

The Design and Implementation
of a Fortran-77 to Modula-2

Translator

by

© Eric Robert Myhr, B.A., Dip!. C.S.

A thesis submitted to the School of Graduate
Studies in partial fulfillment of the

requirements for the degree of
Master of Science

Department of Computer Science
Memorial University of Newfoundland

St. John's, Newfoundland
February 1990

....

The author has granted an irreYocabIe 000·excIuslve licence _ the_U>n1ly

of Canada to reproduce,loan. distribute or sell
copies of hislhec' thesis by any mean& and il
any foon or fannat. maIdng this thesis avaiabIe
to interested ~ns.- ..

The author retains ownerohip of the copyright
in hi.;Iher thesis. Neither the thesis nor
5ubstantlal extracts from it may be printed Of

otherwise reproduced without hislher per
mission.

L'autet.K 8 8000fd~ une licence Irr6YocabIe eI
non exclusive pennett8nt A la~
nalionale du Canada de reprodulfe, prater,
distribuer ou vendre des copies de sa th6se
de QUeklue mani6fe et SOlIS quelque forme
que ce soU pour mettre des exemplaJres de
cette these a 13 disposition des pen;onnes
interessees.

L'auteurconsecve Ia propnete du drolt d'auteor
qui pcotege sa these. Ni Is. these nl des extraits
substantiels de celle-ci ne dolvent ~tre

imprimes au autremeot repradults sans son
autorisation.

Abstract

A source-fa-source trans/eloris a. program which translates programs written in a given

high-level programming language into another high-level language. They provide a telill.ble

means for the fe-use, sha.ring, and devdoprnent of software.

In this thesis, the design and implementation of a 50UTce·to.SOluce translator which

converts Fortran-77 programs into semantically 'equivalent' Modula-2. programs is cll!'

sulbed.

An (Ifjribule grnmmnris used to formally describe the translation. Attribute grammars

are typically IIsed in the specification of compilers and translators, lUld describe translation

in a syntax-directed fashion.

The translator was generated from the attribute grammar using the GAG system,

a translator/~ompiler writing ~y~tem biLSed on attribute grammu$. Attributed parse

trees are used ror the intermediate representation or the syntax and semantics or Rutran

programs during translation.

Keywords: source-Io-source lrans~on,program Iransjonnation,lJttribute grammars, lran

slator-writing sllslems,the GAG system, programming language", Fortran-??, Modula·!.

Acknowledgements

ThiR thesis would not have been possible without the support and guidance of many

individuals amI institutions at Memorial University of Newfoundland.

Financial support was provided by the School of Graduate Studies through the Univer

sity fellowship, by the Department of Computer Science through the provision of sessional

lectureships, and by Dr. Wlodek Zuberck.

My thanks to Mrs. Jane Foltz for her careful review of my l1\(~sis, and for making

fiuancial support from the Department of Computer Science possible. I would also like to

exteud than ks to the technical support staff of the Department of Computer Science, who

never tired of lending me a hand at any hour of the day or night.

Filially, I would like 10 extend very special thank! to my advisor, Dr. Wlodek Zuberek,

for the thoughtful and pallent guidance which he provided from the projec::t'a inception

to its completion. From our numerous discussions evolved many of the ideas presentee! in

this lhesj.~.

Eric R. Myhr

iii

Contents

1 Introd uction

1.1 Structure oCthe paper. . . . • . • .• ••

2 Attribute Grammars

2.1 Definition and notation

2.2 An example.

3 The GAG system

3.1 ALADIN

3.2 GAG processing

3.3 StrucLUfc of the generated translator••.•.

4 A comparison of Fortran-17 with Modulo-2

<1.1 Program Gtrueturcs .

4.1.l 1-.Iodulcs in Modula-2

4.1.2 Fortran program units

'1.2 Parameter passing mechanisms

'1.3 Passing arrays as argument

4.4 Passing procedures as argument.

<l.5 Input and Output

6 Strategy of the Translation

III

I"
IG

18

21

2G

29

JO

33

5.2 Constants •.

5.3 Exrressions.

5.1.3 Character strings .

5.1 Mapping of Types

5.1.1 LOGICAl. data.

5.1.2 COMPLEX data

3J

34

36

37

38

39

'0Constant expressions•..5.3.1

5.:1.2 Character string expressions•.••• , •• • • • . • . 41

5.3.3 Intrinsic func~ions

5.4 Specillcatioll statements ..

43

"5.4.1 DIMENSION statements 44

5.1.2 IMPLICIT statements and type statements 45

5.4.3 COMMON statements.•••. 46

5.4.4 EQUIVALENCE statements 49

5.".5 SAVE statements. 54

5.5.1 DO statements .

5.5 ExecHtableslatements

5.<1.6 EXTERNAL statements.

5.5.5 Unconditional GO TO statements

55,.
62

'"
64

69

7.
71

71

72

73

"7.

Computed GO TO s~atement •.

Arithmetic IF statement ,

Assigned GO TO and ASSIGN statements

CONTINUE statements •.•

5.5.2 Logical Hstatements •

5.5.3 Block IF s~atements •

5.5.<1 GO TO's and Labels.

5.4.7 DATA statements

5.4.8 Statement (unctions

5.5.6

5.5.7

5.5.S

5.5.9

5.5.10 STOP Itll.lement•.•••.•.

5.5.11 PAUSE Itatement • . . . • . . • . • • • . • • • . • • j6

5.6 Translation or Subproyaml .

5.6.1 Parameter pauinr;

5.6.2 PlWing strinr; us.menls

7.
7.
78

5.6.3 Paning arn,va u uguffient•••.•••..•.•.••.

5.6.5 ExtemaJrunctions.

5.6..4 Subroutine-.

5.7.3 OtherI/Oltatcmenlll.

5.1 Input and outpllt stateffients

81

"..,
••
"00

.,
"
93

07

.100

TIlll WRITE and PRINT slatcm'llllll•..•.•.••..

The READ stat(~mel.t•5.7.1

5.7.2

6.1.1 EnvironmentaJaUriblltes

6.1.2 Code generalion

6.2 Scanner preprO«lS5ing

e Implementation

6.1 TheattributegrlUTlmar

6.2.1 O~r1oadJng or syntactic ronstnlets .

6.2.2 Pane, limitations

6.2.3 Shared terminal statements in DO loops.

6.3 Tbe translator .

. •.. 100

... 102

. .. 102

• ••••• 10:1

7 Examples

7.1 Example 1.

1.2 Example 2••..•.

10'
. .. lOS

..109

8 Concluding Remark,

8.1 AGs and GAG

8.2 Summary 01 restrictions on Fortran programs , .

11.
.11-1

.117

8.3 Results.

References

vii

. 121

...

List of Figures

An APT for a Fortran PARAMETER statement•.••••••••.

viii

Chapter 1

Introduction

SOllrce·to-301lrr:e Lmn3/ation is the process of translating be~wcen high IeI'd languagcs; it

is a protess by whic:h programs writlcn in 1\ given high.lcvcllanguage (say 51) can be

translll.tcd into another high-fcvellanguage (say 52) using some kind of program transfor

mations which preserve the meaning of (ie., the computation described by) the program

written in 51. Ideally, the method employed should be sufficiently well·defined as to per

mit the automation of the tr3.nslation. Automattd translators arc desirable for a nllmber

of reasons - they provide a reliable mea.ns to adapt existing software to new programming

environments and to share programs with installations having limited source language fa

cilities. They also allow software to be re-used; for instance, subprogram material written

in obsolde languages can be converted and subsequenlly used in the construction of more

powerful systems written in more fashionable languages. For the purposes of software pro

lotyping, lIuch a tool can be Ils<!d to translate prototypes (written in a language suitable

for prolotyping) into a more production oriented language (as In (Dob 87)).

The practical aspett or the projoct describlld in this thesis tonslstcd ill the design and

implementation or a Fortran-77 to Modula-2 translator l . While a fully &Ilnerallranslator

is bllyond the scope or thislhesis, the goal was to generate Modula-2 programs which are

'In tlte sequel, lite lerm FOrl'II.n denot.,. Forlran·77 u defined in Ibe ANSI atandard rANS 78J, and
MOOllla_2 denotel Ihe verlion of lbe language dl'3Cri1x-d in Niklau. Wirth'. ·Prosrammin& in mbodlodllla
2~ (tbirdcorr«tedtdition, rWir85]) unl<:11othrwioelptcilitd.

semantically equivalent to Fortran programs with as few seriolls restrictions imposed on

the source programs ilII possible.

The underlying organization of the translation is modeled as a two- level mnPlling:

Fortran programs are first described using some intermediate represenlation (lIt): the

second levcl maps the computation dtscrihcd in that intermediate representation onto the

target language Modula-2. This raises a numher of qucstions. First, how should the IR

be designed? Secondly, how can the first level of mapping be desclibed and effected? And

thirdly, how to convert from intermediate representation of a. program to its representalioll

in Modula·2?

Clearly, the design of the IR is of central importance. The method used in this project

is to represent the lR as an attributed trfe. In such a scheme, attributes arc used to

express the meaning or various programming langllagt:! cor.structs. Less abstractly, at

tributes (which annotate nodes or such a tree) should slare enough information ahollt the

represented program to enable its reconstruction in the target language. This informa

tion (which is either explicitly represented by attributes of a trlll! or de~ivable from them)

would need to include a descrip~ion of declared objects (variables, types, constants, ...),

actions (assignment, expression evaluation, binding), program structures (such as subrou

tine, function, dnd block data subprograms), control slructures, data. struclur(!s (arra.ys,

common blocks), and relationships betwccn entities (association or objects and strnctures,

for instance equivalcncedtllltities).

Having chosen an attributed trcc repre~ntation. a nnmber of design considerations

come into play. Firstly, should a single (standard) lR haviJ::!g as fixed a structure as pos

sible be used (as argued in {Tel 84J) or should a number or standard IIL8 be employed

in tJle translation. Thelatler approach implies a need to describe transformations of at

tributed tre(!s by either directly manipulating tre<! structures or by using attributes whkh

are themselves ATs (the lalter approach is taken in tile attribute coupled grammar formal·

ism described in IGan 841, and in the higher order attribute grammar (lIAG) formll.lism

proposed in (Vag 89]). Such translations describe a multi· level mapping in whicll ATs are

succcssively transformed into some (possibly) standard or normalized form. The former

approach (using a single IR) 500ms to be the most popular in the literature (this is the

approacll taken in (Alb 80), [Leo 87], !Doy 84J, and ISla 83]). Normally the transLation

pro~ds by reworking the sourcc program until it is in alv,m suitable for its represen

tation in the standard JR. In ISla 83) this reworking is kept fairly simple, and generation

of the DIANA ((Goo 83] and ITel 84}) tree i~ done directly on a statement-by-statement

basis, while in [Doy 84] and especially in [Alb 80) the reworking is done in a number of

more or less discrete steps (by, in the latter case, manipulating "non-standard" trees). In

most cases, going {rom the IR to the target language co~- 1- done in a single step.

Another design consideration is whether the IR (when a single IR is used) should

be target language oriented or source language oriented. In ISla 83] and [Boy 841 the

m is dearly target language oriented. In !Alb &i) on the other hand, the In is based

on the syntu of Ada even for Ada·to-Pascal tl'anslation. In this case, however, a fairly

close relationship between the In and the targd language is still maintained in virtue

of the method cmployed in the translation (/Kri 84]) whidl is based on the definition of

"compatible" sublanguages of Pascal and Ada. In the Adot_to-l'ascal translation, Ada

programs are first translated into their associated sublanguage, and thus the programs

represcnted in the Ilt are already in a formhidl is (fairly) compatible with Pascal.

In the Fortran-77 to Modula-2 translator, a single (attributed parse tree) IR is used

Lhroughout tIle entire translation process. The IR is based on the syntax of Fortran

77. Attributes arc uscd both to represent the semantics of Fortran-77 programs and to

generate Modula·2 code, and no manipulation of the syntax tree is performed. The lR

is source radlcr than target language oriented which complicates the task of generating

Modula-2 code from the IR. Dut happily the two languages bear enough of a syntactic

resemblance 10 minimize any subsequenl difficulties. Dy the same token, since sys1ems

whicll utilize target languagu oriented IRs rely heavily on the reworking of source code,

having a source I~,nguago oriented IR significantly reduces tho amount of reworking of

Fortran programs required. Another advantage is that the attribute grammar formalism

tu be used to completcly delCribe the tran5laUon.

The aUribllte gnmmar (AG) formalism il a tool which il In!lIluitcd for dcscribina

the mapping of source code (or more Ipecifically, pane trees of sourer. programl) onto

attributed pane trea (APTI)'. APTI can capture bolh the Iyntactic as wetl all the se

mantic characteriltic. of IOUrce progr~l. AGs dc:scribe this mapping ill a Iyntax directed

fashion. A given AG is "built upon" the underlying eontext-frae grammu of the source

language. with aUribute. of APTs decorating pane trees of source Ia.nguage programs,

Simply speaking, an AG il comprised of two component.: asct of context-free rules which

describe the 'yDtax of the source language, and a set of attribule clHJlUfJlion rule, (a.lso

cJ.Jled semonlie rule,) which describe the values of attributes occurring at nodes of parae

trees for source programs. Since AGs describe translations in terms of parse trees of the

source language, it was ..onveni~nt to base the IRon the syntax of Fbrtran-77.

Moreover, AOs are not particularly well suited for describing tree transformationl. In

order to do so, either the AG must be written sl/ch that lOme aUribute{s) themJIClvcs

are attributed trecs(as in (Gan 84] and (Vag 891), or some kind of extension to the AG

formalism mllsl be developed (as in (Mon &tl. where AGa are combined with lubtree

replacement grammars). This consideration enCOllraged the 1lR! of a sin&lc IR in tbe

translation.

The AG for translatins Fortran-77 to Modlll...2 can be conceptually divided into two

puts: the first part (corr<!Sponding to semantic analysis phase of ~ traditional compiler)

consists of evaluation of attributes which provide semantic idormalion about the program

being translated. The lICcond part <:onsiau in 1Ile eva1uatioll of attributes used for code

generation. These two par" atl! implemented as (for the most part) distinct 'passes' over

lhep~trce.

'Originally con~iyed by J(nlh ([I\nll 68]) to deocrihe th semantic. of pro&",mminlllanglln&c.. Aa~
hye become increuinllly populu In compilel con.tfUclio~ t""kI. and a number of AG based compiler
wriling Iyltem_ arc cUllently available (amonS them i_the GAG _Guelltor bued On Attribllte Grammara
-lyl1em which is beinS used \0 implement Ihe Fortran to Mod"la·2 trall_Ialor).

1.1 Structure of the paper

The remainder of thl. thesis is Ilructured in the following manner. Chapter 2 givea a

fonnal definition of AG. along with an informal description of their &emantics using an

example. The GAG sy.tem is described. brieRy in chapter 3. In chapter -4 a comparison

of Fortran-77 with Modula-2 i. given, with particular emphaaia on the features of the

languages which playa aignificant role in the transladon strategy. Chapter 5 contains

a discussion on the strategies used to convert \':lrlous Fortran constfllcts into Modula·2.

Chapter 6 describe. implementation details of the translator, including a discuuion of

the AG used to specify the translation, and some characteristics of the GAG generated

translator. Chapter 7 givC! some examples of input 10, and output from, the tr:mslator.

The final chapter contains concluding remarks, Including a summary of the restricllons

imposed on furlran programs by the translator, some suggestions for the elimination of

thClie restrictions, a description of the difficulties which arose during developmcn~ or the

translator, and discuSliion on the more successful resultl.

Chapter 2

Attribute Grammars

An allribule grommar(AG) is a context-free grammar (CF) along with a set of (ltlrifmlc~.

,emanlit rulu, and semanlic conditiofU in which a fixed number ofaltribules is i\S~ocial~d

with each nonterminallymbol in thl! CF gra.mmllr. Tho aemaMic rules arc written 1'10 that

each tiring generated by the CF' grammar i. associaled wi~h a value (normally given IIy

attributes arthe llart symbol of the CF grammar). ACt aN! a useful tool for programming

syntax.directed computations luch u compiling alld translating. In such applications the

undt'r1ying CF grammar is the Krammar of the source langua!;:c, and the semantic rules

ue written IiO that the value of a Itrillg in the !;ulguge i. iu translAtion into the taq;ct

language.

The following 'Cction gives. fonna.! dC5Cription of aUributc grammars, and is followoo

t:-y an inrormal description or th~jr semantics using an e!umple.

2.1 Definition and notation

An AG is d~nned as a a.tuple ([I(as 8°1, (DJL 881, (Vel 871):

AG = (G,Attr,VaI,Eval,Cond)

• G is a context-free gramma.r (which describes tile Iynlax of the IAngllage); G =

(N,T,P,Z) where N il the let of non·terminalaymbola in G, T is the! set of terminal

symbols in G. P is the set of productions in G, and ZeN is the start symbol. Each

production pt"P is written a.s:

where XieN and o;£f" for i =O, •••• n,..

• AUr is tbe set of attributes. Attributes are associaied with nonterminal symbol. of

G. ie., there is a mappinl; N --> 2....Ur which &lIsociates with each nonlerminal XcN

a set ofattributea (denoted Attrx). Altrx Is partitioned into two disjoint sets, Inhx

and SynX (the inherjled and synthesi:ed attributes of X, respectively). Note thal

VXcN, Attrx = InhxuSynx,

AUr = UX.H(SynX u Inhx).

In a I;iven production, an attribute II associated wit••ymbol Xj is called an atlrihte

o«utTCnl:e aDd is denoted Xj.a. The liet of all attribute occurrences in a. production

pcP is

• Val is the set of all attribule values.

• Eva! is tI,e set of .semantic rolc. in AG. Semantic rules ate auociated with produc

tions. A set 0(rules usociated with production pcP is denotcd Eval,. Each semantic

rule in Eval, defines the value of an attribule occurrence in p lUI a function of zero

or more atlribute occurrences in p. If rcEval, is a semantic rule associated with the

production p then r is of the form:

o :5 ij :5 n, for I :5 j $ k, 0 :5 i :5 n,. and each X'J.GjcAUr,. For c;u:h P<p.

Evallpccifies exactly one semantic rule for each Iynthesized allribute of Xo ud one

rule for each inherited attribute of X; for I :5 i :5 n, which enlures that the value

associated with each attribute is uniquely determined in any context.

With any string in the language L{G) there is an ulOciated derivation trC(!. Let ~

be a string in L(G) and let [{x be a node in Its ulOciated derivation tree which is

associa.ted with nontcrminal XcN. An llUribulc ilUlllna! /(x.n il associated with

each attributeacAttrx •

• Cond is a set of .eman/ic condition. associated with prOiluctions pcP. A SC/ll;\lltlt

condition associated with a production PCp. denoted Cond,. is a boolun eX!Hegioll

and has the following form:

where 0 $ ij $ n" I :5 j :5 1:. and each X;,.lljcAllr,. Semantic conditions are

essentially condition. that must be satisfied by attribute values. A string 4C1.(G) il

a string of the language L(AG) if and only if for all pcP the values of the attribute

instance. associaled with mch applica.tion of p in the derivation of , latisfy the

condition Cond,. The importance of semantic conditions lies in their ability to

formally specify non-context-free aspects of a language. since strings in I.(AG) arc

strings in L(G) which obey certain ('Onlul,en,iliue constraints.

We have seen that for a given Iltcxluclion pcP the semantic rules In Eval, denne lhe

values or each attribute occurrence In Attr, in terms or other atlributeoccurretlccs in

AUr,. This gives rise 10 the notion of dependcncie8 between attribute occurrences. The

foal! (or direcl) dependency n:/alion D, defines the relation of local dependencies between

aUributcoccurrcnccsin p:

The local dependency gmph of production p is the graph of D,,:

Suppose V is a derivation tree for a string in G. The compound dependency graph R.rt:'D) is

the graph over the alttibuteillstances in 1) which can be conslructed by 'pasting together'

the graphs flDp according to the applications of productions p in the derivation of the

dring.

An attribute grammar is wellformedor non·circulatifand only if for every derivation

tree V, R,,('D) is aCllclic «DJL 88]).

An attributc coo/unlot for an .A9=(G,Attr,VaI,Eval,Cond) is a program which, given

any derivation tree 'D of a string in L(G) as input, computes th values of all the attribute

instances in 'D. An cvaluator gcncrulorconstructs (if possible) an evaluator for an attributc

grammar given as input. Tltat is, il is the job of an evaluator generator to determine a

feasible cLonllltllion order for the attribute instances of any derivalion trll<! 'D.

An evaluation order for the attribute instances in each derivation tree associated with

an AG exists if and only if the AG is non·circular IDJL BB}. The problem of determining

whether of not an AG is non-circular has been shown to be an exponentially hard problem,

and consequently evaluator generators which construct evaluator generators for any welt

formed AG arc quite inefficient {Kas B2/. There are a number of special classes of AGs

whose noncircular property is verifiable in polynomial time. The most notable of these

(for our purposes) is the clan of ordered aUribule gmmmar" (GAGs) which is the class of

AGs accepled by the GAG sys~em (discussed in tIle following chapter).

Attribute grammars can be used to formally specify a mapping from a source language

to a target language. Provided the target language is sufficiently well dellned, an AG used

in this capacity may be said to formally specify the semantics of the source language. I The

general idea behind such an AG is to associate with the slart symbol Z of the CF grammar

a synthesized attribute(s) which generates a target language program equivalent to a

program in the source language. Evaluator generators, in practice, arc compiler/trMslator

generators; attribute evaluators are translators which, given a parse tree for allY well

(ormed program in the source language, generates target language code by evaluating tlte

attribute instances in the tree.

The Fortran·?7 to Modula·2 translator is described by an AG, which can he further

processed by the GAG attribute evaluator generator to construct the transl1\tor.

2.2 An example

In this section, a fragment of an attribute grammar for the Fortran·77 PARAMETER

statement is presented. The PARAMETER statement assoriates symbolic names with

constant values in Fortran-?7 programs. The producUon rules and their associated se

mantic rules and conditions arc given below using AI.ADIN notation. AI,ADIN is all

attribute grammar dellnition language which is the input language of the GAG system

([Kas 87]). Lines beginning with the keyword RULE contain context frC(! production rult.'S in

which terminal symbols arc enclosed within apostrophes (eg.• 'PARAKETER'). The .~en ..ln·

tic rules a.nd conditions (the latter arc preceded by lhe keyword CONDITION) Mwciated

with a production arc given betwC(!n the keywords STATIC and END.

An occurrence of an altribute attr associated with nOlltermillal symbol X is written

as X.llttr.

RULE 1: param_8tlllt ::- 'PARAKETER' ,(. conllt_defnll ",
STATIC conllt_dClfnll.lnv_in:= paruultlllt.env_in;

param_lltlllt .Inv_out :. const_dafns. anv_out

'Thil formalilm is known u ,...n./oliono/ .~mnnlic. [P.g 81].

10

END:

RULE 2: const_dl!nl ::- o::onBt.defnl ',' conlt_dllfn
STATIC conet_dllflll(2] .ellv_in :- conlt.debe[1] .env_in;

conot_defn.llnv_in :- o::onlt_d.fnl[2] .lInv.out;
cOlllt_dllfnl(l] .ellv_out :- conlt_defn .•nv_out

EIID;

RULE 3: const_d.fnl ::- conBt~defn

STATIC cOIIst_d.fll.env.in :_ cOIIs't_deflls.env.in;
conlt_defnll. env_out : - conlllt_defn. env_out

EIID:

RULE 4: const_defn ::- name '-' uith_conat_expr
STATIC CDNDITIOII undefilled(name.llymbol,conllt_defn.lnv_in);

arith_conlt_expr.env_in :- o::ollst_defn.env_in;
const_defn.env_out

update_env ironment (collllt_dllfn. env_in,
nUle .Iyrllbol,conltant, arith_conlt.expr. code)

END;

In rule 2, const_defns[1] and const.dllfns(2] arc formally the same symbol; the nu·

mericaJ suffixc& enclosed in square brackets are used to distinguish between different oc

currences orille same nonterminal symbol in a rule for specifying attribute occurrences in

the semantic rules.

On the right hand side of each semantic rule is an ollribule ezpressioll, which is made

up of attribute occurrences, constants, and/or function invocations, and wbich specifies

the value to be assodated with the attribute occurrence appearilll; on the len hand side

of the rule.

An a.ttribute of a symbol may be thought of as a variable which assotiates with the

symbol an aspect orit. mecHling. For instance, tlieatttibutcs env_inand env.out am used

to reprcscr,t information about thc environment ora. program. Intuitively, the environment

consists of a dcscription of named entities in a program. The instances of env_in and

env.out at a node labeled with symbol param.stlllt represent the environment in"ivhich

the parameler statement represented by the subtree rooted at that node occurs; env.in

11

represents the environment prior toencOllntering the state:ment,1l'hile eD,,_out representi

the environment afltr the statement has been encountettd (ie., the Utili environment in

which oonst;ln15 defined in Ihe dalement are described).

The attribute code of nonterminal arith.conat_ezpr represents the code lo be u~

for the constant expression In the corresponding constant definition in the t:l'let laagultge

code. Theattribute s,.bol mthe nontermin.al n... might be the indu to tlJr.symboJ ,.,hle

entry containing a description of the token associated with nUle in the sour« program'.

To complete theexample,the domains (ie., the sets ofpOtlsible valueII) of the attributes

should be described. The following (incomplete) type description wrilten in AI.ADlN

defines the type endronDltnt which is the domain of eny.in and .ny.out:

TYPE envirorment: LIStOF definition;
TYPE de1ini'tion : UHIDN(conllt.defn, var_defu, •••);
TYPE conllt_defn : STl\uct(ident: 5YMB,

code : STRIKC);

lIere thedomaln endroruslnt is described as a list of ddinitions. Tbe domain definition

is described using Ihe ALADIN discriminated union type, that is, a value in the domain

definition can be a value in the domain conat.defn, or 9ar.d.fo, etc. Tbr. domain

coolt_defo is :II. domain 01 pairs, the lint element of which is a symbol and the second

dement of1l'hicb iI ••tring (SYJn'I and STRlJC are built·in ALADIN types for symbol and

.tring values respectively).

The a.tlribute lyabol woeiated with symbol nail. i, of type SYMB, while attriblJle

code associated witb attrihte arhh.const_upr i. of type STRING.

An (I!1ribl.lted ptJrJe t~t(APT)i. a derivation tree in which nodes labeled with nonter·

minal symbols XeN conta.in field' corresponding to the aUributca in Attrx. F.ach of these

fields correspond, to an il.uribute instance. An APT for the PARAMETER statement

PARAMETER (X. 5.2. Y • -43.2)

'A more l;Clmplde enmpk would iwclude attribute. fOf the type Dr the arit~melic ul"ion, the
Iypc!orlheumed cOllllul (w~ich wOll\d b:included i. I~e .,."iIDan.nl),and __y ty.....pecificalion hy
IMPLlCIT.lalr:mnt.ollype.lal"me.ta Ihal m&J " preceded the PARAMETt:R .tdement.

12

is shown in figure 1. Attribute instances are denoted by the attribute names appearing

immediately below the nodes (the values associated with them are not indicated).

param..stmt

I
const_defns

" n

const.defns const.defn

.1
const-defn

r •

arith.const.cxpr

orrnbol

5.2

-----------name aritiL.const.expr
.ymbol envJn code

·43.2

Figu~ 1. An APT for a Forlron PARAMETER slGtemenl

Consider the nodes labeled ~''*', and r 3 in the APT. The semantic rule

specifics that the instances of Qnv.in at q, <Uld 4> will have the same value. The se·

mantic rule for const.dQfn.env.out associated with production 01. indicates that the

vallie of the occurrence of 8n".out at 41 will be the result of evaluating tILe invocation of

JUpper CaR Gre-ck leuen have no.emantia. in the Rl'relented tRe, and Ire provided IOlely for RrcRn«l
in Ihe le~l.

13

updlu_endronaent with arpmenls •.Iny_in, T.lrabol, Conltlllt, ~nd ••codl. The

function (which would be defintd clsewheTt in tbe AG deKription) ~turns a new environ·

ment in which T .lyGol (in this caR, the symbOl I) is defined as a constant usociatw

with the code derivtd from the arithmetic exprcuion (eg., ·S.2'). The afZument coniUM

is a (Uler defined) «Jlu COMant identifier whkh is lupplitd ... arsument to sigllAlthe

function that the new entity is a co....tant.

T"'e condition in rule 4 elTedively stipulAtes that only previously undefined symbols

may be defined in a given constant definition (a violation of this condition indicates that

the lOurce program is invalid). The function undefined is boolean typed, and mUlt be

defined elsewhere in the AG spedfication. Forexample, the constant definition represented

by the subtree rooted at Co is only valid ir T .•ymbol (the symbol X) is not defined III Lhe

environment preceding its definition (t.anv_in).

Recall Ihat attributes auociated with a given nonterminal symbol arc c1a.uilic.l lUI

being either synthesitcd or inherited. In figure I, inherited attribute instancC!S are uellokod

on the left hand side or their usoc.iatcd node while synthesized atlribute instances "1'JICar

on the right. Intuitively, inheritl!d attributes are used 10 pass information doulII the

tree lowards the leaves, while syntheslud aUributes propaga.te inrormation up the trC'C.'

towards the root. Tbe attribute en"_in in the t'Xample is an inherited attribute of the

symbols pUUI_Iblt, c:onlt.d.fn., conlt_d.fn and arith_c::onsL.zpr while any_out

is a synthesized attribute or tbe same symbols. c:od. and I,mbol are synthl!Sizl!d attribullS

or arith..conlt.expr and n..., fCspectively. Note that the leu.,)ntic mll!S associated with

a given production spcc.ify a value ror each synthesized altribute or the symbol on the Icrt

hand side of the production and for each inherited attribute of eOl.ch nopterrninaI symhal

appearing on its right hand side

Consider again the node 4l. TIH~ !Jroduction applied at hs p:l.rent is Ilroduction 3. The

value of env~in at 41 is obtained (inherited) rrom its parent; the semantic rule defining

its value is associated with production 3. The value or .nv_out al 41 is exprc8SCf1 as

a function of attribute values or its children, and the semantic rule delilling ils value is

..

3.lIsodated with produdion 4 (tIle production applied at .). That is, the node inherits

an environment (via tlnv_in), it Slintheti:es a new environment using information derived

from the subtree of which it is the root, and that new environment is passed back to (ie.,

synthesized by) its ancestors vi6.nY_out.

Now consider the node labeled with n in ligure 1. The production applied at the parent

of n is production 2. In this case, the environment inherited by n is the environment

synthesized by its sibling A (which inc1ude!l the definition of X).

Notice how values of .nv_in work their way down the tree, while valuC8 of tlnv_out

generally work their way up the tree. In this example it is not difficult to see that a

single pass· (a kind of depth.first traversal) over the tree could be employed to evaluate

il.ll attribute instances. Had attribute Instances at the internal nodes of the tree been

(perhaps indire<:tly) defined in terms of the instance of env~out of the root, then a second

pass would be required. In fad, a desirable feature of AGs lies in the case with which

such 'multi.pass' translation strategies can be spedlied.

lYhelermptU,isumlnanoa_t«bnical,u..,!tere, Aclua.lat,alegia(orall,ibule('llalualion(eg"
pUi oriented, yj,il oriented) employed by e~u.\toll depend on the type of nalullor gen~rator used· lee

IEug 8~J for a dcteription 01 ~vaJustion atr~lcgin.

15

Chapter 3

The GAG system

The GAG system (Generator based on Attribute Grammars) is a translator writing sys·

tern which generates IfallslatoTll for languages defined by attribute grammars ([Kas 82},

[Ka2 87], [Kas 87], and [Hut 871 provide complete description, oUld (DJL 881 a brief descrip.

tionofGAG). The input to thc system is an AG written in ALADIN. The AG must be an

ordered attribute grammar (OAG). The output from the system is a translator written in

Pascal, in whith is embedded a user supplied scanner, a parser generated by PGS (Parser

Generating Sysl.cm ({Oro 86]), and (optionally) some user supplied Pascal code.

3.1 ALADIN

ALADIN (A Language for Attributed DcllNitions) is a strongly typed language. The

types or all attributes and the symbols with which they are associated must be declared.

Th~ user may optionally specify whether an attribute is synthesized or inherited with

respect to the symbols with which it is associated. If an attribute's class is specified, GAG

requires that the class derived from th!! semantic rules agree with the declared class.

The predefined types in ALADIN are INT (int<'gcr values), BOOL (Ixlolcan values), CHAR

(character values), STRING (sequences of CHAR), and SYMB (terminal symbols encoded in

a symbol table). The u~r may define cnllmcrat.cd types (sirnil;u to those in PilliCal),

16

lubrange lypcs, and Itructured types. The Itructurcd types are RtS, structures (inYariant

record typt!ll), discriminated union type, ud lisls (wh06e dement. are of tixed • though

possibly structured - type). A few functions are provided for lilt manipulation (eg., HEAD,

TAIL, £LDI-II.LIST, etc.).

AUribute cxpn:uionl (whkh appeu in semantic rules &lid conditions) must obey AI,..

ADiN'. type rules &lid must match the type of the attribute OCCUfT'enccs they define when

uBed in semllntic rules. A number of (':>erators an! pl'O\Iided for performing integer arith·

metic, set operations. boolean operations, and list concatenation. No string operators are

provided. With the exception of lhe set members',ip Operl\.tor, all binary operators require

identically typed operands.

Attribute cxprtllSions may contain function invocations. ALADIN allows the user to

define functions (in ALADIN) which can be recursive. Such functions arc pu~ functions;

they do not ha.ve lide effectl. The concept of variables and control structures i5 absent

from the language, 10 virtually all computations whirh might normally be implemtnted

using iteration must be described recursivdy (even thou§h GAG may implement recursive

ALADIN (unctions using iteration in the Pascal code). A (uility (or defining utunol

functions (written in PlICal) is also provided. Exter1lilJ functions provide the only mean.

of generating side effecls (Iuch aa output) and directly accessing the truddors' data.

structures (such as the Iymbo! table). A common approach for generating output at

translation time i. to use booleu typed extunal functions in semaatic condition. whic.h

have the aide effect of producing output.

While ALADIN type rules are strict, values of lOme types may be coerced to \alues of

other types using type conversion functions (such u when two wucssharc the same bue

type). For instance, to add an element to a list, the clement must be explicitly coerced

to the list LYIK! beforoU.t concatenation can be specified. Also provided are type testing

functions which are usdul when discriminated union types are used.

Atlribute exprcssions may be 'structun!d'. ALADtN provides a elSE expression (se

lecllon Is df)ne on the bul. of the lype oC the case selector, not its value), a LETexprcssion

17

(as in LISP), and an IF tHEJI ELSE 6:prcssion. Structured expfMSions can be ne5100 to

arbitrary depth.

Productions are lIfritten in a restricted EnNF form, in which alternation is forbidden

and neither repetitive not optional clauses can be nested. Semantic rules are either 'normal

rules' (sneb as lhose in the example of the previous chapter), semantic conditions, or

transfer rules. Semantic condition. may optionally include a me.sage which;' output U

the condition fail. at translation time. Transfer rulel are abbreviations of one or more

copy rule.. A copy rule is a rule of the form X.tlj:=Y.oJ in w!lith an atlribute value is

hansrered witho\l~ modification from one attrihute instance to another. Tile scmanlic

rules associated with production 3 in the example of the prceeding chapler arc or this

type and could have b«ln expressed using the following ALADIN trander rule:

ALADtN also allow. non-lOCllI attribute occurrences to be referenced in semantic ex·

pressions. So-called ouln oUribufu (attributes of symbols from which the left hand side

of a production are derived) can be referenced using the IIfCLUDINC clause, .while inner

oltribulu (attributes of symbols derived from symbols on the right hand side or a produc·

tion) can be referenced usint the COXSTITUEXTS clause.

3.2 GAG processing

The proceS5ingoC ALADIN input is done in a numberolpa&5eJ,someorwltich are optional.

These are summuil:oo below and appear in the order in which they are executed by GAG.

Syntaetic and semantic analy.is. In the first pus, the ALADIN text is scanned and

checked for syntactic correctness. Semantic checking is primarily concerned with verifying

that the ALADIN type rules are obeyed in the semantic rules, conditions, and AI,ADlN

functions.

18

Expansion. In this pUll, transfer rulcs arc rewritwn as asctofequivalent semantic rules.

In addi~ion, attributes and seman~ic rules arc introduced to perrorm the transport of non

local (inner and outer) attribute values which appear in IMCLUDIHG lUld COMSTITUERTS

clauses.

Chain elimination. APTs are represented by the translator using records with pointers,

and some optimization is performed to reduce the size of trees generated at translation

time. Among them arc tho elimination of chain rules and 'u~eless' terminal symbols from

the AG. Chain rules arc those in which only a ~ingle nonterminal symbol (along with

zero or morc terminal symbols) Rppears on the right hand side of a production and whow

Msocht.ted semantic rule5 a.re transfer rules only (an example is rule 3 of the example in

the pre..;ous chapter). The elimination of chain rules performed by this pass effects only

the tree construction routines genuated by GAG (and not the PGS generated patller).

Dependency analysis. The next pass is concerned with the analysis of attribute de

pl:!ndencies in the grammlLr. GAG accepts only ordered attribute grammars. OAGs are

described formally in !.Kas SOl and only a few of their propertiM arc given here.

OAGs constitute a large subcla. or non·circular AGs. An AG is an OAG if "for

each symbol a partial order over the associateu aUributes can be given, sueh that in any

eontext of the symbol t.he attributes are evaluable in an order which includes that partial

order" ([Kas SO]). OAGs form a. suffidelltly large class for specifieation of programming

la.nguagell. The complexity of the problem of determining whether an AG is a.n OAG is

polynomial in the size of the AG.

During t.his pa.liS a complete analysis of attribul.c dependencies bMed on the con·

struction of dependency graphs is ptrformed, and 'visit sequenccs' based on the ordering

property of the AG are generated. Visit sequences ILre trc<l-walking rules which control

attribute evaluation in the generated translator. The algorithm for the generation of visit

sequences is presented in [Kas 80J. GAG allows the user to specify t.hat a1wrnative visit

strategies (eg.,p!lS8 oriented) be employed.

19

Optimization. In this pass the system determines whether some optimization of the

storage of attribute VMUeS can be performed. The 'life-time' of attributes is examined to

determine whether their values can be dored in global variables or global stacks. Only

attributes which cannot be stored in this manner arc actually stored in the fields of APT

nodes.

Translation of visit sequences. In this pass, a space optimized representation of tile

visit sequences generated by the analysis of dependencies pass is generated. Visit sequences

are stored in a tablll in the genllratcd translator at translation time, and the output fmm

this pass is a file which is used to initialize the table. Identical visit sequences mlty he

stored in the same table entry.

Syntax translation. This pass creates a description of the CF grammar in the AG in

a form suitable for processing by PGS, in which connection points arc specified providing

the interface between the generated parser and the translator. A file is also output which

is read by the generated compiler to initialize its lexical analyzer.

Tranalation of definitions and actions. This pass is responsible for generating Pascal

code which implements global definitions, attribute evaluation algorithms, and supporling

procedures for the translator.

Protocol generation. This pass produces a. listing of tile ALADIN text in whi~h all

error messages, warnings, and informationals arc merged. The user may also specify

that additional information be provided by the various passes including: a listing of at

tribute dependencies, a listing of eliminated chain rules, a cross-reference listing, a li~ting

of generated visit. sequences, and a listing of information about the result of attribute

optimization.

20

3.3 Structure of the generated translator

A GAG-generated translator is comprised of five components: a scanner, parser, tree

constructor, attribute evaluator, and external definitions. We describe these briefly here.

The scanner is supplied by the user. GAG provides a. sample scanner (capable of

stanning any Pascal token) which the user must modify to scan the tokens of the source

language. Additional types of tokens can be introduced, although a good deal of care must

be taken when doing so all the interface between stan ncr and parser is not particularly

obvious.

The parser is constructed (after the GAG passes described in the previous section) by

pes from the context free rules extracted from the ALADIN text by GAG. PGS is an

LALR(l) parser generator, and thllinput grammar mllst have the LALR(l) property.

P<Uical procedures for trw construction are generated by GAG. In the input supplied

10 POS, the codo for the invocation of node·building procedures is associated with the

context free rules.

The external definitions arc user defined Puca! definitions. In addition to ALADIN

externals, the user can specify that definitions and declarations of constants, types, vari

ables, external files, functions, and procedures be defined globally in the GAG constructed

translator. Moreover, the user can supply Pascal statements to be executed either prior

t.o or after execution of the GAG generated statements in the body of the main program.

These components, along with the TOntines and tables for attribute evaluation, are

merged together by a program preprocessor (PROPP) inlo a single Pascal program. The

input tothe translator consists of four files which contain: the source code to be translated,

t.he visit sequences, symbol table values, and a parser table (generated by PGS),

21

Chapter 4

A comparison of Fortran-77 with

Modula-2

In \hls chapter some of the important differences between For~ran and Modula·Z arc

discussed. Other differences arc adur<!5scd in subsoqucnt chapters. Attention here is

restricted to those features of the languages which have a direct bearing on the problem

of translating Fortran·77 into Modula-2.

4.1 Program structures

4.1.1 Modules in Modula-2

In Modula-2, the primary program structure is the mOflutel. In general, a Modula-2jlto

gram consists of a mQin program nllHMe and a number of subsidiary modules. Modules

arc syntactically similar to paramctctlCJs procedure definitions in that they contain defi

nitions (of constants, types, procedures, functions, etc.), declarations (of variables, arrays,

etc.), and bodies (called module bodies) consisting of execulable stalemenb. A desirable

feature of module structured langllagl!!l is the ability to group together related ohjects.

'A detailed d<l$Criptlon of tile module con~pt Is beyond tile KOpe or thlt report, and the interule<!
ruder is referred to (Gte uj for a ,horl but rc.dable deK,iption or Ihe concept.

22

For example, one subsidiary module might be used to contain procedures and variables

for performing input and output, while another might contain procedures for performing

operations on strings (unlike Fortran, Modula-2 dOell not provide built-in stringoperatof6).

A key semantic difference between modules and procedures lies in the visibility of

their locally declared objects. An object declared in a module can be made visible and

accCSllible outside of the module if the module erports that object. Conversely, objects

declared outside a module can be made visible within that module if the module imports

that object (which must be exported by some module).

Another key difference concerns the erist!.'nccoflocally declared objects. While objects

declared in a procedure only exist during the execution of the procedure, objects declared

in a module exist throughout execution of the program, whether or not the module con

hining their declaration is the main program module.

While modules (like procedures) may be nested, they can aJso be separoteJy compiled

and stored in compiled form. Once a main program is compiled, it is linked with the pre

compiled modules from which it imports objects. When a separately compiled module is

imported in more than one place, Modula-2 delines that only one in!tance of the module

exists at a time. Separately compiled modules consist of two compilalion unils: a definition

module and an implementation module.

The definition module contains declarations of the module's exported objects, such as

constants, types, variables, and procedures2 • Implementation modules contain the code

that implements the objeds defined in the definition module (when necessary). Imple

mentation modules may additionally contain locally declared objecta which aid in that im

plementation, but such objects cannot be exported. Implementation modules aJso contain

module bodiell, and thl! statements contained tllerein are executed prior to the execution

of the main program (module bodies arc used to assign initial values to objects declared

in the modules; the main program module body is the body of the main program).

'Procedure t1r,dll.ation.;n de6nition modillc. consi.! DIll I'r~Ufe helde. only; theif complete ddi_
n;l;onall.eprovidcdinhnplcmcnlationmodul....

23

4.1.2 Fortran program units

An tueutable Fortran program is made up of one or more program units: a main Ilrogml1l

unit, and zero or more subprogmm unils which arc either Illbroutinu, ezlcmal JunctiOIlS, or

block data 8ubprogram.s. Subroutines and external functions arc called ulemol procedurrs:

an external procedure may be invoked from the main progritm unit and other external

procedures.

In general, lIubroutines and external functions are similar to mboxModula·2's proce·

dures and functions, respectively. Only block data subprograms have no direct counterpart

in Modula-2, allhough their role in an ex~utable Fortran program can be simulated In

Modula-2 by a module which declares, exports, and (if sp~ified) gives initial valuCll to

objects corresponding to common block structures in the Fortran program.

The translation of Fortran to mboxModula-2 uses a distinct module for eadl program

unit in an executable FlJrtran program. The mAin program unit is translated into the main

program module, and external procedures arc translated into distinct separately conilliled

modules. A subroutine, for instance, would be converted into a module which defines

and exports the proCC'dure corresponding to the subroutine. H, moreover, that subroutine

contained any invocations of other external proc«iures, then the module would import

the definitions of the called procedures from the modules containing their delinition!l.

In addition to the modules corresponding to program units of a given Fortran progr;un,

a. few modul('$ arc constructed which provide tool9 for performing complex arithmclic,

exponentiation, input and output, and storage for common blocks.

It should bel not«i that it would be possible to convert an executable Fortran program

into a Modula·2 program consi~ting of a single module (in which modules are nested).

Modula·2's facility of lepamte rompilntion of modulC!l docs, however, bear a rescmb!nncc

to independent compilation 01' Fortran program units as it b; typically implemclItcd3.

3Separll.te compilation in Mcdnla.~ and independent ~ompilation in Forlran ale nol howe.er identical!
((Wir S3], pg. 80). In ordu to compile,. module which imperii ob.iocb frem ao,,'he, (Iep"atoly compilrd)
mcdole, the Modula.2 compiler ne<:<ll" ducripli<ln of the imported obje<:tIi - lhi. dClCriplioo i. pro.id..l
the definition module oftbe import.cd modulee).

24

The decision to break the target program down into separately compiled modules which

have a more or less one· to-one correspondence with the program units constituting the

Fortran program was made to exploit this similarity and keep the modules of the translated

programs as independent as possible.

4.2 Parameter passing mechanisms

In Fortran, arguments to both function and subroutine subprograms are passed usinr; a

mixture of pass·by. reference and pass-by.value. In the terminology of the Fortran stan

dard, dummy arguments arc associaled with actual arguments during subprogram execu

tion. The natnre of this association for a particular actual argument/dummy argument

pair depends on whether the actual argument has an I-oolue ((Ten 81)) or not. If the

al'lual arguml!nt has an I-value (such as when the actual argument is the name of a vari

able, array, or array dement) pass by reference is used. When the adual argument is

an expression which does not have an I-value. the corresponding dummy argument be

comes associated with the r-value of the expression supplied as actual argument. Unlike a

dummy argument which has become associated with an I-value, a dummy argument which

becomes associated with an r-value may not be defined or redefined.

Modula·2 supports two kinds of formal parameters: lI(lriable and value parameters.

Each corresponds to a different parameter pusing mechanism. the former to pass·by

reference, and the latter to pass·by-value. The formal parameter list of a Modula.-2 pro

ced ure explicitly indicates whether each parameter is a variable or value parameter4 •

An actual parameter corresponding to a formal variable parameter must have an 1

value. An actual parameter corresponding to a formal value parameter must have an r

value, and the formal parameter is considered as a local variable in the subprogram which

Is initialized to the r-value supplied as argument in the invocation. Once this initializatIon

'Fo.m" plramcl~' li~,", iR ModulI'';! lIe 'YRt&CticJJly simila. to t.ose or Puc&!, if a ro,mtl pa,amete.
decll'ation i. pf«eded by tbe keywo.d VAR tb~1I it ill aiabl~ .,.••m~kr. it~ .bKnce indicat.,. tb.t
tb~ ro,ma] p••ametu i. I ~JJue p.r.mcl.er.

25

bu been performed, there ~ no further associiltion betwt'ell. actual and formal parameter,

and the value of the formal parameter may be f~!1 modified within the lubprogram

without any effect on the actual puamcter. tn th~ IC!Ilse, there is no countt!fpart in

Fortran to value parameters in Modulil-2.

'nIUS in Modula-2, the parameter passing mechanism used for a pmicolu parame1er

il determined not by the nature of the actual parametu used in its inv~tion (ILl in

Fortran) but by the declaration of the formal parameter. Moreover, and perhaps marC!

ominously, while in Modula.-2 the parameter pa.ssing mechanilm il fl%cd for a given formal

parameter, in For1ran the argument passing mechanism used for a. given dummy argument

may differ from one invocation to the next!

Clearly, then, one cannot hope to precisely preserve the relaliou between actual Rnd

dummy argumentl when traD!lating between the two lanluages. The Itrategy employed in

the translator's treatment of argument pilSsing isdiscu5$ed in section 5.6. The general idea.

is to pass argun:'!.nts uniformly by reference. When an actual arzument is an expression,

an auxiliary variable is introduced to store the value of the expression immcdiately prior

to invocation, and tllat variable is used. as ac1u;u argument In place of Ihe cxprC55ion.

This approat:h hili the addition;u adnntage or permitting subprosranls 10 be translated

independently.

4.3 Passing arrays as argument

Another area of CODcern regarding tbe passing of argumenU involves the corra;pondencc

of the types of actual and dummy arguments. In bolh Fortran and Modula-2, 1he type

and number of actual and dummy arguments must in ~ome sense mulch in the invocation

and definiUon of a subprogram. But the Sense in which array arguments must match is

dramatically different in the 1wo lallguages.

Modula.·2 is rather slrict, generally requiring that the types matdl tzacl{y, Ilnd thRt

26

the type identifier used in the declaration of both have the exact same defining occurrences

(this is known as name equivalence). In Fortran if an actual argument is an ana)' name,

then the number and size of the dimensions of the actual argument array may differ from

those specified in the declaration of the corresponding dummy argument array, provided

that the size of the latter does not exceed that of the former.

Another discrepancy lies in the treatment of array elements as actual arguments. In

Fortran, when an array element is used as actual argument the corresponding dummy

argument can be either the same type as the atray element or an array with the same

clement type as the actual argument array (the first element of which becomes associated

with the array element supplioo in the invocation). The latter possibility effectively allows

parIs of arrays to be passed to subprograms. In Modula-2, if an actual argument is an

array clement, the corresponding formal parameler must be of the same type as the array

clement supplied as argllment. Consequently, only entire arrays or single array elements

may be passed to Modula-2 procedures.

The only flexibility provided by Modula·2 in the passing of arrays is the open alTaY

parameter. Open array parameters are array formal parameters whose element type is

declared but whose index type is not specified. Actual parameters corresponding to open

array panUlleters can be any array of the same element type. The index type of an

open array parameter is a subrange of CARDINAL6 whose lower bound is zero. The

up~r bound depends on the length of the actual argument array. Modula-2 provides the

!Itandard function II1GH which returns the upper bound of an open array parameter when

supplied with its name as argument.

An example of the use of an open array parameter is the following:

PROCEDURE ZeroElementR (VAR A: ARRAY OF UTEGER) : IHTEGER:
(. assigna value zero to each elellent in A .)
VAR i: INTEGER:
BEGIN

'The only ueeplionllo Ihi. ruleO«IIr in pua;nl proeed",,," (a procedure'. type i.determined implicitly
in itldefinition) &nd optno'''''Upcrrtrmcle".

"Tbe domain or CARDINAL type in Modlll••2 is .. set of nOl\ne,.tiye inte,er••

27

FOR i :- 0 TO HICIl(A) 00
.t[i] :- 0

EllD,
RETURII

ElO Z.roEl-..nts;

Any array of integers, regardless of ill index type, can be lupplied as Ur;llmcn1 10 the

above proc:edllre1 • Tile followinr;:u1l valid invocationl of the proudure:

(. d..duations .)
VAIl ur1 : ARRAY [-99 •• 100] OF INTEGER;

arr2 : AMAY [7 •• 8] OF T~TSCER:

ur3 : ARRAY [1 •• 10, 1 •• 10] OF INlEGER;

BEGIN
ZeroElelllenta(arrl) ;
ZeroElelllenta(arr2) ;
ZeroElelllenta(arr3(5]) ;

Notice that when Z.roEhlllenta il brinr; executed with ur1 all argument the forll1il1

parameter 1 is implicitly of the following type:

.uuu.y (0 •. 200] OF INTEGER

while in the third invoc.ation, the type of A is:

.uuu.y (0 •. 9] OF IIfTEGER

Thus, while an open array puameler permiuuraYI of varyinr; size to be luppi,..od u

actuaJ. argument, it dOl!ll not allow the size of a formaJ. parameter array to differ from lhat

of the actual argument array durinr; a particular invocation of the procedure. That ii, an

open uray parameter is always considered to have the exact lame numoor of c1emellts lUI

the actual argument': this e!lfectively prevents Modul.. 2 programs from pa.~sing I'arll of

arrays to procedures. Moreover, open array parameters always haVe! tlte same nllmoor of

dimensions as the actual argument9•

'Note that.» a vafiallle paran~ter - open Inay p&famelen en dlO be v&lue P&f&met"....
"This also diatinluislleaopu lUI)' plf&mden ftom ll</jud<lble"'w' (IANS 78]. PI. !to7) i. ~·ortru.

'Thi, dis1insailhes <lpen ana)' p&1&melen from ""uffl~1I ,i« lJI"rw,.in rOll'.. (fANS 78]. Pl- 5-1).

28

These con~iderations highlight tile more liberal concept of storage association found in

Fortran with which ~tructurally distinct entities can share contiguous storage locations.

While in Modula-2 structurally different entities can share the same memory location(s)

only through the use of va.riant record strllctures10, in Fortran such a.ssodation can be

spedfied In the passing of arrays to subprograms, EQUIVALENCE statements, and mul·

tiple definitions of common blocks (see following dapter).

4.4 Passing procedures as argument

Doth Fortran and Modula-2 support passing procedures and functions as argument. In

Fortran, a name which appears in an EXTERNAL statement represents an external proce

dure and may be passed as argument provided the corresponding dummy argument name

is also declared to be EXTERNAL in the invoked subprogram. That dummy argurnent

can then be invoked provided the invocation is consistent with the definition of the actual

argument subprogram (ie., the type and number of arguments must match and the con

lext of the invocation must be consistent wilh tile type - function or subroutine· of the

represented subprogram). Moreover, such a dummy argument may be passed as argument

tootllcrsubprograms.

In Modula-2, procedures can appear as actual arguments provided that the scope of the

procedure name includes the place of invocation (the scope of a procedure name imporled

by a module includes the whole module unless another entity with the same name is

declared in a procedure or module nested within ill. A formal parameter which is used to

rllpresent a procedure must be declared with a proclldure type.

Modula·2 provides a means of defining procedure types in which thl'! type of parameters

is described (including the parameter passing mechanism· by value or by reference) along

with,ln the case of function procedures, the type of the value returned. A procedure type

JONolelh.llh.....oci.tionofdilfcrnnllydimen.ionNiltr.y.lnfOtlro.nC&nnol,ingener.l, bee.prene<!
in Modal .._2 toldy Ihrough th.. UIC! or nrio.nl ",co..!t: Ihi. is • COMequenCe or Ih.. dilf,,",nl Ilorage
alloc.lion ..,homCl u8t:d by lh.. two lugug.,. £Or multidimension.l Itr.y..

29

IntT08001, the domain of which is the set of function procedures which hal'c a. ~il1glc

(value) parameter of type INTEGER and whicll return a value of type BOOWN, is defined

as follows:

TYPE IntToBool" PROCEDURE (IHTEGER) : BOOLEAIf:

An example of a function which is implicifly of type IntToBool is the following:

PROCEDURE LIil88_thatt.fivlil (n:INTEGER) : BOOLEAN:
(. returns true iff n 11 le81 than S .)
BEGIH

RE'IURR n (5
END Less_than_five;

Lsss_than_five (and any other boolean function whkh has a single w.lue parameter or

type integer) can be supplied as argument to any procedure whkh has a formal parameter

of type IntToBool, such as the following:

PROCEDURE FindFalse {f: IntToBooO; INTEGER;
(. returns the smallest non-negative integer n for which
fen) is false. Doesn't terminate if fen) is never false .)

VAR n:INTEGER;
BEGIK

n :_ 0;
WHILE fen) , 0 DO INC(n) END;
RETURN n

EKD FindFll.lBe;

Note that the formal parameter f could be passed as argument from within FlndFalse to

a procedure having a formal parameter of typo IntToBool.

A program c:ontaining the above definitions c:ould invoke FindFalee with a.rgumcnt

Less_than_five as in:

Some_Int_Var : .. FlndFll.lse(FIl.c:t.lesB.than.c:ube);

4.5 Input and Output

In Fortran, Input and output Is record oriented. Input and output statemenLs accCllS

records on files, and access can be either sequential or direct. Format descriptions or

30

implicit !ofTlu,Uingis used in conjunction with input and oulput statements to specify the

form ;L/ld rcpre5t!ntation of records stored on files.

Fortran provides a number of statements for input and output. The READ, WRITE,

ud PRINT statement.l UUIe tranller of data between main memory and files1
!. A Dumber

of /ilc.pmujtming .t.l.temenLs (BACKSPACE, ENDFlLE, and REWIND) can be u5Cd to

control the posilion of the read/write device connected to a file. Also provided are throe

auzifiary input lUId output statements, the OPEN, CLOSE, and INQUIRE statements,

whkh control the connection betwl!Cn a liIe and an executable program.

Modula·2 provides neither statements nor built·in procedures for performing input

Itnd output. Programmers must either import procedures from library madulell supplied

by a Modula..2 system or wrHe their own. Presently, no standard library of I/O modules

exist, altllOUgh [Wir 851 describes a collection of four J/O modules: lerminnl (for simple

charltCter oriented I/O with the users terminal), InOut (for sequential I/O of integer,

cardinal, boolciUI, charader and string \'a1ues), RealInOut (for I/O of REAL values), and

FileSystllll (for more &eneral and lower·level file handling operations sud! IS opening,

c1osiag, creating, deleting, and ~Ulll. II> files, hi nary flO, and direct accelS to files).

TIc iatlt of a standud I/O libn.ry oC<:C55arily nonden any strategy for the tnJl$lation

of Fortran 1/0 non-standard. Although many Modula·2 systems provide the modules

sug:ested by Wirth, they are nol part of the Modala.-2 lan~uage, iUld systems are not

cOlUtraincd to supply them. TopSpt:ed, for iostance, provides only two modules for I/O:

10 and FIo. 10 is the library of proct'!dures which provide I/O with the standard input

and output devices (ie., the keybovd and screen). FIO provides file handliug and tile

inpnt/output. Files are iCquentiaJ, but a procedure is supplied for setting a file's JlO!iition

which CaD be used to implement direct access to clements of a file.

Modula·2 is not record-oriented. While a single Fortran READ, WRITE, or PRINT

statement specilies tllll transfer of a rc<:ord (which can represent several values, one in each

llTbe READ and WRITE Ita.temut.. can alto be uocd lo t.anarer data between ..,iable. tu chnle ito
,el',..enta.tiorl by ..inl.n inllm'" 611Dtr inolnd of. file durin,; h.n.fer.

31

of its fields) between maln memory and some I/O device, 3. given Modula.-2 I/O procl!lillre

reads or writeli only a single voJue or a particular type. Moreover, Modula.-2 is primarily

stream-oriented. With few exception5, values in input files must be delimited by some

character from a set or separators (in the same vein as list diretled input in Fbrtran).

32

Chapter 5

Strategy of the Translation

5.1 Mapping of Types

In Fortran, values of type INTEGER, REAL, and LOGICAL all occupy one numeric

a/oroge unit in a storage sequence, DOUBLE PRECISION and COMPLEX valucs occupy

two numeric storage units, and a CIIARACTER datum has On<! chaMcler storage unit in

a storage sequence for each character in tile string. This mapping allows any association

(sharing of storage units) of entities of different types to be well defined regardless of

the machine on which Fortran programs are compiled wilh standard conforming compil

ers. Wirth's ~Programmjngin Modula-2" (3rd corrected edition) does not specify such a

mapping; only typical storage conventions are given. In the translation, it is dcsirab\1:! to

preserve this relationship between the storage requirement8 of the \<U"iou8 type&. Since tIle

target environment of the translator is 'IbpSpeed Modula.·2 system ITSD 881, the mapping

of types is go:larod lo that system. In TopSpced Modula-2, the basic unit of storage is an

8-hit byte. The storage requirements for the typ<!s of interest are given below.

• INTEGER 2 bytes

• LONG1NT 4 bytes

• REAL <\ bytes

33

• LONGREAL 8 bytes

• BOOLEAN 1 byte

• CHARt byte

• LONGWORD 4 bytes

REAL values in Fortran are represented as REAL values in Modula-2. For Fortran

INTEGER values to occupy the same amount of storage as REAL values, INTEGER

type in Fortran is translated into LONGINT type in Modula-2 . A basic charac\.cr unit

of storage in a. Fortran program is mapped onto type CHAR in Modula.-2. DOUBI,E

PRECISION values in Fortran are mapped onto LONGREAL values in Modula·2. Other

mappings are described in the following sections.

5.1.1 LOGICAL data

LOGICAL lype in Fortran is mapped onlo BOOLEAN type in Modula-2. 1I0wever,

LOGICAL eutilies1 in Fortran are not translated into BOOLEAN entities in Modula·2

since only olle byte of storage is used to hold boolean values in Modula-2. Consequently,

a straightforward maPFing of LOGICAL entities onto BOOLEAN entitiCll would cause

problems whenever logical and numeric type entities arc associated. Thus, LOGICAl,

entities are translated into entities of TOp·SPEED Modula-2 type LONGWORD (which

has the same storage requirements as REAL and LONGINT). LONGWORD type hll8

properties similar to the standard Modula·2 type WORD. It can be Ilsed to slorll values

of any type (provided some storage requirements arc met).

While the only operation that can be performed on variables of type WOllO and

LONGWORD is assignment of WORD or LONGWORD valUC5, respectively, using type

transfer fundions this restriction can be overcome, and values stored in LONGWORD

lTb~ term enW, il used throughout to refer 10 an)' named objed whi<;h can be typed, lucb yuiabl....
arr.)'s,'unclionl.ndconltantl.

typed enUtiet can be inlerprelt.d as BOOLEAN values thereby perrnittinl\: boolean oper

alions to be performed on them.

For example, II. 'oIuiablc declaration in II. Fortran prosram sum as

LOGICAL FUG. FnUJlO, BI15(IOO)

could be translated into the following:

FLAG: LOHGIIORD;
FOUlfD: LONGWDRD;
BITS: ARRAY [I .. 100) OF LONGliDRD;

In the Modula-2 code, we could interpret the value of the variables above by supplying

them as argument to the type transfer function BOOLEAN. For example, the invoca

tions BOOLEAN(FLAC) aJld BOOLEAM(BITS(33]) return the boolean valuCl corresponding

to the contents of FLAG and BITS{33] respectively. Effl!1:tively this allows us to perform

logical operation. on variablet of type LONGWOR.O. Naturally, care must be taken to

store BOOLEAN values in sum variables consistently. Thi. is achieved by transferring

BOOLEAN values into type LONGWORD before ftoring them; whenever an auignment

i. made to a -logical" variable, the expression is converted to type LONGWOR.O. For

instance, FUG would store the value 1lU.JE after the execution of any of the following

auignments:

FLAG :- LOJlGWORD(TRUE);

nAG :- LOIIGliORD«88 < 108) a (43). -4»:

In order to make the Modula.-2 progra.m more readable, the translator defines the fonowing

type:

TYPE Logical. LOHCWORD;

This m~kes available II. type transfer function called Logical which is equivalent to the

rUllction LONGWOIlD.

Another eXamlJle follows. Suppose a. Fortran program contains the rollowing state

menu:

35

LOGICAL FOUlO, LIMIT
FOUJID •• FALSE.
LIMIT ••FALSE.
IF Clor. FOOID .m..MOT. LIMIT) THEI

The translation into Modula·2 would be the following:

(. declantiona .)
FOUMD : Logical;
LIMIT : Logical j

(. IItatelientll .)
FOUND :- Logical(FALSE);
LIMIT :- Loglcal(FALSE);
IF NOT BOOLEAH(FOUHO) t NOT BOOLEAN(LIKIT) THEN

5.1.2 COMPLEX data

COMPLEX entities in Fortran are translated into !'«Ord structures with two fields or type

REAL in Modnla·2 (the fint field corresponding to real part of the complex value, lUId

the IlCCOnd com!5ponding to the imaginuy part). The type eo.phz is provided lIy the

translator, and is defined in Modula-2 programs as roilowl:

TYPE Complex - R.EClIRD
%part: REAL;
ipart: R£AL

ElfD;

Complex literals are translated into invocdions or a function ca.lled complex, which

takes two ~al \a1ues as argument and returns a record of type Complex2. Thus, a

Fortran complex literal such a.s (2.443,5.3) is translated into the runction illvocll.tion

cOlllplex(2.443,5.3). A value of any of the other numeric types can be converted to

type complex (if required) by supplying them u argument to the same fUl1dion. Par

'Since the Ippearlnee of the third o:dition Wirth h...t.IC'll thl Modull-'lIYltem. Irc flee 10 .1Iow
runctionlto retulRwalue.ofuyIypr:(IUhouSh l"eIYlltuorMod.l&-2prohibitauliIlSI"e¥.llue,.~u,"cd

by. fU/lclion U I detil'llto.) ((Kin &8J, PI. 127). TopSpeed '-IO<Iul••2 allo"," II.uctu..m Iyl'f'l to ,.,
retu.no:dby fUlctioni.

36

:n~tance, the real and integer values 8.33 and 1003 I:ould be converted by the calls

cOlllplex(8.33,O.0) and c;olllplax(REAL(1003) ,0.0), respc<:tivc1y.

A consequenw of this dedsion is that complex literals may not appear in con~tant

expressions (since neither user defined nor library function~ can appear in constant ex·

pressions in Modula.2) and consequently the translation of complex constants in oon~tant

expressions cannot be handled by the translator.

5.1.3 Character strings

Modula·2 represents strings as array~ wh05e elements arc CIIAR values and whose lower

index bound is zer03 • For example, the implicit type of the string literal 'Bad Day' is:

AMAY [0 •• 6] OF CHAR

The translator uses the same convention for representing character string variables. For

instance, if a program unit contains the following declaration:

CHARACTER NAHE1.l0,NAME2.20

then the corresponding dedaraLions in the Modula·2 code is:

HAMEl: ARRAY [0,,9] OF CHAR;
HAME2: ARRAY [0 .. 19] OF CHAR;

Wllile It may scem more natural to usc 1 as the lower bound (the Fortran convention for

representing strings), the uniformity of string representation resulting from the usc of zero

indexing for string variables ultimately cases the task of implementing string operations

(which are nol pre-defined in Modula-2~). The greatest advantage is in the ease with

which string arguments of varying length can be passed to procedures using open array

parameters. The tradeoff is that indices used in substring expressions and invocations of

some string handling functions need to be offset by one.

3Wbth doCll not make il de~r whelher this il a language ~uiremenL or simply a convention (Kin 88].
• MllIL Modula.2 lyatClnl providc Ilring handling runction libr..rico, which Lypically usumc a. lower

bo,,,,do(lcro(o,.I,j,,susnmentl.

37

5.2 Constants

Integer toIlstanta in fbrtru arc slntadically the samel\l intlltef connants in Mooul:\-2.

The only dilTerence betw~ their treatment is that in Fortran blanks between disils have

no effect on the vilIuc of the constant. This disparity CM be handled during scanning of

Fortran programs, although the current transl:\tor simply assumes that no spaces occur

within numeric COIlstantS.

String conltaIlls in FbrtrlUl. are delimited by apostrophes ('). An apOfltrophe ian be

quoted by having two in luccession. In Modula.2, eitller the double Iluote character (tt)

or the apostrophe charactllr can he used to delimit l\ Itring literal, I'ut the delimiting

character ml\Y not appear In the string. So in the transliLllon, Btriugs arc delimited by

double quote c11aractCrB (wllicb are not in thl" standard FbrHlI.ll·77 character set), and

quoted apostrophes arc replaced by a single apostrophe eharllCter.

There are a few differences betw('(!n real constallts in fbrtran and Modula-2. In

Modnla-2, a rcal constant may not begin with a decimal point. In the translalion, l\

leading zero is prefixed to any Fbrtran real literal starting with a decimal point. Double

precision values in Fortran are bask real constants followed by a uoubk: precision eXjl

nent (eg. 12.50.21). In Modula...2, the representation of LONGREAI, literals yuies from

system to system. In TopSpe<:d, thesyntax of both REAL and LONGREAL literall is the

lame (that is, a REAL literal can be used as either a REAL ora LONGREAL value - its

context determines its interpretation). Such literals can also be llsed in expressions wilh

opcrandsof either type. Double precision literals arc thus simply translated into Modula-2

real literals (the 0'1 arc replaced by E's). Real or double Ilrecision literals in Fortran with

an exponent part need not contain a decimal point while a de<:imal point must be prC!lCnt

in Modula-2 real literals. Consequl"ntly, sudl Fortran con~talltl are Iliodified to contain l\

decimal point before the exponent part.

38

5.3 Expressions

The greatest dilferenctl betwetln expression~ in Fbttran·11 and Modula·2 is that while

the former permits mixed mode arithmetic expressions, the latter does not and values

combined in an expression must be (pairwise) of the same type. Thus, when numeric

values of varying types appear in a Fortran arithmetic expression, type transfer functions

are used to convert operands to the same type. This oonversion is done in acoordance with

the For~ran rules for tile type and interpretation of the results of arithmetic expressions

given in {ANS 781 (Tables 3 and 4). For example, the Fortran exprlJssion A '" M + DP

where Aistype ilEAL, Mis lype INTEGER, and DPis type DOUBLE PRECISION "''Quld

be translated into the Modula·2 expression LOHGREAL(A '" REA.LeH» + DP.

To deal '1~'ith aritlnnlJtitoperatiolll on complex numblJl<., the transla.~or provides a num

ber of functins tllat Ilerform arithmetic operations on complex arguments, For example, a

fuuction called addcomplex is provided which takes two Compbx records as argument and

returns a record value corresponding to the sum of the arguments. The other functions

dllpplied arc 6ubcomplex, multcomplex, divcomplex, and niBecomplex which replace

the subtraction, mdtiplication, division, and exponentiation (raising a complex number

to an inlegcr]lowcr) operators in Fortran expressions using complex operands. When a

complex value is combined with a numeric value of another numeric type, the function

complex (described above) is used to convert the non·complex value to its corresponding

complex represcntation. For instance, the For~ran expression

(8.6,6) * 72 + (1.9,3.4)

is translated as followss;

addcomplex (llul tcomplox(complex(8.6,REAL(6».
cOClplex(REAL(12) ,0.0».

cO/llplex(1.9.3.4»

~Bccauoe or Modnl~·2'••trid type checking. inltgfr componcnt. ortomplc~ VAlues mUll be C<lnvcrled
lolype !tEAL.

"

Operators in Fortran and t.lodula·2 do not share the same precedence relations; the

logical operators NOT, AND (also denoted &), and OR in Modula·2 have the same Ilrcce

dence as arithmetic operators for unary minus, multiplication and liivision, and addition

and subtraction respectively (as in PASCAL). Thus some additional parentheses mUlit

sometimes be Ildded to expTes5ions (in fact, it suffices to parenthesh:e relaUonal eXlJrcli'

sions in logical expressions so tha.t no attempt is made to perform logicnJ ollerations before

arithmetic operations).

The Fortran operators .EQV. and .NEQV. arc absent in Modula·2 but the lame 0ller

ations can be specified using relational operators for equality (.....) allll inequalhy ("0"

or "#"), respectively, with logical operands.

No exponentiation operator is provided in Modula-2, and consequelltly the translator

converts exponentiation operations into funclion calls. There arc two functions Ilrovitled

for this purpose, one for raising a value to all inlegerpower, lind the other for raising a valuc

to a real power (the latter is provided as a library function in 'l'OI'·SP~:ED Modula-:l).

The ~ranslatcd expressions preserve ~he right. to-len. associativity of eXjlonentiation in

Fortran.

Another minor difference concerns the division operator. In F'ortrllll, the real division

operator and the integer division opera~or arc syntactically the sallie while in Modllla-2,

'I' and 'DIV' are the real and intcger division opcrators, resp.cctivcly. The translator

statically determines the type of the operands of the 'I' oller~tor in Fortran, and converts

it to tlte 'DIV' operator only if both operands arc of typc integer.

5.3.1 Constant expressions

Both Fortran and Modula·2 support constant expressions. In Fortrall, constant ex

pressions can appear in constant dctlnitions, array dedarators, subscript expressions in

EQUIVALENCE statcments and DATA statements, substring length spccifications in

CHARACTER type statements and IMPLICIT statements, and in illllllied 00.100115 in

DATA statemcnts. This in itself poses littlc problcm as Modulll·2 a110Wll a constant ex-

prcssionwherevera.con5tantvalueisr~uired.

However, some restrictions have to be placed on the use of constant expressiona in order

for Fortran programs to be translatable. These restrictions slem from the fact that only

Modula.-2 operators and standard functions may appear in Modula·2 constant expressions,

and therefore Fortran operations which are performed by translator defined procedures

(such as exponentiation) cannot be performed in constant expressions. Consequently, For

tran constant expressions containing the exponentiation operator or complex arithmetic

operations, cannot be translated.

On the other hand, Modula·2's type transfer functions are pre-defined and thus logical

cOllstant cxpressions and mixed mode arithmetic expressions can in general be translated

(we will consider further restriction on constant expressions when EQUIVALENCE state

ments are discussed). As the e,·.uuation of character string expressions is performed by

library functions (see below), character string constant expressions cannot be translated.

5.3.2 Charncter string expressions

Fortran provides a string eoncatenatio operator. Moroovcr, Fortrau nllows substrings of

string variables 10 be specified as both the tar~et of assignments and as values. Modula-2

on the oUler hand docs not provide any built-in string operators. Conscqucmtly, all string

operations have to be performed by procedures. Most Modula·2 systems provide a library

module which colltains procedures {or manipulating strings. Wirth does not speeiry what

procedures should be included in f; string handling module, and consequently they usually

differ from system to system. Typically they contain procedures for assignment of string

values to string v;\ri;\blcs6 , determining the length of a slring7 , concatenating strings

(normally returning tIle result in one or ils arguments), comparing strings, inserting a

string into a string, and extracting a substring from a string.

·Modul...2 i~ talher .I';el In ita auignmcllt ,a,npalij,ifilll.equi,emelll ror .l,illgs. While ...trinl5lil<:ral
en I>~a..ilnc<l lo.ny .trinS van..bl" which is 01 It/J,t as lonlu Ihr:liltral, the yalu~Cl{altring uri..ble
<An only iSIle>J 10 ...l.inp;,i....l.. wIlh tbe.&J1lr:1ensth.

'Modul 2 UIICI ,,"pttbl nnll ch"IoCu., to lermln..'" Ilri"&,, which arc .llorlel Ihn the ,iablr: IIlcd
lollo.elllem.

41

ThpSpeed Modula.-2 provides a .trinr; hao.dling module ~lIed atr. While the proce

dures in .tr are .umciently powerful to perform virtually all fOrtran llrinr; open.tionl,

only .triDg assignment and .lri1ll concatenation are handled by the translator to .how

how .tring operation. in general can be translated.

The TopSpeed procedures for .tring usigRment and siring COftcatenation are dC5Cribed

below:

PROCEDURE Copy(VAR R: ARlUY OF CHAR; 5: ARRAY OF CH.lR);
(. cophl atring 5 to string R. If 5 is too long to fit,

then the copy of S is truncated.. It 5 is ahorter than
R then the atring left in R ie terllinated by the null
character .)

PROCEDURE Concat(V.lR R: .lRRAY OF CHAR; 51,52: ARRiY OF CHAR);
(. concatenatlls 51 and 52 and returns the result 1n R.

The second string h: truncated if thll coneat,nated
string bllcomu longer than the length of R .)

Now consider tIle following FOrtran codel :

CHARACTER FIRST*10,SECOMOoS, THIRDoS

FIRST '" SECOJO II THIRD

The translation of the usi,:nmellt statement requires lwo procedure invocalions and l\n

additional variable to store the results of the concatenation open.tiOll before performing

the asJi&nment. Thus the above is translated into the following:

FIRST: ARRAY [0 •• 9] OF CHAR;
SECOID: ARRAY [0 •• 4) OF CHAR;
mIRa: ARRAY [0 .. 4) OF CHAR;
Result: AMAY [0 •• MsxLe.ngthDfString-1) OF CHiR;

Concat (Result ,SECOND, THIRD) ;
Copy(FIRST ,Ruult);

where the COllstallt MaxLengthDfString is defined RlI tile lellsth or the longest string

variable in the Fortrl'ln progra.m. Note lhat the usc of 7.cro intlcxing of the urays FIRST,

'II i. the coac:at"ulion op",alor in rorhu.

SECO.D, and THIRD i. not l.'5pecia1Jy critical in this example. Jlowever, if the translator

i. to be expanded to handle other .tring operuions, tben the use of this convention is

more important; aJl TopSpeed'. drill! handlin, procedurl!ll a5S1me tha.t.trings ate sefO

indexed, including those wbid! perform .ubstring extraction lUId location of substrings

wi~hin strillp;.

5.3.3 Intrinsic (unctions

Fortran providCll a number of built· in or inlMrl$iefunctions which Co.,.n (usually) be invoked

within expressions {fANS 78j, pg, lS-2}. While a. few of them have counterpa.rta in the

Modula.-2 Sllllldllrd fllllClioll1 (such as ABS and a. fow type eonveuioll functions), mos~ do

not. Modula-2 in fact provides very little in the way of standard function&,aj~houghmos~

Modula-2 Iy.tems provide libraries ofusefu! functions. Typically, for instance, a library of

mathematical functions is provided which contains trigonometric function., a square root

function, etc. TllCSC function. must be imported by modules which invoke them.

The main obstacle in the handling 0(intrinsic fundions i. that most of them arc

generic, taking arguments 0{ various types. Library functions ill Mooula.2, on the other

hand, are n<>t. Whlle it i. poaible in lOme taseI to ~rform IOIne type conversion of the

arguments of intrinsic function. to that they COlIform to tR typet olthe fonnaJ parameters

of library function., the translator instead olll)' creates a fr(Jm~1(JOf'1: for the user to define

functions corresponding to intrinsic function•. That ii, when a program unit contains

an invocation of an intrinsic function, the madllie contain inA its translalion imports a

similarly named fUllction from a moollic ulled Intrinsic.: the definition of the function

is len to the user.

This strategy will be correct only if the specific names of intrinsic fundions are used in

lhe Fortran program since generic function names usually represent several functions. For

instance, the Fortran generic function name HOD actually reprcaents thrCi:! specific func

lioua: MOO (which lakes integer arguments), AMOD (which lakes real arguments), and DMOD

(which takes double precision arguments). A mote complete vertion of the translator could

4J

provide function definitions in Intrinsics for each specific intrinsic function' and convert

generic function calls into invocations of these functions (the particuhr function invokL't1

would be determined by the types of the arguments supplied to the generic function).

5.4 Specification statements

5.4.1 DIMENSION statements

The DIMENSION statement «(ANS 781, pg. 8.1) is used to speciry the l1amCS of arrays

along with the number and size of their dimensions. Arrays in Fortran .1re tr;o.nslaLcd

into arrays in Modula-2, and the translator generally preserves the snbscript ranges of the

Fortran arrays. The sole exception to this is in the treatment of arra)'s of charader Ilttin~

for wbich an additional dimension is provided.

Subscripts in Fortran must be of type INTEGER, and similarly snbscript ranges ~lnd

values in their Modula·2 translation are of type INTEGER. Modllla-2's characteristic

strictness of type cllel:king manifests it~e1f in the use of subscript range specification and

array element reference, and the type of subscript expressions must agrL'C exactly with the

type used in the subscript range specification (ie., the inder !ype of a given array). For

instance,thefollowingdcdaration5:

IHO: INTEGER:
ARR: AR£lAY [1 .. 10] OF REAL:

are incorrect for the clement reference ARR[IND]j the problem here is that wIlen a MOllllla·2

compiler sees tile declaration of ARR it treats the index typ<' to Ill.! a subrallge of Lype

CARDINAL1o. In order to specify tha.t the index tYI}(! is a 5ubra.nge or INTEGER values,

the array would have 10 be declared as rollows:

ARR: ARRAY INTEGER[1 .. 10] OF REAL:

'The Fort,,," intrin.ie runctions flU ..nd fln which lake II. wri ..ble numb", 01 Millm"nt. coulJ he
converted iolo. ""er;led oequeocc· ortwo-argumenl fllndionil1yoeation. topcr",it th"irl,,,".I,,tioni,lo
mboxModula-2

IONatur.ny lI,is problem would not hve oocurred hold the lower bound in lh" t1iInLnsi"n Ipedfouli"n
been a negative uumber.

The translator, in fad, specifics index typ~ in tbis manner. SiRt(! INTEGER type in

Fortr&ll is mapped on\o LONGINT type in (TopSpeed) Modula-2, it misbt seem more

convenient w use index types .,bich aresubranges of type LONGINT. Out alas, TopSpced

does n~ pcrmh LONGINT values \0 be used to subscript arrayt.. SubsequenUy, in the

banslalian tIle type trander function INTEGER is used to convert subscript expressions

to type INTEGER; in the above eXllmple, a FOltran reference to ARR(IKD) is converted

to the Modula-2 reference AM[INTEGER(IIID)].

In the examples presented in the following &eCtions, tbis conversion of subscript ranges

and expressions is nol shown 10 keep the examples uncluttered.

Some additional disculI8ion (and restrictions) on the use of multi· dimensional arrays

in the translation of EQUIVALENCI::. statemenlll, COMMON statelllents, and dummy

arguments is given in later sections.

5.4.2 IMPLICIT statements and type statements

Tbe translator Ilandies both IMPLICIT statements <lANS 78J, pr;o 8-7) and type slate

ments (IANS i8], Ilg. 8-5). Any specified implicit typing represented by the former is

stored in an attribute which is later used in determinin& the types of entities which are

not cxpHciUy typed (this attribute also includes a description of Fortran default implicit

typingcoovenlioll).

When the translator enc~nten a type statement, it U50ciates with the entities nlmed

in the s.tatemtmt the type specili(!d in the type dalement. This inrormation is stored in

an attribulelliclt reprC\l(!ntl the environment of the program unit. In general, type

s.tatements only iWIOCi1\le names with types. Such names may be used to name variables,

constants, arrays, functions, or dummy arguments, but further description of the entity

associated with a name normaJly appears elsewhere in the programll • The exception is

• "lnfacl,t1lculUcnamccnnbtrltlCdfo,ulleralcnlitk.ina ..i.cnPlog.a",,,,,il. Fori""lanc<:,dulll"'Y
a...unlc"l "am", in It.ll.ll.lClllent [undioll Ml-d not be dillind from vlliable nalnf:l in It. plO&llt.m unil. The
appearance or. given un,C in a Iype .lalement aimply _rl, I~II uy en lily ,eferred to by Ihll umc
in 11Iclamcp,ogram "nil.hall btrorlhclptciied,lype.

when names of arrays appear in type statements, since the type statement may sjlecify

the dimensions of the array. In this case, the translator includl'S hoth the type mill

dimensionality or the array in the environment attribute (a. similar a]Jproach is taken

when an arra.y dimensionality is specified in a. COMMON statemenLj.

5.4.3 COMMON statements

The COMMON statement in Fortran provides a means of Msociatillg entities in diITcrc'nt

program units by defining common blocks of storage. This allows different program units

to define and reference the same data without using argument]Jassiug mechanisms, alltl

to share storage units ({ANS 78], pg 8-7).

Common blocks of storage arc translated into t.lodula-2 record variables which lire

shared amongst modules. Such a record variablcs' fields corresllollil to entitictl ill lim

common block, A reference to an entity in a common hlock thus hecomcs a qllalinl~1

reference to the corresponding r«ord in the translated program.

In the simplest case, all program units sharing a com mOll block define it in precisely

the same way. For instance, suppose all program units of an executahle Fortran program

contain the following statements:

REAL Q

INTEGER A(10),B(5)
COMMON !CBLK! A,Q.B

The translatj(JlL of this is straight.forward. A record variable CBLK is dedarcd ill the

Modula-2 program as follows:

CBLK : RECORD
A: ARRAY (1,,10] OF LONGINT :
Q: REAL j

B: ARRAY (1..5] OF LONGINT
END:

In each program unit, applied occurrences or A \\'ould be tran!llaLl~1 into rcferelll:es to

CBLK,A ,applied occurrences of Q t",·ould be tr:lllsl:..ted into references to CBLK.Q, alill ~o

4.

on. In order to make the generated fC(ord accessible to all program units that share it, the

get:Jrated record variables corresponding to common blocks are declared in a. separately

compiled module called COMMON. Any modules containing subprograms which define and

rdefence common blocks must IMPOIIT the appropriate record variahles from COMMON.

A drawback to Illis method is that the definition of common block entities lies outside

of the program units, although the interested human reader is rderred to the definition

module of COMMON by the import list. One remedy would be the inclusion of a comment

in rnodulC6 importing structures from COMMON which shows declarations of such structures

as they appear in COKMON.

When the names of entities in common blocks differ from unit to unit, the above

approach is insufficient, since different names may be used to rerer to the same storage

ullit(s) in a block. For example, suppose common block C8LK were defined as follo\\"sl1:

COMMON /CBLK/ 1.(10) ,8(5) in subprogram 51, and lIS

COMMON /CBLK/ xeS), Y(10) in subprogram 52.

The strategy employed in the translator for such cases is to generate w.riant record

Relds in the record variable, each variant being associated with a particuiar subprograms

ill/llye of the common bloclr. For example, the ;\bove common block could be translated

into the following record variable:

CBLK : RECORD
CASE tag: CARDINAL OF

1: A: ARRAY [1. .10) OF REAL;
8: ARRAY (1. .5) OF REAL I

2: 1: ARRAY (1. .5) OF REAL:
Y: ARRAY [1 .• 10) OF REAL

END
END:

Subprogram SI would refer tothe clement A(6) 3Jl CBLK.A(6) while suhprogram 52 would

'2p"r.,,11 Inol,licit typing ;8 _lImed to apply \0 ll,~ typing of Ron.""plicllly lyp,," ~ntiti""••"eI,I.,
Il,J. and fin Il,i."umpl".

47

re(lJr to the samlJ location as CBLK.Y(1)13.

Note that the correctness of this strategy «Fre 811l depends on the Modula-2 colllpiler

in the target environment overlaying \ariil.nls in memory (~doesl!llJ 1bpSpccd compillJr).

The key to the semantic correctness of the translation lies in the sharing of the fir.d !mil

ofstomge or the variants.

In Moduhl.-2, field names must be distinct from all other fid.1 nnll1es in the record,

including those fields outside the variant part, fields in other \'ariallt~, and the tag field

itself. So when the same name is used in different program ,wits to refer to (possibly)

different storage units within a common block, the field nil.tnes 1ll1lsl he made distillcl.

Tile tra.nslator implemen!s this Ily IfI.{Jging the names of entities in COllllllon blocks with a

numher Wllich is uniquely assocla.ted with the progrRIll lllliL in which it is defined.

For example, if common block CDLK were defined ns

COMMON /CBLKI A(10) .B(5) ,C(5) in subprogram Sa, and as

COMMON /CBLKI C(B), Y(10) ,A(2) in subprogram Sb,

then thecorrespondingstructurcin the translation {assumillg that LlVasth(!valuenlli'lllt'ly

associated with sulJprogram Sa and 2 was the the value associated with sllhprogrnm SII)

would be:

CBLK : RECORD

CASE tag: CARDINAL OF
1: A_l: ARRAY [1..10) or REAL;

B_1: ARRAY [1. .5J OF REAL;
C_l: ARRAY [1. .5J OF REAL I

2: C_2: ARRAY [1. .8J OF REAL;

Y_2: ARRAY (1 .. 10J OF REAL;
A_2: ARRAY (1. .2) OF REAL

END
END;

Note that the underscore (_) is not in the standard Forlrall-77 chnracter set, and thlls

no name conflicts will arise iIIl iL resllit of this tagging stratcgy_ fo,!ore<)vCf, Modulll.-2 is C/lXC

"Thetran.latoTactull1ygenerlllo:lvarianlreconl....ilh'ugfieM...hic:ha,eo[11'1"<;I"""IMod"la-'!lYl't
SHORTCARD(aon"byltY<!,.iono[CIJLDIIIAL).

,nujli~ and since! the tranllator keeps Fortran names upper-case (and only modifies the

Fortran nilml!S' when neceuary· by appendinr; charactel'l to them), generated identifiel'l

luch as tag ue also guaranteed to be distinct from names in the Fortran program.

Another uea. of concern il the compilel'l' treatment of the lag fields in variant recordl.

Normally, a. pr~ram lhould not referen«! the fieldl within a varia.nt part uMii a value

hu been assigned to the tllg field, following which the Vll.rill.nt corresponding to that value

becomes octi~. In the above exllmple, jf the \alue of ug ,,-ere I, tllen Ule first variant

would be active and references 10 CBLK.! and CBLlLB would be considered valid, while

rderences to CBLK.X or CBLK. Y 'NOuld not. When a. program altempts to reference a. field

in a variant which is not active, a Modllla·Z system should Ihtorelically check the tag field

before making tile rdcrcnce. However, for efficiency, this check is or~cl1 not pcrformcdH.

This perllli~s ~he cllrrenttranllator to ignore the existence of tlte tag liL'ld when transla~illl

references to common block members. This reliance on tile pcculiarities of a Modula-2

compiler makes the translation l~rategy non"'llndnm, but ellen wi~hollt the ab&cnce of

tag.checking, the ItratC&)' could be employed provided some additional assignments to

.uch tag fields were made.

Within an executable Fortran program, all common blocks which have the ume name

must have tl.e same size, with the l!Xce!ption of blank common. Thus in the cue of the

record correspol.'ling to blank common block, ViLriants m.y be of difTerenl &izes. This can

be handled in Modula-2 if the compiler in the tartet environment allocates enou&h space

for thelargcst \'ariant ([Kin288J).

5.4.4 EQUIVALENCE statements

The EQUIVAI.l-;NCE statement in Fortran is used to Sfl«ify the sharing of storage 10

catiolls by two or more entities in a program unit HANS i8], Ilg. 8.1). The difference

between com ilion block storage locations and locatiolls shared by cf/uillulenced enti/iCl (ie.,

cutities whicll are associated with each other via EQUIVALENCE statements) is that tlte

former are sllared by entities from different program units, while the latter ''lre ~han~d

by entities within the same program unit (of course, entities in a COUllUOlI block Cllll he

equivalenced with other entities witllin a given program unit; this case will be discussed

shortly).

The strategy for dealing with equivalence<ielltitiC5ls mudl the samc ll~ that with which

common blocks were handled. Consider tile (simplest) case where no c1lllivalenced entities

are present in any common blocks. In the translation of such program units, a varhmt

record would be generated, each variant corresponding 1.0 a particular clillivalenced elltity.

For instance, if a program unit contains

INTEGER NUMBERS (tOO)
REAL RANGE (tOO)
EQUIVALENCE (RANGE,NUMBERS)

then in the translation, the following record variable is generatL~I:

eqch.ssl : RECORD
CASE tllg: CARDINAL OF

1: NUKBERS: ARRAY {1 .. 100] OF LONGINT I

2: RANGE: ARRAY (1. .100] OF REAL
END

ENDi

All references to RANGE in the Fortran program arc translated inLo 1\lotlllla·2 referellcl'li LIl

eqclass1.RANGE. Here as well, the correctness of the Lranslation hillgl'S 011 the MllIlula-;!

compilers' overlaying or\iHiants.

In the example above,liUHBERS ami RANGE have tllc cxact Salll{! storage S{!quellcc, and

are thus said to be lolally a~socialed. EntiLic$ nre said to be IJllI'li./lly associalrl1 if tll\1Y

share some but not all of their storage sequence. An eHll1ll'le i~ the rollowing:

INTECER NUMBERS(SO)
REAL RANGE(100)
DOUBLE PRECISION Q
EQUIVALENCE (HUHBERS,Q ,RANGE)

These statements specify that NUMBERS, Q, and RANGE share the salilC find storage \wil.

Their translation into Modula-2 is the follllwillg:

i ~

eqclass2 : RECORD
CASE tag:CARDINAL OF

1: HUKBERS: ARRAY [1 .60] OF LOIlGINT I
2: Q: LDNGREAL I
3: RANCE: ARRAY [1 .100) OF REAL

END
END;

It is also possible that partially associated enthiesnamed in an equivaleneestatcl11cnt

do not sharc thc samc first storagc unit, as in the following example:

INTEGER NUMBERS(60), RANCE(SO)
EQUIVAl.ENCE (NUMIlERS,RANGE(tO»

In tliisexample, the first storage unit in the sequence for NUMBERS is the same as (associated

wilh) the tenth unit in the storage sequence for RANGE. In such a case, the translator

includes fXlrldillg of some mriant fields. For example, thc abovc would !Je translated into

the following:

eqdass3 : RECORD
CASE tag:CARDINAL OF

1: dhplacemllnt_l: ARRAY [1 •• 9J OF LONGINT;
NUMBERS: ARRAY (1 .. 50) OF LDNGINT I

2: RAMGE: ARRAY [1 ..50J OF REAL
END

END;

Another eXlIlIlllle follows; herc assodatioll of entities of lliffercnt tY]ICS is splldlicd

(Fortrall Ilerlllits such associations, provided charactllr string cntities arc not asSOCHllcd

with Clliiticli of any other type).

REAl. lODO)
LOGICAL BITS(8)
DOUBLE PRECISION BIGNUM(25)
EQUIVALENCE (8115(3) ,X). (X(5) ,BIGIlUH(10»

Allother feature of this example is that not all 8.5sodnted entities nrc present in the same

cquittalcncc./ist. The corresponding record declaralion islhc following (recall lhat Logical

is lhe lrauslalor defined lype which is equivalent to type LOHGWORD):

51

eqclus4: RECORD
CASE ~aa:CA!lDI"L Of

1: BICJfUM: ARRAY [1..25] OF LO'CREAL 1
2: dllpl.c_.n~_2: ARRAY [1..12] OF LOIICVOllOj

BITS: ARRAY [1..8] OF Logical I
3: dliplae....D~_3: ARRAY [l .. 14] OF LOIICVORD;

X: ARRAY l1..100] OF REAL
END

EIIDj

A difficulty aris<!5 when this strategy is implemented, Namely, when constant ex·

pressions are lised in the arra.y declanu.:.rs for array(s) appcarillg in t:QUlVAI,ENCg

statements or when conatant expressions are uscd to subscrijlt nn clilhy in an EQlIJV.

ALENCE statement, theBO expressions must be evaluated 1Iy the trallshltor ill orlll!r lo

compute the various offsets. SubsequenUy, ifslIch constaul eXllTC!l~ioll~ arc lranslated illtn

constant expressions in the Modula·2 Ilrogram, 501Ile of the correctness tlf the hall5latiull

is compromised, since modification of any of the constlnts in the cUllstant exprCl'Sinus ill

the Modula·2 program will 1101 in ract result in allY cllallge to the corrC5pondillg l"\.~ortl

slructures, e\'en though the same change in translated Fortran Ilrogr;ll11 could l'r.5u!l in

differenl storage associatioDl,

Prescnfly, the translator dou e\'aiuate constant expressions ""hicll appear in array

declarators and aHay element rererentcS in EQUIVAI,ENCE stAtemenu, and COlle for

luch constant express.ions is not generated; only the \'1llues computed (namely, inlq,cr mn·

stanu) appear in the trauslated progrlms. Since the translator e\':Ilu:'IC5 inleger olllstalll

exprl!:!l!;ions, Additional constraillu hO\\'e to be imp~ on their form in l-orlran progrnlll!

because ALADIN does not provide Any numerical tYIIC other tllall intt'ger lYlle (it dot'll

provide facilities for perrorming arithmetic operatioll! on integer!). Th1l5,hile .ilrlr:U1

allows arithmetic constant expressions where\"l'r integer COtl5tnnt eXJlre.'l~iotls may allll(!l\r,

the translalor conslrains integer conslant expressi01l5 to conta.ln 0I11}} illll!gcr ollCran<ls.

Another difficillty COllccrns the lrentmcnt of mlllti'llil1lell~iollnl :,rrnrs. In Fortrilll, lho

same 5CqUellCe of localions may be inteqlreted a5 a olle·dill1ensiol1lll nrray hy one clitily

and as a multi·dimensional array by another. BecAusc of the dllferclll storage allocation

"

Khemes for multi-dimensional arrays used in fOrtran and Modula-2 (column-wise VI.

row-wise), it would not be sufficient (or correct) to simply have one \ariant in the form

of a one-dimensional uray, and the otlier in the form of a multi·dimensional uraylS. For

instance, suppose a Fortran program unit contained the following spcci6a1ion statements:

INTEGER 1(25) .8(6.5)
EQUIVALElICE (A,B)

In the progral1\ unit, both 1.(5) and B(5,1) are references to the fifUI location ill the

shared storaGe sequence. If this were translated into tile following:

eqclll.lllls : RECORD
CASE tag: INTEGER OF

1: A: ARRAY [1..25J OF INTEGER I
2: B: ARRAY [1..5.1 ..5J OF INTEGER

EMD
END;

then the fifth memory locll.tion in eqcla.ss would be sha.red b~' ':[5] and B[l,5]. wlliell

clearly is not equh ..lent ICmanlically to the Fortran version.

Con5CqucnUy, all multidimensionlll arrays in tIle Fortran IIOllrCC are being converted

into one dimensional arrays. At present, the translator simply assumes that this convenion

haa been donc IlnOr to translation (as a preprocessill& stoop). Further discussion of arrays

is &iven in t1lcroncludingchapter.

Use or EQUIVALENCE Statements with COMMON Statements

Whcn an cntity i. il.S5OCinled witb. &l1 entity in acommon block, references to the a.uociatcd

entity im! in cITed references to Ilorage unit(.} within the block. The translator handles

.uch associatiolls hy including additional variant fields in the blocks' record for each of

the cntilies associated with entilies in the block. Such variants may include some padding

which renccts thc oITsds of Msoda.tcd entities from the .Iart of the blockl6•

I~Thi. problem in (KI ,,~ wh~nner utOCiattd Ilrr.y••'~ dim~",ioncd<.lin"elently.
Ilrotl'.n rodlid• .-i.liool ..hie' ~x1~nd the «UUlllol, block .Iot...e JOeqI,e"(1! by .dd;n...tor."e IInit.

wllk" p,«.,.le Ibe 6.-1 .to....~ uoil or the r..-t utily .pec:i6eoJ in • common .I~lell.enl ror tlte common
ltlock([ANS rsJ,!'". 11-:1).

53

Consider the following example:

INTEGER A(10) ,B(10) ,C(10)
DOUBLE PRECISION DP(10)
COHMON ICBLKI A,B
EQUIVALENCE (C(S) ,B), (DP{:<-) ,C(:2))

Assuming that CDLK is defined identically in all program units, the record deciMatioli

corresponding to the common block is tile following:

CDLK : RECORD
CASE tag:CARDIHAL OF
1: A: ARRAY [1 .. 10) OF LOHGINT:

B: ARRAY [1 •• 10) OF LONGINT I
2: d.isplacClmllllt_2: ARRAY [1. .6) OF LONGWORD;

C: ARRAY [1 •. 10] OF LONGIHT
3: displacllmClllt_3: ARRAY [1..5] OF LDNGWORD:

DP: ARJUY [1..10] OF LOHGREAL I
END

END:

A separate record declaration is of course not generate!t! for the e!quh-alence clas~.

The! lIumhe!r of storage! units by which an associated entity is offset frolU the !ltarl of

the block with which it is associated is give!1l by:

offsct{e;) =di"p1f1cement(c;) + (offSC/(Ck) - disl,lacemcnl(ck))

w!le!re Ci is the associated entity, ek is the entity associated with c; which aplle1Ltll ill

a COMMON statelUent, offset(ekl is till! offset of Ck from thl! slart of thl! Llock, ll1uJ

dispiacemclIt(cj) is the offset of entity Cj from tbe start of tt-<: slorage sequence with

which Cj has Lccn associated through EQUIVALENCE statements Oldy.

5.4.5 SAVE statements

The SAVE statement in Fortran is used to specify that the deFinitioli stntus of elltitil's

(variables, array variables, and named common blocks) i~ to be II/well (retained) nrt~r

the execution or a RETURN or END statement in 1\ snbprogram (lANS 78), JIg. 8

10). A SAVE slatemenl has no effect in the main program, allil lhlls is ignored ill its

translation. Tn the translation of subprograms, the transTator handles saved enlitiC!ll by

dl:daring them oltuide of the corresponding procedure or function definition but imitk

the implementation module containing the translation of the subprogram. ThOll. is, saved

entities are made global to the lubprogram that references them but local to the module

cOllt.unip.& U,c lubprog",ms' definition. Thus, while suc.h variablrs can only be rererenced

within the implementation module, once they become defined, their value is maintained

acrossproceduT(lwls.

As common blocks are declared Ind exported by the module COHHOJl, their definition

slalus is never altered by returns from subprograms in the Modula-2 program. Thus no

special action is ll\kell when common block names appear in SAVE statements. Han

entity associAted with a common block is named in Il. SAVE stll.tel1lelll, Il.gain no special

action is taken.

If an entity which is associated with other entities through EQUIVALENCE slate

ments but not iWOdated with a COMMON block appean in a SAVE: statement, all its

auociated entities are also saved by declaring the corresponding record structure in the

implementation module containinr; the subprogram's definition.

5.4.6 EXTERNAL statements

Tn FOrlnn, the EXTERNAL stalement when it appears in a given program unit is used

to declue symbolic names in tbe unit as representing either an external procedure, a

dummy procedure (a dummy argument which represent. a procedllre), or a block data

suloprogram. A dummy procedure name which appear1 In an EXTEIlNAL statement lIlay

he usro as an llclllal argument ([ANS 78], pg. 8-9).

Tn Moduln.2, procedures can be supplied as arguments in calls to other procedures.

Thus, modules which contain translations of sul.oprogram! that det!are subprogralns as

external procedure! ne«lsimply import their identifiers from the modules containing ~heir

definition thereby allowing the ttltrlltl/ procedure to be Illllsed as argument. or course,

modules which contain translations of subprograms which invoke external procedure! have

"

to import them whether or not the procedure names appear in an EXTERNAL statement.

For example, consider the following Fortran program unit:

PROGRAM P
EXTERNAL SUB1

CALL SUBO(SUB1)

END

II is translated as the following lT:

MODULE Pj
(. all external procedures IlIUSt be imported t)

FROM SUB1_mod IMPORT SUB1;
FROM SUBO_llIod IMPORT SUBO;

SUBO(SUB1)

EIlDP,

A more difficult problem concerns the trauRlatiol1 orsubprogralll~ with dummy procc

dures. Modula-2 enforces strict typccllecking r,"les, amI actual argUlilents Illust corrcsllulI,1

exactly in type with formal parameters. Conscquelltly, in the corrcsllOll(ling Modl'la-:!

procedure, type identifiers must be available which represent the tYlles of the llrotellurcs

which are passed as argument.

This situation is less troublesome when tlle dummy procedure is called or invoked frum

within the subprogram in which it appean; as 1\ dummy argument; since fortran r"'(luires

lllat the types of tlte actual arguments in the invocation of the ,11I1lI1ilY Jlrocedure llIusL

correspond exactly with the types of the dummy arguments of thcsllll[lrogr~tllrcpresclltcd

by the dummy procedure, generation of the appropriate IlTOcedure 1}'lle can be done hy

inspection of the actual arguments supplied to the 1I11llllllY procedure. Moroov<lr. it can

be determined by the context of tlte invocation whether the subprogram is a RuhrouLiue

"Th" urn... or moon!... niN 10 define ell",nallubpTOg'lm. ~,e b.voed on II,e n~tII" of Lbe l,ron.htre or
fundion p,incip~l1yd.~ned by il: they I,e rormed by IIl'pendinlllhe aLring'..od' Lo Ille vroce<!n,e RlIlIIe,

56

or a function. fn the latter case, the type of the fundion can be determined by either the

occurrence of the dummy procedun! name in a type stdement, or by implicit typing of

the function namel '.

Ilowever, if a dummy procedn~ appe~ only in an EXTER.NAL Itlatement and as

an actual argument, it is Impossible to determine the number or type of the dummy

arguments of the dummy procedure, or whether for that matter the dummy procedure

is a function or a subroutine ((ANS 781, pg. 15-9), Th reduce the complexHy of the

tranllator and allow the lreatment of dummy procedures to be handled locally (ie" by

inspection of the subprogram unit only) the translator forbids this situation, requiring

thal subprogr:uns with dummy procedures contain at least one invocation of each dummy

proccdurcdcc1nred,

For example, suppose the definition of SUBOof the previous cxalllpic was the following:

SUBROUTINE SUBl(SUB2)

EXTERRAL SUB2,SUB3

CALL SUB2(I, y)
CALL S1JB3{Sl1B2)

Ell,

IIcre, St1B2 is a dummy procedure which is botll invoked and passed as argument to SUB3,

It would be translated u followl:

DEFIIfITIOlf KODtILE SUBLmod;
TYPE SUB2.typ•• PflDCflIURE (VAR IlEAL ,IlEAL);

END SUB1.

IMPLEMENTATION MODULE SUBLIl104;
FROM SUB3~lD.od IMPORT SUB3;

IOJfanacluala'illnlenliianintrinlic(unctioll,ilnevcrh.anyautomatic typing propcrty ({ANS 18],
I'll. 15-9). Thi~ dOCl nol Clnle any problem for the han.lator, ho~ver, ain« inl.in-k (unclion. can
only be p~ &II a.g_mul by prolram _nil....\Iicb aame them in .. INTRINSIC au.temcn\, and \he
IN1'RINS1C alatemen\ i. nollraul.ltd.

57

PROCEDURE SUBl (SlJB2: SlJB2_type);

SUB2(X.Y);
SUB3(SUB2) I

END SUB1;
ENDSlJB1_lDOcl.

Notice that the formal pa.rameter SUB2 actually functions as a procCtlure variable withill

SUB1 and ill passed by value. In order to satisfy tile rCfJuirement that actual and formal

pa.rametcrs match exactly in Modula.2, the type identifier used to define the type of

tlle formal parameter in the definition of SUB3 would have to have the samc dcjilliuy

occurrence ill; that used in the formal parameter Jist of SlJB3. For this n~;u;on, in the COlle

generated for SUB1, tile definition ofSUB2_tYP9 docs Hot actually appCllr ill the definition

module of SUB1 as shown above. Instead, it would appear (along with thc delinitioll of all

translator generated type identifiers) in a module called Types an(1 thus a type eqnivaleut

to SUB2_type would actually be imported from Types by SUBLl!lod.

The appearance of a block data. subprogram name in an EXTERNAL statement is ig·

nored by the translator since it primarily indicates that the block data suhprogralll lIallle

is the nme as tllat of an intrinsic function «Mei 82]), thereby nmkillg UH~ intrinsic func·

tion with the same name unavailable within the subprogram cOlltainillg the EXTElINA L

statement. Thus no special action is taken when a block data subprogram name allw~ars

in an EXTERNAL statement, since in the transla.tion block data. suhprogram naUll'S arc

not actually u~cd (the initialization of common blocks that they slH~cify is l'errorl11ell in

the module COMMON).

When an intrinsic function name appears in an EXTERNAL statement in a program

unit, tha.t name becomes the name of an external proclldllfC ami thl! cl]uivalcnlly ltalliell

intrinsic function is unavailfl.ble in tha.t program \luil. Thlls, Modllla·2 functiolls corre·

sponding to intrinsic functions arc only imported frorn Intrinsics hy modules contaillillg

the tra.nslation or program units which invoke· bul do nol dccftll'cas EXTEIlNAL - ill'

trinsicfunctions.

"

5.4.7 DATA statements

The DATA statement in Fortran is used to provide initial values fot variables, arrays,

aud array clelUents at the start of an cxecutahle program HANS 781, pg. !loll. In the

lranslation, DATA statem('nts arc converted into assignment statements. Entities appear

ing in DATA statements in the main program are initialized by assignment statemeuts

which appear at the start of the main module body of the Modula-2 program (before any

statements corresponding to Fortran executable statements).

Entities inilially defined in DATA statements within suI-program units are SAVEd in

Fortran. Consequently sucb entities arc d'!clared in the same manner as explicitly 5/\VEd

entities in the module containing the translation of the subprogram. Assignment state·

ments in the module body ioitialize these entities. Since module bodies of separately

compjJ()d modules are exewtcd prior to execution of the main prog~;I111 hody, this guar·

antees that the initialization is performed before those adions corresponding to Fortran

cxetutabicstalelllcnts.

TlVo restrictions have been placed on tile usc of DATA statements, oue is included

only to case the job of the translator (and can easily be removed) while the other is more

serious an,l arises from the use of llamed constants in DATA statellients. Tile more serious

resLrictjou is discl/ssed firsL.

The DATA slatelllenl in Fortran has the following general formlll([ANS 781, pg. 9-1»:

DATA <nUat> /<cliat>/ { LJ <nlist> I<cliat>/ }

wh~rc <nlist> is a list of variable names, array names, array clemenl names, suhslring

names, allli impliC(I.DO Iists20, and clist is a list each c1em~nt of wbich has the form c

or r.c where c is a constant and r (rderred to helow ;u the l'CIICOt count) is a positive

integer conslant or named positive integer constant.

"The nol~tio" """,I tllHlIIgbout the pape,' wdeseribe thes)'"Lu 01 ForLriln <"nslr"<1.&;. in ll,e st)'le
"f ElINF: !cllllinal .yn,bot. are written without rtIodiflcdion (eg., symbol. DATA ","'ll'eslash (I) in tbe
d""cr'l'l;on ot 110" syntax of the DATA st~I"",eul). nonte'''',lIal sy",boll ar" end,..<,l within angle bradetl
«.>1, aynlKLic entiti.,. wilhin cu,l)' brackel' ((.)) inelical" Zero or mo'c ceC"ne,,<~ of lho"" enlities, and
.yllt.ClkurH'<... with;lllq"arcb,ack"ls(l,J)i",licale."rooroncocc""cnC"".

10Th" tunl.\lion of;"'I,liro.DO lilb in DAT,\ .tatemen," l'a11 not been ,,,,,,len,ented.

"

The translator imposes the following restriction on the form of <nUst>: tIle li~t of

names must either contain a single array name (all of whose element~ arc to he defined

by values in the constants list) or one or more variables or arTay c1enumh (inhich (:lse

the constants Jist contains a constant for every e!ement reference or lari:lhle in the n~llle

list). Moreover (and this is the less serious restriction), at most a ~iugle repeat ('(Jllllt

may appear in the constant list, amI it mllsl he Cllua1 to the 11llluher of locations tu he

initialized implied by the namclist.

For clCample,the following Calles can be handled by the trans1:ltor21 :

PARAMETER (N-I0)
INTEGER A(N) ,B(tOO} ,C(N-S)
LOGICAL FLAG, FOUND
DATA A/II*O/, FLAG,fOUND,B(3)/. TRUE. ,.FALSE. ,25/
DATA C/l,2,3,4,5/, X,Y,Z/3tO/

The assignment statements which perform tile required initiaIi1"tioll Hre gl'llet:ltt·d :l~

follows:

FOR repeatcount :- 1 TO N DO
A(repeatcount] ;= 0

END:
FLAG :" Logical(TRUE):
FOUND :'" Logical(FALSE):
B[3] := 25:
C[O :"1:
C[2] := 2;
C[3) := 3:
C(4) :"4:
C[5] :" 5:
X :- REAL(O):
Y :- REAL(O):
Z :-R.EAL(O);

Whell a single repeat count appears in the list of constallts specifyinJ; iliitiaJ vatlle~ for

clements of an array, a straightforward implementatioll using a FORlno11 call be tl~:lli7.Cd.

Also, in the initialization of X, Y, and Z the tYlle of the mIne to wl,ir.h tlte variah\l~~ arl~

11The PARAM ETER sillement in FOltran der.llel named cO"llal,I~: lhey arc C(1""~Hctll>y the tIM"lal",
inloMOlIuta-2eoll.llnldcr.niliolil.

GO

initiali:cd dirrcl1i from the type of the vanOlblel, ilnd thus type transfer functions ilre used

to convert the integer constant 0 to the type REAL.

A lituation that i' avoided by imposingtbe restriction on the name list il demonltraled

in tile following example:

PAlUKETER (I'.5,K.2)
IIIttGEJI. l(N), B(K)
DATA 1,B/2,2,1,3,4,4,71

III lhis (1IlIC, II. loop (IInnol be used for the trllnslalion of the initialization of 1, lI.ud

~olllctllillg like the following aIlSiSllnlClila would be callC(1 for in tllc ~r,ll1slatioll:

1(1] :.2: 1(2]:.2: 1(3] :"' 1: 1(4] :. J; 1(6] :.4:
B(1] : .. 4: B(2] :.7;

l!owever, if the values or Ii and Kwere changed to bccolllc 2 ami 5 rCllpccli~ly, then the

<lbovc cotle \\'ould no lonr.er be equivalent. Dy constricting the llilllIC lin to have ouly a

lingle Mray name or none :\t all, thil situation isoided.

The restriction of allowing only onc repeat COII"t in the conatanl,lisl is inlroduccd lo

sillllllif}· the translation, llnd could easily be remo\'ed. For instance, tile following situation

coulll be handled ..:::11 only slight modification to the tran,lator:

PliWIETER (1.5,"'.4)
!IJTE(iEftA(10)
DAT1 AlM.O,SO,K+SI

Tire initialization of 1 could be accomplisllr:t.l by the fol1owio&" auiClllllCIII.$:

FOR repeatcount :. 1 TD MDO
l(repeatcount] :_ 0

END;
A(N+l] :.80:
FOR repeatcount : .. "+2 TO 10 DO

A(nlpeatcount] :- 5
END:

GI

DATA stntements in block data subprograms

In Fortran, block data subprograms arc used to predefinc values iu n:llll.~1 COllllllon hlof_kll.

Such subprogritms contain only declarations and arc global to the ellccutablc program

(IANS 781, pg. 16-1). In the translation, 110 separatc module is gClwratcd for blork d:ltll

suhp~ograms: the initialization of common block elltities specifil.!t1 hy nATA statl.!ll1clIb

within block data subprograms is perform(!(] by assignment statements ill the module hndy

of the module COMMON.

5.4.8 Statement functions

The statement function in Fortran is a fllnctiou that is defined by n sill~le (llon-excclft:,hle)

statement withill a pr"gram unit ([ANS 781, Ilg. 15-·1). Stalement flillflioll drjillililtll.,ll:w(!

the foJlowillg genernl form:

<namQ) (<list of dl1lUly arg\1lQQnts)).. <expr>

Statement flll1Ctiolis arc analogous lo external fUflction suhlJrogr:lIus whose eXt'ClJtilhle

statemcnt part rOllsists of a single assignm(lnt statem(lilt (in which the function llallle

appears on ii.,· left hand side of the assignmellt operator).

The scolle of a statement function is restricted to the llart of the llrogralll unit iu which

it is ddillcd follOluing th(l line on which it is ddilled (\alem(lnt rllll<:lion ,Iefinitions must

alJp(lar !llior to the ex&utabl(l statement part of a lirogram 1Illit, hut their il1l'ucatilln

llIay appear in the expressions of allY SlIbsOjlHmf t;tatelllellt function definitions). The

translator COllYNtsstatmnent fllllctious into MOllula-2 functions. The flillction (Iefilliti,,"s

for stalement fUl1ctiolls in lhe main Ilrogram unit arc defin(ld wilhin the main program

module, while those ddined in extNl1ill proc('dures arc Ilel\ted within the defiuitiollof the

corresponding procedure or function. As ~Iod1Jla·2 dO(ls 1101 r~l1lire tllat procelillres be

defined bcfor(l th(ly are called, no spccial imJlortance is givclI to the nr,ler in wliich tIll'

definitions or trallslatcd statement fUllctiollSll.Plle:lt.

The dUlllmy argumolltlist ill a l\tatement functioll definition is a (pnssihly empty) list of

variable nam(!S which servos only to indicate tIl(! type, order, and 1I11lllher fJf arguillents for

0'

lllestatemellL fUliction. Their scope is limiLed to tile statement function itself, Primaricsof

the expression in a statement function definition lIlay be one of the following: a (named or

ulinamed) constant, a variable referencQ, an array clement reference, an intrinsic function

reference, a reference to a previously defined statement function, an external function

referencc, a dummy procedure refercnce, or a parenthesized expression mec\ing all the

1l.hovcrequircmcllts.

The forrn;\1 parameter list corrcsponding to the dummy argUlnellt list in the funclion

proceuure constructed by the translator consist of oo/ue parameters. \Vhile the Fortran

77 standard docs nol directly stipll[.lte tlla\ \lie values of actual arguments (which arc

vari;\hles or array clements) to a stalelllerit function CIlJ1J10t be modified, it docs stipulate

1h;\t an external runction reference must not cause a dummy argument of a statcmcnt

function to become undefined or redefined. Since QXlernai runction references arc the

olily possible meaus of ml){\if)'ing the \'allleS of uummy arguments (and hencc, actual

argulIlents) of a statement function, the formal parameter list generateu for the dummy

argulIlent list in the transladon ofstalell\ent functions consists sold)' of vallJC parameters.

For example, consider the following sulJprogram which contains t",o stalement function

definitions:

SUBROUTINE SAMPLE(••)

SUMSQ (X. Y, Z) '" XtX + YtY + Z'Z
HYFUN (A.B,C). 2 t SUKSQ(A,B.C) I 3

The translation of SAMPLE is as follows:

PROCEDURE SAMPLE(•••):

PROCEDURE SUHSQ (X,Y,Z: REAL) : REAL:
BEGIN

RETURN XtX + YtY + Z'Z
END SUHSQ;

PROCEDURE KYFUN (A,B,C: REAL) : LONGINT;
BEGIN

RETURN LONGINT(REAL(2) • SUKSQCl,B.C) I REAL(3»

OJ

EJlDKYFIDI';

The RETURlstatement in Modula.2, when eXe(lIted, indicates the \';due to be retunted

by it. function, ue11 as terminating function excclltionn . Note also that tIle type uf t~e

expression may have to be convertoo (in i\.Ccordance with "'ortrall auignlllcllt rulCll) to the

typc of the flindion.

The exprcs.~ion.in statement function definitions may 1I111O contain rcfcrellCC5loohjl'Cl~

whicll do not appear in the dummy argument list, and this is handled rather easil}' II}' lhe

translator. The following example is of this killd:

REAL A,B, SFUII
COMMON !BLK! A(tOO), B(tOO)
SFUN (A) • A + B(12)

111 lhis example, the array B i. global t{· SFUN, while wiLhill lhe rlillcti<lll cxprt!li.~ioli the

nil me A rdcrs to lhe dummy lIrgument. The translation of SFUN wuuld he tile fol1t'''''illl;

(ignoring the tag,giag of names of entities in COllllllon bloch):

PROCEDURE SfUli (A: RE.lL) : REAL;
BEGI.

fLElUlUl .l • BLK.B(12]
END SFUH;

5.5 Executable statements

5.5.1 DO statements

The Fortran DO statement i, used for specifyillg tlefinile iteratiOlI, 111111 11:- sucllil:- cmlll'

tcrpart in ~lodula·2 i& the FOR. alatclllent (which ill simil:lr though nol identica.l In Llw

FOIl loop in PASCAL). While the hClIrt of lhe tr1lllslf\tion of 1\ givcn 1)0 looJI COII:-ililllnf

a FOR loop, a !lumber of syntactic anti semantic tliffercllcCll hclwl't'll the I \VO IIl'Celillil1llcH

the addition of extra variables anti statemcnls.

'2Th" llE:lVRI,tll"nlen~nil' 11110 be: ute:d in l>roceduu'l "I'e.e iI,' ucocuti"" cau..... l"oc",lu,c lellni..·
1'lIn (lh"exp..,..ion l,,"-elt ftolllth",,.ltuortJ.c,taluIC1I1 .~c.. w.ed i.,I"""c:Ju.c).

The Forulln DO loop haa the followin« form:

DO <label> (,) <ur> • <exprl>, <expr2> (. <upr3)]
<ltIlt-l«juence)

<label) <It_t>

where <label> i. the .latemmt lAbel of the lerminal ,Iatrmenl of lhe DO loop (tilt!

occllrrenccs of tbe nontenninal <label) musl be identical) ,<VaT) is lht integer, real, or

double precisioA lype control variable of the loop, and <exprl>, <expr2), and <expr3)

are integer, real, or double precision expressions used lo specify the starling valllt, limit,

aile! ifll:n://Icu/,rcspcctivcly.

The Modllla·2 FOIL loop has the following genl!ral form:

FOR <idenu :. <lXprl) TO <expr2) [BY <conat_upr>] 00
<atmt-uq>

END

where <1<1.ent) is an ordina.! typed variable (ie., it cannot b«l of real or longreal tYlle),

<exprl> allli <upr2) are expressions which musl be nJlIlptlliblc with the lJIM!of <1<1.ent>,

<conlt_upr> is a constanl expression of it. type COlnpit.tible with lhat of <ident>, Md

<at.t-seq> is a sequence of slal.emcnLS.

11,e restrictions on the FOR loop that the type of the control \';lriable be an ordinal

tY11t allli that any lpecilied increment must be it. coutant expression makes it impc::aible

to tran&1ate the DO Itruclure uling a FOR Io.....p ;done. While it would be possible lo

hlll,lelllcnl tbe DO loop witll it. Modula-2 WIIILE loop, the FOR loop WitS cll()SCn because

in the forma15Clllalllics of the DO loop, an iteralioa counter variaIJle independent or lhe

DO loop cOl1tml variable is used to con~rol the iteration (lANS 78), pg. II-i). The control

\';uiablc of the FOR loop in the Modllla-2 translation of a DO 1001' corresponds to litis

indellendclltconntcr.

The slratcB)' for trauslating 110 loops is 8U11\lnilrizell in tIle fol1owillg: (up to) live

nllsiliary variilhlell nrc generated by the translator ror Ow purposes of storing the resultl

of evil!ualiol1 or the cxluessiou5 giving the slart value (SttrtValue), limit (Lillit), alit.!

incrclllen~ (Iller), iIS well as :I varialJle ror storing the number of iterations or the 10011

os

(IterationCount) and a. control variable for the FOR loop (InterationCtr1), The l)'pe

of StartVa1ue, Limit, and II1(;r (U present) is lhe same as that of the conlrol \",uiahle of

the DO loop. IteratlonCount and IteratlonCtrl are of type I.ONCiIN'I'23,

(* evaluate expri, expr2, and (possibly) expr3 .)
(. T it the type of the DO loop etr1 variable *)

StartVa1ue :'" T(exprl);
LillIit :- T(expr2):
Iner :- T(expr3):

(_ initialize DO variable .)
do_var : ... StlU'tVll1ue:

(. determine nwnbar of iterations .)
IterationCount;· LONGINT«Limlt-StartValue)/Incr + TO»;

(. use FOR to perform iteration *)

FOR IterationCtrl :- 1 TO ItnationCount DO
trans1ation«stmt-sequenee» ;
do_var :_ do_var + Iner

END:

For the most l'~rt the above strategy follows the semantics of the 110 IOIlIl' The \'ari:lhlt~

IterlltionCtrl wrresponds to the internal Fortran \'nriahle llsed ttl cllulrol definite item·

tion, and is kept distinct from all other variables ill tile code for tile 10011. In Modulll-2 the

bcha\'iorof a. FOIL loop is considered unpredictable if either the starl \':llue,the limit v;llllC,

or the control \';Iria,ble is modilled by statemellt(s) ill the 1001" This cOll~trail1l promlllell

the usc of IterationCtrl as the COlltrol variable ill the FOR 100]1, lind tile introductiun

of IterlltionCount to store the limit value, StartVll1ulI, Limit, alld Iner had to he

introduced to account for possible side-effCl:ts of <exprl>, <expr2>, ;11 ..1 <expr3>, :tud to

preserve the order of evahlation or the eXI)ressioll~1'1.

It shoulll 1m noted lha.t tlw typc tr:lllsrcr function LIJIiGINT trllllc;\lcs real V:\l11llS :ulli

thus thll eXl'rossion for computing the nllll1~r or iteralioll~ is cllllh'alCllt the the Forlr:l11

"S"me Motlub·2 ayatem. di,llIlow cOlIl,oldahle.of FOR loops 10 be or IYI'" J,ON(;INT, hIll T0I'!lI'<...~1
permilJlill

~·Clea.,ly, ,"neh mOre efficient code ca." be gene,a.led for no loop.;n ...hiel, llo~ atMt, I;m,t, '",,1/'''
inef<),nealeJpr"lJ!;o",donOl h/tvelide-elfoo::tl;i" 'Uehe'l-<ClI,va.t;a.bl.,.St.artvduI,Lbit,>.lul/orlner
need not be inl'od.«<!, Morcove" if eOI,.lalll~ or eOMt~"t Up,t...;ou u" """I, II"", HlntionCounl
aced not be u""", The Iran.lalo, docs 1101 currenll)' /tlleml'l ,lIch OI,li,,,;~.liOl', hu\ co~ld """il)' t",
exteudedlQ,lollQ,

GO

CltlJrcssion for the itcralion count given by MAl(INT«[.imit • StartValue + Iner) I

Iner) ,0) ([ANS 78]).

Il should alliO hc noled that wlu~1I tIll! type of the DO variablo is intcger, the division

0llerator used in thc calculation of the itcration count is DIV. Morco\'er, whcl1 no increment

is specified the iteration l:ount is l:olnputed using Limit - StartValue + 1 wilen start

vallie :1.I11llilllit are intcgers and using LONGINT(Limit - StartValue + 1.0) othcrwise.

When DO loops arc nested, it is necessary to make some of the ll.ultihry idenLiliers

di~t;nct (at leasl Incr, IterationCount, and IterationCtrl). This is done by appcntling

numerical suffixes Ollto these identifiers which rencet the depth of llcsting of the particular

loop they are hcing used to impletncllt. For instance, the loop

DO 100 I .. 1,10
DO 200 J " 1,1

SUM-SUM+I
200 CONTIHUE
100 CONTINUE

is translated iulo:

StartValue:- 1: ['1m1t:= 10; 1:- Stu-tVaIue;
IteratlonCount.1 :~ LONCINT(Lilllit • Start Value + 1):
fOR IterationCtrl~l :- 1 TO Iterat1onCounLl DO

StartValue:- 1; Limit:"" I; J:'" StartValue:
IterationCount.2 :- LONGINT(Limit • StartValue + 1);
FOR ItarationCtrl.2 :- 1 TD IterationCount.2 DO

SUM := SUM + I;
J :-J+ 1;

END
1:-1+ 1:

END

The strategy of !iulfixillg auxiliary identifiers hy lLulllerical suffixes alone is however insuf·

~cient in general, since loops al tile same level of nesting would then share some of the

sanlC auxiliar)' Wtriablcs. nut as the t)'pe of the (oulrol llariablcs for dislillct DO loops

ill tile same le\'c1 of nesting rna)' differ, fnrlher diffcrenlialion of StartValue, Limit, and

Incr, is called for.

67

Consequenlly, the translator appends an additional 511ffiol 10 tll<!iCillenlilien when tllt!y

are used to store f('a! or double precision VlLlu('S (the characten 'f' and 'd' f('lIpedh·dy).

The advantage of this strategy is that these variable'S can be rellscd in lhe code for loops

at the same len·1 or ncstin! with the same tylX' of control ~riahle.

A (urther example i. provided to demon.triLle this identifier Il,eneration 5IriLtq;y:

DO 100 1 _ 1.0, 5.5, 2.CI
SUM-SUM.I

100 CONTI1i1JE
DO 200 I - 1,10

SUM-SUM+!
200 CONTINUE

Its lranslalioll is the following:

Start_r:- 1.0; Lillit_r:- 5.5; Incr_r_1:" 2.0;
X :- Start.';
ItarationCcunt_l:- LONCINT«Lirdt_, - Start_r}lIner.r_1 .. 1.0);
FOR IteratlonCtrl_1 :- 1 TO IterationCoWlt_l DO

SUM :- SUM + I;
I :- " .. Iner_r.1;

END;

Stut: .. 1; Lillit:- 10; I ;- Stut;
IterationCount_l ;- LONGIIT(Liait - Stut .. 1);
fOR. Iterat!onCnLl :- 1 TO IterationCoWlt_l 00

SUIt :: SUIf + WL(I);
I :- I" 1;

£HD;

Another coucern lies in the fact that tl,e terminal statement of a no 11)011 lIIay 1M:!

shared by nlore than oue 00 statement. When a sharecltcrlllinal shtciliellt of 1\ 1I('liII~[

DO loop is a statement other than CONTINUE, the terminal slalclIIclit is inclllded olily

as part of the ho<ly of tile innermost 10011 (this ill cOIl~istent with the ddillilioll of lilt,! no

loop IANS 78J. pg. 11-9, in whicil it is specified that the lerlllhmi stnLelilelit is eXl'Cllled

Dilly when the hody of lhe innermoslloop is executed).

Consequently the following DO loop:

DO 100 I .. 1,10
DO 100 J • 1,5

SUK .. SUM + J
100 LOOP" LOOP + 1

is translated (IS Illough it were:

DO 200 I '" 1.10
00 100 J .. 1,10

SUK"'SUM+J
100 LOOP" LOOP + 1
200 CONTINUE

where 200 is a label that docs not appear in the program unit in which ~he statement

appears.

5.5.2 Logical If statements

The logical IF statement ([ANS 78], pg. 11-3]) specifics that asinglestatel1lent be executed

irthe value ora cOllditional expression ill true. It has the fol1owingllYlilax:

IF (<condition>) <stmt>

where <condition> is a logical eXllrellsion anl! <stmt> is an executahle Fortran statement

which is neither a DO statement, a block IF statC!ffiC!ul, an END statement, or another

logical IF statement. The exceution of the statement causcs evaluation or the condition,

after wlilch <stlllt> is executed ifanl! only if the value of the condiliol1 is true.

The lransl:ILion of the logical IF into Modula·2 is straightforward, and a converted

logical IF' statement bas the following general form:

IF <cond> THEN <stat>

where <cond> aud <stat> arc the translatiOll of <condition> allli <stmt>, respectively.

For example, the following IOSical a'statement:

IF (X .LT. y) X - Y

iSCOllvertedintothefollowingMooula-2ifstatement:

IF X < Y THEN 1 :- Y END

GO

5.5.3 Block IF statements

Till:! block IF construct in Fortran (fANS 7· 1 .pp. 11-3,1 '-5) allows the prograD\ to dlOOSC

between one or more alternative actions. Its general fop is given by the followillg:

IF (<condition» THEN
<start-sequence>

{ ELSE IF (<condition>) THEN

<stnrt-sequence> }
(ELSE

<8tmt-lUIquence)]
END IF

where <stmt-sequence> is a. S!!qllCIiCC of executable st;ltements.

Here aga.in, the translation strategy is simple. Tlte Modtila.-2 IF statement is hoth

syntactically and semantically similar to the Fortrall block IF' slalell!ellL, and Iii\}; the

followillg syntax:

IF <condition> TIlEN <stints>
{ ELSIF <Stlllts> }
(ELSE <8tllltS>]

END

where <Stlll!:S> is a (possibly empty) seqllellce of statements.

For example, the ForLran statement:

IF (X .LT. 3 .AND. Y .GT. 0) THEN

X '" X + 1
ELSE IF (Y .GT. 0) THEN

y", y + 1

ELSE
IF (Z .HE. 0) Z • Z + 1

EHD IF

is trauslated as follows:

IF (X < 3) l (Y) 0) THEN
X ;=X+1

ELSIF Y > 0 THEN
y :- Y + 1

ELSE
IF Z • 0 THEN Z :- Z + 1 ElfD

END

70

5.5.4 GO TO's .nd Labels

A fully general Fortran to Modula-2 translation must include the eliminlion of goto

slal.emenll &lid labell, since .landanJ Modula-2 providet neither. The present tranllalor

does not eliminate Fto .tuemenu; from Fortran prosrams and aa sua may be leen

at cOllverling goto-ku Foftran programs into Modula-2 program•• Thi. i. not to aa.y

th.tsuch a fully general translation is impossible. In fact, a number of transformation

techniques ha.ve beeD propOied to eliminate goto's from so-called Ull8truClllred programs.

Some of these techniqucs arc discu&Sed in [Fre Sll, wbo.se Fortran to Pascal translator

handles the assigned and COlnlluted COTO statements; the baais or the transfonnation

is derived from it boolean IIftg aJgorithm proposed in IPet 731. Thus while in theory the

lranslator could he extended to perform the elimination of golo'., for the purposes of thi,

thesis no aHemllt to implement any such technique Will made.

The translator does however process golo's and labels. In whi\t could be perceived

as an unorthodox .trategy, the translator uses Ihe TopSpccd extension of the Modula.-2

language which provides facilities for goto statements and the declaration of labels. In

TopSpced, identifiers can be defined to be I.bcls. La.1.>cl idenlirlers can be used to label

.tatemenll in lI.lodula-2 pto&ram., and can be referenced by GOTO statements.

In the transla.tioll.label identifiers arc constructed (or a.\llabcl. in the Fortran program

which are rderenced by goto statcmenls. TIaese identiliet5 are or tile form Lab_n. where

n is the digit string: makin.!: up Ihe Fortran label.

5.5.5 Unconditional GO TO statements

'l'Iie unconditional GO TO alatcmenl in Fbrtran is or the following rorlll:

GO TIl <label>

where <label> is the statement lahel or an executable stntement thnt appears in the same

program lI11it as the GO TO statement <IANS 781, JlS. 11-1). Unconditional GO TO

stalements are converted into unconditional GOTO statements of TOllSpood Modula-2

(whicll ll!we the same semanlics a.s their FOrtran counterpart).

71

For example, consider the following Fortran code:

GO to 100

tOO X '"); + 1

The above is translated into tile following ThpSpl!Cd MOllula-2 cOlle:

(. declaration of label ,)

Lab_lOO: X :- X + 1; (. labeled lJtatelllont .)

5.5.6 Computed GO TO statement

The computed GO TO statement in Fortran is of the following form:

GO TO «label> {, <label> }) <1nt_expr>

where <int.expr> is an integer eXllrcssion, and <label> is the sLatel1lent labd or fUl

executable statement in the same program unit in which the computed GO'rO aJillenNl.

The effect of execution of the statement is thai control is transferred to tlte Sl;\tcmcnt

identified by the il~ statement label in the list, where i is the valueortlw integer expression.

If the value of i is not ill the rallgIJI:S i :5 II, where n is thIJ number of labels in the

list of labels, then the statement has no erreet, and execution reSlIl11eS with the stntclHent

following the computed GOTO statcment.

Computed GO TO statements arc converted iuto Modllla·2 case stalel11ent..~, as shown

in tJle example below. Consider the following computed GO TO statcllIent:

GO TO (100,200,300,400) r.J/2

Its translation is the following:

72

CASE r·J DIV 2 or
1: COlO Lab_loo I
2: COTO Lab.200 I
3: corn La.b.300 I
4: GOTD la.b.400

ELSE (. ell.pty Itat_ent .)
EJfD;

Note that SIIOIlId the value of tlte eXIJression be l;reater tllan the number of labels in the

label Jist (or 1C!l.'1 tlliln one), no action is taken and executioo continues with the statement

followinl; the CASE statement.

5.5.7 Arithmetic IF statement

The;uit!llllctic IF' ,hllemcnt in Fortran has the following form:

IF «upr» <hb,l1:> , <lab812> • <labI13>

where <upr> iiS an arilhnletic expr(SSion and mbox<labllli> is a statement label. Wben

the statement;$ ex('(:utcd, the expression is evaluated, and if tllat value is less Ulan lero,

control istranderred to the statemenllaheled with <lab,ll>, if the value is l!lJual to lero,

conlrol ill Iransfcrn:ll! to the ,talement labeled with <labI12>, and U tlle \'lllue is posilive,

c:orrtrol is trallsf~rred to the Ilatcmellilabcled by <1ab,13>.

Aritlnllclic IF ,Utemenllll'e translated il110 Modula-2 if,tatclllenlll, and an additional

luu:ili;try \'.Hiahlc (auI_var) is s:eneratl'd to temporarily slore lbe results of expression

e\'llIu.Hiorr. Tile stralC&)' illiltllll" alld is iIIuslrated by an exAmple. COllllidcr tIle following

arilhmetic IPslalernl'nl:

IF (Xotl) 100, 200, 300

ItHlfi1l1sl;ttiouis:

VAR aux_vu: LDNCREAL;

aUI_var :_ LDNCREAL(XotO;
IF aux_var (0.0 THEN GOTO Lab_lOO

7J

[ISU' illll:LWar • 0.0 THEI' COTO 1.I.b_200
ELSE C01ll Lab_JOO
EIlD

Note that the auxiliary variable ..ux_war is of type LONGIU:AI.. Thi~ is done purely fur

t11C!conveni('J\ceof the trans.lator 50 that OIIly as.in~ auxilia.ry v.uiaMe need Ii(' intrOllnr...1

into ill program unit'. module for the translation or lUI arithmetic IF ~t:alell\cnt~ in thai

program unit. The conversion of the \'a1l1e of the eXjlll.:ssion to ty[)C 1.0NGIlEAl. dill'll

not rhange the scmlUltic, of tile statement.

5.5.8 Assigned GO TO and ASSIGN statEments

The assigned GO TO statement ill Fortr:all ha.'l the followillg fortu:

CO TO <"ar> ((,J (<label> {, <label>}))

where <var> is all integer varialJle n:allle, and <label>'s denote stlilelllent l:ab.·I.'I "f all

executable statemcnt that appears ill tIle samc program unit :1.'1 the ;lo;ignl'll GO TO

statement. The list oflabels itOlltional. When the atlIigllcU GO TO datelllent is eX<'Clltc.l,

the integer \'ariable mllJt have been assign{'d a st.atelllentlabcl. The ASSIGN slat"III\'nt

auigns a label to illfl inleger \'ariablej it hat the W1lowin!; !;{'ner:al (orm:

ASSICN <label> Ttl <var>

The translation of ASSIGN statements is not straight forward a~ 'loIISpe'Cd M'Mlul:.-t

Ih>cs 1I0t support label varia.b~ (aliI)' label idelllifiers). The llOIution adollted in lbe

tl'itllslator iSl'A'O-fold: firstly,llie ASSIGN statcm{,llt is colln~rtl.....1 i,lln:. r('I;III:.r :.~igllllll..... t

of an integer value (tbe integer illleqlrclation 01' a digit Jtring COII.'llitlltilll; a lalM.·I) tutbe

integer variable; secondly, assiglled GO TO slatements arc tOu~tr~illecl to IHIVe :l Ii~lur

stalement laliels (in which cue Fortran requir('~ that tile n~sigllcd slalelllcnl 11ItJ<l1 IIIIISI

lle present ill lhe label list)_ Assigul..'{l GO TO ~taterncllts can thell he cOliverle.1 into

Modllla·2 case statements; case expressions are invoclltioll/> of :. fllllr:tion which tnlic~ an

integer variable and a string represcllting tile lahel liHt at :.rglllllell~~, and retnru/> tIle

position in the Iitt ollhe label reprcsentctl by lhe illll'ger mriahlt:.

"

For ellample, consider the followin!; Fortran stateme!nls:

ASSIGh' 100 TO I

GO TO I, (200,100.300)

The! trlllsiation is u follow.:

I :" 100; (. hbel tnated lIS integer value .)

CASE pOlln(I,"200,l00,300") OF
1: GOTO Llb_200 I
'2: GOTO Lab.too I
3: GOTD Lab.300

END;

""here posn returns the position in the list or laltds (]Iasscd as a string) or the \'llllle

currentlystorClI in Ii in this example it is2.

5.5.9 CONTINUE statemenls

The CONTIi'i'UEstatemtllt, which has no elfect when executed, is COII\·erted to the emplll

IItntcFlltmt ill Moclula-2. For example, the followins ~IICflce or Fortran statemenls:

CD TO 100

is tra,maled into:

Lab.1DO: : (t CONTINUE .)
X :_ X ... t

5.5.10 STOP statement

The STOP !lhlclllcnt in Fortran (IANS 78J, pg. 11.9) causes termination of execution of

an ('XL'(utahie prq;ram when e!XCClltCCI. It has the following gellen.! fonn:

STOP (<ltri.D.g>]

Wbf;"C <Jtrir.g> is a Itrinl of nol more lhu lh"e dieitl or a ch<!nel.cr COIIstant. Al the

lime of leuniu.tion, the \~lI(! of <nring> i. a(('{'PiNe.

A STOP IlaLCmen! in 1lI.ich no siring is p~nt 15 COIYl.'rted intn a IIA I:r su.ll'lIl... t.

The IIALT Itattment in Modula·2 sitnilarly ellllAl'll proyam execution 10 «',,~ wlll'll

eJ:l!Cuted. When a IIrine il presenl, Ihe STOP ItalclI1enl is translated into two statClltl'llts,

the fint of which prinls 0111 the slrin&, and the lCCond of whir.b is a IIAI:1' IL"lIClIll'lIl.

5.5.11 PAUSE statement

The PAUSE statement in Foriran lIANS 78}, Ilg. 11·9) callSC~ rcslwltlblc Imulun/i,," of

erecution or Ihe program when execute·d. It hM the followins gencral forlll:

PAUSE (<Itring>]

"'herc<ltring> is a digit siring or a ,haractcr oollstant.

As ~lodnla·2 do6 nol. provide all ;\nalogouJ inslruction, Ih,' trallslalor I'illllll,. run,WII

PAUSE Iidements into II"OCations of a user defined procedure (,,11,..1 Pau•• ,,'llklt takl'fi

the Itrins (if Ilresent) ali arcumenl. The d('finilion ofthi~ IITOCt...lul'{' is .~,.slelll dCIII'I.. II'III.

TopSpmI t.lodul;t-2 does not provide a tneilns of I't'$utllealtly ceilSing prnr,ram Ul'rlllinn,

ud tlUIS tbe l!Xcculion of Ille Pa~ procedul'C genC!l'lIIltd hy lite translator ~itllpl.l' ra .._

tbe stfiD! (n pl't'$l'llt) to be output prior 10 IIAI.TinC pl"C5l"am ('X('('uli...

5.6 TransJ!i.tion of Subprograms

5.6.1 Parameter passing

Since in rortran the Iype of argunlent passing mechllilltl for a gh'CII dumllly ar~ullll:t1L

,anllot Itedctcrlllincd wilhollt kllO\villg Ihe llaturc of Lite :I."IIodatcd actual argllluclIt(K),

two g('lleral /lllproadl' call be llS€'d for lhe &('Ilcratklll of formal Imrmuel.er li~l.ll. Oll~

involves an itnalysll of all possilil(' ill\'ocatioos ofsuhllrlll;ramS todclcf11lincwbirilll:.ram·

elers sbould be passed by rcferelltt amI which by \-..luc. UUl11l1l}' Mgllm('lItJ lI.<;.SrlCiitlcll

7G

with eX,lression actual argumellts could be converted into value par:l1l1cters, while those

which become Msodated with variables Of arrays could be converted into variable param

eLers, '10 im/llement such a strategy 11 careful global analysis of subprogram invocations is

rl.'fluired which is complicated by the possibility of dummy procedure ill vocations. Another

Hpproach is to translate subllragrams independently, generating formal parameters with

out illformatlo11 about correspond;lI/; actual parameterll, TI,e latter strategy is arlopted

by the translator,

The trallslator converts all duml1ly arguments into \ariable parameters except for

dUlllwy Ilroccdllrcs and dummy arg1ll1'.'llts of statelilent fllnctiolls. Siuce in mboxMC"lula

2 ar.tu:11 argullll'nts correspondillg to variable forlllal parameters call not he expressions,

adual argulllclll$ which arc expr~siolls nlll3t be replaced by variables. Consequently, for

each I!xpressioll appearing as 1111 actual argumelll to an e..,tcrlla] procedure all auxiliary

variable (of the S;\lne tYlle as the I'xllression) is introduced to stor<,l the value of the

l'xpreuion illlllll!diately prior to invocation, ll.llli that variable is Ilsed i~'l ilctual argullu:nl

in place of tile exprcssioll.

Fur exallllllc, (onsider the follo\ving Fortran program units:

REAL A,B,FUN1

CALL SUBl(A,FUIH(A!2,B»

SUBROUTINE SUB1(X,Y)
REAL X,Y

REAL FUNCTION FUN1(X,Y)
REAL X, Y

Tire slIhrolltilic SUB1 is invoked I'"th 1\\'0 argUlllents, the first of which is a variable (A)

and the second is an eXllression (the invo(atiOll of flIN1), In lhe (ode gClIerateu for the

in\"ocation that is given below, two auxiliary Wlri;IIJle5 (Temp_1 ano Temp_2) arc useu to

ll'1lI110filril}' slore the Il.'lluh of thl! il1l'0cntion of fUN1 and the expression An. rcspccti\'t'ly:

77

VAR A,B,Tllllp.1,TIllC.p.2: REAL;

T8IIp.2 :z .I. I 2.0;
Top. I :s FlJI1(Tllllp.2.B};
SUBHA.Tup_l);

The ptoCc<lurc headcr. generatc<1 for 5UB1 and FUll are:

PROCEDURE SUB1(VAR I, Y: RE.lL};
PROCEDURE FUN1(VAR l,Y: REAL}: REAL;

Nole that ",hen dUlIlllly llrSllll\elltH arc 1ll1SlrllcluTL'(1 (rlllli afllllut ,IUlIlllly I'TUn-dun'll)

lhlllrall~lator need only know the 1)'l1C of the clUlllltl,Y arglllllcilts ill '.nIN to ~rnl'ral"IIH'

forlllal parilrncler [illtll. a.nd no glolm1 illformatiou ill rC(l"irc'l.

5.6.2 Passing string arguments

DUllllll)' arglllnenlS whicb llre striny llre uniforml)' con\"crtcd into Olen array l,ar;llllt:I,'I'lII,

\Vlli1e Fortran f'C(luircs tht tilc lMISth of a c1liH~ter stnllg .lullltll)' argument he lit.

sreatcr than an}' corrcsponding IIctual IIlf;ulIlenl, in the translation the)' arc CSSt'1I1iall}'

of the same length (although tbis length nla)' \'ary acTOM IltoCL'(hlll.' call!!}. ThIlS, ill

effcct, the translator ignort'S the dcclaration of thararter I\lring dUIIlIII}' arglllllellis willlill

5ullprograms when gcnerating formal parameter lists. Thill slrat~- torn.'SIKIIlds nicely

with ~umed size dummy dlluadu IItrings (which are handled by tile translator) IIlItllo1

soell witll dummy argumellUhich are shorter than a cout.'llpomling al"~IIa.1 argutllellt.

for example, conllidCT the rollo.,,-illg:

PROG!U!'I EXAMPL
CHARACTER*20 flAHEl,NAHE2
CALL SUB4(IlAHE1,NA~E2}

SUBROUTINE SUB4 (S1,52)
CHARACTER.10 51,52

CIIARACTER*20 53

S3 " 51 /I S2

78

lIere lhe dummy u5um!!nl1 are shorler than their correspondin! actual argum!!nl1, and

the valU!! dared in 53 will be tile strin! rosu1tin5 from the concatenation of the lirrt ten

characters in .AKEI and "AIIE2 I't':!ipccti...ely. H 51 and 52 are op<!n array puametef'li in

the lranslation of 5UB4, tben tile I'roccdure call Concat(l\e.ult ,51.52) wilhin the code

{or 5UB4 will return tbe concatenation of HAMEl and IfAKE2 in Rllult.

A correct solution would involve actually extractin! the lint ten characters of 51 IUld

52 (in conformity wilh lho declared sizes of 51 and 52 in the lubprosram) and tllen

cUlicalenatillS these luh~trinp;I hefore performing the lWIisnment. The lranslator however

dl1o('~ lIot ulili,.e thisslralegy, and siml,1y assumes that in the Forlran programs il makel

110 liemanti!: (mferellc!! that clUuacter Ilring!5 arc pasl;('d ill IIIdr clllircly lo sub]lrograll1~.

5,6.3 Passing array. ns argument

In form1l.1 J11lr1l.lIIet\lt]jsts of Mollula·2 procedures, lype identifiers arc used to dcclare the

t)'IlNi of formal Ilaramcters (excellt for open array parameters). \\'hen Ililramelen are

struclurcU objects, the prop;ram must define type identilicrs for their declaration. Conse

llucully,tbc tl'llullalor !cnerates type identiliers for all arl'lly' thal appear as an actual or

dUllImy ugulUenu in the fbrtran program. Since Modula·2 genel'llll)' rcqnires that iIocluaJ

and forl11al ll"n,llelel"5 be deli ned usinl; the same t)"l'C identilien, array arguments l105C

JOltlclVht of" woblclll, because lypc idcnliliers for affil)'.!1 SI)C(ify thcir index t)'flC wldch

IItalkall'l' deline lhe upper and IOI\'cr oounds of lubscripts (whidl lIL'(."Il not be the 5ilme

in actual and dUlluny arguments ill Fortran),

Thestrategy adopted by tI,e translator to deal with this situation is lilllpic (alternative!

IItTillegiCll ilre ,HscuS$Cd in lhe conclusion); aclual argument ana)." are required lo be

idl!nlical holh in Site l\Ild in lhe range or snbscrililing values lo nil dummy arguments

will, which they bCCOlllC associated, This eITectively permits tlie same tYlle idcntifier to

hl! llsed ill the declaration of bolh actual and dummy argnmelltl. Dy lhe same token, lhe

fl'lltriction prohihils lite nscafadjlllltabic and assumed size arrays.

In Fortran, when an array of character strings is supplied lUi aclua! argument, the Duly

79

restriction Ort the corresponding dummy arguUlcnt is that the lolnl amount of ~Il)mge

implied by the dummy argument docs not exceed that of the actual llTgllmcnl. The !ellgth

of the string clements of the dummy array may llilfcf frotll that of the actual :nl;lIltlellt

array's clements. This situation iSllfohlematic, sitlce while open amlY p;lrallleler~ ~nn h.we

more tha.n OtiC dimension, only the fir~t dimell~iott is fleXible. As a re~ltlt, thc tr;l1t~lalor

rC<juires tlllltthe typcofcllatactetSLring array actual an,ltlulilltl)';,rl>lllllelltsbcLltesillllc,

auf! opell array parameters are not used in tllC p;\.~sing or the~e ohjcclS.

. The identifiers used as typeidel1tifiers in tile trans):l,tioll ll.re COliStructed $0 ali tn rcllt'Cl

lhe characteristics (ie., the index range amI the clement tYIIC) of army stTlicluTL'll. FliT

instance, the t)'lle identifier for an array declared in the ~brtrall program with the r"lllllI'ill~

type stal.clllelll:

INTEGER A(3:57)

would be InLarray_3_57. In this way, the type illelllifier gcncrated for eVt'ty illtl~l'r

array witll iudices ranging from 3 10 57 willlJc tIle s,l/lIe till'felly allowing their gl't1I'rl,liflH

(hill not their llcfinition) to be done locally. A~ the type idl1lltificr~ of ;lctllal and rur11l:u

parameters must ha\'e the same defiuillJ; OCCllrrCllce, all generated tYllC identifiers :tre

collecte<l together and defilled (exactl}' once) ill a module called Typos, and mmltJll's

which declare objects or those t)'lles which arc formal or acttlalllllrl1l11etCrs illlilort l\iusc

idenlifiers from that module. All example is tltc following:

PROGRAM P
INTEGER NUM(10)

CALL SUBl(NUH)

E'.
SUBROUTINE SUB1(L)
DIMENSION L(tO)

Here, both lhe aclual 'Inc dummy argnllleut for SUBt arc iuteger arra)'s with tell dClIU'ut8

whose subscripls range from i to 10. Its translation is outlined in Ihe rollowillg:

8.

MODULE P;
FROM Types IMPORT Int.uray.1.10;
VAR HtnI : Int.UTaJ_1.10;

SUBl{/rl1I'f) ;

END P.

DEFIIIITION MODULE SUB1.raod;
FROM Types IMPORT Int.uray.1.10;
PROCEDURE SUBHVAR L:Int.uray.1_10);

END SUBl.

DEFINITION "ODULE Typ",
TY?E Int.array_1.10: ARRA'f r1 .• 10] OF LONGINT;

011t' furlber r~lriction on arra)' arglllnt'nis is introdllclld, l1;ul1d)', when an array cl

ement is usccl a.~ actual arlllment, the corresponding dUlnmy argllmr.ut must be of the

same tYI)('. Since the transliltor ilSS1lJ1lCli lhat all arrays in the Fortriln progra.m are one

dimensional, this meallS thllhe dummy argllment must be a "",riahle of tin,' same type

;u the a.nilY clement (or a Siring). Consequently, only the entire ilrr01Y can be passed to a.

11Il,X'etlurt:. Ag.un,ilIternativt'll are disc:1l5SCd in theconclllsion.

5.6.4 Subroutines

.'Of each Fortran subroutine the translator generates a. module containing the definition

of an analogous Modllla·2 procedure. RETURN Itatcmenl.l in a subroutine are converl.t'd

into Modula·2 RETURN Ilatel:leul.l. In Forhan,lhe CAI.L statement is used to invoke

snbrontin<'5. CI\I.I, statements ine collverled to Uodula·2 procedure invocations, possibly

]1I'cct'dcl! by Mlsignmelll stl'l.temenls ror evaluation and tellll'0rll.ry storage of the valul:lI of

('xllrcssiouadualargumcnIB.

81

Alternate return specification

In Forhan when execution of a subprogram terminates, conlrol iH normally returned to

the executabk statement following the CALL statement with ;"'hicll the subrolltinea.~

invoked. This convention can, however, re drcunwented uHing aller'llIlle ,'C/llfn /1JlCciJierfl

(IANS 781, PI'. 15-11, IS-!!) which arc 'passed' a.s arguments to the ~ubrolltine. An

ahefl\ate return specifier is an lItlual lIrgument which has the sYllhx "'<label>, whl!re

<lebel> is " sllltement label of an executable statement in the iU\'oking [,rogram IInil.

Dummy argumclIts which correspond to alt<lrnate return specifiers arc asterisks (",),

A subroutine which takes alternate return slJ.Cdfier(s) as arguillellts may ol'lionJll1y

spedfy that (ontrol be returned to one of the labels sUP11licd as argllillent by indudiug

an integer <lxpression in RETUIlN stalemenls. The integer eXllressioll idclitifies which (if

allY) of the alternate returns is to be chosen. The rollowillg example '[cll1f)ll"tral~s lhl' USI'

of alternate return specHlers:

SUBROUTINE SUB (A,"',B,*)
INTECER A,a

IF (A ,LT. 0) THEN

RETURN 1
ELSE IF (9 ,LT, 0) THEN

RETURN 2
ELSE

PROCRAM CALLER

CALL SUB(A,*100,B,*200)

If SUB is in\'okcd from CALLER, then if the statement RE1llRN t i~ excculcd witllin SUB

control returns to the sta~emellt labeled by 100 (ie., the alternate return a.~socialc{1 with

the Ii.st a:>terisk dummy argument) in CALLERi if RETURN 2 is eXc<lIlcd, (outrol retnrlls to

the slatement labeled by 200. If lhe vil.llle of the integer eXllressioll \I!;Cd in a JU~'I'U1lN

82

sli\le~nl is less Ihan one or gTelller than the number of asterisks in the dummy argument

list, then the elTect of the RETURN statement is the samC! as if it were used without an

intcr;er expres.sion.

The t~shttor requires Ihat any integer Clfprl.'S5ioo appearing in a RETURN statement

be an integer literal. The stT3.~ for translating alternue retur. specificalion is to

replace a1ternalc return Ip<.'Cillers by boolean va.riables which are initialized to FALSE

before procedure invocalions. Inside tlll~ p,ocedure, RETURN statemenls which contain

i\11 integer value i\re converted into two statements, an usiglllnClit statement which which

~eh the i\pprolJTiate boolenn Vlltiable fo110w«l by a RETURN statement.

For example, the iuvocation abol'e would be converted juto:

Lsb_l00_flag :_ FALSE:
Lab_:t.OO_tlag :- FALSE:
SUB(A, Lab_l0031ag, B, Lab_200_:tlag) :
IF Lab_lOO.flag THEN coro Lab_lOO END;
IF Lab_200_tlag THEIf COTO Lab_200 END;

while the procedure deliniUoll generated for SUB would be:

PROCEDURE Sl1B(VAR A:REAL; VAR flagl:BOOWN:
VAR B:RE.lL: VAR fhg2;BOOWH);

BECII
IF A < 0 THEJI

11agt :. 11WE:
RE11lRlI

ELSIF B < 0 THEIl
t1&g2 :- TRUE;
/IETIII\Il

ELSE

END SUB:

The rcslriclion that el(llrCli~ionl in RETURN slate,;cnlS must be integer litera15 Is

imposed to simplify thl! gellerlltio11 of l\Ssignments to the boolean variables. An a1ternativll

is given in the couc1udillg chil]lter.

83

5.6.5 External runctions

In a Fortran external function, the name of the fllndior. nlllsl appear as a variahle na!llc.

During execution of tlle funclion, tllis variable mllst become defiut'll, :1.1111 once definetl,

may be referenced or redefined. The value relurned by the function is the value of lhi~

varia.ble when a RETURN or END statement is executed. ~br example, con~itlcr the

following function definition:

INTEGER. FUNCTION ABSOIF{M,N)
'" poorly vritum !or the sake of examph!

INTEGER. M.N
ABSOIF=O
IF (M .EQ. N) THEN

RETURN
ELSE IF (H .LT. N) THEN

ABSOIF _ N - H

ELSE
A;3S0IF=M-N

F.lIDIF
END

The value returned by the fUllction is the value of variable ABSOIF when (~itber the Jo:NIl

statement or the RETURN statement is exccuted.

In the Modul1l-2 function definitions, a local variable (with the mill(! nallie as lhu

function identifier) is declared, ant! corrCllponds to the fUllction variable of rortran funr.

tions. RETURN statements in Fortr:ln functions are cOllverted into RETURN st.\te',lcuts

in Motlula-2 in which that variable used to indicate the vallie to he returued, allll the

keyword END in the Modula-2 function is always llrcceded by a RETURN statement of

this form.

Fer example, the ftlnction aoove would I.>c trauslnted into thc rollowing:

PROCEDURE ABSDIF(VAR H,II: LOIIGIIIT): LONGIIIT:
VAR ABSDIF: LDNGINT;
BEGIN

ABSDIF :-0;
IF M " N THEN

REMJ ABSDIF

"

ELSIF ~ < N THEN
ABSDIF := N - II

ELSE
ABSDIF :-M-H

END;
RETURN ABSDIF

END ABSDIF;

Notice that the 6colle of the function identifier ABSDIF docs not include the body of the

fuuction.

5.7 Input and output statements

In1ight of the fact that any strategy for the translation of Fortran input and output state

menls into Modula-2 105 necessarily lion-standard (since Modula-2 provides no lItandaul

IlrOcetlures or statemellts for performing I/0), the goal of the translator is to provitle a

suitable ahstrilction of the details of illput and output handling. While the FlO module

in the TopSpccd system (c1mpter .1) provides routines which permit sufficiently low-level

cOlltrol over input and output to trilnslate I/O in Fortran, tile task of developing imple

meutatiol\ level stra.tcgil!s for till! tr:\nsliltioll of Fortran I/O into 'IbpSpccd Modula-2 was

cOllsidered beyond the scope of this tlwsis,

The abstrACtion is providl!d by translating input and O<ltput statements into sl!quences

of illvocations of procedures whicll nrc imported from a module called FinOllt. Proccd'Jfl!S

defmed in FinOllt must in turn makl! usc of the rio facilities provided by the Modula-2

system in the target cnvironmellt. As such, FinOut controls all aspects of I/O in generated

programs; only procedures defined in FinOut :lore used for I/O operatious, and FinOut

maintains its own privata variables which are needed to simulate record-oriented I/O,

direct acc('ss to records, etc. Since specific impleml!ntations of FinOut will vary depending

on the particular Modula-2 system employed, this section describes a general approach to

thl! translalion of inpllt anG olltpul statements and no attempt is made to exhaustively

cover the remarkable variety of I/0 facilities of Fortran.

8S

5.7.1 The READ statement

At the lowest level, formatted input in Fortran is the process of accessing d~ta in the

form of a string of characters (a record) from an external device and transmitting them

10 a buffer (normally inaccessible to the Fortran program). This charneter ~trillg is them

converted into the form required by the interual represelltl\tion (integer, real, logic.d,

character, etc.), Format descriptions specify the positions or the jiclils of records and the

character(s) in each field collectively represent in some way a single \ahll! of a. particular

type specified in the desuiption.

For example the format description:

(12, F6.2, 14)

describes the arrangemont or thrllo fields within a record. The first two characteu in the

record represent an integer value, thl.! next six represent a renlullmher, aud the ninlh

through twelfth represent anoth<:,r integer \\llue, Thus a record consistinr. 01 the char~c·

ters 123456789012 represents, according to the above format descriptioll, the vahll's 12,

3'156,78, and 9012 (in that order).

Format descriptions in conjunction witll READ statemen19 establish all nssociatioll he·

tween the valucs represented in record fields and variables appearing in REA 0 statements.

For instance, consider the following READ2S statement:

READ 20, I,X,H
20 FORMAT (12, F6.2, 14)

H this st~tement was executed and lhe "next" record to be accessed consisted of the

characters 123456789012, then the \'alucs 12,3'156.78, and 9012 woulcl he assigned In the

variables I, X, and N, respectively.

~'Nole tb~t the READ ,l_tem~l\l is in illc.llcd ",I,o'l.-fQlm", a fO'II1 ulCd wh~n llle ollly ill'''' of
oontrol ;nfO'I1I_liou is _ fo"nat dCK.il'lion. TILe fully genenl fo.m of tbe READ ,Ial.merlt inch"ICI a
cOlllrolll',tapecifyinganextc'lIa1dcvicc,lhrQ,mlll"fthcdatao"thedcviC<>••lId(OI,ti"""lIy)",I,liti""al
i"fo.",,,li,,,, ..b"ut, fo, nllmplc, "d;o" t... he \11kI'll when 11,e elld o[the inp"l d,ll,\ i~ r.~ch."j,

86

Modula-2 library procedures for reading numeric and booleall valucs arc gCl1(lrally

stream oriented and require some kind of delimiting character ill the input strUlll. Sub

sequently there is no "easy" way to spCl;ify that, for instancc, the next two characters in

the input stream are to be interpreted as an integ('r value. ProccGures for input of char

acter strings similarly makc usc of delimiting characters, ahhougll the lenglh of the slriug

varia.hle supplimlas argllment may implicitly specify a maximum nUniher of characters to

be road in a given invocl',tion (ie., reading of characters into a string variable llIay stoll

bcforc a delimiting character is encountered if the string varia1J1e has been "filled up").

Moreover, thesc procedures only read a single value at a. time.

Clearly, these higher level input procedures cannot be used to to imlllcnlenl or r.imlll~~te

the kind of record-oriented input that is needed in tlle translatioll of Forlran prognuns. For

this reason, a module such as FinOut is needed to provide "format-driveu" inpul in whir.h

fixed size represcntations of values (corresponding to record fields) can be accessed and

appropriately converted into \'ll.lnes according to format descriptions. To accomplish this,

FinOut must in some way be able to repres<!ut format descriptions Ileriv~'{\ from Fortran

programs. Once represented and stored within FinOut, procedures for reading val lies call

refCrenCl,l511ch adescription to determine both the length of the datum to be read in agivell

invocation (ie., the number of characters used in the representation or the datum) and the

typ<! of c.:lnversion lIlat needs to be performed on the character input. Subsefluenlly, tl[('se

procedures can access data by performing character-by.dmracter input, and convert data

from string form by either using one of the procedures provided by the Modula-2 system

for converting between strings amI other types (mlJSl Modula-2 systems provide a wide

varieLy or suel, conversion procedures) or a lIscr-wrillen procedure.

For further clarification consider the following sequence of procedutc calls, which is

generated by the translator from the Fortran READ stalement abolle:

FOI1llat ("12, F6.2, 14")j
Read_Int(I);
Read_Rl<X) ;
Read.lnt(N):

87

All of the procedures invoked are imported from FinOut. The procedure Format is used

to initialize variable(s) used to store the format description supplied as argument, as well

as to initialize a pointer of the 'next applicable format descriptor'. Procedures Read..lnt

and RlIl8d..Rl read a single value (of integer and real type, respectively) into the variable

supplied as argument. One such read procedure is assumed to be defined in FinOut for

input of each of the types represented in Fortran programs. These procedures reference

the format descriptor pointed to by the 'next format descriptor' pointer to determine how

many characters are 10 be read from the input stream and how to convert the resulting

string26• They are also responsible for updating the pointer after the read operation. Nat·

urally, this updating can be complicated by the existenccof repeat counts associated with

descriptors, and by the possibility of "r~scanning" part or all of the format description

when the number of variables in a READ statement is greater than the number of de

scriptors, but this simply implies that more than a pair of variables are required to control

such formal-driven input.

The translation of READ statements with array variables can be accomplished with

the same strategy, using iteration. For example, consider the following Fortran code:

INTEGER NIDll(10), NUK2(10)

READ 30, X,IMil, (NUH2(I),lcK.N)
30 FORHAT (F5.1, (13»

Its translation is the following:

FROM FinOut IMPORT Format;
FROM FinOut IMPORT Read_Rl;
FROM FinOut IMPORT RlIl8d_Intj

VAR NUMi: ARRAY (1. .10) OF LONGIHTj
HUH2: ARRAY (1. .10) OF LONGINTj

Format("F5.1, (13)") j

Read_Rl(l);

?tIn pradice, more than one dete.iptor may come to bur on the inpul of a aingle vlLlue, nel, wh~n
All I or ~I;",h rlcocriptor appeArs in a fortn ..1description.

88

FOR i :- 1 TO 10 00
Read_Int(NUM1[i])

END;
FOR I :- M TO H 00

Read~Int (NUM2 (INTEGEII.(I»));
END;

Note that the same framework could be used for llandling lis! dirccled[Qrmatling(inplll

'controlled' by the input list, in which separatl)rs are used to delimit values reprC5Cntcd in

records). For instance, the statement

READ ., A,B

is converted into

FOI1llat("*");
Read_II.1(A);
Read_R1(B) ;

In this case, the procedure ReadJ\l will detect the use of implicit formatting and ad

accordingly (including the skipping over of separator dlaraClers).

5.7.2 The WRITE and PRINT statements

The same general strategy can be employed in the treatment of formi\Ued output in

Fortran. Generated Modula·2 programs will import from FinOut procedures for outputing

values of each (printable) Fortran type. When an output operation is being performed,

FinOut maintains a representation of the format description which npl,lies, anll a pointer

to the 'nl!xt appJicabll! dl!scriptor' in that description. Till! implementatiOl1 of the output

procedures in FinOut is simplified by typical feature of Modula-2 library [Jrocedures for

output which require the size of the field on which values are to be printed lo be specifIed in

one of the arguments. Some <tdditional care will have to be laken within these procedures

to account for any control characters specified in the format description. Moreover,these

out]lU~ procedures must be able to detect and react to the existence of apo",lroJlllf~ clli/ing

(ie., when character constants appear in format descriptions for output).

For example, consider tile following:

PRINT 40, X
40 FOIUlAT ('0', 'The value of X ie', F6.2)

Its translation is the following:

Fonnat("'O', 'The value o:t X is', F6_2"):
Write_RI(X)

In this example, the procedure Write..RI must first cause the control character iUld the

string constant to be output prior to printing the value of Xin the format prescribed.

The PRINT statement in Fortran is the "sh'1rt form n of the more general output

sta~ement, the WRITE statement, which includes a control list. The WRITE statement,

as well as ~he general form of the READ statement, can be translat.ed only if additional

Fortrnn I/O staternenl.s are handled (such as the OPEN and CLOSE statements - see

following section). Since these additional statements are not handled by the translator, the

WmTE statement is not translated although the underlying strategy for the translation

of the WRITE statement would be the same as that described for handling the PRINT

statement.

5.7.3 Other I/O statements

Thl! translator docs not handle any I/O statements other than the READ statement (with

Ollt a control list) and PRINT statements27• Again, the motivation for this decision is

based on the necessarily non-standard nature of any translation strategy for Fortran I/O.

Dut it should be stressed that such a. translation is not necessarily impossible for any

given Modula·2 system. For instance, the Fortran I/O statements OPEN and CLOSE

have clirect counterpar~s in TopSpccd Modula-2, namely the Open and Close procedures

in module flO, and dilTerences between them arc rclati\'ely minor. TopSpced also provides

procedures for file positioning (GetPos and Seek) which could be used in the implemen

tation of the Fortran statements BACKSPACE, REWIND, INQUIRE, and ENDFILE

"CO"lle<illtnLly, rormatt.tdinltrnald~talransferiAnot handled. Altcrnativtlueditcuuedi" theco,,
c1"di"Kchaptcr.

90

without great. difficulty (the major differen(:e belween the Fortran statcmcnts and thc

Modula-2 procedures arc that the latter are byte rathcr than record oricnted).

91

Chapter 6

Implementation

6.1 The attribute grammar

In this Sllctioll an oV(!fvicw of the AG describing the lranslation is given. A single troo

is llscd 10 represent the entire executable Fortran program, and the usc of attributes is

described largely in terms of tree structures.

Attrihutes in the grammar can be characterized by their usc. Environmental aflributes

arc attributes used to generate information about the environment of a program. At

tributes of this lyf'<! typically derive their values from the definitions and declarations

(implicit or explicit) of cntitil.'s in the Ilrogram (ie" most environmental information is

derived from specification statements), and their values arc used in the construction of

Modllla·2 definitions and dcdarations.

We can distingldsh from environmental attributcs those which are used primarily in

the generation of code for executable statements. These a.ttribules derive their valucs

from tin: usc or entities in lhe exccutable statements of tile program (in conjunction wilh

cnvirollll\cnt;,.] attribute valucs).

92

6.1.1 Environmental attributes

As the global variable concept docs no~ exist in Fortran, most environmental information

for a given program unit is derived from the subtree representing the Jlrogram unit.

The main attributes used for the representation of environmental information within a

given program unit arc en'o'_in, env_out, and env. Tile lirst two (inherited and ~;'nthClib;etl

aUributes, rt'spec~ivc1y) arc used to aCCllmlll(lte the environment of a program unit l . Clnv

is used to pan the complete description of the environment. '.\'n~hesi1.ed by Clnv_out at the

root ofthesubtrcc for a program uni~ back into the nodes in ~he subtrec; more Sl,,!cilically,

env is inherited by some internal nodes in the subtree, for the mostlli\r~, nodes in snhlft'<.'l\

representing tile cXe<:utable statemen~s'.

The domain or these attrilJutcs is a list of cnWy f/cscrilllio1IS. Each ellti~y dcscrilltioll is

a structure consisting or fields for: the name of the entity (asymhol), ib type (integer, relll,

character sIring, untyped, etc.), a description of the object it relucscllts (the lIature ortlie

description depends 011 whether it is a constant, variahle, array, dHllllny variable, dUllImy

array, statement function, cxll)fIlal function, or dummy procedure, etc.), its memlletllhip

in a common block or equivalence dass, and whether or not i~ is to be 'saved'.

As Fortran does not require the declaration of variables before their appearance in exc·

cutable (and DATA) slatements, env_in and em'_oU't arc used to gather the environment

of a program unit from both the speciliulion statements and the executable stalctnellts

in a program unit.

The environment is updated eaclllime a newelltity is declared (explicitly or implidlly)

or additional information about an entity is spl)cificd (sHch as whell 11. previously typt'(l

IOften, a p.ir ofatt,ib"les· one inherit",l and ollesynlhcsilcd· are II..,.] ill Inmkm to &eel,mul.le
in[orm.t;ono[lheaamelypeinahec:or."bl,ec:.TYl'iully,lhev,rJueoflllcinhcriledaltril",tcat.nn,l"
rcprcacnt8 th"aCCllmlll.led infor",.tio" pr;or 10 cncountcring th",lructurllrepr"""nl",1 bylhcnOllc,whil"
Il,e value oftheco"""pondings,ntl,eai.e,lau,ibute attlLcnodc,cl',escnls tJ,ca(clirnul.tCtl j"fo,m.tion
nft.rthe otruclure'''I'les''lIted b)'th no.r" hubccn "nconnl",,,,l. Alhib"tcs<!tIvJII and cnv-OlIt.rc
nch a pair. In thAG, Ih" nanlin8""" ...~"tion fo.o"d, I'.i,.iolonm. tl,cinl,,,rit,,,l.ll,ibllk nam,,!>y
'.Ill'ond tloc'.I'nthClliU<lllttributena"'e b,'.ont'.

'Subtr«t'.pr....,nlingtheuprcssi."'.in.t.te",c"LflillcL;ond"r."ilion.;~h".ittJ.c ""Vi">IIlIICIII oftL"
flrog'llm unit modir.C<lID i"dudc onl)' those clllillCll which do not hvc the "'nc nam" as .ny of ;ls ,h,,,,,,,y
."nm.nta, ...d only thOM: 11.lc",e"t rll,,~t;o,," which 1,,««1c it. ddil,itio".

entity is dimensioned through its appearance in a DIMENSION statement}. Additional

entities may be added to til.! ellvironment which do not correspond to Fortran entities

when executable statements whose translation involves the addition of auxiliary variables

(such as the DO statement} areencoulltcred.

Several attributes arc used to support the computation of ULe environment. Attributes

imp. in and imp.out arCl used to gather and represent any implicit typing rules specified in

a program unit. These rules arc used to determine tile types of unexplicitly typed entities.

All subtrees for program units inherit the Fortran default implicit typing rules, some or

all of which may be overridden by typing rules specified in IMPLICIT statements.

The attributes lab.in and lab.out arc used to generate alist of all labels of executable

slatcmcnts in a program unit.

Attributes representing entity a.ssocia.tion

Tllcre are also attributes whicll represent morc uetailed information ahout entitics than

that rellresented in env. In particular, attributes are used to represent the association

of entities in a program unit with common blocks and/or equivalence classes. Whilc the

delinition in enT of an entity which is in a common block or equivalcnce class includes a

reference to the particular block or class with which it is associated, these attributes de

scrihe their relative positions in the storage sequence with which they are associated. The

atlrihlltes eblke_in and eblkB.out accumulate descriptions of the COlUmon blocks refer·

enced in a program IIni~, while the attributes equiv~classes~inand Ilquiv_classeB_out

arc used to accumulate and represent the equivalence classes in a program unit.

This abstraction of the particulars of the CLSwciatiOli of en1ities from the general u(!+
scription or the environment in env is done for two reasons: firstly, the relative positions

in a storage sequence of associated entities is not, strictly speaking, necessary for the

generation of codc for executable statements (ie" it is sufficient to know which block or

eqdvalence elMS an I!ntity is associated with in ordl1r 10 gl1nerato rdl1rl1nccs to it in the

Modula·2 program). Secondly, by centralizing such information in these attributes, the

94

computation of the relative positions of associated entities is facilita.ted. Moreover, r.om

mon blocks are global objects, and information aboll~ their declaration wi~hin a program

unit has to be pas~d 'outside' orthe subtrees for program units (s~ below).

The compu~ation of the values of <::blh and equiv_C:la811l13 is Iione ill two dilltinct

phases. The first phase consists of extracting the rowinformation provided inllpccificalion

statements. A list of all referenced common bloch is generated from the COMMON

statements, along with the nam~, characteristics (ie.• type and structure), and order or

appearance of the entities in each block. From the EQUIVALENCE statc.llcnts a Hilt ill

generated each clement of which corresponds to a single EQUIVALENCE statement (ie.,

a list of variable names, array names, and array clement names which :\llpear in the sallie

equivalence statement- we call such a list an equiooltmccli.l:I).

The sC(ond phase consists of three steps. Fi~st, for each equivalence !illt the relative

offsets of each entity from the start of tile storage se1lucnce implied by the list are com

puted. Seconri, disjoint equivalence classes ate formed by 'merging' equivalence lish whicll

share eutitics, generally resulting in the modification of lIle relative offsets of some of the

entities. Finally, equiva1ence classes which contain at least one entity whith is a Illcmher

of a common block are 'merged' with their associated COllllllon block, Ilossibly resulting

in further modification of the value of the olTsets of entities in the ellISS. The final vallie of

the offset computed for a given entily in an equivalence class is Ilscd in the constructiou

of the record field associated with it in the Modula-2 program.

Subtrees for program units arc themselves composed of three maiu subtrees repre~ent

ing the declarations, the DATA statements, and tIle executable statelilentg of the program

unit. The first phase described above il' performed during the first visitl' to the llodl:'l' of

the subtree representing the declarations in the program unit. The cOlllputations corre·

sponding to the second phase are done after the first visit to the nodes of tlle declaration

subtree. Once performed, tile environment synthesized by thatsublrce is llildated to re.

~Whe~ we UBC these attribute names without the suffix", .111 and -out, the melllinll i. the value
accunlulakd by thecorreapondingpairofalt,ib"leain as"I>I,,,,,.

D5

Reel the actual mcmbership of entities in common blocks or equivalence classes (which can

now be associated with distinct integer values· see section 5.4.4) 50 that correel rdercnces

to 5uch entities can be constructed for the Modula-2 code.

Attributes inherited by program units

While most information required to rcpresent the environment ofa program unit is derived

from the subtrC() representing the unit it5Clf, some global information is nel:!ded.

Most importantly, program units may reference external procedures dellned elsewhere

in the executable program. Subtrees for program units inherit the attribute externals

which lists tllll external procedures in the executable program; these external procedure

descriptions arc incorporated into the environment represented by env. Moreover, this

information Ilfovides the basis for determining whetheragiven function invocation (which

is not a statement function invocation) is an intrinsic function invocation or an external

procedure reference4 • Naturally, all external procl:dure references in CALL statements

must usc one of the external proceduJCS described in externals.

Additionally, program units inherit an attribute which contains an integer ,alue wldch

is uniquely associated with the program unit. This value is used in the construction of

fielJ identifiers of records relHesenting common blocks in the Modula-2 code (see section

5.4.3)

Note that whilc common blocks arc global objects, the nature or their definition outside

or a given Ilrogram unit is not required within lhat program unit, since the namt'll used to

refer to locations within common blocks arC! local to the program units thal refer to them.

Attributes synthesized by program units (or global use

While most environmental attribute values are only required locally, some are nC()ded

olltside of the subtree representing a given program unit. Such attributes are synthesized

IThi.iJ a kind of ,1'Df'lcult..keQ by Ihollan.lalor. A mOle robu.t wemon coulJcheck the nltmesof
runclionlinvoked in.progTAm UQit whid do not appca.r in ell'tcrlUlls.gainIt .. lillorintrinlk fnnctKJn

"

by the root of program unit subtrees making them available to Ilodes hiyher lip ill the tme

of the entire program.

For one, the value of the attribute whith represcnts the constituents of l\. common block

in one program unit needs to be somehow combined with the values of the same II.tlrilmte

representillg common blocks in other program unib in order to construdthe tlelillitiOIl of

module COMMON in the Modula-2 program. Consequently, program unit subtrees synth..

size the ('processed') value of eblks, and the combining of the values synthesized hy all

program units is done at the root of the tree for the executable program.

As type identifiers ncedM in the Modlila-2 program arc declared outside of the mOll

nics containing the code for program unitt, subtrees for prog,'am nllih synthesize (u~illg

attributes called types_in and typu_out) a list of type descriptions for types of ~true

tllred entilies (arrays), prutedures, and dummy procedures whith arc used ali i!.rgUll1ellt~

wilhin the program unit. 1figher up in lhe tree for the exccutable program, the lInit!ll of

these type descriptions is formed, and the resnlting list is 1ISM to generale the tlefiuition

of module Types in the Modula-2 program.

FinaUy, each program unit sublrees synthesize an attribute which Ilescribcs the pro

gram unit itsclf. The value of this attribule is the name and type (subroutine or rUllClioll)

of the program unit if it is an ezlemal procedure (otherwise it has a 'nnll' value). This

information is used to synthesize a list of external procedures in the executable program

at the root of the tree for the executable program, and the synthesi1.(,'d list is ullimately

inherited by subtrees for program units in externals.

6.1.2 Code generation

All Modula-2 source code is represented in ALADIN as a list of taker!" (a user·delinell tYlle

in the AG spedficalion). A token (implemented as a. discriminated union IYllC valllr.) can

be a symbol, a string, an integer literal, a real literal, a qualified name, etc. The actnal

output of Modula-2 code is perrormed via ALADIN external fUllctions which convert the

ALADIN representation of lokens into a form suitable for output by the Pa.~cal funcliolls

"

(normally a sequence of characters). Typically, this involves accessing the translator's

symbol table.

Definitions and declarations

For the most part, the complete environment provides sufficient information for the genera

tion of the <Iefinitions and declarations in the Modula-2 code. Definitions and declarll.lioos

which arc to appear in modules corresponding to program units are generated using the

values of the environmental attributes synthesized at the root of the subtree representing

it; the value of env is used to construct the definitions of constants, unassociatf!d variables

and arrays, and forma.! parameter lists, as well as the import statements for all imported

prOC(l(llires anti translator provided types (such as Logical and Compllilx). The value of

equiv_clasS8s_ou1: is nSMto construct record variable declarations for the equivalence

classes of the unit. The value of cblts_out is used to generate import statements for com

mon blocks, types_out is used to generate import statements for types imported from

Types, and labs_out is used to construct label df!finitiol\s.

The only definitions local to the module for a program unit which are not geller

ated from the f!llvironmcntal attributes are the definitions of functions and procedures

constructed for statement functions and altern<tte returns, or import statements for pro

cedures and/or functions used ill the translation of executable statements. Generation

of these definitions is performed during code generation for executable statements (see

below).

The definition of the objects in module COMMON is based on the 'comhined' values of

cblb from each program unit which references common blocks.

Executable statements

Code generation for executable statements (and DATA statements) is performed after

the environmental information has been synthesized. TIle attribute code is primarily

responsible for syntllesizing the code. Code for executable statements is generatf!d on a

98

s~atement.by.statement basis. For instance, the code generated for an IF slatemen~ is

synthesized by code a~ th.e root of tlte subhee. representing the IF sla1ement (ni\lllri\lIy,

subtrC(!s of the IF stmt subtree will synthesize code for the condition(s) and statemenh in

~he body of the IF statement). Typically, the value of code is computed during the final

visit to the nodes with which it is associated.

A few attributes axe used to he!pcompute the value of code, and the attributes involved

depend upon the contex~ of the occurrence of code. Only a few exam pies are given here.

An attribute called type syn~hesizes ~he type of expressions. For example, in the

generation of code for an assignment statement, the value of typD at the root of the

expression subtree is used to determine whether the corrosponding Moduln-2 exprc8.~iol1

needs to be converted to the ~ype of the target variable in the assignment statement. The

same attribute is used in the subtrees of the expression to determine whether allY tYllC

conversion of operands is necessary within ~hat expression.

When cXlernal procedures are invoked with exprcssions as arguments, loJditiollal ;u\

signment statements are n(lCded to slore the values of these expressions in auxiliary vari·

abies (added to the environmellt during the first pass) prior to invocalion of the cor'

responding Modula-2 procedures. Consequently, an attribute aUX_il.UnB is alIst"ciatetl

with all ex~ernal procedure invocations, and it synthCf;izes code for such assignments, if

necessary. As external function invoea~ions are themselves expressio:lS, this attrihute iH

associated with all expressions. In order to avoid unneeded generation of such auxiliary

assignment statement code (such as when an expression appears in any context otber

tllM as art argument), expressions inherit yet another attribute which indicates whether

it represents an actual argument or an external procedure or not.

Code for the definitions of statement functions also must be oonstrnct.ed 1IIIcr the

oomplete environment 11M been synthesized (as expressions in statcment functions may

reference entities which are not dummy arguments). Attributes called fun_deh.in and

tun.detll.out are used to accumulate a list containing descriptions of the statement

functions of a program unit, and the synthesized list is used to generate the necessary

99

Modula·2 definitions.

6.2 Scanner preprocessing

A few minor transformations on the Fortran source code are performed by the scanner.

These are done to avoid one of three kinds of problems: the r''Ierloading of syntactic con

structs, the weaknesses of the LALR(l) parser generator, and the difficulty of expressing

certain syntactic features of Fortran using context free grammars. These transformations

arc described bdow.

6.2.1 Overloading of syntactic constructs

This situation ariscs when semantically different constructs suare the same syntax. To

hamlle such cases, two approaches arc possibleS: either a single production can he used

for 'boLlL' collstrUtts (ill whith Cil.'ie the semantic rules iUisociated with the production

<Iistillgllish between the lWo), or different productions can be used for each (in which CMe

the Jlarscr - with tIle aill of tIle scanner - must somehow distinguish between the two

cases).

Examples of s\lch canmcts exist in Fortran. For example, array element assignment

statt'lllenls and statement function definitions s~.are the same syntactic structure. In the

AG for the translator, a single production is uf~d for both and the semantic rules determine

the oomantics of the structure on tIle basis of the definitions in the environment. The

drawback of this approach is thAt the associated scmantic rules become cumbersome; a

numller of attribute occurrenCeS afe defined which really only playa role in one case or the

other (for instancc, the attribute synthesizing the definition of a statement function mllst

be defined evrll for the CMe when the construct is an array clement assignment statem~llt).

Most aHribllte exprcssions in semantic rules bad Lo be made into conditionals in which

the v~lue chosen depended on the description or the defined or referenced entity in tlte

~ An alternative ol.;>.I('IIY for AG basal tn.nalalion Is dillCuQ('(\ in [f\r 89].

100

environment. Moreover, this overlooding is propagated through the productions; jll~t as

a structure such as l(X, Y,Z)"X+Y+Z is either a statement function definition or all array

element assignmenl, GO is (I,Y ,Z) either a dummy atgllmentlist or a list of subscript

expressions, and Xeither. dummy argument or an expression, and so on. Worse sUll~

additional attributes had to be introduced into the grammar to propagate the cOliLut

derived by the semantic: rules further down into the tree (so that, for instance, the correct

code for x, Y, and Z is generated - either formal parameter declarations or expressions).

The translator employs a different strategy for handling expressions and assignmcnt

statements (in which the target of the assignment is a variable). Just i\S an cxprcssion

consisting of a single name can be either an arithmetic expression, a logical exprcssioll,

or a character string expressioll, so can an assignment statemcnt of the form <name) •

<nlUlle> be either an arithmetic assignment statement, a logical assignment statement, or a

character assignment statement. As the semantics of each arc diffcrent (and consequclltly

the semantic rules associated with them), the translator defltles separate productions for

each.

In order to accomplish this, however, the parser must be able to distinguish between

the names of entities of tlll!dirrerellt tyIJl!S to determine which production has been apillied.

Since parsing is performed before the execution of semantic actions (ie., the cvaluation of

attributes), the additional inrormation needs to be snpplicd by the scanner. In thc trans·

lator, the scanner recognizes logical and character st.ring names as different kinds of tokells

from all other symbols. To facilitate the scanner's task, the translator requires that both

LOGICAL and CHARACTER string names be explicitly typedo. In its im[llementation,

the scanner recognizes LOGICAL and CHARACTER type statements, and 'rcmembers'7

names which have appeared in thel1l, so that when tlley arc encountered anywhere in thc

tcst of the program unit the appropriate token type is returned to the parser.

'Thi. restriclion could be removed by Ihe implemenlalion of a more powe'lu] scanner which reeogni•.,.
iml'liciltypingru]elp«ificatinn•.

'this hid 10 be implemenlN by introducing an u.i1ilfY symbol lable into the tron.lator, ~inc" the
Innolator. regular aynlbol table lOU "artieullrly uncoop..ali~e in u.ociltingdifFcrent token lyPl'" wilh
Iymbola oilIer Ihln thOle l'TaVidN by ~ht.,..tem.

101

6.2.2 Parser limitations

A courla of syntactic features of Fortran could not be handled by LALR(l) parsing.

Problems arose dUl! to the significance of textual positioning of statements in Fortran

programs (therl! is nl!ver any ambiguity in FOrtran about where one statement ends and

another begins b~ause they will always be on textually different lines).

For instance, the tokens ELSE and IF appearing in succession can signify one of two

things; either the start ofa so-called ELSE IF statement (if they appear on the same line)

or the start of an ELSE statement the first statement within which is an IF statement.

This creates an ambiguity for LALR(l) parsers. To resolve the conflict, the scanner

converts ELSE IF statements into a single keyword ELSEIF, and that keyword is used in

the production rule for block IF statements.

A connict also arises when DATA statements are not somehow explicitly terminated.

Consequently the scanner inserts a special marker at the end of DATA statements, and

this ffifU'kcr appears in tile production for DATA statements.

6.2.3 Shared terminal statements in DO loops

Another problem was to express the sharing ora terminal statement ofa DO loop by more

than one loop. An example is the following:

00'20 I .. 1,10,2
DO 20 J ;; 1, I

SUM-SUM"'J
20 CONTINUE

SHch structures are awkward to express using context free grammars. To avoid this prob.

lem, the scanner converts DO loops into the foHowing form:

DO <label>. <ident> • <expr> , <expr> [, <expr>]
{ <statement> }

<label> <statement>
EtfDDO

10'

Thus each DO statement is paired with the keyword ENOOO. So the example above would

be transformed by the scanner into

DO 200, Ie 1,10,2
DO 200, J. 1, I

SUM. SUM + J
200 CONTINUE

EMOOO
ERODO

The scanner uses a. 'label stack' to store labels of terminal statements. When the start

of a DO loop is detected, it pushes the label of its terminal statement onto this ~tack.

Whenever a label appea.rs in the code which follows, it checks to sec if it is the sa.me all the

one currently on the top of the stack; if it is, the stack is pOllped a.r.d the keyword 'EMDDD'

is put into tho token stream artor the statement labeled by it. This process is repeated

until tho label on the top of the stack is no longer the same as the terminal statement

label.

6.3 The translator

Tile translator consists of about 4(;,000 lines of Pascal code generated by the GA G system

from an ALA DIN attribute grammar specification of approximately 7000 lines (roughly

one third of which are ALADIN function definitions). The context free grammar contains

250 production rules with 110 nOli terminal symbols. The attrlbutegrammar contains 1200

attribute niles, lOO of which arc semantic conditions, and defines <100 attributes.

The translator currently runs on a MicroVAX III under an Ultrix operating system. A

shell procedure provides the interface between the uscr and the GAG generated program.

Input to the translator consists of any number of files each containing source code for

any number of Fortran program units, lIut only one main program unit lIlay appear in

the ~ource files. The output tonsisU of a number of files each containing a Modnla

2 module definition (the definition and implemcmtation modules of a given scparately

103

compiled module are stored in separate files). The output files are named in accordance

with TopSpeed Modula·2 file naming conventions.

It should be noted that the translator is not intended 10 be a full syntax and semantic

analyzer (or Fortran·77 programs. A number of semantic checks are performed on the

source code by means of semantic ronditions, however, this checking is not complete

(although the translator could be extended to exhaustively perform such semantic checks).

A complete syntactic check, in accordance with the context free productions. is performed

by the embedded parser, and messages arc produced for syntax errors. Messages are also

output upon detection of numerous semantic errors and violations of translator imposed

restricl.ions on Fortran programs. A complete listing of the restrictions imposed by the

translator isinduded in chapterS.

104

Chapter 7

Examples

In this chapter we present a. couple of short but complete examples. The cxamplCl1 arc

intended to provide some sense of the jltllJ()ur of thC! translator-generatetl programfi. The

fil'llt consists of a number of program units which manipulate entities in a com mOll block,

while the second consists of a collection of program units which commllnicatc via Jlaramcler

passing mechanisms.

7.1 Example 1

Fortran-77 source code:

PROGRAM EXAK!
COKMON fBLK! N,A(200)
LOGICAL ASCEND
LENGTH • N
IF (ASCEND(LENGTII» CALL REVERS
END

LOGICAL FUMCTION ASCEND(LN)
• returns true it first LN element!! in A (in BLK)
• are in ascending order

COMMON fBLK! N,A(200)

ASCEND'" .TRUE.

I-t
20 IF (I .GE. LN) TREN

105

RETURN
ELSE IF (A(I) .GE. A(I+1» THEN

ASCEND'" .FALSE.
RETURN

END IF
1"1+ I
GO TO 20
END

SUBROUTINE REVERS
COMMON !BLK! N, 11(200)
MIDDLE .. N ! 2
DO 10 I -1, MIDDLE

CALL SVAP(Q(I), Q(N+1-1»
10 CONTINUE

END

SUBROUTINE SWAP(A,B)
TEMP" A
A-B
B .. TEMP
END

BLOCK DATA INITBLK
COKMON IBLKI N,,I.(200)
DATA N/51 .1.(1) ,A(2) ,A(3) ,.1.(4) ,"(6)/5,4,3,2, II
END

Generated Modula-2 code:

MODULE EXAHI;(. main program module .)
FROM COMMON IMPORT BLK;
FROM ASCEHO.O IMPORT ASCEND;
FROM REVERS.O IMPORT REVERS;
FROM Types IMPORT Logical;

VA'
LENGTH: LONGINT;

BEGIN (. module body .)
LENGTH :- BLK.N_I;
IF BOOLEAH(ASCEHO(LEHGTH}) THEN

REVERS;
END; (. IF .)

106

EtiD EXAMt. (. uin program module .)

DEFINITION MODULE ASCEND_O,
FROM COMMON IMPORT BLK;
FROM Typu IMPORT Logical;
PROCEDURE ASCEND (VAR tN: LONGINT): Logical,
END ASCEND_O.

IMPLEMENTATION KODULE ASCENo.O;
PROCEDURE ASCEHD (VAR LH: LONGINT): Logtcal:
LABEL LlI.b.20;
VAR

ASCEND: Logical;
I: LOt/OINT,

BEOIN (t procedure bl)(!y .)
ASCEND:- Logical(TRUE);
I :- 1,
Lab_20: IF (I>-LN)THEN

RETURN ASCEND:
ELSIF (BLK.A_2[IIfTEc:ER(I)]>=BLK.A_2[INTEOER(I+1)]) TIlEH
ASCEtlD:- Logica.l(FU.SE):
RETURN ASCEND,

END;
I :- 1+1;
GOTO Lab.20~

RETURN ASCEND:
END ASCEllD: (_ pl"ocedure bod.y .)
END ASCEND_O.

DEFIt/ITIOIi MODULE REVERS_O:
FROM SWAP.O IMPORT SWAP;
FROM COKIION IMPORT BLK:

PROCEDURE REVERSO;
END REVERS_O.

IMPLEMENTATION MODULE REVERS_O:
PROCEDUR.E REVERSO;
LABEL Lab.tO;
VAR

HIDDLE: LONOINT:
I: LOt/OINT;

(. transhtor generated variables .)

107

Start_1: LONGINT;
LilIIit-1: LONGINT;
ItuCount_1: LOHGINT;
IterCtrl_1: LONGINT;

BEGIN (. procedure body.)
MIDDLE :. BLK.H_3 DIV 2;
('" DO I •...•)
Start_l : .. 1;
Limit_l :- HIDDLE;
I :" Start_1;
IterCount_1 :. Limit_l - Start_1 + 1;
FOR IterCtrL1 :.. IterCount_l TO 1 BY -1 DlI

SWAP(BLK .Q_3 [INTEGER(I)] ,BLK. Q_3 [INTEGER(BLK .H_3+1-1)]):
Lab_ill: ;(. continue .)

I :. I + 1:
END:(. DO loop .)
END REVERS; (. procedure body.)
END REVERS_O.

DEFINITION HOOULE SWAP.0;
PROCEDUflE SWAP(VAR A: REALjVAR B: REAL);
END SWP_O.

IHPLEMl',NTATIOH HODULE SWAP.O;
PROCEDURE SWAP(VAR A: REAL;VAR B: REAL);
VA'

TEMP: REAL;
BEGIN (. procedure body')
TEMP :. A;
A :.B;
B := TEMP;
END SWAP; (. procedure body.)
END SWAP_D.

DEFINITION MODULE Types;
TYPE
Logical" LOHGWORD;
END Types.

IMPLEMENTATION MODULE Types;
BECIN
END Types.

108

DEFINITION MODULE COMMON;
VAR
BLK: RECORD

CASE tag: SHORTCARD OF
1,

If_I: LOWGINT;
A_I: AMAY INTEGER[1..200] OF REAL;

I 2:
N_2: LUWGINT;
A_2: ARRAY INTEGER[1. .2<lO] OF REAL;

1 3:
N_3: LUNGINT;
Q_3: ARRAY INTEGER[1 .200] OF REAL;

I 4:
N_S: LaNGIll!;
A_S: ARRAY INTEGER[1. 200] OF REAL;

END
END:

END COMMON.

IMPLEMENTATION MODULE COMMON;
BEGIN (. lIIodule body.)
BLK.N_S :_ 5;

BLK.A_S[I] :=UAL(5);
BLI<.A_S[2] :;oREAL(4);
BLK.A_S[3] :"REAL(3);
BLK.A_S[4] :"REAL(2);
BLK.A_S[5] :=R.EAL(l);

END COMMON.

7.2 Example 2

Fortran-77 source code:

PROGRAM HAIN
initia.li:z:. and find elilll of an array
DIMENSION VECTOR(10)

INTEGER N
DATA SUM/OI
READ 3D, N

'09

30 FORl'lAT (I2)
CALL INITIA.LIZE(VECTOR,N)

SUM - GETSlJK(VECTOR.N}
PRINT 20, SUM

20 FORMAT (. The SUal of the elementl 1s " FlO.3)
EMD

SUBROtITINE INITIALIZE(V,N)
initialb:, lit If 11811l,ntl of V
INTEGER I
REAL VUO), INC
DATA INC/82/
00991 -l,N

V(I) .. I + INC

99 CONTINUE
END

REAL FUNCTION GETSUH(V,N)
retums Bum of 1st If elementl of V
REAL vUo)
CETSUM • 0
00881 -1,N

GETSUM - GETSUM + v(I}
88 CONTINUE

END

Generated Modula·2 code:

MODULE MAIN j (. lllain progrMl module ,)
fROM IlfITIALIZE_O IMPORT INITIALIZE;

fROM GETSUH.O IMPORT GETSUHj
FROM Types IMPORT Tarr.rl.l0;
FROM FinOut IMPORT fornat;

FROM UnOut IMPORi Read.Int:
FROM UnOut IMPORT Wrlt1.Rl;

VA'
SUM: REAL:
VECTOR: Tarr.rl.10:
If: LOlfGINTj

BEGIN (. IIlOdule body')

(. tranllation of DATA statements .)

110

SUM :- REAL(O):
(. tranl111tion at execut.ble stateJllentl .)
Format("I2"):
Read.Int(If):
IHITIALIZE(VECTOIl,II) ;
SUM :- GETSUM(VECTOR,N);
FOI1llat("' The SWII ot the elements ill " FI0.3");
IIrite_RI(SUK};
END MAlH. (. main progrp module .)

OEFINITIOIl' MODULE Types;
TYPE
Tarr.rl_l0- ARRAY INTEGEIl[1. .10) OF IlEAL;
END Types.

IMPLEMENTATION MODULE Types:
BEGIN
END Types.

DEFINITION MODULE INITIALIZE_a;
FROM Types IMPORT Tarr_rLl0;
PROCEDURE INITIALIZE(VAR V: Tarr_rl_l0:VAR N; LONGIHT);
END INITIALIZE_a.

IMPLEMENTATION MODULE INITIALIZE.O;
VAI\ (. "laved" variables .)

INC: REAL;
PROCEDURE INITIALIZE(VAR V: Tarr.rl_l0;VAIl H: LONGIHT) i

LABEL Lab_99;

VA.
I: LONGIIIT;

(. tranalator generated yarh.bleB .)
Start.l: LONGINT;
Limit.l: LONGINT;
IterCount.l: LONGIHT;
IterCtrLl: LONGIHT;

BEGIN (. procedure body.)
(.001)
Start.1 :- 1:
Limit_1 :- H;
I :- Start_I;
IterCount_l := Li..lt_l - Start.l + 1;
FOR IterCtrl.l :- IterCount_l TO 1 BY -1 00

111

V[INtEGER(I)J :- REAL(I)tINC;
Lab.99: ;(t continua +)

] :-1+1;
END;(. DO loop .)
END INItIALIZE; (+ procCldura body t)
BEGIN (a modula body a)
(+ tranalation 0% DATA statalllents .)
INC : - REAL(82);
END INItIALIZE.D.

DEFINITION MODULE GETSUM_D;
FROM Types IMPORT Tarr_rl.10;
PROCEDURE GETSUH (VAil V: Tarr_rl_10;VAR N: LONGINT): REAL;
END GETSUM.O.

IMPLEMENTATION MODULE GETsUM.O:
PROCEDURE GETSUM (VAil V: Tarr-rl.10;VAR N: LONGINT): REAL;
LABEL Lab_S8:
VA>

GETSUM: REAL;
I: LOHGINT;

(. translator ganerated variables .)
Start. 1: LOIIGINT;
Limit.1: LOHGINT;
ItuCount_1: LONGIHT;
IterCtr1.1: LONGIHT;

BEGIN (. procedure body a)

GETSUK :- REALeO);
(aOOI_)

Start_l :- 1:
Lillllt.l :_ H;

I :" Start.1;
ItarCount.1 :" L.!.mit.1 - Start.1 + 1;
FOR IterCtrLl := IterCount.1 TO 1 BY·1 DO

GE:rSUK : .. GETSUM+V[INTEGER(I»);
Lab.B8: ;(a continua .)

1:-1+ 1:
ENO;(. DO loop .)
RETUItH GETSUM;
END GETSUM; (. procedure body.)
END GETSUM_O.

DEFINITION 1l0DULE FinOut;

112

PROCEDURE FOJ'llat(FonaatS'tring: ARRAY OF CHAR):
PROCEDURE Read_Int(VAR Val: LONGIIlT):
PROCEDURE \/rit8_Rl{Val: REAL):
END FinOu't.

Note that since the translator does not provide an implementation of the I/O procedures

in FinOut, the implementation module of FinOUt does not appear in the output rrom the

translator in lhis example.

113

Chapter 8

Concluding Remarks

8.1 AGs and GAG

One drawback of AGs is that they are not modular. An AG callnot be partitioned into

slIlaller pic<:cs which can be worked on and tested 5<lparatcly. While a number of techniques

for composing AGs have been proposed, the nature of a given AG remains monolithic

([Vag 89]). Information about every attribute occurrcnw in an AG is required to perform

dcpcmlcncy analysis and determine an evaluation order, and all productiun rules arc

nccded by the parser generator to generate parse tables. Consequently, in the devlllopmcnt

of an AG, a good deal of time is speM waiting for translators to be generated and compiled

each time a modification to the AG was made (regardless of how minor the modification

was).

With sizable AGs, tracking down circularities can lie time-consuming and requires an

uverall familiarity with the AG. The source of a circularity intraluced by even a subtle

typing error can be hard to find as it can propagate through hundreds of productions in

the AG.

Similarly monolithic is the Pascal program generated by GAG. Compilation was time

consuming and strained the capacity of the Pascal compiler (whkh had to be extended in

order to handlcthcg(!nerated translator).

114

ALADIN provided a sufficiently powerful range of types to represent all ~mnntic

information that was needed for translation. Moreover, it Wall generally easy to modify

the AG to represent additional information by either extending the domains of altribllte

values or by introducing additional attributes into the AG. Fbr instance, the domain of

lilnv Wall extended several times without great effort over the course of the translalor's

development.

Problems with the GAG system

While in gl!neralthl! GAG system proved to be powerful, a felll troublcsomo features were

encountered. These are summarized below.

• Generally the system is difficult to learn. While the manuals are quite thorough, the

almost exceSllive formalism in the description (especially in the ALADIN manual)

made learning to usc the system more of a challenge than it need be. ExampleR arc

few and far between, and often features arc descrihed so formally that one liM no

idea how they might be helpfe\.

• In [Kas 82} we read that the generated programs are readable. Unhappily, this is

truly only the case if German is a familiar language to the user l . To the unlucky user

for whom It is not, identifiers such as SYKLAEHGEHBEREICH are far from mnemonic.

This would not be especially important ir it were 1I0t occasionally necessary (and in

the author's experience, it occasionally um8) to underlitand the roles]11&yOO by such

identiliers in the generated programs.

• Generally the diagnostics generated by the system arc extensive and Ilelpful, but er

ror recovery is ra.ther inelegant. Normally, if one of lhe passes delects unrecoverable

errors the next pass is executed regardless, resulting in core dllmps and lea.ving tern·

porary files in the working dircdory which musl be removed before GAG pr<K.cssing

'Tile GAG oYltcm 11&1 ~n developed ot III" Rescarell 'notilule at tile Univ"rtlity 01 K3Iluuhe, WesL
Germany.

115

can be re-initiated. There are also cases when the system goes into an infinite loop

(typically when wme ALADIN type definition is illegal) before reaching the protocol

phase, leaving the user with no indication of what caused the error. This was par

ticularly unfortunate when the size of the input grammar was severaJthousand Enes

in length and GAG processing took upwards of thirty minutes, making debugging

by trial and error a time-consuming exercise.

• Whj]{! ALADIN typing rules may help cultivate a defensive programming style,lh{!y

arc in general annoyingly inflexible and awkward, especially when referring to dis

criminated union typed values. The lack or string handling operations is also incon

venient, rendering the usc of STRING typed valuell next to useless. Since STRINGs are

stored in the translators' symbol table, they are no more like strings titan symbols

:uc,and there is little if any motivation for their usc.

• PGS is not the best feature of the system. When a grammar input to PGS doc! not

have the LALll(1) property, the user is left to guess where the problem is. PGS gives

no indication of wha.t llind of connict it found in the grammar, nor docs it indicate

where it found a problem, nor docs it make any attempt to resolve the conflict.

Quite simply,)~ lells the uscr nothing at all and dumps core. In the development of

the translator, it was ne<:essary to maintain a version of the CF grammar in a form

suitable for input to Yacc [Joh 18J(which provides extensive information and error

messages when connicts arise).

Perhaps the most serious problem encounlered using PGS occurred when the num

ber or symbols in the input gramma.r cxcC<!ded PGS's limit. Whilo error messages

indicated that the system could be extended by the modification or the values of

some const.a.nts in the PGS source code, it was found that these features for ex

tending the capacity of PGS simply did not work. Consequently it was necessary to

write two versions of the translator, each implementing some but 1I0t all translation

strategies.

116

8.2 Summary of restrictions on Fortran programs

The following list summarizes the restrictions which are placed on Fortran·77 programs

by thetranslat.or.

1. Constant expressions may not contain exponentialioll o~raljons. character strillg

operations,or complex arithmetic.

2. Integer CQnstant expressions used (directly or indirectly) in array dedarators Ilud

subscript expressions in EQUIVALENCE statements mll.Y contain only integer con·

stants; these expressions are evaluated at translation time to enable the compulation

of offsets of associated entities from the start of the storage sequence with which tlley

are associated. Alternatively, constant expressions could be generated for use in the

declaration of the offSet fields of records used to implement shared storage. For sllch

an approac11 to be feasible, additional constraints would likely have to be imposed

on the form of EQUIVALENCE statements (such as requiring the firsl entity in the

list to share its first unit of storage with the first unit of storage in the entire storage

sequence).

3. Arrays may be one-dimensional only. The translation strategies for botll the repre

sentation of shared storage using variant records and the trealment of array argu·

ments hinge on this constraint. While it does not seem feasible to uniformly preserve

the dimensionality of Fortran arrays In the translation (since in Mooula·2, actual

and formal array parameters must have the same number of dimensions), the cnn·

straint could he removed by extending the translator to perform the conveuion of

multi·dlmensional arrays intoone.dimensionalarrays. This conversion would involve

declaring arrays which are multi·dimensional in Forlran as one-dimensional arra.ys

with the same number of elements. The multiple subscript expressions which appear

in array element references in the fbrtran programs would subsequently have to be

converted into single subsuipt expressions.

117

Perhaps the cleanest means of implementing this mapping of severa.! subscript val

ues onto one would be through the generation of fundions, invocations of which

replace multiple subscript expressions in an e!emel:t reference. Each such function

is a.ssociated with a particular number of dimensions (for instance, map_2 would

map all Fortran two-dimensional arrays onto one·dimensional arrays). Each of these

mapping functions would take as argument a description of the dimension declara

tor used to declare a Fortran array, along with a number of subscript expressions.

For example, a reference such as A(IHDEll.INDEX2) in the Fortran code, might be

transll\ted into Au-ap_2(desc(A) ,IWDEll,INDEX2») in the Modula-2 code, where

desc(A) represents information about the dimensions and subscript ranges of the

corresponding Fortran array. Such mapping functions would cililentially determine

the represented clement in an array element reference on the basis of the Fbrtran

storage allocation scheme ((ANS 78], pg 5.6).

4. Logical and character entiti!'s must be explicitly typed (numeric entities need not).

A more powerful scanner could eliminate the need for this constraint.

5. Numeric literals, identifiers, and Fortran keywords may not contain spacell. Again,

a more powerful 5(:anner could be employed to eliminate this constraint.

6. Character string expressions may contain only the concatenation operation; sub·

slring expressions are nol handled but could easily be translated using Modula-2

library functions for string handling.

7. If a 'name-list' in a DATA statement contains an unsubscripted array name, then

that name mllst be the only name in the list. The problematic case (see section 5.4.7)

which this restriclion prevents arises only when constant expressions are usl!d in the

dedaration of an array whose initialization is specified using assignment statements

in wllich subscripts are literals. The res~riction c<.luld be removed by using only

literals in the declaration of arrays which appear in DATA statements (as is done

with arrays which appear in COMMON or EQUIVALENCE statements). Another

118

approach is simply to print a waJning m6Sage when this situation is detected, in

forming the user that modification to certain constants may result in inconsistencies

in the mboxModula-2 program.

8. If a repeat count is used in a constantl' list of a DATA statement, then only one

constant may appear in that list, and the lepeat count should be equal to the number

of locations specified to be initialized. This constraint, along with the restriction Ulat

implied DO-lists not appear in DATA statements, were introduced soldy to keell the

size of tlu:l tnl.nslator reasonable. Both ~onlltrailltl could eouily be eliminated with

further elaboration on the current strategy employed in the translator.

9. The INTRINSIC statement is not handled, and consequently INTRINSIC functions

may not be passed as argument. Since intrinsic fundions are converted into regular

functions in rnboxModula.-2, the passing of intrinsit functions as arguments could be

handled in much the same way as external procedures are handled. Some additional

care would, however, have to re taken in the generation of type identifiers for formal

paramclers corresponding to intrinsic funttions since the types of tht arguments

used in their invocation may vary.

10. Invocations of intrinsic functions MAX and MIM cannot be translated because they

take a variable number of arguments. However, if they were converted into a 'chain'

offunction calls each taking two arguments (for lnstance,the invocation KAX a,B ,C)

can be converted into M.t.l(KA1(A,8) .C» then translation call be performed.

11. The ENTRY statement ({ANSI], pg., 15-12) is not translated. As each ENTRY

statement eITectively corresponds to a distinct subprogram, a possible strategy for

its translation is to gentrate distinct subprograms for each ENTRY statement in a

subprogram unit. This was not considered wreasonable" In this thesis.

12. RETURN statements which specify alternate returns may contain only integer lit·

erals. This restriction could be removed by converting RETURN statements with

119

integer expressions (which ue not literals) into two statements, an invocation of a

procedure whith sets the appropriate boolean variable and a RETURN statement.

The procedure would take the expression and all boolean variables corresponding

to alternate return specifiers as arguments and set one of the boolean variabl~ If

the value of the el[prCtlsion Is a positive number less than or equal to the number of

alternate retHrn specifiers in thellubprogram.

la. Corresponding dummy and actual arra.y arguments must have the same size and

subscript range. This constraint ean bll eliminated by using open-array parameters

for array arguments. Some modifitatlon of the subscript expressions in array element

references would have to be performed in invoked subprograms to compensate for

the zero-indexing of formal parameters.

14. Parts of arrays cannot be passed. That is, if an atray element is supplied as actual

argument, the corresponding dummy argument must be the same type as the array

element. A possible approach to implementing the passing of 'partial arrays' is to

pass additional information to subprograms which take "parts" of arrays as argu

ments. For instance, an olfoot value can be supplied as argument which is used within

tile subprogram to offset references to the corresponding dummy array elements.

15. Dummy procedures must be invoked at least once in the subprogram in which they

are dummy arguments. As this restriction was introduced to enable construction of

type identifiers for formal parameters which are procedures without global informa

tion, it can only be removed by a careful glohal analysis of procedure invocations.

Such analysis involves tracing possible associations between dummy procedures and

external procedures and consequently can be expensive.

16. Only the "shor~ form n of input and outpu~ statements (ie., the PRINT statement

and the READ statement without a control list) is transla~ed. This restriction

could be removed by extending the translator to handle the OPEN, CLOSE, and

file positioning statements (as outlined in section 4.5.11) using the low·level file

120

handling procedures available on the Modula-2 syslcm in the target environment.

Subsequently the procedures for reading and writing in Finlhlt could be further

parameterized to permit specification of file names (corresponding ~o device numbers

in Fortran) and file positions (corresponding to the record numbers) for I/O with

files connected for direct acccss.

17. Formatted internal data transfer (I/O from a buffer instead of an external device),

is not handled. However, the same general strategy employed in ~he implementation

of Uformat driven" I/O could be used to implement internal data lransfers. Sinc!!

the "buffers" us!!d in internal data transfers are eSSl!ntially character string varl

ables, reading and writing to an internal butTer can be implcmcmted by procedures

which are similar to the reading and writing procedures in FinDut but which acCC!85

substrings of character string variables instead of characters from an input stream;

the process of converting these substrings into different representations according to

rormat descriptions would be thl'! same.

8.3 Results

The translator runs with speed comparable to a Fortran-77 compiler. In tests performed

with fairly small Fortran programs (up to 500 lines in length) the ~ime required to ~ranslate

a given Fortran program into Modula-2 never exceeded the time required to compile the

same program2 by more than 33 per cent. These results suggest that there is room

for expansion of the translator, and that an extended translator with fewer restrictions

and acceptable performance tan bl! created using the existing framework, provided a more

powerful version of pas becomes available. Note that one would likely tolerate a translator

which is slower than a compiler since source-to-source translation is generally a one-lime

process usC!d in the oonvereion of correct programs rather than in their development.

While it was not possible to compare the run times of Fortran programs and their

'uling the UtTRIX Forlr:an·77 cornpi;r on:a Micro-VAX Ill.

121

Modula-2 counterparts (since the former were run on a mainframe and the latter on a

PC), in terms of the number of statements executed Modula.-2 programs are less efficient

than the Fortran programs from which they were generated. The ModuJa-2 programs

in general also have greater storage requirements as a relult of the addition of auxiliary

variables. A cursory examination of the examples in the previous chapter bears out this

filet. ConsequenUy, some dcgrC1! of optimbation of the Modula_2 programs ICCms to

he in order. Such optimization can be performed both during translation (for instance,

the translator could ealiily be modified to suppress generation of auxiliary variables for

expr($8ions in a DO statement when the expression is a literal) and as a post-translation

step.

The AG formalism Wall found to be a powerful tool for spedfying the translation and it

appears that the d1'5Criplion of5oufce-to--source translation, at lelUit betwC(!n languages of

the class of Fortran·17 lUId Modula-2, can quite effectively be achieved using AGs. Most

daficulties which arose over the course of developing the translator involved Incompatibili

ties of the two languages rather than with any shortcoming of AGs. The most troublesome

(and underestimated) of these incompatibilities stems from the languages' treatment of

arrays, and exemplilies a kind of problem which is bound to arise when translating from

a languase which is lower-level to one which is hIgher-level. The ability of the Fortran

programmer to control the mapping of variables onto the memory of the machine is all

example of a low-Il'vel dl'tail which Modula.-2 programs are not generaUy concerned with,

lUi they deal with more purely abslract objects3 •

A nice feature of senerated programs is their modularity. Since subsidiary modules

arc not buried in monolithic programs and are separately compilable, they can easily he

I'C-used. Thus, parl of thl' promise of the translator lies in the potential 10 translate large

amounts of subprogram material available in Fortran libraries while preserving the 'library

organiz"tion' of Fortran systems, thereby allowing morc powerful Modula-2 systems to be

~Modula_2 w,.. however deai&ned {or "Item. programmin& and provide- {eaturu ror low-level pro&ram
n.l"&,a1lhoughtheooor.alu... donollypiryth,,high·levelOavouro(th"language.

built.

123

References

[Alb 801 Source-ta-Source Translation: Ada to Pascal and Pascal to Ada.
P. Albrecht, P. Garrison, S. Graham, R. Jlyerle. P. Ip, D. Krieg-Bruckner.
SlGPLAN Notices, vol. 15, no. 12, 1980.

fANS 181 American National Standard Programming Language FORTRAN (ANSI X3.9-1978).
American National Standards Institute, New York, New York, 1978.

Inay 84] Lisp to Forlran· Program Transformation Applied. J. Boyle.
Program 1hmsformation and Programming Environments.
NATO ASI Series, vol. FB, P. Pepper (ed.), Springer-Verlag,
Berlin-Heidelberg-New York-Paris.Tokyo,1984.

[OJL 881 Attribute Grammars - Definitions, Systems and Bibliography.
P. Dcransart, M. Jourdan, D. Lotho. In Ledure Notes in Computer
Science, no. 323, G. Coos, J. Hartmanis (ed.s), Springer. Verlag,
Berlin.Ueidelberg-New York-Pa.ris-Tokyo, 1988.

(Doh 87} SETL to ADA· tre<:- transformations applied. S. Doberkat and U. Gutenben.
Inform(ltion and Software Techna1OUll, \'01. 29, no. la, 1987.

[Eng 841 Attribute Evaluation Methods. J. Engelfriet.
Methods and Tools for Compiler Conslruclion, B. Lorho (cd.),
Cambridge University Press, Great Britain, 1984.

IFar 891 A VDIIL Compiler Based on Attribute Grammar Methodology.
R. Farrow, A. G, Stanculcscu. Sigplan No/ices, ACM Press, June, 1989.

[Fro 81l A Fortran to Pascal Translator. R. A, Freak.
SofllooTe - Proclicc and Ezpcrience, \001. 11, pp. 717·732, 1981.

124

[Gan 84] Attribute Coupled Grammars. 11. Ganzinger and R. Git>gerich.
SIGPLAN No/ices. vol. 19, no. 6, June 19&1.

[CIt! 84} Modulo-! for PlUeal ProgrammerJ. Richard Gleaves.
Springer.Verlag, New ¥(\rk.Derlin-Hddclbcrg-Tokyo, 19M.

[Goo 831 DIANA· An Intermediate Language for Ada. G. Goos, W. Wulf, A. t:vanR,
K. Butler (ed.s). In Lecture Nole, in Computer Scienre, vol. 161,
Springer-Verlag, Berlirt-lfeidelberg-New York-Paris-Tokyo, 1983.

(Gro 86] UJer Mflnuaf Jor the PGS.System. J. Grosch, E. Klein.
Research Institllteat the University of Karlsruhe, 1986.

fllut 871 GCL: GAG Control Ulnguage. D. lIutt, U. KlISlens, I~. Zimmermalili.
Research Institute at tile Univcrsity of Karlsruhe, 198i.

{Joll 78] Yocc: Yet Anolher Compiler-Compiler. S. C. Johnson.
Dell Laboratories, Murray lilli, Ncw Jersey, Illi8.

(Kas 80] Ordered Attributed Grammars. U. Kastens.
Acta InJormatika, vol. 13, no. 3, pp. 229-25G, Springer-Verlag,
Derlin-Heidelberg-New York-Paris-Tokyo, 1980.

(l{as 82J GAG: A Practical Compiler Generalor. U. Kastens, U. Hutt, E. Zirnl11Cr1l11Ul1i.
In Lecture Noles in Computer Scienoe, vol. 141, Springer· Verlag,
Berlin-Heidelberg-New York-Paris-Tokyo, 1982.

(Kas 81) ALADlN - a Language/or Attri6uled Gmmmars (version 7).
U. Kastens. Universitaet-GIf Paderborn, Universitaet Karlsruhe, 1981.

(Ka287) User manualjor the GAG Syslem (version 7).
U. Kastens. Universitaet-Gil Paderborn, Universitaet Karlsruhe, 1987.

[KeI84] Tree Trartdormation Techniques and Exparillnces. S. Keller, J. Perkins,
T. Payton, S. Mardinly. SlGPLAN Notices, vol. 19, no. 6, June 19301.

{KIIZ 871 User Manunljor the GAG Syslem (version 7). U. Kll.!itens, D. lIull,
E. Zimmermann. Universitaet-GU Paderoorn, Universitaet Karlsruhe,
April 1987.

125

[Kin 88J Modulo-:: A Complele Guide. K. N. King.
D. C. Heath and Company. Lexington, Massachusetts, 'Ibronto, 1988.

[Ki2 88J TopS~ed Modulo-! Language 1Horial. K. N. King,
Jenson and Partners International, U,S.A., 1988,

(Knu 68J Semantics of context·free languages. D. E. Knuth.
Mathematical Systems Theory I, pp. 127-145, 1968.

[Kri 84] Language Comparison and Source-to-Source Translation. B. Krieg-Bruckner.
Progrom 'Runs/ormation and Programming Environments. P. Pepper (l1d.),
NATO ASI Series, vol FB, Springer-Verlag, 1984.

[Leo 87] The Design and Implementation of a Converter Writing System.
S. Leong. Proceedings 0/ Miami nchnicon 1987, IEEE Miami, Hl87

[Mci 82] Forlron-77 Featuring Structured Programming. L. P. Meissn~r,

E. 1. Organick. Addison-Wesley Slides in Computer Science.
Addison-Wesley Publishing ComplUlY, Massachusetts, California,
London, Amsterdam, Ontario, Sydney, April 1982,

[Mon84J How to Implement a System for Manipulation of Attributed Trees.
U. Moncke, B. Weisgerber, R. Wilhelm. Fachtagung fur
Progrummiersprachen ,md Programmentwicklung der GI, Proc. 8,
Zurich, 1984. Informatik·Fachbcrichte 77, pp. 112.127, Springer, 1984.

[Pag 811 Formal Specification 0/ Progrumming Languages. F. G. Pagan,
Prentice nail Inc., Nl'wJersey, 1981.

(Pet 73] On the capabilities of while, repeat, and exit statements.
W.W. Peterson, T, Kasami, and N. Tokura.
Communirolions oj the ACM, vol. 16, no. 8,1973.

ISla 83] Conversion of Fortran to Ada using an lntcrmediate Tree Representation.
J. Slape and P. Wallis. The Computer Journal, vol. 26, no. 4, 1983.

[ThIS-I) Production quality ADA compilers. J. 'ThlIer. Methods and ToolsJor
Compiler Construction, n. Lorho (cd.), Cambridge University Press, 1984,

[Ten 81} Principles 0/ Progmmming Languages. R.D. Tennent.
Prentice/Hall Intcrnalional, London, 1981.

126

[TSD 881 TopSpeed Modula-t User's Manual.
Jensen and Partners Intcrna~ional, U.S.A., 1988.

[Vog 89} Higher Order Attribute Grammars_ H.n, Vogt, S.D. Swicrstra, M.F. !\uiper.
Sigp14n Notice" ACM Press, June 1989.

{Wir 831 Programming in Modu/a-f: Second, Corrected Edition. Niklaus Wirth.
Texts and Monographs in Computer Sciente. Da.vid Gries (cd.)
Springer-Verlag, Berlin-Heidelberg-New York·Tokyo, 1983.

[Wir 85] Programming in Modu/a-f: Third, Corrected Edition. Niklaus Wir~h.

Texts and Monographs in Computer Science. David Gries (cd.)
Springer-Verlag, Bcrlin-Heidc1berg-New York-Tokyo, 1985.

(Ye1871 Attribute Grammar Inversion and Source-to-source Translation.
D. M. Yellin. In Lecture Notes in Computer Sdena:, no. 302.
Springer-Verlag, Berlin-Heidelberg.New York-Tokyo, 1987.

127

	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Title Page
	006_Copyright Information
	007_Abstract
	008_Acknowledgements
	009_Table of Contents
	010_Table of Contents v
	011_Table of Contents vi
	012_Table of Contents vii
	013_List of Figures
	014_Chapter 1 - Page 1
	015_Page 2
	016_Page 3
	017_Page 4
	018_Page 5
	019_Chapter 2 - Page 6
	020_Page 7
	021_Page 8
	022_Page 9
	023_Page 10
	024_Page 11
	025_Page 12
	026_Page 13
	027_Page 14
	028_Page 15
	029_Chapter 3 - Page 16
	030_Page 17
	031_Page 18
	032_Page 19
	033_Page 20
	034_Page 21
	035_Chapter 4 - Page 22
	036_Page 23
	037_Page 24
	038_Page 25
	039_Page 26
	040_Page 27
	041_Page 28
	042_Page 29
	043_Page 30
	044_Page 31
	045_Page 32
	046_Chapter 5 - Page 33
	047_Page 34
	048_Page 35
	049_Page 36
	050_Page 37
	051_Page 38
	052_Page 39
	053_Page 40
	054_Page 41
	055_Page 42
	056_Page 43
	057_Page 44
	058_Page 45
	059_Page 46
	060_Page 47
	061_Page 48
	062_Page 49
	063_Page 50
	064_Page 51
	065_Page 52
	066_Page 53
	067_Page 54
	068_Page 55
	069_Page 56
	070_Page 57
	071_Page 58
	072_Page 59
	073_Page 60
	074_Page 61
	075_Page 62
	076_Page 63
	077_Page 64
	078_Page 65
	079_Page 66
	080_Page 67
	081_Page 68
	082_Page 69
	083_Page 70
	084_Page 71
	085_Page 72
	086_Page 73
	087_Page 74
	088_Page 75
	089_Page 76
	090_Page 77
	091_Page 78
	092_Page 79
	093_Page 80
	094_Page 81
	095_Page 82
	096_Page 83
	097_Page 84
	098_Page 85
	099_Page 86
	100_Page 87
	101_Page 88
	102_Page 89
	103_Page 90
	104_Page 91
	105_Chapter 6 - Page 92
	106_Page 93
	107_Page 94
	108_Page 95
	109_Page 96
	110_Page 97
	111_Page 98
	112_Page 99
	113_Page 100
	114_Page 101
	115_Page 102
	116_Page 103
	117_Page 104
	118_Chapter 7 - Page 105
	119_Page 106
	120_Page 107
	121_Page 108
	122_Page 109
	123_Page 110
	124_Page 111
	125_Page 112
	126_Page 113
	127_Chapter 8 - Page 114
	128_Page 115
	129_Page 116
	130_Page 117
	131_Page 118
	132_Page 119
	133_Page 120
	134_Page 121
	135_Page 122
	136_Page 123
	137_References
	138_Page 125
	139_Page 126
	140_Page 127
	141_Blank Page
	142_Blank Page
	143_Inside Back Cover
	144_Back Cover

