TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

ERIC ROBERT MYHR, B.A., Dipl C.S

The Design and Implementation
of a Fortran-77 to Modula-2
Translator

by

© Eric Robert Myhr, B.A., Dipl. C.S.

A thesis submitted to the School of Graduate
Studies in partial fulfillment of the
requirements for the degree of
Master of Science

Department of Computer Science
Memorial University of Newfoundland
St. Jokn’s, Newfoundland
February 1990

National Library Bibliothéque nalionate
| Qysiets du Canada

Canadian Theses Service Service des théses canadiennes

Otawa.
KA ONG

copies of Idslher!!\es&hyuwmeu\sandh
any form or format, making this thesis available
to interested persons.

The author retai ip of th

L'auteur a accordé une licence imévocable et
non exclusive permettant & la Bibliothéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa thése
de quelque maniére et sous quelque forme
que ce soit pour mettre des exemplaires de
cette thése & la disposition des personnes
intéressées.

in hisfher thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without histher per-
mission.

Lauteur la propriété du droit d'auteur
qui protége sa thése. Nila thése ni des extraits
substantiels de celleci ne doivent &tre
imprimés ou autrement reproduits sans son
autorisation.

ISBN 0-315-65301-9

Abstract

A source-to-source translalor is a program which translates programs written in a given
high-level programming language into another high-level language. They provide a reliable
means for the re-use, sharing, and development of software.

In this thesis, the design and implementation of a source-to-source translator which
converts Fortran-77 programs into semantically 'equivalent' Modula-2 programs is de-
scribed.

An attribute grammar is used to formally describe the translation. Attribute grammars
are typically used in the specification of compilers and translators, and describe translation
in a syntax-directed fashion.

The translator was generated from the attribute grammar using the GAG system,
a translator/compiler writing system based on attribute grammars. Attributed parse
trees are used for the intermediate representation of the syntax and semantics of Fortran

programs during translation.

Keywords: ion, program transfc ion, attribute tran-

slator-writing systems,the GAG system, programming languages, Fortran-77, Modula-2.

Acknowledgements

This thesis would not have been possible without the support and guidance of many

and institutions at Memorial of Newfoundland,

Financial support was provided by the School of Graduate Studies through the Univer-
sity fellowship, by the Department of Computer Science through the provision of sessional
lectureships, and by Dr. Wlodek Zuberek.

My thanks to Mrs. Jane Foltz for her careful review of my thesis, and for making
financial support from the Department of Computer Science possible. I would also like to
extend thanks to the technical support stafl of the Department of Computer Science, who
never tired of lending me a hand at any hour of the day or night.

Finally, I would like to extend very special thanks to my advisor, Dr. Wlodek Zuberek,
for the thoughtful and patient guidance which he provided from the project’s inception
to its completion, From our numerous discussions evolved many of the ideas presented in

this thesis.

Eric R. Myhr

Contents

-

N

@

Introduction

1.1 Structure of the paper o i W RS B BSeE G @ W

Attribute Grammars
2.1 Definition and notation SV B VRN 8 RS S Y RS 6

22 Anexample T F 1 B R TR S & e s

The GAG system
3.1 ALADIN .
3.2 GAG processing

3.3 Structure of the generated translator

A comparison of Fortran-77 with Modula-2

451 PTORTAM BUUEHINE oo v e v wreue sosese winss o src & snecs sowine & i .
411 Modulesin Modula-2 .. .vvvviniii
4.1.2 Fortran program units 5 R o5 R SR B R 8

4.2 Parameter passing mechanisms . . . o .\ vu .t e

4.3 Passing arrays asargument e i aa e a e e
4.4 Passing procedures as argument v v v v v u e i a e
4351 TpHtARA OB (vie e wosmos mmsens svin 0 ssoze o s veuss o 8 ¢

Strategy of the Translation

5.

5.2
53

@

@
@

Mapping of Types . . . oo vv v v vennn s e R RS .
511 LOGICALdata............... S5 BeE R S N ¢
512 COMPLEXdata 5 de § s W em Y eR R
5.1.3 Character strings e v P Bk § 5 g
CORBUAHEE vve » we 5 w7 miiein simieis wmmrin e
B TCasOnE s v & s wooswis sl 2 & e .
53.1 Constant expressionso vuu S RN T W AR
5.3.2 Character string eXpressionso v v vvensnaet e s

5.3.3

Specification statements

5.4.1

Intrinsic functions, 00

DIMENSION statements

5.4.2 IMPLICIT statements and type statements . .

54.3 COMMON statements . . e
544 EQUIVALENCE statementsvvvvrvnnonnennan
545 SAVEstatementscouiusreneneieeonn
54.6 EXTERNALstatements0... Wah e aTeeE
54.7 DATAstatements R
5.4.8 Statement functions Che s
Executablestatements00ttt
851 DOSIAOMBNE soin nivie » svoie o simie « smie miaimiis sieve o simiemn
55.2 Logical Ifstatementso v vvvevnnenanannn S——
553 Block IFstatementsot vnnetnnnennnn.
554 GOTOsandLabels........¢covvevueinenonnnnns
5.5.5 Unconditional GO TO statementso00uunun
556 Computed GO TOstatement . . . v .o v vvu v v vnunoe s
5.5.7 ArithmeticIFstatement oo vv v
5.5.8 Assigned GO TO and ASSIGN statements o e
559 CONTINUEstatementso vvvvinuvnnnnnnnnnnn

-

®

5.5.10 STOP statement P I I .. 75
55.11 PAUSEstatement tesensene .. 76
5.6 Translation of SUDPIOGFAMS <« v v v evevnneee e %
56.1 Parameter passing B %
5.6.2 Passing String argumentseeeianeaeaa. s 8
563 Passing arrays as argument. A R RN MR 7
564 Subroutines . e 81
5.6.5 External functions . .) i -
5.7 Input and output statements & WA P 85
5.7.1 The READ statemer.t oA V¥ 86
5.7.2 The WRITE and PRINT statements . . . 89
573 OtherI/Ostatementsovvvn s snasns i ogies OB
Implementation 92
61 The AUEINMNEGINRMAR 5 o506 -2 ssvis s Wols o bsls B aEEs o 0”2
6.1.1 Environmental attributes cerersena.. 03
6.12 Code generation PR AR AT A o7
6.2 SCANNEr PrEPrOCESSING - + . v« v v o v v e eeeeaenneeneeenn.. 100
6.2.1 Overloading of syntactic constructs SO |
622 Parser HMMABOME . .vc o vive o vias eiowssin e o siomiose oo 108
6.2.3 Shared terminal statements in DO loops ceseaan 102
6.3 The translator B R S S ST S I 103
Examples 105
71 Examplel...oiiiroiroeotccnanessoesassnans . . 105
ol TS IS SR S e 10D
Concluding Remarks 114
81 AGSAUd GAG . oo vvvw sinv o oioiss o wivioin vime s pims voes o 114
82 Summary of restrictions on Fortran programs PP 11 ¢

83 Results.

References

vii

List of Figures

1 An APT for a Fortran PARAMETER statement v o oo v v v o v v oo vt 13

Chapter 1

Introduction

Source-to-source translation is the process of translating between high level languages; it
is a process by which programs written in a given high-level language (say S1) can be
translated into another high-level language (say S2) using some kind of program transfor-
mations which preserve the meaning of (ie., the computation described by) the program
written in S1. Ideally, the method employed should be sufficiently well-defined as to per-

mit the ion of the ion. Automated are desirable for a number

of reasons - they provide a reliable means to adapt existing software to new programming
environments and to share programs with installations having limited source language fa-
cilitics. They also allow software to be re-used; for instance, subprogram material written
in obsolete languages can be converted and subsequently used in the construction of more
powerful systems written in more fashionable languages, For the purposes of software pro-
totyping, such a tool can be used to translate prototypes (written in a language suitable
for prototyping) into a more production oriented language (as in [Dob 87]).

The practical aspect of the project described in this thesis consisted in the design and
implementation of a Fortran-77 to Modula-2 translator!. While a fully general translator
is beyond the scope of this thesis, the goal was to generate Modula-2 programs which are
"I the scquel, the term Fortran denotes Fortran-T7 1 defned in the ANSI -undard [ANS 78], and

n

Modula-2 denotes the version of the | in Niklaus Wirth's
2" (third corrected edition, [Wir 85]) unless otherwise specified.

semantically equivalent to Fortran programs with as few serious restrictions imposed on

the source programs as possible.

The underlyi ization of the jon is modeled as a two- level mapping:
Fortran programs arc first described using some intermediate representation (IR); the

second level maps the ion described in that i di ion onto the

target language Modula-2. This raiscs a number of questions. First, how should the IR,
be designed? Secondly, how can the first level of mapping be described and effected? And
thirdly, how to convert from intermediate representation of a program to its representation
in Modula-2 ?

Clearly, the design of the IR is of central importance. The method used in this project

is to represent the IR as an attributed tree. In such a scheme, attributes are used to

expross the meaning of various ing languags con Less abstractly, at-
tributes (which annotate nodes of such a tree) should store enough information about the
represented program to enable its reconstruction in the target language. This informa-
tion (which is cither explicitly represented by attributes of a tree or derivable from thein)
would need to include a description of declared objects (variables, types, constants, ...),
actions (assignment, expression evaluation, hinding), program structures (such as subrou-

tine, function, and block data control data os (arrays,

common blocks), and i ips between entities (iation of objects and structures;

for instance equivalenced entities).

Having chosen an attributed tree representation, a number of design considerations
come into play. Firstly, should a single (standard) IR having as fixed a structure as pos-
sible be used (as argued in [Tel 84]) or should a number of standard IRs be employed
in the translation. The latter approach implies a need to describe transformations of at-
tributed trees by either directly manipulating tree structures or by using attributes which
are themselves ATs (the latter approach is taken in the attribute coupled grammar formal-
ism described in [Gan 84], and in the higher order attribute grammar (1AG) formalism

proposed in [Vog 89]). Such translations describe a multi-level mapping in which ATs are

i
{

successively transformed into some (possibly) standard or normalized form. The former
approach (using a single IR) seems to be the most popular in the literature (this is the
approach taken in [Alb 80), [Leo 87), [Boy 84], and [Sla 83]). Normally the translation
procecds by reworking the source program until it is in a furm suitable for its represen-
tation in the standard IR. In [Sla 83] this reworking is kept fairly simple, and generation
of the DIANA ([Goo 83] and [Tel 84]) tree is done directly on a statement-by-statement
basis, while in [Boy 84] and especially in [Alb 80] the reworking is done in a number of
more or less discrete steps (by, in the latter case, manipulating “non-standard” trecs). In
most cases, going from the IR to the target language cod~ i~ done in a single step.

Another design consideration is whether the IR (when a single IR is used) should
be target language oriented or source language oriented. In [Sla 83] and [Boy 84] the
IR is clearly target language oriented. In [Alb 8G] on the other hand, the IR is based
on the syntax of Ada even for Ada-to-Pascal translation. In this case, however, a fairly
close relationship between the IR and the target language is still maintained in virtue
of the method employed in the translation ([Kri 84]) which is based on the definition of
“compalible” sublanguages of Pascal and Ada. In the Ada-to-Pascal translation, Ada
programs are first translated into their associated sublanguage, and thus the programs
represented in the IRt are already in a form which is (fairly) compatible with Pascal.

In the Fortran-77 to Modula-2 translator, a single (attributed parse tree) IR is used
throughout the entire translation process. The IR is based on the syntax of Fortran-
77. Attributes are used both to represent the semantics of Fortran-77 programs and to
generate Modula-2 code, and no manipulation of the syntax tree is performed. The IR
is source rather than target language oriented which complicates the task of generating
Modula-2 code from the IR. But happily the two languages bear enough of a syntactic
resemblance to minimize any subsequent difficulties. By the same token, since systems
which utilize target language oriented IRs rely heavily on the reworking of source code,
having a source language oriented IR significantly reduces the amount of reworking of

Fortran programs required. Another advantage is that the attribute grammar formalism

can be used to completely describe the translation.

The attribute grammar (AG) formalism is a tool which is well suited for describing
the mapping of source code (or more specifically, parse trees of source programs) onto
attributed parse trees (APTs)?. APTs can capture both the syntactic as well as the se-
mantic characteristics of source programs. AGs describe this mapping in a syntax dirccted
fashion. A given AG is “built upon” the underlying context-free grammar of the source
language, with attributes of APTs decorating parse trees of source language programs.
Simply speaking, an AG is comprised of two aset of context-free rules which

describe the syntax of the source language, and a set of attribute evaluation rules (also
called semantic rules) which describe the values of attributes occurring at nodes of parse
trees for source programs. Since AGs describe translations in terms of parse trees of the
source language, it was convenient to base the IR on the syntax of Fortran-77.

Moreover, AGs are not particularly well suited for describing tree transformations. In
order to do so, either the AG must be written such that some attribute(s) themselves
are attributed trees(as in [Gan 84] and [Vog 89]), or some kind of extension to the AG
formalism must be developed (as in [Mon 84], where AGs are combined with subtree

1). This considerati the use of a single IR in the
translation.

The AG for translating Fortran-77 to Modula-2 can be conceptually divided into two
parts: the first part (corresponding to semantic analysis phase of a traditional compiler)
consists of evaluation of attributes which provide semantic information about the program
being translated. The second part consists in the evaluation of attributes used for code
generation. These two parts are implemented as (for the most part) distinct ‘passes’ over
the purse tree.

Originally conceived by Knuth ((Knu 68]) to describe the semantics of programming languages, AGa
have become increasingly popular in compiler construction tasks, and a number of AG based compiler

writing systems are currently available (among them s the GAG - Generator based on Autribute Grammars
- system which is being used to implement the Fortran to Modula-2 translator).

1.1 Structure of the paper

The remainder of this thesis is structured in the following manner. Chapter 2 gives a
formal definition of AGs along with an informal description of their semantics using an
example. The GAG system is described briefly in chapter 3. In chapter 4 a comparison
of Fortran-77 with Modula-2 is given, with particular emphasis on the features of the
languages which play a significant role in the translation strategy. Chapter 5 contains
a discussion on the strategies used to convert various Fortran constructs into Modula-2.

Chapter 6 describes i ion details of the translator, including a discussion of
the AG used to specify the translation, and some characteristics of the GAG generated
translator. Chapter 7 gives some examples of input to, and output from, the translator.
The final chapter contains concluding remarks, including a summary of the restrictions

of

imposed on Fortran programs by the some for the

these ions, a iption of the dif ies which arose during development of the

translator, and discussion on the more successful results.

Chapter 2

Attribute Grammars

An aliribute grammar (AG) is a context-free grammar (CF) along with a sct of attributcs,
semantic rules, and semantic conditions in which a fixed number of attributes is associated
with each nonterminal symbol in the CF grammar. The semantic rules are written so that
each string generated by the CF grammar is associated with a value (normally given by
attributes of the start symbol of the CF grammar). AGs are a useful tool for programming
syntax-directed computations such as compiling and translating. In such applications the
underlying CF grammar is the grammar of the source language, and the semantic rules
are written so that the value of a string in the language is its translation into the target
language.

The following section gives a formal description of attribute grammars, and is followed

by an informal description of their semantics using an example.

2.1 Definition and notation

An AG is defined as a 5-tuple ([Kas 80], [DJL 88, [Yel 87]):
AG = (G,Attr,Val,Eval,Cond)

o G is a context-free grammar (which describes the syntax of the language); G =

(N,T,P,Z) where N is the set of non-terminal symbols in G, T is the set of terminal

symbols in G, P is the set of productions in G, and ZeN is the start symbol. Each

production peP is written as:

?: Xo i= aoX1a1Xz...0n,—1 Xn 00,

where X;eN and aieT* for i = 0,...,7p.

ib are fated with inal symbols of

® Attris the st of attributes. A
G, ie., there is a mapping N — 244" which associates with cach nonterminal XeN
a set of attributes (denoted Attry). Attry is partitioned into two disjoint sets, Inhx
and Syny (the inherited and ized attributes of X,). Note that

VXN, Attry = InhxUSyny,
Attr = Uy n(Synx U Tnhy).

In a given production, an attribute a associated with symbol X; is called an attribute
occurrence and is denoted X;.a. The set of all attribute occurrences in a production

pePis

@0X101 X3 ...yt Xoyin, AacAtlrg, AOS § € mp).

® Valis the set of all attribute values.

® Eval is the st of semantic rulesin AG. Semantic rules are associated with produc-
tions. A sct of rules associated with production peP is denoted Eval,. Each semantic
rule in Eval, defines the value of an attribute occurrence in p as a function of zero
or more attribute occurrences in p. If reEvaly is a semantic rule associated with the

production p then r is of the form:

Xia — fpio(Xiy.a1, Xip02..., Xip.an),

0<i;Snpforl $j<k0<i<ny, and each XiajeAltr,. For each pcP,
Eval specifies exactly one semantic rule for each synthesized attribute of Xo and one
rule for each inherited attribute of X; for 1 < i < n, which ensures that the value
associated with each attribute is uniquely determined in any context.

With any string in the language L(G) there is an associated derivation tree. Let s
be a string in L(G) and let Kx be a node in its associated derivation tree which is
associated with nonterminal XeN. An atiribute instance Kx.a is associated with

each attribute aeAttry.

 Cond is a set of semantic conditions associated with productions peP. A semantic
condition associated with a production peP, denoted Cond,, is a boolean expression
and has the following form:

9p(Xiy a1, Xigag, ...y Xipuai)

where 0 < i; < mp, 1 < j < k, and each X;,.ajeAttr,. Semantic conditions are

essentially conditions that must be satisfied by attribute values. A string scl(G) is

a string of the language L(AG) if and only if for all pcP the values of the attribute

instances associated with each application of p in the derivation of s satisfy the

condition Cond,. The importance of semantic conditions lies in their ability to

formally specify non-context-free aspects of a language, since strings in L(AG) are
strings in L(G) which obey certain contezt sensitive constraints.

We have scen that for a given production peP the semantic rules in Eval, define the

values of each attribute occurrence in Attr, in terms of other attribute occurrences in

Attrp. This gives rise to the notion of dependencies between attribute occurrences. The

local (or direct) dependency relation D, defines the relation of local dependencies between

8

attribute occurrences in p:

Dy = {< Xib,Xj0> | Xjia = fpjal..r Xihy...) €Bval, A0S i< my AOS j < mp}

The local dependency graph of production p is the graph of Dp:

Gp, = (Attry, Dy).

Suppose D is a derivation tree for a string in G. The compound dependency graph Ri(D) is

the graph over the attribute instances in D which can be constructed by ‘pasting together’

the graphs Gp, according to the ications of p in the derivation of the

string.

An attribute grammar is well formed or non-circular if and only if for every derivation
tree D, Ry(D) is acyclic ([DIL 88]).

An attribute evaluator for an AG=(G,Attr,Val,Eval,Cond) is a program which, given
any derivation tree D of a string in L(G) as input, computes the values of all the attribute
instances in D. An evaluator generator constructs (if possible) an evaluator for an attribute
grammar given as input. That is, it is the job of an evaluator generator to determine a
feasible evaluation order for the attribute instances of any derivation tree D.

An evaluation order for the attribute instances in each derivation tree associated with
an AG exists if and only if the AG is non-circular [DJL 88]. The problem of determining
whether of not an AG is non-circular has been shown to be an exponentially hard problem,
and consequently evaluator generators which construct evaluator generators for any well-
formed AG are quite incflicient [Kas 82). There are a number of special classes of AGs
whose noncircular property is verifiable in polynomial time. The most notable of these
(for our purposes) is the class of ordered attribute gmmmars (OAGs) which is the class of

AGs accepted by the GAG system (discussed in the following chapter).

Attribute grammars can be used to formally specify a mapping from a source language
to a target language. Provided the target language is sufficiently well defined, an AG used
in this capacity may be said to formally specify the semantics of the source language.! The
general idea behind such an AG is to associate with the start symbol Z of the CF grammar
a synthesized attribute(s) which generates a target language program equivalent to a

program in the source language. Evaluator generators, in practice, are compiler/translator

attribute are which, given a parse tree for any well
formed program in the source language, generates target language code by evaluating the
attribute instances in the tree.

The Fortran-77 to Modula-2 translator is described by an AG, which can be further

processed by the GAG attribute evaluator generator to construct the translator.

2.2 An example

In this section, a fragment of an attribute grammar for the Fortran-77 PARAMETER
statement is presented. The PARAMETER statement assoriates symbolic names with
constant values in Fortran-77 programs. The production rules and their associated se-
mantic rules and conditions are given below using ALADIN notation. ALADIN is an
attribute grammar definition language which is the input language of the GAG system
([Kas 87]). Lines beginning with the keyword RULE contain context free production rules in
which terminal symbols are enclosed within apostrophes (cg., ’PARAMETER”). The sen.an-
tic rules and conditions (the latter are preceded by the keyword CONDITION) associated
with a production are given between the keywords STATIC and END.

An occurrence of an attribute attr associated with nonterminal symbol X is written
as X.attr.

RULE 1: param_stmt ::= ’PARAMETER’ ’(’ const_defns)’

STATIC const_defns.env_in := param_stmt.env_in;
param_stmt.env_out i= const_defns.env_out

"This formalism is known as translational semantics [Pag 81).

10

END;

RULE 2: const_defns ::= const.defns ’,’ const_defn

STATIC const.defns[2].env_in := const.defns[1].env.in;
conot_defn.env_in = const_defns[2].env_out;
const_defns[1].env_out := const_defn.env_out

END;

RULE 3: const_defns : const.defn
STATIC const_defn.env_in 1= const_defns.env.in;
const_defns.env.out := const_defn.env_out

END;

RULE 4: const.defn ::= name '=’ arith_const_expr
STATIC CONDITION undefined(name.symbol,const_defn.env.in);
arith_const_expr.env_in := const_defn.env_in;
const_defn.env_out =
update_environment (const_defn.env_in,
name.symbol,constant , arith_const.expr.code)
END;

In rule 2, const_defns[1] and const_defns[2] are formally the same symbol; the nu-
merical suffixes enclosed in square brackets are used to distinguish between different oc-
currences of the same nonterminal symbol in a rule for specifying attribute occurrences in
the semantic rules.

On the right hand side of each semantic rule is an altribute ezpression, which is made
up of attribute occurrences, constants, and /or function invocations, and which specifies
the value to be associated with the attribute occurrence appearing on the left hand side
of the rule.

An attribute of a symbol may be thought of as a variable which associates with the

symbol an aspect of its meaning. For instance, the attributes env_inand env_out are used

to represent i ion about the envi of a program. itively, the
consists of a description of named entitics in a program. The instances of env_in and
eny_out at a node labeled with symbol param_stmt represent the environment in which

the parameter statement represented by the subtree rooted at that node occurs; env_in

11

the envit prior t ing the while env_out
the environment after the statement has been d (ic., the new envi in
which constants defined in the statement are described).

The attribute code of nonterminal arith_const_expr represents the code to be used
for the constant expression in the corresponding constant definition in the target language
code. Th ib of the inal name might be the index to the symbol table

entry ining a of the token iated with name in the source program?.
To complete the example, the domains (ie., the sets of possible values) of the attributes
should be described. The following (incomplete) type description written in ALADIN
defines the type environment which is the domain of env.in and env_out:
TYPE environment : LISTOF definition;
TYPE definition : UNION(const_defn, var_defn, ...);
TYPE const_defn : STRUCT(ident: SYMB,
code : STRING);
Here the domain environment is described as a list of definitions. The domain definition
is described using the ALADIN discriminated union type, that is, a value in the domain
definition can be a value in the domain const_defn, or var_defn, etc. The domain
const_defn is a domain of pairs, the first element of which is a symbol and the second
clement of which is a string (SYMB and STRING are built-in ALADIN types for symbol and
string values respectively).
The attribute symbol associated with symbol name is of type SYNB, while attribute
code associated with attribute arith_const_expr is of type STRING.
An atiributed parse tree (APT)is a derivation tree in which nodes labeled with nonter-
minal symbols X'eN contain fields corresponding to the attributes in Attry. Each of these
fields corresponds to an attribute instance. An APT for the PARAMETER statement

PARAMETER (X = 5.2, Y = -43.2)

?A more complete example would include attributes for the type of the arithmetic expression, the
type of the named constant (which would be included in the environment), and any type specification by
IMPLICIT statements or type statements that may have preceded the PARAMETER statement.

12

s shown in figure 1. Attribute instances are denoted by the attribute names appearing

immediately below the nodes (the values associated with them are not indicated).

param.stmt
envin envout
const.defns
envin env.out
\ Q
const.defns const.defn
envin env.out envin envout
o~
name arith_const.expr
@ symbol envin code
const.defn . :
envin env.out g -43.2
T
name arith.const.expr
symbol envin code
X 5.2

Figure 1. An APT for a Foriran PARAMETER statement

Consider the nodes labeled &, ¥, and T2 in the APT. The semantic rule
arith_const_expr.env_in := const_defn.env_in

specifies that the instances of env_in at ¥ and @ will have the same value. The se-
mantic rule for const_defn.env_out associated with production 4 indicates that the

value of the occurrence of env_out at & will be the result of evaluating the invocation of

3Upper case Greck letters have ics in the tree,and are ided solely for reference
in the text.

update_environment with arguments ®.env_in, T.symbol, constant, and ¥.code. The
function (which would be defined elsewhere in the AG description) returns a new environ-
ment in which T .sysbol (in this case, the symbol X) is defined as a constant associated
with the code derived from the arithmetic expression (eg., ‘5.2"). The argument constant
is a (user defined) scalar constant identifier which is supplicd as argument to signal the
function that the new entity is a constant.

The condition in rule 4 effectively stipulates that only previously undefined symbols
may be defined in a given constant definition (a violation of this condition indicates that
the source program is invalid). The function undefined is boolean typed, and must be
defined elsewhere in the AG specification. For example, the constant definition represented
by the subtree rooted at @ is only valid if T.symbol (the symbol X) is not defined in the
environment preceding its definition (&.env_in).

Recall that attributes associated with a given nonterminal symbol are classified as
being either synthesized or inherited. In figure 1, inherited attribute instances are denoted
on the left hand side of their associated node while synthesized attribute instances appear
on the right. Intuitively, inherited attributes are used to pass information down the

tree towards the leaves, while i ttribut i jon up the tree

towards the root. The attribute env_in in the example is an inherited attribute of the
symbols param_stmt, const_defns, const_defn and arith_const_expr while env_out
is a synthesized attribute of the same symbols. code and symbol are synthesized attributes
of arith_const_expr and name, respectively. Note that the seniantic rules associated with
a given production specify a value for each synthesized attribute of the symbol on the left
hand side of the production and for cach inherited attribute of each nonterminal symbol
appearing on its right hand side

Consider again the node . The production applied at its parent is production 3. The
value of env_in at ® is obtained (inherited) from its parent; the semantic rule defining
its value is associated with production 3. The value of env_out at ¢ is expressed as

a function of attribute values of its children, and the semantic rule defining its value is

iated with production 4 (the production applied at). That is, the node inherits

an cnvironment (via env_in), it synthesizes a new envi using il jon derived

from the subtree of which it is the root, and that new environment is passed back to (ie.,
synthesized by) its ancestors via env_out.

Now consider the node labeled with Qin figure 1. The production applied at the parent
of @ is production 2. In this case, the environment inherited by is the environment
synthesized by its sibling A (which includes the definition of X).

Notice how values of env_in work their way down the tree, while values of env_out
generally work their way up the tree. In this example it is not difficult to see that a
single pass* (a kind of depth-first traversal) over the tree could be employed to evaluate
its attribute instances. Ifad attribute instances at the internal nodes of the tree been
(perhaps indirectly) defined in terms of the instance of env_out of the root, then a second
pass would be required. In fact, a desirable feature of AGs lies in the ease with which

such ‘multi-pass’ translation strategies can be specified.

“The term pass is used in a non-technical sense here. Actual strategies for attribute evaluation (eg.,
pass oriented, visit oriented) employed by evaluators depend on the type of evaluator generator used - see
(Eng 84] for a description of evaluation strategies.

15

Chapter 3

The GAG system

The GAG system (Generator based on Attribute Grammars) is a translator writing sys-
tem which generates translators for languages defined by attribute grammars ([Kas 82],
[Ka287], [Kas 87], and [Iut 87] provide complete description, and [DJL 88] a brief descrip-
tion of GAG). The input to the system is an AG written in ALADIN. The AG must be an
ordered attribute grammar (OAG). The output from the system is a translator written in
Pascal, in which is embedded a user supplied scanner, a parser gencrated by PGS (Parser

Generating System ([Gro 86]), and (optionally) some user supplicd Pascal code.

3.1 ALADIN

ALADIN (A Language for Attributed DefINitions) is a strongly typed language. The
types of all attributes and the symbols with which they are associated must be declared.
The user may optionally specify whether an attribute is synthesized or inherited with
respect to the symbols with which it is associated. If an attribute’s class is specified, GAG
requires that the class derived from the semantic rules agree with the declared class.
The predefined types in ALADIN are INT (integer values), BOOL (boolean values), CHAR
(character values), STRING (sequences of CHAR), and SYMB (terminal symbols encoded in

a symbol table). The user may define enumerated types (similar to those in Pascal),

subrange types, and structured types. The structured types are sets, structures (invariant
record types), discriminated union type, and lists (whose elements are of fixed - thongh
possibly structured - type). A few functions are provided for list manipulation (eg., HEAD,
TAIL, ELEM_IN_LIST, etc.).

Attribute expressions (which appear in semantic rules and conditions) must obey AL-
ADIN’s type rules and must match the type of the attribute occurrences they define when

used in semantic rules. A number of ¢erators are provided for performing integer arith-

metic, set i boolean i and list No string operators are
provided. With the exception of the sel. members'ip operator, all binary operators require
identically typed operands.

Attribute expressions may contain function invocations. ALADIN allows the user to
define functions (in ALADIN) which can be recursive. Such functions are pure functions;
they do not have side effects. The concept of variables and control structures is absent
from the language, so virtually all computations whirh might normally be implemented
using iteration must be described recursively (even though GAG may implement recursive
ALADIN functions using iteration in the Pascal code). A facility for defining ezternal
functions (written in Pascal) is also provided. External functions provide the only means
of generating side effects (such as output) and directly accessing the translators’ data
structures (such as the symbol table). A common approach for generating output at
translation time is to use boolean typed external functions in semantic conditions which
have the side effect of producing output.

While ALADIN type rules are strict, values of some types may be coerced to values of
other types using type conversion functions (such as when two values share the same base
type). For instance, to add an element to a list, the element must be explicitly coerced
to the list type before list concatenation can be specified. Also provided are type testing
functions which are useful when discriminated union types are used.

Attribute expressions may be ‘structured’. ALADIN provides a CASE expression (se-

lection is done on the basis of the type of the case selector, not its value), a LET expression

17

(as in LISP), and an IF THEN ELSE expression. Structured expressions can be nested to
arbitrary depth.

Productions are written in a restricted EBNF form, in which alternation is forbidden
and neither repetitive nor optional clauses can be nested. Semantic rules are either ‘normal
rules’ (such as those in the example of the previous chapter), semantic conditions, or
transfer rules. Semantic conditions may optionally include a message which is output if
the condition fails at translation time. Transfer rules are abbrviations of one or more

copy rules. A copy rule is a rule of the form X.

aj in which an attribute value is
transfered without modification from one attribute instance to another. The semantic
rules associated with production 3 in the example of the preceding chapter are of this

type and could have been expressed using the following ALADIN transfer rule:
TRANSFER env_in, env_out;

ALADIN also allows non-local attribute occurrences to be referenced in semantic ex-
pressions. So-called outer attributes (attributes of symbols from which the left hand side
of a production are derived) can be referenced using the INCLUDING clause, while inncr
attributes (attributes of symbols derived from symbols on the right hand side of a produc-
tion) can be referenced using the CONSTITUENTS clause.

3.2 GAG processing

The processing of ALADIN input is done in a number of passes, some of which are optional.

These are summarized below and appear in the order in which they are executed by GAG.

Syntactic and semantic analysis. In the first pass, the ALADIN text is scanned and
checked for syntactic correctness, Semantic checking is primarily concerned with verifying
that the ALADIN type rules are obeyed in the semantic rules, conditions, and ALADIN

functions.

Expansion. In this pass, transfer rules are rewritten as a set of equivalent semantic rules.
In addition, attributes and semantic rules are introduced to perform the transport of non-
local (inner and outer) attribute values which appear in INCLUDING and CONSTITUENTS

clauses.

Chain elimination. APTs are reprosented by the translator using records with pointers,
and some optimization is performed to reduce the size of trees generated at translation
time. Among them are the climination of chain rules and ‘uscless’ terminal symbols from
the AG. Chain rules are those in which only a single nonterminal symbol (along with
zero or more terminal symbols) appears on the right hand side of a production and whose
associated semantic rules are transfer rules only (an example is rule 3 of the example in
the previous chapter). The elimination of chain rules performed by this pass effects only

the tree construction routines gencrated by GAG (and not the PGS generated parser).

Dependency analysis. The next pass is concerned with the analysis of attribute de-
pendencies in the grammar. GAG accepts only ordered attribute grammars. OAGs are
described formally in 'Kas 80] and only a fow of their propertics are given here.

OAGs constitute a large subcla. of non-circular AGs. An AG is an OAG if “for
each symbol a partial order over the associated attributes can be given, such that in any
context of the symbol the attributes are evaluable in an order which includes that partial
order” ([Kas 80)). OAGs form a sufficiently large class for specification of programming
languages. The complexity of the problem of determining whether an AG is an OAG is
polynomial in the size of the AG.

During this pass a complete analysis of attribute dependencies based on the con-

struction of graphs is and ‘visit based on the ordering

property of the AG are generated. Visit sequences are tree-walking rules which control
attribute evaluation in the generated translator. The algorithm for the generation of visit
sequences is presented in [Kas 80). GAG allows the user to specify that alternative visit

strategics (eg., pass oriented) be employed.

Optimization. In this pass the system determines whether some optimization of the
storage of attribute values can be performed. The ‘life-time’ of attributes is examined to
determine whether their values can be stored in global variables or global stacks. Only
attributes which cannot be stored in this manner are actually stored in the ficlds of APT

nodes.

Translation of visit sequences. In this pass, a space optimized representation of the
visit sequences generated by the analysis of dependencies pass is generated. Visit sequences
are stored in a table in the generated translator at translation time, and the output from
this pass is a file which is used to initialize the table. Identical visit sequences may be

stored in the same table entry,

Syntax translation. This pass creates a description of the CF grammar in the AG in
a form suitable for processing by PGS, in which connection points are specificd providing
the interface between the generated parser and the translator. A file is also output which

is read by the generated compiler to initialize its lexical analyzer.

Translation of definitions and actions. This pass is responsible for gencrating Pascal
code which implements global definitions, attribute evaluation algorithms, and supporting
procedures for the translator.

Protocol generation. This pass produces a listing of the ALADIN text in which all
error messages, warnings, and informationals are merged. The user may also specify

that additional information be provided by the various passes including: a listing of at-

tribute dependencies, a listing of chain rules, a fe listing, a listing
of generated visit sequences, and a listing of information about the result of attribute

optimization.

20

3.3 Structure of the generated translator

A GAG-generated translator is ised of five a scanner, parser, tree
constructor, attribute evaluator, and external definitions. We describe these briefly here.

The scanner is supplied by the user. GAG provides a sample scanner (capable of
scanning any Pascal token) which the user must modify to scan the tokens of the source
language. Additional types of tokens can be introduced, although a good deal of care must
be taken when doing so as the interface between scanner and parser is not particularly
obvious.

The parser is constructed (after the GAG passes described in the previous section) by
PGS from the context free rules extracted from the ALADIN text by GAG. PGS is an
LALR(1) parser generator, and the input grammar must have the LALR(1) property.

Pascal procedures for tree construction are generated by GAG. In the input supplied

to PGS, the code for the i jon of node-building d is jated with the

context free rules.

The external definitions are user defined Pascal definitions. In addition to ALADIN

externals, the user can specify that definitions and d ions of constants, types, vari-
ables, external files, functions, and procedures be defined globally in the GAG constructed
translator. Moreover, the user can supply Pascal statements to be executed either prior
to or after execution of the GAG generated statements in the body of the main program.

These components, along with the routines and tables for attribute evaluation, are
merged together by a program preprocessor (PROPP) into a single Pascal program. The
input to the translator consists of four files which contain: the source code to be translated,

the visit sequences, symbol table values, and a parser table (generated by PGS).

21

Chapter 4

A comparison of Fortran-77 with

Modula-2

In this chapter some of the important differences between Fortran and Modula-2 are

discussed. Other diffe are add d in chapters. Attention here is
restricted to those features of the languages which have a direct bearing on the problem

of translating Fortran-77 into Modula-2.

4.1 Program structures

4.1.1 Modules in Modula-2

In Modula-2, the primary program structure is the module'. In general, a Modula-2 pro-

gram consists of a main program module and a number of subsidiary modules. Modules

similar to P itions in that they contain defi-

are
nitions (of constants, types, procedures, functions, etc.), declarations (of variables, arrays,
etc.), and bodies (called module bodies) consisting of cxecutable statements. A desirable
feature of module structured languages is the ability to group together related objects.

'A detailed description of the module concept is beyond the scope of this report, and the interested
reader is referred to [Gle 84] for a short but readable description of the concept.

22

For example, one subsidiary module might be used to contain procedures and variables
for performing input and output, while another might contain procedures for performing
operations on strings (unlike Fortran, Modula-2 does not provide built-in string operators).

A key semantic difference between modules and procedures lies in the visibility of
their locally declared objects. An object declared in a module can be made visible and
accessible outside of the module if the module ezports that object. Conversely, objects
declared outside a module can be made visible within that module if the module imports
that object (which must be exported by some module).

Another key difference concerns the ezistznce of locally declared objects. While objects
declared in a procedure only exist during the execution of the procedure, objects declared
in a module exist throughout execution of the program, whether or not the module con-
taining their declaration is the main program module.

While modules (like procedures) may be nested, they can also be separately compiled
and stored in compiled form. Once a main program is compiled, it is linked with the pre-
compiled modules from which it imports objects. When a separately compiled module is
imported in more than one place, Modula-2 defines that only one instance of the module
exists at a time. Separately compiled modules consist of two compilation units: a definition
module and an implementation module.

The definition module contains declarations of the module’s exported objects, such as
constants, types, variables, and procedures?. Implementation modules contain the code
that implements the objects defined in the definition module (when necessary). Imple-
mentation modules may additionally contain locally declared objects which aid in that im-
plementation, but such objects cannot be exported. Implementation modules also contain
module bodies, and the statements contained therein are executed prior to the execution
of the main program (module bodies are used to assign initial values to objects declared
in the modules; the main program module body is the body of the main program).

*Procedure declarations in definition modules consist of a procedure header only; their complete defi-
nitions ate provided in implementation modules.

23

4.1.2 Fortran program units

An ezecutable Fortran program is made up of one or more program units: a main program
unit, and zero or more subprogram units which are cither subroutines, ecternal functions, or
block data subprograms. Subroutines and external functions are called ezternal procedurcs:
an external procedure may be invoked from the main program unit and other external
procedures.

In general, subroutines and external functions are similar to mboxModula-2's proce-

dures and functions, respectively. Only block data have no direct
in Modula-2, although their role in an executable Fortran program can be simulated in
Modula-2 by a module which declares, exports, and (if specified) gives initial values to

objects di

to common block in the Fortran program.

The fon of Fortran to mboxModula-2 uscs a distinct module for each program
unit in an exccutable Fortran program. The main program unit is translated into the main

program module, and external are translated into distinct ly compiled

modules. A subroutine, for instance, would be converted into a module which defines

and exports the ing to the ine. If, moreover, that subroutine
contained any invocations of other external procedures, then the module would import
the definitions of the called procedures from the modules centaining their definitions.

In addition to the modules corresponding to program units of a given Fortran prograum,
a few modules are constructed which provide tools for performing complex arithmetic,
exponentiation, input and output, and storage for common blocks.

It should be noted that it wonld be possible to convert an executable Fortran program
into a Modula-2 program consisting of a single module (in which modules are nested).
Modula-2's facility of separate compilation of modules does, however, bear a resemblance
to independent compilation of Fortran program units as it is typically implemented?,
" SSeparate compilation in Modula-2 and independent compilation in Fortran are not however identical!
(Wit 83], pg. 80). In order to compile a module which imports objects from another (scparately compiled)

modaule, the Modula-2 compiler needs a description of the imported objects - this description is provided
the definition module of the imported modules).

i 20 0

The decision to break the target program down into separately compiled modules which
have a more or less one-to-one correspondence with the program units constituting the
Fortran program was made to exploit this similarity and keep the modules of the translated

programs as independent as possible.

4.2 Parameter passing mechanisms

In Fortran, arguments to both function and subroutine subprograms are passed using a

mixture of pass-by-refc and pass-by-value. In the i of the Fortran stan-
dard, dummy arguments are associated with actual arguments during subprogram execu-
tion. The nature of this association for a particular actual argument/dummy argument
pair depends on whether the actual argument has an l-value ([Ten 81]) or not. If the
actual argument has an J-value (such as when the actual argument is the name of a vari-
able, array, or array clement) pass by reference is used. When the actual argument is
an expression which does not have an l-value, the corresponding dummy argument be-
comes associated with the r-value of the expression supplied as actual argument. Unlike a
dummy argument which has become associated with an l-value, a dummy argument which
becomes associated with an r-value may not be defined or redefined.

Modula-2 supports two kinds of formal parameters: variable and value parameters.
Each corresponds to a different parameter passing mechanism, the former to pass-by-
reference, and the latter to pass-by-value. The formal parameter list of a Modula-2 pro-
cedure explicitly indicates whether each parameter is a variable or value parameter?.

An actual parameter corresponding to a formal variable parameter must have an I-
value. An actual parameter corresponding to a formal value parameter must have an r-
value, and the formal parameter is considered as a local variable in the subprogram which

is initialized to the r-value supplied as argument in the invocation. Once this initialization

if a formal parameter
bsence indicates that

*Formal parameter lists in Modula-2 are syntactically similar to those of Pasc
declaration is preceded by the keyword VAR then it is 2 variable parameter -
the formal parameter is a value parameter,

25

has been performed, there is no further association between actual and formal parameter,
and the value of the formal parameter may be freely modified within the subprogram
without any effect on the actual parameter. In this sense, there is no counterpart in
Fortran to value parameters in Modula-2.

Thus in Modula-2, the parameter passing mechanism used for a particular parameter
is determined not by the nature of the actua! parameter used in its invocation (as in
Fortran) but by the declaration of the formal parameter. Moreover, and perhaps more
ominously, while in Modula-2 the parameter passing mechanism is fized for a given formal
parameter, in Fortran the argument passing mechanism used for a given dummy argument
may differ from one invocation to the next!

Clearly, then, one cannot hope to precisely preserve the relation between actual and
dummy arguments when translating between the two languages. The strategy employed in
the translator’s treatment of argument passing is discussed in section 5.6. The general idea
s to pass argumants uniformly by reference. When an actual argument is an expression,
an auxiliary variable is introduced to store the value of the expression immediately prior
to invocation, and that variable is used as actual argument in place of the expression.
This approach has the additi d of permitting sub to be 1

independently.

4.3 Passing arrays as argument

Another area of concern regarding the passing of involves the
of the types of actual and dummy arguments. In both Fortran and Modula-2, the type
and number of actual and dummy arguments must in some sense match in the invocation
and definition of a subprogram. But the sense in which array arguments must match is
dramatically different in the two languages.

Modula-2 is rather strict, generally requiring that the types match ezactly, and that

26

the type identifier used in the declaration of both have the exact same defining occurrence®
(this is known as name equivalence). In Fortran if an actual argument is an array name,
then the number and size of the dimensions of the actual argument array may differ from
those specified in the declaration of the corresponding dummy argument array, provided
that the size of the latter does not exceed that of the former.

Another discrepancy lies in the treatment of array elements as actual arguments. In
Fortran, when an array element is used as actual argument the corresponding dummy
argument can be cither the same type as the array element or an array with the same

clement type as the actual argument array (the first element of which becomes associated

with the array element supplied in the i ion). The latter possibili ively allows
parts of arrays to be passed to subprograms. In Modula-2, if an actual argument is an
array clement, the corresponding formal parameter must be of the same type as the array
clement supplied as argument. Consequently, only entire arrays or single array elements
may be passed to Modula-2 procedures.

The only flexibility provided by Modula-2 in the passing of arrays is the open array
parameter. Open array parameters are array formal parameters whose element type is
declared but whose index type is not specified. Actual parameters corresponding to open
array parameters can be any array of the same element type. The index type of an
open array parameter is a subrange of CARDINALS whose lower bound is zero. The
upper bound depends on the length of the actual argument array. Modula-2 provides the
standard function HIGH which returns the upper bound of an open array parameter when
supplied with its name as argument.

An example of the use of an open array parameter is the following:

PROCEDURE ZeroElements (VAR A: ARRAY OF INTEGER) : INTEGER;

(* assigns value zero to each element in A *)

VAR i: INTEGER;
BEGIN

5The only i his rul in passing procedures (a procedure’s type i ined implicitly
in its definition) and open array parameters,
The domain of CARDINAL type in Modula-2 s a sct of nonnegative integers.

27

FOR i 0 TO HIGH(A) DO
Afi] :=0
END;
RETURN
END ZercElements;

Any array of integers, regardless of its index type, can be supplied as argument to the
above procedure”. The following are valid invocations of the procedure:

(* declarations *)
VAR arri : ARRAY [-99 .. 100] OF INTEGER;
arr2 : ARRAY [7 .. 8] OF I¥TSGER;
arr3 : ARRAY [1..10, 1..10] OF INTEGER;
BEGIN
ZeroElements(arr1)
ZeroElements(arr2) ;
ZeroElements(arr3[5]);

Notice that when ZeroElements is being executed with arri as argument the formal
parameter A is implicitly of the following type:

ARRAY [0..200] OF INTEGER
while in the third invocation, the type of A is:

ARRAY [0..9] OF INTEGER

Thus, while an open array parameter permits arrays of varying size to be suppied as
actual argument, it does not allow the size of a formal parameter array to differ from that
of the actual argument array during a particular invocation of the procedure. That is, an
open array parameter is always considered to have the exact same number of elements as
the actual argument®: this effectively prevents Modula-2 programs from passing parts of
arrays to procedures. Moreover, open array parameters always have the same number of
dimensions as the actual argument?.

" TNote that A is a variable parameter - open atray parameters can also be value parameters.

*This also distinguishes open array parameters from adjustable arrays ([ANS 78}, pg. 5-7) in Fortran.
°This distinguishes open array parameters from assumed size arrays in Fortran ([ANS 78], pg. 5-7).

28

i
d

‘These considerations highlight the more liberal concept of storage association found in
Fortran with which structurally distinct entities can share contiguous storage locations.
While in Modula-2 structurally different entities can share the same memory location(s)
only through the use of variant record structures'®, in Fortran such association can be
specified in the passing of arrays to subprograms, EQUIVALENCE statements, and mul-

tiple definitions of common blocks (see following chapter).

4.4 Passing procedures as argument

Both Fortran and Modula-2 support passing procedures and functions as argument. In
Fortran, a name which appears in an EXTERNAL statement represents an external proce-
dure and may be passed as argument provided the corresponding dummy argument name
is also declared to be EXTERNAL in the invoked subprogram. That dummy argument
can then be invoked provided the invocation is consistent with the definition of the actual
aspumentsubpsogeans (e, fhe typemnd nambur ol srguments mnst rostdh sad thescons
text of the invocation must be consistent with the type - function or subroutine - of the
represented subprogram). Moreover, such a dummy argument may be passed as argument
1o other subprograms.

In Modula-2, procedures can appear as actual arguments provided that the scope of the
procedure name Includes the place of invocation (the scope of a procedure name imported
by a module includes the whole module unless another entity with the same name is
declared in a procedure or module nested within it). A formal parameter which is used to
represent procedure must be declared with a procedure type.

Modula-2 provides a means of defining procedure typesin which the type of parameters
is described (including the parameter passing mechanism - by value or by reference) along
with, In the case of function procedures, the type of the value returned. A procedure type
“T9Note that the association of difercatly dimensioned arays in Fortran cannot, In general, be expressed

in Modula-2 solcly through the use of variant records: this is a consequence of the different storage
allocation schemes used by the two languages for multidimensional arrays.

29

IntToBool, the domain of which is the set of function procedures which have a single
(value) parameter of type INTEGER and which return a value of type BOOLEAN, is defined
as follows:

TYPE IntToBool = PROCEDURE (INTEGER) : BOOLEAN;

An example of a function which is implicitly of type IntToBool is the following:

PROCEDURE Less_than_five (n:INTEGER) : BOOLEAN;
(* returns true iff n is less than 5 *
BEGIN

RETURN n < §
END Less_than_five;

Less_than_five (and any other boolean function which has a single value parameter of
type integer) can be supplied as argument to any procedure which has a formal parameter
of type IntToBool, such as the following:
PROCEDURE FindFalse (£: IntToBool): INTEGER;
(* returns the smallest non-negative integer n for which
£(n) is false. Doesn’t terminate if £(n) is never false %)
VAR n:INTEGER;
BEGIN
n :=0;

WHILE £(n) # 0 DO INC(n) END;
RETURN n

END FindFalse;

Note that the formal parameter £ could be passed as argument from within FindFalse to

a procedure having a formal parameter of type IntToBool.

A program containing the above definitions could invoke FindFalse with argument
Less_than_five as in:

Some_Int_Var := FindFalse(Fact_less_than_cube);
4.5 Input and Output

In Fortran, input and output is record oriented. Input and output statements access

records on files, and access can be either sequential or direct. Format descriptions or

30

implicit formatting is used in conjunction with input and output statements to specify the
form and representation of records stored on files.

Fortran provides a number of statements for input and output. The READ, WRITE,
and PRINT statements cause transfer of data between main memory and files'!. A number
of file-positioning statements (BACKSPACE, ENDFILE, and REWIND) can be used to
control the position of the read /write device connected to a file. Also provided are three
auziliary input and output statements, the OPEN, CLOSE, and INQUIRE statements,
which control the connection between a file and an executable program.

Modula-2 provides neither nor built-in for ing input

and output, Programmers must either import procedures from library modules supplied
by a Modula-2 system or write their own. Presently, no standard library of I/O modules
exist, although [Wir 85] describes a collection of four I/O modules: Terminal (for simple
character oriented I/O with the users terminal), InOut (for sequential IO of integer,
cardinal, boolean, character and string values), RealInOut (for /O of REAL values), and
FileSysten (for more general and lower-level file handling operations such as opening,
closing, creating, deleting, and rcnam. ig files, hinary 1/0, and direct access to files).

The iack of a standard 1/O library necessarily renders any strategy for the translation
of Fortran 1/O non-standard. Although many Modula-2 systems provide the modules
suggested by Wirth, they are not part of the Modula-2 language, and systems are not
constrained to supply them. TopSpeed, for instance, provides only two modules for I/0:
10 and FI0. 10 is the library of procedures which provide 1/ with the standard input
and output devices (ic., the keyboard and screen). FIO provides file handling and file
input/output. Files are sequential, but a procedure is supplied for setting a file’s position
which can be used to implement direct access to elements of a file.

Modula-2 is not record-oriented. While a single Fortran READ, WRITE, or PRINT
statement specifies the transfer of a record (which can represent several values, one in each

"The READ and WRITE statements can also be used to transfer data between variables to change its
representation by using an internal buffer instead of a file during transfer.

of its fields) between main memory and some I/O device, a given Modula-21/O proceiluse

reads or writes only a single value of a particular type. Moreover, Modula-2 is primarily

t iented. With few ions, values in input files must be delimited by some

character from a set of separators (in the same vein as list directed input in Fortran).

32

i

Chapter 5

Strategy of the Translation

5.1 Mapping of Types

In Fortran, values of type INTEGER, REAL, and LOGICAL all occupy one numeric
storage unit in a storage sequence, DOUBLE PRECISION and COMPLEX values occupy
\wo numeric storage units, and 2 CHARACTER datum has one character storage unitin
a storage sequence for each character in the string. This mapping allows any association
(sharing of storage units) of entities of different types to be well defined regardless of
the machine on which Fortran programs ate compiled with standard conforming compil-
ers. Wirth’s “Programming in Modula-2” (3rd corrected edition) does not specify such a
mapping; only typical storage conventions are given. In the translation, it is desirable to
preserve this relationship between the storage requirements of the various types. Since the
target environment of the translator is TopSpeed Modula-2 system [TSD 88}, the mapping
of types is geared to that system. In TopSpeed Modula-2, the basic unit of storage is an

8-bit byte. The storage requirements for the types of interest are given below.
o INTEGER 2 bytes
o LONGINT 4 bytes

» REAL 4 bytes

o+ LONGREAL 8 bytes
o« BOOLEAN 1 byte

o CHAR 1 byte

o LONGWORD 4 bytes

REAL values in Fortran are represented as REAL values in Modula-2. For Fortran
INTEGER values to occupy the same amount of storage as REAL valucs, INTEGER
type in Fortran is translated into LONGINT type in Modula-2 . A basic character unit
of storage in a Fortran program is mapped onto type CHAR in Modula-2. DOUBLE
PRECISION values in Fortran are mapped onto LONGREAL values in Modula-2. Other

‘mappings are described in the following sections.

5.1.1 LOGICAL data

LOGICAL type in Fortran is mapped onto BOOLEAN type in Modula-2. lowever,
LOGICAL entities! in Fortran are not translated into BOOLEAN entitics in Modula-2
since only one byte of storage is used to hold boolean values in Modula-2, Consequently,
a straightforward mapping of LOGICAL entities onto BOOLEAN entities would cause
problems whenever logical and numeric type entities are associated. Thus, LOGICAL
entities are translated into entities of TOP-SPEED Modula-2 type LONGWORD (which
has the same storage requirements as REAL and LONGINT). LONGWORD type has
properties similar to the standard Modula-2 type WORD. It can be used to store values
of any type (provided some storage requirements arc met).

While the only operation that can be performed on variables of type WORD and
LONGWORD is assignment of WORD or LONGWORD valucs, respectively, using type

transfer functions this restriction can be overcome, and values stored in LONGWORD

The term entity s used throughout to refer Lo any named object which can be typed, such as variables,

arrays, functions and constants.

typed entities can be interpreted as BOOLEAN values thereby permitting boolean oper-
ations to be performed on them.
For example, a variable declaration in a Fortran program such as

LOGICAL FLAG, FOUND, BITS(100)
could be translated into the following:

FLAG: LONGWORD;

FOUND: LONGWORD;

BITS: ARRAY [1..100] OF LONGWORD;

In the Modula-2 code, we could interpret the value of the variables above by supplying
them as argument to the type transfer function BOOLEAN. For example, the invoca-
tions BOOLEAN(FLAG) and BOOLEAN(BITS[33]) return the boolean values corresponding
to the contents of FLAG and BITS[33] respectively. Effectively this allows us to perform
iogical operations on variables of type LONGWORD. Naturally, care must be taken to
store BOOLEAN values in such variables consistently. This is achieved by transferring
BOOLEAN values into type LONGWORD before storing them; whenever an assignment
is made to a “logical” variable, the expression is converted to type LONGWORD. For
instance, FLAG would store the value TRUE after the execution of any of the following
assignments:

FLAG := LONGWORD(TRUE);
FLAG := LONGWORD((88 < 108) & (43 >= -4));

In order to make the Modula-2 program more readable, the translator defines the following
type:

TYPE Logical = LONGNORD;
This makes available a type transfer function called Logical which is equivalent to the
function LONGWORD.

Another example follows. Suppose a Fortran program contains the following state-

ments:

35

LOGICAL FOUND, LIMIT

FOUND = .FALSE.

LIMIT = .FALSE.

IF (.NOT. FOUND .AMD. .NOT. LIMIT) THEN

‘The translation into Modula-2 would be the following:

(* declarations *)
FOUND : Logical;

LIMIT : Logical;
(* statements *)
FOUND := Logical(FALSE);

LIMIT := Logical (FALSE);
IF NOT BOOLEAN(FOUND) & NOT BOOLEAN(LIMIT) THEN

5.1.2 COMPLEX data

COMPLEX entities in Fortran are translated into record structures with two fields of type
REAL in Modula-2 (the first field corresponding to real part of the complex value, and
the second corresponding to the imaginary part). The type Complex is provided by the
translator, and is defined in Modula-2 programs as follows:
TYPE Complex = RECORD
Tpart

ipart
END;

REAL;
REAL

Complex literals are translated into invocations of a function called complex, which
takes two real values as argument and returns a record of type Complex?. Thus, a
Fortran complex literal such as (2.443,5.3) is translated into the function invocation
complex(2.443,6.3). A value of any of the other numeric types can be converted to
type complex (if required) by supplying them as argument to the same function. For
" Since the appearance of the third edition Wirth has stated that Modula-2 systems are free to allow
functions to return values of any type (although the syntax of Modula-2 prohibits using the value returned

by a function as a designator) ([Kin 88), pg. 127). TopSpeed Modula-2 allows structured types to e
returned by functions.

36

instance, the real and integer values 833 and 1003 could be converted by the calls
complex(8.33,0.0) and complex(REAL(1003) ,0.0), respectively.
A consequence of this decision is that complex literals may not appear in constant

expressions (since neither user defined nor library functions can appear in constant ex-

pressions in Modula-2) and the lation of complex constants in constant

expressions cannot be handled by the translator.

5.1.3 Character strings
Modula-2 represents strings as arrays whose elements are CHAR values and whose lower
index bound is zero®. For example, the implicit type of the string literal *Bad Day® is:
ARRAY [0..6] OF CHAR
The translator uses the same convention for representing character string variables. For
instance, if a program unit contains the following declaration:
CHARACTER NAME1+10, NAME2+20
then the corresponding declarations in the Modula-2 code is:

NAME1: ARRAY [0..9] OF CHAR;
NAME2: ARRAY [0..19] OF CHAR;

While it may scen more natural to use 1 as the lower bound (the Fortran convention for

strings), the uni of string ion resulting from the use of zero-
indexing for string variables ultimately eases the task of implementing string operations
(which are not pre-defined in Modula-2!). The greatest advantage is in the case with
which string arguments of varying length can be passed to procedures using open array
parameters. The tradeofT is that indices used in substring expressions and invocations of
some string handling functions need to be offset by one.
" SWirth docs not make it dear whether this is » language requirement o simply a convention [Kin 88}

*Most Modula-2 systems provide string handling function libraries, which typically assume a lower
bound of zero for string arguments.

37

5.2 Constants

Integer constants in Fortran are syntactically the same as integer constants in Modula-2.
The only difference between their treatment is that in Fortran blanks between digits have
1o effect on the value of the constant. This disparity can be handled during scanning of
Fortran programs, although the current translator simply assumes that no spaces occur
within numeric constants.

String constants in Fortran are delimited by apostrophes (*). An apostrophe can be
quoted by having two in succession. In Modula-2, either the double quote character (")
or the apostrophe character can be used to delimit a string literal, Fat the delimiting
character may not appear in the string. So in the translation, strings are delimited by
double quote characters (which are not in the standard Fortran-77 character set), and
quoted apostrophes are replaced by a single apostrophe character.

There are a few differences between real constants in Fortran and Modula-2. In
Modnla-2, a real constant may not begin with a decimal point. In the translation, a
leading zero is prefixed to any Furtran real literal starting with 2 decimal point. Double
precision values in Fortran are basic real constants followed by a double precision expr-
nent (eg. 12.5D-21). In Modula-2, the representation of LONGREAL literals varies from
system to system. In TopSpeed, the syntax of both REAL and LONGREAL literals is the
same (that is, a REAL literal can be used as either a REAL or a LONGREAL value - its
context determines its interpretation). Such literals can also be used in expressions with
operands of either type. Double precision literals are thus simply translated into Modula-2
real literals (the D’s are replaced by E’s). Real or double precision literals in Fortran with
an exponent part need not contain a decimal point while a decimal point must be present
in Modula-2 real literals. Consequently, such Fortran constants are modified to contain a

decimal point before the exponent part.

5.3 Expressions

The greatest difference between expressions in Fortran-77 and Modula-2 is that while
the former permits mized mode arithmetic expressions, the latter does not and values
combined in an cxpression must be (pairwise) of the same type. Thus, when numeric
values of varying types appear in a Fortran arithmetic expression, type transfer functions
are used to convert operands to the same type. This conversion is done in accordance with
the Fortran rules for the type and interpretation of the results of arithmetic expressions
given in [ANS 78] (Tables 3 and 4). For example, the Fortran expression A * M + DP
where A s type REAL, M is type INTEGER, and DP is type DOUBLE PRECISION would
be translated into the Modula-2 expression LONGREAL(A * REAL(M)) + DP.

To deal

th arithmetic operations on complex numbei., the translator provides a num-

ber of functiuns that perform on complex For example,a

function called addcomplex is provided which takes two Complex records as argument and
returns a record value corresponding to the sum of the arguments. The other functions

supplied arc subcomplex, multconplex, divcomplex, and raisecomplex which replace

the subtracti iplication, division, and (raising a complex number

to an integer power) operators in Fortran expressions using complex operands. When a
complex value is combined with a numeric value of another numeric type, the function
complex (described above) is used to convert the non-complex value to its corresponding
complex representation. For instance, the Fortran expression

(8.6,6) * 72 + (1.9,3.4)
is translated as follows®:

addcomplex (multcomplex(complex(8.6,REAL(6)),

complex(REAL(72),0.0)),
complex(1.9,3.4))

*Becaue of Modula-2's strict type checking, integer components of complex valucs must be converted
to type REAL.

39

Operators in Fortran and Ifodula-2 do not share the same precedence relations; the
logical operators NOT, AND (also denoted &), and OR in Modula-2 have the same prece-
dence as arithmetic operators for unary minus, multiplication and division, and addition
and subtraction respectively (as in PASCAL). Thus some additional parentheses must
sometimes be added to expressions (in fact, it suffices to parenthesize relational expres-
sions in logical expressions so that no attempt is made to perform logical operations before
arithmetic operations).

The Fortran operators .EQV. and .NEQV. are absent in Modula-2 but the same oper-
ations can be specified using relational operators for equality (“=") and inequality (“<>”
or “#"), respectively, with logical operands.

No exponentiation operator is provided in Modula-2, and consequently the translator
converts exponentiation operations into function calls. There are two functions provided
for this purpose, one for raising a value to an integer power, and the other for raising a value
to a real power (the latter is provided as a library function in TOP-SPEED Modula-2).
The translated expressions preserve the right-to-left associativity of exponentiation in
Fortran.

Another minor difference concerns the division operator. In Fortran, the real division
operator and the integer division operator are syntactically the same while in Modula-2,
/ and 'DIV? are the real and integer division operators, respectively. The translator
statically determines the type of the operands of the '/’ operator in Fortran, and converts

it to the 'DIV’ operator only if both operands are of type integer.

5.3.1 Constant expressions

Both Fortran and Modula-2 support constant expressions. In Fortran, constant ex-

pressions can appear in constant definitions, array subscript fons in

EQUIVALENCE statements and DATA statements, substring length specifications in
CHARACTER type statements and IMPLICIT statements, and in implied DO-loops in

DATA statements. This in itself poses little problem as Modula-2 allows a constant ex-

40

pression wherever a constant value is required.

However, some restrictions have to be placed on the use of constant expressions in order
for Fortran programs to be translatable. These restrictions stem from the fact that only
Modula-2 operators and standard functions may appear in Modula-2 constant expressions,
and therefore Fortran operations which are performed by translator defined procedures
(such as exponentiation) cannot be performed in constant expressions. Consequently, For-

the jation operator or complex arithmetic

tran constant
operations, cannot be translated.

On the other hand, Modula-2's type transfer functions are pre-defined and thus logical

constant jons and mixed mode arif i ions can in general be
(we will consider further restriction on constant expressions when EQUIVALENCE state-
ments are discussed). As the evaluation of character string expressions is performed by

library functions (see below), character string constant expressions cannot be translated.

5.3.2 Character string expressions

Fortran provides a string concatenatio operator. Morcover, Fortran allows substrings of
string variables to be specified as both the target of assignments and as values. Modula-2
on the other hand does not provide any built-in string operators. Conscquently, all string
operations have to be performed by procedures. Most Modula-2 systems provide a library
module which contains procedures for manipulating strings. Wirth docs not specify what
procedures should be included in string handling module, and consequently they usually
differ from system to system. Typically they contain procedures for assignment of string
values to string variablesS, determining the length of a string”, concatenating strings
(normally returning the result in one of its arguments), comparing strings, inserting a

string into a string, and extracting a substring from a string.

®Modula-2 is rather strict in its assignment compalibility requirement for strings. While a string literal
can be assigned Lo any string variable which s at lcast as long as the lteral, the value of a string variable
can only be assigned to a string variable with the same length.

"Modula-2 uses a special null character to terminate strings which are shorter than the variable used
1o store them.

41

TopSpeed Modula-2 provides a string handling module called stx. While the proce-
dures in str are sufficiently powerful to perform virtually all Fortran string operations,
only string assignment and string concatenation are handled by the translator to show
how string operations in general can be translated.

The TopSpeed for string assi and string ion are described
below:

PROCEDURE Copy(VAR R: ARRAY OF CHAR; S: ARRAY OF CHAR);

(* copies string S to string R. If S is too long to fit,
then the copy of S is truncated. If S is shorter than
R then the string left in R is terminated by the null
character *)

PROCEDURE Concat(VAR R: ARRAY OF CHAR; S1,52: ARRAY OF CHAR);
(* concatenates S1 and S2 and returns the result in R.

The second string is truncated if the concatenated

string becomes longer than the lemgth of R #)

Now consider the following Fortran code®:
CHARACTER FIRST#10,SECOND#S,THIRDsS
FIRST = SECOND // THIRD
The translation of the assignment statement requires two procedure invocations and an

additional variable to store the results of the lion operation before

the assignment. Thus the above is translated into the following:

IRST: ARRAY [0..9] OF CHAR;
SECOND: ARRAY [0..4] OF CHAI
THIRD: ARRAY [0..4] OF CHAR;

Result: ARRAY [0..MaxLengthOfString-1] OF CHAR;

Concat (Result,SECOND, THIRD) ;
Copy(FIRST,Result) ;

where the constant MaxLength0fString is defined as the length of the longest string

variable in the Fortran program. Note that the use of zero indexing of the arrays FIRST,

/1 is the concaten:

ion operator in Fortran.

42

SECOND, and THIRD is not especially critical in this example. However, if the translator
is to be expanded to handle other string operations, then the use of this convention is
more important; all TopSpeed’s string handling procedures assume that strings are zero
indexed, including those which perform substring extraction and location of substrings
within strings.

5.3.3 Intrinsic functions

Fortran provides a number of built-in or intrinsic functions which can (usually) be invoked
within expressions ([ANS 78], pg. 15-2). While a few of them have counterparts in the
Modula-2 standard functions (such as ABS and a few type conversion functions), most do
not. Modula-2 in fact provides very little in the way of standard functions, aithough most
Modula-2 systems provide libraries of useful functions. Typically, for instance, a library of
mathematical functions is provided which contains trigonometric functions, a square root
function, ete. These functions must be imported by modules which invoke them.

The main obstacle in the handling of intrinsic functions is that most of them are
generic, taking arguments of various types. Library functions in Modula-2, on the other
hand, are not. While it is possible in some cases to perform some type conversion of the
arguments of intrinsic functions so that they conform to the types of the formal parameters
of library functions, the translator instead only creates a framework for the user to define
functions corresponding to intrinsic functions. That is, when a program unit contains
an invocation of an intrinsic function, the module containing its translation imports a
similarly named function from a module called Intrinsics: the definition of the function
is left to the user.

This strategy will be correct only if the specific names of intrinsic functions are used in
the Fortran program since generic function names usually represent several functions. For
instance, the Fortran generic function name MOD actually represents three specific func-
tions: MOD (which takes integer arguments), AHOD (which takes real arguments), and DHOD

(which takes double precision arguments). A more complete version of the translator could

43

provide function definitions in Intrinsics for cach specific intrinsic function? and convert
generic function calls into invocations of these functions (the particular function invoked

would be determined by the types of the arguments supplied to the generic function).

5.4 Specification statements

5.4.1 DIMENSION statements

The DIMENSION statement ([ANS 78], pg. 8-1) is used to specify the names of arrays
along with the number and size of their dimensions. Arrays in Fortran are translated
into arrays in Modula-2, and the translator generally preserves the subscript ranges of the
Fortran arrays. The sole exception to this is in the treatment of arrays of character strings
for which an additional dimension is provided.

Subscripts in Fortran must be of type INTEGER, and similarly subscript ranges and
values in their Modula-2 translation are of type INTEGER. Modula-2’s characteristic
strictness of type checking manifests itself in the use of subscript range specification and
array element reference, and the type of subscript expressions must agree exactly with the
type used in the subscript range specification (ie., the indez type of a given array). For
instance, the following declarations:

IND: INTEGER;

ARR: ARRAY [1..10] OF REAL;
areincorrect for the element reference ARRLIND]; the problem here is that when a Modula-2
compiler sees the declaration of ARR it treats the index type to be a subrange of lype
CARDINALIC. In order to specify that the index type is a subrange of INTEGER values,
the array would have to be declared as follows:

ARR: ARRAY INTEGER[1..10] OF REAL;
"SThe Fortran intrinsic functions NIN and MAX which take a variable number of arguments could be
converted into a “nested sequence” of two-argument function invocations to pernit their translation iito
mboxModula-2

Naturally this problem would not have occurred had the lower bound in the dimension specification
been a negative number.

44

The translator, in fact, specifies index types in this manner. Since INTEGER type in
Fortran is mapped onto LONGINT type in (TopSpeed) Modula-2, it might seem more
convenient to use index types which are subranges of type LONGINT. But alas, TopSpeed
does not permit LONGINT values to be used to subscript arrays. Subsequently, in the
translation the type transfer function INTEGER is used to convert subscript expressions
to type INTEGER; in the above example, a Fortzan reference to ARR(IND) is converted
to the Modula-2 reference ARR[INTEGER(IND)].

In the examples presented in the following sections, this conversion of subscript ranges

and expressions is not shown to keep the examples uncluttered.

Some additional di ion (and ictions) on the use of multi-di ional arrays
in the translation of EQUIVALENCE statements, COMMON statements, and dummy

arguments is given in later sections.

5.4.2 IMPLICIT and type

The translator handles both IMPLICIT statements ([ANS 78], pg. 8-7) and type state-
ments ([ANS 78], pg. 8-5). Any specified implicit typing represented by the former is
stored in an attribute which is later used in determining the types of entities which are
not explicitly typed (this attribute also includes a description of Fortran default implicit

typing convention).

‘When the translator atype it i with the entiti

named

in the statement the type specified in the type statement. This information is stored in
an attribute which represents the environment of the program unit. In general, type
statements only associale names with types. Such names may be used to name variables,
constants, arrays, functions, or dummy arguments, but further description of the entity
associated with a name normally appears elsewhere in the program'!. The exception is
" TIn fact, the saro mame can be wsed for scvoral entition In a given program unit. For instance; dumny
argument nanies in a statement function need not be distinct from variable names in a program unit. The

appearance of a given name in a type statement simply asscrts that any entity referred to by that name
in the same program unit shall be of the specified type.

45

when names of arrays appear in type statements, since the type statement may specify
the dimensions of the array. In this case, the translator includes both the type and
dimensionality of the array in the environment attribute (a similar approach is taken

when an array dimensionality is specified in a COMMON statement).

5.43 COMMON statements

The COMMON statement in Fortran provides a means of associating entities in different
program units by defining common blocks of storage. This allows different program units
to define and reference the same data without using argument passing mechanisms, and
to share storage units ([ANS 78], pg 8-7).

Common blocks of storage are translated into Modula-2 record variables which are
shared amongst modules. Such a record variables’ ficlds correspond to entities in the
common block. A reference to an entity in a common block thus becomes a qualified
reference to the corresponding record in the translated program.

In the simplest case, all program units sharing a common block define it in precisely
the same way. For instance, suppose all program units of an executable Fortran program
contain the following statements:

REAL Q

INTEGER A(10),B(5)
COMMON /CBLK/ A,Q,B

The translation of this is straight-forward. A record variable CBLK is declared in the
Modula-2 program as follows:
CBLK : RECORD
A: ARRAY [1..10] OF LONGINT ;
Q: REAL ;

B: ARRAY [1..5] OF LONGINT
END;

In each program unit, applied occurrences of A would be translated into references to

CBLK.A , applied occurrences of Q would be translated into references to CBLK.Q, and so

46

on. In order to make the generated record accessible to all program units that share it, the
ger.orated record variables corresponding to common blocks are declared in a separately
compiled module called COMMON. Any modules containing subprograms which define and
reference common blocks must IMPORT the appropriate record variables from COMHON.

A drawback to this method is that the definition of common block entities lies outside
of the program units, although the interested human reader is referred to the definition
module of COMMON by the import list. One remedy would be the inclusion of a comment
in modules importing structures from COMMON which shows declarations of such structures
as they appear in COMMON.

When the names of entities in common blocks differ from unit to unit, the above
approach is insufficient, since different names may be used to refer to the same storage
unit(s) in a block. For example, suppose common block CBLK were defined as follows':

COMMON /CBLK/ A(10),B(5) in subprogram S1, and as

COMMON /CBLK/ X(5),Y(10) in subprogram S2.

The strategy employed in the translator for such cases is to generate variant record
fields in the record variable, each variant being associated with a particular subprograms
image of the common block. For example, the above common block could be translated
into the following record variable:

CBLK : RECORD
CASE tag: CARDINAL OF
1: A: ARRAY [1..10] OF REAL;
B: ARRAY [1..5] OF REAL |

2: X: ARRAY [1..5] OF REAL ;
Y: ARRAY [1..10] OF REAL

" Default implicit typing is assumed to apply to the typing of non-explicitly Ly ped entities, such as A,
B, and Yin

47

refer to the same location as CBLK.Y[1]'3,

Note that the correctness of this strategy ([Fre 81]) depends on the Modula-2 compiler
in the target environment overlaying variants in memory (as does the TopSpeed compiler).
The key to the semantic correctness of the translation lies in the sharing of the first unit
of storage of the variants.

In Modula-2, field names must be distinct from all other field names in the record,
including those fields outside the variant part, fields in other variants, and the tag field
itself. So when the same name is used in different program units to refer to (possibly)
different storage units within a common block, the field names must be made distinct.
The translator implements this by tagging the names of entities in common blocks with a
number which is uniquely associated with the program wnit in which it is defined.

For example, if common block CBLK were defined as

COMMON /CBLK/ A(10),B(5),C(5) in subprogram Sa, and as

COMMON /CBLK/ C(8),Y(10),A(2) in subprogram Sb,

then the ding structure in the ion (ing that 1 was the value uniquely

associated with subprogram Sa and 2 was the the value associated with subprogram Sh)

would be:

CBLK : RECORD

: CARDINAL OF

: ARRAY [1..10] OF REAL;
ARRAY [1..5) OF REAL;
ARRAY [1..5] OF REAL |
ARRAY [1..8] OF REAL;
+ ARRAY [1..10] OF REAL;
ARRAY [1..2] OF REAL

Note that the underscore (_) is not in the standard Fortran-77 character set, and thus

no name conflicts will arise as a result of this tagging strategy. Morcover, Modula-2 is case

"5The translator actually generates variant records with tag fields which are of TopSpeed Mody
SHORTCARD (a one byte version of CARDINAL).

2 type

48

sensitive. and since the translator keeps Fortran names upper-case (and only modifies the
Fortran names - when necessary - by appending characters to them), generated identifiers
such as tag are also guaranteed to be distinct from names in the Fortran program.

Another area of concern is the compilers’ treatment of the tag fields in variant records.
Normally, a program should not reference the fields within a variant part until a value
has been assigned to the tag field, following which the variant corresponding to that value
becomes active. In the above example, if the value of tag were 1, then the first variant
would be active and references 1o CBLK.A and CBLK.B would be considered valid, while
references to CBLK.X or CBLK.Y would not. When a program attempts to reference a field
in a variant which is not active, a Modula-2 system should theoretically check the tag field
before making the reference. However, for efficiency, this check is often not performed™,
‘This permits the current translator to ignore the existence of the tag field when translating
references to common block members. This reliance on the peculiarities of a Modula-2
compiler makes the translation strategy non-standard, but even without the absence of
tag-checking, the strategy could be employed provided some additional assignments to
such tag fields were made.

Within an executable Fortran program, all common blocks which have the same name
must have the same size, with the exception of blank common. Thus in the case of the
record correspoi. ding to blank common block, variants may be of different sizes. This can
be handled in Modula-2 if the compiler in the target environment allocates enough space

for the largest variant ([Kin2 88)).

5.4.4 EQUIVALENCE statements

The EQUIVALENCE statement in Fortran is used to specify the sharing of storage lo-
cations by two or more entities in a program unit ([ANS 78], pg. 8-1). The difference
between common block storage locations and locations shared by equivalenced entities (ic.,

entities which are associated with each other via EQUIVALENCE statements) is that the
*As in TopSpeed Modula-2, since it must be performed at run time.

49

former are shared by entities from different program units, while the latter are shared
by entities within the same program unit (of course, entities in a common block can be

this case will be discussed

equivalenced with other entities within a given program uni
shortly).

The strategy for dealing with equivalenced entities is much the same as that with which
common blocks were handled. Consider the (simplest) case where no equivalenced entities
are present in any common blocks. In the translation of such program units, a variant
record would be generated, each variant corresponding to a particular cquivalenced entity.
For instance, if a program unit contains

INTEGER NUMBERS(100)
REAL RANGE(100)
EQUIVALENCE (RANGE,NUMBERS)

then in the translation, the following record variable is generate

eqclassi : RECORD
CASE tag: CARDINAL OF
1: NUMBERS: ARRAY [1..100] OF LONGINT |
2: RANGE: ARRAY [1..100] OF REAL

END;

os Lo

All references to RANGE in the Fortran program are translated into Modula-2 referen
eqclass1. RANGE. licre as well, the correctness of the translation hinges on the Modula-2
compilers’ overlaying of variants.

In the example above, NUMBERS and RANGE have the exact same storage sequence, and
are thus said to be lotally associated. Entities are said to be partially associated if they

share some but not all of their storage sequence. An example is the following:

INTEGER NUMBERS(50)

REAL RANGE(100)

DOUBLE PRECISION Q
EQUIVALENCE (NUMBERS,Q,RANGE)

These statements specify that NUMBERS, Q, and RANGE share the same first storage unit.

Their translation into Modula-2 is the following:

eqclass2 : RECORD
CASE tag:CARDINAL OF
1: NUMBERS: ARRAY [1..50] OF LONGINT |
2: Q: LONGREAL |
3: RANGE: ARRAY [1..100] OF REAL
END
END;

It is also possible that partially associated entities named in an equivalence statement

do not share the same first storage unit, as in the folloving example:

INTEGER NUMBERS(50), RANGE(50)

EQUIVALENCE (NUMBERS,RANGE(10))
In this example, the first storage unit in the sequence for NUMBERS is the same as (associated
wiLh) the tenth unit in the storage sequence for RANGE. In such a case, the translator
includes padiing of some variant fields. For example, the above would be translated into
the following:

eqclass3 : RECORD
CASE tag:CARDINAL OF
1: displacement_1: ARRAY [1..9] OF LONGINT;

NUMBERS : ARRAY [1..50] OF LONGINT |
2: RANGE: ARRAY [1..50] OF REAL
END
END;

Another example follows; here association of entities of different types is specified
(Fortran permits such associations, provided character string entitics are not associated
with entities of any other type).

REAL X(100)

LOGICAL BITS(8)

DOUBLE PRECISION BIGNUM(25)

EQUIVALENCE (BITS(3),X), (X(5),BIGNUM(10))

Another feature of this example is that not all associated entities are present in the same

lence-list. The ing record ion is the following (recall that Logical

is the translator defined type which is equivalent to type LONGHORD):

51

eqclassd: RECORD
CASE tag:CARDINAL OF

1: BIGNUM: ARRAY [1..25] OF LONGREAL |
2: displacement_2: ARRAY [1..12] OF LONGWORD;
BITS: ARRAY [1..8] OF Logical |
3: displacement_3: ARRAY [1..14] OF LONGWORD;
X: ARRAY [1..100] OF REAL
END

A difficulty arises when this strategy is implemented. Namely, when constant ex-
pressions are used in the array declarators for array(s) appearing in EQUIVALENCE
statements or when constant expressions are used to subscript an entity in an EQUIV-
ALENCE statement, these expressions must be evaluated by the translator in order to
compute the various offsets. Subsequently, if such constant expressions are translated into
constant expressions in the Modula-2 program, some of the correctness of the translation
is compromised, since modification of any of the constants in the constaut expressions in
the Modula-2 program will not in fact result in any change to the corresponding record
structures, even though the same change in translated Fortran program could result in
different storage associations.

Presently, the translator does evaluate constant expressions whi

h appear in array
declarators and array element references in EQUIVALENCE statements, and code for
such constant expressions is not generated; only the values computed (namely, integer con-
stants) appear in the translated programs. Since the translator evaluates integer constant
expressions, additional constraints have to be imposed on their form in Fortran programs
because ALADIN does not provide any numerical type other than integer type (it does
provide facilitics for performing arithmetic operations on integers). Thus, while Fortran
allows arithmetic constant expressions wherever integer constant expressions may appear,
the translator constrains integer constant expressions lo contain only integer operands.
Another di

culty concerns the treatment of multi-dimensional arrays. In Fortran, the
same sequence of locations may be interpreted as a onc-dimensional array by one entity

and as a multi-dimensional array by another. Because of the different storage allocation

52

schemes for multi-dimensional arrays used in Fortran and Modula-2 (column-wise vs.
row-wise), it would not be sufficient (or correct) to simply have one variant in the form
of a one-dimensional array, and the other in the form of a multi-dimensional array'®. For
instance, suppose a Fortran program unit contained the following specification statements:
INTEGER A(25),B(5,5)
EQUIVALENCE (A,B)
In the program unit, both A(5) and B(S,1) are references to the fifth location in the
shared storage sequence. If this were translated into the following:

eqclass : RECORD
CASE tag:INTEGER OF
1: A: ARRAY [1..25] OF INTEGER |
2: B: ARRAY [1..5,1..5] OF INTEGER
END
END;
then the fifth memory location in eqclass would be shared by (5] and B[1,5], which
clearly is not equisatent semantically to the Fortran version.
Consequently, all multidimensional arrays in the Fortran source are being converted
into one dimensional arrays. At present, the translator simply assumes that this conversion
has been done prior to translation (as a preprocessing st~p). Further discussion of arrays

is given in the concluding chapter.

Use of EQUIVALENCE Statements with COMMON Statements

When an entity is associated with an entity in mon block, refc to the iated

entity are in effect references to storage unit(s) within the block. The translator handles
such associations by including additional variant fields in the blocks’ record for each of
the entities associated with entities in the block. Such variants may include some padding

which reflects the offsets of associated entities from the start of the block'®.

‘his problem in fact Illll!l whenever associated arrays are dlmnnllcned differently.
" Fortran forbid which extend th block by addi units
which precede the st storage usit of the first eatity specified In & common statcmont for the common
block([ANS 78], pg. 8-5).

Consider the following example:

INTEGER A(10),B(10),C(10)

DOUBLE PRECISION DP(10)

COMMON /CBLK/ A,B

EQUIVALENCE (C(5),B), (DP(2),C(2))

Assuming that CBLK is defined identically in all program units, the record declaration

corresponding to the common block is the following:

CBLK : RECORD

CASE tag:CARDINAL OF

1: A: ARRAY [1..10] OF LONGINT;
B: ARRAY [1..10] OF LONGINT |

2: displacement_.2: ARRAY [1..6] OF LONGWORD;
C: ARRAY [1..10] OF LONGINT

3: displacement_3: ARRAY [1..5] OF LONGWORD;
DP: ARRAY [1..10] OF LONGREAL

END

END;

A scparate record declaration is of course not gencrated for the equivalence class.
The number of storage units by which an associated entity is offset from the start of
the block with which it is associated is given by:
offset(ei) = displ)+ (offse(ex) ~ displ o)

where e¢; is the associated entity, ex is the entity associated with ¢; which appears in

a COMMON statement, offsef(e;) is the offset of e from the start of the block, and
displacement(e;) is the offset of entity e; from the start of the storage sequence with

which e; has been associated through EQUIVALENCE statements only.

5.4.5 SAVE statements

The SAVE statement in Fortran is used to specify that the definition status of entities
(variables, array variables, and named common blocks) is to be suved (retained) after
the execution of a RETURN or END statement in a subprogram ([ANS 78), pg. 8

10). A SAVE statement has no effect in the main program, and thus is ignored in its

54

In the ion of the translator handles saved entities by

declaring them outside of the corresponding procedure or function definition but inside
the i ion module ining the lation of the That is, saved
entities are made global to the subprogram that references them but local to the module

containing the subprograms’ definition. Thus, while such variables can only be referenced
within the implementation module, once they become defined, their value is maintained
across procedure calls.

As common blocks are declared and exported by the module COMMON, their definition
status is never altered by returns from subprograms in the Modula-2 program. Thus no
special action is taken when common block names appear in SAVE statements. If an
entity associated with a common block is named in a SAVE statement, again no special
action is taken.

If an entity which is associated with other entities through EQUIVALENCE state-
ments but not associated with a COMMON block appears in a SAVE statement, all its
associated entities are also saved by declaring the corresponding record structure in the

! ion module ining the 's definition.

5.4.6 EXTERNAL statements

In Fortran, the EXTERNAL statement when it appears in a given program unit is used
to declare symbolic names in the unit as representing either an external procedure, a
dummy procedure (a dummy argument which represents a procedure), or a block data
subprogram. A dummy procedure name which appears in an EXTERNAL statement may
be used as an actual argument ([ANS 78], pg. 8-9).

In Modula-2, procedures can be supplied as in calls to other

‘Thus, modules which contain lations of that declare as

external procedures need simply import their identifiers from the modules containing their
definition thereby allowing the ezternal procedure to be passed as argument. Of course,

modules which contain translations of subprograms which invoke external procedures have

toimport them whether or not the procedure names appear in an EXTERNAL statement.

For example, consider the following Fortran program unit:

PROGRAM P
EXTERNAL SUB1

CALL SUBO(SUB1)
END

It is translated as the following'”:
MODULE P;
(* all external procedures must be imported #)
FROM SUB1i_mod IMPORT SUB1;
FROM SUBO_mod IMPORT SUBO;
SUBO(SUB1)
END P.
A more difficult problem concerns the translation of subprograms with dummy proce-

dures. Modula-2 enforces strict type checking rules, and actual arguments must correspond

exactly in type with formal C ly, in the cor ling Modula-2
procedure, type identifiers must be available which represent the types of the procedures
which are passed as argument.

This situation is less troublesome when the dummy procedure is called or invoked from

within the subprogram in which it appears as a dummy argument; since Fortran requires

that the types of the actual in the i jon of the dummy procedure must
correspond exactly with the types of the dummy of the subprog
by the dummy d ion of the i dure type can be done by

inspection of the actual arguments supplied to the dummy procedure. Moreover, it can

be determined by the context of the i ion whether the sul isa

1"The names of modules used to define external subprograms arc based on the name of the procedure or
function principally defined by it: they are formed by appending the string ‘.nod" Lo the procedure name.

56

or a function. In the latter case, the type of the function can be determined by either the
occurrence of the dummy procedure name in a type statement, or by implicit typing of
the function name'S.

Towever, if a dummy procedure appears only in an EXTERNAL statement and as
an actual argument, it is impossible to determine the number or type of the dummy
arguments of the dummy procedure, or whether for that matter the dummy procedure
is a function or a subroutine ([ANS 78], pg. 15-9). To reduce the complexity of the
translator and allow the treatment of dummy procedures to be handled locally (ie., by
inspection of the subprogram unit only) the translator forbids this situation, requiring
that subprograms with dummy procedures contain at least one invocation of each dummy
procedure declared.

For example, suppose the definition of SUBO of the previous example was the following:

SUBROUTINE SUB1(SUB2)

EXTERNAL SUB2,SUB3

CALL SUB2(X,Y)
CALL SUB3(SUB2)

Here, SUB2 is a dummy procedure which is both invoked and passed as argument to SUB3.
1t would be translated as follows:

DEFINITION MODULE SUB1_mod;

TYPE SUB2.type = PROCEDURE (VAR REAL ,REAL);

END SUB1.

TIMPLEMENTATION MODULE SUB1_mod;

FROM SUB3_mod IMPORT SUB3;

MIf an actual argument is an ints function, it never has any automatic typing property ([ANS 78],
vg. 15-9). This (Iou not create any problem for the translator, however, since intrinsic functions can

ouly be passed as argument by program units which name them in an INTRINSIC statement, and the
INTRINSIC statement i not tanslated.

57

PROCEDURE SUB1 (SUB2: SUB2_type);

:'.»l.n'az(x.v):

SUB3(SUB2) ;

END SUBS;

END SUB1.mod.
Notice that the formal parameter SUB2 actually functions as a procedure variable within
SUB1 and is passed by value. In order to satisfy the requirement that actual and formal
parameters match exactly in Modula-2, the type identifier used to define the type of
the formal parameter in the definition of SUB3 would have to have the same defining
occurrence as that used in the formal parameter list of SUB3. For this reason, in the code
generated for SUB1, the definition of SUB2_type does not actually appear in the definition
module of SUB1 as shown above. Instead, it would appear (along with the definition of all
translator generated type identifiers) in a module called Types and thus a type equivalent
to SUB2_type would actually be imported from Types by SUB1_mod.

The of a block data sub name in an EXTERNAL statement is ig-

nored by the translator since it primarily indicates that the block data subprogram name
is the same as that of an intrinsic function ([Mei 82]), thereby making the intrinsic func-

tion with the same name i within the ining the EXTERNAL

statement. Thus no special action is taken when a block data subprogram name appears

in an EXTERNAL since in the fon block data names are
not actually used (the initialization of common blocks that they specify is performed in

the module COMMON).

When an intrinsic function name appears in an EXTERNAL statement in a prog;
unit, that name becomes the name of an external procedure and the equivalently named
intrinsic function is unavailable in that program unit. Thus, Modula-2 functions corre-
sponding to intrinsic functions are only imported from Intrinsics by modules containing
the translation of program units which invoke - but do not declarc as EXTERNAL - in-

trinsic functions.

5.4.7 DATA statements

The DATA statement in Fortran is used to provide initial values for variables, arrays,
and array clements at the start of an executable program ([ANS 78], pg. 9-1). In the
translation, DATA statements are converted into assignment statements. Entities appear-
ing in DATA statements in the main program are initialized by assignment statements
which appear at the start of the main module body of the Modula-2 program (before any

to Fortran

Entitics initially defined in DATA statements within suhprogram units are SAVEd in
Fortran. Consequently such entities are declared in the same manner as explicitly SAVEd

entities in the module ining the jon of the Assignment state-

ments in the module body initialize these cntitics. Since module bodies of separately
compiled modules are exccuted prior to execution of the main progzam body, this guar-
antees that the initialization is performed before those actions corresponding to Fortran
executable statements.

Two restrictions have been placed on the use of DATA stazements, one is included
only Lo ease the job of the translator (and can easily be removed) while the other is more
sorious and arises from the use of named constants in DATA statements. The more serious
restriction is discussed first.

The DATA statement in Fortran has the following gencral form ([ANS 78], pg. 9-1)):
DATA <nlist> /<clist>/ { [,] <nlist> /<clist>/ }

where <nlist> is a list of variable names, array names, array clement names, substring
names, and implied-DO lists?, and clist is a list each clement of which has the form ¢
or r#c where c is a constant and r (referred to below as the repeat count) is a positive

integer constant or named positive integer constant.

The notation nsed throughout the paper to describe the syntax of Fortran constructs is in the style
of EBNF: terminal symbols are written withont modification (cg., symbols DATA and the slash (/) in the
description of the syntax of the DATA statement), nonterminal symbols are enclosed within angle brackets
(42), syntactic entities within curly brackets ({,}) indicate zero or more accurrences of those entiics, and
syntactic entities within square brackets (1,]) indicate zro or one occurrences.

2The translation of implied-DO lists in DATA statements has not been implemented.

The translator imposes the following restriction on the form of <nlist>: the list of
names must either contain a single array name (all of whose elements are to be defined
by values in the constants list) or one or more variables or array clements (in which case
the constants list contains a constant for every element reference or variable in the name
list). Morcover (and this is the less serious restriction), at most a single repeat count
may appear in the constant list, and it must be equal to the number of locations to be
initialized implied by the name list.

For example, the following cases can be handled by the translator!:

PARAMETER (N=10)

INTEGER A(N),B(100),C(N-5)

LOGICAL FLAG, FOUND

DATA A/N*0/, FLAG,FOUND,B(3)/.TRUE.,.FALSE.,25/
DATA €/1,2,3,4,5/, X,Y,Z/3+0/

The assignment statements which perform the required ini
follows:

7ation are generated as

FOR repeatcount := 1 T0 N DO

Alrepeatcount] := 0
END;

Logical (TRUE) ;
Logical (FALSE) ;

Y := REAL(0);
Z := REAL(0);

When a single repeat count appears in the list of constants specifying initial values for

clements of an array, a straightforward implementation using a FOR loop can be realized.

Also, in the initialization of X, Y, and Z the type of the value to which the variables are

2The PARAMETER statement in Fortran defines named constants: they are converted by the translator
into Modula-2 coustant definitions.

initialized differs from the type of the variables, and thus type transfer functions are used
1o convert the integer constant 0 to the type REAL.
A situation that is avoided by imposing the restriction on the name list is demonstrated
in the following example:
PARAMETER (N=5,M=2)
INTEGER A(N), B(M)
DATA A,B/2,2,1,3,4,4,7/
In this case, a loop cannot be used for the translation of the initialization of A, and
something like the following assignments would be called for in the translation:

Al1) :=
B(1] :=

i A[2):= 2; A[3] := 1; A[4] := 3; A[6] := 4;
B[2] := 7;

However, if the values of N and M were changed to become 2 and 5 respectively, then the
above code would no longer be equivalent. By constricting the name list to have only a
single array name or nonc at all, this situation is avoided.

The restriction of allowing only one repeat couut in the constants list is introduced to
simplify the translation, and could easily be removed. For instance, the following situation
could be handled with only slight modification to the translator:

PARAMETER (N=5,M=4)

INTEGER A(10)
DATA A/N+0,80,M¢5/

The initialization of A could be i by the following

FOR repeatcount := 1 TO N DO
Alrepeatcount] := 0

END;

ADN+1) := 80;

FOR repeatcount := N+2 TO 10 DO
Alrepeatcount] := §

END;

61

DATA in block data

In Fortran, block data subprograms are used to predefine values in named common blacks.

Such contain only i and are global to the executable program
(TANS 78], pg. 16-1). In the translation, no separate module is gencrated for block data
subprograms: the initialization of common block entities specified by DATA statements

within block dat is by assij statements in the module body

of the module COMMON.

5.4.8 Statement functions

The statement function in Fortran is a function that is defined by a s

agle (non-cxecutable)
statement within a pragram unit ([ANS 78, pg. 15-4). Statement function definitions have
the following general form:

<name> (<list of dummy arguments>) = <expr>

Statement functions are analogous to external function subprograms whose exccutable
statement part consists of a single assignment statement (in which the function name
appears on tl. (eft hand side of the assignment operator).

The scope of a statement function is restricted to the part of the program unit in which
it is defined following the line on which it is defined (tatement function definitions must

appear piior to the executable statement part of a program unit, but their invoca

n

b function definiti The

may appear in the fons of any
translator converts statement functions into Modula-2 functions. The function definitions
for statement functions in the main program unit are defined within the main program
module, while those defined in external procedures are nested within the definition of the
corresponding procedure or function. As Modula-2 does not require that procedures he
defined before they are called, no special importance is given to the order in which the

definitions of translated statement functions appear.

The dummy argument list in a statement function definition is a (possibly empty) list of

variable names which serves only to indicate the type, order, and number of arguments for

62

the statement function. Their scope is limited to the statement function itself. Primaries of
the expression in a statement function definition may be one of the following; a (named or
unnamed) constant, a variable reference, an array clement reference, an intrinsic function

reference, a reference to a previously defined statement function, an external function

reference, 2 dummy reference, or a meeting all the
above requircments.

The formal parameter list corresponding to the dummy argument list in the function

d d by the a consist of value parameters. While the Fortran-

77 standard docs not directly stipulate that the values of actual argnments (which are
variables or array clements) to a statement function cannot be modified, it does stipulate
that an external function reference must not cause a dummy argument of a statement
function to become undefined or redefined. Since external function references are the
only possible means of modifying the values of dummy arguments (and hence, actual
arguments) of a statement function, the formal parameter list generated for the dummy
argument list in the translation of statement functions consists solely of value parameters.
For example, consider the following subprogram which contains two statement function

definitions:

SUBROUTINE SAMPLE(b;

SUMSQ (X, Y, 2) = XxX + Y#Y + Z+Z
MYFUN (A,B,C) = 2 % SUMSQ(A,B,C) / 3

The translation of SAMPLE is as follows:
PROCEDURE SAMPLE(...);
PROCEDURE SUMSQ (X,Y,Z: REAL) : REAL;
BEGIN
RETURN X+X + Y&Y + 242
END SUMSQ;
PROCEDURE MYFUN (A,B,C: REAL) : LONGINT;

BEGIN
RETURN LONGINT(REAL(2) * SUMSQ(A,B,C) / REAL(3))

63

END MYFUN;

The RETURN statement in Modula-2, when executed, indicates the value to be returned
by a function, as well as terminating function execution?. Note also that the type of the
expression may have to be converted (in accordance with Fortran assignment rules) to the
type of the function.

The expressions in statement function definitions may also contain references to objects
which do not appear in the dummy argument list, and this is handled rather easily by the
translator. The following example is of this kind:

REAL A,B, SFUN
COMMON /BLK/ A(100), B(100)
SFUN (A) = A + B(12)

In this example, the array B is global te SFUN, while within the function expression the

name A refers to the dummy argument. The translation of SFUN would be the following
(ignoring the tagging of names of entities in common blocks):
PROCEDURE SFUN (A: REAL) : REAL;
BEGIN
RETURN A + BLK.B[12]
END SFUN;

5.5 Executable statements

5.5.1 DO statements

The Fortran DO statement is used for specifying definite iteration, and as such its coun-
terpart in Modula-2 is the FOR statement (which is similar though not identical to the
FOR loop in PASCAL). While the heart of the translation of a given DO loop consists of

a FOR loop, a number of syntactic and semantic dil between the two i

the addition of extra variables and statements.

“The RETURN stater 0 be used in procedures where its' execution causes procedure termina-
tion (the expression is abscat from the syntax of the statement when used in a procedure).

64

“The Fortran DO loop has the following form:
DO <label> [,] <var> = <expri>, <expr2> [, <expr3>]
<stat-sequence>
<label> <stat>

where <label> is the statement label of the terminal statement of the DO loop (the
occurrences of the nonterminal <label> must be identical) , <var> is the integer, real, or
double precision type control variable of the loop, and <expr1>, <expr2>, and <expr3>
are integer, real, or double precision expressions uscd to specify the starting value, limit,
and incremnenl, respectively.

The Modula-2 FOR loop has the following general form:

FOR <ident> := <expri> TO <expr2> [BY <const_expr>] DO

<stmt-seq>

END

where <ident> is an ordinal typed variable (ic., it cannot be of real or longreal type),

<expri> and <expr2> are expressions which must be compatible with the type of <ident>,

<const_expr> is a constant expression of a type compatible with that of <ident, and

<stmt-seq> is a sequence of statements.

The restrictions on the FOR loop that the type of the control variable be an ordinal
type and that any specified increment must be a constant expression makes it impossible
to translate the DO structure using a FOR loop alone. While it would be possible to
implement the DO loop with a Modula-2 WHILE loop, the FOR loop was chosen because
in the formal semantics of the DO loop, an iteration counter variable independent of the
DO loop control variable is used to control the iteration ([ANS 78], pg. 11-7). The control
variable of the FOR loop in the Modula-2 translation of a DO loop corresponds to this
independent connter,

‘The strategy for translating DO loops is summarized in the following: (up to) five

auxiliary variables are generated by the translator for the purposes of storing the results
of evaluation of the expressions giving the start value (StartValue), limit (Linit), and

increment (Incr), as well as a variable for storing the number of iterations of the loop

65

(IterationCount) and a control variable for the FOR loop (InterationCtrl). The type
of StartValue, Limit, and Incr (if present) is the same as that of the control variable of
the DO loop. IterationCount and IterationCtrl are of type LONGINT?,

(* evaluate expri, expr2, and (possibly) expr3 *)
(% T is the type of the DO loop ctrl variable %)
StartValue := T(expri);
Limit := T(expr2)
Incr := T(expr3;
(* initialize DD variable %)
do_var := StartValue;
(* determine number of iterations *)
IterationCount:= LONGINT((Limit-StartValue)/Incr + T(1));
(* use FOR to perform iteration *)
FOR T i 1= 1 TO Iter D0
translation(<stmt-sequence>);
do_var := do_var + Incr
END;

For the most part the above strategy follows the semantics of the DO loop. The variable
IterationCtrl corresponds to the internal Fortran variable used to control definite itera-
tion, and is kept distinct from all other variables in the code for the loop. In Modula-2 the
behavior of 2 FOR loop is considered unpredictable if either the start value,the limit valne,
or the control variable is modified by statement(s) in the loop. This constraint prompted
the use of IterationCtrl as the control variable in the FOR loop, and the intraduction
of IterationCount to store the limit value. StartValue, Limit, and Incr had to he
introduced to account for possible side-effects of <expri>, <expr2>, and <expr3>, and to
preserve the order of evaluation of the expressions®!.
It should be noted that the type transfer function LONGINT truncates real values and
thus the expression for computing the number of iterations is equivalent the the Fortran
50me Modula-2 systems disallow control variables of FOR loops to be of type LONGIN'T, but TopSpeed
Permits it!
#Clearly, much more eficient code can be generated for DO loops in which the start, limit, and for
increment expressions do not have side-cffects; in such cases, variables startialue, Lisit, and/or Tncr
need not be introduced. Morcover, if constants or constant expre are wsed, then TterationCount

need not be used. The translator docs not currently attempt such o;xlimizaliou, but could easily he
extended Lo do so.

expression for the iteration count given by MAX(INT((Limit - StartValue + Incr) /
Iner) ,0) ([ANS 78]).

It should also be noted that when the type of the DO variable is integer, the division
operator used in the calculation of theileration count is DIV. Moreover, when no increment
is specified Lhe iteration count is computed using Limit - StartValue + 1 when start
vale and limit are integers and using LONGINT(Limit - StartValue + 1.0) otherwise.

When DO loops are nested, it is necessary to make some of the auxiliary identifiers

distinct (at least Incr, T and IterationCtrl). Thisis done by

numerical sullixes onto these identifiers which reflect the depth of nesting of the particular
loop they are being used to implement. For instance, the loop

DO 100 I = 1,10

D0 200 J = 1,1
SUM = SUM + I
200 CONTINUE

100 CONTINUE

is translated into:

StartValue:= 1; Limit:= 10; I:= StartValue;
IterationCount_1 := LONGINT(Limit - StartValue + 1);
FOR IterationCtrl.l := 1 TO IterationCount_i DO
StartValue:= 1; Limit:= I; J:= StartValue;
IterationCount.2 := LONGINT(Limit - StartValue + 1);
-2 := 1 T0 It i

Ji=d+
END
Ii=1+1;

END

‘The strategy of suffixing auxiliary identifiers by numerical suffixes alone is however insuf-
ficient in general, since loops at the same level of nesting would then share some of the
same auxiliary variables. But as the type of the control variables for distinct DO loops

at the same level of nesting may differ, further differentiation of StartValue, Linit, and
Incr, is called for.

67

Consequently, the translator appends an additional suffix to these identifiers when they
are used to store real or double precision values (the characters '’ and ’d’ respectively).
‘The advantage of this strategy is that these variables can be reused in the code for loops
at the same level of nesting with the same type of control variable.

A further example is provided to demonstrate this identifier generation strategy:

D0 100 X = 1.0, 5.5, 2.0
SUM = SUM + X
100 CONTINUE
D0 200 I = 1,10
SUM = SUM + T
200 CONTINUE

Its translation is the following:

Start_r:= 1,0; Limit_r:= 5.5; Incr.r_1:= 2.0;
X := Start.r;
IterationCount.:
FOR

= LONGINT((Limit_r - Start_r)/Incr.r.1 + 1.0);
1:=1T0T

SUM := SUM + l;-
X := X + Incrr.i;
END;

Start:= 1; Limit:= 10; I := Start;
IterationCount_1 := LONGINT(Limit - Start + 1);

FOR 1:=1T0 100
SUN SUM + REAL(I);

I:=1+1;

END;

Another concern lies in the fact that the terminal statement of a DO loop may be
shared by more than one DO statement. When a shared terminal statement of a nested
DO loop is a statement other than CONTINUE, the terminal statement is included only
as part of the body of the innermost loop (this is consistent with the definition of the DO
loop [ANS 78], pg. 11-9, in which it is specified that the terminal statement is executed
only when the body of the innermost loop is executed).

Consequently the following DO loop:

DO 100 I = 1,10
D0 100 J = 1,5
SUM = SUM + J
100 LOOP = LOOP + 1
is translated as though it were:

DO 200 I = 1,10
DO 100 J = 1,10
SUM = SUM + J
100 LOOP = LOOP + 1
200 CONTINUE
where 200 is a label that does not appear in the program unit in which the statement

appears.

5.5.2 Logical If statements

The logical IF statement ([ANS 78], pg. 11-3]) specifies that a single statement be exccuted
if the value of a conditional expression is true. It has the following syntax:

IF (<condition>) <stmt>

where <condition> is a logical expression and <stmt> is an exccutable Fortran statement

which is ncither a DO stats t, a block IF an END stat t, or another

logical IF statement. The exccution of the statement causes cvaluation of the condition,
after which <stmt> is executed if and only if the value of the condition is true.

The traaslation of the logical IF into Modula-2 is straightforward, and a converted
logical IT statement has the following general form:

IF <cond> THEN <stat>

where <cond> and <stat> arc the ion of ition> and <stmt>, resp

For example, the following logical IF statement:

IF (X .LT.)X =Y

is converted into the following Modula-2 if statement:

IF X < Y THEN X := Y END

5.5.3 Block IF statements

The block IF construct in Fortran ([ANS 7. .pp. 11-3,1-5) allows the program to choose
between one or more alternative actions. Its gencral forr- is given by the following:

IF (<condition>) THEN
<stmt-sequence>
{ ELSE IF (<condition>) THEN
<stmt-sequence> }
[ELSE
<stmt-sequence>]
END IF

where <stmt-sequence> is a sequence of executable statements.

Iere again, the translation strategy is simple. The Modula-2 IF' statement is both
syntactically and semantically similar to the Fortran block IF statement, and has the
following syntax:

IF <condition> THEN <stmts>

{ ELSIF <stmts> }
[ELSE <stmts>]

END
where <stmts> is a (possibly empty) sequence of statements.

For example, the Fortran statement:

IF (X .LT. 3 .AND. Y .GT. 0) THEN

X=X+1
ELSE IF (Y .GT. 0) THEN
Y=Y+1
ELSE
IF (Z .NE. 0) Z=2+ 1
END IF

is translated as follows:

IF (X < 3) & (Y > 0) THEN
X X+1
ELSIF Y > 0 THEN

Yi=Y+1
ELSE

IF Z # 0 THEN Z :=2 + 1 END
END

70

5.54 GO TO’s and Labels

A fully general Fortran to Modula-2 translation must include the elimination of goto
statements and labels, since standard Modula-2 provides neither. The present translator
does not eliminate goto statements from Fortran programs and as such may be seen
as converting goto-less Fortran programs into Modula-2 programs. This is not to say
that such a fully general translation is impossible. In fact, a number of transformation
techniques have been proposed to eliminate goto’s from so-called unstructured programs.
Some of these techniques are discussed in [Fre 81), whose Fortran to Pascal translator
handles the assigned and computed GOTO statements; the basis of the transformation
is derived from a boolean flag algorithm proposed in [Pet 73], Thus while in theory the
translator could be extended to perform the elimination of goto’s, for the purposes of this
thesis no attempt to implement any such technique was made.

The translator does however process goto’s and labels. In what could be perecived
as an unorthodox strategy, the translator uses the TopSpeed extension of the Modula-2
language which provides facilities for goto statements and the declaration of labels. In
TopSpeed, identifiers can be defined to be labels. Label identifiers can be used to label
statements in Modula-2 programs, and can be referenced by GOTO statements.

In the translation, label identifiers are constructed for all labels in the Fortran program

which are refc d by goto These i are of the form Lab_n, where

uis the digit string making up the Fortran label.

5.5.5 U ditional GO TO

The unconditional GO TO statement in Fortran is of the following form:
GO TO <label>
where <1abel> is the statement label of an executable statement that appears in the same

program unit as the GO TO statement (JANS 78], pg. 11-1). Unconditional GO TO
are d into tional GOTO of TopSpeed Modula-2

(which have the same semantics as their Fortran counterpart).

mn

For example, consider the following Fortran code:
GO TO 100
100 X =X+ 1
The above is translated into the following TopSpeed Modula-2 code:

LABEL Lab_100; (+ declaration of label %)

GOTO Lab_100;

Lab_100: X := X + 1; (* labeled statement *)
5.5.6 Computed GO TO statement
The computed GO TO statement in Fortran is of the following form:

GO TO (<label> {, <label> }) <int_expr>
where <int_expr> is an integer expression, and <label> is the slatement label of an
exccutable statement in the same program unit in which the computed GOTO appears.
The effect of execution of the statement is that control is transferred to the statement
identified by the i** statement label in the list, where i is the value of the integer expression.
1f the value of 7 is not in the range 1 < ¢ < n, where n is the number of labels in the
list of labels, then the statement has no effect, and exccution resumes with the statement
following the computed GOTO statement.

Computed GO TO statements arc converted into Modula-2 case statements, as shown

in the example below. Consider the following computed GO ‘IO statement:

GO TO (100,200,300,400) I*J/2

Its translation is the following:

kes

CASE TJ DIV 2 OF
1: GOTO Lab_100 |
2: GOTO Lab_200 |
3: GOTO Lab_300 |
4: GOTO lab_400
ELSE (+ empty statement %)
END;
Note that should the value of the expression be greater than the number of labels in the
label list (or less than one), no action is taken and execution continues with the statement

following the CASE statement.

5.5.7 Arithmetic 1F statement
The arithmetic TF statement in Fortran has the following form:

IF (<expr>) <labeli> , <label2> , <labeld>

where <expr> is an arithmetic expression and mbox<labeli> is a statement label. When
the statement is executed, the expression is evaluated, and if that value is less than zero,
control is transferred to the statement labeled with <label1, if the value is equal to zero,
control is transferred to the statement Jabeled with <label2>, and if the value is positive,
control is transferred to the statement labeled by <1abel3>.

Arithmetic IF are into Modula-2 if statements, and an additional

auxiliary variable (aux_var) is generated to temporarily store the results of expression
evaluation. The strategy is simple and is illustrated by an example. Consider the following

arithmetic IF statement:

IF (X+1) 100, 200, 300

Its translation is:

VAR aux_var: LONGREAL;
aux_var := LONGREAL(X+1);
IF aux_var < 0.0 ‘THEN GOTO Lab_100

73

ELSIF aux_var = 0.0 THEN GOTO Lab_200

ELSE GOTO Lab_300

END
Note that the auxiliary variable aux_var is of type LONGREAT.. This is done purely for
the convenience of the translator so that only a single auxiliary variable need be introduced

into a program unit’s module for the lation of all ari ic IF in that

program unit. The conversion of the value of the expression to type LONGREAL does

not change the scmantics of the statement.

5.5.8 Assigned GO TO and ASSIGN statements

The assigned GO TO statement in Fortran has the following form:

G0 TO <var> [[,] (<label> {, <labeld})]

where <var> is an integer variable name, and <label>'s denote

ement labels of an
exccutable statement that appears in the same program unit as the assigned GO TO
statement. The list of labels is optional. When the assigned GO TO statement is exeented,
the integer variable must have been assigned a statement label. The ASSIGN statement
assigns a label to an integer variable; it has the following general form:

ASSIGN <label> TO <var>

The translation of ASSIGN statements is not straight forward as TopSpeed Modula-2
toes not support label variables (only label identifiers). The solution adopted in the

translator is two-fold: firstly, the ASSIGN statement is converted into a regular assignment

of an integer value (the integer ion of a digit string ituting a label) to the
integer variable; secondly, assigned GO TO statements are constrained to have a list of
statement labels (in which case Fortran requires that the assigned statement label must
be present in the label list). Assxgnul GO TO statements can then be converted into

Modula-2 case case are i of a function which take

integer variable and a string representing the label list as arguments, and returns the

position in the list of the label represented by the integer variable.

™

For example, consider the following Fortran statements:
ASSIGN 100 T0 I
G0 70 I, (200,100,300)

The translation is as follows:

I

100; (¢ label treated as integer value *)

CASE posn(I,"200,100,300") OF
1: GOTO Lab_200 |
2: GOTO Lab_100 |
3: GOTO Lab.300
END;
where posn returns the position in the list of labels (passed as a string) of the value

currently stored in I in this example it is 2.

5.5.9 CONTINUE statements
The CONTINUE statement, which has no effect when executed, is converted to the emply
statement in Modula-2. For example, the following sequence of Fortran statements:

GO TO 100

100 CONTINUE
X=X+1

is translated into:
GOTO Lab_100

Lab_100: ; (+ CONTINUE)
X:i=X+1

5.5.10 STOP statement

The STOP statement in Fortran ([ANS 78], pg. 11-9) causes termination of exccution of

an executable program when exceuted. It has the following general form:

%

STOP [<string>]
where <string> is a string of not more than five digits or a character constant. At the
time of termination, the value of <string> is accessible.

A STOP statement in which no string is present is converted into a HALT statement.
The HALT statement in Modula-2 similarly causes program exccution to cease when
exccuted. When astring is present, the STOP statement is translated into two statements,

the first of which prints out the string, and the second of which is a HALT statement.

5.5.11 PAUSE statement

The PAUSE statement in Fortran ([ANS 78], pg. 11-9) causes resumable termination of
ezecution of the program when exceuted. It has the following gencral form:

PAUSE [<string>]
where <string> is a digit string or a character constant.

As Modula-2 does not provide an analogous instruction, the translator simply converts
PAUSE statements into invocations of a user defined procedure called Pause which takes
the string (if present) as argument. The definition of this procedure is system dependent.
TopSpeed Modula-2 does not provide a means of resumeably ceasing program execution,
and thus the exccution of the Panse procedure generated by the translator simply causes

the string (if present) to be output prior to HALTing program execution.

5.6 Translation of Subprograms

5.6.1 Parameter passing

Since in Fortran the type of argument passing mechanism for a given dummy argument
cannot be determined without knowing the nature of the associated actual argument(s),
two general approachs can be nsed for the generation of fornial parameter lists. One

involves an analysis of all possible invocations of subprograms to determine which p:

eters should be passed by reference and which by vlue. Dununy arguments associated

6

with expression actual arguments could be converted into value parameters, while those
which become assaciated with variables o arrays could be converted into variable param-
eters. To implement such a strategy a careful global analysis of subprogram invocations is
required which is complicated by the pusslh)llly of dummy procedure invocations. Another

approach is to translate d dent]

formal with-

out i ion about cor ing actual The latter strategy is adopted
by the translator.

The translator converts all dummy arguments into variable parameters except for
dummy procedures and dummy argum . nts of statement functions. Since in mboxModula-
2 actual arguments corresponding to variable formal parameters cannot be expressions,
actual arguments which are expressions must be replaced by variables. Consequently, for
each expression appearing as an actual argument to an external procedure an auxiliary
variable (of the same type as the expression) is introduced to store the value of the
expression immediately prior to invocation, and that variable is used as actual argument
in place of the expression.

For example, consider the following Fortran program units:

REAL A,B,FUN1
CALL SUB1(A,FUN1(A/2,B))

SUBROUTINE SUB1(X,Y)
REAL X,Y

REAL FUNCTION FUN1(X,Y)
REAL X,Y

Fhe subroutine SUBY is invoked v.ith two arguments, the first of which is a variable (4)
and the sccond is an expression (the invocation of FUN1). In the code generated for the

invocation that is given below, two auxiliary variables (Temp.1 and Temp_2) are used to

temporarily store the result of the i ion of FUN1 and the ion A/2

VAR A,B,Temp_1,Temp_2: REAL;
Temp_2 := A / 2.0;

Temp_1 := FUN1(Temp.2,B);
SUB1 (A, Temp_1) ;

The procedure headers generated for SUB1 and FUNS are:
PROCEDURE SUB1(VAR X,Y: REAL);
PROCEDURE FUN1(VAR X,Y: REAL): REAL;

Note that when dummy arguments are unstructured (and are not dummy procedures)
the translator need only know the type of the dummy arguments in order to generate the

formal parameter lists, and no global information is required.

5.6.2 Passing string arguments

Dummy arguments which are st are uniformly converted into open array parameters.

While Fortran requires that the length of a character string dummy argument be no
grealer than any corresponding actual argument, in the translation they are essentially
of the same length (although this length may vary across procedure calls). Thus, in
effect, the translator ignores the declaration of character string dummy arguments within

when ing formal lists. This strategy corresponds nicely

with assumed size dummy character strings (which are handied by the translator) but not
so well with dummy arguments which are shorter than a corresponding actual argnment.

For example, consider the following:

PROGRAM EXAMPL
CHARACTER¥20 NAME1,NAME2
CALL SUB4(NAME1,NAME2)
SUBROUTINE SUB4 (S1,52)
CHARACTER#10 S1,52
CHARACTER%20 S3

s3 =81 // 82

78

Here the dummy arguments are shorter than their corresponding actual arguments, and
the value stored in S3 will be the string resulting from the concatenation of the firct ten
characters in NAMEL and NAME2 respectively. If S1 and S2 are open array parameters in

the lion of SUB4, then the call Concat(Result,S1,S2) within the code

for SUB4 will return the concatenation of NANE1 and NAME2 in Result.

A correct solution would involve actually extracting the first ten characters of S1 and
S2 (in conformity with the declared sizes of S1 and S2 in the subprogram) and then
concatenating these substrings before performing the assignment. The translator however
does not utilize this strategy, and simply assumes that in the Fortran programs it makes

no semantic difference that character strings are passed in their entirety to subprograms.

5.6.3 Passing arrays as argument

In formal lists of Modula-2 , type identifiers are used to declare the
types of formal parameters (except for open array parameters). \When paramelters are
structured objects, the program must define type identifiers for their declaration. Conse-
quently, the translator generates type identifiers for all arrays that appear as an actual or
dummy arguments in the Fortran program. Since Modula-2 generally requires that actual
and formal parameters be defined using the same type identifiers, array arguments pose
somewhat of a problem, because type identifiers for arrays specify their index type which
statically define the upper and lower bounds of subscripts (which nced not be the same
in actual and dummy arguments in Fortran).

Thestrategy adopted by the translator to deal with this situation is simple (alternative
strategies are discussed in the conclusion); actual argument arrays are required to be
identical both in size and in the range of subscripting values to all dummy arguments
with which ihcy become associated. This effectively permits the same type identifier to
be used in the declaration of both actual and dummy arguments. By the same token, the
restriction prohibits the use of adjustable and assumed size arrays.

In Fortran, when an array of character strings is supplied as actual argument, the only

restriction on the corresponding dummy argument is that the tolal amount of storage
implied by the dummy argument does not exceed that of the actual argument. The length
of the string elements of the dummy array may differ from that of the actual argument
array’s elements. This situation is problematic, since while open array parameters can have
more than one dimension, only the first dimension is flexible. As a result, the translator
requires that the type of character string array actual and dummy arguments be the same,

and open array parameters are not used in the passing of these objects.

" The identifiers used as type identifiers in the translation are constructed so as to reflect
the characteristics (ie., the index range and the clement type) of array structures. For
instance, the type identifier for an array declared in the Fortran program with the following
type statement:

INTEGER A(3:57)

would be Int_array 3_57. In this way, the type identifier gencrated for every integer
array with indices ranging from 3 to 57 will be the same thereby allowing their generation
(but not their definition) to be done locally. As the type identifiers of actual and formal
parameters must have the same defining occurrence, all generated type identificrs are
collected togethier and defined (exactly once) in a module called Types, and modules
which declare objects of those types which are formal or actual parameters import those
identifiers from that module. An example is the following:
PROGRAH P
INTEGER NUM(10)

CALL SUB1(NUM)

END
SUBROUTINE SUB1(L)
DIMENSION L(10)
END
Here, both the actual and dummy argument for SUB1 arc integer arrays with ten clements

whose subscripts range from i to 10. Its translation is outlined in the following:

80

NODULE P;
FROM Types IMPORT Int.array.1.10;
VAR NUM : Int_array_1.10;

SUB1(NUM) ;
END P.
DEFINITION MODULE SUB1_mod;

FROM Types IMPORT Int_array.1_10;
PROCEDURE SUB1(VAR L:Int_array_1_10);

END SUB1.

DEFINITION MODULE Types;
TYPE Int_array.1.10: ARRAY [1..10] OF LONGINT;

One further ion on array is namely, when an array ol-

ement is used as actual argument, the corresponding dummy argument must be of the
same Lype. Since the translator assumes that all arrays in the Fortran program are onc-
dimensional, this means that the dummy argument must be a variable of the same type
as the array clement (or a string). Consequently, only the entire array can be passed to a

procedure. Again, alternatives are discussed in the conclusion.

5.6.4 Subroutines

For each Fortran subroutine the translator generates a module containing the definition
of an analogous Modula-2 procedure. RETURN statements in a subroutine are converted
into Modula-2 RETURN statements. In Fortran, the CALL statement is used to invoke
subroutines, CALL statements are converted to Modula-2 procedure invocations, possibly
preceded by assignment statements for evaluation and temporary storage of the values of

expression actual arguments,

81

Alternate return specification

Tn Fortran when execution of a subprogram terminates, control is normally returned to
the executablc statement following the CALL statement with which the subroutine was
invoked. This convention can, however, be circumvented using alternate return speeifiers
([ANS 78], pp. 15-11, 15-19) which are ‘passcd’ as arguments to the subroutine. An
alternate return specifier is an actual argument which has the syntax *<label>, where
<label> is a statement label of an exccutable statement in the invoking program unit.
Dummy arguments which correspond to alternate return specifiers are asterisks (%).

A subroutine which takes alternate return specifier(s) as arguments may optionally
specify that control be returned to one of the labels supplicd as argnment by including

an integer ion in RETURN The integer

P ion identifies which (if
any) of the alternate returns is to be chosen. The following example demonstrates the use

of alternate return specifiers:

SUBROUTINE SUB (A,*,B,*)
INTEGER A,B

IF (A .LT. 0) THEN

RETURN 1
ELSE IF (B .LT. 0) THEN

PROGRAM CALLER
CALL SUB(A,*100,B,%200)

1f SUB is invoked from CALLER, then if the statement RETURN 1 is exccuted within SUB
control returns to the statement labeled by 100 (ie., the alternate return associated with
the first asterisk dummy argument) in CALLER; if RETURN 2 is exccuted, control returns to

the statement labeled by 200, If the value of the integer expression used in 2 RETURN

82

statement is less than one or greater than the number of asterisks in the dummy argument
list, then the effect of the RETURN statement is the same as if it were used without an
integer expression.

The translator requires that any integer expression appearing in a RETURN statement
be an integer literal. The strategy for translating alternate return specification is to
replace alternate return specifiers by boolean variables which are initialized to FALSE
i Inside the di RETURN which contain

before p
an integer valuc are converted into two statements, an assignmenit statement which which
sels the appropriate boolean variable followed by a RETURN statement.

For example, the invocation above would be converted into:

Lab_100_flag := FALSE;

Lab_200_flag

SUB(A,Lab.100_flag,B,Lab.200_f1ag) ;

IF Lab_100_flag THEN GOTG Lab_100 END;
IF Lab_200_flag THEN GOTO Lab_200 END;

while the procedure definition generated for SUB would be:

PROCEDURE SUB(VAR A:REAL; VAR flagi:BOOLEAN;
VAR B:REAL; VAR flag2:BOOLEAN);
BEGIN
IF & < O THEN
flagl := TRUE;
RETURN
ELSIF B < O THEN
f£lag2 := TRUE;
RETURN
ELSE

END SUB;

The iction that in RETURN ents must be integer literals is

imposed to simplify the generation of assignments to the boolean variables. An alternative

is given in the concluding chapter.

5.6.5 External functions

In a Fortran external function, the name of the functior. must appear as a variable name.
During execution of the function, this variable must become defined, and once defined,
may be referenced or redefined. The value returned by the function is the value of this
variable when a RETURN or END statement is exccuted. For example, consider the
following function definition:
INTEGER FUNCTION ABSDIF(M,N)
* poorly written for the sake of example!
INTEGER M,N
ABSDIF = 0
IF (M .EQ. N) THEN
RETURN
ELSE IF (M .LT. N) THEN
ABSDIF = N - M
ELSE
A3SDIF = M - N
END TF
END

The value returned by the function is the value of variable ABSDIF when cither the END
statement or the RETURN statement is executed.

In the Modula-2 function definitions, a local variable (with the same name as the
function identifier) is declared, and corresponds to the function variable of Fortran func-
tions. RETURN statements in Fortran functions are converted into RETURN statersents
in Modula-2 in which that variable used to indicate the value to be returned, and the
keyword END in the Modula-2 function is always preceded by a RETURN statement of
this form.

For example, the function above would be translated into the following:

PROCEDURE ABSDIF(VAR M,N: LONGINT): LONGINT;
VAR ABSDIF: LONGINT;
BEGIN
ABSDIF := 0;
IF M = N THEN
RETURY ABSDIF

ELSIF M < N THEN
ABSDIF := N - M

ELSE
ABSDIF :=M - N

END;

RETURN ABSDIF

END ABSDIF;
Notice that the scope of the function identifier ABSDIF does not include the body of the

function.

5.7 Input and output statements

In light of the fact that any strategy for the translation of Fortran input and output state-
ments into Modula-2 is necessarily non-standard (since Modula-2 provides no standard
procedures or statements for performing 1/0), the goal of the translator is to provide a
suitable abstraction of the details of input and output handling. While the FI0 module
in the TopSpeed system (chapter) provides routines which permit sufficiently low-level
control over input and output to translate I/O in Fortran, the task of developing imple-
mentation level strategies for the translation of Fortran I/0 into TopSpeed Modula-2 was
considered beyond the scope of this thesis,

The abstiaction is provided by translating input and cutput statements into sequences
of invocations of procedures which are imported from a module called FinOut. Procedures
defined in FinOut must in turn make use of the I/O facilities provided by the Modula-2
system in the target environment. As such, FinOut controls all aspects of I/O in generated
programs; only procedures defined in FinOut are used for 1/O operations, and Finlut
maintains its own private variables which are needed to simulate record-oriented 1/0,
direct access to records, etc. Since specific implementations of FinOut will vary depending
on the particular Modula-2 system employed, this section describes a general approach to
the translation of input and output statements and no attempt is made to exhaustively

cover the remarkable variety of I/O facilities of Fortran.

85

5.7.1 The READ statement

At the lowest level, formatted input in Fortran is the process of accessing data in the
form of a string of characters (a record) from an external device and transmitting them
to a buffer (normally inaccessible to the Fortran program). This character string is then
converted into the form required by the internal representation (integer, real, logical,
character, etc.). Format descriptions specify the positions of the fields of records and the
character(s) in cach field collectively represent in some way a single wlue of a particular
type specified in the description.

TFor example the format description:

(12, F6.2, I4)

describes the arrangement of threc fields within a record. "The first two characters in the
record represent an integer value, the next six represent a real number, and the ninth
through twelfth represent another integer value. Thus a record consisting of the charac-
ters 123456789012 represents, according to the above format description, the values 12,
3456.78, and 9012 (in that order).

TFormat descriptions in conj jon with READ establish an iation be-

tween the values represented in record fields and variables appearing in READ statements.
For instance, consider the following READ? statement:

READ 20, I,X,N
20 FORMAT (I2, F6.2, 14)

If this st~tement was exccuted and the “next” record to be accessed consisted of the
characters 123456789012, then the values 12, 3456.78, and 9012 would be assigned to the
variables I, X, and N, respectively.

Note that the READ statement is in its so-called “short-form”, a form used when the only item of

control informatiou is a format description. The fully gencral form of the READ statement includes a
t specifying an external device, the format of the data on the device, and (optionally) additional

Modula-2 library procedures for reading numeric and boolean valucs are generally
stream oriented and require some kind of delimiting character in the input stream. Sub-
sequently there is no “easy” way to specify that, for instance, the next two characters in
the input stream are to be interpreted as an integer value. Procedures for input of char-
acter strings similarly make use of delimiting characters, although the length of the string
variable supplied as argument may implicitly specify a maximum number of characters to
be read in a given invocation (ie., reading of characters into a string variable may stop
before a delimiting character is encountered if the string variable has been “filled up”).
Moreover, these procedures only read a single value at a time.

Clearly, these higher level input procedures cannot be used to to implement or simulate
the kind of record-oriented input that is nceded in the translation of Fortran programs. For
this reason, a module such as FinOut is needed to provide “format-driven” input in which

fixed size jons of values (cor

ponding to record fields) can be accessed and
appropriately converted into values according to format descriptions. To accomplish this,
FinOut must in some way be able to represent format descriptions derived from Fortran
programs. Once represented and stored within FinOut, procedures for reading values can
reference snch a description to determine both the length of the datum to be read in a given
invocation (ie., the number of characters used in the representation of the datum) and the
type of conversion that needs to be performed on the character input. Subsequently, these
procedures can access data by performing character-by-character input, and convert data
from string form by either using one of the procedures provided by the Modula-2 system
for converting between strings and other types (most Modula-2 systems provide a wide

variely of such i Yora d

For further clarification consider the following sequence of procedure calls, which is

generated by the translator from the Fortran READ statement above:

Format ("I2,
Read_Int(I);
Read_R1(X);

Read_Int(N);

87

All of the procedures invoked are imported from FinOut. The procedure Format is used
to initialize variable(s) used to store the format description supplied as argument, as well
as Lo initialize a pointer of the ‘next applicable format descriptor’. Procedures Read.Int
and Read R1 read a single value (of integer and real type, respectively) into the variable
supplied as argument. One such read procedure is assumed to be defined in FinOut for
input of each of the types represented in Fortran programs. These procedures reference
the format descriptor pointed to by the ‘next format descriptor’ pointer to determine how
many characters are to be read from the input stream and how to convert the resulting
string?®. They are also responsible for updating the pointer after the read operation. Nat-
urally, this updating can be complicated by the existence of repeat counts associated with

ibility of ing” part or all of the format description

descril and by the p
when the number of variables in a READ statement is greater than the number of de-
scriptors, but this simply implies that more than a pair of variables are required to control
such format-driven input.
The translation of READ statements with array variables can be accomplished with
the same strategy, using iteration. For example, consider the following Fortran code:
INTEGER NUM1(10), NUM2(10)
READ 30, X,NUM1, (NUM2(I),I=M,N)
30 FORMAT (F5.1, (I3))
Its translation is the following:
FRON FinOut IMPORT Format;
FROM FinOut IMPORT Read_R1;
FROM FinOut IMPORT Read.Int;
VAR NUMi: ARRAY [1..10] OF LONGINT;
NUM2: ARRAY [1..10] OF LONGINT;

Format("F5.1, (I3)");
Read_R1(X);

*In practice, more than one descriptor may come to bear on the input of a single value, such as when
an X or slash descriptor appears in a format description.

88

FOR i := 1 TO 10 DO
Read_Int(NUM1[i])
END;
FOR I := M TO N DO
Read._Int (NUM2[INTEGER(I)]);
END;
Note that the same framework could be used for handling list directed formatting(input
“controlled’ by the input list, in which separators are used to delimit values represented in
records). For instance, the statement

READ *, A,B

is converted into
Format("+");
Read_R1(A);
Read_R1(B);
In this case, the procedure Read.R1 will detect the use of implicit formatting and act

accordingly (including the skipping over of separator characters).

5.7.2 The WRITE and PRINT statements

The same general strategy can be employed in the treatment of formatted output in
Fortran. Generated Modula-2 programs will import from FinOut procedures for outputing

values of each (printable) Fortran type. When an output operation is being performed,

Finlut maintains a ion of the format description which applies, and a pointer

to the ‘next i descriptor’ in that iption. The i jon of the output
procedures in FinOut is simplified by typical feature of Modula-2 library procedures for
output which require the size of the field on which values are to be printed to be specified in
one of the arguments. Some additional care will have to be taken within these procedures
to account for any control characters specified in the format description. Morcover, these
output procedures must be able to detect and react to the existence of apostrophe cditing
(ie., when character constants appear in format descriptions for output).

For example, consider the following:

89

PRINT 40, X
40 FORMAT (’0’, 'The value of X is’, F6.2)

Its translation is the following:

Format("’0’, *The value of X is’, F6.2");
Write_R1(X)

In this example, the procedure Write Rl must first cause the control character and the
string constant to be output prior to printing the value of X in the format prescribed.
The PRINT statement in Fortran is the “short form” of the more general output
statement, the WRITE statement, which includes a control list. The WRITE statement,
as well as the general form of the READ statement, can be translated only if additional
Fortran 1/O statements are handled (such as the OPEN and CLOSE statements - see
following section). Since these additional statements are not handled by the translator, the
WRITE is not although the ing strategy for the
of the WRITE statement would be the same as that described for handling the PRINT

statement.

5.7.3 Other I/O statements

The translator does not handle any 1/0 statements other than the READ statement (with-
out a control list) and PRINT statements?’. Again, the motivation for this decision is

based on the i tandard nature of any ion strategy for Fortran I/0.

But it should be stressed that such a jon is not for any
given Modula-2 system. For instance, the Fortran 1/0 statements OPEN and CLOSE
have direct counterparts in TopSpeed Modula-2, namely the Open and Close procedures
in module FI0, and differences between them are relatively minor. TopSpeed also provides
procedures for file positioning (GetPos and Seek) which could be used in the implemen-

tation of the Fortran statements BACKSPACE, REWIND, INQUIRE, and ENDFILE

" Conscquently, formatied internal data transfer is not handled. Alternatives are discussed in the con-

cluding chapter,

90

without great difficulty (the major difference between the Fortran statements and the

Modula-2 procedures are that the latter are byte rather than record oriented).

91

Chapter 6
Implementation

6.1 The attribute grammar

In this section an overview of the AG describing the translation is given. A single tree
is used to represent the entire executable Fortran program, and the use of attributes is
described largely in terms of trec structures.

Attributes in the grammar can be ch: ized by their use. i attributes

are attributes used to generate information about the environment of a program. At-
tributes of this type typically derive their values from the definitions and declarations
(implicit or explicit) of entities in the program (ie., most environmental information is
derived from specification statements), and their values are used in the construction of
Modula-2 definitions and declarations,

We can distinguish from environmental attributes those which are used primarily in

the ion of code for These attributes derive their values

from the use of entities in the executable statements of the program (in conjunction with

environmental attribute values).

92

6.1.1 Environmental attributes

As the global variable concept does not exist in Fortran, most environmental information

for a given program unit is derived from the subtree mprcselltmg the program unit.

The main attributes used for the ion of ion within a

given program unit are env_in, env_out, and env. The first two (inherited and synthesized

) are used to the envi of a program unit!. a
is used to pass the complete description of the environment synthesized by env_out at the
root of the subtrec for a program unit back into the nodes in the subtree; more specifically,
env is inherited by some internal nodes in the subtree, for the most part, nodes in subtrees

the

The domain of these attributes is a list of entily descriptions. Each entity description is
astructure consisting of fields for: the name of the entity (a symbol), its type (integer, real,
character string, untyped, etc.), a description of the object it represents (the nature of the
description depends on whether it is a constant, variable, array, dummy variable, dummy
array, statement function, external function, or dummy procedure, etc.), its membership
in a common block or equivalence class, and whether or not it is to be ‘saved’.

As Fortran does not require the declaration of variables before their appearance in exe-
cutable (and DATA) statements, env_in and env_out are used to gather the environment

of a program unit from both the specificati and the

in a program unit.
The environment is updated each time a new entity is declared (explicitly or implicitly)

or additional information about an entity is specified (such as when a previously typed

'Often, a pair of attributes - one inherited and one synthesized - are used in tandem to accumulate
information of the same type in a trec or subtree. Typically, the value of the inherited attribute at 2 node
represents the information prior I the structure represented by the node, while
the value of the corrssponding synthesized attribute at the node represents the accumulated information
ajter the structure represented by the node has been encountered. Attributes env.in and env.ont are
uch a pair. In the AG, the naming convention for such pairs is to suflix the inheritcd attribute name by
“in’ and the synthesized attribute name by “out’.

Subtrees representing the expressions in statement function definitions inherit the cnvironment of the
program unit modified to include only those cntities which do not have the same name as any of its dummy
arguments, and only those statement functions which precede its definition.

93

entity is di ioned through its ina ON stat t). Additional

entitics may be added to tue environment which do not correspond to Fortran entitics

when bl whose ion involves the addition of auxiliary variables

(such as the DO statement) are encountered.

Attribut

Several attributes are used to support the ion of the
imp_in and imp_out are used to gather and represent any implicit typing rules specified in
a program unit. These rules are used to determine the types of unexplicitly typed entities.
All subtrees for program units inherit the Fortran default implicit typing rules, some or
all of which may be overridden by typing rules specified in IMPLICIT statements.

The attributes 1ab_in and 1ab_out are used to generate a list of all labels of executable

statements in a program unit.

Attri ing entity

There are also attributes which represent more detailed information about entities than
that represented in env. In particular, attributes are used to represent the association
of entities in a program unit with common blocks and/or cquivalence classes. While the
definition in env of an entity which is in a common block or equivalence class includes a
reference to the particular block or class with which it is associated, these attributes de-
scribe their relative positions in the storage sequence with which they are associated. The
attributes cblks_in and cblks_out accumulate descriptions of the common blocks refer-
enced in a program unit, while the attributes equiv_classes_in and equiv_classes_out
are used to accumulate and represent the equivalence classes in a program unit.

This abstraction of the particulars of the association of entities from the general de-
scription of the environment in env is done for two reasons: firstly, the relative positions

in a storage sequence of associated entities is not, strictly speaking, necessaty for the

of code for (ie., it is sufficient to know which block or
equivalence class an entity is associated with in order to generate references to it in the

Modula-2 program). Secondly, by izing such i ion in these attril the

94

computation of the relative positions of associated entities is facilitated. Moreover, com-
mon blocks are global objects, and information about their declaration within a program
unit has to be passed ‘outside’ of the subtrecs for program units (see below).

The computation of the values of cblks and equiv_classes? is done in two distinct

phases. The first phase consists of ing the rawil ion provided in

statements. A list of all referenced common blocks is generated from the COMMON

statements, along with the names,

(ie., type and), and order of
appearance of the entities in each block. From the EQUIVALENCE statc.zents a list is
generated each element of which corresponds to a single EQUIVALENCE statement (ic.,
a list of variable names, array names, and array element names which appear in the same
equivalence statement - we call such a list an equivalence list).

The second phase consists of three steps. First, for each equivalence list the relative
offsets of each entity from the start of the storage sequence implied by the list are com-
puted. Second, disjoint equivalence classes are formed by ‘merging’ equivalence lists which
share entities, generally resulting in the modification of the relative offsets of some of the
entitics. Finally, equivalence classes which contain at least one entity which is a member
of a common block are ‘merged’ with their associated common block, possibly resulting
in further modification of the value of the offscts of entitics in the class. The final value of
the offset computed for a given entity in an equivalence class is used in the construction
of the record field associated with it in the Modula-2 program.

Subtrees for program units are themselves composed of three main subtrees represent-

ing the i the DATA and the of the program

unit. The first phase described above is performed during the first visits to the nodes of
the subtree representing the declarations in the program unit. The computations corre-
sponding to the second phase are done after the first visit to the nodes of the declaration

subtree. Once the

Y ized by that subtree is updated to re-

*When we use these attribute names without the suffixes in and .out, the meaning is the value
accumulated by the corresponding pair of attributes in a subtree.

flect the actual membership of entitics in common blocks or equivalence classes (which can
now be associated with distinct integer values - see section 5.4.4) so that correct references

to such entities can be constructed for the Modula-2 code.

Attributes inherited by program units

While most information required to represent the environment of a program unit is derived
from the subtree representing the unit itself, some global information is needed.

Most importantly, program units may reference external procedures defined elsewhere
in the executable program. Subtrees for program units inherit the attribute externals
which lists the external procedures in the executable program; these external procedure

are i into the envi by env. Moreover, this

information provides the basis for determining whether a given function invocation (which
is not a statement function invocation) is an intrinsic function invocation or an external
procedure reference?. Naturally, all external procedure references in CALL statements
must use one of the external procedures described in externals.

Additionally, program units inherit an attribute which contains an integer value which
is uniquely associated with the program unit. This value is used in the construction of
field identifiers of records representing common blocks in the Modula-2 code (see section
54.3)

Note that while common blocks are global objects, the nature of their definition outside
of a given program unit is not required within that program unit, since the names used to

refer to locations within common blocks are local to the program units that refer to them.

Attributes synthesized by program units for global use

While most environmental attribute values are only required locally, some are necded
outside of the subtree representing a given program unit. Such attributes are synthesized
“This is a kind of shortcut taken by the translator. A more robust version could check the names of

functions invoked in a program unit which do not appear in externals against a list of intrinsic function
names,

96

by the root of program unit subtrees making them available to nodes higher up in the tree
of the entire program.

For one, the value of the attribute which represents the constituents of a common block
in one program unit needs to be somehow combined with the values of the same attribute
representing common blocks in other program units in order to construct the definition of
module COMMON in the Modula-2 program. Consequently, program unit subtrees synthe-
size the (‘processed’) value of cblks, and the combining of the values synthesized by all
program units is done at the root of the tree for the executable program.

As type identifiers needed in the Modula-2 program are declared outside of the mod-
ules containing the code for program units, subtrees for program units synthesize (using
attributes called types_in and types_out) a list of type descriptions for types of struc-
tured entitics (arrays), procedures, and dummy procedures which are uscd as arguments
within the program unit. Higher up in the tree for the executable program, the union of
these type descriptions is formed, and the resulting list is used to generate the definition
of module Types in the Modula-2 program.

Finally, cach program unit subtrees synthesize an attribute which describes the pro-
gram unit itself. The value of this attribute is the name and type (subroutine or function)
of the program unit if it is an ezternal procedure (otherwise it has a ‘ull’ value). This

is used to h

a list of external in the program
at the root of the tree for the executable program, and the synthesized list s ultimately

inherited by subtrees for program units in externals.

6.1.2 Code generation

All Modula-2 source code is represented in ALADIN as a list of tokens (a user-defined type

in the AG specification). A token (i d as a discriminated union type value) can

be a symbol, a string, an integer literal, a real literal, a qualified name, ete. The actual
output of Modula-2 code is performed via ALADIN external functions which convert the

ALADIN representation of tokens into a form suitable for output by the Pascal functions

(normally a sequence of characters). Typically, this involves accessing the translator’s

symbol table.

Definitions and declarations

For the most part, the complete environment provides sufficient information for the genera-
tion of the definitions and declarations in the Modula-2 code. Definitions and declarations
which are to appear in modules corresponding to program units are generated using the
values of the environmental attributes synthesized at the root of the subtree representing
it; the value of env is used to construct the definitions of constants, unassociated variables
and arrays, and formal parameter lists, as well as the import statements for all imported
procedures and translator provided types (such as Logical and Complex). The value of
equiv_classes_out is used to construct record variable declarations for the equivalence
classes of the unit. The value of cblks_out is used to generate import statements for com-
mon blocks, types_out is used to generate import statements for types imported from
Types, and 1abs_out is used to construct label definitions.

The only definitions local to the module for a program unit which are not gener-

ated from the environmental attributes are the itions of functions and d

constructed for statement functions and alternate returns, or import statements for pro-

cedures and /or functions used in the jon of Genrati
of these definitions is performed during code ion for (see
below).

The definition of the objects in module COMMON is based on the ‘combined’ values of

cblks from each program unit which references common blocks.

Executable statements

Code ion for b (and DATA) is after

the eavi i jon has been hes, The attribute code is primarily

responsible for synthesizing the code. Code for executable statements is generated on a

statement-by-statement basis. For instance, the code generated for an IF statement is
synthesized by code at the root of the subtree ing the IF

subtrees of the IF stmt subtree will synthesize code for the condition(s) and in

the body of the IF statement). Typically, the value of code is computed during the final
visit to the nodes with which it is associated.
A few attributes are used to help compute the value of cade, and the attributes involved
depend upon the context of the occurrence of code. Only a few examples are given here.
An attribute called type synthesizes the type of expressions. For example, in the

of code for an assi tatement, the value of type at the root of the

expression subtree is used to ine whether the ing Modula-2
needs to be converted to the type of the target variable in the assignment statement. The
same attribute is used in the subtrees of the expression to determine whether any type
conversion of operands is necessary within that expression.

When excernal procedures are invoked with expressions as arguments, additional as-
signment statements are needed to store the values of these expressions in auxiliary vari-

ables (added to the environment during the first pass) prior to invocation of the cor-

ding Modula-2 C an attribute aux_assns is asscciated
with all external d and it hesizes code for such assi if
necessary. As external function i are i this attribute is

associated with all expressions. In order to avoid unneeded generation of such auxiliary
assignment statement code (such as when an expression appears in any context other
than as an argument), expressions inherit yet another attribute which indicates whether
it represents an actual argument of an external procedure or not.

Code for the definitions of statement functions also must be constructed after the
complete environment has been synthesized (as expressions in statement functions may
reference entities which are not dummy arguments). Attributes called fun_defs_in and

fun_defs_out are used to a list of the

functions of a program unit, and the synthesized list is used to generate the necessary

99

Modula-2 definitions.

6.2 Scanner preprocessing

A few minor transformations on the Fortran source code are performed by the scanner.
These are done to avoid one of three kinds of problems: the cverloading of syntactic con-
struets, the weaknesses of the LALR(1) parser generator, and the difficulty of expressing
certain syntactic features of Fortran using context free grammars. These transformations

are described below.

6.2.1 Overloading of syntactic constructs

This situation arises when semantically different constructs snare the same syntax. To
handle such cases, two approaches are possible®: either a single production can be used
for ‘both’ constructs (in which case the semantic rules associated with the production
distinguish between the two), or different productions can be used for each (in which case
the parser - with the aid of the scanner - must somehow distinguish between the two
cascs).

Examples of such conflicts exist in Fortran. For example, array element assignment

and stat t function share the same syntactic structure. In the

AG for the translator, asingle production is us+d for both and the semantic rules determine
the semantics of the structure on the basis of the definitions in the environment. The
drawback of this approach is that the associated semantic rules become cumbersome; a
number of attribute occurrences are defined which really only play a role in one case or the
other (for instance, the attribute synthesizing the definition of a statement function must
be defined even for the case when the construct is an array element assignment statement).
Most attribute expressions in semantic rules had lo be made into conditionals in which

the value chosen depended on the description of the defined or referenced entity in the

*An alternative strategy for AG bascd translation is discussed in [Far 89].

100

environment. Moreover, this overloading is d through the ions; just as
a structure such as A(X,Y,2)=X+Y+Z is either a statement function definition or an array
clement assignment, so is (X,Y,Z) either a dummy argument list or a list of subscript
expressions, and X either u dummy argument or an expression, and so on. Worse still,
additional attributes had to be introduced into the grammar to propagate the context
derived by the semantic rules further down into the tree (so that, for instance, the correct
code for X, Y, and Z is generated - either formal parameter declarations or expressions).
The translator employs a different strategy for handling expressions and assignment

statements (in which the target of the assignment is a variable). Just as an expression

consisting of a single name can be cither an arithmeti jon, a logical

or a character string i s0 can an tat t of the form <name> =

<name> be either an tat t, a logical assi tatement, or a

character assignment statement. As the semantics of each are different (and consequently
the semantic rules associated with them), the translator defines separate productions for
cach.

In order to accomplish this, however, the parser must be able to distinguish between
the names of entities of the diffcrent types to determine which production has been applied.

Since parsing is performed before the execution of semantic actions (ie., the evaluation of

attributes), the additional information needs to be supplied by the scanner. In the trans-
lator, the scanner recognizes logical and character string names as different kinds of tokens
from all other symbols. To facilitate the scanner’s task, the translator requires that both
LOGICAL and CHARACTER string names be explicitly typed®. In its implementation,
the scanner recognizes LOGICAL and CHARACTER type statements, and ‘remembers"”
names which have appeared in them, so that when they are encountered anywhere in the
rest of the program unit the appropriate token type is returned to the parser.
" ®This restriction could be removed by the implementation of a more powerful scanner which recognizes
implicit typing rule specifications.

7this had to be implemented by introducing an auxiliary symbol table into the translator, since the

translators regular symbol table was particularly uncooperative in associating different token Lypes with
symbols other than those provided by the system.

101

6.2.2 Parser limitations

A couple of syntactic features of Fortran could not be handled by LALR(1) parsing.

Problems arose due to the signi of textual positioning of in Fortran

programs (there is never any ambiguity in Fortran about where one statement ends and
another begins because they will always be on textually different lines).

For instance, the tokens ELSE and IF appearing in succession can signify one of two
things: either the start of a so-called ELSE IF statement (if they appear on the same line)
or the start of an ELSE statement the first statement within which is an IF statement.
This creates an ambiguity for LALR(1) parsers. To resolve the conflict, the scanner
converts ELSE IF statements into a single keyword ELSEIF, and that keyword is used in
the production rule for block IF statements.

A conflict also arises when DATA statements are not somehow explicitly terminated.
Consequently the scanner inserts a special marker at the end of DATA statements, and

this marker appears in the production for DATA statements.

6.2.3 Shared terminal statements in DO loops

Another problem was to express the sharing of a terminal statement of a DO loop by more
than onc loop. An example is the following:
D0 20 I =1,10,2
D020 J=1

SUM = SUM + J
20 CONTINUE

Such structures are awkward to express using context free grammars. To avoid this prob-
lem, the scanner converts DO loops into the following form:
DO <label>, <ident> = <expr> , <expr> [, <expr>]

{ <statement> }
<label> <statement>

102

Thus each DO statement is paired with the keyword ENDDO. So the example above would
be transformed by the scanner into
DO 200, I = 1,10,2
D0 200, J =1, I
SUM = SUM + J
200 CONTINUE
ENDDO
ENDDO

The scanner uses a ‘label stack’ to store labels of terminal statements. When the start
of a DO loop is detected, it pushes the label of its terminal statement onto this stack.
‘Whenever a label appears in the code which follows, it checks to see if it is the same as the
one currently on the top of the stack; if it is, the stack is popped and the keyword ‘ENDDO’
is put into the token stream after the statement labeled by it. This process is repeated
until the label on the top of the stack is no longer the same as the terminal statement
label.

6.3 The translator

The translator consists of about 43,000 lines of Pascal code generated by the GAG system
from an ALADIN attribute grammar specification of approximately 7000 lines (roughly
one third of which are ALADIN function definitions). The context free grammar contains
250 production rules with 110 nonterminal symbols. The attribute grammar contains 1200
attribute rules, 100 of which are semantic conditions, and defines 400 attributes.

The translator currently runs on a MicroVAX III under an Ultrix operating system. A
shell procedure provides the interface between the user and the GAG generated program.
Input to the translator consists of any number of files cach containing source code for
any number of Fortran program units, but only one main program unit may appear in
the source files. The output consists of a number of files cach containing a Modula-

2 module definition (the definition and implementation modules of a given separately

103

compiled module are stored in separate files). The output files are named in accordance
with TopSpeed Modula-2 file naming conventions.

1t should be noted that the translator is not intended to be a full syntax and semantic
analyzer for Fortran-77 programs. A number of semantic checks are performed on the
source code by means of semantic conditions, however, this checking is not complete
(although the translator could be extended to exhaustively perform such semantic checks).
A complete syntactic check, in accordance with the context free productions, is performed
by the embedded parser, and messages are produced for syntax errors. Messages are also
output upon detection of numerous semantic errors and violations of translator imposed
restrictions on Fortran programs. A complete listing of the restrictions imposed by the

translator is included in chapter 8.

Chapter 7
Examples

In this chapter we present a couple of short but complete examples. The examples are
intended to provide some sense of the flavour of the translator-generated programs. The
first consists of a number of program units which manipulate entitics in a common block,
while the second consists of a collection of program units which communicate via parameter

passing mechanisms. '

7.1 Example 1

Fortran-77 source code:

PROGRAM EXAM1

COMMON /BLK/ N,A(200)

LOGICAL ASCEND

LENGTH =N

IF (ASCEND(LENGTH)) CALL REVERS
END

LOGICAL FUNCTION ASCEND(LN)
* returns true if first LN elements in A (in BLK)
* are in ascending order

COMMON /BLK/ N,A(200)

ASCEND = .TRUE.

i
i

I=1
20 IF (I .GE. LN) THEN

105

RETURN

ELSE IF (ACI) .GE. A(I+1)) THEN
ASCEND = .FALSE.
RETURN

END IF

I=I+1

GO TO 20

END

SUBROUTINE REVERS
COMMON /BLK/ N, Q(200)
MIDDLE = N / 2
D0 10 I =1, MIDDLE
CALL SWAP(Q(L), Q(N+1-I))
10 CONTINUE
END

SUBROUTINE SWAP(A,B)
TEMP = A

A=B

B = TEMP

END

BLOCK DATA INITBLK

COMMON /BLK/ N,A(200)

DATA N/5/ A(1),A(2),A(3),A(4),A(5)/5,4,3,2,1/
END

Generated Modula-2 code:

MODULE EXAM1; (* main program module *)
FROM COMMON IMPORT BLK;

FROM ASCEND_O IMPORT ASCEND;

FROM REVERS_O IMPORT REVERS;

FROM Types IMPORT Logical;

VAR

LENGTH: LONGINT;
BEGIN (* module body *)
LENGTH := BLK.N.1;
IF BOOLEAN(ASCEND(LENGTH)) THEN
REVERS;
END; (* IF =)

106

END EXAMi. (* mein program module)

DEFINITION MODULE ASCEND_O;

FROM COMMON IMPORT BLK;

FROM Types IMPORT Logical;

PROCEDURE ASCEND (VAR LN: LONGINT): Logical;
END ASCEND.O.

IMPLEMENTATION MODULE ASCEND_0;
PROCEDURE ASCEND (VAR LN: LONGINT): Logical;
LABEL Lab_.20;
VAR

ASCEND: Logical;

I: LONGINT;
BEGIN (* procedure body *)
ASCEND:= Logical(TRUE);
1:=1;
Lab_20: IF (I>=LN)THEN
RETURN ASCEND;
ELSIF (BLK.A_2[INTEGER(I)]>=BLK.A_2[INTEGER(I+1)]) THEN
ASCEND:= Logical (FALSE);
RETURN ASCEND;
END;
1= I+
GOTO Lab.20;
RETURN ASCEND;
END ASCEND; (* procedure body %)
END ASCEND.O.

DEFINITION MODULE REVERS_O;
FROM SWAP_O IMPORT SWAP;
FROM COMMON IMPORT BLK;
PROCEDURE REVERS() ;

END REVERS_O.

IMPLEMENTATION MODULE REVERS_O;
PROCEDURE REVERS() ;
LABEL Lab_10;
VAR
MIDDLE: LONGINT;
I: LONGINT;
(* translator generated variables *)

107

Start.1: LONGINT;
Limit_.1: LONGINT;
IterCount_1: LONGINT;
IterCtrl_1i: LONGINT;
BEGIN (* procedure body *)
MIDDLE := BLK.N_3 DIV 2;
(*xD0I=... %
Start_1 := 1;
Limit_1 := MIDDLE;
I := Start_1;
IterCount_1 Limit.i - Start_1 + 1;
FOR IterCtrl.i := IterCount.i TO { BY -1
SWAP(BLK.Q_3[INTEGER(I)],BLK.Q_3[INTEGER(BLK.N.3+1-1)]);
Lab_10: ;(* continue)
Ti=T+1;
END; (+ DO loop *)
END REVERS; (* procedure body *)
END REVERS_O.
DEFINITION MODULE SWAP_O;
PROCEDURE SWAP(VAR A: REAL;VAR B: REAL);
END SWAP_O.

IMPLEMENTATION MODULE SWAP_O;
PROCEDURE SWAP(VAR A: REAL;VAR B: REAL);
VAR
TEMP: REAL;
BEGIN (% procedure body *)
TEMP := A;
A

B := TEMP;
END SWAP; (* procedure body *)
END SWAP_O.

DEFINITION MODULE Types;
TYPE

Logical = LONGWORD;

END Types.

IMPLEMENTATION MODULE Types;

BEGI!
END Types.

108

DEFINITION MODULE COMMON;

BLK: RECORD
CASE tag: SHORTCARD OF
1:
LONGINT;
ARRAY INTEGER[1..200] OF REAL;

: LONGINT;
ARRAY INTEGER[1..200] OF REAL;

LONGINT;
+ ARRAY INTEGER[1..200] OF REAL;

LONGINT;
ARRAY INTEGER[1..200] OF REAL;

D;

END COMMON.

TMPLEMENTATION MODULE COMMON;
BEGIN (* module body *)
BLK.N_S := §;

BLK.A_5[1] :=REAL(5);
BLK.A_5[2]
BLK.A.5[3]
BLK.A.5[4] :=REAL(2);
BLK.A_5[5] :=REAL(1);
END COMMON.

7.2 Example 2

Fortran-77 source code:

PROGRAM MAIN
% initialize and find sun of an array
DIMENSION VECTOR(10)
INTEGER N
DATA SUM/0/
READ 30, N

109

3

S

FORMAT (I2)

CALL INITIALIZE(VECTOR,N)

SUM = GETSUM(VECTOR,N)

PRINT 20, SUM

20 FORMAT (’ The sum of the elements is ’, F10.3)
END

SUBROUTINE INITIALIZE(V,N)
* initialize ist N elements of V
INTEGER I
REAL V(10), INC
DATA INC/82/
D099 I =1,N
V(I) =1+ INC
99 CONTINUE
END

REAL FUNCTION GETSUM(V,N)
* rToturns sum of 1st N elements of V
REAL V(10)
GETSUM = 0
D0 88 I
GETSUM = GETSUM + V(I)
88 CONTINUE
END

Generated Modula-2 code:

MODULE MAIN; (* main program module)
FROM INITIALIZE.O IMPORT INITIALIZE;
FROM GETSUM_O IMPORT GETSUM;

FROM Types IMPORT Tarr.rl.10;

FROM FinOut IMPORT Format;

FROM FinOut IMPORT Read_Int;

FROM FinOut IMPORT Write_R1;

VAR
SUM: REAL;
VECTOR: Tarr_rl.10;
N: LONGINT;
BEGIN (* module body *)
(* translation of DATA statements *)

110

SUM := REAL(0);

(* translation of executable statements *)
Format("I2");

Read_Int(N):

INITIALIZE(VECTOR,N) ;

SUM := GETSUMCVECTOR,N);

Format("’ The sum of the elements is ’, F10.3"
Write_R1(SUM);

END MAIN. (* main program module *)

DEFINITION MODULE Types;
TYPE
Tarr.rl_10= ARRAY INTEGER[1..10] OF REAL;
END Types.

IMPLEMENTATION MODULE Types;
BEGIN
END Types.

DEFINITION MODULE INITIALIZE_O;

FROM Types IMPORT Tarr_rl.10;

PROCEDURE INITIALIZE(VAR V: Tarr_.rl_10;VAR N: LONGINT);
END INITIALIZE_O.

IMPLEMENTATION MODULE INITIALIZE.O;
VAR (* "saved" variables ¥)
INC: REAL;
PROCEDURE INITIALIZE(VAR V: Tarr.rl_10;VAR N: LONGINT);
LABEL Lab_99;

AR
I: LONGINT;
(x translator generated variables *)
Start_1: LONGINT;
Limit_1: LONGINT;
IterCount_1: LONGINT;
IterCtrl_1: LONGINT;
BEGIN (+ procedure body *)
(*DOI=... *

Limit_1 - Start.1 + 1;
FOR IterCtrl.1 := IterCount_1 TO 1 BY -1 DO

1

VIINTEGER(I)] := REAL(I)+INC;
Lab.99: ;(x continue *)
=141
END; (+ DO loop *)
END INITIALIZE; (* procedure body *)
BEGIN (* module body *)
(* translation of DATA statements *)
INC := REAL(82);
END INITIALIZE.O.

DEFINITION MODULE
FRON Types IMPORT
PROCEDURE GETSUM (VAR V: Tarr_rl10;VAR N: LONGINT): REAL;
END GETSUM_O.

IMPLEMENTATION MODULE GETSUH_O;
PROCEDURE GETSUM (VAR V: Tarr_rl_10;VAR N: LONGINT): REAL;
LABEL Lab_88;
VAR
GETSUM: REAL;
I: LONGINT;
(+ translator generated variables *)
Start_1: LONGINT;
Limit_1: LONGINT;
IterCount_1: LONGINT;
IterCtrl_i: LONGINT;
BEGIN (* procedure body *)

GETSUM := REAL(0) ;
(«D0I=)
Start_i :=
Limit 1 :=

I := Start_ 1
IterCount.1 := Limit.{ - Start.i + 1;
FOR IterCtrl i := IterCount.1 TO 1 BY -1 DO
GETSUM := GETSUM+V[INTEGER(I)];
Lab_8 ;(* continue *)
=T
END;(+ DO loop *)
RETURN GETSUN;
END GETSUM; (* procedure body *)
END GETSUM_0.

DEFINITION MODULE FinOut;

12

PROCEDURE Format (FormatString: ARRAY OF CHAR);
PROCEDURE Read_Int(VAR Val: LONGINT);
PROCEDURE Write_R1(Val: REAL);

END FinOut.

Note that since the translator does not provide an implementation of the I/0 procedures
in FinOut, the implementation module of FinOut does not appear in the output from the

translator in this example.

13

Chapter 8
Concluding Remarks

8.1 AGs and GAG

One drawback of AGs is that they are not modular. An AG cannot be partitioned into
sinaller picces which can be worked on and tested separatcly. While a number of techniques
for composing AGs have been proposed, the nature of a given AG remains monolithic

((Vog 89). Information about every attribute occurrence in an AG is required to perform

dan andl

analysis and determine an ion order, and all production rules are
needed by the parser generator to generate parse tables. Consequently, in the development
of an AG, a good deal of time is spent waiting for translators to be generated and compiled
cach time a modification to the AG was made (regardless of how minor the modification
was).

With sizable AGs, tracking down circularities can be time-consuming and requircs an
overall familiarity with the AG. The source of a circularity intraduced by even a subtle
typing error can be hard to find as it can propagate through hundreds of productions in
the AG.

Similarly monolithic is the Pascal program generated by GAG. Compilation was time
consuming and strained the capacity of the Pascal compiler (which had to be extended in

order to handle the generated translator).

114

ALADIN provided a sufficiently powerful range of types to represent all semantic
information that was needed for translation. Moreover, it was generally casy to modify
the AG to represent additional information by either extending the domains of attribute
values or by introducing additional attributes into the AG. For instance, the domain of
env was extended several times without great effort over the course of the translator’s

development.

Problems with the GAG system

While in general the GAG system proved to be powerful, a few troublesome features were

encountered. These are summarized below.

 Generally the system is difficult to learn. While the manuals are quite thorough, the

almost excessive ism in the ipti i in the ALADIN manual)
made learning to use the system more of a challenge than it need be. Examples are
few and far between, and often features are described so formally that one has no

idea how they might be helpful.

In [Kas 82] we read that the generated programs are readable. Unhappily, this is
truly only the case if German is a familiar language to the user!. To the unlucky user

for whom it is not, identif such as SYML CH are far from

This would not be especially important if it were not occasionally necessary (and in

the author’s experience, it occasi was) to und d the roles played by such

identifiers in the generated programs.

o Generally the diagnostics generated by the system are extensive and helpful, but er-
Tor recovery is rather inelegant. Normally, if one of the passes detects unrecoverable
errors the next pass is executed regardless, resulting in core dumps and leaving tem-
porary files in the working directory which must be removed before GAG processing

"The GAG system has been developed at the Rescarch Institute at the University of Karlsruhe, West
Germany.

115

can be re-initiated. There are also cases when the system goes into an infinite loop
(typically when some ALADIN type definition is illegal) before reaching the protocol
phase, leaving the user with no indication of what caused the error. This was par-
ticularly unfortunate when the size of the input grammar was several thousand Lines
in length and GAG processing took upwards of thirty minutes, making debugging

by trial and error a time-consuming exercise.

While ALADIN typing rules may help cultivate a defensive programming style, they
are in general annoyingly inflexible and awkward, especially when referring to dis-
criminated union typed values. The lack of string handling operations is also incon-
venient, rendering the use of STRING typed values next to useless. Since STRINGs are
stored in the translators’ symbol table, they are no more like strings taan symbols

are, and there is little if any motivation for their use.

PGS is not the best feature of the system. When a grammar input to PGS does not
have the LALR(1) property, the user is left to guess where the problem is. PGS gives
no indication of what kind of conflict it found in the grammar, nor does it indicate
where it found a problem, nor does it make any attempt to resolve the conflict.
Quite simply, . tells the user nothing at all and dumps core. In the development of
the translator, it was necessacy to maintain a version of the CF grammar in a form
suitable for input to Yacc [Joh 78}(which provides extensive information and error

messages when conflicts arise).

Perhaps the most serious problem encountered using PGS occurred when the num-
ber of symbols in the input grammar exceeded PGS’s limit. While error messages
indicated that the system could be extended by the modification of the values of
some constants in the PGS source code, it was found that these features for ex-
tending the capacity of PGS simply did not work. Consequently it was necessary to
write two versions of the translator, each implementing some but not all translation

strategics.

116

8.2 Summary of restrictions on Fortran programs

The following list summarizes the restrictions which are placed on Fortran-77 programs

by the translator.

1. Constant expressions may not contain exponentiation operations, character string

operations, or complex arithmetic.

»

. Integer constant expressions used (directly or indirectly) in array declarators and
subscript expressions in EQUIVALENCE statements may contain only integer con-
stants; these expressions are evaluated at translation time to enable the computation

of offsets of associated entities from the start of the storage sequence with which they

e A 1 .

constant

could be generated for use in the
declaration of the offset fields of records used to implement shared storage. For such
an approach to be feasible, additional constraints would likely have to be imposed
on the form of EQUIVALENCE statements (such as requiring the first entity in the
list to share its first unit of storage with the first unit of storage in the entire storage

sequence).

w

Arrays may be one-dimensional only. The translation strategies for both the repre-
sentation of shared storage using variant records and the treatment of array argu-
ments hinge on this constraint. While it does not seem feasible to uniformly preserve
the dimensionality of Fortran arrays in the translation (since in Modula-2, actual
and formal array parameters must have the same number of dimensions), the con-

straint could be removed by extending the translator to perform the conversion of

would involve

1ti-dimensional arrays int 1 arrays. This

declaring arrays which are multi lin Fortran as one-dimensional arrays
with the same number of elements. The multiple subscript expressions which appear
in array element references in the Fortran programs would subsequently have to be

converted into single subscript expressions.

17

&

o

L

ot

Perhaps the cleanest means of implementing this mapping of several subscript val-
ues onto one would be through the generation of functions, invocations of which
replace multiple subscript expressions in an element reference. Each such function

is associated with a particular number of dimensions (for instance, map_2 would

map all Fortran two-dimensional arrays onto arrays). Each of these
mapping functions would take as argument a description of the dimension declara-
tor used to declare a Fortran array, along with a number of subscript expressions.
For example, a reference such as A (INDEX1,INDEX2) in the Fortran code, might be
translated into A[map.2(desc(A),INDEX1,INDEX2)] in the Modula-2 code, where

desc(A) i jon about the di ions and subscript ranges of the

corresponding Fortran array. Such mapping functions would essentially determine
the represented element in an array element reference on the basis of the Fortran

storage allocation scheme ([ANS 78], pg 5-6).

Logical and character entities must be explicitly typed (numeric entities need not).

A more powerful scanner could eliminate the need for this constraint.

Numeric literals, identifiers, and Fortran keywords may not contain spaces. Again,

a more powerful scanner could be employed to eliminate this constraint.

Character string expressions may contain only the concatenation operation; sub-
string expressions are not handled but could easily be translated using Modula-2

library functions for string handling.

If a ‘name-list’ in a DATA statement contains an unsubscripted array name, then
that name must be the only name in the list. The problematic case (sce section 5.4.7)
which this restriction prevents ariscs only when constant expressions are used in the
declaration of an array whose initialization is specified using assignment statements
in which subscripts are literals. The restriction could be removed by using only
literals in the declaration of arrays which appear in DATA statements (as is done
with arrays which appear in COMMON or EQUIVALENCE statements). Another

118

g

o

I

approach is simply to print a warning message when this situation is detected, in-
forming the user that modification to certain constants may result in inconsistencies

in the mboxModula-2 program,

If a repeat count is used in a constants’ list of a DATA statement, then only one
constant may appear in that list,and the repeat count should be equal to the number
of locations specified to be initialized. This constraint, along with the restriction that
implied DO-lists not appear in DATA stalements, were introduced solely to keep the
size of the translator reasonable. Both constraints could easily be eliminated with

further elaboration on the current strategy emploed in the translator.

The INTRINSIC statement is not handled, and consequently INTRINSIC functions
may not be passed as argument. Since intrinsic functions are converted into regular
functions in mboxModula-2, the passing of intrinsic functions as arguments could be
handled in much the same way as external procedures are handled. Some additional
care would, however, have to be taken in the generation of type identifiers for formal
parameters corresponding to intrinsic functions since the types of the arguments

used in their invocation may vary.

Invocations of intrinsic functions MAX and MIN cannot be translated because they
take a variable number of arguments. However, if they were converted into a ‘chain’
of function calls each taking two arguments (for instance, the invocation MAX(A,B,C)
can be converted into MAX(MAX(4,B) ,C)) then translation can be performed.

The ENTRY statement ([ANSI), pg., 15-12) is not translated. As cach ENTRY
statement effectively corresponds to a distinct subprogram, a possible strategy for
its translation is to generate distinct subprograms for each ENTRY statement in a

subprogram unit. This was not considered “reasonable” in this thesis,

. RETURN statements which specify alternate returns may contain only integer lit-

erals. This restriction could be removed by converting RETURN statements with

119

3

4.

integer expressions (which are not literals) into two statements, an invocation of a
procedure which sets the appropriate boolean variable and a RETURN statement.
The procedure would take the expression and all boolean variables corresponding
to alternate return specifiers as arguments and set one of the boolean variables if
the value of the expression is a positive number less than or equal to the number of

alternate return specifiers in the subprogram.

Corresponding dummy and actual array arguments must have the same size and

subscript range. This int can be elimi by using opt y parameters
for array Some modi of the subscript jons in array element
references would have to be in invoked to for

the zero-indexing of formal parameters.

Parts of arrays cannot be passed. That is, if an array element is supplied as actual
argument, the corresponding dummy argument must be the same type as the array

element. A possible approach to implementing the passing of ‘partial arrays’ is to

pass addi 1 to subj which take “parts” of arrays as argu-

ments. For instance, an offset value can be supplied as argument which is used within

the subprogram to offset references to the corresponding dummy array elements.

Dummy procedures must be invoked at least once in the subprogram in which they

are dummy As this iction was i to enable ion of

type identificrs for formal parameters which are procedures without global informa-
tion, it can only be removed by a careful global analysis of procedure invocations.
Such analysis involves tracing possible associations between dummy procedures and

external procedures and consequently can be expensive.

Only the “short form” of input and output statements (ie., the PRINT statement
and the READ statement without a control list) is translated. This restriction
could be removed by extending the translator to handle the OPEN, CLOSE, and

file positioning statements (as outlined in section 4.5.11) using the low-level file

120

handling procedures available on the Modula-2 system in the target environment.
Subsequently the procedures for reading and writing in FinOut could be further
parameterized to permit specification of file names (corresponding to device numbers
in Fortran) and file positions (corresponding to the record numbers) for /0 with

files connected for direct access.

i<

. Formatted internal data transfer (I/O from a buffer instead of an external device),
is not handled. However, the same general strategy employed in the implementation
of “format driven” I/O could be used to implement internal data transfers. Since
the “buffers” used in internal data transfers are essentially character string vari-
ables, reading and writing to an internal buffer can be implemented by procedures
which are similar to the reading and writing procedures in FinOut but which access
substrings of character string variables instead of characters from an input stream;

the process of ing these sub

into different ions according to

format descriptions would be the same.

8.3 Results

The translator runs with speed comparable to a Fortran-77 compiler. In tests performed
with fairly small Fortran programs (up to 500 lines in length) the time required to translate
a given Fortran program into Modula-2 never exceeded the time required to compile the
same program? by more than 33 per cent. These results suggest that there is room
for expansion of the translator, and that an extended translator with fewer restrictions
and acceptable performance can be created using the existing framework, provided a more
powerful version of PGS becomes available. Note that one would likely tolerate a translator
which is slower than a compiler since source-to-source translation is generally a one-time
process used in the conversion of correct programs rather than in their development.

While it was not possible to compare the run times of Fortran programs and their

Zusing the ULTRIX Fortran-77 compiler on a Micro-VAX IIl.

121

Modula-2 counterparts (since the former were run on a mainframe and the latter on a
PC), in terms of the number of statements executed Modula-2 programs are less efficient
than the Fortran programs from which they were generated. The Modula-2 programs
in general also have greater storage requirements as a result of the addition of auxiliary

variables. A cursory examination of the examples in the previous chapter bears out this

fact. C some degree of of the Modula-2 programs seems to

be in order. Such can be both during ion (for instance,

the translator could easily be modified to suppress generation of auxiliary variables for
expressions in a DO statement when the expression is a literal) and as a post-translation
step.

The AG formalism was found to be a powerful tool for specifying the translation and it

appears that the iption of 1 ion, at least between languages of
the class of Fortran-77 and Modula-2, can quite effectively be achieved using AGs. Most
difficulties which arose over the course of developing the translator involved incompatibili-
ties of the two languages rather than with any shortcoming of AGs. The most troublesome

(and i) of these i ilities stems from the languages’ treatment of

arrays, and exemplifies a kind of problem which is bound to arise when translating from
a language which is lower-level to one which is higher-level. The ability of the Fortran
programmer to control the mapping of variables onto the memory of the machine is an
cxample of a low-level detail which Modula-2 programs are not generally concerned with,
as they deal with more purely abstract objects®.

A nice feature of generated programs is their modularity. Since subsidiary modules
are not buried in monolithic programs and are separately compilable, they can easily be
re-used, Thus, part of the promise of the translator lies in the potential to translate large
amounts of subprogram material available in Fortran libraries while preserving the ‘library
organization’ of Fortran systems, thereby allowing more powerful Modula-2 systems to be

*Modula-2 was however designed for systems programming and provides features for low-level program-
mizg, although these features do not typify the high-level flavour of the language.

122

built.

123

References

[Alb 80] Source-to-Source Translation: Ada to Pascal and Pascal to Ada.
P. Albrecht, P. Garrison, S. Graham, R. Hyerle, P. Ip, B. Krieg-Bruckner.
SIGPLAN Notices, vol. 15, no. 12, 1980.

[ANS 78] American National Standard Programming Language FORTRAN (ANSI X3.9-1078).
American National Standards Institute, New York, New York, 1978.

[Boy 84] Lisp to Fortran - Program Transformation Applied. J. Boyle.
Program ion and F i i
NATO ASI Series, vol. F8, P. Pepper (ed.), Springer-Verlag,
Berlin-Heidelberg-New York-Paris-Tokyo,1984.

[DIL88] Attribute G - Definitions, Systems and
P. Deransart, M. Jourdan, B. Lorho. In Lecture Notes in Computer
Science, no. 323, G. Goos, J. Hartmanis (ed.s), Springer-Verlag,
Berlin-Heidelberg-New York-Paris-Tokyo, 1088.

[Dob 87] SETL to ADA - tree transformations applied. S. Doberkat and U. Gutenbeil.
Information and Software Technology, vol. 29, no. 10, 1987.

[Eng 84] Attribute Evaluation Methods. J. Engelfrict.
Methods and Tools for Compiler Construction, B. Lorho (ed.),
Cambridge University Press, Great Britain, 1984.

[Far 89] A VDHL Compiler Based on Attribute Grammar Methodology.
R. Farrow, A. G. Stanculescu. Sigplan Notices, ACM Press, June, 1989.

[Fre 81] A Fortran to Pascal Translator. R. A. Freak.
Software - Practice and Ezperience, wl. 11, pp. 717-732, 1981.

124

[Gan 84]

[Gle 84]

[Goo 83]

[Gro 86]

[Mut 87]

{Joh 78]

[Kas 80]

[Kas 82]

[Kas 87]

[Ka2 87)

[Kel 84]

[KHZ 87]

Attribute Coupled Grammars. H. Ganzinger and R. Giegerich.
SIGPLAN Notices, vol. 19, no. 6, June 1984.

Modula-2 for Pascal Programmers. Richard Gleaves.
Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984.

DIANA - An Intermediate Language for Ada. G. Goos, W. Wulf, A, Evans,
K. Butler (ed.s). In Lecture Notes in Computer Science, vol. 161,
Springer-Verlag, Berlin-Heidelberg-New York-Paris-Tokyo, 1983.

User Manual for the PGS-System. 1. Grosch, E. Klein.
Research Institute at the University of Karlsruhe, 1986.

GCL : GAG Conirol Language. B. Hutt, U. Kastens, E. Zimmermann.
Research Institute at the University of Karlsruhe, 1987.

Yace: Yet Another Compiler-Compiler. S. C. Johnson.
Bell Laboratories, Murray Hill, New Jersey, 1978,

Ordered Attributed Grammars. U. Kastens.
Acta Informatika, vol. 13, no. 3, pp. 229-256, Springer-Verlag,
Berlin-Heidelberg-New York-Paris-Tokyo, 1980.

GAG: A Practical Compiler Generator. U. Kastens, B. Hutt, E. Zimmermann.
In Lecture Notes in Computer Science, vol. 141, Springer-Verlag,
Berlin-Heidelberg-New York-Paris-Tokyo, 1082.

ALADIN - a Language [ar Aunlzuled Grammars (version 7).
U. Kastens. Uni 11 Paderborn, Universitact Karlsruhe, 1987.

User manual for the GAG System (version 7).
U. Kastens. Universitact-GII Paderborn, Universitact Karlsruhe, 1987.

Tree Ti hni and i S. Keller, J. Perkins,
T. Payton, S. Mardmly. SIGPLAN Notices, vol. 19, no. 6, June 1984.

User Manual for the GAG System (version 7). U. Kastens, B. Hlutt,
H Paderborn, Karlsruhe,

Apnl 1987,

125

[Kin 88]

[Ki2 8]

[Knu 68

[Kri 84]

[Leo 87]

[Mei 82)

[Mong4]

[Pag 81]

[Pet 73]

[Sla 83)

[Tel 84]

[Ten 81]

Modula-2: A Complete Guide. K. N. King.
D. C. Heath and Company. Lexington, Massachusetts, Toronto, 1088.

TopSpeed Modula-2 Language Tiorial. K. N. King.
Jenson and Partners International, U.S.A., 1988.

Semantics of context-free languages. D. E. Knuth.
Mathematical Systems Theory 2, pp. 127-145, 1968.

Language Comparison and Source-to-S T ion. B. Krieg-Bruckner.

Program Transformation and F i i P. Pepper (ed.),
NATO ASI Series, vol F8, Springer-Verlag, 1984.

The Design and Implementation of a Converter Witing System.
S. Leong. Proceedings of Miami Technicon 1987, IEEE Miami, 1087

Fortran-77 Featuring Structured Programming. L. P. Meissner,
E. L. Organick. Addison-Wesley Series in Computer Science.
Addison-Wesley Publishing Company, Massachusetts, California,
London, Amsterdam, Ontario, Sydney, April 1982.

How to a System for Manipulation of Attributed Trees.
U. Moncke, B. Weisgerber, R. Wilhelm. Fachtagung fur
hen und F klung der GI,Proc. 8,

Zurich, 1984, Informatik-Fachberichte 77, pp. 112-127, Springer, 1984,

Formal i of F ing L F. G. Pagan.
Prentice Hall Inc., New Jersey, 1981.

On the capabilities of while, repeat, and exit statements.
W.W. Peterson, T. Kasami, and N. Tokura.
Communications of the ACM, vol. 16, no. 8, 1973.

Conversion of Fortran to Ada using an Intermediate Tree Representation.
1. Slape and P. Wallis. The Computer Journal, vol. 26, no. 4, 1983.

Production quality ADA compilers. J. Teller. Methods and Tools for
Compiler Construction, B. Lotho (ed.), Cambridge University Press, 1984.

Principles of Programming Languages. R.D. Tennent.
Prentice/Hall International, London, 1981,

126

[TSD 88)

[Vog 89)

[Wir 83]

[Wir 85)

[Yel 87]

TopSpeed Modula-2 User’s Manual,
Jensen and Partners International, U.S.A., 1088

Higher Order Attribute Grammars, H.H. Vogt, S.D. Swierstra, M.F. Kuiper.
Sigplan Notices, ACM Press, June 1989.

Programming in Modula-2: Second, Corrected Edition. Niklaus Wirth.
Texts and Monographs in Computer Science. David Gries (ed.)
Springer-Verlag, Berlin-Heidclberg-New York-Tokyo, 1983.

Programming in Modula-2: Third, Corrected Edition. Niklaus Wirth.
Texts and Monographs in Computer Science. David Gries (ed.)
Springer-Verlag, Berlin-Heidclberg-New York-Tokyo, 1985.

Attribute Grammar Inversion and Source-to-source Translation.

D. M. Yellin. In Lecture Notes in Computer Science, no. 302.
Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1987.

127

	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Title Page
	006_Copyright Information
	007_Abstract
	008_Acknowledgements
	009_Table of Contents
	010_Table of Contents v
	011_Table of Contents vi
	012_Table of Contents vii
	013_List of Figures
	014_Chapter 1 - Page 1
	015_Page 2
	016_Page 3
	017_Page 4
	018_Page 5
	019_Chapter 2 - Page 6
	020_Page 7
	021_Page 8
	022_Page 9
	023_Page 10
	024_Page 11
	025_Page 12
	026_Page 13
	027_Page 14
	028_Page 15
	029_Chapter 3 - Page 16
	030_Page 17
	031_Page 18
	032_Page 19
	033_Page 20
	034_Page 21
	035_Chapter 4 - Page 22
	036_Page 23
	037_Page 24
	038_Page 25
	039_Page 26
	040_Page 27
	041_Page 28
	042_Page 29
	043_Page 30
	044_Page 31
	045_Page 32
	046_Chapter 5 - Page 33
	047_Page 34
	048_Page 35
	049_Page 36
	050_Page 37
	051_Page 38
	052_Page 39
	053_Page 40
	054_Page 41
	055_Page 42
	056_Page 43
	057_Page 44
	058_Page 45
	059_Page 46
	060_Page 47
	061_Page 48
	062_Page 49
	063_Page 50
	064_Page 51
	065_Page 52
	066_Page 53
	067_Page 54
	068_Page 55
	069_Page 56
	070_Page 57
	071_Page 58
	072_Page 59
	073_Page 60
	074_Page 61
	075_Page 62
	076_Page 63
	077_Page 64
	078_Page 65
	079_Page 66
	080_Page 67
	081_Page 68
	082_Page 69
	083_Page 70
	084_Page 71
	085_Page 72
	086_Page 73
	087_Page 74
	088_Page 75
	089_Page 76
	090_Page 77
	091_Page 78
	092_Page 79
	093_Page 80
	094_Page 81
	095_Page 82
	096_Page 83
	097_Page 84
	098_Page 85
	099_Page 86
	100_Page 87
	101_Page 88
	102_Page 89
	103_Page 90
	104_Page 91
	105_Chapter 6 - Page 92
	106_Page 93
	107_Page 94
	108_Page 95
	109_Page 96
	110_Page 97
	111_Page 98
	112_Page 99
	113_Page 100
	114_Page 101
	115_Page 102
	116_Page 103
	117_Page 104
	118_Chapter 7 - Page 105
	119_Page 106
	120_Page 107
	121_Page 108
	122_Page 109
	123_Page 110
	124_Page 111
	125_Page 112
	126_Page 113
	127_Chapter 8 - Page 114
	128_Page 115
	129_Page 116
	130_Page 117
	131_Page 118
	132_Page 119
	133_Page 120
	134_Page 121
	135_Page 122
	136_Page 123
	137_References
	138_Page 125
	139_Page 126
	140_Page 127
	141_Blank Page
	142_Blank Page
	143_Inside Back Cover
	144_Back Cover

