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Abstract

This thesis is a study of a formal software development process that uses a
formal specification language called Z [42] and the formal development method
called the refincment caleulus [31]. The software development process is ivided

into five stages: formal ification in Z, data refi lation into the

calculus, and

into the target pro-
gramming language (25]. In this thesis, many of the important results for under-
standing and using this process are collected together and numerous examples
are given to illustrate their use. Through a case study of the Faragraph Problim
[5, 31], we show how formality may be appropriately employed Lo manage the

Igorithmi lexity in a devel and indicate directions on how prede-

fined programming language and library routines may be introduced into a formal

devel The thesis ludes with some ions for further rescarch.
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Chapter 1

Introduction

Formal metheds in software devel are matl ical technil which may

be used to specify, develop and verify software systems in a systematic and orga-
nized fashion. The mathematical basis of a formal method is, in principle, given

by a formal spccification language with a well-defined syntax and semantics.

1.1 Formal Methods in Software Development

Some of the advantages of using formal methods in software: development arc

given below.

1.1.1 Formal Specification

A formal method is commonly used to specify software systems. Itz basis language

is used as a notation to write formal specifications. Since the notation is precise,



the resulting formal description is clear and

There are several advantages to using formal rather than informal languages
to specify software. With an informal specification, thorough reasoning is often
hatd or impossible; a formal specification, on the other hand, may be subjected
to rigorous mathematical analysis which easily exposes ambiguities and incom-

pleleness. Since a formal ification is ially a math ical theory, its

consislency can also be checked. An i i ification is undesirable since

it contains contradicting facts [44] and a program based on it cannot be realized.
The mathematical nature of a formal specification also lets the specifier formally
prove important properties of the system to the customer, thereby ensuring that
the specifier has a good approximation of the customer's requirements for the

system.

1.1.2 Formal Development

A program may be mathematically derived from the program’s formal specifica-

tion. A program derived in this manner is g d to satisfy its d

" 1

t involves d

One such development method called
in small steps, A step may consist of defining a module as a collection of modules
at & lower level, or choosing a representation for a data type that is more efficient
or more easily constructable in the target programming language. Starting from

a specification, each refinement step yields another specification that contains



more implementation details. This latter specification must in turn be shown to
satisfy the former in order lo ensure correctness. Such proof of satisfaction often
generates proof obligations which can be precisely stated and discharged within

the framework of a formal method [44].

1.1.2 Verification versus Validation

Following Wing [44] and Hayes and Jones [17], a werificalion is a formal proof

that an impl. satisfies its ifi while a valide is an informal

check of correctness, e.g,, testing. When a program is not formally developed, it
i

is expressed

may be desirable fo verify its Only when the

mathematically can a formal proof be carried out; without such a specification,
only validation is possible [44, 17].

An in-depth discussion of the merits of formal methods is not an objective of
this thesis; the interested reader is referred to [15, 26, 44). From here onwards,
we concern ourselves with o softwate development process that relics on formal

methods [25].

1.2 A Formal Development Process

A software development process that uses the formal specification language %,
and the formal development method called the refincment caleulus, is described

in [25, 45]. This process (see Figure 1.1) may be viewed as having five stages:



[ Formal specification in 2
Abstract Specification
Data refinement

Concrete Design

‘Translation into
the refinement calculus

Abstract Program
Operation tefinement

Code (Guarded Commands)

“Translation into the target
‘programming language

Code (Pascal, G, ...)

Figure 1.1: Stages of software development using % and the refinement calculus.

formal ification in Z, data lation into the refi t calcu-

Tus, ti and lation into the target ing language.

An overview of these stages is given next.

1.2.1 Formal Specification in Z

The Z notation [42]is used to formally specify the proposed system. The formal
specification obtained is called an abstract specification as it contains abstract
mathematical models of data types and operstions.. Although these models are

typically difficult to construct using the primitive data types of the target pro-



gramming language, they are well suited for describing and reasoning about the
properties of the system.

In Chapter 2, a brief account of the Z ification language and a

for specifying software systems is given. This exposition is illustrated by a case

study in which some operations of the abstract data type stack are specified.

1.2.2 Data Refinement

Data refinement is the process of transforming an abstract specification into a
specification of the system which contains data types that are either available
or easily constructed in the target programming language. The product of this
refinement is called a concrele design since it uses data types that may be di-
rectly realized in the target programming language. An important task here is to
formulate a relricve relalion to relate the abstract specification and the concrete
design. Proof obligations which use this relation may be discharged to show that
this concrete design satisfies the abstract specification.

The process of producing a concrete design from an abstract specification is
the subject of Chapter 3. The purpose of data refineraent is illustrated through

several examples and the case study of the stack started in Chapter 2.



1.2.3 Translation into the Refinement Calculus

The concrete design is then translated into the notation of the refinement calenlus
[31] to obtain an absimct program. While the % notation is more suitable for the
purpose of specification, the refinement calculus is more appropriate for program
development.

The necessity of and strategies for translation are discussed in Chapter 4.
Rules are formulated to allow the translation process to be performed in a
straightforward manner, These rules indicate how the common structures in

aZ ification may be fc d into the calculus,

1.2.4 Operation Refinemert

Code written in a language based on Dijkstra’s guarded commands [13] is calcu-
lated from the design by performing refinement steps. These steps are carried
out according to the laws of the refinement calculus, which guarantee that the
derived code satisfies its specification.

Some elementary laws of the refinement calculus are given in Chapter 5. Ex-

amples including the stack case study are presented to illustrate their use.

1.2.5 ‘Translation into the Target Programming Languag2

Since the stages of data and ti fi take into ideration the

characteristics of the target programming language, the resulting code is reason-



ably close to allow a simple and intuitive conversion into the target programming
language. Hence, the code from the previous step may be easily translated into
an imperative programming language like C or Pascal.

Due to its language specificity and relative ease,  review of this stage is not
given. However, in Chapter 6, the translation of some guarded commands into

Pascal may be observed.

1.3 An Application

In Chapter 6, the formal software development process described here is used to
produce a program for computing cvcn paragraphs [5,31]). An aim of constructing
this program is to collect useful experience that may be employed to construct

larger and more licated Besides i! many of the concepts

that are contained in the carlier part of this thesis, tnis casc study also shows
how formality may be appropriately exploited to manage the complexity of the
refinement which may arise during the development of a software system. Since
this program uses predefined routines, we also give directions on how these may

be integrated into the formal development framework.



1.4 Summary

This thesis reports on the practical aspects of a. software development process
that uses % and the refincment calculus. The aim is to collect together in one
place many of the important theoretical results that are needed to understand
a1d use such a development process. Each stage of the process is documented in
a chapter with examples to illustrate its purpose. This thesis concludes with a

non-trivial case study and suggestions for future research.



Chapter 2

Formal Specification in Z

Z is a formal specification language based on typed set theory and first-order
predicate calculus [19, 40, 42), This chapter presents some of the features of Z,
and how Z may be used to specify software systems in the standard convention
as described in [42]. Since a complete description of the notation is not. possible,

a glossary is included in Appendix A.

2.1 Schemas

Central to Z is a language construct called a schema which may be diagrammat-
ically represented in two equivalent ways: vertically and horizontally. A schema.

named Schema written vertically is as follows.



A schema consists of two parts: the declaralion and the predicalc. The decla-
ration is contained in the part of a schema above the dividing line, which, in the
case of Sehema, has variables v, vy, .., vy, of types Ty, Ty, .y T, These vatiables
arc also known as the componcnls of the schema.

Below the line ate prodicalce Py, Py, ... Py, which are implicitly conjuncted
(“anded”) to give the relation which must hold among the values of the variables.
The predicate part of a schema may be empty, in which case, it is a box with no
dividing line, containing only the signature.

The same schema is written horizontally as follows.

soa s T | PLAPyA LA Py

Sehema = (o : Ty v s Ty

2.2 States

The style of Z specification used here is suitable for sequential, imperative pro-
gramming and it involves viewing a software system as an abstract data (ype.
Simply put, an abstract data type consists of a set of states, called the slafc

10



space, @ non-empty set, of inilial stales, and a number of operations which trans-
form one state into another [42]. In this section, we show how the state space of

a system may be defined.

2.2.1 Sets, Types and Basic Types

The specification of a state space involves identifying some objects of interest.
Each such object has a type which is composed from sets. % contains standard
mathematical sets like the natural numbers N and the integers Z, clc. In general,
any set may ba used as a type, and complex types like sequences and cartesian
products may be constructed from simpler ones by using standard % operators.

A particularly useful construction in Z is that of a basic fyp which allows a

set to be declared without ioning what is ined in it. The d

[OBJECT)

indicates the existence of a set of objects called O3JIEC'T", although we do not

know its structure or content.

2.2.2 Axiomatic Descriptions

Global constants and functions may be declared and defined using wriomatic
descriptions. These descriptions allows the declaration and use of global variables.
The scope of a global variable extends from the point of declaration to the end

of the specification.



For example, a global variable maz of type natural number is declared. A con-

straint on its value is included, which restricts max to a value of 20.

2.2.3 Modeling States

The slale spacc of a system is the set of allowable states. This set may be defined
with a schema by declaring stalc variables as components of the schema and
constraining their values using the schema predicates. The conjunction of these
predicates gives the system invariant, and the values that may be taken up by
the variables represent the allowable states of the system. For example, a possible
state space of a system that maintains a rather limited version of the abstract

data type stack is

Stack
slack : seq OBJECT'

#slack < max

The schema Stack models a stack which may be used to store objects from the
set OBJECT. Tt has a state variable slack which is a finite sequence (seq) of
OBJECT, and its invariant requires that the length of the stack be not more
than 20. In this paper, the convention of writing schema names with the first
letter capitalized, and component names with the first letter in lower case is used.

12



2.3 Initial States

The initial slafcs of a system may be documented by describing the values that
the state variables must take when the system is started up. A system typically

has only one such state, but there may be more. The initial state of our stack

system is given in InilStack.

— InitStack

sack! = ()

The significance of the dash () is explained in a later section. Since () is the

empty sequence, [nilSlack requires that the stack is initially empty.

2.3.1 Schema Reference

The /nitStack schema may be rewritten using a mechanism called sehema refer-
ence which enables % specifications to be structured in a modular fashion. Below,

two features of this mechanism, decoralion and inclusion, are described.

Systematic Decoration

Within the revised version of /nitSlack shown below, the schema name Stack
appears with a prime ('); this is an operation on schemas called decoralion. Es-

sentially, any decoration that is applied on the name of a schema is inherited by

13



its components.

By including Siack’ in InitStack, the variables and predicates of the former are
included in the declaration and predicate parts of the latter; the variables are
merged and the predicates are conjuncted.

Using these features, the schema InitSlack may be alternatively and more

economically specified as

2.3.2 Showing Existence of Initial States

It is meaningful to check that an initial state does exist, and we may do so by

first expressing it as a theorem.

3 Stack! e InitStack

This is equivalent to proving

Jstack' s seq OBJECT o hslack! < max A stack! = ()

which is trivially true when stack is an empty sequence.



2.4 Operations

An operation is modeled as a sfalc change by declaring a schema containing
before- and aftcr-state variables, which indicate the states of the system before
and after the operation has taken place. By convention, the before-variables are
unprimed while the after-variables are primed (), and the state change of an

operation is specified by describing the relationship between these variables.

2.4.1 The A and = Conventions

Before specifying any on, it is jent to write schemas that suggest

a possible change and no change in the state of the system. By convention, the

names of these schemas start ith A and Z respectively.
ASlack
Stack
Stack!

The schema AStack suggests a change of the stack since the schema does not

contain any predicate to constrain the values of the state variables.

— EStack
Stack
Slack’

stack’ = stack

The schema EStack indicates a no change during the operation since the schema
contains a predicate that requires the after-value of the stack be the same as its

15



before-value. These schemas are useful as short-hands for specifying operations

on the stack.

2.4.2 Specifying Operations

Using ASlack and EStack, the push, pop, and fop operations of the stack may

now be succinctly specified.

Pushing an Element onto the Stack

The symbol ™ is the operator for sequence concatenation, and (object?) is the
sequence containing only object?.
— PushOk

AStack
object? : OBJECT

fhstack < mar

stack! = stack ™ (object?)

The schema PushOk describes the operation of pushing object? onto a stack.
The variables in PushOk consist of the before- and after-variables which are
included with ASlack, and an input variable object? which, by convention, ends

with a question mark.

It is ofter ded that the specification of an jon d ex-
plicitly the precondition, which states the condition under which the operation

may be used. Typically, the precondition appears as the first predicate in the

16



schema. For PushOk, this requires that the stack contains less than mar cle-

ments, i.e., the stack must not be full,

The actual push tion is described as the after-stack being the same as

the before-stack with the input objcc/? concatenated to its end.
Popping an Element off the Stack

— PopOk
AStack

stack # ()

stack! = fronl slack

The Z specification language includes a mathemalical loolkil which is a ¢ diec-

tion of

1 types and primitives that allows
to be built in a compact way. For sequences, the toolkit contains a function fron!
that takes a non-empty sequence and returns the same sequence with the last
element removed. Using fronl, popping an element off the stack is described as

taking away its last element.



Inquiring the Top Element of the Stack

— TopOl:
=Slack
object!: OBJECT
slack # ()

objeet) = last slack

The schema TopOk describes the operation of reporting the value of the top
element in a non-empty stack. The requirement that the stack not be changed is
stated by including ESlack. The operation is specified using the last operator,
which takes a non-empty sequence and returns the value of the last element of
the sequence. This value is recorded in the output variable object! which, by

convention, ends with an exclamation mark.

2.5 Preconditions

The precondition of an operation must be properly documented since it states
exactly when an operation should be used. When an operation is invoked under
its precondition, the specification requires that it terminates in a state that sat-
isfies the predicates written in the schema; otherwise, it does not say what is to
happen, i.e., the operation’s result is unpredictable.

The precondition of an operation descrikes all those before-states from which

an after-state is d. Often, an i ion of an ion assumes
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that its dition holds on the before-states, which means that the resulting

program may be used appropriately only under the circumstances depicted in
the precondition. This stresses the importance of correctly documenting the

precondition [46].

2.5.1 Calculating Preconditions

In Z, the precondition of an operation Op is denoted pre Op, and is calculated by
hiding the after-state and output variables. This is accomplished by existentially

quantifying these variables in the predicate part of Op. As an illustration, the

dition of the operation Op is  below.
State
vV

inv

—Op
ASlate
z1: X
Y
Pred

Assuming that Stalc is the state schema of the system, pre Op is the schema

obtained by existentially quantifying the after- and output variables »" and y!.

State
z?: X

IState’; y!: Y o Pred




When ioning the dition of an ion, we ly refer to the

predicate in the precondition schema of the operation. In the case of Op, this is
IState’; y1: Y @ Pred

which is equivalent to
0 Vil V] in' e Pred

where inv' is the state invariant with all the state variables primed’.

2.5.2 Simplifying Preconditions

Preconditions calculated in this way often contain extraneous details which may
be easily eliminated. Woodcock suggests two strategies for simplifying these
predicates [46].

The One-Point Rule

The first tactic uses the so-called onc-point rulc which states that the definition
of a variable may be substituted for the variable itself. In symbols, this may be

expressed as
(3r:S e Pr) Ax=lerm) & P(lerm)

with the condition that r is not free in ferm.

" TNote that the use of the dash (') for inv is not standard,
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For simplifying preconditions, this rule is often used when an output or after-

vatiable has an equality constraining its value. This value may be systematically

bstituted for all its and its ification is then dropped.
The Conditional-Rewrite Rule
The second tactic is summarized in the following conditional-rewrite vule.

P=Q
(PAQ) & P

This rule says that, for predicates P and @, if I’ = @ is true, then /> A Q) may

be rewritten as P.

Simplifying the P dition of PopOk

"The dition of PopOk is calculated and simplified using the one-point and

conditional-rewrite rules as shown below. By definition, pre ’opOk is

Fstack’ : seq OBJECT o
#stack! < max A stack # () A stack! = fronl. slack.

Since stack is free, it may be moved outside the quantification, and we have

& (Islack’ :seq OBIECT o
stack! = front stack A fstack! < maz) A stack # ().

Using the one-point rule, stack’ may be substituted with its definition of front stack,

and we have
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Operation | Precondition
PushOk | #slack < maz
PopOk | stack # ()
TopOk | stack # ()

Table 2.1: The preconditions of PushOk, PopOk, and TopOk.

& #(front slack) < maz A slack # ().

From the system invariant, we know that #stack < maz; therefore, it is easily
proved that stack # () = #(fronl slack) < maz. Using this in conjunction with
the conditional-rewrite rule, the predicate #(front stack) < maz A slack # ()

may be simplified as slack # (), and the final step of our proof is
& stack # ().

Similarly, the preconditions for PushOk and TopOk are calculated and they

are collected in Table 2.1.

2.6 Proving Properties of Systems

As mentioned in the previous chapter, a formal specification may be used to
prove important properties of the system. In this section, we describe how the
last-in-first-out property of the stack may be shown. This uses the sequential

composition operator § which is described next.
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Sequential Composition

The ial ition of two tion schemas, (p and Opy, may be

understood as a schema describing the ion of performing first Opy and
then Op;. The schema Op; 3 Op; is obtained by “combining” Op; and Opy, where
the after-variables of Op, and the before-variables of Op, are both equated with
some intermediate state variables. If Slulc is the schema describing the system

state, Op; 3 On, is defined as

3 Slalc" o
(3 State! o [Opy; State” | 0Stale’ = 08lale")) A
(3Stale o [Opy- State” | 0State = 0Slale"])

where 0Slalc may be thought of as the tuple formed from the state variables [42].

Showing the Last-In-First-Out Property of the Stack

The last-in-first-out property of the stack may be shown by proving that the stack
is restored to its original content in a sequence of Push(Ok and PopOk operations,

provided that the stack is not full to begin with. In symbols, this is

V Slack, Stack’ | #stack < maz o

PushOk 3 PopOk = slack = stuck!,

Assuming the invariants in Slack and Stack’, and the condition fslack <

maz, the proof may proceed with stating

PushOk 3 PopOk
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which, by definition, is equivalent to

& IStack" o
(3Stack’ o [PopOk; Stack" | stack' = stack”]) A
(3Stack « [PushOk; Stack”| stack = stack"]).

After multiple applications of the one-point and conditional-rewrite rule, we arrive
at

& stack # () A stack! = slack

which may be simplified as

& slack’ = stack

since, by hypothesis, slack # () is true.

2.7 Errors

The schemas PushOk, PopOk, and TopOk describe only successful operations.
For instance, for PushOk, the specification says what happens when the stack is
not full, but it does not indicate what the program should do if it is full. In this
sense, the operations are incomplelc.

Sometimes, it is desirable and possible to specify operations so that they
are more applicable, and this often requires the specification to include what
should happen when an operation is invoked under conditions for which it is not
intended. Typically, this is achieved by making the operation do some sort of
crvor handling.
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2.7.1 Reporting Errors

The operations of the stack can be modified so that the status of the exccution
of each operation is reported in a variable resulll. Three types of messages are
used: ok to signify a successful operation, enply and full to teport emply and

full stack respectively.

Free Type Definitions

A free lype definilion allows 7 to define a set with certain objects. This is vary
useful for defining a type and its elements, For example, we may define the set
REPORT consisting of three elements ok, rmply, and full with the following free

type definition.

REPORT == ok | empty | full.

Reporting a Successful Operation
The set REPORT may now be used in the schema Success, which describes the

operation of reporting a successful operation.

Success
resull! : REPORT

result! = ok

Reporting a Full Stack

For example, we can report a full stack as follows.
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— Stackiull
ESla

resull!

REPORT
fhstack

maz
resull) = full

In Stacklull, result!is given the value full when the stack reaches its maximum

capacity. It further requires that there should be no change in the stack.

Reporting an Empty Stack
Similarly, reporting an empty stack can be written as

ekl
ESlack
result! : REPORT

slack = ()

result! = emply

2.7.2 Schema Calculus

One of the powerful features of Z that makes it appropriate for writing specifica-
tions of large systems is its schema calculus which enables larger schemas to be
formed by combining smaller schemas using schema connectives. In the following,
two of these connectives, A and V, are used to build a stronger specification of the

stack operations. Using the A operator on two schemas merges their declarations
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and conj their predi while the v ion has the same effect except

that the predicates are disjuncted.

Schema connectives are useful operators in that they allow parts of a specifica-
tion to be considered separately. For instance, for our stack, the specifications of
successful operations and error handling are considered separately and these are

then combined, using schema connectives, to form a more complete specification.

2.7.3 Building Stronger Specifications

Using schema definition (=), the new schema Pop is formed, first by making a
schema capression from the conjuncting of PopOk and Success, which is then

disjuncted with StackEmpty.
Pop = (PopOk A Success) V. StackEmply
The schema Pop is made explicit below.

_ Pop
Stack
Stack!
resulll : REPORT
((stack # () A
stack! = front stack A
resulll = ok)

v

(stack = {) A
stack! = stack A
result! = emply))

The specification says that when the stack is not empty, it is popped und a
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message indicating a successful operation is reported, and that when the stack is
empty, it stays the same during the operation and a message indicating an empty

stack is reported. Similar schemas for the push and pop operations are defined

as
Push = (PushOk A Success) v StackFull
Top = (TopOk A Success) V StackEmply
Preconditions Revisited

1t would be convenient if the preconditio.i of the larger schemas could be calcu-
lated from the preconditions of the smaller ones from which it is built. In this

section, we give a few sugges’ions on how this may be done.

Since the exi ial ification distrit through disj ion, the pre-

operator distrit through disjunction as well. Hence, the following

equivalence is true.

pre (Opy V Opa) 4 pre Opy V pre Opy

The situation is not so simple in the case of conjunction since the existential
quantification does not generally distribute through conjunction. However, if the
predicates in Opy and Op, are Py and Py, and the variables contained in Py are

disjoint from those in P, a similar equivalence may be esiablished.

pre (Op A Op) & pre Opy A pre Op,
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Operation | Precondition
StackFull | #
StackEmpty | stac
Pop true
Push trae
Top true

slacl

Table 2.2: The preconditions of Stacklull, StackEmply, Pop, Push, and Top.

ditions for the ini jons arc calcn-

Using these results, the
lated and recorded in Table 2.2. Note that the preconditions of Pop, Push, and
Top are all Lruc, implying that they may be invoked in any state in the state

space of the system; such operations are known as /ofal operations.

2.8 Summary and Bibliographical Notes

In this chapter, we have attempted o give a practical guide o the Z specification

language. In icular, we have a jon of i ion which

views a system as an abstract data type. Useful information on proving system

Ieulati: diti and handling is also given.

2.8.1 Some Uses of Z

In recent years, there have been numerous reports of the successful usc of 7 [8, 43].

In the following, we highlight some of these recent efforts.
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Specifying New Systems
% has been used to describe the development of both software and hardware
systems [3, 11, 12). In [6], Z is used not only to design network services, it is
also used to produce the documentation. Bowen indicated that the use of formal

methods can lead to a simpler design and more thorough documentation [6].

Specifying Existing Systems

By the specification of existing systems, Z has also been useful in revealing incon-
sistency and incompleteness, In the post-hoc specification of a real-time kernel,
Spivey discovered a design error which could have been easily avoided by using
formal techniques [41]. The specification of window systems by Bowen revealed

and ambiguities in the d ion [1,9].

Prototyping

The existence of a formal syntax and semantics for Z implies that it may be
amenable to machine analysis and manipulation. This suggests that Z, or a
subset of it, in conjunction with an animator could be used as a prototyping tool.
Although there are sume arguments against making specifications executable (17],

there has been some effort to provide Z with an animator [14, 23].
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Testing

Even when a program is mathematically calculated from a formal specification,

1 fe

unless the d steps are  to have been  correctly,
there is always a need to perform /csting. Hayes and Hall suggest some techniques
for testing based on  specifications (18, 16]. Hall also discusses the possibility

of automatically generating test cases from specifications written in Z [16].
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Chapter 3

Data Refinement

The specification in Chapter 2 models a stack with a sequence. Although mathe-

matical data types, like are very expressive, their op may not be
readily available in the target programming language. This chapter shows how,
using data refinement, data types that are more suitable for implementation may

be introduced into the specification of a system.

3.1 From Specifications to Designs

In our appuosch to softwate development, the task of producing s concrete design
from an abstract specification is known as datw refinement. A procedure for data
refining an abstract specification in Z is given in [42, 45]. This involves propos-
ing concrete states and operations, and proving that they satisfy the abstract

specification,



3.1.1 Abstract Specifications

Specifications like the one in the previous chapter are abstract specificalions since
they contain data types which usually are not directly implementable. Together

with their predefined operators, these data types allow the features of software

ibed 1v. Furth

systems to be d since their mathematical prop-
erties are well-known, they allow easy comprehension of and reasoning about the
characteristics of systems.

Although abstract specifications are useful in providing a good understanding
of the system, they are generally not good sources from which to produce an
implementation directly. This is so because they contain mathematical data types

which are inefficient, or are not easily c in the target

language.

Example 3.1 Consider a system that is used to calculate the maximum of a
set of integers, whose state space and initial states may be specified as Mar and

InitMaz.

Maz
[ numbers : Pz

InitMaz
Maz'

numbers' = {}

The set of integers maintained by the aystem is contained in numbers where P
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is the power set operator, and PZ is the set of all sets of integers. Operations for

entering a number and finding the maximum are described in Enler and FindMaz

respectively.
— Enter

AMazx

numbe

7.2

numbers' = numbers U {number?}

FindMaz =

EMaz
mazimum! : 7%

wumbers # {}

mazimum! = maz numbers

The operations in Example 3.1 are described using the set operators U (set
union) and ez (maximum number in a set). Since the properties of sets and
their operators are familiar to many, the features of the system may be understood
quickly and clearly.

Although sets are very expressive, they are not readily available in some pro-
gramming languages (e.g., C). The system as specified above also has an incffi-
ciency: since we are only interested in the maximum of the set, there is no need

tu store the other numbers. To this ineffici another ifi

called a design may be produced.
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3.1.2 Concrete Designs ¥

Like an abstract specification, a concrele design gives a description of the system;
however, it also contains data types that ate oriented towards computer process-
ing. The states and operations described in o design are concrete since they can
be realized in the target programming langunge.

In the next example, we show how the concrete states and operations of a

concrete design may be proposed.

Example 3.2 Assuming that the target programming language allows boolcan
and integer variables to be declared, a concrete design for the abstract specifica-
tion of Example 3.1 is given below. The concrete state space and initial statcs of

the system are described in MazC’ and InitMarC, respectively.

BOOLEAN

true | fulse

MazC
’/masznbm- .z

setBmply : BOOLEAN

InitMazC
MazC'

sctEmply' = lrue

As mentioned previously, the system needs to keep track of only one number,
which the concrete version stores in the integer variable masNumber. The sys-
tem also maintains a boolean variable setmpty to indicate whether any number
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has been input into the system. Schemas FulerC and FindMasC' describe the
concrete operations of entering a number and finding the maximum.
— EnlerC:

AMazC
number? : Z

Lmply
setEmpty'
mazNumber

v
(sctBopty = false A
selBmply' = sclBmply A
((number? > mazNumber A mazNumber' = number?)

2
(il < mashunber & wazNumber = ez Number)))

The concrete operation EnlcrC checks whether a new number is greater than the
current maximum, If so, the new input is retained as the new current maximum.
— FindMaxC

EMazC
marimum! : Z

setEmply = false

maxNumber

marimum!

The ion of ing the i is simply to report the stored number.

The i ion of impl ion details makes a specification awkward as

is apparent from comparing Enfcr and EnterC of Examples 3.1 and 3.2, The main
advantages gained from a data refinement are storage and algorithmic efficiency
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and the greater ease of implementing the data types in the target programming

language.

3.1.3 Retrieve Relations

A retricve rclation, also commonly known as abstraction relation or abstraction
invariant, is a schema which formally documents the relationship between the
abstract and the concrete states [45]. It contains both the abstract and concrete
states and further includes predicates to describe the relation hetween their state

variables.

Example 3.3 A retrieve relation MarR for the abstract and concrele states of
Examples 3.1 and 3.2 is given below.
_ Mazh

Maz
MaxC

sclfmply = true & numbers
maz numbers = marNumber

The retrieve relation says that the boolean variable s/ [Zmply is used to indi-
cate whether the set is empty. It also states that the maximum number in the
set is the value stored in concrete variable marsNumber.

o

Documenting the retrieve relation is important as it contains the design deci-
sions that are made during data refinement and these decisions allow the abstract
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to he recovered from the concrete. Using this relation, we can prove that the con-

crete design satisfies the abstract specification.

3.1.4 Proof Obligatio~s

The proof obligations required to show that a concrete design correctly imple-
ments an abstract specification are given in this section. For this, assume that
the abstract specification consists of a state schema AS, an initial state schema.
InitAS, and an operation schema AOp, and that the cozresponding design con-
tains a state ('S, an initial state /nilCS, and an operation COp. Both of the
operations A10p and COp have input #? : X and output y!: ¥, and the abstract
and the concrete specifications are related by the retrieve relation Relr.

The proof obligations for data refinement may be divided into three kinds:
initial states, applicability and correciness. The proof for initial states needs to
be performed only once, while the proofs for applicability and correctness must

be performed for each ion. These proof i are described below.

njtial States

The implemented system must start in one of the states that are prescribed in the
abstract specification; as such, each possible initial concrete state must represent
a possible initial abstract state. Symbolically, this is written as
V(S e
il = IAS' o InitAS A Retr',
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The dashes are necessary because, by convention, the state variables in /nit('S
and /nitAS are dashed.

Note that with this requirement, we are allowing fewer concrele initial states
than abstract states. This is acceptable because our abstract specification insists
only that the system start in onc of the initial states; as such, we demand ouly

that each concrete initial state represents a legal abstract initial state.

Applicability
An implemented operation must be at least as applicable as its specification.

This means that whenever the dition of the abstract ion is satisficd,

the precondition of its concrete version, as related by the retricve relation, must

also be true. Symbolically, this is written as

VAS; CS; 27: X o
pre AOp A Relr = pre COp.

Since the precondition of the concrete operation may be more general than the
precondition of the abstract operation, the concrete operation may be used in
more situations. As such, the concrete operation may be more applicable than

its abstract counterpart.

Correctness

Since the precondition of an operation describes when a terminating state is

d, the applicabili i says that if the abstract operation ter-
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minates, its concrete version must also do so. An additional requirement for the
concrete operation to be correct is for it to terminate in a state that is agreeable

to its ahstract specification. Symbolically, this is written as

VAS; CS; C8% 2?7 X; gl Ve
pre AOp A Retr A COp = (3AS' o AOp A Relr').

The condition may be understood as: if the concrete operation were to be invoked
under the precondition of its abstract specification, it must produce a result that

is within the requirements of its abstract specification.

Example 3.4 The conditions required to prove the satisfiability of the concrete
design in Example 3.2 are given below. For the initial states, the required condi-

tion is

V MarC' o
InitMazC = 3 Maz' o InilMaz A MazR'.

In order to show the applicability of the concrete operations, we need to show

V Max; MazC; number? : Z o
pre Enler A MazR = pre EnterC

and

V Mar; MaxC e
pre FindMax A MazR = pre FindMaxC.

The requirements for the correctness of both the operations are
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Operation | Precondition

Enler Truc
FindMar | numbers # {}
EnterC | trur

FindMaxC | sclEmply = false

Table 3.1: The preconditions of the operations #nicr, FindMar, Enfer(’, and
FindMaxC.

V Maz; MaxC; MarC'y number? :Z o
pre Enter A MazR A EnlerC = (3 Mar’ o Enter A MarR')

and
Y Maz; MazC; MaxC'; marimum!:Z o
pre FindMaz A MazR A FindMaxC = (3 Mar' o FindMax A Marl').
o
E: le 3.5 We d how the proof obligations for the concrete oper-

ation EnterC may be discharged. Its precondition may be found in Table 3.1.

Applicability
Since the precondition of EnlerC is true, the condition

pre Enler A MazR = pre EnlerC'

is trivially satisfied and the applicability of EulerC' is blished
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Correctness
To prove correctness of [nter(!, we need to show that

V Maz; MazC; MazC'; number? : Z o
pre Enler A MazR A EnlerC => (3 Maz' o Enter A MazR').

First, we simplify the consequent of the condition which is

3 Maz' o Enter A MazR'.

When expanded, this yields

& Jnumbers':
number
selBmply = truc 4 numbers’
maz numbers! = maxNumber',

wumbers U {number?} A
}A

Using the one-point rule, we may eliminate numbers’ and arrive at

& sclBEmply' # lrue A
mar (numbers U {number?}) = mazNumber.

This simplified form of the is substituted into the original condition

to yield a simpler requirement for correctness, which is as follows.

MaxR A EnterC =
selBmply’ # true A maz (numbers U {number?}) = mazNumber'

We have omitted pre Enler from the condition since it is true.

We may now proceed to establish the new correctness requirement. Analyzing
the different cases in EnfcrC, the premise of the requirement may be rewritten
as the following three disjuncts after a few steps of logical manipulation.
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(MazR A
sclEmply = true A

sctBmply’ = false A
marNumber' = number?)
\%

(MarR A

selEmply = false A
setEmply = sctEmply A

number? > marNumber A
mazNumber' = number?)

v

(MarR A
selEmply =
selllmpty’ = sclBmply A
number? < mazNumber A
mazNumber' = mazNumber)

Separately, each of these disjuncts may be shown to imply the consequent. We

show the exercise for only the first. Pully writing out the first disjunct, we get

& (setBmply = lrue & numbers = {}) A
maz numbers = maxNumber A
sctEmply
setEmply’ = false A
mazNumber' = number?.

Substituting the definition of se¢Emply and leaving out the second conjunct, we

have

= sclBmply' = false A
numbers = {} A
mazNumber' = number?,

Using the properties of maz and sets, we have
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= sellimply’ = false A
numbers A
mazNumber' = maz {number?}.

Using a property of set, we get
= sclbmply’ = false A

numbers = {} A
mazNumber' = maz ({} U {number?}).

Substituting {} for numbers, we arrive at

= selBmply’ = false A
mazNumber' = maz (numbers U {number?}).

And, since lruc # falsc, this implies

= selEmply # Lruc A
mazNumber' = maz (numbers U {number?})

which is exactly what we need.

o

3.1.5 Proof Obligati

for Functional Retrieve Relati

Each concrete state frequently represents exactly one abstract state, and the

retrieve relation may be viewed as a total function from concrete states to abstract

states. When this happens, the retrieve relation is termed as being functional,

Simpler proof obligations may be used when the retrieve relation is functional

[42, 45]. The conditions for initial states and correctness ate easier o prove

although the requirement for applicability remains the same.
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Initial States

VAS; CS'e
InitCS A Retr' = InitAS

Applicability

VAS; CS;a?:X e
pre AOp A Relr = pre COp

Correctness

VAS; AS; CS; CS% a?: X gli Ve
pre AOp A Retr A COp A Relr’ = AOp

The main benefit for using these is that the existential quantifiers may be avoided.

3.1.6 Proving Retrieve Relati to be Functional

In order to show that a retrieve relation is functional we need to prove
VCS 03, AS o Relr.

As indicated in [45], a sufficient condition for proving that a retrieve relation is
functional is to show that there is an equation that defines each abstract compo-

nent’s value in terms of concrete components and total functions.
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3.2 Case Study

In the following, we describe the data refinement of the abstract specification of
the stack from Chapter 2. This example complements the one in the easlier part
of this chapter as it contains etror handling and uses schema connectives. For
convenicnce, we assume that the data types used here may be found in the target

programming language.

3.2.1 Concrete States

The stack is implemented by using an array of maz cells, each of which stores
an element of type OBJECT. An integer variable is also included to keep track
of the index of the top element in the stack. This concrete state is described in
StackC.
 StackC

stackC : 1.maz — OBJECT
topC : T

0< topC < maz

The array in our stack is modeled as a total function whose domain is the set
of consecutive integers from 1 to maz. The index of the top element of the stack

is given by topC which should contain 0 when the stack is empty.
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3.2.2 Retrieve Relation

The next step is to relate the abstract and concrete states. This is done in the

schema StackR.

StackR.
Stack
StackC

AopC < slackC

stack

Using the domain restriction symbol <, the expression L..lop(’ <stack(: yields
a function which is the same as slackC, except that it is only valid for the domain
1..lopC. Since a sequence in % is defined as a function whose domain s a set of
consecutive non-zero natural numbers starting at one, the predicate in Stackit
requires the sequence slack to have the same clements as the first lopC! cells of
array stackC.

Note that exactly one value of stack may be derived for every value of the
concrete components fopC and slackC'. Hence, we know from the discussion in
Section 3.1.5 that the retrieve relation is functional. As such, the simpler set of

proof obligations may be used.

3.2.3 Initial Concrete States

The schema /nitStackC which describes the initial concrete states requires that

the index of the top element be 0,
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3.2.4 Proof Obligation for Initial State

The proof obligation for the initial state is stated below.

V Stack'; StackC' e
h.atStlackC A SlackR' = InitStack

The proof may be conducted as follows. From /nilStackC A StackR', we know

that LopC’ = 0 A slack

1..lopC' < slackC". Substituting 0 for LopC’ in the
equation for stack', we arrive at the value of an empty set for stack’. This implies

that stack’ is an empty sequence and this is exactly the predicate in /nitStack.

3.2.5 Concrete Operations

As for the abstract specification, the schemas AStackC and EStackC are also

defined for the concrete operations.

ASlackC
SlackC
StackC’

—ESlackC
AStackC
stackC = stackC"
topC = topC’
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The concrete operations may be described in a fashion similar to the abstract

ones. We may consider the ful ions and error-handling 1

Successful Operations

The successful operation for pushing an element onto the concrete stack is de-

scribed in PushOkC.

— PushOkC
AStackC
object? : OBJECT
topC < maz
1opC" = topC +1
stackC' = stackC @ {lopC" > objecl?}

The use of the overriding operator @ in the last predicate of the schema nceds
some elaboration. For functions P and @, P ® @ is the relation confairing all the
ordered pairs of (), and when the first element of an ordered pair of /” does not
appear in the domain of (), that ordered pair is also included. Therefore, I’ ® Q)
may be viewed as a merge of P and (), under the condition that when there is
a domain conflict, the elements of Q are selected over those of /. Hence, the
predicate stackC' = slackC & {LopC" ~ object?} says that the array slack(! is
the same as stackC except that the value in the LopC'th cell of stack()’ is object?.

The successful operation for popping an element off the concrete stack is

described in PopOkC.
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— PopOkC:
ASlackC'
lopC #0

lopC' =1
slackC! = stackC

The concrete stack is popped by decrementing the index of the top element.

object! = StackC(lopC)

The value of the top element is the value of the element of the array with index

lopC:.

Error Handling

The concrete error handling operations are defined similar to the abstract ones.

REPORT
1opC = maz
vesull! = full

SlackEmptyC
EStackC
resull! :

REPORT
topC =0

result! = emply
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Operation Precondition |
PushOkC TopC < mar
PopOkC topC #0
TopOkC lopC" #0
StackFullC
StackEmplyC
PopC

PushC

TopC

mar

0

Table 3.2: The preconditions of the concrete operations of the stack.
The successful and error handling operations are combined as in the abstract

specification,

PopC = (PopOkC A Succrss) v SlacklimplyC’
PushC = (PushOkC A Suceess) V' SlacklullC:
TopC = (TopOkC' A Success) V StackEmplyC:

As the reader will notice in later sections of this chapter, combining the concrete

operations in a way similar to the combination of the abstract operations cnables

the proof obligations of data refi to be ized based on the structure

of the operations. The preconditions of the concrete operations are given in
Table 3.2. Notice that the concrete versions of operations, Pop(!, Push(’, and

TopC, are also total operations.

3.2.6 Proof Obligations for Concrete Operations

The conditions for showing the applicability and correctness of Push(!, Pap(’,

and TopC' are given below. Since the retrieve relation Stackl? is functional, the
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conditions for functional refinement are used.

Applicability

1 OBJECT »

v Stack; StackC; ob
pre Push A Stacklt = pre PushC'

Y Slack; StackC o
pre Pop A SlackR = pre PopC'

V Stack; StackC
pre Top A SlackR = pre TopC

Recall that the preconditions of these abstract and concrete operations are all
true. As such, the consequents of the implications are all true and hence, these

conditions are trivially satisfied.

Courectuess

V Slack; Slack’; StackC; StackC";
object? : OBJECT; resull! : REPORT -
e Push A StackR A PushC' A StackR' = Push

p

V Stack; Stack'; StackC; StackC';
report!: REPORT
e Pop A StackR A PopC A SlackR! = Pop

P!
v Stack; Stack'; StackC; StackC
report!: REPORTS object!: OBJECT o
pre Tap A StackR A TopC' A StackR' = Top

Each of these may be proved by considering the ful and handling
parts separately. To illustrate this process, the steps for proving the correctness
of I’ush(’ are given in the following example.
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Example 3.6 This example shows how the correctness of /’ush(” may be proved.

The premise of the correctness condition for Push(" is

pre Push A StackR A PushC A Stacklt'.

By absorbing pre Push (since it is true) and substituting (( PPushOkC* A Suce

StackFullC) for PushC, and after some logical manipulation, we arrive at

(StackR A StackR’ A (PushOKC A Success))
v

(StackR A StackR' A SlackFullC*).

Since Push = (PushOk A Suc

)V Stackfull, a strategy would be to divide the
proof into success and error parts, thus structuring the proof hased on the way

the schemas are connected logically. Hence, we aim to prove

(StackR A StackR' A (PushOC' A Success)) =5 (PushOk A Sucerss)

and

(StackR A StackR' A StackiullC) = Stackl?ull

separately to complete the proof. We show below this process for the success

part. Expanding

StackR A StackR' A (PushOkC' A Sucec.

we get
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& slack = 1.topC < stackC' A
sleck! = 1..lopC" < slackC' A
topC < maz A
LopC" = lopC +1 A
slackC! = stackC & {LopC' — object?} A
k.

resull!

Substituting fopC” and stackC' with their definitions, we get

= slack = 1.topC < stackC A
slack! = (L..lopC + 1) < (slackC & {1opC + 1 > object?}) A
topC' < max A
resull! = ok.

Using a property of domain restriction <, and realizing that the domain of stackC

is 1.maz, we deduce

= slack = 1.lopC < stackC A
stack’ = (1..LopC) Q stackC U {topC' + 1 — object?} A
lopC < mazx A
resull! = ok.

hip between functions and we arrive at

Using the

= slack = 1..lopC < stackC A
stack! = stuck ™ (object?) A
lopC' < maxr h
resull! = ok,

Since the cardinality of a function can never be greater than that of its domain,
we have

= #slack < lopC A
stack! = slack ™ (obj
lopC < mar A
result! = ok.
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Since lopC’ < maz, we deduce

= ghstack < mar A
stack! = stack ™ (object?) A
result! k.

which is exactly (PushOk A Success).

o

3.3 Summary and Bibliographical Notes

In this chapter, we presented a meihod of data refinement. This involves propos-
ing a concrete design containing the concrete state space and operations, and
proving that this design satisfies its abstract specification. Using examples, we
have shown how the concrete operations may be proposed so that they are struc-
turally similar to their abstract counterparts with respect to logical schema con-
nectives. We further indicate how the proof obligations arising from the refine-

ment may be disck d while exploiting this I simil

In our account, we have given an ideal situation where a concrete design may
be produced from an abstract specification in just one refinement step. In many
cases, especially for complex and large systems, it may be necessary to go through
a series of refinement steps that produce a number of intermediate designs, each
of which contains more implementation detail than those previous. The final

design which is then accepted as the concrete design should contain data types



that are storage and algorithmic efficient, and are easily constructed in the target
programming language.

Our primary references for data refinement within the framework of Z are
[42, 45] and the use of this technique may be observed in (45, 24, 25, 42]. The

interested reader may find in (20] a th ical i igation of refi within

the Z framework.
There exists a complementary technique where a concrete operation may be
caleulaled directly from its abstract specification and the retrieve relation. The-

oretical work ing this mode of data may be found

in (22, 21] and examples of its use may be found in [22, 45].
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Chapter 4

Translation into the Refinement

Calculus

A concrete design is the specification of a software system containing data types
which can be easily realized as data structures in the targel programming lan-
guage. This chapter and the next chapters show how a program that implements
the software system may be calculated from its concrete design using a formal
development method called the refincment calculus [31]. Since the notation of
the refinement calculus is different from that of %, the concrete design must first
be translated into the refinement calculus before the calculus may be applicd.
In this chapter, we concern ourselves with the issues arising from the trans-
lation from Z to the refinement calculus. A brief introduction to the refinement

calculus is given so that the reader may appreciate the necessity of and strategics



for this translation.

4.1 The Notation of the Refinement Calculus

To provide the

for program devel the ref
calculus contains a language that may be used to describe both specifications

and programs in the same framework. This is achieved by employing both non-

bl bl

and

Non-executable constructs are used mainly for specification, while the exe-

cutable represent ( bl The only bl

is a spreificati The ble constructs are drawn

mainly from Dijkstra’s language of guarded commands, and include assignment,
alternation, iteration, and sequential composition.
4.1.1 Specification Statements
A specification slalement. has the form
w[pre | post].

The term w is called the frame and is used o represent a possibly empty list of
variables. The predicates prr and pos! are the pre- and postconditions describing
before- and after-states. This construct may be used to specify a program that,

by changing only the variables in w, brings the state of a system from one that
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satisfies pre to one that satisfies post.

Initial Variables

In the refinement calculus, the before- and after-values of a variable are distin-
guished by representing the before-value of a variable with that verinble sub-
scripted with a zero. We call zero-subscripted vatiables initial variables and they

are allowed only in the ditions of

Example 4.1 Assuming that + and y are integer variables, the specification

statement
#,y: (220, y>n)

describes a program that has the before- and after-states described by i > 0 and
¥ > ay respectively. Since a, refers to the before-value of #, the execution of the
program must give the variable y a value greater than the original valuc of .

The program may change the value of  if it wishes. O

4.1.2 Assignments

A single assignment has the form

When this is executed, the variable u takes on the value given by the expression
E. The language also provides a mullipli: assignment which has the form
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Wiyises Wy i= By By

When this is executed, each /; is simultaneously assigned to its corresponding

w, for i < i <.

4.1.3 Alternations
An allernation may be used to implement case analysis. It has the form

it Gy - prop
[ Gy prog

0 ( — prog,
fi

and may ulso be written as the generalized
if ([ e G — prog) .

Each G; — prog; is called a guarded command, and each predicate G is known
as a guard and cach program prog; is known as a command. When this construct
is executed, all of the guards are evaluated. If exactly one of these guards is true,
its command is executed. If more than one of these guards are true, any one of
the commands associated with these guards is executed. If none of these guards
is true, the behavior of the alternation is undefined. In other words, failure to
satisfy at least one of the guards should be regarded as disastrous.

To elaborate on this last point, note that a single guard alternation is similar
to a conventional conditional statement without its else part. If the conditional
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statement is executed when its condition is false, then its execution yields no
effect. However, an execution of the alternation when the guard is false will

cause its behavior to be indeterminate.

4.1.4 Iterations
An iteralion may be used to implement repetition. It has the form

do G — progy
0 Gz— prog,

0 Gu— prog.
od

and may also be written as the generalized
do (] i e Gi— prog) od.

When this is executed, all the guards are evaluated and the command that is
associzted with one of the true guards is executed. This is repcated until no

guard is true which then causes the iteration to terminate successfully.

4.1.5 Sequential Compositions
A sequential composition has the form
Py Qs

This allows a lasger program P ; @ to be built from smaller programs /* and ().
When this construct is executed, the program /” is first exccuted, followed by Q.
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var z:7Z;
and z > 0;

procedure Proc(value result « : Z) =

Proc(z);

Figure 4.1: The skeleton of a sample program.

4.1.6 Local Blocks, Variables, Invariants, and Procedures
The notation of the refinement calculus allows variables, invariants, local blocks,
and procedurcs to be declared. Examples of these may be found in the program
skeleton of Figure 4.1.

Local Blocks

A block has the general form

[ Declaration »  Body |

and is delimited by the symbols || and ]. The Declaration part of the block

contains the decl

of variables, invariants, and dures, while the Body
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var a:Z;

I

var a:Z

B

I

Figure 4.2: Nested blocks.

part contains a program made up of like specification st

assignments, iterations, etc.

ariables

Vasiable declarations must be done immediately after the || symbol of a block.
Variables are declared by preceding them with the keyword var and giving their
names and types. For illustration, the integer variable 7 is declared in the pro-
gram of Figure 4.1.

The scope of a variable is the block in which it is declared. When blocks are
nesled, a variable in an inner block hides the outer block variable with the same

name. For example, in Figure 4.2, the inclusion of vatiable a al point /f refers
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to the value of « of the inner tiock. On the other hand, the « at point A refers

to the value of « in the outer block.

Invariants

The invariant of a variable may be specified with the keyword and immediately
after the variable's declaration, In Figure 4.1, the variable z has an invariant

saying that it must always be positive.

Procedures

A procedure may be declared with the keyword procedure. This declaration
gives the procedure’s name and its formal paramelers (optional). The lezl of the
procedure, which is usually in a local block, is separated from the name and the
formal parameters by the symbol =.

The call-by-value, call-by-resull, and call-by-value-resull substitution methods

for passing parameters are available. In Figure 4.1, a procedure called Proc is
declared, which has a call-by-value-result formal parameter a.

A procedure may be called within the local block for which it s declared
by including its name and any actual paramelers. A call to procedure Proc is

included in the body of the program of Figure 4.1.



[varr,y:Ze

ny (e, (02 Ar=pAy=n)Vv
(W 2ZnAr=xnAy=un)

Figure 4.3: An abstract program.

4.2 Using the Refinement Calculus

The refinement calculus provides a notation and a large collection of laws for
program development. A program, in the refinement calculus, refers Lo a picce
of text which is made up of the executable and non-executable constructs. A
program that is to o developed is specified in terms of specification statements

and these are gradually transformed using these laws to yield only exccutable

This fc ion, known as refi is explained in greater
P &

detail in Section 4.2.4.

4.2.1 Abstract Programs

An abstract program is one that contains at least vne specification statement
within its body. A program is also known as an abslact program since it may
contain specification statements. An example of such a program may be found
in Figure 4.3. The specification in this program requires that the valucs of # and

¥ be swapped so that y > z after its execution.
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var r,y: Z;

procedure Swap =
ivar z:Ze

F

if >y Swap
[ y>:-skip
fi

Figure 4.4: An executable program.

4.2.2 Executable Programs

An cxccutable program is one that contains only executable constructs. An
executable program which implements the abstract program of Figure 4.3 may

be found in Figure 4.4,

4.2.3 A Liberal View of Programs

The word program is used loosely in the world of the refinement calculus. In
addition to the conventional view that a program contains only executable con-
structs, a program here can also mean an abstract program with only specification

statements, which is regarded as only a specification. Programs may also contain



single (or multiple) non-executable and executable constructs. A specification

statement, iteration, and alternation are all examples of afomic programs. The

formed by tially ing atomic are known as conr-

pound programs.
The liberal use of the term program offers a convenicnce: we are relieved of
the burden of describing seemingly similar things with Jifferent terms, therehy

allowing us to on the s of program d.vel-

opment. All this being said, it is still important to reserve the lerm spreificalion

for a program 1 only of specificati and code for a program

1 tabl

only of

4.2.4 Refinement
For programs P and (),
PCQ,

ronounced @ refines /) means that () is a beller program than . For insta
P!

P may be a specification statement and () may be some code that implements .
When this refinement step is performed using the laws of the refinement calculus,
@ is guaranteed to satisfy P,

The refinement calculus may be used in the development of a software system.
After specifying the software system as an abstract program, an exccutable pro-
gram may be calculated from the abstract through a series of refinement steps.
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var r,y: Z;
procedure Swap =
var z:Ze
sy [lrue,s = g Ay = r)
.
if r 2y — Swap

1 y3>r—skip
fi

I

Figure 4.5: An abstract program containing both specifi and
cxecutlable constructs.
Each refi step introduces more bl until all the specifi-

cation statements are refined into code. Assuming that the original specification

is 5 and the fin;shed code is (7, this refinement may be written as

sEaMc

CMC.CC

where each of the intermediate A/; is an abstract program containing both spec-

ilication stat and bl For example, the program in

Figure 4.5 may be an intermediate program created along the refinement of th-

program of Figure 4.3 into the program of Figure 4.4.
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4.2.5 Some Simple Laws

In this section, we give some simple laws of refinement and examples of their use.
This should provide the rader with an indication of what a typical refinement
step looks like.

Law 4.1 (weaken precondition “wp”) If pre = pre’, then
P L L

w:pre, post]) T w:[pre’ . post].

Law “wp” says that a program may be refined into onc that is more applicable.
Since pre’ is more general than pre, the refined program may be used more
generally.

Example 4.2 Since & > 0 = lruc,
y:[z20, y>m)
| 3 “Wp“

T yiltrue, y>a).

The result of the refinement is a program that is applicable in all circumstances,
rather than one that is applicable for only « > 0.

a
Law 4.2 (strengthen postcondition “sp”) If pre[w\un] A post’ = post, then

w:lpre, post) = w: [pre , post’].
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Law “sp” says that a program may be refined into one that is more dcAnite.
Since pos’ = post, a program that terminates in a state described by post’ also
terminates in a state described by post. What we gain from the refinement is the

additional information provided by post’, since post’ is stronger than post.
Example 4.3 Since y =19+ 1 =y > 19,

y:true | y > a)

yillrue , y=um+1).

The only requirement of j > , is that y takes on a value greater than the initial
value of . The refinement simply fixes a value for y.

o

Law 4.3 (expand frame “efI”)

i [pre , post] = w,z : [pre , post Az = z].

Law “efl” says that a specification statement that does not have a variable z in

its frame is equi to the same ification with = added to its frame and a

constraint added to its postcondition saying that « does not change. Note that
an equality between the two specification statements is used to indicate that the

refinement may go both ways.
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Example 4.4

yife20, y>n)
[£20, y>nAa=1]

4.3 Comparing the Notations of Z and the Re-
finement Calculus

A comparison of the basis languages of Z and the refinement calculus is given by

King [25]. He shows the suitability of the notations for their respective purposes
and indicates the necessity of translating from Z to the calculus for
program devel His discussion is ized below.

4.3.1 States

In Z, a state of a simple system may have the form

Stale
vET

v

where v is the state variable constrained under the invariant inn. In the refine-
ment calculus, the same state variable and system invariant are declured with the

keywords var and and rtespectively:



var v 14
and iy

As such, we see a direct correspondence between the two state specifications.

4.3.2 Operations

In %, an operation with one input and one output may be specified as

op
ASlate
a: X
yy

\ Pred

In the refinement calculus, an operation is specified in terms of a specification

statement

w: [pre , post].

As one can see, the ion specifications in Z and the refi calculus differ

in two ways: (i) the schema uses one predicate while the specificati

uses two, and (ii) the specification statement uses the frame while the schema

does not.
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Single Versus Double Predicates

For the specification of jons, it is more ient to use only one predi-

cate to relate the before- and after-states. As this predicate incorporates both the

pre- and p it allows ions to be combined by simply perform-

ing el 'y logic ions such as conjunctions and disjunctions on their

predicates. It is the use of only one predicate that enables the powerful features
of the schema calculus which are so useful for structuring specifications to be
easily applied.

For refinement, it is more convenient to work with a pair of predicates where

one of them is the dition of the ion. The advantage of having the

precondition explicit may be seen from the following simple rule of operational
refinement using schemas [42]. Assuming that P’ and @ are schemas describing

operations on the state space Sfale with input #? : X and output

order to prove P C @, we need to show
V Stale; «?: X »
pre P = pre Q
and
VState; Stale’; z7: X; yl: ¥V e
pre PAQ = P.
Since such refinements may be performed at several levels, working with pre-
conditions directly will save us the effort of having to calculate them at cach
level.
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Frames

The other major difference between a schema and a specification statement is the

presence of a frame. The ofa ificati often gives rise

ificati each indicating the possible chance of only a

to several
small number of variables. Without the frame, each of the unchanged variables
would have to be involved in the postcondition of each of the specifications. Such

complex and ble. With the

specifications would become
frame, a variable may be specified as unchanged simply by leaving it out of the

frame. The use of the frame relieves the developer of the burden of writinz

for each unchanged variable x.

4.3.3 Before- and After-State Variables

Z and the refinement calculus differ also in the way before- and after-state vari-
ables are distinguished. In Z, the undashed name of a variable, say z, would refer
to its value in the before-state, while the dashed version, z’, would refer to its
value in the after-state. For a variable in the refinement calculus, its undecorated
name, r, would refer to its value in the after state, while the zero-subscripted

version, ry, would refer to it< value in the before-state. This distinction is made

only in the dition of a ification since the dition always refer

to before-state values. Since a postcondition is used to specify after-states, it is

more common for it to refer to after-state variables rather than before-state ones.



Furthermore, the proper use of the frame would have alleviated the need to write
r = 2o for each unchanged variable r, which again indicates that the before-state
variables appear less frequently. As such, it is more cconomical and simpler to

decorate the before-state variables.

4.3.4 Renaming Versus Substitution

In Z, the schema expression
Sly/]
for schema § with component y would mean the same schema with all the occur-
rences of y replaced by . This is the commonly used operation called schemu
renaming. In the refinement calculus, there is a similar notion called substitution.
For a predicate P,
Plz\y]
obtains P with free occurrences of the variable « replaced by the term y.
Woodcock has suggested using the symbol / for substitution in the refinement
calculus [45]. We have decided not to use this as the original notation is morc
clegant for the refinement of procedures, as will be shown later. Instead, we
have chosen to use the symbol \ for schema renaming. Although this symbol is
used also as the schema hiding operator, there should be no confusion since the
renaming operator occurs in square brackets ([ ) while the hiding operator does
not.
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4.4 Rules for Change of Notation

The discussion in the preceding sections examined the considerations that arise
when translating from % to the refinement calculus. Rules for translation based
on these considerations are first worked out by King [25]. We use the version

that is presented by Woodcock in [45] since this version is more intuitive.

4.4.1 Basic Rules

The Rule “cc” concerns the jon for distinguishing before- and after-stats

variables.

Rule 4.1 (change conventions “cc”) Let Op be a schema and [Op] denote
the same scherna with the convention changed to that of the refinement calculus.

If Op has state variables v, then

1001 = Oplu, 0\, .

The Rule “sss” concerns the the translation of states and operations.

Rule 4.2 (schema to specification statements “sss”) Let Op be a schema
describing an operation with input z? and output y! on a state $lale which

contains variables v:



The description of the state translates into the following declaration:

var v: 7'
and inp.

The operation translates into the following specification statement:

vyt : [pre Op , [Op]]

Notice that the schemas are used as predicates in this

When this happens, these predicates refer to the predicate part of the schemas.

o

4.4.2 Specifications to Abstract Programs

Using the rules “cc” and “sss”, a Z specification may be translated into an ab-

stract program. This process is illustrated in the following example.



Variable | Abbreviation
masNumber mN
selBmply SE
number? n
magimum! m

Table4.1: Abbreviations for the state, input and output variables of Example 3.2.

Example 4.5 Here, the consrete design of Example 3.2 is translated into an
abstract program. A convention of using the refinement is to have short vari-
able pames because they will be copied quite frequently during refinement. We
abbreviate the state, input and output vatiable names as shown in Table 4.1.
The states and operations are translated according to Rule “sss”. Further-

£

more, each ion is d into a d

The resultant program

may be found in Figure 46. O

The only remaining issue is the design of the main program which uses these
procedures. In Example 4.5, this program is mainProg and its content is the

subject of the next section.

Main Programs
The main program is one that initializes the system and uses the procedures to

perform the functions of the system. The main program may be written as

initProg 5 prog
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var mN : Z
sE : BOOLEAN

procedure [nilMarC =
mN, 8B : [truc , sk)
procedure fnterC(value v :Z) 2
mN,sE s [truc , (sBy A= A mN = n)
v

(B A sk = sy A

((n0 > mNo A mN = u)
v
(0 < mg A mN = mi\a)))]

procedure FindMasC(result m:Z) =
mN,sE,m: [true , =sE A m=mNy A mN = mNy A sk =

mainProg

Figure 4.6: An abstract program translated from the concrete design of Exam-

ple 3.2.



where inilProg is the procedure implementing the initial states and prog is the
program that uses procedures to perform the functions of the system.
Woudcock describes a popular way of designing prog [45!. This involves nsing
a pair of symbols, o and f, to represent the input and ontput streams, For
example, assuming that o and # are both declared as sequences of integers,

mainProg, the program in Figute 4.6, may be written as

InitMaxC ; mN,sE 0,3 [Iruc ,

(mar (ran )],

This program may then be refined to use the procedures in the abstract program

of Figure 4.6.

4.4.3 Simplifying Specification Statements

After a % operation schema is translated into the refinement calculus, there arc
often opportunities to simplify the resultant specification statement hefore any
algorithmic refinement is performed. Two simple strategies for such simplification

are given below.

Shorten Frame

For a 7 operation schema, the predicate contains for cach unchanged varinble n
a constraint of v = . When this is translated into a specification statement,

the postcondition contains u, = v, with v appearing in its frame. These may be

removed by using Law “



ing the Postcon:

Since it is recommended that a 7 operation schema contains its precondition

yielded from such a schema will have the

precondition rstated in its postcondition. Using Law “sp”, the precondition may

be removed from the dition of the

4.4.4 Some Derived Rules

Operation schemas often occur as

Op=0p V-V Opy

or

Op = Opy Avee A Op.

In the following, we give rules to translate these schemas directly into abstract

bl

with some Our rules are izations of those

found in [25] which are applicable for the case n = 2. These derived rules may
be shown to be correct refinements with respect to the basic rules of translation

of Section 4.4.1. The proofs are omitted here since they are easy.

Rule 4.3 (Alternation Introduction “ail”) Suppose we have

Op=0p V-V Op,.

81



If the preconditions of Op;, 1 < i < n, can be expressed in the target program-
ming language, we can translate Op to the following alternation.

if  pre Opy — Op;

i ;re Op, = Op;,

where Op; are the specification statements which result from the use of the Rule
"

“sss’

o
Rule 4.4 (Alternation Introduction “aill”) Suppose we have
Op=0p V-V Op,
where pre Op;, 1 < i < k < n, is a complex expression that cannot he directly
computed in the target programming language. Then, we can translate Op to
the following program.
var bl,..., bk : BOOLEAN

b

: [true , b1 < pre OpyJ;

Uk [true , bk 4 pre Opl;
it b1 — Op;

bk — Opg
pre Opess — Opiy

o

pre Op, — Op;

EY=—]
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where b1,..., bl are fresh variables with scope delimited by |[ and ]|, and Op; are
the specification statements which result from the use of the Rule “sss”". Clearly,
for k = 1and n = 2, if pre Op, = =pre Op;, then the second guard may be
simplified to ~b1.

=}

An application of Rule “aill” may be found in the next example.

Example 4.6 The concrete design of a simple system which maintains an integer

array is given below.

| mee:z

(Lomar) = Z

One of the features of this system is its ability to check whether an input integer is
present in the array and to output appropriate messages indicating the presence

of this input. This operation is described below as [find.

REPORT

Jound | notFound

— Found
EState
«1:2
report! s REPORT

Ikt Lmar o array(k) = r

reportt = found
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— Not Found
EState
177
report!: REPORT

Yk : Lomac o aray(k) # ¢

report! = nol Found

Find = Found V NotFound

Using Rule “aill”, Find may be immediately translated into the following

program.

[ var b : Boolcan
b ftrue . b e 3l s Lomar o aray(k) = o]
it b
seport : [k Lanar o arvag(k) = | repo
0 -b—

report : [V Loma o array(k) # « | report! = nolFound)

ound)

1§

The next rule is the most general of all the translational rules for schema disjunc-
tion and it is also the most complex. The reader may find it nccessary to read
the example that follows in order to understand the rule and appreciate its use.

Rules “ail” and “aill” may be easily refined from this rule.
Rule 4.5 (Alternation Introduction “aillI”) If we are given
Op 2 Opy VvV Ops
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then we can translate Op to the program

varr: T
v [,
i =i [p A [Op]

0 o w:[dAsh, (O]
fi

where ¢ and vy, for 1 £ i < n, are any predicates, which satisfy the following

side conditions.
1. A (Viepre Op) = (Viei)
2. ¢ A(Viepre Op;) = (; = pre Op;)for 1< i < n.

Notice that if (Vi ® pre Op;) = lruc, the premises above simplify to ¢, leaving
Vop=(Vie)
2. ¢ = (4 = pre Op) for 1< i <.

o

An application of Rule “ailll” may be found in the next example.

Example 4.7 The Find operation from Example 4.6 may also be translated
using Rule “ailll".

We intend to have a loop to check the array for an input value. The loop
will use an integer variable  to hold the index of the cell that is currently being
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checked. The loop will step through the array until the integer is found or all the
cells are checked. If the integer is found, the loop exits and the value in w will
be the index containing the desired integer. Otherwise, w will exceed the index
range of the array. Using this strategy, we formulate the predicate & which is

designated as /1 below.

1 <

(w=mar+1Ax¢armayL.mar]) V (0 € Lomar A arvay(w) =

The predicates i, and J, may be casily designed as w0 € Lmar and w =

maz + 1, and the desired program is obtained according to Rule “ailll”.

var w:Z
and 1 < w < mar e

ws (e L 1);

if we lomar —
reporl : [H A w € Lomar | report! = found|
I w=ma+l-
report s (IF A w = mas + 1, report! = notFound)

The remaining requirement is to check side conditions. Since Find is a total
operation, we may use the conditions 1° and 2'. Condition 1’ may he cxpressed

as
1= ((w € L.max) V (w = mar + 1))

which is trivially true. Condition 2' consists of the two subconditions
H = (w € Lumaz = 3k : 1mar » array(k) = z)
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and
1= (0= mar -+ 12 Yk Lonar o array(k) # ).

The proof for the first subcondition may be conducted by assuming #/ A w €
1..mar, and showing that 3% : 1..maz e army(k) = 7. The second subcondition
may also be shown in a similar manner.

o

The following is a derived rule for translating schema conjunctions.

Rule 4.6 (S ial Composition Introduction “sci”) Suppose we have

Op=Op Aeee A Opy
where Op;, 1 < i < n, takes the form
Op; = [AStale | Pi(si, )]

where s; are disjoint (vectors of) state variables, and P; are predicates showing
how pat of the state is altered. Then Op may be translated into the following

program.

st [pre Opy, O]l

: [pre Opu. [Opall;
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Variable | Abbreviation
slackC 5
lopC !
objeel? abjl
abjeet! objO
report! epQ

Table 4.2: Abbreviations for the state, input and output variables of the stack.
4.5 Case Study

In the following, we translate the conctete design of the stack in Chapler 3 into

the refinement calculus.

4.5.1 States and Operations

As before, we abbreviate the state, input and output variables of the stack. These
abbreviations are collected in Table 4.2,

Using the rules and strategies of the preceding sections, the state and oper-
ations are translated, and resultant abstract program is given in Figure 4.7. A

possible design of the main program MainPrag is given in the next section.

4.5.2 Main Program

For simplicity, we assume that the input stream of the system is a sequence of
pairs of COMMAND and OBJECT'. Each pair contains a request for push, pop

or top, and an input ubject which is significant only for the push operation.
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var s : Lomar — OBJECT; 1:Z;
and 0< ! < mar

procedure InilStack(
sl [true | 1=0]

procedure PushC(value objl : OBJECT; result repO : REPORT) =
il < mar —
slift <mar, L=1lg+1As=s5{l~ objl}];
repO : [truc , repO = ok]
0 ¢ =mar— repO: [t = max , repO = full]
fi

procedure Pop(:(result repO : REPORT) =

il I#£0-
11 #0, L=1lo-1);
cp rep0 = ok]
I t=0-rpO:[t=0, repO = cmply)
i
procedure TopC(result 0bjO : OBJECT; result repO : REPORT) =
i A0
0bjO < [1 £ 0, 0bjO = s(1));

1epO : [true | repO = ok)
0 t=0-1pO:[t =0, repO = cmpiy)
fi
.
InitStack;

MainProgram

Figure 4.7: An abstract program translated from the concrete design of the stack.
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COMMAND = push | pop | top

INPUT == seq(COMMAND x OBJECT)

Similarly, we assume that the output stream of the system is a sequence of pairs

of REPORT and OBJI:

", Each pair indicates the status of an operation and

an output object which is significant only for the top operation.

ourrur

= seq(REPORT x OBJECT)

We assume that the target programming language provides the following opera-

tors on sequences.

o hcad, which gives the first element of a sequence;

o last, which gives the last element of a sequence;

o fronl, which returns the sequence without its last clement; and

© lail, which returns the sequence without its first element.

The ing language is also understood to have operators such as firs! and

sccond which gives the first and second elements of an ordered pair.

— PushCommand
AStackC
a,a’ s INPUT
BB OUTPUT
Jirst(head(a)) = push
PushClrepO, objl\first(last(H)), sccond (head (o))}
o = lail «

Jront ' =3




In PushCommand, the effect of a user request for pushing the stack is given. This
is described in terms of the transformation of the input and output streams a and
fi. The effect on the stack is described by including PushC with the input and
output variables appropriately renamed to associate with the input and output
streams, The input stream is shortened by one command and output stream is
lengthened with one output. The effects of popping and inquiring about the top

of the stack are described in PopCommand and TopCommand respectively.

— PopC !
AStack(?

aals INPUT

BB OUTPUT
Jirst(head(a)) = pop
PopClrepONjirst(last(8)]
o = lail

Jront ' =p

— TopCommand
ASlackC
ool D INPUT
/i ouTrPUT

Jirst(head(a)) = top
TopC:lrepO, 0bO\first (lasi (B)), sccond(last (8'))])
o' = lail o
Jront ' =

Since each input must be a push, pop or top operation, the effect of consuming
one input of the input sequence may be viewed as the disjunction of these three

operations. This is described in [upulOutput.
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Operation Precondition
PushCommand | Jirsi (head(a)) = push
PopCommand | first(head(a)) = pap
TopCommand st (head(0)) = lop

Table 4.3: The preconditions of IushCommand, PopCommand,
TopCommand.

Input Output = PushCommand V' PopCommand V' TopCommand

and

Although this may not be immediately uscful at this point, we give the trans-

lation of InputOulpul. The preconditions of its three disjuncts may be found in

Table 4.3. Using Rule “ail”, the specification statement
«, 8,15 : [pre InputOulpul , [InputOutpul]]

may be translated into the following.

i first(head(a)) = push —
o, By 8,1 s [first(head(a)) = push |
[PushCllrepO, objl\first(last (1)), sccond(head(on))] A
o = tail oy A
front fy = fl;
0 first(head(a)) = pop —
a,f.s, L [first(head(a)) = pop ,
[PopClLrepONfirst (last(8))] A
a = tail oy A
Jront By = Bl;
0 first(head(a)) = top —
a,Bys, 1 : [first(head(c)) = lop ,
[TopC(rep0, objO\first (lust(8)), second(last(5))]) A
a = lail ag A
Jronl iy = f;
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The main program of the system essentially applies the /npu/Outpul operation

until the input sequence is letely read. By ing the ion as a

I Iv described

relation, multiple ofan jon may be using

relational composition. Such a relation for /npulQulpul is given as io below.

STACKC

1.mar — OBJECT

io: STACKC x Z x INPUT x QUTPUT
= STACKC x Z x INPUT x OUTPUT

io = {InpulOulpul » (s.1,0, f) = (s, ', o', )}

The relation /o may be understood as follows. If s, /, a, and # are the values
of the current stack array, stack top, input and output streams, and &', t', o', and
" are the next stack array, stack top, input and output streams after executing

Inpul Oulpul once, then the mapping

(s.toa,f) s (&, e,

must be in the relation io.

We require that the luputOutpul ion be performed for every d

in the input stream. As such, we may relate initial and final states of the system
by composing the relation io as many times as the length of the input sequence.
This idea = captured in the schema Alain which describes the execution of the

system.
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—Main
AStack(”
a.a': INPUT
B,8': OUTPUT

(s, oo B) = io#*(s. 1.0, 9)

Trivially, the translation of Main gives the specification statement

sl B [true , (s,0,a,8) = io# (s, lo, 00, Al

In the next chapter, we show how the refi of this may i |

the stack proceaures as well as the code translated from /npulQulpul.

4.6 Summary and Bibliographical Notes

In this chapter, we have examined many of the issues concerning the translation
of a 7 specification into the refinement calculus, The notation of the refine-
ment calculus is introduced and the notion of algorithmic refinment within the
framework of the calculus is summarized. A comparison of the two notations is
then given while noting their relative suitability for specification and develop-
ment, work. Translation rules based on this comparison are then presented and
more sophisticated derived rules for disjunction and conjunction of schemas arc
also given. We also give some directions on how to design a program that uses
the procedutes resulting from such a translation.

The basic techniques for translating from % to the refinement calculus were
proposed by King [25]. The version that we use is from Woodcock [45]. Some
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examples of translation may be found in [25, 45]
The notation of the refinement calculus that we use is from Morgan [31].
Other flavors of the refinement calculus may be found in [2, 35]. More references

for the refinement caloulus may be found in the last section of Chapter 5.



Chapter 5

Operation Refinement

Chapter 4 introduced the language of the refinement calculus and showed how the
calculus may be used to develop programs. This chapter presents more refinement
laws and gives examples to show how they may be used. As it is impossible to
present all the laws that are available, a more complete list may be found in

Appendix B.

5.1 Feasibility

An important concept in the refinement calculus is that of the feasibility of
specification, which indicates whether the specification may be refined to code.
A specification is feasible if its precondition is at least as strong as the precon-

dition that is calculated from that ification’s postcondition (i.c., the weakes!

precondition.) This requires the precondition of a specification to have as least



the constraints that are imposed by the postcondition, and this is stated formally

in Definition “feas” below.

Definition 5.1 (feasibility “feas”) The specification w : [pre , pos!] is feasible

if and only if
(w=m)ApreAino = (Fw: T einn A post),

where 7' is the type of w and inv is the invariznt that is associated with the
variables w during their declarations.

a

It is important to note that the calculus will not allow an infeasible specifica-

feasibl.

tion Lo be refined into code. As such, it is impossible for an i
tolead to incorrect code, and hence, although possible to do so, it is not necessary

for us to check the feasibility of ifications during d

5.1.1 Pathological Specifications

In this section, we give some ifications which may be idered as extremes

in the spectrum of specifications. Although these are not commonly used to
describe programs (except for skip), they are very useful in understanding and

explaining phenomena that may arise during a development.



abort

The specification statement

w [false . truc)

is called abort. Since its precondition is false, it may not be used under any

circumstance, and it is is never to i Even ifit does inate,

the postcondition of /ruc enables any result to be produced.

choose u

The specification statement

w: [true | true)

is called choose w. Since its precondition is /rur, its invocation is always guar-

anteed to i and since its

is also frur, it may produce any

result.

skip

The specification statement
s [true , Lrue]

is called skip. This program is similar to choose w in that it is always guaranteed

to terminate; however, it changes nothing as its frame is cmpty.
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magic
The specification statement

ws [lrue , false]

is called magic. Since its precondition is lrue, it is always guaranteed to termi-

nate. However, since its p dition is false, its inating state can never be

satisfied. As such, it establishes the impossible.

5.2 Some Basic Laws

In this section, we present some basic laws which enable the refinement of a

specification into different language constructs.

5.2.1 Assignment
Our first law is one that introduces an assignment into the program.
Law 5.1 (assignment “ass”) If (w = uy) A pre = posi[w\E], then

wyr i [pre, posl] € wi= B.

Law “ass” states that a variable may be assigned a value if the replacement of
the variable by that value in the postcondition represents a state that is derivable
from its precondition.
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Example 5.1 Since

r =1 A lrue
= r41>0
& o> xlr\r +1],

xt[true, r > ro)

n

5.2.2 Local Block

Often during programming, we find the need to use some extra variables to hold

intermediate values. The next law gives us a way to do this.

Law 5.2 (introduce local block “ilb”) If w and r are disjoint, then

wilpre, post] T |[vara:7; and ino e w,u: [pre, post]].

Law “ilb” says that a fresh variable may be declared and included in the frame
of a specification statement together with the introduction of a local block to

contain its scope.

Example 5.2 Assume that we want to swap the values of wo variables = and
yof type T. We can introduce a variable ¢ of the same type to hold onc of their
values when swapping.
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2,y (true , 2=y Ay =)
Coosib

i

var l: Te
ey b flrue, 2= g0 A y = m)
i
o
5.2.3 Skip
If the dition implies the diti then a befc tate that satisfies
the lition is also a legitimate after-state; as such, there is no need to do

anything. This idea is contained in Law “sk” below.
Law 5.3 (skip command “sk”) If (w = wy) A pre = posl, then

w:[pre, post] T skip.

An avenue to understand this law is to convert the requirement pre = post
to ~pre V post. Since the postcondition post. is guaranteed whenever the precon-
dition pre is true, we are not obliged to do anything.

Existing laws may be used to derive new laws. This is particularly useful
for building libraries of derived laws when a developer has established a pre-
ferred style of refinement either due to the target language or his mathematical
intuitions. As an example, we show a derivation of Law “sk”.
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Example 5.8 A proof for Law “sk” is

w: [pre , post]
T “sp” and since pre = post
w [pre , 0= up)
s
w [true , w= )
T el
[true , truc).

Since skip is defined as : [truc , (ruc], our proof is complete.

o

5.2.4 Logical Constant

A logical conslant may be introduced much like a variable, i.c., by declaring it
within a local block. However, unlike a variable, the value iaken by the constant

is fixed, and since a logical constant is not an executable construct, it must be

removed at the end of the devels Logical may be introduced

to give names to some values that must exist. The value of a logical constant is

often described in the dition of a ification, where it may be understood
that the constant takes on the value that makes the precondition true. Since
logical constants are frequently used to hold the before-values of variables, an

abbreviation has been formulated for this purpose.

Abbreviation 5.1 (initial variable “iv”) Occurrences of 0-subscripted vari-
ables in the postcondition of a specification refer to values held by those variables
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in the inilial state. Let = be any variable, probably occurring in the frame w. If

X is a fresh name, and 7' is the type of #, then

w[pre , post]
2 Jlcon X:Tew:[preAa=X, postlo\X]].

We reserve 0-subscripted names for that purpose, and call them initial variables.
=]

Example 5.4 Using Abbreviation “iv", the i i of Exam-

ple 5.2 that swaps two variables z and y,
roy i [lree  w =0 Ay = o),

may be written as

conX,Y e

Eahi Xay=Y,e=YAy=1X]

Logical constants may be removed at the end of a development by using Law
“rlc” which is given below. This law is used to ensure the constant no longer

appears in the program.

Law 5.4 (remove logical constant “rlc”) If c occurs nowherein program prog,

then
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lleonc: T aprogll T prog.

5.2.5 Sequential Composition

A ial ition may be introduced to divide a specili
into two ificati This is ished by finding a single pred-
icate to indicate the after-state of the first ification and the before-state of

the second. By restricting the frame of the first specification to be a fraction of
that of the original specification, the requirements of the original specification

may be distributed between the two new specifications.
Law 5.5 (sequential composition “scII”)

wyz:[pre, post]
T z:fpre, mid)
w,z: [mid , post).
The predicate mid must not contain initial variables, and pos! must not contain
.

a

Example 5.5 We refine the specification of Example 5.4 to code. The strategy

is to use the variable / to store the value of » during the swap of = and y.
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XAay=Y, =z

gt YAay=X]
C sl
lifr=XAy=Y,s=XAy=YAl=X];

sy lilr=XAy=YAlt=X,z2=YAy=X]; <
C  “scll”
EHE \Ay=YAl=X,z=YAy=YAL=X]

YAay=YAl=X,z=YAry=X];

E A

The symb: | <l is conventionally used to indicate the specification that is refined

next. Collecting the leaves of the refinement tree, we have

ayile=XAyg=V,

C o life=XAy=Y, r=
(Ay=VAl=X

= YAy=YAlL

r=YAy=X]

XAy=YAL=X}; (i)
YAay=YAi=X} (i)
r=YAy=X]. (i)

aifr

EN

Using Law “ass”, specifications (i), (ii) and (iii) may be easily refined to code.

5.2.6 Alternation

An alternation may be introd

d by finding predi which collectively cover

the situations stated in the precondition. These predicates become the guards

of the al ion, and since the is assumed to be true when the

alternation is executed, at least one of these guards will be true. Hence, we have
a well-defined alternation which will not abort.
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Law 5.6 (alternation “aitI”) If p = (Vi e (), then

w:pre . post)
C if(ieGi—w:[GApr. post]) R

Example 5.6 The abstract program in Figure 4.3 that finds the maximum of
two numbers may b. i nplemented with an alternation. Since /rue = (r > y v

> 1), we have

sy:free (2 pAr=wAy=n)V
(w2 Ar=ryAy=m)

The symbol = is used below to indicate an abbreviation where the diti
of the starting specification was abbreviated as /.

C sl

I12(2pAr=mAy=n)V
W2 R Ar=nAy=h)e

Hroy—
sy:fe2y, 1) A
fyzz—
sy:ly2e, ) (i)

n

“sp” and then “wp”
ry:flrue y z = A y=an)

() © “sp” and then “wp”
yllrue o =x Ay= )
.

skip

n



Collecting the refinement leaves, we have

zptltrue, (2 mhr=ygpAy=n)V
(2 5Ar=1Ay=up)

n

ifr>y—
z,y:ftrue , 2= A y=m)
lyzr=
skip

5.2.7 Iteration

The central task of refining an iteration is to find an invariant which states what
must be true during all repetitions. The refinement must also establish a variant,

which is an expression that must decrease as the iteration progresses.

Law 5.7 (iteration “iter”) Let inv, the invariant, be any predicate; let V, the
varianl, be any integer-valued expression. Then
w:[inn , inv A~(Vie G)]
C do

QioGiow:lineAGi, innAOLV < V)
od.

Note that neither inn nor (i; may contain initial variables and the expression Vy
is V[w\ ).

o

The subtlety in this law lies with the lation of the variant

V. By requiring that |* be non-negative and decreasing during each iteration,
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the user of the refinement is forced to consider the termination of the iteration.
This consideration typically leads to the formulation of guards (i; which states
exactly when the iteration may continue. These guards ensure that the iteration

terminates before 1 becomes negative.

Example 5.7 We offer a refi of the ificati from Exam-

ple 4.7 which checks the presence of an integer in an integer array. Our stralegy
is to check the clements of the array from the smallest index to the largest. 1If
input is found, then the loop exits. Otherwise, the loop terminates after all of
the elements arc checked.

The specification statement of interest is

w: [true . H)

where

H = (w=mar+1Az ¢ aray[lomar]) V (0 € Lonar A array(w) = r).

This may be refined into an iteration which uses the variable w to hold the
index of the array element that is currently being checked. Since the body of the
iteration essentially increments w, and this is necessary only when input is not
observed, we may formulate the invariant to say that the clements checked so far

do not contain the input. This may he written as

12z ¢ array{l.w—-1].
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Since the variable w is increasing during cach iteration and may be between 1

and maz + 1, a variant expression may be

Vam+l-w

The exit condition is “

=G = w=mar +1V array(w) = =

where (/' is the only guard of the iteration. These ideas are used in the following

refinement.

w: [rue , 1]

[
I20d amyllow—1]e
w [true , 1 <
w:{l, 1) (i)
C  ‘“ass”
wi=1
[N

G2 w#maz+1A army(w) £z e
will, I A=G]

T “iter” with invariant / and variant maz +1—w
do G —
wi[lAG, i A0S maz+1=w< maz+1-1w)] <
od
C  “ass”
wi=w+1
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5.2.8 Procedure

P ized procedures may be introd !

d through the of substi-

tution. Three kinds of substitution are available: cali-by-valuc, call-by-result, and

Il-by-valuc-resull. The requi for their use are given in the respective
laws. We present here the last of the three. Since the law is quite unintuitive, o
study of the example that follows may be nesessary for a comprehension of the

law.

Law 5.8 (value-result substitution “vrsII”) If pos! does not contain a, then

. :prelf\al , post{fo,/\ao. al]
T [valueresult [: T\a]
w,f < [pre , post].

After a substitution law is applied, the formal parameters and the resulting spec-

ification may be bined to form a d In their place, a

procedure call with the actual parameters is introduced.

Example 5.8 Suppose that we have an abstract program that contains multiple
specification statements of the kind

a,bifirue , a=lbpAb=a]

which swaps the two variables « and b. It would be convenient to form a pro-
cedure that does this so that an occurrence of this specification may simply he
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replaced by a procedure call. In this way, instead of refining each occurrence of
the specification, we are obligated to refine only that copy, which is the proce-

dure for the above ification and its call

dure. We show below how a
may be introduced into a program.

b [truc, a=by A b=a)
= ab:[true, (= =y Ay =70))[70,7, Yo, ¥\ 00, a, by, b])
“yrsIl”

[value result z,y: Z\a,b] »
ry:flrue , e =y Ay =x)

n

procedure Swap(z,y : Z) =
z,y:llrue yx = Ay =]

]

.
Swap(a, b)

T from the results of Example 5.2, Example 5.4, and

Example 5.5 and using “rlc”

Collecting code, we have

procedure Swap(r,y:Z) =
|

var (:Ze

.
Swap(a, b)
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Duplication of Actual and Formal Parameters

Note that in all substitutions, if f is a list of formal parameters then it must not
contain repeated variables, because a substitution of the kind [y, \1.2) would be
meaningless. For the same reason, since [a\/1 occurs in value-result and result

substitutions, the actual parameters ¢ must not contain repeated variables.

Variable Capture

It is often desirable to group all the procedures together in the outermost block
of the complete program. This may be necessary due to the requircments of the
target programmicg language. One possible difficulty with moving a procedure is
that it might move variables into and out of the blocks in which they are declared.
As such, it is recommended that a prc sedure use only variables that are cither
global, i.c., whose scope extend throughout the whole program, or local within

the body of the procedure.

Substitution by Reference

The most common substitution techniques used in current programming lan-

guages are call-b luc and call-by-refe . Call-hy-refc bstitution may
be effectively modeled by value-result substitution except when therc is aliasing,
i.e., when two distinct names in the procedure are used to refer lo one single

variable [31, 29],
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Aliasing in call-by-reference occurs explicitly in
[reference ,y\z,3]

where # and y are both used to refer to =. With call-by-reference, a change of
y in the procedure changes z and = as well. On the other hand, in a similar
call-by-value-result substitution, a change of y in the procedure does not affect
, and upon the exit of the procedure, = will be assigned the value of either x or

y. An example of implicit aliasing is

J* [reference y\a].

An execution of this with call-by-reference will enable # to square itself, while a
similar call-by-value-result substitution will prevent the value of z from changing.

By avoiding occurrence of aliasing, we may use call-by-value-result to develop
programs that contain call-by-reference substitutions. The explicit case of aliasing
may be avoided by disaliowing repeated variables in the parameter list of any
value-result substitution, Note that from the discussion of a previous section on
the duplication of actual parameters, we have already disallowed duplication of

variables in actual list for val 1t substituti The implicit case

of aliasing may be dealt with by simply requiring that an actual parameter does

nov appear in the code of the procedure.
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5.3 Case Study

In the following, we give one refinement of the procedures and main program of

the stack example of Chupter 4.

5.3.1 Procedures

Since the refinement of the procedures is easy, we show here only the process for
procedure PushC. All resultant code for the program, except that for the main

program, is collected in Figure 5.1.

Refinement of the procedure Push(”

The specification stat ts in the dure Push(! are refined below. First,

we refine the first specification statement in the first branch of the altcrnation of

PushC from Figure 4.7,

. L=ty +1A

sbt [1 <mer, S iy
T el

con Te

Lift <mar—1, L=ly+1]; <

P =T+1A .

s"'[“r“' s=58 {Lm objl} @

C e

tr=1t+1
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var s : L.mar — OBJECT; | : Z;
and 0 < < max

procedure [nilStackC = 0

procedure PushC(value objl : OBJECT; result repO : REPORT) =
if L <maz —

0 t=ma—

1ep0 i= full
fi;
procedure PopC(result repO : REPORT) =
if 1A0—
rep0
I t=0—
1ep0 1= emply
fi;
procedure TopC(result 0bjO : OBJECT; result rep0 : REPORT) =
if 1#£0—
0bjO = s(1)
repO = ok
0 t=0-
1epO = emply
.
InitStackC;
MainProgram

Figure 5.1: An abstract program of the stack with refined procedures.
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(i) = “sp” both ways

!
s,l:[l=T+1, {1} <

(1) = objl
C ass”
(1) := objl

The refi of the second ificati of the first branch is given
next.

repQ : (true , 1repQ = ok|

C “ass”
1ep0 1= ok

Finally, we refine the specification in the second branch of the alternation.

rep0 : [t = mar — 1, repO = full)

n

rep0 := full

5.3.2 Main Program

We describe below a possible refinement of the main program. Recall that this

program has the specification

sy [lrue (s, 4,00 8) = i0#™ (s, o, o0, ).

Using the abbreviation for initial variable, we rewrite this specification as
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= 4y

con S, T, A Be

sl N (s, b B) = 04(S, T, A, B)

We want our program to continuously read a command - input object pair, and
execute the relevant operation, until no more input is found. Clearly, this involves
an iteration with a terminating condition indicating that the input stream is
empty, and a variant expression that gives the length of the input stream. The
next few steps are the typical ones for setting up such an iteration.

P
slo,p: [(Hlﬂﬁ)—m#/‘ #(8,T,A,B) ,
Loy B) = 10#4(9 T,A,B)]

n

8,0y, ) = io#A=#2(S T A, B) »
s il I Ao=()]

C  “isg” with invariance / and variance #o

do o # () -
schonfiladt (AL, IA0S Ha < fhao) <
od

The specification in the body of the iteration may be refined to introduce the
abstract program for operation npulOulpul.

g
s}

P
siaBila# AL, I Ao =Hag—1]
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if first(head()) = push —
a, B, 5,1 : [first(head(a)) = push
[PushC{repO. obil \first(last(8)), second(head(0p))] A
o = lail ag A
Jront 3 = Bol;
[ first(head(cr)) = pop —
a,B,s.L: [first(head(a)) = pop
I[I’np(‘][lrp()\]u st{last(3))] A
ao
fum! 8=l
0 first(head(o)) = top —
o, fys, Lz [first(head(a)) = lop |
[TopCllrepO. 0bjONjirsi(last (), sccond(last($3))]) A
o = tail ag A

Jront B = Al;

Figure 5.2: An abstract program translated from the schema fnputQuipul.

T “sp” and then “wp
sy, [(, #0, (S‘l,(v./i#)":_m(:,‘,'l._,,n,,,H“) A }
Co o

sl [a #0, ﬂ:;/:'iof:z;“il{\

g

sp
s, by fBifa# (), [npulOulpul]]

Using the refinement in Section 4.5.2 for InpulQulpul, we can refine the above

into the program in Figure 5.2, which gives the body of the iteration.
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AR to Introduce PopC'

The abstract program in Figure 5.2 may be refined to introduce the procedures
of the stack. We show here how to refine the second branch of the alternation
to introduce procedure PopC. The other branches may be refined similarly. The
specification in the second branch of the alternation is
1PopCllrepO\first(last ()] A

o, By, Lt |first(head(@)) = pop o= lail ag A
Jront B =By

We introduce a variable to hold the output of the PopC operation, and decompose
this specification into a specification that performs the pop operation and another
that interacts with the input and output streams.

T “Ib", “sp” and then “wp”

[ var r: REPORT; obj : OBJECT o
[PopCllrepOAr] A
(r, o) = last(B) A

o= lail ag A

front B = fo

a,Bys, b, obj z e

C o
con 8,1, 1, 013 «
s,1yry0bj  [true , [PopClirepO\r];
a,B, 5,0, . obj : [[PopCllrepO\H[s, L, v, obj\S, T, R, OBJ] ,
[PopCllrepO\iso, oy 10, 0bjo\S, T, R, OBJ] A
(v, 0bj) = last(8) A
o = lail ag A
front B = fi
C a:=tailo

di= 67 ((r,0bj)).
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Specification (i) may be refined to introduce the procedure I'opC’ by applying

Law “rs".

8,4, 0bj, repO : [true . [PopCll[result repO\r)

= procedure PopC(result rep( : REPORT) =
s b, 1epO : [bae, [PopCl)

.
PopC(r)

Since procedure Pop( uses only variables that are cither global or local to Pap(*,

the procedure may be moved to the outermost block. For completeness, the code

for our stack program is given in Figure 5.3.

5.4 Summary and Bibliographical Notes

This chapter contains several basic laws of the refinement calculus and examples
to show their use. These laws allow many of the major exccutable constructs to

be introduced during the refi of a specifi

The material presented in this chapter may he found in Morgan’s hook on
the refinement calculus [31]. In this book, Morgan also treats refinement into
modules, recursion, and data refinement within the framework of the refincment
calculus. Theoretical discussions on the different aspects of the calculus may be

found in [33, 30] (specificati ) (29] (procedures and ), [32]

(types and invariants), and [34, 28, 27] (data refinement).
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var s : Lanaz — OBJECT;
1:Z;
r: REPORT;
obj : OBJECT

and 0 < 1 < maz

procedure /nilSlackC’
procedure Push(!(value objl : OBJECT; result repO : REPORT) =
if 1< maz—

t:=1+1
(1) := objl;
1p0 = ok

0 t=maz—
op0 s= full

fi;

procedure PopC(result 1epO : REPORT) =
it 1#0—

p0 := cmply

.
InitStackC;
doa#() -
it Jinst(head(a)) = push — PushC(second(head(a)), r)
[ Jirst(head(a)) = pop — PopC(r)
0 first(head(a)) = lop — TopC(obj, r)
o= lail &
Bi= 47 ((r,0bj))
od

Figure 5.3: Code calculated from the abstract program of the stack.
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One of the difficulties associated with the use of the refincment calculus is

the derivation of loop invariants (see Law "iter”). Some discussion on how the

obtain loop invariants may be found in [13].

Wordsworth has d an approach to fon refi that avoids
the refinement calculus [47]. Wordsworth’s method which also enable code in
guarded commands to be yielded from a concrete design involves stating an al-
gorithm design and proving its correctness. The state-and-prove nature of his

approach complements the calculative nature of the refincment calculus,
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Chapter 6

Case Study: The Paragraph

Problem

This chapter contains a non-trivial case study. Besides showing how formal meth-
ods may be appropriately used to manage the algorithmic cz nplexity in the de-
velopment of software systems, this case study also indicates some directions on
how predefined programming language and library routines may be introduced

into our framework of formal development.

6.1 Even Paragraphs

The problem for this case study is that of laying out words into lines such that
these lines form an cven puragraph. To explain what an even paragraph is, we

borrow some examples from Morgan [31, pages 170-171]. In a simple paragraph



|Compare the paragraphs of Figure 6.1 and |
|Figure 6.2. In simple paragraphs, like Figure |
16.1, each line is filled as much as possible |
|before moving on to the next. As a |
lconsequence, the minimum number of lines is |
lused; but a long word arriving near the end of |
la line can cause a large gap there. 1

Figure 6.1: A simple paragroph.

|Compare the paragraphs of Figure 6.1 and
IFigure 6.2. In sinple paragraphs, like
|Figure 6.1, each line is filled as much
|as possible before moving on to the mext.
|As a consequence, the minimum number of
|lines is used; but a long word arriving
Inear the end of a line can cause a large
lgap there.

Figure 6.2: An even paragraph.

(see Figure 6.1), each line is filled with as many words as possible before the next
line is filled. Although this scheme minimizes the number of lines used, it may
require some lines to end with a large number of white spaces. This happens
when the next word of a line is long and cannot be fitted as the last word of that
line. An cven paragraph (see Figure 6.2) differs from a simple onc in that the
number of white spaces of a short line is reduced by distributing some of these
spaces over earlier longer lines.

This problem was stated by Bird [5), and was specified and partially refined

by Morgan using the refinement calculus [31]. In the following, we show how a
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program in the programming language Pascal [10] that computes even paragraphs

1 d

may be derived using the formal software I process that is
in this thesis. For the sake of brevity, we omit many of the proof and derivation

details, and only mention important strategies.

6.2 Abstract Specification

The global constants mazWord and mazLenglh are used to denote the maximum

number of words and the maximum length of cach line in a paragraph.

| marWord : N

mazLength : N

mazLenglh > 1
[ClIAR)

newline, tab, space : ClIAR

newline # tab
tab # space
newline # space

The set CHAR is declared to represent the set of characters allowable in a
paragraph. Using this, we define a word as a non-empty sequence of at most
mazrLenglh characters, which does not contain any newline, tab or space char-
acters. These words are contained in the set WORD. For convenience, we will
refer to newline, tab, and space characters as white spaces.
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w:seq CHAR | 0 < #w < marLength A
ran w N {newline, tab, space} = ©}

6.2.1 State Space and Initial States

The state space and initial states of the the system ate described in £ and
InitEP'. The sysiem maintains a sequence of at most ma|Vard words which is
initially empty.

EP

words : seq WORD
#words < marWord

InitEP
I

words' = ()

6.2.2 Operations

For simplicity, we may regard the input to and output from the system as se-

quences of characters.

INPUT
ouTPUT

eq ClIAR
= seq CIIAR

1", taditionally, the paragraph problem has been specified in terms of a relation between the
input and output sequences. We adopt a state space specification 5o as to illustrate our method
of software development.
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Using INPUT and OUTPUT, the operations for reading words from an input

and writing an even paragraph onto an output is described below.

Read Words

Functions conS and con W remove leading white spaces and non white spaces from
an input, respectively. Function ret W, which is similarly formulated, returns the

longest sequence of leading non white-space characters.

conS : INPUT — INPUT

Ys: INPUT o
(s = () V head s ¢ {newline, tab,space} =
conS(s) = s)

A
(s # () A head s € {newline, tab,space} =
conS(s) = conS(tail 5))

conW : INPUT — INPUT
Vs: INPUT o
(s = () V head s € {newline, tab,space} =
conW(s)=s)

A
(s # () A head s & {newline, tab, space} =
conW(s) = conW(tail s))

relW 2 INPUT — seq CIIAR
Ys: INPUT o
(s = () V head s € {newline, tab,space} =
retW(s) = ()

A
(s # () A head s ¢ {newline, tab,space} =
retW(s) = (head s) ™ retW (tail s))
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With the assumption that words ate separated by at least one white space, a
function called form WS is defined which extracts words from an input and returns
a sequence of type IWORD that contains those words. As shown in its definition,

the function form WS uses the functions conS, con 1V, and ref1¥’.

JormWS 1 INPUT = seq WORD
Vs i INPUT o
(conS(s) = {) =
JormWS(s) = ())

A
(conS(s) # () =
JormWS(s) = ((LmarLength) <4 ret W (con§(s)))™
Jorm WS (con W (con$(s))))

Note that when a word is returned by function relIV, form IS truncates it if
that word is longer than masLength. Thus, a word that is accepted by form WS
is always of type WORD. Using function form WS, the operation of reading an
input is merely an application of form WS on the input. The word sequerce that
is yielded from reading the input is also truncated to ensure that the system
stores only the first maxWord words.
 Readl

input? : seq CIIAR

AEP

words' = (L..mazWord) <\ form WS (input?)
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Lines and Paragraphs
Given a sequence of words, the function width computes the length of a line that

is made up of these words with a space separating each pair of consecutive words.

width : seq WORD — N

s : seq WORD o
(ws = () =
widih(ws) = 0) A
(ws # () =
widih(ws) = (#ws — 1) + SE #(ws(k)))

Using function widlh, we define a line to be a sequence of words with a width of

at most maxLenglh.

LINE == { I : seq WORD {1 < width(l) < masLenglh }

Subsequently, a paragraph is easily defined as a sequence of lines.

PARAGRAPH == seq LINE

Waste and Even Paragraphs

The wrste of a h is the i number of righ white spaces

that are contained in any line of the paragraph, except the last. Function waste

computes the waste of a paragraph.
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waste : PARAGRAPH — N

Vp: PARAGRAPH »
(#r<1=

waste(p) = 0) A
>1=
waste(p) = max { L: LINE | | € ran(front p) e
mazlength = width(l) })

The minimum waste of a sequence of words is the minimum waste of a
paragraph that contains these words. Minimum waste is computed by function
min Waste.
minWaste : seq WORD — N
Vs :seq WORD o

minWaste(ws) = min {p: PARAGRAPI | ™/ p = ws & waste(p)}

The relation cvenP relates a sequence of words and a paragraph, where the

paragraph is a layout of these words, and has a waste that is cqual to the minimum

waste of the sequence.

— evenP _: seq WORD & PARAGRAPIH

Vs :seq WORD; p: PARAGRAPI »
ws coenP p &~/ p=ws A waste(p) = min Wasle(s)

Computing and Writing Even Paragraphs

Functions insertS and formOulpul indicate how a paragraph should be laid out.
These functions ensure that each consecutive pair of words in a line are separated

by one space, and that each line including the last ends with a newline character.
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LINE — seq CHAR
Vi: LINE

(#l=1=
insent$(l) = last 1)

A
(#l>1=
insertS(1) = (head 1) ™ (space) ™ insertS(tail 1))

JormOutput : PARAGRAPH — OUTPUT
Yp: PARAGRAPI o
(#r=0=
JormOulpui(p) = ())

A
(#r=1=
JormOutpul(p) = insertS(head p)™
(newline) ™ formOutpul(tail p))

Using the function definiti the

peration WriteParagraph may now
be casily described as outputting a paragraph that is an even layout of the words

stored in the system.

WaitcParagraph
p

oulput! : OUTPUT

Ip: PARAGRAPI |
words cvenP p o
oulpul! = formOulput(p)

6.3 Concrete Design

We propose a concrete design that uses data structures that are available in
Pascal. We find it convenient to definz a word as a record with an array of
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characters and an integer to store the word and its length, respectively. This is

modeled in schema IWordC.

CHARARRAY == L.marLength — CHAR

— WordC
word : CHARARRAY
length : Z

0 < length < mazLength
{newline, tab, space} N ran(l..length < word) = &

The use of a schema as a type allows Word(’ to be viewed as the set of tuples of
word and length that satisfy the predicate in WordC'. Using schema projection,
the components of a schema object may be referenced in a similar manner as the
fields of a Pascal record. For instance, if w is declared as having type Word(!,
then w.word will allow us to refer to the word component of w.

The system state space £PC' miay be modeled as an array of Word(! with an

integ ¢ variable (olalC' to indicate the number of words present in the system.

—EPC
wordsC : 1..max Word — WordC'
lotalC : Z

0 < lotalC < mazWord

Clearly, the system when started should contain no words.

hilEPC

EPC'
totalC"




Read Words

The strategy for reading words from an input in this concrete design is the same

as that in the abstract specification®.

conWC 2 INPUT — INPUT
conWC = conW

el WC : INPUT — seq CHIAR
et WC = rel W

However, the way to store these words in the system is quite different.

 ReadlupuiC:
input? : INPUT
ABPC
lolalC” =
min {
min { n: N | conSC(conWC o conSC)*(inpui?) = () },
macWord

Vi:l.tolalC' e
wordsC'(i).length =
#(LmarLength<
1t WC(conSC((conWC o conSC)="(inpul?)))) A
wordsC(i).word = werdsC(i).word &
(LmaxLength<
1l WC(conSC((conWC o conSC)="(input?))))

*The functions conSC, con WC, and retWC are redundant. They aie presented to satisfy
our naming conventions.
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Lines and Paragraphs

Lines and paragraphs in our concrete design are defined similar to those in the

abstract specification.

widthC : seq Word(" — N

¥ wCs : seq Wond('

(wCs = () =
widthC(Cs) = 0)

A
(nCs £ () =
widthC(wCs) = (#wCs = 1) + SE wCs(k).length)

LINEC == { IC' : seq Word(" | 1 < widthC(IC") < marLength }
PARAGRAPIC == seq LINEC:

Waste and Even Paragraphs
The concrete version of waste, minimum waste, and even paragraphs are defined
similar to their abstract version.

wasteC : PARAGRAPIC — N

VpC : PARAGRAPIIC o
(#C<1=
wasteC(pC’) = 0)

A
(#C>1=
wasteC(pC') = maz {IC: LINEC |
IC € ran(fronl pC) »
mazLength — widthC(IC)})
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minWasteC' : seq WordC' — N
¥ uC’s : seq WordC' e

minWasteC(wCs) =

min {pC : PARAGRAPIHC | ~/ pC = wCs » wasteC(pC)}

_ cornl’C' _: seq WordC > PARAGRAPIIC
¥ s : seq WordC; pC : PARAGRAPIC o
wCs coenPC pC &
~/ pC = wCs A wastcC(pC) = minWasteC(wCs))

Writing Even Paragraphs

The only diffe in the ification of ing an even h is the
addition of a function gr! WordC' to extract the word that is contained in an item

of type WordC:.

yel WordC : Word(" — WORD

V(' : WordC e
get WordC(1C) = 1..wC.length < wC.word

insertSC : LINEC — seq CHAR
YIC: LINEC »
#IC=1=
insertSC(IC) = get WordC(last IC)

#IC > 1=
insertSC(IC) =
et WordClhead IC) ™ (space) ™ insertSC(tail IC)
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JormOutputC : PARAGRAPHC — OUTPUT
VpC : PARAGRAPIC o
#pC =0=>
JormOulpul C(pC) = ())

A
(#pC21=
JormOulput C(pC’) = insertSC(head pC)™
(newline) ™ form Ouiput C'(1ail pC))

— WriteParagraphC

output! s OUTPUT
3pC : PARAGRAPHC |
(L.LolalC < wordsC) coenl’C: pC'e
oulpull = formOutpulC(pC’)

6.4 Retrieve Relation and Proof Obligations

The retrieve relation is given in the schema Iclr. Tt uses a function map that
takes another function and a sequence and applics the function to every element

of that sequence.

=LY
map: (X = V) > seq X — seq ¥V
V[:X > V;zsiseqSe
map [ () =) A
map [ s = (f(head zs)) ™ map [ (lail zs)

— Retr
&P

£PC
words

= map getWordC (1..totalC < wordsC')
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It is not difficult to see that the retrieve relation is functional. Hence, we may
use the proof obligations for functional retrieve relations. The proof obligation
for initial states s easy, and since the preconditions of the concrete operations are
true, the proof obligations for applicability are trivially satisfied as well. Below,

we sketch the: proof for WrilcPe phC. The proof for

ReadInpulC is similar,

6.4.1 Correctness Proof for WriteParagraphC

The first step in this proof is to prove theorems that relate the abstract and
concrete functions. These theorems are given below. The details in their proofs

are omitted, as these proofs are not difficult.

Theorem 6.1

Y s : seq WORD; uCs : seq WordC |
ws = map gelWordC uCs e
width(ws) = widthC(wCs)

Theorem 6.2

Vp: PARAGRAPIH; pC : PARAGRAPHC |
p = map (map getWordC) pCo
waste(p) = wasteC(pC’)
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Proof: Use Theorem 6.1

o

Theorem 6.3

V ws : seq WORD; wCs : seq WordC |
ws = map gel WordC' wC's o
minWasle(ws) = min WasteC(0C)

Proof: Use Theorem 6.2

a

Theorem 6.4

Y ws : seq WORD; wCs : seq WordC;
p: PARAGRAPH; pC : PARAGRAPIC |
ws = map get WordC wCs A p = map (map gel WordC') pC' e
wCs coenPC pC = ws cvenl p
Proof: Use Theorem 6.2 and 6.3.

o

Theorem 6.5

V11 LINE; IC : LINEC |
I'= map getWordC IC'»
insenSC(IC) = insertS(l)

Proof: By induction.

o
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Thecrem 6.6

Yt PARAGRAPIT; pC: PARAGRAPIC |
p = map (map gelWordC) pC o
JormOuipul C(pC) = formOutpul(p)

Proof: By induction using Theorem 6.5.

o

A _Sketch of the Proof
The correctness proof requirement is

Y EP; EP'; EPC; EPC'; oulpul! : OUTPUT »
pre WhritcParagraph A Retr A WritcParagraphC A Retr'
= WritcParagraph.

From the premise, we deduce

= words = map gelWordC (L.tolalC < wordsC) A
3pC : PARAGRAPIC o
(1.l0lalC < wordsC) evenPC pC A
oulpul! = formOutputC(pC)

For every concrete paragraph, we can always find an abstract paragraph that
has the same words. We existentially introduce this abstract paragraph into the

predicate.

= words = map gt WordC' (L.lotalC < wordsC) A
3pC : PARAGRAPHC; p: PARAGRAPH o
» = map (map getWordC) pC A
(L..lotalC <t wordsC) cvenPC pC A
output! = formOuipulC(pC)
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Using Theorem 6.4, the expression (L..lolalC’ < wardsC) coenPC pC* implies

expression wonds cvenP p.

= 3pC: PARAGRAPIC; p : PARAGRAPI
p = map (map gelWordC) pC n
words cvenP p A
output! = formOulpul C(pC’)

Using Theorem 6.6, formOulpulC(p(?) may be replaced by the formOutpul(p).

= 3pC: PARAGRAPIC; p : PARAGRAPIH o
words coenP p A
output! = formOutput(p)

Since pC is free, the existential quantification of p(’ may be removed, which

completes our proof.

& 3p: PARAGRAPII o
words cvenP p A
output! = formOulput(p)

6.5 Using Predefined Pascal Routines

I the concrete operation of the previous section were to be translated, they
would result in procedures with formal parameters inpul? and outpul!. These
parameters may not be used because input and output streams are not system
variables in Pascal and as such, cannot to be passed as parameters in a procedure
call. Below, we view the input and output streams as state variables and modify

the concrete operations appropriately to make use of them.
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sl
ALPC
input, input’ < INPUT'
oulput, oulpul! s OUTPUT
lotalC"
min {
min { n: N | conSC(con WS o conSCY*(imput) = () },
maz Word

}
Vi: L.olal(" e
wordsCY(i).denglh =
#(L.marLength<
1l IWC(conSC((con WC o conSCY=1(inpul)))) A
wordsC"(i).word = wordsC(i).word &
(1..mazLengtha
el WC(eonSC((conWC o conSCY=(input))))

oulpul' = oulpul

Instead of requiring ReadlnpulC to use the input variable input?, it is now re-
quired 1o use the input stream as the input. The operation WriteParagraphC is

required to concatenate its output onto the output stream.

— WriteParagraphC

input, input’ : INPUT'
output ,outpul’ s OUTPUT
IpC s PARAGRAPIC |
(1.lolalC < wordsC) evenPC pC o
outpul’ = output ™ formOulputC(pC)

input’ = input
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Variable | Abbreviation
wordsC w
totalC" !

input in
oulput oul

Table 6.1: Abbreviations for the state variables of operations feudlupulC" and
WrileParagraph.

Using Pascal Input and Output Routines

Since we must manipulate the input and output streams through Pascal input
and output routines, a way to introduce these routines into the development
would be to specify them as procedures in our abstract program. By refining our
operations to use these routines, we can provide a formal justification for their
use.

Below, we give specifications for a few Pascal input and output routines. Since
these specifications will be used in the refinement of our operations, it would he

convenient to use the abbreviated form of the state variables. The Pascal routine

read

allows us to read a character from the input stream. A specification of this routine

is contained in the procedure read below.

procedure read(value result ¢ : ClIAI) 2
inyefin# (), e = heud ing A in = lail ing)

A specification for the Pascal routine
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write
which allows us to output one character (except for newline) is given in procedure
wrile,

procedure wrile(value ¢ : CIIAR) &
out : [c # newline , oul = outo ™ (c)]

A specification for the Pascal routine

writeln

which allows us to output a newline character s given in procedure writeln.

procedure wrilcln =
out : [lruc , out = ouly ™ (newline)]

By declaring a character array as a packed array, we may make use of the Pascal
routine that allows a prefix of the items in the array to be output. As an example,

for a packed array a and an integer /, the Pascal command

vrite(a:!)

will output the first / ch ofa. A ification for this Pascal d is

given as procedure wrileArray.
procedure writcArmy

(value a : CHARARRAY; value I : 1..mazLength) =
out s [true , out = ouly ™ (1.1 <1 a)]
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6.6 Operation Refinement

The modified concrete operations in the previous section may now be translated

into procedures and refined using the refinement calculus. Below, we describe

only the ref t of WriteParagraphC which is the fon for

and ing even hs. We omit the of Readlnpul C.

6.6.1 Computing Minimum Waste Array

We specify and refine a dure that the mini waste of all pre-

fixes of the word sequerce. This will be used in the refinement of the procedure

that computes and outputs even paragraphs.

procedure CompuleNiinWasteArray
(value result mwA : 1..macWor: — Z) =
mwA (121,
(Vi:Z|1<3< Lo mwAli] = minWasteC(uli — 1))}

We take the liberty of writing w[k — ] for the sequence that consists of the th

to the Ith elements of the sequence w.

The Refinement Steps
The next few refinement steps set up an iteration that enables us to consider

progressively larger prefixes.

144



C Ia(Vi:B|j<i<le
muwA[i] = minWasteClwli — () A1<j < 1)
varj:Ze
j=t
mwA(t) =0
JymwA (1T Aj=1] ”
C doj#1-
i=i-l
JymwA:[IH\j+1Aj+1#1, 1] <

od

The specification statement in the body of the iteration computes the minimum
waste of the sequence consisting of the last (1 —j +1) words and stores this value
in mwd(j). We introduce variable & for the computation of the minimum waste
of wlj — 1]. The value of z at the end of the computation will be assigned to
muwAG).

C varz:Ze
et + 1 AG+1#1, 2 = minWasteC(wlj —» 1))}, <

-

mwA(j) :

Strategy for C ing Minimum Wastes

We use a strategy that computes the minimum waste of a prefix based on the min-
imum wastes of smaller prefixes. For this, we rewrite our definition of minimum

waste as follows.

minWasteC(wlj — 1))
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= min {pC: PARAGRAPUC | ™/ pC = wlj — 1] @ wasteC(p¢")}

= min {IC: LINEC; pC : PARAGRAPHC
12/(01C) b0 = alj = 1]
o wasteC((IC) ™ pC)}

= min {IC : LINEC; pC : PARAGRAPIC
11C ™~ (] pC) = wlj = 1)
o wasleC((IC) ™ pC)}

_ [k
= { pC+ PARAGRAPII
Ji<Sk<tA
~pC = wlk +1 1] A
Sk w(i).length + (k = j) < maxLenglh
o waste((wlj — k) ™ pC)} *)

Case 1

We now have two cases. First, if the words of the prefix may all be laid out on
one line, then the minimum waste is zero, since the last line of a paragraph docs
not contribute to the paragraph’s waste.

Tiej w(i)length + (1 — j) < mazLength

= (¥)=0

Case 2
The second case is when the words of the prefix cannot be written as a one line
paragraph.
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i, w(i).dength + (£ — j) > mazLenglh
[ k:z
P et { 2C: PARAGRAPIC
J<k<iIA
~/pC =wlk+1- 1] A
Sk w(i)dength + (k — j) < mazLength
mazLength — (k — j)~
® mar { i, w(i).length, }}
wastePC(pC)

We do not have to consider the case when k = ¢ since it is taken care by the first

case.

. JSk<tA
= ma z* w(i).length + (k — j) < mazLenglh
min (,,(, PARAGRAPHC |~/ pC = wlk+1— 1]
maLongth (1. -
wastePO(pC)

" i<k<tA
= i {" B\ (i) dength + (k — j) < mazLength
waz {muzLength — (k ~ §) — T, w(i).longth,
C : PARAGRAPIIC
min { |7/ pC=wk+1—1) H

o wastePC(pC)

<k<tA
1 w(i).dength + (k — §) < mazLength *

mazLength — (k - j) — ©¥_; w(i).length,
M\ minWaste(wlk +1 — t])

= min {I::Z
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Refinement Continued

In the previous section, we defined the minimum waste of a prefix w[j — /] in

terms of the minimum wastes of smaller prefixes w(k +1 — !]. In the following,

we continue the development of the program using this alternate definition of

minimum waste.

c

n

X = min {k: 2
j<k<n

_; w(i).dength < marLength
mazLength = (k = j)—

o max { S w(i).dength, }
minWasle(wk +1 - 1])

J= I\ +1) A
JH1#-1A

T=XA

5= 50 w(i)dength + (n — j) A

j<n<it

var s,n:Ze

ni=j+1;
w(j)-length + w(j + 1).length + 1;
maz(mazLength — w(j)dength, mwA(j + 1));

T
synyx i [0, J A(n=1LV s> marLength)); <

if s < mazLength — 5 =0
['s > mazLength — skip
fi

do (n# LA s < mazlenglh) —
BAELA
szt | 5 < mazlength A , 2
SRR BS Mareh C0<l-n<l—n

od
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p = min(z, maz(s, mwA(n + 1))
5= s+ w(n+1).dength + 1;
wi=a41

In the preceding steps, we have assumed the availability of functions maz and
min in the Pascal programming language. Although these functions are not
available in Pascal, their correct constructions are easy. The code from the above

refinement is collected in Figure 6.3.

6.6.2 Writing a Line

In Figure 6.4, we give a specification and code for a procedure that outputs one
line of a paragraph. This procedure will be used in the development of the next
section. Its refinement is not difficult and is omitted. Notice that this procedure

uses some of the system routines of Section 6.5.

6.6.3 Writing an Even Paragraph

We specify and refine a procedure that computes an even h. This pro-

cedure uses the minimum waste array that is computed in Section 6.6.1.

procedure WrilcEven
(value mwA : 1..mazWord — Z) =
out : (Vi : 1.1 | mwA(i) = min WasteC(wli » ) At>1,
3pC : PARAGRAPHC |
(L.t < w) cvenPC pC o <
out = ouly ™ formOutputC(pC)
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procedure ComputeMinWasteArray
(value result muwd : 1..marWord — Z) =
mwd [t 21,
(Vi:Z|1< i<l omudli] = minWaste(uli - 1])]

C [[varj,nsz:Ze

ji=1t
mwA (1) = 0;
doj#i—

w(5)-dength + w(j + 1)-length + 1;
& = maz (mazLenglh — w(j).length, mwA(j + 1));
Aol Nmg asliigih o5

r = min (&, max (mazLength — s, mwA(n +1)));
s+ w(n +1).dengln +1;

n+1
od;
if 5 < masLenglh —
g=0

s > mazlength —
kip

od;

Figure 6.3: A possible refi of the dure (' MinWasleArray.
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procedure WriteLine(value s,f : Z) =

out : [true , oul = ouly ™ inscrtSC(w(s — f]) ™ (newline)]

C |[vark:Ze
.word, w(s).length);
dok<[f—
write(space);
writeArray(w(k).word, w(k).length);
ki=k+1
od;

writeln

Figure 6.4: A possible refinement of the procedure WriteLine.

The Refinement Steps

For procedute Whrile[uen, we use a strategy that outputs even paragraphs line
by line. For this, an iteration is set up where the variable i refers to the first

word of the current line being printed.

T AR (Vi:ld | mwA(i) = minWaste(w[i — {]) A £ > 1)
123p,q: PARAGRAPHC o
w[l = i —1] cvenPC p A
wli = 1] cvenPC q A
w coenPC p™ g A
oul = OUT ™ formOulputC(q)
con OUT
i:7e

i=1;
foul:[IAA, INANi=1+]1] <
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C doi#t+1
poul :[i#+IATAA, INANOS I ~i<t=4] <
od

A variable j is used to find the end of the current line. If both the waste
of the current line 1[i — ] and the minimum waste of the remaining sequence
wlj +1 — (] are each less than the minimum waste of the whole sequence of

word, we may take w[i — j] as a legal line of the even paragraph.

C J23p,q: PARAGRAPIIC o
[t = i~ 1] evenPC p A
uli = 1] evenPC ¢ A
w cvenPC p™ g A
iSjSILA
wli = j] sufiz q A
mazLenglh - widthC(w{i — j]) > 0
varj:Ze
JilE#FLFIAIAA,
ANJSA
((mazLength — widthC(w[i - j1) < minWaste([1 » 1) A |1 <
minWasle(ulj +1 - (]) < minWasle(w[L = ])) V j = 1)
WriteLine(i, );
i=j4l

C K =2JAs=maLength - widthC(w[i — j])

var s e

i
mazLength — w(j).dength;
JiAANK,
ANK A
((s < minWaste(w]t - 1]) A
minWaste(w[j + 1 1]) < minWaste(w[L — 1)) V j = 1)
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procedure WrilcEven
(value mwA : 1..mazWord — Z) =
oul : Vi : 1.l | mwA(i) = minWasteC(uwli —» ) AL > 10
3pC: PARAGRAPHC |
(L.t Q@ w)evenPCpC' @
oul = ouly ™ formOutputC(pC)
C |varigs:Ze

i=1;

doi#l+1—
j
s

i
mazlength — w(j).length;
do (j # ) A ((s > mwA(1)) v
(muwA(j +1) < mwA(1))) -
i+1
s —w(j).length — 1

s
od;
WriteLine(i, §);
=g+l

od

Figure 6.5: Code from the refinement of procedure WriteBven.

) > mwA(1) v

£ do (”“)"(m.m(j+1)5muul(n -
i+1

e i) leugthed

Collecting all code from the development of this section, we have the refined

procedure of Figure 6.5.
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procedure IWritc ParagraphC =
out : [truc
3pC : PARAGRAPIHC |
(1.t < w) coenPC pC o
out = outy ™ formOutpul C(pC?)
T |[var mwd: l.mazWord — Z o
ifi>21-
ComputeMin Waste Array(mwa);
WriteEBven(mwA)
ft=0—
skip

Figure 6.6: A refi ¢ of dure WrilcParagraph(® that uses

ComputeMinWasteArray and WriteEven.

6.6.4 Computing an Even Paragraph

The dure WriteP phC for ing and ing even

is given in Figure 6.6. It makes use of the procedures that are developed in the

earlier parts of this section. Agoin, we omit its refinement since it is not difficult.

6.7 Summary

In this chapter, we have sketched the development of a program thal computes

even paragraphs. This problem was specified by Bird in [5], where he also devel-

oped a program in a functional language to solve it. Morgan specified a simplified

version of the same problem in the refinement calculus and outlined a solution
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h b d as ini of word

where
lengths [31]. Our work here is more pragmatic and complete than Morgan’s since
we consider a word as a sequence of characters and develop a Pascal program to

solve the problem. This program is given in Appendix C.
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Chapter 7

Concluding Remarks

In this thesis, we have studied a formal software development process that uses
the formal specification language called %, and the formal development method
called the refinement calculus. 7 is suitable for specification since its schema cal-
culus and mathematical toolkit allow large and complex systems to be described

dular]

and tly. The calculus is iate for develop-

ble and bl to be

ment since its notation allows
treated in the same framework.
The software development process is be divided into five stages: formal speci-

fication in Z, data refi t lation into the calculus,

refinement, and translation into the target programming language. In this the-
sis, we have collected together and illustrated many of the important results for

understanding and using this process. In particular, we have shown, by exam-



ples, how a software system may be developed all the way from specification to

program.

7.1 Directions for Further Research

Below, we give some suggestions and directions for further research.

7.1.1 System Development Tool Support

As demonstrated in the earlier chapters of this thesis, the amount of mathematical

1 11

can be quite , especially for

activity needed for a formal d
large and complex systems. We feel that much of this activity may be less difficult
to accomplish if support tools are available, Below, we give some indication of

the desired properties of these tools.

Formal Specification and Data Refinement

Obviously, it would be advantageous to have tools to edit, format and typecheck
% specifications. Some tools that provide these features may be found in the
catalogue compiled by Parker (38]. Since Z specifications can get very large and
complex, it would be beneficial to have a tool that manages schemas. A visual
editor that allows the interactive editing, storing, organizing and retrieval of
schemas would definitely case the reading and writing of specifications for large

and complex systems.
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Although there are ways to organize the proof obligations based on the struc-
ture of a specification and its concrete design, the amount of effort needed to
manage these proofs can be formidable. As such, a tool that does at least “house-
keeping” of the proof steps would be of great help. Several such proof tools have

been used with Z. Some of these are described in [1, 36, 37, 39).

Translation into the Refinement Calculus and Operation Refinement

Since % has a well-defined syntax, it may be possible to have tools o assist the
translation from a concrete design into the refinement calculus. A more difficult
requirement would be an environment where refinement may be carried out inter-
actively. Similar to the “housekeeping” problem of proofs in %, refincment steps

s devel t

may be and claborate. A tool that manages thesc
steps must allow the user to easily copy, delete, and insert predicates. Further-
more, it would be useful to have some mechanism by which the refinement steps

may be automatically checked against the refinement laws.

7.1.2 Libraries of Specifications and Refinements for Data
Structures

Since it is common to build large systems out of standard data structures, it would
be useful to have a library of specifications and refinements for common data

structures. A formal specification or concrete design of a system may use these
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specifications from the library simply by renaming the appropriate components
of the schemas. When the specification or concrete design of the system is finally
translated into the refinement calculus, the resulting abstract program may be
refined to introduce the procedures of these data structures whose refinements
are already present in the library. Such a libraty would provide opportunities for

reuse.

7.1.3 Calculating Data Refinement

As mentioned in the last section of Chapter 3, there is a technique of data re-
finement where a concrete operation may be calculated directly from its abstract
specification and the retrieve relation [21, 22, 45]. Due to the calculative nature
of the refinement calculus, this method of data refinement may be more appropri-
ate for our purpose since it would enable our development process to be viewed

as a more uniform method.

7.1.4 Translation Rules for Other Z Constructs

In our exposition on the translation from Z to the refinement calculus, we have
given several rules for translating operation schemas directly into executable
structures based on the way that they are connected by schema connectives.
A direction for further research would be to discover executable constructs to

translate other Z structures. For example, it may be worthwhile to design similar
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rules for i position and piping in Z.

An inflexibility that we have noticed in our translation scheme is that in-
put variables and output variables of an operation schema are given value and
result substitutions in the resulting procedure. This may be too restrictive es-
pecially when a substitution method is not available in the target programming
language. Although it is possible to change the substitution of a formal parame-
ter within the framework of the refinement calculus, it is more convenient Lo have
the freedom to choose the appropriate substitution method during the translation

stage. As such, it would be helpful to formulate rules regarding how sul

methods may be used during the stage of translation.

7.1.5 Data Refinement in the Refinement Calculus

Although King advocated that the task of data refinement be performed before
the translation into the refinement calculus, he also indicated the possibility of
delaying data refinement until after the notational change from % to the refine-
ment calculus [25]. This approach would involve the use of the data refinement
techniques that are present in the refinement calculus [34, 28, 27]. A point of
research here would be to explore the advantages and disadvantages of such an

approach.
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7.1.6 Operation Refinement for Dynamic Data Struc-
tures

In this thesis, we have restricted ourselves to stalic data structures like inte-

gers, characters and fixed-length arrays. Our experi with pointers have

shown that it could be difficult to refine programs with dynamic data structures.
Although lists and trees are easier than pointers when used for program deriva-
tion, the study of pointers should not be ignored since they ate efficient and are
commonly used 1o implement types like lists and trees. As such, it would be

thwhile to fc 1 b ical models and laws for using pointers in the

refinement calculus. We point the reader to [4] for a discussion on calculating

programs with pointers.
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Appendix A
A Glossary of Z Notation

A glossary of the Z notation is given here for easy reference. The material here
is compiled from [40, 42, 18].

A.1 Logic

= [ Not P.
PorQ.
PorQ.
P implies Q.

P if and only if .
Forall 7 of type T\ & satisfies (.

Forall  of type 7' that satisfies P, z satisfies also (.
Ve:T|PeQ=a(Va:TeP=Q).

There exists an  of type T that satisfies Q.

There exists an @ of type 7' that satisfies both P and Q.
Fr:T|PeQ=(3z:TePAQ)

A.2 Sets

r€eS r is a member of §.

> e i S is a subset of 7'

o The empty set.

Crisseepnsd The set containing exactly zi,. .., z,.

{271} The set containing those z of type T which satisfy P.
r:T|Pat}  The set of values of ¢ for those z of type T satisfying P.

(10 nitn) Ordered n-tuple.
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Six xS, Cartesian product.

PS The set of all subsets of 5.
snT Intersection of § and '

suT Union of § and 7'.

S\T Set difference,

#S Size of finite set 5.

N The natural numbers, {0,1,2,...}.
z The integers.

mon The range m up to n.

2 {k:N|m<kAk<n}

A.3 Relations

XeV Binary relations between ' and V.
= P(X x V).
TRy  and y are related by R.
=(r,y)€R
ey ‘Maplet’ from  to y.
= (2,y)
dom R Domain of R.
2{z: X |(@y: Yoz Ry)}
ron R Range of &.
2{y: Y |@z: X oz Ry)}
Rio R, Composition of relations.
2{e:X;2:Z|(3:Yew RoyAy =)}
R(S) Relational image.
2{y: Y |@z:Ser Ry)}
SaRr Domain restriction.
2{e:X;y:V|zeSAa iy}
Re T Range restriction.

2{: Xy Y]z RynyeT}

A.4 Functions

X+Y Partial functions from X to V.
2{[:XoV|fof'CidY}
X—-Y Total functions from X to V.

2{/:X » Y |dom [ = X}
Xwy Finite partial functions from X to ¥.
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X ¥
XY
Xro ¥
oS (=)

J®g

[:X Y |dom f € F X}
Partial injections from X to V.
=X wYV [T eV +X)
Total injections from X to V.
2 (X Y)N(X = ¥)

ctions from X to V.

i X V|ran/= Y}
Function [ applied to argument's.
Jry=( e

Functional overriding,

= ((X \dom g) /) Uy

A.5 Sequences

seq X

s

Sequences over X.

= {s: N X |doms = 1..¢s}
Length of s.

Empty sequence.

=20

The sequence containing 1, .., .
2 {1~ 2,...,n 0.}

Concatenation of s and £.
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Appendix B

Some Definitions,
Abbreviations, and Laws of the
Refinement Calculus

Below are some definitions, abbreviations, and laws of the refinement calculus.
These are part of a more complete list which may be found in [31, pp. 227-240].

B.1 Definitions

B.1.1 Feasibility

Definition B.1 (feasibility “feas”) The specification  : [pr: , posi] is frasi-
ble if and only if

(w=1w) A preAinv = (3w:T einv A post),

where T is the type of w, and inv is the invariant that is associated with the
veriables w during their declarations.
o

B.2 Abbreviations

Abbreviation B.1 (initial variable “iv”) Occurrences of 0-subscripted vari-
ables in the postcondition of a specification refer to values held by those variables
in the inilial state. Let z be any variable, probably occurring in the frame . If
X is a fresh name, and 7' is the type of , then
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w: [pre, post)
= flcon X:Tew:[preAz=X, postlro\X]]].

We reserve 0-subscripted names for that purpose, and call them initial variables.
Abbreviation B.2 (assumption “assum™)

{pre} = :[pre, lruc].
o

Abbreviation B.3 (coercion “Coerc”)

[post] = : [truc , post).

o

Abbreviation B.4 (specification invariant “si”)

wilprc . inv, post] = w:lpre Aino, inv A post].

B.3 Laws

B.3.1 Assumption and Coercion

Law B.1 (introduce assumption “ia”)

[post] € [post] {post}.
o

Law B.2 (introduce coercion “ic”) The program skip is refincd by any co-
ercion.

skip C  [post].
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Law B.3 (remove ion “ra”) Any ion is refined by skip.

{e} © skip.
o

Law B.4 (remove coercion “rc”)

{pre} [pre] © {pre}.
o

Law B.5 (merge annotations “ma”)

{ore} {pre} = {pre’ A e}
[post] [post’) = [pos! A post").

o

Law B.6 (absorb ion “aa”) An ion before a
be absorbed directly into its precondition.

{pre'}; w: [pre, post]

= w:[pre’ A pre, post].

o

can

Law B.7 (absorb coercion “ac”) An coercion following a specification can be

absorbed directly into its postcondition.

w: [pre , postl; [post)]

= w:[pre, post A post].



B.3.2 Pre- and Postcondition

Law B.8 (weaken precondition “wp”) If pre = pre’, then

wilpre, post] € w(pe, post].
o

Law B.9 (strengthen postcondition “sp”) It pre[w\uy] A post’ = post, then

wilpre, post] T w:[pre, post’].
pre, pre s p

o

B.3.3 Frame
Law B.10 (expand frame “efI”)

wilpre, post] = w,a:lpre, post Az =zl
a
Law B.11 (expand frame “eflI") For fresh constant X,
w: [pre , post]
C conXe

T w,rifpre, post A=)

u}

Law B.12 (contract frame “cf”)

ot [pre . post] T w:fpre, postfzo\a]]
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B.3.4 Local Block
Law B.13 (introduce local block “ilb”) If w and r are disjoint, then

wilpre, post] € [[var.e:T; and invew,r: [pre, post]].
a

Law B.14 (local block initialization “Ibi”)

[ var £

nitially ino e prog]]

T |[varl: T el:[truc, inol; prog)l.
a

B.3.5 Logical Constant

Law B.15 (introduce logical constant “ilc”) If pre = (3¢ : 7' o pr’), and
¢ is a fresh name (it does not occnr in w, pre, and post), then

w: [pre , post]
C conc:Te
w: [pre’ , post].
o

Law B.16 (remove logical constant “rlc”) If ¢ occurs nowhere in program
prog, then

[[conc: 7 sprog)l T prog.
o

Law B.17 (fix inl.ial value “fiv") For any expression I/ such that pre =+ I € T',
and fresh name ¢,

w: (pre , post)

C conc:Te
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B.3.6 Assignment

Law B.18 (simple specification “ss”)

wi= B = we e, w=F)

where Fy is 12[w\wy).
=}

Law B.19 (assignment “ass”) 1f (w = uy) A pre = post[w\E], then

wyrz[pre, post] E w
Py =

o

Law B.20 (leading assignment “la”) For any expression £,

s [prele\B] , postlro\ Fol]

e, post).

The expression iy abbreviates £[uw, «\uo, o]
o

Law B.21 (following assignment “fa”) For any expression £,

wya [pre . post]

o [pre , post [\ B
L.

B.3.7 Alternation
Law B.22 (alternation “altT*) If pre = (V i » Gi), then

w: [pre , post]
coir(

c = w:[Gs A pre , post]) B,
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Law B.23 (alternation “altII”)

{(VieG)} prog
= if (i e Gi — {G} prog) fi.

a

Law B.24 (left-distribution of composition over alternation “lda”)

if (i 8 G:— braneh)fi; prog
= if Qi e G — branch; prog)fi.
o

Law B.25 (right-distribution of assignment. over alternation “lda”

re= 0 if (07 e Gy — branch)R
= if (i e Gile\B] = ¢ = I braneh)fi.
o

B.3.8 Iteration

Law B.26 (iteration “iter”) Let inv, the invarian, be any predicate; let V',
the varian, be any integer-valued expression. Then

w:fino, ino A=(Vis G

C do
QioGiow:linwA G inoA(0< V< V)
od.

Neither inv nor G; may contain initial variables, The expression Vy is V [\ ).
o

Law B.27 (iteration single guard “isg”) Let inv, the invariant, be any pred-
icate; let V, the variant, be any integer-valued expression. Then

w [, iy A =G

C doG~—
w: G, inv, (0S V< W)
od.
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Neither inr nor (7 may contain initial variables.
o

Law B.28 (initialized iteration “ii”)

ws [pre L ine A =G

Cow: e il
do G— w:[GAinn, i A<V < 1y)] od.

o

B.3.9 Sequential Composition

Law B.29 (sequential composition “scI”) For fresh constants .\,

wye s [pre , post)

C conXe
s [pre , mid);
w,z ¢ [mid[ao\X] , post[a\ X]).

The predicate mid must not contain initial variables other than ..
]
Law B.30 (sequential composition “scII”)

wya s [pre , post]

C oz:pre, mid;
wyz i (mid , post].

The predicate mid must not contain initial variables; and pos! must not contain
To.
[u}

B.3.10 Procedure

Law B.31 (value substitution “vs”) If post does not contain /, then
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w ez [prel[NAL L postlfo\ Ao]]
T [value [: T\A]e
w, [ [pre , post],
where Aq is A[w\uwy].
o
Law B.32 (result substitution “rs”) If / does not occur in pre, and neither

[ nor fy occurs in post, then

wyaz[pre , post]
T [result [: T\d] e
w,f :[pre . post[a\[])-
o

Law B.33 (value-result substitution “vrsI”) If post doesnot contain f, then

wya: [pre[f\a] , postlfo\ao]]
T [value result [ : T'\a] s
w,f tlpre , postfa\f]].
o
Law B.34 (value-result substitution “visII”) if post does not contain a,

then

wya s [prelf\a] , post{for f\ag, al]
T [value result [: T\a s
w,f i [pre , posi).

o
Law B.35 (rename formal parameter “rfp”) If  does not occurs in pro-

gram prog, then

proglpar £: T\A] = prog[f\l][par [: T\A].
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Law B.36 (multiple substitution “ms”) Provided neither / nor g occurs in
IorG,

proglpart [ = T\Fl[par2 ¢ : U\ ]
T proglparl f: Topar2 gt (\F. G).

The substitutions parl and par2 may be any combination of value, result, and
value result.
o

B.3.11 Invariant

Law B.37 (remove invariant “ri”) Provided w does not occur in ino,

wepre, iny . post] E o w[pre . post].

o

B.3.12 Skip
Law B.38 (skip command “sk”) If (w = uy) A pre => posi, then

w:[pre ., post] T skip.
o
Law B.39 (skip composition “skc”) For any program proy,
prog; skip

= skip; prog
= prog.
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Appendix C

A Pascal Program that
Computes Even Paragraphs

program EvenParagraph(input, output);

const
maxLength = 46
maxWord = 100;

type
CharArray = packed array [1..maxLength] of char;

Vord =
record
word: CharArray;
length: integer
end;

ray = array [1..maxWord] of integer;

words: array [1..maxWord] of Word;
total: integer;

procedure ConsumeWhiteSpace;

var
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x: char;

begin

while not eof and (input” =’ *) do
read(x)

end; { ConsumeWhiteSpace }

)

var wd: ; var lg: integer);

var
x: char;

begin
1g = 0;
while not eof and (input™ < ’ ’) do
if 1g < maxLength then begin
1g i=1g + 1;
read(vd[1g])
end else
read(x)
end; { ReadWord }

procedure ReadInput;

begin

ConsunebhiteSpace;

total := 0;

while (total <> maxWord) and not eof do begin
total := total + 1;
ReadWord(words[total] .word, words[totall.length);
ConsumeWhiteSpace

end
end; { ReadInput }
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function max(a, b: integer): integer;

begin
if a > b then

max := a
else

function min(a, b: integer): integer;

begin
if a < b then
min :=a
else
min := b

end; { min }

procedure ComputeMinWasteArray(var mwA: IntegerArray);

var
j, n, s, x: integer;

begin

:= total;
mwA [total] 0;
while j <> 1 do begin

j-1

i+

s := words[j].length + words[j + 1].length + 1;
max(maxLength - words(jl.length, mwA[j + 11)
while (n <> total) and (s <= maxLength) do begin
min(x, max(maxLength - s, mwAln + 11));
= s + words[n + 1].length + 1;

n+1
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end;
if s <= maxLength then

%
mwA[j] X

end
end; { ComputeMinWasteArray }

)
procedure WriteLine(s, f: integer);
var
k: integer;
begin
write(words (] .word: words[s].length);
k s +1;
while k <= £ do begin
vrite(’ ’);
write(words[k] .word: words([k].length);
k:i=k+1
end;
writeln
end; { WriteLine }
)

procedure WriteEven(mwA: IntegerArray);

var
i, j, s: integer;

begin

i

while i <> total + 1 do begin
j =i

s := maxLength - words[j].length;

vhile (j <> total) and
((s > mwAl1]) or (mwA[j + 1] > mwA{1])) do begin
joi= g4
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s := s - words[j].length - 1

end;
WriteLine(i, j);
i=go4d

end
end; { WriteEven }

(
procedure WriteParagraph;
var
minWasteArray: IntegerArray;
begin
if total >= 1 then begin
Ci i eArray (mi ray);
WriteEven(minWasteArray)
end
end; { WriteParagraph }
(
begin
total := 0;
ReadInput;

WriteParagraph
end. { EvenParagraph }
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