

.+1 NationafLibril/Y
ofGana,ja

Bii)liolheQuenahona!cdo """""
Acquisi tions and Direction des aCQuis~ions at
Bibliogr aphic sevcee Branch des services bibliOg:ap hiQucs

JIl5~s.-. 39S. ""'~

~0"CatIll ~QrI.ylgI

NOTICE AVIS

The quality of this microfo rm Is
heavily dependent upon th e
quality of the orig inal thesis
subm itted for microfi lming.
Every effort has been made to
ensu re the high est qu ality of
repro duction possibl e.

If p ages are missing, conta ct the
university which grant ed th e
de g ree .

Som e page s may have indistinct
print especiall y if the original
pages were typed with a poo r
typewrite r ribbon or if the
university sent us an Inferior
photocopy.

Reproduction in full or In part of
this microform is governed by
Ihe Cana dia n Copyright Ael,
R.S.C. 1970, e. C-30, and
subs equent amendm ents .

Canada

La qualite de cette micro forme
d epend grandame"t de 1aqu alite
de la these sou mise au
mi cro fllm age. Nous avons tout
fait pour ass urer une quallte
super leu re de reproductio n.

S'i1 manque des page s, veuillez
commuoi quer avec j'unlv erslte
qui a confere le grad e.

La qu ente d 'impression de
certaine s pag es peut lai sser it
desirer, surtout si les pages
orig inales ont ete
dactyloqraphlees iii I'aide d'un
ruban use ou sll'univerelte nous
a fail parvenir un e ph olo copie de
quallt e lnterieure.

La reproduction, meme par tielle,
de cette microform e est soumise
a la Lo i can adienne sur Ie dro it
d' auteur, SRC 1970, c. C~30, et
ses amendements subsequents .

FORMAL SOFTWA RE DEVELOPMENT USI NG Z AND THE

REFINEMEN T CALCULUS

BY

© Dennis J u-Xieng Wee

A t hesis submitt ed to t he School of Graduat e

Studies in part ial fulfillment of th e

requ irements for the degree of

Master of Science

Depa rtment of Compu ter Science

Memorial Univers ity of Newfoundland

J uly 1993

St . J ohn's Newfound land

Ab stract

This thesis is a stud ,. of a Cormal se rtwaee development pro.~CllS tha l June n

formal speeifleatle n langu:l.~e called Z (421and t he Cor lnol dt"vdoplllf'ot lIIelhml

called the IT};"'''' ''I I ('"lrl/" .~ (31). T he softwa re dcveloJllllcnt process is .livid.'!:1

into five stages; forma l specification in Z, dat a refinement , translntion into lilt'

refinement calculus, c pcratic n refinement, and tr nn811\li on into the la rgd IlrQ.

gra mmi ng language (251. In thi s t hesis , many of the importa nt result s Cor under ­

sta nding and using t his process me collected t ogether und num erous cxnlllpl,,-s

are given to illustra te t heir use . T broug h a case study of the l 'fI'~'!I/lI}J" 1',1'/'/' /II

[5, 31]. we show how formality may be a.pprop rialely cmp loyed to manage 1I11:

algorithmic complexi ty in a development , and indicate directions on IlIlw peerh-.

fined programm ing langu age and library routi nt!Smay be introduced into a formal

development. Th e l hellis concludes wit h some suggestion s fat fur ther rcscar~h .

Acknow led gm en ts

1 would like to than k Helmu t Rot h a nd lie Xu for t heir companionship during

these two yean of sharins an office. It must have been hard for th em to put up

wit h my quirks and idioliym:ra sies.

I would also like to th ank Robert Ma chin for proofreadi nsa d raft of this t hesis,

and J ohn Rochester and Patrick Mart in for helping wit h some of t he typesett ing.

I would like 10 acknowledge Dr. Tony Middleton, the Depar tm ent of Compu ter

Science, and the School of Gradua te St udies for providing the financial su pport

during the course of my M.Sc. degree.

Most sincere thlLnks to Todd Wa.rehll.mfor his many useful suggestions, crit­

icislOs, and comments . Hili willingness to read this th esis at a very shod notice

is grea tly apprecia ted .

I am also grateful to the techni cal an d &dminist rati ve Itall' at th e Depar t ment

of Co mpute r Science for crea ting and maintainin&a cond ucive environme nt for

learn ing. In particular, t he Chair of Compu ter Science, Dr. Paul Gillard , hu

helped and encouraged me in more ways than I can remember .

I am most grateful to my th esis supervisor, Dr. Tony Middlet on , for int roduc­

ing me to t he world of formal specifica tion. I cherish his pat ience, underst an ding,

sound advice, end humor. His great ness is apparent from his a bility to pu t up

with Illyobsrinecy,

L;u;t but not least , I must thank roy favorit e mu. icians: AUred Brendel, Zino

iii

Francescet ti, Murizio Pollini, Pa~cal Roge. Andra. Schiff, Rudolf Scrkin. nllli

Tl\mu \I&sary, for contributing to Illy menta l stability. Bill pcrhap~ mOllt of nil .

I a m indebted to the lat e Claudio Arrau (or his pillni_tic Il"!tact ; if it wert" not

for his Beet hoven, Chopin . Debussy. Mozar t, Liast , and Schumann , I 'm uM not

have been able to retain my u .nity during the lad month of thcsi~ writ in".

Cont ent s

Ab~tract .

Acknowl~dgmenh ,

Contenta . ,

List ClfTablL'S

Lid of Figures ,

] Int rod uct ion

1.1 Formal Methods in Software Development

1.1.1 Form a.l Specification .

1.1.2 Formal Development .

1.1.3 Verification versus Validation

1.2 A Form al Devdopment Pr ocess

1.2.1 Formal Specificat ion in Z .

1.2.2 Data Refinement

1.2.3 Tra nsln.t ion into the Refinem ent Calculus • .

1.2.4 Operation Refinement .. •.

iii

xiii

xiv

1.2.5 Tran slat ion into the Target Pr ogramming Lallg1Ia~l' .

1.3 An Application

1.4 Summary

2 Formal Specification in Z

2.1 Schemas .

2.2 Sta.tes

2.3.2 Showing Existence of Initial St atCli

2.4 Operat ions

2.4.1 The.6. and :=: Conventions .

2.2.1 Sets , Types and Ba.sic Types .

2.2.2 Axiomati c Description s .

2.2 .3 Modeling States

2.3 Init ial Stat es .

2.3.1 Schema. Reference .

II I

11

11

12

J:t

I :t

11

Iii

2.4.2 Specifying Operat ions

2.5 Preconditions

2.5.1 Calculating Precondition s

2.5.2 Simplifying Pr econditions

2.6 Pr oving Proper ties of Systems .

2.7 Errors ..

2.7.1 Reporting Errors

'f,
1.

10

20

22

21

25

2.7.2 Schema Calculus

2.7.3 Building Stronger Specification s .

2.8 Summary and Bibliographic-at Notes .

2.8.1 Som e Uses of Z .

:1 Ollt.n Refinement

3.1 From Specifications t o Designs . .

26

27

29

29

32

32

::1.1 .1 Abstract Sp ecifleatl on s . 33

3.1.2 Concrete Desigrll . 35

3.1.3 Retrieve Relati ons 37

3.1.1 Proof Obligations . 38

3.1.5 Pr oof Obligations (or Functi onal Retrieve Relation 44

3.1.6 Pr oving Retriev e Relations to be Functional 45

3.2 Cnse Stud y

3.2.1 ConcrdeStatcs .

3.2.2 Retri eve Rela t ion .

3.2.3 Ini t ial Concrete States

3.2.4 Proof Obligation (or Initial State

3.2.5 Con crete Operations

46

46

47

47

48

. 48

3.2.6 Proof Obligations (or Concrete Operations . .

3.3 Summary and Bibliograp hical Notes .

vii

'1

4 Translation into the Refinement. Calculus r.i

4.1 T he Notation of the Refinement Calc ulus . !ill.

4.1.1 Specificat ion Statements r,ll

4.1.2 Assignments a\1

4.1.3 Alterna tions . . en

4.1.4 Iteration s 61

4.1.5 Sequentia l Compos itions 61

4.1.6 Local Blocks, Variables. Invari ants , and Procedur es 62

4.2 Using t he Refinement Calcu lus. fir,

4.2.1 Abstract Programs . . . fif,

4.2.2 Executable Programs . 66

4.2.3 A Liberal View of Programs li(l

4.2.4 Refinemen t 67

4.2 .5 Some Simple Laws 69

4.3 Compa ring the Notations of Z and the Refinement Calculus 71

4.3.1 Stalr'll 71

4.3.2 O perat ions. 72

4.3.3 Before- and After-Stale Variables 74

4.3.4 Renaming Versus Subst itutio n. 75

4.4 Rules for Change of Nota tion 76

4.4.1 Basic Rules . .. 76

viii

01.4.2 Specification s to Ab~tract Programs .

01.4.3 Simplifying Speci fication Stat emen ts

4.4.01 Some Derived Rules

4.5 Case Study

4.5.1 States and Operations

4.5.2 Main P rogra m .

4.6 Summary and Bibliographical Notes.

77

80

81

88

88

88

94

5.2.7 It eration

5.3.1 P roced ures .

5.2.5 Sequential Composition

5.3 Case Stu dy • .. .

98

98

97

99

99

100

101

102

104

l OS

107

110

114

114

Procedure .

Logical Consta nt

Alternation

5.2 .4

5.2.8

5.2.6

5.2.2 Local Block .. , .

5.2.3 Skip . .

5.1 Feasibility .• . .

5.1 .1 Pathologica l Spec ifications

1:'.2 Some Basic Laws

5.2 .1 Assignment

ti O pe r nt lcn Ra ftnemeu t

5.3.2 Main Prog ram .

5.4 Su mmary and Bibliographical Notes .

6 Cas e Study: The Pa r-agr-aph Problem

6.1 Even Pa ragra phs

6.2 Abshr.ct Specification

6.2.1 State Space and Initi al States

6.2 .2 Operati ons .

6.3 Concrete Design ..

6.4 Ret rieve Rela tion and Proof Obligations

6.4.1 Correct ness Proof for JI',·jk/'WYIIJI1I/ I/,(:

6.5 Using Pr edefined Pascal Rout ines .

6.6 Operat ion Refinement

I lfi

120

125

1211

12(j

136

I ~ (}

1~4

6.6.1

6.6.2

6.6 .3

6.6.4

Comput ing Minimum Waste Array

Writin g a Line .

Writin g an Even Para graph

Comp uting an Even Para grap h

111

14!J

14\)

1M

6.7 Summary

7 C oncl ud ing Remark s

7.1 Directions for Further Research

7.1.1 System Development Tool Support

1M

] 50

IS7

157

7.1.2 Libraries of Specification s and Refinemen ts for Da ta Struc-

lllres . 158

7.1.3 Calculat ing Data Refinement 159

7.lA Translati on Rules for Oth er Z Constructs . 159

7.1.5 Data Refinement in t he Refinement Calcu lus . 160

7.1.6 Operat ion Refinement for Dynami c Data Stru ctures . 161

A A Glo ssary of Z N otat. lo n

A.l Logic .

A.2 Sels

A.3 Relations.

AA Funct ions

A.S Seque nces .

167

167

167

168

168

169

B Some Defin itions , Abbreviatio ns , and Laws of the R efinement

Ca lculus

8 .1 Definition s .

B.1.1 Feasibi lity .

B.2 Abbreviations ..

B.3 Laws.

B.3.1

B.3.2

B.3.3

Assumption and Coercion

Pre- and Postcondi tion ..

Frame

170

170

170

. 170

171

171

173

173

8 .3.4 Local Block

8 .3.5 Logical Con.tallt

174

'"
8 .3.6 Assignment

8. 3.7 Alterna tion

8 .3.8 Ite ration ..

175

176

8 .3.9 Seq uential Compositio n 117

8. 3.10 Procedure . . . 177

8. 3.11 Invariant . 179

8 .3.12 Skip 179

C A P asca l P ro gr a m that Com putes Even Par ilgr allh s Iso

xii

Li st of Tables

2.1 The preconditions of PIl .~lt Ok , Pop Ok , and TopOk . 22

2.2 The preconditions of ,S'!arkfo"lIl1, S/nckBIU/Jly , Pop, Pll.~h , and 'f op. 29

3.1 Th e p recondit ions of th e operat ions Enter, Filld},fIlX, Ellie/-C , and

Hild A/ruG. 41

3.2 Th e preconditions of the concrete operations of the st ack. .. , . 51

4.1 Abbreviations for t he state, input and out put variab les of Exam-

pie 3.2.• 78

1.2 Abbreviations for the state, input and output variables of the stack. 88

4.3 The pr econdi tions of PII.~h Colllma 'l d, PopCQmmrllld , and TopCommand. 92

G.l Abbreviations for th e stat e variables of oper ations l~eadlnJj ld: and

142

xiii

Li s t of Figures

1.1 Stages of software developm ent using Z and the n -jil/l'/IIr nl f·fdl"ld l'.~. .j

4.1 The skeleton of a sa mple program. "
4.2 Nested blocks. ea

4.3 An a bstr act program. 65

4.4 An executab le p rogram. ue

4.S An abst ract p rogram contai ning both specification state me nts and

executable const ructs . "
4.• An ab st ract program tran slated from th e concrete desig n of Ex-

ample 3.2. 79

4.7 An abstr act program translated from the concrete design of the

stack.. . 89

5.1 An abst ract program of the stack with refined procedures. 115

5.2 An abstract program tr anslated from the schema 1/tIIlI IO r/l pl/I.. li B

5.3 Code calculated from the abstract program of the stack. 121

6.1 A simple paragr aph.

6.2 All even parag raph.

124

. •. • . . . • 124

6.3 A possible refine ment of the pro cedure COIn/Hll eMill Wnsle Jil·my . . 150

6.4 A possible refinement of the pro cedure WrilcLill(;.

6.5 Code from the refinement of procedure W,.i1eEvell.

6.6 A refinement o f procedu re I l' l'il cPruYlgmJlbC t hat uses pr ocedures

COlllfJUlrMill lVIlRleArm y and Wril rEu,;Il ..

151

153

154

Chapter 1

Introduction

fb i'll/a! md/lCll.~ in softwa.re development ar e mathetunticaltechuiques which may

b e used to specify, de velop and verify softwar e Iy ~tem~ in Il. sys tcnnu ic n nd orga ­

nized fashion. The mathem atical basi s of a formal method is, in principle, given

by a !OI'/I1f11 '~JH:cjfica l-io ll !rlllylll lyr, wit h a well-defined syntax nnd sema ntics.

1.1 Formal Methods in Software De velo pment

So me of th e advantag es of using for mal met hods in software develop ment a n:

given below.

1.1.1 Forma l Sp eci fication

A formal method is commo nly used to specify software systems. ItJ bas is languag e

is used as a notat ion to write formal specifica tions. Si nce the notatio n is precise ,

th e resultin g form al descripti on is clear and unambiguous.

There are several advantag es to using formal rather than informa l languages

to specify soflware. With an inform al specification, thorough reasonin g is oft en

har d or im possible; a formal specific ation, on the ot her hand , may b e subjected

to rigorou s mathematical a nalysis which eas ily exp oses am bigl/iJies and mcom­

pld l:l /f s.... Since a formal specificati on is esse ntially a mat he matical t heory, its

rO lls i..lntC/}can also be checked. An inconsist ent specification is undes ira blesince

it contains contradicting fa cts [44] and a program based on it cannot b e realized.

T he mathematic a l nature of a formal specification also leis t h e specifier formally

p rove im portant pro pert ies of the sy stem to t he custo mer, t he reby en suring that

t h e specifier has a good ap proxim a t ion of th e custo mer's requirements for t he

sys tem.

1.1.2 Formal Dev el opment

A program may be mathem atically derived from the program's forma l specifica­

t ion. A program derived in t!lis ma n ner is g uaranteed to sat is fy its de scriptio n .

One su ch development m ethod cal led ,'Cjinc/IIcll t involves de velopin g programs

in smnll step s. A st ep may consist of defining a module as a collection of modules

a t a lowe r level, or choosing a representation for Il data type that is more efficie nt

o r more easily constructable in the target pr ogramming langu age, St a r ting from

a specification, each refinemen t ste p yields another specifica tion th a.t contains

more impleme ntation details. T his latter specification m ust in t ur n be shown 10

sd isfy the forme r in o rder to ensure cor re ceneee. Such proof of s fl.t i~rllclio n cncu

generates proof obliga t ions which can be precise ly stilted ami diachetgcd within

the fram ework of a formal met hod 144].

1.1.3 Verification ver -sus Valldat lo n

Follow ing Wing [4.4] a nd Hayes and Jones [17), Il. "r";ji'·/llitJIIis 1\ rOTllIl\. \ pwo[

that an implementatio n satisfies its specification , while 1\ 1!lI/iJtlliotl is 1\11info rmal

check of correctness , e .g., testin g. When a program is not formall y developed, it

may be desirab le to ver ify its co rrectness . Only when the spe cification isexpressed

mathematically can a formal proof be ca rried out ; withou t such a specification,

only validation is possible [44, 171.

An in-dep th discussi on of the merits offormalm ethods is 1I0t a.n object iveuf

this thesis; the interes ted reade r is referred to [15,26 , 44). From here on wards,

weconcern ourselves with a software devel opment process that rel ies 0 11 formal

methods 125].

1.2 A Formal Development Process

A software de velopmen t process that use s the formal sp ecification language Z,

and t he formal development m e th od ca lled the n:jillcmcrd rl1lcl!l1t.~, il dceceihcd

in [25 , 451. T his process (see F igure 1.1) may b e viewed as having five stagt'll:

1Formll.l s p ecfjlcation in Z

Ab st ract Sp ecification

1Data re fin erneat

Contrel l! Design

!Tlanslation into
t he refine m eat eele ul ue

Abstract P rogram

1Opct &tion refinemen t

Code (Guarded Comma n d.)

!n ao. la t ion into t he IllJgd
pr oglll,mming langu age

Co de (Pascal, C, ...)

Figure 1.1: Stages of software de velopment using Z and t he rtjin c71lcrll cal cniue.

formal specifica tion in Z, data refinement , translat ion into the refi nement calcu-

Ius, operation refinement , and t ra nslation into th e target programming lang uage,

Allove rview of these stages is gi ven next .

1.2.1 Formal Specification in Z

The Z notation [42)is u sed to for mally specify t h e proposed system. The forma l

specificat ion obtained is celled an absf racl specifi cafion as it contains abstract

mathe matical m odels of data t.yp es and cperat ione .. Alt hough th ese models are

typical ly difficult to construct u sing the primiti ve data type.! of the targe t pro-

gramrnin j language, they are well suited Cor describ ing and reasoning about the

propert ies of the system.

In Chapter 2, a brief account oCthe Z specification language and a convention

for specifying sof tware systems is given. Thi s exposition is illustrated by n cnse

study in which some operat ions of the abs tract data type ..'!f/l'~' are specified.

1.2.2 Data Refin em ent

Deta , y;jiIlCIIlCII / is the process of transforming an abstract specification into II

specificat ion of t he system which contai ns da ta types t hat are eit her available

or easily const ructe d in t he target programming language. TIle product of t his

refinement is called a COlluc/e dcxiYII since it uses dat a. types tl lllt may be di ­

rectly realized in t he ta rget programming language. An import ant ta sk here is to

formulat e a vc tricec ,.cfa/inll to rela te the abs tract specification nnd t he concrete

design. Pr ooCobligations which use this relatio n may be discharged to show t hat

t his conc rete design satisfies the abst ract ..pcciflcet ion.

The process of produ cing a concrete design {rom an abstract specification is

the subje ct of Chapter 3. Th e pur pose of data refinement is illust rated th rough

several examples and t he case study of the stack started in Chap ter 2.

1.2 .3 Translation into the Refinement Ca lcu lus

The concre te design is then translated into th e notation oft he refinement ca/cullLS

[311to ob tain an a/HI/mel I,ro.r/mlll . While th e Z notation is more suitable for the

purpose of specificat ion, the refinement calculus is more appropriate for program

developmen t .

The necessity of and stra tegies for tran slation are discussed in Chapter 4 .

Rules are formulat ed to allow the t ransla t ion process to be performed in a

st raightforwa rd manner, These rules indicat e how the common structures in

n. Z specifica tion may be tra nsformed into the refinemen t calculus.

1.2.4 Operation Reflnemer-t

Code written in a language based on Dijkstr a 's gllfl nl cd commands [13J is calcu­

lated from the design by performing refineme nt steps . These steps are carried

out accord ing to the laws of the refinement calculus , which guarantee that th e

derived code satisfies its specification.

SOllie elementary laws of tile refinement calculus are given in Chapter 5. Ex­

amples including the stack case study are pres ented to illustrate their use,

1.2.5 Translation into t he Target Program ming Languago

Since the sta ges of dala and operat ion refinement take into considerat ion the

characteristics of t he target programming language, t he resultin g code is reason -

ably close 10 allow II. sim ple and intuitive conversio n into t he tlltgct progra mming

language, Hen ce, the code from the previous step may be easily t rall81aled into

an impe rative programming lan guage like C or Pascal .

Due to its la nguage specificity and relative ease, II. review of t his stnge is not

given. Howeve r , in Chapter 6, the tr anslation of some guarded commands into

Pascal may be observed .

1.3 An Application

In Chapte r 6, t he form al software development process described here is used La

produce a program for computing cncn /la m,rlm/lft J<[5, at]. All nim orconst ructing

this program is to collect useful experience tha t may be employed to construct

larger and more complicated programs. Besides illus trati ng many of the concepts

that ar e conta ined in th e earlier part of this t hesi s, l ois case 5111(1y also ehows

how formality m ay be app ropriately exploited to manage the complexity of the

refinement whi ch may a rise du ring the development of a sortware system. Since

this pr ogram u ses pred efined routines, we also g ive directio ns on how th ese mllY

be int egrated into the formal development frame work.

1.4 Su m ma ry

This th esis re p orts on t he pra cti cal as pects of a softwa re developm ent pr ocess

that uses Z a nd the r e finement calculus . The ai m is to collect t ogether in one

place many of t he imp ortant th eoretical results t hat are needed to unders tand

/I rd u sc such a de velopmen t process. Each stage o f the process is documented in

a cha pter with examp les to illu strate its purpose. This t hesis co ncludes wi th a

non-t rivia l cas e study an d sugg estions for future re search .

Chapter 2

Forrnal Specifi cation in Z

Z is a formal speci fication language based on typed set theor y nnd f ret-orde r

pr edicate calculus [19, 40, 42], This chapter p resents SOUle of the fcn tll rcH of Z,

a nd how Z may be used to specify soft ware systems in the st a ndard convention

as described in [42J. Since a complet e descrip t ion of t he notat ion is no l IloHsihlc .

a glossary is included in Ap pendix A .

2 .1 Schemas

Central to Z is a lan guage construct called a .~dl r.lllli which ma y bediugmnuunt­

ically represe nted in two equivalent ways: ver tically and horizontally. A schema

na med Schell/a wri t te n vert ically is as follows.

1:;:':',;:;"----------- --

t;,::fJ~

I'. _

A schema consists of two parts: t he flu/amlin" and th e Il redicQlc. Th e decla-

rat ion is conta ined in th e part of a schema above the dividing line, which . in the

case of S('1I1'1II11 , has unri" Mu; Il l . 1!2, •••• lJ.,of IYJlr.~ TIl T~ • .., T., These va riables

arc a lso known as the cOI I/fJO /l el/lx of the schema.

Below the line are II/'fdic fl l cr PI, 1'1, Pi , which are implicitly conjuncted

(~andcd") to give the relation which must hold among t he values of the varia bles.

The predicate pn.rl of a schema may be empty, in which case, it is a box with no

dividin g line, contain ing only th e signatu re.

Th e same schema is writt en horizontally as follows.

2 .2 S t a tes

The style of Z specification used here is suitable for sequential, imperative pro-

gramming and it involves viewing a software system as an absf racl dai a type.

Simply put , an abst ract da ta type consists of a set of states , called th e sla te

10

.</UI('(, II non-empty set of ioitielstotc.•, and a numbe r of f>/lf m ' itHl .~ which trans­

form one state into anot he r [42J. In this sect ion, we show how the state space of

a system may be defined.

2.2.1 Set s , Ty pes an d Basi c Ty pes

Th e spe cification of a state space involves identifying some objects of interest

Each such object has a typ e whi ch is comp osed from sets. Z contains st an da rd

mathem ati cal sets like t he natur al numbers (Ii and t he integers Z, etc. In gene ral,

any set may be used a s a type , and com plex types like sequences and ca rte silUl

products may be const ructed from simp ler ones by using sta ndar d Z ope rators.

A pa rt icularl y useful construction in Z is that of a ~" ."if· I !I/'" which allows lL

set to be declared witho ut mentio ning what is conta ined in it . T he declara ti on

[OI3.IECTI

indicates the existence of a set of objects called OUJII'C'J', altho ugh we do not

know it s structu re or cont ent .

2.2 .2 Axio matic Descr ipt ions

Global const ant s and funct ions may be declared and defined using lu i/mwli/'

dc.<cripliolls. Th ese desc rip tion s allows the declar at ion and use of global variable s.

The scope of a global var iable extends from the p oint of declaration to t he end

of t he sp ecificati on.

11

1-",",-,-,,- ­
~

fo r exa mple, a global variabl e 1/1111 of type na tur al numb er is decla red. A con-

str aint on its value is incl uded , which restricts mnr to a value of 20.

2.2 .3 M o de ling St a t e s

The ...11I1f' ," ,/fl er.of a sys tem is th e set of allowable states . T his set may be defined

wit h a schema by decla ring .../Ilfr 1I(11·i(l blc.~ as components of t he schema and

const raining t heir values using the schema predica tes. T he conju nction of t hese

predica tes gives the syste m ill /JUl'illlll, and the values t hat may be taken up by

the variables represent the allowable states of the system . For examp le, a possible

state space of a system that maintains a rather limited version of the abst ract

dl\ta type ."' (I t:~. is

Sllll '~' _

,..Itick : seq OIJJBCT

#.../nf'k :5 mar

The schema .'ilrlf-l' models a stac k which may be used to store obj ects from the

set OIJ.JECT , It has a sta te variable $/ack which is a finite sequence (seq) of

()IU/:,(~'I', a nd its invariant requires th at the length of the stack be not more

tha n 20. In this pap er, the convention of writ ing schema names with t he first

lett er capital ized, and component names with th e fin t letter in lower case is used.

12

2.3 I n it ial States

Th e inifial sillies of a system may he docume nted by describing t he vnlues that

the state variables mud take when the system is sta rted up. A syste m typically

ha s only one such st ate, bu t there may be more . T he initia l stale of our sl ack

sys tem is given in { ll iISl ar k.

I ll ifSlfld ---== = = _
slnck': seq OBJeCT

#!<lf1f~k':5 mer

,. Iack' = ()

The eigniflcence of t he da sh (') is explained in II. la ter sect.ion. Since () is th e

empty sequence, /" jISIrlf'k requires that the stack is initially e mpty.

2 .3 .1 Schema Reference

The I l! itSt ll c~' schema may be rewritten using a mechanism cal led S,.f/f"/II/l "F,.·

CflCC which enables Z specifica tions t o be sl r uclu red in a modul ar Iaahic n. Below ,

t wo feat ures of thi s mecha nism, df'I'om/iflll and i"dll.~iIJlj, are dcacrlbed .

Systemati c Decor at ion

Wi thin t he revised version of IIIitS/III:!.: shown below, the schema name Slll,k

ap pears with a prim e ('); t his is a n operatio n on schemes called ,kf'{Jl"/l/ifJII, Es-

eentially, any decora tion that is appli ed on t he name of n sche me.is inherited hy

13

its components.

Schema Inclusion

By including Silld..' in 111ilSlflck, the variables and predicates of the former are

included in the declaration and predicate parts of the latter ; t he variables are

merged and the predicatee are conjun cted.

Using these featu res, t he schema /lliISI_tlck may be alternat ively and more

economically specified as

~
Shick'

.~I (l d·' = ()

2 .3 .2 Showing Existence of Initial States

It is meaningful to check tha t an initial state does exist, and we may do so by

first expressing it as a theorem.

3Sluck' . h ,i fS/rlck

Thi s is equivalent to proving

3 .~ I I/ ck' : seq OIJJECT • #.~Iflck' :::;ma .• A slack' =()

which is trivially true when slack' is an empty sequence.

14

2.4 Operations

An ope ra tion is modeled as a 81 11lr rlw " ,qr by declaring IL sche ma conta ining

before- and aflcl' •.~lalr v(ll'iablr.~. which ind icate 't he states of the system b efore

and aft er the op eration has ta ken place. By conventio n, the before-variable s nrc

unprimed while the afte r-variab les are prim ed ('), and th e slate change o f lUI

opera t ion is specified by describing the relationship between these variables .

2 .4.1 T he .6.and E Conventions

Before specifying any ope ratio n, it is convenient to write schemes lh lLlsuggest

a possi b le change and n o change in the state of t he syste m. Dy conve ntio n, tile

names of these schemes st art -ti t h t:J. and E respectively.

[" SIOOk
Slack
Slack'

Th e schema 6 .$lack suggests a change of the stoc k since t he schema docs not

contai n any pr edi cat e to const rain the val ues of t he sta te '..ariable s.

'E.Slnck

~
$'OOk
Stack'

sIack'=sta_,k_' _

T he schema 'E.Slack ind icates a no change durin g the ope ra tion since the schema

contai ns a predi cat e th at requires t he af ter-value of the stack be the same all its

15

before-value. These schemes a re useful as short-hands for specifying opera tions

on the stack .

2.4 .2 Specifying Operations

Using 6 Sl llf :1.: and 3.Sl m:l.:, the flush , l lOP, and ' 011 operations of th e stack may

/l OW he succinctly specified.

Push ing nil Element Ollto th e Sta ck

The eymbol C is the operator for sequence concate nation, and (object?) is the

sequen ce containing only objrd?

f " I .~II ()J.: _

liStrlck
obj.-rf?:OIJ.JEC'I'

#.~tal'J.: < II/II.!

,~I ,II'/.:' = ,~lllrk'" (objrd ?)

Th e schema 1'111'11 01.:describes the opera tion of pushing objed? onto a stack.

The va riables in /'1I,~h()1.: consist of the before- and after -variable s which are

included with li.Strll'k, and an input variabl e objccl1 which, by convention , ends

with a question mark.

It is oflen recommen ded that the speci fication of an operation document ex-

plicitly the plH'ollllifioll, which st ates the condition under which the operation

IIIlLy be used. Typically, the pre condition appears as th e first pr edicat e in the

16

schema. For I' rll<1101', t his requires tha t th e stack contains less thn n mu.r cle-

ments , i .e., the stack must nor be full.

The act ual push operation is described as the afte r-st ack being tile sntue ll~

t he before-stack with the input objrd? concatenated to its end.

Popping an Elemen t off t he S t ack

~~;'~~.-----------_._----

s/tlc k t 0
sltl ck' = I/'QIII sl llck

The Z specification lan guage incl udes a IIIrlllH'lIwfinl! I"nlhl which is n (··llt"C-

tion of pr edefined math em atical typ es and primiti ves tha t allows lIpcc ificntio ns

t o he bu ilt in a compact way. For sequences, the toolki t conta ins n function 11\"'" '

that ta kes a non-empty sequence and returns the same sequence wit h the last

element removed. Using /1"0111 , popp ing an clement oITt he stack is described as

taki ng away its IMl element .

17

Inquir in g th e To p Element of t he Stack

'I't'] IOi.' _

2.Sl tlr k
nbjcr:f! : OfJJeCT

.~l /lr.i.' 'I:0
tlfJj rr/ l =/al</ fll ack

T he schema TopOl.:describes th e operation of reporting the value of the top

element in a non-empty stac k. The requirement that th e sta ck not he changed is

sta ted by including as /ucl.:. The operatio n is specified using the fast operato r ,

which lakes a non-empt y sequence a nd retu rns the value of t he last element of

the sequence. This value is recorded in t he output variable objecl! which, by

convention, ends with an exclamat ion mark .

2.5 Preconditions

T he precondi tion of an operat ion must be properly documented since it states

exactly when an opera.tion should be used. When an operat ion is invoked under

it:; preconditi on, the specification requires tha t it terminat es in a st ate that sat-

isftee the predicates writt en in the schema; ot herwise, it does not say what is to

ha ppen, i.e., the operation's result is unpred ictable.

The precondition of an operation describ es all t hose before-states from which

nn after-state is gunranteed. Often, an imple mentati on of a n operat ion assume s

18

that its precondi tion holds on t he before- stales, which Illcan5 th at t he result ing

program may be used appropriately only under the circum stan ces depicted in

the precondition . This stresses the imp ortan ce of corre ct ly docurnent jng the

precondition [461.

2.5 .1 Calculat in g Preconditions

In Z, th e precondition of an operation 0 /1is denoted pre 0 f" and is calcllln.tcll l,y

IIirlilig t he afte r-stat e and output varia bles. Thi s is accomplished by exidentinlly

quanti fying th ese variabl es in t he predicat e part of OJ!. As an iIlnslmlioll, thc

precondit ion of the oper ation OJ! is calc ulated below.

FF
s
""v: V

ino _

0"

~
"s;;,;
x? : X
y! : y

Prcd _

Assuming t hat Sinl e is th e stale schema of t he system, pre 0/1 is the schema

obtain ed by existentially quanti fying t he after- and output variables ,,' lind ,IJ !.

19

Wh en me ntioning t he precondition of an operation, we commonly refer to th e

predicate in the precondition schema of the ope ration. In the case of Op, this is

3 Slfl lc ' j y!: Y . P1'cll

which is equivalent to

3v ': Vi U!: Y I i/ltl' . PI'"rI

where i/lll' is th e sta le invaria nt with all t he sta te variabl es primed ".

2.5 .2 Simplifying Preconditions

Precondit ions calculated in th is wayoften contai n ext raneous detail s which may

be easily eliminated , Woodcock suggests two strategies for simplifying these

predi cat es {461.

Th e On e- P oint Rule

The first tactic uses t he so-called one-point ndc which states th at the definition

of a variable may be substit ut ed for the variable itself, In symbols, this may be

exp ressed as

wit h the condi tion t hat .r is not free in term,

INote thal til e lise of th e dlLSh (') ror i"v b notstn ndnrd.

20

For simplifying precondi tions, this rule is often used when en OUtPl1t or afte r-

va riable has an equality const raining its value. T his value may be eystemnticnlly

substituted (or all its occurrenc es and its quan tificat ion is then dro pped.

Ahe Conditional-Rewrite R ule

The second tact ic is summarized in the following " lI llIlilioll ll/ - 'l ' ll'l'i /I' 1'1111 ,.

IrA Q) .. I'

Th is rule says that, for predicat es P and q, if I' :=? q is !.rue, 1I1cII J' II q may

be rewritten as P.

Simp lifling th e Precond it ion of "oeO!.:

'I'he precon dition of PopOI.:is calculated and simplified using Ul(~ one-point and

conditional-rewrit e rules as shown below. By definit.ion, pre I' II//O!.: is

3slflCk': seq OB./EC1' II

.q/fl/:k' :5 WflJ: II .~/fI('!.: i= 0 II .,I IIf·to' = jlYml ., I//r-/.:.

Since sinck is free, it may be moved outsid e the quanti fication , and we have

.;::. (3 s/nck' : seq OIJJEUT •
sl flck'=!mll/.., /m·k II # J</flI'k' S IIIfU) II ,,/1lf·k 'I ().

Using the one-point rule, ,~I(l c!.: ' may be subst ituted with its definit ion of/111111 .~ I IIf :k ,

and we have

21

Table 2.1: The preconditions of Pll.~h Ok , PopOk, and TopOk.

¢} #([mllf Rinck)::: m/lr A "'Inck i: O.

From th e system invariant , we know that #$/nck ::: maXi therefore, it is easily

proved. UlI!. t .~/fl f'k i- 0 =>#UIUIII. slnek)::: I/IfU . Using th is in conj unction with

t he conditiona l-rewrite rule, the predicate #(fmllt .<l/lck) $ maz A sIne/,: i: ()

may be simplified as .~Ir/{·k i- (),a nd the final st ep of our proof is

¢} i<lark i- {}.

Similarly, t he preconditions for PI1 .~ " Ok a nd TopOk are calculat ed and they

are collected in Table 2.1.

2.6 Proving Properties of Systems

All mentioned in t he previous chapte r, a formal specification may be used to

prove important pr operties of the system. In t his section, we describe how t he

last-in-first-out property of the st ack may be shown . This uses the sequentia l

composit ion operator; which is described next .

22

Sequential Co mposit ion

Th e sequential composit ion of two operation schemes, (ji l l and 01111 IILay be

un derstood as a schema des cribing th e opera tion of per forming first Of/l and

then 0p2. The schema. 0 /11 ; DpJ is obtained by "combining" O}II and O"'ll where

the after-variables of 0 PI and t he before-variables o f (}IIJ nrc both Cq ll ll.te tl with

some intermediate state variables. If SIII II' is the schema describing the sysLem

sta te , OPI ; O l'l is defined as

3Slfll c" .
(3SI /llc' . [Opl; SIIlII'" 1OS/oil" = (JS/II"''']) 1\

(3 SI /lf c . [OfJJ' SIIII I''' 1OSIIIII' = 1' :"/" , .,,,])

where OSIIlic may be t hought of as the tuple formed from t he sl ate variahl(~s ['121.

Sh owing t he Last-In-Fi rst-O ut Proper ty of t he Stn ck

Th e last-in-first-out propert y of the stac k may be shown by proving t hat the stnd

is restored to its original conte nt in a sequence of l 'I/.~1dJk and J'III,Ok opera tions,

provided tha t the sta ck is not full to begin with . In symbols, thi s ill

VShlCk ,SI /ld e' 1#.~{IU:J..· < 1l1a J' .

P!l.~hOk ; PO/10k =>1</1/1'1: = .~l lIrk'.

Assumin g th e invariants in .<il'll,k and 81111'1.:' , an d t he condition I/-.,'lfu"; <

"' fiX , the proof may proceed with stating

PII••hOI.:; PO,nOI.:

23

which, by definition, is equivalent to

{:} 3,"'1,1/"":" _
(3Slar:k' _ [P 'IfIOk j 8/(I(; /':" I ,'(Uf'/.;'= .~la,:k"J) A

(3Slfll:~· • IPUHhOkj S/ud·1I I slad =.,tuck"]).

Aflcr mult iple applications of the one-poi nt and conditional-r ewrite rule , we arrive

. t

which mny he simplified as

since , by hypoth esis, $la ,·I,· i- 0 is tr ue.

2.7 Errors

Th e schemes I 'rt.,/,m·, flopO~', and TopOk describe only successful operations.

For insta nce, for I'II.,/,O k, t he specification says what happ ens when t he stack is

not full, but it does not ind icate what th e program should do if it is full. In this

sense, the operat ions are il/cOIllII/e/c.

Sometimes, it is desira ble and possible to specify operat ions 50 t hat they

rue more applicable, end t his often requires the specificat ion to in clude what

should happen when an oper atio n is invoked under condi tions for which it is not

intended. Typically, this is achieved by making the operation do some sort of

I'rm ,. /t ll ll d lill ! / .

24

2. 7.1 Reporting Errors

The operat ions of t he st ack ca n be modified so that the stnt U$of the execution

of each operat ion is reported in a variab le 1'f.~ II /I !. 'Three types of messages arc

used: (l~' to signify a successful ope ration, l'//ljlly and f,,1/ to repur t emp ty and

full sta ck respectively.

Free Type Definit ion s

A [rcc type dcfillitiQ/I allows Z to define a set wit h certai n obj ect s. This is \' ~ry

useful for defining a type and its elements. For example, wc tuny dcflne t he se t

REPOR7' consist ing of three elements fI~" rl lIl"!J, a nd flill with th e following Ircc

type definit ion .

RBPOIlT ::= ok I r:mp/y It-u.

Reportin g a Successful Operatio n

Th e set IlEPOfl7' may now be II Sed in the sehemu Sllf'f'!'I'I' , which dcscrillCs th e

ope ration of report ing a successful operation.

SIlC('r.~s

~'=POI/T~-' - - - - - - - - - - - - - -

Report ing a Full St ack

For example, we can rep ort a full stack as follows.

25

Slw:kFitll _

zsi;«
1l:,<"l!1! : UB/' OIl T

#"~lrj/;k = /(w:r.

1T'.'1Il1t ! =/rtl l

In S/rll"kFlIll, IY',~II/1. ! is given the value / fi/fwhen the stack reaches its maximum

capacity. It further requires th at t here should be no change in th e st ack.

H.eporting an E mpty Stack

Similarly, repor ting an empty stack can be writt en as

_S IIlf' kHwply _

S,','IIIf:I..·
1"\~ II II!: IlE:POllT

.~/ (lrk = ()

2.7 .2 Sc he ma Calculus

Dne of the powerful featu res of Z that makes it appr opria te for writ ing specifica-

tions of large systems is its echr uia mlcvius which enables larger schemes to be

formed by combining smaller schemes using Ilchcma connccti ocs. In the following,

two of these connectives, A and V. are used to build a stronger specification of th e

stack operation s. Using t he II ope rato r on two schemas merges their declarations

26

and conjuncta their predicates, while the V opera tion has t he snme effect except

tha t the predicates a re disjuncted.

Schema connect ives are useful operators in thnt they allow parts of n specifica-

tio n t o be considered separately. For instance, for our st ack, the spccilicnt ions or

successful operations and error handling are considered separa tely a nd thes e IUl'

t hen combined , using schema connect ives, to form a more complete specificntion.

2.7 .3 Building Stronger Sp ecifications

Using schema definition (::::), the new schema 1'0/1 is formed, lirst by ma king a

SdlC1ll11 cmrcesion from t he conjunct ing of " (}/iOk and S I/f'/' /" ,_, which is then

disjuncted with SlackBlIl/lly ,

Th e schema Pop is made explicit below,

POI' ,- _

Sl ack
Slack '
rt.mll ! : HEPOR?,

((,'oc' " ().,
slac k' =11'0111 " lllck A
l'('Sllll!=Ok)

V

(.,'l/ llck = {) A
stric k' = 'Sluck A

l'C"ull!=cmrlly))

Th e specification says tha t when t he stac k is not empty, it is popp ed and a

27

message indicating a successful opera tion is reported, and that when t he stack is

empty, it stays the same during the ope ra tion and a message indicat ing an empty

stack is reported. Similar schemes for t he push and pop operations are defined

l ' u.4. == (I '11I,1I0 k A Stlrcf.~fI) V Slack Pllll
TOil e ('trIIIOk A SIl.:r;cs.~) V Slack Em"ly

Precondit ion s Re vi sited

It would be convenient if t he preconditic.r of the larger schemas could be eeleu-

lated from the preconditions of th e small er ones from which it is bu ilt . In t his

sect ion, we give a few suggestio ns on how this may be done.

Since t he existentia l quant ification distributes through disjun ction , th e pre-

condit ion operator distributes thr ough disjunction as well. Hence, the following

equivalence is true.

The situation is not so simp le in the case of conjunction since the existe ntial

quan tificutiou does not generally dist ribu t e th rough conjunct ion. However, ifthe

predicates in 0 /1, and OP1are P, and Pl , and the variables conta ined in PI are

disjoint from those in P2, a simila r equivalence may be established.

28

Operati on
S locH'ull
Sl llr~' /~'/IIp 'U

POll

I'll.'"
Top

~~,~~~.}~
.4f1I'k = O
11'111

//'I/I

trur

Table 2.2: Th e preconditions of .'iIIUk" 'U", Slm-kHII'I'l y, I 'nll, I 'll .•h, a mi 'li 'I ' .

Using these result s, t he preconditi ons for the remaining operatio ns arc cnlcn-

luted and recorded in Tabl e 2.2. Not e that the preconditio ns of 1'''/'' l ' II.,h , ami

T01) are all [I'IIC , implying that t hey may be invoked in any stat e in the stale

space of t he system; such operations arc known as /01111operation s.

2.8 Summa ry and Bibliogra phical Note s

In this chapt er. we have attempted to give a practi cal guide to the Z spcciflcntiou

language. In particu lar , we have presented a convention of epeciflcatic n which

views a system as an abst ract data type . Useful informat ion on provin g system

propertie s, calculating preconditions, and error-handling is also given.

2.8 .1 Some U ses of Z

In recent years, there have been nume rous report s of the successful usc of Z [8, 1:q.

In the following, we highlight some of t hese recent efforts .

29

Specifying New Syst ems

Z has been used to describe the development of both software and hardware

systems [3, 11, 12]. In [6], Z is used not only to design network services, it is

also used to produce the documentati on. Bowen indicated tha t the use of formal

methods can lead.to a simpler design and more thorough documenta ti on [6].

~ifying Existi ng Systems

By the specification of existing syste ms, Z has also been useful in revealing incon­

sistency and incomplet eness. In the post-hoc specification of a real-t ime kernel,

Spivey discovered a design error which could have been easily avoided by using

formal techniques [41J. The specification of window syste ms by Bowen revealed

omissions an d ambiguities in the documenta tion [7,9].

The existence of a formal syntax and semantics for Z implies that it may be

amenable to machine analysis and manipulation. This suggests th at Z, or a

subset of it , in conjunct ion with an ll/!imll/ol' could be used as a pml ot ypillg tool,

Although there are some arguments against making specifications execut able (17],

there has been some effort to provide Z with an animato r \14, 23).

30

Even when a program is mat hematically calculated from a Ionun l epeeificatiou,

unless th e development steps are guarantee d to have been performed correctly,

the re is always a need to perform Ir., lilly. Hayes and Hall suggest SO IllC t echniques

for testing based on Z specifications [rs, 16). Hall also discusses t he possibility

of automatic ally generating test cases from specifications written in Z 1161.

31

Chapter 3

Data Refinement

The speci fication in Chapte r 2 models a. stack with a sequence. Although ma the­

mat ical dat a types, like sequences, are very expressive, th eir opera tors may not be

readily available in the target progra mmi ng language. Thi s chapter shows how,

using da t a refinement , data typ es that are more suitable for implementation ma.y

be introdu ced into t he specificat ion of a syste m.

3.1 From Specifications t o Des ign s

In our ap proach to software development. th e task of producing a concret e desig n

from an abstract specification is known as data I'cjillemCllt . A procedure for d ata

refining an abstract specification in Z is given in [42, 45]. Th is involves prop os­

ing concrete states and operat ions, and proving that they satisfy the abstr act

specificat ion.

3 .1.1 Abstract Specifications

Specificati ons like the one in the previous chap te r are 1111.~lnll'Illlwl'ijit ·t1li/lIl.~ since

they contai n dat a types which usually are not directly implement able. Together

with their pred efined operato rs, th ese data type s allow th e feetures of software

systems to be describe d compact ly. Furthermore, since t heir math emati cal prop-

erties are well-known, they allow easy comp rehension of and reasoning about rho

characte ristics of systems.

Alth ough abst ract speci fications are useful in providing a good understand ing

of the syst em, they are generally not good sour ces fro m which to produce nn

implement at ion directly. This is so because th ey contain mathematical dat il.ty pes

which are inefficient , or are not easily ccns truct able in the target program ming

languag e.

Example 3 .1 Consider a system tha t is used to calcula te the ma ximum of a

set of int egers , whose stat e space and initia l sta tes may be specified as Mil./' and

/1Ii1M":l.

Mox_---:-,- _
[lIumbcrs: PZ

/JlitMax
I ;i~~;--

~-'{}=--------------

Th e set of integers maintained by the aystem is cont ained in '1II11tllr.r.~ where P

33

is the power set operato r, and P Z is the set of all sets of int egers. Operations for

entering a number and finding th e maximum are described in e uler and FimlM(/. x

respectively.

I,,'n l ,'r

~1Il1/llbl:r ?: Z

IIllIn!Jr:rH'= 1I11mbcl'J;U{1l.11111i1r,.? }

HI IIIA!n3 _

EAhu
I/uu:iuw /1l! : Z

munb cr« of:. {}

III fu i mll m ! = 1/1(/.3 llllmbers

o

The oper atio ns in Example 3.1 are described using the set operators U (set

union) and II/ (/.J (maximum numb er in a set) . Since the proper ties of sets and

their operators ar e familia r to many, the features of the system may be understood

quickly and clearly.

Although sets are very expressive, th ey are not readily available in some pro-

greuuni ng languages [e.g., C). Th e system as specifi ed above also has an ineffl-

ciency: since we are only interest ed in th e maximum of th e set , t here is no need

tu store the other numb ers. To overcome this ineffici ency, another specification

called II. design may be produced.

34

3.1.2 Concrete Des igns

Like an ab stract specification, 1\ ('fllllTflr 11"l'i!/11gives n descript ion oCt he sY5tcm;

however, it also conta ins da ta types t hat are oriented towards computer process-

ing. The state s a nd operatio ns described in a design arc concrete since they can

be rea.lized in t he t arget programming language.

In the next exa mple, we show how the concrete stales ami operat ions or a

concrete design may be proposed.

Exa mple 3.2 Assu ming that the target programming language allows Imolean

and integer variables to be declared. a concre te design fer the nbst rl~ct epcciflcu-

tion of Exa mple 3,1 is given below. The concrete sta te space and iuili ll.1 sla les of

the system are describ ed in MarC a nd luillllllrG , respectively.

BOO/JEAN ::= lme I ftl l.~I:

M",C'-,_ -=- _
I";~~NlJlllbe7' : Z
~"'IIIy : n OOfJSAN

/ lI illlfll:tC _
r ;w;;,C;---
~=-"'-'''-------------

As mentioned previ ously, th e system needs to keep t rack oConly one number,

which t he concrete version stores in the integer variabl e 1Il1uNul/l bn'. The SYII-

tern also maint ains a boolean variable .~d Bmpty to indicate whether any numbe r

35

has been input into the system. Schemes E" /tTC a.nd Pi/IdA/ru e describe the

concrete ope rations of enter ing a number and finding t he maximum.

8/1l c/-(,' _

6MtUC
/llIl11b",.? :Z

(.~ r.l811111 Iy = f/'ll C A
.~c1BllllJl yl = f(I I.~" A

IIU/:1:N ll lll bm" "" l!tllllber?)

(sd81/tIJly = [o lsc A
sdEwl/ly ' = .~r.l E:/Il IJly A

((Illlll/VCI'? > IIlll.l N'lfIlbel' A mnJ:Nll mvcr' = lIltIllVer?)
V
(,III/11I,t:I'? ::; fIIt1rNumvcl' /I I/InJ:N ltmber' = JlUI.l'NulIlbcr»))

T he concrete operat ion Blll cl{.' checks whether a new number is greate r t han th e

current maximum , If so, the new input is retai ned as t he new current maximum.

~~~:~~~rC-------------_

IlIfU ;/11 11111! : Z

Il W rilll lllll! = ;mu NlImbtT

The operation of outp utting the maximum is simply to report the stored number .

o

The incorp oration of implementation detai ls makr-s II. specification a ..-kwerd as

is apparent from com paring BII /cr and BIlIClC of Examp les 3,1 and 3.2 . The main

ad vantages gained from a data refinement are storage and algorithmic efficiency

36



and the greater ease of imp lementing the data typl'S in th e ta rget IlrOp atll1u illg

langu age.

3.1.3 Retrieve Relations

i!ll1al'i all l. is a schema whi ch formally documents the relat ionship between thc

abst ract and the concrete st ates {451, It contains both the abstract and concrete

states and further includes predicates to describe t he relati on between their :;tat t'

varia bles.

Exa mple 3. 3 A retri eve relation Mllrll for the abstract a nd concrete states IIr

Examp les 3,1 and 3.2 is given below.

T he retrieve relation says t hat the boolean variable .~dHIllf!I!J is used to iudi­

cete whether the set is empty. It also states t hat t he max imum nmnher in the

set is the value stored in concrete variab le IllIU N llmlx I' ,

Doc ument ing t he retrieve relation is impo rtant as it contains the design dcci-

siena th at are made during data refinement and t hese decisions allow the a lJlIlmcl

37



to be recovered from the concrete. Using this relat ion, we can prove that t he eon-

cret e design sa tisfies th e abst ract specification.

3.1.4 P roof O bll gatlc.i s

The proof obligat ions required to show that a concrete design correctl y imple-

mente an abstract specificat ion are given in this section . For th is, assume that

the ab str act specificat ion consists of a st ate schema Il S. an initial stat e schema

III ;I/ IS, and a n operation schema 110 /1, and that the cor responding design con-

la ins a state C:" an initial st ate IlIilCS , and an operation COp. Both of the

opera t ions 110 /1and COli have input x1 : X and output y !: Y, and the abstract

and th e concrete specifications are relat ed by the retrieve relatio n lictr,

Th e proof obliga.tions for da.ta refinement may be divided into three kinds:

i/lil/ u/ ."'n'!'.,,, II/lplirnb;lifyand rOrlY.'c1 /1ess . The proof for initial st ates needs to

be pe rformed only onc e, while the proof s for app licability and correct ness must

be pe rformed for each operation. Th ese proof requirements are descr ibed below.

Th e imp lement ed syr te m must start in o ne of the states that are pres cribed in the

abstract specification; as such, each possible in itial concre te state must repr esent

a possible init ial abst ract state. Symboli cally, t his is written as

VC,' .
I/li/C , => 3 1lS' . ' lIilAS A Har',

38



The dashes are necessary because , by convention, the st ll.te variables in 1,,;t('S

and !1I ;tA S arc dashed.

Note t hat with this requirement , we are allowing fewer concrete initial st all'S

tha n ab st ract st ates. Th is is acceptable because our nbstrec t specificat ion insists

only th a t the syste m sta rt in (//Ir or the initi al sta tes; as such, we demand only

t hat each concrete initial stat e represents a legal abstract initial sta te.

An implemented operat ion mnst be at least as applicab le as its specifica tion.

This means that whenever the precondition or the abslrac t operat ion is satisfied,

t he precondition of its concrete version, as related by the ret rieve relation, must

also be tr ue. Symbolically, t his is writte n as

V AS; CSj x? : X _
pre A O/JA Rell ' =* pre CO/I.

Since t he precondition of th e concrete opera tion may be more general th an t he

precondition of t he abst ract ope rat ion, t he concrete operat ion may he used in

more situations. As such , t he concrete operation may he more applicable t han

its abst ract counterpart .

Since th e precondition of an operation describes when a terminat ing sta te is

guara nteed, th e applicabili ty require ment says t hat ir the abs tr act operation tee-

39



minat ea, its concrete version must also do so. An addi tional requirement for t he

concre te operat ion to be correct is for it to terminate in II. st ate th at is agreeable

to its ah stract spe cification. Sym bolically, this is writt en as

V AS; CSt G~"; x1 : X; y! : y _
pre 11 0 11 A Hctr fI COi':::}(3 AS' _ IIOp A Rei,.' ).

The con dition may be understood 1L5: if the concrete operation were to be inv oked

under the precond ition of its ab stract specification, it must produce a result t hat

is wit hin the requireme nt s of its abstract specification.

Ex a m p le 3 .4 T he cond itio ns requ ired to prove the satisfiabi lity of the concrete

design in Exampl e 3.2 are given below. For the ini tial states, the requi red condl -

non is

V MII.rC' _
III;rMn.lC :::} 3 Mnz' _ l"ifMfI:!'A MnxR'.

til order to show the appli cability of the concrete operation s, we need to show

v MfUj Mlu C; llumber? : Z •
pre Bill eI' A Mn.lR :::} pre EllierG

and

VMil,,; l\huC .
pre Fi;IIIMn.r A A!nxR ::::} pre PillniHn;rG.

T he req uirements for the correc t ness of bo th the oper ations are

40



Ta.ble 3.1: T he preconditions of the operations 1~'IIIl.,., filltl i\l ll.l:, 1~'II 'r r(' , nud
Filld Ma,rC.

VMllx ; uo c , IlliuG'; IIIll11brr?: Z .
pr e Ellier II Ahull II 1~'/l l f;l 'C ~ (3 MII,r' . I~'II"' " II MIIJ'Jl' )

and

V MaT; MaTe; 1\1(1xG'; 1I/11,1';IIIII/I/ !: z ,
pre FilldMax II Ma:rU 1\ "'il/ tlA/tuG:;:;} (3 MI/:r' . Fi"rli\I,l.I: II Mill' ''').

a

Ex ample 3 .5 We demonst rate how the proof obligations for the concrete opc r-

at ion En lel 'G may be dischar ged. Its precondit ion may be found in Table 3.1.

Since the p recondition of EIII.erG' is t rue, t he condition

pre E llieI'II Mru R ::::;. pre Bltlc,-{]

is tr ivially sat isfied and the appl icabi lity of Ellled} is est ablished .

41



To prove correct ness of EnICl'C, we need to show t hat

"I Mllr; Milr e i AftlrC'; Ill/llllier?: Z .
pre BlIlel 'A MWEU A ElilerC => (3 M III' • Enter A Mllx/i') .

First , we simplify th e consequent of the condition which is

3 Mar' . Ell lel'A /I·faxR' .

When expanded, th is yields

<=} 3 1III1I1bcl~~' : Z •
1I It Ill Ii c I"~' "" 1Iumber.. U {lIl1l11bcI'? } A

IIf:lBm,JI,,' "" lnle <=} 1I11I11bc1"j" = {} A

mar '""I/ben' = IIlIu:Num bel".

Using the one-point rule, we may elimina te nllmbers' and arrive at

~ Rd Elllp l,,'=!-II"lC/\

IU,U (Will/ be/'ll U {li ltln ocl' ?}) = III flxN,lm bel".

This simpllhed form of the consequen t is substituted into the original conditi on

to yield a simpler requiremen t for correctness, which is as follows,

MarH /\ eo-«: =>
IIrfBmJlly':f. II'/If 1\ ma.r. (llIllllbC1~~ U { I/llmb er ?}) = maxNtHliber'

We have omitted pre Euter from t he condition since it is true.

We may now proceed to establi sh the new correctness requiremen t . Analyzing

the different cases in elltrrC, the premise of the requir ement may be rewritt en

as the following three disjuncts after a few step s of logical manipulation.

42



(MIuRA
sciEm ply = In tr A
sdElIlpl,,' = frd.~(; A

IIlflrNltl/lber'= III1IUI,e,.?)

(MarR A
srl ElIll' ly = fafsr 1\

sriEmply' =_~clf~'m/II!J A

IIIWd,CI'? > marNIIIIII ,rl -A
lIla:tNllllll,c'.t= IlIIlIIbr,.?)

(MarR A
selEmllly = [else 1\

srlEmply' = sclElII lllyA
'111m/itT? :=; maxNllIllbr,· A
maxNlI mlicl.t= IIIfl.r:NlllllbeI·)

Separate ly, each of these disj uncts may b e shown to imply th e conseque nt . We

show the exercise for only the first. Fully writing out the firs t disjunct , we get

(sclEJ/I/lty = true ~ lIWIiI,c".~:= 0 ) A

lIIax IlIllIlber." = II/1lxNlIlIIbr.I· A
sclE lIlp l.y = l rnc /I

seIElII]/ty'= false A
lliuxN umbel-' = TWlIl ller?

Subs titut ing th e definiti on of .~rlEl1lply an d leaving out the second conjunct, we

have

selBmply' = fal se A
Illtmbe I'8 = {} A

lflaxNu mbcI" = /III/fiber ?

Using the properties of JIl ru and sets , we h ave

43



,~dE"qlly' = f tdw: 1\
lIulIIbtf'N = {} I\
IIlf UN1l1ll br. I" = mllX {1I1Imlwr?} .

Using a property of set , we get

IIt:lBlII/Jly' =fRl~ r.1\
11"IIIIIr.l"~ = {} A

IIlfuNllmbtr' = IUIiX ( {} U { "umber?}) .

Substit uting {} for 11111I1bc,;~ , we arri ve at

:> .•d E l/iI1l y' = fal,~c 1\
rl/lu:N lllllbn,1 = IIl Il X ( ul/ lll bcr8 U { /lumber?}).

And, since 11'11(: =F fllliu~ , th is implies

:> .~dBlIl l! l y ' =F 11'IIt 1\
!JI IIxNllmbt,r' = mllx ( 1IIIIII bc l '8 U { llIImbel'?})

which is exactly what we need.

3.1.5 Proof Obligations for Functional Retrieve Relation

Each concrete stat e frequently represent s exactl y one abstract state , and th e

retrieve relation may be viewed as a to tal function from concret e st ates to abstract

states . When thi s happe ns, the retrieve rela tion is termed as being jUllctional.

Simpler proof obligatio ns may be used when the retrie ve relati on is functional

[42, 45). The eendi rions for initial sta tes and correctness are easier to prove

alth ough the requirement for applicability remains the same.

44



V AS'; CS' .
I ll il es 1\ !/ rl l" => l" il ,IS

V tiS; CS; J? : X •
pre t10 p l\ lirl ,. =>pre COp

V tiS; AS'; CH; CS'i -.r:1 : Xi y! : \' •
pre AOp 1\ ReiI' 1\ COp 1\ " df' => tlO/1

The main benefit for using these is t hat the exist ential quantifiers may be avoided.

3 .1.6 Proving R e t r ieve R ela tion s to b e Funct io na l

In order to show that a ret rieve rela tion is functio nal we need to prove

'rICS . 31 AS . Rctr,

As indicat ed in [451. a sufficient condition for proving that a retrieve relat ion is

functional is to show that there is an equat ion that defines each abstract cornpo-

nent 's value in terms of concrete components and total (unctions,

45



3.2 Case St u dy

In the following, we describe the da.ta refinement of the abst ract specificat ion of

the stack from Cha pte r 2. Thi s exam ple compl emen ts th e one in the earlier pa rt

of this cha pt er as it contai ns error handling an d uses schema connect ives. For

co nvenience, we assume t hat the da ta types used here may be found in th e ta rget

programming language.

3 .2 .1 Concrete States

T he stack is impl emen ted by using an array of max cells, each of which sto res

an element of type OBJECT . An int eger vari abl e is also included to keep tra ck

of t he index of the top elem ent in the stack. T his conc rete sta te is describ ed in

Starke ,

SllJckC --,----,----,-- _

.~lackC : l. .max -> OBJECT
lopC .z
os/ope :::; mar

Th e array in our stack is modeled as a total fundion whose domain is the set

of consecut ive integers frOID 1 to max . The index of the top element of the stack

is given by l ope which should contain 0 when the stack is empty.

46



3.2.2 Retrieve Relation

The next step is to rela te th e abstrac t and concrete states . This is done in the

schema SiackR.

~:::Zli---__--- -- - - - - --
Slack C

slack = 1../opC <I.~lackG

Using t he domain restriction symbol <I, the expr ession 1..111/1(: <I.~IIlI:k(.' yields

a function which is the same as .~ l a ckC , except tha t it is only valid for the domain

l.,l opC. Since a sequence in Z is defined as a.funct ion whose dom ain is a set of

consecutive non-zero natura l numbers start ing at one, t he predica te in Hilu H f

requires t he sequence slack to have t he same eleme nts as the first illJIGcells of

ar ray stackC.

Note th at exactly one value of siad : may be derived for every value o f the

concre te compone nts tope and slarke . Hence, we know from the discussion in

Section 3.1.5 t hat the ret rieve relation is funct ional. As such, the simpler set of

proof obligations may be used .

3 .2.3 Initial Con cr et e Sta t es

T he schema IniiS lackC which describes t he initial concrete slates requires t hat

the ind ex oCthe top element be O.

47



F$¥S-
' f1i ISI IlCkC
S/ru:k C'

tOllC ' = 0 _

3.2 .4 P roo f Obligat ion for I nitia l State

The proof obligat ion for the initial state is stated below.

VSl rlCk'j Stncke ' .
h i /Sftleke A SlackR' => lnitSlack

The proof may be conducted as follows . From lui/Stacke 1\ StackR' , we know

that lop(," = 0 A .~ I (l ck ' = I..fope ' <l.d ackC '. Substi t uti ng 0 for 10pG' in the

equat ion for sla ck' , we arrive at th e value of an empty set for ~I(lck' . This impl ies

that .~ I (l ck ' is an empty sequence and this is exactly the predicate in InifSl ack.

3.2.5 Co nc rete Op erations

As for the abstract specification , the schemes t::.SlackC and BSlackC are also

defined for the concret e operations.

ASlllr~'C _

[
SIIlt:kC

~flll~kC'

25/(lI:I.:C _

ASfllCkC

.~l fu:kC = '; /(lcI.:C'
/opC = lop C'

48



Th e concrete operations may be described ill a fashi on similar to the abstracl

ones. We may consider the successful opera tions and error-handling separately.

Successful O perations

Th e successf ul operation for pushing an element onto the concrete st ack is de-

scr ibed in PllBhOkC.

PllBhOkC _

ssu-«:
objcct.? : OBJECT

10/JC < ma J'

lope' = lape +1
slackC' =BlarkCffi {/ opC' 1-+ objfcf7}

The use of th e overriding ope rator 1IIin th e last predi cate of the scheme needs

some elaboration. For functions P and Q,1'$ Q is the relation containi ng all th e

orde red pair s of Q, and when the first element of an o rdered pair of " does not

app ear in t he doma in of Q, t hat ordered pair is also included. Th erefore, /' Q) Q

may be viewed as a merge of P and Q, und er the con dition th at when ther e is

a domain conflict, the elemen ts of Q are selected over those of t', Hence, the

pre dicat e stuc ke' = slarke $ {lopC' ...... ofJj rd 7} says that the army .'illld.:r:'is

the same as stacke except th at the value in t he lopC'th cell of Hllwkr:' is "bjfd7.

T he successful operat ion for poppin g an element off the concrete tilllck is

described in PopOkC .



/'fJpOkC _

t:-. ...su-u:
/t'lIC";: O

/fllIC'= I fJ11C - l
.,l lu:I.:C' = .-l arkC

The concrete stack is popped by decrementing the index of the top element.

'/ iIflOkC _

'ES/ urkC
Qbjf:cl! : OI1JECT

/QpC ";: O

objrd ! = SllukC(lnpC)

The value of the top element is the value of the element of the array with index

Er ror Handling

The concrete error handling operations are defined similar to the abst ract ones.

Slll rk1"III1C _

3.$fllf:I.:C
ffill/If! : Il BPO/l7'

/opc = /II/U

~~;/~~~t'~/I/YC--------------

'Y'Md/! : IiBPOIlT

/o/,C= O

1Y'''UI1! = rll/ply

so



Operation
PIl ,~"OkC

POjlOkC
r-io« :
Slar·H, /ll e
Slar~EIII/l I !lr

1.J°IJr
PII"~M""

'I° IIC

Precondition
In/d' < III I I.r

lop(:-:j:.O
Il lp('-:j:. O

/ojle = IIIII.r

Inp( '= O
Ii'll!"

/1'111

11"/1 "

Table 3.2: The preconditions of th e concrete operations of the atnck.

The successful and error handling operat ions are combined as in t he llhs lrn d

specification.

PO/Ie == ( PopOkC A SIJ f'rr.~.~ ) V S/f/rkBwlll!l(.'
Pmlhe e ( PII.~"'JkC A Sll ('f'( "" ~ ) V S/lIrH'/Il1(.'
Tope e ( TOT,m·e 1\ Sllrrr......l) V Sfrll~k BlIIpl.'J (.'

As th e reader will notice in lat er sect ions of this chapter, combining the concrete

operations in a way similar to th e combination of th e abstract operations enables

the pr oof obligat ions of da ta refinement to be organized based a ll t he str ucture

of th e operations. Th e preconditions of t he concrete operat ions arc given in

Table 3.2. Notice that the concret e versions of operation s, l 'flp L' , l 'lI .~It ( .', Ilml

TopC, are also total ope rations.

3.2.6 Proof Obligat ions for Concrete Operations

The conditions for showing the applicability and correctness of I'I/"~JIG, I lo/If ,',

and Tope are given below. Since t he retri eve relat ion Sl/H:kJl is Iunctionel, t he

51



condit ions for functi onal refinement are used,

V.'J'llIek; Slru'U:; {,bjn:I? : OBJE CT .
pre 1' /I...h /\ S/twkU :> pre PIl .~" C

VSlad.; SIft/,kC .
pre l'ull A Sl lId.:U =>pre I'0JlC

VS/u ('!.:; S1fu'kC .
pre 'liljJ A SIIJ/:!.:R :> pre Tope

Recall that the pre condi tions of these abst ract and concrete operatio ns are all

tru e, As such , the consequents of t he implications a re all true and hence, these

co nditions a re triv ially sat isfied,

V Sl tlf"k; 8 l(1ck' ; SlarkC; 81111"/.:C';
objcd? : OBJECT ; 1"t:'~!l1I ! : REPORT '

pre Prl8h /I 8frlt,/d1. /I P«:..bC /\ S'lrlcH?':> Pllsh

V,%/{"k; ,'iltlf ,k' ; SIf/rk Cj Slarl'C' ;
l'f/ml'll: flBPOUT .

pre I'll /I /I Sl flt'kU /I p(l/le 1\ SlfirkU' :> P0J!

V....II/I'k; SIIIf'k'; SI{lI'kC j SlflckC' ;
IT/wl'll: ll BPOIlJ'; objcc/!: OBJE CT .

pre '/'01'/I SllIckll/\ Tope 1\ Sll1ckR' => Top

Each or t hese may be proved by considering the success ful and erro r-handling

par ts separa tely, To illustrate thi s process, the steps for proving the cor rectness

of / '11,4,( ' a re given in th e following example.

52



Ex a m p le 3 .6 T his example sho ws how t he correctness of l 'II." r( ' may be proved.

The pre mise of t he corr ectness co ndition for 1·/I.~"(' is

pre Pllsh 1\ Sta d /{ 1\ fJll.~"C A SIIlf-kIl'.

By a.bsorbing pre PII"h(since it is t rue) a nd eubefit uting (( /' /I.•hOM -' II ,1;111"''1".<.<)V

SlnckFI/UC) for Pr,..{,C, and afte r some logical manipu lati on , we a rrive at

(Stackll A Slack R' 1\ (Prt.<!tOkC 1\ SrIlW.•.<»
V

( St ac~'1l A StacHl' A SlackPrdIC).

Since PI/sit== (PlI.<t,Ok 1\ SIIC,.,......<) V SI(If·U.,"I, a strat egy would be to divide the

proof into success and error parts, th us str uct uring the pr oof based on the way

the schemes are connected logica lly, Hence, we aim to pro ve

(Sllirkli A SIlicHl' 1\ (PIl...hOkC /\ S'III'n'.<,,)) =>(I'II.</,(Jk A ,"'IIf'f"f'.<.<)

and

(StllckR 1\ SllIckR' A SlfwkF/lIIC) =>Slrwk/o'rlll

separatel y to com plet e t he proo f. We show below this pr ocess Cur til<: s uccess

part . Expanding

Stackll/\ Stuckll' A (I'JI.</t(JkG 1\ SIII'I~{"<'<)'

we ge t

53



.~l lIrk =: I .. f.opC' <J "~la r:kC A

.~I(J ck' "" l.,lfllIC ' <JSlfU:kC' 1\

1011C< IIllixA

/f/pC' "" 10TI(.' + l A
"~l ackC' "" .~lnrkC ID{l olle' 1-+ohjed?} A
1l; "~ IllL! "" Qk .

Suhstitutin g (op G' and s/ aekC' with their definitions, we get

.~Ifll'k "" l. .lopC <I sluckC A

slac/.:' ""(I ..lo pC +1) <J(tllac/.:C $ {lol'C +1 1-+object?}) A
IQTJC < lIltlX 1\

IT's ull ! "" ok ,

Using a property of domain restriction <l, and realizing that the domain of sta ckC

is I. .IIl/lX, we deduce

.~llI r/.: "" l.,/opC' <I .~lackC A

.~Ifl('k' =(1..JolIC) <l s ltlekC U {t ope + I H obje ct?} 1\

/O/IC< IIlIl;rA

1'f.~lIl1 ! "" ok.

Using th e relation ship between fun ctions and sequences, we arrive a.t

~/ tlrk "" L / v/l e <I.~/ flckC II

.~/arF "" stuck ....(objcd?) II

101'C< ma;}' ''
/1"I< " II! "" ok.

Sinc e the cardinality of a function can never be grea ter than that of its domain,

we have

=> #.~/fll' t·:5 lope A

.~I I/f'k' "" Illaf' /.: ....{objrd?} II
IOlle < !/I a.t/\

Il"~lllI ! "" oi·.

54



Since lope < mO J" , we deduce

#,~ ' (lck < 1IIf1.rA

$/t ICk' = .~It/f'~· ,..... (nbjrl'l?) 1\

I'f sull! =ok .

which is exactly (PIl.~"Ok A .'ilU't'CS8 ).

o

3 .3 S ummary and Bibliographica l Notes

In this chapter, we presente d a metho d of da ta refinement . This involves propos-

ing a concrete des ign cont a.ining th e concrete state space and operations, and

proving t hat this design satisfies its abst ract specificatio n. Using exa m ples, we

ha.ve shown how t he concrete operat io ns may be proposed so t hat they ar e struc-

t urally sim ilar to t heir abst ract counterparts with respect to logical sche ma 00 11-

nect ives. We furthe r indicat e how th e proof obligatio ns arising from t he refine-

ment may be discharged while exploi ti ng th is structura l simila rity.

In our account , we have g iven an ideal sit ua tion where a conc rete design may

be produced from an abstract specificatio n in just one refineme nt step. In many

cases, especially for complex ami large system s, it may be necessa ry to go thro ug h

a ser ies of refinement steps th at produ ce a nu mber of intermedi ate designs, eac h

of which contains more imp lementat ion detail than those previous. The finR.l

design whic h is t hen accepted as the concre te design should co ntain data typell

ss



that are sto rage and algorith mic efficient, and are easily construc ted in t he target

programmin g language.

Our prim ary references for dat a refinement with in the fra mework of Z are

112, 45] and the use of t his te chnique may be observed in {45, 24, 25, 42J. Th",

inte res ted reader may find in [201 a t heo ret ical investigat ion of refinement wit hin

t he Z framework.

Th ere exists a complementa ry tech nique where a concrete operat ion may be

..,1!1:11111l,,1 directly from its abstract specificat ion and th e retrie ve relation . T he­

oret ical work concerning this calculati ve mode of dat a refinement may be found

in [22, 211 and exam ples of its use may be found in [22, 45].

se



Chapter 4

Translation into the R efinement

Calculus

A concrete design is the specification of a software system containing daLa tYIlI'~

which can be easily realized as data structu res in the target prog rununiug lan­

guage. T his chapter and t he next chapters show how a prog ram t ha t implements

the softwa re syste m may be calculated from its concrete design uaiug a {O f mal

develop ment meth od called the rcjinf'lm:lIl . (·III(:tllll.~ {31]. Since t he nota tio n or

the refinement calculus is different from th at of Z, the concrete design must first

be tr anslated int o the refinement calcu lus hefore t ile calcu lus muy he ap plied .

In this chap ter , we concern ourselves wit h the issues ar ising fro m the t rans­

lat ion from Z to the refinement calculus. A brief introd uction to the refinem ent

calculus is given so tha t t he reader may app reciate the necessity of a nd st ra tegies



for this transla tion.

4.1 The Notation of the R efinement Calculus

To provide the notati onal requirements for program development , the refinement

calculus contains a language tha t may be used to describe bot h specificat ions

and programs in the same framework. Thi s is achieved by employing bot h non­

execut able and execut able construc ts.

Non-executable constr ucts are used mainly for specification, while th e exe­

cutahle ccnet ru cts repres ent (executab le) programs. T he only non-executable

const ruct is a .~I! rr:ijiCfll io ll .•la tcmcul, The executable constructs are drawn

mainly from Dijketre'e language of guarded commands, and include assi9 'l11lClIl ,

4.1.1 Sp ecifica ti on Statem ents

A .~IItTijjf· tl / i (l /l ,;/t1IC/IIf"'/ has t he form

II' : [11,.1' , I!O.~/I .

The term If' is called th e [nuuc and is used to represent a possibly empty list of

variables . The predicates pIT and pn${ are the pre- and post condit ions describing

before- and afte r-states. This construct may be used to specify a program t hat ,

by changing only the variables in Ill, brings th e state of a system from one th at

58



satisfies pr,. to one t hat satidi es lm.~ /.

In it ia l variables

In t he refinement calculus, the before- and aft er-valucs of a variable a rc disti n ­

gui shed by representing the before- value of a vnriable wit h that vr.r;nb!c sub­

scripted with II. zero, We call zero-subsc ripted variables illiJitl/I' nrinMr'l< n.nrl t hey

are allowed only in the post condition s of specificat ion sta teme nts.

Examp le 4 .1 Assuming that .r an d II are int eger variables, tile specificatio n

st at ement

x, y : (x ?:: 0 • y > 1'0)

describes a program that has the before- and art er-stat es described by ;r ?:: 0 and

y > 1"0 resp ectively. Since )'o refers to the be fore-value of x , t he executi on of th e

program must give the vari able ,IJ it. value grea ter than the original value of r ,

Th e progra.m may change the value of x if it wishes, 0

4 .1.2 Assig n me nts

A si ll g/ c (I,"SirJIlIII CII! has the form

II!:= E,

When t his is execut ed, the varia ble m t akes on the value given hy th e expressio n

E. Th e la nguage also provides a mf/lti!ll" 11!i!<ig /lmu ti. which has the Ionn

59



Whe n this is executed, each Bi is simul taneo usly assigned to its corres ponding

1/Ii, ror i::; i ::; II .

4.1.3 Alternations

An uUfT/mliul! may be used to implement case analysis . It has t he form

if GJ ..... /IIYJUI

o (,'2 -/IIYJ9l

and may also be written as the generalized

if(O i . G; ..... /J"OfJi) fl.

Each G. -. IJI'OII. is called a guarded command, and each predica te Gi is known

as Il.l/rlllrd a nd each program P,.Ogi is known Il.S a. eammand. When this construct

is executed, all of the guards are evaluat ed, If exactly one of these guards is true,

its command is executed . If more than one of t hese guar ds are tr ue, any oneof

the commands associated with these guards is executed. If none of these guards

is t rue, the behavior of the alte rnat ion is und efined. In other words, failure to

satis fy at least one of the guards should be rega rded as disast rous.

To elabora te on t his last point, note that a single gua rd alte rn ation is similar

to a convent iona l conditional sta tement witho ut its e lse part . If the cond itional

60



statement is execut ed when its condition is false, then its executio n yidels no

effect, However. an execut ion of the altern at ion when t he guard is false will

cause its behavior to be indeterminate.

4 .1.4 Iterations

An tterauon may be used to implement repetit ion . It has the form

do GI -Pl"Ogl
Il G2 --t /11'O.Q2

U G" --t prog..
od

and may also be written as the gener alized

do mi. OJ - /11"09;) o d.

When t his is executed, all the guards are evalu ated and the comma nd llHl.t. iN

associated wit h one of the tru e guards is execu ted. This is repeat ed until no

guard is t rue which th en causes th e iterat ion to t erminat e successfully,

4 .1.5 Sequential Compositions

A scqueulial composit ion has the form

P; Q.

T his allows a larger progra m P ; Q to be built {rom small er program s J' a nd Q.

When th is const ruct is executed, the progr am J~ is first executed, followed by Q.

61



var e : z;
and e > 0;

procedure Pmc(value result a : Z ) :!:!:

I[

l-'rl'Jc (x);

Figur e 4.1: T he skeleto n of a sample pr ogram.

4.1.6 Lo cal Blo cks, Variable s, Invariants, and Procedures

T he notat ion o f the refinement calculus allows vaI'iable8, illVllrianls, local blocks,

and JJlvadrtlT.,< to be declared . Examples of these may be found in the pr ogram

skeleton of F ig u re 4.1.

A /,[(lrk has t he genera l form

II lJrrlfllYilioll • /Jorly 11

and is delimit ed by t he symbols II and 11. T h e Declara tion pad of the block

contains the declarations orvari ables, invari lLnts , a nd pro cedures, while th e Body

62



: z ;

var 1/:2:

IJ

Figure 4.2: Nested blocks .

par t conta ins a p rogra m made up of constr ucts li ke spcci flcetion stll.temelltn,

assignments, ite ra tion s, etc .

Variable declarations must be done immediat ely after the Il symbol of a hlock .

Variables are declared by preceding them wit h the keyword v nr nnd giving t heir

names and types. For illustration , the integer varia b le :r is declared in t he p ro­

gram of Figure 4.1.

The scope of a variab le is the block in which it is declared . When blocks arc

ne!J lcd, a variable in an inn er block hides the oute r b lock var iable wit h the sa me

For exam ple, in F igure 4.2, the inclusion of variable 'l at polnt IJ rd en

63



t o the value of tl of the inne r Hock. On t he other hand, the II al point II refers

t o the value of Il in t he oute r block.

The inoeriunl of a va riable may be specified with the keywor d and immediately

a fter the variable's declaration, In Figure 4,1, the variable x has an invariant

saying th at it must always be positive.

A II/VlIH l llI Y' Inll.y be declared with t he keyword pro cedure . This declaration

gives the pr ocedure 's name a nd its fo rmal pammctcrs (option al). The lu i of t he

p rocedure , which is usually in a local block, is separated from the na me and t he

formal parameters by the symbnl ==.

The ,:all -IIY-lJIdllr , cflll-Ly- rr.~ldl , and clIll -bIJ-vfl lrH:- reslIlI su bstitu tion methods

for pllSsi ng parame ters are available. In Figure 4.1, a procedure cal led Pmc is

d eclared, which has a call-by.value-result formal para mete r a .

A procedure may be called within the loca l block for which it is declared

by including its na me and any actual pal'amr lcrs. A call to procedur e Proc is

included in t he body of the program of Figure 4.1.

64



I va r or, II : Z .
r , y : 111'I,r ,( ro ::: !A, II r = IN II I/= rn ) V

(.lin':::"0 f\ .r :.;: rll f\ .II =14')]

F igure 4.3: An ab 5tract pr ogram .

4.2 Us ing t he R e finement Calcu lus

The refinement calcul us provides a notation and a large collect ion of Inws for

program developmen t. A l'm glYllll, in t he refinemen t calculus, refers 10 a P1L'Ct'

of tex t which is made u p of the execu table and non-exe cutabl e ronst ructs. A

program that is to be dev eloped is specified in t erms of specl flcn.t ions tut ements

and th ese are gradually transformed using these laws to yield o nly executable

const ructs. T his trans format ion, known as refinement, is explai ned in grcn1l ~r

detai l in Sectio n 4.2.4.

4.2 .1 Abs tract P rogra ms

An n bBlm cl plYJ.Qtrlm is one t hat contains at lea st one spcciflcnt jon st ntcment

within its body . A prog ram is also known as an '11,., lm d progrum since il mny

cont ain specifica.tion st at emen ts. An examp le of such a pr ogram lIlay be {OUIIl!

in Figure 4.3. Th e specification in this program requi res that t he vahws o f ;r and

y be swapped so t hat y ~ .t after its execution.

65



var r,y: Zj

pr ocedure SlIIal' =.
it var :::z .

:::= r ;
J:= y;
y :=::

if r:::: !i Small
il y:::: r skip
fi

Figure 4.4: An executab le program .

4 .2 .2 Executable Programs

An /'undtlMr- lJnI .IJIVIIII is one that contains only executable constructs. An

executable program which implements the abstra ct program of Figure 4.3 may

be found in Figure 4.4.

4 .2 .3 A Libera l View of P rograms

The word }1I"f>!/ITIIII is used loosely in t he world of the refinement calculus. In

addi tion to t he conventional view t ha t a program conta ins only execut able con-

s j.ructs, a program here can also mean an abstract program with on ly specification

»ta tcruents , which ill regarded as only a specification. Pr ograms may also contain

66



single (or multiple) non-e xecutable and exe cutable rOIlNlru cts, A lI " l -c~i li{'at i on

st atement, iterati on, and alternation are all exam ples of " I I'lIIk programs. TIll'

pr ogram s form ed by sequentially composing ntc mic prognuu s arc known as , 'Il III_

IIfJ1J11 llprogram s.

Th e liber al us e of th e term /JI ''' .I/111111 offers a convenience : we an' rI,!j('vt'll of

th e burden of describing seemingly simila r things with J ilTcrcnt tenus, the w hy

allowing us to concentra te vn th e mat hem atic al requireme nts or program II. vel­

cpmenv. All this bein g said, it is s t ill import ant t o reserve t he tenu '~/" dJi..,lI i " 'l

for a pro gram comp osed only or spe cifica t ions stat em ents , and I'm/" f(lf :~ program

comp osed only of executa ble const ructs ,

4 .2 .4 Refinement

For pro grams P and (J,

PC; Q,

(pron ounc ed Q refines I~) means t h at Q is a 6f'1/,.,.program t han I ' , For iIi StlUI(:C,

P may b e a speclficetio n stateme nt ami q may be some code t hat ilUfl l crn l~nts I' .

W hen th is refinement st ep is per form ed usin g t he laws of t he refinement calculus ,

q is gua ranteed t o sat is fy I),

T: .e refinem en t calculus may he used in th e de velopment of a s"ftwnn~ sys tem.

After speci fying t he software system as a n abstr act program , au exec utable p ro­

gram m ay be calcu late d from the abstr act t hrough a series or refinement s lCJl~ .

67



var F,Y ; Z ;

pro cedure S,IPUJ! -=
I[

va r c : Z .
J , y: [1I'Iu',J = ,/loll Y =rol

if ;r::: .11 SmaJ!
o y ?::.r sk ip
fi

Figure 4.5: An abstract program contain ing bot h specificatio n st atements and
execut able constructs.

Each refinement ste p introduces more executab le const ructs until all the spec ifi-

cation sta tements nrc reflnerl into code. A:.sllming t hat the original specifica tion

is S and the fin.shed code is r., t his refinement may be wri tt en as

where each of th e intermediate M; is an ab str act program contai ning both spec-

ihcation statements and execut able const ructs. For examp le, t he p rogram in

Figure 4.5 may be an inte rmediate program creat ed along th e refinement of til .

program of Figure 4.3 into the program of Figure 4.4.

68



4 .2. 5 So m e Simple L aw s

In this section, we give some simple laws of refinement and examples of the ir lise.

This should provide th e reader with an indication of what 1\ typical rcfinenu-nt

step looks like.

Law 4.1 [we a ken p reconditi on "w p") If lin ' =} lilt ", thou

o

Law "wp" says that a program may be refined into one that is more llpplicabk

Since /ll"r' is more general tha n IH' ", the refined program may he used more

generally.

Examp le 4 .2 Since J'? 0 '* tl'llr,

Y : [f:?:0, Y > J"oJ
!,; "wp"

Y : [I"!If;, Y > JU ].

The result of t he refinement is a program tha t is applicable in all circumstunccs,

rather tha n one that is applicable for only J' :?: o.

o

Law 4.2 (st re ngt he n postco nd it ion "sp") If 1m: ! m\ w"j A IJfj.~I' '* Im.~/, t hen

II' : !IJI'C , J!fJ.~t ) => III : [ ]I n " , f!(I .~I'J.

o

69



Law "sp" says that a program may be refined into one that is more definite .

Since lliJ.~I ' => fif)!jl, a program t hat termin at es in 1I.sta te describ ed by f!olJl ' also

te rminates in 1I.state described by /10'<;1. What we gain from the refinement is the

addit ional information provided by llO.~ I' , since post' is st ronger t han post.

Ex ample 1 .3 Since II = 3'lJ + 1 =} II > 3'(1,

.'1 : [I."ur , II> ;/'01

t; usp"

II : [Imt , Y=;/,o+ll.

The only requi rement of II > TOis that 11takes on II. value greate r than the initial

value of 3'. The refinement simply fixes a value for y.

o

Law 4.3 (expand frame "ell")

II' : [' ll Y' , Jlo.~fJ = I/l,.r.: [JH'C , /w sl A r = 3'oJ.

o

Law "ell" says that 1I. specifica tion sta tement th at does not have a variable z in

its frame is equivalent to the same specification with T added to its fram e and II.

con6t raint added to its postco ndition saying t hat ;r does not change. Note that

a n equality between the two specificati on stat ements is used to indica te t hat t he

refinement may go both ways .

70



Exam p le 4.4

y : [r ~ 0 , y > rol

r ,y : [r ;:: 0, y > roA ro= r J

o

4 .3 Comparing the Not ations of Z a nd the R e-

fin ement Calculus

A compa rison of the basis languages of Z and the refinement cll.lcull1s is given hy

King [251. He shows the suitability of the n otations for thei r respecti ve pur poses

and indicates t he necessity or translat ing from Z to the re finement calculus for

program development. His discuss ion is sum marized below.

4.3 .1 States

In Z, a state of a simple syste m m ay have t he form

RE
S"",
v : 7

ino
- --------- - -

where v is the st ate variab le const rained u nder t he invaria nt j/ln. In the refine-

merit caleulas , the same sta te variable and system invnriant are deelured with t he

keywords va r and an d respectively:

71



vnr,/ :'1';
and i lll)

As such, we see a direct correspondence between t he t wo sta te specifications .

4.3 .2 Operations

In Z, an opera tion with one inp ut and one out put may be specified as

1
~~~I f! / 1
.r? :X

~
I I'rrd

In tile refinement calculus , an oper ation is specified in t erms of a specificat ion

stateme nt

As one can see, t he ope ra tion specificat ions in Z an d the refine ment calculus differ

ill t wo ways: (i) th e schema uses one predicate while th e specificatio n statemen t

uses two, and (ii) t he specification st atement uses the fram e while t he schema

does 1I0 t .

72

Si ng le Versus Dou ble P redi ca t es

For the specification of operations, it is more convenie nt to use only one predi-

cete to relate t he before- and afte r-states. As thi s predicate incorporates both t he

pre - and postconditions, it allows operat ions t o be combined by simply pcr fonu-

ing elemen ta ry logic operat ions such as conjunctions and dilljllndiolls on their

predica tes . It is the use of only one pred icate that enables t he powerful r\~;ltllrt'~

of th e scheme calculus which arc so useful for st ruct uring specificntio ns to be

eas ily appli ed .

For refinement, it is more convenient to work with a pai r of predica tes where

one of them is the precondition of the opera t ion . TIle ndvnntnge of hav ing 1I1e

precondition explicit may be seen from the following simple rule or ope rat ional

refinement using schemes [421. Assuming that I I and q nrc echemaa describing

operations on the state space Sl fl/e with input JY : .X and outpu t !I! : 1'. In

order to prove P i; Q, we need to show

'tiS/ale; x? : X ,
preP:::}preQ

end

'tISl o. tc; Slate'; :r?: Xi yt : Y ,
pre 1' /\ Q:::} P.

Since such refinements may be performed 'l.t several levels, working with pre-

con dit ions directly will save us t he effort of h aving to calculate the m at each

level.

73

T he other maj or difference between a schema and a specification statement is the

presence of a frame. T he refinement of a specification statement often gives rise

to several specificat ion st ate ments, each indicating the possible chal!~e of only a

small numbe r of variables. Without the frame, each of t he unchanged variables

would have to be involved in tile post condition of each of the specifications. Such

specifications would become excessively complex and unman ageable. With t he

fra me, a va riab le may be specified as unchanged simply by leaving it out of the

frame. The use of the frame relieves th e developer of the burden ofw riti n3:l = 3"0

for each unchan ged variable ».

4.3 .3 B efore- a nd After-Stat e Variables

Z and the refinement calculus differ ab o in t he way before- and after-state veri­

abies arc disti nguished . In Z, the undashed name of a va riable, Sll.Y X, would refer

to its value in the before-st ate, while the dashed version, x', would refer to its

NIu e in the alte r-state. For a variable in t he refinement calculus, its undecorated

na me, r , would refer to its value in th e after state, while th e zero-subscripted

version. J"u, would refer to it ~ value in th e before-state. This distinction is made

only in the postcondition of a specification since the precondition always refer

to before-st ate values. Since a postcondi tion is used to specify after-st at es, it is

more common for it to refer to after-state variables rather than before-st ate ones.

74

Furthermore, the proper use of t he frame would have alleviat ed the lIC'Cd to write

r = .to for each unchanged variable r, which again indi cates t\l;,.tthe before-stat e

variables appear less frequentl y. As such, it is more economical and simpler to

decorat e the before-state variables.

4.3.4 Renam ing Versu s Substitution

In Z, the schema. expression

S[yl xl

for schema S with component !I would mean the sa me schema with a.11 tilt: occur -

rences of !I replaced by .r:. Thi s is t he commonly used operat ion called ."'/" -11I11

rCllflmi llg. In the refinement calculus, there is a similar notion called ."I".~IiIIl Ij,,,, .

For a predicate P,

P(z\ yl

obtains P with free occurrences of the variable r replaced by the term 1/.

Woodco ck has suggested using the symbol j for substit ution in the refiucmcnt

calculus [451. We have decided not to use t his as the origina.l notation is me re

clegant for the refinement of procedures , as will he shown later . Instead , we

have chosen to use the symbol \ for schema rena ming. Alth ougll lll i ~ symbol is

used also as the schema hi(JiIl!Joperator, ther e shou ld be no confusion since the

renaming operato r occurs in square brackets ([IJ while the hiding operator ducs

not .

4.4 Rules for Change of N ot ation

The discussion in the preceding sections examined the consideratio ns that arise

when tr anslatin g from Z to the refinement calculus. Rules for t ranslation ba sed

on the se considerat ions are first. worked out by King [25J. We use the version

that is presented by Woodcock in (451since thi s version is more intuitive.

4.4 .1 Basic Rules

The Rule "cc" concerns the convention for dist inguishing before- and after-st ate

variables.

Rule 1.1 (change convent ions "ce"] Let Of' be a schema and l a/I) denote

the same schema with the convention changed to that of th e refinement Calculus.

lf 011 has state variab les II , then

The Ru le "S 55" concern s the the tr anslati on of std es and operation s.

Rule 4.2 (sch ema to specifica t ion statements "555") Let Op be a scheme

describing an operation with input r 7 and outpu t y! on a date Siale which

contains variab les 11:

76

EF
S'"' ~
11 : 1

inn _

0"

~
~?S0:
y!: y

Pm/ ---- - -----

The descript ion of th e slate translates into the following llcdllt ll.lion:

var 11 : T
and inn,

Th e opera tion tra nslates into the following specification statement:

Notice t hat t he schemes a re used as predicates in thi s specific at ion state ment ,

W hen thi s happens, these predicat es refer to t he predica te par-t of lim schemes .

o

4 .4.2 Sp ecificatio ns to Abstract P ro grams

Using the rules "cc" and "55S" 1 a Z specification may be t ranslated into a ll nb-

st ract program . T his process is illustrat ed in th e following example.

77

Variable
ITWXNfu"bcr
.~d8f1lJlly

1l1171\Iin'?
1/iliximlllll!

Abb revia tion
!liN
.~E

Tab le 4.1; Abbreviatio ns for th e sta te, input and out put varia bles of Exa mple 3.2.

Example 4.5 Her e. t he conc rete design of Exa mpl e 3.2 is translated into an

ab stract progra m. A convent ion of using t he refinement is to have short veri-

a ble names beca use th ey will be copied qu ite frequ entl y du ring refinement . We

abbreviat e the sta te, input and output variab le names as shown in Ta ble 4.1.

The states and ope ratio ns are translated according to Rule " 85 S" . Fur ther -

mor e, each oper at ion is tra nsformed into a pro cedure . T he result ant program

may be fou nd in Figure 4.6. 0

Th e only remainin g issue is t he design of th e main program which uses these

proced ures. In Exam ple 4.5. this prog ra m is maiu PI'CI!J an d its conte nt is th e

su bject of the next section.

Main Programs

'I'he main /lIu.qmm is one that init ial izes the sys tem and uses t he procedur es to

perfor-n the funct ions of the sys te m. The mai n p rogram may be written as

18

var /IIN :Z
JE : BOOI.I£I\,:'"

procedure fll ilMruC ~

mN,sE : [/"IIC , .~BI

proce dure e'll r...C(value " : Z):!:!
mN,st: : [h'/l C , (.,e., Ad~· II mN =:: II)

V
(.... .' f.;, II .~f =Jo J~, /I.

{(''I' > ",,vil A ",N == II)
V
(1Ic,$",Nu /l. IIIN == ',,,,\\,)))1

procedure f' illllM"",C(re sult I II : Z) So

IIIN ,11£ , 111 : {Ir. r , lIB /I. III == III .'~ /I. ", I" = ", N" /I. sf: = -'''~J

Fi&ure 4.6: An a.bstract program trans lated Irom the concrete dal.ign of Exalll­
ple3.2.

79

where ill;IPl'og is t~I C procedure implementing the initial states ami Il t~'!1 i~ the

program that uses procedures to perform the functions or 1I1l..'system.

woodcockdescribesa popular way of designing I,m!! l~ 5) . Th is involves Ilsitllo:

a pair of symbols, n and #, to represent the input and out put stream~. For

example , assuming that fl and ,rl are both declared as sequences of illk gcrs,

mll;IlP' '09 , the program in Figu re 4.6. may be written as

IlIi/M uIC ; IIIN,Re,o,iJ : [Ir lff , /1", (mil;/'(rann))I.

This program may then be refined to usc the procedures in the abslracl Ilrugmm

of Figure 4.6.

4.4,3 Simp lifying Specificati on Stat ements

After a Z operation schema is t ranslated into the refinement calculus, there a rc

ofte n opport unities to simplify the resultant specification sta tement hcfor!~ nny

algorithmic refinement isperformed. Two simple strategies for such sinrpliflcution

are given below.

For a Z operation schema, the predicat e contains Ior each unchanged variable II

a constraint cl u = v'. When this is transla ted into a specification stnlc Jrlcnt ,

the postcondition contains tb = IJ, wit h v appearing in its frame. These JIlAy he

removed by using Lew sefl".

80

S im plify ing th e Postcond ition

Since il is recommende d tha t:... Z opera tio n schema contains its precondition

explicitly , t he specification statement yielded from such a schema will have t he

precondit ion r'_st ated in its postcond ition . Using Law "sp", the precondition may

he removed from t he postcondit ion of the speci fication statement .

4 .4 .4 Some D erive d Rule s

Op eration schemes often occur as

OJ! =: OPI II ···11 OJ/,,,.

In the following, we give rules to tr anslate t hese schemas direct ly int o abdract

program s with some execut a ble constr ucts. Our rules are generalizations of those

found in [251 which are app licable for t he case II = 2. These derived rules may

be shown to be correct refinement s with resp ect to the basic rul es of t ranslation

of Section 4.4.1. T he proofs are omitted here since the y are easy.

Rule 4.3 (Al t ernat io n Introd uction "a il n) Suppose we have

81

If the pr econditions of Op;, 1 :s i :S II, can be ...xp rcsscd in t he t nrgd prcgruru-

ming langu age , we can tr anslate Op to the following alt ernation.

if pre 0111 Opi

o pre OJ!~ Op:
fl

where OP'i are th e specification st ate ments which result from t lw us e of the Ruk-

"saa".

o

Rul e 4.4 (Alternat ion Int rod uct ion "n iIl") Suppose we have

0/1 == 0')1 v···V 0p .,

where pr e os., 1 ::; i ::; 1.. ::; II , is It. complex expression thal canno t he direc tly

comput ed in t he target programming language. Th en, we ca n tra nsla te 0" In

th e following program.

var bl , ..., hk : HOOU;;J1 N

hi : [t l' lIe , b1 *> pre 0 /1 .];

hk: [II"/lc , bJ.:*> pre Op.]i

if blD/li

hl.· 0l't
pre 01'.+1 --+ OPt+!

82

where 1, 1, ..., "'~ are fresh variables wit h scope delimi ted by I[and II, and Opi are

the specification stat ements which result from the use of the Rule "sse'" . Clea rly,

for f: = 1 and II =2, if pre 0 111 = -tpre 0PI ' t hen the second guar d ma y be

simplified to 1J l.

o

An ap plica tion of Rule "aifl" may be found in the next exam ple.

Exum pl e 4.6 T he concrete design of a sim ple system which maintai ns an int eger

array i ~ given below.

IIHU :Z

."'/1111
[III'IYIY : (l.. IIH1.r) -o Z

One of th e featu res of thi s system is i ts abilit y to check whether an inpu t inte ger is

present in the array and to output ap propriate mes sages indicating t he presence

of this in put. T his operat ion is de scribed below as Find,

U/;,f' ()Wf ::= 1011ll11 1"0I FoIHlI{

Ffllwd _

SSI II/r'
.r?:Z
n'/II)I'I ! : flf~'POltf'

3k: l.. //w.r . ol'my(") =.r

1~"I'II1'1 ! = 1r> !llIrl

83

N oI Fo lwrf _

:='$1(/1,
;t?:Z
l'fll 0l'l !: I?h'POIrl'

V,,: 1..1II(/.r . rll 'IY1y (~·):;';t

IT'JIorl!: rwl/" llw d

Filld == Found V NolI', II"II/

Using Rule "aiU", "';11I/ mey be immediat ely tran slated into the following

program.

I[vnr b: !Joo/nill .

b: [Ir llf . b ~ 3 ~' : 1..1II11.r . I/rm!l(I.:) = .r]

if b_
IV-Imr/ : (3 " : 1..",11;/ . III"IYI.I/ (") = r , l1 /w"I! =ffll/lll/l

"b~

I'CfJtlI'l : (V ~' : 1.. 11/1/;/ . r"·/YI.I/ (k) :;' ;t , ' f'/wr/ ! = ,,,,/Nn,,,,/1
fl .

o

The next rule is the most gener al of all the t ran slalional rules for schema disjune-

lion and it is also th e most complex. T he reade r may find it necessary to rend

the example that follows in o rder to und erst and the rule :..nil appreciat(~ itli IJS !~ .

Rules "ail" a nd "aill" may be easily refined from this rule.

R u le 4.5 (A lternation Introduction "niH I") If we arc given

0 /1"'" 0 Pl V • •• V Op" ,

84

then we can trnnslate Oi' to the program

,· : [fl'llf ' , .flli

if 1/'1 -+w :I,p .·· 'lil , IOflll1

o '/',- w ·1" A", , 10".11

"
where 'b and Ii';, for 1 ::;; ; ::;; II, are any predicates , which satis fy the following

side condit ions.

1. tb A(V i .pre OJ!;) ~(V j . Ip;)

2. '/JA (V i . pre OJ! ;) ~(V'i::::} pre Op;) for 1 ::; j:S; Ii .

Notice lIlat if (V i • pre Op,) = / 1'111', th e premises above simplify to .fl. leaving

2' . ¢ ~ (V', ~ pre 0" ,) for 1 :S; i :S; II.

o

Au application of Rule "ailfl" may be found in the next example.

Example 4.7 The Find operation from Exam ple 4.6 may also be tr anslated

using Rule "ai Il I" .

We inte nd to have a loop to check the arr ay for an input value. The loop

will lise an int eger variable It ' t o hold the index of the cell th at is currently being

85

cheeked, The loop will step th rough the a rray unt il th e integer is found nr all ti l('

cells are checked. If t he integer is found, the loop exits a nd the value in I" will

be the index containing the desired int eger, Otherwise, II' will exceed th{' index

range of the ar ray, Using this strategy, we fomtnlete the Ilrl.'<!it:nlt> '.' which is

designated as If below.

If := (1/1 = IIIIIF + 1 /\ .1' 1/. IIITII!/[1..1II1Ul) V (II' E I . /1111.1' /\ 'U'I1'!I{II') =.1')

T he predicat es "'l and 1{'2 may he easily designe d na ,,' E 1.. /IJ I/ ,r ,ulll II' =

IIH I.f + 1, and t he desired progra m is obtained according to Rule "ail II" .

va r If!; Z
and 1 :5U>:::: II l1lf .

II': [Ii'll(, Il l ;

if wE L . III/"'
ITI",, 'I: 1/1 /\ II> E 1.. 1/1"" • l1'jJIII'I! =[mllltl]

(I''''' 1/1 11.r + l
I,(}IO I'I : 111/\ II' ::.: "/1'" + 1 , I1PfJi'!!:: Iwl1"mo/l11

fl.

T he remain ing requirement is t o check side condit ions. Since ,,';/111 is it to ta l

operat ion, we may use the condit ions l ' and 2' . Condition l ' may he expressed

If => ((w E 1../lIIU) V (11) := II If IX + I))

which is t riviaUy true . Conditio n 2' consist s of th e two subco nditio ns

If =>(111 E L. /IIu:r =>3k : 1. 1/lIIT . army(k) = $)

86

and

/I -:=;.(m = III IU ·!- l => 'r:/k: 1..11I(/;/' . Ill'/'fly(k) #:z].

T he proof for t he first subcondi tion may be conducted by assumi ng fI 1\ 1(1 E

J..1l1t1J: , and showing that 3k: 1..1/1(/.1: . ""my(k) = 7'. The second subcondition

mny also he shown in a simila r manner.

The following is A. derived rule for tr anslatin g schema conju nctions.

Rule 1.6 [Sequential Com p osit.lon I n t rodu ct ion "s ci") Suppose we have

where OIl;, 1 s; i S II , takes the form

where '~i nrc disjoint [vectors of) stete variables, an d Pi are predicates showing

how par t of t he state is altered. T hen 0/, may be tr anslated into the following

program.

87

Var iable Abbreviati on
<~!llt'k('

101'(' f
(llJj rf'/? olljl
'Jllj. 'd! "I ,j()
1Y'IW1'/! /V"/JO

Table 4.2: Abbr eviations (or the st ate , inpu t and output variables of lilt' sl .u·k.

4 .5 Case Study

In the following, we tra nslate the concrete design of t he stn.ckin Chapter :\ into

the refinemen t calculus .

4 .5 ,1 S t a t es and Opera ti ons

As before, we abbreviate t he st ate, input and outp ut variables of t he sta ck. 'I' ltcsl'

abb reviations are collected in Table 4 .2.

Using t he rules and str ategies of the preceding sect ions, t he slate and opc r-

alions are translated, and resultant abstract program is given in Figure 4.7. A

possible design of th e main p rcgra m Aln;"PIYJ!! is given in Ute next sect ion.

4 .5 .2 Main P rogram

For simplicity, we assume t hat the iupu t stre am of the syste m is 1\ sequence of

pairs of eOAIMAND and OlJJIX "I' . Each pair cont ains a request fur push, pop

or top, and an input object which is significant only for t he push operation.

88

VlU ' e : 1.. 11111.1 OIJ./fCT; I ; Z;
and 0 :::; / :s11I11.£

procedure 11I;1811/{'/';C a
.~ , I ; [Inti , 1 = 01

pr o cedure PIl.~ItC(va l ue IJbjl : 0I1.18C1'i re sult ,.rpO : HE:POIl 7') a
if 1 < 11I1/"' _

x,l: {f < lI Hl .r, 1= 'u + 1A .q ='''oE9 {1 - objl }l;
ll 'I/O; [11"01,., /'CI' O = okJ

o I = mar -+ ,-rpO : [t = 1/11lJ" , I'f:PO = f rill)
fi

pro cedure IJol,(.'(re sult. I'f:PO : IlEPOIl7') a
if I i-a

J : [1 -1- 0 , 1= 10- IJ;
I"rpO : [/I"I I (, 1~'/IO =okJ

1 = 0 ' l";/I(); [I =0 , 1'11,0 = ell/ Il l y]

pro cedu re 'HlpC(res ult objO; OB.JECT; res ult n;/IO : IlEPO/l'l') ~
if 'i- 0

ohjO : (11- 0 , o{.jO = .q(f-));
I'IPO : ["'UI , ,.epO = ()kJ

J = 0n:/lO : [/ = 0 , 1'11/0 = emlilyl

I ll i l ii /ll l t' ;
M II ; II P/l/! / IVI/11

Figure 4.7 : An abst ract program translat ed from t he concrete design of the st ack.

89

COMMAND :;= IH'.", I lWj! I ',,!'

INPUT == seq(CO.uMA N/) -c OU.n,(T)

Similarly, we assume th at the outp u t st ream of the system i~ it Sl'(pWl1n' of Jllli r ~

of UEPOUT and n U.JBC'I'. Each pa ir indica tes the ~ l llt \l ~ of a ll opern tlou nnd

an out put object which is significant only for the top operation.

OUT/JUT ==seq(Uf PO /{/' x OlJ./8 ("1')

We assume t hat the targ et programming lnngnn ge provides the following opera-

tors on sequences.

• Ilnll/ , which gives the first eleme nt of a sequence ;

• Ifl .~I, which gives t he last element of a sequence;

• Jrolll , which ret urn s the sequen ce with out its last element ; and

• fili I , which returns the sequence wit hout i ts first clement .

T he programm ing language is also und ers tood to have o perat ors such as Jj,..~1 and

second which gives the first and second elements of an orde red pair.

PI\.~hC() III/11 rl/lll _

lJ.Sll\ ck C
0, 0 '; INPU'I'
{j,/ f ; OUTP UT

Jifl,l (ItClld(o }) = Jlllsh
PushC[rt pO, r} bj/Vi l·.~ I (11l.~1 (/:1')), Mt:lmd(hwd(It))J
o' = lailn
[mnl iJ' = IJ

90

In l 'II .~" Cm/IJlHlllfl. the effect of II. user requ est for pushing the stack is given . Thi s

is des cribe d in terms of th e transforma tion of t he input an d out put streams 0 and

fl. The effect on t he st ack is described by including PI1.~" C with the input and

out put varlnhlcs appropria tely renamed to associate with the inpu t and output

d ream s. T he in put stream is short ened by one command and output stream is

lengthened with one out put. The effects of popping and inquiring abou t t he top

of the slack are describe d in P(JIJC(Jlllmnllfl and TO/JCollllllatu(respectively,

J'O/lCo/llmn"d _

I::1Sfllf·ke
H, n ' : INP UT
fl, ti' : OUTPUT

lir.•'(lll'll.J{n» = 1/(//1
1'1'/1(.'[1"1'"/10 Vi' ~. ,(ta..t.(ti'))]
(1'= Illi/ (l

j l"llll/ fl' = /i

·, i,/JC"WmllUd _

I::1SlllCkC
ll , n': INP UT
li , ti ': OUTI'IlT

jil~.f (h nll'((l)) = //IP
'li11JC(11'/Jf) , objO V il'.•f (l ll.•,{.lf)),SCC(Jlld(la~/ Un)])
n'= '(li/ (1
j l"lW I #'= /1

Since each inpu t must be a push, pop or top operatio n , the effect of consuming

one input of the input sequence may be viewed as the disjunction of these three

operations. This is described in I IIIHIIOIIIJJld .

91

Table 4 .3: T he precondi tions of 1'/l.<h('/lIll IlWlld, J'oF('mlll lmud, IUIII

'J'o/,Com mn" rl.

Alth ough t his may not be immediatel y useful at thi s point , we giVt't lw tTlUI ~'

le tion of f/l/JI,' Ouff,ul . The precondition s of its t hree disjunc ts may Ill' fouurl in

Table 4 .3 . Using Rule "ail", the specification sta tement

0',8,1, .': [pr e 1t1/1l/IOl/fllll!, (fllfl llf() ul lJul l J

may be tran slated into t he following.

if jir.•f(lmll/(O' » = /111 .•11 ---1
n, {J, .•• f : Virll l(hrrul (n)) = flll .-II ,

(Pu.•ItC][nf/O, llllj l\ji/\<I(flJ.<I({i),.'<f"·/JIlrl(hl'lIIf(l llJ))1 1'1
0 = Ifl il nl)l'I

lmlll (1) =fJ];
jirt;f(hcarl(n») "" /1Of/---1

0 ,{J• .<,/ : [/i r.<I(/"'fIlJ(n)) ::::: flllll,

(PoflC) (I'f.'J/O\ j i r,<I (f II.</(,I:I))JA
0= taii a liI\.

11'0111 {1(J = /11;
jil'sl(hcnrl(a)) = 'O fl---l

n , {1, H, I : [/i l'.<I(lI(;(/I/((')) = IOfl ,
(' /rlpCll n:/JO, obj O\ j ir·.<I{JIl.•f({:I)),.<t,mHI(/ /!!I/({:1))])A

0'= I,ail ou/\

fmld {:Ill =/:II;
fl .

92

Th e main ·progrllm of the system essentilllly applies t he l " pufO lltpd ope rat ion

until th e input sequence is complet ely reed . By capturinr; the operation as a

relat ion, mult iple appliclltion o f an operat ion may be conveniently described using

relat ional composition. Such Il relat ion (or I III' ll/ Oil/p ili is p ven as ;0 below.

S'/ ' I t :,,·(: == 1.." "1r --. OIlJBCT

I;", S·/ ~I! ··h·(: x Z , IN/' /IT , 0 1''1'1'/1'1'
... S1.,I CII"(: x Z)(/NPU T x OUTPUT

i f } = { /II/HIIOul /I III . (1I. 1,1l, {l)(...' , I' , n' ,ff)}

T ile relati on io may be und ers tood as Collows. If 11, I , (I, and {Jare the values

oCtile current stac k array, stack top , input an d ou tput s trea ms, and S', t', 0' , and

I f are t he next stac k ar rllY, st ack top , input and out put st reams aCter execut ing

f ll" " I (J" ' I' ,,1 once, then t he mapp in~

(,. I.n·")- V I'.n'.I1')

must be in the relation ;0.

We require t hat t he 11I/,u.IO " ' pltl operat ion be performed Cor every com ma nd

in tile inp ut s trea m. As such, we may relate in it ial and final sta tes of the syste m

by composing t he rela tion io all many timt s as the lengt h of the input sequence.

"hi s ide" : ~ capt ured in the schema Mtli ll which describ es t he execution of the

system.

93

'I'civielly, th e trans lation of M llill gives t he specification sta temen t

$,1,0',# : [t ,.lIe , (.~ , I ,(l , f'J) = ;1,#"O(''\I. III, Il'1o#'I)I.

In the next chapter, we show how the refinement of th is statement may introduc e

t he stack prcceou res as well as the code t ranslated from ' "jlll/Olll/IIII .

4.6 Summary and B ib liographical Notes

In th is chapt er, we have examined many of the issues concerni ng t he tran slati on

of a Z specification into t he refinement calculus. The notatio n of til e eeflnc­

ment calculus is introd uced and the notion of algorithmic refinement within th e

framework uf the calculus is summarized. A compa rison of th e two notations is

t hen given while noting their relative suit ability for specification a nd develop.

ment work. Translati on rules based on this comparison are th en presente d and

more sophistica ted derived rules for disjunction a nd conjunction of schemes arc

also given. We also give some direct ions on how to design a program that uses

the procedur es resultin g from such a tra nslation.

T he basic techniques for translat ing from Z to th e refinement calculus were

pr oposed by King [25]. The version th at we use is from Woodcock [451. Some

94

examples of translat ion may be found in [25, 45J

Th e notati on of the refinement calculus t hat we use is from Morgan {31).

Other flavors of the refinement calculus may be found in {2, 351. More references

for the refinement calculus may be found in the las t section of Chapte r 5.

"

Chapter 5

Ope ration R efinement

Cha pte r 4 intr odu ced t he languag e of the refinem en t calculus nnrlshowed how t.ln­

calculus may b e used to develop pr ograms . Th is chapt er presents mor e refinement

laws and gives examples to show how t hey may be use d. As it is imp ossibh- Io

present all the laws t hat arc available, a more complete list may he fnll ll d i ll

Appendix B.

5.1 Feasibility

An imp or tant concept in t he refinement calculus is fhnt of the fCa li i l) i1i ~y of I I

specificat ion, which indicat es whether t he specification may be refined to co de.

A speci fication is fca.~iblr. if its precondit ion is at least as strong as t he precon­

dition th at is calculat ed from t ha t specification's post condition (i.e. , the lI"'fl lm./

precond ition.) T his requires t he precondit ion of a epecificetion to have lUi least

the const ra inll that Are impose<!by t !'le post condition, and this is st at ed formally

in Definition Mfeu· below.

Definit io n 5.1 (feas ib ili ty " fe a a"] T he speci ficat ion ID: [pre , post]is fl"n., i~lc

if and only if

(If! = 'ru) " lIlT " ;'1 11 => (3 1/1 : 7' . inp" J~~'),

where 'J' is the type of III and i ll " is t he invarjsnt that is associat ed with the

variables l/I during thei r declarat ions.

o

It is important to note that t he calculus will not allow an infeasibl e specifica­

tion to be relined into code . Al lUch , it il impossible for an infea.sible specificat ion

to lead to incorrect code , and hence , although possible to do so, it is not necessary

for us to check the feas ibility of sp ecifications durin~ development .

5 .1.1 P a th olc g fca l Spe cifi cations

In this sect ion, we give some specificat ions which may be considered as ext remes

in the spect rum of specifications. Alt hough these are not commonly used to

describe programs (except for sk ip), they are very useful in unders t anding and

explaining phenomena th at III lI.y arise duri ng IL development .

97

T he specificat ion d atemen t

/I' : [{nl.~.. . '''''''J

is called a b o r t . Since its precondition is Ialse, it Illay 1I0t be used und er a llY

ciecumat ence, a nd it i. is never gua ranteed to terminate. Even H it floes tcr miulIt l",

the post cond it ion of 11'11" ena bles any res uh to be produced.

Th e specifica tion st atement

W: [/I'IH·. I' ·tI"J

is ca lled ch o ose so, Since its precond iti on iRIn f , its invocation is alwny s gUM-

an teed to termin at e, and since its pos tcondit ion is /llso IflU ·, it may prod uce any

result .

T he specificatio n . tat ement

: [/nlc ,I I'IIC]

is called s kip . Th ill progra m is similar t o choo se II! in t hat it is always guar nntec d

to terminate; however, it cha nges noth in g Il5 ib fram e is empty.

98

'The specification sta tement

is called magi c. Since its precondition is In lc, it is always guaranteed to termi­

nate . However, since its postco ndition is false, its terminat ing state can never be

satisfied. As such, it estab lishes the im possible.

5.2 Some Basic Laws

In th is section, we present some basic laws whi ch enable th e refinemen t of a

specificat ion int o different language cons tructs .

5. 2. 1 Assignment

Our first law is one t hat intr oduces an assignment into the program.

Law 5.1 (nss ignm ent "ass") If (w = llll) A PI'€: => posl[w\E), then

/(r,.r : 1111'(, /losi] l;;;; 11':= E.

o

Law "ass" states tha t a variable may be assigned a value if the replacement of

the variabl e by tha t value in t he postcondi tion repr esents a sta te th at is deri vable

from its precondition.

99

Example 5.1 Since

~::::: .ro " tmr
=> ~+ l> ~o

~ ;r>~o[.r \.r+ l l,

.1: [f I' IlC• r > IU]

;c :::::: .r+ l.

5 .2.2 Local B lock

Often du ring programmi ng, we find the need to use some exl ra vnrieblcs to hold

interm edi at e values. Th e next law gives us a way to do t his.

Law 5.2 (int r od uce loca l b lo ck " ilb") If II' and r arc disjoint , then

Ill : [Jlf(: , 1/().~f l r;;; I[va r .r: 'I'i a nd iUI! . III,):: [fill, /JIJ"'llI ·

Law "ilb" says that a fresh varia ble may be declared a nd includ ed in tile Irnmc

of a speci fication state ment together with thc intro duct ion of II. local block to

contain its scope.

Exa mple 5.2 Assume that we want to swap the values of two variables :r. and

y of type 1'. We can intr oduce a variable I of the same type to hold one of th eir

values when swapping.

100

r,Y: [lnlf:,;z = !lo A .'1= 1'01

!; "ilb"

va r I: T .
r,y,I: [II'l/c , ;r,=YoA .'1=1'01

o

5 .2.3 Skip

If the precondition implies the postcondition, then II. before-state that satisfies

the precondition is also a legitimate after-sta te; ILS such, there is no need to do

anything. Th is idea is contained in Law "sk" below.

Law 5. 3 (s kip com mand "sk") If (II! = 1/10) A pre => 11081, then

II' : [/HY' , po.qf] ~ skip .

o

An avenue to understand this law is to convert the requirement pre =>post

to /II'f V JJo.~ I. Since th e postcondition post is guaranteed whenever the precon-

clition pl'e is t rue, we are not obliged to do anything.

Existing laws may be used to derive new laws. This is part icularly useful

for building librar ies of derived laws when a developer has established a pre-

Ierred style of refinement either due to the target language or his mathemati cal

intuitions. As an example, we show a derivation of Law "ek".

101

E xamp le 5.3 A proof for Law "sk" is

II': [prc, 1m.'!']

~ "sp" and since pre =>1/f}.~1

m: [IllY:, It' = uu]

~ "wp"
w :!lrllf , 1/1= tl\))

~ "efI"
:[I ' ·lIc ,l,.uc].

Since skip is defined es : 1/l'llt , t rur], our proof is complete .

o

5 .2.4 Logical Co nstant

A IQgic(l1 COlIs l rlll1 may be introduced much like a variab le, i.•~. , hy <Inclaring it

within a local block. However, unlike a variable , the value teken by t he constant

is fixed, and since a. logical constnnt is not an execut able construct, it must he

removed at t he end of the development . Logical constants may be int roduced

to give names to some values that IUllst exist. The value of n logical constant ill

often described in t he precondi tion of II. specificat ion, where it llllly be understood

t ha t the consta nt t akes on the value t hat makes t he precondition tru e. Since

logical const ants a re frequent ly used to hold th e before-values of vluiablclI, an

a bbreviation has been formul ated for this purpose.

Abbreviation 5.1 (initial varia b le "l v"] Occurrence s of n-eubscriptcd vari-

abIes in the post conditi on of a specifica.tion refer to val '~es held by those variables

102

in the illilir,l state. Let cebe any variab le, probably o ccurring in the frame tn, If

X is a fresh name , and 7' is the type of J: , t hen

11) : [II IT , JlIJJiII

I! con X : 7' . 111 : [l'l'e A;r; =X , PO$t !.1"o\ Xlll!·

We reserve n-eubacripted na mes for t hat purpose, and ca.ll them inilial variables.

o

Example 5.4 Usin g Abbreviation "iv", the specifica tio n sta tement of Exam-

pie 5.2- ll-.ilt swnps t wo variables rand Y.

r , y ,l : {i/'Ill" r. = YoA y= rc],

may be writt en as

con X . }' .
r ,y, 1 :[1'= X Ay= r , 1'= l' Ay= Xl

a

Logical consta nts ma y be removed at the end of a. development by using Law

"ric" which is given below. This law is used to ensu re the constant no longer

nppears in th e progr am.

Law 5.4 (remove lo gical ccustant " rIc") If c occ u rs nowhere in program PI'09.

then

103

lf eon(': 7' .p,."gll !; p~.

5.2.5 Sequen ti al Ccmposit io n

A sequential composition Inay be introd uced to d ivide ", specifica t ion sla tc lIlcnt

into two specification d at cments . This is acecmplished by finding a sillgle I lr~{' .

icate to indicat e the a.fte r-st ate of the first spccificetion nnd the bcfore-st.ntc or

the second. By restricti ng the frame of th e fint epecificnrio n to bt~ n fracti on or

that of the origi nal spe ci fication, the requi rements of t he ori~i nnl specification

may be distri buted between the two new specificat ions.

Law 5 .5 (se q uentia l c.om po s it ion "sell")

\&l, X : [PI'(: , INul)

l; x: (prr , mid];
ttl, X: Imid , po...I].

The pr edicate mid mu. t not contain init ial vAriables, And IN....l must not conta in

'.,

Exampl e 5.5 We refine the specification o(Exa mple SA t o code. The st rAlcgy

is tc use the varia ble 1 t o store the value of r during the swap of :r and y .

10.

x. H, / : [x = X fI Y = Y , r: = Y fI Y = X]

t; "scll "
1 : [x = X 1\ Y = }' , x = X 1\ Y = Y 1\ 1= xl;
x , H. / : [;7=X 1\ Y = \' 1\ t =X , X = Y 1\ Y = X] ; <I

I; "scll"
;r : IT = X 1\ Y = r 1\ / = X • T -= r 1\ y = Y A t = Xl;
;r , H, I : [;r = r 1\ y =Y A ,=X , ;r = Y Ay = X];

The symb. I <I is convent ionally used to indicate the specification that is refined

next . Collecting the leaves of the refinement tree, we have

;7, H : [T= X A Y = }' , ;r = r 1\ !I = Xl
t; I : [;r =X A Y =}' , r = X 1\ Y = r 1\ 1 = X]; (i)

.r : [x = X A 11 = I" 1\ I = X , r = Y 1\ y = r A f = Xj; (ii)
x.1/.1 : [x = y 1\ .IJ= Y A f = X , ;r = r 1\ y = X]. (iii)

Using L IIW "ass" , specifications (i), (ii) and (iii) may be eas ily refined to code.

(;) [:; 1 . - ,
(ii) [:; x := !I

(iii) c y:= 1

o

5.2 .6 Alternation

All a lternation may be intr oduced by finding predicates which collectively cover

the situations stated in the preconditio n. These predicates become the guards

of the alterna tion , and since the precondition is assumed to be: true when the

alternat ion is executed, at least one of these guards will be t rue. Hence, we have

a well-defined alternation which willnot abor t .

105

La w 5.6 [alter nat.ic n "a iU ") If pn" =* (V j . (:,), t h ~1I

It': [,.,r. po../!

I; irmi . Ci - "' : 1(:,1\ /"", 11I·...lJ) fi .

o

E xnmpl e 5.6 Th e abst ract program in Fig ure 1.:1 tllnt finds ti ll ' n ll~x i tll ll lll or

t wo numbe rs may b . .;n plem ented wit ll a n al t"tlIll.tion . Since II'"" "*(1 ;::: 1/ V

!J?:I), we have

I ,Y'I"'"" " (lu ?:: !II. A 1 = . , A II =I ..) V
(!ob?:: III AI == r ll A!J =!/I1))

Th e symbol :: is used below to indicate an nh h r"viat io n where lIll" l' u>llcun<lili" l1

of the st art ing specification was ab breviat ed IlS I .

l; -sur-
I == (ru ?: fA) A I = !.I.1 A !I =.rll) V

(!Ill ?: I II A / = ,I"I) A Y= f.tl) .

if I?: Y _
r , y : (r ? s • Ii

Oy? I _

1 . 1/":I!I?:: I , II

l; "sp· and th cn " wp·
1,,1, :111"11" , I = !lo A Y =lu!

(i) l; ~ sp" an d the n "wp"
.r:, !J ; [/r'/It , 1 = 10 f\y= !./II!

l;;;; "skn

skip

106

Collecting the refinement leaves, we have

,1', 1: : Ilr ..- , (,I'll ~ !At/, ,I' = Yo1\ 9 = ,I'll) V

(!JI ?: ,1'11 /\ r =,I'll A Y =Yo)1

{; if ,l' ?: g -
r,y : I' r., . "I' = Yo A Y = "I'll)

OU?: ,1'_
skip

fl.

5.2 .7 It.erat ion

The cent ral task of refining an it- rat ion is to find an il/ VI/";rllli which stet es what

must be true du ring all repet itions. The refinement must also establish a m rinnt,

which is an expression th at m ud decrease &$ the iteration progresses .

Law 5.7 (it er atio n " it e r") Let i l1l'_the ;Jlflflri,, 1/', be any predicate ; let 1/ , the

r llri ,,,,I, be a.ny i nte~er·va1ued expression. T hen

"' : \;'''' . i llr A -.(V i l Gi)]

{; do
ill; ' Go- ", : (illl' A c. : ill" A (O~ I' < 1'0)1)

od .

Note t ha t neither i"" nor (;i may contain initial variables and the expression 1'0

o

Th e subt1t'ty in this law lies with the formulation of the variant expression

I". By req'Jirillg that I ' be non-negative an d decreasing during each itera tion.

107

the user of th e refinement is forced to consider the termination of the itcration .

Th is conside ration typ ically leeds to the formula tion of guards (; , which statcs

exactly when the ite ra tion may conti nue . These guards ensure th at the it erati on

terminate s before Il becomes negative .

Examp le 5.7 We offer a refinement of the sp eelflention state ment from glm11l'

pie 4.7 which checks the presence of an integer in all intege r army. Our l'lrnt cll;y

is to check th e elements of the array from the smallest index to the 11HI;{$1. If

input is found , then the loop exit s. Otherw ise, the loop terminates aft er nil of

the elements ar c checked.

Th e spec ificati on statement of interest is

e: [" ·ur . II)

wher e

If == (II! = mnr + 1 /\ r rt. tll'my [I .. III/u]) V (,,, E l ..mrJl' A I' I'I"' !J(II') = 1').

Thi s may be refined into an iteration which uses t he vuriable II' to hold the

index of the ar ray element t ha.t is cu rrent ly bein g checked . Since th e body of 1I1 '~

ite ration essentia lly increments w.an d this is necessary only when input is 110t

observed, we may formulate t he invariant to say that th e elements checked so far

do not contain the input. Thi s may be written as

I== .r II.1II'my [l..lJl - l).

108

Since the variable In is increasing du ring each iterati on and may be between 1

a nd /IIllit + 1, a variant expression may be

V'"" f/lu;r+ l-lIJ.

The exit condition is

.... c: '"" lit = ""If + 1 V 1l1'1'l1!J(IIJ) = :r

where c: is th e only guard of the itera tion. T hese ideas are used in the following

refinement .

w: [J"jj(', f1]

(;;; "sell"

1 <= ;1': (j.11I·ntl/[l..w -lJ .

u, : [II'/I(', I];
111 :[/ , f1]

(;;; "ass"
Il' := 1

(i) c "sp"

(,':; 111 'f:. max+ l A fII'my(m) #:r .
"' :[1 , f A",CJ

!; "iter" with invariant I and vari ant max +1 - w

do G
w : [f A G , i A (0 ::;; max +1 - IV::;;max + 1 - Uti)] <l

ad

!; "a65"
11':= 1,, + 1

o

[09

5 .2.8 Procedur e

Paramet erized procedures may be introduced through the mochauism of Mlb ,~ / i·

tulien, T hree kinds of substitution are aveileble: l'U/l' /lil - I' ll1l1f, "l/II.".tI- n"~III/, and

call-bY-lIaltlc-tcSIIII, The requirements for their use ere given in t he respect ive

laws. We present h..re th e last of the three. Since t he law is quite unintuitlve, n

st udy of th e example t hat follows may be necessa ry for a comprehe nsion of t he

law,

Law 5.8 (value - res ult subst it u t ion "v rsII") [f Im.•1does not contain II , th en

: [p"clf \ aJ , /!o.~/f!(}.I\ an. nil

!;" [va lue result I: '1'\11] _
11', 1: [/IIl:. 110$/].

o

After a substit ut ion law is applied, the formal param eters a nd the resulting 91' (:(-

ification statement may be combined to form a. procedur e. In th eir place , n

procedur e call with the act ual para meters is introdu ced.

Examp le 5.8 Su ppose th at we have an abst ract program that conta ins multi ple

specificat ion st a te ments of the kind

a, b : [II'IIC, a = bo A b = Yo]

which swaps the two variables ({ and b. It would he convenient to form a pro-

cedure t hat does thi s so th at an o ccurrence of t his specification may simply he

110

replaced by ill. procedure call. In t his way, instead of refining each oecutrenee of

the specification, we are obli&aled to refine only that copy, which is the pro ee-

dure . We show bdow how It procedure for the ab ove specification aud its call

may be introduced into a pfO&ram.

t:.,b : IJruc , /I = 60A b = lIo)

/I,b: flrur , (.'! = .lotI A Y= rO)J[rll,l, !N,Y\IIo, IJ, bo, 61J

{; ~ vull"

(value result ;r,Y: Z\I1,bJ .
r, II: ! / r ll f , .t= !4JAY = .foJ

proced ure Sma/I(.r. , y: Z) ==
r ,J} :(ln lr , r = !Io/l Y = .fol

Smll/l(II ,b)

l; from t he results of Exam ple 5.2, Example 5.4, a nd
Example 5.5 and \Isin& "rlc"

va r I : Z .
1 := I ;
r :'" .IIi
.1':= I

CoUedi ng code, we have

p rocedure SlMp(r ,!) : Z) =.
11

vnr f : Z .
f := I i
r := Yi
.'1:= 1

SI/'f1p(a.b)

a

111

Du pli ca t ion of Actual :lnd For mal P <\fal11et ers

Note th at in all subst itut ions, if f is a list of forma l parameters then it must not

cont ain repea ted variables, because a subs tit ution oft he kind 1.1/. !I\1. 2] would be

mean ingless. For t he same reason, since [flVl occurs in value-result and result

subs t itu tions , the a ct ual paramete rs II must not contain repeat ed variable s.

Var iab le Capture

It is often desirable to group all the procedures togeth er in the outermost hlock

of th e complet e program. T his may be necessar y due t o the requirement s orthe

tar get progra mming language . One poss ible difficulty with moving a procedure is

tha t it might move variables into and out oft he blocks in which t hey lite decl ared .

As such, it is recommended t hat a pr e cedure use only variables that ar e dllwr

global, Le., whose scope exten d throug hout t he whole program, or loca l within

the body of t he proce dure.

Substit ution by R eference

Th e most comm on substitu tion techniques used in current p rogramming lan­

guages are cnfl -by-valltc and call.by./y:!crrllrc . Cell-by- reference substltufio n lIllly

be effectively modeled by value -result su bst itut ion exce pt when there is fllifl.~i/l.f/,

i.e . when tw o distinct names in the procedure li re used to refer to one single

variab le [31, 291.

112

Aliasing in call-by-reference occurs explicitly in

[refe rence L,!/\Z,;;J

where .r and y are both used to refer to c. With cell-by- reference, a.change of

y in the procedu re changes .r and c as well. On the other hand, in a. similar

call-by-value-result substitu tion, a change of y in the procedure does not affect

L, and upon the exit of the procedure, :: will be assigned the value of either ;r or

y. All example of implicit aliasing is

r := y2 [refe rence y\xJ .

An execution of this with call-by-reference will enable :r to square itself, while a

similar call-by-value-result substit ution will prevent the value of :r {rom changing.

By avoiding occurrence of aliasing, we may use call-by-value-result to develop

programs that contain call-by-reference substit utious. The explicit caseof aliasing

may be avoided by disallowing repeated variables in the param eter list of any

value-result substit ution. Note that from the discussion of a previous sect ion on

the duplication of actual parameters , we have already disallowed duplicat ion of

variables in act ual parameter list (or value-result substitut ions. The implicit case

of aliasing may be dealt with by simply requiring that an actual parameter does

nor appear in the code of the procedure.

113

5.3 Case St udy

In the following , we give one refin ement of the proced ures and main program of

the stac k exam ple of Cha pter 4.

5.3 .1 Procedures

Since the refinemen t of the procedures is easy, we show here only th e process for

procedu re PushC. All resultant code for the program , except tha t for the main

progra m, is collecte d in Figure 5.1.

R efin em ent of t ill; p roccdu r ... PII.•lle

The sp ecificat io n statements in th e procedure FII.•!d ! arc refined helow. Fir st ,

we refine the first specificat ion sta tement in the first branch of the alternat ion of

PII.~hC from Figure 4.7,

[
''''' lu + 1 A]

.~,I : 1 < IIHI.1 , x=",@ {/,,/,j1 }

!; "scI"
con 7' .
I : (t < //HI.J: -1 , 1= 1<) +1};

[
, I =: '1'+ 1 A]

8,1 : t= f+l. _ " {I " I}S_." .1-> (1)

c "ass "
/ '= 1+ 1

114

<1

var ": 1..11I(1;>:"'" OHJ8CT ; 1 ~ z;
nndO$I.$mtlf

p roc edure luilStacke::: l := 0

proced u re I'rl.,hC(va llle obj l : OBJECT; r es ult TepO: HEPOR1') ~
if l < II/Uf

1: = 1+ 1;
-, (1-) := (J~jl;

lY:PO:= ok
I. = III IU _

n:pO :=f111l

fi ;

pr-ocedu r e l'o/lC (rcBul t 1'('1,0 : HEPORT);;:
if 1,# 0 _

1:= l - l ;
IT'pO:= ok

1 = 0_
IT'IJO:= rmpl y

6;

pro ced ur e '/hjJC(res u lt ohjO: OBJECT ; r esul t TepO: REPOIlT) ==
if Ii- O-

o/ljD := ,~ (I)

' "'-'JI0 :="I..
1 =0

rf/IO:=rm/l/y

IJli/S /ark e ;
,l /u ill/'/1>!lnrm

Figure 5.1: An ahstract program of the stac k with refined procedures,

115

(i) = MSp " bot h ways

[

, = 7"+ 1 11.]
••• t . I=T +I. {t} 4 ",={t } .a.'\IA

...(I)=r>bj l

~ "u s"
...(1) := obil

Th e refinement of the second specificatio n sta te ment of the flu t br:lllch is given

nex t .

~ "au "
''f:pO:= 01.:

Final ly, we re fine the specification in the second branch of the I\.HclIIl\.tion.

rr:pO :j t = /liar - 1 . rrpO =/uIlJ

l; "us"
rrpO := / ul1

5 .3 .2 M a in P r ogram

We describe below a possible refinement of the main prog ram. Recall t hai thi...

program hils t he epeeifieatic n

Using the ab breviati on for ini ti al variable, we rewrite t his epecificatlon lUI

116

"iv"
COil S, 1', II, IJ .

[
'~', ~: ~

ll ,l,o,fJ: A = (t A

lJ ~ fi

, (."I,o,Pl ~ 'o" (S, 1',,1, Bl]

We went our program to continuously read a. ecmme nd . input object pair, and

exe cute th e relevant operation , until no more inpu t is found. Clearly, t his involves

an iteration with a terminating condition indicating t hat th e input stre am is

empt y, and a variant expres sion that gives the length of the inpu t st ream. Th e

next few ste ps are th e typical ones for sett ing up such an iteration.

t; "wp"
1I , I,u, fJ : [(8,1.,0,11) = ;o'lA-#<>(.') , T, .t , B) ,

(.s, I ,o,{~) = 10#A(05, r,A, B»)

I; "sp"

I == (.~, 1, , ::I, (1) = ;o#A-#<>(S, '1',A, B) .

,, 1,0, /1, [/, / A0 =OJ

l; "isg" with inva riance / a nd variance #0
do 0 '" 0 ~

11,1, 0,(3 : (o ~ () 11 / , /11 0 5#n:5#Cfol
cd

Th e specificat ion in the bo dy of the iteration may be refined to introduce the

abstract program for operation l upltfOI/I/Ill t.

l; "sp"
.~ ,I ,(l , tJ . [o i- () A/ , / A#o = #o o-11

117

if ji l·.</(lm ld (o)) = IJlI.~11
Cl, f3. $. I : Ui l'~ I(},rad(n)) =Jl II••h •

[/JII .,h CDl I ~·/l O . ubj /V i/'., /{IIl.,I(#»)• .'1·/'(II1If(!rIlld(l IO»] A
n = lail flU A

fm lll P = 110];
jir~/ (IImd(n» = pfl/l -I

a ,p, s./: [Ji l ~ l (hnll/(n)) = pOl' .

[Pv/,Gl!l'fJlO\j i,..•I(ll1:.'(.iJ'))] A
n = tail 0Il A

fIY/ ll f {3= I~J] ;

ji l'$I(h ml1(o)) = lop -l
CI, P . s .1 : UiI~,I (hnlll(fl» = 10/1•

(7'opC] [I'f'pO. Qbj OVi,#(11I.,J(t1»• .</"I·(llId((II.•I(#»]) A

0: = I ni! 00 A

[roilI # = /30];
fl .

Figure 5.2: An abst ract program trans lated Irom the schema I I/JlIIIO IIIJIII !'

I; "ep" and the n "wp"

s,'. o.~. [0 #0. (.<. ' ,n./')';" (." ,I ,,,,,,,,/I,,)A 1
#"'#0,, - 1 J

~ "ep"
s, l. a ,{J : 10 i {} , (i l/plltO lIlp,,'])

Using t he refinement in Section 4.5.2 for i l/llldO ll lfJlIl , we can refine t he above

into the program in Figu re 5.2, which gives the body of th e iteration .

118

A Refinement to In troduce P O/IG'

The abstract program in Figure 5.2 may be refilled to introduce the procedur es

or the st ack. We show here how to refine t he second branch of the alternatio n

to int rodu ce procedure PO/IG', Th e other branches may be refined similarly. Th e

specificat ion in th e second branch of the alt ern atio n is

[

IPol,CII><pOV,,·.,I(I,,' (#))! A]

n , /j ,.~ , / : Jirs/(hftul{o:» "" pal', lI' = tail 0(11\

Irrm/ {3= .80

Weintroduce n variab le to hold t he outpu t of the POIle op erat ion, and decomp ose

this specification into a specificati on that performs the pop operation and anoth er

tllat intemcta with the inp ut and outpu t streams .

!;; "scI"
CO li .<I,T ,H , OIJ.I .

,~ " ,r,obj:(/,,"r, (l'o/JCj{rq IO\ ,.J; (i)
(I',# ' '', I, I'. obj : II Po/IC) [I'CJl O\ I'][.~ , I, I', obj\S, T, Il , OlM] ,

(/JOPC')[IY'/IO\ d r''o' 'O, lb, ObJo.' \ 8 , T, R, 0 8.11A 1
(,. ,o bi) = /IlS/({3) 1\ -o

ct = Iflil Cl'o 1\
11'0111 {3=fJo

G (l:= fil i i 0 ;
/1 := f1"' {(,,, obj)}.

119

Specifica tio n (i) may be refined to introduce thc proce dur e " "11(' by applying

Law "rs" .

(i) ~ "rs"
,~,I ,obj, /'('JlO: [11"11', (/I"11C Jl[r('s ult. n'/IO \ ,'\

procedure P"llC(res u lt ll'/IO: 1lI:" 'OUf) e
..., 1, 1'('1'0 : (11"1", (1' '' 1)('11

POPC(I')

Since procedur e pope -rees only vari ables t bat nre eithe r globa l or local to / '''1)(' ,

the proced ure may be moved to the out ermost block, For courpletenesa, 1I1e COfl(~

for our st ack prog ram is given ill Fjgure 5.3.

05 .4 Summary and Bibliographical Notes

T his cha pte r conta ins several basic laws of t he refinement calculus and eXlllupll's

to show their usc. Th ese laws allow many of t he major exec ut able co nst ructe to

b e intr oduc ed du ring the refinement or a speci fication.

Th e mat erial pre sented in this chapter may he round i ll Morgan 's hook nil

the refinement calculus [31), In th is book , Morgan also t reats refinemen t into

mod ules, recursion , and data refinement within th e fram ework or the refinement

ca lculus. The oretical discussio ns on the different asp ects of t he cniclilus may he

found in [33,30J(sp ecificati on stat ement), [291(proced ures and param den), [:121

(ty pes an d invaria nt s) , and [34, 28, 271(data refinemen t).

12£1

va r ,~ : Llllfl,f _ OUJHCT i
l :Zi
r : Uf;I'O/l 'f ;
"bj ; OIIJH(.7 ·

a nd 0::; I ~ IlifF;

pr o ced ur e fI,i/Sltu,kG .e t := 0

procedu re 1'1l..J,C(va l ue objl: OIJJEC1': r" su lt ITpO : REPORT) e
if t « wnr_

t := I + l i
"(1): = " bj l :
n:pO := tlk

I = IIuu _

fi j

pr oc edu r e l' ollC(r es u lt rrpO : fl EPOIlT) :!:!;
if 1 :/:0 _

f:= I - I :
" '1) 0 := tlk

1= 0_
I"tpO:= '-"'ply

fi ;

proced ure '1i1/IC'(res u lt tlbjO : OUJf:C7'; resu lt IT/IO : HEPORT) s­
ir / ';' 0 _

tlbjO := ",(I)
npO:=ot·

I =O -t

"JlO := emply

1"il.'J·ftlr£·C ;

do n " () _
ir jir,,'(I1t'f/tI(n » = Inl'h _ P ,vlltC(/lrnllld(ltCtlli(o», r)
U Jir,,'(/lflll/(Cl))= 1m/!_ POIIC(r)
U ji,·,,'(/mul(Cl)) = lop _ To/!C(obj , r)
A;
fl := Illit OJ

,d:= II '"' ({I' , obj))
od

Figure :).3: Code calculated from the abst ract proGram of th e stack .

121

One of th e difficulties associate d with the lise of t hc refinement calenlus is

the derivation of loop invariants (see Lnw "it er") . SOllie dillcussion on how t he

obtain loop invariants may be found in [13}.

Wordswort h has suggested an approach to operation refinement t ha t avoids

tile refinement calculus [411. Words worth's met hod which a lso enab le code in

guarded commands 10 be yielded from a concrete design involves stat ing a ll al.

gorit hm design and proving its correct ness. The state-and-prove na t ure of his

approach complements the calcula tive nature of t he refinement calculu s.

122

Chapter 6

Case Study: The Paragraph

Problem

Thi s chapter conta ins a non-tri vial case study. Besides showing how formal met h­

od s may be appr opr iately used to ma nage the algorithmi c ecnplexi ty in the de-

vclopment of uoftware systems, this case study also ind icates some direct ions on

how pred efined programming language and library rou tines may be introduced

into our framework of formal development .

6. 1 Even P ara gra phs

Th e problem for this case study is that of laying out words into lines such that

the se lines form an r pcII pruYlgl'fI/Jh. To explain what an even paragraph is, we

borr ow some exam ples from Morgan [31, pages 170- 171J. In a si mple para grap h

ICompar e the paragraphs of Fi gure 6 .1 and I
IFi gur e 6 . 2 . I n simple paragraphs , like Figure I
16 . 1 , each line i s f illed as much as possible I
Ibef or e moving on to the n ext. As a I
Ic onsequence , the min imum number of lines i s I
lus ed; but a long word arri v i ng near the end of !
Ia line can cause a l a r ge gap there . I

Figure 6.1: A simple pa regra.ph.

ICompare the parag raphs of Figure 6 . 1 and
IFi gur e 6 .2 . In s imple paragraphs , like
IFigur e 6 . 1, each line i s f i lled as much
la s pos s ib l e before moving on t o t he nex t .
lAs a consequence, t he minim um number of
[Li nes i s used; but a lo ng word arriving
Inear the end of a l i ne can cause a l ar ge
Igap there .

Figure 6.2: An even par agraph.

(see Figu re e.I }, each line is filled with as many words as possible before th e Iwxt

line is filled. Although this scheme minimizes the number of lines used, it may

require some lines to end with a. large number of white spaces. T his happens

when the next word of a line is long and cannot be fitted as t he last word of Uti'lt

line. An eve1l paragraph (see Figure 6.2) differs from a simple one in th al the

number of white spaces of a short line is reduced by distri buting some of these

spaces over earlier longer lines.

This problem was stat ed by Bird (S], a nd was specified and partially refined

by Morgan using th e refinement calculus [311 . In the following, we show how n

124

program in the programmi ng lang uage Pascal {l O] th at compu tes even para.graphs

may be derived using t he formal soft ware development process that is advoca t ed

in this thesis. For the sake of brevity, we om it many of the proof and deriva.tion

details, and only mention import ant strategies.

6 .2 Abst r act Specifica ti on

Th e global constan ts mar- Wol'd and maz Lcn .qlh are used to denote th e maximum

number of words and th e maximum length of each line in a paragra ph .

U/n.rW" nl : N

mrl ;r /~r llill": N

ma .rIJrll.qlh::: 1

[ClIMI]

newline, tab,space : Cll tI R

newline #ta b
tab ::j.space
newline ::j. space

The set GIIAll is declared to represent the set of characters allowable in a

paragraph. Using th is, we define a wOl'd as a non-empty sequence of at most

m ru1.c llgl ll chara cters , which does not cont ain any newline, tab or space char-

ac ters. T hese words are contained in the set \VOIlD. For convenience, we will

refer to newline, tab , and space cha racters a s whit e spaces.

125

wa nD == { III seq ClIAIi I0 < #w ;:;III/U!.""!/'" A
ran II' n {new l in e . t~b , $pace} = e}

6.2 .1 St ate Space and In it ia l States

T he sta te space and initia l sta te s of t he th e sys te m arc described in 1:'1' a nd

hli/ Ep l . Th e syet em mainta ins a sequence of at 1II0st /tIIUII'IIIl I words which is

initially empty .

El"-,---_== _
Illmv[.~ : seq WORD

#1JI0Ivl.~ ;:; mar Won i

r ~1;,EI'-

~--------------

6.2.2 O perations

For simplicity, we may rega rd the in pu t to and out p ut from the syste m a" so-

quences of ch aract ers .

INP UT == seq Gil A /l
OUTPU T == seq CI/A /l

I' ,fadid onally, the par agra ph problem hall been specified in te rm. 01 a r"l ation bdween th e
input and oulput sequences. W" adopi a stat e l pat e l pecificat ion so as toillustr llle ou rlll " thod
of soft ware deniopm enI .

126

Using IN/~U'1' and OIf TPUT, the ope ra tions for reading werd e from an input

and writing an even parag raph onto an outp ut is descri bed belc

Functions NUIS and r.onIV remove lead ing white spaces and non white spaces from

an input, resp ecti vely. Function ,d lV, which is similarly formulated, ret u rns the

longest sequence of leading non white-space characte rs.

milS : INPUT _ INPUT

V .~: INPUT .
($ = () Vhcml .,¢ {newline, tab, space}::::}

(0115'(11)=8)
A

(II'# () II. IlCIul ll E {newline,t ab. space} =>
couS e,) = ronS(lail s))

ro ll W : INPUT _ INPUT

'rI,. : INP lI T .
(... = ()V Ilctld 1< E {newline, tab , space} =>

t'O IllV(s) = I)
A

(... t-()II. /lr tld I f. {newline, tab, space} =}
con W(I) = coniV(la il .s))

fr /l V: INPUT _ seq CII AR

V I<: INPUT .
(.~ = () V had 8 E {newline. tab,spa ce} =>

~tW(,)~ 0)
A
(;<1 t ()II. fl rnd., f. {newline.t ab,sp iu:e} =>

rrl1V(l'l)= (/IeQ/l lt) '""rdlV(toil I»

127

With t he assumption t hat words ar e sepa ra ted by at leas t one white spnce, a

funct ion cal led jol'lIIlVS is defined which extr ac ts words from an inpn t nnd returns

a sequence oftype IVOllD that co ntains t hose words. As shown in it ~ definit ion,

t he functi on jOl'lll lVS uses the fun ctions IVIII,';, l 'll/ d t', and I'dW.

/orm Il'S : INP UT -+ seq WOliD

V8: lNPUT .
(couS(s) = O =>

j om d VS(s) = 0)
A

(COIlS(S) t o=>
form WS(II) = ((l. ./ltfl.rl.rl/!/IIt) <In·I IV (I·(l IIS (.~))) '-'

jOI'/!/ lVH(mll lV(f·(" 18(.•))))

Note that when II. word is returne d by functi on nllV. jrnm ll'S t runcates it if

th at word is longer t ha n 11111££.1'119'" ' T hus, a word th at is accepted hy / fIl'IIl WS

is always of ty pe WOIlD . Using function j f/I'm WH, the operation o f reeding 1\11

inputis me rely an ap plicati on of jormWS on th e input. T he word scquc!' ,:e lIull

is yielded from readi ng the input is also truncated to ensure t hat the system

stores only the first m ax WOItl words.

Rearll ll/llll _

in pll t? : seq C lI JlIl
6.EP

128

Lines a nd Paragraph s

Given a sequence of words, the function l/Jidt" computes the length of a line th at

is made up of the se words with a space sepa rati ng each pair of consecutive words.

,

Jlirllh : seq WOllDN

V' /lJj: seq WOIlD .
(w,, = () :>

IHillllt(ws) =O) A
(w., ~ () :>

widlh(T/IS) =(# W<I - 1) +Er;r#(V1.~ (k)))

Using functi on wi,[lh,we define a line to be a sequence of words with a width of

at most marl""II!IJ" .

UNe =={I seq W ORD 11 :5 widlli(l) :5 maTLclIgl h }

Subsequently, a paragraph is easily defined as a sequence of lines.

I' AUIIGflA PII == seq UN E

Wnste nnd E ven P ara graph s

Th e Illr..qlr of a paragraph is the maximum number of rightm ost white spaces

th at are conta ined ill any line of the par agraph, except the last . Functi on wasle

comput es the waste of a par agraph .

129

waRI , : PAR AC RA PIlN

'<I p: PARtlGRtl PIl .
(#P:5 1 =>

waslr(p) = 0) A

(#P> 1 =>
wflMr(p) "'" lUlU { I : U NI.,' I (E ran (fmll l /I) .

II/n.r/.r Il9,11 - ll'idl1J(I)})

Th e minimum waste of a sequence of words is the minimum waste of 1\

para graph tha t contai ns these words. Minimum waste is computed by Iunct ion

min H'tMlc.

mi ll Wasil' : seq WOIll) -. N

"i ll'S: seq WORD .
minWflslr (II'R) =mill { p : IJ,lfltl UIlIlI'III / ,1= '/ t.~ . IJItI.,Ir-{/,)}

Th e relati on CUCII P relat es a seq uence of words and a pnm grwph, where the

paragraph is a layout of t hese words, and has a wast e t hat is equnlto tile minimum

waste of th e sequence,

_ CVC IIP _ : seq WallO _ PtlUAGNil l'II

"illJs: seq wono; I' : l'tIll AGllti/' ll .
1118 CVCIIP 11 ¢> / II = Ill.• A l/Ia .~lr{ /I) = mill " 'a.•I/,(l/l.~)

Com puting and Writing Even P aragraphs

Function s insertS and lm'IIIO ,lI/llIl indicate how a paragraph should be laid out.

These functions ensure tha t each con secutive pair of words in a line are separated

by one space, and that each line including t he las t ends with a newline characte r.

130

i ''''' TIS : U NH seq CJlAN

VI : U NB .
(# 1= 1=>

ill,~n'IS (1) = 11Is1/)
A

(#1> 1 =>
ill.~e l"S(I) = (lu nd I) ,...(space) i" scI'IS(l-lIl'll))

jrm IlO II!pltl : PAll AGllil PlIOUTPUT

Vp : PiI /l AG/li!PII .
(#T' = 0 =>

f Ol'mO ldp ul(p) = 0)
A

(# p :::1 =>
formOlllll11l(TI) = inllcrlS (hClld p)....

(newline) jQl'mOli tpul(lnil p))

Using the preceding function definitions, the operation W,.ilePlI1Y1gmph may l' OW

be easily described as out putt ing a paragraph that is an even layout (If the words

stored in the system .

Il' ril r P lllYl!!lYIp h _

'BE l'
(l/llp lll! : OUTPUT

3 /1 : Pt1l1ilGli tlP II I
WllI'l ls r ve ll? (I .

OIdp u/ ! = fO/'mOulp lIl(/ ,)

6.3 Concrete D esign

w~ propose a concrete design that uses da ta struct ures that are available in

PIUiCIl.1. We find it convenient to define a word as a record with an array of

131

characters and an integer to sto re the word And its length , respectively. Th is is

modeled in schema. Won/C.

e HAIl l! RRA r == 1..IIIa.rl.r IlH'h(' II .·I /{

The lise of a schema as a type allows 11'1I1Y{e to be viewed as the set of tuples of

WalW and length that liati sfy the predicate in WmviC. Using .' r fu ' lII t1Ilmjr"l'/ i/O",

the components of a schema object may be referenced in a similar manlier as the

fields of a Pascal record . For instance, if l/! is declared as having type 1'1'(1/1/(.',

then lIJ. w01vI will allow us to refer to th e word com ponent of 11'.

T he system st ate space 1~'I'C may be modeled as an array of Wflnl(.' with nil

integ- s variable lotn/C to indicat e the number of words present in the system.

EPC _

wordse : l..ma;r.Word !Vo/lIC
to/ale :z
os lot ale ::; ttutx Wort!

Clearly, the sys tem when star ted should contain no words .

~
/Jl itEPC

EPC'

tofalG' = 0 _

132

The strategy for reading words from an in? ut in t his concrete design is t he same

IlS that in th e ab stract speci ficatio n".

I nmSC : IN/ 'IIT ---> INP UT

nmSC = rVIIS

mil we : INPUTINPUT

, '/111we = cmllV

n'l lYe : INP UTseq CIlA N

,dIVe::::; ,d l1'

However, the way to sto re these words in the system is quite different.

IIcmllll/lIl IC _

illplll7 : INPUT
am'D
Inlnle'=

mi ll {
will { II : N 1"oI/SC(coIIWC 0 cOllsCt (i"pll /7) = 0 },
"!lu lI'ord
}

V i :l..lo/fdC' .
1I'00~I,~C'(i).lc lIglh =

#(l ..mll x Lcllf/ lh<l
rd WC (coIlSC((C01I WC OctJII8C)i-l(inptll?»))) A

mOIlI,~C'(j). wvnl = Wtl'l/$C(i) ,word @

(l..maxLrllglh<J
rri I I'C (coflSC((em/ we 0 CQIISC);- '(illpld?»)))

' T ile Iunctie ns (OnSe, (on w e , an d reJw e ale redundant. Th ey au presented to satisfy
OUt n:uni ng convcllti ons.

133

Lin es and Paragraphs

Lin es and para&raph5 in our concret e design are define d lIilllilar to UII'.IllC in til('

a.bs tr act specification .

mid/he : seq 1I'0/1/ C -- N

'rI ,,,c.~ : seq W.mf{' .

(-c:. = ()'"
/1.;'111,('(11,(1<)= 0)

A

(,,,c, '" () '"
"'if//hC(", Cj,) = (#",('x - 1) +r.r."i'· 1I ,(~ (~·) . I, ' ",1//")

LlNBC == { 1(.' : 5CQIl'tm /(.' ns midl"C(U ') :5 'IIIu t .""!! /,, }

1',1fl A(m ,1PII (.' ==seq UNf~'G

\Vaste a nd Even Paragraphs

Th e concre te veni on or W&!'lt f", minimum wilste, and eve n par agraph s arc .lcli m~ 1

sim ilar to their abstr act version.

1II (l .• ,cC : Ptl fl AGfl ,I PII (: --. N

V pC: I'M1JlClltlf'llC .
(# pC :51 Q

/l!(lslcC(/I G') =0)
A

(# pC > 1 :>
!N I .• lcC(pG') = !II(lJ {Ie:: U NII'(.' I

U: E ran(fmlrl I'C) •
IIUl.I/.f:II!JII. -./,idlht:{IG)})

134

I min H'1l.~"' C : 5eq W,mIC -- N

I
V",(,'IO : seq IVrmlC •

mi,. Wn.dcC("'(:11) =

mill { pC : l'Al lIICIlAP IIC I' "C =IDOl . 1I ,n.tlcC(pC) }

_ , ,,,.,. /' (,' _ : seq WnnlC "A UA GIlAPIIC

'V ", (,'t; : seq Won/C'; pC : PAnA cnAPIIC .
",ell r lJf'/lI' (,' IIG ¢:>

"' pC =mC.~ 1\ IflIl.dr C(pC) = mill1l'aslcC(1I1CS))

Wri t ing Even Paragraphs

The only difference in the speciflcefion of outputt ing an even paragraph is t he

ad dition of a function ad IVllole to extr act t he word th at is contai ned in an ite m

of type WllniC.

y,.JlI'onlC : IYoni C IYOllO

'V,r(' ; ll'mJC .
yrl ll'nnlC(",C) "" 1..",C'/""9111 <I1flC.II'Onl

iJ'MrISC : U NHC seqCIIAH

V IC : U NEC .
#'C= I =>

illll,.I"I SC(fC) = gri IVol1iC(laslIC)

#fC > I :::}
ill",.,'/SC(lC) =

,qrf ll'lll'ffC(hra rl fC) " (spa<:e) " illscr/SC(lail IC)

fal'm O" t/IIII G : PtlH ,1GRAPile OFT!' F '"

VIIC : PARAGRtlI'IIC .
(# /,c = o:::}

f al"lIlOllfp ltlC(JlC) =0)
A

(#p C ~ I:::}

fOnl ,Oltipufr(,JC) = ill,V,-/S ('(llfIlrl I,e)....
(newline) '" f/l l'/l/Olllllllf(.'{l nif IIC))

~~~~)1/ 1Yl9mphC _

Olltpltt! : OUTPUT

3l' C: PtlRACIlAPIIC I
(Llo/aIC <l wOIV1,~C) r Vf'lJ!'(.' pC •

Olllp lll ! = f",'mOnl' IlII C( /'C)

6.4 R e t ri eve R el a ti o n and Proof Obliga t io ns

Th e retrieve relation is given in t he schema l tctv, It uses n fun ction /lUlII that

t akes another function and a. sequence and ap plies the function to every de ment

or t hat sequenc e.

IX, Y1.~=~~~~~~~~~~~
map: (X --+ Y ) ..... seq X --+ seq Y

V f: X ..... Y ; xs :seqS .
map ] () =()A
map f xs = fJ(lumd xs)} "" 1111111 f (111il ;1'8)

/lelr _

EP
EPC

!Vords = l1I{J.l' grlWrmlC (1 . l fl / ll lG <J IIlOrrf,~C)

136



It is not difficult to see that the retrieve rela tion is fun ctionaL Hence , we may

use the proo f obligat ions for functional retrieve relat ions. The proof obligat ion

for initial states is easy, and since the preconditio ns of t he concret e opera t ions are

tru e , the proof obligatio ns for applica bility are tr ivially satisfied as well. Below,

we sketch t he, correct ness proof for Ur6 Ic/JllmgrtlpliC. The correct ness pr oof for

li.f:lull" l" tl C is similar .

6.4 .1 Correctness Proof for Wril ePamgmp hC

The first st ep in t his proof is to prov e theorems th at relate t he abst ract and

concrete fun ctions. These th eore ms ar e given below. Th e deta ils in the ir proofs

are omitte d, as t hese proofs are not difficult .

T heore m 6 .1

VII'" : seq II'OIUJi mCs : seq WOlliG I
1Il.~ = mllp gel H'01vlC wC... .

lI'idth (1V.~) = 10idlliC( wCs )

o

Th eorem 6 .2

VI': PA IiAGlltl Pll i ic . P,llltiGIlA PJlC I
]I = mill' (IIIIlII gcl lVoniC ) pC .

IltIlS1r( p) = wII8IcC(pC )

137



P roof: Use Theorem 6.1

c

T heo rem 6.3

V 1lJ.~ : seq IVOfl D; Il,e... :seq ll'tl/vlC I
w.~ = map gcl lVol'JC lI,ell •

mill lVa.~/c( U'.~) = lIIiIl I Fa.~/rC( mC.~ )

P roof: Use Theorem 6.2

o

T heo rem 6.4

v illS : seq WOf/Dj wc.~: seq ll' onlC i
1' : PAfl AGHAPlIj JIG : PAIl AGIlA PII(,' I

IVS = ll la ll gel WOlvlG IIIG!. A JI = /ll1I/! (IIHlII !Jd W,m/(.') 1/(.' •

file".; cvcnPC IIG ~ 111... ell ell l' J!

P ro of: Use The orem 6.2 and 6.3.

T heo rem 6.5

v I , LINE; 1G, LlNEe I
I = map gd WordC Ie .

inscl-lSC(lC) =ift.~crlS(l)

Proof: By induction.

o

138



T hecrem 6.6

V,J: PAUAGIlAPfI ; pC: PAUAGRAPIIC I
11 = limp (mill! gc/ WordC) pC .

[orm(hll(!IlIC(pC) = f ormO lJlp rll(p )

Proof: By induct ion using Theorem 6.5.

A Sketch of t he Proof

T he correct ness proof requirement is

vBI' j BP' j BPej ErGI ; IlIdpll/1 : OUTPUT .
pre Wl-i/rPal'flgl'flp" A /lei,' A Wl' ifcPal'flgl"ll.phC A Rd,. '

=> Wri l r PamglYlph.

From the premise , we dedu ce

wlml.~ = mall gctWoniC (1.. lo/aIC <I wo rdaC ) A

3pC : PAIiAGIiAPIlC .
(LlnlltiC <J l(!lJI'(I.~C) ClJCflPC pC /I.

Ollf(!lIl ! = [ormO lltl'uW(pC)

For every concrete paragra ph, we can always find an abstract par agraph th at

ha s the same words. We existentially intro duce this abstra ct paragraph into th e

predicate.

::::} word._= mal} gr IWarde (1..lo/alC <I words C) A
3pC : Ptll iAGRtlPIlC j p : PARAGRA PH .

/J =ma]) (map gct Wol'IlC) pC A
( 1..lo/a lC <J wordsC) ruCIIP C pC /I.

Oil/pili ! = [ol'mOrli puIC (pC)

139



Using Theorem 6.4, the expression (1.. lllltl/( · <J Il'rlIl{.~C) 4" '4' /1/,(' /1(' implies

expression WolY/,~ fl' CIIf' p.

3fJC : PA RAGflA f'IICj II: /1,IUMm,l l'lI.
P = rIIf1p(IIIf1/' !/f'llI'fllYlC) /1(.' 1\

wOlll.~ csxnl? p A

IllIlp lIl! = / ol'm() ul'luIC ( /IC )

Using Theore m 6.6, /oI'IIlOIII/JlIIC(/I(.') may be replaced by t he !1II'w(} 411/J111(,I) .

3pC : PIiR JlGRJlPJlC; p : /,,\R t!UU,IJ'JI .
mords evellP IJ A

OIII/JUII= / ormOlllpll/ (p )

Sinee pC is free, the existent ial quantifi cation of "e may be removed , which

completes our proof.

{:} 3p : PARAGRAPJJ .
vovds eVCII/' P A

Olllpltt! = /0/'11I01lI/lIl/.(p)

6.5 Using Predefined Pascal Routines

If t he concre te operation of the previous section were to be t ranslat ed, they

would result in procedures wit h Iormal parameters ill/JIII? and flUfpll l.!. These

parameters may not be used because input and outpu t streams are not system

variables in Pascal and as such, cannot to be pass ed as parameters in a procedure

call. Below, we view the input and out put stre ams as st ate variables and modify

the concret e operations appropriately to make usc orthem.

140



Ih rul/u/JllIC _

l:lh'/'C'
i llfJ1I1, i lll' lll ': /NPfJT
IIIdJlftl ,IJl l/plll': OUTPUT

loltlle'=
lIlill {

min { /I : N I CQ118C(f'IJ/l WS 0 rollS C )-(iIl/ JIlI) =O},
fllluU'mvl
}

Vi: 1..10111/(." .

I/IIJ1Y{.~C'(i).lnl!Jt1l =
#( l ..mn.r!"l:Ilgl/ l<l

I"d l l'C( coIISC« mIl WC 0 rOIISC);-I (illplll)))) A

1/IrHY[s(."(i ).IfJflrrl =1IIOfYlsC(i).1I'IJfY[ffi
( 1.. /lIII.;(' /,l"lIgI1l<l

rr;/ We( CfmSC«con lilC 0 t:'onSC)i-l (iIlPll1))))

tlltlJ!4l1' = OIL/prll

Instead of requiring !/mr[fIl/lllIC to use the in put variable inplll? , it is now re-

quired to use t he input stream as the input . T he opera tion Wf'il cPnmgrnphC is

required to concatenate its outp ut onto the out put st ream.

W,·i/r PllmgmphC _

S I>PC
i"I"tf,illjIrll': INPUT
111111111(,IIrLIIIII/': OfJTPU T

311(.' : /IM I.J!W l tl PII C I
(l.. lo/nIC <l1l!(m/~C) Cl'CIlPCpC .

olll /Jld l = olllfllll ""'jfJrmOlllll1ItC(pC )

ill JlIII' = i ll p lII

141



Table 6.1: Abbreviations for the slate variables o( cpemt jous It'rrrlflUIIII/(' um]

WrilcPamgml!h.

Using Pascal In pu t and Outpu t Routines

Since we must manipulate theinpat und output streams through Pascal iuput

and output routines, a way to intTOfluce these routines into the r1 t'vclopmcllt

would be tc epecify them a.sprocedures in our ebatrnctprcg rnm. lly relining our

operations to use these routines, we can provide a formal justification fur their

Below,wegive specifications (or a lew Pascal input lind output tontincs. Since

these specifications will be used in the refinement ofouropcmtions, it would Ill'

convenient to use the abbreviated formof the state variables. The Pl'J,l; cal rout ine

read

aUowsus to read a character from the input stream. Aspecification of this routine

is contained in the procedure N:rlll below.

pr oced ure rtad(value result c : CIIAU) !::
ill, c :{in #- (), c=hclUl illg Ain = tllil illl)]

A specification for the Pascal routine

142



..,rite

which allows us to output one char acter (except for newline) is given in procedure

IIJrilr..

p ro cedure mritc(villue c : CIJA/l )'"
0 11[ : [c: ¢ newline .0111 = f11l fo"" {c)]

A specificatio n for the Pascal routine

wr i t eln

which allows us to outp ut a newline cha racter is given in procedure wl'itd n.

p ro ced u re Ilwild" e-
out: [tmc . 0 111 = 0 1110 .....(newline)]

By declaring a character arr ay as a IJacked ar ray, we may ma ke use of the Pascal

routine th at allows a prefix of th e it ems in th e array to be out put, As an example,

for a packed array II and an integer 1, the Pascal command

write(a : 1)

will out put the first I chara cters of a. A specificat ion for thi s Pascal command is

given as procedu re wrileA ,.my .

procedur e wri/cA rmy
(va lue a: CIJAfl M lR AY; value f : l.. maxLelig/h)'"

o ll / :/!"IlC . 011/= 01110 ..... (1..1<1(1))

143



6.6 Operation R e fin ement

The modified concrete operations in the previous section may 11011' be translnlcd

into procedures and refined using the refinement calculus. Below, we describe

only the refinement of 11' I'i/el'flnlgIV. /,ltC which is the op eration for eomputlug

and outputting even paragraphs. We omit the refinement of Uffull llfl ll/ C .

6.6 .1 Co mputing Minimum Waste Ar ray

We specify and refine a procedure that computes the minimum waste of nil pre-

fixes of the word sequence. Thi s will be used in t he refinement of the procedu re

that computes and out puts even paragraph s.

procedure COlllplIlcMil/ W(l .~lf:tl l'l'f1 Y

(value res ult mIVA : 1.. lIl11r l1/" I'.: --+ Z) ==
mwA: [t~ 1 ,

(Vi: Z 11 :::; i:S: I . ImoA[i] = mill WI1"/t C{lII(i -+ I])]

We t ake the liberty of writing m[k -+ 1] for the sequence t hat consish of the kth

to th e Ith elements of the sequence 1/1.

!..!!e Refinement Steps

The next few refinement steps set up an iteration that enables us to consider

progressively larger prefixes.

144



~ 1= (Vi : Zl j s i s : »
T/!wA[ il = miIlWfl81"C(w[i -+ lj) A l :5j :5 t)

va r j: Z .

j :=l;
lIIl/1A( t ):= O;
j ,lI/mA: [I. I Aj = 1]

~ do j #l _
i :=j - 1;
j ,mm A: [/ [jV + 11 Aj+ l # 1, I )

od

<l

<l

The specification st at ement in the bod y of th e iterat ion computes the minimum

wasle ofthe sequence consist ing of t he last (I, - i +1) words and stores thi s value

ill mlI111U ). We intr oduce variable x for the comput at ion of th e minimum waste

of w[j _ J]. The value of x at t he end of the computation will be assigned to

IIItt1A(j).

!; va r :.r. : Z .

r, j: [IUV + I] Aj + 1 # 1 , oX= miIiWastcC( m[j _ tJ)J; -o

IIIw l(j ) :=x;

Strategy for C omput in g Minimum Wast es

We usc Il. st rategy th at computes the minimum waste of a prefix based on th e min-

imu m wastes of smaller prefixes. For t his, we rewrite our definition of minimum

waste as follows.

'45



mill {IC : UNI£Cj pC : PAU.,I(iU :If'llC'

I -/( ICj - I'C) = '''U- II
• II'tl,. /rC({lC) ...... /d.')}

mill {Ie : U NECj .c . PAIl:W/(:If~IIC
I IC - (- / pC) ="'U~ IJ

• 11'1l,. /r C({IC) ...... pC)}

mill { ~~~ PARACHAI'll

I
i '5,k s t A

......, pc = lI'[k +l _/ j "
Ef=j m( i) .lclI!llh +(k - j) '5, mu:rLI'II,Ijlll

• 1!I(/~/r (( lII li -+ kJ).... pen (*)

We now have two cases. First , if the words of the prefix lII ay all be lilitl Ollt on

one line , then the minimum waste is zero, since the last line oCn par ngrap h docs

not contribute to the parag raph's waste.

E:: j 1J)(i ),(wg f!l +(l - j ) $. /IIl1xf.C/lHfh

(.)=0

The second case is when the words of the prefix cannot be written as a one line

paragraph.

146



r::=, w( i).Ir:II.qlh +( I - j) > marLc lig/1t

. {k,Z
("') = mill l'C: PilIi.AG/lAPIlC

I
j s k < I A

""/ ,1C= w[k+ 1 _ IIA
E~=j llI(i ).lcllgth +(k - j )::: ma:s:Lwg fh

I"'oxL,,,,,,, - (k- j) - } }
_ mIlT E f=; Ill( i) .lcllglh,

mtl.~/cPC(pC)

We do not have to consider the ca se when k = I. since it is t aken care by th e first

mill J/.: :zl i $/;<.' f\ . •1 r: ~=j w( I ) .ICII9Ih +( I.: - J ) s IIU1xLclI gl h

mill VIC : IJilIl AGRAPfl C ! ..../ pC = 10[1.: +1 .....II '

I",",£",,11, - (k - j ) - } } }
lIIa x Ef=j w(i). lcliglh,

WRS/ePe(/ Ie)

. I Ii s k < I A
111m \ k: Z L: ~=j lIl( i). iclIglh +(k _ j ):5 maxLell,lJlh •

,,"lot { /IIIULClIglh - (I.: - j) - r:f=i w(i ).l clIglh,

1
" C , PAllACRAPIiC }}}

min I '"'I JIG = w[!.: +1 --+ t]
• wllstrPC( pC)

min f k •zIj s k < fA .
\ . Er=i m(i) .lclIg/h +(I.:- j ) .$ IIlf1xL tltg lh

f IIH1XLcIIgth - (I.:- j ) - r;t-i w(i ).lcJlg/li, }}
mar 1 millll' as lc( w[kt l--+ II) -

147



R efin em en t Co nt in ue d

In the previous section, we defined the minimum waste of II prefix u'li -t II i ll

te rms of the minimum wastes of smeller prefixes I('[k + 1 .....II. In the following,

we continue t he development of the program using th is nltcr unte dcflnitlon of

minimum waste .

!;; X~ min {k ; Z

Ij '5: k:< II

r:~=.i m(i)Jrllglh ::; IIItUf,f 'II!lI/'

{
"'''''-'''9/1, - (k - j) - II

• max r: ~=j fIl(i).lifl.qlll,
miI/ IVaRlf'( m[k +I -t I])

J e 'UV+ l J A
j + I~~- lA

:r = XA
R= LI=j 1Il(i).I rll!l'h + (11 - j) A
j :5l1 :5f

var R,Il: Z .

II :=j + l i
.~ ;= m(j).IcIlH'h + m(i + l) ./r IlHlh +I ;
;r := III fu(m(l:r~CIl911t - "'(i).hl/!IIIi, mm;\(j + 1)) ;

.~ ,".z; [J , J A (II = t. V .~ > /lHIJLrll!llh)); <]

if .~ '5: IIW.:dJClIglh !I ;= 0
O '~ > lIIaX~cll9th skip
fi

od

148



I; ;r.:= mill (r , 1II0;r. (S, mUJA(1I + 1)));
.~ ;= s + 111(11 + 1).lcn.qlli + 1;
11 := 11 + 1

In the preceding steps, we have assumed the availability of funct ions max and

m ill in the PMcal programmin g languag e. Although th ese functions are not

available in Pascal, their correct constr uct ions are easy. The code from the above

refinement is collected in Figure 6.3.

6.6.2 Writing a Lin e

In Figure 6.4 , we give a specification an d code for a procedure t hat outputs one

line of a paragraph . T his procedure will be used in t he development of th e next

sect ion. Its refinement is not difficult an d is omitted. Notice that this proced ure

uses some of the system routines of Section 6.5.

6 .6.3 Writing a n Even Paragraph

We specify and refine a procedure that computes an even paragraph . This pro-

cedure uses the minimum waste array t hat is computed in Section 6.6.1.

procedure 1I'6 1cEvcII
(value 1/111111: l. .m n.rl1'onl __ Z) ==

0/11: IV i : 1..1 I II11l'A(i) =mill WasfcC( tv{i --+ m1\ t 2:: 1 ,
3 pC : PMl JlGRAPHC I ]

(1../ <l Ill) f Vfl/PC pC .
out =01110 ..... jOl'mOll lp1/IC(pC)

149



pr oc edure COIIII'lltfMill l l'fl.~lftl,.m!1

(value r esult mu'A : l../IIlIr lVcl/l1 --t Z) ==
mwA :11::::1 ,

(Vi: Z 11~ j:S; t . lJI/t1:1Ii] = mill ll' tls l r ( u,[i --t II)]

I,;;; Ifvar i, 1I,S,X : Z .

j := 1;
rIlw t (I) :=O ;
d o j I- i--t

j := j - l ;
II := j + I i
s := w(j ) .frllglh + w(j + 1).If II.tilII + 1;
J: := //lax (lIU1xl ,fIIglh - w(j). lflf./flh , mll':I(j + 1));

do 11f. f " " ~ lUarl,cll.'!l}, -
x:= mill [r , /lUlJ: (1IIfUI,CII,Illh- .~, 11/11':1(11 + I }});
s := s + Ill{II+ 1)./c;ll.qlll + l;
11 := 11+1

a d;
if .~ $ maxl,mglh--t

r :=0
0$>mnxl"r;Il,ljlh ­

ski p
fi ;
tnIllA(j): = ;r

od;

Figure 6.3: A possi ble refinement of t he procedure C(J/I!plllr;MiJl Wfl.~l f; AI·1Yl ll .

150



procedure WI'l·le1..illc(value s,j :Z):::

out: [l nl.C , (Jut = Old" ....... iJl.~crtSC( w{.s -+ i ll ....... (newline))

~ IIvark:Z .

IVI'ileA rmy( w(s}.word , w(s ).l clIgth )i
k := .~ + 1;
do k :5 j -+

write(space);
mritc A rray ( m(k ). lIIord, w(k ).lellglll );
k := k+ 1

ad ;
Illrilclll

Figure 6.4: A possible refinement of the procedure W ri le Lin e.

Th e Refinement Steps

For procedure WrilcEvclI, we use a strategy that outp uts even paragraphs line

by line. For this, an iteration is set up where the variable i refers to the first

word of the current line being print ed.

~ A ::: (V ;: 1..1 I mwA(i) = m ilIW(l.~l e ( lII li -+ I]) A 1 ~ 1)

1.= 3p , q : PI1HAGnAPlI C .
m[l -+ i-I] cvenPC p A
ml; -+ t.] cvwPC q 1\

W CVCIlPC 11 q A

old = OUT jo rmOuIIJllfC( q)

con our
var i : Z .

i:= l ;
;,ott/: II " 11, I " 11A i = 1+11

151

<l



~ do ; #1+ 1
i,oul : [i I- /+1 II I II ,I , I II tI II 0:5 I - ; < , - iul

od

A variable j is used to find th e end of the current line. If both the waste

of the current line w(i-I jl and the minimum waste or the remaining sequence

mU + 1 -I I} are each less than the minimum waste of the whole sequence of

word, we ma.ytake 11'[i -I jl as a legal line of the even paragraph.

~ J !::3p,q : PtIRI1CRtl PIfC .
w[1-I i-II eucnPC p II

"'[i-l ll cvrnPCqll
III cvenPC p....q A

i ~j ~ I A
u,[i -I j l sftffi:r q II

m(ll~c llglll- widlhC(lll[i -I jl) ~ 0

var j : Z .

j: Ii# /+1 A I A A •

AA J A ]
( ( trUU~c llglll- wid/hC(1I1 [i ..... jJ):5 miIlWIl.'/I:([1 -I III A ; <l

millWtlsle(wli + 1 ..... tJ):5 "'iIl WU8Jr.(1II [1 ..... 11) ) V j =I)
Wli lcLinc(i, j) i
i :=j+ l

!I' s J II s = mtlxLcllglll - lllidlhC(UI[i -I j l)

j:= ij
.'1:= JJ1ULCflglh-w(j ).lc/lglh ;
j: 111 A h' ,

A A !( A 1
((s :5miuIVQsle(w[I -l I]) A c
minWusle(wlf +1 ..... 11):5mifI WQ81r.(w[1 ..... 11ll v j =I)

152



procedure Wl'ilcEvcn
(value FIlm" : 1..mar.WOIvl -.. Z) ==

mil: (Vi : 1..1 1 1nwA(i ) = min Wasl eC( llI [i -.. t]) A I ~ 1 •

3 'JC: PARAGRAPIIC 1 1
(1..1<I W)CVCIlPCpC ,

Dill = 0 1110 "" fOI'1Il011IpIIl C ( pC)

i; !Iva r i, j,.~; Z .

i := 1;
do i # t +1 --+

i > i ;
.~ := marl.CII.qfh - m(j ).lcllylli;
do Ut t ) A « 8 > /IImA( I )) V

( m uIA(j + 1) ::; mwA(I») ·....
j := j+ l;
s: =s -w(j ).leI19th - l

od ;
W,.ilrl.ille( i , j);
;: =j+ l

od

Figur e 6.5: Code from the refinement of procedure Wl'ileEven.

c d u# I) ( .~ > mwA(l ) V )
o J A ItlmA(j + 1) :5 mIllA(I ) --+

j:=j+ lj
.~ := .~ - urU). lcl1ylh - 1

od

CoUecting all code from the development of this section, we have th e refined

pr ocedure of Figure 6.5.

l53



pr ocedure 1I"'ilcPnl'llgmphC ==
01/1 : [1I'ltr ,

3pC: P..I/lM ;ll..l PIIC I ]
(1..1 <1 11') r ll r ll PC pC .

QU/=oulo '-' ! ol'mO"'/II//C(/IC)

!; II va r mu,A : L. Uln.fl l'on/ _ Z .

if t ~ l_

COlll/lll/rMi lllVn...frAl'l'/ly( mIl'/ I );
WrilcEucll( I/II11A )

01~ o~
skip

Figure 6.6: A refinement of pro cedure W ri/cPnmnmll h( .' that us es procedur es
Campli/cAlinWII,~leA l'my a nd W,'itcE,wlI.

6.6.4 Computing an E ven P aragraph

The procedure W" jf cPII! 'IIf},YI!l hC Ior computing and outputting even paragr ap hs

is given in Figure 6.6. It makes use of th e procedures t hat arc de veloped in th e

earlier parts of this section. Again, we omit its refinement since it is not IlifficuU .

6.7 Summary

In this chapter, we have sketched the development of a program t hat computes

even pa ragraphs. T his problem was specified by Bird in lSI, where he also devel-

oped a program in a functionallanguage to solve it . Morgan specified a simplified

version of t he same problem in the refinement calculus and outl ined a solu t ion

154



where p aragraph. were ab. tu.cted lL5 seq uence. cont aining seq uences of word

lengt hs (311. Our work here i. more pragmatic and compl ete than MorgiUl'••ince

we consi der a word u a sequence of charact m and develop a Pasc al program to

solve the problem. T his progr am is given in Appendix C.

155



Chapter 7

C oncluding Remarks

In this thesis, we have st udied a Iorme l softwa re development process t hnt uses

t he forma l specificatio n language called Z, and t he formal development method

called the refinement calcu lus. Z is sui ta ble for speci fication since its schema cal­

culus and math emat ical toolkit allow large and complex system s to be described

mo dularly and compactly. The refinem ent calcu lus is app ropr iat e for develop-

ment since its notation allows executa ble and n on-execut ab le const ructs to he

treated in th e same fram ework.

The softwa re development process is be divided into five s tase s: formal speci­

fication in Z, data refinement. translation into th e refinement calculus, operat ion

refinement , and tra nslat ion into t he ta rget programm ing language. In this the.

sis, we have collected together and illustrated many of th e import ant result a for

understanding and using this process . In particular , we have shown, by exam.



pies, how a software system may be developed fill the f1!f1y from specification to

program.

7.1 Directions for Further Research

Below, we give some suggestions and directions for further research.

7.1.1 Syst em D ev elopment To ol Support

As demonst rated in the earlier chapters of this thesis, t he amount of mathematical

activity needed for a formal development can be quite enormous, especially for

large and comple x systems. We feel t hat much of thi s activity may be less difficult

to accomplish if support tools are available. Below. we give some indication of

the desired properties of these tools.

Formal Sp eci fil ati on and Data Refinemen t

Obviously, it would be advanta geous to have tools to edit, format and typecheck

Z specifications. Some tools that provide these feat ures may be found in the

catalogue compiled by Parker [381. Since Z specificat ions can get very large and

complex, it would be beneficial to have a tool that manages schemes. A visual

editor tha t a llows the interactive editing , storing, organizing and retrieval of

schemas would definitely ease the reading arid writ ing of specifications for large

and complex systems.

157



Alth ough t here are ways to organize the proof obligations ba sed on the stru c­

tu re of a speci fication and its concrete design, th e amount of effort needed to

m anage these proo fs can be formida ble. As such, a tool that does at least "house­

kee ping" of t he proof steps would be of great help . Several such proof tools have

been used with Z. Some of th ese are described in /1, 36, 37, 39}.

Tran slation in t o t he Refinem ent Calculu s a n d Opemtioll Rcfin clllt!llt

Sin ce Z has a well-defined synta x, it may be possible to have tools to nssisl the

t ra nslatio n fro m a concrete desig n int o the refine ment calculus. A more difficult

requ irement would be an enviro nment where refinem ent may be carried out inter­

act ively. Simila r to t he "housekeeping" problem of proofs in Z, refincment steps

in a developm ent may be num erous and elabo rate. A tool tha t manag es these

steps must allow t he user to easily copy, delete, and insert predicates. Further­

more , it would be useful to h ave some mechanism by which the refinement steps

may be autom atically checked against th e refinem ent laws.

7.1 .2 Libraries of Specifications and Refinements for Data

Structures

Since it is commo n to build large syst ems out of stand ard data str uctures, it would

be useCulto have a library of specificat ions and re finements for common data

st ruct ures. A formal specificatio n or concrete design oCa syste m may usc these

I SS



specifications from th e library simply by renaming th e appropriate components

of the ecbemas. Wh en the specification or concrete design of the system is finally

tran slated into t he refinement calculus , the resulting abstr act pr ogram may be

refined to int roduce the procedures of t hese data st ructures whose refinements

ar e al ready present in t he library. Such a libr ary would provide opportuni ties for

7.1.3 Calcula t ing Data Refi nement

As mentioned in t he last section of Chapter 3, there is a technique of data re­

finement whe re a. concrete operation may be calculate d directly from its abstract

spec ification and th e ret rieve relat ion [21, 22, 45], Due to the calculative nature

of the refinement calculus, this method of data refinement may be more app ropri­

ate for our purpose since it would enable our development process to be viewed

as a more un iform meth od,

7.1.4 Translation Rules for Other Z Constructs

In our exposition on the tr anslation from Z to the refinement calculus, we have

given several rules for tran slating operatio n sehemas directly into executable

st ruct ures based on th e way that they are connected by schema connect ives,

A direction for furth er research would be to discover executable const ructs to

tr anslate other Z st ruct ures. For example, it may be wort hwhile to design similar

159



tr ansformation rules for sequential composition a nd piping in Z.

An inflexibility that we have noticed in our t rauslation scheme is that in­

put variables and out put variables of an operation schema ar c given va lue and

res ult substi tut ions in th e resulting procedure. Thi s may be too restri ctive es·

pecially when a substit utio n method is not available in th e t arget programming

language, Alth ough it is possible to change the subst itution of a formal pnrnmc­

ter within the fram ework of the refinement calculus , it is more convenient to have

the freedom to choose t he appropriate substitution method dur ing the trunslnt lon

stage, As such, it would be helpful to formulat e rules regard ing how substit ution

methods may be used during the stage of t ranslat ion,

7.1.5 Data Refinement in t he Refinement Calculus

Although King ad vocated tha t th e task of data refinement be performed before

the tran slation into the refinement calculus, he also indicated the possibility or

delaying data refinement until after the notational change Irom Z to the refine­

ment calculus [25]. Th is approach would involve t he use of th e dl\ta refinement

techniques t hat are present in the refinement calculus [34, 28, 271. A point of

research here would be to explore the advantages and disadvan tages or such an

approach.

160



7.1.6 Operation Refinement for Dyna mi c Data Struc-

turcs

In thi s t hesis, we have restri cted ourselves to static data st ruct u res like inte.

gees, characters and fixed-lengt h arrays . Our expe riments with pointers ha ve

shown th at it could be difficult to reline programs with d!Jlwmic data struct ures.

Allhough lists and trees ar e easier than pointers when used for program deriva­

tion, t he st udy of point ers should not be ignored since they are efficient and are

commo nly used to impleme nt ty pes like lists and tr ees. As such, it would be

worthwhile to formulate ma th emat ical m odels and laws for using pointers in the

refinement calculus. We point the reade r to [41 for a discussion on calculat ing

progralll S with pointers.

161



162



Bibliography

[I' R.D . ArtlLll.lI . On formal specification DCa proof tool. In S. Prehn and W.J .
Toet enel, ed itors, VIJ /lI'!II : {o"'or lll tl l Sof/lIIrllY:. Dr.lIclopmCllf Jrlci hods, volume
1,51 of l ,f'l'I rI/ 1' N(J/f'.~ ill Crm tJJljlr r Sc ience , pages 356-370. Spr inger-Verlag,
1991.

[21 R. .I. Back. A calculus of refinements for prog ram derivations. ;l ela 111/01'­
I/Inli t'/I, 25;593-6 24, 1988.

[31 Ge off Bar rett. Form al met hod s appli ed to a floating-point number sys tem.
Igm~' 'l'm ll Mld iQl/s 011 SO/ t WIII'C EII!J;'lCcr iIl9 . 15(5):611- 621, May 1989.

[41 A. Dijlsma . Calculat ing with point ers . Science of Compute,>ProglYllllmillg,
12(3):191- 205, Semtember 1989.

[51 R.S. Bird. Transformational programming and the paragraph pr oblem. Sci­
,' //('(' oj (.'0 /11/1111(;/ ' PI'O!Jl'fl lll m ;lI.q, 6:159 -1f!9 , 1986.

[61 Jonathan P. Bowen. Formal sp ecification in Z as a design and doc ument ation
tool. In t'roc. Srr'Q/ul l E'EjBC S CQ/l/ctcuCC0 11 SojfllJnrc EligillCCrillg, volum e
290, pages 164- 168. IEE /8CS, July 1988.

[7] J on ath an P. Bowen. Formal specifica tion of window syste ms. Techn ical
Monograp h PRG-H, Oxford Universit y Compu tin g Laborat ory, 11 Keble
Road, Oxford , UK, Ju ne 1989 .

[8] Jo nathan P. Bowen. Selected Z bib liogr aphy. Oxford Univ ersity Compu ting
La boratory, 1990-1992.

[9] J ona than P. Bowen. X: Why Z? CQ/II/llll c/' Gmphic;; ForI/ III, 11(4 ):221-23 4,
1992.

[10] Do ug Coope r. ( '(JllllclI,Qrd PIISI·al. W .W , Norton, New York and London ,
1997,

[11] Nor man Delisle and David Garla n . Formally specifying elect ronic inst ru­
men ts . In 1 ' IYl!' rifl h IlIfrl'lw limltll lI'ork.<'w p 0 11 Suftwarc Specificalioll (wd

163



De,~igl' . IEEE Computer Society, May 1989, Also published in ACM SIG­
SOFT Software Engineering Notes 14(3).

[12\ Norman Delisleand David Garlan. Aformal specification or an oscilloscope.
IE:EE 8of!II'nrr, paga 29-36, September 1990.

[13J E, W. Dij b tra. A Di,'ri/,/i"r of l'rl,!!llllllmill.V, Prentice lIall, I::nglcwootl
Cliffs, 1976.

[14} Veroaika Dome and Robin Nicholl. EZ:A system lor automatic prototjpiug
ofZspecifications, In S. Prehn and W.J. 'Ioetenel, edilors, l'IW '!J/: NJI"IIIt11
Soflllltll'f Dearlo/IIIloll iIId llfJrf,<, volume 551 of Lrd rllT' Nflll'.< hi ( ''' III/nih,.
Scicnrr,pages 189-203. Springer-Verlag, 1991.

(IS) Anthony Hall. Seven myth s of Iormal methods. II:'/~H Silf/Il'flll', pages 11- 19,
September 1990.

{161 Patrick A.V. Hall. Towards testing with respect 10 formal sl'l.,;iliclllion. In
P'VI<'. Srrmld lEe/lieS Con/m 'l/I"( 1111 .'injlll'nlY· f:·JI.IIillnTil/!/, volume 2!m,
pages 159-163, Liverpool, IlK, J uly 1988, July 1988. IBE/B GS.

(17) 1. J. Hayes and C. B. Jones. Specifications arc 1I0t (nct:CSsarily) executable.
SojlwflreEllgiIlCCl"iIl.q Jorl1'llal, 4(1):330-338, November 1989.

[18J Ian J. Hayes. Specification directed module testing. 1f /:'/:' 1hw.<lwliml.< tilt

Soflware !~'II!J ill re l'ill ,q, 12(1):124-1 33, January 1986.

[19} Ian J. Hayes, editor, .'i/1f1,ijimlinr, (, 'tlS f srll,lif.,. Intcmnt ional Series in
Computer Science. Prentice Hall, Hemel Hempstead, Ilertfordshire, UK, 2nd
edition, 1992.

(201 He, Jifeng, C.A,R. Hoare, and Jeff W. Senders. Data refinement relined. In
B. Robinet and R. Wilhelm, editors, l ' I''tH'. 1~;~'()1' Hfi, volume 213 of 1,,1'111/1

Nolcs iii Com/lulcrS~i~I'r.r:, pages 187-1 96. Springer-Verlag, 1986.

(21) CA R. Hoare, He, Jifeng, and Jeff W. Sanders. Prespociflcation in !latn
refinement. /"j rll"lunlio/) PI'IH'r.I.,i"II!,1:III'I'I', 25(2):71-76, 1987.

[221 Mark B.Josephs. The data reflnement caiculalorfo r ZslJ{."Cilicaliolli . Ill/""­
ulIIlio/l /'rOClM i'I,qLdlcl'.I,27(1):29-33, 1988.

(23) P. King. Prototyping Z specifications. In G. Rose and I. Hayes, editnrs,
Socorh! ll alj-!J,'r1l1y Iirpor/., fJ(J/QTG (.'olltdmmlil1l: l 'rrlflnlltUlI ~ ill !'ill'll/lit
Descripti ol/ T('I;ll/IiqUf~, pages 5.1 - 5.23. Dept or Computer Science, Uni­
versity of Queensland, February 1988.

164



[21] S. King and I.H. Sorensen. From specificat ion, t hrough design to code: A
case study in refinement . In P.N. Scharbach, editor, FOl'mal Methods: Theory
tHull'mdice, pages 103- 137. Oxford , 1989 .

[25] Steve Kin g. Z and the refinement calculus. In Dines Bjemer , C.A.R. Hoare,
and Hans Langmaack, editors, VDM «ud Z - Form al Methods in Software
n tmc/ojl lll f.llf, volume 428 of Lec/.UI'CNol e.~ ill Conunder Sc ience, page s 164­
188. VDM·Europe, Springe r-Verlag, 1990 .

[26) B, Meyer. On form alism in specifications. IE EESoftwarc, 2(1) :6-26, J anuary
1985.

[27] C . Ca.rroll Morgan. Auxiliary variables in data refinement. Illjol'mtliion
PIYJt'cs.~iU9 Letters, 29(6):293 -296, Decembe r 1988.

128) C. Ca.rroll Morgan, Data. refinemen t using miracles. Illformat ioll Proces.sillg
l.cttrre, 26(5):243-246, Ja nuary 1988.

[29] C. Carro ll Mor6an. Proced ures, parame ters , and abstraction: Separate con­
cerns. ,S'r:i cllt:e oj Computer Pl'Ogrammiug, 11(1), Octobe r 1988 .

130] C. Carro ll Morgan. The specification st at ement . ACM Transacti ons on
P ITI!lmmmili g IAnl gll llgcs an d Syslem.~ (TOPLAS), 10(3), J uly 1988.

1311 C. Carro ll Morgan. f)''091mnmilig j ,Y)/II Sp ccijicati olls. Int ernat ional Series
in Comput er Science. Pr entice Hall , Hemel Hempstead, Her tfordshire, UK,
1990.

132J C. Carroll Morgan . Types and inva riants in the refinement calculus. Sc ience
IJ! CrlIIIIJ u1cl' Pl'Ogmmmill9, 14(2-3):281- 304 , Octobe r 1990.

133} C. Carro ll Morgan and Ken A. Robin son. Specification st at ements and re­
finement . IIJ/Ii J OItrl W.f oj Rcsearch Illid Develop me nt, 31(5), September
1987.

(34.] Carroll Morgan and P.R.B. Gardiner. Data refinement by calculation. Acta
1I1!1II'lIlll fim, 27:481-503 , 1990.

[35] J . M. Mor ris. Program s from specificericne, In E. W, Dijketra , editor, Formal
IJr 'trlopmrll l oj Progmm.~ t1ud Proa]«:Addison-Wesley, 1989.

[36] David S. Neilson. Machine support for Z: the zedB tool. In John E, Nicholls ,
edit or, Z l!.~CI · lJ!orh lJop, Orf ord 1.990, Workshops in Comp uting, pages
105-128 . Springer-Verlag, 1991.

165



[37J David S. Neilson and Divya Pr asad. zedB : A proof tool for Z built on D.
In J ohn E. NichoUs, editor, Z User lI 'nrh /w /l . O.rf(//~f HUH,Workshop!; in
Computing, pages 243-258. Springer. Verlag, 1992.

[38] Colin E. Par ker. Z tools catalogue. Zip document zip/ bae/90 j02 0, Brit ish
Aerospace, Warton, May 19t11.

{39] Ma.rk Saalt ink. Z and Eves. In John E. Nicholls, edito r, Z [lsrr IFf. r~· ."'/fJ // .

O.r:jolyl /.9.91, Workshops in Comput ing, pages 211-232. Springer-Verlag,
1992.

[401 J. Michael Spivey. fJl/drr.~lnlldiI!9 Z: II S//(TiJirnfioll I.fll/Hllfl.qr II"d it" HJI'II/1I1
Senuuuics, volume 3 of C(llIIbr idyl' Tvect» in Thfllll'lil"lll ( ,'"m/III/, .,. Sf·il'lIt·f'.
Cambridge University Press, UK, J anuary 1988.

[41) J . Micha.el Spivey. Specifying a real-time kernel. lEW·: SO/hl' l/n ', page~

21-28, Septe mber 1990.

[42J J . Michael Spivey. The Z Nolfll io ll: tl Ilr/rn'II/'r Mlll llwf. Internati onal Series
in Compute r Science. Prenti ce Hall, Hemel Hempstead, Hcrtford shirc, UK,
2nd edit ion, 1992.

[43J Susa n Step ney and Rosalind Barden. Annotated Z bibliography, /l ll l l.-l i " (If
the. EATeS, (50):280-3 13, Jun e 1993.

[44J Jean nette M. Wing. A specifier's introduction to formal met hods. IWoJ/\,
Compl//el; 23(9):8-2 4, Septem ber 1990.

[45J J.C. P. Woodcock. A tu torial on the refinement calculus. In S. Prehn a nd
W. J . Toetenel, editors, VD1H '91 Pomllll8of/. ll>llll; Df:llfl/'/'lIIr' /1 Mdfwdx,
volume 552 of Lecture Notes ill G'o lU/nJlr t· Sciunec pages 79- 110. VDM­
Eur ope, Spr inger. Verlag , 1991.

[46J Ji m C.P. Woodcock. Calculati ng pr operties of Z specifications. 11r:/I'/SUI­
SOFT Software ElIg i nccl"ill.fJ Note», 14(4):43-54, 1989.

[47J J .B. Wordsworth. Sojl1l!(l/"C OCl,clOJlIIICli l Will. Z. Addison-wesley , work.
ingham, Engla nd, 1992.

166



Appendix A

A Glossary of Z Notation

A glossary of t he Z notation is given here for easy reference. The ma teria l here
is compiled from (40, 42, 18).

A. I Logic

" I'
1' /\ Q
trv Q
Jl => Q
p*,> Q
Vx: T . Q
v r : '1'1 P . Q

31' : r; Q
];r: '1' 1P . Q

A .2 Sets

r E S
s s;T

"{.rl•...•.r~ }
{ , , 'I' l l ' }
{ " 'I'll' . I }
(.rh . . . •r . )

Not P.
P or Q.
P or Q.
P implies Q.
P if and only if Q.
For all :rof type 1', x sat isfies Q.
For all :rof typ e 'J' that sat i~fie5 P, x satisfies also Q.
vr : T IP . Q ~ (Vx : T . P =>Q).
T here exist .san x of type T that sati sfies Q.
T here exists an r of type T that satisfies bot h P and Q.
31' : T IP . Q e (3 x : T . P A Q).

r is a member of S.
S is a subset of T.
The empty set .
Th e set containing exact ly XI ,' •• , :t• •

The set containing those x of type T which sat isfy P.
The set of values or I for those r of type T satisfying P.
Ordered a-t uple.

167



SI X "' XS~

PS
Sn T
S u T
S I T
#5
N
Z

Cartesian product.
The set of all subsets of S.
Inte rsect ion of S and T .
Union of 8 and '1'.
Set difference.
Size of finite set S .
The nat ural numbers, {O, I , 2, .. }.
Th e inte gers.
T he range III up t o II.

=::{k : N 1 1I/ :5 ~' 1\ k :5 II }

A .3 Relations

x ...... Y Binary relati ons between X and r .
" PIX x V) .

J: R y s: and yare relat ed by R.
e (.1' ,y ) E R.

x 1-+ y 'Maplet ' from J: t o y.

" (,,V )
dom R Domain of fl .

~{r.:X I (3y : Yu li yn
ran R Ran ge of U.

e {y : Y I (3 x : X u Il yn
R1 0 Rz Compositio n of relations.

=:: {x:X; z : ZI( 3 : Y . ;r. U2yl\ yli,z)}
ROSD Relational image.

=::{V: Y I (3 r. : 8 . ;t 1/ yn
S c R Domain restrict ion .

=- {e : X ; y: Y I :r E S 1\ x U y}
R [> T Range res t riction .

e [e : X ; y : Y l :r Ii y 1\ 11 E 1'}

A .4 Functions

X -++ Y Par tial fun ctions from X t o Y.
=- {f : X <-+ Y I/ o/ -1~ id Y}

X _ Y 'I ctal functi ons fro m X t o Y.
e {f, X - Y I dam f ~ .r}

X _ Y Finite par ti al funct ions fro m X to Y.

168



"'{f 'X - Y l dom/ EIF X}
X ..... Y Pa rtial inje ctions {rom X t o Y.

== {f: X -+I Y J I - I E Y -++ X}
X ,...... Y Tot al injections from X t o Y.

"'( X - Y)n(X - Y)
X .- Y Bijections from X to Y.

e {f, X - Y I<an I = Y }
f ;r. ,j(J:) Function f applied to argument' x,

i Z 1/= (J x)y.
I EEl .f1 Functional overriding.

e ((X \ dam 9) <JJ) U ll

A.5 Sequences

seq X Sequences over X.
== [s : N _ X Idoms « l.. # s}

#.<r Length of s,
() Emp ty sequence.

==0

,~ f

T he sequenc e containing ;r l , •. , x~ .

e {I ...... r ... . . , n t-+ IIr}

Concatenation of s and f .

169



Appendix B

Some D efinitions,
Abbreviations, and Laws of the
Refinement Calculus

Below are some d efinitions, abb reviat ions , and laws or the refinement enlculus .
T hese are par t of a more complete list which may be found ill 131, PI'. 227-2<1 0J.

B.l D efin it ions

B .I .! Feasi bili ty

Definiti on B.l (feasib ility "Ieas"] The specifirat jon .. : I,",. 11l?·,Jj i./uMi.
blEif and only if

{w = 100)1'1 pIT /I. i I/II => (3 11I : '1'. in" 1\ 111I1</) ,

where T is the type of 'I'. and j,lT! is the inn ria nt t hal is lWiocilltct! with tlu:
veriebles w during their declarations.
o

B.2 Abbrevia ti ons

Abbreviation n.i (init ial var iab le "iv") Occurrences of u-eubscriptcd vlui ·
abIes in th e postco ndit ion of a specificatio n refer to values held by t hose vlIrillhlcs
in the initial stat e. Let z be any variable, probably occurring in th e frame l/! . If
X is a Cresh name , and 7' is the type or :J., t hen

170



lit :1111"(: , 'JQlll]

I[ con X : '1'. 1lJ: [//1'" A~ = X , /IO"t [:ro\ XII II.

We reser ve O-subscripted names for that purpose, and call them illilial val'iablcs.
o

Abbreviation B.2 (ass umpt ion "assum")

{ ,IlY'} e :(/111' , II'~fl .

Abbreviation B.3 (coercion "Coerc" )

Ab breviation B.4 (specification invari a nt "si" )

B .3 Laws

B .3 .! Assumption an d Coercion

Lnw B .l (introduce assumption Ilia" )

Law B.2 (in troduce co ercion " if ") Th e program skip is refined by any co­
ercion,

o

171



Law B.3 (re m ove assnmption " ra" ) Any assumption is refined by skip.

{pl'e} !; s k ip.

o

Law B.4 (r e m ove coercion "r c"]

o

Law 8 .5 (m er ge a n n otat io ns " ma" )

{prc'} {p l't'} {pH" A /Ill'}
{/llls/.I I/JO.<I'] = [po.•/ Apo.•I' ].

o

Law B.6 (a bsor b assumption "a n"] An assumption before a specificatio n eun
be ab sorbed dir ectly into its preconditi on.

{/Ire' }; 1/): [pre, P'",1j

III : [/lre' l\ fIll? , po.•I].

o

Law B.7 (a bsor b coe rcion "ac "] An coercion following a spocificat jon can he
absorbed directly into its post condition .

tv:[/lI'C, POi;/j; [fJ()sl']

tv : [/Ire , }Jost II lID ....I'].

o

! 72



B.3.2 P L'e- and P ostcondition

Law 8 .8 (weake n precond itio n "w p" ) If 1!1t: =>pre', then

o

IA1W 8 .9 (strengthe n post cond ition "sp") If lm~ l m\ lLiljA lw,~t' =>post, then

o

B .3 .3 Frame

Law 8. 10 (ex pa nd fram e "en")

til: [IllY:, lml.'] = IIJ, J: : [,J1'C , 110si A x = 1"01·

o

Law B.11 (ex pa nd frame "eflI" ) For fresh consta nt X,

"' : ['"'1" , 1/(1,,1]

~ con X .
"', or:Iil/'C , /lo,~I A or = oro].

o

Law 8 .12 (contract fram e "cf")

Il',r : ['1/"' , jl ooSf] ~ 1l':! PJ'c , f)(J$l[ro \ xll .

o

173



B .3 .4 Local B lock

Law B .13 (introduce local block "ilb" ) If Il' and r are disjoint, t1W II

III: [pI'!' , /J/lstl (:; It var .r : 'f'; ami ;11 1' _ 11 '. r : [I II ~ • 11!>.';!111.

Law B .14 (loc al bloc k init ialization "Ibi" )

I[ var l : '1'; ini t ia lly hili - jI /lI.rIli

(:; I[ vlI.r' : T _ / : [f "IIf" , ;11111; /JlY/YII,

o

B .3 .5 Log ica l C o nstant

Law B.15 (i ntrod uce logica l consta nt. "ilc") If ,m ' ::} (3 /' : T _ /,11 ' ), nnrl
c is a fresh name (it does not OCC1' r in 111 , 1"1', and JI".4), then

w : [nre , /lQst ]

(:; con c : T _
I/I: [/Jl'c' ,/Josf j,

Law B.16 (re mo ve logi cal co nstant " ric" ) If r: occurs nowhere i ll prognuu
I/I 'D,q, then

I[co n c : T . p/'{}rJII (:; IJ/Y'!}'

Law B. 17 (fix i n ~ . ia l va lue " llv" ) For anyexpression H such thnt 11/1' =-... /.; E 'f',
and fresh name c,

1/1 : [pre , IJO.~ ll

(:; con c : 7' .
m : {/IIl: A r. = H, flO.d l .

o

174



8 .3.6 Ass ignment

1"' IW B.18 (s im ple specification "ss")

111:= B = 1/1: [l r ll e , w == I~J ,

where Hnis l::'[w\1J'o).
o

LIIW B.19 (assig n m e nt. "ass") If (III== 1/\,) A l/1Y ::} /!O.~l l w\ Ej. th en

1II • .r: [pIV:, Jlosl-J I;; 11):= E.

Law B.20 [leading assi gnm en t "Ia"] For any expre ssion e,

lI1 , r: [/lIY[r\ B'] , Im.~f [.rl}\I~1l

I;; r:= 1::' ;
1Il, .r: ['ilT, /1(J.•l j.

The expression '~abbreviates 8 [m•.r\ utl•.ro].
o
Law B .21 (foll owin g ass ignment "fa") For any expression E,

m, or.:[/II'C• /J(J.~ I ]

I;; m, or. : [1m" f!o.~I[.r\elJ ;

.r:= 1::' .

o

B .3.7 Alternation

Law B .22 (nlte rnation "al tl" ) If Ill Y: =} (V i . G j ) , then

11' :[111 '(" .1"",1]

I;; if mi . G; ...... Il': [G; A IllY" , JJo.~tJ) fl .

175



Law B .23 (a lt e rna t ion "n lt ll" )

{(V i . G,n IIIYJ.q

= if (Q i . Ci -+ {Gi } /Im,rl) fi.

Law H.24 {Ieft -die t r-ib u t .ion of co mposi t ic u OWl' a lt.cm a l.inn " lllll")

if mi . Gi -+ hralH'h;}l1; I" Y'.'!

= if mi. Gi -+ bmlH'hi ; IJ/YJfd fi.

Law B .25 [right -dlet j-ib n t.ion of nssignmcllt OV Cl ' a ll.er ila l.iu ll " l,la" )

r:=E; if (Qi , ( ,', -+ lml lll'hi )11

if (0 i . Gdr \Bj-+ r := N; Ilnlllt·!Ji)l1.

D

B .3. 8 Iter a t ion

Law B .26 ( iteratio n " ite r") Let ilw , the i /lt ml' i fl ll l, be any prcdionte: Icl l" ,
the va"; fllIl, be any integer-valued expression. Then

W :(i/llJ. inj' '' ....(Vi . (:i )1

b: do mi. (,'i -+ til : lillll " Oi . ilw " (0:::; V :::; VII)])
od .

Neither inn nor G; may contai n initi al variables. The expression 1/11 is Vlw\U\i I·
D

Law B.2 7 (iterat io n single guard "isg"] Let illtl, the illtltlrill/l /, he nny pred­
kate; let V, the V(l l' illIIl, be any integer -valued expression. Th eil

Ill: [illll , inn " ....(n
b: do (,' -+

III: [G , ill II , (0 :::; V :::; v'J))
od .

176



Neit her im' nor (: tuay contain initial vari ables.
o

Law B .28 (in itialized it.erati on "B")

!(': (pIT' . hI" /1 .....( ,']

l; 1('; (/'1'1'. illr' ];
do G --+ w: [G II ino, i" I'1I (O:5 \ ' :5 1;1)\ od.

o

B .3.9 Sequential Com p osit.ion

Law B .29 (s eq uent ia l comp osi t ion "s cI ") For Ircsh constants S ,

1(".r: [pIT, pIJ.•I]

i; co n X •
.r : {pll" , mid];
1I', ;r: [mid[J'o\ X] , /}(} .~/ [ J'II \ X IJ .

Th e pr edicate m ill must not cont ain in itia l variables ethe r limn " 11.

D

Law 8 .30 (s eq uen t ia l comp os it ion "se H")

Il,,;r:[/lrc, pO$i]

i; z : [pl'e , mid] ;
rll,x: [mid , post].

T he pr edicate mid must not cont ain initial variables; and f/fl.~1 must not ecnt uin
r,.
o

B.3.10 Procedure

Law B .31 (va lue su bs t it ut io n "vs ") If JIlI "~1 does not contain I, t hcn

177



"" I"" [!I A) • ,,,,·,'fj,IA,,1I
!; [vnlu e j": T\I1I _

11' ,/ : [JIll: , lj()·~/ I,

wher e Aui s A[m\ I/\,I.
o

Lnw 0.32 ( resu lt su bst itut ion "rs" ) ICf does not occur in 1J1'C, and neither
f nor AI occurs in /1'1.,/, th en

111, /1: [/lIl; , po."]

~ [result.f : '1'\111 •
m,j: [/ll"r • J!{)~·1 [ 1I \f1 1 .

Lnw B.33 [va lue -result substit ution "vrsf") If l/os/ does not contain f , then

1Il ,1I : [/II'f [J\ f1 ], jJlJsl [jo\floJ]

~ [va lue resul t f : 'I'\ IIJ.
", .r,I,,,,·. ,"'·" ["VII·

o

(..nw 0 .34 {value -res ult substit ut ion "v rslI") r~ l/Os1 does not contain tl ,

then

lI',fl:[ /lrrV\ llj , Jw," /Jo,f \r1u, nll
J; [va lue resul t t . T\fl] '

" ,, / : [JlIY' , Jlo.~I ],

c

Law B. 35 (r en am e formal pa ram et e r "rfp") If I does not occurs in pro­
gram I'll /f', then

{l1Yl!/[par f : 'I'\ /\) ::; /JI'(Ig[f\I J[pa r 1: T\ t1J.
o

178



Law B.36 (mult iple subst it.ut.ion "ms"] Provided neither f nor ,tloccurs in
F or G,

pm!T(p a r l f: T \J.' ][p m·2 !J : (1\(:1

i; !JlYlI/{p<lrI t . 'J'. p ar 2 ,11 : 1'\ 1-' . (;1·

Th e substit ut ions p a r I a nd p ar2 may be any combin ation orva lue , l' I.'S II It " anrl
valu e resu lt .
o

B.3 .11 I nva r iant

Law B .37 (remove inva rian t "r i") Provided II' does net occur in im-,

w:!J"'C . ;II'! . /111..../ ] I;;; II' :[/Ill. jIf""Ij ,

o

B.3 .12 Skip

Law B .38 (skip command "sk" ) If ( ,,, = 1110) II /m .:::. /w."/ , 111<'11

1/1: [prt. po.•I] (; skip.

o

Law B.39 (skip comp osit ion "skc") For nny program Ilm ./I,

J!I"Q!T; skip
skip; /JI'O!/

/1I·Of/·

o

179



Appendix C

A Pascal Program that
Computes Even Paragraphs

program Eve nPa ragraph(input , out put );

ca ns t
maxLeng th = 46;
maxWord'" 100 ;

type
Cha rArray • pac ked array (1 .maxLcng thJ of char:

Wor d ·
recor d

word : Char Arrayj
l ength; int eger

end ;

IntegerArray '" array [ 1. .maxWor d] of integer;

wor ds : array [ 1 . maxWor d] of Word:
t ot al : integer ;

r- "'••••••"')

pr oce dur e Consu meWhiteSpace :

180



x : char;

beg i n
wh i l e not aof an d {input, " = , , ) do

read (x)
end ; { ConslUlleWhiteSpace }

( "''''''' '''. ''''''''' ''''''''''''.. '''''' '''''''''. ''''''''')

procedure ReadWord(var lid : CharAr r ay ; va r 19 : integer);

va r
x r ch ar;

beg i n
19 : .. 0;
while not eof an d (Lnput; " <> ' , ) do

it 19 < maxLength then begin
19 : . :!.g + 1;
read(wd[lg] )

end else
read(x)

end ; { Read Word }

(** ** "'** "' "''''** '''''' '''•• )

procedure ReadInput ;

beg i n
Consume WhiteSpace;
t ot a l := 0 ;
while ( t ot a l o- maxWord) and not ea t do beg in

total :'" total + 1 ;
ReadWor d(wor ds[total] .vcr-d , wor ds [total] . length) ;
ConsumeWhiteSpace

"d
end i { Read Input }

(.."' "' "' '''''' '''.''' '''''' '''.''' '''.''' )

181



function max(a, b: i nt eger ) : i nteger;

beg i n
i f a ) b then

el s e
max :- b

end; { max)

( ****.* )

function min(a, b r in teger) : integer;

begin
if a ( b then

mln :: a
else

min ; - b

end ; { min }

(••••••••••••••••* * *•• )

procedure ComputeMinWasteArray(var mwA: I nt age r Ar r ay) ;

j , n , s , x : i nt eger ;

begin
j := total ;
mwA[t ot al] : " 0;
while j <> 1 do begin

J :=- j - 1 ;
n : : j ... 1 ;
s : .. wor ds[j ] . length ... words [j ... 1] . langt h ... 1 ;
x : =- max(max Lengt h - Ilor ds Ij I . l ength, milA[ j ... 1J) ;
whil e (n <> total) and (8 <- maxLength) do begi n

x :: min (x. max(maxLength - s, mwA[n'" 1]»);
s :.. s word s [n ... 1] . l enbt h ... 1 ;
n : = n 1

182



end;
it s (c maxLength then

x:" 0;
mwA[jJ : = x

end

end; { CornputeMinWasteArray }

(•••••••••••••••••••••••••••••* )

procedure WriteLine(s, f: integer);

var
k : integer;

beg in
wr i te (wor ds [s) .word: wor ds[sJ . lengt h) ;
k :"s+ 1;
while k (z: f do begin

wr i t e ( ' ');
wn t e (wor ds [k] .vot-d : IJor ds [k] . l (tng t h) ;
k : z: k + 1

end;
writeln
end; { Writ eL i ne }

(**************'1<*****••••••* )

procedu r e WriteEven (mwA: I ntegerArray);

i, j , s: integer;

begin
i : = 1 i
while i () total + 1 do begin

j :cii
s :c rnax Lengt h - wor ds [ j ] . l ength:
while (j o- total) and

«s > mwA(1]) or (mwA [j + 1] > mwAi) ))) do begin

j :"J + 1 i

183



s : = s - wor ds[ j ) . length - 1
end;
WriteLine(i, j ) j
i :=j + 1

end
end ; { Wri t eEven )

(************************************************..**)

procedure Wri t ePar agra ph i

,or
minWo.steArray : IntegerArray;

beg in
if total >- 1 then begin

ComputeMinWasteArray (minWaateArra, ) j
Wr i teEven(minWasteArray)

end
end; { WritePa ragraph )

(*••*.** •••••• ••••••••••••"'.*.*.*.**********"'**••***)

begin
total t e. 0;
Readlnpu tj
Wr i teParagraph

end . { EvenPa ragraph }

184










	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Blank Page
	0005_Copyright Information
	0006_Title Page
	0007_Abstract
	0008_Acknowledgements
	0009_Acknowledgements iv
	0010_Table of Contents
	0011_Table of Contents vi
	0012_Table of Contents vii
	0013_Table of Contents viii
	0014_Table of Contents ix
	0015_Table of Contents x
	0016_Table of Contents xi
	0017_Table of Contents xii
	0018_List of Tables
	0019_List of Figures
	0020_List of Figures xv
	0021_Chapter 1 - Page 1
	0022_Page 2
	0023_Page 3
	0024_Page 4
	0025_Page 5
	0026_Page 6
	0027_Page 7
	0028_Page 8
	0029_Chapter 2 - Page 9
	0030_Page 10
	0031_Page 11
	0032_Page 12
	0033_Page 13
	0034_Page 14
	0035_Page 15
	0036_Page 16
	0037_Page 17
	0038_Page 18
	0039_Page 19
	0040_Page 20
	0041_Page 21
	0042_Page 22
	0043_Page 23
	0044_Page 24
	0045_Page 25
	0046_Page 26
	0047_Page 27
	0048_Page 28
	0049_Page 29
	0050_Page 30
	0051_Page 31
	0052_Chapter 3 - Page 32
	0053_Page 33
	0054_Page 34
	0055_Page 35
	0056_Page 36
	0057_Page 37
	0058_Page 38
	0059_Page 39
	0060_Page 40
	0061_Page 41
	0062_Page 42
	0063_Page 43
	0064_Page 44
	0065_Page 45
	0066_Page 46
	0067_Page 47
	0068_Page 48
	0069_Page 49
	0070_Page 50
	0071_Page 51
	0072_Page 52
	0073_Page 53
	0074_Page 54
	0075_Page 55
	0076_Page 56
	0077_Chapter 4 - Page 57
	0078_Page 58
	0079_Page 59
	0080_Page 60
	0081_Page 61
	0082_Page 62
	0083_Page 63
	0084_Page 64
	0085_Page 65
	0086_Page 66
	0087_Page 67
	0088_Page 68
	0089_Page 69
	0090_Page 70
	0091_Page 71
	0092_Page 72
	0093_Page 73
	0094_Page 74
	0095_Page 75
	0096_Page 76
	0097_Page 77
	0098_Page 78
	0099_Page 79
	0100_Page 80
	0101_Page 81
	0102_Page 82
	0103_Page 83
	0104_Page 84
	0105_Page 85
	0106_Page 86
	0107_Page 87
	0108_Page 88
	0109_Page 89
	0110_Page 90
	0111_Page 91
	0112_Page 92
	0113_Page 93
	0114_Page 94
	0115_Page 95
	0116_Chapter 5 - Page 96
	0117_Page 97
	0118_Page 98
	0119_Page 99
	0120_Page 100
	0121_Page 101
	0122_Page 102
	0123_Page 103
	0124_Page 104
	0125_Page 105
	0126_Page 106
	0127_Page 107
	0128_Page 108
	0129_Page 109
	0130_Page 110
	0131_Page 111
	0132_Page 112
	0133_Page 113
	0134_Page 114
	0135_Page 115
	0136_Page 116
	0137_Page 117
	0138_Page 118
	0139_Page 119
	0140_Page 120
	0141_Page 121
	0142_Page 122
	0143_Chapter 6 - Page 123
	0144_Page 124
	0145_Page 125
	0146_Page 126
	0147_Page 127
	0148_Page 128
	0149_Page 129
	0150_Page 130
	0151_Page 131
	0152_Page 132
	0153_Page 133
	0154_Page 134
	0155_Page 135
	0156_Page 136
	0157_Page 137
	0158_Page 138
	0159_Page 139
	0160_Page 140
	0161_Page 141
	0162_Page 142
	0163_Page 143
	0164_Page 144
	0165_Page 145
	0166_Page 146
	0167_Page 147
	0168_Page 148
	0169_Page 149
	0170_Page 150
	0171_Page 151
	0172_Page 152
	0173_Page 153
	0174_Page 154
	0175_Page 155
	0176_Chapter 7 - Page 156
	0177_Page 157
	0178_Page 158
	0179_Page 159
	0180_Page 160
	0181_Page 161
	0182_Page 162
	0183_Page 163
	0184_Page 164
	0185_Page 165
	0186_Page 166
	0187_Appendix A
	0188_Page 168
	0189_Page 169
	0190_Appendix B
	0191_Page 171
	0192_Page 172
	0193_Page 173
	0194_Page 174
	0195_Page 175
	0196_Page 176
	0197_Page 177
	0198_Page 178
	0199_Page 179
	0200_Appendix C
	0201_Page 181
	0202_Page 182
	0203_Page 183
	0204_Page 184
	0205_Blank Page
	0206_Blank Page
	0207_Inside Back Cover
	0208_Back Cover

