOBILE COMPUTING

The rapid advancements in wireless communications and its introduction in the dis-
tributed network are making it possible for mobile users to continue with computation
from anywhere at any time. Still. the size and weight (limited resources. memory.
amd computational power). battery power (a finite energy source) and ergonomics of
the mobile devices like laptops and palmtops impose several restrictions to this new
paradigm which in the current literature is termed as mobile or nomadic computing.
The applications and software support for mobile computing are still in the germi-
nating stage due to the fact that the parameters to be taken into account are not
vet clearly understood and defined. Furthermore. the data and computation mobility
due to mobile host’s movement. variable bandwidth. and frequent disconnections pose
new challenges in the design of mobile applications and the processing of transactions

in general.

u and Valduriez [61] have provided an excellent classification for distributed

ased on system autonomy. distribution and heterogeneity. Margaret Dun-

ham ct al. [17] extended this cl ion further to a late mobile database
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Figure 2.1: A Classification of Mobile Database Systems

systems by adding an extra point on the distribution axis as shown in the Figure 2.1.
Therefore the mobile computing system can be viewed as a dynamic distributed sys-
tem where links between nodes in the network change dynamically. These dyvramic
or changing links represent the connection between the mobile units and base stations
to which they are connected as they move in the distributed system connecting to
different base stations in the process.

This new classification has given a clear distinction for researchers to pursue their

goals in definite areas of interest. In this thesis, [ restrict the discussion to a Mobile



Database

System.
2.1 The Mobile Database System

The architecture of a general mobile database system that supports mobile comput-

ing [4. 2

20. 48. 32. 53] is shown in Figure 2.2. It consists of a static backbone
network called the fired network, a wireless network, mobile hosts (MH), and mobile
support stations (MSS). A host that can move freely while retaining its network con-
nection through the wireless network is a mobile host or a mobile unit. Hosts that
are connected to the fixed network but unable to connect directly (due to lack of
wireless capabilities) to the mobile host are referred to as fized hosts. An MSS is a
host that is connected to the static network through wired communication links, and
is augmented with a wireless interface for the mobile host to interact with the static
network. The MSSs are also known as Base Stations. Each MSS's wireless interface

has a geographical coverage area called a cell.
2.1.1 Wireless Communication

The MHs require wireless access, although at times they may be able to connect to
the wired network while stationary or at a desk for better and cheaper connection.
The wireless interface can be either a Cellular Network which can offer a bandwidth
in the order of 10 to 20Kbps or a Wireless Local Area Network (LAN) which can offer
banduwidth in the order of 10Mbps (e.g.. NCR Wavelan. Motorola ALTAIR). The fixed
wired networks on the other hand can offer bandwidths in the order of 10Mbps for
Ethernet. upto 100Mbps for FDDI and 144Mbps for ATMs. Though these numbers

may change in the future. it is safe to assume that the bandwidth will remain a major
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Figure 2.2: Mobile Database System

bottleneck and would limit the performance for mobile database

tem design. The

design challenges resulting from the wireless communications are :

L. Frequent Di

connections: To reduce the costs incurred due to wireless network
access. power consumption. or bandwidth use. the MHs are often disconnected
from the network. Disconnection here implies a voluntary disconnection and
not a failure. And so. a MH informs the system of an impending disconnection

prior to its occurrence. Both di ion and C ction of a

MH can be initiated only from the \[H: it is isolated from the system in the
intervening period. Disconnected operation would then imply the ability of the

Mobile Hosts to operate despite server accessibility by emulating server services



locally.

Weak and Variant Connectivity: Wireless networks are more expensive. offer
less bandwidth, and are less reliable than wired networks [48]. A MH may be
connected to different networks at different times. with varying degrees of band-

width and reliability. The weakest connection is. of course. the disconnection.

Bl bility: The ication channel between the MH and the MSS

svmmetric. There exists a high bandwidth broadcast channel from the MSS
to all the MHs in the MSS's cell [71]. This can be advantageous in disseminating
(broadcasting) updates or information to a group of MH’s. Both push and pull

based techuiques are re-visited [2] to make the best use of broadcast capabilities.

Turiffs: There could be a cost on the MH's users based on either the amount
of connection time used or the number of messages passed using the wireless

network.

Security Risks:

Since it is easier to connect to a wireless link. the security

of wireless c ication can be 1

much more easily than wired

communication. especially if the transmission range encompasses a large area.
2.1.2 Mobility

The ability to move allows the MHs to connect to the fixed network from differ-
ent points over time. Thus. the system configuration is not static anymore. The
distributed algorithms which rely on the fixed topology have to be re-designed to
accommodate the movement of MHs. The amount of bandwidth available and the

load on the MSSs change with time depending on the number of devices currently in

10



the network cell supported by the respective MSSs. Another problem introduced by
mobility is Address Migration. As the MHs move, they use different network access
points (or addresses) in the network. Current networking is not designed to change
these addresses dynamically. If a MH needs to be reached. messages must be sent to
its most recent address. There are four basic mechanisms to determine the current

addre:

of the MH: broadcast. central services, home bases. and forwarding pointers.
These are the building blocks of the current proposals for the ‘mobile-IP” schemes [60].

When a MH moves into a new cell. three steps need to be taken care of: (1)
termination of the communication with the current MSS: (2) establishment of com-
munication with the new MSS: and (3) changing the network routing to reflect the
new base station. This process is known as hand-off (or hand-over) and it may result

in lo

duplication and disordering of packets which degrades the performance of the

transport protocol. Additional costs are incurred in locating a MH in the distributed

network and need for efficient addressing algorithms arises due to mobi of the

MHs.

2.1.3 Portability

Desktop computers are not intended to be carried thus making their design easier in
terms of weight. power. space. cabling and heat dissipation. The design of MHs on

the other hand should strive for the properties of a wrist watch: small, lightweight.

durable. water-resistant. and long battery life. Concessions can be made in these
areas to increase or enhance the functionality for different requirements. But finally
the “value’ provided to the user must exceed the trouble of carrying the device. Con-

siderations such as small and lightweight MHs, in conjunction with a given cost and



level of technology. will keep MHs having less resources than static elements, includ-
ing memory, screen size, and disk capacity. Furthermore. MHs rely on a finite energy
source (batteries) for their operation. This concern for power will remain even with
advances in battery techuology and would require to re-visit design in software and
hardware technologies. Finally MHs are more susceptible to accidental damage. being

stolen. or being lost.

2.2 Transaction Processing in Mobile Database Sys-
tems

The limited resources available on the mobile host. frequent disconnections, and mo-
bility of the hosts force us to revisit the concurrency control methods developed for
¢ in the distributed

traditional datab: ems. While the introduction of mobili

environment poses new issues relating to processing of a transaction across several

mobile support stations. the frequent disconnections of the mobile host leads to traus-
actions which are long running. In general. the mobile transaction processing may be

structured in one of the three ways [43] as described below:
2.2.1 Mobile Host as I/O Device

Due to the weight and size restrictions. the MH may have very few resources available
on it. thus indicating a very slow CPU and little memory. Consequently. the MHs
can only run small programs. Programs like database systems cannot fit into its
memory. Then. all the data and issues relating to the execution and managewent of
transactions acting on this data reside in the static part (MSS) of the network. In this

structure. the MH does not do any computation. It simply submits the operations of



the transaction to the MSS. The MSS executes the steps and sends the results to the
AMH. The main disadvantage in this mode of operation is that transaction execution
is possible only when the MH is connected to the MSS. Also, due to communication
over the slow. low bandwidth network, the response time of the operations of the

transaction is increased.

2.2.2 Complete Database Server on the Mobile Hosts

Mobile Hosts on the other hand may have a high speed CPU along with relatively
Large storage capabilities. This enables us to place data locally and run a big program
like a database server to manage transactions on the MH itself. This appears to be
a good idea if the (subset of) data kept on the mobile host is accessed only by the
MH's nser. that is. locally. In a way. this implies that the (subsct of) data placed

on the MH is basically checked-out by the MH. Thus, the other MHs and MSSs in

the network cannot access this part of the database. This structure improves the
response time of a particular user. though at the expense of others. This is generally
not acceprable. An exception to this is queries and updates to the database that are
location specific. Here. we know that most operations on the data will be from the
local user.

One important issue to be considered in this case is the overhead of keeping
the data on the MHs consistent with the data on the MSS. This again depends on
the kind of consistency guarantees the database system makes and the duration of
disconnection of the MH from the network. In some databases. some of the ACID

(Atomicity. Consistency. Isolation. Durability) constraints of transactions may be

relaxed to give more fl

v to transaction on the MHs.



This mode is not feasible since in most cases (for example, in satellites and trav-
cler’s notebooks [32]). the size and weight of a MH can only be small and this imposes
serious restrictions to the computer’s memory as well as the variety of devices included

in the computer.

2.2.3 Mobile Hosts with Cached Data

As the reads/writes ratio becomes smaller, a structure in between the above two ap-

pea

appropriate. For. if the number of writes increases. in the second method, we
will require a constant connection with the fixed network to transfer the updates into

the

stem immediately. Again, we can argue that if we have continuous connection
(as in the first case). the processing power on the MH is not fully utilized. This
new structure still keeps the (subset of) data on the MH locally. but now this data

is treated as a cache rather than a primary copy. Before disconnection, the MH is

allowed to cache the (subset of) data required for continuing the execution of trans-

actions. The responsil

of maintaini it v between the primary copies
on the MSS and the cached data on the MH is given to the MSS. The transactions
are processed locally on the MH. At the time of commitment, the MSS is contacted

and requested to t

and commit the transaction. If the transaction aborts. the MSS

sends a message to the user at the MH. and the user can redo the transaction on
new cached data. This seems to be the right approach overall since we are moving

the expensive part of the transaction processing to the static portion of the network,

where ication is an order of itude cheaper.



2.3 Summary

In this chapter, the mobile computing environment has been presented and some of
the fundamental challenges due to wireless networks, frequent disconnections, and
mobility of the hosts in the distributed network has been discussed. In addition,
some basic methods in processing of transactions in disconnected environment have

been discussed.



Chapter 3
LITERATURE SURVEY

The restrictions imposed by wireless medium. frequent and unpredictable periods
of disconnection. mobility of the users. computing power and battery life require

the mobile transactions to have the following characteristics which are different as

compared to traditional transactions (5. 6. 14. 17, 20. 32, 38, 43]:

L. The mobile transactions might have to be structured as a set of transactions
some of which execute on mobile hosts while others execute on the mobile
support station. The mobile transaction might share its partial results with

other transactions due to disconnection and mobility.

The mobile transactions require computations. state of computations. queued

requests. and communications to be supported by both mobile hosts and mobile

support stations.

3

. The mobile transactions require the mobile support stations to support the
hand-off process as mentioned in the previous chapter when mobile hosts move
from one cell to another.

. The mobile transactions tend to be long-lived due to:

16



e the mobility of both data sources and data consumers (hand-off).
 their interactive nature, i.e., pause for input from user.

o the frequent and ictable periods of di: tion

The mobile transactions should support and handle concurrency. recovery. dis-

connections

cache coherency and mutual consistency of the replicated data

objects.

There has been tremendous research focused on tran

ction processing in mobile

computing environments in the last decade to these cha

Sowe of the techniques suggested are reviewed in the following sections.
3.1 Optimistic Models

The optimistic concurrency control scheme proposed in Coda file system (30] allows
the cached objects in the mobile host to be updated without any co-ordination but
the updates need to be propagated and validated at the database servers for the
commitment of transactions. The central idea behind [30] is that caching of data. now

widely used to improve performance, can also be exploited to enhance availability.

The key hani: for supporting di ion includes three states:

hoarding. emulation and reintegration as shown in the Figure 3.1. Venus, the client
cache manager. while in hoarding state, relies on server replication but is always on
the alert for possible disconnection and ensures that critical objects are cached at the

moment of disce ion. Upon disc ion. it enters the emulation state. During

the disconnection period it remains in the emulation state and relies solely on the



contents of its cache. It records sufficient information to replay update activity with

extensive optimizations and reintegrates upon reconnectjon.

Hoarding

physical
reconnection

Figure 3.1: Venus states and transitions

The scheme leads to aborts of mobile transactions unless the write-write conflicts

are rare. Since mobile transactions are expected to be long-lived due to dis

onnection
and long network delays. the conflicts will be more in a mobile computing environ-
ment.

Isolation-only transactions (IOTs) proposed in (36. 37]. is an instance of the open
nested transaction model in [14] and an extension to Coda which uses serializability

col

straints to automatically detect read/write conflicts. The model supports a v:

riel

- of conflict resolution mechanisms (which might employ application semantics)
for automatic conflict detection and resolution leaving manual resolution as a last
resort. [OTs are a sequence of file access operations. Transaction execution is per-
formed entirely on the client and no partial result is visible on the servers. First class

transactions are those transactions that have no partitioned file access (i.e.. the client
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machine maintains a server connection for every file the transaction has accessed) are
committed immediately on the servers. A second class transaction T on the other
hand has partitioned file access and its results are maintained in the local cache and
visible only to subsequent accesses of the same client. A first class transaction is

guaranteed to be s

rializable with all previously committed or resolved transactions
at the server. On the other hand, a second class transaction is guaranteed to be
locally serializable among themselves and is in a pending state until reconnection
time. On reconnection the pending transaction has to be validated against one of
the two proposed serialization constraints. The first criterion is global serializability.
which means that if a pending transaction’s local result were written to the servers

as is. it would be serializable with all previously committed or resolved transactions.

The second criteria offers stronger consistency and is called global certifiabilif

+(GC)
which requires a pending transaction be globally serializable not only with. but also

after. all previow

committed or resolved transactions [36]. Intuitively. GC assures

that the data acce

ssed by a pending transaction are unchanged on the servers between

the start and the validation of the transaction. Transa validation failures are
resolved by aborting the transaction, re-executing it. invoking a user specified appli-
cation specific resolver (ASR). or. as a last resort (default option). the inconsistencies

are exposed to the user for manual resolutions (or repair)

A new two-tier replication algorithm is proposed by Gray et al. in [24] to alleviate
the unstable behaviour observed in the update anywhere-anytime-anyway transac-
tional replication scheme when the workload scales up. Lazy master replication that
is employed in the algorithm assigns an owner to each object. The owner stores the

object’s correct current value. Updates are first done by the owner and then prop-

19



agated to other replicas. The two-tier scheme assumes two kinds of nodes: mobile
nodes and base nodes. Mobile nodes are often disconnected and store a replica of
the database. The mobile nodes accumulate tentative transactions that run against
the tentative database stored at the node. The base nodes on the other hand are
always connected and store replicas of the database. Each object is mastered at some
node. cither the mobile node or the base node. When the mobile node reconnects
to the base station. it sends any replica updates mastered at the mobile node to the
base node. sends the tentative transactions (and all their input parameters) to the
base node to be re-executed as base transactions on the master version of data ob-
jects maintained at the base nodes in the order in which they tentatively committed
on the mobile node. The base transaction has an acceptance criterion: a test the
resulting outputs must pass for the slightly different base transaction results to be
acceptable. If the base transaction fails its acceptance criteria. the base transaction
is aborted and a diagnostic message is returned to the user of the mabile node. While
the transactions executed on objects mastered on the mobile nodes are confirmed.
those executed on the tentative object versions have to be checked with nodes that
hold the master version. The key properties of the two-tier replication scheme are:
(1) mobile nodes are allowed to make tentative updates while being disconnected. (2)

base transactions exccute with single-copy serializability so the master base system

state is the result of a serializable execution, (3) a transaction becomes durable when

the bas

transaction completes. and (4) replicas at all connected nodes converge to

the base system state.



3.2 Semantic Models

Chrysanthis and Walborn in (14, 68] extend the semantic based transaction processing

scheme to the mobile ing envi to increase v by exploiti

commutative operations. This extended model views mobile transaction processing

A8 A coneurrenc;

and cache coherency problem. The model assumes the mobile trans-
action to be a long lived one characterized by long network delays and unpredictable

dis

onnections. This approach utilizes the object organization to split large and com-

plex objects into smaller manageable fragments thus allowing several users to access
the object concurrently. The mobile hosts specify the granularity and usage con-
straints of an object to be cached by using the split operation. The split request from
the mobile hosts consists of two parameters: selection criteria and consistency condi-
tions. The selection criteria specify the object to be cached and the required size of
the object partition. The consistency conditions specify constraints on the fragment
which need to be satisfied to maintain the consistency of the entire object. The server
dishes out the fragments of an object as requested by the MH. On completion of the
transaction the MH returns the fragments to the server. These fragments are again
put together by the merge operation on the server. If the fragments of the object
can be recombined in any order to reflect an alternative sequence of operations on
the object then the objects are termed reorderable objects. And objects that can be

extended by these two operations (split and merge) are referred to as fragmentable ob-

Jects. Aggregate items. sets. and data structures like stacks and queues are examples
of fragmentable objects.
Another semantic model has been proposed by Klingemann et al. [31] wherein

workgroup computing or cooperative work has been given focus in the aspect of
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mobile computing. The issue in question here is that most of the models or ap-
proaches [30] to support disconnected operation rely on the assumption that the
degree of data-sharing is low which is obviously not appropriate for cooperative work.

CoAct cooperative transaction model [54. 69] has been utilized and extended to pro-

vide support for parallel, disconnected activities. The model incorporates the notion
of resolvable. simultaneous work. In general. cooperative work is characterized by

alternative periods of individual and joint work. The CoAct model assigns a private

pace to every user who takes part in a cooperative activity. By default. the
private workspaces of the co-workers are isolated from each other. In addition. there
exists a common workspace for each cooperative activity. All the users involved in the
activity would then integrate their relevant contributions into the common workspace
such that there is a single result of the cooperative activity. A cooperative activity

is des

ribec by (1) a set of operations that can be invoked by a user in his private
workspace (the sequence of operations executed is maintained in a workspace history).
and (2) a set of type-specific merging rules that exploit the semantics of operations
to guide the process of information exchange (history merging) [69). Co-workers are
allowed to exchange operations between their private workspaces by means of im-
port and delegate. They can exchange operations through the common workspace
by means of save and import. All this information exchange is done through history
merging which is the core technique. The flexibility of history merging is mainly

achieved by its ability to dynamically determine consistent units of work in terms of

operations and its i ion of operation ics for resolving conflicts. Fur-

thermore, the merge process need not be atomic in the sense that all or none of the

operations to be exccuted are incorporated into the destination workspace. It is pos-



sible to partition the subhi h 1 to so called ind histories

v to be
which can be exchanged independently. This enables a finer granularity of conflict
resolution [69]. While traditional transaction processing guarantees that no errors

occur due to the interleaved ion of transaction (;

ity). the correctness
criteria of the merge approach guarantees that no inconsistencies are introduced due

to the exchange of information between concurrently executed work.
3.3 Object Oriented Models

Replication of data on the mobile host as a cache is one of the solutions to solve
the problem of uncertain availability due to frequent disconnections. Traditionally.

replicated database replica control takes care of maintaining the consistency

mong
replicas of a data item. The replica control also determines whether to let a transac-
tion proceed or not using replica control protocol (quorum consensus, primary copy.
cte.). In the extended architecture presented by Rasheed and Zaslavsky [51]. there

is a logical replicated database (LDB) which contains the objects

ome (or all) of
which can be replicated. Each object in the LDB is a collection called meta-object.
which provides one view for all the replicas of a data item. The collection of replicas
of a data item is encapsulated within this meta object which is responsible for the

cons

ency control among different items in its collection. For this purpose object
replica control layer as shown in Figure 3.2 is built within the meta object and is
essentially a method of it.

If the number of replicas in the meta-object is one then there is a one-

to-one mapping between logical replicated database and physical replicated database.

The concept of twin-transactions [50] is utilized to replicate the processing of a trans-
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Modified Layer Structure Layer Structure
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1 I
I replica lcomml ]

[ replicacontrol |-

togical replicated database
i | object replica contral | -
* | plysical replicated database | -

<[ replicated database |

Figure 3.2: Abstract model of the Multi-Layer Architecture

action and to guarantee successful completion of a transaction. even in the case of

disconnections of certain repli

with a certain probability of success. Specifically.

when a replicated data item receives a transaction T. it will be mirrored to generate
twin-transactions T;. T,. While the twin-transaction T, will execute on the data item
maintained by the host receiving the transaction T. the other twin-transaction T,
will be sent to the meta-object Opetq. If Omera is not available at the moment. then
the twin-transaction T, will be kept in a history log and transmitted whenever Opera
becomes available. The meta-object Ometa Will eventually receive transactions from
different hosts maintaining replicas of data item .\ and is responsible to resynchronize
all the replicas.

The Thor distributed object-oriented database [25] provides a persistent universe

of typed. encapsulated objects. Computations take place within atomic transactions



that typically make use of many objects. Disconnected operation in such a system

results in new challenges because of the small size of objects (compared to files), the

richness and

of their i tions, the huge number of them being

ace

ed and that too within atomic transactions. Applications interact with Thor

by invoking object methods and requesting transaction commits. Getting the right

objects in the cache or hoarding before disconnection is taken care by database query
language (object-oriented query languages). While disconnected from the system.

the clients use dependent commits to tentatively commit the transactions. Transac-

tious are sy { using imistic concurrency control. A portion of the Thor
called the frontend (FE) keeps track of the persistent objects the transaction reads
or writes. When the client requests for a commit. the FE communicates to a server
(une containing some used objects) that acts as a coordinator of a 2-phase commit.
Transaction is validated in the first phase by all the participating nodes. If all par-
ticipants validate the transaction, the coordinator commits it. clse the transaction is
aborted. In either case. the coordinator informs the user: it notifies participants of its
decision in the background. Further, high-level semantics of objects is used to avoid
transaction aborts.

Pitoura and Bhargava in [46] present a flexible two-level consistency model to

deal with the frequent. and variable di; ions that accur in a mobile

computing environment. Closely located and semantically related data are grouped

together to form a cluster. \While all the data inside the cluster are mutually con-

stent. degrees of inconsistency are allowed between data of different clusters. The
object clustering is dynamic and the transactions are allowed to exhibit certain de-

grees of tol

ce for i i ies by using weak-read. weak-write. strict-read and

=
o



strict write. Strict-read and strict-write have the same semantics as normal read and
write operations invoked by transactions satisfying ACID properties [8]. Weak oper-
ations are operations that can be executed under weaker consistency requirements.
A weak-read returns the value of a locally cached object written by a strict-write or a

weak-write. A weak-

rite updates the local copy. which might become permanent on
cluster merging if the weak-write does not conflict with any strict-read or strict-write
operation. Furthermore. the mobile transaction is decomposed into a set of weak and
strict transactions. The decomposition is done based on the consistency requirement.

Joseph et al. in (28] have proposed the Rover software toolkit that offers appli-
cations a client/server distributed object system with client caching and optimistic
concurrency control. Clients are Rover applications that typically run on mobile
hosts. but could be run on stationary hosts as well. Servers. which may be replicated.

tem. The toolkit

typically run on stationary hosts and hold long term state of the

supports a set of programming and communication abstractions that enable the con-

struction of both mobil 77 and mobil applications. The objective of

the mobile-transparent approach is to develop proxies for system services that hide
the mobile characteristics of the applications. Since the applications can be run with-
out alteration. this approach is appealing. However. to excel, the applications must

often be aware of and take active part in mitigating the harsh conditions of a mobile

environment.

The Rover toolkit provides mobile communication support based on two concepts:
relocatable dynamic objects (RDOs) and queued remote procedure calls (QRPCs). An
RDO is an object encapsulating both code and data with a well defined interface that

can be dynamically loaded into a client computer from a server computer. or v

e
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- to reduce client-server communication requirements. All application code and
application data are written as RDOs. QRPC is a communication system that permits
applications to continue to make non-blocking remote procedure calls [10] even when
a mobile host is disconnected. That is. all the requests are stored in a local stable log

and control is immediately returned to the application. The requests and responses

are exchanged upon network reconnection. The main task of the programmer when

building a mobile-

-are application with Rover is to define RDOs for the datatypes
manipulated by the application. and for the data transported between client and
server. The programmer then divides the program into portions that run on the client
and portions that run on the server: these parts communicate by means of QRPCs.
The programmer then defines methods that update objects. including code for conflict
detection and resolution. Then. the modules that compose the client and server
portions of an application are linked using the Rover toolkit. The application can then
actively cooperate with the runtime system to import objects onto the local machine.
invoke well-defined methods on those objects. ezport logs of method invocations on
those objects to servers. and reconcile the client’s copies of the objects with the

server’s,

Walborn and Chrysanthis in [67] proposed PRO-MOTION. a mobile transaction

processing infrastructure that supports disc cted transaction sing in a mo-

bile client-server environment. The fundamental building block of this architecture is

the compact. the unit of caching and replication. When a wireless client needs data,

it sends a request to the database server. The server sends a compact as a reply.
A compact is an object that encapsulates the cached data, operations for accessing

the cached data. state information (such as number of accesses to the object). con-



rules that must be followed to i v, and obligations (such

as deadlines which creates a bound on the time for which the rights to a resource
are held by the mobile host or restrictions on the visibility of locally committed
updates). Compacts pravide flexibility in choosing cousistency methods from simple

check-in/check-out pessimistic schemes to complex optimistic criteria. If the database

server lacks compact management capabilities. a compact manager acts as a front-

end to the database server. PRO-MOTION

consists of four transaction processing

acti hoarding - the mobile host is connected to the network and stores com-

pacts in preparation for an eventual di; ion. cted ing - the mobile

host is connected to the server and the compact manager is processing the trans-

actions. disconnected processing - the mobile host is disconnected from the network
and the compact manager is processing transactions locally. and resynchronization
- the mobile host is reconnected to the network and the updates committed during

disconnection are reconciled with the fixed database.
3.4 Mobility

Compared to distributed transactions, mobile transactions do not originate and end
at the same site. Kangaroo transaction model proposed in {17] captures both the
data and movement behavior. While mobile behavior is realized via the use of split
transactions [29. 49]. data access behavior is captured using the concepts of global
and local [8. 9. 11. 13. 18, 22. 61] transactions in a multidatabase system. Data on
the source system(s) is accessed by the mobile transaction through the Data Access
Agent (DAA). The DAA is responsible for controlling the mobile transaction on the

base station and maintaining necessary logs. Each subtransaction represents the unit
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of execution at one base station and is called a Joey Transaction (JT). When the
mobile unit hops from one cell to another, the control of the Kangaroo Transaction
(KT) changes to a new DAA at another base station. The DAA at the new base
station creates a new JT (or subtransaction as part of the hand-off process) using the
split operation. A doubly linked list maintains the order of different JTs executed by
the mobile transaction. The KT model may operate in compensating or split modes.
While operating in compensating mode. the failure of a JT causes the entire KT to
be undone. This is accomplished by compensating the previously completed JT's.
The split mode on the other hand is the default mode. If a JT fails in this mode no

new global or local transactions are requested as part of the KT and the previous

committed JTs are not compensated for. Neither of these modes guarantees the
serializability of the kangaroo transaction.

A weakly replicated s

em is characterized by the lazy propagation of updates

between servers and hence the possibility of mobile hosts to see inconsistent values

when reading data from different replicas as they move across servers. In cffect. a
user may read some value of a data item and then later read an older value or a
user may update some data item based on reading some other data. while others
read the updated item without seeing the data on which it is based on. Four per-

ses

ion guarantees are introduced in [64] to alleviate the problems observed in weakly

the principle ges of read-any /write-

consistent systems [38] while
any replication. These session guarantees were developed in the context of the Bayou
project at Xerox PARC [16]. to reduce client-observed inconsistencies when accessing
different servers. A session is an abstraction of read and write operations performed

during the execution of an application. In contrast to atomic transactions that ensure



both atomicity and serializability, the intent of a session is to present individual
applications with a view of the replicated database that is consistent with their own
Reads and Writes performed in the session even though these operations are directed
to various. potentially inconsistent servers. In brief. the guarantees are: Read Your
Writes - read operations reflect previous writes. Monotonic Reads - successive reads
reflect a non-decreasing set of writes. Writes Follow Reads - writes are propagated
after reads on which they depend. and Monotonic Writes - writes are propagated after
writes that logically precede them. These properties are guaranteed in the sense that

cither the storage system ensures them for e:

ch read and write operation belonging
to a session. or else it informs the calling application that the guarantee cannot be

met.

3.5 Other approaches

Yo and Zaslavsky in [70] have 1 a basic archi 1 i k to manage

mobile transactions in multidatabase systems. A major premise of this architecture

is that the users of the mobile units may voluntarily disconnect from the network

prior to their

global t ctions being leted. The di

g site
can then schedule and coordinate the execution of the global transaction on behalf
of the mobile workstation. A simple message and queuing facility is suggested which
provides a comnon communication and data exchange protocol to effectively manage

global transactions. Transaction sub-queues are used to model the state of global

transactions (based on the concept of finite state machines). While disconnected.

the user of the mobile workstation can perform some other tasks thereby increasing

and i e

processing
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Madria and Bhargava in [38] incorporate pre-read, prewrite and precommit op-
crations along with the original operations in the transaction execution [8]. Each
mobile transaction has a prewrite operation before a write operation. The pre-write
operation does not update the state of a data item but only makes visible the value
that the data item will have after the commit of the transaction. A pre-read returns
a pre-write value whereas a read returns a write value. Once all the prewrites have
been processed. the mobile transaction pre-commits at mobile host. Precommitted

transaction is guaranteed to commit and its results are visible by all other transac-

tions on mobile and stationary hosts before the final commit thus increasing data
availability.

In [41] Morton and Bukhres present a recovery strategy for transactions created
by a mobile host in a distributed medical patient database environment. To ensure
that transactions spend minimum time in recovery. save-points of pure forward re-

covery of Sagas [21] are utilized. The base s

ation agent (BSA) proposed in the
architecture is responsible for the execution and recovery of the transaction created

by a mobile host. which is no longer connected to the mobile network. Saga, a trans-

action model for long-lived activities. consists of a set of independent (component)

transactions ty. ¢y,

.. ta which can interleave in anyway with component transactions
of other sagas. The component transactions within a saga execute in a pre-defined
order which. in the simplest case. is either sequential or parallel. The component
transactions are able to commit without waiting for other component transactions or

the saga to commit. In pure forward recover

v, save-points are taken at the beginning

of every subtransaction. Thus these save-points minimize the amount of recovery that

a transaction must undergo. Only the failed subtransaction needs to be aborted and
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resubmitted by the BSA. Here we should note that pure forward recovery methods
would be useful for simple long lived transactions that always succeed.

Alonso et al. in [3] have explored Workflow Management Systems in the context
of a mobile environment. The goal here is to give enough autonomy to the users
(clients) to facilitate them to work independently without having to be connected to
the rest of the system and still maintain the overall correctness and consistency of
the processes being executed. The paper introduces the notion of lacked activities in

the workHow systems and the user’s commitment to eventually execute them. The

workflow activities are maintained in worklists for the users to execute. Typically a
user on connection selects one or more activities from the worklist which he wishes to
perform and removes it from the worklists of the other users (synchronization phase).
The user may work on these locked activities in a disconnected mode (disconnected
operation phase) and later resynchronize it with the ongoing workflow (reconnection

phase).



Chapter 4
RE-EXECUTION MODEL

As seen carlier. mobile hosts can operate as simple input/output devices with very
little computing capabilities. They can also be full-fledged nodes of the distributed

database s;

tem. [n practice. very few applications fall in either of these categories.
The common trend is some computing capabilities and some memory in the mobile
hosts. Mobile hosts are then expected to do the relevant computations and provide
quick response to the users. but the task of preserving the traditional ACID properties

of transaction is delegated to the fixed network which supports the mobile hosts. Thus

the mobile envi ce a new di ion in transaction execution.
In this chapter. a new transaction execution model for the mobile environments
is proposed. [t is designed to satisfy the dual requirements of quick computation

as well as keeping the database consistent. The proposal builds upon various other

proposals found in the literature. for example in [16. 7. 56]. This model is helpful
for recovery purposes also.

[n the next section, we introduce the model and its usefulness with some

mples.
The model is described in detail in section 4.2. and section 4.3 discusses the suitability

of the model for the various transaction processing issues in mobile environments.
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4.1 Motivation

Among the three modes of transaction execution. discussed in the second chapter,

the third one. namely, caching data and executing transactions on that data. in the

MH. scems to be the most practical mode. It is widely accepted that the primary
purpose of transaction execution at the MHs is to minimize the response time to

users (43]. The limited capabilities of the MHs and the expectation that they be able

to operate even in d mode make it i ible for the MHs to satisfy the
traditional ACID properties of the transactions. Therefore. the strategy that has been

advanced in the literature is to execute transactions, to the possible extent. at MH:

but delegate the responsibility for their ACID properties to the MSS. This involves

two tas

L. keeping the data values at the cache of the MH as far up-to-date as possible.

and

2. keeping the MSS informed about the trans

ctions executed at MH as quickly

as possible.

In summary. the users of a mobile host need to have some idea of the validity of the
data items they read. and some assurance that their updates will be saved at a later
stage.

The simplest transactions that can be executed in MH are the read-only transac-
tions which read data from the cache. do not have to produce up-to-date values, and
do not have to be serialized with other transactions executed at MSS. These trans-
actions can simply be ignored by the fixed network. when looking for serializability

criteria

A cache for these purposes is called a snapshot in [2
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All other transactions executed at MH are ‘checked’ with MSS. The fact that the
transactions may be executed at MH while it is disconnected from the MSS. and the
exccutions will be checked with the MSS when MH gets connected to MSS, suggests

naturally an optimistic scheme of execution. Optimistic concurrency control [34]

necessitates validation of the transaction steps. that were executed at MH. at MSS
with respect to the current data values and other transactions validated thus far.
The idea of re-execution of transactions at MSS. instead of just validation, has
been proposed in several papers [16. 24, 47). Pitoura and Bhargava [47] talk about
transaction prories: for each transaction executed at the MH. its dual transaction
called proxy is defined and is executed on the MSS. The proxy transaction is a sub-
transaction of the original transaction and contains only the updates. The execution

at MH is to convey the results to the user. whereas the execution at the MSS is for

recovery purposes. The vulnerability of MH to theft, loss or accidental destruction.

and the unreliability of communication through wireless connection suggests that the
MSS take this step for recovery purposes (47].

Transaction re-execution at MSS has been proposed in [16. 24] also: here. not for
recovery purposes but for the correctness of the results. since the values of the data
cached in the MH might have changed in the fixed network in the period of disconnec-
tion of MH. The transactions (or steps) executed on the cached data (tentative data)
in MHs are referred to as tentative transactions, and they are re-executed on the MSS
as base transactions [24]. Note that if the cached values had not changed at all in the
fixed network. then validation itself will be successful and re-execution will not be
needed. If the values did change. then validation will not be successful. In this case.

instead of simply aborting the transaction. re-execution is opted. Re-execution may
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not produce exactly the same results as of the original execution at MH. However,

as long as the results of the execution at MSS satisfy certain acceptance criteria the

exccution is idered [24]. If the acc ce criteria are not met. then

the user is consulted for possible abort or reconci

tion. We illustrate this with an

example.

Erample [ : In a stock exchange bureau. some of the stockbrokers may ha

ve to

meet the clients personally. Before moving or on his way to the client location a

stockbroker may cache the current share values of different companies along with

sowe hackground information regarding the respective companies which would help

the client to make decisions in buying the stocks. He may then disconnect. meet the

client and show the current stock rates

ailable on his disconnected MH. While in
disconnected mode. his client may request the sale or purchase of some of the stocks,
according to the values available on the MH. At this point. the stockbroker executes
the transactions locally on the cached data values. Since the client knows that the
stock prices change. he may also associate the amount of divergence allowed on the
stock prices for the sale or purchase. On reconnection at a later time with the fixed
network, the transaction is re-executed using the up-to-date stock prices and tested
with the acceptance criteria. If the results are within the specified divergence. the
transaction is committed on the MSS. Otherwise. the transaction is aborted and the
user notified. While on his way to the next client’s location. the stockbroker can re-
fresh his cache with stock prices and information of other companies which the next

client would be interested in as depicted in the Figure 4.1.
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Figure 4.1: Stockbroker’s movements on a typical working day

In the reconnection period, the MSS may

also inform the state of the previous
transactions submitted. The stockbroker can thus inform his previous clients (whom
he had serviced carlier) using a cellular phone about the final results of their respec-

tive transactions while on his way to new client locations. O

Transaction Types: The transactions submitted by the user on the MH may be
cither interactive or non-interactive. A non-interactive transaction is submitted as a
single request message by the user. whereas an interactive transaction is submitted
as multiple request messages. or steps. Each step may consist of one single operation
(example. read/write) or a group of operations. The interactive transaction tends to
be long running as it might have to wait for user input from time to time. The fre-
quent disconnections and unpredictable periods of disconnections further makes the

transaction execution longer thus increasing the possibility of the transaction having



read stale data.

In this thesis. we propose to eztend the re-ezecution idea to various intermedi-

ate stages of execution of a transaction at MH. At every stage, all the steps which

have been executed at MH thus far are validated at MSS. and if validation fails. re-
exceuted. The results of re-execution are checked against the acceptance criteria. Of
course. this could be done only when the MH is able to connect to the MSS. Con-
nection points (of MH with MSS) may define the stages. The disconnected periods.
between consecutive connection points. may be of arbitrary duration. and therefore
the number of steps executed in those periods may vary. The longer the disconnec-
tion period. it is more likely that the cached data values have changed. and so the
re-execution results diverge from those obtained in MH. If the new results are not
acceptable. then the transaction has to be aborted. If they are acceptable. then the
MH can continue to execute the transaction further on the basis of the new results
and with updated cache. Thus the transaction execution at MH is adjusted to the
database state in the MSS. Here it should be noted that though the transaction tends
to be long-running due to frequent and long disconnections. the actual transaction if

exccuted on the fixed network would be much shorter.

Erample 2 : Consider a case wherein a mobile user (perhaps travelling home by

train) wishes to plan a pleasure cum business trip as shown in the Figure 4.2. He

wishes to attend conferences in Delhi and Madras, and visit family

and friends in

London. Hyderabad. and Bangalore as shown in the Figure. The route and mode

of transportation are also given in the figure. Hence. he has to book tickets for 9
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Plane Plane

St. John’s ———> London ———> Delhi

Mot Do/
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Hyderabad

Train / \ Plane

Bangalore <—— Madras

Train

Figure Pleasure cum business trip

legs. Furthermore. he needs to arrange for his hotel stay and car rental in London.

Delhi and Madras. Due to the large number of airline companies that offer services

across different cities. it is not possible to cache the entire information for all the
legs. To begin with. the user caches flight information regarding the leg “St. John's
— London” and the information on hotels close to the Heathrow airport in London.
The user selects the flight that best suits his travel plans and books a window seat
that is available and also books a room in a nearby hotel in London. He tentatively
exccutes the step of the transaction to book the ticket for this leg on the disconnected
mobile host. He also provides an acceptance criteria to this step which states that -
if window scat is unavailable. book any other seat. Anaother acceptance criteria could
be such that if seat is not available on that particular flight *A" - book a seat on a

different flight "B’
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After successfully executing the tentative step and specifving the acceptance cri-
teria. he goes ahead to work on the next leg - “London — Delhi”. Since he has a
conference to attend in Delhi, he might book a ticket with an airline which is more
reliable though he may have better offers from other airlines. He might give an ac-

ceptance criteria to purchase a business class ticket on this flight if economy ticket

is not available. Say at this point the MH reconnects to the MSS. The MSS vali-

dates all the previous steps of the transaction. At this point. the window seats of
the particular flight in the previous leg may no longer be available. Thus the data
read by the first step becomes stale. The MSS re-executes the step and checks for

the acceptance criteria: if there are any seats available. books the same tentatively.

The user proceeds with the transaction after caching the most up-to-date data. On
the other hand. if both the acceptance criteria given in the first step are not satisfied.

the step is aborted and the user is sent a diagnostic message.

After successfully validating or re-executing the steps. the user caches data and
continues with booking on the new legs. At a future reconnection, the user validates

step one. finds that there are no seats a

ilable on Flight A. so he re-executes this
step again and tentatively books a seat on Flight B. The second step. “London —
Delbi”™ may also get invalidated as economy seats are no longer available. The step
is re-exccuted and checked for acceptance criteria. If there are any Business class
seats available. the transaction is allowed to proceed else aborted. Validation and
re-execution proceeds till the transaction is complete and comes for final validation.

a
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The idea of re-execution of transactions in the fixed network is appropriate in
another context too. Memory restrictions may prohibit storing high-fidelity data on
the MH. Then low-fidelity data can be cached and the computation performed at
MH [56]. Later the transaction can be re-executed on high-fidelity data in the MSS.
The coarse data on the MH can be viewed as enabling the user to get approximate

results. Re-execution in MSS gives accurate results.

Erample 3 : Let us imagine a scenario wherein a person travelling into a city needs

directions to a particular destination. He connects to the MSS while approaching the

city and caches the city map. Due to memory limitations of the MH. only a small

map with coarse details may be cached. He may compute a possible route from that

map. and then reconnect and submit the plan to MSS. The MSS may recompute the
route on the basis of a very detailed map. which tells. for example. about one-way
streets. number of lanes in highways at different times of the day and so on. The

coarse data helps the user to come up with a coarse plan and start moving towards

the destination. The re-execution of the transaction at MSS provides the exact route.
Let us consider a concrete example: a user wishes to attend a seminar in room
EN -105-. Engineering Building. Memorial University of Newfoundland (MUN). St.

John’s.

. While entering St. John’s city from Trans Canada Highway (TCH). the user

caches a coarse map of the city as shown in the Figure 4.3.

The user computes the route to MUN using the coarse data available as follows

and submits it to the MSS.
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3.

Trans Canada Highway Prince Philip Drive
Kenmount Road DESTINATION
(Memorial University)

Freshwater Road Elizabeth Avenue

Official Highway Map

Courtesy : Department of Tourism, Culture and Recreation, Newfoundland

Figure 4.3: Moving Towards Memorial University

TCH — Kenmount Road —» Prince Philip Drive — MUN.

(a) The MSS re-executes the route based on fine grained data available and

gives a more detailed route. It may also redirect the user on a slightly
different route after realizing an accident on Prince Philip Drive as follows.
On TCH — Exit to Kenmount Road — Follow Kenmount Road which
becomes Freshwater — Take left at Elizabeth Avenue to reach MUN.

(b) The MSS also gives the user a campus map as shown in Figure 4.4.
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DESTINATION
(Engineering Building)
Morrissey Road

Prince Philip Drive

Clinch Cres Arctic Avenue

Westerland Drive
Elizabeth Avenue

Figure 4.4: Memorial University Campus Map

4. The user uses this map to compute the route to Engineering building as follows
and submits it to the MSS.
From Elizabeth Avenue —> Left on Westerland — Right on Prince Philip

Drive —3 Left on Morrissey Road — Engineering Building.

5. (a) The MSS re-executes the route on fine grained data and finds that a left
turn to Morrissey Road from Prince Philip Drive is not allowed. It recom-
putes a better feasible route as follows.

From Elizabeth Avenue —s Take left on Westerland —s Follow West-
erland which becomes Clinch Cres —» Take right on Arctic Avenue —»
Engineering Building.

(b) The MSS also gives the location of the parking lot and the map of the

Engineering building as shown in the Figure 4.5
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(EN - 1054)

USER IS
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054

Figure 4.5: Engineering Building Map

6. The user can use this map to go to the room EN - 1054 as shown. O

Ezample 4 : Suppose ambulances are equipped with mobile computers to access a
Medical Database of the people in a city. When an ambulance answers an emergency
call, on finding a patient, the ambulance personnel may cache a brief medical history
(coarse data) of the patient in the limited memory of the MH and use it to come
up with an emergency treatment plan. This can be confirmed by re-execution on
the MSS with the complete medical history containing, for example, major illnesses,

allergies, etc. of the patient [12]. O

The new transaction execution model is presented in the next section.
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4.2 New Transaction Model

As discussed earlier, mobile hosts can continue with execution of transactions in a
disconnected mode. For this purpose, the mobile host caches a part of the database
required for the execution of the ongoing transactions. For simplicity of exposition.
we will assume the submission of a single interactive transaction to the MH in the
following. We also assume. in this section, that the MH remains in the same cell
during the execution of the transaction.

The tentative steps of the transactions executed at the MH produce base steps
that are re-executed on the MSS. The re-execution adjusts the status of the ongoing
transaction to be consistent with the database state of the MSS. The results of the re-
execution must pass an acceptance criteria test. Otherwise, the transaction is aborted
and the MH is informed of the same. The acceptance criteria gives the amount of
divergence allowed on the results of the base transaction. Some sample acceptance

criteria being:
® Quote value on shares purchased may diverge by + 0.1 % from the cached value.
¢ Quote value on shares sold may diverge by — 0.08 % from the cached value.
e Bank balance must not go negative.

® Though window seat is booked in a flight on the cached data of the MH. other

seats may be booked if window seats are no longer available.

Also. the validation need not be done with respect to the entire read set of the
transaction. but with respect to only relevant data which may be a subset of the read
set. By doing this. we not only increase the possibility of successful validation (by
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climinating validations on irrelevant data read) but also speed up the validation pro-

@

Erample 5 : Let us consider a transaction to book an airline ticket from cities A
to B. Initially the user may issue a step to find the most feasible routes from A to B
- the query may be based on shortest distance. lowest price. etc. Let us assume that
the query gives two results. A flight via cities X and Y with a stopover of one hour

at cach cit;

and another flight via city Z with a stopover of eight hours. The user
may decide to pick the second route. By doing this, we can observe that the user’s
interest is now limited to data relevant to the flight via Z and therefore it suffices
to validate the transaction with respect to this data alone. and not the entire data
(including information about price. distance, timings of the first flight) in the step.
o

Thus. some of the data values read in the early part of execution may be found
to be irrelevant later on {49]. Then the validation needs to be done only with respect

to the relevant data. We call this C-consistency [63]. We elaborate this concept first.

C-consistency: Let us assume that an interactive transaction cousists of steps

2.....5n as shown in Figure 4.6. Step s, reads data items a. b. ¢. d. e. and f
and produces results p and q. The result p is based on data items a. b and d. and the
result q on c. e and f. At this point, suppose the user decides that q is not useful (and
so are c. e. and f) and decides to base the further execution only on p. Then there

is no need to validate this transaction with respect to the values read for c. e. and I.

In general. let D be the set of all data items read by the transaction, and C be the
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subset of D that becomes eventually relevant for the computation. Then, validation
needs to be based only on this subset C rather than the entire set D.

5| s $3 84

Figure 4.6: Data read in subsequent steps of an interactive transaction

Validation is done when the MH reconnects to the MSS. and whenever the user

wishes to do so while in connected mode. The execution pattern could be like

LIRG R 5 L5 - Un-2 Sn-1 Sn Un

where at point vy, step s, is validated. at point v, both steps 5| and s, are validated.
and at point v; all steps up to s; are validated. Here. it should be noted that though
the number of validations and re-executions are more. they may not be expensive
since they are done on the fixed network. Also. an implementation may set a limit
on the number of re-executions for each individual transaction.

Furthermore. the validation and re-execution of steps of the transaction is done
with respect to the data present locally on the MSS. Each transaction is executed
optimistically based on the local data available in the MSS and only when the trans-

action is complete does the global concurrency control mechanism come into picture.
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The global concurrency control mechanism is then responsible to ensure that the
data read is up-to-date and perform the necessary steps to ensure global serializabil-
ity. Thus. other MSSs in the fixed network are not affected by this execution model

until the transaction is submitted in full and comes for commitment.
4.2.1 Execution Model

For cach MH. the MSS maintains a workspace with the following information.

READSET - set of data items read by the steps executed so far by the MH.

WRITESET - set of data items written by MH so far.

MSS_STEPS - ordered sequence of steps of the transaction executed by MH so

far.

DOWNLOADSET - set of data items that were downloaded by the MH before

the last disconnection.

CHANGEDSET - set of data items that were downloaded by the MH and have
been changed during disconnection by other transactions on the MSS.
[n addition. it also keeps a process image containing the current values of the program
counter. registers and variables of the program under execution.

The MH maintains the following sets along with the process image.

o MHREADSET - set of data items in the DOWNLOADSET read by the MH in
disconnected mode since the last connection.

o MHWRITESET - set of data items written by MH in disconnected mode since

the last connection.
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o MH_STEPS - sequence of base steps of the tentative transaction executed by

MH in disconnected mode since last connection.
4.2.1.1 Disconnection

1. (a) Just before disconnecting from the MSS. the MH caches the data required
(DOWNLOADSET) to execute transactions in disconnected mode.

(b) While being disconnected, the MH

executes the (tentative) steps of the transactions.

stores the data items that were read and written by the steps in the

MHREADSET and MHWRITESET respectively.

creates the respective base steps with an acceptance criteria and stores

them in MH.STEPS.

before every step, deletes any previous data items which become ir-
relevant as per the C-consistency concept from the MHREADSET.

MHWRITESET and any steps affected from the NI[H_STEPS.

if the transaction is executed to completion in the disconnected mode.

commits the transaction tentatively.

2. (a) When the MH disconnects from the MSS. the MSS stores the READSET.
WRITESET. MSSSTEPS. DOWNLOADSET. and the current process
image of the transaction in the workspace of the MH. The first three sets
will be empty at the beginning of a transaction execution.

(b) While the MH remains disconnected. the MSS keeps track of the data
items which were cached by the MH at the time of disconnection. but are

modified later. in the CHANGEDSET.
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4.2.1.2 Reconnection
L. When the MH connects to the MSS:

(a) The MH sends the MHREADSET. MHWRITESET. the process image,
MH._STEPS (steps executed so far). along with any input parameters to
the MSS and waits for the validation and. if necessary, re-execution of the
base steps on the MSS.

(b) If the transaction execution can continue, then it

e accepts cache updates (correction of data items on cache) from the
MSS.

o the process image after the transaction steps were re-executed on the
MSS. and

o caches new data to continue execution of the transaction in discon-

nected mode.
2. When the MH connects to the MSS:

{a) The MSS accepts the MNHREADSET. MHWRITESET. the process im-
age. MH._STEPS. any input parameters given by the user on the MH.
and acceptance criteria. if any. and updates READSET. WRITESET and
MSS_STEPS accordingly.

(b) Then it checks for intersection between the data items present in
CHANGEDSET and the MMHREADSET.

if intersection set is not ¢
some data read by the transaction has become inconsistent
if re-execution allowed



re-execute the steps affected as base steps.
if within acceptance criteria
if the transaction is executed to completion,
commit it.
else (transaction is not complete)
move the new process image generated for the transaction
onto the MH and continue with the execution of the other
steps with new cached data on MH.
endif
else (acceptance criteria is not satisfied)
abort the transaction.
send a diagnostic message to the MH.
endif
else (re-execution of steps is not allowed)
abort the transaction.
send a diagnostic mes
endif
else
transaction steps executed so far are valid.
continue with execution of the transaction steps.
endif.

ge to the MH.

When the transaction is either aborted or committed. the MSS empties

the various sets maintained in the workspace.

4.3 Usability of the Model

In this chapter a new model for execution of transactions in a mobile environment
is proposed. The underlying theme of the proposal is the ‘tentative’ ezecution of

transaction in the MH and periodic confirmation of the erecution in the MSS. The

confirmation may involve validation or re- ion of the t ion steps on the

up-to-date data in the fixed network. using the (better) computing capabilities of the

MSS. It has been argued that frequent re-executions help to adjust the course of com-
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putation based on changes in the values of data (caused by the commitment of other
transactions) and/or fine-grained computation on fine-grained data, or, in the worst
case. abort the transaction much earlier than at the end of the execution. Our model
is flexible enough to be applicable in a variety of mobile computing environments,

and to addre

various transaction processing issues. Some aspects are illustrated in

the following.

4.3.1 Adjusting the Computation

The concept of adjusting the computation, in accordance with the changes in the

datal

e state. is quite appealing for interactive transactions where future steps of

the trans;

ction are determined based on the results of the past steps. This is very

useful in real time applications. For example. (i) a flight’s course is re-adjusted based
on the changing weather conditions ahead. (ii) the military routes are adjusted based

’s movements obtained from the radars. etc..

on the enemy convoy

This is also very useful for collaborative executions. Several MHs in the same cell
may be executing steps independently. All of them communicate the steps periodically
to MSS. The MSS re-executes the steps of the different MHs. detects possible conflicts

and suggests (global) adjustments to all the MHs. Thus. the MSS may act as a

moderator of the collaboration. In this case the new values cached by the MH may
reflect the (not-vet-committed, but) combined execution of the tentative steps of all

the collaborating MHs.

4.3.2 Asymmetry in Communication

One of the characteristics of the mobile computing environment is the asymmetry in

the cost of the communication between the MSS and the MH. Due to the resource

o
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Figure 4.7: Broadcast Disk

constraints such as battery power. clients at mobile hosts usually have a weaker
capability for transmitting messages than servers at fixed hosts or in other words.
the available bandwidth from the MSS to the MH is significantly greater than the
available bandwidth from the MH to the MSS. Thus. transmission of a message from
a MH consumes more power than reception of a message of the same size at a MH.

The MSS on the other hand may have the broadcast capability in the wireless
medium: that is. it can communicate any information simultaneously to all the MHs
i its cell, at the same cost as it does for one MH. Hence. algorithms may be designed
such that communication from MSS to MH is maximized and that from MH to MSS
is minimized. This is achieved. for example. using the broadcast disk {1. 2. 27. 71]
idlea. that is. the relevant data and updates which are of interest to a set of MHs are
repeatedly broadcast periodically by the MSS. In effect, the broadcast channel can be
thought of as a spinning disk as shown in the Figure 4.7 from which MHs can retrieve
data as it goes by.

Based on the data requirements of the MHs in the cell. the MSS can broadcast
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some data pages more often than the others and hence keep that part of the database
closer to the MHs. A hierarchy of data is formed by keeping some pages on high
speed disks (broadcasting data pages more often) and keeping the others on low
speed disks (broadcasting once in while). A MH will have to wait longer to access
data on the low speed disks. Some example broadcast programs are shown in the
Figure 4.8. Compared to flat broadcast. the subsequent broadcasts of data item .\’
are potentially clustered in the skewed model. The multidisk broadcast gives the
feeling that the data item X is stored on a disk that is spinning twice as faster as the

disk containing " and Z.

Multi-disk

Figure 4.8: Example Broadcast Programs

The proposed model can be modified to suit the environment as follows. Caching
which is inherent in our model reduces the contention on the narrow bandwidth
wireless channels. Though the data that is cached by several MHs is placed on
low speed disks in the broadcast disks. it can be moved onto high speed disks once
it becomes stale due to updates by other MHs. Thus. periodically the MH may
refresh the cache and re-execute the steps locally and adjust the future course of the
computation. On reconnection, the MH need not re-execute the steps again. but
rather cache new data and proceed with the computation.
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4.3.3 Weak Connection

Another characteristic of the mobile computing environment is the weak connec-
tion. Weak connection may constrain the information transfer between MH and
MSS. Amounts of information to be transferred can be reduced in two ways. Suppose
the steps 5, and s have been executed at MH at the time of a (weak) reconnection.

(i) The MH-state at 5| can be sent to MSS. instead of the MH-state at s»: the sizes

of the sets might be smaller. and also the response from validation/re-execution of 51
at \[SS might come a little sooner. Then, based on the response. the MH itself may
re-execute sy. (i) Further reduction can be achieved by only sending the MH-state

at s to MSS in one connection. and receiving the response from MSS in another con-

nection. that is by de-coupling steps 4.2.1.2.1(a) and 4, 1(b). In the mean time.
the MH may continue with the next step. say sy. and. after the second connection.

may re-execute both s,

and sy. if needed.
4.3.4 Releasing Intermediate Results

In the model a sequence of operations have been grouped into steps. and a sequence

of stey

transaction. One may assume an open nested transaction model as in [38].
and treat steps as subtransactions. Then. as soon as validation/re-execution of a step
is done at MSS. that step can be committed and its effects released. In section 4.2,
again for simplicity. the execution of a single transaction on MH was considered in
the description of the method. A disconnection period may be so long that the trans-
action currently executed is completed. and some new transactions are also executed.
The completed transaction cannot be committed since this requires communication

with the MSS. Instead a different kind of action [25]. a “tentative commit™ is used

o
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which records an intention to commit and allows the mobile host to start up the next

Having tentative commits leads to “dependent commits™ [40]: trans-
action T2 depends on T1 if it uses objects modified by T1 because if T1 ultimately
aborts, so must T2. At the time of reconnection. the MSS would re-execute all of them

and try to commit them in the same tentative commit order as in the MH [24]; and

the last vet-finished © ion would be re-ex 1 and possible adjustments

communicated to the MH. as per the proposed algorithms.
4.3.5 Mobility

The mobile transaction. compared to traditional transactions. may not begin and
terminate on the same MSS. That is. the MH executing the mobile transaction may
move (hop) across several cells, connect to different MSSs. partially execute the trans-
action at each site, and finally terminate at a different sitc. As depicted in Figure 4.9.

the wobile trag

e be executed in its entirety in the same cell (on the same MSS) without any

hops.
o begin and end on the same MSS. after moving (hopping) across several cells.

® begin at some MSS. hop across several cells, and finally terminate on a different

MSS.

Our algorithm can be modified in the following ways to account for such mobili

4.3.5.1 Re-execution

Since the transaction execution on the MSS is optimistic in nature. when the MH

moves to a new cell. the steps of the transaction executed so far can be re-executed on
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executed in its entirety at a single cell

 hops across several sites and ends at the
site where it initiated the transaction

+ hops across several sites and ends at a
site different than the initial site

T
2

T,
3

Figure 1.9: Movement of a MH across cells while executing a transaction

the new MSS and the transaction execution continued. That is. minimal information
like the steps executed. input parameters submitted by the user. and any acceptance
criteria given are transferred from the previous MSS to the new MSS during the hand-

off proc

and the transaction re-executed. On successful transaction re-execution
and creation of workspace. the workspace on the source MSS is purged and complete

control of transaction execution given to the destination MSS.
4.3.5.2 Home-sites

To capture the mobility

v aspect of the MH in the transaction model proposed in this
thesis. the architecture of the mobile database system may be extended to include
home-sites [12]. Each MH in the system is affiliated with a home-site which provides
a central repository for all the MH's transaction processing activity. Hardware coded
identification numbers are employed to uniquely identify all the MHs and MSSs. A

mapping table (address directory - AD) which contains all the MHs and MSSs along

with their ass tions is maintained at each MSS as shown in Figure 4.10. There is
a many-to-one mapping between the MHs and MSSs as a single MSS can serve as an

home-site to several MHs. Also. each MH can have only one MSS as its home-site.



Thus when M H, connects to M SS; as shown in the Figure 4.10, MS$Ss identifies

the mobile host as a nomadic MH (or roaming MH). It looks up in the address

directory (AD) and locates the home-site M SS, for the M H; and informs the current

location of MH; to MSS,.

MSS; [ MH,
MH,
MSSy | MH,
MHy

_____ Mip:
MsS, | MH,

AD - address directory containing the [P addresses
of MSSs and the respective MHs for which they
serve as homessites.

Fixed Network

Figure 4.10: Home-sites for MHs

The home-sites take care of the mobility aspect as follows:

1. Delegate the responsibility of execution to the home-site.

This wi

. the primary function of the MSS will be providing an interface be-

tween wired and wireless networks. and not any application related computa-

tion. Then. irrespective of the location of the MH. the MSS communicating
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with the MH will forward all information from the MH to its home-site and
vice versa. An optimization would be to assign and make use of home-site only
for transactions during whose execution the MH moves from one cell to another.
Thus. if the transaction executes in its entirety in a single cell, the current MSS

holds the responsibility of the execution.

Treat the home-site as location coordinator for the MH.
Whenever an active (connected) MH moves across the cell. a hand-off process

oceu

The hand-off process involves informing the new destination MSSi
where the MH is coming from and transferring the workspace of the transaction
to the new MSS;. The workspace on source M/SS; is deleted or purged on
successful hand-off. The transaction execution can continue on the new MSS.

On the other hand. if the MH disconnects from the MSS. the workspace is
moved to the home-site of the MH. On reconnection at any MSS. the home-

site

is contacted and the workspace recovered at the new MSS and transaction
execution continued. An optimization would be to just send the location of the
last MSS which has the workspace to the home-site. On MH's reconnection at
any MSS in the fixed network. the home-site prompts the last MSS to forward

the workspace to the new destination MSS.

. Home-site can act as a coordinator.

The MH can execute different steps of the transaction at different MSSs as it
moves. The home-site is responsible to check with each site at specified intervals

and re-execute any steps if necessary.



4.3.6 Recovery

Mobile hosts are more susceptible than fixed hosts to both communication and station
failures. They are also more prone to theft, loss. or accidental destruction. Therefore,
it is recommended [33. 47] that. to ensure durability. part of the computation that is
performed on the MH be recorded in the fixed network to achieve persistency. The
proposed execution model facilitates this naturally. At every point of reconnection.
after the transaction steps are successfully validated/re-executed, the process image

of the ongoing transaction along with log information is stored on the MSS. That

the process image is backed up periodically at the stable storage - in our case.

of that of the MSS. Upon a failure. the process rolls back to the most recent back-

up proces

image available on the MSS and continues execution. Though the MH’s
computation in the last disconnected period is lost the transaction can still recover
from the point of its last reconnection. The backups of process image on the MSS
ocenrs at every reconnection in our model. We may as well back-up the process image
at some regular intervals instead of at every reconnection. These intervals could be
based on the (a) number of steps executed. (b) time elapsed. and (c¢) user’s choice.
The mobility of the MH on the other hand will require moving the process image

along with it. When a MH moves across to a different cell. the process image stored

at the previous MSS is moved onto the new MSS during the hand-off process. Thus

if the MH fail

t may retrieve the process image from the new MSS ensuring quick
recovery at the cost of delay observed in hand-off due to transfer of process image.
This strategy is well suited for applications where long service disruptions are not
tolerable and where the failure rate of the MHs is high. The concept of home-sites for

MHs may be employed to deal with the situation where in a MH fails. moves across
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to a different cell and tries to recover. In this case, the home-site can keep track of
the last MSS that has saved the process image and on MH's reconnection at any part
of the network can request this MSS to forward the process image to the respective

MSS which is currently serving the MH.
4.3.7 Pessimistic mode of Operation

The execution model incorporates optimistic approach. If desired, the execution
can be shifted to pessimistic mode at any stage. For example. after validation/re-
exccution of some steps, it may be determined that the rest of the computation at
MH should be confirmed as such at MSS also. Then the relevant data items can
be “locked™ at MSS. prohibiting access by other transactions. until the MH executes
the remaining steps. The commitment at the MH would then automatically imply
commitment at MSS at the next connection. Note that this way the number of items
that are locked and the duration of the locks are minimized. This is explored in the

next chapter.
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Chapter 5

NTEGRATED APPROACH

5.1 Introduction

In the previous chapter. we proposed to ertend the re-ezecution idea to various inter-
mediate stages of execution of a transaction at MH. At every stage (at reconnection
points). all the steps which have been executed at MH thus far are validated. and.

if the validation fails. re-executed at MSS. and the results are che

ked against the
acceptance criteria. If the new results are acceptable. then the MH can continue to
execute the transaction further on the basis of the new results and with updated
cache. else the transaction is aborted. Thus the transaction execution at MH is ad-
Jjusted to the database state in the MSS. We also argued that validation need not be
done with respect to the entire read set of the transaction. but with respect to only
relevant data which may be a subset of the read set. (Some of the data read may
have become irrelevant in the course of the computation due to c-consistency.) This
further increases the possibility of successful validation.

Due to the inherent nature of the optimistic approach. despite frequent valida-
tions and re-executions along the way. transactions could still be aborted when they

come for commitment. That is. the MH's computation is not guaranteed until the
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MSS commits it at a later stage. In this chapter, we explore some ways of guaran-
teeing against invalidation. and thus enhancing the utility of MH's computation. We
illustrate this with an example.

Erample 1 : Let us consider a transaction to book airline tickets from cities A to
F via cities B. C. D. E. This process includes 5 steps. booking cach leg (A-B. B-C.
C-D. D-E. E-F) separately (due to memory restrictions). While executing step 2. the
user observes that the number of seats in the leg B to C is not many. The user may
proceed with the other steps and when he tries to commit the transaction. he may
find that there are no seats left on leg 2 thus forcing to abort the entire transaction.

If it were por

ible to ‘reserve the seats in that leg, “at least for a short time, within
which the remaining computation might finish’. the transaction might not have been
aborted at the end. O

In this chapter. we aim to provide such guarantee. It is obvious that providing
any guarantee involves some kind of “locking’ or pessimistic approach: and this will

restrict or delay other (conflicting) transactions’ executions. These effects are signif-

icant in mobile environments since MHs (holding locks) may be disconnected from
the fixed network for long, unpredictable. durations. We accommodate this problem

in two wa a timeout

(i) varying degrees of pessimism are defined (allowed) and (i

period i

ssociated with each pes:

mistic access. Several factors may determine both
the degree of pessimism and the duration of the timeouts. The timeout period is the
estimated time interval within which the transaction is expected to commit. If the
commitment does not occur (for example. the MH does not reconnect within that
period). then the pessimistic access is switched to optimistic one. The degrees of

pessimism are those introduced in [66]: here they are tailored to the mobile environ-
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ment. They reflect conflict-level integration of optimistic and pessimistic concurrency
control.

The features of the integrated concurrency control method are described in section
2. and the new model for transaction execution in mobile environments in section 3.

Section 4 gives the correctness proof.

5.2 Integrated Concurrency Control Method

Two transactions are said to be conflicting if the write set of one intersects with
cither the read set (RW-conflict), or the write set (WW-conflict) of the other. The
main concern of the concurrency control mechanism is to correctly process conflicting
transactions. The capability structure described below not only achieves this but also
provides the MH's user with the flexibility of switching the transaction execution
hetween optimistic and pessimistic modes at any stage.

A transaction that wants to read (write) a data item must first obtain a read
(write) capability (permit to access) for that data item. The capabilities may have
priority or no_priority with respect to conflicts. Priorities provide pessimistic access
to data items and no_priorities optimistic access. Therefore. we have (i) two types of
tead capabilities, P_RW and NP_RW indicating priority or no_priority with respect
to RW-conflicts, and (ii) four types of write capabilities, (P_RW P_WW). (P.RW
NPWW). (NPLRW P_WW). (NPLRW NP_WW). for the two options for the two
types of conflicts.

Priority with respect to a conflict facilitates automatic validation with respect to
that conflict in the validation phase. That is, a P_RW read capability for data item

r guarantees that at the time of validation no other transaction would have modified
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the value of z. On the other hand, a NP_RW read capability for data item z implies

no guarantee and hence waiting until concurrent transactions with P_RW write ca-
pability on z (i) commit, in which case the read capability is revoked, or (ii) abort, in

which case the read bili

v can be validated v. A (P_RW NP_WW) write
capability for r implies guarantee and hence no-waiting against concurrent transac-
tions reading . but no guarantee and therefore waiting until concurrent transactions
writing £ finish commitment (or abort). A (NP.RW P.WW) write capability for ¢
implies waiting until all transactions with P_RW read capability for z finish but no
waiting against concurrent transactions writing z. A (P_RW P_WW) write capability
for & implics no waiting against transactions reading or writing z. On the other hand.
a (NP_RW NP_.WW) write capability implies no guarantce and hence waiting until
concurrent transactions holding P_RW read capabilities or P_\VW write capabilities
finish commitment (or abort). This is analogous to an optimistic write operation.

The capabilities are granted according to the compatibility matrix given in the

Figure 5.1. The conditional *Y”, *}'!'" represents concurrent write capabilities with
prioritics allowed by the application. The number of such capabilities may be decided
by MSS based on the maximum number of transactions holding the writes on z, the
user. or the time at which the request is made. For example. in a stock application.

cach user ma

¢ be allowed to buy a limited number of shares. for instance. a maximum
of 10 shares of a company. If only 100 shares are available, then the MSS can allow

upto 10 stockbrokers to hold write capabilities in P_WW mode concurrently. When

concurrent write capabilities with priorities are not allowed. “}"!" is replaced by ")
Allowing concurrent writes is analogous to the escrow transactional model {43} which

was designed specifically to improve concurrent access to aggregate items by exploiting
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object structure. state-based commutativity, and integrity constraints. The escrow
model exploits the fact that aggregate items are numerical values which represent a
quantity of interchangeable items (example, number of shares of a company available

or dollars in an account). Thus the quantity can be divided among a number of mobile

hosts based on the data i [68]. The c v matrix 1 allows
this feature naturally.
READS wriTES
o [ | 0 [T
L v N v ~ v
o
n
S araw| v v v v v v
v Rw " |
Ve | v v v v v
b ' '
Fleww [ v ¥ ¥ v ¥ v
T
E e nw
S waw| v v v ¥ ¥
e w
www| v v v v v

Figure 5.1: Compatibility Matrix

We note that an NP_RW read capability for = can be issued to T, irrespective
of any other transaction T, holding any capability for z. That is. data item z can
be allowed access in both modes P.RW and NP_RW by different transactions at the
same time. The notation in Table 5.1 is used to represent the respective capabilities.

The transaction processing in an MH can be considered to consist of five (not

necessarily distinct) phases:

L. Request and acquisition of capabilities: A transaction must acquire the
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Capability Notation

read in P_.RW mode P

read in NP_RW mode B

write in (P_.RW P.WW) mode wPP

write in (P.RW NP.WW) mode wh
['write in (NP_RW P_WW) mode w"?

write in (NP_RW NP_WW) mode w™ |

Table 5.1: Notation for respective read and write capabilities

respective read or write capabilities before performing the operations. If a
request for a capability cannot be granted right away. respective optimistic
read and write capabilities are granted as default and the transaction allowed
to proceed in an optimistic fashion. The capabilities are acquired based on

the rules in the compatibility matrix. (We note from the compatibility matrix

that the optimistic capabilities r® and w™ can alw:

s be granted.) Some of
the capabilities may get revoked due to timeout periods or committing of other

transactions. These capabilitics are re-obtained and steps re-executed.

Execution: Each MH is provided with a private workspace on the MSS. All
the MH's tentative transaction writes are done first in this private work space.
and only after successful final validation are they done in the database itself.
The private workspace also holds relevant information about the transaction in
execution. What information is stored will be discussed in detail in the next

section.

Final validation: The final validation is different from the intermediate val-
idations during the transaction execution in our model. Final validation can

be thought of as conversion of the capabilities into pessimistic capabilities. that
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is. (read and write) locks. This is the “locking” phase. Priority mode implies
automatic conversion. No_priority mode requires waiting until all transactions

holding conflicting pessimistic mode capabilities commit, abort, or release the

capabilities. Of course. NP_RW read capability cannot be converted into read

lock if another transaction with P_RW write capability commits.

i

. Write phase: \Writes are transferred from the private workspace to the database

after successful final validation.

5. Release of capabilities: All the capabilities held by the transaction are re-

leased simultaneously after the write phase or the abortion of the transaction.

This is the “unlocking” phase.

We assume in this thesis, that the last three phases, that is. the final validation. the

write phase. and the release of capabilities. are done in a critical section. \We note

that two phase locking policy is followed here.

5.3 Transaction Execution Model

Mobile hosts can continue with execution of transactions in a disconnected mode.

For this purpose. the MH caches a part of the database required for the execution of

the ongoing transactions. For simplicity of e: ition. we assume the ission of
a single interactive transaction to the MH in the following. We also assume. in this

chapter. that the MH remains in the same cell during the execution of the transaction.

An example sequence of steps of an interactive transaction could be as shown in

Figure 5.3. The arrows indicate the dependencies between the steps. While step sq
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S0 sy

I.Read Set | Output 1. Read Set
2. Write Set 2. Write Set

User Input User Input

Figure 5.2: Dependency between steps

triggers two different and independent steps sy and sy. s, depends on the output of
s and s9 requires input from both steps s and sg. On the other hand. s3 and s,

are independent steps.

s> i g s
Figure 5.3: An example sequence of steps
By default. the transactions are granted no_priority capabilities in MH. Specific
pessimistic capabilities are requested during reconnection with MSS. The MSS issues

the capabilities to MH's transactions based on the capability structure described

above. Some capabilities may be granted right away. Some others may be issued
only in subsequent reconnections. Timeout periods are introduced for capabilities
with priorities to safeguard against the ‘number of disconnections’ and ‘periods of
disconnections’. Once the timeout period expires. the MSS can revoke the capability.

Timeout periods could be based on the application. the time at which the priorities
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are wade, or some tariffs (user may be charged according to the timeout period).
The MSS keeps track of the data items read (written), capabilities held, transaction
steps executed so far, etc., both for recovery purposes and management of capabilities
while MH is disconuected.

The Capability Granting Manager (CGM) on the MSS is responsible for granting
or revoking of capabilities to transactions submitted by different MHs. The capability
requests are maintained in a FIFO queue and capabilities granted in that order. If
a priority capability is requested and it cannot be granted, a no_priority capability
is granted and the following requests that do not conflict with the waiting request
are serviced. A status structure for each data item r is maintained as shown below
which will give the number of different read/write capabilities held by the different
transactions on z. This is used by the CGM to either grant or delay the capability

requests arriving as per the capability granting rules. With each data item we also

sociate a CAP SET which contains all transactions currently holding the optimistic

read capabilities on .

struct STATUSX {

NR.P int:  No. of transactions holding reads in r? mode.
Y int:  No. of transactions holding reads in r™ mode.
int:  No. of transactions holding writes in w’” mode.
int:  No. of transactions holding writes in wP™ mode.
int: No. of transactions holding writes in w"? mode.
int: No. of transactions holding writes in w"" mode.




Granting of Read Capabilities to transaction T;.
Procedure Process.Read(Ri(z), C)

=
[

if (NW.P =0and NWPL=0)
issue r? capability to T;;
associate a timeout value with the capability
(in case r" is already held. then upgrade it to r*)
STATUSX.NR.P := STATUSX.NR.P + L:

else
delay the request and issue capability when condition satisfied:
issue no_priority read capability (r"):
STATUSN.NR.NP := STATUSX.NR.NP + Lt
CAPSETX := CAPSETX U T;;

endif

else

Granting of Write Capabilities to transaction T,.
Procedure Process.Write(1,(z).C,)

L E(C, = wP)

begin
if (NRP =0 and (NW_P + NW _P2) < "LIMIT)
(*LIMIT" is the mazimum number of concurrent writes allowed):
issue w? to T;:
associate a timeout value with the capability

STATUSN.NW.P := STATUSX.NW.P + L:
else
delay the request and issue capability when condition satisfied:
endif
end.



@

if (C, = wP™)

begin
if (N\RP =0)
issue w®" to Ti;
associate a timeout value with the capability
STATUSX.NW_P1 := STATUSX.NW_P1 + 1;
else
delay the request and issue capability when condition satisfied:
endif
end.

if (C, = w)

begin
if ((NW_P + NW_P2) < "LIMIT")
issue w"? to T;:
associate a timeout value with the capability
STATUSX.NW_P2 := STATUSX.NW_P2 + 1:
else
delay the request and issue capability when condition satisfied:
endif
end.

1 (G = wtn)

begin

issue ™" to T;:

STATUSX.NW_NP := STATUSX.NW.NP + 1:
end.

Whenever a capability is revoked, the respective values in the structure are decre-

mented accordingly. For granting priority capabilities. the MSS must contact all other

nodes in the fixed network to ensure that no other transaction is holding conflicting

capability.

In the following tables we will visualize the kind of capabilities that can be held

on a data item r by different transactions at any instance following the rules of the

)
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compatibility matrix. We also assume the value of LIMIT to be ‘1’ that is, concurrent
write capabilities are not allowed. A "¢’ represents a capability already held by some
transaction. A *\/* represent a capability granted to a transaction after ‘¢’ was
alrcady issued. An exclusive write lock is assumed to allow read lock also. Thus. if
w” is held by a transaction T}, then T} is also allowed to read in r? mode. Also. with
wP". if no other transaction holds a read r? mode then the transaction can be granted

the read in r? mode.

1. T, currently holds a read capability in P_-RW mode on r:

F T o e ]
[¢ [ many | | [ I [many]

: T, holds read in P_RW mode. & = 1 or many.

Since T, is already holding read capability in P.RW mode on data item 1. no
other transaction is allowed to obtain writes in P_RW mode. However. NP_RW
reads and NP_RW write capabilities are allowed. Also. the value of *’ can

be "one or many’ as several transactions can hold priority read capabilities

simultaneously.

T, is currently holding a read capability in NP_RW mode on =

As shown in the first row of Table 5.3. *{’ (‘one or more’ read capabilities

in NP_RW mode) is currently held by T, and T} is granted the next */* (read

capability

in P_RW mode). The other possible capabilities that could be granted
on data item z in this scenario are (i) a write capability in (NP_RW P_WWW)

mode and (ii) several write capabilities in (NP_RW NP_W1) mode.
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Table 5.3: T; holds read in NP_RW mode. ¢ = 1 or many.

The other rows and the following tables are to be interpreted similarly based

on the compatibility matrix.

Table 5.4: T, holds write in (P_RW P_.WW) mode. ¢ = 1.

P " [wPPwPh [w'P [ wht
many | / [ many
many [ V| many

Table 3

: T, holds write in (P_LRW NP_WW) mode. ¢ =1 or many.

P " [wPPwPh [w'P[ whn
7 [ many S | many
many v $ | many

Table 5.6: T, holds write in (NP.RW P.WW) mode. ¢ = 1.



[ ™ [wee [ wPr [woP [w™
/| many [ 1 [y
many | / | many &
many v 1 O
many | 1 Vv 3

many many | / [ i
many | many Vv [

Table 5.7: T, holds write in (NP_RW NP_WW) mode. & = 1 or many.

Logical Clocks
The MSS maintains a logical local clock for each data item to aid in validating data
read by an ongoing transaction. The clock gives the logical time when the data was
created or updated. The logical clock CT* maintained for each data item r is a
positive integer *i". When the data item r is created or updated. CT* is incremented
by 1.

Let us assume that a transaction is using data item z with clock value CTj at
time 1. When it comes for validation later at some time 2 it checks with the curremt

clock value C'T available on the MSS for the data item ..

procedure validate(CTZ. CT5)

begin
valid := true:
if CT} < CT} then valid := false:
if valid then
value of the data item has not changed:
else a new version for data item has been created:
end;



Data Structures

The MSS maintains a workspace with the following information for each MH:

MSS_REQSET - Contains the set of capabilities requested by T;. but not yet

granted.

e MSS_GR . SET - Contains the set of requested capabilities that have been granted
already.
® MSS_REV.SET - Set of capabilities that were granted. but later revoked due

to expiration of timeout periods or commitment of other transactions.

MSS_STEPS - Partially ordered sequence of steps of the transaction executed

by MH so far.

MSS_AFF STEPS - Steps affected due to revoking of capabilities on data items

used by the transaction.

Whenever a capability is granted for a request present in MSS_REQ.SET. the data
item is deleted from the MSS_REQSET and placed in the MSS.GR.SET. When
the capability is revoked. it is removed from the MSS.GR.SET and placed in the
MSS_REV _SET. The MSS_STEPS affected thereby are moved to
MSS_AFF STEPS to be later re-executed.

In addition to this. the MSS keeps the process image containing the current values
of the program counter. registers and variables of the program under execution in the

MH.



[n addition to the process image the MH maintains the following information:

MH.OLD_REQ.SET - Capabilities held by the transaction on the MH before

the last reconnection.

MH.NEW_REQ_SET - Capabilities requested so far in the current disconnected

period.

MH.DELSET - Capabilities not required by the transaction anymore due to

c-consistency.

MH.GRSET - Capabilities that have been already granted on the MSS.

MH.REQ_.CACHE - Data items the MH tried to access in disconnected mode.

but were not present in the current cache of the MH.

MH.OLD.STEPS - Sequence of all partially ordered base steps exccuted by

MH in disconnected mode before last rec ction along with any d {

among them.

MH.NEW _STEPS - Sequence of partially ordered base steps executed by MH in
disconnected mode since last reconnection along with any dependencies among

them.

MH DEL STEPS - Base steps executed by MH in disconnected mode before

last reconnection no longer needed due to c-consistency.
5.3.1 Disconnection

1. (a) Just before disconnecting from the MSS. the MH caches the

MH_REQ-CACHE and any other data required to continue execution of
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the transaction in disconnected mode. It also tries to obtain the required

capabilities for these cached data items if already known. The granted

capabilities on data items for the transaction are maintained both on the

MH and the MSS. The following updates are made :
MH_GRSET = MSS.GR.SET:
(b) While disconnected. the MH

® cxecutes the (tentative) steps of the transaction. If the data item read
or written is in the cache (cache hit) and requested capability is not

present for the data item in MH_GR_SET. logs the new

pability re-
quest in MH.NEW _REQ_SET. Continue with execution of transaction
steps.

If the data item to be read is not present (cache miss;

the request
for the data item along with any capability requests is logged in the
MH_REQ.CACHE for caching at the point of next reconnection. Pro-
ceed with other steps of the transaction if possible or wait for the next
reconnection.

If data item to be written is not present. create the data item using
a template and write the value in it. Log in data items and any
capability requests in NH.NEW_REQ_SET. If template for the data
item is not available to create the data item. the writes are delayed

until reconnection time.

creates the respective partially ordered base steps with an acceptance

criteria for all steps executed so far by transaction T, in the discon-
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nected mode and stores them in the MH_NEW_STEPS.

before every step, deletes any previous data items which become irrel-
evant as per the c-consistency concept from MH_OLD_REQ.SET,
MHNEW_REQSET, and MH_GRSET. The MH stores the data
items that had been deleted from the MH.OLD_REQSET in the
MH.DELSET as these have to be updated on the MSS. Similarly
delete all steps no longer required from the MH_.OLD STEPS.
MH_NEW _STEPS and store those steps deleted from MH_OLD STEPS
in MH_DEL_STEPS to be updated on the MSS.

if transaction is executed to completion in disconnected mode. commit

the transaction tentatively.

(a) When the MH disconnects from the MSS. the MSS stores the
MSS_REQSET. MSS_.GR.SET. MSS_REV SET. MSS_STEPS.
MSS_AFF STEPS, and the current process image of the transaction in
the private workspace of the MH. The first five sets will be empty at the
beginning of the transaction execution.

(b) While the MH remains disconnected, the MSS

o tries to obtain the read and write capabilities which were not granted
at the time of last reconnection indicated by the non-empty FIFO
queue or the MSS_REQ_SET. This might be due to some other trans-
action T; which is holding capabilities with priorities over that data
item.

® places the revoked data items in the MSS_REV _SET and deletes the
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same from the MSS.GR.SET. The steps affected are moved from
MSS_STEPS to MSS_AFF _STEPS. It then waits for MH to reconnect

and take the necessary action.
5.3.2 Reconnection
L. When the MH connects to the MSS:

(a) The MH sends the MH.NEW_REQ.SET. MH.REQ_CACHE.
MH.DEL_SET. MH.NEW _STEPS. MH_.DEL_STEPS. along with the
process image and input parameters given by the user on MH. and accep-
tance criteria. if any, and waits for validation or re-execution of the base
steps on the MSS. (The validation at this point is not to convert capabil-
ities to locks. This conversion is done only at the end of the transaction
execution when it comes for commitment.)

(b) If transaction T, is successfully validated or re-executed. the MH

® accepts the cache updates from the MSS.
o caches new data (and MH.REQ_CACHE. if present) to continue exe-
cution of T; in disconnected mode.

e may obtain capabilities for new data items being cached.
2. When the MH connects to the MSS:

(a) The MSS accepts the MH.NEW _REQSET. MH_REQ_CACHE.
MH_DEL_SET. MH_NEW _STEPS. MH_DEL_STEPS along with the
process image. acceptance criteria, and any input parameters given by the

user on the MH. It then updates the following sets:
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MSS_REV.SET = (MSS_REV SET — MH.DEL_SET):
MSS_REQSET = (MSS_REQSET — MH_DEL.SET):

MSS.GRSET = (MSS.GR.SET — MH.DEL_SET):

(release capabilities on data items not required anymore)

MSS_STEPS = (MSS.STEPS — MH _DEL_STEPS);
MSS_AFF STEPS = (MSS_AFF STEPS — MH_DEL_STEPS):

(b) Check if the data read before the last disconnection period is still valid.
i. If (MSS_REVSET = o A MSS_REQ-SET = o)

o all the requested capabilities on data items accessed before the
last disconnection period have been granted and none of these
granted capabilities have been revoked. Hence. there is no need
for validation of data read earlier or re-execution of any steps at
the time of reconnection.

® Go to step (c) to validate the new reads of the last disconnection

period.

ii. If (MSS_REV.SET = ¢ A MSS_REQ.SET # o)

e data items on which capabilities were granted have not been re-
voked during the last disconnection period.

e some of the transaction’s requests for specific capabilities have
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not yet been granted since the last reconnection point. Though
the capabilities with priorities have not yet been issued, the CGM
would have issued capabilities with no_priorities to the transaction

on these data items. Since the no_priority capabilities were also not

revoked in the last tion period. the t ions are still
reading the latest value of the data items and hence can proceed

with the execution in an optimistic fashion.

Go to step (c) to validate the new reads of the last disconnection

period.

If (MSS_.REV SET # o A MSS_REQ-SET = o)

e all transaction’s requested capabilities were granted. but some of
the capabilities were later revoked either due to timeout peri-
ods or commitment of other transactions. For each step in the
MSS_AFF_STEPS. validate all the read requests which had been
revoked and present in MSS_REV SET.

Let CT{ be the vector timestamp of the data item on which ca-
pability was held and CT; the timestamp for the same data item

currently available on the MSS.

CASE 1: A P_.RW read capability was granted. but later revoked
due to timeout period. In this situation, the CGM
— validates the data item on which capability was revoked.

call validate(CT}. CT5).
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If valid validate the other revoked capabilities of the step.

If step is successfully validated, re-execution is not neces-

sary. Re-request the lost capabilities. The CGM grants

no_priority bility if the bility | cannot be
v. Move MSS_AFF STEPS back to
MSS_STEPS. Go to step (c).

granted right aw

If not valid, store the identifiers of this step and any other
steps that get affected due to this step as discussed in sub-
section 5.3.3. Continue validating other steps present in the
MSS_AFF_STEPS. After identifving all the steps affected. re-
execute the steps in the predefined partial order. If results
fall within ‘acceptance criteria’. re-request all the revoked ca-
pabilities. go to step (c) else go to step (e). On successful
re-execution. the steps are moved from MSS_AFF STEPS to

MSS_STEPS.

CASE 2: A P_RW read capability was requested on a data item z.
Due to compatibility constraints. the CGM grants NP_RW read
capability to the transaction. The NP_RW capability may get
revoked by some other transaction which has written a new value
in r. Thus. though the requested P_RW capability has not been
granted. the transaction that is running in an optimistic fashion
needs to be validated or re-executed as discussed in the previous

case. The P_RW read capability cannot be granted in this case
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as the version on which the priority capability was requested does
not exist anymore. The step has to re-executed and only then the

capability re-requested on the new version of the data item. Thus.

the CGAI does not allow priority

pabilities on newer versions of
data if the transaction had requested the capability on an previous
version.
Revoking of Capabilities: Capabilities that are granted to trans-
action T; on data items may get revoked either due to expiration of
timeout periods or due to commitment of some other transaction
T,. If the capability has been revoked due to commitment of an-
other transaction T;. some of the steps of the transaction T, may
have to be re-executed. On the other hand if T; lost the capability
with priority on z due to timeout period. then
— If there is a conflicting capability request by T,. allow T; to
access the data item r and move the capability request of T,

from its MSS_.GRSET to MSS_REV SET.

— If there are no conflicting capability requests waiting, allow T; to

re-obtain the capability and reset it to a second timeout period.

If T, ‘timeouts’. then T, can be given the read priority again. but
if T; commits and the capability held was priority on read. then
T, need not re-execute. but if the capability held was priority
on write then one or more steps of T; need to be re-executed at
the time of reconnection as validation would have failed forcing

re-execution.
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iv. If (MSS_REV . SET # ¢ A MSS_REQ_SET # 0)

e some of the transaction’s capability requests have not vet been
granted and some granted capabilities were revoked in the last
disconnection period.

o perform the above two steps (i) and (iii).

o if successfully validated or re-executed. go to step (c)

clse. go to step (e).

(¢) Validate the data accessed in the last disconnection period. Update the
following sets:

MSS_REQSET = (MSS_.REQSET U MH.NEW_REQ_SET)

i. Validate the new reads in MH.NEW REQ-SET.
if invalid, re-execute the new steps(MH_NEW _STEPS).
if acceptance criteria satisfied
MSS.STEPS = (MSS_STEPS U step re-executed)
re-request the capabilities required by the step:
if transaction execution is complete
go to step (d):
else
continue with transaction execution:
endif
else
Go to step (e):
endif
else
MSS_STEPS = (MSS_STEPS U step re-executed)
if transaction is complete;
go to step (d):
else
continue with transaction execution:
endif
endif.



ii. Obtain the requested capabilities in MH_.NEW_REQSET. The CGM
grants no_priority capabilities if priority capabilities cannot be granted.

(d) Transaction execution is complete and has come for final validation. The
final validation may be conceptually thought of as conversion of capabili-
ties to locks. The details of this procedure and the correctness proof are
discussed in the next section. where in we prove the correctness of the

capability granting mechanism. The final validation may involve some

waiting. Once a transaction T, has been successfully validated and com-
mitted. and if £ has been modified by T;, then all transactions reading =
with no_priority capabilities. that is. transactions present in the CAP_SET
will get their read capabilities on z revoked [26].

(e) All the capabilities held by the transaction are revoked and the transaction

is re-submitted with new input parameters and acceptance criteria.

When the transaction is either aborted or committed. the MSS empties the various

sets and releases all the capabilities held.
5.3.3 Re-execution of steps

tion. the

Since our execution model employs the concept of an interactive trans:
revoking of the capabilities held need not require the re-execution of the entire trans-
action as such but only a few steps. These affected steps are re-executed at the time

of reconnection. Let us illustrate this using an airline booking example as shown in

the Figure 5.4. In step so. the user books a flight from city .\ to city }” tentatively by

flight B. He also associates an acceptance criteria to purchase a ticket on an earlier
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Figure 5.4: Re-executing a single step

flight A. if no seats are available on flight B. He then goes ahead with step s, to book
the next flight from city ¥ to Z. On reconnection. the user may have to re-execute
step sg as read capabilities held by the step may have been revoked. Seats on flight
B may no longer be available forcing him to purchase a ticket on flight 4. In this

case. only step so need to be re-executed as the second flight can still be t:

ken by the
user.
Now. let us look at a slightly different scenario in booking the fights as shown in

Figure 5.5. Use

in step so books a seat tentatively on flight A with acceptance criteria
to purchase the seat on a later flight B, if no seats are available on the previous flight.
[ step sy. the user book a seat tentatively on flight C, with acceptance criteria with
acceptance criteria to purchase the seat on a later flight D. if no seats are available
on flight C. Now. let us assume that all the seats on flight A are booked. so step s is
re-executed and the a seat on flight B booked tentatively. This new booking in turn
forees step s 1o be re-executed as the user will not have time to catch the next flight
from city Y. Thus sq forces s, to be re-executed.

An interactive transaction can be visualized as a partially ordered set of steps as
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Figure 5.

shown earlier in the Figure

Steps,

Flight C Flight D

dpmy  y Spm

City

Re-executing several steps

From the figure it can be seen that the output of

step s triggers two different and independent steps s, and s;. Also. 53 and 5,9 are

independent steps. but sy, in-turn depends on the output of s10. and sq requires input

from both steps sg and sy.

A - 551575u59

B - sgs1s2

C-ay

D - w50

While A. B. C. and D are totally ordered executions. the transaction as a whole

is partially ordered. If a read capability held by step sq is revoked and validation

f:

Similarly. if a capability held by s, is revoked then A! =

. then in the worst case both ordered executions A and B have to be re-executed.

575859 has to be re-executed.

Similarly if a read capability held by



revoked and validation fails.

sy is revoked and validation fails,

s9 i revoked and validation fails.

sy is revoked and validation fails.
52 is revoked and validation fails,

55 s revoked and validation fails,

s 15 revoked and validation fails,

. A% = 75859 are re-executed,

A3 = sgsg are re-executed.

. A" = s9 = B is re-executed,

B! = s15355563q are re-executed,
B? = ;533659 are re-executed.

B

59659 are re-executed.

, BY = sgsg are re-executed,

c!

s10 is revoked and validation fails, D'

sy 1s revoked and validation fails, = s3 is re-executed,

Sios11 are re-executed.

sy is revoked aund validatiou fails. D?

syy is re-executed.

Thus based on the capability revoked. limited number of steps need to be re-executed

instead of the entire transaction. And since we allow for capabilities with priorities.

the number of steps that need to be re-executed will also be reduced.
5.4 Correctness Proof

Final Validation: Each transaction on completion of its execution must be vali-
dated. Here the validation is different from the intermediate validations during the
transaction execution. The final validation can be thought of as conversion of capa-

bilities into ‘read” (shared) and -write locks’ (exclusive lock:

. The point where all
the capabilities are validated corresponds to the *lock point’. The lock point order
or the final validation order is the serial order of execution of transactions (19]. Qur
proof is based on the serial validation scheme in [34].

The data items can be one of the following states based on the capabilities granted:
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P " [wPP [ wPt [wiP [ w™™ | STATE
many | many | [ T | many A
many | 1 [ many [ many B
many [ many | T | many C
Table 5.8: Allowable capabilities on a data jtem

The final validation procedure for T} is as follows:
L. validation of read capabilities for data item z involves the following:
(a) if capability held is in r? mode (states A). validation is automatic.

in r" mode. wait until no other transaction holds a write in

(b) if capability
wP? or wP" modes.
2. validation of write capability for data item z involves the following:

(a) if capability held is in w”” mode (states B), validation is automatic.

(b) if capability held is in w”® mode (states B. C). wait until no other trans-
action holds a write capability on z in P.-WW mode.that is. P or w"?
modes.

(c) if capability held is in w™ mode (states A. C). wait until no other trans-
action has read capability on z in P.RW mode.

(d) if capability held is in w"" mode, wait until no other transaction is holding

rP, wPP, or w"?,
If all “locks” are obtained by Ti:

® write phase is done. That is. the values written by the transaction are trans-

ferred from its private workspace to its database. Invalidate the r* capabilities
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on the data items held by other transactions that were modified by T}.
e commit the transaction.
o release all the capabilities and locks held.

The point at which all the locks are obtained is the “lock point’, and the lock point

order is the effective serialization order of transactions. This follows from the basic

two phase locking protocol which ensures serializability [3].
5.5 Handling Deadlock Situations

Deadlocks occur when two transactions are waiting for priority capabilities or locks

held by the other to be released. Deadlocks can be handled in many w We use

timeout mechanism to handle deadlocks. That is. if the requested priority capabilities
or locks are not granted to the transaction within this timeout period. the CGM

assunies that this transaction is involved in a deadlock and aborts the transaction to

reak the deadlock.

In our algorithm. deadlock situations can occur at two instances:

In the request and acquisition of capabilities phase a situation as shown in

Figure 5.6 may lead to a deadlock.

Since cach priority capability is already associated with a timeout to deal with

the disconnected MHs. deadlocks will icall

when the timeout

period for one of the capabilities expires and hence the capability revoked.

The second deadlock situation occurs in the final validation phase. When a

transaction comes for final validation, we associate a predefined timeout period.
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Figure 5.6: Deadlock Situation

The capabilities and locks held by the transaction are not released or revoked

until this

timeout period expires. The transaction’s timeout period nullifies the
initial timeout periods assigned to different capabilities individually. In effect.
all capabilities are held for the same amount of time once the transaction enters
the final validation phase.

Since the CGM is only guessing that the transaction may be involved in a dead-
lock and revoking all the capabilities, it might be actually making a mistake.
Though a transaction does not contribute to a deadlock. it may get aborted
for just waiting for a capability held by a transaction which is taking longer to
complete. As far as correctness is concerned, there is no harm in making such
an incorrect guess. This can be avoided by using long timeout periods. The

price to pay would then be that a transaction involved in a deadlock would have
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to wait longer before it is actually detected by timing out. Thus the timeout
periods are tuned to be long enough so that most transactions that are aborted
are actually deadlocked. but short enough that deadlocked transactions don’t

wait too long for their deadlocks to be noticed.

The timeout periods can be calculated in several ways:
® always fixed.
® based on the number of data items accessed by the transaction.
® based on the number of capabilities held by the transaction.

® based on number of capabilities the transaction is waiting for. cte.

Another h to detect deadlocks d, ically is to use waits-for graph [8].

The CGM maintains a directed graph which are labeled with transaction names.

There is an edge T, = T,. from node T; to T,. iff transaction T, is waiting for trans-

action T, to release some capability. If the waits-for graph (WFG) has a cycle. it
implics that a transaction is waiting for itself and hence a deadlock. The CGM can

check for cycles every time a new edge is added or wait until a few edges are added.
5.6 Mobility

As discussed in the previous chapter. when a MH moves into a new cell we could
re-execute the transaction steps on the data available on the new MSS and continue
with the execution. If the past execution has been guaranteed in the source MSS by

holding priority ca then this cution is still I as the priorities

are obtained based on a global decision. Hence no matter where the MH moves. as

far as the guarantees are concerned they are still held till the timeout expires.
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5.7 Discussion

In this chapter we presented a flexible integrated concurrency control scheme inte-

grating optimi:

tic and pessimistic approaches to access the data items based on RW-
and WW-conflicts for mobile environments. The underlying theme of the transaction

execution model

(i) tentative execution of transactions in the MH: (ii) periodic
confirmation of the execution in the MSS and (iii) guaranteeing past execution by
switching from optimistic to pessimistic modes (perhaps when the transaction is near-
ing completion).

In the transaction model proposed. it may appear as if the MH is taxed heavily

due to the ity involved in ing its past exccution. This in reality is

not true. The MH can act independently, kept unaware of the capability granting
mechanism. All it does is. cache data and do the relevant computation. At some point

of time during its

execution, it requests for some guarantee for its past execution. It

is the Capability Granting Manager on the MSS which acts as an agent to the MH

in coordinating the various tasks like granting of capabi s. maintaining timeout
periods. revoking capabilities. validation and re-execution of steps. etc.. Also. irre-
spective of the guarantee being met or not, the transaction on the MH is allowed ta
proceed. Since most of the workload is shifted to the MSS, the power consumption

in the MH is significantly reduced.



Chapter 6
CONCLUSION

This thesis

L. begins with a overview of the design challenges in mobile computing environ-

ments.

reviews some of the tran:

action models proposed in the literature for mobile

environments.

3

- presents a new transaction execution model that facilitates adjusting the com-

putation at the mobile host to the database state at the fixed network. and

. proposes a method of making the computation at the mobile host more credible

by providing partial guarantee against invalidation.

In the transaction execution model. at various intermediate stages the computa-

tion at MH is validated. and if validation fails then re-executed at the MSS. One of

the impl ation issues is to di ine the actual stages of validation/re-execution.

In this thesis

. the stages are taken to be the reconnection points of the MH with the

MSS. This of course may not be the best approach. For instance. let us consider a
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transaction which is almost complete. That is, say it has already accessed 95% of
the data it would require. When the MH reconnects to the MSS to access the other
5%. it is advisable to complete the execution and then validate/re-execute instead
of validating all the 95% of the data accessed. So. several criteria like number of
data items already accessed. number of data items going to be accessed in the future,
type of connections available, applications. tariffs. etc.. might influence the choice of
determining the intermediate stages.

The enhanced model guarantees the computation at the MH by moving it to pes-

simistic mode by “locking™ some of the data items at some stage during its execution.

The effects of locking are significant in mobile environments since mobile hosts (hold-

ing locks) may be disconnected for long, unpredictable durations. This is addressed

by providing varying degrees of pessimism and timeout periods. This facility is pro-
vided by the Capability Granting Manager (CG)) on the MSS and hence places no
burden on the MH.

Typically pessimistic approach is advantageous where demand for data is high. On
the other hand. optimistic approaches are more suitable in places where the demand
for data is low. The disadvantage of this approach is the possibility of invalidation at

the end. leading to rollback. In practical situations. demand for data varies with time.

Our flexible integrated approach can be tailored to choose pessimistic or optim

access with respect to the demand.
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