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Abstract

This thesis proposes a cache memory, used for a 32-bit processor systens, which
consists of four components: the Dircctory, Line Replacement Unit (LRU), Cache
Merory, and Control Unit. An 8-way set-associative mapping method is employed
in the direclory. The Line Replacement Unil is based on the least recently used
Tine replacement algorithm. The cache memory unit has a capacity of 8k bytes,
32 bytes in each line, and it is directly accessible to 1, 2, 3, or 4 bytes (one word)
oince by the associated processor. This cache memory is designed for a multiple
processor system as well as in single processor system; a write-through algorithm
and an updating algorithm are combined together to keep the informalion in main
memory consistent with that of the cache and to make the multicaches coherent.
The hit ratios are predicted to be over 95 percent. A two-phase clock of 40ns is
employed to pipeline this cache, and it can turn out a result in 20ns during read
operalions without line misses. This cache is implemented into a single chip, and
is designed so that it is possible Lo build cache systemns of various sizes using these
chips, without decreasing the system spced. ‘This cache memory has been laid ont
as a single integrated circuit using 3 Micron NTCMOS technology, and its electrical

and logical behavior has been simulated.
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1 INTRODUCTION

In 1945, John Von Neumann made proposals for a digital electronic computer
structure. In his proposals, the basic logical structure of a digital computer system

has the following characleristics:

L. It has aw input medium, by means of which an essentially wnlimited number

of operands or instructions may be entered.

I

. It has slorage, from which operands or instructions may be oblained and into

which results may be enlered, in any desired order.

3. 1t has & caleulating unit, capable of carrying out arithmetic and logical oper-

ations on any operands taken from storage.

. It has an output medium, by means of which an essentially unlimited number

of results may be delivered to the users,

o

It has a control unit, capable of interpreting instructions obtained from mem-
oty o slotage, and capable of cliossing bétween sltarnate coutses of aetion

on the basis of computed results.

In general, a computer which meets the criteria defined as the Von Neumann

structure is organized as shown in Fig. 1. Although the components of the five parts

of the basic structure and the lechnologies used may vary wideiy, the functions of

the parts may be cleady identified in virtually any digital computer.
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Figure 1: A Von Neumann Computer Organization
Memory is the source of all information, data, and instructions, flowing 10 o1
from the four other parts. The data and instructions are stored in the memory cells,

each of which is associated with a location, or address. The colls can he accessed

by other parts of the computer by means of these addresses.

The main functions of input and output, as indicated by their names. are to
derive information from and to deliver the results and other information to the
outside world. They have also two subsidiary functions, buffering and data con
version. The buffering function provides an interface and synchronization hetween
the processing part of the computer and the outside world. The conversion fine:
tion can convert the data type in the processing unit into forms used ontsicde the

computer system.



The processing parl of a compuler, referred to as the arithmetic-logic unil,
implements the various arithmetic and logic operations on operands obtained from
the memory. The results, afler these operations, arc typically stored back in the
memory,

Ihe control unit obtains instructions from the memory, decodes them, and,
depending on their meaning, sends the appropiiate control signals to other parts

of the computer so that the desired operations will be accomplished. It also makes

decisions about what action must be taken afler recciving the results of various (

on data made by the arith logic unit. "T'he combination of the arithmelic-logic

unit and control unit is known as the central processing unit,or processing element
in the case of multiple processor systems.

Until the last two decades, almost all the electronic digital computer systems
used this Von Newmann architecture. Even when the underlying architectures of
the compuler systems began to contain a limited amount of parallclism (such as
in the CDCG600, for example) it was generally concealed from the users. In this
period, the demand for higher speed, larger storage, and rore reliable computer
syslems was rapidly increasing because large scale computation applications were

visi

alized. The demand was such that, despite many technological advances iu
clectronics, uniprocessor systems proved to be inadequate for the most highly com-
putationally intensive problems since the point had been reached where commu-
-

L 1

nication delays between g clements or i 1 circuits play a

role in the speed of the computation, Therefore, new ways had to be flound to meet



these requirements, The general approach is based on parallelisim, implying that
computer architectures will have to depart from the strict Von Neumann concept.
Parallelism in various forms had alrcady appeared in computers produced during
the 1960's, and has proved to be an elfective approach. In this context, paral-
lelism does not only mean the replication of logic but also has other ncanings. For
example, a uniprocessor using a pipelined instruction unit and a pipelined arith-

metic unit, as well as the impl

of multiple prog; exceuted “simul-
tancously”, all imply concepts of parallelism. Therefore parallelism i a computer

system presently has three meanings:

1. Time interleaving

2. Resource replication

3. Resource sharing

Time interleaving introduces a time factor into the concept of patallelism. That

is, several process steps are interleaved in time, each using a part of Lhe same

hardware at different times. In this case, it is not necessary Lo have a replication
of hardware to increase the performance of a computer system. Pipelining is an
example of time-interleaving.

Resource replication is the replication or addition of hardware units which
can operate simullancously on a problem, thereby altaining computation power

Urough replication of logic, rather than relying solly on fast individual gates and



small dimensions to reduce logic delay in order to obtain high speed. Multiple pro-
cesses using the same hardware in some time-slice order are an example of resource
siaring.

Since parallelism was introduced into compuler architeclure, various parallel
computer architectures such as veclor processors, pipelines, array processors, as

well as mult architectures, have been developed and used to handle large

itics of data si Iy and rently with high performance. 1/0
processors have heen used for input and output Lo speed up communication hetween
the processing elements and extemal storage or users. Thus, in general, parallelisim
includes ot only simultancity but also concurrency. The former means that Lyo or
tore evenls occur at the same time and the latter means that two or more events

oceur within a given interval of time.

On the other hand, memory has been organized in different ways in order to
obtain access speeds compatible with that of processing elements and to have a
larger capacity. In general, there are two basic approaches: one is to organize the
memory as a memory hierarchy; the other is to decompose the memory into several
modules shared by the processors in the system.

‘These kinds of compuler architectures are, more or less, not strictly Von Neu-
mann structures; indeed, the multiple processor systems in paus icular have quite

different characteristics.




2 BASICS OF CACHE MEMORY

whenever d have taken

Throughout the history of el
place in computer systems which increase processor speed, there is corresponding
pressure Lo have the memory malch this speed and, at the same time, increase its

capacity. Therefore, P in have been

with improvements in meory capacity and speed. Although both processors and

Jevelopi hnol and

main memory systems have been i d by steadily
novel architectures, there has been a persistent mismatch between the speed of
processors and that of main memory. That is, the main memory is slow relative to
the processors. The memory system limits the speed at which input data can be
delivered Lo a processor and Llie results received from the processor. This is the so-
called Von Newmann bottleneck. llence there has been a constant need for steady
improvements to main memory subsystems for high overall system performance.
Approaches of interest toward improving memory speed and capacity have been

the following [2, 5, 7):
1. Memory hierarchies and virtual memory
2. Cache memories
3. Development of larger and faster memory chips

4. Memory interleaving



2.1 Overview of the Memory Hierarchy

In order to improve the performance of computer systems, especially single proces-
sor systems, there are two approaches to speed up a memory system with a large
capacity. One is to develop a higher speed memory system with a larger capacity,
the other is to partilion a memory system into an eflicient memory hicrarchy con-
sisting of several levels of subsystens with various speeds aud sizes [2, 3, 5], The
first approach scems more straightforward and simple — to have a fast one-level
memory with a large capacily. However, even with improvements in tedinology,
a fast memory system with a large capacity is still very expensive, so thal it is

necessary to use slower memory at a lower cost to create a memory system with

a large cnough capacity. In order Lo give the memory subsystem an adequate of-

fective speed, the memory subsystem can be organized as a hierarchical memory

system. This kind of memory system can be matched to both the speed and size
requirements of the high-speed processor at relatively low cost. A typical hierarchi-
cal memory structure is depicted in Fig 2. The top level of the memory hierarchy
(ncar the processor) has the fastest speed but also the highest cost. Therclore, the
capacity of this level is made smaller to decrease system costs. For the lower levels,
the specd of the subsystem decreases while the capacity increases. At the level on
the bottom of the memory hierarchy, the memory subsystem possesses Lhe largest
capacity, but slowest speed, with lowest cost per word stored. In this memory hier-
archy, each level is directly connected to the immediately higher level. That is, each
memory subsystem can directly communicate with the immediately higher or lower

7
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Figure 2 A Typical Memory Ilicrarchy
subsystem in the hierarchy. For example, the processors can directly communicate

with the first-level memory, e.g. register array or cache memory; and similarly

the first-level sul can icate with the I-level one, as shown in
Fig. 2, and so on. Generally the top-level subsystem, such as cache memory, is
used Lo altempt to bridge the speed gap between the processors and the lower level
subsystem, while the lower level memory subsystems are employed to enlarge the

capacity of the whole memory system.

2.2 The Concept of Cache Memory

The concept of cache memory was proposed by Wilke [1965] in a brief article in
which he described a system that contained two kinds of main memory: one was

conventional, and the other was unconventional high-speed memory called at that



time slave memory, now called cache memory. In 1968, the first real cache memory
was implemented on the IBM 360/85. Since then, use of cache memory has rapidly
increased on a wide range of computer systems, initially on mainframes, then on
minicomputers, and today even on microcomputers.

Cache niemory, a relatively small, high speed random access memofy, is de-
signed for transparently bridging the speed gap between the CPU and main memn-
ory, since it typically has a speed compatible with that of the CPU. This means
that a cache memory in a cache-based system is invisible and nol directly acces-
sible Lo users or even to system operators. Typically, the speed of caclie memory
is five lo ten times faster than that of main memory. Using this kind of memory
hierarchy, the computer may seem to have a one-level memory with the capacity
of the slow main memory and the speed of the cache memory [2].

The idea of the cache memory, similar to the primary-secondary virtual memory,
is to duplicate the active portions of a lower speed memory in a high speed, but
smaller, memory. Only the data most likely to be needed in near future by the
CPU reside in the cache, and obsolete data are automatically replaced by the
newly requested data. In general, the speed of the cache memory is matched to
the maximum data rate of the processor so that the processor can access data in
the cache without delay, whenever the data requested by the processor are found
in the cache. If the requested data are not in the cache, a cache miss occurs,
and a request is made to the main memory for transfer of the requested data to

the cache. If the data currently resides in the main memory, it is transferred to



the cache immediately. If it is not, but is in the secondary memory, a request
is issued to bring the requested data from the backing storage. Thereflore, when
the required references to the memory can be captured by the cache, speed is not
degraded. Otherwise, the performance will be degraded by the time required lo
transfer data from the main memory to the cache.

The use of cache memories in modern computer systems is based on the locality
of memory references — both spatial and temporal (7, 9]. Spatial localily refers to
the property that memory accesses over a short period of time tend to be clustered
in space. This type of behavior can be expected based un the common knowledge
of typical program behavior: related data items (variables, arrays, etc.) are usually
stored together and instructions are mostly executed sequentially. Temporal local-
ity refers to the property that references to a given locality are Lypically clustered
in time. This type of behavior can be expected from program loops in which both
data and instructions are reused. Therefore, use of a cache memory in a computer
system can minimize the interconnection network traffic between the processor and
main memory and speed up the system since the access delay of the memory system

and the frequency of references to the slower main memory are highly reduced.

2.3 The Basic Structure of Cache Memory

‘The capacity of cache memory is far smaller than that of main memory; that
is, the address space of cache memory is far smaller than the address space of

main memory, therelore cache memory requires an address mapping mechauisin

10



to translate the main memory addresses, at a high speed, into the cache memory
address where the copies of data in the main memory reside. Also because the
most active portions iu the main memory are copied in the cache memory, if the
cache memory is full and the associated processor needs data not in the cache
memory, some of the data in the cache will be replaced with the newly requested
data from the main memory. There must exist an algorithm which can predict that
the data to be replaced will not be used in near future. Since the speed of the cache
memory is the key factor in cache memory design, this kind of algorithm must be
implemented in hardware. Ilence, the basic structure of a cache memory should
have at least three basic hardware components: an address mapping mechanisin, a
data replacement unil, and storage for the data in the cache.

The basic lunctions of a cache memory can generally be described as follows:
I3ach reference from the processor Lo a memory location is presented to the cache
memory. The cache first searclies the directory of the address mapping mechanism
to sceil the requested data reside in the cache memory. If the requested data are in
the cache, the data are operaled on to satisfy the processor immediately without
disturbing the main memory. If the data are not resident in the cache, a cache
miss occurs which will cause the transfer of the new data from the main memory

to the cache. Then the d data can be refc d by the p Before

transferring a new line to the cache, some data has to be removed from the cache
memory to make room for the new. Which old data in the cache will be discarded

is I by the data re unit. Therefore, the cache-replacement de-

1



cision directly allects the performance of the cache. A good replacement algorithm

L

can make the cache have a higher perfc than a bad algorith

Since a cache memory has a high speed compatible with that of the associated
processor, all the algorithms of a cache memory have to be implemented in hard-
ware. Therefore, the designers of a cache memory have o consider not only how to
implement its functions but also how to implement these functions with practical
hardware.

‘Traditionally, a cache system is built with a single cache for both data and
instructions. This cache is called as a unified cache, in which case the CPU'
components have only one cache unit torefer to for both instructions and data. The
associated processor shares Lhe same cache for data and instructions, which makes
more eflicient use of a limiled resource and lowers the average miss ratios. Alsoa
cache system can be split into two separate caches: one for data, and the other for
instructions. One of the major advantages to splitting data and instructions into
two separate caches is that conflicts between simultancous instruction fetches and

data reads and writes are climinated [9].

2.4 The Line Size Choice

The performance of most computers depends strongly on the qaality of the cache
design and the way in which it is implemented. Therefore, cache design is a very
significant part of computer system design. Inorder to design a high-performance

cache memory, there are several choices to be made and parameters to be

12



Designers have to make decisions about the algorithms (felch, placement, elc.),
about the best sizes (cache size, line size, etc.), and about the ways of address
mapping and maintaining consistency among several caches in a mulliprocessor.
Designers also have to make tradeofls in setling these parameters; e.g. cache size,
line size, the set-associativily, and so on. Each of these parameters aflects cache
performance; choosing diflerent parameters produces different cache performance.

The cache linesize is a very imporlant parameter that strongly affects the cache
performance, especially the cache miss ratio [11]. Many surveys of cache memory
and/or memory hierarchy performance have been made for high performance sys-
tems. In these surveys, the cache line size choice, with the overall cache size, has
been shown to strongly allect the cache miss ratio. Smith suggested in [9] the
line size giving the minimuin miss ratio for a given cache memory capacity. He
also indicated that the minimuin number of elements per st in order to obtain
an acceplable miss ratio is 4 to 8. Beyond 8, the miss ralio is likely to decrease
very little. After a greal number of simulations, Smith [11] presented practical
values for the miss ratio as a function of cache size and line size which are listed in
‘lable 1. The Design Target Miss Ratios (DTMR) shown in Table 1 are proposed
for unified caches, instruction caches, and data caches, respectively. The DTMR
provide designers with a reference lo implement a variety of new systews. It can
be used to estimate the performance impact of certain design choices. The models
of cache memories for the MR assume demand feteh, copy-back caches with a

LRU replacement algorithm. They also are full-associative for address mapping,

13



Cache Type: Miss Ratio
Unified Line Size:
Size 4 8 16 32 64 128
32 0.717 | 0.556 | 0.5 | 0.75
64 0.686 | 0.488 | 0.4 | 0.48 | 0.72
128 0.674 | 0.467 | 0.35 | 0.33 | 0.428 | 0.686
256 0.643 | 0.42 | 0.3 | 0.258 | 0.276 | 0.386
512 0.596 | 0.39 | 0.27 | 0.216 | 0.197 | 0.257
1024 0.473 | 0.309 | 0.21 | 0.162 | 0.137 | 0.15]
2048 0.405 | 0.258 | 0.17 | 0.124 | 0.098 | 0.093
4096 0.329 | 0.193 | 0.12 | 0.082 | 0.059 | 0.05
8192 0.232 | 0.135 | 0.08 | 0.05 | 0.033 | 0.025
16384 0.182 | 0.103 | 0.06 | 0.036 | 0.23 | 0.016
32768 0.124 | 0.07 | 0.04 | 0.024 | 0.014 | 0.009
Cache Type:
32 0.725 | 0478 0.247
64 0.674 | 0.438 0.222 | 0.191
128 0.615 | 0.397 0.197 | 0.164 | 0.157
256 0.592 | 0.373 0.177 | 0.138 | 0.129
512 0.562 | 0.348 0.159 | 0.119 | 0.108
1024 0.504 | 0.308 0.134 | 0.098 | 1,084
2048 0.391 | 0.234 0.008 | 0.068 | 0.057
4096 0.271 | 0.161 0.063 | 0.043 | 0032
8192 0.172 | 0.1 0.037 | 0.023 | 0.016
16384 0.148 | 0.085 0.029 | 0.018 | 0.012
32768 0.091 | 0.052 0.017 | 0.01 | 0.007
Cache Type:
Dala
32 0.731 | 0.611 | 0.55 | 0.715
64 0.66 | 0.515 | 0.45 | 0.495 | 0.693
128 0.561 [ 0.412 | 0.35 | 0.351 | 0.467 | 0.677
256 047 | 0.337 | 0.28 | 0.272 | 0.326 | 0.456
512 0.345 | 0.246 | 0.2 [ 0.191 | 0.215 | 0.282
1024 0.283 | 0.211 | 0.16 | 0.138 | 0.14 | 0.161
2048 0.256 | 0.169 | 0.12 | 0.094 | 0.083 | 0.089
4096 0.247 | 0.153 | 0.1 | 0.07 [0.054 | 0.048
8192 0.214 | 0.129 | 0.08 | 0.053 | 0.039 | 0.032
16384 0.161 | 0.097 | 0.06 | 0.039 | 0.26 | 0.019
32768 0.108 | 0.065 | 0.04 | 0.025 | 0.017 | 0.012

Table 1: The Design Targel Miss Ratios
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CACIIE TYPE ADJUSTMENTS

Caclie Type

Ratio of Miss Rate
to Dirccl Mapping

Ratio of Miss Rate
to Full Associative

direct-mapped .00 1.515
Lwo-way sel-associa 0.78 1.182
four-way scl-associalive 0.70 1.061
cighl-way scl-associabive 0.67 T.015
full associative 0.66 1.000

Table 2: The Relevant Gache-mapping-type Ratio

except for those with 4 and 8 byte line sizes, which are 4-way set-associative. The
cache miss ratio is also related to the mapping methods vsed. There are three map-
ping methods: direct-mapped, S-way set-associative, and fully associative. These
are described in the next chapter. Values in Table 2 express Lhe relative ratios of
miss rates based on both the direct-mapped and full associalive mapping meth-
ods. These cache type adjustments originally are from [30]. They are based on
the direct-mapped method, and are expanded to be used for those based on the
full-associative method. Since the miss ratios shown in Table | are based on the full
associative model, in order (o estimate the actual iss ratio of other systems, the

final actual miss ralio can be obtained by multiplying the given miss ratio found

in Table I by the cor

relevant, cache-mappi

three labeled Ratio of Miss Rate to Full Associative of Table 2.

type ratio from column



2.5 A Survey of Cache Design

Since IBM Corporation introduced the first commercial cache memory in its Syxtem

360/85 to bridge the speed gap between the processor and main moenory, varions
cache memorics have been employed in different types of computers (o achieve

higher A number of hes have been used for developing higl

performance cache memories. Although the operation of a typical cche mernory

seems relatively simple in concept, implementation of a realistic cache memory s

quite complex, involving many factors which influence cache performance. These

factors involve internal factors such as cache capacity, line size, address mapping
strategy, fetch algorithm, placement algorithm, replacement algorithni, as woll as

the swapping algorithm, and external factors or system factors: processor organi-

zation, hierarchical memory organization, as well as the interconnection network,
such as the system bus. For supercomputers, synchronization is a more serions

problem since at least two or more processors are embedded in the system. There

fore, attempting to cvaluate cache performance exactly in a realistic compuier
system is quite difficult. We can, however, use approximate models for evaluation
of cache behavior and performance.

Cache performance can be described with reference to two aspects [9]: cache
miss rate and access time. The first aspect is cache access time — the time required
for the processor to get information from or store information into the cachie, Cache

access time depends not only on the design itselfl but also on the technology vsed

ss Lime s diflienh

in cache design. Therefore, the effect of design changes on acc
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Lo predict without specifying the circuit technology used. ‘The second aspect is the
miss ratio of the cache memory — the fraction of all memory references attempting
10 aiceess data which are not resident in the cache memory. In general, every cache
miss makes the processor wait until the desired data can be reccived. The miss
ratio is related not ouly to how the cache design affects the number of misses,
but also to how the machine design, including hardware and software, affects the
number of cache references (main memory references). For example, the cache
miss ratio depends on the program locality implied by software and the amount
of information (one word, iwo words etc.) oblained by the processor at a cache
relerence.

Many computer systems (alinost all modern supercomputer and large computer
systems) have cache memories of various designs to bridge the speed gap between
processor and main imemory in order to improve system performance. This scction
presents a survey of cache memories and their performance in several Lypical cache-
based computer systems.

A high-speed cachie memory was employed in the [BM System 370 Model 168.
The cache was available in a size of either 8k or 16k bytes. The 8K-byle cache
memory had a cycle time of 80 ns (the same as the machine cycle time) for accessing
4-byte data. It was organized into 64 sels as a 4-way set-associative cache. The
write-through scheme was used for updating the main memory. The average miss
ratio was about 7 percent [27), and the wmiss ratio prediction, according to the

DTMR, is 5.3 percent.



The IBM 3033 has a 64k-byte cache memory for both instructions and data
with 57 ns cycle time. This large, high-specd cache memory is one of the main
reasons for Lhe high performance enhancement of the 3033. This cache is organized
into 64 sels as a 16-way associative cache. The line size of the IBM 3033 is 61
bytes. Also the write-through policy is employed in the IBM 3033. In this system,
the main memory is divided into 8 modules so that main memory can transfer a
line by interleaving [5)

The VAX-11/780 is a 32-hit high-perfc in tee first i luced

by DEC in 1978. Its cache has 8k byte capacity organized into 512 sets, two lines
per set, and 8 bytes (4 bytes per word) in each line [5]. For the cache memory of
the VAX-11/780, a distinction is made between a read and a wrile miss. If there
is a read miss, the required line has to be retrieved from the main memory and
writlen into the data cache. If two lines in the given sel are full, some sort of line
replacement strategy has Lo be employed to determine which line is swapped with
the new required line. The VAX-11/780 cache memory uses a random replacement
stralegy as its policy for updating the line. If there is a miss caused by a write
operation, only the referenced location of the main memory is updated. This data
cache uses a buffered write-through policy. The miss ratio of VAX-11/780 was
measured to be about 13.05 percent [34], and it is also estimated Lo be 135 percent

by the DTMR.

Today cache have been i I with their cor ling micro-

processors on a single chip, giving so-called on-chip cache memories. The 280000
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microprocessor produced by Zilog in 1985 includes a 256 byte on-chip cache mem-
ory which is organized into 16 lines, 16 bytes each, as a [ully associative cache. The
maximum clock frequency for the Z80000 is 25 M11Z, and when the Z80000 fetches
from its cache, only one system clock cycle is required [28]. The least recently used
line (LRU) replacement algorithm is used to choose the line to be replaced by the
new one from the main memory in the case of line-miss occurrence. The write-
through aigorithm is used in this cache for its wriling strategy. When there is a
miss caused by a write operation, only the main memory is updated. This cache

hias a miss ratio of 25 per cent for a no burst transfer mode and 12 percent for a

burst transfer mode [29]. 1t is predicted to have, as a unified-cache, a miss ratio of
30 per cent using the DTMR.

A cache memory has also been applied to the Balance mulliprocessor systen
introduced by Sequent Computer Systems Inc. in 1988 [37). “This multiprocessor
system can pool up to thirty 32-bit processors with a shared main memory. A
subsystem in this system is composed of an NS32032 microprocessor, an NS32081
Noating-point unit, and an N$32082 paged virlual memory management unit, pro-
duced by National Semiconductor. In addition, each subsystem has an 8k-byte
Lwo-way set-associative cache memory to achieve a high performance while mini-
mizing bus traflic. In this cache, with a 50 ns cycle time, there are 512 sels, two
lines cach, and 8 bytes per line. The write-through policy is employed to keep all
the copies in the system consistent. Whenever there is write request from one pro-

cessor in Uhe system, this request with the corresponding address is sent Lo update
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stale data in the shared memory while it is broadcast Lo all the caches to seeif there
are any copies of the dala to be updated. If so, Lhe corresponding cache controller
invalidates the affected line. The miss ratio of a single-thread cache memory is 15
per cent [37], while the predicted miss ratio from the DTMR is 15.9 per cent.
Since the cache miss ratio is very dependent on the programs that execule on
the cache-based systems and the models in [11] are ideal (in general, a real cache

memory is more complicated, and there are more factors to be considered), w

an
see thal our design target miss ratios are slightly higher than seen in simulations
described above, and close to those from measured 1esulls, such as for the VAX-
11/780, which lends some credibility Lo the use of the D'I'MR as a reasonable
estimator of cache performance, as noted in [11). Thus, the set of design Largel
miss ratios s very useful for design and implementation of a possibly new cache or
architecture, Also we can sec thal Lhe line sizes of the systems discussed above scem
too small. A larger line size provides a lower miss ratio under a fixed cache size. It is
clear that caches using set-associativity have lower a miss ratio than those using the

direcl-mapped method. Another problem is that the above systems which use

L.

associativity have a small sel size, which affects the cache miss ratios. In addition,

for implementations of existing cache mernories, aimost all caches are implemented

in either multi-chip or on-chip configurations. In the case of chip scts, several chips,
including one cache controller and several high-speed static RAM chips, are used to

build a cache memory. This kind of cache memory is designed for special processors

and has a fixed cache size. They do not have much flexibility; for example, the
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cache size can not be changed after the cache controller is designed, and they have
longer delay time between the cache controller and RAM chips. An on-chip cache
does not have a delay penalty due to interconnertion between the chips of a multi-
chip cache memory, but on-chip caches have the same problem of inflexibility as
do multi-chip cache memorics. In addition, this kind of cache in general lias only
a small capacity using today’s technology, which leads to a higher miss ratio.
Using VLSI technology, we can make tradeofs Lo design a novel cache memory
which has a larger cache size, larger line size, and higher set-associativity on a single
chip with little delay penalty by eliminating the wire-connection delay between the
cache controller and the cache data memory. Multiple uniform cache chips can be
used Lo build cache systems of various sizes, associaled with one processor. T'his
cache system can be used as a traditional unified cache for both instructions and

data, or as separale instructions or data cache.
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3 IMPLEMENTATION OF THE CACHE

ALGORITHMS

3.1 Cache Design Parameters

Typically, a cache memory system can capture well over 90 percent of all references

to main memory. Oplimization of the cache design parameters is very important

f

to decrease the cost/p ratio for high-perfc cache memories.

Optimizing the design of cache memory has four aspects [9]:

maximizing the hit ratio

N

. minimizing the access time to cache data

W

minimizing delay due to a cache miss

#

minimizing the overhead of updating main memory and maintaining cache

coherence

In addition, for cache jes for systems, ¢ has

Lo be taken to maximize bus and shared-memory bandwidth and Lo minimize the
bus bandwidth required by cach processor in order to maximize the system perfor-
mance. There are also trade-offs which depend on the technology of implementation
for the cache; for example, between hit ratio and access time.

There are many faclors to be considered during cache design which affect system
performance. Parameters for cache design are classificd into intrinsic and extrinsic
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parameters [5]. Effective memory speed and cost are two intrinsic paramneters.
Extrinsic parameters, such as hit ratios, control algorithms, etc., are selected based
on the results of experimental data and simulation, and are variables which must
be cousidered for the systen design,

Of all the considerations which are related Lo cache memory, the following are
mainly considered during design since cache performance is sensitive to choices

concerning these aspects:
1. Feteh policies
2. Mapping policics
3. Replacement policics
4. Swapping policies
5. it ratio and access Lime
6. Cache memory capacity
7. Line size

8. Cache data path width

©

. Main menory organization

Fetch algorithmns are used to determine when the systemn brings information
into the cache memory. In general, the major fetch algorithms are demand-fetch
and prefetch. Under the demand fetch algorithm, a line is fetched only if it is
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needed. The prefetch algorithm, on other hand, gets information before it is needed.
‘Therefore, the prefctch algorithm is based on some kind of prediction about which
line will be used next. It must be designed carcfully if the machine performance is

to be improved rather than degraded [9]. Impl fon of a prefetch algoritl

is usually more complicated than demand fetch.
Mapping policies are used to translate the logical address space to real address
space. Efficient address translation schemes should accomplish address translation

in such a way as to minimize the apparent access lime. Information generally is

obtained from the cache iatively; larger iative memory is more exy
and slower. Hence, there must be some trade-off of associativity during cache
design, in terms of the design and technologies that are employed. A mapping such
that any of the lincs in main meinory can be mapped into any line slots in cache
memory is called a full associative mapping. That is, a line of main memory may
be mapped into any location of the cache memory. Typically, length of a line in
cache memory is as the same as thal of main memory. If the cache memory is
full and there is a miss, the requested line can be transferred into any line slot
of cache memory from main memory, in 2 manner depending on the replacement
policy employed. Thus this imapping provides the minimum probability for line slot
contention problems and the largest hit ratio for a given problem. Iowever, having
one comparator per address tag makes it very difficult and costly to implement,
especially in a large cache memory.

A direct-mapped cachie has only one comparator which is connected to all the
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address tags in cache memory. Each time only one address tag can be selected
to compare with the address from the processor. This mapping is a many-to-one
mapping. That is, any given line in main memory can reside logically only in one
specified line slot in cache memory. A direcl-mapped caclie memory mandales
a fixed replacement policy; if there is a line miss, both the cache tag and the
corresponding line are replaced with the requested main memory address and its

line. This mapping has the highest probability of cache memory slot contention

since there is a fixed roplacement scheme. Furthermore, it generally has a relatively
low hit ratio. Unlike the full-associative mapping, it is quite simple and easy to

implement.

A third mapping method is an S-way s

-associative mapping, which is a hybrid
of the dircel-mapped and full-associalive methods. An S-way set-associative cache
has multiple sets which can be selected by direct-mapping, and there are S lines
slots in cach set which can be simultaneously compared with the address from the
processor. In this mapping system, there are S comparators, a comparator for each
ble il L I

“way". Sel-associative mapping has a N ity and

hit ratio. Increasing the cache size of a set-associative cachie gives  greater hit ratio
than increasing the depth of a direct-mapped system. On other hand, increasing
the number of sets, or ways, of a set-associative cache memory also gives a greater
hit ratio. lence many high-performance cache memories, especially large scale

caclies, adopt the set-associative mapping mechanism as a compromise between

complexity and performance. More details about S-way sel-associative mapping
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are given in the next chapter,

An optimal replacement, policy would predict the line which will be used in cache
memory (or a given set) furthest in the future and which consequently should be
discarded when the cache memory (or a given scl in cache memory) is full and
a cache miss occurs. This policy would keep data in the cache optimized for the
highest hit ratio, and the maximum system throughput. Iowever, this optimal

replacement policy can not be implemented since it requires a prediction of the

future behavior of the running programs. Therclore, some approximation has to e
miade. There are three types of practical replacement algorithins commonly used
for cache memory systems; first-in first-out (FIFO), random, and least recently
used (LRU) line replacement, Lo approximate this function. The FIFO algorithm
is based on the principle that the first line to be referred is predicted to be the
line not to be used in cache memory (or in a given set) furthest in the future,
and that this line is replaced by the new one from ain memory. This algorithin
does not really reflect the program locality very well, since the first line may be
used frequently, but it is easy to implement. The random scheme is based on a
random number from a random number generator to create the line number of
a line which is replaced by a new one whenever there is a replacement need. A
cache memory employing this algorithm typically has a low hit ratio since this
algorithm is not able to reflect the program locality. “The least recently used line
replacement algorithin, which looks backward (past), is usually able Lo reflect the

program localily well since it is based on historical line usage. ‘That is, the least
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used line in the recent past is replaced by the requested line from main memory.
Since this algorithm requires more stored information about the past, it is more
difficult to implement in hardware, especially in a large scale cache memory. A

variation, an imation of the LRU il can be used to simplify the

hardware implementation. This variation is based on the fact that if a line has not
been referenced over a certain time period, it is less likely to be needed next than
lines in cache memory (or in a given set) that have becn referenced in that period.
More details of the least recently used line replacerent algorithm are described
in the next section. No one best algorithm exists from the practical replacement
algorithms [3]. Some algorithm, compared with the other algorithms, is better for
particular classes of problems and poorer for other classes. llowever, in general,
the LRU algorithm is clearly the best choice for most applications, since it is based
on historical line usage (the recent past appears Lo be a good estimate of the near
future), it works well, and it increases the hit ratio when the number of lines is
increased.

Swapping algorithms are designed for transferring a new line from the main
memory o the cache when the requested information is not in the cache. Typ-
ically, there are two kinds of swapping algorithms: write-through and copy-back.
In the write-through scheme, a processor write to cache memory is immediately
writlen through to main memory as well. Thereflore, the information in both cache
memory and main memory is always consistent. Furthermore in a multiprocessor

environment, it can handle multiple-cache colierence in an easy way. Unlike the
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write-through scheme, the copy-back scheme (without line miss occurrences) only
updates the copies of requested data in cache memory without disturbing main
memory. Whenever there is a line-miss, cache memory copics back the line to be
overwritten to main memory before transferring the requested line to cache mem-
oty. It can reduce traffic between cache memory and main memory. lowever, it

requires more complicated logic; and there is a coherence problem between cache

memory and main memory, and potentially between multi-caches in a multipro-
cessor system. In contrast, the write-through method has higher traflic between

cache memory and main memory since wrile operations vary from 10 percent Lo

30 percent out of total ref depending on processor architecture and the

particular set of appli

The average percentage of write operations in [9)] is
16.

The hit ratio for a cache memory is defined as the probabiliy, or the fraction of
times, that a memory request is found in cache memory. If we define the probability
of all the references to memory as 1, the miss ratio of cache memory is (1-hit

ratio). The hit ratio for a L factors for

e memory is one of the most impo

the performance evaluation of cache memory. Other important factors affecting
the cache performaice are the access time for the cache memory, including time
to search the directory, and the cache memory cycle time, which is defined as the
time the processor accesses information in cache memory. The access time of a
cache memory is aflected nol only by the architecture, or design (including all

the algorithms and parameters selccted in cache design and implementation of the
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algorithms in hardware), but also by the techuology adopted (bipolar, CMOS, cic).

The cache capacity is usually dictated by many factors having to do with the
syslem cost and performance. In general, a large cache capacity can produce
a higher hil ratio, and in turn a better performance. However, there are some
limitations on cache size beyond which cache memory has cither a high cost or
performance decreases due lo Lhe long access lime.

The line size of cache memory is one of the most important parameters which
sensilively affect cache performance. There are a number of trade-offs for a rea-
sonable line size in lerms of architecture and technology. Using VLS| technology,
a larger line size is preferred because it achieves a lower miss ratio without. much
extra cost, But il ilis too large, it increases line transfer time and, in turn, de-
creases system speed even il the hit ratio is increased. [t also depends on the data
path width between cache and main memory.

The cache data path width must be considered during the design process since it
directly determines the time required when aline is transferred from main memory
Lo cache memory. From the point of view of performance, the cache data path
should be as wide as possible. It is clear, however, that cache data path is expensive.
Doubling the path width ineans doubling the number of lines in and out of the cache
and all the associaled circuitry. The path width is critically important to caches
implemented using VLST technology because of the limited number of I/O pins on
achip. Hence, a trade-ofl of the cache data path width has to be made during the

cachie design Lo achicve a reasonable cost/performance,
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Although the use of cache memory in computer systems can greatly reduee
direct references to main memory, memory traflic is still a very significant perfor-

mance factor, especially in o multiprocessor system. Memory traffic consists of

two components: fetch traflic and write-through or copy-back traflic. The feteh
traflic arises from Uie transfer of data from the main memory to the cache while
the write-through or copy-back traffic is from the cache to the main memory. The
fetch traffic can be obtained by multiplying the miss ratio by the line size to get
traflic in byles/reference. The write-through traflic can be caleulated by multiply-
ing a write ratio (the ratio of writes o Lotal references) by the number of bytes per
write operation. Similarly, the copy-back traffic can be determined by multiplyig
the miss ratio by the line size, since a line miss causes writing of an cxisting cache
line in the cache into the main memory before transferring the requested missing

line Lo the cache, For evaluation of a cache-based multi system with a

single bus, a bus utilization can be used to estimate the memory traffic. The bus
utilization is defined as the ratio of time spent doing useful work to the total run
Lime of the bus.

Since decreasing memory Lralfic or transfer Lime during a line miss can increase
the system performance, optimization of the organization of hoth the main memory
and interconnection network is a key factor for high system performance and low
cost. For the interconnection network, a wide data path can reduce the transfer
time, but the cost is much higher. On the other hand, if the main memory is made

up of several modules which can operate independently, traflic can he reduced
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because more than one module can be busy wriling at one time. Furthermore, if
modules can transfer different words in a line by interleaving, transferring a line
from main memory to cache onl: takes one main memory cycle. Thus, the main

memory bandwidth can be increased while the transfer time is greatly decreased.

3.2 The Structure of the Cache Memory

During the design of the cache memory described here, algorithms and parame-
ters used have been sclected carelully, and a number of trade-offs between them
have been made in order to achicve high performance. The cache memory system
described here is implemented as a single chip. Furthermore, this implementation
allows a cache of variable capacity (Jarger than the capacily of a single cache chip)
by using several of the cache memory chips. The single-chip cache memory de-
scribed hiere has a capacity of 8K bytes because of silicon area limitations for the
3 micron CMOS technology. The word size for this cache memory is 32 bits since
this cache is designed for a 32-bit computer system. A word is not necessarily the
simallest unit that the processor can access. The processor can directly access 1,
2,3, or 4 bytes from the cache. Therefore, it provides more flexibility to computer
systems in which the cache is used. It also allows for Lhe possibility that this cache
can be used in 16-bit computer sysiems, provided control signals for the cache can
connect with that of the processor with reasonable additional logic. Two clock
phases, CK'1 and C K2, are employed to pipeline this system. Each of the clock

phases has a minimun cycle period of 36 Is (derived from simulation)
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Figure 3: The Basic Cache Memory Structure
in which the associated processor can read an instruction or data from the cache.

Fig. 3 depicts the structure of this cache memory. It is composed of four basic
components as lollows: the Address Translation Function or Directory, the Line
Replacement Unit (LRU), the Cache Memory and the Control Unit.

During CK1, the address from the processor is latched in the address register
of the cache, and then il is sent to the directory Lo see if the line containing the
requesled datais in the cache, If so, the line number generated by the line number
generalor, the set number from the address register, and the word offset in the
line are all combined to form a word address for the cache memory and latched
into the cache memory register. In addition, the proper byte(s) can be accessed
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by the processor using both the two least significant bits of the address from the
address register and two function bits from the processor, which will be described
later. Mcanwhile, the LRU unit is updated to indicate that the line referenced is
e most recently used one in the given set. During CIC2, a read/write operation
is done. If the requested data is not in the cache, a line miss occurs. The LRU
unit is asked to send the least recently used line number in the specified sel lo the
directory, and the directory uses his number to locate its corresponding line slot
in the specified set of the directory. Then the contents of thisslot are replaced with
the group number and the line number in the address register. After replacement,
the line number generator gives the line number corresponding to Lhis cell to the
memory register to Lransfer the requested line from the main memory lo the cache.
To obtain the line of information from main memory, a linc miss signal is seut to
main memory.  After the cache receives a “bus use” grant from the system bus
controller, the processor is forced to be idle during transfer. There are 8 words
(32 bytes) to be transferred from the main memory to the cache memory during
a line wiss, which would normally take a long time and in turn decreases system
performance. In order to reduce the line transfer lime, the main memory may be
partitioned into several modules, or “interleaved” (in this case, the inemory should
be partitioned into 8 modules). Whenever there is a line miss, the 8 words of the
requested line can then be sent to the cachie memory almost simultaneously, with
each word coming from a separate module of the main memory. Thus, the transfer

lime can greatly be decreased. The main memory organization will be discussed
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later in chapter 5.

3.3 The Address Space Mapping

Since the cache, as the fastest. pari of the memory hierarchy, is much smaller than
the main memory, ticre us to be a mapping function between the cache address
space and that of the main memory. As discussed previously, the direct-mapped
method is the simplest to implement, but it has the highest miss ratio of three
mapping methods. ‘Iherelore, it is not used in this applicetion. Also the fully-
agsociative method requires one comparator per line slot in the directory. This
is costly to implement in a large scale cache meimory. Also, it may introduce an
extra tag-scarch delay and make the scarch logic complicated. T'he sel-associative
method, a hybrid of the direct-mapped method and the fully-associative method,
is used in Lhis mapping mechanism. It involves organizing the cache memory into S
sels of Nlines perset. When A becomes one, the cache is a fully-associative cache
in which there are § sets in total, each consisting of a singleline. If §becomes one,
the organization of the cache is the dircct-mapped cache memory. Since an S-way
sel-associative cache allows any one of Slines in a referenced set to be replaced
on a line miss, this flexibility usually introduces a lower miss ratio without the
complexity of a [ully-associative cache. Thereflore, it is & compromise belween

complexity and performance.
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Figure 4: The Set-associative Mapping
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3.4 The Set-associative Mapping

The principle of set-associative mapping is shown in Fig. 4. The cache memory is
divided into 27 sets with 2° line slots in each, and the sizes of the sets and lines
in the cache memory are the same as those in the main memory. Furthermore the
main memory is partitioned into several groups, and the size of each group is equal
to the size of the cache memory. Ience, cach group contains 27 sets. Bach set
slot in the cache meniory must be shared by several sets of the main memory. For
example, in Fig. 4, the first sel in the cache memory is assigned Lo hold the sets
L142%142 x 29 of the main memory and the second set is assigned to
hold the sets 2,2+ 29,242 x 2%+ and so forth. Lines within a set of the main
meniory are associatively mapped into any of the 2* line slots in the corresponding
set of the cache memory. That is, any sel in the main memory can only be dircetly
mapped to a specific sct of the cache memory and lines in a sel are associatively
mapped into any of the 2* line slots in the corresponding set. Scls from different

groups can be intermixed within the cache memory; therefore not all the s

s of

a given group need to be simultancously resident in the cache memory; similarly

lines in the sets from different groups, which are mapped into the sane

et of the
cache memory, can also be intermixed within that set of the cache memory. E.g.
line 1 of set 1 of group 1 can be assigned to line slot 2 of sel 1 in the cache memory

and line 2 of sel. 1 of group 2 can also reside in line slot 1 of set | at the : Liine.

In the Fig. 4, we can sce thal a memory address is divided into four parts: ud
represents the group number, gis the sel number, s is the fine number and o is the
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word offset within a line.

3.5 Implementation of the Directory

In general, increasing the degree of associativity of a cache memory can decrease the
iss ratio of a cache. Inorder toobtain high performance, an 8-way set-associative
mapping is employed in this directory Lo achieve a hiigh hit rate without the extra
delay ponalty while searching the dircctory. This direclory can map the main
memory address space (32 bit) lo the cache menory address space (13 bit) in a
maximum of 16 nanoseconds, incliding the delay of the LRU unit, determined by
simulation. Fig. 5 shows the organization of the address mapping directory with
set associative mapping. When the processor requests a read/wrile operation, the
logical address is mapped into the cache memory address by searching the directory.
This dircctory has a tag array of 32 scts with 8 line slots in each set. Each set is
represented by arow of he tag array and the 8 lineslots in a given sct arcindicated
by columns of the tag array. Therefore, this direclory is an 8-way set-associative
directory in which each column represents one way.

There is a MAT'C ] signal for each column of slots. If the signal is set, the
requested line slot is in this column of slots. Among the 8 MAT'CII signals,
each of which connects to a column of the tag array, there is only one MATCH
signal valid at any time since only one slot may be selected. All the MATCII
lines are connecled to a line number generator. The line number generalor can

translale the ith column number, at which the corresponding MATC I signal is
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valid, into a binary number i forming the requested line number for the cache
memory. Thal is, the slot at the position in the ith row and the jth column can
produce the line number j of the jth line of the ith set of the cacie meniory via the
line number generator. In each line slot, the group number is concatenated with
the line number (nd+s) of a logical address, which indicates that the specified line
of the main memory resides in the cache line indicated by the line slot. Whenever
a requested set is selected through the 32-bit directory decoder after an address is
latched into the address register, the contents of the 8 line slots in the selected set
are simultancously compared with nd+s of the address register. If the contents of
any one of the 8 line slols arc the same as nd+s, then the requested data are in the
lineof the selected set, and the corresponding M AT'CH signal should become valid
to make the line number generator produce the requested line number for the cadie
menmory. A HI'T llag is also generaled by the line number generator to indicate
thal the requested data are in the cache. The line number is coinbined with the
set number and the word offset in the line from the address register lo form the
required word address of the cache memory. Meanwlhile, the /117 flag informs the
LRU unit to update the records in the selected set. Otherwise, a M IS5 flag is set
to indicate that the requested data are not in the cache, at which time there are

three tasks to be done:

¢ Invoke the LRU replacement unit to find the least recently used line in the
selected set of the cache. This line will be replaced by a new one when the
requested data are available from the main memory.
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o Inform the CPU that it must be idle during the line replacement.
® Request the main memory to transfer the required line to the cache.

Fig. 6 shows a simulation for the tag array of the directory for the casc where
a line niiss occurs during a read/write operation, and the address residing in slot i
of row j is replaced wilh thal in the address register. Signals By to By represent
the nd+s from the address register. SEL; is a signal from Lhe decoder lo select
row jof the directory. A WORD; is a signal from the LRU unit to update the
line slot in row j and column § of the tag array during  line miss; and o F17;
is the ith MATCII live of the directory in Fig, 5, indicating whether or not the
corresponding column is matched. After the tag array is reset by the RES, a miss
(a low HIT;) is produced since the jith row of lags selecled by SEL; is empty. The
signal WORD; from the LRU unit updates the slot in row j and column i of the
directory. Afler a delay of 6 nanoseconds, the HIT; signal becomes high lo indicate
that the updating has been finished. When the signals on By—By are changed to
a new address and the new address is not found in the directory, then the //17;

signal becomes low afler a 3ns delay.

3.5.1 The Line Slot of the Directory

As described L fore, the directory is composed of line slots. Fach of the line slots
is used Lo store Uhe gronp number and line number (nd+s) of a given main memory
address, which indicates Uhat the corresponding line from the main mewory is in
the cache menory. For each line slot, there is a 22-bit built-in comparalor to be
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Figure 6: Simulation of the Tag Array
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used for parallel comparison of its contents with the nd-+s bits of a main memory
address. The organization of a line slot (or line tag) is shown in Fig. 7. There
are 22 bits for nd+s (19 bits for nd and 3 bits for s) and one valid bit. If the
valid bit is reset, the content of this slot cannot be compared with nd+s and the
directory simply sets a line miss. Otherwise, if ROWSEL from the inverted driver
connected Lo the 92-bit decoder is at logical 0, the contents of the line slot are

compared with nd+s to sce if the requested data reside in the cache. If all the

bits of a line slot match the nd+son the lines (B17y, BITy) — (B113, BITy), the
MATCII; signal for the line slot becomes high to turn on the N type device so that
ihe COLATATCI signal is pulled low. 1 any bit of the line slot does not, match
the corresponding bit of nd+s, the M AT'CII; signal for the line slot remains low
so that COLMATCTI is high. If there is a line miss (there is no line slot matching
with nd+s in a sclected set) and that line slot in Fig. 7 is chosen by the LRU unit
as the least recently used line slot, the LRU selection signal LRUSEL becomes
high. Since at this time ROWSEL turns on the pass gate, this line slot is replaced
with nd+s so that the missing line will be transferred from the main memory into
this cache line.

Fig. 8 (a) shows the circuit for one line slot bit. If the ROWSET, line which
is connecled to one output of the 32-bit decoder through an inverted driver is al
logical 1 (meaning this line slot is not selected by the decoder), the M AZ'C11; line

remains low so thal no comparison can be done in any case (it can be considered

to mean “not-match”). If ROWSEL becomes low, this cell becomes a normal
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content addressable memory cell. For a comparison operation, DATA is applicd

on the BIT line and DATA on the BIT line. If the datum matches the value in
the bit, then the match transistor A remains turned off so that MATCH; is high
for this bit. In a line slot, all the M AT'C; lines are cascaded together. 1f any bit
of the line slot does not match the value on the bit input, the match transistor for
this bit pulls down the M AT'CH; line of this line slot, previously precharged by the
validation bit, indicaling that this slot does not match the nd+s. For a replacement

operation, if there is no slob malch at all in the selected set, a line miss has o .

The LRU unit determines which line slot is to be updated with nd+s by asserting
the LRUSEL line for the corresponding line slot in the set selected by ROWSEL.
As shown in Fig. 8 (a), when the LRUSEL line is asserted, the vales on BIT
and BIT change the state of this bit. After a change of the contents of this line
slot, the contents of the line slot always match nd+s. Thus, the COLMATCII
becomes low to cause the line number generator to create a miss line number to
transfer the requested line from the main memory to this cache line. Note that all
the COLM ATC I lines in one columm of the dircctory are wire-ORed. This means
that there is only one M ATCII line for each columm of the divectory. If any one
of the COLM ATCII signals in a column switches to a low value, the MATCI
line of this column becomes low to indicate that one of the line slots in Lhis column

matches the nd+s. The exact position of the line slot in this column is located

by the 82-bit directory decoder. Vor this 8-way set associative directory, there are

8 MATCH lines connecting o the line number generator which produces in tum
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the corresponding line number for the cache memory.

Fig. 8 (b) demonstrates the function of the valid bit. The signal BIT is set to
logical 1 while the signal BTT is sct to logical 0. After applying a resel signal to
the RESET line, the input of inverler B becomes high to discharge the MATCH;
line so that the line slot can not be compared with the nd+s. If the LRUSEL
line is asserted, the input of inverter B becomes low so that the MATCII; line
is charged to make this slot active for comparison when ROWSEL is low. (This
means that the set to which this slot belongs is selected). In this case, the line slot

is valid for scarching.

3.5.2 The Address Register

The address register is used Lo lateh addresses from either the associated processor
or the system address bus in the case of a multiprocessor system. Fig. 9 shows
onc bit of the address register. During the ALE (Address Latch Enable) period
for the processor, (the period when the address becomes stable), the address from
the processor, imposed on inputs AB of the register, is latched in this register.
When the cache receives a search interrupt SEARC I INT from other caches, the
clock pulse generator of the control unit produces a pulse CK'1'. During CK1’, the
address imposed on the AB lines from the other cachie through the address system
bus is latched in tis register for an update operation. After being updated, the
cache returns the address before the update operation to e address register during

a pulse CK2' generated by the clock pulse gencrator. AU initialization, the Tesel
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Figure 10: The D-type Rising-edge-triggered Flip-flop
signal from the processor resets the register. This register is composed of 32 D-
type rising edge triggered flip-flops. Fig. 10 (a) shows the logic circuit for this
D-type flip-flop. Note that the delay until an address is valid is merely the signal
propagation time in the D flip-flop. Fig. 10 (b) is the timing diagram for the D-type

flip-flop.
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3.5.3 The 32-bit Decoder for Set Selection

An address decoder is an essential component for set sclection in Lhe set-associative
directory. A decoder has n inputs and 2" outputs. One and only one output will
have a value of logical 1 for each combination of input values. In principle, a
oune-level decoder could be any number of inputs using 2" gates with n inputs.
Unfortunately, in practice, the fau-in limitations and propagation delay require
that a large decoder be organized into a multilevel network.

This 32-bit decoder is used Lo decode 5 bits of the set number from the address
register. The inputs of the decoder are the 5-bit set number and its complement
directly from the address register. The outputs have 32 bits and at any time only
one bil has a value of logical 1. "I'he decoder consists of a 16-bit decoder and
32 2-input NOR-gates as shown in Fig. 11. A 2-input NOR-gate is preferred for

the last stage in the multi-level network to allow fast rise time [20]. Address bits

Ag— Ay and their complements 7 — A are imposed on the input lines of the 16-bit



(A0, AD) = (A3, A3)

Figure 12: The 16-bit Decoder

decoder while address bits Ay and Ay are sent to the 16 2-input NOR-gates at the
second stage of the decoder, respectively. Outputs of the 32-bil decoder DAy to
DAg, are sent to the directory lo select the corresponding set. The 16-bit decoder
is illustrated in Fig. 12 (a) where the 4-input NOR-gates are employed. The -
input NOR-gale is implemented with pseudo-nMOS logic as shown in ¥ig. 12 (b).
There is only a single p-type transistor in the circuit, with the gate connected to
Vis. Use of pseudo-nMOS technology can decrease the arca and delay time of the
decoder since the number of the slow cascaded p-devices is reduced from four to
one. The transistor sizes are ratioed carefully Lo ensure correct logic function and

high speed. A simulation for the 82-bit decoder is shown in Fig. 13, in which the
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time delay is approximately one nanosecond.

3.5.4 The Line Number Generator

‘The circuit for the line number generalor is illustrated in Fig. 14. The function
of Lhe line number generator is to translate the line numbers of the cache memory
from “one-hot, code” (or hot code), composed of 8 MATCH lines from the dircctory,
into binary code. In a “hot code” number, there is at most one bit at logical 1;
‘Table 3 is the truth table for the 8-bit “hot code™ and its corresponding binary
code. Each bit of the complemientary “hot code” corresponds Lo one of 8 malch lines
ColMalcho~ColM atchs from the dircctory. I all 8 bits of the “hot code” are zeros,
then none of the match lines is at logical 0. In this case, the line number generator
produces a LINEMISS. 1 any one of the ColMalch signals is logical 0 after
comparison, the generator turns oul the cerresponding line number of the cache
memory in 3-bit binary code on the ontput lines LIN Fy to LIN Ey; meanwhile,
HIT is asserted. This binary line number is latched into the line register of the
memory register during ALE', immediately following. The layout of this circuit is
shown in Fig. 15. A simulation for this circuit is shown in Fig. 16 in which the
Lime delay for a valid signal is seen Lo be about 2 nanoscconds.

From the simulations, the total delay before turning out a valid cache address
by the directory for both the miss and hit situations is shown in the Table 4. (The
abbreviation LNG stands for the Line Number Generator.) If the requested data

reside in the

he, the required delay of the directory is about 14ns (Decoder +
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1lot Code Binary Code
0fofofofojojojo| LineMiss
ojojofojojofo|l1]Of0O 0
ojojofojojojlfojofo 1
ojojofofojifofofo]l 0
0jojofoj1jojofofo]l 1
Ofofoj1[{ofojojOj1}|0 0
Ojojifojojofofofljo 1
OfL]ojojojojofjojt]L 0
Ljojojojojojojofi)t 1

Table 3: The Truth Table Relating the “Hot Code” and the Binary Code

Operations Ior A Line it Operations For A Line Miss
Component Name [ Delay Time(ns) || Component Name | Delay Time(ns)
Decoder I Decoder 1
Tag Array | comp. 3 Tag Array | _comp. 3
update updale 3
[ LRU [sendback LRU [ sendback 2
update 8 update
LNG 2 LNG 4
"Total 14 Total 16

Table 4: Time Delay for the Directory

Tag Array[comp.] + LNG + LRU [updale]). Since the updating operations of the
LRU unit can overlap with the directory search for next read/wrile operation (note
that the cache is pipelined), the actual delay can be less than calculated above. If
there is a line miss, the total delay is at least 16ns (Decoder + Tag Array[comp.]

+ 2LNG + LRUfsendback] + Tag Arraylupdatd).
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3.6 The Line Replacement Unit

In a cache system, one of the related problems is to predict which sets of addresses
alrcady bulfered in the cache memory will be needed furthest in the future because
it would then be possible to determine the optimum line Lo be replaced by a new one
from the main memory, Since this algorithmn is based on future knowledge of the
program’s behavior, it cannot be realized in a practical cache memory. Therefore,
some approximation must be made to this ideal. In the cache system described
Liere, the least recently used line replacement (LRU) algorithm is employed. Under
this strategy, the line to which any memory references were made the longest time
ago is replaced by a new one. This algorithm is based on the assumption that the
line which was referenced the longest time ago is the most likely not to be used in
the near future; it relies on the temporal locality of reference characteristic of most
programnis.

The unit shown in Fig. 17 consists of 32 LRU cells which can be selected in-
dividually by the 32-bit directory decoder. 1t is organized into four rows, with 8

LRU cells per row. During initialization, the BES signal resets all the LRU cells.

In general, both Delay and WRITETHRU are high so that all the N-devices
coanceting to these signals ate closed while all the P-devices are open. Under this
coudition, the 117 signal can be propagated through the N-devices directly to af-
fect all the H17'(d)’s. If there is a signal 117" from the line number generatorafter
searching the directory during a read/write operation (the requested data reside

in the cache), one of the 32 LRU cells selected by the 92-bit decoder is updated by
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8 signals from the directory, cach one corresponding Lo one line number slot of a
given set. (The outputs of this LRU cell are locked by a low MISS.) Mcanwhile,
the H I'T signal also passes the nMOS pass-transistor to gates of both devices A
and B since WRITETTTRU is high. The internal wires connecting the outpuls of
8 pairs of devices A and B Lo the outputs of the LRU cells remain low regardless
of the status of ALLZERO’s shown in subfigure I of Fig. 17 since the N-devices B
are closed to discharge the wires, making all 8 output wires to the directory at high
level after the inverters. “Thus, the directory can be prevented from updating. If
HIT becomes low alter the directory is searched (thal means a line miss occurs),
the M 1SS signal is high so that the LRU cell selected by the direclory decoder can
send the least recently used line slot number of a given set Lo the directory while
the corresponding M1IT(d) signal is low to prevent the LRU cell from updating.
Meanwhile, the low signal /11T switches devices A on and B ofl through the N-pass
transistor controlled by WRITETITRU. The 8 internal wires are charged by de-
vices A immediately. These wires are connecled to one LRU cell selected by SEL
from the decoder. As shown in subfigure I, the transistors controlled by the result
of ANDing the signals M 1SS and SEL are now closed so that the 8 internal wires

can be used lo evaluate values on the 8 ALLZEROs of the given LRU cell. Only

one of 8 ALLZETO's in the LRU cell is low to indicate that the corresponding line
is the least recently nsed line in the selected set of the cache. So, the corresponding
wire is charged high while other wires are held low by passing charge 1o ground

tirough the two cascaded nMOS pass-tra

istors in subfigure 1. The active (high)
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internal wire is inverled to update the associated line slot, and the remaining keep
their line slots in the given st of the directory unchanged. Note that transistors
A and B are balanced with those shown in subfigure | so thal the operations are
reliably completed in minimum time.

In Fig. 17, it is scen that if DELAY is low, the unit is prevented from updating

by cutting off the I1IT" signal. Also if WRITETTIRU becomes low, the unit is
prevented from both updating itself and changing line slots in the directory by
lolding the outputs to the directory high until the signel WRITFTITRIT rises
DELAY is designed to handle the situation that, during a read /write operation,
the LRU unit may otherwise e updated incorrectly hefore the directory turns out.a

valid result for 117" "This is hecanse at. the beginning of an operation the

irectory

decoder selects both a given LRU cell and a corresponding row of the tag array.

During the period that the tag array scarchs for a line slot in the specilicd row in

which the requested address resices (the fine number generator has not turned out

avalid HIT for this operation aud the signal 1117

ands at a high level at this

timie), the status of the LRV cell may be changed by the invalid signal 1117, For
instance, assuming that, before ALE is asserted, Ue ontput of the 92-bit decoder is

8and I11T is logical 1. When ALL is asserted, a new address whose set number is

10 s latched in the address register and broadcast to the decoder immediately. The
oulput of the decoder (here it is 10) is sent simultancously to both the tag array,
tosee if the requested data reside in the cache, and the LRU unit, either to update

¢in the corresponding set, or to

the corresponding LRU cell if Ure requested data
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send the least receutly used line slol number to the directory if the requested data
are missing. Because scarching the directory takes more time than propagating
the signal from the 32-bit decoder to the LRU unit, the LRU cell corresponding to
set 10 is updated before the line number generator turns out a new result for /117"

since the old HIT still remains effectively at logical 1. This results in an error!

The signal DELAY is used to provent the LRU unit from being npda

As shown in Fig. 17, when DELAY is high, all the N-pass transistors connected
to DELAY through an AND-gate are closed, while the P-pass transistors are open,
to maintain all the Z/17(d)’s the same as the signal £/17" from the line number
generator. Once DELAY becanies low, the N-type devices are open and the pathes
to HIT(d)’s are cut off while M/1SS"s remain as TTTT. Meanwhile, the P-type
devices are closed to charge the inverters so that J/IT(d)’s are discharged via the
inverters to prevent the LRU cells from being updated. After a period during which
the line number generator produces a valid resull, DELAY changes to logical 1 so
that the LRU unit can correctly operate depending on the valid signal £17. Thus,

correctly updating of the LIRU unit dusing a read/write operation is ensured. The

valid period of the signal DELAY is an inverted 4-nanosecond pulse, which is long
cnough for a search of the direclory and a valid result of the /11T signal Lo be

comne stable.

The I.

A

signal can be produced by an one-shot circuit, as shown in Fig. 18,
which can produce a narrow pulse from a wide pulse. When the input V; of the

cireuit is imposed logical 0, the inverter precharges capacitor C through resistor
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Figure 18: The One-shol. Circuit
R. Meanwhile, because the 2-input NAND-gate is locked by V;, the output of the
NAND-gate remains ligh so that the output V; is high. Whenever V, is changed
from 0 to 1, since the NAND-gate input connecting to lthe capacitor still remains
high, the cutput of the NAND gate causes V, to become low immediately. After
the capacitor C is discharged below the threshold of the NAND-gate, the output
of the NAND-gate becomes high regardless of V; so that the outpat V is pulled up

to logical 1 by the buffer. T'he period of the inverted pulse of the circuit output is

determined by the RC (resi ilance) product. Resistor IUis implemented

by a polysilicon wire while capacitor C is formed by an N-device gate. In order to
produce the DELAY signal, ALE is imposed on V;, and the output of this circuit
is a 4-nanosecond pulse of DELAY .

The WRITET H RU signal is used to ensure that the status of the LRU unit
remains unchanged during an update operation required by other caches in a mul-

tiprocessor environinent. That is, whenever there is an update request from other

caches, the cache musl not. change the contents of both the directory (if the data

Lo be updated are not found in the cache) and the LIRU wnit. (if tie data are in the
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enche). For an update operation, if the requested data are found in the cache, the
cache only updates the data without changing records in the LRU unit; otherwise,
the cache does nothing lor this request, llence, a signal WRITETITRU from the

miss circuit is used to handle this situation. Whenever there is an update request,

the miss cireuil produces the WRITETHRU signal. The signal WRITETITRU

loc| s in the LRU unit from modification. This

s the 117 signal to prevent rec
operation is similar to that of DELAY. Mecanwhile, it is also used Lo lock the path
to the directory to prevent the dircctory from canging if the requested data are
ot found in the cache. That is, during an update request, the WRITETT RU
signal becomes low to lock the nMOS pass transistor and turn on the P-type de-
vice Lo charge the gates of transistors A and B. Thus, P-devices A are opened
while N-devices B are closed to discharge the 8 internal wites so that the outputs

1o the directory remain ligh to prevent the directory from heing wodified dusing

‘T'he output. structure of the LRU unit is organized in this way because of the
output delay time. Since the internal wire propagation delays caused by the dis-
tributed resistance-capacilance product are large and the capacitive load on cach
wire is heavy (each wire is connected to all the 32 LRU cells), simulations show

that the use of standard ('MOS design technignes can not obtain high speed.
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3.6.1 One LRU Cell

Fig. 19 shows one of 32 LRU cells which is selected by the 32-bit decoder. Each
cell corresponds 1o a sct of the cache. An LRU cell is an 8 x 8 binary matrix in
which there are no bits on the diagonal. Both the row number and the columm
number represent the line number (indicated by Iy to /7 from the directory in
Fig. 19) in the sel selected by the 32-bit decoder. Each matrix corresponds Lo a
set in the directory. Changes in the state of a matrix are controlled by the update
control cireuit of the LRU cell. When HIT(d) from the directory is high, the
requested line resides in the sei selected by SEL from the decoder. ‘The control
circuit simultancously updates the states of the row and the column indicated by
the line number. Assuming that the ith line in the sclected set is requested and
the line is in the cache, all the bits of the ith row of the corresponding matrix are
changed to 1 to record the fact that the corresponding line was the kst one wsed
while all the bits in the ith column of the matrix are resel to zeros to decrease

the number of 1's of other rows: The number of I's in a row represents the used

times for the corresponding line. The largest number, all-one’s, indicates that the
corresponding line is the most recently used while the smallest number, all-zero's,
is the least recently used. In cach row, 7 bits are compared. 16 and only if all the
bits in a row are reset to logical 0, the corresponding ROWMATCH line is high.
In turn it makes the corresponding signal ALLZERO of this row low, when both
SEL from the 32-bit decoder and M1SS from the line number generator are logical

1, while 7 other ALLZERO's remain high.
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Figure 19: Structure of an LRU Cell

For example, Fig. 20 shows an LRU cell which is a 4 x 4 matrix. Both the rows
and the columns are numbered from 0 to 3, which represent the line numbers. The
initial status is shown in Fig. 20 (a); line 1 is the most recently used one since the
number (here it is 3) of 1’s in row 1 of the binary matrix is the largest while line
0 is the least recently used one because the first row is all-zeroes. After reference
to line 2, the matrix is updated as shown in Fig. 20 (b), line 2 becomes the most
recently used one by setting row 2 full of ones while line 0 still remains at the last
position in order after resetting the column 2 full of zeroes. Similarly in Fig, 20
(c), after reference to line 0, the order of the lines changes to 0, 2, 1 and 3. Now

line 0 becomes the most recently used one after row 0 is set full of ones while line 3

63



0 123 012 3 01 20
o|=jojojo o|=fofo]o ol
aNEan 1 tfefof1 1|of-lo]t
2 1fof]1 (ARNEE 2 (ojti=]t1
af1]ofo]~ a(1]o]o]~ alojofa]"

Initial State Reference To 2 eference Tu 0
Order: 1,2,3,0 2,1,3,0 0,2,1,3

() () m)

Figure 20: An Example of the LRU Algorithm
becomes all-zeroes after column 0 is witten full of zeroes (o decrease the mmbers

of all the rows except row 0.

ected set of the cache is the

Itis clear that the least recently used line in the sel

one for which the row s entirdy cqual to 0 and the column is entirely equal to 1.
Thaefore, if a line miss occurs in that set, the LRU cell specified by both S£ 7. and

M IS8 sends the least recently used lineslot number to the divectory. Insome cises

are zeros

more than one row can be all-zeroes, for example, initially all the row.
after RESET. This means that not all the lines in the selected st of the cache
memory are full. In this situation, the output control which is composed of NAND
gates in Fig. 19 is used to pass the line whose number is the smallest of all the
unused lines in the set as the least recently used line by pulling down its ontput
ALLZERO and to lock other unused lines by maintaining their correspondding,
ALLZERO high. Whenever an output is low (meaning that the line slot ninile

implied by this bit is the least recently used line slot mumber in the given set), it



locks all other outputs which follow by NANDing all the ROWM ATCIH signals

logically behind it. Fig. 21 shows the layout of an LRU cell.

3.6.2 Omne Bit of the LRU Cell

The logic of one bit of the LRU cell is illustrated in Fig, 22. Thebit cell used in the
LRU cell is a variation of a static memory bit. If a signal imposed on ROWSEL
is high, inverter B is pulled down to 0 while inverter A is brought up to 1. Thus,
the MAT'C I signal hecomes low by closing the MATCII transistor. On the other
hand, il the COLS EL line is asserted, the A inverter becomes low and B is high.
‘I'he MATCII transistor is open so that the signal MATCH of this bit is high.
Note that the signals ROW SEL and COLSEL must not be asscrted at the same
Litme, to prevent this bil from being placed in an indeterminate state. In an LRU
cell, all the MATC I lines and all the ROWSEL lines of the LRU bits in a row
are connected in series, respectively, and all the COLSEL lines of the bits in a
column are connected in serics. A row can be selecled by I; from the dircclory
when both /11T and SEL are high. If all the MATCH lines of the bils in a row
are high, implying that all the bits in the row are at logical 0, the ROWM ATCII
line of this row becomes high to indicate that this row has been set to all-zeros.

The cache line corresponding to this row may be the least recently used line (the

least recently used line in a given sel is indicated by a low ALLZERO signal of
the given LRU cell), depending on whether any of the rows logically before this

one have high ROWMAT'C Hes.



Figure 21: Layon! of the LRU Cell
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Fig. 23 shows a simulation result of the LRU unit. The signals [rom /y to /-

8 input lines from the directory and Op to O; are & vutput lines to the directory.
After the signal RESN is valid (low), the unit is reset. [t can be seen in the
simulation in Fig. 23 that all the LRU unit outputs 0, to O are high escept O
‘This nteans the cache line implicd by the low Op output is the least recently used
line after initialization, although at this time all the rows in a given cell are 7eros.

since the first row indicates the smallest line number in the given set. When 1117

is logical 1 (note that the low H I'T signal implies that M /7SS is high) and [ is
high, the Rirst row of a given LRU cell is updated to allones. At this ¢ ime. thets are
no outputs on thie output lines (from Og to 0;) of the LRU unit. which indicar ~

that a line miss occurs. During M [55, the outputs of the LRU unit are walid. lu
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Figure 23: Simuiation of the LRU Unit
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this case, O; becomes low, which indicates the first row has been updated and the
line indicated by the second row in the given cell is the least recently used line.
After the 3rd row is updated to all-ones during I, when MISS is asserted again,
the least recently used line is still the line indicated by the second row. It can be
scen that at the sccond M 7SS the LRU unit produces a low output at Oy, Then
after updating the second row by asserting 7y, the LRU unit produces the least
recently used line, during the next M 1SS, implied by the 4th row whose output
is Oa. From the simulation we can see that the delay time for a valid output is
about 3 nanoscconds. Note that the signal DELAY N in the simulation is used as
the result of ANDing DELAY and WRITETHRU to prevent the LRU unit from
being updated.

In this chapter, cache algorithms are surveyed. CMOS implementations of
algorithms selected for this cache design such as the 8-way set-associative mapping
and the least, recently used algorithms are discussed. A bit-matrix method is used
to simplify the implementation of the LRU algorithm in CMOS. The functions of

the Directory and the LRU Unit have been verified by circuit simulation.
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4 THE MEMORY AND CONTROL UNITS

Oune of the most imporlant parts in a cache is the cache bulfer, or data storage,
which is used to store the most up-to-date data. Its main [unction is similar Lo that
of a small, high speed random access memory. Another is the control unit which
determinns the internal and external timing of the cache, controls the funclions
implemented in the previous chapler, and provides the communication functions

required for a multip or uni envi This chapler discusses

the design and implementation of both the cache buller and the control unit used

in this project.

4.1 Structure of the Memory

Fig. 24 shows the structure of the cache memory in which a row represents one
line, with 8 words per line and 32 bits in each word. The row number is in the
range 0 to 255. An 8-word line size was chosen for Uhis cache memory, assuming
that the associated main memory is partitioned into 8 modules which can transfer
a requesied line to the cache by interleaving. This main memory organization is
fore suitable for a multiprocessor systemm,

A cache memory address is divided into two parts; one part containing the sci
and line numbers is used Lo select the specific line in the cache memory through
the memory decoder while another part, (the offset) in the register/counter is nsed

to determine which word or byte(s) in the selected line is (are) accessed.
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Figure 24: Structure of the Cache Memory

In thiz system, the smallest element the processor can access is not a word but

a byte. There are 4 sizes of data which can directly be accessed by the processor
- one, two, three or four byle blocks. The size of the data to be accessed by
the processor is determined by a combination of the two least significant bits of
the requested data address, Ag and A, and the two function bits, ¥} and Y3,
which come from the processor, During a processor read fwrite operation, when the
requested data reside in the cache memory, the cache will either send the requested
data to the data bus or store the data on the data bus into the cache, depending on
the

specific operation of the processor. Tn Uhis case, Uhe register,/counter performs

like a register. "T'he word offsct of the address vegister is laiched in this special
register, and the requested word is sclected via the column decoder of the memory.

Otherwise, the miss flag is set Lo indicate that the requested data are not in the
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cache. During a line miss, the least recently nsed line in a given set of the cache
memory is overwritten with the requested line from the main memory. In this case,
the register/counter bucomes a counter, controlled by the T RANSF E R signal from
the main menory, o choose each of the 8 possible word offsets in the seleeted line
in the increasing order (from 0 to 7). For each tine at which a word offset is chosen,
one of the 8 words in e requested line from the main memory is written Lo the

corresponding location. "The main memory sends 8 words of the requested line, by

interleaving, for a miss request. Fach word being tr

sferred is accompar

ed by
a valid pulse of the TRANSW RT signal, which is used to increment the connter
and to require the bus control cireuil to pass a word on the data bus to the cache

memory during transfer.

4.1.1 The Cache Memory Register

The cache memory register is composed of Lwo parts: one is the line memory

register and the other is the counter/register. Fig. 25 illustrates one bit of the line
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her and the set number of the

wmemory register which is used for both the line n
cache memory. A D-type flip-flop is employed. The signal for latching a cache

memory address into the memory register, including both the cache line register

and the register/counter, is also described in this figure. Latching a cache memory
address in the memory register occurs under two conditions. The first condition
is that during a read/write operation, the corresponding cache memory address
has to be latched in this register alter searching the directory. If this condition is
satisfied, the ALE' signal produced by the clock pulse gencrator is asserted. e
second condition is that when there is an update request from other caclies and

the requested data are found in the cache, the elock pulse generator produces two

pulses CK2" and CK'2” for Lhis request. The C K2 signal is used to lateh the cachie
address corresponding to the requested data during the update operation. After
the operation, CA2” returns the address residing in the memory register before the
operation. Whether or not the requested data reside in the cache is indicated by the

LI 1SS signal from the line number generator, after searching the directory

during the update request. Thus CA2' has Lo be ORed with LINEMISS to form
the latehing signal for the update operation. Note that ZTNEMISS is produced
by the line number generator. It differs from the A°1.SS signal from the miss flag
which is used to inforim the main memory *hat the data requested by the associated
processor are not in the cache.

The logic circuit for the counter/register is illustrated in Fig. 26. It consists

of 3 D-type falling-cdge-triggered flip-flops which are organized as a synchronous
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counter shown in Fig. 26 (), but it can operate as both a counter and a register in
different situations. The logic function block for this circuit is depicted in Fig. 26
(b). The initializing signal, system RESET or COUNTCLIR from the transfer
deconposer et direns, The word oitios of svaddresson dreait inpus
Dy = Dy and Ty = T can be latched from SET’s and RES’s of the D-type flip-

flops. respectively, when the LATCI signal is active; LATCI is creatod when

there s either a hit, during a read/write operation, or an update request from other
caches. The 3-bit outputs Oy — Oy and Oy~ 0 are sent Lo an 8-bit memory column
decoder implemented with cight 3-input NOR-gates, in a way similar to the 16-bit
decader deseribed previously, When there is a miss, the low LAT'CH signal locks
the data inputs of this circuit and TRANSWRT, from the transfer decomposer,
is imposed on CA of the counter alter COUNTC LI resets the counter/register.
A Uhis time, the counter,/register behaves like a counter. When each pulse of the
TRANSW RT signal is imposed on G of the counter, the outputs of the counter
are not changed until the falling edge of the pulse. Thus, when a word is transferred
into the memory during each pulse of the TRANSW RT signal, the corresponding
word offset sclected by the memory column decoder cannot be changed, which
guarantees 8 words of the requested line are transferred into correct places in the
memory. The layout. of the memory column control, including the counter/register
and 8-bit column decoder, is illustrated in Fig. 27 and its simulation is shown in

Fig. 28.

T'he circuit of the transfer decomposer is shown in Fig, 29 (a). Since the number
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Figure 29: Circuit of the Transfer Decomposer
of pins on this chip is limiled, the TRANSFER signal from the main memory
consists of two parts: the first narrow pulse is used to clear the counter, and the
following 8 wide pulses are used to write a line on the data bus into the cache
memory, one word per pulse. The decomposer divides the TRANSFER signal
into COUNTCLR which clears the counter and TRANSW R which drives the
counter from 0 to 7 and the the bus driving cireuit during a bus grant indicated by
the BUSACK from the system bus controller. Initially, the D-type falling-cdge-
triggered flip-flop is reset so that its output @ is logical 1. @ is fed back to the D
input of the fip-flop. When the first pulse of the TRANSF I R signal (used for

clearing the counter) enters the circuit, it is gated through NOR-gate A to create a
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Figure 30: "I'he 256-bit Memory Decoder
valid COUNT'CLR signal since the other input of the gale is logical 0 al this time,
while ’RANSW RT is invalid (low) because the 2-input NOR gate B is locked by
Q. When the falling edge of the first pulse of TRANSFIR passes gate A, the
flip-flop changes its state. A transition from 0 to 1 of its output @ locks NOR-gate
A; meanwhile, NOR-gate B hecomes unlocked to allow the following pulses of the
TRANSFER signal to get through NOR-gate B lo the output TRANSWRT.
After transfer of a requested line from the main memory to the cache memory, the
cache control unit produces an inverted pulse TRANSDONTE to resel the D flip-
flop at the transition of BUSACHK from 0 to 1. Fig. 29 (b) is the timing diagram
for operations of the transfer decomposer during the transfer of a requested line

from main memory.



4.1.2 The 256-bit Row Decoder

This 256-bit decoder is used to decode 8 bits of both the set number and line
number from the memory register simultancously, 5 bits for the set number and 3
bits for the line number. It can produce 256-bil outputs, but ouly one bit of all
the outputs is logical 0 at any given lime, to be used Lo select one out of 256 rows
of the cache memory. The outpuls of the decoder are connected to the inverted
row drivers of the memory. The decoder consists of two 16-bit decoders discussed
previously and 256 2-input NAND-gates as shown in Fig. 30, 'The simulation for
the 256-bit decoder in Fig. 31 only shows the first 32 outputs of this decoder. 'rom

the siimulation, there is about 2 nanosccond delay for the decoder stage.

4.1.3 The Cache Memory

A fast static memory is used in the cache memory unit rather than smaller but
slower dynamic memory, which also needs to be refieshed.  Fig. 32 depicts the
organization of the memory. It is split into four memory arrays, two arrays in the
upper tow and two in the lower row. Both the upper row and lower row arrays
are connecled to outputs, ROWSEL's, of the 256-bit row-decoder through the
inverted row drivers. Intermediate bulfers are used between two memory arrays at
the samne row. When there is a ROWSEL signal aclive, Lwo arrays in the same row
are selected simultancously. Memory organized in this way can reduce delay time
and in turn increase the memory access speed. Fig. 33 shows any four adjoining

memory bils in an array along with their column selection circuits. The circuit for
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column selection, one for cach column of the memory, is quite simple; ouly two pass
transistors are connccted to the BI'T and BTT lines of memory cells in that column,
respectively. Note that 32 column selections (one word) are driven simultancously
by one bit of the memory column decoder during access to one word. Therefore,
a total of 256 column selections are formed as eight groups by connccting them
to 8 output bits of the memory column decoder, respectively. Consequently, one
memory array has two groups, each containing one word. Only the cells selected by
both row and column selecions can be accessed. Fig. 33 shows four static CMOS
RAM cells. Each RAM cell consists of two inverters wired together to make a flip-
flop; they are connected by two nMOS pass transistors to the BIT and BIT lines,
respectively. During a read operation, the conducting side of the flip-flop pulls the

precharged data line (BIT or BIT) toward ground through the pass transistors
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Figute 31: The Data Bus Control Circuil ;
while the other side remains high. Wiiting is accomplished by lorcing the value in

the cell to be the same as thal on Lhe data lines.

4.1.4 The Data Bus Control Circuit N

The data bus control circuit is shown in Fig. 34. The data bus driving circuit has
32-bit dual-port input/output drivers. It is split into 4 components, each of which

can control access Lo oue byte. The operation of each is controlled by

a pair of read and wrile control signals: (%, W;). There are four pairs of control
siguals, (To, Wo), (T, W1), (T2, Wz), and (75, Wa) gencrated by the gate circuil.
As mentioned previously, data in the memory can be accessed as one, Lwo,
three or four byles, respeclively, using combinations of Yo, ¥4, Ap and Ay (Ao and
A; are in the two least significant bits, bit 0 and bit 1, of the address register).

During normal read/wrile operalions of the processor, both TRANSW RT from
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Figure 35: One Bit of the Gate Circuil

INPUT OUTPUT
IHEAEREN FARAEN
0fo0 010 0 010 0
0fo0oj0]1 0]90]07]0
ojojf1]a@ 0j]0j0]o0
ojojf1j1 0ojfojojo
0Of1jofofoflojofl
Of1fof1 fofoflfoO
01 110 0 1[0 0
0]1 011 1 0fo]0
1]ojvuvjo 0071 1
110410 1 0 [l 0
1[0 1{o0 1 L{o0fo
110 1 1 0Jojo]o
1)1 0410 1 1 1 1
Lfrttoftr o]t
1[1 1 0 1 i 1 0
Ljtjtjirfojofoju

‘Table 5: The Gate Control Functions



the transfer decomposer and UPDAT EW RT produced by the cache control unit
for updating data requested by other caches are not asserted (both of the signals
TRANSWRT and UPDATEWRT' are logical 0). Therclore, signals Zo — Z3
produced by the gate control circuit dominate the read/wrile operations of the data
bus control components via the gate circuit. There are four subcircuits producing
W; and T in the gate circuil. Fig. 35 shows one subcircuit of the gate circuil.

A memory write operation is determined by the condition that there is either a

wrile operation required by the associated p a transfer jon during a

line miss, or an update operation caused by an update request from other caches.
If any of these operations is needed, the 1WTU signal from the 3-input OR-gale
is asserted so that if any Z; is logical 1, and the corresponding write control bit
TV; is gated out to control an 8-bit data bus driver to allow writing the data on
the external data bus into the cache memory. If there is a read request from the
processor, Ti; is valid, causing the corresponding bus drivers Lo pass the requested
data from the cache memory to the outside data bus. Note that the operations of

write and read are exclusive, so there is no case that W; and T; are asserted at the

same Lime. The truth table for the signals Zy to Zy is shown in Table 5.
After simplifying the functions specified in Table 5, we have the output func-

tions, Zo — 73, as follows:

Zy = MYy + A, + A VY (1)
Zi = WY+ Ao Yo+ Agkoly (2)
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Zy = ANYi+ AAYs 4 Ao Yo + Aoy 3)

Zz = Ao¥oli + MAY: + Aoy

These functions can be implemented efficiently by PLA. The logic circuit for

the gate control functions implemented in PLA is illustrated in Fig. 36. The inputs

Lo the circuil are the two lcast significant bits from the address register and two
function bits, and their complements if needed. “The outputs of the PLA circuit,
Zo 0 Za, are NANDed with the result of NORing T'RANSW RT' for transfer-write
of a requested line and UPDATEWRT for update-write, to produce the outputs
Zy \o Zs. During a write operation both TRANSWRY and UPDATEW RT' are
at logical 0 so that the values of Zo to Zs are determined by Lhe outputs of the
PLA circuit. If either TRANSIW RT or U PDAT EWRT is asserted, Zy o Zy are
sct high to force the bus drivers Lo overwrite one word (32 bits) on Lhe system data
bus into the cache memnory. The layout of the gate control and gale circuit is shown
in Fig. 37, and Fig. 38 shows the simulation for these circuits.

The data bus driving circuit is partitioned into four components, each for con-
trolling 8 bits. A component is used Lo control 8 bils of the data o be written into
or read out of the memory. Fig. 39 illustrates one bit of a component. There is a
write logic block and a read logic block for cach bit of the data bus driver. The
write logic is shown in Fig. 39 (a). When W is low and W; is high, the value on the

DATA line is galed onto the BIT line and the BIT lines. Note that

os of the
transistors in this circuit are large enough to write data into the memory at high
speed. On the other hand, the read logic shown in Fig. 39 (1) is more complicated
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Figure 38: Simulalion of the Gale Logic
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since the signals from memory cells are usually weak. Therefore, there have Lo be
amplifiers to increase the signal strength for the memory cells. This read cireuit
is a two-stage amplificr which delects the state of a memory cell, ‘The first stage
of the amplifier is a differential sense amplifier which can sense small differences
between voltage levels on the BIT and BIT lines from the memory and amplify
this Lo provide very fast sensing. The second stage is an inverter which provides
further driving capacity and makes the rise time and fall time of the DAT A signal
shorter. Note that the diflerential sense amplifier is evaluated while the READ
signal is active. In order to obtain a correct output rapidly, the sense amplifier is
precharged through transistor A to eliminate the charge-sharing cffect during no
read operations. Simulations for both the write and read logic control of a com-
ponent are shown in Fig. 40 and Fig. 4). In Fig. 40, when WRITE is high and
READ is low, dala on the DATA lines are gated to the BIT lines. The delay
time is about 3 nanoseconds. In Fig. 41, when W RIT is low and READ is high,

data on the BIT lines are quickly placed onto the DAT'A lines.
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4.2 The System Control Unit

"The system control unit is used to control all the communications among cache
memory and Lhie assogiated processor, the main memory, as well as the multiple
caches in a multiprocessor system. ‘Iiercfore it is the most important part of this
cache memiory system. In terms of the communication operations, this unit is
logically partitioned into theee parts: the normal read /wrile operation, he update
operation, and the miss operation. In this section, more details about the functions

of these three parts will be described.

4.2.1 The Licgular Read/Write Operations

In order to control the different operalions, the clocks and ALE have lo produce
several clock pulses. A elack generalor is used for this purpose. First, let us
discuss the circuil in Iig. 42 (a), the single pulsc producer. This circuit produces
one complete pulse and its complement on the cireuit ontputs @ and @ from a
sequence of pulses on /N after recciving an inverted pulse on CP. 'The beliavior of
Uhis circuit is as follows:  is nitially at a high level since the 2-input NAND-gate
input connecting to the flip-flop through nMOS pass-Lransistor A s low regardless
of IN. When there is an inverted pulse ou TP, the output of the flip-flop connected
Lo pass transistor A is sel Lo logical 1 and it in turn enables the 2-input NAND-gate
since the pass transistor is closed by the high @ signal at this time. If IN has a
transition from 0 to 1, § becomes low, and it in turn both locks pass transistor

A and resets the flip-flop. Although the flip-flop is reset, the NAND-gate input
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connected Lo the pass transistor remains at logical 1 because the path to the input
of the NAND-gate is blocked by pass-transistor A. Therefore, the signal at IN
passes the NAND-gate to @ and Q. When the IN signal makes a transition from
1 10 0, the @ signal changes to logical 1 from logical 0, which relcases the pass
transistor A so that a low output from the lip-flop is imposcd on the NAND-gat :

inpul via Lransistor A. Thus the 2-input NAND-gate is locked so that the following

pulses on /N canuot be propagated to outputs @ and @. The Li diagram in

Fig. 42 (b) depicts Lhe operation of this circuit.

Whenever there is an update request from other caches via Lhie system bus, the
update circuit produces an U PDATE signal to inform the cache Lo update with the
data on the system bus. In this case, the clock generator produces several pulses

to accomplish the update operations. The circuit in Fig. 43 (a) is used to produce

a pair of pulses CI'1" and CKT" from CIK1. At the beginning of C K1, the circuit
always checks if there is an UPDATE sigual. If the UPDATE signal is found Lo
be low after this check, CI1" is st low while CK 1 is set high. Otherwise, the high

signal UPDATE is locked by a P-type pass-lransistor on the input of the NAND-
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gate so that during CK1 any change of the UPDATE signal cannot allect the resull.
of the circuit, and CK1 is gat=d out to creale both CK1’ and CKY.. llence, even
il UPDATE is changed during CI1, the pulse from CK'1 still passes the 2-input
NAND-gate to make CK'1 and CKY’ be complete pulses. Furthermore, the pulse
generaloralso produces other control pulses for an updale operation using the pulse
producers. Thiree pulse producers are employed Lo produce pairs of signals CK1"
and CR1", CK? and TKZ, as well as CK2" and TR2" by imposing dilferent.
signals on inputs of he circuils, as shown in Fig. 43 (b), (c), and (d), respectively.
CIK 1 is used to latch addresses [rom the system bus into the address register during
an update request; CK?2' is to latch the corresponding cache addresses from the
directory into the memory register to update the requested data. CK1” and CK2"
are used to return the addresses which reside in both the address register and
memory register before the update operation into the respective registers after the
update. The pulse producer also generates an ALE' pulse, as shown in Fig: 43 (¢),
to latch a valid cache address from the directory into the memory register during
a normal processor access. In order Lo produce ALE', ALE is imposed on TP of
the pulse producer while CK?2 is present at IN. Fig. 44 shows a timiing diagrem
for the pulse gencrator in which we can see the relations among Uhese signals.
Note that all the inputs from the processor are controlled by the chip select TS
signal from the associated processor. The cache memory can be accessed only when
the cache is selected by the processor with CS. The update operations, however,

are not controlled by CS. "This makes the cache memory used in a cache-based
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computer system more (lexible.

4.2.2 The Update Operations

When the cache is used in a multiprocessor system, there must be a “bus watcher”
to walch the system bus to sce i Uhere are any ollier cachies requesting Lo update
copies of data. The circuit in Fig. 45 is designed for this purpose. If there is
an update request on the system bus, the bus update watcher must interrupt the
cache to update the data in the cache at the proper time. The proper time should
be when either an access by the processor to the cache is finished or the cache is

waiting for the system bus, in the cases of a write operation or a line miss. The

finish of an access can be detected by a high W/R signal which can be obtained
by NORing W and R from the processor. A request from the cache for use of the
system bus can be made by BUSREQ from the bus control generator. Initially,
flip-flop A and Nlip-flop B are resel when SEARCII is at logical 0, and UPDATE
from the bus update walcher is at logical 0. (Thal means the circuil does not
work as long as SEARCI is al logical 0.) Flip-flop A is a R-S flip-flop while
flip-flop B is a falling-edge-triggered D-type flip-flop. Whenever there is an update
request from other caches, the SEARCHINT signal is gated in so that SEARCH
becomes high when BUSBUSY is low which indicates that the cache memory is
nol usnig the system bus. The oulput of the exclusive-or (XOR) gate has a level
transition from 0 to 1 since the value of the XOR-gate input I is logical 0. The

output of the XOR-gate passes through the 3-input AND-gate to both C P of flip-
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Figure 45: The Circuit of the Bus Update Watcher
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flop B and the 2-input AND-gate since the other inputs of the 3-input AND-gate
(SEARCI and @ of flip-flop B) are at logical 1. Since flip-flop B is falling-edge-
triggered, tl.xc state of the flip-flop is not changed at this time so that CP from
flip-flop B is high. The result of the 3-input AND-gate is gated through the 2-input
AND-gate to UPDATE if cither a cache access is finished or the cache needs to
use the system bus (Uhat is, cither RJW or BUSREQ is logical 1). Then, the
UPDATE signal becomes valid. This mea.is the update operations can only be
done when cither the cache memory is not used by its associated processor or the
cache is waiting for use of the system bus. The UPDATE signal may be fed back
to clear the R-S flip-flop in the case that the data to be updated are not found in
the cache during the update operation, in which case LINEMISS from the line
number generator becomes valid. In turn, a change of the XOR-gale from 1 to
0 triggers the D flip-flop since the D of flip-flop B is always logical 1 (@ transits
to logical 0); and this causes the UPDATE signal lo become logical 0. In this
case, the cache does nothing since the data to be updated do not reside in the
cache. If the data to be updated are in the cache (LINEMISS is low), flip-flop
A is not reset until CK2' is asserted, then UPDATE is pulled low. When the
SEARCHINT signal changes from 0 to 1, both flip-flops ate resel simultaneously,
which means one update operation is finished. Fig. 45 (a) also depicts a dual-
direction switch which can cither gate in an update request on SEARCITINT
from other caches, or gate out an update request on UPDATEREQ (rom the bus

control generator to other caches via the system bus. The dual-direction switch
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consists of two transmission gates controlled by BUSBU SY and BUSBUSY from
the bus control generator. When BUSBUSY is high, U PDATEREQ passcs one
of transmission gales onto m while the other trausmission gate locks
the path between SEARCHINT and SEARCH. When BUSBUSY is low, the
signal on SEARCHINT from the system bus passes the gate to SEARC 1 while
the path to UPDATEREQ is locked by the BUSBUSY lines. Fig. 45 (b) shows
a timing diagram for the bus update watcher. From the diagram we can see the
operation of this circuit for two cases: one when no updating occurs and the other
when updating occurs. In the first case, the data to be updated are not in the
cache. in this case, the UPDATE signal has a shorter valid period and is resel to
logical 0 by LINEMISS as shown in the timing diagram. In the second case, the
data reside in the cache memory. I this case, the period of the U PDAT E signal
is longer and U PDATE is cleared by CK?2'. The longer UPDAT'E signal is used
to produce an UPDATEW RT signal for writing the da!.a on Lhe system bus into
the cache memory.

The circuit in Fig. 46 (a) is used to produce the U PDATEW RT signal which

overwrites the data to be updated if the data reside in the cache. CR2' latehes the

UPDATE signal into the rising edge-triggered lip-flop if the U PDATE signal has
a long period. The UPDATEW RT signal is locked for the duration of C'K2' by
an inverter clocked by CK2! since Lhe updating write has lo wait until the 256-bit

memory decoder finishes its operation. Meanwhile, the DAT'ACONTROL signal

is sent off the chip to control the path to the system bus. TR27 is used Lo reset
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Figure 47: The Miss Circuit
the flip-flop and in turn UPDATEWRT. The timing diagram of this circuit in

Fig. 46 (b) shows the operations described above.

4.2.3 The Miss Operations

As discussed previously, there is a circuit which create. a M 1S5 signal when there

is a fine miss during a read/write operation. The MISS signal is produced by

the miss circuit shown in Fig. 47. In Fig. 47 (a), initially, a high W2T i RU
signal forces the pass transistor to be closed so that the high-level ZTINEMISS

signal from the line number generator (which means 117 is high) can be imposed
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on an input of the flip-flop while another input of the flip-flop connected to the
transfer clear circuit remains high. At this time, the output M 1SS of the circuit is
low. If there is a I/ IT caused by a regular operation from the associated processor
and there are no update requesls from other caches (in this case, WRITETH RU
is high), the state of the flip-flop remains unchanged. If there is a line miss, the
TINEMISS line is low so that the flip-flop scts its output MISS high. The
MISS signal is used to make a request that the use of the system bus be granted
to transfer a missing line from the main memory, and in turn the main memory
responds to this signal by sending the requested line, along with the TRANSFER
signal, Lo the cache after the system bus arbiter grants the cache the use of the
system bus by sctling BUSACK of thal cache valid (logical 0). A this time
TRANSDONE from the tranfer clear circuit still remains high until BUSACK
makes 2 Lransition from 0 to 1 which indicates that the linc transfer is finished.
Then the transfer clear circuit produces the TRANSDONE signal, a narrow pulse
of about 4 nanoseconds, to reset the flip-flop so that the M 1SS signal changes from
11to0.

As we have scen, the M 1SS signal is used lo inform the main memory of a
line miss. Note that not only a read/wrile operalion can cause the line number
generator to produce a LINEMISS signal il the requesied data are not found
in the cache but also an update request from other caches in the multiprocessor
system requires that a LINEMISS signal be generated. These two kinds of line

misses must be handled in different ways. The way the first situation is handled
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has been discussed previously. For the sccond situation, absence of the data to be
updated in the cache should not cause any changes in the cache. Therefore, in this
case, the state of the miss flag should not be changed as a resull of scarching the
directory cven though the search indicates the requested data do not reside in the
cache. On other hand, if the data to be updated reside in the cache, the cache only
updates the requested data without changing the status of the cache. Thus, thre
lias to be a circuil to eusure the cache contents are not changed during an update
operation except for replacing the data to be updated in the cache if the requested
data are found. In order to handle this case, the circuit shown in Fig. 47 (b) is
employed to produce the IWRITETHRU signal which prevents the miss flag and
other components of the cache from changing during an update operation. For the
miss flag, the WRITETITRU signal is used to lock the path between the flip-flop
input and LINEMISS to prevent the miss flag from changing the M1SS signal by

the LINEMISS signal during an updat. ion. As di d previously, CK'1’

and CK2" are produced for an update operation. CK'1” latches the address for the
update into the address register and CK1” returns the address before updating
into the address register. Ience, the WRITETITRU signal must be at logical
0 to guarantee that the miss flag is not changed during the period between the
beginning of C 1" and end of CK 17, This circuit employs a rising-edge-triggered D
flip-flop. The flip-llop is triggered by the rising edge of the CIC 1" while UPDATE
is high. TRT7 is used Lo clear the flip-flop before the next update request and

to lock the pass transistor to guarantee that the WRITETT RU signal remains
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unchanged until the end of CC17 even though the flip-flop is reset by CRT7. The
operation of this circuit. is shown in the timing diagram of Fig. 47 (c). Note that
the WRITETH U signal becomes low at the beginning of CIC1” and returns to
the high level at theend of CK1".

The bus control generator in Fig. 48 generates a number of signals used for
communication with the processor and system bus controller. In Fig. 48, 1 and
W come from the processor and are used Lo access lo the cache memory. W
is sent to the bus update walcher lo check the update request on the system bus.
Only when both 1V and R are low is the signal T/T7 set high. When ALE from

the processor is asserled during a wrile operation, the W signal from the processor
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is latched into flip-flop A (called the write flag). A request BUSREQ for nse of
the system bus can only be made by cither a write operation (known by the state
of the write flag) or a line miss (indicated by the miss flag as long as llip-llop
B, the bus busy flag, is reset). In the case of a line miss, BUSWISY is high.

while BUSBUSY is low, so that BUSREQ is low. The signal BUSREQ is scenl

out to request the use of the system bus. Note that at this time BUSBUSY s
invalid (logical 1) since there is not a valid BUSACK signal from the system bus
controller. After the cache sends the signal BUSREQ to the system bus controller,

the bus controller responds to the cache request for the use of the systen bus by

generating a low BUSACK signal to inform the cache that it can nse the system
bus as soon as the system bus arbiter makes a grant to this cache, Onee a valid
BUSACK signal (low) from the bus controlleris received by the cache during (12,
the bus busy flag latches BUSACK and in turn makes BUSBUSY low (o reply
to the bus controller that the cache memory is using the system bus. Meanw hile
‘BUSBUSY also eliminales the bus request made before by pulling wp BUSREQ.

The high BUSBUSY signal can gate out the MISS signal from the miss flag to

form a new signal ATTSSEXT and Jor the signal from the wrile flag 1o transinit
UPDATEREQ to the system bus. If only the miss flag is set. it means the caclie
memory is doing a miss operation caused by a read operation. Ifonly the write flag

is set, the cachie s doing a write-through operation for a write operation. 1Fhotlh the

miss flag and the write flag are set, the cache is working on a miss operation caused

by a write operation. When the miss flag rises, the valid MTS signal is sent
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Figure 49: The Update Request Clear Circuit
valid MTSSEXT signal is sent out Lo inform the system bus o satisly the miss
operation during BUSBUSY'; and when the write flag is held, the UPDATERLQ
signal causes a SEARCITTNT signal Lo ask the main memory and all other caches
to update the data on the system data bus. Furthermore, there is another signal
CACHEBUSY (o be sent out to inform the processor Lo be idle under certain

conditions. The conditions which make CACHEBUSY valid are the following:
1. to update other caches (UPDATEREQ),
2. lo be updated by other caches (UPDATE),
3. to have a linc-miss operation (AISS),
4. to request the use of the system bus (BUSREQ).
If the write llag is sel by W, it has to be resel by C' for next operation after a

certain period, during which the cache does a write operation.
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The circuit in Fig. 49 (a) is employed to produce a clear signal T to reset
Uhe write flag. Iuitially the output @ of the falling edge-triggered D flip-flop is
at logical 1 to lock the 2-input OR-gate so that the output T is high. If there
s a high UPDATEREQ signal before the beginning of a pulse of CK2 (nole
that UPDATEREQ can only begin to be high during CK2, see Fig. 48), the
UPDATEREQ signal remains on the D input of the flip-flop until the end of the
CI62 pulse even though the U P DATEREQ signal changes during the C K2 pulse.
The first pulse of CK2 passes the 2-input NAND-gale to produce an inverted pulse
on one input of the OR-gate while L is also imposed on the input C' P of the flip-flop.
During this pulse, T is not changed since § locks the OR-gate, The falling edge of
the first CK2 pulse latches the high UPDAT EREQ signal into the flip-flop which
makes @ switch from 1 to 0. Thus, after the first CA'2 pulse, @ is low so that
the 2-input OR-gate now becomes active. During the second pulse from CK2, the
inverted pulse from CK2 passes the 2-input OR-gate to make the clear signal C
valid while CK2 is imposed on CP. The T signal rescts the write flag to stop the
UPDATEREQ signal. The U PDAT EREQ signal is changed from 1 to 0 to end
the updale request on the system bus. Note that the low UPDATEREQ signal is
not reflected on the D input of the llip-flop since it does not get through the pass
transistor until the end of the second C'K2 pulse so that the T signal is complete.
Al theend of the CK'2 pulse, the flip-flop is reset by the low UP DATE REQ signal
lo make @ logical 1 which locks the T signal again. The operation of this circuit

is shown in the timing diagram of Fig. 49 (b).
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Fig. 50 (a) depicts a special circuit called read valid circuit which is used to
create a signal READVALID to inform the processor that the data on the data
bus are the data requested during transferring a missing line Lo the cache. The
processor can reccive the data from the bus without reading the data from the cache
memory after transfer of the missing line. Thus the delay time for transferring a
missing line for a read operation is decreased. During the transfer of a missing line,
the counter/ register operates as a counter. For cach pulse of the TRANSFW RT
signal from the transfer decomposer, the counter increases by 1. The 3 bits of
the counter are compared with the corresponding bits, bit 2 to bit 4 inclusive, of
the address register simultancously. 10 all 3 pairs of the comparator inputs nrc:
matched, the output of the 3-input NAND-gate is logical 0 at point A. If the line
miss is caused by a read operation (READ is high), the inverted TRANSFWRT
signal arrives at point B. In this case, the READVALID signal is valid (low level).
‘This READVALID is sent to the associated processor, and when the processor
receives the READVALID, it reads the data on the data bus immediately. ‘I'he
comparator consists of three complementary XOR-gates. Fig. 50 (b) shows the
logic circuit for one complementary XOR-gate. The output becomes high only if

two inputs of the circuil have the same values. The operation of the read valid

cireuilis illustrated in Fig. 50 (c).
In this chapter, Uie memory and control wnil ate designed, implemented and

simulated. Eliminating both cache rewriting during a wrile miss and data bypass

to processors during a read miss will reduce line-transfer time.
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5 USE IN A MULTIPROCESSOR SYSTEM

In a large modern computer system where there are often several independent

processors with a shated memory, ition between i 1 pr

for access to the shared memory may become a serious problem since s

of the

high speed processing elements may try to reference the shared main meniory at the

same time. The performance of such multiprocessor systems is limited by the speed
and bandwidth of the bus and the main memory. A key to efficient operation is to
reduce both network traffic and dircct references to the main memory. “The long
memory reference latency caused by the network can be greatly reduced by the local
memory for each processing clement since the majority of references to the main

memory can be captured by a local memory such as a cache memory [9, 10]. Fig. il

a typical cach systemn with a shared memos
(2 Y

which cach processor has an attached cache memory. Although the nse of caclies in
a multiprocessor system can greatly reduce the bus traffic and speed up the syston.
such a system can cause a coherence problem because multiple copics of data in
the shared main memory will likely reside in several different cuchios at the sane

time.

5.1 The Coherence Solution Strategy

Since the use of mulliple private cache memories can caus ache colierenee

problem, a reliable strategy must be found to keop data in the systent coleron.
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Figure 51: A Typical Cache-based Multiprocessor System
Many different solutions have been proposed for this problem (5, 8, 10, 12, 14]. A
memory system is coherent if the value returned from a read in the system reflects
exactly the last value written in the referenced address by any processing clement.

There are two kinds of data incolierence

1. After the data in caches ate updated by the processing elements, they are

not consistent with those in the main memory.

2. Multiple copics of a given line of data can exist in several caches; updating
any copy of this line by a processing clement will cause the values in caches

associated with other processing elements lo be obsolete.
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To eliminate the first case, a write-through policy is chosen in this system Lo
keep the information between the main memory and caches consistent. Whenever
there is a wrile request for a given address, Uie copies of the requested data in
both the cache and the main memory are updated simultancously with the new

value. This scheme has some advantages [5]: first, it can be implamented without

complicated logic. Second, constant updating of both the cache and the main
memory at every write request keeps the information in the main memory always
consistent with that in the caches. Ilence, if there is a wrile request for an address
that is not in the cache, the system can simply transfer the requested line from the
main memory lo the cache to salisly the request of the processing clerent using
a replacement policy without writing-back the old line before it is replaced with
the new one since the data in main menory are always clean. Therefore, it is an
eflective way to handle this type of colierence problem in a multicache system with

a shared main memory.

In the second case, an updating algorithm is I rather tan invalid

That is, whenever there is a write request Lo a cache from the processor, Lhis request
will be broadcast to all the caches in the system to cause cach one Lo scarch for
any copies of Lhe requested data, If there are any, they arc updated while the copy
in the main memory is rewritten. Otherwise, nothing is done in the caches. The
major drawback is thal it does not tend to minimize communication network and

main memory traflic caused by write operations and forces all the caches Lo do

update operations, even copies of the data to be updated do not reside in most of
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the caches.

In this system, the write-through policy and updating are combined as an algo-
rithm wrile-through with updaling to handle both coherence situations. Whenever
there is a write request from a processor, this request is broadeast to all the caches
to inform the caches Lo update the data being written, if applicable; meanwhile,
the main memory will reccive Lhe correct value for the data. The write-through
with updating is based on the expectation that, if the data are actively shared, the
caches that have copies of updated data will use the copies hefore they are purged.

Data can be classificd as shared and unshared as well as readable and writable
[10, 15]. The data are defined as shared, including readable or writable variables, if
they currently reside in more than one cache, while the term unshared data means
the data can only reside in one cache at any time. Therefore, there are four kinds

of data:

1. Shared read/write data are the data which can be cither read or written by

several processors al the same time, such as shared read/wrile variables.

e

. Shared read-only data are those which can only be read by several processors,
such as shared only-read variables and instructions (assuming that programs

are not, selt-modifying).

©

. Unshared read/wrile data, meaning the data can only be read or written by

one processor at any time.
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4. Unshared only-read data are defined as those which can only reside in one

cache at any time.

This policy is more appropriate for the case where much of the shared data
(a number of caches share the same data) is to be processed concurrently among
processors. When a processor rewriles the shared data in its cache, the copies in all
other caches are updaled immedialely so that other associated processors do not
necd to transfer the updated data from the main memory when they have to use the
updated copies. An example to illustrate that this policy is efficient is management
of the comnion shared queue, It is assumed that this queue with a semaphore exists
in each of several caches at the same time. When one of the processors intends Lo
update the queue, it first checks the semaphore to see if the queue is being used
by the other processor. If the queue is not used, the processor sets the semaphore
in the corresponding cache. Meanwhile, this updated semaphore is broadcast Lo
update the semaphore in all the caches, to prevent the quene from being used by
any other caches at this time. After updating the queue, the processor resets Lhe

phore. The reset iphore is also broad to update those copies in other

caches. If the queue is used by any of other caches, the processor must wait until
the semaphore in its cache is reset. Another example is the calculation of the sum
of products of two sequences of numbers: SUM = A/ By + AyBy + -+ + Anliy,

and the corresponding program is as follows:
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SUM :=0;
fori=:1to N do

SUM = SUM + A(i) » B(i);

Assume that there are N processors for this calculation, the variable SUM is
shared and there is a semaphore initialized. To execute this program concurrently
with N processors, first, all the processors compute prodiicts of two numbers (that
is, processor i calculates A(i)+ B(i), | <i < N), and the results are stored in their

corresponding local variables. Then the interimediate results are added together by

serialization. Any one of the p intending to add its i liate result
into the global-shared variable SUM must check the semaphore to see if it has been
set by another processor. If so, the processor must wait until SUM is released by
the operaling processor by reseting the semaphore. Otherwise, the processor sels
the semaphore to prevent SUM [rom being updaled by other requesting processors
at this time, and then adds its local intermediate result into the SUM variable.
“The result of the addilion is broadcast (caused by the write operation for the SUM
variable) to all other processors, updating their copies of SUM. T'hen the processor
resels the semaphore for the next sum operation to be done by one of the other

requesting processors. Finally, in all the caches, there are consistent copies of SUM
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which may be used for the next parallel calculations. Unlike this updating policy,
the invalidating policy simply invalidates all the copics of SUM in other caches
as the operating processor writes the partial result into the copy of SUA! in its
cache. Thus, when any other processors want Lo continue the following operation
of the sum, they have Lo transfer the correct partial result of SUM from the niain
memery before doing the sum operation. Ilence, in this case, the updating policy
is more efficient than the invalidating policy.

Vor write-through with updating, it scems that low miss ratios will increase the
probability that cach of the updated data in the caches can be used before Lhey
are purged since low miss ratios indicales fewer purges of cache lines. Therefore, a
larger size and a higher set associativity of the cache are preferred for this policy .
On the other hand, this policy incurs the cost of updating all the caches for each
write operation, and only a few updated copies may be used by respective caches
before the lines containing the copies are removed for requested lines. The worst
case for this policy is that no updates are uscful for other caches; this happens,
for example, when all the processors execute independently their own processes

without use of shared data.

5.1.1 The Protocols between the Bus and the Cache

In this cache system, there is a mechanisin for the cache to communicate with
the system bus; an asynchronous single system bus is assumed. Generally, the

cache has to communicate with the system bus in three cases; the first is a write
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Figure 52: Communication between the Cache and Bus for a Wrile Operation
operation in which the cache has to send the data to be written onlo the system
bus to update both other caches and the main memory, the sccond is the transfer
of a wissing line in which the missing line is transferred to the cache via the system
bus, and the third is an update request from another cache.

Fig. 52 shows a Liming diagram for a write operation. In the diagram, all the
control signals are aclive low except those from the processor, like W, WRITE,
and ALE. When W is asserled, the processor is doing a write operation on the
cache, along with a valid address on the address bus of the cache. ALE latchs the

address into the address register of the cache memory. After searching its directory,

the cache system makes a bus request BUSREQ for the use of the system bus to
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the system bus coutroller. Meanwhile, the cache checks SEARCHINT to sce
if there is an update request from any of other caches during BUSREQ. II the
system bus grants the system bus to Lhe cache via the bus arbiter, BUSACK is sel
low which removes the request BUSREQ. Now the cache sends out the bus busy
signal BUSBUSY, along with the address and data on the systen bus, Lo reply Lo
the bus controller that the bus is being used. Since this cache combines the write-
through policy and an updating algorithm to simplify the control, it also signals
an update request SEARCTITNT onto the system bus to have all other caches

do an update operation. After a two-cycle period, the cache removes the request

SEARCHINT, which make the bus controller invalidate BUS

. Invalidation
of BUSACK clears the signal BUSBUSY, and the cache informs the processor
that the write operation has finished, which will make the processor remove W
for next operation. As soon as the bus controller reccives a BUSBUSY signal, it
selects one bus request from a bus request queue by sending a valid BUSACK to
the selected cache.

Communication between the cache and the system bus for a line miss is more
complicated than that for a write operation. Fig. 12 illustrates the communication
operation between the cache and the system bus for a line miss caused by a write
operalion. When the cache receives a write request from the processor, it makes
a bus use request BUSREQ to the bus controller since the data do not reside in
the cache. After the cache detects BUSACK, it removes BUSTEQ and sends out

BUSBUSY to Lhe bus controller, requesting use of the system bus. Meanwhile,
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Figure 53: Communication between the Cache and Bus for a Line Miss
it also gates out the updating request SEARCHINT to all other caches and the
main memory and the transfer request MTSSEXT to the main memory. After the
update operation for a write request, the main memory issues the requested line,
accompanied by the TRANSFER signal, to the cache. As soon as the transfer
operation is finished, the main memory informs the bus controller so that the bus
arbiler clears BUSACK. The high BUSACK signal in turn removes the requests

BUSBUSY and M1

XT. The cache will inform the processor to terminate
the write operation by making CACHEBUSY high. Nole that there is no need

to update the requested data in the cache memory since the line, being transferred

from the main memory, contains that data updated.
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Figure 54: Communication for an Update Operation

1 2 line miss is caused by a read request, no SEARCITNT signal is required,
since no update operation is necessary. Only the line transfer operation is done,
as shown in Fig. 53. Note that the shared main memory typically consists of
interleaved modules so that a requested line can be transferred in a short time.

Communication between the cachie and the bus for an update operation is shown
in Fig. 54. When the processor sends a read request R Lo the cache, along with
the requested address 4; on the address bus, the cache does the read operation.
After the read operation is finished (indicated by change of I from 1 to 0), the
cache allows the updating address on the system bus to reach the cache address

bus and latches this address into the cache address register for the directory scarch.
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At Lhe same time, the cache reads out the data Dy (Corresponding to A;) during
the first pulse of the READ signal, since the cache is pipelined. During this time,
the cache informs the processor Lo wait for one cycle. In this cycle, the cache can
determine if the data to be updated are in the cache or not, and at the end of
the cycle the directory has finished and is ready for the next request. Therefore,
in the next cycle, the processor sends the second read request, and the directory
is searched for the sccond request while the cache memory unit is updating the
data requested for the update operation on the cache data bus if the updating data
reside in the cache. In the following cycle, the cache sends the data to satisly the
second read request of the processor. Since the cache does not intend to use the
system for read operations, BUSREQ, BUSACK, as well as BUSBUSY remain
high during the update operation. Note that the address and the associated data
for the update operation are placed onto the cache address bus and data bus from
the system address bus and data bus, respectively, under the control of four signals

which will be discussed in the following section.

5.1.2 The Protocols between the Processor and the Cache

In order to communicate with the processor in some special cases, the cache has
asignal CACHEBUSY to inform the processor, which is directly connected with

the cache, to be idle. The conditions for a valid signal are:
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1. Occurrence of a line miss or an update request to other caches.
2. Updaling of the cache.

3. Waiting for use of the system bus (the system bus is being used by another

cache).

Whenever any of these three conditions are true, CACITEBUSY is valid, which

makes the processor remain idle until CACHEBI

is fnvalid. low long the
processor is idle depends on the particular condition; for example, updating the
cache needs at most two cycles.

Because of the limited number of pins on a chip, this system has only 32 pins lor
addresses and 32 pins for data. These pins are used by both the processor and the
system bus. Therefore, the addresses both from the processor for access operations
and from the bus for updating of the request data have Lo be latched in the address

register of the cache at different times. This is realized by two bi-directional switch

arrays, BSAL and BSAZ, as shown in Fig. 14. Each array has two parts, part |
for the data bus and parl 2 for the address bus. BSAI is used to control the path
frem the cache bus (both the address bus and data bus) to the processor; BSA2
controls the path from the cache bus to the system bus. The control signals are
from the cache, and they are based on different conditions.

Usually BSA1 is on and BSA2 is off since most of the time the cache commu-
nicates with its processor. During a write operation to the cache, the data being

written are broadcast on the bus lo update other caches and rewrite the main
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Figure 55: The Processor Subsystem
memory after the cache system reccives the BUSACK signal from the bus con-
troller, while SEARCIHINT is sent onto the bus to inform other caches and the
main memory. BSA2 switches on al this time to gate the dala and address to the
system bus. After the write operation, BSA2 returns to the off state. When there
is an update request on the bus, the system has to do the update operation. BSA1
switches off to cut off the path to the processor while BSA2 turns on to connect

the path Lo the bus for the update operation. Alter updating, the ar return to .

their original states.
If there is a line miss caused by a read operation and if the data is in the

main memory, the requested line is transferred from the main memory to the

124



cache, one word at a time by interleaving. In this case, BSA2 is on while BSAL
is off. Furthermore, once the transferring word on the bus is the word needed by
the processor, the signal READV ALID is gencrated by the cache to inform the
processor to take the data on the bus to satisfly the processor instead of reading the

requested data fromn the cache after the full line has been transferred. If the line

miss is caused by a wrile operation and the cache is granted use of the bus, first
BSA?2 swilches on while BSAL remains on, to gate the data dircctly onto the bus.
Both the other caches and the main memory are updated. Then BSAT switches
off Lo cut off the path to the processor so that the updaled line is only transferred
to the cache via BSA2, without updating the requested data in the cache alter
transfer. Thus the delay for transferring a new line during a line miss can be
decreased for both read and write operations.

The four signals, ADDBUS1, ADDBUS2, DATABUS|, and DATABUS2,
control operations of the BSA1 and BSA2 described above. The ADDBUS1 signal
controls operations of the address bus of BSA1 while ADDBUS2 determines op-
erations of the address bus of BSA2. Also DATABUS1 is uscd to control the data
bus of BSA1, and the DATABU 52 signal is used Lo control the dala bus of BSA2.
The timing diagram for operation of the signals for communication between the

cache and the processor are shown in Figures 57, 58, and 59 in the next section.
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5.2 External Interface

"To be used in a cache-based computer system, the caclie needs to interface to other
components in the computer system, including the associated processor, system

bus, main memory, che. This section contains a brief description of the cache 1/0

signals and Liming.

5.2.1 The Interface Signals

‘T'he cache’s external interface has 86 signals as shown in Fig. 56. A summary of
the pin functions is given below:

Ay — Ay, Address bus lines {input). During execution of the write/read op-
eration, these inpuls are Lhe address from the associated processor via part two of
the Bus Switch Array 1 (BSA1). During execution of an updale operation, they
contain the address from other caches in the multiprocessor system through part
two of the Bus Switch Array 2 (BSA2).

Dy — Dy, Data bus lines (3-stale, bidirectional). These signals provide the
data path between the cachie and the processor as well as the system bus. The
data bus can transmit and accept data using the dynamic bus sizing capabilities

of the cache memory; the dynamic data size may be one, two, three or four bytes,

pending on the data requi During exccution of Uhe write/read operation,
these inputs/outputs are the data from/to the associaled processor via part | of
BSAL  During exceution of an updale operation, Uhey contain the data to be

updated by this cache from other caches Uhrongh part 1 of BSA2.
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Yo, Yi, Accessed data size (input). These inpuls from the processor indicate
sumber of bytes of the data being accessed in one processor access cycle (See the
previous scction).

W, Write operation (input, active high). This signal indicates to the cache that
the operation s a wite operaion.

R, Read operation (input, active high). 1 is used to indicate a read operation.

Wrrite, Write strobe (input, active high). This signal is used o write the data
on the data bus into the cache. If the write operation causes a line miss, this signal
dees not appear.

Read, Read strobe (input, active high). This signal is used to read the data
requested by Lhe processor frota the cache. If the read operation causes a line miss,
this signal docs not appear,

ALE, Address latch enable (input, active high). It indicates that the address
on the address bus is valid, and is used to latch the address into the address register
of the cache.

€K1, Clock phase 1 (input, active high). 1t is used to generate cache control
signals and pipeline the cache.

CN'2, Clock phase 2 (input, active high). It is used to gencrate cache control
signals and pipeline the cache.

C8, Chip sclection (input, active high). This signal is used to indicate if this
cache is sclected during processor operations. It is very useful for multiple cache

chips used in a computer subsystem,
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RESET, Syslem reset (input, active low). It clears the internal logic of the
cache memory.

Voo, System power (nput). It i a 45 valt potier supply.

Ves, System ground (input).

‘BUSREQ, Bus request (output, active low). This output is asserled Lo indicate
that the cache requests use of the system Lus.

BUSACK, Bus grant acknowledge (input, aclive low). This signal indicates
that the system bus now is granted for use by the cache.

‘BUSBUSY, Bus busy (output, active low). T'lhis output indicates to the system
lus conbroller that the cachie is wing Ve syster bus:

SEARCITINT, Scarch interrupt (bidirectional, active low). If there is a write
operation, this signal is an output which informs the main memory and other
caches to update the dala on the system bus. Otherwise, il is an input which is
checked by the cache to sce if there is an update request from other caches in the
multiprocessor system.

MTSSEXT, Line miss (output, active low). It indicates that the dila ve-
quested by the processor are not found in the cache and asks the main memory to
transfer the missing line to the cacle.

TRANSF ER, Transfer of a missing line (inpul, active high). This signal from
the main memory responds Lo the request for transfer of a missing liue Lo the cache,
It is used to wrile the missing line into the cache.

CACHEBUSY, Cache busy (output, active low). This signal is used to inform
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the processor to be idle when it is valid.

ADDBUS1, Address bus control 1 (outpul, active high). This signal is used
to control part 2 (for the address bus) of BSAL. BSAL is employed to control the
cache bus path to the processor (Sec the previous section).

ADDBUS2, Address bus control 2 (outpul, active high). It is used to control
part 2 (Tor the address bus) of BSA2. BSA2 is employed to control the cache bus
path Lo the system bus.

DAT'ABUS1, Data bus control 1 (output, active high). This signal is used to
control part 1 (for the data bus) of BSAL.

DAT ABUS2, Data bus control 2 (output, active high). This signal is used to
control part 1 (for the data bus) of BSA2.

TESTIN, Tesl data input (input, active high). It is used Lo shift out the cache
memory addresses for testing only. 8 pulses are input for each address.

TESTOUT, Test data output (output, active high). It is used to shill out the
cache memory addresses for testing only. The outpuls are an 8-bit sequence of a
cache line address from bit. 0 to bit 7. After one lesting pulse input from TESTIN,

onie bit of the cache line address can be obscrved on TESTOUT.

5.2.2  The Timing Operations

As described previously, operations of the cache can be divided into five types:
normal read, normal write, read-miss, writemiss, and update operations. The

operations of these Lypes can be depicted by Figures 57, 58, and 59. Fig. 57 shows
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Figure 57: A Timing Diagram for Read/Write Operations
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liow the nomial read and wiite operations, including update operations required
by other caches, are processed. The operations on the left hand side of the figure
are the read operations with an update operation, while on the right hand side are
the write operations with an update operation. We can sce that the operations
are pipelined from the figure in which A1, A2, etc. are an address sequence on
the address bus while D1, D2 ... arc the corresponding data scquence on the data
bus. The valid period of the SEARCHTNT signal libeled Receivingis is for the

civing an update request from another cache on

cache Lo update the data alter v

SEARCIINT, and the period labeled Sending is used to send an update request.

onto the SEARCIHINT line. The address labeled UD is an address for updating
and similarly the dala labeled UD are the data being updated. Fig. 58 illustrates
the signal operations of the cache during a line miss caused by a read operation.
The data labeled 0 o 7 on the data bus are eight words of the missing line obtained
from the main meniory by interleaving. Fig. 59 shows operations during a line miss
caused by a write operation. In the figure, the period labeled Updating Operation
is updating the cache during the request for the use of the system bus caused by a
line miss. The period labeled Send An Updaling Request is used to send the data
to be wrillen and the corresponding address on 1o the system bus for updating
olher caches and rewriting the main memory. The period labeled Line Transfer is

transferring the miss line from the main memory into the cache.

134



5.3 Consideration of the System Bus and Main Memory

A typical multiprocessor system usually consists of a set of processors and of a
set of memory and 1/0 modules linked together by means of an interconnection
nelwork. Information exchange between either the processors themselves or the
processors and shared main memory is accomplished by the inlerconnection net-
work. Therclore, the interconncction network is a very important part of the
syslem. No generally accepted standard for an interconnection network exists, and
since the interconnection network costs are asignificant part of the system cost, the
interconnection network is normally designed according to the requirements of the

specific application, llere the Bus-Oriented nelwork (the system bus) is discussed.

There veral typical impl ion policies for the s arbiter, One

implementation of the N-user 1-scrver bus arbiter is bascd on a first-request fir

service policy. In tis way, the bus arbiter always serves the request which was

miade the longest, time ago anong the bus requests. In the case that there is more

than one request being made at the same time, the arbiter salisfics the one made

by the processor whose logical number is smallest. Fig, 60 depicts a block diagram
of the bus arbiter. It mainly consistsof N circuit blocks, each of which correspones
to a cache, and a state storage block. Signals Ry—Ry-y ate tie bus requests from

N different caches for use of the systein bus. For any block i, there is a signal

BusAck; informing Uie corresponcling cache that it may use the bus. Validation

of BusAck; depends on the request I, the request grant G5 from the storage, and

Ciy. All the circuil blocks are connected in a daisy chain by Cy to Cy-y so that
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block i can be invoked if and only if blodk 0 Lo block i — 1 are not invoked by bus
requests, and the C; will lock the following blocks (block i + 1 to block N — 1)
not to be invoked. Therefore, none of the succeeding requests can be responded
by the bus arbiter at this timne. After the system bus is released by that served
request, the next request will be granted use of the system bus under the same
strategy. The state storage holds the information about the time the requests are
made. Whenever the system bus serves a request, the storage selects the one which
is made the longest Lime ago by asserting Gi. After a request is served, the block
i will be reset and the state storage updated for next service.

In general, devices in a multiprocessor system have dilferent priorities for usc of
the system bus. They can be grouped in terms of their priorities. The scheme as

shown in Fig. 61 can be used for the arbitration unit in which there is a two-level
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Figure 61: The Arbitration Unit

parallel bus arbitration. The first level is organized with arbiters shown in Fig. 60.
For cach group of requests with the same priority, an arbiter can be employed to
select one request. The CIAIN signal lines from all arbiters are connecled and
the second-level arbitration sclects the highest priority arbiter using a daisy chain.

As indicated previously, the main memory can be divided into modules which
are connected to the system bus. 1L is assumed that the shared main memory
for the system under consideralion is parlitioned into cight modules as shown in
Fig. 62. The data bandwidth of each module is one word (32 bits). The memory is
organized in such a way that 8 words of a line are stored in 8 modules, respectively.
That is, the first word of line i resides in the module 0 while the second word of
line 7 resides in the module 1 and the third is in the module 2, and so on. llence, a

line can be transferred casily by interleaving. When Uhere is a request for transfer
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of a missing line, cach module sends a word in that line and the system bus delivers
all of them by interleaving so that the delay is reduced.

Also for each module there is a buffer queuc for write requests. Thus, the
specified cache only nceds a short time to send the write request (including the
data to be writlen and the corresponding address) Lo the given module without
wailing for the main memory to complete the request. Whenever tiere is a write
request entering one module, the module controller first checks to see if there is
a write request in the buffer queue which is accessing to the same location as the
entering request. If so, the data of the request already waiting in the queue will
be replaced by that of the entering request, and the entering request removed.
Otherwise, the entering request is inserted b the end of the queue. Thus, the
write — write competition is eliminated in the memory module. When there is
a cache miiss, a line Lransfer is required, and all the modules transfer the missing
line immediately without inserting the request in the queues. In the case that
the line miss is caused by a write operation, first the module being overwritten
checks the queue to see if there is a request in the queue for Lhe same location.
If so, the request in the queue is removed. Otherwise, the queue is unchanged.
Then the module serves that write request causing a line miss by updating the
requested mentory location with the data on the system bus; the updated word is
senl to the requesting cache with the other 7 words from respective modules by
interleaving, Mcanwhile, the other 7 modules serve the transfer request as they do

for a transfer request caused by a read operation. When the line miss is caused by
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a read operation, each module checks its buffer queue Lo sce if there is a request in
the queue, for a write into the location to which the transfer request will access. I
there is such a request, it is removed from the queue; then it is served immediately.
Thus, the so-called read — write memory competition is handled. The module then
sends the requested word onto the system bus. All 8 words from different modules
are sent on the bus by interleaving. This can be done by the bus controller. Note
that there is no rcad — read memory competition since the main memory only
serves read operations during a missing linc transfer and the single system bus

only serves one request at a lime.

5.4 Simulations of the Cache-based Multiprocessor

In previous sections, functions and structures of the cache memory and a multipro-

cessor environment were described, based on a write-through with updaling cache
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cohierence protocol, in which the multiple caches are used. In this section, a typical
simulation model, as shown in Fig. 62, will be used to study the efficiency of such

a shared-mentory multiprocessor system. Thal is, we would like to determine how

many processors can be used in the system without reaching saturation of this

ion, a single bus is employed as the int ion network

system. For
between multiple caches and the shared memory, although using a more complex
interconnection nelwork such ag & multi-bus system makes the system more efli
cient, Furthermore, in the model all the processors arc identical and each processor
has a privale cache.

“Phe model consists of & process for each processor, & process for each cache, and
a process for the single bus. Each processor generates & memory reference sequence
Lo the associated cache. Memory reference streanis in the system are produced with
a specified wrile operation ratio and a given cache miss ratio in the steady state.
Write operations are produced at random with a given read/write ratio. Each
cache is implemented as has been described. For each processing subsystem, if
the reference is a read operation and the requested line is present in the cache,
the cache spends one cache cycle and the processor continues. If the reference is

a write operation and the requested line is found in the cache, the cache puts an

update request into the service queue of the system bus, and spends two cycles to
update all the caches and the main memory via the single bus as soon as the update

request is acknowledged by the hus. It is assumed that there is a buffer queuc in

cach memory module for write requests so Uhal a wrile request can be sent Lo an
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appropriate memory module in two cache cycles, otherwise, a miss occurs. In this
case, the cache necds to insert the transfer request into the service queue of the
system bus, and the bus takes 11 cycles lo transfer a requested line into the cache
when the request is served by the bus. The time required to transfer a missing
line is based on an assumnption that a main memory cycle time is four cache cycles
and the main memory transfers the missing line by interleaving, one cache cycle
per word. So the transfer of a missing line requires one main memory cycle time
(4 cache cycles) for the first word plus one cache cycle for each additional word
(7 cache cycles). When the cache receives an update request from the bus, if the
requested data are found, the cache spends two cache cycles. Othierwise, it only
takes one cycle to search the directory. Note that those caches, waiting in the bus
service queue for use of the system bus, must halt until they are released from the
bus queue after service. The bus process receives service requests from all caches
and serves them in first-in first-out order, implemented by a first-in first out service
queue in the simulation model. For one request in the queue, there are four items:

Cache Number from which the request is made, Write/Miss, Address, and Cache

Cycles to be used by the system bus. In this model, it is assumed that ther

delay when the bus services a request.

Tig. 63 summarizes the results of simulation for evaluation of the multiproces-
sor system with the proposed caches as private caches. Simulation outputs include
bus utilization figures and other parameters under which the simulations are run.

‘The system power is delined as total sum of the processor utilization in the multi-
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processor system, multiplied by 100, and processor utilization is measured by the
ratio of time spent doing uscful work in a processor to the total runing time. In
cach figure, the simulation results obtained with the indicated parameter values
are shown with from one to fifteen processors. The parameter Cyeles gives the

cache eyeles executed during simulation. Fig. 63 (a) shows the simulations with an

overall cache miss ratio of 0.05 while Fig. 63 (b) gives the simulation results with
an overall miss ratio of 0.03. In each Rgure, there are five curves, cach of which
indicates a simulation with write operalion ratios varying from 10 percent to 30
percent for memory references. Thie system power riscs until Uhe system bus begins
Lo reach saturation. When the bus utilization approaches 100 percent, the system
power levels out. For each fignre, it is scen that the system power becomes higher

and the minimum number of processors at which the single system bus reaches

saturation increases as the wrile operation ratio d C: ison of the Lwo

figures indicates that a decrease in the overall miss ratio of the caches increascs
syslem power.

Although use of the specified caches in this given multiprocessor structure can
greally reduce references Lo the slow main memory, the single bus systein scems to

be a bottlencck in the

since write operations and trausfer of miss
lines under the write through protocol still make the bus busy. In order to further
improve the system performance, an increase in system power and bus ability can
be achieved as follows:

First, data can be labeled as cither private or shared. If there is a write operation
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Figure 63: Simulations for the Multiprocessor System
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on private data, the cache does not issue an update request Lo all other caches while
it sends an overwrite request to the main memory via the system bus. In this case,
other caches can do useful work without being intercepted for an update operation.
Thus, the system power would be increased althouglh the system bus has the same
traffic as that without this enforcement. Note that in this scheme, there are two
Jignals required, instead of SEARCHINT, one is used to inform all caches to
update copies of the shared data and the other is used to request the main memory
for a wrile operation.

Second, use of caches with larger sizes can increase the system performance,
since a lower overall miss ratio for the caches results in both a higher system power
and a higher bus utilization from the simulations. Also, the larger cache size makes
the cache have a lower miss ratio. The multiprocessor system can take advantage
of the efficient caches since a large size cache mermory for each processor can easily
be formed by using several cache chips sclected by chip selects without decreasing
the cache speed.

Third, the use of mulliple busses would significantly increase system perfor-
mance, because the wailing Lime of each cache for use of the system bus would

certainly be decreased.

5.5 Testing the Cache Memory

“Testing the circuil is the final step of a VLSI design, to determine if the circuit

being tested has both correct logic and circuit operations. Although testing will be

144



done only after fabrication, how to complete the Lesting task has to be considered
during circuit and architecture design.

Tesling of the cache memory can be done using a microcomputer. Al the 1/0
lines of the cache memory chip to be tested are connected Lo the microcomputer
via an interface. All the signals for controlling operations of the cache memory
and addresses and corresponding data are sent o the tested cache and all the

corresponding results are received by the mi The mi will

check to see if Lhe cache operations are correct. The microcomputer, step by skep,
will test all the functions of the cache memory.

In order to test this cache memory chip, there is a simple additional logic block
in the chip to shift out the cache memory address from the memory register. There-
fore, for each main memory address referenced, the corresponding cache memory
address and its content can be observed. Thus, we can create a table containing

the main memory addresses for testing, the cor ding cache memory addresses,

and the corresponding data during testing.

Fig. 64 illustrates the test circuit which can shift out the cache memory ad-
dresses. The 8-bit cache addresses are imposed on bits BTTg — BTT7 and the mul-
tiplex is controled by a 3-bit counter. Whenever there is a pulse at TEST — IN,

the counter is increased by 1. One of the 8 bits of the cache address passes the

multiplex to the outpul TEST — OUT. Thus, for shift-ont of a cacl

address, 8

pulses are imposed on the TEST — IN and 8 bits of the address can eccived

al TEST — OUT one by one.
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Figure 64: The Testing Circuit for Shifting-out Cache Line Addresses
In this chapler, use of the cache in a multiprocessor environment is described
in which a system bus and a shared main memory are assumed. A write-through
with updaling strategy is proposed and employed to keep data in the system co-
herent. The system bus and shared meinory structures are discussed. A queucing
model is created and the system simulations have been done to evaluate the system

performace.
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6 CONCLUSIONS

This cache memory system has been laid out within a chip, using the 3 micron

NTCMOSS3 technology, and simulated. 1t has an 8K-byte cache memory (4 bytes

Toreach-word, 8 words for-each Tine}, wnd 1t ivorganied as i Buny el
cache. The cache memory is directly accessable Lo one, two, three, or four bytes (one
word) once by the associated processor. A two-phase clock is used to synchronize
and pipeline the system. The clock period is 40 nanoscconds.

In the directory, there are 32 scts, therefore 8 line slots for each set can be
simultaneously compared. The address translation can be finished in 18 nanosec-
onds. Thus, the cache can safely trun out a result in 20 nanoscconds during read

operations without line misscs.

The least recently used line repl {stralegy is din the

unit. There are 32 components, each one implemented by a bit matrix corresporid-
ing to a set.

This cache memory can be used in a multiple processor system to improve
the system performance; a write-through with updating policy, combination of a
write-through and a updating algorithm, is employed to keep the information in the
main memory consistent with that of the caches and to make the multicaches in
the system coherent. The hit ratios of this cache memory, in terms of the Cache
Design Target, Miss Ratios Table, are predicted to be over 95 percent.

Compared with on-chip cache memory, this cache memory chip has a larger



¢

cache size and a low miss ratio. Unlike a cache system consisting of a cache con-
troller and RAM chips, it is more flexible to build a cache system which has a
larger cache capacity (more than 8K bytes) for one processing element. with sev-
eral of the proposcd cache memory chips by using the chip select signal; this docs
not decreases the system speed. It is also easy to implement a cache system with
separate cache memories for data and instructions. This multi-chip cache system
also climinates delay time caused by wire connections hetween the caclie controller
and RAM chips (ofT-chip delay).

Although this cache has many advantages, there are several drawbacks, due

to limitations of the VLSI technology used. It does not have a “snoop” di

clory
which can be used Lo snoop the system bus for update operations, and in turn
to eliminate the directory search time for updates. It does not further reduce
the references to the main memory caused by write operations, which can make

hieavy interconnection network traffic under the write-thiwugh policy, especially in

i

a single-bus shared y

system.

An implementation using a more modern process Lechnology, say a 1.5 micron
Lechnology, would permit a larger cache memory chip, or rather a large on-chip
cache memory, with dual-directories and faster address translation. Also it could

allow the impl jon of both the write-through and write-back policies in a

cache memory, which could make the cache have a great performance improvement.
For higher performance, assuming the data are classified into shared and un-

shared as mentioned before, if there is a request for writing a shared read/write
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variable, the write-through policy is used to keep the multicaches and main memory
consistent since Lhe shared read/wrile variable may be modified by several proces-
sors. If the accessed data are an unshared read/write variable, the write-back policy
is employed to decrease the network traffic since ouly one valid copy of this variable
can exist in one cache. In the case that the line containing the unshared read /write
variables is to be replaced by a new requested one al a cache miss, if this line has
been updated since it existed in the cache, it is written-back to the main memory
before transfer of the new line to make information in the main memory correct.
If it has been unchanged since it resided in the cache, it, like the line which con-
tains the read-only data (including the shared and unshared read-ouly variables as
well as instructions), is simply overwritten by the new requested line, since it is

consistent with that in the main memory.
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