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Abstract 

Many opnationa in a distributed system require mutual exclusion to guarantrr 

mnectnesa. Quorum methods have been widely proposed for implementing mu. 

tual exclusion. Majority quonun consensus is the beat known quonun method. It 

has the merit ofsimplidty, but may incur high measage overhead. Ike algorithm 

ia an &dent a l r u d u d  quorum method to the mutual exclusion pmbl-. The 

qnorums generated by a tree algorithm an am& on the average than thoae by n 

majority quorum mnaasus. However, the tree algotithm encorns r hiihly biased 

treatment to  the nodes at diff-t Iwele. This lffecta ita pecformance in a die  

ttibmkd syatem where the nodes have similar eharsdedstie.. We pmpoac I new 

structued quorum method called triangular nct quorum algorithm, whish treats 

the nodes more evenly than the tree algorithm while pre~erving a satisfactory 

amilability, a s  well as lowering arcrage qoorum aim. We belic~s that this method 

is desirable for implementing mntual adusion in a truly distributed system. 
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Chapter 1 

Introduction 

1.1 Mutual Exclusion in Distributed Systems 

We describe a distributed syatem as a ayatem which wnsists of a set of sepnrnte 

computers. These computere are linked by a computer network. The 

porpmc distributed ~ y ~ t e m s  are dedgned to  enable the individual mmpukra of 

which they are composed to  use shued resource in the network, providing wm- 

puling &&ties which are more Buiblc and widely-applicable than c e n t d i d  

compotcr systma. Usera of a distributed system arc given the impruaion that 

they are using a single, integrated computing facility, although the facility is nctu. 

any provided by more than one wmputer and the computers ma) be in dillemnt 

locations. 

Motual exclusion pmblem arises when pmcesses abue resources. When pro- 

cesses running a t  diff-t sites of a distributed system attempt to  concurrently 

access s. resource, and it ia required that no more than one mtch pmeeg ie allowed 

to smss  the resoom at any given instant, a mutual nciuaion algorithm must he 

m to enforce this requirement. Many operations in a distributed aystm require 

mutual exclusion t o  guarantee wmctncas. We term these operation. restrictad 



operations. Examples of rcstdcted~perationa indude updating on replicated data, 

naming of distributed objects, atomic commitment and other opuntiona which re- 

quire that a resource be aUocated to  a single pmcesa a t  a time. 

Generdy, distributed mutud ararlusion is complicated not only due to the 

explicit mesaage passing needed and the asynehmny in the system, but also due 

to  the porsibility of component lsilurea during the algorithm aecution. Therefore, 

!nnhanisms guaranteeing mutud wduaion ahould be both resilient and efficient. 

Resiliency usually implies high availability ofrraouraa in the caae offailurea, while 

dficienrp implies low overhead incurred by pedorming restricted apcratiam. 

1.2 Basic Approaches 

The iaruea relating to mutval ueluaion have been atodied extensively [4, 7, 8, 17, 

37,421. Among the aolotions aug6erted, themethods baaed on guorvms hsve hem 

widely accepted as an effective mechanism for implementing mutual adusion. In 

a quorum method, a set of maups, called a qoorum, is predefined dther directly 

or indirectly. At any time, theexecution ofa restricted operation i a  allowed only 

if a. quorum can be constructed by foUowing aome specific d e s ,  such M a qnorum 

ahould contain majority sites in a diatdbotcd system. In general, quorums must 

have an intersection property to ensure mutual udusion. In (141, the authors 

ltudy the general properties oI a quorum a d .  A paradigm for optimising the 

availability of quorum aeta is pmpored in Pa]. Almost d of the  quorum-baaed 

dgoritbma can be b m d y  divided into two dames: 

1. Algorithms i m p d n g  logical rtrudmea on the topology of the distributed 

ry~tem, and 
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2. Algmithms imposing no such structures. 

The majority voting [15,39] is the best known quorum method which imp- 

no strocture on the system. It assigns a number of votea to earh node, and d o w ~  

anlg thoac nodes that can collect a majority of v o t e  to perform s restricted 

operation. Since, at any one time, there ia only one majority in the system, 

motval exduaiuain ;a yauantwd. The merit of the majority voting achcmc is its 

simplicity; it is simple to ondentand and simple to implement. Ita shortcoming is 

jost that: it always requires a majority to make the operstbn succeed. This may 

incur a high communication overhead. 

To reduce the communication a r t ,  mcthoda based on logical structure of thc 

network have been pmpoaed 14, 11, 20, 21, 25,441. In 1251, the suthor associated 

with each site a set of sites and all roch sets pairwise intenect. The siaea of these 

sets can be 6, compared with required by a majority quorum consensus. 

The drawback of thir acheme is that it whibita a very low availability when rr 

gets larger. In Ill, 211, the authors use 'grid' as the logical structure. In [ZO], 

the aothor uses s hierarchy to define quorum. Both melhods are used mainly for 

synchmnidna the read and write of replicated data. The idea of uaing tree ur the 

logical structure far achieving mutoal exclusion is s u ~ c a t e d  in 141. This method 

has a verylow cost in the best case. I t  is also eavy to implement, since at runtime, 

each site only maintains a tree representing the logical structum required by the 

algorithm. However, the  coats of the quorums arc highly unevenly diatrihukd 

in the qoorum sd for the tree algorithms. The nodes a t  the higher levala are 

heavily famred over those at the lower Icda.  Consequently, in a distributed 



system w h m  thc nodes haw similar characteristics, its performance in turns of 

eithu anjlab~lity or the coat dll be dected. Therefore, how to implement a high 

availability and law commonicstion rost motual orclvaion method is an important 

problem for the deign of distributed systems. 

1.3 Thesis Overview 

In this thelie, wepropale anwstrocturedquorum method. It is baaed an a apecial 

logical atrodore, called Trinngulnr Not. Our algorithm organists the network 

nodea into a triangular net atructore. Like a treestrmctctore, it contains anumbcr of 

levels and the nodes at differd bvek are associated by parent-child datianship. 

Unlike a tree strocture, a child may have more than one parent. Becanae of thia 

i n n e e d  sharing, our algorithm possesses some duirable propertin which a tree 

algorithm docs not haue. The gad of our algorithm is twofold. Onc is to prescrvc 

the logical clarity and simplicity ae well aa the essential pmpertica for motval 

udusions, such a. the intersection and minimdty properties of qooruma and 

"on-dominance of the quorum set. The other is to diminish the discrepancy d 

the nodea at different levels in t e r m  of the capabilities of forming s qoorvm in 

the hope of reducing the mat and enhancing availability. 

The tdangula, net a t ructm can also be d e n d e d  to don ur i duoa l  node to 

havc more than two children, and a child may also havc more than two parents. 

The genenrralid triangular net stroctun is the bada for the g e n d s e d  t r iurgda~ 

net q u m m  algorithm. 

Our algorithm is d e n t  to both site and mmmonicstion failures. In com- 

parison with 0th- logical structure qumom method., the trimgalar net quorum 

4 



algorithm treat* the nodes more evenly than the tree quorum alsorithm does. In 

addition, our algorithm has a amallcr avoage quorum aim compared with t m  

algorithm and majority quorum con-as, and maintains s competitive avaikbil- 

ity. 

This theaia is organized into six chapters. In Chapter 2, we p-nt the dia- 

tributcd system model for mutual exclusion, and idroduee the pmpertiea of a 

coterie (qoorum set). In Chapter 3, we briefly introduce m e  existing quorum 

algorithms for mntual erdoaion, especially for structured methods In C h a p k  4. 

we preen1 our proposed triangular net method for mutual exdusion, p r m  its mr- 

rcctncas snd aome important propertiel, auch as minimality and non-dominance 

properties, and malgrs its performance. In Chapter 5, we extend the triansolar 

net atrusturc to the more general c l s c  and develop the generalized triangular net 

qvorum algorithm. Weaummarize the contribution ofthis thesis in thccondoaion 

chapter. 



Chapter 2 

A System Model 

In tbia chapter, we introduce s model for distributed eyslcms rod mutual cxslu- 

sion. We deaedbe the concepts of quorum sets (coterie) which are widely wed for 

mutual uclosion. We organize this chapter a' follara: In section 2.1, we present 

a distributed system model. In aection 2.2, n introduce the theory of cotniea. 



Figun 2.1: The general model oI a distributed system 

2.1 Model Description 

A diatribnted aystm wnaiats of a set of distinct sites and a communication net- 

work. Armdated with -h site is a unique site identifier. Each ~ i t e  may be a 

aupercompoter, a workstation or a pemnal computer. Communication between 

Merent sites is done by aendins mereages through the mmmuniestion network. 

The general structure is described in Figure 2.1. 

Sites and links arc the basic components in I distdbuted systoo. Due to 

falluros, or other exaptjooal rearons, the n e r d  fvndions of a mmpoacnt may 

be dimupted. Two states, w p  e.nd down arc used to simulate thi phenomenon. 

At any instance of time, a component can bc either op or down. A site that is 

up can send messages to and receive masages fmm the other sites and perform 

operations. We assume s down site amply atops functioning. Thia character is 



cded  Jail-slap[%]. A link that is ap can d d w  mesoages between i t s t  

sites. Cornrnunieatian links may fail by crashing, or by f a n g  to deliver messnps. 

Combinations olsuch kilurcs may lead to partitioning foilurcs 1131, where aitcs 

in a partition may communicate with cschother, but no mmmunication can occur 

between sites in different partitions. 

The problem of mutud cxdusion ia one of the lundammtal problems mcoun- 

tered in the d d g n  of diatriboted aystems. Inlomally, the problem postulates the 

uistmec ol a resource in the network, which may be accessed by a single prows 

a t  a time. The exention of some operations, avch as opdating a replicated data 

in a distrib-ted system, requires the participation of a group ol sites. Whm this 

happcne, the aperatton ia first initiated at a site. We c d  the site where the opera- 

tion ia initiatnl the coardinolorioc the operation, and the other sites in the p u p  

~*lr.liripnrls. The coordinator muat ask for the permission fmm d participants 

in the p u p  belore i t  ia dowed to carry out the operation. If all participants 

grant the prmiasion, the operation is performed, oiLrwise, the operation i. re. 

jnted. We sag that m operation requires mvtud exdolion if any two diajoint 

p u p .  of site8 ue disdowed to pedarm the operation in parallel. A notural way 

of ensoring mutual exclusion is to allow the operations to be performed only by 

a set of sites which painrise intersect. Thus, in order to p&rm the operations, 

the coordinator muat obtain the permiasiona from the partidpant8 which form a 

youp of sites in the distributed syatnn. 



2.2 Properties of Coteries 

The conrept d intcrsccting p u p a  captures the eaaenoc d mutlral udusion in 

distributed systems. In 114, 15, 191, the authors study this concept in detail. 

They propmd the notion of a colerie. 

Dejinilion: Let U be the eel of sit- that compose the system, md  let a group 

g and h be . set of sites. Then, a coterie C under U is a set of gmups, cded 

quoram., which aatiafy the following conditions. . The  Intersection Pmperty:  Vg,lr E C, g n la# I. . The  Minirnality Property: There an no g md 1, E C such thst  II C I&. 

Cotdea can be uaed t o  develop qvorvm methods that guarantee mutual c v  

dusion in di~tdbvt.4 systems. Generally, a quorum method generatea s wtedc. 

When a pmccas at a site wishes to perfmm a restricted operation, it must obtsin 

permission from all aites in a qoorum. Sin- any pair of quorum8 have at least 

one site in w m o n ,  mutual cadusion c m  be guaranteed. 

In terms of the likelihood thst s site will get permission fmm a quorum, some 

catccic is mme favorable than the othcra. Suppose a 6yltrmconri.Is afnodea rr, b,e 

and d. Two coteries are ddned as: S = { { o , l , c ) , ( n , b . d ] , ( n , c , d } , { l , c . r l ) ) .  

R = {(o, 1), {a, c), { G ,  d) ,  (6, ~ , d ) } .  It is eaay to ace 1h.t a site can get pecrnisaion 

fmm a quarom in S only if it can get permission 6 m a quorum in R. In other 

words, a aite ia m a e  likely to be able to perform mtdcted opecations under R 

than i t  is under S. Thus, intuitively, R is more favorable to us than S. Thia 

motivates the Mowing conccptlll]: 



Dcfifhiliou: Let U be the set of sit- that compose the system. k t  C,  D be 

co tu iu  under U. C Lnzinntca D iff C # D and for each If E D, there is a 

G E C web 0 G / I .  (We say that G is the graop that dominates H.) 

D~J i~~ i r i~ r~ :  A coterie S under U is dominnlediK theseis another coterie un& 

U which dominates S. Otherwise, S is ttondominaled (ND). 

Unfortunately, them exists an exponential number d ND coteries for my 

systems of sine n, and no polynomisl time aladthm is knom at this time to 

cheek if a coterie ia no11dominatcd[l41. 

Two major criteria are widely osed to j u k e  the quality of a quorum-baed 

methad. . Qnoninb size: the numbaofsitca in aquorum. Since thenumbadmeasage8 

needed ia dimtly proportional to the size of the quorums, the s m d n  the 

quorum sire, the I- the commonication colts are and the better the 

system p e r b r m ~ c e  is. . Aooilobilily: thcprobshility offormin(( aquo rm successfuUy by the quonun- 

b m d  method. The higher the availability, the higher the chance that the 

qoorum can be conatructed. Thus, high availability is alwya prderred. 

Gmcrdy, there is s trade& between the availability and the average quaum 

siee[22]. Many previoos works have concentrated on the unconstrained mudmina- 

lion of availability, dimegarding  communication^ co r t~  which are directly related 

to the quorvm .he. Re-tly, mme algorithms haw brm pmpased to exploit a 

logical structuring of network rite to reduce the ~ommunication cost while keeping 

reuonable high availability. h the next chapter, we will introduce some quorum- 

based mutud acluaion methods, eapedally for structured quorum methods. 



Chapter 3 

Quorum-Based Mutual 
Exclusion Methods 

In this chapter, we p-t s survey of the  udeting mutual cxdusion algorithms. 

AD these dgorithma implicitly or explicitly construct a class of NT) coterie. For 

each one, we will describe how it dcfinea the quorum. To make the idea dear, 

we wi l l  aac simple examples whenever po~aibls. W e  mill alao discuaa the major 

advatages and disadvantage8 of each algorithm. The dctaila of each method can 

be f m d  in t h e d e w n t  literature. This chapteria organized la follows: In section 

3.1, we introdace majority conscnav. algorithm which ia the beat known method 

for mutual exduaion. In section 3.a, we present the fi method. In section 3.3. 

we introduce bimsrg tree quorum algorithm. In aection 3.4, we wiU introduce 

several generalized at.uctv.sd qoorum methods which are vaed to reach mutual 

exclusion for relrlifa control. 



3.1 Majority Consensus Method 

ThomssI39J presented e very simple and elegant scheme to &eve mutual ex- 

clusion in a distributed system. In order to atta'n mutual exdusion, a site must 

obtain permiasion from a majority of sit- in the distributed system. Since there 

can be only one majority at any instant, mutual adusion is achieved. 

The merit of the majority consensus algorithm ia  it^ simplicity, simple to un. 

dcratsnd and aimplc to implement. The majority quorom +rithm ia robust 

and resilient to both site m d  eommunieation frilrilrilrilril. It pmvid- the maxim- 

availability in the voting methods[q. Its shortcoming is that i t  always require a 

msjority to make the operation succeed. This may incur a high commanicstion 

overhead. 

A simple generalisation to thin method is proposed by Gifford[lS]. In the 

pap-, each site ia assigned a "an-negative vote, and a quorom codata of any r d  

of sit- with a majority of votes. It is more flwdble when used in replica mntml. 

3.2 Sqrt N Method 

MaeLawa[Zq proposed a method to implement distributed motud adusion by 

impaling a logical strvcture on the network. In this acheme, 8 set of sit- is 

sasodsted r i t h  cach aitc, and this set has a noncmpty intaacction with all sets 

corresponding t o  the other sites. The rule for c-tructing these sets ia based on 

the structure offinits projective pl.nes(l]. A pmkss must obtain permia.'on from 

dl sit- in the set associated d t h  its home site b d o n  it ca. perform a reatdctcd 

operation. Since the let intenect~ with every other Kt of sit-, matual exdusian 



is gmaranteed. 

For exampll, suppose s system consists of seven sites. We now list the sets 

associated with each site generated by this mcthod. In the following. S; denotes n 

~ e t  of sites associated with aite i. We have Sa=(1.2,3], S4=(1.4,5], Sn=(1,6,T), 

8=(2,4,6), S.=(Z.5,7], Sr=(3,4,7). Ss=(3,5,6). 

Thc advantage d thin mcthod is that the size of each gmup in the coterie ia 

mughly fl, whue N ia the nomber ol aites in the network. Bence, a pmcess 

needs to  communies:e with fi aiteo to  obtain permirdon for mutual udusion. 

Thus, this method eignifi-tly reduces the overhead of achieving mutual cnclu- 

sion compared with majority qua- consensus. However, it turns out that this 

method has a very low availability. I t  hss been p m v n  that as the number of 

nodes n approache m, the availability approaches Q. 

3.3 Binary Tree Method 

Apawal and E l  Abhadi(41 proporad a new dasa of ND cotrriea based an complete 

binary trees. They asanme that the dtes are l o g i d y  mreni~ed into a complete 

binmy t m .  That is, if k ia the level oI the tree, then i t  has ZX - 1 aites. 

The algorithm fm eonstructin(l a quorum for a binary tree can informally be 

described as follows. A qoorvm is con~troeted by selecting any path atuting 

fmm the raot and e x d i g  with any of the leaves. If auco~ssful, thia ~ e t  of s i t e  

constitutes a quorum. If. path cannot be constructed due to the inscscs~ibility 

of a aite, c, r e d i n g  on a failed or inaccessible rite (due to partitioning failure), 

then the algorithm must substitute for that site with tun, paths -- both ofvhieh 

atart with the  children of aite c and terminbtc with leaves. Note that each path 



Figvre 3.1: An of 16 nodes organised as a binary tree 

muet termimte with a I d ;  hence, if the last site in the path is in-aible, 

the operalion moat be aborted. In paper 141, it is shwn  that any two quorums 

constructed oaing the sbwe algorithm must have at kaat one site in common. 

The control meshmiom i8 aimilar to the fi algorithm. 

A. an example, consider the four-level binary tree in Figure 3.1. Fallowing the 

algorithm, if nl? failurea have oeeurd,  then we csn conrtroct qoorum such as 

(1,2,4,8), (1,2,4,9), (1,2,5,10), etc. Ifthe motisinacceanible(dae tositefail- or 

network putitianing), some other qooroma, such sa (2,4.8,3,6,12), {2.4,8,3.1,14), 

{2,4,9.3,6.12) urn be constructed. If site 1, 2 and 3 arc dl inacwsihle, then 

(4,8.s,la,a,l2,7.14), {4,8,5,11,6,13,1.14) c m  be comtructcd M quorums. If site 

1.2,3,4.5,6 and I are inscaaaihlc, then .U theleaf sit- construct a quo-. 

The advantage of thia algorithm in that it haa very law commonication coat 

in the beat cue, where only I p 0 l t a  1 sites are needed t o  fmm a quorum. It is 

resilient to bath sit+ and annmunication failures, and it is alao cpay to implement. 

However, in thc tree quorum dprithm, sites at the higher lerela bear more might 

than those at t h e l m u  levels when conatructiog a quorum. ThL dfectsita average 

cane behavior. 



3.4 Mutual Exclusion for Replica Control 

Aa we have mentioned bdow, the mutual exclusion mcthoda can be gmernlieed 

to thc problem of qticlica control in replicated databaae syatcms. Gmerally, n 

replicated database consists of a a t  d abjccls, where each object is implemented 

by a set d eqier stored a t  diffaent rites. Each copy haa a vndon number, which 

is iocrementcd whenever the copy ia writtm. A u a a  lecutcs opcr&tiona an the 

dalabaae by issuing a transaction[lO], which is a act of partidy ordered read ~ n d  

torile operations. In a replicated databaae, a replica control method ahould ensure 

that the different copies of an o b j s t  apperr to  the uacr aa adngle nonrepticntcd 

o b j d .  When restricted opentione am performed on the replicated copiea. the 

replica control is required. The only difference between normal mutual exdunion 

and replica wntml is that replica control distinguishev the types of restricted 

operations when it d&ea quoruma. Specifically, for csch object, i t  is nwaocinted 

with a read quorum and wrile qsor~nn$. A read operation ia executed by accessing 

~opica that constitute a read quorum. A write operation is executed by writing 

the mpira in s writs qnorum. 

The read qoomms and write quoruma are dcfined aa .eta of data copiea that 

satisfy the  follmvin. con.tnints. 

1. Write-write Intersection Constraint. If g, h are two write qooruma, 

t h e n g n h # d  

2. Read-write Intersection Constraint. If g is a wdte quorum md Ir is 8 

read quorum, then g 0 h # 4. 



These two constraints goarmtee thnt my two wnflicting operations (read and 

write opuation~ or write and write operations) access at least one common dsta 

COPY. 

The difference among the existing quorum-bised replicated dsta control meth- 

ods is the way they define the read quorums and writc quorum. In the next see- 

tian, we will introduce some of the mpliea contml methods which - inllomtid 

in th. datsbwe commonity. 

3.4.1 Grid Method 

Chcung, Ammar and Auamed proposed t h ~  grid method in [ll]. They m s i d e r  a 

set of sites which arc logically arranged into a grid. Fmh site atoms a copy of a 

data object. Version numbera are used to identify the  cunent copy of data. As an 

uunple ,  suppose 16 date copis are organized aa a 4x4 grid, aa shown in Figore 

3.2. 

The read quorum ir defined lu a C-eovcr of dtcs, which ie a act of sites that 

contains one rite from each wlvmn of the grid. The m i t e  quorum is defined as a 

set of sites that contains a wlomn of s i te  and a C-wvcr of sitcs. Em, the size of 

read quorum is smaller than the writequorvmrise because people normally believe 

reading will be predominant. The write operation is required to s y n h n i z e  with 

both write opcrationa and read operations. Spchmnisation with read operation8 

is sccanplithed by locking a column, and aynchroniaatim with m i t e  operatiom 

by locking a 0-cover. For example, in Figore 3.2, {1,6J,12) ia a r e d  quomm and 

(1.5,9,13,6.11,16) is 8 write qoorum. 

The advantage of this method is that the  read qoarurn size and write quoam 
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Figure 3.2: An example of 16 data copies organiaed m a 4x4 gzid 

size .we smaller than voting mcthods. When a grid becomes aquare, both quorum 

abes an O(fi), which ia the  amalleat p o d b k  quorum size for both read quorum 

and writrite qumum fm fuUy distributed rrplic% control methada[45]. However, the 

disadvantage of the  gzid method is that the write adlability decrsms aa N 

inueaaes. Thir is became the write quorum contains a colomo ol sites. The 

probability the1 dl the data copies in a column are available is 1 - (1 - ~ r ~ ) ~ ,  

here, p is the  probability of a site which ia up. We can a c  that for dl I, < 1, when 

N -+ m. pfi - 0, (1 - pfi)fl mi, 1 and 1 - (1 - I , ~ ) ~  -+ 0. Thus the write 

anj labaty  - 0 m N mi, m. 

3.4.2 Generalized Tree Method 

Agraral and El Abbadi p n e r d i ~ e d  the mutual ercldaion metbd[4) to manage 

replicated data[5]. Given a set of n copies of m objcd z ,  they are logically 

organieed into a tree of height A, and degree d, i.e., the numb- of children d 

each node. An example of 13 data copies organiscd aa a th-level ternary ttnc 



Figure 3.3: An example of 13 dats copia organized as a ternary tree 

is ahmm in Figure 3.3. 

The read quorums and write quorums a n  defined recursively. The quorum 

constructed is called a tree quotum ofleyth I md width ur and will be denoted 

by ths pair < I,w 2. A read quorum ia dansted as c I,,tu, >, a write quorum 

is donated ol < I,,w, >, h e ,  C + I .  > I, and w, + w. > w. Both mad and 

quorum are urnatmctcd u the vsune way, We dcsuibe the method as foUow~. The 

method tries to construct a quornm by selecting the root and w children of the 

root, and for each node mlected, tu of its children, and m on, for dcpth I. l them 

is no fsilure, it form a 1- qtlonrm of height I and degree w. However, if some 

node ia inasccstiblc due to failure at  depth h' fmm the root while constructing 

this tree quomm, then the node is mplaced recursively by w tree qum- of 

height I - h' starting fmm the children of the inaccessible node. The recursion 

terminates susaasfdy when the length of the quorum to be constructed is ecm. 

The algorithm fails to construct a quormm if the I w t h  of the qmaum exceeds the 

height d the remaining subtree. 

Consider a mplicatcd objcd with thirt- mpie.. We supedmpase a ternary 



ttee of height 3 on the eopiea as iflustrated in F i u r e  3.3, with the sitea numbered 

aa ahmsn. In this cased = 3 and b = 3. We now construct tree qrroruma of length 

1 and width 2. In the best c u e ,  the quoNm need only contain the mot. However, 

aa a read1 of the &re d the mot, a tree quorum of dimensions < 1.2 > c m  be 

h m e d  from any majority(two) of the -1's children, i.e., {2,3) or {2,4) or{3,4). 

If s majority or more of the root's child- have failed, then each such copy e m  be 

replaced by s majo~ity ofits children. Hence, if copiea 1 ,2 ,  and 3 me in.ccesaibk, 

then a quorum oan be formed from copy 4 and a msiority of dther copy 2 or copy 

3's children, c.g., the sets {4,5,6) m d  {4,8.10) form quorumr. 

Thc trec method has the advantage of a small quorum sise. The smallest read 

quorum sine is 1 m d  write quorum aize could be aa amall w O(ND.") when the 

tree ia s ternary trec. However, the wrik  aualability of the tree method is not 

bdtc .  than the availability d a "an-replicated data object. 

3.4.3 Hierarchical Quorum Consensus Method 

Kumsr presented the bieruchisnl quorum consensus dgorithm[20]. This dgo. 

rithm is based on logically organizing a set of objecta into a multi-led trce(aI 

depth n) with the mot a t  levd 0. The objcda arc stored in the leaves of 

thin tree, or a t  level n. Thua, the mot ha. 11 subohjectn(ar logical objeda) a t  level 

1, and each level 1 logical object in turn has Ih subobjects at l e d  2, and so on. 

Consequently, there ace C levd 11 objects for each level n - 1 object. 

Thadorc ,  the total nomber of physical objects is 11 * l2 * ... t I.. Aa an example, 

Fiyre 3.4 is a t-level hierarchy where the root haa 3 level 1 nubabjecta, each 

containing 3 physical objects. 



Figure 3.4: An example of 9 objects organieed into three aobsoups 

Associated with eash level i ue two numbers r, and w,. For all ri md w. the 

following two ineqvalitiea told. 

1. r, + ur. > ti, and 

The read and write quorums are defined recursively. A mad (write) quorum 

at level i is assembled by gathering t)(w,) subobjects at level i + 1, until the leaf 

1-1 ia reached. 

n k e  the twplevel t m  in Figure 3.4 for an example. Soppoae n = 1, un = 3, 

r, = 2 and w2 = 3. Then, (a,b) and (g,h) are examples of the read quo-. 

(a,b,d,e,g.i) is an example of the ndc qoorom. It ia ahown in PO] thst the 

amalle~t qmorurn skc is O(Nnw). This happens when b = 3, ri = 2, and uli = 2, 

f o r a l l 0 5 i l n .  

One advantage of this method ia that the q o o m  aim and amihb'ity cpn be 

controlled by adjusting I ; ,  ri and wi and n. h is caay to see that whm n = 1, 



the method bemmea the qoorom conaensur method. Thus, this mdhod can be 

designed to have asymptatically hih avdilbility. 



Chapter 4 

The Proposed Triangular Net 
Quorum Method 

In thin chapkr, re preaent our triangular net quorum dgodthm. I t  i baxd 

on logically organizing the site. into a hierarchical structure, &d triaoykr 

net atructon. We oqanise the chapter yi loUows: In amtion 4.1, we present 

the motintion. In section 4.2, we dcscdhc the detailed triangular net quorum 

ulgodthm. In section 4.3, m prow the cormtness of the algorithm and some of 

its properties. In section 4.4, we analyze the pedormanrc of the trianplar net 

quoram method. In aeaion 4.6, we prove that our method can't be implemented 

by any single level voting method. In section 4.6, we discusa several drategja 

to orgaoiee noden which cm't be arranged into a complek binary trim~ular net 

structure. 



4.1 Motivation 

4.1.1 Analysis of 'Ikee Quorum Algorithm 

Aa we mentioned in section 3.3, the tree qoorum alprithms(41 logically ~rgsniac 

nod- aa a tne.  (Weonly urnside binary t m f o r  eaay presentation. The extension 

to  the general case ia atraightforwad.) I t  constructs a quorom by sdecting a rmt- 

tc-leaf path in the tree. If such a path edata, then it is a quorum. If no such path 

exists due to  node failures, then to  form a quorum the failed nodc in some path 

muat be (recursively) substituted for a collection oi thc  paths with each starting 

t a m  one of its Ehildrm md ending at  a l e d  node. As an a m p 4  coasidec the 

four-level binary tree in Figure 3.1. 

Ifall nod- intheset (1,2.5,10) are fonctioninb, then t& net is *~natructedn$ 

a quorum, since the nadea in the  set form a root-to-led path. If node 1 fail., but 

el nod- in set {2,5,10,3,8,11) are functioning, this set wiU also be constructed 

aa a quoram, Gnce (2.5,10) and {3,8,12) are the paths starting from the two 

children of nodc 1, which are nodea 2 and 3, and ending a t  l e d  nodea, nodes 10 

and 12, mapeetively. Finely, if in the above set, node 3 fail., but two more nodes. 

7 m d  14, me fonstioning, then it is atill poasible to  construct a quorum, rameli 

(2,5,10,6,12,7,14). This im beeauae nod- 8,lZ and nodes 7,14 arc paths fmm the 

Fhlldren of the  failed node 3. 

Clearly, in a t x c  quorum algorithm, nodes at the higher le~dels bear more 

weight than thme at  the lo- lev& when canstrorting a quorum. In the previous 

sxnmple, a single node at level 0 (i.e.. nodc 1) is always worth at l e u t  three lower- 

level nodea in tcrma d the capability of forming a quorum. In the general use, a 



single node r s t  level i is dways m t t h  a t  least A - i - 1 lower-level nodes, whue 

h ia the totd number of levels in the tree. In other mrds, if node e faila, any 

quorum in which nodc s participated require a t  leaat h - i - 1 lawn-level nodes 

in lieu of a to remain a quorum. This means that aiagle fsilure of level i nodes 

always inere- the quomm size by a t  leaat Ir - i - 1, which may be subatsntid 

when i is small. We believe that this has s negative impact on the a w r y  sine of 

a quarum. Another impact ia on the availability. Since nodes a t  d ierent  Isvela 

have very difsrent eapsbilitiea of forming a qnorurn, the overall availability d he 

aRnted if all nodes hsve similar failure chsractuiatics (which we believe arc the 

most common cases). The factors that contribute to this shortcoming have to  do 

with thc  structure of a tree. Firstly, for a tree struoture different patha initiated 

a t  dtatinct nodes at the * m e  ley4 will n n v e r i i t t r ~ e ~ t  Thus whenever &high level 

node m o d  be substitoted by the union of the paths in its two subt-a, the aize 

of the union is the sum of the aims of the indipidad paths. In other words, every 

node in the pathe contributes to  tbeinaeraed aise. Se-dly, the height and the 

width d the botbm level in a tree diffe. enormouely (the ratio is appmdmately 

logla:n where rt ia the totd number of nodes). & a result, thc quoruma h m e d  

dong the battom can he an order of magnitude larger than the quonuns formed 

dong the height. 

4.1.2 Outline of a Ttiaugular Net Structure (TNS) 

The god of our algorithm is twofold. One is to  preserve the logical darity and 

simplicity la well as the esenthl properties for mutual oreluaiona, am& sr the 

intcnection m d  minimality pmprrties ofqnoruma and "on-dominance of the quo. 



Figure 4.1: An example of 10 nodea organized u a fonflavel TNS 

rum a d .  The other ia to diminish the discrepancy of the node s t  different levels 

in terms of the capabilities of forming a quorum in the hope of reducing the cost 

and rnhancIng ~vailsbility. We achieve theae gods by organizing thcnodea in such 

a r a y  that the shortcoming of a t m  structure illostrded in the lart acction can 

be overurmc. To this end, we organize dl nodes into a tdangolar net structure 

whne the height and the width of the leaf level ue mughly the atme. Alao, two 

subtrua of a node inlaant  each other. Shown in Figore 4.1 is a typical TNS, 

whve each node ha. two children and a distinguished node, node 1, is the mot of 

the TNS. 

Note that, as shorn in Figure 4.1, in a TNS except for the nodes in the two 

out-most paths, each node has two parents. In a TNS, the higher level nodea 

have ~s~sbi l i t ica  similu to  those of the lown Lvel no& in formiq s quorum. 

For example, in the TNS of Fire 4.1, (1,2,6,8) ia a puorom. If node 1 fnila, 

it can be replaced by a single lower-level node 3, resulting in another qnorum 

(2,3,5,8). In thia case, node 1 and node 3 hare the same capability of brming a 

quorum. Furthamore, quorums cnnstructed .long either the height or the bottom 

are roughly the a m =  in siae. For example, p u p s  (l,a,5.8) and (1,8,8,10) ue 



the two quorums constructed dong the height and the battom respectively, in 

the TNS of Figure 4.1. (See ~ection 4.2 fat the detail of trianyllr net quorum 

algorithm.) 

4.2 The Triangular Net Quorum (TNQ) Algo- 
rithm 

In this section, we giw a detailed description of the triangular nd qumum algo- 

rithm. We firat give a formal definition of TNS. We then illustrate how a TNQ 

algorithm mrks, bsaed on the TNS structure. For cary presentation, we only 

conaide. the aimplc case. We win extend it to the genmd case in later aeetions. 

4.2.1 The Structure 

Aa outlined in section 2, a TNS ia a hiermchical etructura which eonlists of a 

numb- of levla. We rill ose the convention that these levels are numbered as 0,  

1,. ..,in a top-down fashion. 

Dclinilio*~ I: For Ir > 0, an h + 1 level binary TNS (We will omit the term 

'binary' when no oonfuaion is poa~iblc.) is s ~Ueetion of interconnected nodes 

arranged by levels loch that for all i, 0 5 i 5 h: 

1. There arc exactly i + 1 nodes, denoted by am,. . . a t  kvd  i; 

2. Par all i ,  j ,  0 5 i 5 h - 1 and 0 5 j j i,  node a,, hla two children s;+,j 

and a,+, j+, at level i + 1. 

For the above defmition, we can the node at level 0 the mot of the TNS, the 

nod= at levd h leaves. Far all i,O 5 i j h, we cal l  nodes sso and a;; aids nodes. 

Agnre 4.2 ia the general structure of the TNS. 

a6 



Figure 4.2: The gcnerd structure of a (binary) TNS 

Since each node in a TNS r r p n m t s  an acttlal network node, it cam only be in 

one of the two atntn: up and dmn. h m  the functional point of dew. aU nodes 

that are dawn are the aame. Emeve, from the  dewpoint of a TNQ dgorilhm, 

dl down nodes do not &bit the same chuacteriatica in farming a quorum: some 

down nodes may ham enough op suecesaon to fom a quorum, while the other. 

do not. To o m l a t e  such a scenario, we need two additional ataka. 

Definition: A nodc a is open if the foUming conditions hold: 

1. if a is a leaf, then s is up; 

a. if a ia an i n t m d  nodc, then either a is up and one of its children ia open ?r 

s is down and both of its children arc open. 

o thmisc ,  ae aay that node a ia closed. 

For easy reference, we dU say an up PC down litate ii a 1llJ.alnlr. and an open 

or closed state is an OGetatc. 



our  intention h e n  ia to use the OC-state to  signify the si&ficancc of. node 

to any qquarom which the TNQ dpri tbm e m  comtruct, based rn the o u m t  

network atate. Specifically, D node being dosed siyifiea that it ia M y i f i c m t  to 

any quo- constructed on the current network state. Let us consider again the 

TNS in F i y r e  4.1. Suppose nodes 2,3,5,4 and 9 t SIP, ~ n d  all the rent t down. 

By definition, node 9 is open. Thia in turn impliea node 5 is open, which in tarn 

implies nod- 2 and 3 t open. Now consider node 1, which is presumably down. 

Since bath of ita children are open, it ia open tw. It e m  be wified that, except 

for these five nodes, all the m t  are doad. Note that even thoogh node 4 ia up, 

it ia closed, sincc both of its children arc closed. Our algorithm in section 4.2 will 

t d  ua that the only quorum that can be m t r u c t d  ia {2,3,5,9). Apptnt ly ,  all 

the closed nod- are insignificant to t h i  qnorom. For example, none of the dosed 

nodea 4, 7 m d  8 is part of this quorum. Now, =same a diLrent network state 

where ths  nodes that are up are 1, 4, 5 and 8. It is easy to verify that tor this 

state none of the nodes is open. Accordingly, our algorithm will not be able to 

conatrust any quorum. 

4.2.2 The Algorithm 

The input to the algorithm is the complete set of network nodea ag.niaed into a 

TNS, s* well m the atatea of each node (i.e., either up or down). f i r  dadty, we 

p-t our dgorithm s* a two para pmecaa, -3 ahawn in Figure 4.3. In the fint 

pus ,  the pmcedure Ma~k marks all the nodea in the TNS tooted at t as either 

open or dosed. Thia information will later be cued by fundion Formquorum 





27%'2ark d u d~ed THE 
.ton; f no q.orun, ran  e f o m c d  1 

PROCEDURE Morb(1: NODE) 

B m I N  
IF 1 la not marked THEN 
IF ( I  ir o l r o l  THEN 

IF ( L  i. THEN 
m u k  l a8 a,,e,,; 

ELSE mark ! a. cloaad; 

u open) OR (L.righl i. marked u OF")) THEN 
mark 1 a8 ovm; 

ELSE msrk I a8 close* 
ELSE la ((<.left lr rndd w open AND 

( r . ~ g a r  is m ~ r L ~ d  a8 opm))THEN 
mart 1 a8 open; 

END 
ELSE m u k  1 ar closed; J 

Figure 4.3: The triangulv nd quorum algorithm 
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Figure 4.4: An exampled different slates of a TNS generated by the firat pus 

o and c sttxhed to the nodes denote OC-state opcn and clo~ed, respectively. 

Thc broken-lined drdea denote the nadea that are down.) In the amond paaa, 

Formquorum win Ebooac {3,6,7,8] as the quorum. Soppoae node 9 camen up but 

node 1 gats down. Procedure Mark rill make the TNS aa depicted in Figure 

4.4.b. F o n n p o r u m d  mnatruct quorum {4,6,8.9). Now suppose node 10 cornea 

up end mde 3 g a a  down, reaolting in the s t a t e d  Figure 4.4.c. Accordingly, the 

d p i t h m  will construct qmorum {4,8,8,10). Anothacxample i~ shown aa Fiyre 

4.4.d. The algorithm will mstrust the quorom {2,3,4,6,7,10). 

&om tbeae examples, ure have the following observations: I. among the three 



quorums sonatmsted by the TNQ algorithm baaed on the Merent  network states, 

none of them ia a subact of the others; 2. they pairwise intersect; 3. the Merenses 

in qvorom a i m  are emall. 

In the foIIwing sections, we wiU prove that the first two statemmts are h 

fact true in all cases. The third statement dcsrribea the property of the TNQ 

algorithm which underlies its low cost. 

4.3 Correctness 

In this rction, we e8tabli.h the baais pmpertie~ of the TNQ algorithm that are 

essential to s 'good' lootual udusion mechanism. These indnde the following. 

R r .  . S stands for a coterie. 

1. Minimality: VC, B E S, G $Z H; 

2. Intersection: VG, H HE S, G n H + I; 
3. Non-dominancea: VG, if G r l  H S;,4 for all H E S, then 3Q E S stlch that 

caa. 

Theae properties reflect wme of the important criteria for judging the quality 

of a mutual exduaion method such aa cmrectncss and availability. 

In what CoUoxa, we "as T to denote the mot of thc TNS for which wc cdabii 

the properties. We use .% to denote the aet of & quonuns that can pmibly 

be constructed by the TNQ Jorithm with a particular TNS rooted at T. For 

a node 11 in the TNS, we use p.14/1 and p.dgkt to denote the Mt and right 

'In mme Uterdnre, lhe qmo.um wt rbkb 3slb60 thq hr plowt iu  bkd here Is called 
NE-coterie. The tern 'non-dominance' fDUarl from Ihr tom 'non-dominated'mtotnie. 



child of p , respectively. Let R and S be two rcta d (;maps of nodes; we define 

R 8 S I (U U V : U E R k V E S). In a reasonable aboee of symb~la, we 

somctimcs uac a letter to represent both the mot and the entire structure of a 

TNS. When this happmr, we will pillprecede the letter by the term 'node' n lTNQ' 

to  indicate its actual meaning. We will .we the term 'TNS state' to denote the 

TNS in which each node is associated with a UD.rtate and an OC-state (i.e., all 

nodm have beon marked.) 

We first intmdoce two lemmas which will be used in the subsequent proofa. 

Lemma I: ST can be written .a ST = GIUG~UGJ where CI = ({T))8.Sr.,.1,, 

G2 = {{T)) 8  ST.,,^^ and Gs G ,SV, ,~,~ 8 STJ~I~.  

Pmof. The fact that any group in GI or GZ can be generated by our algorithm 

directly foUoww fmm the definition of function Porrnq?~orrrrr. Now suppose g can 

be constructed by our algorithm but is not in 01 U Oz . Thus the mot must be 

down and both children are open. k t  g! and g2 be t b  p u p a  returned by the 

recursive e d a  an T.leJ1 and T.riglr1, respectively. Thus g = gt Urn Now auppoae 

we force all of the nodes not in structure T.leJl to go down when the  recursive 

call ia m d c  on T.leJl. This will not change the quorum returned by the call. 

This i~ beeau~e none of these node. is a child of any node in struoture ?'.lrJL, and 

hence t h d r  state change will not sKeet the OC-statel of the nodes inaide structore 

T.leJl. Thma rn E  ST^^^,. Using similar arguments we em show E S?:,i.a The 

lemma follows. 0 

Lemma 1 For any g E ST, g can be coostroeled by the TNQ algorithm with 

s TNS date M w h e n  Vs E g, a ia up and Vr @ g, r is down in M. 



Pmof. Suppoac g is conatructcd by the TNQ with a TNS atate L and there is 

a node z suoh that r $ g and 3 is ~p im L. If z is c l o d  in L, changing its state to 

down certainly will not & a t  the quorum returned. Now assume node z is opm 

in L. Since z $ g, from the defnition of function Formquorum, both cbildrm of 

r must be open in L. R o m  the way Formquorum works, changing the atatc of 

r to down atill docs not &ect the  quorum return. We now c h a w  the s t a t e d  r 

to  d m ,  resulting inn new TNS state L1 in which r in down. We can sepeat thir 

pmceaa vntil all the up nodes which are not in g a n  changed to d m .  On the 

other hmd, fmm the way a quorum is mnatruded, all nod- in g mast be tlp in 

L. 0. 

Lrmmo 3: l e t  MI and M* be two TNS atate.. If Vz, z is up in M2 * z ia up 

in MI, then Vz, z is closed in M, =t z is closed in M2. 

Proof: We prove the lemma by indoction on the l e d  where s node n ~ i d e s  in 

the TNS. 

Base: It = I. AU nod- on level h are tavn. Thw if a node r at l e d  h in 

MI it dosed, s is down. This m- zz is down in Mz. By the definition of OG 

.taten, I: is d-d in Ma. 

hduetivc step: h c I. Assume .z at  level h is & a d  in MI. Them an, two 

cases: 

1. z is down and a t  least one d i t s  children in closcd i n  MI. Thus x is down in 

M*. Assume is r child of z with a doaed state in MI. By the indostion 

hypothcsia, y ia doaed in M*. By the definition of 00 ~tatee ,  z is = b e d  in 

Ms. 



2. 3 is up and both of ita children are dmed. By the induction hypothesis, 

both of s's ohildnn are daed  in Mx. Thus z is d o ~ d  in M2. 

THEOREM I. The s d  of dl possible quorums mnatructcd by a TNQ alga. 

"thm hsr the intaaeetion property. 

Proof: We pmvc the theorem by induction on the number h of hvcle in the 

TNS. 

Bsre: h = 1. T h e  is only onenode Tin the TNS. Ouralgorithm will gmerstc 

ST 3 {{T)). The intaacction property foUovs. 

Inductive step: h > 1. By Lemma 1, we c&n wrik ST to be the union of the 

following thrls r u b ~ a t ~ :  

Since V ~ , E G , , V ~ ~ E C ~ ,  T E ~ ,  and TEQZ. g, n a # $. By the definition of GI ae 

have Vg3EGa, 3.1 E ST,.,I m d  3or E  ST.,*^ such that m = an Uaz. Thus by the 

induction hypothcaia, the intuMction property holds for O*. Sinee gj - (7') E 

Sn.j,, by thc indudion hypothesis, (g~  - (T)) n nr # 4, Thus gr fl on # ). 

similarly, n 11 a, S. $. Thua g, n m f. + and gz n g, # C I t  follovs directly 

fmm the induction hypotheaia that Ca itaclf hsa intersection property. Thus. the 

th-m foUm. 0 

THEOREM 2. ST bw the minimality property. 



ld g e .% be an arbitrary qoorum, mmmmm q C g. We now pmve that q f ST. 

Assume the emtnry. By k m m a  2, g can be eonstmded in a TNS state, say MI. 

such that Va E g,a ia up in Ma, and Vs fg,s is down in MI. Likewine, q can be 

mnstmcted in aTNS state, s&y Mz. such that Vs E q,sis upin MM, and Vs @ q , s  

ir down in M2. Sincc q c g, we have Vs, r is up in M2. r is ap in MI. A s s m e  s 

is the highest level node in the TNS such that z E g and z f q. which means z is 

up in MI but down in Mz. 

Since 2 E g and g can be constracted by thed TNQ algorithm with MI, z muat 

he opm. Thus r is either a leaf node or not both d its children are p m  in MI. 

Since .c ia down in Mz, if it is a leaf node, then it maat be doled in K .  Uit is 

not a leaf node, then not both of its child- are open in M,. Bp lemma 3, not 

bath of its children are open in Mz. Thua it must be dosed in M2. Note that s 

must not be the mot, since othcmiae q mold not possibly be conatrusted from 

M,. 

Let y be one of its open p-ta on which the -raise e d  is made when g 

is constructed h m  M,. (Note that one of the parents d such r kind must exist, 

since othemiac no resorain call could be made on node z and t h e d o n  node z 

would not have been included in g.) Let r be the other child of y. We daim y 

must be closed in M,. T h e  are two caves: 1. y E g, then r must be doscd in 

MI, otherwise, both z and : are open, and by TNQ algorithm, we would have 

y @g. By Lemma 3, :is cloned in Mz, then, b d h  s and r are dosed in M2. Thu8 

y is dosed in M2. 2. y @ 9, then y is down in MI. Thedore it is down in M.. 

Since z is doaed in M2. by the delinition of 00 states, y is dosed in M2. 



Now k t  u be the parent of y an which the recursive call is made when g is 

constructed f m  MI. The erne argument u above can prove that 3, ie closed in 

MS. We can repeal this pmccra u t i l  we Mch the mat of MS. This m-a that 

no quorum can he constructed within Mz, a cmtmdictiom to the u8umptiom that 

9 can be eonstlv~ted in Mz. 0 

THEOREM 8: ST has noadominmce pmperty. 

Pmof: We prow the theorem by induction on the number Ir of levels in the 

TNS. 

B w :  h = 1. There is ~nlyone node T in the TNS. Our &orithm will generate 

ST = ({TI). Obviously this set is complete. 

Inductive step: k > 1. Again we write ST M the union ol the Mowing three 

subsets. 

Asaume g C an arbitrary gmap aoeh that g intenects all the poops in ST. 

Two cues are possible. 

Cue 1: T E g. Thus g malt intcned all the group8 in G3. Mg intersects all the 

gmupa in  ST.^.^^ then by the induction bypotheaia, g 2 A fm aomc gl € .%.,8rg. 

T h v ~  g 2 ( T I  US,, which in in the tat 0,. Now us-c g docs not intcned all 

the proups i n  Smlr Assome p, € Flefr such that g 0 pl = 4. We dsim thst g 

intersects all the gmupa in .SnCh,. Ifnot, let m E such that y n = 6 



Thus g n ( p ,  u p 2 )  = 4. By Lemma 2, p, and p, san ba mnstrvcted rupedisely 

fmm the TNS states MI and Mz, where Va € pL,Vr @ p,, s is up and r is down 

in M,, and Va € f i ,H  $ a, 8 is up and v is down in M.. We define a TNS state 

M for atrudure T as follava: V8 E pa U n,Vr @ pr U n ,  s ia up and r is down 

in M. Clearly, Va, a ia op in MI m M2 + a is up in M. Note that nodes T.lejt 

and T.riglrl are open in Ma and M2, respectively, since otherwise pt or p, could 

not be constructed. Clearly, they will remain opm in M. Thus node T is opm 

in M. T h i n  means that s quoram can be constructed tom M. k t  p denote this 

qrlorum. Thus I,  2 h. Since dl the nod- not in p, Up, are down in M, we 

have p 2 181 U p2. This implies g n p = 4. This urntcsdicts our assamption that 

g intnsects dl the groups in Gs. Thos g intersects evrry gmup in SrrCa,. Using 

the similar arguments to those in the f is t  half of thie case, we can prove that g is 

a superact of aomc l m r p  in G2. 

Cam 2: T @ g. Thna g intnants dl groups in S T , I ~ ~ I U S T . , ~ ~ ~ ~ .  By theinduction 

hypothesis, +I E S~l.,~.g 291 and 3 a  € S~.,bu,g 3 g2. Thosg 2 g,Ug.. Using 

the similar arguments to those in case 1, we ean prose 3 p  E Q, p 2 gl U a .  Thue 

S P .  0 

4.4 Performance Analysis 

4.4.1 Availability 

We assume that each node has independent failure mode, with the probability p 

of being up. We define the availability of a motual adusion algorithm to  be the 

probability that s quorom can be mnatroctcd by the algorithm. 

Assume there a r c s  nodes. For majority d i n 6  algorithm, the sisc of a quorum 

38 



is always (11+ 1)/2 1. Thus the availability ia 

A,-= 5 (T)$(l-p).-i .  
~ = r ~ ~ + n l x ~ i  

The a d a b i l i t y  of the lree qunum algorithm ia obtained fmm the following 

recuraivc relation. Let A,,+, be the availability of the t r e  algorithm bra tree of 

I c d h + l w h n c h E O .  Wehave 

An = p; 

Ah+, = pAh(1- Ah)+$ - AdAh +PA: + (1 - t,)A$ 

i.e. 

Ah+, = 2pAh + (1 - 2p)A:. 

The ododation of the adabi l i ty  by TNQ algorithm L more complex due to 

the fact that subtrees of a node alwsy. ovedap in the TNS. Thus the pmbabilitics 

that a quorumem be constmottd in the ( i u b t m a o l  of 

each other. At this time, n do not know haw to uac a closed form or a recunive 

relatian t o  specify this availability in a general caac. To calculate theavailability, 

the fallowing method is used. Clearly, the  a-lability of s TNQ algodtbm is the 

probability that the loot of the associated TNS ia open. In a TNS with It + 1 

levels, for all i,O < i < h, there are exactly i t  1 nodes a t  level i. M St be 

the .st of all posaiblc wmbinationa of OC-states (open/doscd) and I?. the  set 

of all posaiblc combinations of UD-stater (up/down) of the nodca at level i. For 

convenience, we simply c r l  the mrmbera of them two ~tates. Clearly, S; and 

R, each contains a'+' different statce. Note that Lom t h ~  way the OC-atate is 

defined, for 0 5 i 5 h - 1, each mtate in St ia the union of the two atat= with one 
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quorum algorithm for the value of p ranging from approximately 0.5 1.0.8. When 

p > 0.8, the suai1abiliti.a be rms  indiatingdui.hsble. 

For more detailed value, h each care we I d  the node pmbabilitiea vary h m  

0.5 to 1 with a step rise 0.0025. In all s- but 6 nodes. the majority voting has 

the highest availability Far TNQ and tree algorithm, it is interesting to note that 

there is a to- paint of the node probability which is dm to 0.7. The tree 

algorithm has bettcr nvailability below this point while the TNQ algorithm does 

better above it. We have listed tm sample data obtained for csch of the three 

algorithms in cases of 15 aod 28 nodes (15 and 31 node. for the trrc algorithm) 

in Table 1 and Table 2, npectively. The I&-mast colomn in e a h  table is the 

l i t  of the sample node probabilitie. based m which the availabilities of the three 

algorithm are evaluated. We use the doohle linu to indicate the estimated locar 

tion of the turning pointa. Note that this cornparim is made in csaes where the 

TNQ algorithm8 ole less nodes than the tree algorithm does. We will sxtend our 

binary complete structure to 31 node. and rampan the reaulta in  lion 4.6. 

4.4.2 Size of Quorums 

In this section, are will mmpsre the maximum, minimom and average sires of tho 

quorum constructed by the t h e  algorithms. 

For a system of n node., maximum, minimum and the aver.ge aims of the 

quorvma constructed by the majority voting algorithm am always [(n + 1)/21. 

For a tree dgorithm, the maximum and the minimum qoorvm sim ue (n + 1)/2 

and loan, respectively. Ta obtain the average quoxum i a e  for the tree algorithm, 

let n, and r, he the total number of quorumu and the average quorum i sea for a 



0.W 0.20 0.40 0.00 0.80 1.00 
Plobbit, o feuh  node 

Figure 4.6: Availabiitiea of three dprithma with 15 nodm 

Table 4.1: Some detailed amibilitica when 15 node. are n s d  by the t h e  algo- 

ility of a node I l k z  al~oritbm I TNQ h & h m  I Majority .Ipodthm fl 



0.W 0.20 0.40 0.60 0.80 1.00 
Pmbabilily of<& node 

Figvrc 4.6: Availabilities of t ne  algo. with 31 nodea knd the athua with 28 nodes 

t m  with i levels. We have the following recursive relation8[4): 

n a = 1 ;  

so = 1; 

nut = I * " ; + " >  

si+, = (2 *(a; + 1) ni + 2 * r ,  r n:)/n,+, . 
We now analyze the s i m  for the quorums by the TNQ dgaithm. It IoUowa 

L o n  the m y  D TNS is m u k d  that the root will be open if aU the Leafnodn, are 

up. For a TNS with n node,, there are appmximatcly 6 leaf nodea. Thus the 

minimom quorum a i a  for the TNQ algorithm is at mast 6. Foe the n tdmam 



Table 4.2: Some dctliled availabilities when 31 node8 .re used by tree alrarithm 

and the avcrqge sises, we can only rely on the uperimental r e d &  due to the 

complication caused by t h ~  overlap of the sobtrees of a node. We hare eraluat~d 

TNS. with the sieea ranging from 3 to 28. The method far our evalootian ia 

based an the enumeration. The results show that the madmum aiac generated 

by the TNQ algorithm is slightly larger than the tree algorithm. For example, 

in caae of 15 nodes, the muimum size by the TNQ algorithm is 9 and that by 

the tree algorithm is 8. In case of 28 nodes (31 nodes far the tree algorithm), 

the madmnm size by the TNQ is the same as that by the tree algorithm, both 

being 16. Aoroer ,  the average sise by the TNQ algorithm ia mnatantly amaller 

than that by the t m  algorithm. Thia has been depicted in Figure 4.7. Our data 

a l ~ a  indicates that in all cases the average quorum sizes by the TNQ dgorithm is 

about 11% amaller than that by the trce algmithm. Among the three algorithm, 

the majority voting algorithm has the highest average cost. 

The above r n d t  implies that the quorum sises generated by the TNQ dgo. 

rilhm a n  more evenly distributed in the qomom space Ulan that by the tree 
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P i  4.7: The amage qumum sizes for the three algorithms 



Figure 4.8: An example of 8 nodes argsnized as s t hna lne l  TNS 

algorithm. In addition, our data also ahowa that the nodes at different kwh hease 

even more capabilities of forming a quorum under the TNQ algorithm than that 

onder the tree algorithm. For aamplc, under the TNQ algorithm with 15 nodes, 

the root participates in 96 out of a total of 258 quorums. The amage dEe of 

the quorums in which the root participates is 5.375, while the average siss of the 

quorum in which the mat does not participate ia 6.377. On the other hand, onder 

the tree algorithm also with 15 nodes, the root only participate. in 30 out of a 

total of 255 qoorums. The average sine of the qoomma the mot participate in is 

4.6, compared with the average lire of 7.2 of the quorums in which the mot does 

not participate. 

4.5 TNQ Algorithm Versus Single Level Voting 
Algorithm 

We n w  a r p e  that the triangular net quorum algorithm can not be implemented 

by a~aigning single lev* nonnegative integer vote  to the node  in the aydun(compared 

with the multi-dimensional voting methodll21). Our tcFhniqne is similar to that 

of [14] which wm used to show that there ia no vote assignment to nodes in a ND 

rolrn'e. 



THEOREM 4. Tlrc TNQ nlgerillrrn dorr no1 Imtrc nu q u i o o l c ~ l  unlr ~ ~ ~ i g n -  

Proof: Assume aix nodes are organieed aa shown in Figure 4.8. Let 81 be the 

nonnegative integer voter aasociakd with node i ,  and let 1' be the sum of total 

so&, and let M be the majority d total votes. We have the following quations: 

v, + "2 + "4 > M (1)  
v , + v 3 + v a > M  (2) 
"4 +"a + "8 > M (3) 
v l + p + v a >  M (4) 
v r + w + a + w + u s + * ~ = T  (5) 

Fmm (1)+(2) we have 

From ( 8 )  and (5) we have 

0,  > "1 

By a similar -n f m  (3) + (4) > (5) we have 

This ia impoasibl. Thua, thereia no one level integer sote aaaigment correspond. 

ing to the Forum net baacd on the TNS in Figure 4.8. 0 

4.6 The Methods for Organizing Incomplete Bi- 
nary TNS 

In this section, we discoss how to organize the nod" which can not be arranged 

la a complete binary TNS. The baaic idsa is to add a delete some nodes from 

the mmplete binary TNS. Them arc several strategies. We p ~ m t  the id- by 

aampinl. 1. the folloring, we consider how to agmire 3 1  nodes. 
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McUtod I: all the extra nodes(with respect to the complete binory TNS) wil l  

be duplicated to the ruol. Thudore, the rod is actndy r group of nodes. We can 

urc any method to  form a roo1 quorum which is mnatruckd by the nodes in a mot 

group, and a mot quorum hss the inksection proparty. Then, we can redefine 

the root's UD-state as follows: if the up state nodes in root p u p  can form a mot 

quorum, then we say the mot is up; otherwise, it is dom. For example, in Figure 

4.9 method 1, we gmup nodes 1, 2, 3 and 4 ar mot gmup, and we d&nc (l,2), 

(1,3), (1,4) and (2,3,4) u the root qoorum. When my of these root qnomma 

can be constructed, the mot is up. Othuviae, the root is down. 

Mcllrod 4: we add extra nodes on the leaf level. and change the OC-state 

definition for node8 which have more than two leaf child-. Each node a ir 

marked as open state i f  one of following conditions hold: 

1. s is up and one of its children is up; or 

a. d of 3'8 children arc up. 

For cxmplc, in Figure 4.9 method 2, nods I T  is open only if node 11 is up and 

one of node 23, 24 and 2s ia up; or aodc 23, 24 and 15 arr all op if node I T  is 

down. 

Mclbad :k we combine method 1 and method 2. The basic idea is that we add 

aome nod- on the leaf level, and add some nodes in the m t  p u p .  This method 

can bc u d  when a large number of nodes are added to  s complete TNS. The 

definition of UD.statc of mot and OC-state ol leaf level nodes can be the lame 

u vaed in metbad 1 and 2. For example. in Figure 4.9 method 3 we define (1,2), 

(1,3) and {2,3) u the mot quorum. Thenbore, root is up only if a minimnm of 
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two of nodes l ,Z  and 3 ue up. In addition, we d&ne node 21 to  be open .Inode 

21 ia op and one of node 21.28 and 29 ia op or nod- 27,28 and 29 are dl up. 

In Figure 4.9, we uae these thrce method. to Idd nodes to  s complete binary 

TNS af 28 nodes. resulting in the TNS of 31 nodea. The lelt diagram in Figure 

4.9 is the empadson of the availability with the tree quorum algorithm and 

majority qoorum method with 31 nodes. Fmm thereaults shown in Figure 4.9, our 

algorithm have het tn  availability than tree algorithm when the probability ofeach 

node ia high- than 0.5, and the major is  quornm algorithm still h.a the higheat 

availability. We hsve cslcdated the  average quorum sise for .U these methods. 

The computational result shows that method 1 only increases the average siae of 

quorum to  10.19, which is 2.96 leas than the average size of 13.84 for the tree 

quorum algorithm with 31 nodea, and 5.21 less than 16 for majority quorum 

method. 

The utenaion method we introduced above auggcsta a different way of erg* 

Riains noden. That is, s node can be -ither a real node, oz a group d nodes. Our 

above uample  shows that such an mganiaation may provide good amilsbility 

and performance. The full potential of this method is an interuting topic lor the 

M o r e  rraearch. 



Figurn 4.8: Variaua structuns fa or&.nising 31 nodes ar the TNS md the a d .  
abilities of thwe method. compared with tre. md majority quonrm methods 
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Chapter 5 

Generalization of Triangular Net 
Quorum Algorithm 

In the previous chapter, we introduced thc triangular net quorum algorithm on 

the complete binary TNS, and we further analysed the performance of the TNQ 

algorithm. In this chapter, the binary TNS will be urtendcd to  general TNS 

where each node ha5 more than two children, and each child may have more 

than one p-t. We will develop the  generalired TNQ algorithm for general 

mutual ueluaion purpose. We organize this chaptu as foUow8: In s d i o n  5.1, we 

describe the utenaion of TNS. In aection 6.2, we praent the generalized TNQ 

algorithm. Finally, in sation 5.3, we provide a discussion about this genenlized 

TNQ algorithm. 



5.1 Extensions of TNS 

The TNS we have discomed w, far d e w s  an internal node to have only two 

childten. This restriction can be lifted to make the TNQ algorithm more general. 

Note that il a p u m t  has more than two children, then &&Id may alao have more 

than one parent. The assignment of the parent nodes to each child node most he 

properly distributed. In genaal, suppose each internal node has m children m d ,  

counted from the I& thc nod- a t  l e d  i arc so, a,,,. . ,,ss,, we YY the ttminology 

L g ~ o o t t o  indioate the number of cbidren for each parent. Besides each mot's 

childnn having only one parent, other TNS nodes wi!J be organized in mch a way 

that r,o and 8,. eash hasoneparrnt,s,t and s ,,,- a each hastwoparents,. .., s L , ~ -  r 

and ri ,,-.. +* e d  hsa m - 1 parents, and for all p.m - 1 < p 5 q - m + 1, s~, 
has r a  parentm. 

Let 7, 5 P 5 m be an i n t q a .  We define the  OC-etatea for a node s ar 

follow#. 

Drfirrilioa: A node a ia opm if the feUoviovig eonditiona hold: 

1. if r is a l e d  node, then a ia up; 

2. if .< is an internal node, then either i t  is up m d  hss a t  l e d  rn - r + 1 opm 

children, or it has a t  iewt r open children. 

othcmirc it is dosed. 

As an namplc, 19 nodes are ozgmiscd aa three levd gmerdbed TNS ahom 

in F i ~ u r e  5.1. In Figure 5.1, each internal nods hw four children. 



Figure 5.1: A generalized threclevel four d e g m  TNS 

5.2 A Generalized TNQ Algorithm 

The generalied TNQ algorithm for the extended TNS is similar to that for the 

binary TNS. I t  also mntaina two paaaes, with the first paas defining the OC-mtate 

for each node and thesecond paas eon~tructin# the quorum. The firat paas for the 

general T N Q f o b m  theddinitionof an OCstate hereexactly themmemy ss the 

firat pass for the restricted TNQ followed the definition of an OC-state in section 

5.1. The second pass for the general TNQ in principle also foUows the pattern for 

the TNQ in the binary TNQ algorithm. BlieRy, it works aa foUows. The second 

pass constructs the  quorums for top level to  bottom level baaed on the marked 

TNS in the first paas. The raot of the TNS is always assumed open when the 

second paas ie called fm. Starting from the raot of the TNS, if a node has a t  leaat 

r apsn children, then form the quorum baaed an my r open children. If s n d e  hrs 

lus than r but a t  leaat rn-r + 1 open children, thm quorum will be formed based 

on any of its rn - r + 1 open children. Although this simple ntcnsion method 

gumant- carrectncsa, i t  may nonetheleaa violate the minimalily property. k t  

us eonside. .n example shown in Figure 5.2. We aaaume the thmshold r is 3. We 



use I solid circle t o  idmtify an up node and a dotted circle for a d m  node. The 

emall letters o m d  c altached to the nodes denote OGstat- 'pen and dascd, 

rmpectivcly. When nc rccvrsively conatrod the quorum atarting fmm the root, 

root 1 has only two open ehildnn, which is lcsr than r(r = 3). Therdore, it 

has only one choice, namely, to conatruct the suhquorvms starting Imm node 2 

znd nade 3. When node 2 constructs its subqomum, it hrs four open children. 

ouch as n d e s  6, 7, 8 and 9. R can ch- any three of them to construct the 

subquarum. Soppose it chowen nodes 6, 1 and 8. In addition, when node 3 

wnatructs ita auhqoorom, i t  hui on$ three open children. Then, it has only onc 

choice to construct the subqumum r. (7,8,9). Finally, we cmstruct the quorum 

as {1,6,7,8,9). B d ,  wc can see that node 6 ia not necessary in thia quorom, since 

nade 2 haa four open children in this qvororn and we only need t h r~e ( r  = 3). 

This problem arises since whm node 2 and nade 3 independently canstruet their 

rubqaoroma, they do not communicate with each other. Instead, they simply pi& 

op my  of their open children independently. This may cause redundancy. 

From this e-ph, it is quite obvious that the complexity of the extended 

TNS will make the pncraliacd TNQ algorithm more complex compared with thc 

binary TNQ algorithm. We mnsider the generalization problems as foUows. 

1. Since diRuent parents may ah- more than one child in the extended TNS, 

in genndscd TNQ algorithm, whm different parents choose their children, 

they will influence each other morr than in the binary TNQ algorithm. 

2. The binary TNQ algorithm hr. only one chance to construct the subquorum 

for its childrrn (if both children a n  marked as open, we chooac both of them 



Figure 5.2: An uamplc  of the complexity for the gencralimd TNS 

without induding the parent in the quorum, otherwise, choose the parent 

and construct thcaubquorum for its one open child). However, in generalized 

TNQ algorithm, we may have several choias when the patent cholxe~ ita 

o p m  children. Since a parent may have more than r open childrm, or whrn 

the  parrnt is down. it may have more than nr - r. + 1 open children. 

From the abovc snalysia, we can see the key pmblcm: haw to chaaac the open 

ohildrm. We pmpose a mlution b d  on the priority of each nodes. In our 

algorithm, d t e r  ve m u k  the n t m d e d  TNS, we constract the quorum level by 

level starting fmm the mot level. For crch level, we pick up the nodes =cording 

to their priorities. In function Fo~~mpumum(Figure 5.5), we d d n e  the priority 

of nodes a t  same level wording to foUowing rules: 

1. If a node h w  more relative parents, then it has higher priority. Here, we 

define the relative pucnt  dof a node 8 ui I parent of I, on which an iitst.~nce 

af the recoraive c d  has been made. For uample, in Figure 5.2, rml 1 i. 

a relative p ~ r r n t  to  children 2 and 3, ainre the d ia first mnde en mot. 

In addition, nod- 2 and 3 me the d a t i v e  pawnts of their children incc 



mot 1 must have gmcr&tcd two instances of recursive d a  on nods 2 and 

3. Thue, nodes 7, 8 and 9 have the hilhcr priodty than node 6 ,  since t h q  

have two relative parents compared with one dative pannt for node 8. 

2. If a node's parent h.a leas than I. but more than m - r + 1 open children, 

then thia node has higher priority than other open n o d s  at samelcvd whole 

parsnta haw more than r open children. 

3. At the same level, if two open nodes both meet conditions 1 and 2, then 

the 1eB side node has higher priority than the right side node. For ererple, 

in Figure 5.2, node 7 has higher priority than node 8; as well, node 8 has 

higher priority thsn node 9. 

The detailed algorithm is shown in Figure 5.3. In the algorithm, i is the root 

of the TNS. The paramekc "degree(1)" ia the numb- of children for each node 

1 u q t  for leavs. The psramcte. Ythreahold(t). ia the threshold r which we 

mentioned in section 5.1, avch that 9 9 1. < m. In addition, each node 6 is 

assodaled with m i n t cw  number, t.open.childnurn, whish indicates the number 

dopcn children d thia node. We dso assume that 1.openxhdrildnurn is initialized 

to 0. 

b Mark pmcedsre(Figue 5.4), we assume that each node(except for a leaf) 

has n r  children, l.child(i) denotn the ith child of t wonted fmm left to right. 

Here, the leftmost po~ition number is 1. Another diffemcc with respect to the 

binary TNS marking procedureia that beaid- marking the OC.state of each node, 

we 4.0 calculate the owr~ rh i l d  :grn6cr for each node except for leaves. 

In F iu r e  5.5, m provide the generalized TNQ algorithm. According ta the 
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priorily requirements, for each level. we first sort the opens nodc by the number of 

relative parent. in descending order. Thcrrfare, in thesorted lint, theleft node haa 

higher priority than the right node. We d w a p  m u m e  that the algorithm picks 

nodes iom Idt  to right in the zmted list. Our algorithm canatructs the quorum 

from top level to  bottom level. For eachlcvcl i, we first identify a r ~ ~ r r a l x l t o ~ r r r . , ~ ~ ~ l  

a t  level i. Then we d d d c  which nodc in carreal r l~oact t .~d muat he constructed 

in the find quorom. When re reach lwcl i + I ,  the C I ~ ~ I I I I ~ ~ E I I O ~ I I I I ~ I I ~ I  nt level ; 

will b-me pnrcntrhosea.acl for oodea an level i + 1. 

We construct the currerrlrbmsrr.re1 s t  lwei i ss fonoww. 

1. At lesd 0, eun~enl.cboaca-re1 = (roul). If the root haa la. then 1. open 

children, then it is ineiuded into the quortlra.rel. 

1. At lwcl i > 0, if an open node haa a patent a t  lwel i - 1, which ia a m e h e r  

of q u o r u m ~ e t  and which haa less than rn - r + 1 open children in the 

currenlbmen-,.rat at level i, then add t h i ~  node to  the nrr~rralrl~o.ve,t.rrl. 

3. At lwel i > 0, If an open node haa a p e n t  which L not s member of 

quozum-rel bot is in the pnrenlrhasenliel, ~ n d  has lean than r. open chil- 

drenin the curnnt.shoaclwe1, then this nodeis added to  the nzrrrt~l.cb,~vo~-vri. 

For each level, dtn we define the c a ~ ~ r o n l B o . ~ e a - r d ,  we will pick up mme 

nod- fmm this set and add them to the qtzurrrm.ml, according to  the following 

rule: if a node in ~wentdlroscn.ael has l a s  than r open children, then add it 

to  quwumliet. A complete example is pmsided in Figure 5.6. 



5.3 Discussion 

The extended TNS ha. the amdler height hut d d n  bottom than the binary TNS, 

if roughly the same number of nodes an used. Thus, i t  deueaues the minimum 

quorum size. It ia not clear to  us at this time how the madmorn and average 

quorum sisea in a general TNQ differ Gom those in a binary TNS. Our conjnjeeture 

ia that these sizes will also decrcsse since it pmvidea more overlrpping among the 

subtrees af a node. On the a t h u  hand, It is net dear that our extended TNQ 

algorithm will hold the  minimalily and non-dominance properties since we haven't 

found an easy way to prove them, although the pmof for intersection property ia 

straightforward. These are intenrting topica that deacm futurr dudy. 



ALGORITHM 
1' input: a TNS moted at node t */ 

BEGIN 
br my oodc I in TNS, r opru.rlrzbc.~ra~~~ = 0, 
hf"rL(l,degme('),threshdd(, 1); 
If ( 1  la rnsrhd u rloxedl THEN 

stop; /'no quorrnr can Le /orn&rd*/ 
ELSE 

Fo~mq~o?~~m(l,h~ght(l),deg~e(l),thr~hold(l))j 
END 

Figure 5.3; The generabed TNQ main dgorithm 



PROCEDURE M , L ~ . ~ ( ~ : N O D E  m,r:INTEGER) 
/* I: mot of the TNS; m: degree of the TNS; r: threshold of the TNS *I 

BEGIN 
I F  (1 is not marked) TEEN 

IF (1 is a Ienl) THEN 
I F  (1 l up) TEEN ( 

mark 1 s open; 
Vq, q = 1.1m~cn1, q.opta.childaum INC 1; 

1 

ELSE mark I as elawl ;  
ELSE ( 

FOR podlion = 1 to m 
I F  (I.child(pasiliaa) l not marked) TAEN 

M ~ ~ k ( ' . c h i l ~ ~ ( ~ s i t ~ m ~ ) ,  LZ, r ) ;  
I F  (1 is uol THEN ~ ., 

I F  (1.opettrhilLnurn > m - P + 1) THEN ( 
mark 1 u open; 
Vq, q = l.ynrerr1, q.opeasl~ild.nurn INC 1; 

I 
ELSE mark 1 s clmcl; 

ELSE I F  ( t . o ~ r m s l ~ i l d ~ ~ ~ ~ m ,  > I.) TAEN ( 
mark 1 as open; 
Vq, q = l.~mrent, q . o l ~ c n s h i l d ~ u m  INC 1; 

I 

ELSE mark 1 as drurd; 
I 

END 

Figure 5.4: The pneraliaed TNQ mark +odthm 



Ponction For.taqlton~m(L: NODE; b.tn,r: INTEGER) 
/* Note: the state of mot is open */ 
/* h: height of the TNS; m: degree of the TNS; I.: threshold of the TNS */ 

BEGIN 
quorurnaet= * 
~'"reat.clra.e"se1 = * 
cumenl.le"el=O; 
WHILE cun.enL.leuel~ It ( 

tempasl +Open date  nodes on carrcnl.le~~ol md one of its 
p a m t s  &sts in ~mrenl .dosar~.~el ;  

sort tentpael by number of node's relative parent. in descending order; 
I F  (cur.rerr1Jeve.l = 0) THEN 

n,rrmt.flrosen.sel-. {t); 
ELSE cumenl.chosense1 = cl; 

/* etep one */ 
V node 1 E lempsel 

I F  (quonm~;ret + cl and ( 3 l.prcrtl E qatoz,zt,~acl and 1 .preal  
hsn leas than m - r + 1 children in n t r r s ~ i l r l r o n e t ~ r c l  )) THEN 

nrrr.n1xhoaenset = n,rrcnirl,o.'on.rel u (1); 
ternpael= t c m ~ r d ~ l  - nrrreds l ra~m.8cl ;  

/* step two '/ 
WHILE ternpael f cl( 

I F  (1 E lernpael and ( 3l.parord E ~ x l r e r d ~ b u s e n . ~ r l  and 
t.pnrcnl has leas than r children in a~rrsnl rburor .sol  ) )THEN 

~ r r e n t s h o s c n s e l =  nrrrcnl.chosen>el U (1); 

/* step three */ 
V t E eurren1.chase.^se1 

I F  (L.openshilLaum < r) THEN 
quorumsel= quorumsel U (1); 

pnroll.chosensel= c n r r c r ~ l s l t a r a a ~ o l ;  
current.levr1 INC 1: 

1 
RETURN(quorumse1); 

END 

nwrc 5.5: gmera~iaed TNQ fomqoorum +rithm 



q u o ~ ~ l -  1 1 l 
p m c c h < w x  = I I I Thomforc.Ihc final quorun is 

Lew.sol= 1231 [ 1.7.851 
eumntLchoWmgcl= ( ) 

nep I: ~mnceI~o6otux= 12.31 

rrcn 2: do mlhing 

xlcp 3: p ~ - c h o ~ u ) ~ s 1 =  (2.3) 

Figure 1.6: An example of genaalined TNQ algorithm 



Chapter 6 

Conclusion 

In t h i  thesis, we describe the triangdar net algorithm for achieving mutual ex- 

clusion. Our algorithm is b w d  on orgsnising the network nodes into a triangular 

net structure. Like a t z s ~  structure, it mntnina a number of levels and the nodes 

a t  different levels sue aasodated by a parmt-child relationship. Unlike a tree 

structure, however, different children may ahare the same parents. It is because 

of this increased sharing that our dgorithm paslcsaes lome desirable properties 

which a t m  algorithm does not have. We ahow that our algorithm provides a 

morc uniform treatment to  the  nodes, which we believe iia desirable fm a truly di.. 

tributcd system. We show that our algorithm baa a good average case behavior 

for distributed system, with reaaonsb:~ large sizes. We compare the performanu! 

of our algorithm with majority voting and tree algorithms when sites number less 

than 31. The results show that our algorithm b a r s  b d t n  average-mot than either 

of them. In this caaeo, we believe these indudes the most common csMa m o n g  

the current distributed systems. When the node probability is above the  turning 

points, our algorithm providu a higher availability than the trec algorithm. We 

believe the triangala. net algorithm is desirable lor implmenting mutual excludon 



in a truly distributed system. 
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