

INFORMATION TO USERS

This m&rIUSCript: bas been reproduced from the miaofilm rnaste:r. UMI

fihns the text direcdy from the original. or copy submitted. 'IbJ.s, some

thesis aDd dissertation copies are in typewriter face. while others may be

from any type ofcomputer printer.

The qaality of this reproducdoa is depa:dellt _poD the qWity of the

c=opy submitted. Broken or indistinct print. colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper aJjgnment can adversely affect reproduction.

In the unIikdy event that the author did not send UMI a complete

manuscript and there are missing pages. these will be noted. Also, if

unauthorized copyright material had to be removed. a note will indicate

the deletion.

Ovustte _ (e.8-....... <fa,"","" cbarts) .,. <eproduced by

sectioning the original. beginDing at the upper left-hand comer and

contirnJiDg from k:ft. to right mequal sections with smaD overlaps. Each

original is also photognphed in ODe Clq)OSUte and is included in reduced

form at the back ofthe book..

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" bJacJc and white

photographic prinu are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

oroer.

UMI
A BellA HaM:D Iafi:lnDIlioo Compuy

300 Nonb zed) Roed., NJZJ Albae MI 41106-1346 USA
3un61~700 1OOIS1l..()l5OO

High-level Specification of Graphical

User Interfaces

by

Muthura.ma.n Muthu

A thesis submitted to the School of Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

September 1997

St. John's Canada

.+. National Ubnuy
of canada

Acquisitions and
Bibliographic5ervices

3liI5w........sn.
=.ONK1ADfoM

Acquisitionset
services btiographiques

3ll5.....~
aa.-.ON K1A0H4
e.-

The author bas granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan., distnbute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant ala
Bibliotheque nationale du Canada de
reproduire. peeter, distribuer ou
vendre des copies de cette these sous
Ia forme de microfiche/film. de
reproduction sur papier au sur format
electronique.

L'auteur conserve la propriet:e du
droit d'auteur qui protege cette these.
Ni la these oi des extraits substantiels
de celle-<:i DC doivent etre imprimes
au autremenl reproduits sans son
autorisation.

Abstract

Recent studies have shown that users of GUIs make fewer mistakes, feel less frus­

trated, suffer less fatigue and are more able to learn for themselves about the

operation of new packages than users of non.graphical or character-based user in­

terfaces. On the other hand, other surveys on user interface programming show

that developing a Gut is a very complex task. that in today's applications a con­

siderable amount of resource; (time and effort) are devoted to the user interface

portion both in the development phase and in the maintenance phase.

This report discusses currently available toolkits and specification methods that

facilitate the development of a GUI in an efficient way and compares their merits

and demerits. A new solution is tben proposed by developing a high-level spec­

ification language for interfaces. The proposed approac.h is implemented using

JavajJavaCompilerCompiler (JavaCe). A simple applicatioD. is also presented.

Key Words: Grapbical User Interfaces, Toolkits, Interface Specification Lan­

guages, User Interface Design.

Acknowledgment

First I would like to thank my supervisor Dr.Wlodek Zuberek for his thoughtful and

patient guidance which he provided from the project's inception to its completion.

I would like to thank Michael Rayment for his time and patience in answering a

myriad of weird questions at all times. Also I would like to thank Michael Rendell

for his useful suggestions on the implementation part, Nolan White for fixing up

the system related problems in no time and Elaine Boone for reviewing the early

drafts.

I would also like to thank my family and friends and others who have contributed

to my research and thesis. My special thanks go to my friends, Janny Rodriguez

and L.Srikanth who introduced me to the art of programming when [was working

in Wipro Infotech Ltd., Bangalore.

Finally, my sincere thanks to the developers of freely available tools such as

Java, JavaCC, LaTeX and other related tools which contributed. significantly to the

successful completion of this project.

Contents

Abstract

Acknowldegement

Table of Contents

List of Figures

List of Tables

1 Introduction

1.1 Graphical user interfaces .

1.2 User interface tools

1.3 The purpose of this project

1.4 Brief overview of remaining chapters

2 Graphical user interfaces

2.1 Components of the graphical user interfaces

2.2 Windowing system

iii

iii

vii

viii

2.3 Toolkits

2.3.1 Toolkit typeS

2.3.2 Advantages and disadvantages of toolkits . 10

2.4 Higher level tools 11

2.4.1 State transition networks . 11

2.4.2 Context-free grammars . . 12

2.4.3 Event languages 13

2.4.4 Declarative languages . 14

2.4.5 Constraint languages 15

2.4.6 Database interfaces . 15

2.4.7 Visual programming 16

2.4.8 Summary of different approaches 16

2.5 Other considerations 17

3.3.3 menuitem

3.3.4 lahel.

3.3.2

3.3.7 panel.

19

19

20

22

22

23

24

24

25

25

26

button.

subwindow•••..•.••

3.3.5

3.3.6

3.3 Objects and their attributes••••••..•..

3.3.1 window

3.2 Interface Specification Language (ISL)

3 Specification of user interfaces

3.1 Interface components .

iv

3.3.8 text6eld

3.3.9 checkbox.

3.3.10 checkboxgroup

3.3.11 canvas .

3.4 Geometry managers. •

3.4.1 Flow layout

3.4.2 Border layout .

3.4.3 Grid layout

3.5 Examples

3.5.1 More on layouts

27

27

28

28

29

30

30

30

31

31

4.2.2 Flex and Bison

4 ThansiatioD

4.3.1 Tci/Tk.

4.3.2 Java

4.1 Two-stage translation.

4.2 Compiler writing tools

3.
35

38

38

38

38

39

40

40

41

43

44

46

47

Lex and Yacc • • • • • • • • • . • ..••.

SMnpie specification using lSL ••••••.

4.2.1

4.4.3

4.2.3 pcers
4.2.4 JavaCC

4.3 High-level intermediate language.

4.4 Implementation details

4.4.1 Code generation process

4.4.2 Sample translation

4.4.4 Generated code ••••••.. 48

4.4.6 Advanced reatures

4.4.5 Specification errors • 52

53

5 Application

5.1 General organization

5.2 Analyses and their parameters .

5.2.1 DC transrer curve analysis .

5.2.2 Transient analysis ..

5.2.3 AC analysis ..

5.2.4 Noise analysis.

5.2.5 Distortion analysis

5.2.6 Fourier analysis .

5.2.7 Other analyses

5.3 Organization or interactive simulator

5.4 PresenLation or results

5.5 Specification or GUt in ISL••••••••••....••.

6 Conclusions

6.1 Advantages or the proposed approach .

6.2 Future research

References

Appendix A

Appendix B

vi

54

65

55

56

57

57

57

58

58

59

59

60

60

6.

65

67

6.

72

79

Appendix C

Appendix D

vii

83

90

List of Figures

2.1 The components of user interface.

3.1 An example information dialog window.

3.2 Flow layout.

3.3 Flow layout.

3.4 Grid layout.

3.5 Border layout.

4.1 Processing interface specification.

4.2 Main window.

4.3 Dialog window on selecting "More loCo" button.

5.1 Original organization of SPICE-PAC.

5.2 Modified organi2:ation of SPICE-PAC..

5.3 Snapshot of main window.

5.4 Transient dialog window.

5.5 Output of transient analysis.••••••.

21

32

34

34

34

37

46

47

59

60

61

62

63

List of Tables

Files included in the distribution. 92

Chapter 1

Introduction

A user interface is the means by which the user communicates with an application

and an application with the user. This interface is often the most important feature

on which the success of the system depends. An interface which is difficult to use

will, at best, result in a high level of user errors; at worst, it will cause the software

system to be discarded, irrespective of its functionality.

It should be noted that developers of application software such as personal

systems. stock control or order entry systems, typically dedicate a corasiderable

amount of the program code to the implementation of the graphical user interface.

Thus the time and cost incurred in the development of the user interface can be

very significant [lJ.

1.1 Graphical user interfaces

Graphical user interfaces (CUIs) have brought quantifiable benefits to users and

organizations tbat rely on software products. Recent studies (21 [3J have shown

that users of CllIs make fewer mistakes, feel less frustrated. suffer less fatigue and

are more able to learn for themselves about the operation of new packages than

users of non-graphical or character-based user interfaces.

From a software designer's point of view, however, GUIs are more difficult to

design than character-based interfaces [41. The user's interaction with the CUI

is more complex because it is based on principles of direct manipulation l (51 and

concurrent user's access to multiple windows, icons, menus and input devices. A

character-based interface normally only allows the user sequential acr:ess: first view

a menu, then make a selection, then view the next screen, tben enter the data.

With the cbaracter-based interfaces, the user inurfa« can be designed in such a

way that the user will undertake a task in a predefined sequence. In the case of the

GUI, many actions are allOftd on interface objects and the user will decide which

actions to take and in what order.

On the other hand, GUIs must be designed with care in order to avoid the

problems caused by poor CUI design, which include reduced user productivity,

unacceptable learning times and unacceptable error levels; all these factors leading

to frustration and again potential rejection of the system by the user.

lThe ability to see and point ttl menus and icons rather than to remember and type written
commands.

1.2 User interface tools

Graphical user interfaces by and large bring considerable amount of benefits to the

people and organization using it. But the price to be paid to adtieve those benefits

is pretty high because of the amount of effort they demand. This is where the need

for graphical user interface tools comes in to picture. GruphiCi1l UJer lnterfa~ TooLt

are tools that provide programming support for implementing interactive systems

[61. The advantages of such tools can be classified iota two main groups:

I. The quality of interface is improved. This is because:

• Design can be rapidly prototyped and implemented, possibly ~ven before the

application code is written.

• If any bugs are discovered during testing phase of the application code. they

can be corrected easily using the tools.

• There can be multiple user interfaces for the same application.

• Different applications are more li.kely to have consistent user interfaces if they

are created using the same user interface tool.

n. The user interface code is easier and more economical to create and

maintain when compared. to developing it without any GUI development

tools. This is because:

• Interface specification can be represented, validated and evaluated more easily

and more thoroughly.

• There is less code to write because much is generated by tools.

• There is better modularization due to the separation of the user interface

component from the application. This should allow the user interface to

change without affecting the application, and a large class of changes to the

application is possible without affecting the user interface.

• The level of programming expertise of the interface designer and implementors

can be lower, because the tools hide much of the complexities of the underlying

system.

• The reliability of tbe user interface will be higher, since the code for the user

interface is created automatically from a higher level specification.

• It will be easier to port an application to different hardware and software

environments since the device dependencies are isolated in the user interface

tool.

In general, the tools might help to:

• design the interface given a specification of the end users' task,

• impl~ment the interface given a specification of the design,

• evaluate the interface after it is designed and propose improvements, or at

least provide information to allow the designer to evaluate the interface,

• create easy-to-use interfaces,

• allow the designer to rapidly investigate different designs,

• allow non-programmers to design and implement user interfaces,

• allow the end user to customize the interface, and

• provide portability.

The above specifys the characterizing features of the quality of any user interface

tool. They can be used to evaluate the various tools to see how many features they

do support. Naturally, no tool will be able to help with everything; and different

user interface designers may put different emphasis on the different features.

1.3 The purpose of this project

This project is an effort towards the rapid development of Graphical User Interfaces

(GUIs) by specifying them in a high-level interface specification language, 1St. This

high-level specification is translated into source cocIe of a prototyping language

which is then compiled to produce the actual GUI.

1.4 Brief overview of remaining chapters

The remainder of this thesis is structured in the followiog manner. Chapter 2 gives

a brief description of the components of a graphical user interface and discusses

the different specification styles. Chapter 3 introduces the Interface Specification

Language (ISL) and explains the different widgets and features supported by 1St.

Chapter 4 presents the available parser generators and then describes the imple­

mented tmnslator. which takes ISL as its input and generates the intermediate

code for the user interface. Chapter 5 gives a detailed example of bow to use 1SL

for a specific application and describes the implementation of the interface for this

application. The final chapter contains concluding remarks, including a summary

of the advantages of the proposed approach, restrictions of the implementation and

directions for future research. Appendix A gives the specification of 1St in JavaCC.

Appendix B gives the complete specification of user interface in ISL for a circuit

simulator application. Appendix C gives the actual Java code £or the customized

canvas object. Appendix 0 provides the instruction! on how to use the 1St. Gut

generator and the related files.

Chapter 2

Graphical user interfaces

The user interface is the part of the software system which gets the input data

from the user and displays the output from an application program. The following

section deals with the different components of the user interlace and then describes

the toolkits and ~fication language., available for user interfaa design.

2.1 Components of the graphical user interfaces

As shown in Figure 2.1, user interface components can be subdivided into three

layers;

• the windowing system,

• the toolkit, and

• high-level toou.

Figure 2.1: The components of user interface.

2.2 Windowing system

The windowing system is the lowest of the three layers of the user interface compo­

nents and closely interacts with the underlying operating system. The "windowing

system" supports the subdivision of the screen into different (usually rectangular)

regions, caUed windows. Thereby it helps the user to monitor and control differ.

ent applications by separating them physically into different parts of one or more

display screens. The X system divides the window functionality into two layers:

the windowing system, which is the functional or programming interface, and the

window manager which is the user interface. Thus the "windowing system" pro­

vides procedures that allow the application to draw pictures on the screen and as

well get input from the user, while the "window manager" allows the end user to

move around windows, and is responsible for displaying the title lines, borders and

icons for the windows. The X windowing system solved the problem of portability

between different windowing systems by providing the hardware-independent inter­

face to windows. However, many systems use the terminology "window manager"

to refer to both layers; for uample, systems such as the Macintosh and Microsoft

Windows do not separate the two layers.

2.3 Toolkits

Toolkits basically use the functionality provided by the underlying windowing sys­

tem and provide a layer of abstraction. Hence the programmer need not worry much

about the intrinsics of the underlying operating system &lid the windowing system.

Toolkits are just a library of widgeu that are available to application programs. A

widget! is a CUI object with a panicular appearance and behavior and is usually

activated (e.g., "clicked") by mouse by the user to input some values. Typically,

widgets in toolkits include menus, buttons, scroll bars, text input fields, etc. The

user must. however, take into consideration the trivial things like the position of

the widget, the size of the widgets, etc.

2.3.1 Toolkit types

Toolkits come in two basic varieties. The most conventional one is simply a col·

lection of procedures that can be called by application programs. An example of

this style includes the SunTools toolkit for the SunView windowing system {7J. The

other variety uses an object-oriented programming style which makes it easier for

the designer to customize the interaction techniques. Examples include InterViews

[8[. Xt [9[. Tk [10[and AWT [l1J.

A natural way to visualize widgets is in units of objects since the menus and

buttons 00 the sc~o seem like individual objects. They can handle some of the

chores that otherwise would be left to the programmer (such as refresh operations).

Another advantage is that it is easier to create custom widgets (by sub-dassing an

existing widget).

The usual way tbat object-oriented toolkits interface with application programs

is through the use of caJl·back procedures. Call·back procedures are defined by the

application programmer and are invoked when a widget is operated by the end user.

For example, the programmer may supply a procedure to be called wlleo the user

selects a menu item.

2.3.2 Advantages and disadvantages of toolkits

Toolkits improve the consistency among the applications by malring their interfaces

appear and behave similarly to the other user interfaa!S created using the same

toolkit. This is the first and foremost of the eight golden nd~ of dialogue design

defined by Sbneiderman [5). Anotber inherent advantage of this approach is that

each application does not have to re-write tbe standard fuoctions. such as menus

and other widgets.

On the other band, a problem with toolkits is that the styles of interaction are

usually limited to those provided by the tools. Another problem with toolkits is

that they are often difficult to use since they may contain hundreds of procedures.

and it is often not clear how to use the procedures to create a desired interface.

10

2.4 Higher level tools

Programming at the tooUrit level can be very difficult. Hence. in their place, higher

le\"cl tools that simplify the user interface software production process are desir·

able. These tools come in a variety of forms. One important way that they can

be dassified is by how the designer specifies what tbe interface should be. Some

tools require that the programmer use a special-purpose language, others provide an

application framework to guide the programming. While some automatically gener·

ate the interface from a high-level model or specification, others allow the interface

to be designed interactively with the help of a visual programming environment

(interface builders).

2.4.1 State transition networks

Since many parts of the user interface involve handling a sequence of input events,

it is natural to implement the interface by using a state transition network to code

tbe interface. A transition network consists of a set of states, with arcs outgoing

from each state labeled with the input tokens that will cause a transition to the

next state. In addition to input tokens, calls to application procedures and the

output to be displayed can also be associated with each arc. In 1968, Newman [121

implemented a simple tool using finite state machines which handled textual input.

This was apparently the first user interface tool. Many of the assumptions and

techniques used in modem systems were present in Newman's different languages

for defining the user interface and its semantics.

State diagram tools are most useful for creating user interfaces where the in·

11

terface has a large number of modes (each state is roosidered a mode here). For

example, state diagrams an useful for describing the operatinn of low-level;dgets

or the overall global 80w of an application. However, most highly-interactive~

tems attempt to be mostly "'mode-free" which means that at each point the user

has a wide variety of choices of what to do next. This requires a large number of

arcs out of each state, so state diagram tools have Dot been suceessfuJ. for these

interfaces.

Another problem with the large Dumber of arcs out of each state is that it can be

very confusing for complex interfaces, since this can become a "maze of transitions"

and are difficult to follow.

Jacob [131 invented a new formalism, which is a combination of state diagrlUI",s

with a form of event languages, to exploit the advaDtages of the state transition

diagrams.

Transition networks have been thoroughly researched, but have not proven par­

ticularly successful or useful in either the research or commercial approach.

2.4.2 Context-free grammars

Grammar-based systems are based 00 parser generators used io compiler develop­

ment systems. For example, the designer might specify the user interface syntax

using some form of Backus-Naur Form (BNF). Examples of grammar-based systems

are Syngraph [141 and parsers built using the YACC and LEX tools.

Grammar-based tools, like state diagrams, are not appropriate for specifying

highly-interactive interfaces since they are oriented to batch processing of strings

with complex syntactic structures. These systems are best for textual command

12

languages, and have been mostly abandoned for specification of user·interfaces by

researchers and commercial developers.

2.4.3 Event languages

[n this kind of specification system, the inputs are considered to be "events" that

are sent to individual event handlers. Each handler will have a condition clause

that determines what types of events it will handle, and when it is active. The

body of the handler can generate (next) events, change the internal state of the

system, or call application routines.

The ALGAE system [151 uses an event language which is an extension of Pascal.

The user interface is programmed as a set of small event handlers which ALGAE

compiles into conventional code. The HyperTaik language that is part of HyperCard

for the Apple Macintosh can also be considered an event language.

The advantages of event languages are that they can handle multiple input

devices active at the same time, and it is straightforward to support nOn·modal

interfaces where the user can operate any widget or object at any point of time.

The main disadvantage is that it can be very difficult to create the correct code,

since the flow of control is not localized and small changes in one part can affect

many different pieces of the program. It is also typically difficult for the designer

to understand the code once it reaches a non-trivial size.

13

2.4.4 Declarative languages

Another approach is to define a language that is declarative (stating what should

happen) rather than procedural (how to make it happen). Cousin [161 and Open­

Dialogue (171 both allow the designer to specify user interfaces in this manner. The

user interfaces supported include textfields, menus and buttons. There are also

graphic output areas that the application can use in whatever manner desired. The

application program is connected to the user interface through "variables" which

can be set and accessed by both the user interface and the application program.

The layout description languages constitute another class of declarative lan~

guages that comes with many toolkits. For example, Motif's User Interface Lan­

guage (UIL) allows the layout of widgets to be defined. Sioce the UIL is interpreted

when an application starts, users can (in theory) edit the UIL code to customize

the interface. UIL is not a complete language. however, in the sense that the de­

signer must stiU write C code for many parts of the interface, including any areas

containing dynamic graphics and any widgets that change.

The advantage of using a declarative language is that the user interface designer

does not have to worry about the time sequence of events and can concentrate on

the information that needs to be passed back and forth.

The disadvantage is that only certain types of interfaces can be provided in

this way, and the rest must be programmed manually. The kinds of interactions

available are preprogrammed and fixed. In particular. these systems provide no

support for such things as dragging graphical objects, rubber-band lines, drawing

new graphical objects, or even dynamically changing the items in a menu based

on the application mode or context. However, these languages are now proving

14

successful as intermediate languages describing the layout of widgets (such as UIL)

that are generated by interactive tools.

2.4.5 Constraint languages

C01llltrnint.J are relationships that are declared once and then maintained auto­

matically by the system. For example, the designer can specify that the cotor of

the rectangle is constrained to be the value of a slider and then the system will

automatically update the rectangle if the slider is moved.

A oumber of user interface tools allow the programmer to use constraints to

define the user interface. NoPump (181 and Penguims [191 allow constraints to be

defined using spreadsheet-like interfaces.

The advantage of constraints is that they are a natural way to express many

kinds of relationships that arise frequently in user interfaces. For example, that

lines should stay attached to boxes, that labels should stay ttntered within boxes,

However, a disadvantage of constraints is that they require a sophisticated run­

time system to solve them efficiently. Another problem is tbat they can be difficult

to debug when specified incorrectly since it can be difficult to trace tbe cause and

consequences of changing values.

2.4.6 Database interfaces

Major database vendors such as Oracle provide tools which allow designers to define

the user interface for accessing and setting data. Often these tools include inter-

15

active forms editors, which are essentially interface builders, and special database

languages like Structure Query Languages (SQL). The main disadvantage of these

kinds of packages is tbat tbey lU"e fine-tuned more towards database applications

rather than a general purpose application.

2.4.7 Visual programming

A.nother approach to user interfaci! design is by way of using visual programming

languages based on the hypothesis that two-dimensional visual languages are easier

to learn than one-dim.ensional textual languages. Many approaches to using visual

programming to specify user interface have been investigated. The user interface is

usually constructed directly by laying out pre-built widgets, in the style of interface

builders. Using a visual language seems to make it easier for novice programmers,

but large programs still suffer from the familiar ~maze of wiren problem.

2.4.8 Summary of different approaches

In summary, there ha"-e been many different types of languages that have been

designed for specifying user interfaces. The major problem with all these approaches

is that they can only be used by professional programmers, as tbey need to know

a great deal about user interface design. Unfortunately, quite often this is not the

This work is an effort to bridge the gap between the reality and tlte present

situation in user interf3C1l design. A high level specification language is proposed,

in which the user can specify the user interface. The specification is then translated

16

to a high level language. which is compiled to get the final CUI.

The apparent advantage of this approach is that many of the technicalities of

the user interface can be hidden from the GUI programmer, and the interface can

be designed and/or modified quickly without much effort or resources.

2.5 Other considerations

The proliferationofGUIs such as Toolbox. XII/Motif. XII/OpenLook or NextStep

on different operating platforms creates a perplexing problem for the developer.

This problem becomes a real issue when the application program is aimed at tar­

geting more than one operating system. The most apparent solution would be

separating the application component from the user interface component thereby

creating a user interface abstraction.

The primary goal in designing a user interface abstraction is that the amount of

effort to retarget the user interface component must be much less than that required

to implement it from scratch. Another potential benefit of the abstraction is that

maintenance of the code will be much easier.

An application using a specific GVI should have the same appearance and op­

erating characteristics as the other so-called "native" applications. Native applica.

tions are the ones that define the "look-and-feel" of a software system. By providing

consistency the user can apply techniques already learned. with one application to

other applications on the same machine. Conversion of the application to a new

GU! must be done carefully, otherwise an application created for one system will

have a "foreign" appearance or feel on subsequent systems and will probably not

17

gain wide acceptance.

Performance is another imponant issue which needs to be considered wben the

GlJ1 is de~loped. The development cost in terms of time, resources and overhead

should also be minimal.

18

Chapter 3

Specification of user interfaces

The simplest and most convenient method, from the user's point of view, is to

develop the user interface automatically from a high level s~fieation. In order to

specify an interface in a high-level language, first this specification language must

be defined.

3.1 Interface components

To produce the interface component with a minimal amount of programming, an

overall structure of tbe component and its interrelations need to be introduced. In

general, a user interface consists of graphical objects, implicit or explicit information

about the change of control windows, semantic actions and results of these actioDS.

Graphical Object.! consist of windows, dialog boxes, menus, buttons and other items

that are directly visible to the user. Chan9~ of focw defines how the interface will

19

c:b.ange on inputs from the user or \"&1ues returned by the application. Semantic

actions are the operations that drive the applications. These actions are associated

with the events that the user might generate. When an event 0ttUIS, a semantic

action associated with it is performed. These actions can take the form of calls to

user supplied functions, execution of programs or files [20). This allows the user to

pass data to the application and allows the application to output the results to a

file or to present the results on a display.

3.2 Interface Specification Language (ISL)

It is assumed that the specification of the user interface is a sequence of interface

object descriptions. In the proposed specification language, the supported objects

include buttons, labels. edit texts, lists, checkboxes, menus and windows. Each of

the objects has a list of attributes like name of tbe object, action to be performed

on selecting tbe object, default values, etc. Attributes are uniformly specified as

pairs:

<attribute.name> = <attribute_value>

In this document, attribute_value is also referred to as value in some places.

The definition of the specification is:

<specification> ::= STARTJSL <objectJist> ENDJSL

<objectJist> ::= <object> I <objectJist> <object>

<object> ::= <identifier> «list»;

<list> ;:= <list.A> I <Iistj>

<listJ> ::= <identifier> I <listJ>, <identifier>

20

Are you su~ you want ro exir '!

Figure 3.1: An example information dialog window.

<Iist..a> ::= <pair> I <Iist..a>, <pair>

<pair> ::= <attribute..name> = <attribute_value>

Any sequence of specification begins with the keyword STARTJSL, followed

by the actual specification of the interface and ends with the keyword ENDJSL.

The <objectJist> in the above specification can be recursively expanded to any

number of <object> definitions. In turn, <object> can be recursively expanded

to any oumber of <identifier>s or <pair>s. Since any GUI is a collection of series

of interface objects, they can be defined using <object>s. The fioer details of the

objects are defined using the <pair> specifications whic:h are nothing but pairs of

attribute names and their corresponding values.

Comments can be included in the specification file in C++ format, i.e. both

.., '" and ";- -r formats can be used, but nested comments are not permitted.

For example, the window shown in Figure 3.1 can be defined using rSL as follows:

windov : info (label • question, button. yes, button. no);

label : question(name - "Are you sure you want to exit? ");
button :yes(name - "Yes", action = exit);
button :0.0 (name - "No", action = hide);

The above object specification is the expansion of <object.list> into <object>

21

four times. As mentioned in Appendix A. "window". "label" and "button" are

some of the objects supported by ISL. The "window" object is in turn expanded to

three attribute pairs. As shown above the attribute name again can be an object

Dame like "label", "button" or just simple attributes like "Dame" or "value" or can

be the special attribute "action". 1£ the attribute name is a valid object name.

then it can further be e.'tpanded recursively. If the attribute name is "action". then

it will result in a call to the function named that attribute value. In the above

example, for button named "'Yes". action is "exit". This will result in a call to the

function named "exit".

3.3 Objects and their attributes

This section gives the complete description of all the objects and the details of their

attributes which are supported. by the current implementation of the ISL. It should

be noted that ISL has been designed to facilitate easy addition of new objects to

the existing basic objects with very little modification of the soun:e file.

3.3.1 window

Any specific application can have only one window object. This is the main

container object which contains all the other objects.

Attributes

Special attributes supported by the window object are:

22

• pref~: specifies the preferred size o(the application window, which

can always be eDlarged or reduced at run time. It is always advisable to

specify this attribute. The attribute has two arguments: one (or x and one

for y coordinate and both indicate the number o(pixels.

• layout: specifies the arrangement o(the other objects within this container

object. It can take "flow", "grid" or "border" as its value. These arguments

are explained in detail below.

Other attributes include menu. canvas, button, label, tmfield, ponel, checkboz and

checkbozgroup which are explained in detail below.

Typical usage:

window: mainvindov(preferred_size .. (500, 400), layout .. flov,

menu" l1unmenu. canvas" graph_canvas. button" exit);

3.3.2 menu

This menu object creates a new menu bar.

This is the only obj!Ct which takes arguments as a list rather than as argument

pairs.

Typical usage:

: Illa.inmenu(file. analysis. about);

It is mandatory that each item in the list must have a corresponding menuitem

specification, i.e., the above specification must be followed by three menuitem

specifications, one for each "'file", "analysis" and "about".

23

3.3.3 menuitem

menuitem objects behave like buttons.

Attributes

Attributes supported by this object are:

• submenuitem: specifies the individual menu item name.

• name: specifies the string to be displayed on the menu item.

• action: specifies the action to be performed when that particular menuitem

is clicked. This action can be a call to a function or it can in turn pop up

another subwindow.

Typical usage:

lIlenuitell : analysis(name '" "Analysis",

submenuitem" ac_analysis. name '"' "AC Analysis".

action .. showaaw,

submenuitem '" dc_analysis, name .. "DC Analysis",

action'" showdaw,

submenuitem" tr_analysis, name'" "Transient",

action '" shovtaw);

3.3.4 label

Label object is provided for displaying text in the CUI.

Attributes

• name: specifies the string to be displayed on the object.

24

Typical usage:

label: sourcetype(naae • "Source Type");

3.3.5 button

A button object is a simple control that generates an action event when it is

"clicked".

Attributes

• name: specifies the string to be displayed on the button.

• action: specifies the action to be performed when the button is selected by

the user. Normally it will be an invocation or a runction.

• lang: specifies the language in which the procedure has been implemented.

The derault is "Java." U its value is "native". then it implies a call to a

procedure written in some other language, like C/C++.

Typical usage:

button: cancel(name ,. "Cancel-, action· hide);

3.3.6 subwindow

Subwindow is a dialog box that pops up when the user selects a button or a menu

item. It is similar to window object, and the only differeoC1! is that an application

can have any number or subwindows.

25

Attributes

• layout: specifies the acrangement ofother objects within this container object.

[t takes "tIow". "border" or ;<grid" as its value.

The other attributes include the objects namely pond. button, l~l, tertfield,

cheddJoxgroup, checkboz and canv(l,5.

Typical usage:

subvindov: sbowaaw (layout .. border, panel .. toppanel.

canvas" center_canvas. panel'" bottompnl);

3.3.7 panel

Like window or subwindow, it is also a container class, within which other objects

can be pl8C1!d.. Hence it also has the layout attribute.

Attributes

• layout: specifies the acrangement of other objects within this container object

as in subwindow. It can take "'flow", "grid" or "border" as its value.

• location: since the panel object itself can be inside a container object, this

attribute specifies the location within the container. It can take "north",

"south", "west" or "east" as its value.

Apart from this, it can have all the other objects that can he placed in a container

namely button, label etc.

Typical usage:

aubvindow : shovaav(layout ,. border. panel" toppanel);

panel : toppanel(location .. nortb, label" labell, tertfield .. tfi);

26

3.3.8 textfield

text.6eld is an object which allows the editing of a single line of text.

Attributes

• value: specifies the "default value" to be displayed on the screen.

Typical usage:

tertfield ttl (value. 1000);

3.3.9 checkhox

checkbox object can be used if the user wants to have a boolean variable to be

displayed aD the interface.

Attributes

• name; specifies the text to be displayed on the screen.

• ~ue: specifies the state of the object, which can either be '"true" or "false" .

Typical usage:

checkbox: xbl(name '"' "Linear". va.lue • true);

checkbox : xb2(name '"' "Octal". value· false};
checkbox: xb3(name. "Decimal",value .. true);

Note: There is no connection between xbl,xb2 and zb3. All three act independent

of each other. So, they can all be true, or all be false or they can take any other

possible combination of values.

27

3.3.10 checkboxgroup

Unlike checkbox objecthich acts independently, the checkbaxgroup object is

used to create a multiple-exdusioD scope for a set of choices. For example, creating

a checkboxgroup buttons with the same check:boxgroup object means that only

one of tbose checkbox buttons will be allo?-ed to be "on" at a time.

Attributes

• name; specifies the string to be displayed in front of the checkbox buttOD on

the screen.

• value: specifies the boolean state of the hutton.

Typical usage:

cbecltboxgroup : xbg(name • MLinear". value • false.

Due • ·Octal". value • falae.

DUe - "Decimal",value • true);

Note: Only one of the checkbox buttons can be true. IT the user selects some other

checkbox button, then that button's state will become true and changes the otber

to false.

3.3.11 canvas

This is the object to be used if the user wants to plot graphs or draw figures. Since

the canvas object needs more information, like an array of data to be plotted and

28

algorithm to scale the graph to fit the canvas a.nd the data arrays, it is imple­

mented as a separate Java filet. Whenever the user wants to use this object. tbe

implemented canvas class is instantiated instead of using the standard Java canvas

widget.

Attributes

• location: since canvas is an object which can be placed within any other

container objects, it has this attribute for placement within tbe container.

• name: specifies the name of tbe canvas.

Typical usage;

; graph_canvas(location '" center, name" "Graph");

3.4 Geometry managers

Widgets do not determine their own size and location on the screen. This function

is carried out by geometry manager". Each geometry manager implements a partic­

ular style of layout. Given a collection of objects to manage and some controlling

information about how to arT&nge them, a geometry manager assigns a size and

location to each object.

'see Appendix C fur more infonnation

29

3.4.1 Flow layout

In order to arrange the set of objects in a horizontal row, the la}"Out has to be

specified as "ftow". The window manager will then position the widgets so that

they abut but do not overlap. If the user changes the size of the containing window.

then the window manager will adjust the position of the widgets automatically to

ao:ommodate the new dimensions.

3.4.2 Border layout

The other supported layout type is "border". This layout will arrange the widgets

into position using the directions namely "north", "south", "'east", "'west" and

"'center" .

When border layout is used a location parameter must be specified. The default

interpretation of the location is "center".

The "north". "'south". "east" and "west" components get laid out according

to their preferred sizes and the constraints of the contai.ner's size. The "center"

component will get any space left over.

3.4.3 Grid layout

This type creates a grid layout with specified rows and columns, which are ohtained

as parameters from the user.

Typical usage:

panel: nevpanel(layout • grid(2,2»;

30

The above specification will a.rrange the widgets in the panel with two elements

in each row.

3.5 Examples

Tbis section gives a brier overview or bow to arrange widgets within a container

object like window, subwiDdow, panel, etc.

3.5.1 More on layouts

Tbe rollowing set or ISL specifications gives a general idea or how different layouts

work.

window: lla.in_windowClayout - flow, preferred_size-(200.100).

button - one. button :t two. button _ three. button a four.

button - exit);

button : one(nDe-"One". action'" fun_one);

button : two(name-"Tvo". action'"' fun_two);

button : theee(name-Unree". action" fUlL three) ;

button : four(naae - "Four". action - fun_four);

button: exit(name""E:dt". action;; fun_exit);

The above specification with the layout attribute value or "fiow" will generate

a window as shown in Figure 3.2.

The size or the window can be altered any time and the arrangement or the

widgets within the window depends on the layout type. Since the layout type is

"'flow", when the window size is increased to 250 (from 200), all the buttons will

get aligned in the same line as shown in Figure 3.3.

31

Figure 3.2: Flow layout.

If the layout attribute of the window object is changed from "flow" to "grid"

as shown below, then this will alter the appearence as shown in Figure 3.4.

window main_window (layout = grid(2,3), preferred_size=(200, 100),

button = one, button .. two, button '" three, button '" four,

button .. exit);

If we want to change the arrangement completely then the border layoul can be

used. A sample specification is given below and arrangement of the widgets will be

as shown ill Figure 3.5.

ote: It is not enough just to specify the layout type to be the "border". The

location of each widget within the container has to be specified so that they can

be placed suitably. Another obvious restriction with this layout type is that at the

most it can accomodate only five objects. To overcome this problem, a series of

panels can be used, where each panel can accomodate up to five objects.

window main_windowClayout· border, preferred_size:: (200 ,100) ,

button :: one, button :: two, button :: three. button • four,

button :: exit);

button oneClocation:: north. name::"One". action:: fun_one);

32

button: tvo(location ,. south. name::~Tvo". actioD'"' fun_two};

button: tbree(location - vest. naae="Three", action- fun_three};

button : four(locatioll • east. naae '"' "Four", actioD'"' fun_four};

buttOD ; exit(location • center ,na.lles"EJ:it", actions fun_exit};

In the above example specifications, only the button is used to keep the ex­

ample simple. For the same reason. only the window object is used for placing

the other widgets. [0 those specifications. the button object can be replaced by

any other widget and the window can be replaced by another container object

like subwindow, panel etc. More detailed examples are given in Chapter 4 and

Chapter 5.

33

Figure 3.3: Flow layout.

r --I

1._··..
I ..I .__ .__

Figure 3.4: Grid la:rout.

Figure 3.5: Border layout.

34

Chapter 4

Thanslation

ISL specifications described in tbe previous chapter serves no purpose unless it is

convened into a [ormat suitable for executioD. The approach that has been taken

in this work is a two-stage translation process. The user input (ISL specificatioas)

is translated into intermediate code (using the implemented translator) in the first

stage. In the next stage, the intermediate language's compiler is used to compile

thl!: code into a format suitable for execution. This chapter gives more information

on the above process.

4.1 Two-stage translation

As the first stage of the two stage translation process, the 1SL specification is given

as input to the translator as shown in Figure 4.1. The decision to be made at this

point is: what should be tbe intermediate language for the translator and what are

35

the imponant characteristics of the intermediate language ? The available options

are: either to generate a high.level language code and tben compile it using that

language's compiler to get the final Gm or to directly generate the executable code

for the CUI from ISL.

There are several advantages of translating the specification into a high-level

language and then using that high-level language's compiler to compile it to get

tbe final GUI.

First, if the high-level specification bas to be translated directly to a machine

code or assembly language for the target hardware, then a thorough knowledge of

the machine's architecture is required (code generation is concerned with the choice

of machine instructions, allocation of machine registers, addressing, interfacing with

the operating system and so on).

Second, in order to produce faster or more compact code, the code generator

should include some form of code improvement or code optimization. If the inter­

mediate language is a high-level language, the compiler of this language will take

care of these optimizatioo issues.

Third, in the case of using an intermediate language, the code generated is easy

to understand. This is important during the debugging process as it is possible to

see immediately what the code generator is doing. So correcting any unexpected

behavior during the development phase is easier.

Finally, a high-level intermediate language provides platform independence be­

cause there is no tight coupling between tbe code generated and the machine ar­

chitecture. Hence portability issues can be bandled in an elegant way.

For the implementation purpose, to make the job simpler, it has been decided

36

to generate a high-level language code as the output by the translator. The entire

process is represented in Figure 4.1.

L
L

L

Figure 4.1: Processing interface specification.

The process of translation of ISL specification can be divided very broadly into

two steps:

1. The analysis of the source program.

2. The synthesis of the object program.

In a typical compiler, the analysis step consists of three phases: lexical analysis,

syntax analysis and semantic analysis. The synthesis step is simply the code gen­

eration phase.

37

4.2 Compiler writing tools

Rather tban writing a new scanner and parser to proc::es:s the ISL specifications, the

available tools are analY2:ed to select the tool which could be used for translation.

4.2.1 Lex and Yacc

The most popular compiler writing tools are lex and yace. Lex is a too! Cor gener­

ating le:rical analyze,.". Yacc is a general-purpose parser generator that converts an

LALR(I) grammar into a table-driven C language parser for this grammar. Yacc

has several shortcomings, including that it cannot accept extended BNF grammars,

and reqU-ires that separate lexical and syntactic descriptions be maintained and be

consistent. It provides only minimal support for error recovery {25J.

4.2.2 Flex and Bison

The Free Software Foundation's GNU project supports an "improved" version of

fez and yac.c called /fu and bison, for use on Unix and other nOD-Unix platfonns.

They have a better error correction and error detection facility when compared to

its predecessors.

4.2.3 PCCTS

The Purdue Compiler Construction Tool Set (peCTS) is another compiler writing

toolkit. Two components of PCCTS, namely DFA and ANTLR l. provide similar

I ANother Tool for Lan&uage Recognition.

38

functions as lex and yacc. However ANTLR accepts LL(k) grammars as opposed

to the LAiR(l) grammars used by yacc. The code that peers generates is much

more readable than the code generated by yacc. and A.r.'lTLR output consists or

recursi\-e C/C++ runctions. Diagnosing errors in the grammar specifications is

comparatively easier since the code is in a more readable rorm. The main problem

is that the symbol table generated is inefficient and so it grows rather large when

processing a big collection or files. It also suffers from macro redefinition and

memory management problems.

4.2.4 JavaCC

JavaCC is a parser generator written in Java, which is customizable and generates

par.;er in the Java language. By derault, JavaGC generates an LL(l) parser. How­

e\-er, there may be portions or the grammar that are not LL(I). JavaCC offers the

capabilities or syntactic and semantic lookahead to resolve parsing confiiets locally

at these points, i.e., tbe parser is LL(k) only at such points, but remains LL(I)

everywhere else ror better performance.

Advantages and disadvantages

JavaCC is much easier to use than the tools discussed above. The way JavaCC han­

dles grammars is much more straightrorward than LALR parsers. JavaCC generates

a top-down parser and has a detailed error reporting racility whereas bottom-up

parsers like yacc are non-intuitive and have a poor error reporting facility. Also,

JavaCC's error messages suggest likely corrections. JavaGG comes with an algl>

39

ritbm to aid in inserting the necessary lookahead information and it also supportS

"infinite lookahead." The main concern with JavaCC is that the generated parsers

are not as fast as in the case of yace.

Javaee can be easily customized to generate Java code (or for that matter. any

code) when required.

Since JavaCe is easily customizable, supports the code generation feature, and

has a detailed error reporting facility, JavaCe has been selected for the implemen­

tation of the ISL.

4.3 High-level intermediate language

As mentioned in the previous sections, generating a high-level language code elim­

inates many complications for the implementation purpose. But literally hundreds

of high-level programming languages are available for developers to solve problems

in specific areas. For the implementation one high-level language has to be selected.

The options considered for this project were only Tel/Tk and Java., because tools

developed in other languages would be more cumbersome and difficult to port to

other platforms.

4.3.1 Tcl/Tk

As a scripting language, Tel is similar to UNIX shell languages like Bourne Shell

(sb) and the C Shell (csh). It provides enough constructs (variables, control How,

and procroures) to build complex scripts that assemble existing programs into a

new tool tailored for a particular need. [241. As a script based approach to the user

40

interface programming, it has the following benefits:

• Development is fast because of the rapid turnaround; there is no waiting for

long compilations.

• The Tel commands provide a higher-level interf&« to X.

• The core set of Tk widgets is often sufficient for most of the user interface

needs. Furthermore, it is also possible to write custom Tk widgets in C, if

required.

4.3.2 Java

Java language environment, on the other hand, creates an extremely attractive

middle ground between very high-level, portable, slow scripting languages and \-ery

low level, Cast but Don-portable, compiled languages. Java provides a level of per­

formance that's entirely adequate for all but the most computationally intensive

applications. The other advantages are:

• Java is a simple language. Java omits many rarely used, poorly understood,

confusing features of C++.

• Java has automatic garbage collection, thereby simplifying the task of memory

management.

• Java is object.oriented. It facilitates clean definition of interfaces and makes

it possible to provide reusable "software rCs".

• Java is robust. Java puts a lot of emphasis aD early checking for possible

problems. It is strongly typed, hence will not allow automatic coercion of

one data type to another. The single most important difference between Java

41

and C/C++ is that Java does not use explicit poiDters which eliminates the

possibility of overwriting memory and corrupting data.. lnstead of poiDter

arithmetic, Java has true arrays. This allows subscript checking to be per­

formed. In addition, it is not possible to tum an arbitrary integer into a

pointer by casting. Java programs also cannot gain unauthorized access to

memory, which can happen in C/C++.

• Static typing. Dynamic languages like Lisp, Td and Smalltalk are often used

for prototyping, for they do not force decisions to be made early. But Java

forces choices to be made early because it has static typing. Along with these

choices comes a lot of assistance: any call to invalid functions will be checked

at the compilation time and not delayed till run time.

• Architecture neutral. In the present personal computer market, application

writers have to produce versions of their application that are compatible with

the IBM PC, Apple Macintosh, and different flavors of UnL". Witb. Java, the

same version of the application runs on all platforms witb.out any modifica­

tion. Java compiler makes this possible by generating bytecod~.

• Java is portable. Being architecture neutral increases the portability by a very

high degree, but tbere's more to being portable tban just architectural neutral.

Unlike C and C++, there are no "implementation dependent" aspects of tbe

specification. The sizes of the primitive data types are specified, as is the

behavior of arithmetic on them. For example, "'int" always means a signed

two's complement 32 bit integer, and "float" always means a 32-bit IEEE 754

floating point represent.ation.

• Java is interpreted. The performance of the interpreted bytecode is usually

more than adequate. There are situations wb.ere higher performance is re-

2The Java compUer complies the source code into a bytecode i.e., each part of the source code
is reduced to a. sequence ofbytes that~u in5tructions to a. 'rirtual machine; virtual because
thole sequence~ DOt specific to &ZlY microproceuor.

42

quired.. In such situations, the bytecode can be translated to machine code

for the particular CPU in which the application will be running. In such

cases, the performance is almost indistinguishable from native C or C++.

• Java supports multi-threading. Java has a set of synchronization primitives

that are based on the widely used monitor and condition variable paradigm

introduced by Hoare [231. Hence Java has a better interactive responsi"'eness

and real-time behavior.

• Other benefits include an extensive networking facility and security for net·

work applications.

Because of many of these features, Java nas been selected as the intermediate

language.

4.4 Implementation details

The translator is implemented in JavaCC. Appendix A gives the complete specifi.

cation of ISL for JavaCC excluding the code generation part. When the input file

(GUl.jack J) is compiJed using JavaCC, it results in generation of three new files;

• GUI.java; the parser,

• GUITokenManager.java: the lexical analyzer, and

• GUIConstants.java: a bunch of internal constants

Apart from the above three files that are generated for every input grammar,

three more files are generated once for use with all input grammars, namely;

'JavaCC was fonDeIiy known as Jack

43

• ASCILUCodeESC_CharStream.java.: an ASCII stream reader to process uni·

code sequence,

• Token.java.: the type specification for the '"'Token" class. and

• ParseError.java: error handling ille.

[nvoking JavaGC on the input grammar for ISL results in the generation of the

above files. Then the generated Java files are compiled using the Java compiler.

This results in the generation of the trnn.7lator for ISL.

The generated translator takes the specifications in ISL as input and generates

a set of Java files. The generated files have to be compiled using the Java compiler

to get the "actual" GUI.

4.4.1 Code generation process

Once the input specification is scanned and parsed, the complete information reo­

quiced to generate the intermediate code is gathered in the internal data structures

of the translator. For any input specification. there will be one main lile (main

class) and zero or more auxiliary files (auxiliary classes), depending on the speci.

fication. For every window object there is a main file and for every subwindow

object there is an auxiliary file.

In the code generation process, first the main file is generated. Within that

file, the user interface compOnent declarations are generated in the order of ISL

specifications. If the window object has the pref~dJize attribute set, then

the standard preferredSizeO method4 is generated. The translator's internal data

structure (x...va1 and y_val) contains the argument values for the preferredSizeO

method.

Then the constructo~ for the main class is generated. ~fain class is basically

a "container" object, which contains other interface components. \Vithin the main

class constructor, all the interface objects are defined by instantiating the corre­

sponding Java objects and are laid suitably within the containers based on the

container's layout attributes.

The application must eventually react to the user input or user events, such

as input from the keyboard or a pointing device such as a mouse. There are

two common models that are used to support the handling of input events by the

program. Either the application program can continuously poll all the input devices

to check for any events or the events generated by the interface components can be

queued for processing. The latter approach is used in Java to handle the events.

An "action" method is generated by the translator. This method has an entry for

aU the potential interface objects which might generate any el.-ents.

If the action is "hide" or "exit", the translator automatically generates a call

to standard Java methods hide() or System.exit(O), respectively. If the action is

aoything else, then the complete function has to be specified.

Then, the "main" method is generated which basically instantiates the main

class and displays the main window on the screen. From that point onwards, the

event-handler takes charge of the complete application by processing the incoming

events.

5Construcl.or is a member function that iI5 executed llUtomaticl\.ll.y whenever an obj«c is ere­
"ted, in order to initialize the intemal dua structura of tb"t object.

45

After the generation of the main file, the auxiliary files arc generated in succes­

sion. The major difference between the main file and auxiliary file is that there is

no "main" method for the auxiliary files. Except for that, the rest of the code gen­

eration process remains the same. The following sections show the correspondence

between the elements of ISL and the Java code generated.

4.4.2 Sample translation

This section gives a complete example of interface specification using ISL for a small

section of an application, which gets the user name and SIN number in the main

window. The main window also has two more buttons: "Exit" and "More Info",

as shown in Figure 4.2.

Figure 4.2: Main window.

When the "Exit" button is clicked, the application terminates; when ")'1ore

Info" button is clicked, another dialog window appears on the screen, with three

"radio buttons" to select the age group as shown ill Figure 4.3.

46

Figure 4.3: Dialog window on selecting "More Info" button.

4.4.3 Sample specification using ISL

START_ISL

window

label

textfield

label

textfield

button

button

mwindow(layout : flow, preferred_size:(180,130) ,

label: lbll, textfield : tft, label: lb12,

textfield: tf2, button: exit, button = more);

Ibl1 (name: "Name");

tf1(value : "name ");

Ib12(name="SlN") ;

tf2(value : 99999999);

exit (name: "Exit". action: quit);

more(name:"More Info", action: showmoreinfo);

47

subvindow sbowaoreinfo(layout ~ flow, label'"' age.

cbec.tboxgroup • cbg. buttOD '"' ok);

label : age(naM-"!ge Group");

checkboxgroup: cbg(itu,", first....grp. name· "1 - 16". value" true.

itell '"' sec-up ' DaJIIe • "17 - 25", value - false,

item'"' tbird_grp , name '"' "26 - 99", value = false);

button ; ok(llaJIIe '"' "OK". action - bide);

EKD_ISL

4.4.4 Generated code

This section gives the code generated. by the translator, for the above specification.

There is clear mapping between the ISL specification given in the previous section

and the code generated. For example, in the specification, the layout of the window

object is specified as "'fI.ow"'. This generates the following line of code:

setLayout(new FlovLayoutO);

The pre/erred...size attribute specification results in the generation of the follow­

ing lines of code:

public Dilllension preferredSizeO {

rBtUlU new Dilllension(lSO.I30);

}

For the ISL specification:

button : exit (name - "Exit". action. quit);

the code generated is:

public boolean action (Event event. Object argH
if (event. target •• e:lit){

48

Systec.exit(O) ;
return true;

return fa.lse;

The action triggered by the "Exitn button is a standard action provided by

the Java. To execute some customi.2:ed action, the ISL has to be specified in the

foHowing way:

button : more(name • "Hore Info", action· shoWllloreinfo);
subvindow: sboVllloreiofo(layout ., flow, label" age, checkboxgroup ., cbg,

button ., ok);

The first line of the specification says that the action to be triggered when

the "More Info" button is clicked is "showmoreinfo". According to the next line,

"showmoreinfo" is a subwindow object. It implies, that when the "More Infon

button is clicked. the suhwindow has to be popped up.

The translator is implemented in such a way that when a new subwindow

object has to be created, the corresponding code is generated in a separate file and

the file name is the same as the action specified. with its first letter capitaJized. In

this case a new file, "Showmoreinfo.javan is generated. The complete code generated

for the example in Section 4.4.2 is:

import java.art.-;
import java. lang. Hath;
public class KHaiDframel enends Frame {

private ShoVllloreinfo shollllloreinfo;
Label lbll;

TenField tf 1;

49

Label Ib12;

TenField tf2;

Button exit;

Button lIore;

public Dimension preferredSize()

return new Dimension(180 .130) ;

)

public MMainframe10 {

setBackground(Color. white) ;

setLayout (new FlowLayout 0) ;

Ibll • new Label("lfame");

tf1 • new TextField("name ");

Ib12 • new Label ("SIN");

tf2 • Dew TextField("99999999");

exit· new Button("Exit");

more· new Button("More Info");

add(lbll) ;

add(tfl) ;

add(lb12) ;

add(tf2) ;

add(exit) ;

add(lD.ore) ;

public boolean actioo(Eveot event, Object ugH

if (event.target •• exit){

System. exit (0) ;

return true;

if (event.target •• more){

if (sbolllDoreinfo ... null)(

sbo\lllloreinfo - Dew Sbowmoreinfo(this, "Horeinfo");

showmoreiDfo.showO;

return true;

50

return false;
)

public static void aa.in(String up O){

MMainframe1 IIlAi.nfrue- new MHainfraae10;

m.a.inframe.aetTitle("Exuple") ;

mainframe. pact 0 ;

Ilainfrue.showO;

/* ShOWloreinfo.java ./

class SboWllloreinfo extends Dialog{

MMainframe1 myparent;

Label Ibl1;

CheckboxCroup cbg;

Button ot;

SboWllloreinfo(Frame fraae. String titleH

super(frue. title, false);

setLayout (new FlowLayout 0) ;

Ibl1 It new Label("Age Croup");

add(lbll) ;

cbg .. new CheckboxCroupO;

add(Dev Checkbox("1 - 16".cbg.true»;

add(nev Chectbox("17 - 25",cbg.false»;

add (new Checkbox("26 - 99",cbg.false»;

ok - Dew Button("OK");
add(ok);

packO;

public boolean action(Event event. Object ugH

if (event. target -- okH

51

hideD;
return true;

returu false;

4.4.5 Specification errors

The generated Java code might not be syntactically COrre<:t if the ISL specification

of the interface is not complete. This kind of error can be fixed easily wben the

generated code is compiled using the Java compiler. As mentioned earlier this is

one of the important advantages of generating a high.level intennediate code.

For example, consider the ISL specification shown below;

window : ma.in_windov(layout • border. preferred_size-(200 ,100).

button· one, button· tvo. button - three. button· four.

button .. exit);

button; one(naae·"One", action= fun_one);

button: tvo(name·"Two". action'" fUD-tvo);

button ; three(nam Three ... action· fun_three);

button; exit(nam E:xit ... action= fUD-exit);

In this specification, the "main_window" contains five buttons namely "one" , «tv.'O" ,

"three", "four" and "exit", but in the description above, the button "four" is miss­

ing. This kind of missing specification can be detected when this specification

file is processed by the translator. Sometimes exactly the opposite can also hal>"

pen, i.e., button four might have been specified completely but its entry in the

"main_window" object might be missing. The above mentioned errors and typos

52

can also be detected and corrected easily when this specification file is processed

by the translator.

4.4.6 Advanced features

Sometimes a given application cannot be written entirely in Java and in such cases

the code must be written in some other language. These special situations might

arise due to the following reasons:

• A large amount of working code already exists. Providing a Java layer for

that code is easier than porting it all to Java.

• A.n application must use system-specific features not provided by Java classes.

• The Java environment is not fast enough for time-critical applications and

implementation in another language may be more efficient.

To help with these situations, Java supports natiw: functions (procedures) writ·

ten in some local (native) language [26J. The implemented translator completely

supports this feature with the help of the attribute called lang. The default value

for this attribute is "java.... It can also take "native" as its value, if the functions

are written in some other languages like CjC++. The detailed example given in

Chapter 5 uses this option, since the complete application is written in Fortran.

53

Chapter 5

Application

This chapter giV1!S a detailed example of using ISL to specification of an interface

for the circuit simulation package SPICE-PAC (21). SPICE..PAC is an interactive

simulation package that is upward compatible with the popular SPIC&-2G p~

gram. SPICE...PAC is a collection of loosely coupled modules with a \\'~ll-defined

interface. Hence it can be used in many different ways for different applications.

Typical examples of module functions include reading a circuit description, perfonn­

iog circuit analysis, changing values of some cirellit elements or redefining circuit

parameters. The operations of tbe package are tbus performed "on demand", as

required by a particular application.

In the case of interactive simulation, it is the user who - during a simulation

session· selects the order, type and parameters of analyses. The flexible structure of

the package makes it possible to combine the same set of "standard" analyses with

several input processors accepting different rorms or circuit specification. It also

allows representation or the results in different ways {binary ror further processing,

54

textual for storing in a file and so on) (211 [221.

5.1 General organization

SPIC&PAC is organi.2ed in two major levels of routines; main routines and internal

routines. The main routines constitute the "simulation interface" which includes

SPICEA, SPICEB, ... , SPICEY; these main routines perform "simulation primi­

tives", such as reading and processing circuit descriptions (SPICEA), definitions

of circuit variables (SPICEB), etc. All circuit analyses (DC,TRANSIENT, AC,

NOISE, etc.) are performed by the routine SPICER. Each main routine invokes

a number of internal subroutines and functions, which however are "invisible" to

users; users need to use only the main routines of the package.

5.2 Analyses and their parameters

This section gi\-es a brief overview of analyses supported by SPIC&PAC, the COrTe-­

sponding main routines and parameters. Of all the main routines, SPICER plays a

vital part, as it is called to run any analysis, with its mode parameter set to proper

value. The parameters of SPICER include;

• mode: indicates the specific analysis (e.g., I-DC Transfer Curve, 2·Transient,

3-AC, 4-Noise, 5-Distortion, 6-Fourier),

• xtab; an array parameter which returns independent source values for the DC

Transfer Curve analysis, time values for the Transient analysis, frequencies for

55

the AC, Noise and Distonion analyses, harmonic frequencies for the Fourier

analysis,

• ytah: an array parameter that returns the results of the DC Transfer Curve,

Transient, AC, Noise, Distortion and Fourier analyses;

• Ir: an integer parameter which indicates the length of the nab array argument

and the maximum number of rows of ~ab,

• Ie: an integer parameter which if positive, indicates the maxirnwn number

of columns of ytab, if negative, indicates the total size of ~ab,

• ir: an integer parameter which returns the actual number of '"used" rows in

the %tab and ytab arrays, and

• ie: an integer parameter which returns the actual number of Mused" columns

in the nab and ytab arrays.

5.2.1 DC transfer curve analysis

sprCED defines the parameters for DC analysis; the parameters indude:

• an independent voltage or current source,

• initial value of the source,

• final value of the source, and

• number of steps.

SPlCER performs the DC analysis, when the mode parameter value is 1.

56

5.2.2 Transient analysis

SPICET defines the parameters for TRA..l"fSIE~-r analysis; the parameters include:

• initial time for the TRANSIENT analysis,

• fina! time,

• number of steps,

• maximum step size, and

• initial condition to be used.

SPICER performs the TRANSIENT analysis, when tile mode parameter value is 2.

5.2.3 AC analysis

SPICEF defines the frequencies for AC analysis; the parameters for this analysis

include:

• starting frequency,

• ending frequency,

• number of steps, and

• indicator (logarithmic, arithmetic, etc.).

SPICER performs the AC analysis, when the mode parameter value is 3.

5.2.4 Noise analysis

SPlCEN defines parameters for NOISE analysis. The parameters include:

• independent voltage or current SOllrCe,

57

• output variable which defines the summing point for the equivalent output

noise, and

• frequency increment for the Noise analysis.

SPICEF defines the frequencies as mentioned in AC .-\..Qaly!>is. SPICER performs

the analysis, when the mode parameter value is 4.

5.2.5 Distortion analysis

SPICEG defines parameters for DISTORTION analysis. The parameters include:

• output load resistor,

• ratio of distortion to nominal frequencies,

• amplitude of distortion signal frequency,

• reference power level, and

• frequency increment value for distortion analysis.

SPICEF defines the frequencies. SPICER performs the analysis. when the rnDfk

parameter value is 5.

5.2.6 Fourier analysis

SPICEH defines parameters for FOURIER analysis. The parameters include:

• fundamental frequency,

• number of harmonic components,

• initial time for transient analysis of one period of the fundamental frequency,

58

• number of steps,

• maximum step size, and

• initial condition.

SPICER perfonns the analysis, when the mode parameter value is 6.

5.2.7 Other analyses

Other analyses supported include DC TRAJ.'iSfER fUNCTION, AC sensitivity

analyses, DC OP-POINT and DC SENSITMTY analysis. These analyses are not

discussed in this thesis.

5.3 Organization of interactive simulator

The organization of an interactive simulator can be outlined as a three-layer struc-

ture composed of a "'dialogue manager", "'command interpreter" and the simulation

package [21J, as shown in Figure 5.1.

-EJIALOGUE EMMAND SlMULATIONUSER -- --_ MANAGER Il'fIBPRE1ER __ PACKAGE

Figure 5.1: Original organization of SPICE-PAC.

"'Dialogue manager" mainly organizes the interaction with the user and the

"'command interpretern analyus user.supplied commands and translates them into

equivalent sequences of simulation primitives.

59

The graphical interface replaces the first two blocks by the CUI and so the final

representation would be as sbown in Figure 5.2.

-USER
GUI

(GENERATED

FROM ISL)

SIM1.JI.J\TION

PACKAGE

Figure 5.2; Modified organization of SPICE-PAC.

5.4 Presentation of results

SPICE-PAC uses binary representation of information for the purpose of interaction

with other packages. In other words, the parameters passed to the package, as well

as results returned from tbe package, are stored in ,.1lriables and arrays defined in

an external "driving" program; it is this en-emal program that must perform all re­

quired conversions and all input/output operations. Hence, there ace no '"printing"

or "plotting" facilities built into the package. and the required form of "output"

has to be provided by the external "driving" routines. After running any analysis,

the result of the analyses are stored in arrays for use by any subsequently called

routines.

5.5 Specification of GUI in ISL

Appendix B gives the complete specification of the user interface for SPICE-PAC.

The main window for the application is defined as:

60

File IPIlalysis-1 Mout

DC Transfer n.ve

ACAnalysis

Noise Analysis

DistortionPn~ysis

FourierPllalysls

Figure 5.3: Snapshot of main window.

window main_windowClayout = border, menu = main_menu);

main_menu(file, analysis, about);

menuitem file (name = "File",

submenuitem = quit, name = "Quit", action=function_qui t) ;

menuitem analysis(name = "Analysis",

submenuitem = ac_analysis, name = "AC Analysis",

action = showaaw,

submenuitem = dc_analysis, name = "DC Analysis",

action = showdaw,

submenuitem = tr_analysis, name = "Transient ",

action = showtaw);

menuitem about(name = "About",

submenuitem = help,name = "About this Application",

action = show_about);

61

This specification corresponds to a window shown in Figure 5.3, with the analy­

sis menu popped up.

Whcn Transicnt analysis is selected, the dialog window corresponding to that

analysis is displaycd 1.0 check and possibly modify the parameters for the analysis.

Thc corresponding specification is shown below:

Starting Value l1.oe-o~

final Value j1.2e-07

~oofSteps l:=l!S='===!I
MaxStepSize~

Condition ~

~~

Figure 5.4: Transient dialog window.

subwindow showtaw(layout '" border. item'" panelS. item· paneH);

panel panelS(location '" center. layout IE grid(S.2),

item'" labe160, item'" tf60.

item'" labe161. item'" tf61.

item'" labe162. item'" tf62,

item'" labe163. item'" tf63.

item'" laOO164, item'" tf64);

62

label label60(name = "Starting Value");

9.95.----------'"""-------,

7.96

5.98

Figure 5.5: Output of transient analysis.

textfield

label

textfield

label

textfield

label

textfield

label

textfield

panel

button

tf60(value = 1.0e-05);

label61(name = "Final Value");

tf61 (value = 1. 2e-07) ;

label62(name = "No of Steps");

tf62(value = 51);

label63(name = "Max Step Size");

tf63(value = 2e-08);

label64(name = "Condition");

tf64(value = 0);

pane17(location = south, layout = flow,

item = run, item = cancel);

run (name = "Run", action = action_tr, lang = native);

63

button : cancel(naae .. "cancel", action" hide. lang .. java);

The snapshot for the above specification is shown in Figure 5.4.

Once the input parameters are set. and the "Run" button is clicked. transient

analysis is executed and the output is displayed on the screen as sbown in Figure

5.5.

64

Chapter 6

Conclusions

This thesis briell.y overviews the currently available tools and techniques for the

specification of Graphical User Interfaces. Then it defines a high-level specification

language for graphical user interfaces, caned ISL. ISL is designed to be as simple as

possible, 50 that any user should be able to design the interface in a short period

of time. A translator that converts ISL specification into a GUI is implemented

in Java and the translation process is illustrated for a small, hypothetical example

and a real application is discussed in greater detail.

6.1 Advantages of the proposed approach

The suggested approach has many advantages which include: the generated inter·

face has a native "look·a.nd-feel" t it acts similarly to other user interfaces created

by this approach i.e., assures consistency, and reliability of the code generated is

comparatively bigber since the generation process is more standardized. The de­

velopment cost in terms of time and human resources is very small which is one of

the most important advantageS of this approach, because writing applications that

are easily movable to various computer platforms with different user interfaces is a

complex task. Since the implementation is in Java, tbe generated code is platform

neutral, and retargetting tbe om to any other platform is very simple. It also

implies that maintaining and modification of such GUIs is also simple since the

changes have to be made only to the spe<:ification and not to the individual copy

on each platform.

ISL is also supposed to reduce the interface development effort; ISL is a higher.

level spe<:ificatioD notation, so its specifications are usu&lly much shorter than equiv.

&lent ones in other programming or scriting languages. For example, the specifica­

tion given in Appendix B is about 80 lines which resulted in generation of about

600 lines of Java code. Other indirect benefits of ISL include ease of modifica­

tion. Since lines of code written is less, modifications to the existing code can be

done without much effort. Moreover, modification of the code does not require any

special knowledge of Java or the underlying windowing system since everything is

taken care of the translator.

With respect to the potential uses of the Gut generated from ISL specification,

the current implementation can be used to generate GUls for II. small or moderate

size applications. The main issue in using this approach is the "integration" of the

CUI with an application. If the background application has a clear interface for in­

teraction with external applications, the proposed approach can be used seamlessly

with that application. On the other hand, if the application requires a specialized

66

communication and synchronization protocol then the proposed approach may Dot

be suitable.

6.2 Future research

The proposed ISL can be used to specify interface for many general applications as

it supports the commonly used set of widgets. Despite the potential benefits men­

tioned earlier, there are still several improvements which caD. be made to enhance

the functionality, like supporting new widgets, providing special keys features, hid­

deD. commands and macro facilities.

More work on the implementation part can be done on the manipulation of

graphics.. The current status, as it stands, is that when a particular analysis is

run the output can be displayed as a graph on a canvas. The whole canvas can

be enlarged only by changing the size of the window. Special keys or interface

objects can be provided for such manipulations. More support can be provided for

comparing results of a particular analysis with different input data, super4 impos:ing

one graph over the other for easier comparison, selecting a particular portion of a

graph and zooming it for more details, etc.

67

Bibliography

[11 L. Macaulay, Human-Computer Interaction for SoftWD.T? Designers, Intema~

tiona! Thomson Computer Press, 1995.

[21 B. A. Myers and M. B. Rosson, Survey on User Interface Programming: Hu­

man Fcu:tON in Computing Systems. Proceeding of Human Factors in Com­

puting Systems, pp. 195-202. 1992.

[31 B. Laurel, The Art oj Human-Computer Interfaa: Duign, Addison-Wesley,

1990.

(41 8. A. Myers, Stau of the Ar1 in User Interfoa. Software Tools. H. R Hanson

and D. Hix. Ed., Advances in Human-Computer [nterac:tion, voL 4, Ablex

Publishing, 1992.

[51 B. Shneiderman, De.Jigning the User Inter/au: Strategies jar ElJective HUT1IfJn·

Computer Interaction, Addison-Wesley, 1987.

16] F. A. Di.'C, G.J. Abowd and R. Beale, Human Computer [ntemelion, Prentice

Halllnternational, 1993.

68

[7] Sun Microsystems, Sun Windows Programmers' Guide. 2250 Gracia Ave., Mtn.

View. CA 94043.

[8] M. A. Linton, J. M, Vlissides and P. R. Calder, Composing User Interfaces

with InterViews, IEEE Computer, vol. 22, no. 2, pp. s..22, 1989.

[9] J. McCormack and P. Asente, An Overoiew of the X Toolkit, Proceeding of

User Interface Software and Technology, Banff, pp. 4&-55, 1988.

[10! J. K. Ousterhout, Tel and the Tk Toolkit, Addison-Wesley, 1995.

[11] T. Sundsted, Introduction to the Abstract Windowing Toolkit: A description

of Java's user interface toolkit, Javaworld, 1996,

[12] W. M. Newman, A System for Interactive Graphical Programming, AFIPS

Spring Joint Computer Conference, pp. 47-54, 1968.

[13] R. J. K. Jacob, A Specification Language for Direct Manipulation Interfaces,

ACM Transactions on Graphics, vol. 5, no. 4, pp. 283-317, 1986.

(14] D. R. Olsen, Jr. and E. P. Dempsey, Syngraph: A Graphical User Interface

Generator, Proceeding of SIGGRAPH'83, Detroit, pp. 43-50, 1983.

1151 M. A. Flecchia and R.D. Bergeron, Specifying Complex Dialogs in ALGAE,

Proceeding of Human Factors in Computing Systems, Toronto, pp. 229-234,

1987.

(16] P. J. Hayes, P. A. Szekely, and R. A. Lerner, Design Alternatives for User In­

terface Management Systems Based on Experience with COUSIN, Proceeding

of Human Factors in Computing Systems, San Francisco, pp. 169-175, 1985.

69

[171 A. J. Schulert, G. T. Rogers. and J. A.Hamilton. ADM-A Dialogue Manager,

Proceeding of Human Factors in Computing Systems, San Fransisco, pp. 177·

183,1985.

[18J W. Nicholas and C. Lewis. Spreadsheet-ba3ed Interactive GraphiclJ: from Pro­

totype to Tool, Proceeding of Human Factors in Computing Systems, Seattle.

pp. 1~159, 1990.

{191 s. E. Hudson, UlJeT Interface Specification Using an Enhanced Spread&heet

Model, Technical Report GIT-GVU-9~20,Georgia University of Technology,

Graphics, Visualization and Usability Center, Atlanl.a, Georgia., 1993.

120J D.D.Cowan, C.M.Durance, E.Giguere and G.M.Pianosi, CIRL/PIWI; A GUI

Toolkit Supporting Retargettabi/ity, Technical Report CS-92-28, University of

Waterloo, Department of Computer Science, WaterLoo, Canada, 1992.

121] W. M. Zuberek, SPICE-PAC version 2G6c • An Overview, Technical Report

#8903, Department of Computer Science, Memorial University of Newfound­

land, St.John's, Canada, 1989.

(22) W. M. Zuherek, SPICE-PAC ~on 2G6c; UlJer'lJ Guide, Technical Report

#8902, Department of Computer Science, Memorial University of Newfound­

land, St.John's, Canada, 1989.

[231 G.A.R. Hoare, MonitorlJ; An Operating SYlJtem Structuring Concepts and

Communications, Journal of ACM, vol. 17, no. 10, pp. 549-557, 1974.

[241 B. B. Welch, Procticai Programming in Tel and Tk, Prentice Hall, 1997.

70

[25J J. R. Levine, T. Mason and D. Brown, le% l!J "ace, O'Reily &:: Associates, 1992.

(26) K. Aroold and J. A. Gosling, Th~ Java Programming L4nguag~, Addison­

Wesley, 1996.

71

Appendix A

This appendix first provides 8. brief introduction to JavaCC, the parser generator.

and then shows the specification for ISL.

Any grammar file for JavaCC starts with the settings for all the options SU~

ported by JavaCC. The two settings used here are; LOOK.-\HEAD and DEBUG 1 .

Following the option settings is the Java compilation unit enclosed between

"PARSER..BEGIN(name)" and "PA.RSER..END(name)". The only constraint on

this compilation unit is that it must define a class called name - same as the

arguments to PARSER..BEGIN and PARSER.END. This is the name that is used

as the prefix for the Java files generated by the parser generator. In this example,

"name" isGUI.

Then the lexical tokens are defined. They can be either simple strings (e.g.,

"{", "}") or a more complex regular expressions. The first token, named IG­

NOREJN...BNF, is a special token. Any tokens read by the parser that match the

characters defined in the IGNORE.lN...BNF token are silently discarded. Here this

causes the parser to ignore space characters, tabs, and carriage return characters

LFot more informatioll about these optiora and othet available optioll.S please look at the
JavaCC home llaIe at 'ffWW.$WJten.oom/JavaCC/.

72

in the input file.

Subsequently the following token definitions define the characters that the gram­

mar will interpret as special cb.acac:ters, CUI objects, reserved. words. layout types

etc.

After the lexical tokens, list of productions are defined. In JavaCC grammars,

nonterminals correspond to methods. Each production defines its left-hand side

nonterminal followed by a colon. This is followed by a sequence of declarations and

statements within braces (bere in all the cases there are no declarations and hence

this appears as "U") and then by a set of expansions (also enclosed in braces).

After the grammar is specified completely, parser can be built by running

JavaCC on the input file and compiling the resulting Java files.

ISL grammar

This section gives the grammar specification for 1SL, excluding the code generation

put.

options {

LOOKAHEAD '" 1;
DEBUG .. true;

}

PARSER_BEGIlf(GUI)

public class GUI {

static void startUpO throv8 IOE.J:ception {

GUI parser • new GUIO;
parser. Input 0 ;

}

73

PARSElLEND(GUI)

IGNORE_IJCBNF .

{}

{

I "\t" I "\n" I "\r"
I <COKKEJlT_A: "'." (-[.....). "." (-[.. ,,,) (-[.....)) ..., .. >
I <COHMEJlT_B: .. ,/" (-[.. \D..... \r..». ("\D"I"\r\n"»

}

TOKEli': ,. special chars .,

{}

{<ASSIGN: ">
I <COMMA: ",">

I <COLOIf: ":">

I <SEMICOLON: ";">
[<LPARAlf: ,,(.. >
I <RPARJJ(: ..) .. >
[<DOUBLE_QUOTES: ,,\ >

}

TOKEN : /. GUI objects .,

{}

{ <WINDOW: "window">

I <SUBWINDOW: "subwindow">

I <PAJfEL: "panel">

I <LABEL: "label">

I <I1EJi'U: "aenu">

I <HEKUITEK: ".enuitea">

I <CHECKBOXGROUP: "checll:bo:lgroup">

I <TEXTFIELD: "textfield">

I <BUTTON: "button">

I <CHECKBOX: "checkbox">

I <CAIlVAS: "canvas">

}

TOKEN: /. Reserved words .,

{}

74

{ <START_IOL: "START_IOL">

I <END_IOL: "EMO_IOL">

I <UY011l': "layout">
<SUBMENUI'TEH: "submenuite_">

<PREFERRED_SIZE: "preferred-size">

<LOCATION: "location">

<ITEM: "item">

<NAKE: "name">

<ACTION: "action">

<RETURICTYPE: "return_type">

<VALUE: "value">

<lyARAH: "x_paro">
<Y_PARAH: "y_paru">

<VAR: "vu">
<TYPE: "type">

<VAL: "val">

<SIZE: "size">

<UNG: "lang">
<fUHCTION: "func'tion">

TOKElf : /* layout type Le., flov,grid,border etc -/
{}

{ <FLOW: "flow">

I <GRID: "grid">

I <BORDER: "border">

}

TOKElf : /- location type -/
{}

{ <NORTH: "nortb">

I <CENTER: "center">

I <SOUTH: "soutb">

I <VEST: ·west">

I <EAST: "eaa't">
}

75

TOKElf : /- funet:ion type -/
{}

{ <_JAVA: "java">

I <_IfATIVE: "native">

)

TOKElf : /- variable type -/
{}

{ <nIT: "iDt">

I <DOUBLE: "double">

t <FLOAT: "float">

)

TOKEll: /* Identifiers -/

{}

{< Id: ["a"-"z",·A"-"Z"] (["a"-"z","A·-"Z","0"-"9", ,,_,,]). > }

TOKEll : /* Number */
{}

{<Number: (["0·-"9"])+

J (["0"-"9"]). "." (["0"-"9·]).

I (["0"-"9"]).

I (["0"-"9"J)+ "e" (["+", "-·])1 (["0"-"9"])+

I (["0"-"9"])+ (·.·)1 (["0"-·9"])+ "e" ([..+..... _..)1 (["0"-"9"])+ >

)

/_ Space embeddable String _/

TOKElI
{}

{ <SString: .. \ ["a"-"z", "A"-"Z"]

(["a"-"z","A"-"Z","0"-"9","_", " .]). "\"" > }

void InputO
{}

{Start_idlO (ObjectO <COLON> Lis'tO <SEMICOLON»+ End_idlO <EOF>}

void Objec'tO
{)

{ <WINDOW>

I <SUBWIIlDOW>

76

I <MENU> {a.lD8nubar_flag • true;}

I <HENUlTEM>

I <PANEL>

I <LABEl>
I <CHECKBOX>

I <CHECKBOXCROUP>

I <CANVAS>

I <TEXTFIELD>

I <BtrrrOlf>

r <VAR>
}

void Layout_typeO

{}

(<FLO\/>

I <GRID>

I <BORDER>
}

void Loc_typeO

(}

{ <HORTH>

I <CENTER>

I <SOtrrH>

I <\/EST>

I <EAST>

}

void ListO

(}

{ «Id> <LPAR.AH> (LisLiO I List_aO) <RPAR.AH>) }

void List_i 0

(}

{ <Id> (<COHKA> <Id>) ... }

void List_aO

(}

{ PairO «COMMA> PairO) ... }

77

..aid PairO

o
{ LOOKAHEAD("preferre<Csize") <PREFERRED_SIZE> <ASSIGN> <U'ARAJi>

<NUIlIber> <COMMA> <HUIlIber> <RPARJJP {a.preterre<Csize_flag :II: true;}

I LOOKAHEAD("subDenuit8ll") <SUBMEJfUIl"EK> <ASSIGN> <Iel>

I LOOKAHEAD("nue")<NAME> <ASSIGN> <SString>

I LOOKAHEAD ("value") <VALUE> <ASSIGN> «Id> I<NUIlIber> I<SStri..Dg»

I LOOKAHEAD(ltlayout" "grid") <L!YOtTf> <ASSIGN> <GRID> <U'ARAN>

<Number> <COMMA> <Number> <RPARAN>

I LOOKAHEA.D("1ayout") <LAYOtTf> <ASSIGN> Layout_typeO

I LOOKAHEAD("location lt
) <LOCATION> < ASSIGN> Loc_typeO

I LOOKAHEAD("menu") <KENU> <ASSIGN> Attribute_valueO

I LOOKAHEAD("canvas") <CAJlVAS> <ASSIGN> Attribute_value()

I LOOKAHEAD("button") <BUTTON> <ASSIGN> Attribute_value()

I LOOKAHEAD("label") <LABEL> <ASSIGN> Attribute_valueO

LOOKAHEAD("panel") <POEL> <ASSIGN> Attribute_value()

LOOKAHEAD("checkbox") <CHECKBOX> <ASSIGN> Attribute_valueO

LOOKAHEAD("checkboxgroup") <CHECKBQXGROUP> <ASSIGlf> Attribute_value()

LOOKAHEAD("textfield") <TElTFIEl.D> <ASSIGN> Attribute_valueO

LOOKAHEAD("(") <LPARJ.N> PairO <RPARAJ>

LOOKAHEAD("return_type") <RETURN_TYPE> <ASSIGN> Var_typeO

LOOKAHEAD("lang") <UNG> <ASSIGlf> Lan~typeO

LOOKAHEAD("type") <TYPE> <ASSIGlf> Var_typeO

LOOKAHEAD("sue") <SIZE> <ASSIGN> <IfUlDber>

LOOKAHEAD("val") <VAL> <ASSIGN> «Id>I<IfUlllber»

LOOKAHEAD("function") <FUNCTION> <ASSIGN> <SString>

Attribute_name() <ASSIGN> Attribute_value ()

}

void t.ang_typeO

{}

{ <_JAVA>

I <_NATIVE>
}

void Vu_typeO

78

{}

{ <INT>

I <FLOAT>

I <DOUBlE>

}

void Attribute_DameO

{}

{ <LAYOUT>

I <LOCATIOr>

I <SUBKEIUlTEM>

I <ITEM>
I <JIA1lE>

I <ACTIOI>

I <X_PARAM>

I <Y_PAR.AH>

}

void Attribute_valueD

{}

{ <Id> }

void Start_idlO : {

try { s'tutUpO ; } catch (IO£:l:ception .) { }

}

{ <START_IDL.> }

void EncLidlO : {

try { clos.DowO; } catcb UOE:r:ception e) { }
}

{ <END_IDI> }

79

Appendix B

The following is the complete specification of Gut in ISL. as used in Section 5.

menuitem.

menuitelll

menuitem

: main_vindovClayout Of border. menu. maio_menu.
canvas • graph_canvas>;

: main_menu(file. analysis. about);

: file {name" "File".

subcaenuitea .. qUit. name" "Quit".
action. function_quit};

: analySi.eDame • "Analysis".

sublDeouitell .. aC_aDalysis. name"" MAC Analysis·.
actioD .. abovaaw.

subeenuitea • dc_ana.1ysis. name- ·OC Analysis".

action" sholl'dav,

submenuitem .. tr_analysis. name- "Transient",

action .. showtav.

subIDenuitem '" D_analysis, name· "lJoise Analysis".
action • shownav.

8ubmeDuitem • dis_analysis. name .. "Distortion Analysis",

action .. sholl'disaw,

subllleouitem· f_analysis, name· "Fourier Analysis",

action • sholdav) ;
: about(name '" "About", sublDenuitem .. help,

name. -About this Application". action. sholl_about);

80

button

panel

panel

panel

panel

button

8ubwindow : showaaw(Iayout = border. ito ~elO.

item'" paneU. itetll .. panel2);

: panelO(Iocation .. north. layout .. flow,

item" labelOO. item" cbg);

label : labelOO(name .. "Source Type");

checkboJ:group: cbg(item" lin. name"'''Lin'', value .. false,

item" oct, name = "Oct", value .. false,

ite... dec, Dame ::z "Dec". value .. true);

: panell(Ioeation .. center, layout .. flow,

item .. label10. its::z start_freq_tf. item .. labe111.

item .. end_freq_tf);

labe110(name .. "Stan Frequency·);

: label11 (nue .. "End Frequency");

: start3req_tf(-:alue '" 100);

: end_freq_tf(value = 1000);

: panel2(locatioD .. south, layout .. flow. item" cancel,

item" run);

cancel(name .. "Cancel", action .. hide);

: nan (name" "Run". action" action_ac. langs native);

subwindow : showdaw(layout '" border, itell .. panel3. item" pane14,

item" panelS);

: panel3(location .. north, layout'" flow. item" label30,

item .. cbgll;

label label30(naae .. "Source Type");

checkboxgroup: cbgl(itu" soueret. nue .. ·Source!". "alue .. true,

item .. source2, DaIIIe '" "Source2", value .. false);

: pane14(location • center •layout .. grid (0 ,0,
item .. labe140, item .. source_name,

item" labe141. item" source_value,

item" label42. item" end_value,

item" labe143. item'" increment_value);

: label40(name .. "Source Hame");

: source_name(value '" Vin);

: label4l(naae .. "Start Value");

label

label

tenfield

tenfield

panel

label

tenfield

label

81

tenfield

label

tenfield

label

tenfield

panel

button

button

subwindow

panel

label

tenfield

label

tenfield

label

tenfield

label

tenfield

label

teJ:tfield

panel

button

button

subvindov

panel

: start:_value(value .. 1);

label42(nue .. "End Value");

: end_value(value .. 5);

labe143(name .. "Increment Value");

increment_value(value .. O.Ou;

: panel5Uocation .. south. layout .. flow, it..= cancel.
item .. run);

: cancel(name = "Cancel", action" hide_de);

: run(name .. "Run DC Analysis", action .. action_de.

lug" native);

: sbovtaw(layout '" border, item" panelS,

item'" panel7);

: panelS (location '" center, layout .. grid(5.2).

item" label60, item .. tf60, item" labelSl.

item" tf61. item .. labe162, item" tf62 ,

itelll .. labe163. item'" tf63, item" label64 ,

item" tf64);

labe160(name .. "Starting Value");

: tf60(value - 1.0e-05);

: labe16l(name .. "Final Value");

: tf61(value .. 1.2e-07);

: labe162(name - "lio of Steps");
; tf62(value .. 51);

. labe163(name • "Max Step Size");

: tf63(value .. 2e-08);

label64(name .. "Condition");

; tf64(value .. 0);

; panel7Uocation '" south, layout'" flow,

item" run, item .. cancel);

: ruo(name .. "Run", action - aetioD_tr, lang'" native);

cancel(name .. "Cancel", action'" hide, lang .. java);

: show_about(layout .. flow. item" panelS);

; panelSUocation .. center,layout .. flow, label'" myl.
button- ok);

82

label ; myl(name = "SPICE PAC Beta version");

button ; ok (name : "Ok". action = bide);

; grapb_canvas(location • center, name. "GrapbCanvas",

x_param = time, y_param = Vi);

83

Appendix C

This appendix gives the complete code for the customized canvas object. Though

this is fine tuned for SPICE-PAC application, it can he used for other general

applications.

The moot important part or the implemented Java class is the painl() method.

This method is called by Java whenever the application (canvas) needs to be painted

- when the canvas is initially drawn. when the window containing it is moved, or

when another window is moved from o\-er it.

The other methods like setValues, getMax, getMin etc., are used initilize the

internal data structures and for other internal data manipulatioos. Here in this

example most of the variables (especially arrays) are line tuned for SPICE-PAC

application.

/- Customized CANVAS object -/

import java.a~.• ;

import java.lang.Math;

public class HyCanvas extends Canvas{

static int count. 0;

iot k=O;

double taO = new double [200] ;

84

double tb 0 - nell double [1000] ;

double tbl0 - nell' double [200] ;

double tb20 '" nell' doub18[200];

double tbJ 0 - nell' double [200] ;

int nr-O,nc-O,ipO,ic-O;

int nos -0;

double tv "0, sv - 0;

int b,II,bl,1I1;

double bta,sta. btbl,stbl. btb2.stb2. btb3,stbJ;

double btb, stb;

int bue:r:. buey;

int incn.. incry;

int If00; IIIfo.Of.Divisions on x and y azis

public MyCanva.s (int plt.double pta-O ,double ptbO ,double ptbl0.

double ptb20.double ptb30,int pnr,int pnc,int pir.int pic,

double pav, double pfv, int pnosH

ta" pta;

tb - ptb;

nr .. pur;

nc - pne;

ir - pir;

ic - pic;

sv .. pav;

fv .. pfv;

nos - peos;

public void setValues(iot plt,double ptaO, double ptbO.

double ptbl0, double ptb20,double ptbJO, int pur.int poc,

int pir. int pic. double psv, double pfv, int pnos){

It .. pk ;

85

ta = pta;

tb = ptb;

nr • pnr;

nc := pnc;

ir .. pir;

ic .. pic;

sv '"' pay;

tv os pfv;

n08 = pnos;

/ .. format the values to be displayed on x and y axes */

public String tmt(Oouble d, int minW'1dth}{

String tmp '* d. toStr1ngO;

if (d.doubleValueO < O) minW'idth_;

int teplen .. tmp.lengthO;

if (ainWidtb < taplen) tap '* tap.substring(O,lIinWidth};

return tmp;

public void paint(Craphics g}{

II .. sizeO .lIidth;

h = sizeO .height;

111 = II - 60; //Ilidth of the recta.na:le draw

hi = h - 60; I/beigbt of the rectangle dravn

double tlDP '* 0;

1nt t1:l: '" 30; / /top_left_x

int tly .. 30; I/top_left_y

basex '* tlx;

basey '* tly;

int incr .. 100;

double xl, x2;

86

double yl, y2;

int int_xl, int_x2;

int int_yl, int_y2;

Color cl .. new Color(0,0,255);

Color e2 ~ new Color(200,55,lOO);

Color e3 ::: new Color(255,O,O);

for (int i '" 0; i < ie; i++> {

for (int j '" 0; j < ie; j++H

if(j ..= 0) tbl(i] - tb[i+j*nr];

else if(j =::: 1) tb2[i] ::: tb[i+j*nr];

else if(j :::= 2) tb3[i] - tb[i+j*nr];

bta '" getHax (ta) ;

sta '" getHin(ta);

btbl '" getHu(tbl);

stbl '" getHin(tbl> ;

btb2 - getHax(tb2);

stb2 .. getHin(tb2);

btb3 .. getMax(tb3);

stb3 .. getHin(tb3);

btb .. btbl;

else if (btb2 :> btb) btb .. btb2;

else if (btb3 :> btb) btb .. btb3;

8tb - stbl;

else if (stb2 :> stb) 5tb .. stb2;

else if (stb3 :> stb) stb '" stb3;

g.clearRect(Q, 0, w • h);

g.drawRect(tl:x, tly, wi , hi);

NOO-5; IINo. Of Divisions

87

/* drav the markings on the horizontal scale./

incn: ,. ('11) /HOO;

double xunit ::(bta - sta)/NOD;

double %Val '"' sta;

for (int i "" tlx; i <= vl+tlx; i= i+ incn:){

StringBuffer x ,. new StringBufferO;

g.fillRectU, (hl+tlx), 3,3);

Double dval :: nev Oouble(xval);

g.dravString(fmt(dval,S), i-la, (tlx+h1+15»;

xval ,. IVai+xunit;

/* drav the markings on the vertical scale */

incry=Unt) (h1/HOD);

double yunit "" (btb - stb)/HOD;

double yval :: stb;

for (int i ,. hl+tly; i >,. tly ; is i- incry){

StringBuffer y :: nev StringBufferO;

g.fillRect(tlx, i-2, 3,3);

Double dval .. nev Double(yval);

g.drawString(fmt(dval,4), 2, i+5);

yval '" yval + yunit;

for(int i :: 0; i < ir; i++){

xl ::IE ta[i];

if (i+l < ir) x2 .. ta[i+1];

else x2 .. xl;

yl :: tbl[i];

if U+1 < ir) y2 .. tbl [i+1];

else y2 .. yl;

g.setColor(c1) ;

88

int_x1 " (int)Hath.rint(transx(xl));

int_x2 = (int)Hath. rint (transx(x2» ;

int_y1 = (int)Math.rint(transy(yl);

inLy2 " (int)Hath.rint(transy(y2»;

g.drawLine(int_x1, int_y1, int_x2, int_y2) ;

g .draIiString("*" ,int_xl-3 .int_y1+6) ;

StringBuffer sb ,.. new StringBufferO;

sb.append(i) ;

y1 '" tb2[i];

if U+1 < ir) y2 .. tb2[i+1l;

else y2 2 y1;

int_y1 .. (int)Hath.rint(transy(yl);

int_y2 2 (int)Hath.rint(transy(y2»;

g. setColor(c2) ;

g.drawLine(int_x1, int_y1, int_x2,int_y2) ;

g.dravString("#", int:_x1-3, int:_y1+6) ;

y1 " t:b3[i];

if U+1 < ir) y2 " t:b3[i+1];

else y2 • y1;

int:_y1 • (int)Hat:b.rint(t:ransy(yl);

int:_y2 .. (int:)Hatb.rint:(t:ransy(y2»;

g.set:Color(c3) ;

g.dravLine(int_x1, int_Yl, int_x2, int_y2) ;

g.drawString("+", int_x1-3, int_Yl+6) ;

public double getHax (double ary 0)(

double max '" uy[O];

forUnt i .. 0; i < ir; i++){

if (ary[i] > max) max .. ary[i];

89

return aax;

pUblic double getHin(double aryOH
double min - ary (0] ;

forCint i - 0; i < ir; i-H

if CaryU] < Ilin) min· ary[i];

return min;

double transx (double rawx) {

double ri; llRange Index

double xrange '" bta - sta;

ri • (ran - sta)/(xrange/HOO);

rawx • baaex+(ri- incrx);

return ravx;

double transy(double ravyH

double ri; llRa.nge Index

double yrange • btb - stb;

ri :: (ravy - stb)/(yrange/IOO);

ravy • ri - incry;

I- IMPORTANT: convert from canvas to realtime axis -I
ravy ., hl+basey - ravy;

return ravy;

90

Appendix D

This appendix provides information related to the use of ISL and the GUI generator.

These instructions are valid at the time of writing.

Installation instructions

lnstallation instructions assume that the target machine is running a recent release

of the X Window System (Vernon II) on a Unix operating system. Java vtrsion

1.0.1 or later and lavaCe version 0.5 or later must also have been installed on the

target machine. No special permission is required to use the package.

Extracting the archive file

This distribution includes a single compressed archive file called guigenerator,tar.gz

which can be extracted using the command:

$ gzip -de guigeoerator.tar.gz - tar xvf-

This will create a directory called guigenerator and all the relevant files will be

placed in tbat directory. These file and subdirectories are described in Table 1.

91

Filename

README

Table 1: Files included in the distribution.

Description

A text file containing information on bow to use tbe translator

MyCanvas.java Java file containing information required to use canva.s object

Gt.J1.java &t. GUIa.java The translator (i.e., scanner, parser and code generator)

Makefile

Compilation

File to build tbe translator

To generate the CUI after writing tbe ISL , change to the directory guigenerator

and type make. If there ",,-ere no errors during the compiling and linking, required

Java classes will be created in the ct1ITent directory which can then be executed

directly using the java runtime.

Environment variables and other information

LD.LIBRARY..PATH must be set to the present working directory.

PATH should include the current directory.

92

	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Information To Users
	006_Title Page
	007_Copyright Information
	008_Abstract
	009_Acknowledgement
	010_Table of Contents
	011_Table of Contents iv
	012_Table of Contents v
	013_Table of Contents vi
	014_Table of Contents vii
	015_List of Figures
	016_List of Tables
	017_Chapter 1 - Page 1
	018_Page 2
	019_Page 3
	020_Page 4
	021_Page 5
	022_Page 6
	023_Chapter 2 - Page 7
	024_Page 8
	025_Page 9
	026_Page 10
	027_Page 11
	028_Page 12
	029_Page 13
	030_Page 14
	031_Page 15
	032_Page 16
	033_Page 17
	034_Page 18
	035_Chapter 3 - Page 19
	036_Page 20
	037_Page 21
	038_Page 22
	039_Page 23
	040_Page 24
	041_Page 25
	042_Page 26
	043_Page 27
	044_Page 28
	045_Page 29
	046_Page 30
	047_Page 31
	048_Page 32
	049_Page 33
	050_Page 34
	051_Chapter 4 - Page 35
	052_Page 36
	053_Page 37
	054_Page 38
	055_Page 39
	056_Page 40
	057_Page 41
	058_Page 42
	059_Page 43
	060_Page 44
	061_Page 45
	062_Page 46
	063_Page 47
	064_Page 48
	065_Page 49
	066_Page 50
	067_Page 51
	068_Page 52
	069_Page 53
	070_Chapter 5 - Page 54
	071_Page 55
	072_Page 56
	073_Page 57
	074_Page 58
	075_Page 59
	076_Page 60
	077_Page 61
	078_Page 62
	079_Page 63
	080_Page 64
	081_Chapter 6 - Page 65
	082_Page 66
	083_Page 67
	084_Bibliography
	085_Page 69
	086_Page 70
	087_Page 71
	088_Appendix A
	089_Page 73
	090_Page 74
	091_Page 75
	092_Page 76
	093_Page 77
	094_Page 78
	095_Page 79
	096_Appendix B
	097_Page 81
	098_Page 82
	099_Page 83
	100_Appendix C
	101_Page 85
	102_Page 86
	103_Page 87
	104_Page 88
	105_Page 89
	106_Page 90
	107_Appendix D
	108_Page 92
	109_Blank Page
	110_Blank Page
	111_Inside Back Cover
	112_Back Cover

