MUTHURAMAN MUTHU

INFORMATION TO USERS

This ipt has been ds from the mi master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality

and print margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overiaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Company
300 North Zesb Road, Ann Arbor MI 48106-1346 USA
31377614700 800/521-0600

High-level Specification of Graphical
User Interfaces
by

Muthuraman Muthu

A thesis submitted to the School of Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
University of dland

September 1997

St. John’s Canada

Acquisitions and Acquisitions et
s iy sl

Bibliothéque nationale
du Canada

services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4. Ottawa ON K1A ON4.
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Vour e Voo ttearce

Our S Nore retance

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-34211-5

Canadi

Abstract

Recent studies have shown that users of GUIs make fewer mistakes, feel less frus-
trated, suffer less fatigue and are more able to learn for themselves about the
operation of new packages than users of non-graphical or character-based user in-
terfaces. On the other hand, other surveys on user interface programming show
that developing a GUI is a very complex task, that in today’s applications a con-
siderable amount of resources (time and effort) are devoted to the user interface
portion both in the development phase and in the maintenance phase.

This report discusses currently available toolkits and specification methods that
facilitate the development of a GUI in an efficient way and compares their merits
and demerits. A new solution is then proposed by developing a high-level spec-
ification language for interfaces. The proposed approach is implemented using
Java/JavaCompilerCompiler (JavaCC). A simple application is also presented.

Key Words: Graphical User Interfaces, Toolkits, Interface Specification Lan-

guages, User Interface Design.

Acknowledgment

First [would like to thank my supervisor Dr.Wlodek Zuberek for his thoughtful and
patient guidance which he provided from the project’s inception to its completion.
I would like to thank Michael Rayment for his time and patience in answering a
myriad of weird questions at all times. Also I would like to thank Michael Rendell

for his useful i on the impl ion part, Nolan White for fixing up

the system related problems in no time and Elaine Boone for reviewing the early
drafts.

I would also like to thank my family and friends and others who have contributed
to my research and thesis. My special thanks go to my friends, Janny Rodriguez
and L.Srikanth who introduced me to the art of programming when I was working
in Wipro Infotech Ltd., Bangalore.

Finally, my sincere thanks to the developers of freely available tools such as
Java, JavaCC, LaTeX and other related tools which contributed significantly to the

successful completion of this project.

Contents

=

[3)

Abstract

Acknowldegement

Table of Contents

List of Figures

List of Tables

Introduction

1.

—

Graphical user interfaces
1.2: User AMSTIACOtOOS vco o o o i 10 2 0 % s o k6 shist w1 o ¢ syossmcism e
1.3 The purpose of this project

1.4 Brief overview of remaining chapters

Graphical user interfaces
2.1 Components of the graphical user interfaces

22 "Vndowlii SPBEEI. « + s « & & & & soesosn i R X G & S R

iii

iii

viii

w o e

23 ToollilE i :sc 605 e ERERRENEAS FisEasET 8 9
231 ToolkEtypes - .unzmvvernwasssssaas 58 s 9
232 Advantages and disadvantages of toolkits 10

24 Higher Tevel t00M' .« o vieociimimwaisnian s 5 w8 & 5 o 5w s 1
241 State transitionnetworks 11
2.4.2 Context-free grammars 12
243 Eventlangnagescosssies s nam s nne sy 13
244 Declarative languages 14
245 Constraint languages, ... 15
2.4.6 Databaseinterfacesl a oL 15
247 Visual programiming’ : - < s s s ss s e asE s S 16
2.48 Summary of different approaches 16

25 Other ConRMEIBRIONS «s v = = & 6 @ 56 ¥ 8 6 S s 17

Speci of user i 1z 19

31 Interface cOMPOBRIRE < s« s s = 5+ w6 5 4 3 ¢ 5 G4 S 6 s & 19

3.2 Interface Specification Language (ISL) 20

3.3 Objects and their attributes 22
A3 WIAOW wvcovariis & w5 v o @ o & %0800 o Eos ISR SR 22
BIBT AL« oo v mrmrrs. o 51 9 % .8 6 it S8 o007 O O 23
333 ‘menuitemiccecoin s ony e v 24
B34 Jabel ooviownn e v m e s s e e e e 24
335 button 25
336 SubWIDAOW < & + 4o s o008 285 n pmnr e 25
38T pamsl: i s i E eEE BAEY S R ISR RS IEE 26

»

339 checkboxX.u:ssss5s s nseisnnEnansiss 27
30 CHECKBOREIOND: & « s = s v s v v e we s PSR RS ¢ 8 28
3311 CADVES .. csciscsiEEEES SN E Y ST ENELEEE Y Y 28
34 Geoetry MADREETB - - - « v o = v 5 o s oo o ww s sassmi i 55 53 29
T Flowlagaut! 5 « v 5 o 5 36 5w o 0 5 wsrmsms © 2 9 5 % 30
342 BordefJayont . : . v = v 0 naswum o mrios s e E 6 © 30
343 Gridlayout 30
35 ExampleSvveein i 31
351 Moreonlayouts 31
Translation 35
41 Twostagetranslation.cc0ucnu... 35
42 Compller WOEIE OIS . .. -+ i & v oo i simie miimassss = o0 w0 o 38
427 Eox atd YOre: a4 & sS85 e e sraene 38
422 FlexandBisoncicss88ps0mommesnssns 38
423 PEOIS i 5 e twissadne s VEaReamsd 44855 38
£24 JIVOC o5 0% SR ER S 0 S EEEENESER TS S5 IS 39
4.3 High-level intermediate language 40
BB TETK: oo s s i b s A SR § S 36 40
AB2 JAVB: & o v o o o v SRR A R ST e ¥ 41
4.4 Implementationdetails 43
4.4.1 Code generation Process ouooo. .. 44
442 Sampletranslationcc00iiienan 46
4.4.3 Sample specification using ISL 47

o

444 Gengrated code . ; - - & o cioimmimsisiaesi e = a #
445 Specificationemrors0an....
446 Advanced features : ;. ossaiweEEEEEeRss s EE

Application

5.1 General Organization . -

5.2 Analyses and their parameters
5.2.1 DC transfer curve analysis
5.22 Transient analysis : s o« icwion 49 R 5 F 8 Ty
523 ACHDAIYEIE « oo o 5 o s n R EEl e s w% 45 55 5 5¥
524 Noiseanalysis . . : . cvvuwswuwnnins w5 sena

5.2.5 Distortion analysis

526 Tourier@palysis . . - . coownos mommins wm v om0 8 S ere
527 Otheranalysescocooisine sim @ nin s s e x v

5.3 Organization of i

5.4 Presentationofresults

5.5 Specification of GUI in ISL

Conclusions

6.1 Advantages of the d e o1 o 0 o o i e

6.2 Future research
References
Appendix A

Appendix B

52
33

65
65
67

68

72

83

List of Figures

0

3.1
3.2
33
34
3.5

4.1
4.2
43

5.1
5.2
5.3
5.4
5.5

The components of user interface. 8
An example information dialog window. 21
RIOWIAFOUE: 5 5 5 % 5 5.4 3 S AR e SRR A 3 32
BRATIRIOURS = =« ¢ & sunt ooy e i 7 S 5 34
GHAIRPORE. - - « « & < v somsiaee isewme sE #5550 5 & 3 34
BokdBC IAPOUE. - - o « o wiovimimimssiwnasusi e e i e & 34

37

46

47
Original organization of SPICE-PAC. 59
Modified organization of SPICE-PAC. 60
Snapshot of main window. 61
Transient dialog window. . w6 o wwaias o 5 G5 5 GE s s 8 62
Output of transient analysis. 63

List of Tables

1 Files included in the distribution.

Chapter 1

Introduction

A user interface is the means by which the user communicates with an application
and an application with the user. This interface is often the most important feature
on which the success of the system depends. An interface which is difficult to use
will, at best, result in a high level of user errors; at worst, it will cause the software
system to be di i ive of its fu

It should be noted that developers of application software such as personal
systems, stock control or order entry systems, typically dedicate a considerable
amount of the program code to the implementation of the graphical user interface.
Thus the time and cost incurred in the development of the user interface can be

very significant [1].

1.1 Graphical user interfaces

Graphical user interfaces (GUIs) have brought quantifiable benefits to users and
organizations that rely on software products. Recent studies [2] [3] have shown
that users of GUIs make fewer mistakes, feel less frustrated, suffer less fatigue and
are more able to learn for themselves about the operation of new packages than

users of or based user interf:

From a software designer’s point of view, however, GUIs are more difficult to
design than character-based interfaces [4]. The user’s interaction with the GUI
is more complex because it is based on principles of direct manipulation' 5] and
concurrent user’s access to multiple windows, icons, menus and input devices. A
character-based interface normally only allows the user sequential access: first view
a menu, then make a selection, then view the next screen, then enter the data.
With the character-based interfaces, the user interface can be designed in such a

way that the user will und ataskina d In the case of the

GUI, many actions are allowed on interface objects and the user will decide which
actions to take and in what order.

On the other hand, GUIs must be designed with care in order to avoid the
problems caused by poor GUI design, which include reduced user productivity,
unacceptable learning times and unacceptable error levels; all these factors leading

to frustration and again potential rejection of the system by the user.

The ability to see and point to menus and icons rather than to remember and type written
commands.

1.2 User interface tools

Graphical user interfaces by and large bring considerable amount of benefits to the
people and organization using it. But the price to be paid to achieve those benefits
is pretty high because of the amount of effort they demand. This is where the need

for graphical user interface tools comes in to picture. Graphical User Interface Tools

are tools that provide ing support for impl ing i ive systems
[6]. The advantages of such tools can be classified into two main groups:
I. The quality of interface is improved. This is because:
e Design can be rapidly prototyped and implemented, possibly even before the
application code is written.

o If any bugs are discovered during testing phase of the application code, they
can be corrected easily using the tools.

e There can be multiple user i for the same

o Different applications are more likely to have consistent user interfaces if they
are created using the same user interface tool.

I1. The user interface code is easier and more economical to create and

when to ing it wi any GUI
tools. This is because:
o Interfz i ion can be lidated and evals more easily

and more thoroughly.
o There is less code to write because much is generated by tools.

e There is better modularization due to the separation of the user interface
component from the application. This should allow the user interface to

3

change without affecting the application, and a large class of changes to the

application is possible without affecting the user interface.

The level of programming expertise of the interface designer and implementors
can be lower, because the tools hide much of the complexities of the underlying
system.

The reliability of the user interface will be higher, since the code for the user

interface is created automatically from a higher level specification.

It will be easier to port an application to different hardware and software
environments since the device dependencies are isolated in the user interface

tool.

In general, the tools might help to:

design the interface given a specification of the end users’ task,
implement the interface given a specification of the design,

evaluate the interface after it is designed and propose improvements, or at

least provide information to allow the designer to evaluate the interface,
create easy-to-use interfaces,

allow the designer to rapidly investigate different designs,

allow non-programmers to design and implement user interfaces,

allow the end user to customize the interface, and

provide portability.

The above specifys the characterizing features of the quality of any user interface

tool.

They can be used to evaluate the various tools to see how many features they

do support. Naturally, no tool will be able to help with everything; and different
user interface designers may put different emphasis on the different features.

1.3 The purpose of this project

This project is an effort towards the rapid development of Graphical User Interfaces
(GUIs) by specifying them in a high-level interface ification L ISL. This

high-level i ion is lated into source code of a prototyping language

which is then compiled to produce the actual GUIL.

1.4 Brief overview of remaining chapters

The remainder of this thesis is structured in the following manner. Chapter 2 gives

a brief iption of the ofa ical user interface and discusses

the different specification styles. Chapter 3 i the Interfz

Language (ISL) and explains the different widgets and features supported by ISL.
Chapter 4 presents the available parser generators and then describes the imple-
mented translator, which takes ISL as its input and generates the intermediate

code for the user interface. Chapter 5 gives a detailed example of how to use ISL

for a specific ication and describes the impl ion of the interface for this

application. The final chapter contains concluding remarks, including a summary

of the advantages of the proposed h ictions of the i ion and

directions for future research. Appendix A gives the specification of ISL in JavaCC.

A dix B gives the it i ion of user interface in ISL for a circuit

o

simulator application. Appendix C gives the actual Java code for the customized
canvas object. Appendix D provides the instructions on how to use the ISL, GUI
generator and the related files.

Chapter 2

Graphical user interfaces

The user interface is the part of the software system which gets the input data
from the user and displays the output from an application program. The following
section deals with the different components of the user interface and then describes

the toolkits and specification languages available for user interface design.

2.1 Components of the graphical user interfaces

As shown in Figure 2.1, user interface components can be subdivided into three
layers:

o the windowing system,
e the toolkit, and

© high-level tools.

Application

Operating System

Figure 2.1: The components of user interface.
2.2 Windowing system

The windowing system is the lowest of the three layers of the user interface compo-
nents and closely interacts with the underlying operating system. The “windowing
system” supports the subdivision of the screen into different (usually rectangular)
regions, called windows. Thereby it helps the user to monitor and control differ-

into different parts of one or more

ent applications by ing them
display screens. The X system divides the window functionality into two layers:
the windowing system, which is the functional or programming interface, and the

window manager which is the user interface. Thus the “windowing system” pro-
vides procedures that allow the application to draw pictures on the screen and as
well get input from the user, while the “window manager” allows the end user to

move around wind, and is responsible for displaying the title lines, borders and

icons for the windows. The X windowing system solved the problem of portability

between different windowing systems by providing the hard ind dent inter-

face to windows. However, many systems use the terminology “window manager”

8

to refer to both layers; for example, systems such as the Macintosh and Microsoft
Windows do not separate the two layers.

2.3 Toolkits

Toolkits basically use the functionality provided by the underlying windowing sys-

tem and provide a layer of i Hence the need not worry much

about the intrinsics of the i ing system and the windowing system.

Toolkits are just a library of widgets that are available to application programs. A
widget' is a GUI object with a particular appearance and behavior and is usually
activated (e.g., “clicked”) by mouse by the user to input some values. Typically,
widgets in toolkits include menus, buttons, scroll bars, text input fields, etc. The
user must, however, take into consideration the trivial things like the position of

the widget, the size of the widgets, etc.

2.3.1 Toolkit types

Toolkits come in two basic varieties. The most conventional one is simply a col-
lection of procedures that can be called by application programs. An example of
this style includes the SunTools toolkit for the SunView windowing system (7]. The

other variety uses an object-oriented programming style which makes it easier for

the designer to ize the i i i include InterViews

[8], Xt [9], Tk [10] and AWT [11].

'widgets and objects are used interchangeably in this thesis

A natural way to visualize widgets is in units of objects since the menus and
buttons on the screen seem like individual objects. They can handle some of the
chores that otherwise would be left to the programmer (such as refresh operations).
Another advantage is that it is easier to create custom widgets (by sub-classing an
existing widget).

The usual way that object-oriented toolkits interface with application programs
is through the use of call-back procedures. Call-back procedures are defined by the
application programmer and are invoked when a widget is operated by the end user.
For example, the programmer may supply a procedure to be called when the user

selects a menu item.

2.3.2 Advantages and disadvantages of toolkits

Toolkits improve the i among the ications by making their interfaces
appear and behave similarly to the other user interfaces created using the same
toolkit. This is the first and foremost of the eight golden rules of dialogue design
defined by Shneiderman [5]. Another inherent advantage of this approach is that
each application does not have to re-write the standard functions, such as menus
and other widgets.

On the other hand, a problem with toolkits is that the styles of interaction are
usually limited to those provided by the tools. Another problem with toolkits is
that they are often difficult to use since they may contain hundreds of procedures,

and it is often not clear how to use the procedures to create a desired interface.

10

2.4 Higher level tools

Programming at the toolkit level can be very difficult. Hence, in their place, higher
level tools that simplify the user interface software production process are desir-
able. These tools come in a variety of forms. One important way that they can
be classified is by how the designer specifies what the interface should be. Some
tools require that the programmer use a special-purpose language, others provide an

fr k to guide the ing. While some automatically gener-
ate the interface from a high-level model or specification, others allow the interface
to be designed interactively with the help of a visual programming environment

(interface builders).

2.4.1 State transition networks

Since many parts of the user interface involve handling a sequence of input events,
it is natural to implement the interface by using a state transition network to code
the interface. A transition network consists of a set of states, with arcs outgoing
from each state labeled with the input tokens that will cause a transition to the
next state. In addition to input tokens, calls to application procedures and the
output to be displayed can also be associated with each arc. In 1968, Newman [12]
implemented a simple tool using finite state machines which handled textual input.
This was apparently the first user interface tool. Many of the assumptions and
techniques used in modern systems were present in Newman'’s different languages
for defining the user interface and its semantics.

State diagram tools are most useful for creating user interfaces where the in-

11

terface has a large number of modes (each state is considered a mode here). For
example, state diagrams are useful for describing the operation of low-level widgets

or the overall global flow of an licati However, most highly-i ive sys-
tems attempt to be mostly “mode-free” which means that at each point the user
has a wide variety of choices of what to do next. This requires a large number of
arcs out of each state, so state diagram tools have not been successful for these
interfaces.

Another problem with the large number of arcs out of each state is that it can be
very confusing for complex interfaces, since this can become a “maze of transitions”

and are difficult to follow.

Jacob [13] invented a new ism, which is a bination of state
with a form of event I to exploit the advantages of the state
diagrams.

Transition networks have been thoroughly researched, but have not proven par-
ticularly successful or useful in either the research or commercial approach.

2.4.2 Context-free grammars

Grammar-based systems are based on parser generators used in compiler develop-

ment systems. For example, the designer might specify the user interface syntax

using some form of Backus-Naur Form (BNF). E: les of based systems
are Syngraph [14] and parsers built using the YACC and LEX tools.

Grammar-based tools, like state di are not it for specifying

highly-interactive interfaces since they are oriented to batch processing of strings

with complex syntactic structures. These systems are best for textual command

12

languages, and have been mostly abandoned for i ion of interfaces by

and i p

2.4.3 Event languages

In this kind of specification system, the inputs are considered to be “events” that
are sent to individual event handlers. Each handler will have a condition clause
that determines what types of events it will handle, and when it is active. The
body of the handler can generate (next) events, change the internal state of the
system, or call application routines.

The ALGAE system [15] uses an event language which is an extension of Pascal.
The user interface is programmed as a set of small event handlers which ALGAE
compiles into conventional code. The HyperTalk language that is part of HyperCard

for the Apple Maci h can also be idered an event |

The advantages of event languages are that they can handle multiple input

dal

devices active at the same time, and it is i ward to support
interfaces where the user can operate any widget or object at any point of time.
The main disadvantage is that it can be very difficult to create the correct code,
since the flow of control is not localized and small changes in one part can affect
many different pieces of the program. It is also typically difficult for the designer

to understand the code once it reaches a non-trivial size.

2.4.4 Declarative languages

Another approach is to define a language that is declarative (stating what should
happen) rather than procedural (how to make it happen). Cousin [16] and Open-
Dialogue (17] both allow the designer to specify user interfaces in this manner. The

user interfz d include menus and buttons. There are also

graphic output areas that the application can use in whatever manner desired. The
application program is connected to the user interface through “variables” which
can be set and accessed by both the user interface and the application program.

The layout description languages constitute another class of declarative lan-
guages that comes with many toolkits. For example, Motif’s User Interface Lan-
guage (UIL) allows the layout of widgets to be defined. Since the UIL is interpreted
when an application starts, users can (in theory) edit the UIL code to customize
the interface. UIL is not a complete language, however, in the sense that the de-
signer must still write C code for many parts of the interface, including any areas
containing dynamic graphics and any widgets that change.

The ad: of using a i is that the user interface designer

does not have to worry about the time sequence of events and can concentrate on
the information that needs to be passed back and forth.
The disadvantage is that only certain types of interfaces can be provided in

this way, and the rest must be d lly. The kinds of i

available are preprogrammed and fixed. In particular, these systems provide no
support for such things as dragging graphical objects, rubber-band lines, drawing
new graphical objects, or even dynamically changing the items in a menu based

on the application mode or context. However, these languages are now proving

14

ful as i it ibing the layout of widgets (such as UIL)

that are generated by interactive tools.

2.4.5 Constraint languages

Constraints are relationships that are declared once and then maintained auto-

matically by the system. For example, the designer can specify that the color of

the rectangle is constrained to be the value of a slider and then the system will
ly update the le if the slider is moved.

A number of user interface tools allow the programmer to use constraints to
define the user interface. NoPump (18] and Penguims [19] allow constraints to be
defined using spreadsheet-like interfaces.

The advantage of constraints is that they are a natural way to express many

kinds of i ips that arise ly in user i For example, that

lines should stay attached to boxes, that labels should stay centered within boxes,
etc.

However, a disadvantage of constraints is that they require a sophisticated run-
time system to solve them efficiently. Another problem is that they can be difficult
to debug when specified incorrectly since it can be difficult to trace the cause and
consequences of changing values.

2.4.6 Database interfaces

Major database vendors such as Oracle provide tools which allow designers to define

the user interface for accessing and setting data. Often these tools include inter-

15

active forms editors, which are essentially interface builders, and special database

like Query L (SQL). The main disadvantage of these
kinds of packages is that they are fine-tuned more towards database applications

rather than a general purpose application.

2.4.7 Visual programming

Another approach to user interface design is by way of using visual programming
1 based on the hypothesis that two-di ional visual are easier

to learn than i i textual Many to using visual
programming to specify user interface have been investigated. The user interface is
usually constructed directly by laying out pre-built widgets, in the style of interface
builders. Using a visual language seems to make it easier for novice programmers,

but large programs still suffer from the familiar “maze of wire” problem.

2.4.8 Summary of different approaches

In summary, there have been many different types of languages that have been
designed for specifying user interfaces. The major problem with all these approaches
is that they can only be used by professional programmers, as they need to know
a great deal about user interface design. Unfortunately, quite often this is not the
case.

This work is an effort to bridge the gap between the reality and the present

situation in user interface design. A high level i ion language is

in which the user can specify the user interface. The specification is then translated

16

to a high level language, which is compiled to get the final GUL
The d of this is that many of the technicalities of

the user interface can be hidden from the GUI programmer, and the interface can

be designed and/or modified quickly without much effort or resources.

2.5 Other considerations

The proliferation of GUIs such as Toolbox, X11/Motif, X11/OpenLook or NextStep
on different operating platforms creates a perplexing problem for the developer.
This problem becomes a real issue when the application program is aimed at tar-
geting more than one operating system. The most apparent solution would be

the icati from the user interface component thereby

creating a user interface abstraction.

The primary goal in designing a user interface ion is that the amount of

effort to retarget the user interface component must be much less than that required
to implement it from scratch. Another potential benefit of the abstraction is that
maintenance of the code will be much easier.

An application using a specific GUI should have the same appearance and op-

erating ch, istics as the other lled “native” licati Native applica-

tions are the ones that define the “look-and-feel” of a software system. By providing
consistency the user can apply techniques already learned with one application to
other applications on the same machine. Conversion of the application to a new
GUI must be done carefully, otherwise an application created for one system will

have a “foreign” appearance or feel on subsequent systems and will probably not

17

gain wide acceptance.

Performance is another important issue which needs to be considered when the
GUI is developed. The development cost in terms of time, resources and overhead
should also be minimal.

Chapter 3

Specification of user interfaces

The simplest and most convenient method, from the user’s point of view, is to
develop the user interface automatically from a high level specification. In order to
specify an interface in a high-level language. first this specification language must
be defined.

3.1 Interface components

To produce the interface component with a minimal amount of programming, an

overall of the and its i ions need to be i In

general, a user interface consists of graphical objects, implicit or explicit information
about the change of control windows, semantic actions and results of these actions.
Graphical Objects consist of windows, dialog boxes, menus, buttons and other items

that are directly visible to the user. Change of focus defines how the interface will

19

change on inputs from the user or values returned by the application. Semantic
actions are the operations that drive the applications. These actions are associated
with the events that the user might generate. When an event occurs, a semantic
action associated with it is performed. These actions can take the form of calls to
user supplied functions, execution of programs or files [20]. This allows the user to
pass data to the application and allows the application to output the results to a

file or to present the results on a display.

3.2 Interface Specification Language (ISL)

It is assumed that the specification of the user interface is a sequence of interface

object ipti In the d i ion language, the supported objects

include buttons, labels, edit texts, lists, checkboxes, menus and windows. Each of
the objects has a list of attributes like name of the object, action to be performed
on selecting the object, default values, etc. Attributes are uniformly specified as
pairs:

name> = il value>

In this document, attribute_value is also referred to as value in some places.
The definition of the specification is:
<specification> ::= START.ISL <object_list> END_ISL
<object list> ::= <object> | <object list> <object>

<object> ::= <identifier> (<list>);

<list> <list.a> | <list.i>

<list.i> == <identifier> | <list_i>, <identifier>

20

Are you sure you want to exit ?

Figure 3.1: An example information dialog window.

<list.a> ::= <pair> | <list.a>, <pair>

_name> = < il value:

<pair> ::
Any sequence of specification begins with the keyword START ISL, followed
by the actual specification of the interface and ends with the keyword END _ISL.

can be

The <objectlist> in the above to any
number of <object> definitions. In turn, <object> can be recursively expanded
to any number of <identifier>s or <pair>s. Since any GUI is a collection of series
of interface objects, they can be defined using <object>s. The finer details of the
objects are defined using the <pair> specifications which are nothing but pairs of
attribute names and their corresponding values.
Comments can be included in the specification file in C++ format, i.e. both
“\\"” and “/* */" formats can be used, but nested comments are not permitted.
For example, the window shown in Figure 3.1 can be defined using ISL as follows:
window : info(label = question, button = yes, button = no);
label : question(name = "Are you sure you want to exit ? ");

button :yes(name = "Yes", action = exit);
button :no (mame = "No", action = hide);

The above object specification is the expansion of <object list> into <object>

21

four times. As mentioned in Appendix A, “window”, “label” and “button” are
some of the objects supported by ISL. The “window” object is in turn expanded to
three attribute pairs. As shown above the attribute name again can be an object
name like “label”, “button” or just simple attributes like “name” or “value” or can
be the special attribute “action”. If the attribute name is a valid object name.
then it can further be expanded recursively. If the attribute name is “action”. then
it will result in a call to the function named that attribute value. In the above
example, for button named “Yes”, action is “exit”. This will result in a call to the

function named “exit”.

3.3 Objects and their attributes

This section gives the complete description of all the objects and the details of their
attributes which are supported by the current implementation of the ISL. It should
be noted that ISL has been designed to facilitate easy addition of new objects to

the existing basic objects with very little modification of the source file.

3.3.1 window

Any specific application can have only one window object. This is the main

container object which contains all the other objects.

Attributes

Special attributes supported by the window object are:

o preferred_size: specifies the preferred size of the application window, which
can always be enlarged or reduced at run time. It is always advisable to
specify this attribute. The attribute has two arguments: one for x and one
for y coordinate and both indicate the number of pixels.

® layout: specifies the arrangement of the other objects within this container
object. It can take “flow”, “grid” or “border” as its value. These arguments
are explained in detail below.
Other attributes include menu, canvas, button, label, teztfield, panel, checkboz and
checkbozgroup which are explained in detail below.
Typical usage:

window: mainwindow(preferred_size = (500, 400), layout = flow,
menu = mainmenu, canvas = graph_canvas, button = exit);

3.3.2 menu

This menu object creates a new menu bar.

This is the only object which takes arguments as a list rather than as argument
pairs.
Typical usage:

menu : mainmenu(file, analysis, about);

It is mandatory that each item in the list must have a corresponding menuitem
specification, i.e., the above specification must be followed by three menuitem

specifications, one for each “file”, “analysis” and “about”.

3.3.3 menuitem

menuitem objects behave like buttons.

Attributes
Attributes supported by this object are:
® submenuitem: specifies the individual menu item name.
e name: specifies the string to be displayed on the menu item.

e action: specifies the action to be performed when that particular menuitem
is clicked. This action can be a call to a function or it can in turn pop up
another subwindow.

Typical usage:
menuitem : analysis(name = "Analysis",
submenuitem = ac_analysis, name = "AC Analysis",
action = showaaw,
submenuitem = dc_analysis, name = "DC Analysis",
action = showdaw,

submenuitem = tr_analysis, name = "Transient",
action = showtaw);

3.3.4 label

Label object is provided for displaying text in the GUI.

Attributes

® name: specifies the string to be displayed on the object.

24

Typical usage:

label : sourcetype(name = “Source Type");

3.3.5 button

A button object is a simple control that generates an action event when it is

“clicked”.

Attributes
® name: specifies the string to be displayed on the button.

o action: specifies the action to be performed when the button is selected by
the user. Normally it will be an invocation of a function.

e lang: specifies the I in which the dure has been i
The default is “Java.” If its value is “native”, then it implies a call to a
procedure written in some other language, like C/C++.

Typical usage:

button : cancel(name = “Cancel”, action = hide);

3.3.6 subwindow

Subwindow is a dialog box that pops up when the user selects a button or a menu
item. It is similar to window object, and the only difference is that an application

can have any number of subwindows.

25

Attributes
© layout: specifies the arrangement of other objects within this container object.
It takes “flow”, “border” or “grid” as its value.
The other attributes include the objects namely panel, button, label, teztfield,
checkbozgroup, checkboz and canvas.
Typical usage:
subwindow: showaaw(layout = border, panel = toppanel,

canvas = center_canvas, panel = bottompnl);

3.3.7 panel
Like window or subwindow, it is also a container class, within which other objects
can be placed. Hence it also has the layout attribute.

Attributes
o layout: specifies the arrangement of other objects within this container object
as in subwindow. It can take “flow”, “grid” or “border” as its value.

® location: since the panel object itself can be inside a container object, this
attribute specifies the location within the container. It can take “north”,
“south”, “west” or “east” as its value.
Apart from this, it can have all the other objects that can be placed in a container
namely button , label etc.
Typical usage:
subwindow : showaaw(layout = border, panel = toppanel);

panel : toppanel(location = north, label = labell, textfield = tfl);

26

3.3.8 textfield

textfield is an object which allows the editing of a single line of text.

Attributes

e value: specifies the “default value” to be displayed on the screen.
Typical usage:

textfield : tfl(value = 1000);

3.3.9 checkbox

checkbox object can be used if the user wants to have a boolean variable to be

displayed on the interface.

Attributes
 name: specifies the text to be displayed on the screen.

e value: specifies the state of the object, which can either be “true” or “false”.

Typical usage:

checkbox : xbi(name = "Linear", value = true);

checkbox : xb2(name = "Octal", value = false);

checkbox : xb3(name = "Decimal",value = true);

Note: There is no connection between xb1,xb2 and xb3. All three act independent
of each other. So, they can all be true, or all be false or they can take any other
possible combination of values.

3.3.10 checkboxgroup

Unlike checkbox object which acts inds dently, the object is

used to create a multiple-exclusion scope for a set of choices. For example, creating
a checkboxgroup buttons with the same checkboxgroup object means that only
one of those checkbox buttons will be allowed to be “on” at a time.

Attributes

e name: specifies the string to be displayed in front of the checkbox button on

the screen.

© value: specifies the boolean state of the button.

Typical usage:
checkboxgroup : xbg(name = “Linear", value = false,

name = “Octal”, value = false,

name = "Decimal",value = true);
Note: Only one of the checkbox buttons can be true. If the user selects some other
checkbox button, then that button’s state will become true and changes the other
to false.

3.3.11 canvas

This is the object to be used if the user wants to plot graphs or draw figures. Since

the canvas object needs more information, like an array of data to be plotted and

algorithm to scale the graph to fit the canvas and the data arrays, it is imple-
mented as a separate Java file'. Whenever the user wants to use this object, the
implemented canvas class is instantiated instead of using the standard Java canvas

widget.

Attributes

® location: since canvas is an object which can be placed within any other
1 within the

for

container objects, it has this

e name: specifies the name of the canvas.
Typical usage:

canvas : graph_canvas(location = center, name = “"Graph");

3.4 Geometry managers

Widgets do not determine their own size and location on the screen. This function
is carried out by geometry managers. Each geometry manager implements a partic-
ular style of layout. Given a collection of objects to manage and some controlling
information about how to arrange them, a geometry manager assigns a size and

location to each object.

Tsee Appendix C for more information

3.4.1 Flow layout

In order to arrange the set of objects in a horizontal row, the layout has to be
specified as “flow”. The window manager will then position the widgets so that
they abut but do not overlap. If the user changes the size of the containing window,
then the window manager will adjust the position of the widgets automatically to

accommodate the new dimensions.

3.4.2 Border layout

The other supported layout type is “border”. This layout will arrange the widgets
into position using the directions namely “north”, “south”, “east”, “west” and
“center”.

When border layout is used a location parameter must be specified. The default
interpretation of the location is “center”.

The “north”, “south”, “east” and “west” get laid out

to their preferred sizes and the constraints of the container’s size. The “center”

component will get any space left over.

3.4.3 Grid layout

This type creates a grid layout with specified rows and columns, which are obtained
as parameters from the user.

Typical usage:

panel : newpanel(layout = grid(2,2));

30

The above specification will arrange the widgets in the panel with two elements
in each row.

3.5 Examples

This section gives a brief overview of how to arrange widgets within a container

object like window, subwindow, panel, etc.

3.5.1 More on layouts

The following set of ISL specifications gives a general idea of how different layouts

work.

window : main_window(layout = flow, preferred_size=(200,100),
button = one, button = two, button = three, button = four,
button = exit);

button : one(name="One", action= fun_ome);

button : two(name="Two", action= fun_two);

button : three(name="Three", action= fun_three);

button : four(name = "Four", action = funm_four);

button : exit(name="Exit", action= fun_exit);

The above specification with the layout attribute value of “flow” will generate
a window as shown in Figure 3.2.

The size of the window can be altered any time and the arrangement of the
widgets within the window depends on the layout type. Since the layout type is
“flow”, when the window size is increased to 250 (from 200), all the buttons will
get aligned in the same line as shown in Figure 3.3.

31

| one| [Two]| Three| [Four|

Figure 3.2: Flow layout.

If the layout attribute of the window object is changed from “flow” to “grid”
as shown below, then this will alter the appearence as shown in Figure 3.4.
window : main_window(layout = grid(2,3), preferred_size=(200,100),

button = one, button = two, button = three, button = four,
button = exit);

If we want to change the arrangement completely then the border layout can be
used. A sample specification is given below and arrangement of the widgets will be
as shown in Figure 3.5.

Note: It is not enough just to specify the layout type to be the “border”. The

location of each widget within the container has to be specified so that they can

be placed suitably. Another obvious restriction with this layout type is that at the

most it can accomodate only five objects. To overcome this problem, a series of

panels can be used, where each panel can accomodate up to five objects.

window : main_window(layout = border, preferred_size=(200,100),
button = one, button = two, button = three, button = four,

button = exit);
button : one(location = north, name="One", action= fun_one);

32

button : two(location = south, name="Two", action= fun_two);
button : three(location = west, name="Three", action= fun_three);
button : four(location = east, name = "Four", action= fun_four);
button : exit(location = center,name="Exit", action= fun_exit);

In the above example specifications, only the button is used to keep the ex-
ample simple. For the same reason, only the window object is used for placing
the other widgets. In those specifications, the button object can be replaced by
any other widget and the window can be replaced by another container object
like subwindow, panel etc. More detailed examples are given in Chapter 4 and

Chapter 5.

One| |Two| Three| Four

Figure 3.3: Flow layout.

One | Two | ThreeI

Figure 3.5: Border layout.

34

Chapter 4

Translation

ISL specifications described in the previous chapter serves no purpose unless it is
converted into a format suitable for execution. The approach that has been taken
in this work is a two-stage translation process. The user input (ISL specifications)
is translated into intermediate code (using the implemented translator) in the first
stage. In the next stage, the intermediate language’s compiler is used to compile
the code into a format suitable for execution. This chapter gives more information

on the above process.

4.1 Two-stage translation

As the first stage of the two stage translation process, the ISL specification is given
as input to the translator as shown in Figure 4.1. The decision to be made at this

point is: what should be the intermediate language for the translator and what are

the i h istics of the i diate language ? The available options
are: either to generate a high-level language code and then compile it using that
language’s compiler to get the final GUI or to directly generate the executable code
for the GUI from ISL.

There are several of lating the ification into a high-level

language and then using that high-level language’s compiler to compile it to get
the final GUL
First, if the high-level specification has to be translated directly to a machine

then a th h of

code or assembly language for the target h
the machine’s architecture is required (code generation is concerned with the choice
of machine instructions, allocation of machine registers, addressing, interfacing with
the operating system and so on).

Second, in order to produce faster or more compact code, the code generator
should include some form of code imp: or code optimization. If the inter-
mediate language is a high-level language, the compiler of this language will take

care of these optimization issues.

Third, in the case of using an i iate I the code d is easy
to d. This is i during the debugging process as it is possible to
see immediately what the code is doing. So ing any

behavior during the development phase is easier.

Finally, a high-level intermediate language provides platform independence be-
cause there is no tight coupling between the code generated and the machine ar-
chitecture. Hence portability issues can be handled in an elegant way.

For the implementation purpose, to make the job simpler, it has been decided

36

to generate a high-level language code as the output by the translator. The entire

process is represented in Figure 4.1.

T
o
N

}
- @D

Figure 4.1: Processing interface specification.

The process of translation of ISL specification can be divided very broadly into

two steps:
1. The analysis of the source program.
2. The synthesis of the object program.
In a typical compiler, the analysis step consists of three phases: lexical analysis,

syntax analysis and semantic analysis. The synthesis step is simply the code gen-

eration phase.

4.2 Compiler writing tools

Rather than writing a new scanner and parser to process the ISL specifications, the
available tools are analyzed to select the tool which could be used for translation.

4.2.1 Lex and Yacc

The most popular compiler writing tools are lex and yace. Lex is a tool for gener-

ating lezical . Yaccisa 1 0se parser that converts an
g Y g purpose p;

LALR(1) grammar into a table-driven C language parser for this grammar. Yacc
has several shortcomings, including that it cannot accept extended BNF grammars,

and requires that separate lexical and ic descriptis be intained and be

consistent. It provides only minimal support for error recovery [25].

4.2.2 Flex and Bison

The Free Software Foundation’s GNU project supports an “improved” version of
lez and yace called fler and bison, for use on Unix and other non-Unix platforms.

to

They have a better error ion and error d ion facility when

its predecessors.

4.2.3 PCCTS

The Purdue Compiler Construction Tool Set (PCCTS) is another compiler writing
toolkit. Two components of PCCTS, namely DFA and ANTLR !, provide similar

*ANother Tool for Language Recognition.

functions as lex and yacc. However ANTLR accepts LL(k) grammars as opposed
to the LALR(1) grammars used by yacc. The code that PCCTS generates is much
more readable than the code generated by yacc, and ANTLR output consists of

recursive C/C++ functi Di ing errors in the ifications is
comparatively easier since the code is in a more readable form. The main problem
is that the symbol table generated is inefficient and so it grows rather large when
processing a big collection of files. It also suffers from macro redefinition and

memory management problems.

4.2.4 JavaCC

JavaCC is a parser generator written in Java, which is customizable and generates
parser in the Java language. By default, JavaCC generates an LL(1) parser. How-
ever, there may be portions of the grammar that are not LL(1). JavaCC offers the

of ic and semantic lookahead to resolve parsing conflicts locally

at these points, i.e., the parser is LL(k) only at such points, but remains LL(1)

Y else for better

Ad anid.

JavaCC is much easier to use than the tools discussed above. The way JavaCC han-
dles grammars is much more straightforward than LALR parsers. JavaCC generates
a top-down parser and has a detailed error reporting facility whereas bottom-up
parsers like yacc are non-intuitive and have a poor error reporting facility. Also,

JavaCC's error messages suggest likely corrections. JavaCC comes with an algo-

rithm to aid in inserting the necessary lookahead i ion and it also
“infinite lookahead.” The main concern with JavaCC is that the generated parsers
are not as fast as in the case of yacc.

JavaCC can be easily customized to generate Java code (or for that matter, any
code) when required.

Since JavaCC is easily izabl the code ion feature, and
has a detailed error reporting facility, JavaCC has been selected for the implemen-

tation of the ISL.

4.3 High-level intermediate language

As mentioned in the previous sections, generating a high-level language code elim-
lications for the impl ion purpose. But literally hundreds

inates many

of high-level ing | are available for developers to solve

in specific areas. For the implementation one high-level language has to be selected.
The options considered for this project were only Tecl/Tk and Java, because tools
developed in other languages would be more cumbersome and difficult to port to

other platforms.

4.3.1 Tcl/Tk

As a scripting language, Tcl is similar to UNIX shell languages like Bourne Shell
(sh) and the C Shell (csh). It provides enough constructs (variables, control flow,
and procedures) to build complex scripts that assemble existing programs into a
new tool tailored for a particular need [24]. As a script based approach to the user

40

interface programming, it has the following benefits:
® Development is fast because of the rapid turnaround; there is no waiting for
long compilations.
e The Tcl commands provide a higher-level interface to X.
® The core set of Tk widgets is often sufficient for most of the user interface

needs. Furthermore, it is also possible to write custom Tk widgets in C, if
required.

4.3.2 Java

Java language environment, on the other hand, creates an extremely attractive
middle ground between very high-level, portable, slow scripting languages and very
low level, fast but non-portable, compiled languages. Java provides a level of per-
formance that’s entirely adequate for all but the most computationally intensive

licati The other are:

e Java is a simple language. Java omits many rarely used, poorly understood,

confusing features of C++.
o Javahas ic garbage collection, thereby simplifying the task of memory
management.

clean ition of i and makes

Java is object-oriented. It
it possible to provide reusable “software ICs”.

e Java is robust. Java puts a lot of emphasis on early checking for possible
problems. It is strongly typed, hence will not allow automatic coercion of
one data type to another. The single most important difference between Java

41

and C/C++ is that Java does not use explicit pointers which eliminates the
possibility of overwriting memory and corrupting data. Instead of pointer
arithmetic, Java has true arrays. This allows subscript checking to be per-
formed. In addition, it is not possible to turn an arbitrary integer into a
pointer by casting. Java programs also cannot gain unauthorized access to
memory, which can happen in C/C++.

Static typing. Dynamic languages like Lisp, Tcl and Smalltalk are often used
for prototyping, for they do not force decisions to be made early. But Java
forces choices to be made early because it has static typing. Along with these
choices comes 2 lot of assistance: any call to invalid functions will be checked
at the compilation time and not delayed till run time.

e Architecture neutral. In the present personal computer market, application
writers have to produce versions of their application that are compatible with
the IBM PC, Apple Macintosh, and different flavors of Unix. With Java, the
same version of the application runs on all platforms without any modifica-
tion. Java compiler makes this possible by generating bytecode?.

e Javais portable. Being architecture neutral increases the portability by a very
high degree, but there’s more to being portable than just architectural neutral.
Unlike C and C++, there are no “implementation dependent” aspects of the
specification. The sizes of the primitive data types are specified, as is the
behavior of arithmetic on them. For example, “int” always means a signed
two’s complement 32 bit integer, and “float” always means a 32-bit IEEE 754

floating point representation.

o Javais i d. The of the i d bytecode is usually

more than adequate. There are situations where higher performance is re-

’Thehvlcmnpdexeompdadnmmmdemwlbyuwdeu each part of the source code
isreduced toa of bytes that ic a virtual machine; virtual because
those sequence are not specific to any microprocessor.

42

quired. In such situations, the bytecode can be translated to machine code
for the particular CPU in which the application will be running. In such
cases, the is almost indistinguishable from native C or C++.

« Java supports multi-threading. Java has a set of synchronization primitives
that are based on the widely used monitor and condition variable paradigm
introduced by Hoare [23]. Hence Java has a better interactive responsiveness

and real-time behavior.

Other benefits include an extensive networking facility and security for net-

work applications.

Because of many of these features, Java has been selected as the intermediate

language.

4.4 Implementation details

The ! is impls d in JavaCC. A dix A gives the plete specifi-
cation of ISL for JavaCC excluding the code generation part. When the input file
(GULjack 3) is compiled using JavaCC, it results in generation of three new files:

e GUlLjava: the parser,
© GUITokenManager.java: the lexical analyzer, and
o GUIConstants.java: a bunch of internal constants

Apart from the above three files that are generated for every input grammar,

three more files are generated once for use with all input grammars, namely:

3JavaCC was formerly known as Jack

® ASCII.UCodeESC._CharStream.java: an ASCII stream reader to process uni-
code sequence,

o Token.java: the type specification for the “Token” class, and

* ParseError.java: error handling file.

Invoking JavaCC on the input grammar for ISL results in the generation of the
above files. Then the generated Java files are compiled using the Java compiler.

This results in the generation of the translator for ISL.

The d takes the il i in ISL as input and generates

a set of Java files. The generated files have to be compiled using the Java compiler

to get the “actual” GUL

4.4.1 Code generation process

Once the input specification is scanned and parsed, the complete information re-
quired to generate the intermediate code is gathered in the internal data structures
of the translator. For any input specification, there will be one main file (main
class) and zero or more auxiliary files (auxiliary classes), depending on the speci-
fication. For every window object there is a main file and for every subwindow
object there is an auxiliary file.

In the code generation process, first the main file is generated. Within that

file, the user interface d ions are d in the order of ISL

specifications. If the window object has the preferred_size attribute set, then

the standard preferredSize() method* is generated. The translator’s internal data
“In Java all functions are known as methods

44

structure (x_val and y.val) contains the argument values for the preferredSize()
method.

Then the constructor® for the main class is generated. Main class is basically
a “container” object, which contains other interface components. Within the main
class constructor, all the interface objects are defined by instantiating the corre-
sponding Java objects and are laid suitably within the containers based on the
container’s layout attributes.

The application must eventually react to the user input or user events, such
as input from the keyboard or a pointing device such as a mouse. There are
two common models that are used to support the handling of input events by the

program. Either the ication program can i poll all the input devices

to check for any events or the events d by the interf: can be
queued for processing. The latter approach is used in Java to handle the events.
An “action” method is generated by the translator . This method has an entry for
all the potential interface objects which might generate any events.

If the action is “hide” or “exit”, the L a call

to standard Java methods hide() or System.exit(0), respectively. If the action is
anything else, then the complete function has to be specified.

Then, the “main” method is generated which basically instantiates the main
class and displays the main window on the screen. From that point onwards, the

event-handler takes charge of the it ication by ing the i

events.

SConstructor is a member function that is executed automatically whenever an object is cre-
ated, in order to initialize the internal data structures of that object.

After the generation of the main file, the auxiliary files are generated in succes-
sion. The major difference between the main file and auxiliary file is that there is
no “main” method for the auxiliary files. Except for that, the rest of the code gen-
eration process remains the same. The following sections show the correspondence

between the elements of ISL and the Java code generated.

4.4.2 Sample translation

This section gives a complete example of interface specification using ISL for a small
section of an application, which gets the user name and SIN number in the main
window. The main window also has two more buttons: “Exit” and “More Info”,

as shown in Figure 4.2.

Name |[iname

SIN |’39939933
Exit

Figure 4.2: Main window.

When the “Exit” button is clicked, the application terminates; when “More
Info” button is clicked, another dialog window appears on the screen, with three

“radio buttons” to select the age group as shown in Figure 4.3.

46

Figure 4.3: Dialog window on selecting “More Info” button.

4.4.3 Sample specification using ISL

START_ISL

window : mwindow(layout = flow, preferred_size=(180,130),
label = 1bll, textfield = tfl, label = 1bl2,
textfield = tf2, button = exit, button = more);

label : 1bli(name= "Name");

textfield : tfi(value = "name ");

label : 1bl2(name="SIN");

textfield : tf2(value = 99999999) ;

button : exit (name = "Exit", action = quit);

button : more(name="More Info", action = showmoreinfo);

47

subwindow
label

checkboxgroup:

button
END_ISL

: showmoreinfo(layout = flow, label = age,

checkboxgroup = cbg, button = ok);

: age(name="Age Group");

cbg(item = first_grp, name = “1 - 16", value = true,
item = sec_grp , name = "17 - 25", value = false,
item = third_grp , name = "26 - 99", value = false);

: ok(name = "OK", action = hide);

4.4.4 Generated code

This section gives the code d, by the 1 for the above

There is clear mapping between the ISL specification given in the previous section

and the code generated. For example, in the specification, the layout of the window

object is specified as “flow”. This generates the following line of code:

setLayout(new FlowLayout());

The preferred_size attrib i ion results in the ion of the follow-

ing lines of code:

public Dimension preferredSize() {
return new Dimension(180,130);

¥

For the ISL specification:

button : exit(name = "Exit", action = quit);

the code generated is:

public boolean action (Event event, Object arg){
if (event.target == exit){

48

System.exit(0);
return true;

}

return false;

The action triggered by the “Exit” button is a standard action provided by
the Java. To execute some customized action, the ISL has to be specified in the
following way:
button : more(name = "More Info", action = showmoreinfo);

subwindow: showmoreinfo(layout = flow, label = age, checkboxgroup = cbg,
button = ok);

The first line of the specification says that the action to be triggered when
the “More Info” button is clicked is “showmoreinfo”. According to the next line,
“showmoreinfo” is a subwindow object. It implies, that when the “More Info”
button is clicked, the subwindow has to be popped up.

The translator is implemented in such a way that when a new subwindow
object has to be created, the corresponding code is generated in a separate file and
the file name is the same as the action specified, with its first letter capitalized. In

Sh info.java” is d. The ! d d

this case a new file,

for the example in Section 4.4.2 is:

import java.awt.x;

import java.lang.Math;

public class MMainframel extends Frame {
private Showmoreinfo showmoreinfo;
Label 1bli1;
TextField tfl;

Label 1b12;

TextField tf2;

Button exit;

Button more;

public Dimension preferredSize() {
return new Dimension(180,130);

¥

public MMainframe1() {
setBackground (Color.white) ;
setLayout (new FlowLayout());
1bll = new Label("Name");
tfl = new TextField("name
1b12 = new Label("SIN");
tf2 = new TextField("99999999");
exit = new Button("Exit");
more = new Button("More Info");
add(1bl1);
add(tf1);
add(1b12) ;
add(tf2);
add(exit);
add (more) ;

}
public boolean action(Event event, Object arg){
if (event.target == exit){
System.exit(0);
return true;
2
if (event.target == more){
if (showmoreinfo == null){
showmoreinfo = new Showmoreinfo(this, "Moreinfo");
}
showmoreinfo.show();
return true;

3
return false;

B 3

public static void main(String args(){
MMainframel mainframe= new MMainframel();
mainframe.setTitle("Example");
mainframe.pack() ;
mainframe.show() ;

/* Showmoreinfo.java */

class Showmoreinfo extends Dialog{

MMainframel myparent;

Label 1bl1;

CheckboxGroup cbg;

Button ok;

Showmoreinfo(Frame frame, String title){
super(frame, title, false);
setlayout (new FlowLayout());
1bl1 = new Label("Age Group");
add(1bl1);
cbg = new CheckboxGroup();
add(new Checkbox("1 - 16",cbg,true));
add(new Checkbox("17 - 25",cbg,false));
add(new Checkbox("26 - 99",cbg,false));
ok = new Button("OK");
add(ok) ;
pack();

public boolean action(Event event, Object arg){
if (event.target == ok){

51

hide();
return true;
}
return false;

4.4.5 Specification errors

The generated Java code might not be syntactically correct if the ISL specification
of the interface is not complete. This kind of error can be fixed easily when the
generated code is compiled using the Java compiler. As mentioned earlier this is
one of the important advantages of generating a high-level intermediate code.

For example, consider the ISL specification shown below:
window : main_window(layout = border, preferred_size=(200,100),
button = one, button = two, button = three, button = four,

button = exit);

button : one(name="One", action= fun_one);
button : two(mame="Two", action= fun_two);

button : three(name="Three", action= fun_three);
button : exit(name="Exit", action= fun_exit);

In this specification, the “main_window” contains five buttons namely “one”, “two”,
“three”, “four” and “exit”, but in the description above, the button “four” is miss-

ing. This kind of missing specification can be detected when this specification

file is d by the S i exactly the opposite can also hap-
pen, ie., button four might have been specified completely but its entry in the
“main window” object might be missing. The above mentioned errors and typos

52

can also be detected and corrected easily when this specification file is processed
by the translator.

4.4.6 Advanced features

Sometimes a given application cannot be written entirely in Java and in such cases

the code must be written in some other | These special si ions might

arise due to the following reasons:

e A large amount of working code already exists. Providing a Java layer for
that code is easier than porting it all to Java.

e An ication must use syst pecific features not provided by Java classes.

e The Java environment is not fast enough for time-critical applications and
implementation in another language may be more efficient.

To help with these si i Java native i (writ-

ten in some local (native) language [26]. The i
supports this feature with the help of the attribute called lang. The default value

for this attribute is “java.” It can also take “native” as its value, if the functions

are written in some other languages like C/C++. The detailed example given in

Chapter 5 uses this option, since the complete application is written in Fortran.

Chapter 5

Application

This chapter gives a detailed example of using ISL to specification of an interface
for the circuit simulation package SPICE-PAC [21]. SPICE_PAC is an interactive
simulation package that is upward compatible with the popular SPICE-2G pro-
gram. SPICE_PAC is a collection of loosely coupled modules with a well-defined
interface. Hence it can be used in many different ways for different applications.
Typical examples of module functions include reading a circuit description, perform-
ing circuit analysis, changing values of some circuit elements or redefining circuit
parameters. The operations of the package are thus performed “on demand”, as
required by a particular application.

In the case of interactive simulation, it is the user who - during a simulation
session - selects the order, type and parameters of analyses. The flexible structure of
the package makes it possible to combine the same set of “standard” analyses with
several input processors accepting different forms of circuit specification. It also

allows representation of the results in different ways (binary for further processing,

54

textual for storing in a file and so on) [21] [22].

5.1 General organization

SPICE-PAC is organized in two major levels of routines: main routines and internal

routines. The main routines i the “simulation i " which includes

SPICEA, SPICEB, ..., SPICEY; these main routines perform “simulation primi-
tives”, such as reading and ing circuit ipti (SPICEA),

of circuit variables (SPICEB), etc. All circuit analyses (DC,TRANSIENT, AC,
NOISE, etc.) are performed by the routine SPICER. Each main routine invokes

a number of internal subroutines and functions, which however are “invisible” to

users; users need to use only the main routines of the package.

5.2 Analyses and their parameters

This section gives a brief overview of analyses supported by SPICE-PAC, the corre-
sponding main routines and parameters. Of all the main routines, SPICER plays a
vital part, as it is called to run any analysis, with its mode parameter set to proper
value. The parameters of SPICER include:

e mode: indicates the specific analysis (e.g., 1-DC Transfer Curve, 2-Transient,
3-AC, 4-Noise, 5-Distortion, 6-Fourier),

® ztab: an array which returns ind dent source values for the DC
Transfer Curve analysis, time values for the Transient analysis, frequencies for

the AC, Noise and Di: ion analyses, it ies for the Fourier
analysis,

e ytab: an array parameter that returns the results of the DC Transfer Curve,
Transient, AC, Noise, Distortion and Fourier analyses;

o [r: an integer parameter which indicates the length of the ztab array argument

and the maximum number of rows of ytab,

lc : an integer parameter which if positive, indicates the maximum number
of columns of ytab, if negative, indicates the total size of ytab,

® ir: an integer parameter which returns the actual number of “used” rows in
the ztab and ytab arrays, and

® ic: an integer parameter which returns the actual number of “used” columns
in the ztab and ytab arrays.

5.2.1 DC transfer curve analysis

SPICED defines the parameters for DC analysis; the parameters include:
® an independent voltage or current source,
e initial value of the source,
o final value of the source, and

© number of steps.

SPICER performs the DC analysis, when the mode parameter value is 1.

5.2.2 Transient analysis
SPICET defines the parameters for TRANSIENT analysis; the parameters include:
e initial time for the TRANSIENT analysis,
o final time,
« number of steps,
e maximum step size, and
e initial condition to be used.

SPICER performs the TRANSIENT analysis, when the mode parameter value is 2.

5.2.3 AC analysis

SPICEF defines the frequencies for AC analysis; the parameters for this analysis

include:
e starting frequency,
« ending frequency,
e number of steps, and
« indicator (logarithmic, arithmetic, etc.).

SPICER performs the AC analysis, when the mode parameter value is 3.

5.2.4 Noise analysis
SPICEN defines parameters for NOISE analysis. The parameters include:
® independent voltage or current source,

57

o output variable which defines the summing point for the equivalent output

noise, and
e frequency increment for the Noise analysis.

SPICEF defines the frequencies as mentioned in AC Analysis. SPICER performs

the analysis, when the mode parameter value is 4.

5.2.5 Distortion analysis

SPICEG defines parameters for DISTORTION analysis. The parameters include:
® output load resistor,
e ratio of distortion to nominal frequencies,

. itude of distortion signal

® reference power level, and

® fre i value for di: ion analysis.

SPICEF defines the frequencies. SPICER performs the analysis, when the mode
parameter value is 5.

5.2.6 Fourier analysis
SPICEH defines parameters for FOURIER analysis. The parameters include:
o fundamental frequency,
e number of harmonic components,
® initial time for transient analysis of one period of the fundamental frequency,

58

e number of steps,
e maximum step size, and
 initial condition.

SPICER performs the analysis, when the mode parameter value is 6.

5.2.7 Other analyses

Other analyses supported include DC TRANSFER FUNCTION, AC sensitivity
analyses, DC OP-POINT and DC SENSITIVITY analysis. These analyses are not
discussed in this thesis.

5.3 Organization of interactive simulator

The ization of an i ive si can be outlined as a three-layer struc-

ture composed of 2 “dialogue manager”, di and the si
package [21], as shown in Figure 5.1.

DIALOGUE COMMAND SIMULATION
USER — i

——> | MANAGER INTERPRETER PACKAGE

Figure 5.1: Original organization of SPICE-PAC.

“Dialogue manager” mainly organizes the interaction with the user and the
“command interpreter” analyzes user-supplied commands and translates them into

of simul

The graphical interface replaces the first two blocks by the GUI and so the final

representation would be as shown in Figure 5.2.

USER“'" Gut SIMULATION
ER | (GENERATED |—| packacE
FROM ISL) [—

Figure 5.2: Modified organization of SPICE-PAC.

5.4 Presentation of results

SPICE-PAC uses binary representation of information for the purpose of interaction
with other packages. In other words, the parameters passed to the package, as well
as results returned from the package, are stored in variables and arrays defined in
an external “driving” program; it is this external program that must perform all re-
quired conversions and all input/output operations. Hence, there are no “printing”
or “plotting” facilities built into the package, and the required form of “output”
has to be provided by the external “driving” routines. After running any analysis,
the result of the analyses are stored in arrays for use by any subsequently called

routines.

5.5 Specification of GUI in ISL

A dix B gives the ification of the user interface for SPICE-PAC.

The main window for the application is defined as:

60

Analysis | About
DC Transfer Qurve

| Transient

| AC Analysis

Noise Analysis
' Distortion Analysis
| Fourier Analysis

Figure 5.3: Snapshot of main window.

window : main_window(layout = border, menu = main_menu);
menu : main_menu(file, analysis, about);

menuitem : file (name = "File",
submenuitem = quit, name = "Quit",action=function_quit);
menuitem : analysis(name = "Analysis",

submenuitem = ac_analysis, name = "AC Analysis",
action = showaaw,
submenuitem = dc_analysis, name = "DC Analysis",
action = showdaw,
submenuitem = tr_analysis, name = "Transient ",
action = showtaw);
menuitem : about(name = "About",
submenuitem = help,name = "About this Application",
action = show_about);

61

This specification corresponds to a window shown in Figure 5.3, with the analy-
sis menu popped up.

‘When Transient analysis

is selected, the dialog window corresponding to that
analysis is displayed to check and possibly modify the parameters for the analysis.

The corresponding specification is shown below:

Starting Value | 1.0e-09

Final Value 11.2e-07

No of Steps 5

Max Step Size |i2e-08

Condition o

Run| [Cancel

Figure 5.4: Transient dialog window.

subwindow : showtaw(layout = border, item = panel6, item = panel7);
panel : panel6(location = center, layout = grid(5,2),
item = label60, item = tf60,
item = label61, item
item = label62, item
item = label63, item

item = label64, item

label

: label60(name = "Starting Value");

Analysis About

textfield
label

textfield :
: label62(name = "No of Steps");
textfield :
: label63(name = "Max Step Size");

label

label

textfield :

label

textfield :
: panel7(location = south, layout = flow,

panel

button

Figure 5.5: Output of transient analysis.

: t£60(value = 1.0e-05);
: label6l(name = "Final Value");

tf61(value = 1.2e-07);

t£62(value = 51);

tf63(value = 2e-08);

: label64(name = "Condition");

tf64(value = 0);

item = run, item = cancel);

: run(name = "Run", action = action_tr, lang = native);

63

button : cancel(name = “"Cancel”, action = hide, lang = java);

The snapshot for the above specification is shown in Figure 5.4.
Once the input parameters are set, and the “Run” button is clicked, transient
analysis is executed and the output is displayed on the screen as shown in Figure

5.5.

Chapter 6

Conclusions

This thesis briefly overviews the currently available tools and techniques for the
specification of Graphical User Interfaces. Then it defines a high-level specification
1 for hical user interfz called ISL. ISL is designed to be as simple as

possible, so that any user should be able to design the interface in a short period

of time. A translator that converts ISL i ion into a GUI is i

in Java and the ion process is ill d for a small, hy ical example

and a real application is discussed in greater detail.

6.1 Advantages of the proposed approach

The suggested approach has many advantages which include: the generated inter-
face has a native “look-and-feel”, it acts similarly to other user interfaces created

by this h i.e., assures i and reliability of the code is

comparatively higher since the generation process is more standardized. The de-

velopment cost in terms of time and human resources is very small which is one of

the most i d of this because writing applications that
are easily movable to various computer platforms with different user interfaces is a
complex task. Since the implementation is in Java, the generated code is platform
neutral, and retargetting the GUI to any other platform is very simple. It also
implies that maintaining and modification of such GUIs is also simple since the
changes have to be made only to the specification and not to the individual copy
on each platform.

ISL is also supposed to reduce the interface development effort; ISL is a higher-

level ification notation, so its ifications are usually much shorter than equiv-

alent ones in other ing or scriting | For example, the specifica-

tion given in Appendix B is about 80 lines which resulted in generation of about
600 lines of Java code. Other indirect benefits of ISL include ease of modifica-
tion. Since lines of code written is less, modifications to the existing code can be
done without much effort. Moreover, modification of the code does not require any
special knowledge of Java or the underlying windowing system since everything is
taken care of the translator.

With respect to the p ial uses of the GUI d from ISL

the current implementation can be used to generate GUIs for a small or moderate
size applications. The main issue in using this approach is the “integration” of the

GUI with an ication. If the b ication has a clear interface for in-

h can be used

teraction with external icati the

with that application. On the other hand, if the application requires a specialized

66

and synchronization protocol then the proposed approach may not

be suitable.

6.2 Future research

The proposed ISL can be used to specify interface for many general applications as
it supports the commonly used set of widgets. Despite the potential benefits men-
tioned earlier, there are still several improvements which can be made to enhance

the functionality, like ing new widgets, providing special keys features, hid-

den commands and macro facilities.

More work on the implementation part can be done on the manipulation of
graphics. The current status, as it stands, is that when a particular analysis is
run the output can be displayed as a graph on a canvas. The whole canvas can
be enlarged only by changing the size of the window. Special keys or interface
objects can be provided for such manipulations. More support can be provided for
comparing results of a particular analysis with different input data, super-imposing
one graph over the other for easier comparison, selecting a particular portion of a

graph and zooming it for more details, etc.

67

Bibliography

[1] L. M: lay, Human-Cq I ion for Software Designers, Interna-

tional Thomson Computer Press, 1995.

[2] B. A. Myers and M. B. Rosson, Survey on User Interface Programming: Hu-
man Factors in Computing Systems, Proceeding of Human Factors in Com-

puting Systems, pp. 195-202, 1992.

[3] B. Laurel, The Art of Human-Computer Interface Design, Addison-Wesley,
1990.

[4] B. A. Myers, State of the Art in User Interface Software Tools, H. R Hartson
and D. Hix, Ed., Ad in Human-C ion, vol. 4, Ablex

Publishing, 1992.

(5] B. Shneiderman, Designing the User Interface: Strategies for Effective Human-
Computer Interaction, Addison-Wesley, 1987.

(6] F. A. Dix, G.J. Abowd and R. Beale, Human Computer Interaction, Prentice
Hall International, 1993.

[7] Sun Mi SunWindows Prog ’ Guide, 2250 Gracia Ave., Mtn.

View, CA 94043.

(8] M. A. Linton, J. M. Vlissides and P. R. Calder, Composing User Interfaces
with InterViews, [EEE Computer, vol. 22, no. 2, pp. 8-22, 1989.

[9] J. McCormack and P. Asente, An Overview of the X Toolkit, Proceeding of
User Interface Software and Technology, Banff, pp. 46-55, 1988.

[10] J. K. Ousterhout, Tc! and the Tk Toolkit, Addison-Wesley, 1995.

[11] T. Sundsted, Introduction to the Abstract Windowing Toolkit: A description

of Java’s user interface toolkit, Javaworld, 1996.

[12] W. M. Newman, 4 System for I ive Graphical Programming, AFIPS

Spring Joint Computer Conference, pp. 47-54, 1968.

[13] R. J. K. Jacob, A Specification L for Direct Manipulation Interfaces,

ACM Transactions on Graphics, vol. 5, no. 4, pp. 283-317, 1986.

[14] D. R. Olsen, Jr. and E. P. Dempsey, Syngraph: A Graphical User Interface
Generator, Proceeding of SIGGRAPH'83, Detroit, pp. 43-50, 1983.

[15] M. A. Flecchia and R.D. Bergeron, Specifying Complez Dialogs in ALGAE,
Proceeding of Human Factors in Computing Systems, Toronto, pp. 229-234,
1987.

[16] P. J. Hayes, P. A. Szekely, and R. A. Lerner, Design Alternatives for User In-
terface Management Systems Based on Egperience with COUSIN, Proceeding

of Human Factors in Computing Systems, San Francisco, pp. 169-175, 1985.

69

(7]

18]

[19]

[20]

[21]

[22]

23]

[24]

A. J. Schulert, G. T. Rogers, and J. A.Hamilton. ADM-A Dialogue Manager,
Proceeding of Human Factors in Computing Systems. San Fransisco, pp. 177-
183, 1985.

W. Nicholas and C. Lewis, Spreadsheet-based Interactive Graphics: from Pro-
totype to Tool, Proceeding of Human Factors in Computing Systems, Seattle.
pp. 153-159, 1990.

S. E. Hudson, User Interface ification Using an Enhanced
Model, Technical Report GIT-GVU-93-20, Georgia University of Technology,
Graphics, Visualization and Usability Center, Atlanta, Georgia, 1993.

D.D.Cowan, C.M.Durance, E.Giguere and G.M.Pianosi, CIRL/PIWI: A GUI
Toolkit Supporting Retargettability, Technical Report CS-92-28, University of

‘Waterloo, Department of Computer Science, Waterloo, Canada, 1992.

W. M. Zuberek, SPICE-PAC version 2G6c - An Overview, Technical Report
#8903, Department of Computer Science, Memorial University of Newfound-
land, St.John’s, Canada, 1989.

W. M. Zuberek, SPICE-PAC version 2G6c: User’s Guide, Technical Report
#8902, Department of Computer Science , Memorial University of Newfound-
land, St.John’s, Canada, 1989.

C.A.R. Hoare, Monitors: An Operating System Structuring Concepts and
Communications, Journal of ACM, vol. 17, no. 10, pp. 549-557, 1974.

B. B. Welch, Practical Programming in Tcl and Tk, Prentice Hall, 1997.

70

[25] J. R. Levine, T. Mason and D. Brown, lez & yacc, O'Reily & Associates, 1992.

[26] K. Arnold and J. A. Gosling, The Java Programming Language, Addison-
Wesley, 1996.

Appendix A

This appendix first provides a brief introduction to JavaCC, the parser generator,
and then shows the specification for ISL.

Any grammar file for JavaCC starts with the settings for all the options sup-
ported by JavaCC. The two settings used here are: LOOKAHEAD and DEBUG'.

Following the option settings is the Java compilation unit enclosed between
“PARSER BEGIN(name)" and “PARSER END(name)". The only constraint on
this compilation unit is that it must define a class called name - same as the
argumeants to PARSER BEGIN and PARSER_END. This is the name that is used
as the prefix for the Java files generated by the parser generator. In this example,
“name” is GUL

Then the lexical tokens are defined. They can be either simple strings (e.g.,
“{", “}") or a more complex regular expressions. The first token, named IG-
NORE_IN_BNF, is a special token. Any tokens read by the parser that match the
characters defined in the IGNORE_IN_BNF token are silently discarded. Here this

causes the parser to ignore space characters, tabs, and carriage return characters

!For more information about these options and other available options please look at the
JavaCC home page at www.suntest.com/JavaCC/.

72

in the input file.

the ing token itions define the that the gram-
mar will interpret as special characters, GUI objects, reserved words. layout types
etc.

After the lexical tokens, list of productions are defined. In JavaCC grammars.
nonterminals correspond to methods. Each production defines its left-hand side
nonterminal followed by a colon. This is followed by a sequence of declarations and
statements within braces (here in all the cases there are no declarations and hence
this appears as “{}") and then by a set of expansions (also enclosed in braces).

After the grammar is specified completely, parser can be built by running

JavaCC on the input file and compiling the resulting Java files.

ISL grammar

This section gives the i ion for ISL, excluding the code
part.

options {
LOOKAHEAD = 1;
DEBUG = true;
¥
PARSER_BEGIN (GUT)
public class GUI {
static void startUp() throws IOException {
GUI parser = new GUI();
parser.Input();

}
¥

PARSER_END (GUT)

IGNORE_IN_BNF :
o
s
el ol L R
| <COMMENT_A: “/+* (“[*s"])= "s* (C["/"] ([""D)s "em)e "/">

| <COMMENT_B: “//* ("["\n","\r"1)* ("\n"["\r\n")>
}

TOKEN : /* special chars =/

O

{ <ASSIGN: "=">

<COMMA :
<COLON: “:
<SEMICOLON: “;">
<LPARAN: "(">
<RPARAN: ")">
<DOUBLE_QUOTES:

(7 Qe

TOKEN : /* GUI objects */

e

{ <WINDOW: "window">

| <SUBWINDOW: "subwindow">

| <PANEL: "panel">

| <LABEL: “"label">

| <MENU: “menu">

| <MENUITEM: "menuitem">

| <CHECKBOXGROUP: "checkboxgroup">
| <TEXTFIELD: xtfield">
|
|
|
}

<BUTTON: "button">
<CHECKBOX: ‘“checkbox">
<CANVAS: "canvas">

TOKEN : /* Reserved words */
4

74

{ <START_IDL: "START_IDL">

| <END_IDL: “END_IDL">

| <LAYOUT: "layout">

| <SUBMENUITEM: “submenuitem">

| <PREFERRED_SIZE: “preferred_size">
| <LOCATION: “"location">

| <ITEM: "item">

| <NAME: “name">

| <ACTION: "action">

| <RETURN_TYPE: "return_type">

| <VALUE: "value">
|

I

|

|

|

1

|

1

}

<X_PARAM: “x_param">
<Y_PARAM: "y_param">
<VAR: '"var">

<TYPE: "type">

<VAL: "val">

<SIZE: “size">

<LANG: “lang">
<FUNCTION: “"function">

TOKEN : /* layout type i.e., flow,grid,border etc */
o

{ <FLOW: "flow">

| <GRID: "grid">

| <BORDER: "border">

}

TOKEN : /+ location type */
1

{ <NORTH: “north">

| <CENTER: “center">

| <SOUTH: "south">

| <WEST: "west">

| <EAST: “east">

}

75

TOKEN : /+ function type */

e

{ <_JAVA: "java">

| <_NATIVE: "native">

}

TOKEN : /+ variable type */

O

{ <INT: "int">

| <DOUBLE: “double">

| <FLOAT : “"float">

}

TOKEN : /* Identifiers =/

£

£:€ Id: [Har~ z","

TOKEN : /+ Number +/

e

{ <Number: (["0"-"9"])+

| (["0"="9])+ "." (["O"-"9"])+

| =% ([*0"-"9"])+

| (C"0"-"9"1)+ “e* (["+","-*])7 (["0"-"9*1)+

| ([*0"-"9"1)+ (*.*)? (["0*-"9~1)+ "e* (["+",*-"1)7 (["0"-"9"1)+ >

3

/* Space embeddable String */

TOKEN :

Ros

{ <sstring: "\"*
(i

void Imput() :

e

{ start_id1() (Object() <COLON> List() <SEMICOLON>)+ End_id1() <EOF> }

void Object() :

O

{ <WINDOW>

| <SUBWINDOW>

upn_nuzn wguongn w_w])x > }

1 ([a

LM M)w e\ > 3

6

| <MENU> {a.menubar_flag = true;}
| <MENUITEM>

| <PANEL>

| <LABEL>

| <CHECKBOX>

| <CHECKBOXGROUP>

| <CANVAS>

| <TEXTFIELD>

| <BUTTON>

| <VAR>

}

void Layout_type()
A8

{ <FLOW>

| <GRID>

| <BORDER>

}

void Loc_type() :
o]

{ <NORTH>

| <CENTER>

| <SOUTH>

| <WEST>

| <EAST>

}

void List() :

o]

{ (<Id> <LPARAN> (List_i() | List_a()) <RPARAN>) }
void List_i() :

e

{ <Id> (<COMMA> <Id>)* }

void List_a() :

ied

{ Pair() (<COMMA> Pair())=}

void Pair() :

eg

{ LOOKAHEAD("preferred_size") <PREFERRED_SIZE> <ASSIGN> <LPARAN>
<Number> <COMMA> {a.p size_flag = true;}

LOOKAHEAD ("submenuiten") <SUBMENUITEM> <ASSIGN> <Id>

LOOKAHEAD ("name")<NAME> <ASSIGN> <SString>

LOOKAHEAD ("value") <VALUE> <ASSIGN> (<Id>|<Number>|<SString>)
LOOKAHEAD ("layout" "=" “grid") <LAYOUT> <ASSIGN> <GRID> <LPARAN>
<Number> <COMMA> <Number> <RPARAN>

LODKAHEAD ("layout") <LAYOUT> <ASSIGN> Layout_type()

LOOKAHEAD ("location") <LOCATION> < ASSIGN> Loc_type()

LOOKAHEAD ("menu") <MENU> <ASSIGN> Attribute_value(

LOOKAHEAD ("canvas") <CANVAS> <ASSIGN> Attribute_value()

LOOKAHEAD ("button") <BUTTON> <ASSIGN> Attribute_value()

LOOKAHEAD("1label") <LABEL> <ASSIGN> Attribute_value()
LOOKAHEAD("panel") <PANEL> <ASSIGN> Attribute_value()

L () <ASSIGN> Attribute_value()

L p") Attribute_value()

LOOKAHEAD ("textfield") <TEXTFIELD> <ASSIGN> Attribute_value()

LOOKAHEAD("(") <LPARAN> Pair() <RPARAN>

LOOKAHEAD ("return_type") <RETURN_TYPE> <ASSIGN> Var_type()

LOOKAHEAD("lang") <LANG> <ASSIGN> Lang_type()

LOOKAHEAD("type") <TYPE> <ASSIGN> Var_type()

LOOKAHEAD("size") <SIZE> <ASSIGN> <Number>

LOOKAHEAD("val") <VAL> <ASSIGN> (<Id>|<Number>)

LOOKAHEAD ("function") <FUNCTION> <ASSIGN> <SString>
Attribute_name() <ASSIGN> Attribute_value()

N N S A S P s L

void Lang type() :
3

{ <_Java>

| <_NATIVE>

}

void Var_type() :

O

{ <INT>

| <FLOAT>

| <DOUBLE>

¥

void Attribute_name() :

O

!

I

|

| <NAME>

| <ACTION>

| <X_PARAM>

| <Y_PARAM>

¥

void Attribute_value() :

204

{ <1d> }

void Start_id1(Q : {

try { startUp() ; } catch (IOException e) { }
}

{ <START_IDL> }

void End_id1() : {

try { closeD); } catch (Il ione) {1}
}

{ <END_IDL> }

Appendix B

The following is the complete specification of GUI in ISL, as used in Section 3.

START_ISL

window
menu

menuitem

menuitem

menuitem

: main_window(layout = border, menu = main_menu,

canvas = graph_canvas);

: main_menu(file, analysis, about);
: file (name = "File",

submenuitem = quit, name = "Quit",
action = function_quit);

: analysis(name = "Analysis",

submenuitem = ac_analysis, name= "AC Analysis",
action = showaaw,

submenuitem = dc_analysis, name= "DC Amalysis®,
action = showdaw,

submenuitem = tr_analysis, name= “Transient”,
action = showtaw,

submenuitem = n_analysis, name = "Noise Analysis",
action = shownaw,

submenuitem = dis_analysis, name = "Distortion Analysis",

action = showdisaw,

submenuitem = f_analysis, name = "Fourier Analysis",

action = showfaw);

: about(name = "About", submenuitem = help,

name = "About this Application", action = show_about);

80

subwindow
panel

label
checkboxgroup:

panel

label
label
textfield
textfield
panel

button

button :
subwindow

panel

label
checkboxgroup:

panel

label
textfield
label

: showaaw(layout = border, item =panel0,

item = panell, item = panel2);

: panelO(location = morth, layout = flow,

item = label00, item = cbg);

: label0OO(name = "Source Type");

Lin", value = false,
ct", value = false,
Dec", value = true);

cbg(item = lin, name=
item = oct, name
item = dec, name =

: panell(location = center, layout = flow,

item = labell0, item = start_freq tf, item = labelli,
item = end_freq_tf);

: labeliO(name = "Start Frequency");

: labelll(name = "End Frequency");

: start_freq_tf(value = 100);

: end_freq_tf(value = 1000);

: panel2(location = south, layout = flow, item = cancel,

item = run);

: cancel(name = "Cancel", action = hide);

run (name = "Run", action = action_ac, lang= native);

: showdaw(layout = border,item = panel3,item = panel4,

item = panel5);

: panel3(location = north, layout = flow, item = label30,

item = cbgl);

: label30(name = "Source Type");

cbgi(item = soucrel, name = "Sourcei", value = true,
item = source2, name = “Source2", value = false);

: panel4(location = center,layout = grid(0,1),

item = label40, item = source_name,
item = label4l, item = source_value,
item = label42, item = end_value,

item = label43, item = increment_value);

: label40(name = "Source Name");
: source_name(value = Vin);
: label41(name = "Start Valus

81

textfield
label
textfield
label
textfield
panel

button
button

subwindow

panel

label
textfield
label
textfield
label
textfield
label
textfield
label
textfield
panel

button
button
subwindow
panel

: start_value(value = 1);

: label42(name = “End Value");

: end_value(value = 5);

: label43(name = "Increment Value");

: increment_value(value = 0.01);

: panel5(location = south,layout = flow, item= cancel,

item = run);

: cancel(name = "Cancel", action = hide_dc);

run(name = "Run DC Analysis", action = action_dc,
lang = native);

: showtaw(layout = border, item = panel6,

item = panel7);

: panel6(location = center, layout = grid(5,2),

item = label60, item = tf60, item = label6i,
item = tf61, item = label62, item = tf62,
item = label63, item = tf63, item = label6d,
item = tf64);

: label60(name = “Starting Value");
: tf60(value = 1.0e-05);

label61(name = "Final Value");

: tf61(value = 1.2e-07);

: label62(name = "No of Steps");
: tf62(value = 51);

: label63(name = "Max Step Siz
: tf63(value = 2e-08);

: label64(name = "Condition");
: tf64(value = 0);

: panel7(location = south, layout = flow,

item = run, item = cancel);

: run(name = "Run", action = action_tr, lang = native);
: cancel(name = "Cancel", action = hide, lang = java);
: show_about(layout = flow, item = panel8);

: panel8(location = center,layout = flow, label = myl,

button= ok);

82

label : myl(name = "SPICE PAC Beta version");

button : ok(name = "Ok", action = hide);

canvas : graph_canvas(location = center, name = "GraphCanvas",
x_param = time, y_param = V1i);

END_ISL

83

Appendix C

This ix gives the code for the ized canvas object. Though

this is fine tuned for SPICE-PAC application, it can be used for other general
applications.

The most i part of the impl Java class is the paint() method.

This method is called by Java whenever the application (canvas) needs to be painted
- when the canvas is initially drawn, when the window containing it is moved, or
when another window is moved from over it.

The other methods like setValues, getMax, getMin etc., are used initilize the
internal data structures and for other internal data manipulations. Here in this
example most of the variables (especially arrays) are fine tuned for SPICE-PAC
application.

/* Customized CANVAS object */
import java.awt.*;

import java.lang.Math;

public class MyCanvas extends Canvas{

static int count = 0;

int k=0;

double ta[] = new double[200];

84

double tb[] = new double[1000];

double tbi[] = new double[200];

double tb2[] = new double[200];

double tb3[] = new double[200];

int ar=0,nc=0,ir=0,ic=0;

int nos =0;

double fv =0, sv = 0;

int h,w,h1,v1;

double bta,sta, btbl,stbl, btb2,stb2, btb3,stb3;

double btb,stb;

int basex, basey;

int incrx, inmcry;

int NOD; //No.Of.Divisions on x and y axis

public MyCanvas(int pk,double pta(],double ptb[(],double ptbill,
double ptb2[],double ptb3[],int pnmr,int pnc,int pir,int pic,
double psv, double pfv, int pnos){

ta = pta;

tb = ptb;

or = por;

nc = pac;

ir = pir;

ic = pic;

sv = psv;

fv = pfv;

nos = pnos;

¥

public void setValues(int pk,double pta[], double ptb(l,
double ptbi[], double ptb2[],double ptb3[], int pnr,int pnc,
int pir, int pic, double psv, double pfv, int pnos){

k =pk ;

85

ta = pta;
tb = ptb;
or = por;
nc = pnc;
ir = pir;
ic = pic;
sv = psv;
fv = pfv;
nos = pnos;
¥
/* format the values to be displayed on x and y axes */
public String fmt(Double d, int minWidth){
String tmp = d.toString();
if (d.doubleValue() < 0) minWidth++;
int tmplen = tmp.length();
if (minWidth < tmplen) tmp = tmp.substring(0,minWidth);
return tmp;
}
public void paint(Graphics g){
w = size() .width;
h = size() .height;
wl = w - 60; //width of the rectangle drawn
1=h - 60; //height of the rectangle drawn
double tmp = 0;
int tlx = 30; //top_left_x
int tly = 30; //top_left_y
basex = tlx;
basey = tly;
int incr = 100;
double x1,x2;

double y1,y2;

int int_x1, int_x2;

int int_yl, int_y2;

Color ci = nmew Color(0,0,255);

Color ¢2 = nmew Color(200,55,100);

Color c3 = new Color(255,0,0);

for (int i = 0; i < ir; i++) {

for (int j = 0; j < ic; j+){

if(j 0) tbi[i] = tb[i+j*nr];
else if(j == 1) tb2[i] = tb(li+j*nr];
else if(j == 2) tb3[i] = tb(i+j*nr];

bta = getMax(ta);

sta = getMin(ta);

btbl = getMax(tbi);

stbl = getMin(tbl);

btb2 = getMax(tb2);

stb2 = getMin(tb2);

btb3 = getMax(tb3);

stb3 = getMin(tb3);

btb = btbi1;

else if (btb2 > btb) btb = btb2;
else if (btb3 > btb) btb = btb3;
stb = stbi;

else if (stb2 > stb) stb = stb2;
else if (stb3 > stb) stb = stb3;
g-clearRect(0, 0, w , h);
g.drawRect(tlx, tly, wi , hi);
NOD=5; //No. Of Divisions

87

/* draw the markings on the horizontal scale*/

incrx = (w1)/NOD;

double xunit =(bta - sta)/NOD;

double xval = sta;

for (imt i = tlx; i <= wi+tlx; i= i+ incrx){
StringBuffer x = new StringBuffer();
g-fillRect(i, (hi+tlx), 3,3);
Double dval = new Double(xval);
g.drawString(fmt(dval,8), i-10, (tlx+h1+15));
xval = xval+xunit;

¥

/* draw the markings on the vertical scale */

incry=(int) (h1/NOD) ;

double yunit = (btb - stb)/NOD;

double yval = stb;

for (int i = hi+tly; i >= tly ; i= i- imcry){
StringBuffer y = new StringBuffer();
g.fillRect(tlx, i-2, 3,3);
Double dval = new Double(yval);
g.drawString(fmt(dval,4), 2, i+5);
yval = yval + yunit;

for(int i 0; i < ir; i+){

x1 = talil;

if (i+1 < ir) x2 = tali+1];
else x2 = x1;

y1 = tb1[il;

if (i+1 < ir) y2 = tbi[i+1];
else y2 = y1

g-setColor(cl);

88

int_x1 = (int)Math.rint(transx(x1));
int_x2 = (int)Math.rint(transx(x2));
int_y1l = (int)Math.rint(transy(y1));
int_y2 = (int)Math.rint(transy(y2));
g.drawLine(int_x1,int_y1,int_x2,int_y2);
g-drawString("#",int_x1-3,int_y1+6);
StringBuffer sb = new StringBuffer();
sb.append (i) ;

yi = tb2[il;

if (i+1 < ir) y2 = tb2[i+1];

else y2 = y1;

int_yl = (int)Math.rint(transy(y1));
int_y2 = (int)Math.rint(transy(y2));
g.setColor(c2);
g.drauLine(int_x1,int_y1,int_x2,int_y2);
g.drawString("#",int_x1-3,int_y1+6);

yi = tb3[il;
if (i+1 < ir) y2 = tb3[i+1];
else y2 = yi

int_yl = (int)Math.rint(transy(y1));
int_y2 = (int)Math.rint(transy(y2));
g.setColor(c3);
g-drawLine(int_x1,int_y1,int_x2,int_y2);
g.drawString("+",int_x1-3,int_y1+6) ;

}
public double getMax(double ary[1){
double max = ary[0];
for(int i = 0; i < ir; i+){
if (ary[i] > max) max = ary[il;

89

}
return max;
}
public double getMin(double ary[1){
double min = ary[0];
for(int i = 0; i < ir; i+){
if (ary[il < min) min = ary(il;
8
return min;
}
double transx(double rawx){
double ri; //Range Index
double xrange = bta - sta;
ri = (rawx - sta)/(xrange/NOD);
rawx = basex+(ri* incrx);
return rawx;
¥
double transy(double rawy){
double ri; //Range Index
double yrange = btb - stb;
ri = (rawy - stb)/(yrange/NOD);
rawy = ri * incry;
/* IMPORTANT: convert from canvas to realtime axis */
rawy = hi+basey - rawy;
return rawy;

Appendix D

This appendix provides information related to the use of ISL and the GUI generator.

These instructions are valid at the time of writing.

Installation instructions

Installation instructions assume that the target machine is running a recent release
of the X Window System (Version 11) on a Unix operating system. Java version
1.0.1 or later and JavaCC version 0.5 or later must also have been installed on the
target machine. No special permission is required to use the package.

Extracting the archive file

This distribution includes a single compressed archive file called guigenerator.tar.gz
which can be extracted using the command:

$ gzip -dc guigenerator.tar.gz — tar xvf -

This will create a directory called guigenerator and all the relevant files will be
placed in that directory. These file and subdirectories are described in Table 1.

91

Table 1: Files included in the distribution.

Filename Description
README A text file containing information on how to use the translator
MyCanvas.java Java file containing information required to use canvas object

GULjava & GUlIa java

The translator (i.e., scanner, parser and code generator)

Makefile

File to build the translator

Compilation

To generate the GUI after writing the ISL , change to the directory guigenerator

and type make. If there were no errors during the compiling and linking, required

Java classes will be created in the current directory which can then be executed

directly using the jova runtime.

Environment variables and other information

LD_LIBRARY PATH must be set to the present working directory.
PATH should include the current directory.

92

	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Information To Users
	006_Title Page
	007_Copyright Information
	008_Abstract
	009_Acknowledgement
	010_Table of Contents
	011_Table of Contents iv
	012_Table of Contents v
	013_Table of Contents vi
	014_Table of Contents vii
	015_List of Figures
	016_List of Tables
	017_Chapter 1 - Page 1
	018_Page 2
	019_Page 3
	020_Page 4
	021_Page 5
	022_Page 6
	023_Chapter 2 - Page 7
	024_Page 8
	025_Page 9
	026_Page 10
	027_Page 11
	028_Page 12
	029_Page 13
	030_Page 14
	031_Page 15
	032_Page 16
	033_Page 17
	034_Page 18
	035_Chapter 3 - Page 19
	036_Page 20
	037_Page 21
	038_Page 22
	039_Page 23
	040_Page 24
	041_Page 25
	042_Page 26
	043_Page 27
	044_Page 28
	045_Page 29
	046_Page 30
	047_Page 31
	048_Page 32
	049_Page 33
	050_Page 34
	051_Chapter 4 - Page 35
	052_Page 36
	053_Page 37
	054_Page 38
	055_Page 39
	056_Page 40
	057_Page 41
	058_Page 42
	059_Page 43
	060_Page 44
	061_Page 45
	062_Page 46
	063_Page 47
	064_Page 48
	065_Page 49
	066_Page 50
	067_Page 51
	068_Page 52
	069_Page 53
	070_Chapter 5 - Page 54
	071_Page 55
	072_Page 56
	073_Page 57
	074_Page 58
	075_Page 59
	076_Page 60
	077_Page 61
	078_Page 62
	079_Page 63
	080_Page 64
	081_Chapter 6 - Page 65
	082_Page 66
	083_Page 67
	084_Bibliography
	085_Page 69
	086_Page 70
	087_Page 71
	088_Appendix A
	089_Page 73
	090_Page 74
	091_Page 75
	092_Page 76
	093_Page 77
	094_Page 78
	095_Page 79
	096_Appendix B
	097_Page 81
	098_Page 82
	099_Page 83
	100_Appendix C
	101_Page 85
	102_Page 86
	103_Page 87
	104_Page 88
	105_Page 89
	106_Page 90
	107_Appendix D
	108_Page 92
	109_Blank Page
	110_Blank Page
	111_Inside Back Cover
	112_Back Cover

