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ABSTRACT

This thesis presents a hicrarchical neural network system for improving the edge measure:

ments obtained by an edge operator. The neural network system is de:

gned (o adjust the
edge measurements based on the information provided by neighbouring edges. “The adopted
stralegy is to analyze the local edge patierns to determine and reinforce edge structures while

suppressing unwanted noise and false edges. T'he hierarchical nenral network system is made

up of four levels of subnets. The subiet in the first level consists of high-order neural nets
Lo determinc the potential adjustment on the clement of interest by detecting rdge contours
according to the sclected processes in the neural nets and the input local edge pattern. The

second level consists of a cooperative-competitive neural net. model Lo determine the orien-

tation of the strongest edge contour in the local edge pattern. The subnet in the third level

consists of two Lypes of neural net models. A high-order nenral net. s

Lains Lhe conditions

for adjusting the gradient magnitude and determines the amount of adjustient to the gradi

ent magnitude. A semilincar feedforward net is used to compute the new adj

sted gradient
magnitude and determines if the element of interest is to be an edge clement or a non-edge
clement. The subnet in level four is a semilincar feedforward net which is used o determine
the new orientation for the clement of interest. A fast learning algorithm is developed to

derive suitable weights for the neural nets

to perform efficiently and correctly. Using the

hierarchical neural network system for cach clement. in the image, highly pa

lel processing
can be acliieved. An iterative approach incorporated into e neural network system has also

cnabled the application of glokal analysis in the pro

of adjusting the edge measurements,

As aresult, the final edge measurcments are more accurate.
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Chapter 1

Introduction

An important problem in image processing is the detection of edges in a given image.

Edges are the conscquences of changes in some physical and surface properti

illumination, geometry (oricntation or depth) or reflectance. An edge image conves
the important scenc information as there are direet correlations between the dges and the

physical propertics of a scene. Rdge detection is an esseutial part of many computer vision

systems as it plays a key rolc in carly processing. The edge detection process simplifies the
analysis of images by drastically reducing the amount of data to he processed, while at the

same time preserving useful and important. structural information ahout. ohject, houndaries.

It is hard to over-emphasize the importance of edge detection in image understanding. Most

modules in a vision system depend, dircetly or indirectly, on the performance of the edge-
detector. Edge detection Lechniques have varions applications such as patlern recoguition,

robot scenc analysis, and image coding.

Accurate edge detection is a difficult task [Peli and Malah 1982; Ballard and Brown

1982,] and there has been a substantial effort to develop the ‘ideal’ edge detectors o oper-

ators. Iowever, cach of these edge operators asually embody specific edge models and may

perform best, only under special circumstances. For example, some operators may find most

edges but also respond to noise, while others may be noise-insensitive but miss some crucial



ey

edge st edge operators will generally produce imperfect results. Therefore, con-
sidering the overall diverse applications for edge detection and the performance of current
wdge operators, it is better o improve the results of an edge operator rather than to develop

the ‘ideal” edge operators,

There are different for improving cdge operator . Teck
using relaxation labeling are restricted by the limited capacity (o accurately represent edge-

and different lahelings. As a result, these techniques lack the ability to detect

proces:

many different and more complex edge patterns. Some techniques use context information

from the image but they lack accuracy as strong noise is also enhanced along with valid

edges. Other techiques using contour finding to improve the detected edges perform poorly
in noisy images.

chniques have limited capability to perform good and accurate edge de-

As enrrent

tection for noise corrupted and degraded images, this thesis presents a new technique for

proving the edge Edge include: (1) the amount of edge
strength ascertained by measuring the degree of abruptness in changes in intensities along

the edge and (2) the direetions of these changes in intensities. A hierarchical neural network

rstem is proposed Lo accomplish the following tasks : (a) to reinforce or enhance true edges;

() to recover missing edges; (<) to suppress false, spurious edges; and (d) to eliminate noisc.

The neural network system is able to achieve four very important objectives :

L. Different types of edge contours (e.g. curvalure, linear, corners, etc.) can be accurately

detected. An edge contour is the outline that defines an edge. An cdge structure on



the other hand is an edge construction through the arrangement of the subeomponents

(cdge cloments) of an cdge.

2. More global information is made available for accurate edge detection, interpolation

and noise climination.

3. llighly parallel processing enables high computation speed for real-time application,

4. The designs and architectures of the neural network system enable fast. learning and

The adjustment, of the edge is formulated in a manner such that an edge ol

ment may have its gradient magnitude and orientation iteratively altered in agreoment. with
its local surroundings. llence, the edge image (consisting of edge clements) is updated after

cach ileration and the new values are fed back to the neural network system for further

processing. This iterative approach enables the utilization of global information as the in-

formation is ‘propagated’ to surrounding clements in the edge image after ach iteration.

1.1 Organization of the System

The flowchart in Fig. 1.1 gives an overview of the proposed system. nitial edge m

ments are obtained using the Sabel operators [Ballard and Brown 1982,]. A global threshold

algorithm is used to distinguish edge clements. The information (the orientation e e

gradicnt magnitude) is input to the hierarchical neural network system whic

iteraf

adjusts the edge measurement of cach element until convergence is attained. That is, t




edges are def and enhanced, missing edges or edges not detected by the edge operators
are recovered, false and spurions edges detected by the edge operators are suppressed and

traces of noise climinated.

Iiproved Edge Image

Yes

Processed Edge Image

Hicrarchical
Neural
Network

Thresholded Edge Image

Histogram
Thresholding

I Edge Image

Edge
Operator

’[ Noise Corrupted
Input Image

Figure 1.1 An overview of proposed system



1.2 Structure of the Hierarchical Neural Network System

The neural network system consists of four major subnets which perform speci

sub-
tasks in order to accomplish the overall task of improving the edge measurements. The
interconnections between these subnets are fashioned in a hicrarchical manner, The subnet

in level one detects the strengths of edge contours according to the gradient magnitudes and

orientations of neighbouring edge clements in the local edge pattern. In lovel two, the subnet
delermines the orientation of the strongest edge contonr in the local edge pattern using the
input from the subnet in level one. The subnet. in level three uses the information provided
by the subnet in level two to adjust the gradient magnitude of the edge clement. 1 will also
signal to the subnet in level four (o modify the orientation of the eentral clement. The subnet
in the final level determines the new orientation for e edge clement with the information
from the subnets in levels two and three. The hicrarchical structure of the nearal network
system is illustrated in Fig. 1.2,

Each subnet is made up of one or more layers of nodes. The hicrarchical neural network

system has forward and/or lateral connections between nodes at cach level or layer In the

forward connections, the outpnt of nodes at cach level (or layer) serves as inpul Lo the nodes
on the next level (or layer) in the neural network. In the lateral connections helween nodes,

the emphasis is on lateral inhibition or excitation hetween nodes on the same layer. The

first layer of the subnet in level one is the receptor layer Lo reccive the input data.



Adjusted Gradient
Magnitude  New Orientation

Orientation Determination
Subnet

Level 4

Gradient Adjustment,

Subnet

|

Maximum Detection
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Level 2
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1

Edge Contour Detection

Subnet

Level 1

Inpat Image
(Gradient Mugnitude ; Orientation)

Figure 1.2 Iicrarchical structure of neural network system

The output of the subet in level three is the new adjusted gradient magnitude of the edge
element and the signal indicating whether the clement is an cdge clement or a non-cdge ele-

meut. The output of the subnet in level four gives the new orientation for the edge element.



1.3 Organization of the Thesis

This thesis is organized into ninie chapters. Chapter two introduces existing techniques
for edge detection and enhancement and also reviews the current rescarch and applications

of different neural network models. Chapter three describes how the input data to the hi

archical neural network system are generated and formatted. In Chapter four, the design,
architecture and mechanism of the subnet in level one of the network are deseribed. The
function and purpose of the subnet are also discussed. Chapter five deseribes the subnet in
the second level. The design and concept are adopted from the analogy to the biological
neuron. The third subnet in the neural network is deseribed in Chapter six. This subnet
consists of a high-order functional linked neural net for deciding the appropriate conditions

for edge

and a ili feedforward net for modifying the gra-
dient magnitude. Chapler seven describes a semilinear feedforward net for determining the
orientation of the edge clement. A fast learning algorithm for choosing suitable weights of the
neural nets is described in Chapter cight. The different situations are analyzed to find out
whether training for the ncural nets is required or not. Chapter nine gives the conclusions

and possible directions for further rescarch.



Chapter 2
Survey of Edge Detection Techniques and

Neural Networks

2.1 Introduction

In this chapter, a brief overview of edge detection techniques, edge enhancement tech-
nigues and neural networks is presented. This discussion includes the principles adopted in
these techniques, their strengths and weaknesses, as well as focusing on technigues which
wilize edge information to enhance the edge image. Finally, the design concepts and appli-

cations of the different, neral network models are discussed.

2.2 Edge Detection Techniques

There has been tremendous rescarch in the area of edge detection in an attempt to create

the *ideal’ edge operator. The follawing are reviews of the typical edge detection algorithms,

2.2.1 Differential Operators

Most of the curlier cdge detection $echniques employed first order dif

operators,
Diflevential operators include the Roberts 2 x 2 pisel operator, the Prewitt 3 x 3 pixel op-

erator and the Sohel 3 x4 pixel operator [Ballard and Brown 1982,]. These operators st



suitable weights over a convenient neighbourhood size to estimate slopes in the “e” and *y°

directions,

rst order differential operators are fast edge detection operators. They could

sharpen the edge contours, but also inadvertently enhance the noise, The Lap!

lacian of Gaus-

sian operator (Marr-1lildreth method) is nsed 1o deteet edges at the locations of the 7

crossings [Marr and 1Tildreth 1980). How

5 ZCT0-CTC

ugs o ot always correspond to

cdges. The Marr-llildreth method also has poor localization propertics and introduces a
biasin the edge location estimation [Berzins 1981; Nalwa and Binford 1986]. The smoothing
operation with the Gaussian mask tends to blur weak edges [Haralick and Loe 1990], and
furthermore, the presence of impulse noise in Cransmitted images can serionsly degrade the
performance of the smoothing operator. Auother diferential operator, Cany edge operator
[Canny 1986], uses the first derivative of the filtered image funetion as its basis for edge

delection. Optimal edge operators are then derived for different, edge profiles, for ¢

wle,

step edge or ridge edge. These operators are optimal in the sense of jointly maximizing

the signal-to-noise ratio and a loc

tion criterion with constraint on nmltiple respons

Tere, smoothing is used to offset the effects of noise before edge detection. The elfects of

smoothing blurs weak cdges. Another drawback involves relurning false edges on smoothly

shaded surfaces.

2.22 Template Matching Edge Operators

The popular cdge template matching aperators are the Kirsch masks [Ballard and Brown

19824), the Robinson masks [Robinson 1977), the Nevatia-Babu masks [Nevatia and Babu
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1980], and the Compass Gradient masks [Park and Choi 1989]. By detenmining the largest
response for a scl of masks, the edge orientation and magnitude can be rapidly estimated.
However, template mask methods give rise Lo large angular errors and do not give correct
values for the gradient. Another type of template matching technique s based on the sum of
absolute errors [Strickland, Draclos and Mao 1990). This technique is effective in detecting
edgos where the form of the edges to be detected is known. However, there are disadvantages

with this technique. Firstly, the technique requires smoothing to remove noise before the

edge detection, which affects the detection of weak edges. The performance is also affected

if impulse noise is present in the image. Secondly, the form of the cdges to be detected must
e known it advance. This method also involves the expensive pixel-by-pixel comparison in

and in tl

Uhe inn cmplate.

2.2.3 Image Filtering Techniques

Linear filtering techniques were some of the carliest filtering techniques used for edge
detection [Modestino and Fries 1977]. In this technique, a stochastic model of edge structure
is proposed and the edge detection problem is formulated as one of least mean-square spatial
filtering. Edges in noisy digital images are detected using two-dimensional recursive digital
filtering. 1n addition to the noise immunity, the recursive nature of the filtering operation

leads to significant computational economies. However, lincar filtering techniques are gener-

ally very complex and have achieved only moderate success. Nonlinear filtering (c.g. median

filtering, order statistics fillering, and nonlinear mean filtering) is able to remove certain



Kinds of noise better (c.

impulse noise) and preserves edge information. The nonl

ters measure the mean of the lumi If the dispersion of the lumi within the ilter
extent is greater than a certain threshold, the center of the filter extent is declared as the
edge point [Pitas and Venetsanopoulos 1986]. Such edge detectors have good characteristics

only in the presence of uniformly distributed noise. A class of wedian-type lters [Neuvo,

Ilcinonen and Defee 1987; Neuvo, Nieminen and Heinonen 1987] combines the output of a
number of linear spatial filters and the median operation to detect the edges. 1he con

putational overhead is low. The filters are capable of retaining edges and removing noise,

However, the lines in two-dimensional images do not survive the filtering process [Saito and

Cunningham 1990].

2.24 Statistical Techniques
A statistical classification technique [Kundu 1990] is used to detect the step and linear

cdges. This technique is based on two characte

s of natural edges : (1) the pixels near
the step or linear edges can he classified into two nearly equal gronps with different average

intensity values, and (2) the members of cach group show strong s

tial correlation. The

cdges arc located at points where both these conditions

istical

evidence. The weak edges are not blurred because no smoothing is involved. Howe

(ot all

edge clements are detected. Another technigue, hased on the likelihood ratio test in a given

small neighbourhood, derives a decision rule to decide whether ther

is an edge, a point,

a comer cdge, or just a smooth region [lluang and Tseng 1988). More decision rules can



be derived for more complicated situations (ncighbourhoods), but they are Il
expensive,
2.3 Edge Improvement (Enha t) Techniq

There are different. techniques for improving the ‘raw’ edge information obtained by the

edge delection. The following is a summary of these techniques for improving the edge image.

2.3.1 Relaxation Labeling

Prohabi reloxation is a technique for labeling image entities. It relies on iteratively
updlating the distribution of available probahility over a label set. A support function com-
bines evidences from the context-conveying neighbourhood and incorporates prior knowledge
of the structure of the laheling task in-hand. One of the carliest probabilistic relaxation la-
beling method was introduced by [Zucker, llummel and Rosenfeld 1977; Tlummel and Zucker
1983]. 1t requires the selting of many compatibility weights. The updating process cmploys
only a single formula for all the various, different edge patterns. Convergence can be very
diflicult since many variables must be optimized simultancously. With the heuristic nature
of the update procedure, there are often internal inconsistencies in the specification of the
relaxation scheme, and a limited capacity to accurately represent edge-processes. Another

version of relaxation labeling [Prager 1980] allows for more complicated adjustment formulas

but only si it adjacent) neigh 1
1y 1

piscls are Tlence, it does not

provide suflicient information for a more accurate indication of the presence of an edge or
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noise. An improved application of probabilistic relaxation to edge labeling (Hlancock and
Kittler 1990] uses a representation of the edge-processes. By specifying the probabilistic
framework used to represent the world model, intemal consistency is ensured. For each ob
ject, prior knowledge of the structure is represented by a dictionary of labeling possibilities

for the entire context-conveying neighbourhood. Restrictions on the representational eapae-

ity of the scheme are avoided. This dictionary-based approach is capable of en

ancing edge

structures in the presence of noise without filters, but the dictionary can become very large

as the application task is made more complex. Another type of probabilis

elaxation is
based on an automaton approach [Mandayam, Thathachar and Sastry 1986]. The probabil-
ity updating is accomplished through learning antomata. For different. types of situations,
the learning algorithm can be chosen depending on the problem at hand [Thathachar and
Sastry 1985]. The lcarning automata algorithms are very simple Lo perform and hence they

can be hardware implemented. lowever, their ability Lo accurately represeut the different

labelings is very limited. A stochastic relaxation scheme [Geman and Geman 1984] is aimed

at incorporating obscrvational information by regarding the labeling Lask as maxiummm a

posteriori probability cstimation. This schieme adopts a Bayesian approach Lo a ‘hierar-
chical’ stochastic model bascd on the Gibbs distribution. A new restoration algorithm for
computing the maximum a posteriori (MAP) estimation of the image is based on stochastic

relaxation and anncaling, The scheme generates a sequence of images that converges in an

appropriate sense Lo the MAP estimation. The algorithm is highly parallel and exploits

the equivalence between Gibbs distributions and Markov random fields. I convergence is
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slow, the relaxation scheme is compulationally expensive hecause many images have to be

generated,

2.3.2 Context Dependent Edge Detection

Based on local edge coherence, context information of the whole image is used in the edge

de

lion process [llaralick and Lee 1990]. The cdge evaluation is formulated as a Bayesian
decision problem. ‘The monotonically increasing paths begin at any pixels located at bound-
aries in the image above Uie selected pixel, pass through the sclected pisel, and end at some
pixels located at bodaries below the selected pixel. A pixel is assigned to an ‘edge’ state if
the edge probability of the best ‘edge’ path is higher than the average probability of the hest
‘no-edge’ paths. This technique is computationally less expensive than other edge deteclion
techniques using relaxation labeling. However, the path with the highest probability might
not correctly depict an ‘edge’ path as the pixels in the path could be the locations of very
strong noise rather than edges, This technique considers only the pixel values on the path,
without. considering if those are ‘cdge’ pixels or ‘noise’ pixels. Many paths can be generated

but not. all of these paths represent valid ‘edge’ paths.

2.33 Detecting Edges by using Multiple Scales

Au algorithm for tinding a single good path through the set of edge points detected us-

ing the gradient of the Gaussian operator was proposed by [Williams and Shah 1990]. The

algorithm uses one seale for finding contours and then extends to multiple scales to produce



improved detection of weak cdges. A weight assigned at cach edge point is based on four
factors : a measure of noisiness, a measure of curvature, contour length, and the geadicut
magnitude. The edge point with the largest average weight is chosen as the edge point on
the contour. In the multiple scale algorithm, the search for a contour proceeds as for the
single scale, using the largest scale to locate the best partial contour, then followed by the

next smaller scale to locate the next hest partial contour. The algorithm is able o improve

detection of edges that are close together and interacts

scales which are large enough to
remove noise, as well as also improving the detection of weak edges. However, the algorithm
is not able to deteet edge clements that are apart. lence, these edges will be lost as the

algorithms are not able to interpolate well. Since the algorithm is able to detect we

cdges

only if they are well-defined, the not well-defined valid weak edges will be lost.

2.34 Contour Tracing

Contour tracing from a sel of edge points is tackled by a combination of cdge linking,

1 approximation, thinning, and ncighbourhoods to a contour segment [Bell and Pay
1990]. A contour is stored by encoding the direction from one edge lement Lo its neighbonr,

using an cight-valued Frecman chain code scheme, To gen

crate edge contonrs, an edge image
is recursively processed until the contour is closed or until all pixels on the edge have been
processed. A false isolated edge contour could be mistaken for a valid edge contonr as cach

edge clement is individuall, ] and several neighbouring edge clements 1 1
& Y ¥ B ey g ¥

ce. A hicrarch

strong noisc may have the same orientation by ch cal approach for fast, par-
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allel processing of chain-codable contours [Meer, Sher and Rosenfeld 1990] is based on the
chain pyramid for extracting and analyzing contours. The chain pyramid employs the chain
code representation concept [Freeman 1974] and the contours are reprosented as linked lists.

A local connectivity algorithm is used to generate the linked lists representing the contours.

A probabilistic allocation algorithm is then used to label the string of contour pixcls. A
gap bridging algorithm is then used to fill the gaps in the contours. The technique allows
fast paralle] processing of the contours, however, it cannot deal with noisc or contours that

are more than three pixels wide, Thercfore, in order to use the chain pyramid technique,

' ing must he done Lo climinate noise and the contours must be thinned.

2.4 Neural Networks
There has been increasing interest in artificial neural networks (ncural nets), duc to new

nci Lopologics, learning algorithms and massive parallelism [Lippmann 1987]. Neural net

models explore many ting hypotheses simult usly using ively parallel nets
composed of many computational clements (nodes) connected by links with weights. A neu-
ral net. is specified by the net topology, node characteristics, and the training or learning rule,
The potential benefits of neural nets extend beyond the high computation speed provided by
massive parallelism. Neural nets also provide a great degree of robustness or fault tolerance
becanse there are many processing nodes. Damage to a few nodes or links may not affect

the overall performance of the net significantly.



2.4.1 Multi-Layer Neural Nets

Currently, multi-layer nets are one of the most popular neural net models. I'hese nets

employ hidden nodes connected to both the input and output nodes [Rumelhart, Hinton

and McClelland 1986]. The output from the nodes in cach layer is fed to the nodes in the
next layer through weighted feedforward interconnections. The capabilitios of multi-layer
nels stem from their abilitics to form complex decision regions and to be trained [Rumel-
hart, Hinton and Williams 1986]. Two-layer nets can be trained to form hoth conves and
disjoint decision regions, and three-layer nets can be trained Lo form arbitrary comples de-

cision regions [Huang and Lippman 1988]. A convex decision region is a region wherehy

the boundary between the distributions of populations is smooth and simple, Conversely,

a complex decision region has a complex boundary. disjoint decision regions are decision

regions which are partitioned and do not overlap. However, there are problems with a multi-

layer net. Firstly, when complex decision regions are required, convergence time can be

slow. S

excessively long, Tence, learning in a multi-layer net candly, the number of mdes

must be large enough to form a decision region. However, it must not be so large that the

weights cannot be reliably estimated from the available training data, Therefore, each ne
only capable of performing a specific task and any expansion of the original task requires an
extensive modification to the structure of the net. Another problem is the difliculty in pro
viding the hidden nodes with a training signal. There are a number of common applications

for multi-layer neural nets such as classification [Widrow, Winter and Baxter 198%; Gupta,

Saych and Tammana 1990; Khotanzad and Lu 1990], modeling biological compensatory eye
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motion |Fanelli, Raphan and Schnabolk 1990}, feature extraction [Linsker 1988; Dupaguntla

and Vemuri 1989], and pattern/cl ition [K: and Kupper 1988; Waibel,

Hanazawa, et al. 1989; LeCun, Boser, ct al. 1989).

2.4.2 Iigh-Order Neural Nets

"There are varions ways of incorporating high order effects into a neural net before input

10 the node : ‘sigma-pi’ units [Rumelhart, Hinton and McClelland 1986], ‘meta-connections’
[Pomerlean 1987], and nonlinear combinations of pattern clements [Klassen, Pao and Chen

tion of the inputs for processing by the

1988]. Migh order involves the simultancous utiliz

he major drawback of the high-ord: h is the binatorial explosis

neural ne
of high-order terms [Minsky and Papert 1988]. Tlowever, there arc various methods for deal-
ing with this problem : prior restrictions of high-order terms, reduced interconnections, and
using prior knowledge of the problem domain to sclect only those terms which are useful.

High-order neural nets have impressive computing, storing, and learning capabilities [Giles

and Maxwell 1987], while maintaining simple architectures [Pao and Beer 1988]. High-order

nerral net incorporating nonlinear links has shown fast learning capability and also enhanced

computational capability due to the ion of enhanced combinations of features [Sobajic

1988). The memory capacity of a high-order net is also improved through the introduction
of higher order memory functions which enhance the pattern discriminating capability of the
neural net [Lee, Doolen, et al. 1986). Despite the lack of more comprehensive sinlations,

the empirical results show that higher di ionalities and high dered lations in the
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architecture of the neural net do indeed improve the memory capacity of the net [Simpson

1990}

2.43 C ive-C titive Neural Nets

A cooperative-competitive neural net cousists of laterally intercommected nodes. The in-

teractions in a copcrative-competitive neural net include pos

ve interaction (cooperative)

from a node to itself and negative interaction (competitive) from a node o its neighboues, A

cooperative-competitive net can be used 4

a content-addressable menory (associative mem

ory) [Lapedes and Farber 1986; Xu and Tsai 1990]. T

¢ Hopfictd net [Hopfield 19815 Hopfield

and Tank 1986] is a cooperative-c itive net designed as acontent-addressabl

memory. When cooperative-competitive neural nets are used as content-addr

shle mem-

ory, the number of patterns that can be stored and accurately recalled is severcly limited by

the large number of nodes required for the recognition of a relatively small muimber of pat

terns. Cooperative-competitive ncural nets have found applications in recognizing multiple
groupings of data [Cohen and Grossherg 1987], weak patterns in noisy inpuls [IRoth 1989],

and recognizing categories [Carpenter and Grossherg 1987,1990].

2.4.4 Structured Neural Nets

Structured neural networks are a relatively new approach 1o nen

net model design

[Feldman, Fanty and Goddard 1988]. A structured neural net model con be viewed as a

synthesis of two lly opposed approaches to artificial intelli

Some: early Al in-
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A on the paraliclism and robustness of biological brains and explored ways of

pgencrating this high performance in non-biological networks. The other group concentrated

turc of tasks and algorithms and cxpressed them in conventional com-

puter notation. Structured nenral net models attemplt to capture the best of both paradigms.

2.4.5 Complex Neural Nets
There are other nearal net models with more complex architectures [Fukushima 1988;
Carpenter and Grossberg 1988,1990). These models are composed of highly parallel build-

ing blocks “hat are interconnected to construct highly complex systems. These systems are

ly massively parallel and engaged in a multilevel or hicrarchically fashion. Each of

e nels consists of many layers of nodes. The net has forward, backward and/or lateral
connections between nodes. Some of the connections are variable while others are fixed.
The variable connections are trained to enable the nodes to acquire the ability to learn to
perform correetly. Some of the connections are excitatory while other connections are in-
hibitory. Complex neural net models are specific in their tasks and can perform very well for
their assigned tasks, but these nets lack modularity. Enhancement to the neural net usually

involves extensive modifications to the structure.



Chapter 3
Generating Local Edge Pattern
for Neural Net Input
3.1 Introduction

In this chapler, the gencration of the edge image from the original gray-level image is

described. An cdge clement is a pixel in a small aren where the local gray-level values

changing rapidly in a monotonic way. These edge clements collectively construet dge con-

tours. Thercfore, an edge image is an edge map of the original gray-leve

. An edge
operator is able to detect the presence of a local edge clement by computing its gradient
magnitude and determining its orientation. The gradient magnitude and the orientation of
the cdge clement can in turn be used to improve the detected olges, interpolate missing

edges, or remove noise and false cdges.

3.2 Computing the Edge M t
The edge image is generated from an original input image by using the Sobel operator
[Duda and Hart 1973]. The Sobel edge operator computes the magnitude and the dircction

of maximal gray-level change. The Sobel operator is designed Lo approximate the disc

gradient function by computation of the appropriate horizontal and vertical compone
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It can be regarded as a combination of two gradient masks (Figs. 3.2a, 3.2b), one for the

horizontal dircction and the other for the vertical direction.

a|b|ec -1{0 |1 -1 -2 -1
dleff 2|10 2 0o|0fo0
g| hii ;101 1l211

Fignre 3.1 Elements in o 3x3 window a) The horizontal component b) The vertical component

Figure 3.2 Sobel masks

“The gradient maguitude is obtained from the two orthogonal mask outputs. The horizontal
and the vertical components are denoted by ‘S’ and ‘S,’", respectively and are defined by
(Fig. 1) :
Sy = (c+2[+i)-(a+2+yg), (3.1)
S, = (9+2h+i)=(a+2+0). (32)
The gradient magnitude at the central point, ‘g, is defined by :
% = /TS ®3)
The direction at the central point (denoted by ‘0,) is determined by :
0, = arclan (%’) ) (3.4)

The direction at point *¢’ is coded into cight principal orientations according to Fig. 3.3,

where ‘" denotes north, ‘nw’ denotes north-west, ‘se’ denotes south-east, etc.



Figure 3.3 Bight principal orientations

The orientation of cach edge clement is represented by a set of direction values :
{d), ), 4@, g e gow) o) o)y (3.5)

where the superscripts denote the principal orientations.

Each clement in the set of direction values has binary value ‘0" or I’y where e value assigned

is dependent on the oricntation of the edge clement. For example, if an edge clement has

a north oricntation, the direction value ‘d™)" is

t Lo *1, and the other dircetion values,
namely, ‘d®), ..., d®" arc set 1o ‘0". llence, the set of direction values for this edge element
is:

{d™,d) g, gt=) gtned glow) gtnw) gy = (1,0,0,0,0,0,0,0).  (3.6)

For a non-edge element, since the element doces not have an orientation, the set of direction

values for the element consists of ‘0’s. That is :

(@™, = {0,000} (3.7)
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3.3 Thresholding the Edge Image

"Thresholding is used to simplify an image while retaining information about shapes and
geometric structures.  Thresholding is performed on the gradient magnitude in order to
determine non-cdge clements.,

‘There are two kinds of thresholding : bilevel and multilevel. In the bilevel thresholding
[Ostu 1978; Kittler and Ilingworth 1986; Abutaleb 1989], the histogram of the image is
bimodal and the threshold is chosen as a value between the peaks of the two distributions.
In the multilevel thresholding [Wang and Haralick 1984; Boukharouba, Rehordao and Wen-
del 1985; Hertz and Schafer 1988, the histogram has several peaks, and the values of the
thresholds are sel to separate these peaks.

"The thresholding technique used in this thesis is a global threshold algorithm. This al-
gorithm scarches for the valley between two peaks in the histogram of gradient magnitude.
‘The valley between the first and sccond peaks determines the threshold value ‘7" for dis-
tinguishing non-cdge clements from edge clements (Fig. 3.4). An clement with a gradient
magnitnde ‘g.," geeater than or equal to the threshold value ‘7" is initialized to an cdge
clement. Otherwise, the clement is initialized to a non-cdge clement. That is, if f(e;) is the
threshold image then

Ge, g, 27T (3.8)

Sle) =

go otherwisc,

where ‘¢;" denotes an clement in the thresholded edge image, ‘ge," denotes the gradient

magnitude of the element, *go’ denotes the gradient magnitude for the non-cdge clement.
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st L magnitude
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Figure 3.4 Threshold determination from gradient magnitude histogram

For many complex real-world images, a global threshold or set of thresholds will yicld
unsatisfactory results duc to noise, gradual variations in gray-level [Ballard and Brown 1982]
or non-uniform lighting [lertz and Schafer 1988]. lHowever, with the application of the
hierarchical neural network system to process the edge image, an improved edge image with

very satisfactory results can still be obtained.
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3.4 Sclecting Window Size
“The local edge pattern to be input to the neural network system is a 5 x 5 window in the
edge image (Fig. 3.5). The central pixel (denoted by *X’) in the window is the pixel under

consideration and both its orientation and gradient magnitude can be adjusted by the

PP N
1) 1 X 1 13)
I L Y

Figure 3.5 A window for the input of local edge pattern

hierarchical nenral network system. An appropriate window size has to be selected. If the
window is too small, the length of the edge contour in the local cdge pattern will be too
short Lo be of any significance, which makes the neural network system less effective. On the

other hand, a large window allows better interpolation of missing cdge elements but results

in more complicated local edge patterns and a very complex neural net design.

3.5 Generating Input Vectors

A neural net processes the information from the input pattern in a vector form. There are
three kinds of input vectors to the neural network. Each component in a vector is associated

with a corresponding element/pixel in a window. Input vector ‘G’ contains the normalized



gradicnt, magnitude of the clements in the window, (G = {g,},j = 25). The cight sets
of direction vectors, ‘D (D@ = (&), k = 25, i € {n,...,sc}), correspond to the
cight edge orientations. An cxample is used to illustrate how to derive the input. direction
vectors. In Fig. 3.6, clements ‘ey’, ‘eg” have north orientation and elements ‘ez, ey’ have

west orientation while the other clements are non-edge clements.

P40
=l ;

Figure 3.6 Edge clements in a window

The sct of direction values for ‘¢, is :
[, d,dE), 409, a0, deP) = {1,0,0,0,0,0,0,0). (39)
The set of direction values for ‘e’ s ©

[, d, d), dl, ) e, ), a8} = {0,0,0,1,0,0,0,0}. (4.10)

The set of direction valucs for ‘e;” is :

(P, d, d), 8, d ), ), d), d5) = {0,0,0,0,0,0,0,0). (3.11)
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Henee, the input. veetor ‘D™ associated with the north orientation is described by :

DY o (il 0 ) i ) A ) R (3.12)
= {1,0,0,0,0,1,0,0,0,...,0}.
Since elements ey’ and ‘e’ have a north orientation, their direction values associated with
the north orientation are ‘1’s. For clements ‘e7’ and ‘eg’, since they have an orientation which
is ot north, their direction values associated with the north orientation are ‘0's. The other
elements have direction valucs of ‘0's because they do not. have any orientation. Similarly,

the input veetor ‘D) agsociated with the west orientation is described by @
DU {0, 0, a5, dS, 0, a8, 0, ) (3.13)
= {0,0,0,0,0,0,1,1,0,...,0}.

For the input vector, D0 (DO = {dV'},1 = 25,i € {n,...,se}), the components in

veetor *D" contain the values of the in vector ‘D", For cxample,

D™ = {1,0,0,0,0,1,0,0,0,...,0}. (3.14)

pe’ = {0,1,1,1,1,0,1,1,1,...,1}. (3.15)

The vectors 'G,* DO, and * DV wherei € {n,..., sc} are derived and used as input pattern

veetors for the neural net.
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Chapter 4

Edge Contour Detection Subnet

4.1 Introduction

In Chapter three, the computation of the initial edge mensurement was deseribed. The
gradient magnitude and orientation for a pixel in the input image is obtained by using the
Sobel Operator. A global threshold alzorithm is then used Lo segregate edge elements from
non-cdge clements.

In this chapter, the subnet in the first level of the hicrarchical nenral network system,

called the Edge Contour Detection Subnet, is described. This subnet receives input data

gencrated by the cdge operator and detects the presence of edge contours in various local
edge patterns. The Edge Contour Detection Subnet can accurately detect edge contours by

simultancously utilizing all available information.

4.2 T Contributing to the Detection of Edge Contours

Three sources of information contribute to the detection of an edge contour and hence

aflect the adj Lo the edge of the contral edge clement. They are:

1. The gradient magnitude of the neighbouring edge dements in a local edge patter. A
collective consideration of the gradient magnitude of neighbonring edge clements can

provide a good indication of the possibility of the presence of an edge contour.
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~

. "The orientation of neighbouring cdge clements. I these edge clements have the same

orientation, this is a good indication that they would construct an edge contour.

g Pi

. The relative positions of /cdge clements in the local
cdge pattern. Thal is, the locations of neighbouring cdge clements which are the

constituents of an cdge contour.

The: information provided by the gradient magnitude and the orientation of appropriate
edge elements in the local edge pattern must be utilized simultancously to achieve the cor-
rect. detection of an edge contour. Therefore, neighbouring edge clements which have the
same orientation and have large gradient magnitude will give a very good indication that

the central edge clement lies on the detected edge contour.

4.3 Selective Fi ional Ex ion Model

In the functional expansion model, a set of functions (f3, f2,. . ., /») maps an input pattern
into a larger pattern space. Such nonlincar combinations of pattern clements are introduced
as a functional link. Each input pattern is extended by some nonlincar transformation be-
fore it is presented to the node in the net. Ilence, the functional processes generated by the
Tunctional link enable the enhancement of the input pattern to higher-order terms.

‘I'he general functional ion model all the possible functional processes. A

major drawback of such nets is the bi ial explosion of higl-order terms [Minsky and

Papert 1988]. In order to avoid this, the functional-link nets for the Edge Contour Detec-

tion Subnet are specially designed and are refered to as the Selective Functional Expansion
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Model. Usually, functional processes beyond the sccond order only have a small possibility
of being useful and do not significantly contribute to the net output [Pao 1988; Pao 1989,].
Furthermore, not all sccond order functional processes need 1o be considered to characterize
valid cdge patterns. In order to adjust the edge measurement, seven types of functional
processes are selected for the functional link. The ‘', ‘¢’, ‘", ‘g™, '’ and *s" type processes
are uscd for detecting various valid edge contours in local edge patterns and hence are used

for reinforcing the cdge measurement. The *h” type proc

on the other hand is wsed for

delecting the absence of valid local edge patterns and hence is wsed for supprossing the edge

measurement.
A A pd
Aiz A s
X A1 X X X|=]*
Vi i, ™ b
A i, ). ).
a) Rectilinear b) Non-symmetrical  c) Curvilinear d) Corner

Figure 4.1 Edge contours

4.3.1 Processes for Detecting Rectilinear Edge Contour
A rectilincar edge contour (Fig. 4.1a) is characterized by the ‘p’ type functional process.
inany Pivaar

The ‘p' type functional process has four different processes, namely, pit, | pl¥) p::')”, and

¥, where ‘' denotes the orientation, k € {n,...,se}. A ‘P’ type proc associated

with two edge clements on the rectilincar cdge contour in the local edge pattern. Each of
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these edge dements is located on opposite sides of the edge contour which is divided by the

central clement *X". For example, for a rectilincar cdge contour (Fig. 4.1a), the two cdge

clements associated with a ‘p’ type process, plf); are the edge clements at locations indexed

by “4," and ‘j;" in the local paticrn, the central element ‘X7 is situated between the edge
"

clements at locations 4,” and j,". The ‘p’ type processes are :

i = A e dD e g xg, @2
Wl = A d g 1g, (1.3)
R ) (@)
W = A e d g, vy, (15)

where df, df¥) denote the direction values and gi,, g, denote the gradient magnitudes of the

two edge elements indexed by %,” and ji’. In order to detect a rectilincar edge contour, all

four ‘p’ Lype processes, IJE:‘L,. ]r.!:[,),,, P.!f,),',, and pm

{9 are considered. Tlowever, the activation

of cach process is dependent on the direction values.

a) Pattern - 1 b) Pattern - II

Figure 4.2 Local edge patterns

For example, a rectilinear edge contour with a north-cast orientation in a local edge pattern

(Fig, 4.2a) is characterized by the following *p’ Lype processes associated with the north-cast



oricntation.

(i = a0 edi) s gsv g
= dedy) vgsegm
= ey rgu g

= el ¢ gy s e
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(1.6)
(47)
(4.8)

(1.9

The subscripts denote the respective edge elements in the local edge pattern. Since the odge

elements associated with the processes p{"ra, 11(5?;,]. Pty Pz

the dircction values for these edge clements (45", d5™, d

)

All the functional processes associated with a north-cast orientation for the recti

= lelsgssg
= lelegsegn
= lelegosgie

= 1el+gotgm.

have the north-cast orientation,

£ are s, Therelore,

(4.10)
(1.11)
(4.12)

(1.13)

ar edge

contour arc activated. However, if the oricntation of an edge clement. is different from the

associated orientation of the process, then the corresponding functional process will be de-

activated. In Fig. 4.2b, cdge clements at locations *0" and ‘20" in the local edge pattern do

not have a north-cast orientation and as such their direction values are ‘0s. Therefore,

(ne)

Psie = l*legs*rgie = g5% 016

Pl =

1400 gs+gp = 0

(4.14)

(4.15)
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Wil = e lageegic = 0 (1.16)
Wi = 0x0kg+ga = 0. (@.17)
ne) (ne) _(ne) (ne)

In Uhis situation, only process %) is activated while processes pis), pis, plis) arc de-
activated, Therefore, if tere are more neighbouring cdge clements with the same orienta-
ion, more functional processes are activated. On the other hand, if the local edge pattern

does vot form an edge contour, Uhe functional processes will not be activated.

4.3.2 Processes for Detecting Non-Symmetrical Linear Edge Contour

A non-symmetrical lincar edge contour (Fig. 4.1b) is characterized by the ‘¢’, g, and
4" type functional processes. For cach of these three types of processes, there are four dif-
ferent functional processes, namely, o)., a) . o L, a0 a®)o, o a®)o o),
A, ), and gl . The ‘g, ‘g and ‘4" type processes are associated with two
edge clements on the non-symmetrical lincar cdge contour. Each of these cdge elements is
located on opposite sides of the edge contour which is divided by the central clement ‘X",

For example, for a non-symmetrical lincar edge contour (Fig. 4.1b), the two edge clements

associated with cither a ‘g' 'g” or ‘4" type process, namely, ¢ ., ' or g®". are the
edge elements at locations indexed by ‘my’ and ‘ny” in the local pattern. The central element
X" is situated between the edge clements at locations ‘my’ and ‘ny’. The ‘¢’ type process is

of the second order as two edge clements are considered. The ‘g” and ‘g™ type processcs are
{3 i3 q " lypepi

of the third order as cach of these functional processcs incorporates threc edge elements.

W = ) dl e g, 20, (4.18)
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Ay = AR df) kg % gy .21y
7 ) 0o

Wl = AR ed® e d g, g, (1:22)
; e

AWy = A xd® s« d x g, x g, (1.25)
" Q op

oy = dxd® s df x g, * gn, (1.26)

Ay = A e d® e d x gy, + g1 (1.29)

The ‘q" and ‘g"" type processes are similar to the ‘q” type process excepl that the * type
process also takes the orientation of the clement. (d;) adjacent to the central edge element
into account. Whereas for the ‘g"" type process, the orientation of the central edge element

i

(dx) is considercd (Fig. 4.1b). For each ‘g type process, a corresponding ‘g’ Lype process is
used to counteract the effects of cach other. The measurement of the contral edge clement *X’
should not be strengthened, because the element ‘2 is an edge element and it completes the
cdge contour, increasing the edge measurement of element *X” will thicken the edge contour,

or create false edge elemes:is.

IEREE IEERE
of 1|—xl—v|w of 7] al-wi-v)
i X| i (- X| 1] s
IR R IREERER
o of of 3] » o 2 3 2 2
a) A ‘complete’ edge contonr b) An ‘incomplete’ edge contour

Figure 4.3 Non-symmetrical edge patterns
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For example, in the functionallink nel associated with the east oricntation (Fig. 4.3a), the

direction values *d{™, ..., *d{$" have the value 1°. Thercfore,

dho= 1elegegn (1.30)
dl‘l!l! = I*l+go*gn (4.33)

Henee, the funclional processes described in expressions (4.30 - 4.33) areactivated to reinforce
the eentral edge clement ‘X, llowever, since edge element ‘8’ exists and completes the edge
contour, edge clement ‘X” shonld not be reinforced hecause the edge contour is already
‘complete’. Therefore, the corresponding ‘g type processes must be activated to counter

the responses of the activated ‘g’ type processes. That is,

dh o= lelxlegexgn (4.31)
i = 141 %14gi05 g0 (.31

In order 1 offset the effects of the activated ‘g’ type processes by the '¢” type processcs, a
positive weight is assigied Lo the 'g” type process, while a negative weight is assigned to the
corresponding ‘g"" type process. The absolute values of these weights are equal and these
weighted processes are connected Lo the same neural node. Thercfore, if a ‘g’ type process is
activated and the edge element ‘8’ (Fig. 4.3a) completes the edge contour, the corresponding
*¢"" type process is also activated to nullify the effects of the g’ type processes. However, i

clement *8* does not complete the edge contour (Fig. 4.3b), the ‘g" type processes will not
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be activated becauss the direction value for clement ‘8" (@4) is *0°, Thercfore, only the ‘g’

type processes will be activated and the resultant effect is a positive ontput from the 'y’ type
processes.

Neighbouring clements with oricntations different from the oricntation handled by the

functional-link net are used to suppress the central element. in the local edge pattern (details

concerning suppression arc discussed in section 4.3.1.5). Duc fo the offsetting elfects of the

‘g’ type and ‘g" type processes, a central edge clement. in the valid edge will ultis

Iy be
climinated by the suppression. In order to preserve the contral valid edge element but not
the falsc edge clement, ‘g" type processes Lake into account the orientation of the central

edge clement. For example, in Fig, 4.3, if edge dement ‘X' has an cast orientation, its

direction value will be ‘I’ and therefore the following processes will be activated :
A = 1rlwlegywgy (1.38)
aff = 11 x1egio%gn (a.41)

By considering the orientation of the central clement, if the central clement is a non-cdge
clement, none of the ‘4" type processes will be activated and this will prevent the ereation

of falsc edge clements.

4.3.3 Processes for Detecting Curvilinear Edge Contour

A curvilinear edge contour (Fig. 4.1¢) is characterized by the ‘r” type functional proce

ey, e k) o

The ‘' type functional process has four different proce:
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#{k) where: (1) % and *2 denote the oricntations, and (2) ‘ur’, ‘uz’, ‘v’ and ‘vy’ index the
locations of the edge clements in the local pattern. An *r’ type process is also of the second
order and is associated with two edge clements on the curvilinear edge contour in the local
edge pattern. Each of these edge clements is located on opposite sides of the edge contour

which is divided by the central element X", In order to detect a curvilincar edge contour,

all four ‘" type processes are considered :

il = d e df g, *gu, (1.42)
il = d e dB xgu, *9n (1.43)
i = e dfeg, g, (1.44)
el = d) s dB x gu; ¥ g (4.45)

where : (i) il k= ‘n"then [ € {ne,nw); (v) il k="‘nc’ thenl€ {n,c};
(i) if &k = s’ then [ € {se, sw}; (vi) if k = ‘nw’ then 1€ {n,w};
(i) if & = ¢’ then 1 € {ne, se}; (vii) if k = ‘sw’ then | € {s,w};

(iv) il k = “w’ then 1 € {nw, sw}; (viii) if k = ‘se’ then [ € {s,e}.

The activation of an ‘r’ type process is dependent on the direction values which are associ-
ated with different orientations. Hence, this activation requirement for an ‘r’ type process
is diflerent from that for cither a *p", ‘", ‘g”, or ‘¢ type process. A ‘9!, ‘¢’, ¢, or ‘q"
type process is activated only if all the edge elements associated with the functional process

have the same orientation as the orientation handled by the functional process. Iowever, in

order to activate an ‘r’ type process in a functional-link net, an orientation different from
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the ori i iated with the functional-link net is also considered. For example, if a

curvilinear cdge contour has a north orientation, north-cast (Fig. 4.4a) or north-west (g,

4.4b) orientations arc considered to activale the corresponding functional processes. Simi-
larly, for a curvilincar edge contour with a south orientation, the correspouding orientations

are south-west (Fig. 4.1c) or south-cast, and so on.

) Z | 4 ! A4
, 1 N o A A% d
uf X 1l 14) 11l 12 X L ¥ 112 X Ly
1 1 AA ST\ 15 erl“ 1819 1516 wl K14
200 2] 41 23 A L2al 2 Ai 2 2 201 21 \ k-
(a) With a north (b) With a north (c) With a south
orientation - I orientation - 11 orientation

Figure 4.4 Curvilincar edge contours

In Fig. 4.4a, the curvilinear edge contour with a north orientation is cha

ed by the

following ‘r’ type processes in the functional-link net associated with the north orientation :
g P

i = wdY wgan g (4.16)
s = M e df gk g (147)
0 = d e di gy s g (1.48)
) = A d g% g (1.49)

The edge elements at locations ‘4’ and ‘8" in the local edge pattern must have a north-cast

oricntation in order to activate the ‘r’ type processes in the functional-link net associated
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with the north orientation. The edge clements at locations ‘17’ and ‘22’ on the other hand

must have a north orientation. Therefore, the processes ™, {5, rii®, r{59 are

activated ¢

) = Lelkgergn (4.50)
i = 1alrgingn (4.51)
i) = Lalsgasgn (1.52)
) = 1elegsrom (1.53)
(a0) (s0w) (s,0w) (3,00)

Similarly, in Fig. 4.4¢, processes r{%5?, v, riiy™ and v (which characterize a curvi-
lincar edge contour with a south orientation) in the functional-link net associated with the
sonth orientation are activaled if edge clements at locations ‘4’ and ‘8’ have a south-west

orientation and edge clements at locations ‘17" and ‘22’ have a south orientation.

4.3.4 Processes for Detecting Edge Contours at a Corner

Kdge contours at a corner (Fig. 4.1d) are characterized by the ‘s’ type functional process.
“The 's” type functional process has four different processes, namely, s{ita), s{kbe), skb) and
kb where: (1) 'k, ', and *c’ denote the orientations, and (2) ‘g1’ 'z’ and ‘2’ index
the locations of the edge clements in the local pattern. An s’ type process is associated with
two edge clements ou the edge contours, with each on opposite sides of the ‘corner’, which is

located at the central clement *X 7. An ‘s’ type process is a sccond order functional process :

B = At e



s = d e d) g, 49, (4.55)
b = dR) e d w gy xgy (1.56)
st = dl) e d g% g, (1.57)

where : (i) if k =’ then b,c € {ne,nw); (v) il k= ‘ne’ then bye € {n,e);
(ii) i k="' then b,c € {se,sw}; (W) if k = nu’ then bye€ {n,uw);
(i) if & =€ then b,c € {ne,se}; (vii) if k = ‘sw’ then bye € fs,m);
(iv) if k = *w’ then b,c € {mo, sw); (viil) if k = ‘s’ then boe € {s,e};

and b #c.

The difference between an ‘s’ type functional process and the other functional process types
is that the two cdge clements associated with an ‘s’ Lype functional process must have
an oricntation diflerent, from the oricntation handled by the finctional process in order to

activate the ‘s’ Lype process. Tor cxample, if the central edge clement at a ‘corner has a

sorth orientation, then the corr ling orientations characterizing the edge contours al

the ‘corner’ are north-cast and north-west (Fig, 4.5a). On the other hand, if the central

edge clement at a ‘corner’ has a north-cast

then the corr ing orientali

are north and cast (Fig. 4.5b).
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Figure 4.5 Corner edge patierns

in the functional-link net are associated with the north-cast

The following *s” type processe

orientation :

st = dil v dP v g (4.57)
s = iy g gm (1.58)
b = dl « di 5 gis % gir 4.59)

) Vi
¥4 ) = dﬁf, *: rl(“) * 13 * 922 (4.60)

The edge clements at locations ‘13" and ‘14’ in the local edge pattern must have an east
orientation and edge clements at locations ‘17 and ‘22’ must have a north orientation in
order to activate the *s’ type processes associated with the north-cast erientation. Therefore,

the processes sfigem), siem) oen) | meen) 2o activated :

= Ixl+gu*gqr (4.61)
= lxl*gy*gn (4.62)
= I+l*ga*gir (4.63)
SR = I leguegn. (1.61)



4.3.5 Suppressing Functional Processes
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Figure 4.6 Pattern for suppressing

central edge clement

The ‘h’ type process has twenty-four different process

where eaci proce sociated

with a pixel in the window, excluding the central pixel (Fig. 4.6) :

W = g (1.65)

) = &) g, (4.88)

where i € {n,...,se}. The first order ‘h’ type process is used to suppress the false edge
clement in the local edge pattern. For example (in Fig. 4.6), a functional-link net. is used to
detect the edge contour with a north orientation at the central element. If more neighbonring
clements do not have a north orientation, then it is more likely the central element with
a north oricntation is a false edge clement. If a neighbouring clement does not have a
north orientation, the ‘A’ type process associated with this elerment will be activated. By
considering all the ncighbouring elements in the local area, the abilily to detect a false edge

clement by the ‘%’ type processes is dependent, on two factors :
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1. ‘The number of clements having different orientations from that associated with the

functional-link net.
2. The number of non-edge clements in the local area.

“Therefore, when the local pattern does not, characterize any valid edge contour, the effect of

the ‘2’ Lype proc greatest.

436 F ional Link with Selective Functional Expansion Model

wch functional-link net receives the input data from five input vectors. The input vector

# contains the gradient magnitudes of the clements in the local cdge pattern. The other

four input vee

ors contain the direction values of the clements. For example, a functional-link
uet associated with the north orientation receives the data from the following input, vectors

conlaining the direction values :
1. D™ - vector associated with the north oricntation.
2. D) - vector associated with the north-cast orientation.
3. D) - vector assaciated with the north-west orientation.

4. DO - vector containing the complement values of the components in vector ("),

The vectors DO DO ayd DOV are concerned with reinforcement and hence these

vectors provide the direction values to the *p', '¢’, ‘¢, ‘g, ' and ‘s’ type functional pro-

cesses. ‘The veetor *DUY on the other hand, is concerned with suppression and hence it



provides the dircction values to the ‘i’ type functional processes. For cach functional-link

s and B type

net, the model generates sclected processes, namely, the ‘p', ¢, '¢"", *¢"",

functional processes (Fig. 4.7).

Selected Functional Processes

1

rectilinear non-symmetrical curvilinear _corner__ supprossion
! 5 o = L i
v I

BBy G Be i an e Gne Fav Py Ha B By
1]

‘LW‘H it it it d

Selective Functional Expansion Model

P T 1

G D@ Deme) D) P

Input Pattern Vectors

ic ill ion of a selective functional ion model

Figure 4.7 Sch

for the north orientation

4.4 Hypothesized Edge Patterns

In the proposed neural network system, the sd

on of appropriate functional pro

enables the Edge Contour Detection Subnet to perform correetly. The task of selecting the
appropriate functional processes is achicved by using a priori knowledge of varions expected

edge patterns in an image. Incorporation of this knowledge abont the structure of various
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expected edge patberns into the functional-link nets is achieved through the use of hypothe-
sized edge patterns. A hypothesized cdge pattern (IIEP) is a hypothetical construction of a
local edge pattern in an n x n window.

In this thesis, a 5 x5 window is used for the [IEP. The edge contour in cach HEP consists
of five edge clements and is assumed to he ‘one-pixel’ wide. For example, a window depicting

a HEP for an edge contour with a north orientation is shown in Fig. 4.8(a). The arrow-

heads indicate the orientations of edge clements. Collectively, these edge clements construct

the edge contour. The NEPs are grouped and categorized according to the orientations of
the central element in the window. There are cleven HEPs for cach orientation. Figure
4.8 shows the HEPs for the north orientation. Figure 4.9 shows the 11EPs for the north-
cast orientation. The proposed IHEPs are able to characterize the following types of edge

contours :

1. Rectilinear edge contours,

2. Non-symmetrical lincar edge contours whereby an edge contour is not a continuous

straight line,

3. Curvilinear edge contours,

1. lidge contours at a corner.
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Figure 4.8 HEPs for the north orientation
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(a) Rectilinear edge contour
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Figure 1.9 NEPs for the north-cast orientation
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4.5 Architecture of Edge C Detection Subnet

The architecture of the Edge Contour Detection Subnet (ECDS) consisf

s of cight selec-

tive functional-link nets. Each of these nets work independently and in parallel with each

other. Each selective functional-link net is associated with a particular orientation. ‘That

is, cach functional-link net detects only edge contours with that particular ori

ation and
ignores all other edge contours with any other orientations. In Fig. 4.10, each funetional-ink
net consists of a node and a set of functional processes generated by the Selective Funetional
Expansion Model. "The forward connections from the functional processes provide inputs to

the node.
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Net 1
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Figure 1.10 Architecture of selective functional-link net
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Functional Link
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(D6) = () &), j = 21)
(D = {d, di"}, k= 21)
(D) = {df, df"}, 1 =21)
(D0 = () b= 29)

Net 8

IEdge Contour Detection Subnet

The node is activated in accordance with the input to the node, the sigmoidal acti-

vation function of the node, the bias of the node, and a threshold parameter. Consider the

functional-link net associated with the north orientation, the net input to the node in the



functional-link net is the sum of output from all types of processes :

net = 3 Y wempl+ (1.89)
€8} ye(iran)
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where :

L") : output of a ‘p’ type process associated with the north orientation,

o), ¢t and g3 : outputs of the ¢’, ‘4" and *4" type processes associated with Uhe

north orientation respectively,

r&’_‘;“" : output of an ‘r’ type process (associated with the north orientation) where the

edge elements indexed by subscript ‘z” are concerned with the north-east orientation,

rinne) same as r{e) except that the edge elements indexed by subscript 4 are concerned
with the north-west orientation,

smenu) ; output of an ‘s’ type process (associated with the north orientation) where

the edge clements indexed by subscripts 'z’ and ‘Y’ are concerned with the north-cast and

north-west oricntations respectively,

A : output of an ‘A’ type process jated with the north
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sociated with a ‘p’ type process,

gy ¢ weight a
g, W and w0 weights associated with the ‘', ‘g and ‘q"" type processes
i k) a4

respectively,

e ¢ weight associated with an ‘7’ type process where the edge clements indexed by

"y
subscript ‘o’ are concerned with the north-cast orientation,
W, no) SANE A8 1 (e except that the edge elements are concerned with the north-west
ey e
orientation,

: weight associated with an ‘s’ type process where the cdge clements indexed

by subscripts ‘z’ and ‘y" are concerned with the north-cast and north-west orientations
respectively,
wyem : weight associated with an k" type process,

r and y indexes the edge elements in the local edge pattern (HEP).

"The outputs of the functional processes are determined by high order terms with mul-
tiplicative counections amongst the components of these terms. For example the output of

the second order ‘p' ype functional process ‘pld)’, i € {n,...,sc} is described by :

= grd.g,.dd (1.90)

g : gradient magnitude
dY 2 direction value

roy ¢ inderes the edge clements in the local edge pattern (HEP).
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Similarly, the outputs of the other functional process types, namely, *q', "¢, *¢"", 'r', *s and

‘h’ type processes are likewise described as in (4.90). Let the components ‘g, *d')", *g," and

*d)’ of a ‘p’ type functional process (4.90) be represented by ‘a(:l, % -..‘3,’ 't and -..i:,’,'

respectively, where ‘" denotes the orientation associated with the process.

Similarly, let the components of ‘¢’, *r’ and *s’ type functional processes be represented

by;(i)v.(’l)s:(a)vn(‘)vn(l)v;('l) ‘1(3) |A(I) D

@ oo
,ac.l\A»‘M..n-ﬂ(.nvﬂ v \

 and |

‘aff), " respectively, where ‘i’ denotes the orientation associated with the process, *j* denotes

the orientation associated with the clement indexed by ‘0, and *A* denotes the orientation

associated with the clement indexed by ‘y'.

Components in *g” and ‘9" type functional processes are represented by ta A ‘I"|“,

o) 1 g ls b and m .' PRI (a) ) m *, ! “) ? respectively, where 47 (Il-uuh-a the

orientation associated w-th the process.
The components in an ‘k’ type process are in turn represented by ‘o xl:!,‘ and ‘u[f’,‘

Therefore the net input to the node can be described as :

net = 3 ¥ w [laf+ (1.91)
re@s)ye(inaz) Y =i PV

4 L] >
() . o JLa ) 4
(g T o ML o T )
.
M+ 5 [T |
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where

u:‘f) : components in a ‘p’ type functional process,
u;,',’” : components in a ¢’ type functional process,
.A;:I, : components in a ‘g"" type functional process,
)

u:::,,, : components in a ‘g"” type functional process,

a2 components in an " type functional process where the edge clements indexed
oy

by " are concerned with the north-cast orientation,

. ¢ comporents in an ‘' type functional process where the edge elements indexed

ey ¢ COMpOnCnts in an ‘s’ type functional process where the edge clements indexed
by ‘z" and ‘" are concerned with the north-cast and north-west oricntations respectively,

alfhy and aff,

components in an *h’ type functional process,
Wy W)y W W0 iy W (nnedy W o)y W nnenw) and W,y @ weights associated with
W Wty ' W ey W tnnudy W rnenw) ol 8!
the functional processes,

, y + indeses the edge eloments in the local edge pattern (IEP),

indeses Uhe respective components in the functional processes.
The input to the neural node of the functional-link net (4.89) is a sigma-pi connection.

A sigma-pi interconnection type has the ability to gate the inputs to the node [Rumelhart,
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Ilinton and McCleiland 1986]. In this case, the set of orientations of the edge clements in

the interconnection is used to gate the information (gradie:

magnitndes) before they are

input to the node. This enables the simull i ion of all available inf

for processing.

The output of the node is determined by a sigmoidal activation function :

Udos = 7 (1.92)

1
T+ exp(—(nel +a)/B)

The parameter ‘a’ serves as a bias. The effect of ‘o’ is 1o shift, 1

ation function along
the horizontal axis. The effect of ‘8’ is Lo modily the shape of the sigmoid. A low value of
‘B tends to make the sigmoid take on the characteristics of a threshold-Jogic unit (TLU),

whereas a high value of ‘8’ results in a more gently varying function. As shown i

the output of a sigmoidal function is never negative and only reaches zero when the total
input to the node is an infinitely negative value. Similarly, the output never reaches one
unless the node reccives in total an infinitely positive value. I order Lo adjust the outpul of

the neural node to cover the range from negative Lo positive values, a threshold parameter

“Ty" is added to the activation function. Therefore, if the net input is ‘0", the output of the
node is ‘0". If the computed output is greater than the threshold *77°, the output of the node

is positive. Otherwise, the output of the node is negative.
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Figure 4.11 Characteristics of sigmoidal activation function

Choice of Paramcter Values and Weights

The parameter *a’ is set at ‘0" so that the output of the node is ‘0" when the net input is
0% The parameter *f# is set at 0.15. This value results in a gently varying function which
enables the range of values generated by the activation function to vary with the range of

values of the input to the node, The parameter ‘74" is set at 0.5. This value results in:
1. a zero output from the node when the input is zero;

2. a positive output from the node when the input is positive;



3. a negative output from the node when the input is negative.

Suitable weights for the functional processes are derived through a learning process described

in chapter cight.



Chapter 5

Maximum Detection Subnet

5.1 Introduction
In Chapter four, the detection of edge contour(s) in a local edge pattern by the Edge
Contour Detection Subnet was described. For cach functional-link net in the Edge Contour

Detection Subnet, the ontput denotes the strength of an edge contour with a particular ori-

entation in the local edge pattern. Hence, the output shows the possibility of the presence of

an edge contour with a particular orientation. The Maximum Detection Subnet in the second

level of the hierarchical n network system is introduced to determine the orientation of

the most probable edge contour (if one exists) in the local edge pattern. If this orientation

is the same as the orientation of the central element, then there is a very good possibility

that the central el a valid cdge clement through which the edge contour passes.

5.2 Maximum Detection Subnet Design

Most neural networks in the brain, especially those in the cerebral neocortex, arc cssen-

tially layers of processing cells or nenrons densely interconnected through lateral feedback

[Kohonen 1981; Kandel and Schwartz 1985]. Fig. 5.1 is a schematic illustration of a layer

of nearons. Each neuron receives the excitatory primary input *P, that is, the initial in-

put to the ron and a number of excitatory and inhibitory lateral connections from the out-
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connections.
u

0
neighbouring
newron

T ] excitatory ?] inhibitory

conneclion connection

Figure 5.1 Laterally

puts of other ncighbouring neurons. Based on both anatomic

1 and physiological evidences

from the mammalian brains [Kohonen 1981; Kandel and Sehwartz 19585), the following types

of lateral interaction exist between

Curons :

I : Short-range central lateral excitation : the excitatory arca reaching up to a latetal r

of 50 to 100 jam (in primates).

11 : Inhibitory action : the inhibitory area reaching up Lo a rading of 200 Lo 500 pzn surtonnds

the central excitatory arca.

III : Weaker excitatory action : an arca reaching np 1o a radius of several centimeters in

turn surrounding the inlibitory arca.
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The: form of lateral interactions amongst neurons is a ‘Mexican hat' (Fig. 5.2).

Interaction

central
excitation

weak
excitation

\_) U Lateral
Distance

inhibition

e 5.2 Schematic representation of lateral interaction

chanism of the Maximum Detection Subnet arc based on these character-

The de

iggn and n

of bivlogical systems in the mammalian brain. The lateral interconnections amongst

the nodes in the Maximum Detection Subnet serve two purposes, namely :

1. A connection from a node ‘n;’ Lo itsell serves as an excitatory input for the node.

2. Connections from other neighbouring nodes ‘n;’ to node *n;’ where j # i serve to
inhibit the activity of the node ‘n;’.

The excitatory connection from a node to itsell is analogous to the short-range cen-

tral lateral excitation found in biological systems (type 1). The inhibitory connections from

neighbouring nodes are analogous to the area of inhibitory action surrounding the central
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excitatory area (type ). For the Maxinum Detection Subet, there are some modifications

10 the biological concepts of lateral interactions amongst. neurons, The &

of inhibitory

action and the amount of inhibition do not correspond to the distance from the excitatory

arca. All neighbouring nodes will impose an inhibiting action on the primary node (the node

under consideration) and none of these nodes will ex

ite the primary node.

The architecture of the Maximum Detection Subnet (MDS) con:

ing of a single layer

of cight laterally interconnected nodes is shown schematicatly in

Ulihs Ulihs Ul Ui AL most ane
o output
after convergence
—
7 <t / Mo
,g 5 g _" I?r:h:«.'(.m n
Subnet
(3) (nn (ar)
DS Ukeps Ukeins Uiiens
""" Fdge Coutour
Detection
Subnet
|
Input Pattern Input Pattern Input Pattern Input Pattern

Figure 5.3 Architecture of Maximum Detection Subnet.

The outputs from the functional-link nets in the Edge Contonr Detection Subnet. (ECDS)

arc presented as a set of initial (primary excitatory) inputs to the nodes in the Maximum
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Detection Subnet. Each node in the Maxi Detection Subnet is iated with a par-

ticular orientation.

5.3 Mechanism of Maximum Detection Subnet

Each node in the Maximum De

ction Subnet, reinforces its own activity level by its
output and suppresses the activity levels of neighbouring nodes by lateral inhibition, Even-
tnally, only the node which reccived the largest initial input value from the Edge Contour
Detection Subnet has a positive output.

In the Maximum Det

ction Subnet, the weight, w,, from node ¢j* to node ‘&’ is defined

1 j=k (5.1)

Jtke<kiike(n,. .. s},

where *N* denotes the number of nodes in the Maximum Detection Subnet.

"The weights from cach node Lo itsell have a value of ‘1°. The weights to other nodes have a
value of ¢* where e < 4.

‘T'he computation of the output value of node *j” at ‘time’ £ + 1 utilizes the output values

computed at *time' #. That is
» k]
Clna(t+1) = @, Ullag (1) + T wiUiilng (). (52)
k#)

where jk € {n,...,se}. When the Maximum Detection Subnet starts processing (1 = 0),
the output value of cach node is initialized to the initial input from the corresponding

functional-link net if the input is positive, otherwise the output value is initialized to ‘0.
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That is,

Ulpyy WUy >0 (5.3)

Ulips(0) =
0 otherwise

where @ 1€ {n,...,sc}.

The output Uf},g(¢ + 1) will tend to be *laterally inhibited” by all the outputs from the
neighbouring nades computed i the previous iteration. On the other hand, the ontput
Ulllpsy(t +1) of a node 45 will tend (o be faterally excited” by the nodes own ontput
computed in the previous iteration. The amount of inhibition on cach node s therefore
dependent on the number of neighbouring activated nodes and the strength of the output
of these nodes. The output of each node is affected by its output strength in the previous
iteration and the output strength of the neighbouring nodes.
The activation function of cach node, $(¥) is deseribed by
10 iy 2 1.0
OY) = { vV ifh<¥<lo (5.1)
0 ifYST,

denotes the threshold valie for activa

where ‘¥ denotes the input to the function and
tion,

If the argument ‘Y of the function (V)" is greater than the threshold value 73, then the
output Ufihpg(t 4+ 1) will be positive, otherwise it will be driven fo 0", When the output of

a node is driven to ‘0", the node is de-activated.
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Y]

4104

Figure 5.1 Characteristics of function ‘&’

The activation function s often relered to as the subthreshold summation activation

function [ordan 1986] (Fig. 5.4). The input to cach node never reaches the saturation level

‘1% Since the excitatory weight is ‘17, the amount of excitation is never greater than the
activity level in the previous iteration. Also, since the output of cach functional-link net is
never equal to or greater than *1°, the input to cach node in the Maximumn Detection Subnet

is always below the saturation level ‘17,

In the experimental tests carried out by the hicrarchical neural network system, when

convergence is attained, the outputs of the nodes in the Magimum Detection Subnet are
driven (0 *0" except for the node with the largest initial input. The remaining positive

output of the node is then set to*1" and fed to the following subnets :
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1. The Gradient Adjustment Subnet in level three.

2. The Orientation Determination Subnet in level four.

The output from the Max Detection Subnet (as an

information concerning the most probable orientation for the central ey

Two difficult situati Id be ed by the Maxi Defectic

Subnet. Firstly,

if at least two input values are cqual to the largest input valie, the output of the nodes with
the same largest values are driven Lo zero simultancously as o result of lateral feedback
whereby these nodes receive the same amonnt of inhibition from each other simnltanconsly.
However, a local edge pattern very unlikely has two or more edge contonrs with different

aricntations but having cqual strength. Even if this sitwation ocenrs for some edge clements,

the edge measurements of their neighbouring edge clements are also

currently adjusted
during the iteration. In the next iteration, the strength of the edge contours in the edge

pattern are changed based on the information of the neighbouring edge clements. Hence,

such a situation will not. happen in following iterations ane the edge dements will ultimately

be determined. Secondly, convergence may not be achieved quickly b

see the inpnt values

to the nodes are normalized and these values could be driven Lo very s...all positive values

before reaching negative. More iterations are required in order Lo drive the values to zero, In

order to shorten the processing time without the expense of incorreet or ina

irate outpul
results, the threshold value ‘73" for the activation function is sel Lo a small positive value,

As a result, convergence could be achicved faster and the node with the largest initial input

value is also correctly d ined by the Maxi Detection Subnet.



Chapter 6

Gradient Adjustment Subnet

6.1 Introduction
The task of the Maximum Detection Subnet is o determine the orientation of the most
probable edge contour in a local cdge pattern. The Subnet uses the information provided

by the FEdge Contonr Detection Subnet in level one which concerns the strength of edge

contours with different orientations. The orientation of the most probable edge contour in

the local edge pattern is then used to affect the of the edge

In this chapter, the subnet in the third level of the hicrarchical neural network system,

called the Gradient Adjustment Subnet, is introduced to perform four primary tasks, namely;

Task 1 : 'To determine the ocenrrence of appropriate conditions for adjusting the gradient

magnitude of the central element.

Task 2 : To determine the appropriate amount of adjustment to the gradient magnitude,

Task 3 : To compute the new adjusted gradient magnitude.

Task 4 : "To determine if the central clement is an edge element or a non-cdge clement.

The subnet in layer one of the Gradient Adjustment Subnet is called the Condition Ascer-

tainment Subnet. The subnet performs tasks one and two by using the information provided



by the Maximum Detection Subnet and set Dy = {d’ which con-

)’ )

tains the complement of the direction values of the central element. These information are
utilized simultancously in order to determine correctly the appropriate conditions for the
adjustment of the gradient magnitude as well as the appropriate amount of adjustment. The
structure of the Condition Ascertainment Subnet is based on the concept of the funetional
link with the tensor model [Klassen, Pao and Chen 1988]. Tasks three and four are performed
by the Gradient Computation Subnet in layer two of the Gradient Adjustment Subnet. The
new adjusted gradient maguitude of the central element is computed based on the ewrrent
gradient magnitude of the central clement and the amount of adjustment provided by the

Condition Ascertainment Subnet.

6.2 Conditions for Edge Measurement Adjustient

There are two cases for reinforcing and two cases for suppressing Lhe gradient magnitude

of the central element in a local edge pattern. These are detailed in the following seetions.

6.2.1 Cases for Reinforcement
Reinforcement. is used to enhance detected edges, strengthen weak edges, and recover

missing edges.

Case 1 : I the orientation of the central element is the same as the orientation of the edge

contour which has the greatest possibility of occurrence in the local edge pattern,

This condition is effective in reinforcing a valid or true edge element as the edge contonr
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passes through the central clement.
Case 2 : If the central clement is considered as a non-edge element, but the edge contour

which passes through the central clement has been determined to be the most probable

edge contour in the local cdge patiern.

In this sitnation, the central element should be a valid edge clement which constitutes part
of the edge contour. Therefore, the central element should be considered as an edge element.
That is, the gradient. magnitude of the central glement should be initialized and an appro-

priate orientation should be assigned to the central element. This condition is eflective in

recovering missing edge clements (i.c. interpolation).

6.2.2 Cases for Suppression

Suppression is used Lo climinate noise as well as false and spurious edges.

Case 1 : If theorientations of the central element and the edge contour which is most likely

to be present in the local cdge pattern are different.
This condition is effective for removing noise and false edge elements,
Case 2 : If there is no edge contour in the local pattern.

In this situation, the central clement in the local pattern is most probably a false edge
clement or isolated noise. Hence, the gradient magnitude of the central element should be

supprossed.
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6.3 Condition Ascertainment Subnet

The subnet in layer onc of the Gradient Adjustment Subnet, called the Condition Ascer-

tainment Subnet (CAS), performs the Lask of ascertaining the oceurrence of the appropriate
conditions for adjusting the gradient magnitude of the central element. The Condition As-

certainment Subnet also determines the amount of adjustment to the gradiont magnitude of

the central clement.

6.3.1 Selective Tensor Model

In the general tensor model, each component i the input vector multiplics the entire
input vector to generate a vector of enhanced components. The model yields an entire vee
tor from cach of the individual components. However, such functional transfoims greatly

increase the number of processes which are generated

aresult of the enhancement to the

components in the input vector. Most of the pro

s do ot provide the necessary infor-
mation to determine the occurrence of the conditians for adjusting the gradiont, magnitude

of the central clement. To sclect only those relevant, proces

s whicli provide Lhe necessary

information, the functional-link net for the Condition Asce

ainment Subnel is espec

designed and is refered to as the Scleciive Tensor Model.

The ‘a’ type functional process selected for the functional link is used Lo asce

ain the
occurrence of the condition(s) for reinforcing the gradient magnitude of the central clement,

The activation of an ‘a’ type process reinforces the gradi
&

Cmagnitude of the contral ele-

ment. 1f none of the ‘a’ type processes is activaled, the gradient, magnitude of the central
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clement is supprossed.

6.3.1.1  Pr

sses for Reinforcing Gradient Magnitude

Au ‘e’ type functional process, ‘al)’, associated with the ‘i**" orientation where i €

{iny. .y se) is described by @
2# ] -
= T U (6.1)
JE{n,. 30}
where ‘%" denotes the complement of the direction value associated with the 5*’ orienta-

tion, j € {n,...,sc) and ‘Ui denotes the output from the Maximum Detection Subnet

(MDS) for the ‘2’ orientation, i € {n,...,se}. There are cight ‘e’ type lunctional processes
in the functional-link net. Each of the ‘a’ type functional processes is associated with a
particular orientation.

One condition for reinforcing the gradient magnitude of the central clement is that the
orientations of the central clement and the most probable edge contour in the local edge
pattern be the same. FPor example, if the orientation of the central clement is north and the
most probable edge contour in the local edge pattern also has a north orientation, then the

*al" functional process associated with the north orientation is described by :

a = e Y d d U (62)

Since the orientation of the central clement is north, the dircction values associuted with

any other orientations besides north (d§,...., %)) are ‘0's. Thercfore, the complements of

these direction values (@', d§™) are *1's. The output from the Maximum Detection



Subnet (Ufihs) is 1" since the most probable edge contour in the local edge pattern has a

north orientation. Therefore,

R T RS E Y S Y|

(6.3)
Hence, the activation of process ‘at™" will reinforce the gradient magnitude,

Another condition for reinforcing is that the central element is a non edge element but the

cdge contour which passes through the central dlement is the most prohable edge contour in
the local edge pattern. For example, ifa contral element is a non-cdge element. and the nost

probable edge contour in the local edge patterm has a north orientation, then the direetion

values associated with all the orientations (d$7,... , d§”) are *0's hecanse the contral element

has no oricntation. Therciore, the complements of these direction values (0§ ..., d§™ ) are

‘I's. The signal value from the Maximum Detection Subnet (U8} is 17 since the most

probable edge contour in the local edge pattern has a north orientation. Therefore,

a™ = Ixlxlelalslxlsl =1 (6.1)

Hence, the activation of process ‘a™* will result in a reinfor

ment Lo the gradient magnitude.

6.3.1.2 Suppressing Gradient Magnitude

I none of the ‘a’ type functional processes is activated, the gradient magnitude of the

central clement is suppressed. There are two cases wherehy none of the '@ type finctional

procusses is activated.

The first case is when the orientations of the central ele

went, and the most. probable

edge contour in the local edge pattern are different. For example, if the orientation of the
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central element, is north and the orientation of the most probable edge confour in the local

edge pattern is south, then, di) = 1; &) = 0; df),...,d§" = 0; d§,
U = 1 UGS e Ulhs, . Us = 0. The ‘a™’ functional process is not activated

).

because (17},

e i Ulihs (6.5)

W= Al s

= lalslslrlslsls0 = 0.

s are also not activated becanse ) = 0. For example,

The other *a’ type fanctional proces;
a = G e w d w d x ULs (6.6)

= Oxlalslslslslxl = 0.

Since none of the ‘a’ type functional processes is activated, there is no signal for reinforce-
ment. Hence, the gradient magnitude of the central element will be suppressed.

In the second case, suppression to the gradient magnitude of the central clement oc-
curs if there is no edge contour in the local pattern (Ulfhs....,USids = 0). Ience,

At = 0. As a result, there s no signal for reinforcement and the gradient magni-

tude of the central clement will be suppressed.

6.3.1.3  Functional Link with the Selective Tensor Model

In the selective tensor model (Fig. 6.1), selected processes are the ‘a’ type functional

processes. The input veetors with sets of components {u;} and {v;} can be enhanced to the

3> i>i  k>j R TS
sets of components {ugs v}, {ugsvw 0} ), {wivvis 05« 0l eennns where 9, 4§, *k" indexes



73

ble to

the components in the input vectors. The enhanced components are explicitly

the net. It enables the appropriate processes to be activated only if the input information

clivations

indicates that all the necessary conditions for activation are satislied. The joint

or simultancous utilization of the information in the nput vectors allows the information

to gate cach other. flence. the functional-link net is able to determine the conditions for

modifying the gradient maguitude of the central element. There are two input. vectors to

the functional-link net :

1. A vector contai

ing the complement of the direction values of the central element.

tes from the Maximum Detection Submet.,

2. A vector containing the output va

‘a’ type proce

[

M) (s) () (w) (ne) (nw) (sw)
a a a a a a i

Sclective Tensor Model

Input Vectors

Figure 6.1 Schematic illustration of a sclective tensor model




In Fig. 6.2, the Condition Ascertainment. Subnet consists of a node and a set of sclected

functional processes generated by the Selective Tensor Model. The forward connections from

the functional processes provide inputs to the node.

(~e) functional
processes
output

Selective Tensor Model

. .
OO L T (1 O (1 8

Figure 6.2 Architecture of Condition Ascertainment Subnet

6.3.2 Mechanism of Condition Ascertai Subnet

The neural node of the Condition Ascertainment Subnet (CAS) is characterized by a

hard-limiter nonlinearity. The node is activated in accordance with the net input to the

node, the hard-limiter activation function, and a threshold ‘73". The net input to the node



is the sum of the weighted outputs of the functional processes and is given by :

nteas = 3 aswg (6.7)

1€ lnar)

where *al?* denotes the output of the ‘e’ type functional process associated with the

orientation, and ‘w,m” denotes the weight as: ed with the *a’ type fueetional provess for

the 'i* orientation.

The output of the node of the Condition Ascertainment Subnet is given hy :

Ueas = plnele (6.8)
where ‘¢’ is a hard-limiter funetion which is deseribed by :
005 il neteps 2 Ty
plnetess) = (6.9)

=0.08 otherwi

The function ‘g’ yiclds either a positive or nega ing on the strength of the

net input to the node. If the net input exceeds the threshold *75 (which is set o *1°), the

positive output of the node is the amount of reinforcement to the gradient magnitude of the

central clement. Otherwise, the negative output of the node is the amonnt of suppression
to the gradient magnitude. A valie of 0.05 cnables the gradient magnitude of an edge ol

inforced, without, excessive inere

ement to be gradually in the edge strength in cach

iteration. On the other hand, a value of -0.08 enables sullicient suppression to the gradient

magnitude of an clement in cach iteration withont climinating irely in the
first few iterations. This would prevent the elimination of weak edges which might initially

be assumed to be false cdges or noise but subscquently these edges are de ol Lo e




76

true edges as a tesult of the propagation of global information. The characteristics of the
hardlimiter function g are shown in Fig. 6.3.

Choiee of Weights

should be properly assigned to

“The weight associated with an ‘e’ type fnctional proces

Is the threshold *7%", I any of the ‘a’ type

ensure that the net input 1o the node exee

functional processes is activated, the ontput of the node is 0.05.

lnete.
0.05 1 N ——

v T neleas
=0.08

Figure 6.3 Characteristics of function ‘"

6.4 Gradient Computation Subnet

‘The subnet in fayer two of the Gradient Adjustment Subnet, called the Gradient Com-

putation Subnet ((GCS), performs two functions : firstly, to compute the newly adjusted

gradient magnitude of the central element; and sccondly, to determine if the central element



is considered an edge element or a non-cdge element. The Gradient Computation Subnet is

there are twa

s (Fig. 6.1). In the layc

a semilinear feedforward net with no hidden lay

inputs from two sources :
1. The output of the Condition Ascertainment Subnet.
2. The current gradient magnitude of the central element.,

The outpnts from layer *j" are then fed to the nodes in layer ‘b through feedforward con

nections. There are two nodes in the output layer k", namely, ndf" and *ud?".

new adjusted information indicating whether

gradient, gy wlge or non-edge clement
Uces

Output.

Lager

Tnpit

gs U ons
% CAS Conrition Ascertainment

Subnet and gradient

Tnputs from

magnitnde

Figure 6.4 Architecture of Gradient Computation Subnet
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The is the sum of the weighted ontputs from layer *j'

input to each nod
and is given by :
uely = gy owy +Ucss +weas (6.10)

* denotes the ontput from the Condition Ascertainment Subnet; ‘gy’ is the

where ‘U ps

" and ‘we,s” are the

gradient. magnitude of the central element prior to adjustment; ‘wy

1 weights with value of *1°,

6.4.1 Newly Adjusted Gradient Magnitude for Central Element

The newly madified gradient magnitude for the central element is given by the output

value of node *nd"™ in the ontput layer ** of the GCS :

u

alneti] (6.11)

tion of node *nd".

where '¢" is the activation

1i termed subthreshold

The activation function *@" is characterized by a

[ordan 1986, and is deseribed by @
10 il nety > 1.0
eluct] = q ety il 7y <nety < 1.0 (6.12)

90(0.015) otherwise

s threshold and gy’ is set 1o a value of 0.015.
“The activation function " will output a minimum positive, non-zero output value ‘ge’

if the net input to the node is less than a pre-set threshold value ‘T3’ Therefore, if an




clement after adjustment has a gradient magnitude

than the threshold *

\ the gradient

magnitude of the clement will be set to a

alue *gy'. This element consoquently will be
considered as a non-cdge element. In the next iteration, the mininum gradient magnitude

‘g0’ will provide suppression in the Edge Contour Deteetion Subnet. The cha

ties of

the function ‘¢" are shown in Fig. 6.5.

elunete]

(saturation level) 1.0 4

g0 = 0015

nely

Fignre 6.5 Characteristics of function ‘"

The output of the node is lincar if the net inpnt to the node excoeds threshold value Y73,

The activation function " is also constructed aking into account thal all physical systoms
have a limited dynamic range, that is, the responsc of a system cannol exceed a cortain

maximum response.
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[ the ontput reaches the saturation level, no further increase in

the ontput is allowed and the output of the function is set to 17,

6.4.2  Deterni g Non-Edge Element

Node ‘nd™ determines if the central element is considered as an edge clement or as a

2)s

lement. Activation of the node ‘nd{? indicates the central clemeni as a non-cdge

non-edge

s the central clement as an edge cle-

ion of the node indis

element. Conve

ly, de-a
ment. Output of node 'ndf" provides information to the Orientation Determination Subnet
in level four of the hierarchical neural network system to modify the orientation of the central

element. The ontput of node ‘ud{? is given by :

U = pluety] (6.13)

where ' is the activation function of node ud".

The activation function *¢" is described by (see Fig. 6.6) :

1 ifnel <73
dnet] = (6.11)

0 otherwise

where

4" is a threshold and is set to a value of 0.015.



ulnete]
+1
L Iy nely
0.015

Figure 6.6 Characteristics of function '

The output of the fanction ‘" is dependent on the net input to the node

ce the threshold

values for both activation functions in nodes ndf?* and ‘udf™ are the same (7

- 0.015),

the output values of these nodes are correlated. That is. tie onteome of the acti

o node

‘nd("" is reflected in the output of node ‘ndf and

For example, if the output

of node ‘nd{’" is less than threshold value “75° (0.015), the central element is considered as

a non-cdge clement and hence its gradient magnitude

gned value 0.015. Thi
reflected by the activation of node ‘nd{". An ontput value of *I” from node ‘ndi™ indicates

the central clement as a non-cdge clement. On the other hand, if the ontput of node wd

is greater than the threshold value ‘73, the central element. is con

ool s am e chenent

and correspondingly, the output value of node ‘nd® is 0. The ontput value from node

‘nd{D" is provided as information to the Orientation e

mination Subnet (discussed in the

next chapter) in level four to determine the appropriate orientation for the central element.
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Chapter 7

Orientation Determination Subnet

7.1  Introduction

In chapter six, the computation of the new gradient magnitude for the central clement
by the Gradient Adjustment Subnet was described. The Gradient Adjustment Subnet also
determines whether the central element. is to he considered as an edge element or a non-cdge
element.

In this chapter, the Orientation Determination Subnet in level four of the hicrarchical
neural network system is introduced. Its function is to generate the new set of direction
values for the central element whose orientation is modified only when the status (cdge or
non-cdge) of the central clement is changed. Otherwise, the orientation of the central cle-
ment remains unchanged. The Orientation Determination Subnet ascertains the occurrence

of these

conditions to determine the appropriate orientation for the central clement. The
orientation of the contral element can be modified in agreement, with the orientations of the

surrounding edge clements in the structure of an cdge contour.

7.2 hi £ Ori jon D ination Sul
The Orientation Determination Subnet is a two-layer semilinear fcedforward net (Fig.

7.1). In the input layer ‘', there are seventeen inputs. These inpuls originate from three
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sources. The first source is from the output of the Maximum Detection Subnet in lovel two

which provides information about. the orientation of the most probable edge contour in the

local edge pattern. The sccond source is from the output of the Gradient Adjustment Subnet

in level three which determines whether the central element is an edge element or a non-edge

clement. The third source is from the set of direction values for the central element. Ty

the output layer ‘m’, there are cight nodes, with each node associated with a particular

orientation, namely, north, ..

nodes in layer ‘m’ through feedforward connections.

—
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Figure 7.1 Architecture of Orientation Determination Subnet

1

., south-cast. The outpuls from layer ‘" are conmected to the

new
direction
values

Output
Layer

Input

Layer



7.3 Mechanism of Ori tion Determination Subnet

Each output from layer ‘I sends the signal value to the nodes denoted by ol (i €

n,...,8¢}) in layer ‘m’. The net input to each node, ‘01, is the sum of the weighted
P 5!

outputs from layer . The inputs to a node ‘vfi)” consist of :

1. The set of cight direction values for the central dement, ‘¢, j & {u, ..

2. The signal from the Gradient Adjustment Subnet (Gradient. Computation Submet),

()
GCS -+

3. The signal from the ding nodc in the Maxi Detection Subnet, 1§,
g MDS

For example, node ‘v’ associated with the north orientation reccives its input from the

output, ‘Ufths’, of the node in the Maxi Detecetion Subnel. associated with the north
P MDs

orientation. Therefore, the et input Lo a node v in layer ‘uw’ is given by :

i ki
netld = (@9 xw,) + (Ulps v wa) + (URgvm)+ S df vy (1)
KE{tpmnar)
where

d), d¥) : The dircction values for the central clement;

Uy ¢ The output signal associated with the 5" oricntation from the Maximum Detection

Subnet;

U&s : The output signal from the Cradient Adjustment Subnet (Cradient Computation

Subnet);
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wy,...,wy ¢ the associated connection weights.
hyeeea™Wa

The inputs to the node serve cither to excite or inhibit the activity of the node. The

ory effects on the node ‘vfi)" are provided by :

1. The dircction value, d%".
2. The signal from the Maximum Detection Subnet, ‘Ul

A positive weight ‘2 is assigned to the ‘ezcilatory’ connections (wy,w;) to accentuate the
excitatory signals and to provide sufficient strength to exceed the threshold for activating
the node. The inhibitory effects on the node ‘g are provided by :

1. The dircction values, ‘d$, k # 1.

2. The signal from the Gradient Adjustment Subnet, ‘Ug".

 input signals serve to de-activate the node. A negative value 4’ is assigned to cach
of the ‘inhibitory’ connection weights (wg,wy) Lo accentuate the inhibitory signals and to
provide sufficient strength to de-activate the node. The output of a node ‘vl in Jayer ‘m’
is given by :

UShs = Wet®), i€ {n,...,sc} (7.2)
where “” is a nonlincar activation function and takes on the characteristics of a threshold-
logie unit (TLU) [Jordan 1986] :
Uil netl) > Ty (7.3)

Y[netl] =
0 otherwise.
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The node, ‘vfi)", is activated only if the net input to the node exceeds the threskold 7y

»

which is set to ‘1", otherwise, the node is de-activated. The function “W* is shown in Fig.

7.2

Wnetl)

1 netll)

Figure 7.2 Characts s of function ‘W*

7.4 Case Analysis for Operation of Ori tion Determination

Subnet

A node is activated if the input to the node is greater than ‘1, ve. netl) > 1, otherwise, the

node is de-activated.

7.4.1 Cases for Activation

A node Wi € {n,...,5€

is activated only if both the following two conditions are
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satisfied :

1. The node docs not reccive any de-activating input signal, i.c. from ‘Us’ or *d§",

where j € {n,...,sc) and j #1.

2. The node reccives an activating input signal, i.c. from ‘Ul or ‘df

“The activation cases for node ‘of)" are :

Case 1 : (i) The central clement is considered as an edge clement (Uggs = 0), and (ii) the

orientations associated with the node and the central element, arc the same (4§ = 1).

For example, the central clement of the input edge pattern is an cdge clement and has a
north orientation, i.e. ‘d) = 1, 4d{),....d? = 0, and ‘USks = 0. Therclore, the net

input, ‘netl, to node ‘vl is given by :

netl) = (s wn) + (Ufhs v wa) + (Usruw)+ T dPswe  (7.4)
€}
= (164 (Ulhs+2)+ @ % —1)+ (0% =) +--+(0+—4) >

Regardless of the input from “U{Ths’, the net input to the node is greater than ‘1 since

the de-activating signals are absent and there is at least one activating input signal. If an
activating signal from ‘Um,s‘ is present, the net input would only get larger. On the other
hand, if the activating signal is absent, the input signal from ‘d§)" still excceds ‘1%, Since

there is an excitatory and no inhibitory effect on the node, ‘o', the node will be activated

(set o 1),
Case 2 : (i) The central clement was a non-cdge clement (d) = 0) in previous iteration.

But in the current iteration, the central clement is considered as an edge clement
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(U85 = 0). (ii) The most probable orientation of the edge contour in the pattern is
same as the associated orientation for the node (Ufh,s = 1.

For example, in the previous iteration the central element was a non-edge clement,

d,..., dS = 0, but currently, it is considered as an edge element, *U%2 = 0" and the

most probable edge contour has a north orientation, ‘Uihs = 1", Therefore, the net input

‘el to node v associated with the north orientation is given hy

netf) = (dP vw)) + (Uhs v ) + (URgr )+ 3 dP vy (7.5)
JE{Aa0)

= (042 +(1+2)+ (0% —A)+-oH (04 —1) >

Since there is an excitatory and no inhibitory effect, the node ‘o will he activated.

7.4.2 Cases for De-Activation

A node “of)’ is de-activated if it reccives a de-acti

ating input signal. The de-activation

cases for node ‘vfi)’ are :

Case 1 : The orientations associated with the node and the central element, are different

(@ =1,5 #1).

For example, the central clement has an cast. orientation, ‘) = 1", Therefore, the net. inpnt

to node ‘v{?)’ associated with the north orientation is given by :

netl® = (&) ww)+ (Uhswa) + Usrwa) + 3 dP (7.6)
+

F&{ayue]

= (0%2)+ (Uiths *2)+ (USks # ~1)+ (0« —1) + (14 —1) +

(0% =) 4+ 4+ (04 —4) <1,
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Regardless of the inputs from ‘Uihs’ and ‘UL, the net input to the node is less than *1'.
If ‘Ufihs = 1, the de-activating effect is still greater and hence will annul the activating
effect from *Ulths'. If ‘Ut = 1, the de-activating input signals would only get stronger.

Since there is an inhibitory effect on the node, ‘o), the node will not be activated (sct to

0).
Case 2 : The central clement is determined by GCS as a non-cdge clement (Uls = 1).

“The net input to the node ‘vl is given by

netld = (d ew) + (Uihs #wa) + (URsswn)+ T d@wwy  (17)
J€{s, e}

= (P e+ (Uhhs+D+0 s+ ¥ dfew, <1
FE{n...0e)
Similar to the previous case analysis, the node ‘o) will not be activated since there is an

hitory effect on the node, regardless to @) = 1 and/or Ufths = 1.

"The outputs of the nodes in the Oricntation Determination Subnet constitute the new sct
of direction values for the central clement. An activated node indicates that the orientation
associated with the node is the most appropriate orientation for the central clement. On
the other hand, a de-activated node indicates that the orientation associated with the node
is inappropriate for the central element. If all the nodes in the Orientation Determination
Subnet are not activated, the new direction values (associated with all the cight orientations)
for the central element are *0's (i.e. the central clement has no orientation) and the central

clement is determined to be a non-edge clement.
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Chapter 8
Adapting Weights Through

Supervised Learning

8.1 Introduction

Chapters four to seven have described the architecture and mechanism of the hierarchical
neural network system. In order for the neural network system 1o perform correetly and
accurately, cach of the neural subnets in the system must he given suilable weights. Pre-
determined weights can be assigned to a subnet if cither of the following two conditions are
satisfied : firstly, the task encountered by the subnet is simple, and secondly, cach of the
nodes in the subnet has a local representation. However, assigning pre-determined weights
becomes impossible as the complexity of the task increases. In a complex environment, there
are numerous edge paticrns which consist of edge contours of varying strength, noise, and
false edges. Thercfore, a learning algorithm is required fo acquire this knowledge for the
subnets. Furthermore, learning must be fast for any cases of practical significance.

Tt is highly desirable and important to have a mechanism which is able to adjust or modify
the weights according to input patterns and generate outpul values as close as possible to

the desired values, Adjusting the weights is often refered to as learning by the neural net.

The adjusted weights should enable generalization for the neural net such that accurate
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output values can be generated for input patterns which the net has not encountered during
training. Because there are so many possible edge patterns that could be encountered by

the system, it is not possible Lo train the neural network system with all the possible cdge

patterns in all probable sitnations. For a 5x5 window, even without considering the different
cidge strength, cach edge element is allowed to Lake eight different oricntations and one non-
orientation. ilence, there arc a total of 9% possible patterns. It would take centuries lo
learn this enormons number of possible patierns (which amounts to more than (rillions of
patlerns), assuming that it takes one second to process one million patterns.

"Phere are three basic classes of learning procedures, namely, reinforcement learning, un-
supervised learning and supervised learning. Reinforcement learning involves assigning credit
to a local decision by measuring how it correlates with the global reinforcement signal. The

network performs gradient ascent in the expected by altering the p
distribution of the value of cach weight in the direction that increases the expected rein-
forcement [Barto, Sutton and Brouwer 1981; Barto, Sutton and Anderson 1983; Hinton
1989]. One disadvantage with reinforcement learning is the inefficiency for large systems
with many weights because many trials are required to assign credit correctly [Ilinton 1989).
Unsupervised learning performs learning without receiving any additional information or
training signal [Carpenter and Grossherg 1987; Fukushima 1988; Carpenter and Grossherg
1988; Carpenter. Grossberg and Mchanian 1989]. Unsupervised learning clusters the data

into similari

groups under certain assumptions on the nature of the data [Gallant 1990].

Howvver, an unsupervised learning algorithm cannot learn arbitrary functions. Another
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drawback is the inability to determine if the output generated by the neural net is correct

or useful [Giles and Maxwell 1987]. The third class of learning is the supervised lea

%

[Hinton 1989). When the system is in training or learning, an external teacher provides the
desired responses for the corresponding training patierns.
In this thesis, supervised learning is sclected as a means of training for the hicrarchical

neural network system. The advantages of using supervised learning are :

stly, the activa-
tion function can be learncd by modeling the function with Uhe input (raining patterns and
corresponding desired responses [Gallant 1990]. Secondly, by providing tie desired responses
to the net, there is a direct and accurate means of control over the learning process. Cur-

rently, an crror back-propagation method (the generalized deba rute) (Rumelhart, Hinton

and Williams 1986] is one of the most widely-used supervised learning algorithms for adapt-
ing conncction weights in multi-layered neural nets. However, there are some limitations, one
of which is the extremely slow rate of convergence [Pomerlean 1987; Jacobs 1988]. Learning
rules for adapting multi-layered networks require thousands of iterations Lo converge and
sometimes do not converge at all, due to the local minimum problem [Giles and Maxwell
1987). Another limitation is the difficulty in obtaining desired responses for the nodes in the

hidden layers [Widrow and Winter 1988]. There is no simple way Lo provide the nodes in

the hidden layers with a training signal.

In order to the drawbacks of the lized delta rule and benefit from the ad.
vantages of supervised learning, the modified della rule is propused as the learning procedure.

The modified delta rule, a supervised learning algorithm, is used to derive a set of weights
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for each of the functional-link nets in layer one (Edge Contour Detection Subnet). These sets
of weights enable the finctional-link nets to generate correct output values for different cdge
patterns. The major emphasis during the training of the functional-link ncts is the synthe-

sis of mappings between pairs of input edge pattern descriptions and corresponding output

s generated by these nets, The modified delta rule, with the incorporation of a mo-

mentum term, is different from the delta rule [Stone 1986; Rumelhart, Hinton and Williams

1986). ‘The learning rale developed in this thes

s superior Lo other error back-propagation
algorithims. Firstly, the high-order functional-link nets in the Edge Contour Detection Sub-
net can be adapted very quickly. With the absence of hidden layers, adaptation of cach

k net, is

 with simplicity. Sccondly, the incorporation of a momen-
sum term prevents wild oscillations during learning and cnables faster convergenee to the
most suitable set of weights. Thirdly, together with the architecture of the functional-link

nets, the learning rule enables the nets to have good generaiization capabilitics.

8.2 Modified Delta Rule Learning Algorithm

The moditied delta rule like other various error back-propagation algorithms requires dif-
ferentiability of the nenral net's output signals [Widrow and Wanter 1988]. The node in the
functional-link net activated by a signoidal activation function satisfies this differentiability
criterion. The modified delta rule, being a back-propagation procedure, docs not, mimic a
biological model. As a biological model, back-propagation is implausible, There is no ev-

idence that synapses can be used in the reverse direction, or neurons can propagate crror
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derivatives backwards [Hinton 1989; Gallant 1990]. Hence, the primary objective in this
chapter is functionality rather than biologically accurate modeling,

In the learning process, a training cdge pattern and a corresponding de

| target output
value form a training data pair. Training data are presented to each of the cight functional-

linis rets in the Edge Contour Detection Subnet. The input pattern, the functional proc

s
and the sigmoidal activation function of the node in the functional-link et produce an ontput
value. Il the computed value is equal to the desired output value, then no weight change
takes place. Otherwise, the weights are modified (o reduce the difference hetween the targel
output and the computed values. The rule for determining the weight adjustment is given
by :
A e gl )
where ‘AW is the change in the weight of the connection from the ‘i functional process
in the " functional-link net (j € {n,...,se}) following presentation of the k™ pattern;
‘9’ is a lcarning rate constant which controls the speed of learning; ‘6% is the difference
between the actual output produced by the net '’ and the desired outpnt level; [ iy the
valuc of the output of the functional process.
Therefore, 69" is the amount of error at the node of net, *j* and s given by :

60 = () o) (8.2)

where ‘Y is the target output; ‘0" is the actual output of the node.
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J, the output of the i functional process s given by :

8 = iy Gy o 2 g * G (®3)

where “d is the dircction value and ‘g’ is the gradient magnitude of an edge clement; the
subscripts of ‘d’ and ‘g’ indexes the edge elements in the local edge pattern; ‘N” denotes the
order of the functional process.

In the update rule (expression 8.1), the amount of adjustment to the weight is pro-
portional to two factors, namely, the amount of error at the node and the output of the
functional process. By incorporating the output of the functional process into the learning
rule, the weight associated with the functional process is modified only if the process is
activated. Such incorporation has two advantages : firstly, it is very difficult for the net
to be sinmitancously trained for all the training patterns. By including the output from
i

the functional process, the fi k net responds only to the newest training pattern,
I

and incurs minimal disturbance Lo the responses for some of the previous training patterns.
Secondly, because the output of the functional process affects the amount of adjustment,
faster convergence can be achieved as the process output contributes to the error.

The learning process involves two phases. The first phase involves the presentation of
the training pattern to the input layer. Specific functional processes which characterize the
cdge contour in the training patiern are activated and the output of an activated functional
process is propagated forward to the node. The activation function in the node then generate:
an activation level for the node. In the second phase, the error determined at the node is

propagated backward and the amount of adjustment to rach weight in the net for each
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pattern is computed using the following procedure.

For cach training pattern ¢

begin
compute the error 6 = () — o)
For cach functional process 'i” in the functional-link net 45"
begin

(),

determine the output from the functional process, fi!';

compute the amount of adjustment ‘A, WP o the weight associated

with the functional process for pattern ‘A%
end
end
For cach pattern, the crror function is given by :
Be= 5 ¥ @-dy (8.1)
€ {mrmse)
where ‘Ey’ is the measure of the error for the *k*" pattern; ) is the target. output value;

‘)" is the actual output valuc; 5’ indexes the orientati inted with the functional-

link nets. Therefore, for cach pattern, the crror is measured by the sum of the squares of
the errors for all the functional-link nets.
The learning rule performs a gradient descent in crror space to minimize the sum of the

pattern errors over the training set. In order to perform a true gradient search in total error



space, the lollowing average total system error function is introduced :

1 P
Bro= 53 b (85)
=

where ¢122” is the average Lotal system error; K’ indexes the patierns in the set of training
patlerns; ‘P denotes the total number of training patterns.

If the weights are modified for cach pattern at a time, this is known as on-line” learning.
Such modifications can increase the errors for patterns in the training sel, which is clearly
undesivable. To ensure that, modifications to the weights are performed only after all training
patterns have been presented (analogous to the Least Mean Square algorithm [Widrow and
Stearns 1985] or the Widrow-lioff Delta Rule [Rumelhart, Tinton and Williams 1986]), the

lei s changes Lhe weights to minimize the average total sysiem error. Thereore,

lingg proc

the gradient search is performed on the direction of gradient descent in total crror space.

A large learning rate ‘9’ corresponds Lo large changes to the weights when they are
adjusted. lowever, since large learning rate might lead to wild weight oscillations, a small
learning rate is preferable to ensure small adjustments to the weights during learning. In
order to maintain a relatively high speed of finding the solution weight set while avoiding
weight oscillations, a momentum term is incorporated into the learning rule. The new

learning rule is given by :
A1) = (08D % 1) + (ax AW (1) % d, % d,) (8.6)

AV 687, and S8 are same as in (8.1). In the second term (momentum

where

term), *a’is the constant which determines the effect of past weight changes on the current,
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change to be made; ‘d” denotes the direction value of an cdge element; " and 'y indexes
the two cdge elements in the local edge pattern. To compute the weight adjustment at
“ime' £+ 1, the weight adjustment computed at “time’ ¢ (in the previous iteration) is used

for determining the value of the momentum term (8.6). Before the learning process begins

(¢ = 0), the amount of weight adjustment is initialized to zero, i.e., AP (0) = 0.0, For

a first order functional process (only one edge clement is involved), expression (8.6) will be

modified to

AWOU+1) = (8 5 J0) 4 (@ e AW 1 dy). (8.7)
The lcarning rule for a third order functional process is :

AW +1) = (78D x [D) + (ax AW (L) 0 dy 4y + d,) (8.8)
where ‘z’, ‘y’, ‘2’ indexes the three edge clements in the local edge pattern.

The direction value in the momentum term ensures that Lhe momentum term will affect
the computation of the weight adjustment for the functional process only if the process is
activated. This prevents any adjustment to the weight when the functional process docs not
respond to the training pattern. The momentum term in the learning rule is used to avoid
wild oscillations and to find the solution much more quickly.

The modificd weight ‘W% for the %" functional process in net 5" is given by :

wi = WPy aw? (8.9)
«

where ‘W) is the value of the weight before adjustment.

The learning process is described in the following psendo-code :
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while (Average Tolal System Error > Threshold Value) do
hegin
do (for cach training pattern)
hegin
do (for cach functional-link net)
begin
COMPUTE NET OUTPUT
COMPUTE ERROR AT THE NET
do (for cach weight in the net)
COMPUTE WEIGHT ADJUSTMENT
end
COMPUTE ERROR FOR THE TRAINING PATTERN
end
COMPUTE AVERAGE TOTAL SYSTEM ERROR
UPDATE WEIGHTS

end

8.3 Effectiveness of the Learning Process

“There are three ways to improve the effectivencss of a learning process in neural networks.

1. Only necessary information is provided to the neural network [Pao 1989;).
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2. No hidden (internal) layers are allowed, hence no training signals for these layers are
required [Giles and Maxwell 19817].
3. The amounts of the adjustments to the weights in cach iteration are controlled to pre-
vent wild oscillations and hence enable convergence [Rumelhart, Hinton and Williams
1986).

In the following sections, it is shown that the modificd delta rule together with the functional-

Jink nets satisfy all three above conditions to enable fash and accurate leaing.

8.3.1 Improving Rate of Learning

It is a waste of time for a network Lo learn information already known

dvance. Ty

providing the network with the known information instead of generating these

again, the training is performed only to learn aspects of the task which the network does not
already know [Giles and Maxwell 1987; Hinton 1989]. In the Edge Contour Detection Subnet,

the known information is embodicd into the architecture of the functional-link nets. For cach

functional li

k net, a functional process rep the structural information concerning a
segment of an edge contour. When a functional process is activated, the net is provided with
the information that a segment (characterized by the process) of an edge contour is present
in the local edge pattern. By making this information available o the net, there s no need

for the net to learn the structure of the segment of the edge contour. Hen

Yarge portion
of the learning process is avoided. Furthermore, there are no hidden or internal layers in the

functional-link nets. Hence, the difficult task of providing the training signal to the ‘hidden’
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nodes is avided. Finally, the incorporation of a momentum term in the learning rule enables
fast convergence. The momentum term in the modified delta rule is used to specify that the
cnrrent, adjustment Lo the weight is affected by the previous weight adjustment. I this way,
some inertia is buill in and momentum will prevent any large changes Lo the weights al any
one time and hence avoids wild oscillations.

The performance of the learning process for the functional-link nels is very impressive.

The adaplation of the Edge Contour Detection Subnet is fast and accurate. The performance

of the leaming process is shown in Fig. 8.1, It shows the rate of dccrease of the system error
with the mmber of presentations of the set of training patiemns. The output generated by
each functional-link net is normalized to a range (0,1). As the activation function for the

node of cach fun i

nal-link net cannot. have outpul values of “17 or ‘0’ without infinitely
large positive or negative input. respectively, a strong desired response is taken to be 09, a
medium desired response is 0.5 and a weak desired response s 0.1. Aller training, the Edge
Contour Delection Subnel generates correct output values for edge patterns which were not
encountered during training,

In the experimental tesls, in order to achicve high learning speed and also lo avoid wild
oscillations, the following values for the learning rate y’ and the proportion ‘a’ of contribu-
tion of weight change computed in the previous iteration to the momentum term were used:
(i) 7 =09 aud (ii) a = 0.7. Other values fory and a were tested but those values required
more iterations for convergence. The average lotal system crror () for convergence was

sel at 0.0000045 (threshold value). This small system error for convergence ensures that
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all the “learned” weights are suitable for the functional-link nets to perform acenrately. The
learning process required only 275 iterations to achieve convergence. The values selected for
7, @ and Er enable fast lcarning of accurate weights for the functional-link nets to perform

correctly.

System Error
0.001
0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001

o oo 200 00 400 500 600 0 of
iteradions

Figure 8.1 Rate of learning for the Edge Contour Detection Subuel

832 Enhancing Generalization Capability

In addition to good leaming capability, a learning e shonld also provide giod g

alization capability. A major goal of connectionist learning is to produce a network that,
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generalizes correctly lo new situations after training on a sufficient number of typical cases.

Generalization enables the network to be applied to typical real world tasks [llinton 1989].
Mercly learning the training patterns can be accomplished by storing these patterns and
their associated desired responses in a look-up table [Widrow and Winter 1988]. This ap-
proach is definitely not feasible for the hierarchical neural nelwork system as there are too
many pattems and their corresponding desired responses to be stored. Good generalization
on complex tasks can be obtained by designing a network archilecture thal contains a certain
amount of a priori knowledge about the task [LeCun 1989].

This is precisely what thearchiteclures of the selected functional-link nets have achieved.

The functional f in the Tunctional-link nets c ire various edge contour pat-

tems. Therelore these priori knowledge are provided to the selective functional-link nets by
encoding them (the knowledge of edge pattems) into the architectures of the nets. Since
cach pattern is assumed to he within a 5 x 5 window, all edge patterns (i.e. rectilinear,
curvilinear, ele.) arcconstructed by the same number of edge clements. The central clement
which lics on the edge contour is the edge clement of concern. llence, in cach edge pattern,
there are four other edge clements Lo construct the edge contour. Diflerent edge patterns
would involve edge clements from different, pixel locations in the window.

lor cach type of edge pattern (ie. iactilincar, non-symmetrical, curvilinear, ctc.), re-
gardless of the oricnlation associated with the pattern, the technique for characterizing the
cdge contours is the same. For example, a rectilinear edge contour with a north orientation

involves the same number of edge clements as a rectilinear edge contour with a north-cast



orientation. Similarly for a non-symmetrical elge contor, a cu

rar clge contonr, ete.
For cach particular type of edge pattem of any orientation, the relative positions of (he edge
elements involved for cach segment with respect to the enlire edge contour are the same. For

example, in Fig. 8.2a, the pairs of cdge clements involvel for characterizing the sognents

AN W] s
of o f] o o 1] alA] o
i o X| o W
ERRIEE o d
BERREE o

a) North orientation b) North-east orientation

Figure 8.2 Edge patlerns

of arectilinearedge conlour with a north orientation arc: (€3, ¢u), (€15 €23), (€5, € 1), (e85 €21)
where ‘e’ denoles an edge clement. and the subscripts denote the relative positions in the
window. For a rectilinear ~dge contour with a north-cast oricntation (Fig. 8.21), the pairs
of edge elements involved are : (es, €17), (€5, en), (€9, ), (€o,6n). Thercfore the relative
positions of the cdge clements (e, €15) and (es,¢57) in the window are the same with respect
to the positions of theother cdge clements involved for the two elge contours. Similarly for
(e3,en) and (es,€21), (s, €18) and (eg,e17), (esyeas) and (g, €31). Therclore training conld
involve only edge patierns for one orientation, for exarnple, north orientation, and the train-
ing could casily be gencralized to the edge pattems for the other seven orientations, narnely,
south, cast, ..., south-cast. This capability has enabled the Edge Contour Detection Subunet

(functional-link nets) to have good generalization capability.
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8.4 Performing Necessary Training to the Subnets

The advantage of the hierarchical neural network system lies in the modularity of the
system architecture, One way of avoiding a complex system architecture is to introduce a
modular hicrarclical structure in which different modules are only looscly coupled [Simon
1969]. Modularily is important for fast learning and good gencralization [Hinton 1989]. If a
complex lask can be decomposed into a set of easier sub-tasks, the sub-tasks can be learned
independently asa result of looscly coupled modularity. Tlence, fast and correct learning can
be achieved.

The hicrarchical ncural network system can be broken down to four modules or subnets,
cach achieving a particular sub-task. The four sub-tasks arc the constituents of the complex
task Lo be achieved by the hierardical neural network system. Therefore, each subnel can
be trained independently.

In any neural net, a concept is represented by the node(s) in the net. There are basically
wo types of representation, namely, local representation and distributed representation [Hin-
ton 1989). In a local representation, cach concept is represented by a single node [Feldman
1986], whereas in a distributed representation, a concept is distributed over several nodes.
tach node represents a constituent of a concept and is also involved in representing the
constituents of several other different concepts [Hinton, McClelland and Rumelhart 1986].
In a network that uses local representation, no training is required. It is feasible to set all

the weights by hand because cach weight ponds to a specific rel

hip between two

nodes. That is, there is a unique relationship between the concepts represented by the two
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nodes. However, if a network uses distributed representation, it may be very difficult to set
suitable weights by hand and s a learning procedure is required [Hinton 1989].

In the hicrarchical neural network system, the Edge Contour Detection Subnet requires
training because the functional-link nets in the Subnel adopt the distributed representation
concept. The adopted concept for detecting an edge contour is based on delecting various
segments of the cdge contour. Iach functional process characterizes a segment of an edge

contour. Tlence, several functional processes are required to characterize that edge contour.

Therefore, the representation of the concept for characterizing an edge contonr is distributed
over several functional processes.

Edge contours can have various strengths. This means thal there are

50 many different,

concepts for characlerizing edge contours with the same pattern and same orientetion but,

with different strengths. llence, cach functional process. is associated with many different

concepts for characterizing an edge segment. 1L is not. possible to pre-determine suitable

weights for cach functional process hecause there are oo many concepts to consider, There-

fore, training the functional-link nels is necessary in arder to derive sets of suitable weights
for the functional processes in the nets.

The nets in levels two to four of the hierarchical neural network system, namely, the

Maximum Detection Subnet, the Gradient Adjustment Subnet and the Orientation Deter-

mination Subnet, do not. require training. These subnets are hised on the local representation
concept.

In the Maximum Detection Subnet, the inhibitory weights are set to *—¢’, where —£ < A



107

and N is the number of nodes in the Maximum Detection Subnet and the excitatory weights
arc set, to '] (sce scction 5.3). Each node represents a concept : a probable orientation for
the edge pattern. The relationship between a node and cach of its neighbours is inhibitory,
while a node has an excitatory relationship with itself. Since the specific relationships exist
amongst the nodes representing the concepts, the weights in the Maximum Detection Subnet
need not he learned as cach weight corresponds Lo a specific relationship between two nodes.

In the Gradient Adjustment Subnet, there are two subnets. The Condition Ascertainment
Subnet, consists of a functional-link net of the Selective Tensor Model. Each of the functional
processes in the net represents a specific concept, for determining the occurrence of the

appropriate conditions (cases) for the of the gradient The cases for

reinforcing the gradient magnitude of the central element are @

1. 16 both the central edge element and the strongest edge contour in the local edge

patiern have the same orientation.

2. 1f the contral clement is considered as a non-cdge clement but the strongest edge

contour in the local edge pattern passes through it.

“Ihe concept for representing these two cases (for cach particular orientation) in the functional-
link net is achieved through the ‘a’ type functional process. Each of the ‘a!)’ functional
processes, where i € {n, ...,se}, is concerned with representing the concept. for determin-
ing the ocaurrence of the conditions for reinforcing the gradient magnitude of the central
clement for a particular orientation (i.c. north, south, ..., south-cast). If the conditions

for reinforcement are absent, suppression to the gradient magnitude occurs. Ilence, each
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of the functional processes represents a specific concept for reinforcement relative to a par-
ticular orientation. These concepts also have specific relationships with cach other in the

sense that each funclional process can be activated only if the other funetional proce

s are
de-activated. Therefore, since cach functional process represents a specific concept and the
relationships amongst the functional processes are specific, the weights assaciated with the
functional processes need not be learned. These weights can be pre-determined and assigned
by hand.

Layer two (Gradient Computation Subnet) of the Gradient Adjustment Subnet is a semi-

lincar fecdforward subnet. This subnet has no internal layers and there are two nodes in the

output layer. One node represents the concept for adjusting the gradient. magnitude, the
other represents the concept for ascertaining a non-cdge element. Each outpnt node receives
its input signals from : (1) the Condition Ascertainment Subnet and (2) the current gradient

magnitude of the central clement under consideration. Therefore, since cach node represents

a specific concept and the relationship between the node and each of its inputs is specifie,
the Gradient Computation Subnet need not he trained. Henee, the weights for the subnet
can be preset.

The Orientation Determination Subnet in level four of the hierarchical neural network

system is a semilincar feedforward subnet with the ahsence of internal layers ch node
in the output layer represents the concept for determining the appropriate orientation for

the central element under consideration.  There are cight output nodes and each node is

associated with a particular orientation. The activation of a node indicates that the orien-
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Lation associated with the node is the orientation for the edge element. Each node receives

its input signals from three sources : (1) the orientation of the edge clement; (2) the signal

from the Maximum Detection Subnet; (3) the signal from the Gradient Adjustment Subnet.

The concept, represented by each node can be described as @

. The node is activated if :

(a) The orientation of the edge element is the same as the orientation associated with
the node; and/or

(b) The signal value from the Maximum Detection Subnet is ‘17

2. The node is de-activated il

(a) The orientation of the edge clement is different from the orientation associated

with the node; and /or

(b) The signal value from the Gradient Adjustment Subnet is 17,

Therefore, the activation and de-activation of a node is dependent on the particular inputs
the node receives. Hence, there are specific relationships between the node and cach of its
inputs. Therefore, the Orientation Determination Subnet need not be trained. Suitable
weights can be pre-determined and assigned to the Subnet.

The modularity in the structure of the hicrarchical neural network system has enabled
fast derivation of suitable weights for the network system to perform correctly. Training
is provided ouly to those subnels requiring training. Ilence, training the entire system is

avoided, Therefore, the amount of information which the nets need to learn is drastically
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reduced. The architecture of the nets has also enabled these nets to have good generalization

capability. Therefore, only a small number of training patterns is required to train the nets

and still derive suitable weights for the nets Lo perform accurately and efliciently.
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Chapter 9

Conclusions and

Future Research

9.1 y of Contrik

I this thesis, a hicrarchical neural network system has heen developed for improving
edge measurements in an cdge image. The system consists of four levels of neural nets.
The first, level is the Edge Contour Detection Subnet which consists of cight functional-link
nets working in parallel. The functional-link nets are high-order nets of the Selective Func-

tional Expansion Model. Each functional-link net is with a particular compass

orientation and contains sclected functional processes which characterize the structures of
different edge contours. Bach functional-link net receives its input data from the edge mea-
surements of the edge elements. Through the high-order terms in the functional processes,
cach functional-tink net is provided with our a priori knowledge of the structures of different

cdge contours. By utilizing the gradient magnitude and the orientation of the appropriate

edge elements simultancously, the functional-link nets are able to accurately detect the cdge
contours in the local edge patterns. The modularity in the architectural design enables the
functional-link net to be casily modified to handle new and more complex edge patterns.

In the second level of the hicrarchical neural network system is a cooperative-competitive
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neural net model, the Maximum Detection Subnet. Its fun

ion is to defermine the orienta-
tion of tie strongest edge contour in the local edge pattern. The Maxinmm Detection Subnet
receives its input from the Edge Contour Detection Subnet. There are eight nodes in the
Maximum Detection Subnet and cach node is associated with a particular orientation. Each
node uses lateral inhibition Lo inhibit the activitics of its neighbouring nodes while providing
excitation to its own activity. After converging, only one node is activated while the other
nodes are de-activated. The activated node indicates the orientation of the strongest edge
contour in the local edge patiern.

The Gradient Adjustment Subnet in the third level consists of two layers. The first layer
is the Condition Ascertainment Subnet, which is a functional-link net of the Selective Tensor
Model. The functions of the Condition Ascertainment Subnet are Lo ascertain the ocenrrence
of appropriate conditions for adjusting the gradient magnitude and also determine the ap-

propriate amount of adjustment to the gradient magnitude. By using high-order processes,

all the input information can be utilized simul ly and made explic

ly available to the
Condition Ascertainment Subnet for the latter to correctly determine the appropriate con-
ditions for adjustment. The sccond layer is ihe Gradient Computation Subnet, a semilinear
feedforward net with no hidden layers. The Gradient Computation Subnet compntes the

new gradient magnitude of the clement of concern and also determines if the ele

is an
edge element or a non-edge clement. The Gradient Computation Subnet is able to coneur-
rently compute the new gradicnt magnitude and also send a signal indicating the status of

the clement (edge or non-edge).
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‘The Orientation Determination Subnet in the fourth level, determines the new orienta-
tion for the clement of concern. The Subnet generates the new sel of direction values for
the element of concern. The Orientation Determination Subnet is a semilinear feedforward
net. with no hidden layers that has cight nodes in the output layer. The Orientation De-
termination Subnet is able to ascertain the occurrence of different conditions to determine
the most appropriate oricntation for the element of concern. This enables the clement of

concern to have an orientation which is in agrecement with the orientations of surrounding

cdge elements in the structure of an edge contour.

In this thesis, an improved learning algorithm based on the delta rule has also been devel-
oped. This algorithm cnables fast convergence to suitable sets of weights for the functional-
link nets in the Edge Contour Delection Subnet to perform correctly. The nets learn fast
and have good generalization capabilitics. Learning by the functional-link nets requires only
275 iterations to attain an average total system error of 0.000045. Only twenty seven typical
traiting edge patterns for cach orientation are used for training as compared to the more
than trillions of possible training patterns (9%° possible patterns). Correct results are then
obtained for edge patterns of any orientation that were not encountered during training.

Tn the experimental Lests, cach original gray-level test image is dograded and corrupted
by additive random noisc and non-uniform illumination (Fig. 9.1). The test images are
corrupted by 15% - 356% additive random noise. The edge image obtained is generally very
poor with missing valid edge clements; presence of spurious, false cdge clements; very weak

edge clements; and presence of noise (Fig. 9.2). After 15 iterations of processing by the
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hierarchical neural network system, an improved cdge image is obtained (Fig. 9.3):

. Trne edge clements in different types of edge contours, namely, rectilinear edge con-
tours, non-symmetrical lincar cdge contours, curvilinear edge contours and edge con-

tours at a corner are reinforced or enhanced.

o

. Missing edge clements are interpolated and recovered.

@

. Spurious and false edge clements are effectively suppressed.

. Noise is effectively climinated.

The benefits of highly parallel processing and fast computing time can be realized in
Habdware irplemcatation.

Test, results arc shown in Appendix A (Figs. Al, A2, A3). Degraded and noise corrupted
(by non-uniform illumination and 15% - 35% additive random naise) gray-level images (Figs.
A1) were converted Lo edge images (Figs. A2) and then improved edge images (Figs. A3)
were obtained after 15 iterations of processing by the hicrarchical neural network system.
The simslation package is written in C, running on a MIPS-M1208 under the UNIX operating

system.
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Figure 9.2 Edge image - before processing by neural network system
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9.2 Directions for Further Research
Although the hicrarchical neural network system performs very well, more research is

needed to further improve the performance of the system.

9.2.1 Thinning of Edges

A built-in thinning operation could be incorporated into the neural network system.
One possible method of thinning can be achieved by adding functional processes for the
functional-link in the Edge Contour Detection Subnet. These functional processes would

be associated with neighbouring edge clements located at positions adjacent to the central

element of concern along the width of the edge contour. These processes will provide a sup-
pressing effect on the central clement of concern, thereby performing a thinning operation

by suppre

ing weaker edge clements along the outer borders of the edge contour.

9.2.2 Recovering Consecutive Missing Edge Elements

Some missing edge clements are not interpolated well, especially when they oceur in
four or more consecutive spatial positions. A possible technique Lo overcome Lhis is Lo in-
troduce multiple over-lapping windows. This would require more functional processes for

characterizing the edge contours along more pixel locations for Lhe edge contours,
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9.2.3 Detecting More Complex Edge Patterns

Mare complex edge patterns could be considered and more functional processes for char-
acterizing these edge contours could be generated to enhance the capability of the hicrarchical

neural network system.

9.24 Improving on the Speed of Learning

Kven though the nets can learn very fast with the improved learning algorithm devel-
oped in this thesis, the speed of learning can still be improved upon. One possible means
of inereasing the learning speed is to modify the momentum term to be adaptive during the
learning process. Another possible way of increasing the learning speed is to modify the
learning ra' . to be adaptive during the learning process. An adapted momentum term and

an adapted learning rate could bring faster convergence.

9.2.5 Improving on the Ability to Further Eliminate Spurious and Noisy Edges

Some spurious and noisy edges are still present after processing by the neural net, cspecially
when neighbouring false edge elements have the same orientation. A possible technique to

remove these spurious and noisy edges is to incorporate local information from neighbour-

ing adjacent windows, by utilizing more local information from surrounding windows and

simultancously with global information, spurious and noisy edges can be climinated.
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Figure. A2 Edge image - before processing by neural network system

Figure. A3 Improved edge image - after processing by neural network system
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Figure. A3 Improved edge image - after processing by neural network system
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Figure. A2 Edge image - before processing by neural network system

Figure. A3 lmproved edge image - after processing by neural network system



(IR

gt

Figure. Al Degeaded aud noise corrupted original image
. R R

A 8

E ERE T T

Figure. A2 Edge image - before processing by neural network system

WROPPRF

f fm'w:.a‘f‘w

Figure. A3 Improved cdge image - after procassing by newal netwurk systen



~

Fignre. A3 lmproved edge image - after processing by neural network system



16
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Figure. A2 Edge image - before processing by neural network system

Figure. A3 lmproved edge image - after processing by neural network system
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