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Abstract

The process of reconstructing

volutionary trees can be viewed for-

mally as an optimi iatod

ion problem. Recently, decision problenis

with the most commonly nsed approaches (o reconstrueting such troes

have been shown to he NP-complete [Day87, DISSG, DSSG, D

rates all such problems studied to date. Within this framework, the NP-

completeness results for decision problems are extended by apply

ng Lheo

rems from [CTO1, Gas86, GKRO2, JVVSG6, KSTSI, Kro8K, Selo1] to derive

bounds on the computational complexity of several functions heiated

with each of theso problems, namely

o cvaluation functions, which return the cost of the optimal tree(s),

solution funclions, which return an optimal tree,

spanning functions, which return the nnmber of optimal trees,

cnumeration functions, which

trees, and

random-selection functions, which return a randomly-seloctod men-

ber of the set of optimal trees,

Where applicable, hounds are also presented for the versions of these fune-

less than or

tions that are restricted to trees of a given cost or of ¢
greater than a given limit. Based in part on these results and theorems

from [BH90, GI79, KMBSI, Kres8], bounds are derived on how closely



Iynomial-time algorithms can mate optimal trees. In particu-

i

& the recont results of [ALMSS92] that no phyloge- j

inforet ce optimal-cost solution problem examined in this thesis has i

a polynomi -time approximation xcheme unless P = N 13

i
|
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1 Introduction

Phylogenetic systematics is the subdiscipline of evolutionary biology that deals

with

g the tree that. represents the of a

set of specics. Such trees are used to ereate faxonomic classifications for species

1

and to evaluate hypotheses of adaptation, evolutionary mechanism,

and ancient geographical relationships [ECS0, FBY0, NeiS7, NPSI. As the data
are seldom available to reconstruct the actual historical tree, one takes as an

estimate of this tree a subset of the set of all possible trees that are best relative

to some biologically-relevant criteri

Many hes Lo ing evolutionary trees have heen: developed

over the last thirty years [Fel88, PI1592, SO90]. Thes aches are of two

types [SO90, p. 412): method-hased approaches, which integrate the eriterion

for tree sclection dircctly into the method for searching the set of all possible
trecs, and criterion-based approaches in which the eriterion and search method

are distinct. Method-based approaches obtain optimal trees quickly, but do not

rank the sub I trees and the alternative hypotheses encoded by these trees.

Criterion-hased methods do give such rankings but are mmch slower heeas

known algorithms have to evaluate all possible trees; hence, practical implemen-
tations of criterion-hased approaches settle for deriving approximations to the
optimal trees rather than the optimal trees themselves,

Consider the formal computational problems associated with these types of




approaches. The problems associated with method-hased hes typically

liave polynomial-time algorithms, and are thus of little interest here. In this

thesis, 1 will be concerned with the problems associated with criterion-based

approaches. Since 1982, decision problems associated with the most
used approaches in phylogenctic systematics have been shown to be NP-complete

DS87, GF82, Kris8, KM86]. While this implies that related

[Day87, DJSE6, DSS
problems such as producing optimal trees are harder than NP, it is not known
exictly how much harder these problems are, or how closely fast algorithms may

approximate optimal trees, This latter problem is especially important because

trees of slightly different or even the same cost. can imply very different evolu-
tionary hypotheses [Mad91, p. 315]. There are many examples in the biological
literature of hypotheses that have been modified or retracted in light of different
estimates of the optimal tree e.g. the “Out of Africa” hypothesis for the origin
of the human mitrochondrial DNA gene pool [MRS92, S$V92).

I this thesis, 1 will derive bounds on the the computational complexities of

several functions hased on phylogenetic inference problems:

coaluation functions, which return the cost of the optimal tree(s);

.

solution functions, which return an optimal tree;

spanning funclions, which return the number of optimal trees;

enumeralion functions, which systematically enumerate all optimal trees;



and

o random-sclection funclions, which return a randomly ed member of

the set of optimal trees.

Bounds are also derived for those functions that return trees of a given cost
or of cost less than or greater than a given limit, In addition, 1 will derive

bounds on the approximability of the solution functions associated with the most

1 approaches Lo

genetic inference. Resulis are given not, only
for evolutionary trees based exclusively on dichotomons speciation events it also

for trees incorporating such events as hybridization and rocombination.

The results in this thesis have been obtained by applying existing techniques
to a set of closely-related problems. These results are of signilicance o compu-
tational complexity theory to the extent that, by isolating aspects of problems
further

that cause unexpected increases or decreases in complexity, they sigges

avenues for research. The biological relevance of these resulls is more problem-

atic. Some hiologists have argued that, these results are not applicable hecanse

(1) the defined problems are Loo general, and problems of practical interest, may

be solvable in polynomial time, and (2) the framework of asymptotic worst-

analyses in which these results were derived is nnrealistic. (.S, Farris and M, I,

ich, personal ication). In formulating the problems examined in

this thesis, there have been undeniable tradeofls of fidelity to biological reality

for the sake of tractability of analysis. Howe such tradeofls underlie many




applications of mathematics to real problems, and are not only unavoidable but

necessary in e initial stages of an_ investigation, The purpose of this thesis is

silts of direct relevance to biologists, but to lay a theoretical

ot tu present.

framnework in which such results may one day be derived.

1.1 Organization of This Thesis

s is laid out in fonr sections.

ion 2, | give varions definitions used in this thesis, including graph-
theoretic definitions of non-reticulate and reticulate evolutionary trees and an
introduction to computational complexity theory.

In Seetion 3, 1 review basic concepts in phylogenetic analysis as well as all

previonsly-delined phylogenetic inference decision problems and the reductions

by which they have heen shown to be NP-complete. A framework is given that

incorporates all such problems studied to date. This section also includes def-
initions and reductions for new problems involving reticulate trees, as well as
several new reductions for previously-defined problems. The tree of reductions

among all problems examined in this thesis is shown in Figures 7 and 8, and the

correspondence hetween phylogenetic inference problems examined in this thesis
and those in the literature is given in Table 19.
In Section 4. 1 use the OptP hicrarchy [GKR92, Kre88] and paddability

I, Gas86] to classify the phylogenctic inference cvaluation problems into




two groups within FPY”, The

mplexitios of these problems. along with se

other propertics of these problems and theorems from [JVVS

191). are

used to derive bounds on the complexities of the associated sol

enumeration, and random-generation functions. All bounds and hardness results

derived in this section are summarized in Table 20,

In Section 5, 1 use results from [BIY0, GIT9, KMBSI, KreS8] to derive lower

bounds on the approximability of phylogenetic inforence problems by polynomial-

time algorithms. In particular, shown using the recent results of Arora
et al. [ALMSS92] that no phylogenetic inference optimal-cost solution problem

examined in this thesis has a polynomial-time approximation scheme unless 1

= NP. All bounds on approximability derived in this seetion are summarized in
Table 24.

Each of Section

4, and 5 begins with a subsection on notation particular to

that section and concludes with a summary of the results derived in t

Brief discussions of the biological relevance of thes

of cach such summary.



2 Notation

This seetion consists of graph-theoretie definitions of evolutionary trees and an

introduction 1o computational complexity theory. . there are some gencral
delinitions.
Define alphabet £ = {0,1}, all strings r as being members of £, and all

Langnages 1 as heing members of 25, Let, #] be the length of string i, | L] be the

cardinality of L, and L' he the set of all strings in L with length I, For a language

L, co-L, = ¥* = L. Define (r,y) as an invertible function that encodes pairs of
strings into a single string, and yy, as the characteristic function of langnage L

b vn(r)= 1l € Loand 0 otherwise,

Let M= {0,1,2,...} be the nonnegative integers, @+ be the nonnegative

rational numbers, and R* be the nonnegative real numbers.  Given functions

JX =¥ and g1V o Z, let dom(f) and rg(f) be the domain and range
of [ respectively, and g o f 1 X = Z be the composition of [ and g i.c. (g0

) = g(f(). 1 function [ is not. defined on input «, then f(x) = L. I
Vo € N{Jmg(f(e)] = 1}, [ is single-valued; else, [ is multivaluced, A function
[N = A is smooth i€ the fnction g : 1" — 10 is polynomial-time computable
and [() < [(y) for all .« < y [Kre88, p. 493]. For an arbitrary total order R on

binary strings. define the ordering Pp as the pair of functions (£, L) such that

i.0) returns the ith member of (S°)! under B and L.y, 1) indicates if « < y

under R for ., y € (£°): this thesis will focus on those orderings for which E and



L are computable in polynomial time (see Seetion -1

There are several types of bounds for a numerical funetion. These bounds ean

be represented by classes of funetions [BDC

® O(f) is the set of functions g sueh that for some > 0 and for all but

finitely many n, g(n) < 1+ f(n).

o o( /) is the set of functions g such that for every > 0 and for all but fi

tely

many n, g(n) < r- f(n).

o Q(f) is the set of functions g such that for some r > 0 and for infini

many n, g(n) > r- f(n).

Classes O(/), o(f), and Q(f) correspond 1o loose npper, strict upper, and loose

lower bounds, respectively. These classes can also be defined over whole elasses
of functions rather than a single function e.g. O(poly), o(polyloy), where poly =
Uen® = n20 and polylog = U log*n = log”Mn. Al logarithms in this thesis

will be to base 2.

2.1 Graphs, Hypergraphs, and Trees
A graph G = (V, E) is a set. V of vertices and a set 12 of edges suel that each edge
links a pair of vertices. Edges in which one vertex is designated the sonree and

the other the target are called ares; a graph composed of ares is a direeled graph.

A path between vertices u and v in a graph ' is a sequence of alte i vertices



aned edges vy oL ,4 such that ¢ is an edge in G between #; and vy, ¢
and ¢4y are distinet edges in G, vy = 1, and 0,4, = v; directed paths are defined
similarly. A graph is conneeled if there is a path between cach pair of vertices
in the graph; if there is an edge hetween cach pair of vertices in the graph, the
graph is complele. 1f all edges in a graph Tic on a single path between a pair of
vertices, the graph is linear. A hypergraph 11 = (V, E) is a set V of vertices and

i sel I of hyperedges such that each hyperedge links a gronp instead of a pair of

vertices. A hyperedge whose vertex-sel has heen partitioned into disjoint target
and source vertex-sets is called a hyperare; a hypergraph composed of hyperares s
o direeled hypergraph. A hyperpath hetween vertices u and v in u hypergraph H is
a sequence of alternating vertices and hyperedges vy e10;... Uy €atnsr such that e;
is a hyperedge in 11 linking v; and i, ¢; and ¢4y are distinct hyperedges in H,
= u, and 4y = v directed hyperpaths are defined similarly. If a graph has
a function associating numbers (i.c. weights) with its vertices (edges), the graph
is called a serler- (edye-) weighted graph; otherwise, it is an unweighted graph.
Weighted and unweighted hypergraphs are defined similarly. Hypergraphs are
useful in simplifying and gencralizing results from graph theory, especially those
resnlts dealing with combinatorial problems [Ber73, p. viii]. For other standard
graph and hypergraph definitions, see [Ber73, Ber85); the definition of hyperarc
is from [ADSS6].

A path from any vertex (o itself is called a cyele. A graph that does not



(a) ()

J

5
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() (k)

>
b

(d) (h)

>
»

Figure 1: Graphs and hypergraphs: (a) graph; (b) dire
acyclic graph; (d) directed tree; () hypergraph; (f) dire
directed Berge acyclic hypergraph; (h) directed hypertree,

graphs () direetod
ol hypergeaph; (g)




contain any eyelos is acyelie, An acyelic connected graph is called a tree. Directed

eyeles and directed acyclic graphs are defined similarly. Define a directed frec as

ies three additional restrictions:

a divected acyelic graph that sati

1. there is a distinguished vertex called the rool,

2. there

L one directed path from the root to every vertex in the tree,
and

3. the root. cannot be the target of any arc and every other vertex is the target
of exactly one are.

A hyperpath from any vertex to itsell is called a Berge cyele. A hypergraph that

does not. contai

any Berge eycles is Berge acyelie. Directed Berge cycles and
dirceted Berge acyelic hypergraphs are defined similarly. Unlike graphs, there
are many types of acyelicity for hypergraphs [Duk8s) which are based on Berge

additional restrictions; however, Berge acyclicity implies each

of these other Ly pes of acyclicity [Fags3, Theorem 6.1]. Define a dirceted hypertree

as a direeted Berge-acyelic hypergraph that satisfies four additional restrictions:

I there is a distinguished vertes called the roof,

. thereis at least one directed hyperpath from the root to every vertex in the

hypertree,

the root cannot be in the target-set of any hyperarc and every other vertex
s i the target-set of exactly one hyperare, and

10




© e [SH—]

(a) (b) ()

Figure 2: Types of hyp : (1) 2-hyperares; (h) 3-hyperares; () 4-hyperares,

4. there arc only three types of hyperares in the hypertree (see Figure

(i) one source vertex and one targel vertes (2-hyperare),
(if) two source vertices and one target vertex (3-hyperare), o

(iiii) two source vertices and two target vertices (f-hyperare).

Note that the cor lence of arcs Lo 2-hyperarcs makes direeted Lreos spocial
cases of directed hypertrees.
Trees are used in evolutionary biology Lo represent, evolutionary relationships

ed trees are called rooled hrees

between species. In the biological literature, direc
and undirected trees are called unronted trecs. Tn evolntionary trecs, edges are in-
terpreted as species undergoing evolutionary change (lincages), vertices are inter-

preted as speciation events in which new species are generated, and the root, vertex

is interpreted as the most recent common ancestor of the species heing studicd.,
All types of trees give an estimate of the patiern of speciation events; however,



only direeted trees hypothesize the direction in which evolutionary change has

procecded. Many of the trees in this thesis will be edge-weighted trees, in which

cach edge’s weight is interpreted as the amonnt of evolutionary change undergone

by the species corzesponding to that cdge.

The restrictions above on directed trees and hypertrees guarantee the fol-

lowing biologically necossary properties: (1) no species can give rise to one of its

ancestors, and (2) each species arises from exactly one speciation event. Al types

of trees can represent dichotomons speciation events; directed hypertrees can also

represent Lwo more complex evolutionary events using their 3- and 4-hyperarcs
hybridization (the creation of a third entity from two parent entities) and
recombination: (an altering of one or both of two entities). Such events involving

the creation of two or more paths between pairs of vertices in a tree are called

s, and Lrees i ing these events are said to be reficulate. Retic-
ulation as defined here is applicable not only to problems involving hybridization

and i ion as defined in evolutionary biology [Fun85, StaC75], but also

to problems involving horizontal gene transfer [Sne75], multi-allele recombina-
tion events [116i90], and transmission of copying crrors in medieval manuseripts
[LeeSS]. See Appendix A for further discussion of reticulation.

Note that in the biological literature, graph-theorctic trees are often given
dilferent names depending on what they represent and the methods by which
. phylogram, dendrogram, cladogram. and that a single tree

the re derived §




may on oceasion imply a whole class of trees {IIP81].

2.2 Computational Complexity Theory

For a more in-depth treatment of computational complexity theory, see [BDGSS,
BDGY0, GJ79, HSTS, Joh90, WWS6]. Biologists will find [Day92] a good intro-
duction to certain topics in this section.

There are many types of formal computational problems e.g. decision, eval-
uation, counting. These problems can be unified nsing the framework developed
in [WWS86, pp. 100-101] ef. [JVV86]. Deline a relation 7 : £* x X* on pairs
of objects c.g. (boolean formulas) x (trth assignments to hoolean variables);
(graphs) x (cliques). Formal computational problems can he viewed as functions

defined on the projection of 2 onto a given eloment ..

o Decision Problem (PROB):
For some boolean-valued predicate ¢ defined on $7,

PROB(x) = Jy [(z,y) € I A G(y)).

o Solution Problem (SOL-PROB):

For some hoolean-valued predicate G defined on ¥*,

SOL-PROB(z) = {y | (z,y) € R A G(y)}.

If relation R has an associated valuation function b : 2 — A, It corresponds

intuitively to an optimization problem. Define the following problems on such 12,



o (tien-cost Solution Problem (SOL-VAL.EQ-PROB):
SOL-VAL.EQ-PROB((x, k)) = {y | (w,5) € R A bla,y) = k}

o Ciiven-limit Solution Problem (SOL-VAL.LE-PROB, SOL-VAL.GE-PROB):
SOL-VAL.LE-PROB((z, ) = {# | (2,5) € R A ba,y) < k}
SOL-VAL.GE-PROB((z, ) = {y | (z,5) € R A bz, y) > k}

o Optimal-cost Evaluation Problem (MIN-PROB, MAX-PROB):

PROB() = min b
MIN-PROB(x) = min, br,)

o = max b
MAX-PROB(r) = max, br,)

o Oplimal-cost Solulion Problem (SOL-X-PROB, X € {MIN, MAX}):
SOL-X-PROB(+) = {y | (v,y) € R A bz,y) = X-PROB(x)}

“Three other types of problems may be defined on the ranges of Y, Y € {SOL-

PROB,SOL-X-PROB) (X € {MIN, MAX, VAL.EQ, VAL.LE, VAL.GE}).
o Spanning Problem (SPAN-Y ):
SPAN-Y(2) = [{Y(a)}].
o Random-Selection Problem (RAND-Y ):

RAND-Y() =y, where y is a randomly-selected member of {¥/(x)}.

o Enumeration Problem (ENUM-Y J:
ENUM-Y («, i) = y, where y is the i-th member of {¥(x)} under some

polynonsial-time ordering P.




Each of these problems corresponds to a function. A decision problem also cor-

responds to the language composed of the subset of its instances whose solution

is “yes”. A problem X is said to he solved by an algorithm if for an

input r,
that algorithm computes a single value from {f()} for the function [ embodied
in that problem. Let Xy denote the set of single-valued functions corresponding
to algorithms that solve problem X. luputs to a problem will be called instaners
and outputs will be called solutions.

Define deterministic Turing machines (D'TM), nondeterministic ‘TN (NTM),
and deterministic and nondeterministic oracle TM (DOTM, NOTM) that ree-
ognize languages (acceplors) and compute functions (fransducers) in the stan-
dard manner [BDG88, GJ79]. A DTM transducer N computes y on input »
(N(x) = y) if y is the final contents of N's ontpul tape for the computation
of N onz. A NTM transducer N computes y on input i (N() = y) if there
is an accepting computation of N on x such that y is the final contents of N's
output tape [Sel91, p. 3]. DTM transducers compute single-valued functions,
and NTM transducers compute partial multivalued functions. Any input to a
TM transducer that does not have an accepting computation compntes symbol
L. An OTM that forces all queries to e made simultanconsly is non-adaplive,
while an OTM that allows queries to e made on the basis to answers Lo previons
queries is adaptive.

The computational resources used by an algorithm Lo solve an instance of a




problem ean be visualized as the computational resources used by the TM which
corresponds to that algorithm. Let r4(z) be the amount of resonrce R nsed by

algorithm A on input z. For a function J : N — A and a computational resource

1, an algorithm A is [-R (f-R computablc) c.g. polynomial-time, p
time computable, ifr4(|z]) € O(f). A problemis f-R if there is an f-R algorithm
that solves that problem.

Problems can be grouped into complexity classes based on bounds on compu-
tational resources required Lo solve those problems e.g. DTIME(poly), which is
the set of all problems solvable by polynomial-time DTM. Some standard com-

plexity classes for decision problems are:

r Al decision problems solvable by polynomial-time
DTM.

NP All decision problems solvable by polynomial-time
NTM.

PSPACE Al decision bl solvable by polynomial-sp

DTM.

EXPTIME Al decision ble solvable by ial-ti
DTM.
It is known that P C NP C PSPACE C EXPTIME, and that P C EXPTIME

[BDGSS, Proposition 3.1]. Several classes of complexity between P and NP are:



up All decision problems solvable by polynomial-time
NTM such that for each input. there is at most one
accepting computation.

FewP All decision problems solvable by polynomial-time
NTM such that for each input. [ and a fixed polynomial

py there are al most p(|7]) aceepting computations.

R Al decision s solvable by
NTM such that for cach input I, cither there are no
accepting computations or else at least half of all com-

putations are accepling.

Many problems are of complexity between NP and PSPACE, and are within the

levels of the Polynomial Hicrarchy [M$72]:

e =a=3p=P
et = PEL(O(0gn)]
Afyy = PH

S = NPE
1, = co-NP%

PH=U A}
k=1



where PY (NPY) is the class of problems solvable by polynomial-time DOTM
(NOTM) that can use any oracle in class ¥, and PYUOI (RYV) s the class
of problems solvable by polynomial-time adaptive (non-adaptive) DOTM that
ean ask up to f(n) querics to an oracle in class V. Levels A7, 57, and N1}
were defined in [MS72], and level ©] was defined in [WagK88]. It is known that
O} C A C SLUIEL € PHIN C O, that PH € PSPACE, and that if for some
Ky 11E = X then P = X} [Sto77, WagK90, Wra77]. Two working hypotheses in
complexity theory arc that P # NP and that PH does not collapse to any finite
level.

Many of the language complexity classes above can be restated as classes of
single-valued functions. Let FX denote the class of functions computed by TM
used to define language class X e.g. FNP, FA}, FPSPACE. Define FPSPACE(poly)
as those functions in FPSPACE whose outputs are polynomially bounded in
the length of the input, and FPI = Uy, FAL. It is known that A7 C FAJ,
FPEVE] C ppEU@H ppsiUe] ¢ ppSale1 gless P = NP, and
PPl ¢ ppEUO uless FPI = FPE [Gas92, Kred2b]. The relationships
within and between classes in FPH have been established only at the lowest levels

(see S

tion 4.1.1); those relationships known to date suggest that classes in FPH
behave very differently from their analogues in PH [Gas92]. Classes of multivalued
functions are also possible. There are many restrictions of polynomial-time NTM

transducers that generate such classes [Sel91]; one such restriction is F,, the sub-



set of functions J in class F such that graph(f) = {{r.s)|/(+) = y} € P ic. ot

puts can be checked in polynomial time [Sel91. Val76]. Define FNIPH = Uy FYL

and FM,PH = Ugey(FE]),. Classes FX} = FNP, (FS}), = FNP,. and FY]

are called NPMV, NPAMV,, and NPMVE-1 in [FILOS!

191], and NTM in

FN P, which compute total functions are called NI metric TM in [Kres8].

tions in FNP, compute the solutions associated with decision problems in NI

For further discussion ahout these and other function classes, see Seetion .1

A reduction T o 11 is an algorithm that solves problem 11 by using an al-

gorithm for problem IV, Reductions order problems by computational hardues

The two main types of reductions between decision problems are:

o many-one (<2,): A <2, B if there is a polynomial-time function [ wich

that x € A if and only if f(x) € B.

o Turing (<}): A <} B if there is a polynomial-t

an oracle that determines if z € A.

A lization of many lucibility called metrie reducibility holds hetween

single-valued functions.

i Definition 1 (adapted from [Kre88], p. 493) Lel [,g: X* = X°. A metric
reduction from [ 1o g is a pair of polynomial-time funciions (14,13), where Ty ¢
£ 5 and Ty : £ x 5° = 5, such that f(z) = Ty(a,g(Ti(x))) for all 2 € X°.
The following variant holds between problems.
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Definition 2 Let Il w-i II' b problems and SOL-X(1) be the set of solutions
associaled with instance: 1 of problem X. A metric reduction from Tf to I is a
pair of polynomial-time funclions (T3, T3). where Ty : 1 — I' and Ty Ix S' = S,
such that for any single-valucd function [ that solves WV, Ty(1, f(Ti(I))) € SOL-

11(1) for any instance 1 of 1.

This reducibility is a restricted version of the Turing reducibility between partial

multivalued functions defined in [F110892]. Note that the definitions of these

metrie reducibilities are for problems that are single-valued. Another

relation called refinement can also hold between multivalued functions. Given
multivalned functions [ and g, g is a refinement of f if dom([) = dom(g) and
for all x € dom(g) and all y, if g(z) +— y then [(z) — y. These relations
can also hold between whole classes of functions. For instance, if F and G are
two classes of partial multivalued functions, then F C. G ifevery f € F has a
relinement in @ [Sel91, p. 4]. Both inclusion and refinement relations can hold
hetween multivalued function classes, and single-valued classes can be included in
multivalued classes (indeed, this is equivalent to refinement); however, only the
single-valued refinement relation can hold between multivalued function classes
and single-valued classes.

tiven two problems x and y and a reducibility », @ and y are computationally
cquivalent if x r-reduces to y and y r-reduces to x. Given a class of problems

X and a reducibility r, a problem y is said to be X-hard if each problem in X
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r-reduces to y. If y is X-hard and is also in Xy is XN-completes il y is X-bard

and is not in X, y is properly X-hard. Two limited types of roduetions

o arithmelic-cquivalence reductions: Problems 1 and 1 differ only in their

cost-functions by and by, and there exists a pair of polynomial-time fune-
tions (74, 7) such that for all instances . of 1 and 1V, by(e) = Tylb ()

and by(x) = Ty(bu(x)).

® restriclion reductions: Problems 11 and 11 differ only in that dom(1l) C

dom(I1') i.e. Tl is a subproblem of 11,

By definition, restriction and arithmetic-equivalence reduetions are many-one and

metric reductions.

Though some of the problems discussed in this thesis are most naturally de-
fined on R+, all problems will be restricted to @+, Real numbers in general can-
not be used because irrational numbers c.g. V2, canot be represented within
a computer whose running time is bounded by a function of the length of ity

enlations must also be eliminated

input. Al irrational numbers that arise in
or approximated e.g. v/Z — [V 1. A case study in how a reak-number problem

is modified to be computable is given for the Euclidean Minimal Steiner Tree

problem in [GGJ77]. The lower bounds given by such modified problems on the
complexity of the actual problems is the best that can be done within compu-
tational complexity theory as it currently exists. However, there may be other

options [BSS89, Ko9l].



lefined on Q* for the convenience of readers, all

Though problems will be

problems will actnally operate on M. This is casily done by multiplying out the

rational denominators i.e. §,% — {4,9} +12. Thus, the bit-representation length
of numbers will be proportional to their value. This ensures that the length of
cortain small rational numbers will not exceed that of larger numbers (e.g. though
< 13, 18] 4 [14] > [13]; however, [13] < [13 - 14]). This property is necessary

in several proofs in Sections 3.2.1 and 3.2




3 Computational Problems in Phylogenetic Sys-

tematics

This section hegins with an overview of various concepts in phylogenetic

tematics. This is foilowed by a review of certain decision problems associated
with phylogenetic analysis nsing the phylogenctic parsimony, character coni-
patibility, and various of the distance matrix fitting eriteria, and a review of
the 1 tuctions by which these problems have been shown to be NP-complote
[Day83, Day87, DJS86, DS86, DS8T, Kris8, KM86]. This section also includes
defiitions and reductions for several new phylogenetic parsimony probloms that

allow limited amounts of reticulation, as well as a new reduction for the Additive

Evolutionary Tree problem [Day83].

3.1 Phylogenetic Systematics

Systematics is the subdiscipline of biology thal deals with ordering species into

sets of groups (systems) according Lo varions kinds of relationships hetween

species (e.g. I roles, overall similarity) [AxKT,

Hen66]. Phylogencti iesis in turn the subdiscipline of biological system-
atics concerned with ordering species based on tieir evolutionary relationships;
specifically, species are grouped together by descent from a common ancestor, and

these groups are nested hierarchically to make an evolutionary tree, The process
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of reconstncting evolutionary trees is called phylogenctic analysis (phylogenctic

infe o reconstructed are called phyls

pee), and the evolutionary tre

The units that, are ordered in phylogenctic analysis arc called taza. Two types
of data are typically available Lo reconstruct evolutionary relationships among

Laxa:

o Discrete Character Matrix: The data are an m-by-d matrix giving the

values pos ed by cach of a set of m taxa for cach of a set of d charac-

s are called characters and their values are

teristies. These characterist
character slates Vor example, a character flower colour might have char-
acter states blue, yellow, and red. Character-states are grouped into
charactors by the relation of homology [Ax87, EC80, Wii8l].! The vector

states over all taxa for a particular character is a character

of character:
pattern, and the vector of character-states over all characters for a partic-
ular taxon is a characler distribution. If a character has only two states, it
is binary; else, it is unconstrained (multistate). 1f a character has a graph

1 lomology is the relation among different structures in different species that evolved from a
common ancestral species (e.g. the character mammalian fore-limb that has states arm (hu-
wian heings, apes), foreleg (dogs, horses, tigers), wings (bats), and flippers (dolphins, whales)).
“Ihere are other kinds of relations among observed character-states, such as analogy, the rela-
tion of similar structures in different species that have arisen independently in several ances!
species (e.g. the cheracter wings that groups together the wings of insects, birds, and bats).
All character-state relations give evolutionary information of some sort; however, only homol-
agy delimits groups of species sharing a common ancestor, and thus only characters formed by
homology are useful in reconstructing evolutionary trees.

In the case of molecular sequences, homology can hold among different sequences from dif-
ferent species, as well as between different positions in different sequences; indeed, the problem
of wlnl)hshmg sequence-position homology is that of deriving a sequence alignment [SO90, pp.
. Note that in mol(‘culnr biology, the term “homology” is also a synonym for sequence
xumlnm,» MU0, pp. 7-9].
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imposed on its states whose edges specify the allowable changes from one
state to another, the chatacter is ordereds clse, the chatacter is unordered,
If the edges of an ordered character’s graph are directed, the character is

polarized; else, it is unpolarized. 1 the edges of an orde

d character's graph
have weights, the character is weighted; clse, it is unweighted. Ordered chap-
acters are typically based on linear, complete, or tree graphs. In polarized
characters, if state X is the source of a directed path to state V', X is an-
cestralto Y and Y is derived relative to X, ‘The state that is ancestral to all
character-states in a polarized character is the ancestral state for that char-
acter, By convention, the ancestral and derived states in polarized hinary

characters are written as 0 and 1.

Distance Matrix: The data are an m-by-m ma

rix giving a measure
of dissimilarity or similarity hetween cach pair of taxa in a set S of m
taxa. The terms “similarity” and “dissimilarity” denote quantities hat,
are precisely defined and inversely related; when rigor is nob. required or
specified, both will be denoted by the term “distance” [SO90, p. 423]. Let

M, be the set of non-negative rational real-valued matrices on n Laxa, and

Bn C M, be the set of all matrices whose off-diagonal values are in {1,2},

Call members of B, and M, binaryand unconstrained matrices respectively,
by analogy with discrete characters. Let Xgr b matrix X on § restricted

2

to S’ C 5. Every matrix represents a distance function d : 52 — R, which
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may satisfy some subset of the following properties.

. Vr€ S, d(z,z) =0.

~

Vi,y € 8, d(x,y) = 0 implies 7 = y.

Vr,y €5, d(x,y) = d(y,z).

|

Vg2 €8, d(a,y) < d(x,2) + d(z,y).

- Yy, 2 € 8, d(ryy) < maxld(e, 2),d(z, y)).

. Yy, 2w € S

i, y) +d(z, ) < max{d(, 2) + dy, 1), d(z, w) + d(y, ).

Conditions (1), (5), and (6) are known as the friangle, ultrametric, and
additive inequalities, respectively. A function that satisfies conditions (1),
(2), and (3) is a semimetric; if condition (4) s also satisfied, the function is a
mrlric. Metrics that satisly conditions (5) and (6) are known as ultrametrics

and frec melrics, respectively (see Figure 3). The m.tvber of distinet off-

diagonal values in an ultrametric is the height of that wltrametric. Tree
setries and ultrametrics can be represented as trees; let Uy (A,) be the
set of all ultrametric (additive) trees on n taxa, Uy, C Uy be the set of all
ultrametric trees on n taxa of height at most ¢, 1 < g < n(n — 1)/2, and
iU, = Ay (w4t Ay = M,) be the function that maps an ultrametric

(additive) tree onto its ultrametric (tree metric). In this thesis, A, will be

restricted to Al (diserctized addilive trecs) whose edges have length k/2,k >
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representation in the 2-D Euclidean plane; (b) an wltrametric and itx associated

0; note that ultrametrics drawn from A have integer off-diagonal entries.
Ultrametric trees are by definition rooted while additive trees can be cither

rooted or ted. Ul ic trees 1 to rooted additive trees

in which each leaf is the same distance from the root.

Discrete character matrices are generated by examining the taxa of interest. Dis-
tance matrices are generated dircetly via cortain techniques (i.c. immunological
assay, DNA — DNA hybridization) or derived from discrete character matrices
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by applying a distance function defined on pairs of character distributions. Raw
distance matrices must often be transformed into matrices that reflect “rue”

evolutionary distances [SO90, pp. 422-436]. These types of data arc not ideal for

the task of reconstructing evolutionary history, but they are sufficient: as taxa
originate by inheritance with modification, each ancestral lineage in the evolu-
tionary tree has left its signalure in its descendents, either as character states
that have propagated Lo that lineage’s descendents, or as a certain evolutionary
distance by which cach such descendent is separated from every other taxon in
the tree, Hence, many of the ancestral lineages, as well the details of the process
by which ancestral lincages gave rise Lo the observed taxa, can be reconstructed
using the types of data above [EC80].

“I'here are several other uscful representations for evolutionary trees besides
tree graphs. In trees constructed using discrete character data, each vertex in
the tree has its own set of character-state values. These trees can be summarized
by the character-state sets ol their vertices (see Figure 4). Alternatively, for
each character, one can map the set of vertices possessing each character-state
onto that character’s character-state graph to create a cladistic character, and
summarize a tree by its set of cladistic characters. Cladistic characters are often
casier Lo visualize as trees of subsets (see Figure 5). Discrete character matrices
and individual characters may also be summarized by cladistic characters. Non-

reticulate edge-weighted trees can be summarized by their patristic matrices,
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:

P = [pij], where p;; is the sum of the weights of all edges on the path between
taxa 7 and j in the given tree. A tree whose patristic matrix is an ultrametric of
height g can be represented [JSTI, pp. 48-50] [KMSG, p. $12] as a (¢ + 1)-length

sequence of pairs (P, ) such that
L. P, Pa,..., Pyyy) are partitions of 8,
2. I;is an integer such that 0 =1, < b < ... < 1),
3. Piis a proper refinement of Py (1 € i < q), and

4o Pr={{si} {82}, {oys1}} and Pypyy = ().

For cxample, the partition representation of the ultrametric tree of height 4 fu

Part, (b) of Figure 3 is

(Pih) = ({1} {2), {31 {1}, 511,00,

(Pnb) = ({1} {2} 44}, (8,5}, 15),

(Poyls) = ({{1,2}, {4}, {3,5}},25),

(Pula) = ({{1,2,4},{3,5}},30), and

(Pals) = ({{1,2,3,4,5}},50).
By convention, the weight of an edge in a tree reconstructed using discrele-
character data is the sum of the weights of all character-state changes (characler-
state transitions) hetween the vertices defining that edge (see Fignre 1),

embodies a

Each approach to phylogenetic analysis considered in Uhis thesi

criterion thal assigns a cost to cach possible U

lative Lo a partienlar data
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¢ Lransitions in characters 2 and 5.

set. The trees selected by cach approach as the best estimates of the actual
evolutionary tree for a data sct are the trees whose cost is optimal for that
data sel under that approach’s criterion. Hence, each approach to phylogenetic
analysis is an optimization problem.

Several of the most popular approaches to phylogenetic analysis that use

character data are:

dis

o Phylogenetic Parsimony [Hen66, KF69]: Selects the evolutionary tree
of shortest length that reproduces the character distributions for the given

taxa, where the length of a trec is the sum of the weights of all edges in the

tree. The hypothesis encoded in this tree is preferred because it explains as
much of the ohserved character distributions as possible by character-state
transitions in a common ancestor, and invokes the fewest ad hoc hypotheses

of subsequent charactor-state change [Fars3].
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Figure 5: Character-state trees (adapted from [Day88]).
character-state trees Ci, Cz, and Cs. Part (b) shows th
sponding to each of these characters as determined by di
X on the set of taxa $ = {A, B,C, D, 5, I'}.




Character-State Character
Criterion Transition Restrictions Order Type
Wagner WL | No restrictions. Linear
(Lincar)
Wagner WG | No restrictions. Ordered
(General)
Fitch Fi_| No restriclions. Complete
Camin-Sokal CS | No transitions from derived to an- | Ordered
cestral states.
Dollo Do | One Lransition from ancestral to de- Linear
rived state per character.
Chromosome CI [ One transition from ancestral to Lincar
Inversion heterozygous state per character;
(Polymorphism)] no transitions from ancestral to de-
rived or from derived to ancestral
or lieterozygous stales.
Generalized Ge | Specified for each character. Ordered

Table 1: Phylogenclic parsimony criteria.

There are several phylogenetic parsimony criteria, each of which encodes a
different model of evolution by placing different restrictions on the types
and numbers of character-state transitions allowable in a tree (see Table
1). "The Waguer Linear [KF69], Waguer General, and Fitch [Fit71] criteria
assume the simplest model of evolution, in which character-state change is
reversible. The Camin-Sokal criterion [CS65] assumes that character change
is irreversible, while the Dollo criterion [Far77] assumes that character-state
change is reversible but character-state origin is unique. The Chromo-
some Inversion criterion [Far78] is a restricted Dollo criterion whose char-
acters have three states: ancestral (A), derived D), and heterozygous (H
= {A,D}). The Generalized parsimony criterion [SC83] represents charac-
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ters as matrices of distances between character states (stepmalrices), which

allows this criterion to simulate all possible parsimony eriteria by placing

appropriate restrictions on the state-transition weights [SO90, Figure 11,
p. 464].

Note that in the biological literature, phylogenetic parsimony methods are

also called cladistic parsimony or cladistic methods, and that the term
“phylogenctic systematics™ is on occasion restricted to the inference of evo-

lutionary trees by phylogenetic parsimony methods.

Character Compatibility [MES5]: Reconstructs the evolutionary tree

from the largest subset of the given characters that are pairwise compatible,

where two cladistic characters K and L are compatible if there exists a tree

of subsets M such that the trees of subsets K and L of these charact,

re

subsets of M. For example, in Figure 5, characters Cy and (% are compatible

and C; and Cj are compatible, but. €y and C are not compatible,

Maximum Likelihood [Fel8l]: Se

s the evolutionary tree that, has the

greatest probabili |

of producing the f ies of cach Lype of character-

pattem in the data, i.e. the maximum likelihood P(Characters | Tie),

relative to some probabilistic model of character-state change.

Invariants (Evolutionary Parsimony) [CFS7, Laks7]: Select the evolu-

tionary tree that best satisfies its associated invariants, which are algebraic
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constraints on the observed frequencies of cach type of character-pattern
that hold for that tree over all possible discrete character matrices. The set
of invariants for cach evolutionary tree is derived relative to some proba-

lilistic model of character-state change.

There are many approaches to phylogenetic analysis using distance matrix
data, all of which assume that the given distances represent or closely approximate
actual evolutionary distances between taxa. Most of these approaches compute
the ultrametric or tree metric corresponding to the tree that has the minimal
distance from the given semimetric according to some statistic. Many of these
statistics are based on the Minkowski metrics Ly, ¢ 2 1, defined on pairs of

matrices 1) and P on taxa S.

Lo(D,P) = { 3 |Dzy = Po|'}'V* (1)
ryES
Loo(d,p) = max | Dz = Pry| (2)

Several such statistics for semimetric D and ultrametric or tree metric P are
Fu(D,P) = X |Dzy— Poy[" [ae{1,2}] @)
ryges

and

Ls,

F(D, P) = 100 x (1)

Tres Doy
where Fy is the [-statistic [Far72], F, is the least-squares fit criterion [CE6T],

and F was defined in [PW76). Note that each statistic in both of the groups
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{L1,F1,F} and {Ly, Fy} is arithmetically equivalent to other members of its
group. One can also view the given distances not as targets to be approximated

but as lower bounds on what should be approximated. This is embodied in

the concept of dominanc, i.c. for metrics D and D' on a set of objects S, 1)
dominates D'(D > D')if Y,y € S,Dry > DS, [ISTL, p. 52]. Thongh dominance

was originally proposed for fitting ultrametric trees, it has also heen used in some

methods for fitting additive trees [SO90, p. 451].

Each approach to phylogenctic analysis some model of the evolu-
tionary process of character chauge; some are more explicit than others in the
statement of the model that they use. The trees produced by cach approach are
useful to the extent that one believes in the model embadied by that approach.

See [Fel88, PHS92, S090] for a complete review of approaches to phylogenotic

analysis and computer programs implementing these approaches.

3.2 NP-Complete Probl in Phylog ic Sy i

Since 1982, decision problems for the major phylogenctic parsimony eriteria
[Day83, DJS86, DS87, GF82], the character compatibility eriterion [DSK6), and
various distance matrix fitting criteria for nltrametric and additive trees [Day83,
Day87, Kri86, Kri88, KM86) have been shown NP-complete using reductions from
the NP-complete problems given in Table 2. As later sections of this thesis will

make extensive use of both these definitions and these reductions, they will be
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Verrex Covenr (VC) [GT1]

Instance: A graph G = (V, ) and a positive integer K < |V].

Question: s there a verlez coverof size K or less for G, that is, a subset V' C V'
sueh that |V/| € K and, for cach cdge {u,v} € E, at least one of  or v
belongs to V"2

Exacr Cover By 3-SETs (X3C) [SP2]
Instance: A sel X with |X| =3¢ and a collection C of 3-element subsets of X.

Question: Does ¢ contain an ezact cover for X, that is, a subcollection €' C C
sich that every clement of X occurs in exactly one member of C'?

Criue [GT19]
Instance: A graph G = (V, E) and a positive integer J < |V].

Question: Docs G contain a clique of size J or more, that is, a subset V' C V'
sich that [V/] > J and every two vertices in V" are joined by an edge in £7

Table 2: Basic NP-complete decision problems (taken from [G79]). The reference
nimbers assigned to these problems in the list of NP-complete decision problems
in [CL79] are given in square brackets.

reviewed in this section. Bach reduction will be given a formal definition in the

style of [Kar72], followed by a sketch of its proof of correctness.

3.2.1 Phylogenetic Parsimony

Each of these problems is given as input a discrete character matrix for m taxa
and d characters, and operates on an implicit graph G whose vertices are the

set of all d-dimensional points defined by the states of the given characters and



whose edges are specified by the allowable transitions between the states in these
characters. Each phylogenctic parsimony problem secks the evolutionary tree in

G of minimum length that includes the given taxa, subject to the restrictions

on character-state transitions that arc particular to that problem’s eriterion (see

Table 1). The given characters can be restricted in various u

ays Lo generate a

family of phylogenetic parsimony problem “schemata” (s and 8);

cach phylogenetic parsimony criterion can then he applied to these sehemata to

generate problems. The hierarchy of subproblems generated by these sehemata
will be useful in later sections of this thesis.

Consider the following restrictions on the given characters:

o Cladistic vs. Ordered vs. Qualitative: A cladistic (C) problem is
given polarized characters, an ordered (O) problem is given ordered char-

acters, and a qualitative (Q) is given wnordered charactors. Kach problem

finds solutions that are consistent with its characters; however, ordered and

qualitative problems must also find character polarizations and orderings

tinction was made

for which solutions exist. The cladistic / qualitative di

aive and ordered

in [DJS86, EM77, EM8O] for binary characters; as qu
problems are equivalent, for binary cl the distinction of ordering is
onlyapplieableto ot

Cladistic problems correspond to phyl i analysis procedures that pro-

duce explicitly rooted trees, ordered problems correspond Lo procedures
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that produce cither rooted or unrooted trees, and qualitative problems cor-

tespond to procedures #'1eh as Transformation Series Analysis [Mic82] that
simultanconsly produce trees and derive character ordering and polarization

from the given data (cf. [Lip92]).

o Binary vs. Unconstrained: A problem is binary (B) if it is restricted to

hinary characters; otherwise, the problem is unconstrained (U).

s Weighted vs. Unweighted: A problem is unweighted (U) if it is re-

stricted Lo nweighted characters; otherwise, the problem is weighted (W).

The live schemata generated by the first two of these restrictions are given in Ta-

bles 3 and 4; the remaining restriction yields a total of ten schemata. The validity

of these restrictions for each of the phylogenetic parsimony criteria is shown in

Table 5. Restrictions do not apply to a particular criterion if they conflict with

the restrictions imposed by that criterion e.g. Dollo criterion characters can only

haract iti d and or-

have three states; Fitch criterion are by defi

of all phylog imony criteria to valid schemata

dered. The
yields 39 phylogenctic parsimony problems (see Tables 6 and 7).

Additional phylogenctic parsimony problems may be generated by allowing
evolutionary trees to include limited amounts of reticulation. Consider the prob-
lem schemata in Table 8 defined for each non-reticulate phylogenetic parsimony
problem X. These schemata restrict the amounts of available (the SHX and SRX
schemata) or allowable (the k-HX and k-RX schemata) reticulation that can oc-
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BiNARY CrLADIsTIC X (BCX)

Instance: Positive integer d; a subset S of {0, 1}%; and a positive integer 13,

Question: Is there a phylogeny satisfying criterion X thal includes 8, is rooted
at the root-type verlex, and has length at most 137

BINARY QUALITATIVE X (BQX)

Instance: Same as BCX, except that no character is required Lo be directed.

Question: Is there a phylogeny satisfying criterion X that includes & an has

length at most B?

Table 3: Phylogenetic parsimony decision problem schemata (non-reticulate
trees) (adapted from [DJSB6)). These schemata are stated re
logenetic parsimony criterion X. If X € {C1, CS}, root-type s
i X = Do, root-type is “all-derived”.

ve o a phy-
“all-ancostral™;

Note that the statements of problems given above differ from [1).J586, DS87] in
that the bound B is on the number of edges rather than the number of vert,
in the tree. The two formulations are equivalent; however, the former allows
more natural interpretation of weighted problems.

39



UnconsTRAINED CLaDIsTIC X (UCX)

ve integer d; sets Ay,..., Ag of character-states, and directed
ate graphs .+Gie specifying allowable trangitions among
st § of Ay ¥ ... % Ag; and & positive integer B,

Instance: Ic
characte
these s

ing criterion X and the given directed
ste graphs that includas 5, is rooted at. the root-type vertex,
i iy length at most B?

UNCONSTRAINED Orpered X (UOX)

ame as UCX, except. that none of the character-state graphs are
cted,

Question: Is there some polarization of the given character-state graphs that
allows a phylogeny satisfying criterion X that includes § and has length at
most B

UNCONSTRAINED QUALITATIVE X (UQX)

Instance: Same as UCX, except that none of the character-state graphs are
ordered.

Question: Is there some ordering and polarization of the given character-state
graphs that allows a phylogeny satisfying criterion X that includes S and
has length at most B?

Table 4 Phylogenctic parsimony decision problem schemata. (non-reticulate
trees) (cont’d from "Table 3).




Uneighted / Binary / #
Criterion Weighted Unconstrained | Qualitative | Prob,
Wagner Lincar | WL J v 0,0 5
Wagner General | WG 7y i 0.Q ¥
Fitch Fi v o 3
Camin-Sokal | ©S 7 J c0Q | 12
Dollo Do V Fi c0Q | 12
Chromosome CI C,0,Q 3
Inversion
Generalized Ge ) 7 0 1
"Total 30

Table 5: Applicability of input character restrictions to phylogenctic parsimony
criteria. The given total number of problems is smaller than expeeted hecanse
some of these problems are cquivalent; see Tables 6 and 7 for det,

cur in a tree. Sec Appendix A for further diseussion of these schem

ach can
be applied to all phylogenetic parsimony problems created so far, giving a total

of 156 phylogenetic parsimony problems. One such problem is &-RUUOWL, the

kR bi

under Unweighted Unconstrained Ordered Wagner Lincar par-
simony problen. Note that as reticulation is always directed, the trees produced
by these problems are rooted.

1t is not obvious at first glance that the problems above are in NP, Conven-

tional tree-traversal algorithms can be modified to check all parsimony erit

for both non-reticulate and reticulate trees in time polynomial in the

e of the

candidate solution [StaT80, Section 3], but such solutions are not guaranteed to

be of size polynomial in the size of the instauce hecanse they might be as large as

the implicit graph on O(2!) vertices from which they are taken. However, under
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Acronym Problem
BW Unweighted Binary Wagner
UBOWL | Unweighted Binary Ordered Wagner Lincar
UBQWL | Unweighted Binary Qualitative Wagner Linear
UBOWG
UBQWG | Unweighted Binary Qualitative Wagner General
Bl Binary Fitch
uuw Unweighted Uncoustrained Wagner
UUQWG | Unweighted Unconstrained Qualitative Wagner
General
UFi Unconstrained Fitch
WhW Weighted Binary Wagnor
WBOWL | Weighted Binary Ordered Wagner Lincar
WBQWL | Weighted Binary Qualitative Wagner Lincar
WRBOWG | Weighted Binary Ordered Wagner General
WBQWG | Weighted Binary Qualitative Wagner General
UTOWL Unweighted Unconstrained Ordered Wagner Linear
VIQWL hied U ined Qualitative Wagner
Lincar
WUOWL Weighted Unconstrained Ordered Wagner Linear
WuQWL Weighted Unconstrained Qualitative Wagner Linear
uuowaG Unweighted Unconstrained Ordered Wagner General
WUOWG Weighted Unconstrained Ordered Wagner General
WUQWaG Weighted Unconstrained Qualitative Wagner General

"Table 6: Phylogenetic parsimony decision problems (non-reticulate trees). Each
group of equivalent problems is indented, and appears after the acronym for that

group.
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Acronym Problem

UBGCS Unnilghled Binary Cladistic Cari-Sokal
UBQCS ighted Binary Qualitative Camin-Sokal
UBOCS Uuwuglllcd Binary Ordered Camin-Solal
UBQCS | Unweigl ‘BmaryQ litative Camin-Sokal
uuces Unweig! ined Cladistic Camin-Sokal
uuocs AR ined Ordered Camin-Sokal

Unweighted Unconstrained Qualitative Camin-Sokal
Weighted Binary Cladistic Camin-Sokal

WBOCS Weighted Binary Ordered Camin-Sokal
WBQUS Weighted Binary Qualitative Camin-Sokal
wuccs Weighted Unconstrained Cladistic Camin-Sokal
wUocs Weighted U ined Ordered Camin-Sokal
wuQes Weighted U ined Qualitative Camin-Sokal
UBCo Unweighted Binary Cladistic Dollo

UBQDo Unweighted Binary Qualitative Dollo

UBODo | Unweighted Binary Ordered Dollo
UBQDo | Unweighted Binary Qualitative Dollo

uCho Unweighted Unconstrained Cladistic Dollo
uuohe Uuweughted Uncuuslmmed Ordered Dollo
UuQho [if 1 U litative Dollo
WRBCDo Weighted Binary Cladistic Dollo

WBODo Weighted Binary Ordered Dollo

WRBQDo Weighted Binary Qualitative Dollo
WUCho Weighted Unconstrained Cladistic Dollo
WU0De Weighted Unconstrained Ordered Dollo
wuQbo Weighted Unconstrained Qualitative Dollo
cer Cladistic Chromosome Inversion

0cCl Ordered Chromosome Inversion

QCl Qualitative Chromosome Inversion

UBGe Unweighted Binary Gencralized

UuGe Unweighted U, i lized
WBGe Weighted Binary Geueralxzed

WUGe Weighted U d G lized

Table 7: Phylogenetic parsimouy decision problems (non-reticulate trees) (cont’d
from "Table 6).



SELECT HYBRIDIZATION UNDER X (SHX)

Instance: Same as for problem X, with an additional parameter R, a given
polynomial-sized (in the parameters of X) set of #-hyperares,

Question: Same as for X, with the additional condition that the phylogeny can
include any subset of the 3-hyperares in A,

k-HYBRIDIZATION UNDER X (A-HX)

Instance: Same as for problem X, exce|
fixed type of 3-hyperarc, and ther
integer.

{ that the implicit graph incorporat
an additional parameter k, a positive

s 2

Question: Same as for X, with the additional condition that the phylogeny can
include < k 3-hyperares of the fixed type.

SELECT RECOMBINATION UNDER X (SRX)

Instance: Same as for problem X, with an additional parameter R, a given

polynomi d (in the | Lers of X) set, of 4-hyj

Question: Same as for X, with the additional condition that e phylogeny can
include any subset of the d-hyperarcs in /2.

k-RECOMBINATION UNDER X (k-RX)
Instance: Same as for problem X, except that, the implicit graph incorpor

fixed type of 4-hyperare, and there is an additional parameter &, a e
integer.

Question: Same as for X, with the additional condition that the phylogeny can
include < k 4-hyperarcs of the fixed type.

Table 8: Phylogenetic parsimony decision problen
These schemata arc stated relative to a i I
problem X.
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certain additional restrictions, the problems defined above can he shown to be in

NP. Consider the relationship between solution cost and size.

| L

Lemma 3 A ial-time nondeterministi ion is guaranteed to find

all solutions Y 1o an instance { of an wnweighted (weighted) parsimony problem

X such that bx(Y) < p(11) (bx(Y) < p(I/)Waia(1)) Jor some polynomial p.

Proof:  Observe that the largest solution of cost k to an instance / unweighted
parsimony problem is a tree on k + 1 vertices, and that the largest solution of
cost. k Lo an instance 1 of a weighted parsimony problem is a tree on k/Wiuin(/)
vertices with edges of weight Wonin(1), where Wanin(1) (Wiax(1)) is the smallest

(largest) character-transition weight in the given instance. 1

Solutions s

atisfying these bounds exist for cach non-reticulate phylogenetic par-

simony problem defined above. For Wagner Linear, Wagner General, Fitch,

Camin-Sokal, and G lized problems, this solution is a tree rooted at the

all-ancestral vertex which has paths to each taxon that use the appropriate

char: state transitions to generate the states for that taxon; the solution for
the Dollo (Chromosome Inversion) problem is a tree rooted at the all-ancestral
(all-A) vertex that has a path to the all-derived (all-H) vertex, which then has
paths to each taxon that use the appropriate “reversal” transitions to generate
the states for that taxon. Each of these solutions is of size O(mdl (log Winax))

and cost O(mdl (Wyax))s where 1 is the length of the longest path between two

states in a

aracter-state graph in the instance and Wyag = 1 if the problem
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is nnweighted. As the cost of a solution is propartional to its size in wnweighted
problems, any solutions (including optimal solutions) better than those given

above have costs that satisfy the bound in Lemma 3.

Corollary 4 A polynomial-time nondelerministic compulation is guaranteed fo
Jind all optimal solutions of any instance of a non-veliculate unweighted phyloge-

netic parsimony problem.

This relationship docs not hold for weighted problems; solutions of lower cost
may exist that are larger than solutions of higher cost. However, if the problem
is restricted to those instances 1 such that Woae(1) < p(1I)Wain(1) for some
polynomial p, any solntions (including optimal solutions) hetter than those given
above must have cost k < O(mdLWoune) < #(1HDWanal 1) < 01D Waial 1) for

some polynomials 3/, /", and thus have costs that satisfy the hound in Lenma 3.

Corollary 5 A pol; ial-time nondelerministic comp ion is guaranteed lo
Jind all optirial solutions of any inslance I of a non-reliculale weighled phyloge-
netic parsimony problem such that Was(1) < p(|11)Wain( 1) for some polynomial

P

Thus, all non-reticulate unweighted and weighted phylogenetic parsimony prob-

lems defined above whose weights are so restricted are in NP, As solutions to
cladistic problems are also solutions to ordered and qualitative problems, and as

each reticulate problem can incorporate a mimber of reticulations al most polyno-
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mial in the of its icul all i probl

The reductions given in [DJS86, DS87] that establish the NP-hardness of the

non-reticulate ighted binary Camin-Sokal, Dollo, and Ch Inversion
phylogenetic parsimony problems are given in Tables 9 and 10. These reductions
use the basic idea of Karp's reduction from EXACT COVER to STEINER TREE
IN GRAPIIS {lKar72] - namely, reduce some problem involving the selection of a
subeollection of a collection of subsets on a set of items onto a three-level tree in
which the leaves correspond to the items, the root to the selected subcollection,
and the remaining internal vertices to the subsets in this subcollection.? In the
reductions in Tables 9 and 10, the items are the edges of G and the subsets in the
collection are the sets of edges adjacent to each of the verticesin G. The trees that
are solutions in cach of the reduced instances contain subtrees that have three
levels ([DJS8G, Lemma 1]; [DS87, Lemma 2]), where the internal vertices selected
on the second level of each tree correspond to satisfying vertex covers for the
original instances. In the case of the Dollo and Chromosome Inversion problems,
each solution tree has a “tail” composed of the vertices in ¥ which ensures that
the tree has a root that is consistent with its problem’s criterion. Moreover, one

can construct trees from satislying vertex covers that correspond to satisfying

The reduction as given in [Kar72] is flawed, as the reader can verify for items T'
{a,boeude, frg) and collection of subsets S = {{a,b,¢}, {e,d,c}, {, f,g}}; the edges of weight
0 allow a solution tree of length 3 to the reduced instance, even though the original instance has
o exact cover. Krentel has fixed this problem by a variant on [Kar72) that yields a reduction
from SET COVER to STEINER TREE IN GRAPIIS [GKR92, Theorem 3.4).
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Ve <b, UBCCS / UBQCS [DJS86]
d=|V|,

where cach character corresponds Lo a particular vortex v €

S=0UX,
where 0 s the all-ancestral vertes, and X is the sel of vertices
corresponding Lo the edges in £ (for ¢ = {u,0} in I, there
are 1's in the characters corresponding to 1 and v and 0's
elsewhere).

B=K+16|

VC <2, UBCDo / UBQDo (adapled from [DDJSSG])
=3V,

where characters 2|V| + | to d correspond Lo the vertices in

S§=0UXxUY,
where 0 is the all-ancestral vertex, X is the so
corresponding to the edges i
Yo 1 S0 < d, such that g has I's in characters | to i and
0's elsewhere.

B=K+3|V|+|E|

Table 9: Reductions for phylogenctic parsimony decision problems.

Note that the reductions given for the Dollo and Chromosome Inversion problems
differ from [DJS86, DS87] in that the V| instead of 2i + V. The proofs
given in [DJS86, DS8T) still work for these modified rednc
modifications simplify the transformation of these many-on
reductions in Section 4.2,

ns; morcover,
luctions to met,




Vv <r, UCCH/ UQCH (adapted from [DS87])
d

3V,

where characters 2|V| + 1 to d correspond to the vertices in

=1yxuy,
where /] is the all-1l vertex, X is the set of vertices corre-
sponding Lo the edges in £ (for e = {u,v} € E, there are
13’s in the characters corresponding to u and v and H's else-
where), and Y is the set of vertices y;, | < i < d, such that
yi has A’s in characters 1 to 7 and II’s elsewhere,

B=K+43|V]+|E|

“Table 10: Reductions for phyl imony decision problems (cont’d from
I P I
Table 9).

s for the reduced instances ([DJS86, Theorems 2 and 3); [DS87, Theorem
4]). The trees will have the three-level structure as long as the all-ancestral
(or all-11) vertex is included in S; hence, these reductions simultaneously show
that the cladistic and qualitative versions of each problem are NP-hard. For the
same reason, the reduction for the Camin-Sokal problems also shows that the
w.weighted binary Wagner problem is NP-hard [DJS86, p. 41].

of all other

The non-reticulate binary unweighted problems are
non-reticnlate and reticulate problems (set k = 0 (k-HX-RX) and R = 0

(SHX,SRX)); thus, all Wagner, Fitch, Camin-Sokal, Dollo, and Cl

Inversion problems are NP-hard. As any ordered problem can be solved by an
appropriately structured instance of the Generalized parsimony problem, all Gen-
eralized parsimony problems are also NP-hard. Hence, all phylogenetic parsimony
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problems considered above are NP-complete.

A proof that UBW and UUW are NP-complete was given previous to that
in [DJS86] by Graham and Foulds [GF82], using a reduction from NC. The
clegant reduction from UUW to WUOWL given in [Day83] docs not work as
stated there, because Day uses a version of UFi that inchides the implicit graph
in the instance and this version has not been shown o be NP-complote (soe
Appendix B). However, with slight modifications, this reduction does work for
UUW as defined above.

The phylogenetic parsimony problems described above are closely selated to
the STEINER TREE IN GRAPHS ($TC) aud RECTILINEAR STEINER TREE
(RST) problems (sce Table 11). The phylogenetic parsimony prablems are like
STG in that the solution is drawn from a graph, and like RS in that this solution
domain is implicit. The relationship is not exact in cither case hecause none of
the phylogenetic parsimony problems defined above include their implicit graphs
in their instances (cf. Appendix B), and only the simplest. phylogenetic parsi-
mony problems are defined on d-dimensional rectilinear spaces. Despite these
differences, certain of the STG and RST solution and approximation algorithms
[BRIL, Ric89, Sny92, Win87] can be modified to solve particalar phylogenetic

parsimony problems; see Section 5.4 and Appendix 1.

5
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STEINER TREE IN GRAPHS (STG) [ND12]
Instance: Graph G = (V, E), subsct $ C V, positive integer K < [V]| - 1.

Question: Is there a Steiner tree T for S in G with length < K, that is, a
subtree 7' of G that includes all vertices in S and contains no more than &'

edgos?

R

ILINEAR STEINER TREE (RST) [ND13]

Instance: Set P = {(21,11), s (#ny )} of integer co-ordinates in the plane;
positive integer L.

Question: Is there a rectilincar Steiner tree T with length < L, that is, a tree
7 composed of horizontal and vertical line segments linking the points in
P such that, the sum of the lengths of all line segments in that tree is no
more than L?

Table 11: Steiner Tree decision problems (taken from [GJ79]).

3.2.2 Character Compatibility

Iach of these problems is given as input a set of d characters defined on a set of
m objects, and seeks the largest pairwise compatible subset of the given charac-

ters. The cladistic / ordered / qualitative and binary / unce ined character

restrictions made in the last section are also applicable to character compatibil-
ity problems. A collection of ordered (qualitative) characters is compatible if its
character-state sets can be polarized (ordered and polarized) to make the collec-
bl

set of cladistic ct [DS86, p. 225]. The five character

tion a

compatibility problems so defined are given in Tables 12 and 13.

Each of these character compatibility problems is obviously in NP, as solution
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BINARY CLADISTIC COMPATIBILITY (BCC)

Instance: Set of m objects; a collection €7 of d binary cladistic characters, ax
described by a d-by-n: character-hy-ohject matrix X; and a positive intoger
<

Question: Does the collection of characters € have a compatible collection (7 €
€ such that |C'] > B?

BINARY QUALITATIVE COMPATIBILITY (BQC)

tive charact
nd & positive infeger

Instance: Set of m objects; a culh-ctmn C ol d binary qu:

1 by a d-by-m charact hject matrix X;

B<d.

Questi Does the collection of cl ters ' have a polarization such that
there is a compatible collection ¢’ € € such that |(7] > B?

Table 12: Character compatibility decision problems (adapted from [DSS6]).

sets of characters are subsets of the given set of characters. The reductions given

in [DS86] which establish that BCC and BQC are NP-hard are given in Table 14.

The problems CLIQUE and BCC are very similar: hoth problems are looking
for the subset of largest size such that a particular relation holds hetween every
pair of elements in that subset. Let K be the character-pattern for a particular
character, and K(z) be the character-state in K of taxon z; for two binary
characters K; and K on the set of taxa S, K; and K; are incompatible if and
only if all three of the elements (1,0), (0,1), and (1,1) are in (K; x I)(5) [EIMT6,
Theorem 2.3]. By this result, pairs of characters in the reduced instance that

correspond tu vertices not joined by an edge in ¢ are incompatible. Hence, iy



UNCONSTRAINED CLADISTIC CoMpPATIBILITY (UCC)

Instance: Collection (! of d cladis
pusitive integer 13 < d.

characters defined on a set of m objects; a

Question: Does the collection of characters C have a compatible collection C’ C
€ sueh that [(7] > B?
UNCONSTRAINED ORDERED CoMPATIBILITY (UOC)

Instance: Collection €' of d ordered characters defined on a set of m objects; a
positive integer 3 < d.

Question: Does the collection of characters ¢ have a polarization such that
there is a compatible collection (' € C such that |C'] > B?

UNCON;

RAINED QUALITATIV

CompariiLity (UQC)

Instance: Collection € of d qua
a positive integer B < d.

ative characters defined on a set of m objects;

Question: Does the collec
ing sueh that there is

on of chiaracters ¢ have a polarization and an order-
1« compatible collection €' C € such that |¢'] > B?

Table 13 Character compatibility docision problems (cont'd from Table 12).

i
i
|
1
{
]
1
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CLIQUE <1, BCC [DSs6]

d=v|
m =3d(d —1)/2
X=foghl€i<sdi<j<m

X has a character-column for cach vorte:

in Vyand three

taxon-rows for cach unordered pair of v For
cach edge {u,n) ot in £, st the row-entries in column i
for that edge to 011, and the row-en \column o to 110,
All other entries in X are 0.

B=i
r BQC [DS86]

d=d
m'=2m

X=[dgl i gisd g j<m

ponding to rows (m 4+ 1) < i < m'

where the taxa cor

exhibit the ancestral of
X

B'=B

BQC <1, BCC [DS86]
d=d
m'=m
X=[digisdagi<
Lor's most frequently aceursing state becones
s ancestral state in X',

where a cf
that characte

B'=B

Table 14: Reductions for character compatibility decision problems.



on of pairwise compatible chasacters must correspond 1o a sc* of vertices

in ¢ that form a clique [DS86, Proposition 4], completing the proof. The key

to the reduction from BCC to BQC is that binary qualitative characters behave

i eharacters in which the state occurring most frequently has

been set to ancestral [MeM77, Lemma and Theorem 1], This can be forced by

adding taxa [DSK6, Proj on 2). The reduction from BQC to BCC holds by

similar reasaning [DS86. Propos

ion 2] As binary characters are restrictions of

unconstrained charactors, problems UCC, UOC, and UQC are also NP-complete.,

3.2.3 Distance Matrix Fitting

ach of these problems is given as input a semimetric on m taxa. Some prob-

lems seck either the ultrametrie or additive tree that has the closest fit to this

semimetric according to that problem’s statistic; others seck the ultrametric or

additive tree of shortest leng W that is dominant to this semimetric. The distance
matrix fitting problems defined in [Day$3, Day8T, Kriss, KM86] are given in Ta-
ble 15, Many of these problems were shown to be NP-complete via reductions
from eertain of their subproblems given in Table 16,

As with the phylogenetic parsimony problems, the distance matrix fitting

problems rictions on instance weights. For an in-

re in NI subject to certain res
stance [ and associated solution ¥ let W raigg(1,be) is the maximum difference

betwoen any weight in £ and any weight in ¥



FITTING UNCONSTRAINED MATRICES TO ULTRAN
Tic X (FUUT[X]) [V € {. 13)]

TRIC TREES VIA STATIS-

Instance: Set S of n taxa; semimetric 1) € M, and a positive integer 13,

Question: Does there exist an ultrametrie tree {7 € Uy, such that X(D,mo (1)) <
3

FITTING UNCONSTRAINED MATRICES TO DOMINANT ULTRAMETRIC TR
via STATISTIC X (FUUT[X,2)) [X € {F1. )]

Instance: Set S of n taxa; semimetric 1) € M, and a positive integer 8.

Question: Docs there exist an ultrametric tree {7 € U, such that X(Domu(17)) <
B and = (11)) > D?

ING UNCONSTRAINED MATRICES TO DISCRETIZED ADDITIVE TREES VIA
ric X (FUDT[X]) [X € {I.Fn I7}]

Instance: Set S of n taxa; semimetric 1) € M, and a positive integer 13,

Question: Docs there exist an additive tree 7' € AL such that, X(1,74(1')) <
B?

FITTING UNCONSTRAINED MATRICES TO GRAPI-BASED DOMINANT ADDI-
TIVE TREES (FUGT[>])

Instance: Complete graph (¢ = (V, £), V| = u; semimetric 1) € M, defined on
all pairs of vertices in G set of taxa § € V3 and a positive integer 3.

Question: [s there a subtree 7' of ¢/ that ineludes § such that £, ,1e7 Die,y) <
B and [ra(T)]s 2 Ds?

Table 15: Distance matrix fitting decision problems (adapted from [Days3, KMx6,
Day87, Kriss]).
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Lemma 6 A polynomial-time nondeterministic computation is guaranteed to find
all solutions ¥ ta an instance | of a distance watriz fitting problem X such that

108 Wowarang s (1Y) < p|11), Jor some polynomial p.

Proof:  Observe that all of these problems have solutions in which the mmber
of elements in the solution is polynomial in the size of the instance, i.c. ultra-

metries of size [SJE (FUPEX], FUUT{X,]). trees with at most 2/8] — 1 vertices

(FUDTX]), trees with at most |G7] vertices (FUGT[2]). To complete the proof,
abserve that, the costs of solutions ¥ to instances 1 of distance matrix fitting
problems whose statisties are bused on Ly and Ly are O(IS(Woaraizs(1,Y)) and

O(SP(Wanaraigg (1Y), respectively. 1

Corollary 7 A polynomial-time nondcicrministic compulation is guaraniced to
Jind all solutions Y fo an instance I of a distance matriz fitting problem X such

that by(Y') < 02"V, for some polynomial p.

Each distance matrix fitting problem defined above has solutions satisfying this

bound i.e. ultrametries with off-diagonal entries = Dy (FUUT[X], FUUT[X,2]),

any tree containing S such that every edge has weight Dyax (FUDT[X]), any

valid solution tree (FUGT[2]). As solution size is proportional to solution cost,

all optimal solutions satisfy the hound in Corollary 7.

Corollary 8 A polynomial-time nondelcrministic compulation is guaraniced to

Jind all optimal solutions of any instance of a distance matrix fitting problem.



FrTTING BINagy MaTRICES T0 UrtRaMeTRIC TREES OF HEGuT 2 VIA
STATISTIC X (FBUT2[X])) [\ € {F.F3}]

Instance: Set Sof n taxa; semimetric ) € B, and a positive integer 1.
Question: Does there exist an ultrametric tree ! € ),z such that

X(D.mp(l) < B?

Firtminé BINARY  MaTrICES TO DomiNant Urrmamersie TREE OF
HEIGHT 2 VIA STATISTIC X (FBUT2[X.2]) [\ € {F. F4}]

Instance: Set S of n taxa: semimetric D€ B,; and a positive integer /3,

Question: Does there exist an ultrametrie tree U1 € g such that
X(D, w(U)) < Band m(ll) = D7

Table 16: Auxiliary decision problems for NP-harduess proofs of distanee matrix

fitting decision problems (adapted from [KMS86, DayS7. Kriss]).

Hence, all distance matrix fitting problems defined above are in NI,
Problem FUUT{F,] was shown to be NP-hard via a reduction from FBUT2 .

A reduction which establishes that FBUT2[F)] is NP-hard is given in Table

17. This reduction is adapted from a Turing reduction from X3C to SOL-MIN-
FBUT2[R] givenin [KMS6]. An instanceof X3 has a solution if and only if the
graph G created by this reduction has a vertex-partition into 3-vertex triangles
(KM86, Lemma 6]. It can be shown that the nltrametric of neinimal cost for the
reduced instance of FBUT[F] will always have such a partition it ane only if

there is an exact cover for the original instance of X3C; morcover, the iaximm

nonoverlapping (not necessarily exact) cover for the original instance of X3€:

can be easily derived from this ultrametric. An optimal tree for any instanee of

%




FBUT2 1] will always have off-diagonal entries € {1,2) [KM86. Lemma 3. For
{5108 {{hy o B {S) 2

let iy = [1,] and j, = |{{i,5} € Lldis = 1}], 1 < p < r. By [KM86, Lemma 1],

suelan ultrametric tree U = {{s1}, ..

B = % Mgl + T F % |d-2
»=1 {igICl 1<’ <t <r iEnt jER
(5)
r iy . . v
-3 —de| WG = 1= 2

No subpartition in the second partition of an ultrametric U that is minimal under
Fy can group together vertices from different subgraphs G; and G, as the tree in
which these vertices are grouped separately by subgraph would have lower cost by
cquation 5 ahove, Henee, cach subpartition in the second partition must be based
on vertices from the same subgraph G, Note that 74(D, U) is minimal when the
subpartitions in the second partition specify a partition of G (and thus individual
() into the largest possible complote subgraphs. The reader can verify that the

optimal partition of any subgraph G into complete subgraphs under F is cither

into the four triangles

{rotsdanadonahs {Fazdonts Yazah

(6)
{rambaatitnaely {orale2a Yosa}
or the three triangles,
(ot Yo aadasal Wo2as Yosts Yosah {Wara Yo s daza } (7)

A



plus single vertices drawn from the set {rar.a.zrua}. depending on whether
the single vertices in this sethave or have not been partitioned into G, Let
these two sets of G be denoted by Giay and Gz note that |G|+ |G| = |C).
As single-vertex groupings do not affect the cost of {7 under #, the cost of a

minimal ultrametric {7 is

RDU) = 0+ [4idb =1} = %

= |£2] — 3]Gy + 3]Gu]) 8)
= 1] = 3Gl + 31D

A subgraph G, is partitioned into four triangles if and only if the corresponding
3-sct is in the maximal nonoverlapping cover of the original instance of X3¢ i,
the elements {rq1,Ta2, oa} are partitioned into that, (7. Henee, the original
instance of X3C has an exact cover if and only if |G| = q, i, F(D 1) = 1]~
3(q +3]C]), completing the proof. As FBUT2(F] is computationally cquivalent
to FBUT[F], the corresponding problem with no restrictions on the height of the

ultrametric [KM86, Lemma 2], and as FBUT[F)] is a restriction of FUUT[#),

these problems are also NP-hard, and thus NP-complete.

Problem FUUT(F%] can be shown NP-complete in a similar fashion. By a
variant of [IKM86, Lemma 3], the optimal trees for any instance of FBUT2[ ) will
always have ofl-diagonal entries € {1,2}. As |d—p| = |d = p[* when d,p € {1,2},
Fi(D,my(U)) = Fa(Dyry(U)) for any 1) € By and U € Uy Thus FBU'T2[1]
and FBUT2[F;] are arithmetically equivalent.  As FBUTZ[F) and FBUT[)
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Ya22

Ll Yoz Yoz, Ta2

Figure 6: Structure of subgraph ¢, used in reduction from X3C to FBUT2(F]
(Fignre 2 from [KMS6]).

are also computationally equivalent by a variant on [KM86, Lemma 2], and as
FBUTIE) is a restriction of FUUT[/7), these problems are NP-complete as well.

Problem FUUT[F},>] was originally shown to be NP-hard via a reduction
from a restricted version of VERTEX PARTITION INTO TRIANGLES (Kri88)].
The NP-hardness of FBUT2[[, >] can also be established by a reduction from
X3¢ analogous to that given above for FBUT[F], whose proof is more intuitive
because dominance forces the partition of individual G, into complete subgraphs.
“The Tatter reduction will be used in later sections of this thesis. As [KM86, Lem-
mas 2 and 3] can be modified to work for the corresponding dominant ultrametric
problems, the reasoning above by which FUUT[X], X € { [, F2} was shown NP-

complete also shows that FUUT[X.2]. X € { . F,}, are NP-complete.

[t



X3C <3, FBUTS[R,] (adapled from [KMS6])

3(q +3|C))

§=X U{tagalo € {12, [CI} Ay e {1.23}}

D = [d;y)

where D is defined relative to a graph (¢ = (3, £) composed
of the union of the graphs Gy = (Vay Fa)y | < 0 < |C].
Each subgraph G, corresponds to an element of ¢, € (',
Ca = (a1 002 Tagls Fa (129 € X, and has the structure
define D as

shown in Figure 6. Given G
dij = j

Js
if (ij} € B,
otherwise,
B =|E|-3(q+3(C])

FBUT2[ X] <2, FUDT[ X] (X € {F, F4}) [Days7]
n=n+g,
where ¢ = ¢ and ¢ = Lon — 1.

S'=S+yl<i<e
D M

Mo ]
where M = [l mig = forall | <i<nand 1 <j<gp,

M is the transpose of M, and 1 is a square matrix with
zeros on, but ones off, the main diagonal.

B'=B

Table 17: Reductions for distance matrix fitting decision problems.



“The reduction given in [Day87] which establishes that FUDTIX], X € {Fy, ;)
is NP-hard is given in Table 17. Day requires that || be an even integer > 4
in his version of FBUT2[X], which can be ensured by replicating some ¢; € C
in tie given instance of X3C. An optimal discretized additive tree T for the re-

duced instance of FUDT[X] can he transformed in polynomial time into a tree

consisting of two subtrees, an ultrametric tree U of height 2 on § attached by
an edge of length 05 Lo a subtree rooted at vertex v that is attached to all ver-
tices yi, | <0 < @ by edges of length 0.5, such that X(D, wy(U)) = X(D, w(T))
[Day87, Proposition 3]; morcover, an optimal ultrametric for the original instance
of PBUT2[X] can be similarly transformed into an optimal solution for the re-
duced fustance of FUDTIX] [Day87, Proposition 5. Hence, FUDT[X] is NP-
complete,and by the arithmetic equivalence of the /3 and F statistics, FUDT[F]
is NP-complete as well.

A reduction which establishes that FUGT[>] is NP-complete is given in Table
18, This reduction is based on the reduction from VERTEX COVER to UBQCS
and UBCCS given in Section 3.2,1, For graph G in an instance of FUGT[>]

created by this reduction, define a canonical irce as asubtree T of G that contains

S and is composed of edges of the types {,0;} and {ui, e;},¢; = {vi,x} € Eve.

Lemma 9 Every instance of FUGT[>] created by the reduction in Table 18 has

a minimal-length tree that is canonical.

Proof:  Let 7' be a minimal-length tree of length B for a reduced instance 7 of
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ves, FUGT2)
V={s}U{w]l<i<|[Viell U{e; |1 <j < Bvel}

D = [dy),
d(s,v) =
B ) if e = {0} € Brees
d(viye;) =3 otherwise
d(ciye;)
S={«}U{e; |1 <|Bvel}
B= K +|Bvc|

Table 18: Reductions for distance matrix fiting docision problems (cont'd from
Table 17).

FUGT(2]. If T is not a canonical tree, it contains one or more edges of the Lypes
{*.ei}y {viv5}, {eivej}, or {vi,e;} such that v, is not a vertex of e;. Create tree

7" from T by replacing cach non-canonical edge X as follows:

I X = {*,e;}: Ifthereisavertexv; € T such that ¢; = {v;,2} € Lye:, replace
X by the edge {v;, ¢;}; else, replace X by the edges {+, v} and {ng, ;) sueh
that ¢; = {vi,z} € Eye. The former case cannol ocenr beeause it wonld
create a trec with a length B’ < B; the latter case produces a tree 77 of

.cqual length.

o

X = {vi,v;}: Assume withont loss of generality that there is already an
edge {+v:} or (%05} in T, and replace X by the edge of this pair that is

not in 7. This cannot oceur because it wonld create a tree with a length
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B < B.

3. X= ;i}: Assume without loss of generality that thereisan edge {vk, e}
in 7. If there is a vertex o € T such tha ¢; = {v,2z} € Eve, replace X
by the edge {w,¢;}; else, replace X by the edges {*,m} and {v},¢;} such
that ¢; = {w,2} € Eve. The former case cannot occur because it would

create a tree with a length B’ < B; the latter case produces a tree T” of
cqual length.

4. X = {miye;} such that v; is not a vertez of cj: If there exists a verlex v,
in 7" such that ¢; = {vy,z} € Eyg, replace X by edge {vy,e;} to T; else,
replace X by the pair of edges {*,04} and {vg, e;}. Neither case can occur

hecause each wonld create a tree with length B’ < B.

The ercated tree T has the same length as 7' and still connects all vertices in S;

morcover, as 1" contains no ical edges, it is a ical tree. I
Clanonical trees have several useful properties. The path lengths of a canonical
tree 1" are such that [ro(T)]s > Ds. Moteover, the vertices in the second level of

w canonical tree T' correspond Lo a satisfying vertex cover for the original instance.
Theorem 10 FUGT[>] is NP-complele.

Proof: By Corollary 8, FUGT[>] is in NP. Consider the reduction from VER-
TEX COVER to Fll(!'r[z] givenin Table 18. This reduction is polynomial time.
Morcover, optimal solutions for an original instance of VERTEX COVER and
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its reduced instance of FUGT[>] can be ereated from cach other, If the original
instance of VERTEX COVER has a satisfying vertex cover V= € Vi of size
K’ < K, construct the canonical tree linking the vertices of 1* with the vertices
{ej} and #; this tree has length K’ + | Eve| < B, and is thus a solution to the
reduced instance. 1f the reduced instance of FUGT2] has a solution tree 7' of
length B < K + |Bycl, construct the canonical tree 7' corresponding to 7' of
length B’ < B. The vertex cover V* defined by the vertices in the second level of

T has size [V*] = B — | Evel < B = |Bvel = Ky thus, V* is

[ying vertex
cover for the original instance. I

A Turing reduction from SOL-MIN-FBUT[4] to SOL-MIN-FBUT2[1%] is
given in [Kri86, Theorem 4J; however, unlike the red: Lion from X3C to SO1-
MIN-FBUT2{/] given in [KM86], it is not obvious how to convert. this Turing

reduction into a many-one reduction. Several problems that involve fitting semi-

metrics to dominant and subdominant ultrametrics using s s Ly, Ly and
Lo are shown to be solvable in polynomial time in [Krig6, Kri88]; related prob-
lems involving other statistics are cxamined in [Day92]. The reduction from

UUW to FUGT[=] given in [Day83] does not work for the same

s s Day’s

reduction from UUW to WUOWL (sce Seetion 3.2.1); however, the former redue-

tion cannot be fixed by using the implicit-graph version of UUW defined above
because the reduction uses an intermediate problem (CONSENSUS PROBLIEM

IN CLASSIFICATION® which requires that the implicit graph he inclided in the
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problem instane

3.2.4 Summary

res 7 and 8 show the various reductions deseribed in this section, and Table

o hetween problems in these figures and problems

19 gives the corresponden

eseribed in the literature. Note that all but ten of these reductions are cithey
by restriction or by arithmetie equivalence.  All of these problems are inter-

veducible by virtue of heing NP-complete; however, the pattern of reduction

his diagram will be significant in later seetions of this thesis. Note that cach of

theses redduetions require only (hat a soluition exist that has a given cost, not that

solution have a cost ahove or helow a given limit: morcover. the proofs of each

of these reduetions 10 <51 give algorithms for converting solutions of cost ¢ to

ances of HHinto solutions of cost ¢ for reduced instances of 11 and vice versa,

h that these ¢ and ¢ are related arithmetically. The former property. along

e

with the reductions for CLIQUE and VERTEX ('OVER gi

1 [GIT9. Section

1-cost phylogenctic inference decision

3.1]. establishes that all corresponding gi

problems are NP-complete. Both of these properties will also be useful in later

seetions of this

Phe decision problems given in this section do not answer questions typically
asked by systematic biologists, and are thus wot relevant in themselves. However,
the NP-completeness results for these problems do suggest that fast i.e. polyno-
mial time algorithms do not exist for these problems. and that efforts should be
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CLIQUE —>=  BOC ——  1CC
BQC ——=  10C
;
Qe
a
FUDT[#] <= FUDTE]

N3 ——= FBUT2[1] —> FBUT[#] —>= U

a
FBUT2[1] == FBUT[F)] —= FUUT

~ FUDT]#)

FBUT2[14, 3] == FaUT(k. 2] = BUTTH. 2|
a

FRUT215, 2] —> FBUT[1, ] = FUU, 2|
FGUT[2]
T T
Vg — THCQICS, {li\\
COVER .
OVER — \in{e,apmt 2= uncie

uB{¢,Qjct

Figure 7: Reductions among phylogenetic inference decision problems. Redue-
tions 1 <2, 11" are denoted by arrows from 11 to 11, Arrows marked by a and

<5
correspond Lo reductions by arithmetic cquivalence and restriction, respectively.
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Problem

uB{CQyC
UBW

Thesis Titerature
Phylogenctic | UB{C.QICS TC,.QJCS [DISS6]
Parsimony UB{C,Q}Do {C,Q)DO [DJSS6]

{C.Q}C1 [DISS6)
SPQ [GF82, Day83|

unw SPP [CFs2, Days3)
WUOWL WTP [Days3]
BQ.CIC B{Q,CIC [DS80]
g U{Q,C}C [DS86]

Distanee Matrix
Fitting

3
FUUTA]
FUUT[#]
FUUT[H, >]

FUDTa], 0 € {1, F2)

FUGT[>]

TIICT [KMS6]

FHICyT [l\Mb()] At [Kris6],
FUT[1] {Day87
A2t [Kris6], FUT[2] [Days7]
Ayt [Kri86], #11C [KMS6]
Aqt [Kriss)

P4 [Krigs)

FAT[o], a € {1,2} [Day87]
AET [Day83)

‘Table 19: Corresy

o Fetween pl

ic inference

in this thesis

and problems in the literature. Al solution problems are marked with daggers

(1) all other problems are decision problems,
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WBCX Wi
WBQX WUox
W
UBCX uuex ox
UBQX Urox
QX

Figure 8 Restriction reductions among phylogenctic parsimony
Tems. These problems are stated relative to a phylogenetic pars
X. Note that each problem above is also linked by rostri
of its four corresponding retienlate problems (see Table ).

decision prob-
wony eriterion
on reduetions to cach

focused on the design of polynomial-time approximation algorithms whi

antee solutions that are close to optimal [Day83, GFS2]. These reducti

also be used to determine the computational hardness of more complex problems

(Section 4) and to place limits on the kinds of polynomial-time approxi

that can exist for phylogenctic inference problems (Seetion 5).
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4 The Computational Complexity of Phyloge-

netic Inference Functions

In the last section, certain decision problems associated with various phylogenetic

ria were shown to be NP-complete. By a folklore result in theo-

inference

retical computer seience, each of the corresponding solution problems is solved

by a function in #7PN" [(I79, Chapter 5. Towever, this says little about the
hardness of more complex problems based on these eriteria. Tn this section, [ will
derive varions hounds on the complexities of the evaluation, solution, spanning,

ennmeration, and random-generation functions associated with the optimal-cost,

v and given-limit versions of the phylogenetic inference problems.

The reader should remember that results given below for phylogenetic parsi-

mony and distance matrix fitting given-cost and given-limit problems apply only

to those problems in which the cost-parameter k satisfies the restrictions given
in Lemma 3 and Corollary 7.

It will often he convenient below to have a single binary encoded representa-
tion (canonical representation) of cach solution to a problem, so that individual
solutions are not output more than once. Such representations exist for all prob-

lems examined in this thesis:

o Character Compatibility: Rep by

matrices whose character-states are in instance input order, and represent

7l



sets of characters by such matrices in instance input order.

abov

Nt trees

o Phylagenetic Pavsimony: Represent charactor nd repr

by vertex-adjaceney matrices whose vertices are in lesicographic order rol-

ative to character-state instance input order. Retienlations are stored in a

separate list by sonree-vertex sel lexicographic order relative to charactor-

state instance order,

® Distance Matric Fitling

Represent ultrametries by their corresponding ul-

trametric matrices whose verti

s are ininput instance order. Represent

additive trees by their inorder traversal sequences [$LTS0, Section 3], where

the tree i

rooted at the least vertes in inpnt instance order and the loft.
right ordering of subtrecs is replaced by an ordering on the basis of the least

vertex in a subtree,

These canonical representations can be encoded and docoded in polynomial time

using slightly modified standard algorithms [StaT80, Se

ion 3. AIL'TM solving

problems examined in this

tion will be assumed o operate on and to ontput.

canonical representations.

4.1 Function Complexity Classes

This section will give a brief overview of some function classes that will be nsed

below. These classes fall mainly into two regions - within P¥” and within




FPSPACE(poly). The relations between all classes defined in this section are

shown in Fignres 9 and 10,

4.1.1 Classes Within F'PN"
There are two Iierarchies of interest within #P¥;
1. The funetion hounded NP query hierarchy, £ PN,

2. The OpP[f(n)] hierarchy, where [ is smooth and [ € O(poly) [GKR92,
Kress]: For polynomial-time NTM N € FNP,, let opt¥(x) be the opti-
mal valie (largest for a maximization problem, smallest for a minimization

problem) computed by N for input .

Definition 11 (adapted from [Kre88], p. 493) A function [ : £ —
Z i in OptP (oplimization palynomial time) if there is a polynomial-time
NTM N € NP, such that f() = opt™(z) for all x € £*. We say that |
is in OptP[=(n)] if [ € OptP and the length of f(z) in binary is bounded

by =(|]) for all € S,

Though all OptP[f(n)] functions are contained in FPNPL, each function
in #2PNPUON metrically reduces to some Opt P[f(n)] function [Kre88, The-
orem 3.2(1)]. Thus, all OptP[f(n)]-complete functions are also 7 PNPU(L

complete,



Note that metrie reductions can streteh input by a polynomial amount.

One consequence of this stretehing is that a funetion that is complete for
OptP{(n)] is also complete for OptP[f(n1)] [GKRIZ, p. 7). 1t is most
noticeable in the names for certain classes defined using big-0 notation e.g.

OptP[O(log log n)] is more properly written as OptP[eloglogn + O(1)].
The following class relations are known:
o For every smooth function f,
= For [(n) < Jlogn, FPNIUG=TC ppV UG anless 1P = NP [Kress,
“Theorem .2).
= For f(n) < (1 = )logn, ¢ € (0,1], FPVUC=I 2 pREO iy fess
P = NP [Beis8, Theorem 21].
— For f(n) € O(logn), FP¥UM=1 ¢ pp8IUel yyles S5 = 115
[ABGO1, Theorem 42].
o FPNPOUsn] © PPN ypless P = NI* [Kres8, Theorem 4.1].
« FPNPRMwn) ¢ FPNE wpless R = NP [Sel9), Theorem 12) and Fowp = 1
[Sel91, Corollary 4(i)).
o FPVP C FPNP ifand only if PNPOGs C PNE(Sul91, Theorem 1.
Other separations hold under more exotic assumptions [Beiss, Beigl]. Research
to date has focused on all classes below FPNO0mM] and the class 1PNF,
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“Though many results have been imported directly from langnage-based to function-

based classes, there have been some notable surprises, in particular the non-

equivalence of KN and 12 PNPOUED] and the separation of FPNFIOUsn,

FBNT, and 1PN,
Metric reducibility suffices o show harduess for most single-valed function

classes. Funetions are shown #P"hard via the property of paddability [CT91,

86, Recall that all problems are based on relations R : [ x § on instances
1 and solutions S. Let SOL-11() be the set of solutions for an instance x of a

problem 11,

Definition 12 ([CT91], Definition 4.2) A problem 11 is paddable if there is
a pair of polynomial-time functions hy : 2" — I and hy : 2" x S = 2% such that
Jor all finite scts {1, 0,0 00} € 2" and all single-valucd functions [ that solve

I,

= h({rioraec o)) then ha({ry,azecoon), S(@) = (Ut v

where g, € SOLANw) for 1 < i < m.

Paddability was defined implicitly in [Gas86]. Gasarch realized that if instances
of a paddable problem IT can encode an X-hard problem then IT is FP"X- hard.
I X = NP, paddable problems are [?PNPOU&m)]hard [Gas86, Theorem 8] (the
essential idea is Uhat a hinary O(logn)-depth NP query tree contains at most a

polynomial number of NP queries). Chen and Toda defined and named paddabil-

ity independent, of Gasarel’s work, and stated their results in terms of FPP-

hardness.



Theorem 18 ([CT91], Lemma 4.1) Let 11 be a paddable problem whose asso-

¥ ciated decision problem Ly is NP-hard. Then Wy is FPF"-hard.

Proof:  (sketeh): Define function Qu(ayra.. .. ) =

Nt (10X (£2) o X () Where £y, g0y are instanees of Ly, As Ly is

NP-hard, any function in F'P{¥"" can be solved nsing a single call to Qus however,

as 11 is paddable, any instance of Qp can be solved using a single call to any

solution function for 11. 1
Their interpretation is the more powerful in light, of Selman’s results showing that
PPN s

iV is intermediate in hardness between FPVUOURDEand 11PN (see above),

The following variant of paddability will he nseful below:

Definition 14 A problem 11 is paddable with respect to a problem 11 if there
is a pair of polynomial-lime functions hy : 2" — I and hy : 2" x & - 2%
such that for all finite sets {a'y,a'sy.. . a'y) € 2! and all single-valued functions
J that solve T1, if & = hy((e'y, 22,0y ') then ho((a'y iy oyt), [() =

1V a0eee o)y where f; € SOLAV(e%) for | < i< m.

Theorem 15 If problem 1l is paddable: with respeet to an NP-hard problem 11

then Ty is FP""-hard.

Proof:  The proofs by which the analogons result holds for paddable problems
(Gas86, Theorem 8]; Thearem 13 above) require only that Qi be based on some

NP-hard problem, which nced not be Ly 1
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Theorem 16 If proble 1| metrically reduces to problem T and problem T is
paddable with respeet to a problem W, then problem 11 is padde™le with respect

Io 11",

Proof: By definition, there exist polynomial-time functions ky and hy such
that for o = {ay,o.yru} € 20 9= {yny. .. ym) € 25, and any single-valued
function [ that solves 11, (y) = ha({), [(h1({x)))), and functions Ty, Ty, such
that. for every single-valued function g that solves I, there exists a function f
that. solves 11 sueh that f(x) = Ta(z, g(T3(2))). Define functions Ay :2! — I, as
W) = Tyl () and By 2" x 55 = 2% as Wa((x),y) =

DGy BTl (()))y y)) such that (y) = h'a((r), g(H'1((2)))- Funictions k' and
iy are polynomial time and show that T1"is paddable with respect to 117, I
Note that paddability as defined here is distinet from paddability as traditionally
defined in computational complexity theory ([BDGSS, pp. 74-75); [BDG9O, pp.
122 123)).

Four classes of multivalued functions will also be used below:

NPMV = FNP and NPMV, = FNP, [Sel91].

NPMV o FPN i the sct of all partial, multivalued functions that are
computed by polynomial-time NTM transducers that are allowed to ask up
to a polynomial number of adaptive NP queries before nondeterminism is

invoked,

)



o NPMV, 0 FP P is the set of all functions f € NPMV o PPV such that

the nondeterministic phase of the computation is restricted to N PV,

o (NPMV o FPN¥), is the set of all functions [ € NPMV o FPY such

that graph(f) € P.

The NPMV-composition class notation is adapted from that in [FI10892]. Valiant
noticed that all solution problems associated with NP decision problems are in
NPMV, ([Sel9l, p. 4); [Val76]). Class NPMV, o PPN is useful hecanse it
corresponds to those solution problems whose associated decision and evaluation
problems are in NP and OptP, rospectively. The following class relations are

known:

Lemma 17 ([Sel91], Proposition 7) If [ € FPNOUsM] and graph(f) € I’

then [ € P.

Proof:  Implicit in the proof of [Kres8, Theorem 4.1 1

Corollary 18 The following hold:
1. (NPMV o FPNP), = NPMY,.

2. NPMV, € NPMV, NPMV, 0 FPN" C NPMV o I'PN", NPMV, C

NPMV, 0 FPN' and NPMV C NPMV o IPPN",

3. NPMV C. FPN? [Selgl, p. 10].
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4. FPNPOUL ¢ NPMVY if and only if NP = co-NP [Sel9l, Theorem 4,
Part 18],

5. PPNVOUs)) ¢ NPMV, if and only if P = NP [Sel9l, Theorem 3, Part
21,

6. NPMV, C, 12 PNPOUsnL if and only if P = NP (Sel9l, Theorem 3, Part
16).

7. PN =, NPMVyo PPN,

8 NPMV, 0 FPN" c NPMV if and only if NP = co-NP.

Proof:

Proof of (1): The leftwards inclusion is trivial. The rightwards inclusion
follows by this simulation: for any machine M corresponding to a function f
in (NPMV o FPNP),, nondeterministically guess all possible scquences of NP
query answers, compute nondeterministically relative to these queries, and accept
a computed output if it is is valid (which can be checked in polynomial time, as
graph(f) € P).

Proof of (3): Follows from the prefis-search technique (sce Section 4.3).

Proof of (4): The leftwards implication follows from the collapse of the Poly-
nomial Hlicrarchy. The rightwards implication follows because the characterisiic

function for any language in co-NP is in FPNPI,



Proof of (5): The leftwards implication follows from the collapse of the Poly-
nomial Hierarchy. The rightwards implication follows from Lemma 17.

Proof of (6): Similar to proof for (5).

Proof of (7): Follows from definitions and prsof for (3).

Proof of (8): Follows from parts (4) and (7). 1

The major relations that are still open are NPAMV, C. I“I'ﬁ"" [Sel91, . 24,

NPMV C NPMV, 0 FPN? and NPMV o FPN' € NPAIV, o FPNT,

Note that any optimal-cost solution problem can he simulated by asking the
et of NP:qierios rocitrod (o delofiitic Ui aptinal ost (see Soction 12) ainl
then using this cost as the input to the corresponding giveii-cost problons. ener,
if enough computational power is available, any function in N PMV, 0 PN can
be reduced to a function in NPMV, i.c. the given-cost solution problem. This

simulation will be used in many of the proofs given helow.

4.1.2 Classes Within FPSPACE(poly): Counting Classes

The classes of interest within FPSPACE(poly) belong to three hicrarchies of
counting classes, which arc based on two different modes of counting seuitions,
For a polynomial-time NTM transducer N € FM P, let #N () be the number
of accepting paths i.e. the total number of solutions, and Span® () be the number

of different solutions computed by N on input .



NPAIV o PN

N

FPNT < NPV, 0 FPNT
] A
SNy
reyr NPMY
F PN POtogn) NPMV, = (NPMV o 1N),
rp

Figure 9: Fuiction classes within PN (adapted from Figure 1 of [Sel91]).
Inclusion relations are denoted by unmarked arrows and refinement, relations by
arrows marked with ¢. Certain relationships that are ot marked are possible;

see main text,
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1. The #-ierarchy, #PH. whose kth level, #(FEF), k 2 1, is the class of
functions [(.x) such that f(r) = #V(x) for some N € FE}. This hicrarchy

is equivalent to that defined in [Val79h] on classes in PH instead of FPH.

The Span-Hierarchy, SpanPll [KST89), whose kth level, Span( FE), k > 1,
is the elass of functions [(x) such that f(x) = Span®™(x) for some N € FE}.
3. The function bounded #1° query hicrarchy, 12 P#U0),

Lot the first and second levols of #P11 (SpanP1I) be written #P and #NP (SpanP
and SpauNP), and define hardness of functions in the classes of these hierarchies

relative to metrie reducibility. The following class relations are known:
Corollary 19 The following hold:
1. #PU, SpanPIl, and PP’ C FPSPACE(poly).

2 FPIHC PPEO [TWS, Theorem 5.1].

If cither #P € FPIH or FPH C #P then PH collapses to a finite level

[1W92, Corollary 5.7, Part 1].

L #PILC FP#IU P92, Theorem 4.1).

L Fork > 1, #(FS}) C Span(FS}) [KST&9, Generalization of Proposition

17

i, Fork > 1 Span(FE}) € #(FEL,,) [KST89, Generalization of Proposition

1.8,



7. For k 2 1. #(FXL) = Span(FX}) if and only if UXE = X3 [KSTN0,
Gencralization of Theorem 4.9).
8 For k > 1. Span(FX}) = #(FX[,)) if and only if X = W [KSTs0,
Generalizalion of Theorem {.11].
9. #PH = SpanPIl.
Proof:

Proof of (1): Any polynomial-time NTM acceptor or transduc

n be sim-

ulated in PSPACE [BDG8S, Theorem 28(h)]; henee, by reserving space for

constant k + 1 such !

any FY] ¢ fon can be si in
FPSPACE. A counter of accepting paths can be attached to any such simla-
tion to caleulate #V(ir); to calenlate Span® (), connt only those accepting paths
whose output values have not. been enconntered hefore in the simulation i.e. res-
imulate N up to the current accepting path. As the output of any function

in these hicrarchies is polynomially bounded in the length of the input,

hierarchies are in FPSPACE(poly).

Proof of (5 - 8): The proof for (5) is a straightforward madification of that in
[KST89]. Lemma4.3 in [KST89] can be restated in terms of oracles A, A* € X if
fine 4 in the algorithm on page 367 is deleted, and the condition “or (3i(y.,2) ¢
B)" is added to the definition of ORACLE on page 368. Using this lemma, it is
casy Lo prove generalized versions of Propasition 4.5 and Carallary 4.6in [KST59],
from which (6), (7), and (8) follow. As E2 = I} implies that £PH = 4(FYL, ),
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the leftwards portion of (8) implies the stronger result. that Span(FE]) = #PIT
[Kol2).

Proof of (9): Follows from (5) and (6). 1

The connting unctions of interest in this Vhesis are all in class Span(N PMV,o0
FPNE), which s in the Tow end of $panPI. The following class relations are

known:

Corollary 20 The following hold:

. SpanP € Span(NPMV o FPNP),

1z

. Span(N PMV, o PPNT) C Span(NPMV o PPN,

. Span(N PV o FPNP) © #NP,

. Span(NPMV, 0 FPNT) C SpanP if and only if NP = co-NP.

-

Proof:
Proafs of (1 - 2): By definition. As SpanP = Span(N PAIV), relation SpanP
C Span(N MV, 0 FPNT)is open in part because relation NPMV € NPMV, o
PPN s open (see Section 4.1.1).
Praof of (3): Consider a NOTM Al which computes a function [ € NPMV o
FPST and Tot Mypane be the machine in N PMV invoked in the second phase
of the computation of M. Define the following oracle on input .+ and output y

for Mypan:



A(r.y) = {There is a computation path of Mypye on input o that produces

output y}.

Oracle A is in NP, Consider the NOTM A which computes a funetion g i
P M guesses an output y of Myparv performs the initial P phase of
the computation of M, formulates input . to My pary, and wsex a single call to
oracle A to see if Mypary on input .+ outputs g, 16 the answer to oracle A is
“yes”, M outputs y; clse, M’ rejects. Bach distinet ontput of Al is produced by
M exactly once; hence, Span(Ar) = #(A").

Proof of (4): The proof of the rightwards part is a variant of that for te
rightwards part of [KST89, Theorem 4.11]. Let L he a language in NP, Define
machine M in NPMV, 0 FPV which asks a single question to the oracle in NI
for membership in L, and outputs * 1" on all computation paths if the oracle
rejects i.c. input # @ L, and otherwise has no accepting computation. Lot f =
Span(M); note that f(x) > 0if and only if « g L. However, by hypothesis, f is
also the Span function of some machine in NPMV. As this wachine computes

co-L, L € NP and NP = co-NP. To prove the leflw:

part, nole that it NP* =

co-NP, then SpanP = #NP by Part (8) of Corollary 19 above; the wanted result
then follows from (1), (2), and (3).

1
Note that by the results of Corollary 19, even though #P is contained in Spanl,

the two are of cqual computational hardness, i.c. every function in Spanl®
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Figare 10: Funetion clay
metrically reduces to a function in #P this parallels the relationship between

OptPLf(n)] and # PN,

4.2 Evaluation Functions

Much of the carly work on evaluation problems focused on decision problems
thal approximate evaluation problems; see [WagK87, WagK88, Wagk90] for a

review of this work. Two approaches to directly determining the complexity
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of evalnation problems involve using paddability and the Optl® hierarchy (see

Section 4.1 1). Upper bounds on problem complexity within the function bounded

NP query hierarchy are casily established using the Optl hicrarchy. As many-

one reduetions often correspond to metrie reductions, the same also holds for

completencss results: indeed. Gasarch, Krentel, and Rappoport [GKRI2, . 1]

conjecture that OptP[f(n)]-completeness is the normal hehavior of evaluation

problems corresponding to NP-comples

is still useful in th ses when the transformation from many-one to metrie

reduction is not obvious.

Consider upper hounds on the comple:

ity of the evaliation problems for (he

phylogenctic inference criterin examined in this thesis, By Corollaries 1, 5, and

8, all character compatibility problems and uinweighted phylogenet

and distance matrix Gtting problems have optimal costs that.are polyn

hotnded, and that all weighted problems have optimal costs that are exju

tially bounded.

Corollary 21 All characler compalibility and unweighled phyloge nelic parsimony
and dislance malriz fitting cvaluation problems cramined in this thesis are in
OptP[0(log n)]. All weighted phylogenctic parsimony and distance maltris filing

coaluation problems esamined in this thesis are in OptP.

By definition, weighted problems in which the magnitude of the largest. weight
is polynomially bounded are also in OptP(O(logn)}; hence, let “unweighted”
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also refer to sueh problems. By results from [Kres8] cited above, one can read
SOPP ()] as “FPNPUCR Gy the remainder of this seetion.

Comsider now completeness rosults, starting with the unweighted problems.
MAX-CLIQUE and MIN-VERTEX COVER are both OptP[O(log n)]-complete
([Kress, Theorem 2.2]: [GRR92. Theorem 3.3]). Define MAX-X3C as the size of

the largest non-overlapping, rather than exact. cover by a subset of the given 3-

sets, A X3C is a generali

ation 3DM [G. p. 53], MAX

of MAX-3DM: as MAX-3DM is OptP[O(log n)]-complete [GKR92, Theorem
suis MAX-X3(. The reductions from these problems to character compatibility

andd unweighted phylogenctic parsimony and distance matrix fitting problems

|8

given in Seetions and 3.2.3 give arithmetic relations between the

costs of optimal solutions, and thus yield the following metric reductions:

o MIN-VERTE

X COVER(x) = MIN-X(x) —| %]

(X € UBCUS, UBQUS, UBW,UBGe)

o MIN-VERTEX COVER(x) = MIN-X(x) —(3|V'| + | E])

(X € UBCDu, UBQDo, UCCL UQCH)

o MAX-CLIQUE(x) = MAX-BCC(x)

o MAX-BCC(x) = MAX-BQU(x)

o MAX-D

30(x) = ((|EI-MIN-FBUT2[F)(x))/3) = 3|C|

o MIN-FBU

AJ(x) = MIN-FUDT[F](x)
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o MIN

FUDTIFR)(x) = (MIN-FUDTF|(x) + 5, pen iy )/ 100

o MIN-FBUT2[F)](x) = MIN-FBUT2{F)(x)

o MIN-FBUT2{)(x) = MIN-FUDT[/3)(x)

o MAX-X3C(x) = (([E[-MIN-FBUT2[Fy. >](x))/3) = 31|
o MIN-FBUT2(F. 2|(x) = MIN-FBUT2[1y. 2 (x)

o MIN-VERTEX COVER(x) = MIN-FUGT[>](x) ~[F]

Theorem 22 All character compatibility and wnweighted phylogendtie parsimony
and distance-matriz fitling cvaluation problems cramined in this thesis ar

OptP[O(log ) J-complete.

Consider completeness results for the weighted problems.  Ordinarily, a

weighted evaluation problem is shown OptP-complete | nt of the re-

ductions used to show their unweighted versions to be OptP[O(log n)]-complete
[GKRY2, p. 9] lowever, the required modifications are not. ohvions for i
ther phylogenetic parsimony or distance matrix fitting problems. For example,
consider the weighted phylogenctic parsimony problems. Define weighted MIN-
VERTEX COVER as the problem that associates weights with the vertices of a
graph and returns the sum of the weights of the minimum weight vertex cover.
This problem is OptP-complete [GKR92, Theorem 3.3]; however, the diffienty

with modifying the reduetions to phylogenetic

| problems
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i in Section 3.2.1 is that optimal solutions to the reduced instance neither

7 nor maximize the weights of the vertices of the candidate

consistently min
cover, but instead minimize the weight of the whole tree (see Figure 11). This
complicates the extraction of the cost of the nseful portions of the solution from

the cost of the whole solation. This diffienity can be resolved in the same way

s for weighted MIN-STEINER TREE IN GRAPHS [GKR92, Theorem 3.1]. by
ineluding i the instanee an explicit weighting function for all edges in the im-
plicit graph. This version of each weighted phylogenetic parsimony problem is

OptP-completes however. it violates the spirit of the original biological problem,

andd thus will not be considered here further. Similar difficulties oceur in attempts

the many-one reductions for distance matrix fitting problems given in

Section 3.2.3,

By the restriction reductions from all ighted to weighted phylog

parsimony and distance matrix fitting problems, the evaluation problems corre-
sponding 1o the latter are OptP[O(logn)}-hard. However, it is possible to do
better using paddability:
Theorem 23 The folloving hold:
L MIN-WBCCS and MIN-WBQCS are paddable with respect to VERTEX
COVER.
2 MIN-WBCDo and MIN-WBQDo arc paddable with respect to VERTEX

COVER.
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Figure 11: Difficulties with the reduction from weighted MIN-VERTEX COVER
to weighted phylogenetic parsimony evaluation pioblems, Gri
top, and all possible trees for cach graph under the reduction in *
the costs of these trees (C) and their corresponding vertex covers (VO
below. The numbers in parentheses in the
with particular vertices. Note that for the graph in (a), the minir
reduced instance also yields a minimal vertex cover, which is not. the
graph in (b).
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4. MIN-WBW is paddable with respeet to VERTEX COVER.

4. MIN-WBCCI and MIN-WBQCI are paddable with respect o VERTEX

COVER.
5. MIN-WBCe ix paddable with respeet to VERTEX COVER.

Proof:

Proaf of (1): Asswme without loss of generality that all given instances
Froaeeeovrr of VERTEX COVER have the same number of vertices, and can
thins e mapped by the reduction £ in Table § into k instances of UBCCS, each
of which has d charactors and m; taxa, 1 € i < k. Let m* = max m;. Construct
an instance «* of MIN-WBCCS on @ = kd characters ey, ..., cq split into zones

5= C(umt)edstor s Ciods | S 7 < ko with each zone corresponding to one of the

istances of UBCCS. Let §' = UL,

Vi, with cach s € S; being mapped into

its appropriate zone as in f(r;). with zeroes in the characters of all other zoues.
Give cach character in zone = weight w., (m*d+ 1)6="). Note that the maximum
weight in +' has a mumber of bits polynomial in k, m®, and d. Hence, function
By is polynomtial time.

No path in an optimal tree 7' for instance &' can include a vertex v such
that ¢ has characters with state | in two different zones. Suppose that such a
path p exists, and assume without loss of generality that there are no vertices
from S on this path. Denote the two zones by =* and =", the first two vertices
surrounding © on p that have l-states totally within one zone by x and y, and
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the number of I-states in .o and y by I, and 1,. Suppose . and y are in the

same zone; assume this zone is 2. Create a path p/ by taking cach vertox in

p and retaining only those edges wholly in zone 2 i.e. project path p onto the
g )

characters in zon Path p’ still connects & and p, and is shorter than p, which

contradicts the optimality of 7. Alternatively, suppose o and y are in zones 2
and 2", respectively. Assume without loss of generality that there is a path from
o 0in 2. Any path from . to y must contain at least L + 1, edges and have

length at lcast (1,)wy + (1,)wz. Consider tree 7% that replaces the path p with

a path from y to 0 of length (1, )wsr. Tree 17 is shorter than tree 7', whieh is a

contradiction. Hence, all edges in the optimal tree are hebween verlices in their
own zones, and the cost of the optimal tree for o corresponds to the summed

costs of an optimal tree for cach zone times the weight for that zone. Recall

from Section 3.2.1 that an unweighted binary Camin-Sokal tree on m taxa and
d characters has optimal length not greater than md; thus, the costs of optimal

trees for eacl. ‘one cannot overflow into the costs for trees in other zones, and

the cost of the tree corresponding to any w; can be casily extracted from the cost

Lelability.

for @', Hence, function A is also polynomial time, establ
Proof of (2): Civen a sct of instances @y, a,...,ex of VERTEX COVER,
constriict an instance 2’ as in (1) above with two additions: (1) there are (k+ 1)

zones, and the (k+1)-th zone of maximum weight is designated z+, and (2) 57 is

augmented by yi, | < i < (k+ 1)d, such that y; has s i positions i to (k 4+ 1)d
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and Os everywhere

Consider an optimal tree 7' for 2. All edges {{y;,yi4n), 1 €5 < (k+1)d}u
{yesn-0}} are in 7' by the reasoning given in [DJS8G, Theorem 3], and by
reasoning similar to that for (1) above, there are no paths in 7 between vertices

in different. zones. Moreover, there is no path p from any vertex u in a zone

2 to any y;. Suppose such a path p exists; project p onto characters in 2, i.e.
ereate a path from u to 0. As y; and 0 are already connected, this yields a tree
shorter than T, which is a contradiction. Hence, the cost of T is . ue cost of edges
o b 1S5 < (k4 DA}O {sepn4, 01} plus sie summed costs of an optimal
tree for each zone times the weight of that zone. By reasoning similar to that for
(1) above, fanctions hy and h, are polynomial time, establishing paddability.
Proofs of (3 5): The proofs for (3) and (4) are variants of these for (1)
and (2), respectively. As any ordered phylogenetic parsimony problem can be

simulated by an appropriately-structured instance of the Generalized parsimony

problem, (5) ean he proved by a variant on any of these other proofs. I

Corollary 24 All weighted phylogenclic parsimony cvaluation problems ezam-
ined in this thesis are FEN¥-hard.

Similar results hold for soveral of the distance matrix fitting problems.
Theorem 25 The following hold:

1. MIN-FUUT[I] is paddable with respeet to X3C.
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2. MIN-FUUT[F\.>] is paddable with respect to X3C'.
3. MIN-FUGT]2] is paddable with respect to VERTEN COVER.

Proof:

Proof of (1): Assume without loss of generality that all given instances
21,22, ., % of X3C have the same number of vertices, and can thus e mapped
by the reduction f in Table 17 into & instances of FBUT[/], cach of which has
graphs G; with ¢; edges. Let ¢ = max ;. Construet the instance o of MIN-
FUUT[R] as a distance matrix D' based on an underlying graph ¢ = UL, ¢
such that &' = 0ifi = j, dij = ("4 1)* = (" + D50 (i, j} € By, and

di; = (e +1)" otherwise. The maximum weight in o' has a number of hits

polynomial in ¢* and k. Hence, function ky is polynomial time,

No partition in an optimal ultremetric tree 7' for instance +* can join vertices
from different component graphs. Assume that two such vertices u and » are
joined at level I. Consider 7 that instead joins w and v at level (e* 4 15, As
duy = (" + 1)%, T is of lower cost than T, which is a contradiction. enee,
all partitions must join vertices within individual (i, A partition of (; into
cither three or four triangles in the manner described in Section 3.2.3 is optimal
at level (¢* + 1)% = (= + 1)1, Morcover, there can he o other joining of
vertices in G until level (¢* + 1)¥. Suppose there was a partition of € at level
I (en + 1)F = (e + 1)0=ND 2 1 < (" + 1)k, which joined two previously separate
groups of vertices X and Y. Let G, Gy, and Giy(gy be the subgraphs of G,
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induced by the vertex-sets X, ¥, and X UY, respectively. Let ¢, be the number
of edges in (iy and Gy, e, he the number of edges in Gy jy less ¢, , and e be

isly

(IX]4+ Y= DUX[+|Y1)/2 = (¢p+ en). Note that ¢, is the number of pre
used edges, ¢, is the number of nnused edges, and e is the number of possible
edges. FPignre 12 shows that the partition at level [ can exist il and only if ¢, < e,,.
As i, is composed of complete subgraphs, e, = [X|(|X] = 1)/2 +|Y|(|Y] - 1)/2,
and e = [X|I¥'] = e4i hence, this condition can be rewritten as |X||Y]/2 < e,

Consider the following three cases for the simplest possible partitions at level I:

o X and ¥ are single verlices € {#a1s@a2sTag}: As no cdges join any two
of these vertices it Ga, ¢ = 0. Hence, the condition becomes 1 < 0, which

is a contradiction.

o X ix a lriangle in cquation 7 and ¥ is a single verlex € {¥an, Tagstas):
As there is at most one edge joining X and ¥ in Ga, e, = 1. Hence, the

condition becomes 3 < 1, which is a contradiction.

o X and ¥ arc triangles in cither cquation 6 or cquation 7: As there arc
at most two edges joining X and ¥ in Gy, e, = 2. Hence, the condition

hecomes § < 2, which is a contradiction.

Using the argument above for the joining of two groups, the reader can verify
that no joining of three or more groups at level [ can occur in an optimal tree.

Therefore, no partition at level [ can exist in an optimal tree,
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(e + 1)k

(" + 1)k =

(e 4= T

Figure 12: Conditions for multiple partition levels on subgray
is not used in the optimal tree, the cost of gronps X and ¥ is ci(d) +
else, the cost is eidy + cudy. Thus, level £ can exist, in an optimal tree only
udy + eudy S o(ds + dy) e 6 S 0

10 level 1

Hence, an optimal ultrametric tree 77 for instance #* will consist of & nontrivial

partitions at levels (¢* 4+ 1),0 < i < (k= 1) corresponding to solutions to the &

instances of X3C, and will have cost equal to the summed values of 1y for the

solutions. Recall from Section 3.2.3 that an optimal solution for »; in 7" will have

weight ei(e”+ 1)~ =3X (e*4+1)6=1, where X is the number of triangle subgraphs
in G that are induced by that solution; thus, the costs of optimal wltrametric
trees for cach ; cannot overflow into the costs of optimal ultrameric trees for

other ij, and e cost of the solution for any .; can be casily extracted from the

cost for x’. Hence, function Az is polynomial time, establishi abili
Proof of (2): A variant of that given above for (1), made less complex by

dominance.
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Proof of (3): Assume withont loss of generality that all given instances

xy, of VERTEX COVER have the same number of vertic

vand edges

Vi {=}},

Ty ey

c. Construet the instance 2’ of MIN-FUGT[2] as V' = {*} U {UL

8= (#JUQUL, S = {*}), and 1 such that all distances hetween pairs of ver-
tices in the same V; are those given in the reduction in Table 18 multiplied by
(04 ¢+ 1) and all distances belween pairs of vertices in different instances
are sums of the edges on the path between those vertices in a canonical trec for
', The reader can verify that in an optimal tree for a', there will be no edges
hetween vertices in different Vi, as these will be forbidden by the constraint of
dominance, Henee, the cost of the optimal tree will be the sum of the weights
of all edges in optimal trees for cach Vi, Note that, the sum of weights for cach
Vi will be less than (0 4 ¢)(v + ¢ + 1) hence, the costs of optimal trees for
each . cannot overflow into the costs for optimal trees for other xj, and the cost

of the solution for any ; can be casily extracted from the cost for o', Hence,

finction hy is polynomial time, establishing paddability. I
1Lis unfortunate that most of the weighted distance matrix fitting cvaluation
problems do not. vield to paddability proofs of the style above, The exponential
inerease in the length of the weights required to separate optimal solutions for
each instance under the Fy statistic complicates proofs for MIN-FUUT[F] and
MIN-FUUT[#. 2], and it is not obvious how one could show paddability for

FUDT[F), FUDT[F], or FUDT[F).



Corollary 26 The following hold:
L MIN-FUUT[R ] MIN-FUUT[E 2], and MIN-FUGT[>] are I"I’if"»l:r::vl.
2 MIN-FUDT[F], MIN-FUDT[F], MIN-FUUT[F,], MIN-FUDT[E). and
MIN-FUUT(Fy,>] are properly 12 PNVIO0S) gy,
4.3 Solution Functions

Solution problems have been studied indireetly via, their approgimation by deci-
sion problems [GJ79] and evaluation problems [(FKRYZ, Kress]. More recently,
these problems have been studied directly using paddability [(191, Cast6] and
multivalued function classes such as NPMV, [$e191]. The techniques doveloped
in this latter work will be used in this section.

There are several types of solution functions.
1. A function that computes a single solution [GJ79, Chapter 5.

2. A function that compntes but cannot enumerate all solutions i.e. afunetion

in NPMV {Sel91].

3. An index-driven function g(i, ) that, computes thei-th solution for instance

& under some polynomial-time ordering P on 1 nary strings.

Delfinitions (1) and (2) will he discussed in this section; dofinition (:8) describes

the enumeration functions in Section 4.5 and will be disenssed there.
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Consider functions of the type in definition (1) above. Following [CT91],
the focus will be on botnds on the complexity of SOL-X, the class of single-
valued functions that. compute solutions to problem X. Certain propertics are
kiown 1o imply upper bounds on SOL-Xy: problems that have a polynomial

number of feasible solutions for any instance are in I~‘I’ﬁ"" [Sel91, Proposition

and problems that are polynomial-invertible in the sense of [WagKk87] i.c.

all solutions of cost k can be enumerated in polynomial time, are of complexity
equivalent Lo their cost functions. llowever, none of the problems examined in
this thesis exhibit dither of these propertics. Consider instead lower bounds.

ssearch Lechnique, which builds an optimal solution bit by bit by

By the pref
consulting an NP solution-prefix oracle ([BDGES, p. 61]; [GI79, Chapter 5]),
every problem X has at least one member of SOL-X in FPN; hence, the lower
bound can be no harder than 7PV, As no optimal-cost solution function can
be casier than its associated evaluation function, lower bounds can be derived

from the complexity of the associated evaluation functions. Such bounds can he

improved for phylogenetic inference problems by applying Theorem 16.

Theorem 27 Al single-valucd functions solving all phylogenclic inference optimal-

cost solution problems cxamined in this thesis are F P -hard.

Proof:  Asnoted in Section 3.2.4, all reductions in Section 3.2 give algorithms

for transforming optimal solutions for original and reduced instances into one
another.  Henee, the metric reductions from MAX-X3C, MAX-CLIQUE, and
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MIN-VERTEX COVER to unweighted phylogenetic inference evaluation prob-
lems given in Section 4.2 can be modified to give metrie roductions hetween (he

corresponding optimal-cost solution problems. SOL-MAN-CLIQUE is paddable

[CT91, Theorem 4.2], and SOL-MAX-

X3C: and SOL-MIN-VERTEX COVER can
be shown paddable via functions that, simply combine the given instances into
one instance without, adding any new components, I

Consider now functions of the type in definition (2) above. All phylogenctic
inference optimal-cost solution problems defined in this thesis are in N PAIY, o
FPNP,

Jand all corresponding given-cost and given-limit solution problems are in

NPMV,. This definition is useful prima

for

talizing the sel of solutions
associated with particnlar instances of a problem, and highlighting the computa-
tional structures for different ty pes of solution functions c.g. the two-phase nature
of NPMV,0 FPN” computations (see Section 4.1.1). However, it is also possible
to derive results using this definition, such as the following lower hound on the
complexity of single-valued functions for the phylogenctic inforence given-cost

and given-limit solution problems.

Theorem 28 All single-valucd functions solving all phylogentlie inference ginen-
cost and given-limit solution problems ceamined in this thesis are properly

FPNPOUs) fard unless P = NP

Proof:  Cook’s generic reduction from decision problems in NI to SAT [GG79,
Section 2.6] (see Section 5.1) is a generic metrie reduction from every solution
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problem in NPMV, 1o SOL-SAT. The reader can verify that the reductions
from SAT to CLIQUE, VERTEX COVER, and X3C [GJ79, Section 3.1], and
from Lhese problems to U piylogenctic inference decision problems (sce Section

4.2) are also metric reductions between the corresponding given-cost and given-

Timit. solution problems. Hence, any single-vahied function that solves any of

the phylogenetic inference gi st and given-limit solution problems can be
used 1o construet a single-valued function that solves any problem in NPAMV,.
To complete the proof, recall that NPMV, C. FFPNPOC] jmplies P = NP

[Sel91, Theorem 3. 0

4.4 Spanning Functions

Caunting problems were first defined and studied in [Val79a, Val79b, SimJ77).

“This early work considered the number of (not necessarily distinct) solutions en-

coded by a ! inisti ion, and has led via threshold-acceptance
mechanisms to the work on probabilistic computation [Joh90, Section 4]. There
has been a recent resurgence of interest in counting for counting's sake [SchU90,
Tord1. Wagli86a, WagK86h], including the counting of distinct solutions [KST89],
which will be the foeus in this section.

All phylogenetic inference gi t and given-limit problems examined in

thix thesis are in SpanP, and all corresponding optimal-cost spanning problems

arein Span(N PAV; 0 FPYP), AL present, there are o lower bounds known on



the complexities of any of these problems. Ouly the reduction from CLIQUE to

BCC gives a one-to-one solution mapping. which yields a metrie reduction he-

tween the ¢ ling optimal-cost. given-cost. and given-limit spanning prob-

lems. Hence, all character compatibility spauning problems ave harder than the
corresponding problems for CLIQUE. Unfortunately, noue of these problems for

CLIQUE are known to be he hard for either #0 or Spanl’. 1t is interesting that

only the versions of CLIQUE and VERTEX COVER that count locally oy

nal
solutions have been shown to be #P-complete [Val79a, Theorem 1],

Several trivial but intriguing bounds emerge for any spanuing problom X hy

applying binary search arguments. The following hold for unweighted pro
o SPAN-SOL-OPT-X & [ PSPAN=SOL-VALEQ-X

o SPAN-SOL-OPT-X € [ PSPAN=SOL=VAL.LE=X[0(log n)]

-X

® SPAN-SOL-VAL.LE-X € J? pSPAN-S0L-V/
weighted problems,
© SPAN-SOL-OPT-X € [ PSPAN-SOL-VALLE-X

and for all problems:

o SPAN-SOL-VALEQ-X € F'PSIAN-S0L-VALL- X[

Note that if cither of the gi st or given-limit spanning problems is in FPH,

all three problems are in FPII; however, the optimal-cost spasning problem can
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be in FPH withont implying anything about the complexity of the otiier two

problems (see Section 4.7).

4.5 Enumeration Functions

Al existing definitions of enumerability in complexity theory (see [IIHSY91, Sec-
tion 2] for a review) are concerned with enumierating languages rather than the

ranges of functions for particnlar inputs. The enumeration problem considered

here was defined more for the convenienceof its users than theoretical tractability;
however, it may still he of some use in pure complexity-theoretic investigations,
Though any function in FPI can be simulated in FPSPACE(poly), it is not
obvious that any such fanction can be enumerated in FPSPACE(poly).
Theorem 29 Given a problem 11 in S} and a polynomial-time ordering P on
binary sirings, the problem. of computing the kih optimal solution under P for an

instance & of 11 is in FPSPACE(poly).

Proof:  Let N € 'S} be a polynomial-time NOTM transducer that comy
the solutions of 11, Let p(n) be the polynomial bounding the running time of N

and assime that all solutions have length p(n). Define the following function:

RANK(N,Px,y) = [{w] w is a solution to N on input = and w < y under

ordering P}
RANK can be computed in FPSPACE(poly) in the same way as functions in
Spanlll (Corollary 19, Part (1)). Using RANK, a binary search can determine
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which of the 27" possible solutions has exactly (i — 1) solutions preceding it
under P ic. the i-th solution under 2. Note that this binary search is con-
dcted on the ordering of possible solution strings nnder P “This procedure is in

FPFISPACE®I = ppS PACE(poly). 1

Theorem 30 Given a problem Il in Y} and a polynomial-time orderving I on
binary strings, the problem of computing the klh optimal solution under I for an

instance & of 11 is in FP#!",

Proof:  Modify NTM N in the preceding proof to fal

ax additional input
a binary string y and produces only those solutions w such that w < y under
ordering 2. Proof follows by observing that RANK(N,Px.v) = SPAN(V(x.y))

and that SpanP € FP#U) by Corollary 19, 1

Corollary 31 All phylogenctic inference optimal-cost, given-cosl, and given-limit

enumeration problems cramined in this hesis are in FP#'.

The only known lower bound for these problems is implicd by the observation

that, for a problem X, SPAN-X € FPEMAM=X i g enmmeration probley

be easier than its associated spanning problen.

4.6 Random Generation Functions

Though there are many papers on the random generation of particular types of
graphs, general random-generation problems have been formulated and stndied
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« class only in [JVV86]. The results of the previous section suggest that ran-

dom generation problems are in FRE#’; lowever, Jerrum, Valiant, and Vazirani

have given a procedure of complexity FRPE which uses Stockmeyer’s P ap-

proximation procedure for functions in #P (see Section 5.6) to gencrate outputs

of any NP MV, machine at, random under a uniform distribution. Recall that an

NP query can be simulated by an appropriate £ query.

Corollary 32 All phylogenctic inference oplimal-cost, given-cost, and given-limit

random-generation problems examined in this thesis are in F RP%.,

As any random-generation function is also a solution function, the lower bounds
on the complesities of solution functions given in Section 4.3 also apply to

ion functions.

random-gene
These results have an irrevocably academic flavor because they depend on

s Lo a source of truly random bits. Though it is impossible to obtain random

bits by purely arithmetical methods, there are techniques for generating near

randon hit sequences and for expanding random “seed” s into longer
vandon sequences. The interested reader is referred Lo [LVI0D, Section 1] for an

introduction to mathematical definitions of randomness, and [Riv0, Section 7]

for a summary of methods for generating random sequences,
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Optimal-Cost
Unwoighted | Waighted | Given-Cost | Given-Limit

Decision - NP-complele
Evaluation | FPYTOWRILC [ F P -hard | B
Solution F P -hard, properly FPNTOEE ard,

€ NPMV,o FPN" € NPAIV,
Spanning € Span(N PMYV, o FP¥T) € SpanP
Enumeration € FPF
Random € FRPS
Generation

Table 20: Computational complexities of phylogenetic inference functions,

t Most weighted distance matrix fitting evaluation problems are only known to
be properly FPNPOUsnhard (see Corollary 26).
4.7 Summary

All complexity results obtained in this section for phylogenetic inference problems
are given in Table 20. Optimal-cost solution problems are provably harder than

the ling gi it and given-limit solution problems because of the NI?

queries allowed Lo optimal-cost problems. However, this difference scems to dis-

appear for more complex versions of these problems. Thongh this difference may
re-assert itself when completeness results are available, the relations between the

spanning versions of these problems suggest otherwise (see Section 44). | con-

jecture that for problems more complex than computing solutions, optimal-cost.

problems are easier than their ling gi cost and given-Timit problems.
Solution problems are of greatest. interest to biologists, as these problems are

concerned with the trees that define evolutionary hypotheses. Morcover, they

107



are the only problems that have heen investigated in the literature, albeit by
assessing particular algorithms solving these problems [LPS5, Plagd]. Several of
e other problims Lreated above also have biological applications. For instance,
spanniing resnlts give lower bounds on the running time of branch-and-bound
algorithms that solve the corresponding solution problems [Sto85, Val9a]. Also,

as cach phylogeny incorporates a different hypothesis of character change, all

siich hypotheses should be considered to get an accurate idea of what s implied
about phylogeny by a particular data set [Mad91, MRS92], which could be done

by enumerating all phylogenics.

“T'he results given in this section do not directly put upper or lower bounds

on the time compleitios of algorithms solving these problems; at present, it is
anly known that these problems, by virtue of being in FPSPACE, can be solved
in oxponential tine. However, these results do give the relative hardnesses of

these problems, and may suggest giidelines for algorithm designers about which

approaches may nof useful for solving these problems,
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5 The Approximability of Phylogenetic Infer-
ence Functions

The results in previous sections suggest that polynomial-time algorithms provid-
ing exact solutions for phylogenetic inference optimal-cost prohlems probably do

not exrist. However, fast algorithms may exist if one is willing to sol

e for appros-
imate solutions whose cost is within somo fixed interval or ratio of the optimal
cost. Tn this section, I will derive some limits on the types of approximations

that are available to phylogenetic inference probloms.

5.1 Types of Approximability

This section gives a brief overview of types of approximation algorithms and some

class-based approaches to proving that various of these approximations cantiol

exist for a given problem. For in-depth reviews of topics in this section, see
[BJYS9, C.J79, HST8, Mot92].

iven a problem X, an instance / of X, and an approximation algorithm Ay
for X, let OPTx (1) be the cost of the optimal solution for 7, Ax(1) be the cost
of the solution for  found by Ax, and MAX x(1) e the largest of the costs of
all solutions of /3 further, let Y = OPTx (1) if X is a minimization problem, and
Y = Ax(I) if X is a maximization problem. There are sevesal measures of the

quality of an approximation [OMY0, p. 6]:
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o Relalive Eyror Measure: (1) = CLZay=Ax ()

o Absolute Error Measure: pa(1) = |OPTx(1)— Ax(1)|

o Normalized Relative Brror Measure: j(1) = o=l

The different. Y are applied to map the ers 2 values for
and maximization problems into the same interval, namely [0,400), for easier
comparison [(1J79, p. 128]. There are several types of approximation algorithms
defined by varions hounds on the quality of the resulting approximations:
1. Absolute (Additive) Approximation
o [0PTx (1)~ Ax(D)] < f(1])

2. Polynomial-Time Approximation Schemes

e Polynomial-Time Approximation Scheme (PTAS):
For all & > 0, there exists an algorithm Ay such that [OPTx(I) —
Ax(D)] £ 1Y and the runtime of Ay is polynomial in || for each k.
e Jully Polynomial-Time Approximation Scheme (FPTAS):
For all k> 0, there exists an algorithm Ay such that |OPTx (1) —

Ax(D)] £ £Y and the runtime of Ay is polynomial in |/] and }.

The algorithm Ax can be cither a single algorithm (uniform PTAS) or a

family of algorithms (non-uniform PTAS).
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3. Relative (Multiplicative) Approximation

® [OPTx(I) - Ax(I)] < cY,e>0

In the following, “a polynomial-time algorithm with a relative (an

hsolute) ap-

proximation " will be abbroviated as “a relative (an absolute) approximation ",

There are several variants on these definitions in the literature that are ereated by
using different crror measures or implying asymptotic rather than absolte error
bounds. One such variant (indeed, the fiest, [Joh74] and proforred sotation) vep-

resents relative approximations as straightforward ratios 5340 (minimization

problems) and 25Tl (maximization problems). As some of these definitions

are not equivalent and it is not always clear which definition is heing nsed, the

reader must excrcise caution in comparing results from different sonrees, In this

thesis, all approximability definitions and results will be phrased as above in

terms of the absolute error measure, because (1) this measure mifies the three

types of approximation algorithms described above, and (2) this m the

¢
formulation of choice in the proof techniques [ALMSS92, Kre88, PY91] used in
this section.

Traditionally, the theory of approximation algorithms has heen coneerned

with proofs that certain types of approximability did not exist for particular

and with nec

problems, with wary und suf-

pr preserving

ficient conditions for the existence of various approximation algorithms for a given

problem; see [BJY89, HS78, GJ79, Mot92] for a review of this work. Within the
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last. four years, two approaches have emerged that are based on hierarchies of

approximability s

e

. The Algorithmic Approzimability Hicrarchy [CP91, OMG]: Define the class

NPPO of all NI’ optimization problems, and its subclasses FPTAS, PTAS,

and APX consisting of all problems that have FPTAS, PTAS, and rela-

Live approximation algorithms, respectively. Orponen and Mannila [OM90]
delined NPO, and showed that several problems are NPO-complete un-

der a relative-approximation preserving reduction. Crecenzi and Panconesi

[CP91] dofined FPTAS, PTAS, and APX, and gave artificial problems thal
ire complete for PTAS and APX. It is known that FPTAS C PTAS C
APX C NPO wnless P = NP [CP91, Theorem 6], and that a problem that
s hard for a particular class cannol have an approximation algorithm from

a lower class unless P = NP.

. The Logical-Form Approzimability Hicrarchy [KT90, KT91, PRI0, PY91]:

"Phe algorithmic approach to defining approximability does not give in-
sight into why problems are approximable [BJYS9, p. 220); morcover, it
is not clear how one defines a notion of “approximate computation”, let
alone classes of such computations, using the Turing Machine encoding of
problems [PY91, p. 426]. Building on the work of Fagin (Fag74], Papadim-
itrion and Yannakakis [PY91] initiated the study of approximability classes

that do not involve computation - that is, classes of approximable prob-
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lems defined by the syntactic structure of the logic formulas that deseribe
the solutions of those problems. Many classes have been defined in this
framework [KT90, KT91, PR90J: only MAX NP and MAX SNP will he
described here. Fagin showed that the class NP could be represented in
logic as the class of problems whose solutions S can he expressed by formn-

las with structure 3SVr3yg(r,y,S) where ¢ is quantilier free. Given this

formulation, Papadimitrion and Yannakakis defined MAX NI as the class
of problems whose solutions have the form mass |{«|3yd(r, g, )} that

i, problems whose solutions § satisfy the maximum wumber of different

rather than all of them. Papdimitrion and Yannakakis also define subelass
SNP of NP of the form 35Vré(x, S) and subclass MAX SNI* of MAX NI%.
The formulation of SAT, the boolean formula satisfiability problem, in each

class is given in Tables 21 and 2.

Class MAX SNP will be important later in this section, as will the following

reducibility.

Definition 33 ([PY91], p. 427) Let Il and II' be. lwo oplimization (mazimiza-

tion or minimization) problems. We say that 11 Lereduces to 11" A1 <4, 1) if there

are two polynomial-time algorithms [,y and constanls e, 8 > O such thal for cach

instance I of I1:

(L1) Algorithm [ produces an instance I'= [(I) of IV, such that the optima of

1 and I', OPT(I) and OPT(I'), respectively, satisfy OPT(I') < a OPT(1)
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SAT € NP

Instance: Boolean formula $ in conjunctive normal form i.e. clauses composed
of variables linked by disjunctions (logical OR), which are linked by con-
junctions (logical AND).

Formula: 31Vedr[(Pe,x)Ax € T)V (N(e,z) A ~(x € T))],

where > and N encode the instance S (P(e,x) means that variable x
appears unnegated in clause ¢ of S; N(c,x) means that variable x
appears negated in clause ¢ of §) and T is the set of true variables
corresponding Lo a particular assignment, for 5.

MAX SAT € MAX NP
Instance: Boolean formula S in conjunctive normal form.
Formula: maxy |{ef3{(Ple,2) Az € TYV (N(c, ) A(z € T)]}|

where I, N, and T are as defined for SAT.

Table 21: Formulations of SAT in first-order logic (adapted from [KT90, PY91]).
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3SAT € SNP

Instance: Boolean formula & in conjunctive normal form, in which cach elanse
has al most 3 variables.

Formula:

3TV(e1,x2,23) [ ((r13r2,03) €Co = 1y €TV € TVra € T)A
(21,52, 23) €Cy = 1 €TV €TV €T)A
((r13r2,23) €Ca = 1 TV TV €T)A
(21,22, 13) €Cs = 1 gTVra g TV gT) |

where Cg, Cy, Ca, and Cy encode the instance 8 (¢ = (), 42,04) €
means that variables ,...,2; are negated and variables r, oy
are unnegated in clause ¢ of §) and 7" is the set of true variables
corresponding Lo a particnlar assignment for S.

MAX-3SAT € MAX SNP

Instance: Boolcan formula S in conjunctive normal form, in which cach elanse
has at most 3 variables.

Formula:
maxy [{(z1,22,73)] [ ((*1,22,23) €Cy = 2, €TV €TV.ry€T)A
((£1,22,22) € Cy = £, @TVra €TV 1 € T)A
((x1,22,73) € (4 £ gTVo gTVraeT)A
((£1,22,23) €Cy = 2y €TV s @ TV a3 ¢ T)

where Co, Cy, C3, C3, and T are as defined for 35AT.

Table 22: Formulations of SAT in first-order logic (cont’d from Table 21).
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(L2) CGiven any solution of I with cost ¢, algorithm g produces a solution of I

with cost ¢ such that |c — OPT (1) < Ble - OPT(I")].

Lereducibnlity is closely related to most of the other defined approximation-
preserving reducibilities [CP91, OM90]; indeed, a constrained L-reducibility ap-

plicable to pairs of imization or minimization probl was defined inde-

pendently by 11 Simon [Sim1189]. Following Simon, » = o/ will be called the

copausion of  given Leredudtion,
Lemma 34 ([PY91], Proposition 1) L-reductions compose.

Lemma 35 ([PY91], Proposition 2) If 11 <, 1" with czpansion v, and I’

has a relative approimation ¢, then T1 has a relative approzimation re.

Corollary 36 If11 <,, I’ with cpansionr, and “Il has a relative approzimation

¢ = X, then “1I' has a relative approzimation £” = X.

Note that restriction reductions are trivial L-reductions in which a =

Two following two theorems give hounds on approximability using the rela-
tionships among classes in the function and language bounded NP query hierar-
chies:

Theorem 37 ([WagK89], Corollary 16) No cvaluation problem A such that
the corresponding decision problem Agaq i.c. “Is OPT4(X) odd?”, is PNPiOUesm].

hard can have an absolute approrimation < O(logn) unless PH = ©§.
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Theorem 38 ([Kre88], Theorem 4.3) For crery OptP[f(n)]-hand ¢valuation

problem, f(n) is smooth and f(u) € Ologn). there ex

€20 such that cvery

absolulc approrimation must have value > 270" infinitcly often.

The proofs of each of these theorems note that an absolute approximation al-

gorithm reduces the range in which the cost of the optimal solution lies, and

that a sufficiently reduced range may be searched with fewer NI queries than are
required to solve the evaluation problem. Krentel's theorem will he userd in the

following sections. This theorem implies almost all known connections hetween

approximability and the function bounded NI query hicrarchy.

5.2 Absolute Approximability

There are many clegant proofs which show that absolute approximations do nat

exist for particular problems [GJ79, HST8, WWSG]. However, sucl results can

also be derived for classes of problems.
Theorem 39 The following hold:

1. No OptP[cloglogn + O(1)]-hard caluation problem can have an absolule

approzimation ¢ < o(logn) unless P = NP.

2. No OptP[O(log n))-hard cvaluation problem can have an absolute. approzi-

mation ¢ < o(poly) unless P = NP.
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4. No 1P} -hard cvaluation problem can have an absolule approzimation ¢ <

Opoly) unless B = NP and FewP = NP.

. No OptP-complete coaluation problem can have an absolufe approzimation
(e » P

¢ 2 O(poly) unless P = NP.

Proof:
Proofs of (1 2): Follows from Theorem 38.
Proof of (3): Follows from [Sel91, Theorem 12] and [Sel91, Corollary 4(ii)].

Proof of (4): Follows from [Kre88, Theorem 4.1). 1

Corollary 40 The following hold:

1. No character compalibility, unuweighted phylogenctic parsi or unweight

«d distance-malviz fitling oplimal-cos! solution problem czamined in lhis

thesis has an absolute approzimation ¢ < o(poly) unless P = NP,

2. Noweighted phylogenctic parsimony oplimal-cost solution problem examined
in this thesis has an absolule approzimation ¢ < O(poly) unless R = NP

and P = FewP.

3. None of SOL-MIN-FUUT[F,], SOL-MIN-FUUT[Fy, >}, or
SOL-MIN-FUGT(] have an absolutc approzimation ¢ < O(poly) unless R

= NP and P = FewP.
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4. None of SOL-MIN-FUDT[F,]. SOL-MIN-FUDT[I'], SOL-MIN-FUUT[I,].,
SOL-MIN-FUDT(Fy]. or SOL-MIN-FUUT[Fy. 2] have an absolute appros-

imalion ¢ < o{poly) unless P = NP.

Note that results 2 and 3 in Corollary 10 can also be derived using the paddabil
ity of the associated evaluation problems and theorems from [Nig75] (see also

[WWS6, Section 9.1.2.1]).

5.3 Fully Polynomial and Polynomial Time Approxima-
tion Schemes

Cousider fully polynomial time approximation schemes.  Garey and Johuson

derived sufficient ditions for FPTAS proximability using the notion

of strong NP-completencss. An NP-complete decision problem is strongly NI
complete if it has an NP-complete subproblem in which all numbers are hounded
by some polynomial of the instance length [GJ79, p. 95]. No solution problem
whose corresponding decision problem is strongly NP-complete and whose op-
timal cost is polynomially bounded can have an FPTAS unless P = NI (79,

Theorem 6.8 and Corollary]. These conditions are satisfied by all unweighted phy-

logenetic inference optimal-cost solution problems examined in this thesis, Garey
and Johnson also defined pseudo-polynomial reductions, which preserve strong
NP-completeness [GJ79, p. 101]. The reader can verily that. all reductions given
in Section 3.2 from unweighted to weighted problems are also pseudo-polynomial
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Il weighted decision problems examined in this thesis are also

reductions; hene

bl of the

strangly NP-complete, These same reductions also map into

solution problems corresponding Lo these weighted problems whose optimal costs
are polynomially hounded.

Theorem 41 No phylogenelic inference oplimal-cost solulion problem ezamined
in this thesis has an FPTAS unless P = NP.

Consider polynomial time imation schemes. The | approach
to PTAS non-approximability involves proving that the given problem cannot
have a relative approximation ¢, ¢ > 0 unless P = NP (1178, GJ79, WWS86].
Suelr proofs typically derive contradictions by using polynomial-time graph ex-
pansions to “amplify” relative approximation algorithms such that cost-restricted
NP-complete subproblems can be solved in polynomial time. However, few
problems have the cost-restricted NP-complete subproblems required by this ap-
proach. A more widely-applicable technique has recently emerged from the study
of interactive proof systems (see [Joh92] for an insightful review of the results de-
seribed below). In what was initially thought to be an isolated result, Feige et
al. [FGLSSY1] showed that no constant relative approximation ¢, ¢ > 0 exists
for SOL-MAX-CLIQUE unless NP € DT M E(n'°8'°8™), This result has beer

dramatically improved by Arora et al. [ALMSS92]:

Theorem 42 ([ALMSS92], Theorem 3) If there is a PTAS for SOL-MAX-

AT then P = NP,
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This result is significant because SOL-MAX-3SAT is complete for MAN SNI®
[PY91, Theorem 2], and mauy problems can be shown MAX SNP-hard via L~

reductions.

Theorem 43 (Proposition 2, [ALMSS92]) There docs nol exist a PTAS for

any MAX SNP-hard problem unless P = NP,
Several MAX SNP-hard problems of particular interest are:
o SOL-MIN-STEINER TREE IN GRAPHS [BP8Y, Theorem 4.2],

o SOL-MIN-VERTEX COVER-B, in which cach vertex in the given graph

has degree < B, and SOL-MIN-VERTEX COVER [PY91, Theorem 2(d)],
o SOL-MAX-CLIQUE [CFS91, Theorem 6], and

® SOL-MAX-X3C-B, in which cach element in the given sel oceurs in < B

3-sets, and SOL-MAX-X3C [Kan91, Corollary 4].

Using these problems, it is possible to show many of the problems examined in
this thesis to be MAX SNP-hard. In the following, define a canonical solulion for
a problem X as a solution to an instance of X produced by the reductions given
in Section 3.2, c.g. the canonical trees for FUGT[].

Lemma 44 The following hold:

1. Given a solution W of cost ¢ lo an instance of SOL-MIN-1/13(

28 or SOL-
MIN-UBQCS derived by the reduction from VERTEX COVEIR given in
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[DJS86] (sce Table 9), in polynomial time we can find a canonical solulion

b
i

W wilh cost ¢ < c.

2. Given a solution W of coslc Lo an instance of SOL-MIN-UBCDo or SOL-

MIN-UBQDo devived by the reduction from VERTEX COVER given in
[DJS8G] (sce Table 9), in polynomial time we can find a canonical solulion

W with cost o < e

A Given a solution W of cosl ¢ Lo an instance of SOL-MIN-UBCCI or SOL-

MIN-UBQCI derived by the reduction from VERTEX COVER given in §

[S87] (sce Table 10), in polynomial time we can find a canonical solu- j

tion W' with cos! ¢ < c.

. Given u solution W of cosl ¢ to an instance of SOL-MIN-FBUTS[F,] de-

*5

vived by the veduction from X3C given in [KM86] (Sce Table 17), in poly-

nomial lime we can find a canonical solution W' with cost ¢! < c.

Given a solution W of cost ¢ to an instance of SOL-MIN-FUDT[F,] (« €

=

{1.2)) devived by the reduclions from F3UT8fa] given in [Day87] (see Table

12), in polynomial time we can find a canonical solution W of cost ¢ < c.

Proof:

Proof of (1): 1 ¢ > 2|X|, then replace W by the tree W' in which each member
of v € Nor = {vr,0;} is connected to 0 by edges {{v, v}, {v;}} and {{v:),0};
this tree is canonical, and has cost ¢ < c. Otherwise, create W’ by trimming
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W to remove all leaf vertices not in X', and applying the tree transformations in

[DJS86, Lemma 1] to the leaf farthest from 0 until the tre anonical. These tree

ch such transforng

transformations do not increase tree cost; morcover, as tion
removes at least one non-canonical vertex and there can be at most e — (|X]+ 1)
such vertices, this algorithm is polynomial time.

Proofs of (2 - 3): Analogous to that for (1), using the tree transformations in
[DJS86, Theorem 3] (Dollo) and [DS87, Lemma 2 and Theorem 3] (Chromosome

Inversion).

Proof of (4): Create W' as follows: if there are partitions that group verticey

not connected by edges in the created graph (7, then break all such partitions
into partitions that only gronp vertices connected by edges in (. For eacly gronp

{ra,

are all included in partitions of G, then replace the sol of par

of vertices corresponding Lo a subgraph (, if the “corners

w2

ltions or the
vertices of Gy with the four triangle-partitions in equation 6; else, replace with
the three briangle-partitions in equation 7 and the appropriate subsel of single-

vertex partitions drawn from the seb {21, %, ). These Lransformations do

not increase the cost, as these triangle-partitions are optimal under the Fy stat

(see Section 3.2.3); moreover, as there are only |C

sich groups Lo transform, the
algorithm is polynomial time.

Proof of (5): Create tree W' by applying the tree transformations in {Days7,

1 additive tree W with an ultrametrie

Proposition 3] to W to create a discr
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subtree Wi, and then applying the transformation in [Day87, Proposition 4] to
reduce W 1o an ultrametric subtree of height 2. These transformations do not

increase the cost of the tree, and can be performed in polynomial time. I

Theorem 45 The following hold:

1. SOL-MIN-VERTEX COVER-8 <;, SOL-MIN-UBCCS and

SOL-MIN-UBQCS

. SOL-MIN-VERTEX COVER-B <, SOL-MIN-UBCDo and

&

SOL-MIN-UBQDo

SOL-MIN-VERTEX COVER-B <1, UBW.

-~

. SOL-MIN-VERTEX COVER-B <1, SOL-MIN-UBCCI and

SOL-MIN-UBQCI.

@

SOL-MIN-VERTEX COVER-B <, SOL-MIN-UBGe.

i. SOL-MAX-CLIQUE <, SOL-MAX-BCC.

=

SOL-MAX-BCC <y, SOL-MAX-BQC.
8. SOL-MIN-VERTEX COVER-B <1, SOL-MIN-FUGT([Z].
9. SOL-MAX-X3C-B <, SOL-MIN-FBUT2[F,].

10. SOL-MIN-FBUTS[F,] <y, SOL-MIN-FUDT[Fy] (o € {1,2}).
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Proof:

Proof of (1): Consider the reduction from V(! to (°§ (= UBCCS and UBQCS)
given in [DJSS6] (see Table 9). As OPTye, = [E)/B and OPTes < 2|E], then
OPTcs < 2BOPTyc,, satisfying condition (L1) with a = 2/3. As both problems
are minimization problems, condition (L2) can be rewritten as evey, € O PPy, +
Blccs — OPTes). For any canonical solution for UBCCS, cve, = ees = |1
moreover, such a solution is guaranteed by Part | of Lemma 44, Setting A = |
makes condition (L2) equivalent to eyey, < ces — [£]. Henee, this reduction is
an Lereduction.

Proof of (2): Consider the reduction from V' to Do (= UBCDo and UBQDo)
given in [DJS86] (see Table 9). As OPTye, > |EI/B, OPTp, < 3|V|+2|E|, and
V| < |E], then OPT p, < 5BOP Ty, salisfying condition (L1) with o = 513,
The remainder of the proof follows that for (1), substituting the appropriate part
of Lemma 44 to obtain f = 1.

Proofs of (3 - 5): The proof for (3) is identical to (1) “The proof of (1) is

a variant, of that for (2) which uses the reduction given in Table 10 to yiekl an

Lereduction with & = 58 and f = 1. As the Generalized parsimony eriterion
can simulate any ordered phylogenctic parsimony problem, (5) can be proved by
a variant on any of the proofs for (I - 4).

Proofs of (6~ 7): By the reductions given in Table 14, solutions to SOL-MAX-

BCC (SOL-MAX-BQC) yield solutions to SOL-MAX-CLIQUE (SOL-MAX-BCC)



of the same cost. lence, these reductions yield L-reductions with o = = 1.

Proaf of (8): The reduction given in [BP89] which shows the MAX SNP-
hardness of SOL-MIN-STEINER TREE IN GRAPHS is actually from SOL-
MIN-VERTEX COVER-B to SOL-MIN-STEINER(1,2), a version of SOL-MIN-
STEINER TREE IN GRAPIS whase input is complete graphs with edge-lengths
€ {1,2). However, SOL-MIN-STEINER(1,2) is a subproblem of SOL-MIN-
FUGT(2]. As all solutions to any instance of SOL-MIN-STEINER(1,2) will
slisly the dominance condition, SOL-MIN-VERTEX COVER-B L-reduces to
SOL-MIN-FUGT(>] with @ = 28 and f = 1.

Proof of (9): Consider the reduction from X3C to FBUT2[] given in [KM86]
(see Table 17). Note that in a B-bounded instance of X3C, 3(B — 1) + 1 is the
maximum number of 3-sets that can share one of the values of a particular 3-set.
Hence, the selction of any 3-set can prevent the selection of at most 3(8 — 1)

other

sels in C; thus, OPTxac, 2 |Cl/(3(B=1)+1). As OPTrpurar) < |El,
and |E| = 2[C], then OPTrpumgry < 21(3(B = 1) + 1)0PTxac,, satisfying
condition (L1) with @ = 21(3(8 — 1)+ 1). As X3C is a maximization problem
and FBUT2[/4] is a minimization problem, condition (L2) can be rewritten as
exen 2 OPT e, ~ Blermurany — OPTrsurairy). For any canonical solution
for FBUT[]. exacy = (1E] = craurary)/3 = 3|Cl; moreover, such a solution
is gnaranteed by Part 4 of Lemma 44, Setting # = 1/3 makes condition (L2)

equivalent 10 exey = (1B] = crpurarg)/3 - 3IC]. Hence, this reduction is an



L-reduction.

Proof of (10): Consider the reduction from FBUT2[F,] to FUDT[F,] a €
{1,2) given in [Day81] (see Table 17). As OPTkmurray = OPT kurprgesgs condic
tion (L1) is satisfied with a = 1. As both problems are minimization problems,
condition (L2) can be rewritten as cpuprar) € OPTwunrapm) + Slernre) -
OPTrupryr,)- Forany canonical solution to FUDT[F], cprprira) = crpvrapry+
Yo + Zay where Yo =0 and Z, > 0 [Day87, p. 465]; morcover, such a solution is
gnaranteed by Part 5 of Lemma 44. Setting # = 1 makes condition (L2) equiv-

alent to crupra(ry) S Cruptiry. Hence, this reduction is an L-reduction. 1

The arithmetic cquivalence reductions from FBUTF] to FBUTZE] and
FBUT[F}, 2] to FBUT2[F}, 3] given in Section 3.2.3 are Lereductions with @ =
B=1. However, the reduction from FUDT[] to FUDT[F) does nol seem Lo be
an Lreduction; though condition (L1} is satisfied (e = 100), condition (1:2) daes

not hold under any constant f.

Corollary 46 No phylogenctic inference oplimal-cost solution problem cxamined

in this thesis (ezcluding SOL-MIN-FUDT[I’]) has a PTAS unless 1> = NP,

Less dramatic but nonetheless intrigning PTAS non-approximability resnlty
can be derived using Theorem 38. A PTAS for an OptP(f(n)]-complete evaluation

problem X implies that there exists for cach ¢,0 < ¢ < |, and all instance [ of X,

a polynomial-time algorithm A such that ¢ > BxU-pPR (DI (MelD)=OrelDl) >

OFTXTT)
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Ws=OFTLUN |y Thicorem 38, there exists an ¢> 0 such that, AsUI=0PTe(ll 5
L9 ey often for cach such A unloss P = NP, Tor certain [ this lover

hounel is & positive-valued function, which implies that polynomial-time algo-

rithms for certain ¢, and hence PTAS, do not exist for X.

Theorem 47 If« smoolh function f(n) € O(logn) is such that g(n) = 2] and
lim g(n) > 0 for all ¢ >0, then no OptPlf(n)]-complete problem has a PTAS

wless P= NP,
Corollary 48 No OptP[clog logn+ O(1)]-complelc problem has a PTAS unless
P= NP,

Though the relevant levelsof the OptP hicrarchy in these results are too low to be
of consequence in this thesis, these are the first results which show that specific

portions of the bounded NP query hierarchy are PTAS non-approximable.

5.4 Relative Approximability

Several of the phylogenetic inference problems examined in this thesis have rela-

tive imations derived from imation algorithms for related problems.

STEINER TREE IN GRAPHS has & relative approximation of 1 —2/|L], where
L < |S]is the number of leaves in the optimal tree [IKMBS81]. The algorithm
guarantecing this approximation is given in Table 23. Note that the two crucial

operations in this algorithm (finding the length of, and producing, a shortest
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path between two given vertices) can be done in polynomial time using stan-

dard shortest-path algorithms [CLR91, Section 26] on a character-by-character

basis in an implicit graph, provided there are no restrictions on character-state

transitions.

Theorem 49 All non-reticulale Wagner Lincar, Wagner General, and Fiteh
phylogenetic parsimony optimal-cost. solution problems cxamined in this thesis

have relative approzimations of | - 2/|L].

The application of this algorithm to phylogenetic parsimony problems was dis-

covered independently by Gusfield [Gus9l, Theorem 2.1). Indeed, the algorithm
and result above also apply to the problem of constructing minimal-length trees
on molccular sequences, as long as the finction computing minimal evolution-
ary change (edit distance) between pairs of sequences i a metrie [(s93, Section
3]. Unfortunately, this algorithm does not scem applicable to other phylogenetic
parsimony problems, as the proof that the ratio ahove holds depends on the exis-
tence of a path between cach pair of vertices in X in the implicit graph [KMS1,
Theorem 1]. All such paths may not exist in cladistic problems; morcover, it

is not obvious how a character-ordering and orientation could he chosen for a

qualitative problem in polynomial time such that all required paths existed, let
alone how such a character-ordering or orientation could he enforced in subse-
quent stages of the algorithm. SOL-MAX-CLIQUE has a relative: approximation

of O(i57) [BH90] which, by the L-reductions in the last section, yields identical
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Algorithm H:

Input: an undirected weighted graph G = (V, £,d) and a set of vertices S C V.
Output: a Steiner tree, Ty, for G and S.

Steps:

=

Table 23: A pol, ial-time relative i
TREE IN GRAPIIS (adapted from [KMBS1])

. Construcet the complete undirected weighted graph Gy = (Wi, Ey,dy) from

Gand S,

Find the minimal spanning tree, Tj, of Gy; if there are several minima!
spanning trees, pick an arbitrary one.

. Construct the subgraph, Gs, of G by replacing each edge in Ty by its

corresponding shortest path in G if there are several shortest paths, pick
an arbitrary one.

. Find the minimal spanning tree, T's, of Gs; if there are several minimal

spanning trees, pick an arbitrary one.

‘onstruet a Steiner tree, Ty, from Ts by deleting edges in Ts, if necessary,
so that all leaves in Ty are in 5.

i lgorithm for STEINER
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approximations for all character compatibility problems.

Theorem 50 All character compalibility optimal-cost solution problems cram-
ined in this thesis have relative approzimations of ().
No relative approximations are known for any of the distance matrix fitting prob-
lems examined in this thesis, though there are relative approximations for velated
clustering problems; sec [Day82] for a review of these results.
Theorem 43 actually states that MAX-3SAT has no relative approximation
¢ for some ¢ > 0 [ALMSS92, Footnote, p. 7); thus, by Corollary 36, the L.
reductions in the previous section imply bounds on relative approximability as
well. Unfortunately, values of ¢ derived to date using the constrnetion in Theorem
43 imply only trivial lower bounds [Joh92, pp. 519-520]. Other estimates for
these bounds may be derived from the best known relative approximations on
SOL-MIN-VERTEX COVER-B and SOL-MAX-X3C-B:
o SOL-MIN-VERTEX COVER-B has relative approximation ¢ = {0.25,0.25,
0.50,0.56, 0.60, 0.64,0.67,0.691,0.71} for3 < B < 1l and e < Z(m%]—
1 for B > 11 [M$83].
o SOL-MAX-X3C-B has relative approximation ¢ = (B = 1), B >3 [I'Ito,
Theorem 3],
‘The only nontrivial lower bound on relative approximability is for the character
compatibility problems, and is based on a result from [FGLSS91] as improved by
Arora et al. [ALMSS92):



Theorem 51 ([ALMSS92], Theorem 5) There czists an ¢ > 0 such that, if

SOL-MAX-CLIQUE has a relative approzimalion of n', then P = NP.

Corollary 52 There czisls an ¢ > 0 such thal, if any character compatibility

problem ezamined in this thesis has a relative approzimation of n', then P= NP.

As a final note, relative approximations arc known for certain counting prob-
Jems. By Theorem 3.1 of (5085, all #P functions f(z) have approximations
Fopplir) inn B such that (1 =) fapp(z) < f(z) < (14 €)fupp(z) for all polynomi-
als p, where ¢ = 1/p([x|); Theorem 7.1 of [KST89] extends this result to SpanP

problems. Recall that an NP query can be simulated by an appropriate 55 query.

Theorem 53 All phylogenelic infercuce optimal-cost, g t, and given limit

spanning problems cxamined in this thesis have relative approzimations of ¢ in

1A}, where « = 1/p(|1]) for any polynomial p.

5.5 Approximability by Neural Networks

There has been much interest in recent years in computing approximate solu-
tions Lo oplimization problems using instance-specific neural networks [HT85a,
HT85b]. In the discrete-time version of this model treated by Bruck and Good-
man [BGY0], a neural network is described by a set of two-state nodes V, a set
of ares with weights 1V;,; that specify the input from node i to node j, and a

state-change threshold value 7; for each node. Let the state of node i at time ¢
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be Vi(t), and let the state of the network at time f be the vector V(2). At cach
time ¢ after initialization, the states of cach vertex 1} in some subset S CV are
updated by

vl
1 W0 2T

Vilt+1) = [©)]

—1 otherwise

A state V(1) is stable if V(t) = V(2 4 1). Such networks are always gnaranteed
to get to a stable state [BGOO, pp. 130-131] which corresponds Lo some solution
to the associated problem. Consider the following restricted class of such neural
networks that have symmetric weights and satisfy the following propertics [BG90,

p. 132].

® Each stable state corresponds to an optimal solution of the encoded instance

I of the associated problem X, and that solution can be derived from th
state in polynomial time.
« The network’s description is of size polynomial in |/|.

A problem X is said to be solvable by a neural network if there exists an algorithm
Ax which can, for any instance of X, generate the corresponding neural network
in polynomial time. Note that such a network may potentially take exponential
time to reach a stable state.
Theorem 54 ([BG90), Proposition 1) If an NP-hard problem is solvable by
a neural network then NP = co-NP.
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Corollary 55 No phylogenetic inference optimal-cost, gi t, or gi
problem czamined in this thesis can be solved by a neural network unless NP =

co-NP.

Alternatively, each stable state can correspond o an approximate, rather than
an optimal, solution. Many traditional proofs of approximability [HS78, GJ79]
can be trivially modified to show that certain approximations by nenral networks
for NP-hard problems are not possible unless NP = co-NP [BG90, Yao2]. Indeed,
any proof in which an optimal solution can be derived in polynomial time using a

given type of approximale solution can be so modified. By analogy with PTAS,

define a Polynomial-Time Neural Approximation Scheme (PTNAS) for a problem
X as an algorithm A which, given an instance 1 of X and an integer &, k > 0,
produces in polynomial time a neural network that produces solutions whose
cost i withiin & factor of k of optimal. The following results stated above can be

phrased in terms of approximability by neural networks:

Corollary 56 The following hold:

If there is a PTNAS for SOL-MAX-3SAT then NP = co-NP.

2. There docs nol cxist a PTNAS for any MAX SNP-hard problem unicss NP

= co-NP.

There cxists an € > 0 such that, if SOL-MAX-CLIQUE has a relative ap-

prozimation of n* by a newral network, then NP = co-NP.

134



Proof:  Proofs of (1) and (3) (sketch): Clonstruct the exact-solution neural
networks for every problem in NP from the assumed PTNAS for SOL-MAX-
3SAT and SOL-MAX-CLIQUE by using the generic reductions from all lan-
guages in NP to MAX-3SAT and MAX-CLIQUE given in the original proofs
in [ALMSS92, FGLSS91] as nenral network description-encoding and solution-
decoding functions. As NP-complete problems are by definition NP-hard, the
tesults hold by Theorem 54.

Note that unlike the proofs given in [BG90, Yao02], these proofs do no involve
deriving optimal-cost solution neural networks for SOL-MAX-3SAT and SOL-
MAX-CLIQUE from their respective PTNAS.

Proof of (2): Note that L-reductions prescrve PTNAS-approximability as wel)

as PTAS-approximability. 1§

Corollary 57 No phylogenetic inference oplimnal-cost solulion problem cxamined

in this thesis has a PTNAS unless NP = co-NP.

A construction similar to that in Corollary 56 can also he used to show that no
MAX SNP-hard problem has a randomized PTAS (RPTAS) (13592, KL83], i.c. a
PTAS which for cach ¢, 0 < € < I, guarantees a solution with the required cost
with at least probability (1 — ¢), unless R = NP [Joh92, p. 519].

The results in this section apply only to the restricted class of nearal networks

considered in [BG90]. Less constrained types of neural networks may exist for
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these problems; for example, Jagota [Jagd2] has designed asymmetric-weighted

nenral networks for MAX-CLIQUE that perform extremely well on average.

5.6 Summary

The known theoretical and algorithmic lower limits on approximability for the
phylogenctic inforence problems examined in this thesis are given in Table 21,
Thogh the logic-formulation of approsimability has produced the most dramatic
results, the varions theorems derived using the work of [GJ79, Kre88] should
ot be dismissed, as these theorems establish a tentative connection between
various types of approximability and the levels of the function bounded NP query
hierarchy, Though the correspondence is not exact ([Kre88, p. 492]; [CP9L, p.

243]), there is a pattern of approximability and non-approximability (see Table

25). “Phis patiern may assume greater significance in the light of future discoveries
of lower limits on approximability.

The results above imply that polynomial-time algorithms whose approxima-
tion ounds hold over all instances do not exist for any phylogenetic inference
optimal-cost solution problem for any of the closest types of bounds (.. ab-
solute approsimation, FPTAS, PTAS). These results do not invalidate either

xisting phylogenetic inference approximation algorithms or phylogenies pro-

duced by these algorithms — other kinds of fast approximation may be possible

(e mptotic approximations. whose bounds hold for all but finitely many
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Approsimability

>0

Theoretical Algorithmic
Lower Limit Lower Limit
Phylogenelic WL, WG, T
Parsimony e rel. app.,
C$, Do, Cl, Ge >0 -
Character " rel app., O

rel. app.

Distance Matrix
Fitting

FUDTIF]

All Others

w0 Opoly) abs. app-,
wo FPTAS

Crel. app.,
«>0

Table 24: Approximability of phylogenctic inference optimal-cost solution fune-

tions.

Absolile Approximations
ollog n) | o(poly) | Opoly) | FP'TAS | TAS
[77 PV PlelogTog n+O (1)) x - - X Xt
F PNPiOtogn) X X ? X v
i X X X ? v
FPNP X X X v v
X = Whole class is non-approximable.
V= Members of class are approximable.

Approximability ot relevant.

Table 25: Non-approximability of various levels of the Funetion Bounded NP

Query Hierarchy.

+ Applies only to complete problems.
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fal-time apy )» and phylogenies derived from in-

stances enconntered in practice may be among those that are close to optimal.
However, in any application such as ph logenetic inference in which the degree of
optimality of approximate solutions is important (see Section 1), no approxima-
tion algorithm or solution produced by such an algorithm should be trusted until

analysis has shown exactly how good an approximation that algorithm gives.
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6 Conclusion

In this thesis, 1| blished a f K that incorp all phylogeneticin-

ference decision problems studied to date. Within this framework, 1 have derived

various bounds on the evaluation, solution, spanning, enmeration, and random-

generation versions of the optimal-cost, given-cost, and given-limit phylogenctic
inference problems. 1 have also derived lower bounds on the approximability of
phylogenetic inference solution problems. Theso results are summarized in Table
20 and 24. These results show yet again thal. decision problems coneenl many

facets of the complexity of their underlying optimization problems. Phe complex-

ity of more complex versions of optimization problems should be investi

only to better assess the true difficulty of the underlying problems, but also be-

cause such 1! may have ifi for how closely these problems

can be approximated by fast algorithms.

Future directions for rescarch are:

o Determining the preci ity of phylog and

optimal-cost solution problems. If these problems are provably casier Uh

FPNP, more classes will need to be deseribed between 2 PNPO0]

FPNP, Such a set of cl

ses might belong Lo the function analogue of the

hierarchy developed in [C$92].

of phylogenetic inference spanning and

o Determining the precise

139



enumeration problems. This may be possible using classes from the hierar-

chies of functions defined in [Kre92a, Lad89, WagK86a, WagK86h).

Finding algorithins with guaranteed relative approximations for the dis-
Lance matrix fitting problems and the remainder of the phylogenetic par-
simony problems. The latter may be possible by recently-developed algo-

rithms that improve on that given in [KMB8I]; see [BR91] and references.

bility results for phylogenctic inference given-limit and

Deriving

given-cost problems, based not on algorithms that guarantee solutions of
a particular cost but, algorithms that are cither polynomial-time or correct
on all hut some polynomially-bonnded subset of their instances. Such a
framework is described in [SchUS6, Section 3] and [BDG90, Section 6].

This framework is also applicable to optimal-cost solution functions.

Results from the growing literature on computational learning theory [Kea90,
1.V90a, MILI8Y] and the computational complexity of local search heuristics
[JEVSS, Yaus0] may also be applicable to the further analysis of phylogenetic

inference problems.
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A Phylogenetic Systematics and the Inference
of Reticulation

In this appendix, 1 will give a short review of varions approaches to inferring

retienlation, followed by a justification of the reticulate phylogenetic parsimony

problem schemata defined in Section r in-depth reviews of the topies in

this appendix, see [Funs5, Grast, SchR86, StaC'75].
Reticulate events as deseribed in Section 2.1 are part.of biological evolu-

tion. Hybridization has occurred froquently in many gronps of plants and los

froquently among animals, notably in birds and lishes [GeaS1, pp. 202 201),

bil in which characteri

and introgression, a form of ¢ are passes]

via hybrids from one species to another, seems to ocenr with greater frequency
than previously thought, especially among the eytaplasimic and muelear genes in

plants and animals (s [DRA92] and references). The evolutionary significance

of such reticulation has been debated for decades; for instance, hybridizati

been viewed as mere noise on the underlying substrate of dichotomons evolu-

tion [WagWG68], as an important force in partienlar gronps at particular

[Gra81, pp. 179-189], and as the dominant force in plant evolutio

Lotsy (1916) quoted on p. 24}, Regardless of such debate, reticulation and its

inference is crucial to many investigators.

There are many traditional biological henristics for recogn
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zation and recombination, hased on the intermediate na-

instances of hybrid
ture of the produced character-states and various attributes of the proposed
hybrid and its parent species e, geographical distribution, parental interfer-

s

sperimental re-creation of hybrid [Grasl, StaC'75]: some of these heuris-

tility,

ties have heen coded as numerical measures (hybrid indiecs) ([Gra81, pp. 207~

210]; [StaC'T5, pp. T4 82)). Recently, algorithmic methods have heen proposed

likelihood

for inferring hybridization under the compatibility [Sne

[Fels2, Lat82], and phylogenetic mony [Fungh. Heit0, Leess, Nels3, Phisi.

Tho82, WagWS0] eriteria. The foens in this appendix will be on those methods

Iy

e o the phylogenetie parsimony eriterion,

Al known parsinony-based methods infor hybridization using the character

confliet induced by hybrids. In a phylogenetic parsimony analysis, the theoretical

lower limit un cost. is that cach character-state transition event occurs only once

cost above this theoretical minimum consists

in a tree; the portion of a tr

of additional hypotheses of character-state transition (komoplasy) which are re-

quired to explain character states that did not arise only once in that tree. The

phylogenetic parsimony criterion, in preferring trees of minimum cost, minimizes

homoplasy. When the possibility of error in character analysis has been ruled

ont, homopli

a sign that evolutionary processes not belonging to the single-
transition, dichotomous-speciation model have occurred. Reticulation as defined

in this thesis comprises one such set of processes.




Following [Fun?

all parsimony-hased methods for fuferring hybridization

can be classified into three approaches, depending on how they deal with homo-

plasy.

. Inchude retienlation implicitly

¥ in the most

tree [NPSI].

3

and introduee

. Identify and remove hybrid taxa before phylogenetic

5 to accommodate these

reticulation after phylogenetic analy

basis of homoplas

in the most. parsimonions tree [WagWso].

. Tnclude all taxa in the phylogenetic aualysis, and introduce reticnlation and

hybrid Laxa as necossary cither during [Phist] or after [Funss, Loss, Nelss,

Thos2] analysis, on the basis of homoplas

Each of these approaches has intrinsic diflienlties hecanse retienlation can be char-
acterized by a wide variely of character-state patierns, hoth within the produced

taxa and within any non-reticulate tree including these taxa [Fun®h, Humy3,

McD90, $taC

Moreover, these approaches are not satisfactory for defin-

ing criterion-based problems because they are hased on specifie algorithms and

heuristics (sce Section 1).

There are no general difficnltics with inferring reticulation using the parsimony
criterion: reticulations remove homoplasy by unifying the ocenrrence of seemingly

are

incompatible character-states into a single event, and can thus be ranked (s
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trees) by the decrease in homoplasy that they induce, However, there are several

cifie diffienltios.

1. As appropriate reticnlation can represent any number of character-state

transitions in one event. unbounded retienlation renders dichotomons spe-

ciation irrelevant and the phylogenetie parsimony eriterion I

[NPSL, pp. 217-218].

2. As homoplasy is nsed to justify the addition of reticulation, it is no longer

possible 1o nse homopla 1+ sign of possible error in character analy-

sis and coding (the “self-illuminating” property of phylogenctic parsimony

analysis [WilS1, p. 130]).

3. I is much more difficult to infer phylogenies by hand using Hennigian argu-
mentation [Wils1, WSBE91] or by algorithm when reticulation is allowed;
morcover, the produced phylogenies cannot be readily nsed as the basis for

hierarchical Linnean classifications of species,

The first two of these diflicultics are actually guidelines for the formulation of
useful computational problems. By (1), a problem should only be able to infer
a limited amount of well-defined reticulation for a given instance, and this limit
should be under the control of the investigator. By (2), such a problem should
only be invoked after a non-reticulate analysis has been performed to detect

possible errors in character coding, and to ds ine if there is any b 1
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that can be explained by retienlation. The dif

ulties in (3)

e con

rqUenees

of scarching for phylogenctic trees in a richer hypothesis-space, and must he

accepted if reticulate hypotheses are desirable.

The reticulate problem schemata delined in Seetion

isfy the first con-

which

dition above, and a procedure patterned after that given in [Nels3),

reticulations are added one at a time to the most parsimonions tree such that

the homoplasy removed with each insertion is masimized, will satisfy the second.
Siuch a procedure using these schemata would differ from Uit in [Nels3] in that it
would be able to seareh over the whole space of available reticulate phylogenies,
not just those that can be reached by additions of reticulation to the most parsi-

monious non-reticulate phylogeny, and may this he able to find loss obvious it

equally valid solutions. This procedure is not. i ne to the problems discnssed

ahove of recognizing the patterns of homoplasy that imply reticulation, or the
possibility that the obzerved homoplasy may have other causes e.g. nmltiple spe-
ciation, ecological convergence, or the inclusion of ancestral taxa in the given Laxa
[NP81, p. 265]. Morcover, this procedure is not so much a method for producing

phylogenetic trees as an aid for exploring the spac

of phylogenetic hypotheses.

However, this is consistent with the viewpoint that systematics does not so neh

derive evolutionary history as ohtain succe ely hetter approximations to it.
The beauty and power of these reticulate problem schemata is that they do not

depend on the precise structure of the permitted reticulation events. This allows
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appropriate to their needs, and ren-

investigators to define reticulation e

ders the corresponding NP-completeness proofs for such problems trivial. Other
sehemata may be defined by allowing weighted retienlations or polynomially-
Jonnded sets of forbidden reticulations.

should be adopted Lo describe

The hypergraph formalism given in this thesis

ret

ulate events in phiylogenetic systematies. Hyperares provide unified repre-

olutionary phenomena. Moreover, such a formalism will

fons of complex ¢

make the recognition and transfer of relevant results from other fields casier.

snlts given in this thesis are one example. OF perhaps

The NP-completenes

I use would be the application of work done in database design

more practic

[ADSRG, ANI90, BFMY83, Fag83] to algorithms for constructing reticulate phy-

logenetie trees.



B The Computational Complexity of Phylo-
genetic Parsimony Problems Incorporating
Explicit Graphs

Consider the following decision problem:

UNWEIGHTED BINARY WAGNER PARSIMONY wrrn Gravin (11817;)

Instance: Positive integer d; graph ¢ = (V. E), where V= {01} and 1 =
{1, 0} wv € V and wand v differ in exactly one position}; a subset 8 of
{0,1}%; and a positive integer .

Question: Is there a phylogeny satisfying the Wagner phylogenetic parsimony
criterion that includes § and has length at mest 37

This problem differs from problem UBW defined in Section 3.2.1 by including the

d-dimensional graph explicitly in its instance. Both of these problems are in NP
however, UBW has been shown NP-complete [DISKG, GFS2], and the complexity
of UBWg is unknown. The complexity of (/ BW is of interest not only hecause
it has been used in proofs of NP-completeness [Day83], but. also hecanse it wonld
be interesting to know by exactly how much the exponential padding of the input,
instance with G reduces the complexity of UBW.

To this end, consider the following restrictions on a phylogenetic parsimony
problem T: let 12®*M) be the subproblem 11 restricted Lo instances such that
5] < p(d) for some: polynomial p, and 1%=) he the subproblem of 11 restricted

to instances such that 2! < | S| for some constant ¢, ¢ > 0. The former restriction

173




highlights, and the latter isolates, the complexity introduced by padding. 1If the
complexity of (78We; cannot. be determined direetly, these restricted subproblems
may still give lower bounds.®

Consider the complexities of UBW and 7 BWe. As mentioned already, UBW
is NP-complete. I 1/3Wg is NP-complete, then UBW <2, U BWe; such a reduc-
tion is difficult to visualize, because it implies that a problem on dimension d can
be mapped onto an equivalent, problem of dimension O(log d). Alternatively, the
pacding introduced by G might yield polynomial algorithms via algorithms that
sulve the problem STEINER TREE IN GRAPHS (see Scetion 3.2.1). However,
all known STG algorithms, including those restricted to d-dimensional graphs,
are linear in |G| and exponential in |S] [Sny92, Wins7].

Cansider now the complexitics of U/ BWREr) and U BWSE"), These prob-
lems are computationally equivalent i.e. / BWS™ <r U/ BWalern) (discard G),
and {1 BWRET) <r (7 B (add G, which can be constructed in time lin-
car in the size of an instance of (/BWAe). Both of these problems reduce to
113 We; however, for reasons similar to those given above, it is not obvious that
they are cither NP-complete or in P,

“The complexity of the third pair of problems, UBWOwely) and U BWIWM,

is the most interesting. The reduction from VERTEX COVER given in [D.JS86]

Since this thesis was submitted to the referecs, I have found out that the weighted version
of U/ BWg (actually, the weighted version of U BWS ") has been shown to be NP-complete
[Gus91, Section 6). While this does not immediately affect the problems examined in this
seetion, it way be a stimulus for further rescarch.
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is actually to U7 BWORH) yot UBW: hence, (7B O09)is NP-complete.

et e

Theorem 58 [/BIVOUl) <1 BV if and only if I' = NP.

Proof:  The implication from right to left is trivial. The implication from left
to right follows by this construction: A reduetion from an instance of 17 3110010
to /BWE™ must map a polynomial number of vertices in a graph of dimen-
sion d into a polynomial number of vertices in a graph of logarithmically lower
dimension. However, as UBWG™™ <r (7 IO (lis reduced instanee is
; also an instance of U/BWOM, Repeat this process a polynomial winnber of
times to produce an instance of dimension O(1), which ean be solved in constant
time. This yields a polynomial algorithm for 1/ BWOU9), which implios that I

=NP. I

Corollary 59 If P # NP then UBWEY™ is not NP-complete

i All optimal solutions Lo instances of I/ BW'™ are of size polynomial in d (see

Section 3.2.1), and hence of size polylogarithmic in the instanee of 1/ BW ™),
Thus, UBWE®Y is it Byoiyteg, the class of decision problems requiring only
polylogarithmic nondeterminism, which is probably strictly contained hetween
P (= Biogn) and NP (= Uyg: fon) [DTO0, p. 22). Morsover, by the Dreyfus-
Wagner STG algorithm ([Sny92, Section 2] [Win87, Section 4.2]), U BWZ™W js

in O(nOlsn)),



O(poly)
4

‘I'here is even cirenmstantial evidence that U BW, is in P. An encoding

of a graph ¢/ = (V, ) is succinet if it is of size polylogarithmic in [V] [GW83]; an

example of sueh an encoding is a polylogarithmically sized circuit that computes
Uhe adjacencs matrix for . Though (7BWOWels) does not explicitly incorporate

an encoding of €, its problem instances will always be of size polylogarithmic

in 5 henee, U/ BW can be considered as the succinetly encoded version of
UBWEP™ y general (ef. [LW92]), succinet encodings precisely exponentiate
the time complexity of graph problems c.g. the succinct version of th.: trivial
graph property existence of a (riangle is NP-hard [GWS83, Theorem 2.1], and
the suceinet. version of the NP-complete problem 3-COLORABILITY is NEXP-
complete [PY86, Corollary]. I a problem Tl is P-hard via a certain type of
reduction called a ajection from the Circuit Value Problem, then the succinct
encoding version of 11 is EXP-hard [PY86, p. 184]; if, in turn, the succinct

encoding version of 11 is NP-complete, then P # NP.

Corollary 60 If 17 BWE™) is P-hard via a projection from the Circuit Value

Prablem, then P # NP.

Many classical polynomial-time reductions can be easily made into projections
[PYS6, p. 182); this may also be true of the log-time reductions used to establisl,
P-hardness. As P # NP probably cannot be proved in our standard system of
logic [GIT9, p. 186], it is unlikely that UBWS™ can be proved to be P-hard,

and likely that it is in P.

i

i
;
i




UBWOwI NP-C 7 By

UBw

Uil Wy e

UBwEe NP1 [

NP

Figure 13: Reductions among implicit and explicit graph Unweighted Binacy
Wagner parsimony decision problems. Reductions 11 <7, 11" are denoted by arrows

from 1 to IT', The abbreviations NP-C and NP1 stand for thecl
and NP-intermediate (= NP — (P J NP-C)), respectively.

ses NP-complete

The known relations among problems examined in this section are summa-
rized in Figure 13. [ conjecture that UBWEP™ is in 1 and that ¢/ B,
UBWSE™ and UBWg are all strictly contained hetween I and NP-complete.
To my knowledge, U BWSP® and UBWOrb) are the only problem-pair such

that the complexity of the succinct encoding version is known but the complexity

of the full graph version is unknown. This in itsell makes them exndidates for

further research.
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