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Abstract

Many operations in a distributed system require mutual exclusion to guarantee
correctness. Quorum methods have been widely proposed for implementing mu-
tual exclusion. Majority quorum consensus is the best known quorum method. It
has the merit of simplicity, but may incur high message overhead. Tree algorithm
is an efficient structured quorum method to the mutual exclusion problems. The
quorums generated by a tree algorithm are smaller on the average than those by a.
majority quorum consensus. However, the tree algorithm enforces a highly biased
treatment to the nodes at different levels. This affects its performance in a dis-
tributed system where the nodes have similar characteristics. We propose a new
structured quorum method called triangular net quorum algorithm, which treats
the nodes more evenly than the tree algorithm while preserving a satisfactory
availability, as well as lowering average quorum size. We believe that this method

is desirable for implementing mutual exclusion in a truly distributed system.
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Chapter 1

Introduction

1.1 Mutual Exclusion in Distributed Systems

We describe a distributed system as a system which consists of a set of separate
computers. These computers are linked by a computer network. The general-
purpose distributed systems are designed to enable the individual computers of
which they are composed to use shared resources in the network, providing com-
puting facilities which are more flexible and widely-applicable than centralized
computer systems. Users of a distributed system are given the impression that
they are using a single, integrated computing facility, although the facility is actu-
ally provided by more than one computer and the computers may be in different
locations.

Mutual exclusion problem arises when processes share resources. When pro-
cesses running at different sites of a distributed system attempt to concurrently
access a resource, and it is required that no more than one such process is allowed
to access the resource at any given instant, a mutual exclusion algorithm must be

run to enforce this requi Many jons in a distributed system require

mutual exclusion to guarantee correctness. We term these operations restricted



Examples of restricted ions include updating on replicated data,

itment and other ions which re-

naming of distributed objects, atomic
quire that a resource be allocated to a single process at a time.

Generally, distributed mutual exclusion is complicated not only due to the
explicit message passing needed and the asynchrony in the system, but also due
to the possibility of component failures during the algorithm execution. Therefore,
inechanisms guaranteeing mutual exclusion should be both resilient and efficient.
Resiliency usually implies high availability of resources in the case of failures, while

efficiency implies low overhead incurred by performing restricted operations.
1.2 Basic Approaches

The issues relating to mutual exclusion have been studied extensively (4, 7, 8, 17,
37, 42). Among the solutions suggested, the methods based on quorums have been
widely accepted as an effective mechanism for implementing mutual exclusion. In
a quorum method, a set of groups, called a quorum, is predefined either directly
or indirectly. At any time, the execution of a restricted operation is allowed only
if a quorum can be constructed by following some specific rules, such as a quorum
should contain majority sites in a distributed system. In general, quorums must
have an intersection property to ensure mutual exclusion. In [14], the authors
study the general properties of a quorum set. A paradigm for optimizing the
availability of quorum sets is proposed in (38]. Almost all of the quorum-based

algorithms can be broadly divided into two classes:

1. Algorithms imposing logical structures on the topology of the distributed

system, and



2. Algorithms imposing no such structures.

The majority voting [15, 39) is the best known quorum method which imposes
1o structure on the system. It assigns a number of votes to each node, and allows
only those nodes that can collect a majority of votes to perform a restricted
operation. Since, at any one time, there is only one majority in the system,

mutual exclusion is guaranteed. The merit of the majority voting scheme is its

; it is simple to d and simple to implement. Its shortcoming is
just that: it always requires a majority to make the operation succeed. This may
incur a high communication overhead.

To reduce the communication cost, methods based on logical structure of the
network have been proposed (4, 11, 20, 21, 25, 44]. In [25], the author associated
with each site a set of sites and all such sets pairwise intersect. The sizes of these
sets can be /77, compared with [%4!] required by a majority quorum consensus,
The drawback of this scheme is that it exhibits a very low availability when n
gets larger. In (11, 21], the authors use ‘grid’ as the logical structure. In [20],
the author uses a hierarchy to define quorum, Both methods are used mainly for
synchronizing the read and write of replicated data. The idea of using tree as the
logical structure for achieving mutual exclusion is suggested in [4]. This method
has a very low cost in the best case. It is also easy to implement, since at runtime,

each site only maintains a tree ing the logical required by the

algorithm. However, the costs of the quorums are highly unevenly distributed
in the quorum set for the tree algorithms. The nodes at the higher levels are

heavily favored over those at the lower levels. Consequently, in a distributed



system where the nodes have similar characteristics, its performance in terms of
either availability or the cost will be affected. Therefore, how to implement a high
availability and low communication cost mutual exclusion method is an important

problem for the design of distributed systems.
1.3 Thesis Overview

In this thesis, we propose a new structured quorum method. It is based on a special
logical structure, called Triangular Net. Our algorithm organizes the network
nodes into a triangular net structure. Like a tree structure, it contains a number of
levels and the nodes at different levels are associated by parent-child relationship.
Unlike a tree structure, a child may have more than one parent. Because of this
increased sharing, our algorithm possesses some desirable properties which a tree
algorithm does not have. The goal of our algorithm is twofold. One is to preserve

the logical clarity and simplicity as well as the essential properties for mutual

2 such as the i jon and minimali of quorums and

non-dominance of the quorum set. The other is to diminish the discrepancy of
the nodes at different levels in terms of the capabilities of forming a quorum in
the hope of reducing the cost and enhancing availability.

The triangular net structure can also be extended to allow an internal node to
have more than two children, and a child may also have more than two parents.
The generalized triangular net structure is the basis for the generalized triangular
net quorum algorithm.

Our algorithm is resilient to both site and communication failures. In com-

parison with other logical structure quorum methods, the triangular net quorum



algorithm treats the nodes more evenly than the tree quorum algorithm does. In

addition, our algorithm has a smaller average quorum size compared with tree

algorithm and majority quorum and maintains a itive availabil-
ity.

This thesis is organized into six chapters. In Chapter 2, we present the dis-
tributed system model for mutual exclusion, and introduce the properties of a

coterie (quorum set). In Chapter 3, we briefly introduce some existing quorum

for mutual exclusion, especially for d methods. In Chapter 4,

we present our proposed triangular net method for mutual exclusion, prove its cor-

rectness and some i ies, such as lity and d

properties, and analyze its performance. In Chapter 5, we extend the triangular

net structure to the more general case and develop the generalized triangular net

quorum algorithm, We ize the

of this thesis in the conclusion

chapter.



Chapter 2
A System Model

In this chapter, we introduce a model for distributed systems and mutual exclu-
sion. We describe the concepts of quorum sets (coterie) which are widely used for
mutual exclusion. We organize this chapter as follows: In section 2.1, we present

a distributed system model. In section 2.2, we introduce the theory of coteries.
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Figure 2.1: The general model of a distributed system
2.1 Model Description

A distributed system consists of a set of distinct sites and a communication net-

work. Associated with each site is a unique site identifier. Each site may be a

a or a personal C ication between
different sites is done by sending messages through the communication network.
The general structure is described in Figure 2.1.

Sites and links are the basic components in a distributed system. Due to
failures, or other exceptional reasons, the normal functions of a component may
be disrupted. Two states, up and down are used to simulate this phenomenon.
At any instance of time, a component can be either up or down. A site that is
up can send messages to and receive messages from the other sites and perform

operations. We assume a down site simply stops functioning. This character is



called fuil-stop[34). A link that is up can deliver messages between its two adjacent
sites. Communication links may fail by crashing, or by failing to deliver messages.
Combinations of such failures may lead to partitioning failures [13], where sites
in a partition may communicate with each other, but no communication can occur
between sites in different partitions.

d 1 orobl

The problem of mutual exclusion is one of the f p encoun-

tered in the design of distri d systems. the problem lates the
existence of a resource in the network, which may be accessed by a single process
at a time. The execution of some operations, such as updating a replicated data
in a distributed system, requires the participation of a group of sites. When this
happens, the operation is first initiated at a site. We call the site where the opera-
tion is initiated the coordinator for the operation, and the other sites in the group
parlicipants. The coordinator must ask for the permission from all participants
in the group before it is allowed to carry out the operation. If all participants

grant the ission, the ion is perfc d, ot urwise, the operation is re-

jected. We say that an operation requires mutual exclusion if any two disjoint
groups of sites are disallowed to perform the operation in parallel. A natural way
of ensuring mutual exclusion is to allow the operations to be performed only by
a set of sites which pairwise intersect. Thus, in order to perform the operations,
the coordinator must obtain the permissions from the participants which form a

group of sites in the distributed system.



2.2 Properties of Coteries

The concept of intersecting groups captures the essence of mutual exclusion in
distributed systems. In [14, 15, 19], the authors study this concept in detail.
They proposed the notion of a coteric.

Definition: Let U be the set of sites that compose the system, and let a group
g and h be a set of sites. Then, a coterie C under U is a set of groups, called
quorums, which satisfy the following conditions.

o The Intersection Property: Vg,h € C, gNh# ¢.

« The Minimality Property: There are no g and I € C such that g C h.

Coteries can be used to develop quorum methods that guarantee mutual ex-
clusion in distributed systems. Generally, a quorum method generates a coteric.
When a process at a site wishes to perform a restricted operation, it must obtain
permission from all sites in a quorum. Since any pair of quorums have at least
one site in common, mutual exclusion can be guaranteed.

In terms of the likelihood that a site will get permission from a quorum, some
coterie is more favorable than the others. Suppose a system consists of nodes a, b,
and d. Two coteries are defined as: S = {{a,b,c}, {«, b,d}, {a,c,d}, {b,c,d}}.
R = {{a,}, {a,¢}, {a,d}, {b,c,d}}. It is easy to see that a site can get permission
from a quorum in S only if it can get permission fi . a quorum in R. In other
words, a site is more likely to be able to perform restricted operations under R
than it is under S. Thus, intuitively, R is more favorable to us than S. This

motivates the following concept[14]:



Definition: Let U be the set of sites that compose the system. Let C, D be
coteries under U. C dominates D iff C # D and for each H € D, thereis a
(! € C such G C H. (We say that G is the group that dominates H.)

Definition: A coterie S under U is dominaled iff there is another coterie under
U which dominates S. Otherwise, S is nondominated (N D).

Unfortunately, there exists an exponential number of ND coteries for any
systems of size 7, and no polynomial time algorithm is known at this time to
check if a coterie is nondominated[14].

Two major criteria are widely used to judge the quality of a quorum-based
method.

e Quorum size: the number of sites in a quorum. Since the number of messages
needed is directly proportional to the size of the quorums, the smaller the
quorum size, the lower the communication costs are and the better the
system performance is.

o Availability: the probability of forming a quorum successfully by the quorum-
based method. The higher the availability, the higher the chance that the

quorum can be d. Thus, high availability is always preferred

Generally, there is a tradeoff between the availability and the average quorum

L ..

size[22]. Many previous works have d on the

tion of availability, di di

costs which are directly related
to the quorum size. Recently, some algorithms have been proposed to exploit a
logical structuring of network site to reduce the communication cost while keeping
reasonable high availability. In the next chapter, we will introduce some quorum-

based mutual exclusion methods, especially for structured quorum methods.

10



Chapter 3

Quorum-Based Mutual
Exclusion Methods

In this chapter, we present a survey of the existing mutual exclusion algorithms.

Al these algorithms implicitly or explicitly construct a class of N coterie. For

each one, we will describe how it defines the quorum. To make the idea clear,
we will use simple examples whenever possible. We will also discuss the major

d and disad of each i The details of each method can

be found in the relevant literature. This chapter is organized as follows: In section

3.1, we i duce majority Igorithm which is the best known method

for mutual exclusion. In section 3.2, we present the /N method. In section 3.3,
we introduce binary tree quorum algorithm. In section 3.4, we will introduce
several generalized structvred quorum methods which are used to reach mutual

exclusion for replica control.



3.1 Majority Consensus Method

Thomas[39] presented a very simple and elegant scheme to achieve mutual ex-
clusion in a distributed system. In order to atta'n mutual exclusion, a site must
obtain permission from a majority of sites in the distributed system. Since there

can be only one majority at any instant, mutual exclusion is achieved.

The merit of the majority is its simplicity, simple to un-
derstand and simple to implement. The majority quorum algorithm is robust
and resilient to both site and communication failures. It provides the maximum
availability in the voting methods[7]. Its shortcoming is that it always requires a
majority to make the operation succeed. This may incur a high communication
overhead.

A simple generalization to this method is proposed by Gifford[15]. In the

paper, each site is assigned a non-negative vote, and a quorum consists of any set

of sites with a majority of votes. It is more flexible when used in replica control.
3.2 Sgrt N Method

d mutual exclusion by

Maekawa[25] proposed a method to i
imposing a logical structure on the network. In this scheme, a set of sites is
associated with each site, and this set has a nonempty intersection with all sets
corresponding to the other sites. The rule for constructing these sets is based on
the structure of finite projective planes[1]. A proc.ss must obtain permission from
all sites in the set associated with its home site before it can perform a restricted

operation. Since the set intersects with every other set of sites, mutual exclusion



is guaranteed.

For example, suppose a system consists of seven sites. We now list the sets
associated with each site generated by this method. In the following, S; denotes a.
set of sites associated with site i. We have S;={1,2,3}, Si={1,4,5}, Se={16,7},
$2={2,4,6}, S5={2,5,7}, $7={3,4,7}, S5={3,5,6}.

The advantage of this method is that the size of cach group in the coterie is
roughly /N, where N is the number of sites in the network. Hence, a process
needs to communicate with v/ sites to obtain permission for mutual exclusion.
Thus, this method significantly reduces the overhead of achieving mutual exclu-
sion compared with majority quorum consensus. However, it turns out that this

method has a very low availability. It has been proven that as the number of

h

nodes n o0, the availabili hes 0.

3.3 Binary Tree Method

Agrawal and El Abbadi[4) proposed a new class of N D coteries based on complete
binary trees. They assume that the sites are logically or-enized into a complete
binary tree. That is, if k is the level of the tree, then it has 2* — 1 sites.

The algorithm for constructing a quorum for a binary tree can informally be
described as follows. A quorum is constructed by selecting any path starting

from the root and erting with any of the leaves. If successful, this set of sites

constitutes a quorum. If a path cannot be d due to the i

of a site, ¢, residing on a failed or i ible site (due to itioning failures),

then the algorithm must substitute for that site with two paths —— both of which

start with the children of site c and terminste with leaves. Note that each path

13



Figure 3.1: An example of 16 nodes organized as a binary tree

must terminate with a leaf; hence, if the last site in the path is inaccessible,
the operation must be aborted. In paper [4], it is shown that any two quorums
constructed using the above algorithm must have at least one site in common.
The control mechanism is similar to the /N algorithm.

As an example, consider the four-level binary tree in Figure 3.1. Following the
algorithm, if ns» failures have occurred, then we can construct quorums such as
{1,2,4,8), {1,2,4,9}, {1,2,5,10}, ete. Ifthe root is inaccessible(due to site failures or
network partitioning), some other quorums, such as {2,4,8,3,6,12}, {2,4,83,7,14},
{2,4,9,3,6,12} can be constructed. If site 1, 2 and 3 are all inaccessible, then
{4,8,5,10,6,12,7,14}, {4,8,5,11,6,13,7,14} can be constructed as quorums. If site
1,2,3,4,5,6 and 7 are inaccessible, then all the leaf sites construct a quorum.

The advantage of this algorithm is that it has very low communication cost
in the best case, where only [ logn | sites are needed to form a quorum. It is
resilient to both site and communication failures, and it is also easy to implement.
However, in the tree quorum algorithm, sites at the higher levels bear more weight
than those at the lower levels when constructing a quorum. This affects its average

case behavior.



3.4 Mutual Exclusion for Replica Control

As we have mentioned before, the mutual exclusion methods can be generalized
to the problem of replica control in replicated database systems. Generally, a
replicated database consists of a set of objccts, where each object is implemented
by a set of copies stored at different sites. Each copy has a version number, which
is incremented whenever the copy is written. A use; =xecutes operations on the
database by issuing a transaction[10], which is a set of partially ordered read and
write operations. In a replicated database, a replica control method should ensure
that the different copies of an object appear to the user as a single nonreplicated

object. When icted ions are perfc d on the repli d copies, the

replica control is required. The only difference between normal mutual exclusion

and replica control is that replica control distinguishes the types of d

operations when it defines quorums. Specifically, for each object, it is associated
with a read quorum and write quorum. A read operation is executed by accessing
copiex that constitute a read quorum. A write operation is executed by writing
the copies in a write quorum.

The read quorums and write quorums are defined as sets of data copies that

satisfy the following constraints.

1. Write-write Intersection Constraint. If g, h are two write quorums,

then g Nk # ¢

2. Read-write ion C int. If g is a write quorum and % is &

read quorum, then gNh # ¢.



These two i that any two conflicti ions (read and

write operations or write and write operations) access at least one common data
copy.

The difference among the existing quorum-based replicated data control meth-
ods is the way they define the read quorums and write quorums. In the next sec-
tion, we will introduce some of the replica control methods which are influential

in the database community.
3.4.1 Grid Method

Cheung, Ammar and Airamad proposed the grid method in [11]. They consider a
set of sites which are logically arranged into a grid. Each site stores a copy of a
data object. Version numbers are used to identify the current copy of data. As an
example, suppose 16 data copies are organized as a 4X4 grid, as shown in Figure
3.2.

The read quorum is defined as a C-cover of sites, which is a set of sites that
contains one site from each column of the grid. The write quorum is defined as a
set of sites that contains a column of sites and a C-cover of sites. Here, the size of
read quorum is smaller than the write quorum size because people normally believe
reading will be predominant. The write operation is required to synchronize with

both write ions and read with read

is accomplished by locking a column, and h with write

by locking a C-cover. For example, in Figure 3.2, {1,6,7,12} is a read quorum and
{1,5,9,13,6,11,16} is a write quorum.

The advantage of this method is that the read quorum size and write quorum



Figure 3.2: An example of 16 data copies organized as a 4X4 grid

size are smaller than voting methods. When a grid becomes square, both quorum
sizes are O(v/N), which is the smallest possible quorum size for both read quorum
and write quorum for fully distributed replica control methods[45]. However, the
disadvantage of the grid method is that the write availability decreases as N
increases. This is because the write quorum contains a column of sites. The
probability that all the data copies in a column are available is 1— (1 — pYF)VF,
here, p is the probability of a site which is up. We can see that for all p < 1, when
N = o0, pF =0, (1 - p/F)F 1 and 1~ (1 = p/F)F — 0. Thus the write

availability — 0 as N — co.
3.4.2 Generalized Tree Method

Agrawal and El Abbadi generalized the mutual exclusion method[4] to manage
replicated data[5]. Given a set of n copies of an object z, they are logically
organized into a tree of height h, and degree d, i.c., the number of children of

each node. An example of 13 data copies organized as a three-level ternary tr=e

17



Figure 3.3: An example of 13 data copies organized as a ternary tree

is shown in Figure 3.3.

The read quorums and write quorums are defined recursively. The quorum
constructed is called a tree quorum of length / and width w and will be denoted
by the pair < l,w >. A read quorum is donated as < [, w, >, a write quorum
is donated as < ly,w,, >, here, I, + 1, > I, and w, + w, > w. Both read and
quorum are constructed as the same way. We describe the method as follows. The
method tries to construct a quorum by selecting the root and w children of the
root, and for each node selected, w of its children, and so on, for depth . If there
is no failure, it forms a tree quorum of height [ and degree w. However, if some
node is inaccessible due to failure at depth A’ from the root while constructing
this tree quorum, then the node is replaced recursively by w tree quorums of
height | — /' starting from the children of the inaccessible node. The recursion
terminates successfully when the length of the quorum to be constructed is zero.
The algorithm fails to construct a quorum if the length of the quorum exceeds the
height of the remaining subtree.

Consider a replicated object with thirteen copies. We superimpose a ternary
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tree of height 3 on the copies as illustrated in Figure 3.3, with the sites numbered
as shown. In this case d = 3 and h = 3. We now construct tree quorums of length
1and width 2. In the best case, the quorum need only contain the root. However,
as a result of the failure of the root, a tree quorum of dimensions < 1,2 > can be
formed from any majority(two) of the root’s children, i.e., {2,3} or {24} or{3,4}.
If a majority or more of the root’s children have failed, then each such copy can be
replaced by a majority of its children. Hence, if copies 1, 2, and 3 are inaccessible,
then a quorum can be formed from copy 4 and a majority of either copy 2 or copy
3's children, e.g., the sets {4,5,6} and {4,8,10} form quorums.

The tree method has the advantage of a small quorum size. The smallest read
quorum size is 1 and write quorum size could be as small as O( N**) when the
tree is a ternary tree. However, the write availability of the tree method is not

better than the availability of a non-replicated data object.

3.4.3 Hierarchical Quorum Consensus Method

Kumar d the hi hical quorum Igorithm([20]. This algo-

rithm is based on logically organizing a set of objects into a multi-level tree(of
depth n) with the root at level 0. The physical objects are stored in the leaves of
this tree, or at level n. Thus, the root has /; subobjects(or logical objects) at level
1, and each level 1 logical object in turn has ; subobjects at level 2, and so on.
Consequently, there are I, level n (physical) objects for each level n — 1 object.
Therefore, the total number of physical objects is [ * I % ... * l,. As an example,
Figure 3.4 is a two-level hierarchy where the root has 3 level 1 subobjects, each

containing 3 physical objects.
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Level 0

Level

Subgroup [ Subgroup 2 Subgroup 3

Figure 3.4: An example of 9 objects organized into three subgroups

Associated with each level i are two numbers r; and w;. For all r; and w;, the

following two inequalities hold.
L ri+w; > L, and
2. 2%w; > L.

The read and wite quorums are defined recursively. A read (write) quorum

at level i is bled by gathering r;(w;) subobj at level i + 1, until the leaf

level is reached.

Take the two-level tree in Figure 3.4 for an example. Suppose r; =1, w; = 3,
vy =2 and w; = 3. Then, {a,b} and {g,h} are examples of the read quorums.
{ab,d,e,g,i} is an example of the write quorum. It is shown in [20] that the
smallest quorum size is O(N°%®). This happens when I; = 3, ; = 2, and w; = 2,
forall0<i < n.

One advantage of this method is that the quorum size and availability can be

controlled by adjusting /;, r; and w; and n. It is easy to see that when n = 1,
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the method becomes the quorum consensus method. Thus, this method can be

designed to have asymptotically high availability.



Chapter 4

The Proposed Triangular Net
Quorum Method

In this chapter, we present our triangular net quorum algorithm. It is based

on logically organizing the sites into a hi hical struct: called tri 1

net structure. We organize the chapter as follows: In section 4.1, we present
the motivation. In section 4.2, we describe the detailed triangular net quorum
algorithm. In section 4.3, we prove the correctness of the algorithm and some of
its properties. In section 4.4, we analyze the performance of the triangular net
quorum method. In section 4.5, we prove that our method can't be implemented
by any single level voting method. In section 4.6, we discuss several strategies
to organize nodes which can’t be arranged into a complete binary triangular net

structure.



4.1 Motivation

4.1.1 Analysis of Tree Quorum Algorithm

As we mentioned in section 3.3, the tree quorum algorithms(4] logically organize
nodes as a tree. (We only consider binary tree for easy presentation. The extension
to the general case is straightforward.) It constructs a quorum by selecting a root-
to-leaf path in the tree. If such a path exists, then it is a quorum. If no such path
exists due to node failures, then to form a quorum the failed node in some path

must be ( ively) substituted for a collection of the paths with each starting

from one of its children and ending at a leaf node. As an example, consider the
four-level binary tree in Figure 3.1.

If all nodes in the set {1,2,5,10} are functioning, then this set is ~onstructed as
a quorum, since the nodes in the set form a root-to-leaf path. If node 1 fails, but
all nodes in set {2,5,10,3,6,12} are functioning, this set will also be constructed
as a quorum, since {2,5,10} and {3,6,12) are the paths starting from the two
children of node 1, which are nodes 2 and 3, and ending ot leaf nodes, nodes 10
and 12, respectively. Finally, if in the above set, node 3 fails, but two more nodes,
7 and 14, are functioning, then it is still possible to construct a quorum, namely
{2,5,10,6,12,7,14). This is because nodes 6,12 and nodes 7,14 are paths from the
children of the failed node 3.

Clearly, in a tree quorum algorithm, nodes at the higher levels bear more
weight than those at the lower levels when constructing a quorum. In the previous
example, a single node at level 0 (i.e., node 1) is always worth at least three lower-

level nodes in terms of the capability of forming a quorum. In the general case, a
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single node s at level 7 is always worth at least 4 —i — 1 lower-level nodes, where
h is the total number of levels in the tree. In other words, if node s fails, any
quorum in which node s participated requires at least h —i — 1 lower-level nodes
in lieu of s to remain a quorum. This means that single failure of level i nodes
always increases the quorum size by at least  — i — 1, which may be substantial
when i is small. We believe that this has a negative impact on the average size of
a quorum. Another impact is on the availability. Since nodes at different levels
have very different capabilities of forming a quorum, the overall availability will be
affected if all nodes have similar failure characteristics (which we believe are the
most common cases). The factors that contribute to this shortcoming have to do
with the structure of a tree. Firstly, for a tree structure different paths initiated
at distinct nodes at the same level will never intersect. Thus whenever a high level
node must be substituted by the union of the paths in its two subtrees, the size
of the union is the sum of the sizes of the individual paths. In other words, every
node in the paths contributes to the increased size. Secondly, the height and the

width of the bottom level in a tree differ ly (the ratio is

logan:n where n is the total number of nodes). As a result, the quorums formed
along the bottom can be an order of magnitude larger than the quorums formed

along the height.
4.1.2 Outline of a Triangular Net Structure (TNS)

The goal of our algorithm is twofold. One is to preserve the logical clarity and

simplicity as well as the essential properties for mutual exclusions, such as the

and

of quorums and non-dominance of the quo-
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level 0

level 1

level 2

level 3

Figure 4.1: An example of 10 nodes organized as a four-level TNS

rum set. The other is to diminish the discrepancy of the nodes at different levels
in terms of the capabilities of forming a quorum in the hope of reducing the cost
and enhancing availability. We achieve these goals by organizing the nodes in such
a way that the shortcoming of a tree structure illustrated in the last section can
be overcome. To this end, we organize all nodes into a triangular net structure
where the height and the width of the leaf level are roughly the same. Also, two
subtrees of a node intersect each other. Shown in Figure 4.1 is a typical TNS,
where each node has two children and a distinguished node, node 1, is the root of
the TNS.

Note that, as shown in Figure 4.1, in a TNS except for the nodes in the two
outer-most paths, each node has two parents. In a TNS, the higher level nodes
have capabilities similar to those of the lower level nodes in forming a quorum.
For example, in the TNS of Figure 4.1, {1,2,5,8} is a quorum. If node 1 fails,
it can be replaced by a single lower-level node 3, resulting in another quorum
{2,3,5,8}. In this case, node 1 and node 3 have the same capability of forming a
quorum. Furthermore, quorums constructed along either the height or the bottom

are roughly the same in size. For example, groups {1,2,5,8) and {7,8,9,10} are
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the two quorums constructed along the height and the bottom respectively, in
the TNS of Figure 4.1. (See section 4.2 for the detail of triangular net quorum

algorithm.)

4.2 The Triangular Net Quorum (TNQ) Algo-
rithm

In this section, we give a detailed description of the triangular net quorum algo-
rithm. We first give a formal definition of TNS. We then illustrate how a TNQ
algorithm works, based on the TNS structure. For easy presentation, we only
consider the simple case. We will extend it to the general case in later sections.
4.2.1 The Structure

As outlined in section 2, a TNS is a hierarchical structure which consists of a
number of levels. We will use the convention that these levels are numbered as 0,
1,--, in a top-down fashion.

Definition I: For h 2 0, an h + 1 level binary TNS (We will omit the term
‘binary’ when no confusion is possible.) is a collection of interconnected nodes
arranged by levels such that for all 4,0 <i < h:

1. There are exactly i + 1 nodes, denoted by s;, -+, s;, at level i;

2 Forall,j,0<i< h-1and0<j < node s;; has two children siy1;

and $i4,j41 at level i + 1.

For the above definition, we call the node at level 0 the root of the TNS, the
nodes at level / leaves. For all i,0 < i < h, we call nodes s;p and s;; side nodes.
Figure 4.2 is the general structure of the TNS.
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Levelh

Figure 4.2: The general structure of a (binaty) TNS

Since each node in a TNS represents an actual network node, it can only be in
one of the two states: up and down. From the functional point of view, all nodes
that are down are the same. However, from the viewpoint of a TNQ algorithm,
all down nodes do not exhibit the same characteristics in forming a quorum: some
down nodes may have enough up successors to form a quorum, while the others
do not. To wimulate such a scenario, we need two additional states.

Definition: A node s is open if the following conditions hold:
1. if 5 is a leaf, then s is up;

2. if s is an internal node, then either s is up and one of its children is open or

s is down and both of its children are open.

otherwise, we say that node s is closed.
For easy reference, we will say an up or down state is a {/)-slale, and an open

or closed state is an OC-state.
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Our intention here is to use the OC-state to signify the significance of a node
to any quorum which the TNQ algorithm can construct, based on the current
network state. Specifically, a node being closed signifies that it is insignificant to
any quorums constructed on the current network state. Let us consider again the
TNS in Figure 4.1. Suppose nodes 2,3,5,4 and 9 are up, and all the rest are down.
By definition, node 9 is open. "This in turn implies node 5 is open, which in turn
implies nodes 2 and 3 are open. Now consider node 1, which is presumably down.
Since both of its children are open, it is open too. It can be verified that, except
for these five nodes, all the rest are closed. Note that even though node 4 is up,

it is closed, since both of its children are closed. Our algorithm in section 4.2 will

tell us that the only quorum that can be dis {2,3,5,9). A ly, all
the closed nodes are insignificant to this quorum. For example, none of the closed
nodes 4, 7 and 8 is pat of this quorum. Now, assume a different network state
where the nodes that are up are 1, 4, 5 and 6. It is casy to verify that for this
state none of the nodes is open. Accordingly, our algorithm will not be able to

construct any quorum.
4.2.2 The Algorithm

The input to the algorithm is the complete set of network nodes organized into a
TNS, as well as the states of each node (i.e., either up or down). For clarity, we
present our algorithm as a two pass process, as shown in Figure 4.3. In the first
pass, the procedure Mark marks all the nodes in the TNS rooted at ¢ as either

open or closed. This information will later be used by function Formquorum



in the second pass to determine how to construct a quorum!. Both procedures

work ively. The logic underlyi dure Mark directly follows from the

definition of an OC-state. It first checks if £ has already been marked. This is
because subtrees may overlap and a node may have been visited by many instances
of recursive calls. The actual marking actions proceed from the bottom to the top.
Procedure Formguorun will be called upon only if the root of the TNS is open. Tt
returns a quorum in the TNS rooted at node L. Note that, with the exception of
leaf nodes, Formauorum will always bypass a node with both children open (i.c.,
does not include it into the quorum) and go straight to process its children. In this
case, it does not even care if the parent node is up. This children-firsl appronch
is different from the parent-first approach used by the tree quorum algorithm. (In
the parent-first approach, ifit is open the parent will never be bypassed unless it is
down.) In general, children-first approach tends to construct a quorum along the
bottom while parent-frst approach constructs a quorum along the height. From
the special structure of TNS whete the two subtrees of a node always overlap,
a parent-first approach does not automatically ensure minimality, and therefore
would have to include extca mechanisms to ensure minimality. However, by using
children-first approach, it can be proven that the minimality is always guaranteed.
(See the proof in section 4.4.)

Consider again the TNS in Figure 4.1 Suppose nodes 2, 3, 4, 5, 6, 7 and 8
ate up and all the rest are down. In the first pass, the procedure Mark will mark

each node as either open or closed as shown in Figure 4.4.a. (The small letters

'In the real implementation, it is not difficult to combine these two passes into a single pass
if doing so is deemed desirable.
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tho mput. P ooted at node 7 }
rk(T);
B arked as closed THE
-'f,r',','" o oo ton I forwmed }
L8R rmquorum(T);

PROCEDURE Mark(t: NODE)

IF l u not marked THEN

ELSE mark ! as closed;

Mark(tleft);
Mark{tright)
IF (tis up) T
((tleft is mnlhd as open) OR (L.right is marked as open)) THEN
[
ELSE mark { as closed;
ELSE IF ((L.lef! is matked as open) AND
(cright s maxked as open)) THEN

ark ¢
ELSE mn'k l us cln.mi; }

FUNCTION Formgquorum(l: NODE)
{ Note: 1 is assumed to be open }

BEG!
muinlm THEN
erep | RERURN (f0)

i) ({tleftis marked as open) AND (t.right s marked nlviﬂlg) THEN

RN (Formayorum(i.lef) U Formquorumi(.ri
{F {defi] U F ermy (t.rig

ELSE IF (1.l T
RATRA (i mcren) TREN. o)

RETURN ({1} U Formguorum(Lright));

Figure 4.3: The triangulsr net quorum algorithm
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{1 nodeis down
o node s marked as open
< node is marked as closed

oy 1y

Figure 4.4: An example of different states of a TNS generated by the first pass

o and c attached to the nodes denote OC-states open and closed, respectively.
The broken-lined circles denote the nodes that are down.) In the second pass,
Formquorum will choose {3,5,7,8} as the quorum. Suppose node 9 comes up but
node 7 goes down. Procedure Mark will make the TNS as depicted in Figure
4.4.b. Formquorum will construct quorum {4,6,8,9). Now suppose node 10 comes
up and node 3 goes down, resulting in the state of Figure 4.4.c. Accordingly, the
algorithm will construct quorum {4,8,9,10). Another cxample is shown as Figure
4.4.d. The algorithm will construct the quorum {2,3,4,6,7,10}.

From these examples, we have the following observations: 1. among the three



quorums constructed by the TNQ algorithm based on the different network states,
none of them is a subset of the others; 2. they pairwise intersect; 3. the differences
in quorum sizes are small,

In the following sections, we will prove that the first two statements are in
fact true in all cases. The third statement describes the property of the TNQ

algorithm which underlies its low cost.
4.3 Correctness

In this section, we establish the basic properties of the TNQ algorithm that are
essential to a ‘good’ mutual exclusion mechanism. These include the following.

Her.  stands for a coterie.
1. Minimality: VG, H € S, G € H;
2. Intersection: ¥G, H € §, G N H # ¢

3. Non-dominance’: VG, if GN H # ¢ for all H € S, then 3Q € S such that
G2Q.

These properties reflect some of the important criteria for judging the quality
of a mutual exclusion method such as correctness and availability.

In what follows, we use 7" to denote the root of the TNS for which we establish
the properties. We use Sz 1o denote the set of all quorums that can possibly
be constructed by the TNQ algorithm with a particular TNS rooted at 7. For

a node p in the TNS, we use p.left and p.right to denote the left and right

?In some literature, the quorum set which satisfies the three properties listed here is called
ND-coterie. The term ‘non-dominance’ follows from the term ‘non-dominated’ coterie.
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child of p , respectively. Let R and S be two sets of groups of nodes; we define
R®S={UUV:U¢€R&V c S}. Ina reasonable abuse of symbols, we
sometimes use a letter to represent both the root and the entire structure of a
TNS. When this happens, we will precede the letter by the term ‘node’ or ‘TNQ’
to indicate its actual meaning. We will ‘ise the term ‘TNS state’ to denote the
TNS in which each node is associated with a UD-state and an OC-state (i.e., all
nodes have becn marked.)

We first introduce two lemmas which will be used in the subsequent proofs.

Lemma I: Sy can be written as S7 = G1UGUG3 where Gy = {{T'}} @ S1.1ep,
G2 = {{T'}} ® St.right and G3 C Sriest ® Stiese.

Proof. The fact that any group in G or G can be generated by our algorithm
directly follows from the definition of function Formquorum. Now suppose ¢ can
be constructed by our algorithm but is not in Gy UG, . Thus the root must be
down and both children are open. Let g; and g; be the groups returned by the
recursive calls on T.left and T'right, respectively. Thus g = g; Ugs. Now suppose
we force all of the nodes not in structuze T.left to go down when the recursive
call is made on T.left. This will not change the quorum returned by the call.
This is because none of these nodes is a child of any node in structure 7'.l¢fl, and
hence their state change will not affect the OC-states of the nodes inside structure
T.left. Thus g1 € Srie. Using similar arguments we can show g, € S7:rigue. The

lemma follows. O

Lemma 2: For any g € St, g can be constructed by the TNQ algorithm with

a TNS state M where Vs € g, s is up and Vr & g, 7 is down in M.
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Proof. Suppose g is constructed by the TNQ with a TNS state L and there is
a node = such that z ¢ g and z is upin L. If z is closed in L, changing its state to
down certainly will not affect the quorum returned. Now assume node z is open
in L. Since z ¢ g, from the definition of function Formquorum, both children of
2 must be open in L. From the way Formquorum works, changing the state of
« to down still does not affect the quorum return. We now change the state of =
to down, resulting in a new TNS state L, in which z is down. We can repeat this
process until all the up nodes which are not in g are changed to down. On the
other hand, from the way a quorum is constructed, all nodes in ¢ must be up in

L. o

Lemma 8: Let M; and M, be two TNS states. If Yz, z is up in Mz = z is up
in My, then Vz, z is closed in M; => z is closed in M,.
Proof: We prove the lemma by induction on the level where a node resides in
the TNS.
Base: h = I. All nodes on level k are leaves. Thus if a node = at level h in
M, is closed, z is down. This means z is down in M;. By the definition of OC
states,  is closed in Ma.
Inductive step: & < I. Assume z at level  is closed in M;. There are two

cases:

1. « is down and at least one of its children is closed in M;. Thus x is down in
Mj. Assume y is a child of z with a closed state in M;. By the induction
hypothesis, y is closed in M,. By the definition of OC states,  is closed in
M,.
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2. @ is up and both of its children are closed. By the induction hypothesis,

both of z’s children are closed in M. Thus z is closed in M,.

THEOREM 1. The set of all possible quorums constructed by a TNQ algo-
rithm has the intersection property.
Preof: We prove the theorem by induction on the number / of levels in the

TNS.

Base: h = 1. There is only one node 7" in the TNS. Our algorithm will generate
St = {{T}}. The intersection property follows.

Inductive step: & > 1. By Lemma 1, we can write Sy to be the union of the
following thres subsets:

L Gi = {{T}} ® Stiept

2. G2 = {{T}} @ Sroignt

3. G3 C S7uest @ STright

Since Vg1 €G),Vg2€Ga, TE€gs and T€ga, g1 N g2 # 6. By the definition of Gy, we

have Vgs€G, Ja; € Steqt and Jay € Srrigne such that g3 = a; Ua,. Thus by the

induction hypothesis, the i jon property holds for Gy. Since g — {1} €
STueqy by the induction hypothesis, (91 — {7'}) Na; # ¢, Thus gy Nay # ¢.
Similatly, g; N az # ¢. Thus g N gy # ¢ and g3 N g5 # ¢. It follows directly
from the induction hypothesis that Gy itself has intersection property. Thus, the

theorem follows. O

THEOREM 2. Sr has the minimality property.
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Let g € St be an arbitrary quorum, assume g C g. We now prove that g ¢ Sr.
Assume the contrary. By Lemma 2, g can be constructed in a TNS state, say M;,
such that Vs € g, is up in My, and Vs ¢ g,s is down in M;. Likewise, ¢ can be
constructed in a TNS state, say My, such that Vs € ¢, s upin My, and Vs ¢ ¢, 5
is down in My. Since ¢ C g, we have Vz, z is up in My, z is up in M;. Assume z
is the highest level node in the TNS such that z € g and z ¢ ¢, which means z is
up in M, but down in M.

Since € g and g can be constructed by the TNQ algorithm with M;, z must
be open. Thus  is either a leaf node or not both of its children are open in M,.
Since « is down in My, if it is a leaf node, then it must be closed in M,. Ifit is
not a leaf node, then not both of its children are open in M;. By Lemma 3, not
both of its children are open in M,. Thus it must be closed in M,. Note that 2
must not be the root, since otherwise ¢ could not possibly be constructed from
M,.

Let y be one of its open parents on which the recursive call is made when g
is constructed from M;. (Note that one of the parents of such a kind must exist,
since otherwise no recursive call could be made on node z and therefore node =
would not have been included iu g.) Let z be the other child of . We claim y
must be closed in Mj. There are two cases: 1. y € g, then z must be closed in
M,, otherwise, both = and z are open, and by TNQ algorithm, we would have
y ¢ g. By Lemma 3, z is closed in Mj, then, both z and z are closed in M. Thus
y is closed in M;. 2. y € g, then y is down in M;. Therefore it is down in M,.

Since  is closed in M, by the definition of OC states, y is closed in M,.
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Now let u be the parent of y on which the recursive call is made when g is
constructed from M;. The same argument as above can prove that u is closed in

M. We can repeat this process until we reach the root of M. This means that

no quorum can be d within M, a diction to the ion that

g can be constructed in M. O

THEOREM 3: St has non-dominance property.

Proof: We prove the theorem by induction on the number k of levels in the
TNS.

Base: h = 1. There is only one node 7' in the TNS. Our algorithm will generate
Sr = {{T}). Obviously this set is complete.

Inductive step: h > 1. Again we write S7 as the union of the following three

subsets.
1. G = {{T}) ® Sruent
2. Gy = {{T}} ® Srrignt

3. Gy © Stuent @ STiright

Assume g is an arbitrary group such that g intersects all the groups in

Two cases are possible.

Case 1: T' € g. Thus g must intersect all the groups in G. If g intersects all the
groups in ST.es1, then by the induction hypothesis, g D gy for some g; € Sresi.
Thus g D {T'} Ugy, which is in the set G). Now assume g does not intersect all
the groups in S7.4es. Assume py € S.cp such that g N py = ¢. We claim that g

intersects all the groups in Sr.rigc. If not, let py € Sr.pigh such that g N g = ¢
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Thus g N (p Upa) = ¢ By Lemma 2, py and p; can be constructed respectively
from the TNS states M; and M,, where Vs € py,Yr & py, s is up and r is down
in My, and Vs € pa,Vr € ps, s is up and 7 is down in M;. We define a TNS state
M for structure T as follows: Vs € py U po,Vr € py Upa, s is up and r is down
in M. Clearly, Vs, s is up in M; or My = s is up in M. Note that nodes T.left
and T.right are open in M, and Mj, respectively, since otherwise p; or p; could
not be constructed. Clearly, they will remain open in M. Thus node T is open
in M. This means that a quorum can be constructed from M. Let p denote this
quorum, Thus p C Gj. Since all the nodes not in py U p; are down in M, we
have p C py U py. This implies g N p = 6. This contradicts our assumption that
g intersects all the groups in Gs. Thus ¢ intersects every group in Sr.pigni. Using
the similar arguments to those in the first half of this case, we can prove that g is
a superset of some group in Gy.

Case2: T' ¢ g. Thus g intersects all groups in S.1c/UST.rignt» By the induction
hypothesis, 391 € St.1es,9 2 g1 and 392 € STright, g 2 2. Thus g 2 g1Ug,. Using
the similar arguments to those in case 1, we can prove 3p € Ga, p C g, Ugz. Thus
g2p. 0
4.4 Performance Analysis
4.4.1 Availability
We assume that each node has independent failure mode, with the probability p
of being up. We define the availability of a mutual exclusion algorithm to be the

probability that a quorum can be constructed by the algorithm.

Assume there are n nodes. For majority voting algorithm, the size of a quorum
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is always [ (n+1)/2]. Thus the availability is

A= 3 ( : )vi(l -

=/

The availability of the iree quorum algorithm is obtained from the following
recursive relation. Let Aj4; be the availability of the tree algorithm for a tree of
level A+ 1 where k > 0. We have

A = p;

At = pAn(L = An) + p(1 = Ap)An + pA} + (1 = )AL

ie.

At = 2pAn+(1—2p)AL.

The calculation of the availability by TNQ algorithm is more complex due to

the fact that subtrees of a node always overlap in the TNS. Thus the probabilities
that a quorum can be constructed in the subtrees of a node are not independent of
each other. At this time, we do not know how to use a closed form or a recursive
relation to specify this availability in a general case. To calculate the availability,
the following method is used. Clearly, the availability of a TNQ algorithm is the
probability that the root of the associated TNS is open. In a TNS with 4 + 1
levels, for all 7,0 < i < h, there are exactly i + 1 nodes at level i. Let S; be
the set of all possible combinations of OC-states (open/closed) and R; the set
of all possible combinations of UD-states (up/down) of the nodes at level i. For
convenience, we simply cz!l the members of these two sets states. Clearly, S; and
R each contains 2+! different states. Note that from the way the OC-state is

defined, for 0 < i < k1, each state in S; is the union of the two states with one
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in R; and the other in Sij;, and the union of any two states with one in R; and
the other in Siy, forms a state in S;, with the exception that at tle leaf level, we
have Ry, = 5).

The algotithm we use to compute the availability of the TNQ algorithm is
briefly described as follows. Given the probability p that each node in the TNS
is up. Let P;; and Q;; be the probabilities that the jth states in R; and S; occur,
where 1 < j < 2. (We assume there is an order on the elements in S; and R;.)
Since the jth state in R; is just a collection of the UD-states of all the nodes at

level 7 and the UD-states of different nodes are independent of each other, P; can

be computed immediately (i.e, independently of any other levels). The algorithm
computes Qi; for all §,j,0 < i < h,1 < j < 2! level by level in a bottom up
fashion. From the notes we made at the end of the last paragraph, Qi is the
product of Py and Qiy, assuming the union of the kth state in /; and the /th
state in Siyr gives the jth state in S;. When Qo and Qo are finally generated,

hick of the two ds to the probability that the root is open, is the

availability of the TNQ algorithm.

Using the algorithm described above, we eval d the availabilities of TNQ

algorithm and the majority voting algorithm for 6, 15 and 28 nodes. We eval-
uated the availabilities of the tree algorithm for 7, 15 and 31 nodes, since these
numbers are the closest to those used by the TNQ algorithm while maintaining
the balanced tree structure. The availability graphs in Figures 4.5 and 4.6 show
that, in general, the TNQ algorithm has nearly the same availability with the tree
quorum algorithm, and attains the comparable levels of availability with majority

quorum algorithm. The availability of the TNQ becomes inferior to the majority
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quorum algorithm for the value of p ranging from approximately 0.5 to 0.8, When

> 0.8, the availabilities become indistinguishabl

For more detailed value, in each case we let the node probabilities vary from
0.5 to 1 with a step size 0.0025. In all cases but 6 nodes, the majority voting has
the highest availability. For TNQ and tree algorithm, it is interesting to note that
there is a turning point of the node probability which is close to 0.7. The tree
algorithm has better availability below this point while the TNQ algorithm does
better above it. We have listed ten sample data obtained for each of the three
algorithms in cases of 15 and 28 nodes (15 and 31 nodes for the tree algorithm)
in Table 1 and Table 2, respectively. The left-most column in each table is the
list of the sample node probabilities based on which the availabilities of the three
algorithms are evaluated. We use the double lines to indicate the estimated loca-
tion of ¥he fursiing points, Note that this comparison is made in casen where the
TNQ algorithms use less nodes than the tree algorithm does. We will extend our

binary complete structure to 31 nodes and compare the results in section 4.6.
4.4.2 Size of Quorums

In this section, we will compare the maximum, minimum and average sizes of the

quorums d by the three algorith

For a system of n nodes, maximum, minimum and the average sizes of the
quorums constructed by the majority voting algorithm are always [(n + 1)/2].

For a tree algorithm, the maximum and the minimum quorum sizes ate (r + 1)/2

and log,n, respectively. To obtain the average quorum size for the tree algorithm,

let n; and s; be the total number of quorums and the average quorum sizes for a
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Figure 4.5: Availabilities of three algorithms with 15 nodes

Table 4.1: Some detailed availabilities when 15 nodes are used by the three algo-

ms
Probability of a node | Tree algorithm | TNQ algorithm | Majority algorithm
which is up

0.5350 0.586881 0.585572 0.608726

0.5850 0.703873 0.701325 0.749973

0.6350 0.804545 0.801980 0.860720

0.6850 0.883253 0.881760 0.934645

0.7350 0.938493 0.938440 0.975475

0.7375 0.940667 0.940680 0.976815

0.7850 0.972582 0.973501 0.993238

0.8350 0.990407 0.991434 0.998825

0.8850 0.997755 0.998303 0.999907

0.9350 0.999775 0.999882 0.999998
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Figure 4.6: Availabilities of tree algo. with 31 nodes and the others with 28 nodes

tree with i levels. We have the following recursive relations[4]:

no =1
so = 1;
R = 2%m + 0

et = (2% (5i+ 1) 4n; + 2# s 402 /nigr.
We now analyze the sizes for the quorums by the TNQ algorithm. It follows
from the way a TNS is marked that the root will be open if all the leaf nodes are
up. For a TNS with n nodes, there are approximately /21 leaf nodes. Thus the

minimum quorum size for the TNQ algorithm is at most v/2n. For the maximum
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Table 4.2: Some detailed availabilities when 31 nodes are used by tree algorithm

and 28 nodes are used by others
Probability of a node | Tree algorithm | TNQ algorithm | Majority algorithm
which is up
0.5500 0.646689 0.643741 0.635560
0.6000 0.774970 0.771155 0.813154
0.6500 0.872822 0.870531 0.926422
0.6975 0.935023 0.935012 0.977673
0.7000 0.937527 0.937624 0.979236
0.7500 0.974164 0.975709 0.996218
0.8000 0.991495 0.992996 0.999626
0.8500 0.998006 0.998732 0.999985
0.9000 0.999743 0.999990 0.999999
0.9500 0.999992 0.999999 0.929999

and the average sizes, we can only rely on the experimental results due to the
complication caused by the overlap of the subtrees of a node. We have evaluated
TNSs with the sizes ranging from 3 to 28. The method for our evaluation is
based on the enumeration. The results show that the maximum size generated
by the TNQ algorithm is slightly larger than the tree algorithm. For example,
in case of 15 nodes, the maximum size by the TNQ algorithm is 9 and that by
the tree algorithm is 8. In case of 28 nodes (31 nodes for the tree algorithm),
the maximum size by the TNQ is the same as that by the tree algorithm, both
being 16. However, the average size by the TNQ algorithm is constantly smaller
than that by the tree algorithm. This has been depicted in Figure 4.7. Our data
also indicates that in all cases the average quorum sizes by the TNQ algorithm is
about 11% smaller than that by the tree algorithm. Among the three algorithm,
the majority voting algorithm has the highest average cost.

The above result implies that the quorum sizes generated by the TNQ algo-

rithm are more evenly distributed in the quorum space than that by the tree
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level 0

level 1

fevel 2

Figure 4.8: An example of 6 nodes organized as a three-level TNS

algorithm. In addition, our data also shows that the nodes at different levels have
even moe capabilities of forming a quorum under the TNGQ algorithm than that
under the tree algorithm. For example, under the TNQ algorithm with 15 nodes,
the root participates in 96 out of a total of 258 quorums. The average size of
the quorums in which the root participates is 5.375, while the average size of the
quorums in which the root does not participate is 6.377. On the other hand, under
the tree algorithm also with 15 nodes, the root only participates in 30 out of a
total of 255 quorums. The average size of the quorums the root participates in is
4.6, compared with the average size of 7.2 of the quorums in which the root does

not participate.

4.5 TNQ Algorithm Versus Single Level Voting
Algorithm

can not be i

We now argue that the triangular net quorum
by assigning single level nonnegative integer votes to the nodes in the system(compared
with the multi-dimensional voting method[12]). Our technique is similar to that

of [14] which was used to show that there is no vote assignment to nodes in a ND
coleric.
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THEOREM 4. The TNQ algorithm docs not have an equivalent vole assign-
ment with single level voling.

Proof:  Assume six nodes are organized as shown in Figure 4.8. Let v; be the

integer voter iated with node 7, and let 7' be the sum of total

votes, and let M be the majority of total votes. We have the following equations:

vituvto>M (1)
vty +ve> M 2)
vitvs+vg> M (3)

vt vztvs>M
vtva bt tostvg="T (5)

From (1)+(2) we have
20+t vgtvg+u>T (6)
From (6) and (5) we have
v > v
By a similar reason form (3) + (4) > (5) we have
v > vy

This is impossible. Thus, there is no one level integer vote assignment correspond-

ing to the quorum set based on the TNS in Figure 4.8. O

4.6 The Methods for Organizing Incomplete Bi-
nary TINS

In this section, we discuss how to organize the nodes which can not be arranged
as a complete binary TNS. The basic idea is to add or delete some nodes from
the complete binary TNS. There are several strategies. We present the ideas by

exampios. In the following, we consider how to organize 31 nodes.
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Method I: all the extra nodes(with respect to the complete binary TNS) will
be duplicated to the root. Therefore, the root is actually a group of nodes. We can
use any method to form a rool quorum which is constructed by the nodes in a root
group, and a root quorum has the intersection property. Then, we can redefine
the root’s UD-state as follows: if the up state nodes in root group can form a root
quorum, then we say the root is up; otherwise, it is down. For example, in Figure
4.9 method 1, we group nodes 1, 2, 3 and 4 as a oot group, and we define {1,2},
{1,3}, {1,4} and {2,3,4} as the root quorum. When any of these root quorums
can be constructed, the root is up. Otherwise, the root is down.

Melhod 2 we add extra nodes on the leaf level, and change the OC-state
definition for nodes which have more than two leaf children. Each node s is

marked as open state iff one of following conditions hold:
1. s is up and one of its children is up; or
2. all of s's children are up.

For example, in Figure 4.9 method 2, node 17 is open only if node 17 is up and
one of node 23, 24 and 25 is up; or node 23, 24 and 25 are all up if node 17 is
down.

Mecthod 3: we combine method 1 and method 2. The basic idea is that we add
some nodes on the lea level, and add some nodes in the root group. This method
can be used when a large number of nodes are added to a complete TNS. The
definition of UD-state of root and OC-state of leaf level nodes can be the same
as used in method 1 and 2. For example, in Figure 4.9 method 3 we define {1,2},

{1,3) and {2,3} as the root quorum. Therefore, oot is up only if a minimum of
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two of nodes 1, 2 and 3 are up. In addition, we define node 21 to be open f node
21 is up and one of nodes 27, 28 and 29 is up or nodes 27, 28 and 29 are all up.
In Figure 4.9, we use these thrce methods to add nodes to a complete binary
TNS of 28 nodes, resulting in the TNS of 31 nodes. The left diagram in Figure
4.9 is the comparison of the availability with the tree quorum algorithm and
majority quorum method with 31 nodes. From the results shown in Figure 4.9, our

gorithm have better availability than tree algorithm when the probability of each

node is higher than 0.5, and the majority quorum algorithm still has the highest
availability. We have calculated the average quorum size for all these methods.
The computational result shows that method 1 only increases the average size of
quorum to 10.79, which is 2.95 less than the average size of 13.84 for the tree
quorum algorithm with 31 nodes, and 5.21 less than 16 for majority quorum
method.

The extension method we introduced above suggests a different way of orga-
nizing nodes, That is, a node can be sither a real node, or a group of nodes. Our
above example shows that such an organization may provide good availability
and performance. The full potential of this method is an interesting topic for the

future research.
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Figure 4.9: Various structures for organizing 31 nodes as the TNS and the avail-
abilities of these methods compared with tree and majority quorum methods
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Chapter 5

Generalization of Triangular Net
Quorum Algorithm

In the previous chapter, we i duced the tri lar net quorum algori on

the complete binary TNS, and we further analyzed the performance of the TNQ
algorithm. In this chapter, the binary TNS will be extended to general TNS
where each node has more than two children, and each child may have more
than one parent. We will develop the generalized TNQ algorithm for general
mutual exclusion purpose. We organize this chapter as follows: In section 5.1, we
describe the extension of TNS. In section 5.2, we present the generalized TNQ
algorithm. Finally, in section 5.3, we provide a discussion about this generalized

TNQ algorithm.
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5.1 Extensions of TNS

The TNS we have discussed so far allows an internal node to have only two
children. This restriction can be lifted to make the TNQ algorithm more general.
Note that if a parent has more than two children, then a child may also have more
than one parent. The assignment of the parent nodes to each child node must be
properly distributed. In general, suppose each internal node has m children and,
counted from the left the nodes at level i are sig, si1," - *,8ig, We use the terminology
degrec to indicate the number of children for each parent. Besides each root’s
children having only one parent, other TNS nodes will be organized in such a way
that s;p and ;, each has one parent, s;; and s;,,-; each has two parents,: -+, 8; m—2
and $ig-m42 each has m — 1 parents, and forall p,m -1 < p< g—m+1, sip
has m parents.

Let 7, 4! < » < m be an integer. We define the OC-states for a node s as
follows.

Definition: A node s is open if the following conditions hold:
1. if s is a leaf node, then s is up;

2. if s is an internal node, then either it is up and has at least m —r +1 open

children, or it has at least » open children.

otherwise it is closed.
As an example, 12 nodes are organized as three level generalized TNS shown

in Figure 5.1. In Figure 5.1, each internal node has four children.
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Level 0

Level |

Figure 5.1: A generalized three-level four degree TNS

5.2 A Generalized TNQ Algorithm

The generalized TNQ algorithm for the extended TNS is similar to that for the
binary TNS. It also contains two passes, with the first pass defining the OC-state
for each node and the second pass constructing the quorum. The first pass for the
general TNQ follows the definition of an OC-state here exactly the same way as the
first pass for the restricted TNQ followed the definition of an OC-state in section
5.1. The second pass for the general TNQ in principle also follows the pattern for
the TNQ in the binary TNQ algorithm. Briefly, it works as follows. The second
pass constructs the quorums for top level to bottom level based on the marked
TNS in the first pass. The root of the TNS is always assumed open when the
second pass is called for. Starting from the root of the TNS, if a node has at least
r open children, then form the quorum based on any r open children. If a node has
less than r but at least m —r+ 1 open children, then quorum will be formed based
on any of its m — r+ 1 open children. Although this simple extension method
hel

it may violate the minimality property. Let

us consider an example shown in Figure 5.2. We assume the threshold r is 3. We
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use a solid circle to identify an up node and a dotted circle for a down node. The

small letters o and c attached to the nodes denote OC-states vpen and closed,

pectively. When we ively the quorum starting from the root,
root 1 has only two open children, which is less than r(r = 3). Therefore, it
has only one choice, namely, to construct the subquorums starting from node 2
and node 3. When node 2 constructs its subquorum, it has four open children,
such as nodes 6, 7, 8 and 9. It can choose any three of them to construct the
subquorum. Suppose it chooses nodes 6, 7 and 8. In addition, when node 3
constructs its subquorum, it has only three open children. Then, it has only one
choice to construct the subquorum as {7,8,9). Finally, we construct the quorum
as {1,6,7,8,9}. But, we can see that node 6 is not necessary in this quorum, since
node 2 has four open children in this quorum and we only need three(r = 3).

This problem arises since when node 2 and node 3 independently construct their

suby they do not icate with each other, Instead, they simply pick

denendentl Tund

This may cause

up any of their open children i
From this example, it is quite obvious that the complexity of the extended

TNS will make the lized TNQ algorithm more complex d with the

binary TNQ algorithm. We consider the generalization problems as follows.

1. Since different parents may share more than one child in the extended TNS,
in generalized TNQ algorithm, when different patents choose their children,

they will influence each other more than in the binary TNQ algorithm.

2. The binary TNQ algorithm has only one chance to construct the subquorum

for its children (if both children are marked as open, we choose both of them
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Figure 5.2: An example of the complexity for the generalized TNS

without including the parent in the quorum, otherwise, choose the parent
and construct the subquorum for its one open child). However, in generalized
TNQ algorithm, we may have several choices when the parent chooses its
open children, Since a parent may have more than r open children, or when

the parent is down, it may have more than m — r + 1 open children.

P ths shovs analysia, wecaiseeithe by piobiests:Kow:to-chivoss Vi opeti
children. We propose a solution based on the priority of each nodes. In our
algorithm, after we mark the extended TNS, we construct the quorum level by
level starting from the root level. For each level, we pick up the nodes according
to their priorities. In function Formquorum(Figure 5.5), we define the priority

of nodes at same level according to following rules:

1. If a node has more relative parents, then it has higher priority. Here, we
define the relative parent d of a node s as a parent of s, on which an ivstance
of the recursive call has been made. For example, in Figure 5.2, rool 1 is
a relative parent to children 2 and 3, since the call is first made on root.

In addition, nodes 2 and 3 are the relative parents of their children since
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root 1 must have generated two instances of recursive calls on nodes 2 and
3. Thus, nodes 7, 8 and 9 have the higher priority than node 6, since they

have two relative parents compared with one relative parent for node 6.

»

If a node’s parent has less than » but more than m —r + 1 open children,
then this node has higher priority than other open nodes at same level whose

parents have more than r open children.

e

. At the same level, if two open nodes both meet conditions 1 and 2, then
the left side node has higher priority than the right side node. For example,
in Figure 5.2, node 7 has higher priority than node 8; as well, node 8 has

higher priority than node 9.

The detailed algorithm is shown in Figure 5.3. In the algorithm, # is the root
of the TNS. The parameter “degree(t)” is the number of children for each node
& except for leaves. The parameter “threshold(t)” is the threshold r which we
mentioned in section 5.1, such that 21 < r < m. In addition, each node ¢ is
associated with an integer number, ¢.open_child_num, which indicates the number
of open children of this node. We also assume that ¢.open_child.num is initialized
to 0.

In Mark procedure(Figure 5.4), we assume that each node(except for a leaf)
has m children, t.child(i) denotes the ith child of ¢ counted from left to right.
Here, the leftmost position number is 1. Another difference with respect to the
binary TNS marking procedure is that besides marking the OC-state of each node,
we also calculate the open.child...umber for each node except for leaves.

In Figute 5.5, we provide the lized TNQ algorithm. According to the
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priority requirements, for each level, we first sort the opens node by the number of
relative parents in descending order. Therefore, in the sorted list, the left node has
higher priority than the right node. We always assume that the algorithi picks
nodes from left to right in the sorted list. Our algorithm constructs the quorum
from top level to bottom level. For each level i, we first identify current_chosen _sct
at level i. Then we decide which node in current_chosen_sel must be constructed
in the final quorum. When we reach level i + 1, the current_chosen_scl at level i
will become parent.chosen.set for nodes on level i + 1.

We construct the current_chosen._sel at level i as follows.

1. At level 0, current.chosen.set = {root}. If the root has less than r open

children, then it is inc¢iuded into the quorum_set.

2. Atlevel i > 0, if an open node has a parent at level 7 — 1, which is a member
of quorum_set and which has less than m — r + 1 open children in the

current_chosen_set at level i, then add this node to the currenl_chosen_sel.

3. At level i > 0, If an open node has a parent which is not a member of
quorum._set but is in the parenl_choscn.sel, and has less than  open chil-

dren in the current._chosen_sel, then this node is added to the current_chose:

For each level, after we define the current_chosen_set, we will pick up some
nodes from this set and add them to the quorum _sel, according to the following
rule: if a node in current_chosen_sel has less than r open children, then add it

to quorum_set. A complete example is provided in Figure 5.6.
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5.3 Discussion

The extended TNS has the smaller height but wider bottom than the binary TNS,
if roughly the same number of nodes are used. Thus, it decreases the minimum
quorum size. It is not clear to us at this time how the maximum and average
quorum sizes in a general TNQ differ from those in a binary TNS. Our conjecture
is that these sizes will also decrease since it provides more overlapping among the
subtrees of a node. On the other hand, It is not clear that our extended TNQ

Igorithm will hold the minimality and domi: ies since we haven’t

found an easy way to prove them, although the proof for intersection property is

ightforward. These ate i ing topics that deserve future study.




ALGORITHM
/* input: a TNS rooted at node t */

BEGIN
For any node « in TNS, z.open_childnum = 0;
Mark(t,degree(t),threshold(t));
If (1 is marked as closed) THEN
stop; /*no quorum can be formed ¥/
ELSE
Formquorum(t,height(t),degree(t),threshold(t));
END

Figure 5.3: The generalized TNQ main algorithm



PROCEDURE Mark((:NODE; m,r:INTEGER)
/* 1 root, of the TNS; m: degree of the TNS; r: threshold of the TNS */

BEGIN
IF (1 is not marked) THEN
IF (L is a leaf) THEN
IF (4 is up) THEN {
mark ¢ as open;
Y, q = Lparcnt, q.open_childnum INC 1;

ELSE mark ¢ as closed;
ELSE {
FOR position =1 to m
IF (L.child(position) is not marked) THEN
Mark(L.child(position), 1.1, r);
IF (¢ is up) THEN
IF (Lopen_child-num > m — r + 1) THEN {
mark £ as open;
Y, q = t.parent, g.open_child-num INC 1;

ELSE mark { as closed;
ELSE IF (t.open-child num > r) THEN {
mark £ as open;
Vg, q = Lparent, q.open.childnum INC 1;
ELSE mark ¢ as closed;
}

END

Figure 5.4: The generalized TNQ mark algorithm



Function Formquorum(t: NODE; h,m,r: INTEGER)
/* Note: the state of 1oot is open */
/* h: height of the TNS; m: degree of the TNS; r: threshold of the TNS */

BEGIN
quorum._set = &;
parent_chosen_sel = &;
current_level=0;
WHILE currentlevel < h {
temp_sei «—Open state nodes on current_level and one of its
parents exists in parenl.chosen_sel;
sort temp_set by number of node’s relative parents in descending order;
IF (currenilevel = 0) THEN
current.chosen.set = {t};
ELSE current.chosen_set = &;
/* step one */
V node ¢ € temp_set
IF (quorum._set # @ and ( 3 Lparent € quorum _scl and L.parent
has less than m — r + 1 children in current_chosen_sel )) THEN
current.chosen.set = current.chosen.sel U {t};
temp.set = temp_set — current_chosen_sel;
/* step two */
WHILE temp_set # ${
IF (t € temp_set and ( 3t.parent € parent_chosen.sel and
t.parent has less than r children in current_chosen_set )) THEN
current_chosen_set = currenl_chosen_set U {L};
temp_set = temp.sel — {t};

}
/* step three */
V't € current_chosen.set
1F (t.open_childnum < r) THEN
quorum._set = quorum_sel U {t};
parent.chosen_set = current_chosen_set;
current_level ING 1;

)
RETURN(quorum._sel);
ND

Figure 5.5: The lized TNQ f Igorith
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a/b: a: node state

b2 number of apen children Level 0

Level 1

nlo o/D nlﬂ am L Level 2

Formquorum steps: ~ (THRESHOLD = 3)

current_level =0 current_level =2
quorum_set = [} quorum_set = {1}
parent_chosen_set = { ) parent_chosen_set = {2,3}
temp_s temp_set = (7,8,9,6)
current_chosen_set = (1) current_chosen_set = { }
step 12 do nothing step 1: do nothing
step 2: do nothing step 2: current_chosen_sct = {7,8,9)
step 3: quorum_set= (1) step 3: quorum_set= (1,7,89}

current_level = 1

quorum_set = {1] "
‘Therefore, the final quorum is
parent_chosen_set = {1}

temp_set = (2,3} 117.89]
current_chosen_set = (}

step 1: current_chosen_set = (2,3}

step 2: do nothing

step 3: parent_chosen_sct = (2,3}

Figure 5.6: An example of generalized TNQ algorithm



Chapter 6

Conclusion

ithm for achi

In this thesis, we describe the tri lar net al mutual ex-
clusion. Our algorithm is based on organizing the network nodes into a triangular
net structure. Like a tree structure, it contains a number of levels and the nodes
at different levels are associated by a parent-child relationship. Unlike a tree
structure, however, different children may share the same parents. It is because
of this increased sharing that our algorithm possesses some desirable properties
which a tree algorithm does not have. We show that our algorithm provides a
more uniform treatment to the nodes, which we believe is desirable for a truly dis-
tributed system. We show that our algorithm has a good average case behavior
for distributed systems, with reasonab.: large sizes. We compare the performance
of our algorithm with majority voting and tree algorithms when sites number less
than 31. The results show that our algorithm has a better average-cost than either
of them. In this cases, we believe these includes the most common cases among
the current distributed systems. When the node probability is above the turning
points, our algorithm provides a higher availability than the tree algorithm. We

believe the tri lar net algorithm is desirable for i mutual exclusion
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in a truly distributed system.
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