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Abstract

Simulators provide an_ cconomical means of understanding and evaluating the

In addition to being efficient

and real world system:

performiance of both abs

and easy 1o use, modern day simulators must e able 1o cope with the demands of

xtensible so

ng complexity within systems. Simmlators must also be easily

ine;

systems may be studied.

that the hehaviour and performance of a wide variety of

v which inte-

This report, will outline the design and implementation of a ut

grates an interactive, graphical design tool with a discrete event simulation engine

a mieans of combating complesity. Cen-

oriented paradign i

thatt, employs the obj

tral to the simulation technique is the coneept. of local time, in which each entity being

throughout the simulation. Thi

concept

s own notion of Li

simulated maintain:

promoles coniy 3 ion and self-containment thereby facilitating the im-
3 13

imulation domain

plementation of distributed event-diven simulators. Although the

nits, the simulation

described in this report will cousist primarily of digital logi

techniques should also be amenable to the simulation of any discrete event system.

The graphical user interface front-cnd to the simulator engine is designed to be

casy Lo use, hence making the underlying simulator engine accessible to a wide au-

inulator

dience. The implementation of the interface is loosely integrated with th

o the interfa

ibility hotwe

cngine, thereby providing a high degreo fle

imulator can cach operate as distinct, self-contained

Tator itsell. The interface and the
applications. As a result, the simulator engine could be configured to employ a dif-

ferent graphical interface and the graphical interface can be adapted for a variety of

s toxt-based simulator engines.
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Chapter 1

Introduction

Advances in technology invarinbly lead to the construetion of systems with acldlitional

layers of complexity being wrapped around more primitive but cqually comples sul-

systems.  In the future, these sy:

ems may then, in tirn, become sub-systems of

larger, even more complex, super-systems. Simulators provide i means by which

tol

e the

abstract and real world s v be understood and evaluated by dupli

behaviour of these systems through hardware and software.  Formally, we can define
simulation as:

.. the process of designing a model of a real system and conducting experi-
ments with this model for the purpose either of understanding lhe behaviour
of the system of or evaluating various strategies (within the limi
a criterion or a set of criteria) for the operation of the system.” [2(]

Simulators must, adapt to increases in- system complexity by permitling users

to simulate a system at several conceptual o

Unfortunately, the design and
implementation of simulators is almost as complex as the systems being simmlated.

As a result, there has been a concerted effort by the softwire compmunity Lo apply



the luest advancements in sofiware technology in an attempt to counteract this

rver inc

ng complexity. Their efforts have lead to simnlators which are casy to

maintain and extend while at the same time preserving their relative effiency. The

is the

adigg currently being wsed Lo i

prominent

objec-oriented [3] paradigm, in which software entities closely model their real world

fully employed to implement a wide

comnterparts. ‘This paradigm has been suce
variely of simnlators ranging from savnill production (2] to air base logistics [20).

coment 1o an existing discrete-ownt, sinn-

This thesis represents a major enha

7] which employs distributed event quenes as its primary mechanism

Tation engine

for event. management instead of the more commonly used global event quene. By

adopting a concept. of lacal time, it will be shown how (he global event queue ma

e sell contained within a

be replaced by several distributed quenes, cach of which

simulation component. The system being simulated can then be decornposed hi

chically i 1 such s thereby ing extensibility and 3
of the simulation system. Details will also he provided regarding how this simulation
tecmigne addresses the need for extensibility and how the simulation entities may

lem so as o avoid needless duplication of effort when

be reused from system to

constricting a new em. The advantages and disadvantages of using a global

quene versus distributed queues will be discussed as the two simnlation technigues

are compared from a design, implementation and philosophical perspective,

cribed

In addition to describing and ing the two simulation strategies des
above, this report will also diseuss the design and implementation issues associated

with providing the simulator engines with a graphical user interface. Such an interface

san be used to layout and conneet. the simulation entities, observe the dynarnics of



the system during simulation and collect variouns reports upon completion of the sin-

ulation for verification or performance evaluation,

ability to observe the dynaic

interaction between components

akes the simulator anideal tool for understanding

the fundamental

subtle aspects of a particuliar design or to teach novice design

behaviour of clementary systems.

Before presenting details about the design and implementation of

quene simulator, this chapter will provide a general overview ol simulation.

need for simulators will be

plained as will the potential problems that 1

through their imprudent 1

Alter dise

ng some different simulation models, a

few practical uses of simulators will be deseribed.

1.1 The Need for Simulation

A simulator is a collection of hardware and software systems wh

are used Lo mimic
the behaviour of some entity or phenomenon. Typically, the entity or phenomenon
being simulated is from the domain of the tangible  ranging from the operation of

intograted circuits to behaviour of a ligght aireraft during wind shee

Simulators wiay

also be used to analyze and verify theoretical models which may be Loo difienit 1o

grasp from a purely conceptual e Such phenomenon range from examination of

black holes to the study of highly abstract models of computation. Assuch, simlitons

provide a crucial role in both industry and academin,

Despite the increasing recognition of simlators as a viable anc no el

tool, one must constantly be aware of the potential problems which simulators may

introduce. Many of the problems are related Lo the cornputational limitations of ex-



isting hardware platforms it are quickly being overcome as more powerful platforms

are introduced. Other problems, mfortunately, are inherent within simulators and

y associated with the ems being simulated. This see-

are related to the comple
lion highlights some of the major advantages and disadvantiges posed by modern

duy simulators.

1.1.1 Advantages of Simulation

that they are able to provide

One of the primary advantages of simulator §

with practical feedback when designing real world systems. This allows the designer

to determine the correctness and elliciency of a design before the system is actually

const

wcied. Consequently, the user may explore the merits of altemative designs
without actually physically building the systems. By investigating the cffects of spe-
cilie: design decisions during the design phase rather than the construction phase, the

stent diminishes significantly. As an example, consider

averall cost of building th

the design and fabrication of integrated circuits. During the design phase, the de-
signer s presented with a myriad of decisions regarding such things as the placement

of components and the routing of the conneeting wires. It would be very costly to

actually fabricate all of the potential designs as a means of evaluating their respective
performance. Through the use of a simulator, however, the user may investigate the
relative superiority of each design without actually fabricating the circuits themsolves.
By minicking the behaviour of the designs, the circuit simulator is able to provide

the desiguer with information pertaining to the correctness and efficiency of alternate

dosign

. After carefully weighing the ramifications of each design, the best circuit



ay then be fbricated,

Another benefit of simulators is that they permit

em designers to sty a

problem at several different levels of abstraction. By approaching a system at a

higher level of abstraction, the designer is hetter able to unders

and the behaviours

and interactions of all the high level components within the system and is therefore
better cquipped to comnteract the complexity of the overall system. “This com plexity

may simply overwhehn the designer if the problem had been approached from a lower

level. As the designer better understands the operation of the higher loevel components

through the use of the si the lower level comy s may then he designed
and subsequently simulated for verification and performance evalnation. The entire
system may be built based upon this “lop-down” technique. This approach is often
referred to as hierarchical decomposition [32) ad is essential in any design tool and

simulator which deals with the construction of complex systems. For example, with

respect to cirenits, it is often us

ful to think of a wicroprocessor in terms of its

registers, arithmetic logic units, multiplexors and control units. A sinwlator which

permits the construction, interconnection and sul imulation of these higher

level entities is much more useful than

simulator which only lets the designer build

and conneet simple logic gates. Working at a higher level abstraction also

litates

rapid prototyping in which preliminary

o designed quickly Tor the prrpose

of studying the feasibility and prac

ity of the high-level design,

Thirdly, simulatorscan be used as an effective means for teaching or demonst,

coneepts to students. This is icularly true of simul; that make iutell st

of computer graphics and animation. Such si i

ynamically show thel

and of all the si ed 5

therely

i Lhies ser



with ameaningfl understanding of the system’s nature, Consider again, for example,

simulator. By showing the paths taken by signals as inputs are consumed
by components and outputs are produced over their respective fanout, the student
can aclnally see what is happeiing within the drcuit and is therefore left with a
better understanding for the dynamics of the cirenit. Such a simulator should also

permit stucents Lo speed up, slow down, stop or even reverse a simulation as a means

of aiding understanding. This is particalarly true when simulating cirenits which

contain feedback loops or other operations which are not immediately intuitive upon

an initial investigation.
During the presentation of the design and implementation of the simulator in

this report, it will be shown how the above positive attributes have been or can be

incorporated both in the sirnulator engine and its user interface.

1.1.2 Disadvantages of Simulation

Despite the advantages of simulation presented above, simulators, like most tools,

do have their drawba Many of these problems can be attributed to the com-
putationally intensive processing required by some simulators. As a consequence,
the results of the simulation may not. be readily available after the simulation has

started — an event that may oconr instantaneously in the real world may actually

take hours to mimic in a simulated environment. The delays may be due to an ex-
ceedingly large number of entities being simulated or due to the complex interactions

that occur between the entities within the system being simulated. Consequently,

these simulators are restricted by limited hardware platforms which cannot meet the



computational demands of the simulator. However, as more powerful platforms and

improved simulation techniques become available, this problem is becoming less of a

concern.
One of the ways of conl the joned complesity s to introduce sim-
plifying fons or heuristics into the si engine. While this technique

can dramatically reduce the simulation time, it may also give its users a fal:

ense

of security regarding the accuracy of the simulation results. For example, consider
a circuit simulator which makes the simplifying assumption that a current passing

through one wire does not adversely affect current flowing in an adjacent. wire, Such

an assumption ray indeed reduce the time rquired for the ci

simulator (0 gen-

erate resulls. However, if the user places two wires of a ¢

it too close Logether
during the design, the circuit, when fabricated may fail to operate correctly due to
clectromagnetic interference between the two wires. Even though the simulation may
have shown no anomalics in a design, the circuit. may still have faws.

Another means of dealing with the computational complexity is to employ the
hierarchical approach to design and simulation so as (o permit the designer to operate
at a higher level of design. However, this tech d bl

may i its own

as well. By operating at too high an abstraction level, the designer may tend to
oversimplify or even omit some of the lower level details of the system. IF the level
of abstraction is too high, then it may be impossible to actually build the deviee
physically due to thelack of sufficiently detailed information within the design. Actual

construction of the system will not. be able to occur until the user provid

s low level

o " . b

the system’s With respect. to cirenit, design

and fabrication, work is currently on going in the field of silicon compilers [10] which

7



are able to convert high level designs of circuits and translate them accurately and

utly into low level designs suitable for fabrication.

1.2 Classification of Simulation Systems

It is uselul to classify the system being simulated into two separate categories de-

pencling upon the degree of randomness associated with the behaviour of the system

in nulated environment. For example, consider a simulated system consisting of
aseries of bank tellers who must provide transaction services Lo incoming customers,

a customer’s transaction cannot

The: length of time required for a teller to proe

| I before the simul is started. C such a sim-

nsnally be pr
ulation system must introduce random behaviour to simulate the duration of cach
transaction. During the analysis of a real world banking system it may be discovered
that the time required for a transaction occurs over some well known probability
distribution. Hence the duration of each transaction may be generated from this dis-
tribution. A similar strategy may be adopted for the rate at which customers enter
a bank. Through the introduction of this randomness, the results of a simulation

may never be the same as a previous simulation. A system, such as this one, that

relies heavily upon random behaviour is referred to as a stochastic system [23]. The
results generated from a stochastic system are typically analyzed statistically in order

to make conclusions regarding the behaviour of the system.

Cony vo i deterministic

system ince ly no random
behavionr whatsoever. As such, the simulation 1esults for a given set of inputs will

always be identical. Simulations involving circuit behaviour are examples of deter-



ministic

ystems.  Supplying high signals to both inputs of a 2-input NAND gate

will alw:

ys produce a low signal on the gate's output, rdless of where the gate

is located in the circuit’s design hierarchy or when the inputs are recvived by the

gate. In the context of circuit simulation, determin

i simulation is used to verify

that a particular cireuit design is behaving as expected — when the ciren

plied with a given set. of inputs, the civenit produces the expeeted ontputs

con

t time. Although tl

is report will focus primarily upon determi simulation

systems, stochastic nulated with modest. modifications to the

implementation.

1.3 Simulation Models

During the design and implementation of a simnlator, various techniques and strate-

gics may be adopted to madel the behaviour of a given system. Depending vpon the

system to be simulated, some techniques may he more fvourable than others. Faclors
including the level of abstraction and the desired aceuracy and speed of the simulation
should be taken into consideration when designing the simulator engine. "Pradition-

ally, simulators are designed using cither continuous or diser

1 techniques o

simulate a given system.

1.3.1 Continuous Simulation

Continuous simulators [4] are characterized by the extensive use of mathematical

formulac which describe how a simulated compouent responds when subjected 1o

various conditions, For example, consider a cireuit deseribed al the transistor, resis-



e components are well understood

tor and capacitor level. The behavionr of all th
and are governed by several equations which desceribe their respective hehaviours, A

continnous simulator would apply those equations in the context of the components’

envirnment and comectivity and produce a continuons graph which acourately re-
flects how the components would react if they were actually hooked up in reality.

ystem with respect to

The graphs usually reflect, the changes i the state of the

time; however, other relationships may also be demonstrated as well. Unfortunately,
the mathematical equations employed by a continuous simulator can make the sim-
ulation very computationally intensive, especially in the presence of thonsands of

conse-

interconnected elements. As such, continuous simulators may be slow and are
quently only nseful when simulating a relatively small number of components which

are deseribed at 2 low level of abstraction.

As an example of continons simulation. consider a depletion mode transistor

as o pull up for a capac chematic for such a device is

presented in Figure L1 The transient behavionr of the system is governed by the

eqquition ¥ = Viyps(1 - e=t/0Hcu),

Figure 1.1: Depletion Mode Transistor Pulling Up Capaci

Von



During the latter stages of the rising transient, a continmious simulator wounld

produce th

e graph given by Figure 1.

Figure 1.2: Graph Representing Continuous Behavionr

Voo

Vi = V(1 - ¢ D)

1.3.2 Discrete-Event Simulation

Discrete-cvent simulation [31] is nsed to

mulate components wl Iy opes

than comy i 1 by continnons sinmilat

at a higher level of
Within the context of discrete-cvent. simulation, an event s defined as au incicdent

which causes the system to change its state in some way. For

is created whenever a sil I s onlpnt. A suceession of Lhese

events provide an effective dynamic model of the systemn being sinmlated. What sepa-

rates discret t simulation from i simulation is the faet that the events

in a discrete-event simulator can ocenr only during a distinet. anit of time during
the simulation — events are not permitted to ocenr in between time units, Diserete

event simulation is generally more popular than continuous simulation because it is



usnally faster while also providing a reasonably aceurate approxi
hehavionr.
As an example of discrete-event simulation, consider the logic circuit presented in

ire 1.3,

Figure 1.3: Simple Digital Logic Circnit

fis— O

0y

Assuming that the NAND gate has a delay of two time units and the NOT gate

has a delay of one time unit, the above logic circuit will produce the outputs given in

Figgure 1.4 when supplied with the specified inputs
Conventionally, a data structure known as a global event queue is used to process
and manage the events and to activate components as required during the simulation.

“This report will demonstrate an improved technique for event management in which

the global quene is climinated in favour of distributed e

it quenes. The design and

implementation of such a quening system s discussed in detail later in this report.

Monte Carlo si ion is related to discrete-cvent Monte Carlo sim-

ulators usually make extensive rators in order to simulate

of random mumber gen

the desired system. Unlike discrete-event simulators, which are often used to model

"For the purpose of this example, it is assumed that prior to the simulation, both gates are
generating indeterminate outputs. These indeterminate outputs are represented in the diagram by
the horizontal dashed lines.




Figure 1..: Graph Representing Discrete Behaviour

Oip---

Oy |-

deterministic systems, Monte Carlo simulators can be used to effectively model

tems in which probability and nondeterminism plays a major role. As such, Moute

Carlo si are ly used to model stochastic systems. The relationship

between the three types of simulations is displayed in Figure 1.5,

Hierarchical simulation, although not a simulation type by itse

L may e wsed in

conjunction with continuons or discrete even simulators to simplify the simulation pro-

coss,

Hierarchical simulation is a process whereby higher order components delogato

Lo its i The higher level compo-
nents are responsible for activating their respective child components in a meaningfnl
sequence 5o as to model the correct behaviour of the systen. As mentioned earlier,

of the techni used (o

design and simulation is o

pe with the

em. Later

complexity associated with a given sy apters will demonstrate how the

13



mlation Models

Simulation

object-oriented paradigm lends itself very well to the description and simulation of

1.4 Abstraction Levels for Circuit Simulation

“This report will describe the design and implementation of a digital circuit simulator.

Consequently, this section will outline some of the aspeets related to the simulation

of cireuits, including the different. Jevels at which circuit simulators may operate.

C

it simulation provides a means of modelling a circui

s response to a given

set of inputs. The simulator may generate numbers repre

senting the voltages present

at specific nodes of the cir

Jit at cortain times or it may gonerate waveform diagrams

that show the cirenit's output over the duration of the simulation. What is actually



produced as a result of the simulation is largely dependent upon the abstraction level

at which the ci

cuit was d subsequently

1. For example, simulat-

ing a circuit described in terms of transistors and capacitors will conventionally show

how these components interact. at the electric

Lor analog level, wher

simulating a

circuit described in terms of gates, flip-flops and registers will demonstrate the digital

amongst the
Circuits may be deseribed and simulated at sovoral lovels of abstraction [25]. ‘Ulis

section will describe three major absf

ion levels, each of which

ated to the

simulation models described above.  These levels are described below in order of

in

creasing abstraction level.

1.4.1 Circuit-level Simulators

Circuit-level simulators [24] are used to model the hehaviowr of a ¢irenit s lowest.

conceptual level. The circuit is deseribed in terms of

apacitors and

tors and their respective i ivity. Cirenit-level simulators TR

extensive detail regarding the interaction of all the components in the eirenit and also

ake into consideration subtleties such as wire resistance and geometrie propertios of

the subcomponents. The end goal circrit level simula Lo produce very detailed
analog which acer ely model the behavi of the cirenit’s devices in
the real world, C I i simulation i are often used Lo

implement circuit-level simulators.

Circuit-leve]

ve

mulations are typically performed in s

ages. Daring, ]

first stage, referred to as node-extraction, static analysis of the circuit deseription

15



is performed. From this analysis, information regarding the cirenit’s devices, their

ve attributes and their connectivity is obtained. This information is subse-

resp

be the behaviour

device models that des

as

quently combined with modules known

I level. In order to model the cirenit's behaviour, the

al

of each device on 4 mathes v

simmlator must then solve a system of differential linear equations which is des

from all the information supplied to it during the node-extraction phase.

cenrate results, the technique is very com-

very

Although this method general

mulation speed. As a result, circuit-level

putationally intensive, resulting in poo:

simmlation is nsually not feasible for large designs and is therefore commonly user

simmlate only the most cr:tical subregions of a given circuit.

1.4.2 Logic-level Simulators

i computationally intensive nature of

Logic-level simulators attempt to remedy

tion to the domain of switches

cirenit-level simulators by raising the level of abstra

and logic Instead of 1 analog data, logic-level

simulators simply process logic values; that s, 0, 1 and X. In addition, logic-level sim-

simulation process by assuming that the connecting

ulators traditionally simplify th

wires have negligible resistance.

Logie level simulators can be subdivided into two further categori wilch-level

and gate-level simul . In switch-level si i are promoted to cle-

s of other transistor

mentary switches and very little attention is given to the intricaci

attributes. During the simulation itself, equations governing the behaviour of the cir-

cuit are greatly approximated, thereby increasing the speed at which the simulator



operates. The detail that is inevitably lost as a result of this approach

vital.

Gate-level simulators [9] operate at yet a higher abstraction level. Low level circuit

devices such as transistors, capacitors and resistors are replaced with logic gates such

as NAND, XOR and flip-flops. Cire

s deseribed at this level bear strong resem-

blance to data flow diagrams in which information is passed amongst interconnected

components. Effective use of logic gates permit relatively high-level dosigns to be

ily described and sul ly simulated. Because the ¢ are ine

singly
abstract, more complex systems may be designed and simulated at the gate lovel

rather than at the s

ch level. Traditional gate-level simulators are implemented

using discrete-event simulation: as such, this report will primarily foc

upon cireuits
described at the gate level.

‘There have been several successful attempts Lo merge swite

evel simulators with

simulators that operate at the gate-level and above, thereby allowing the desi

ner (o

have the flexibility and speed of higl

-level simulators, whi

at the same time ret

ning

some of the accuracy i with switeh-level simul. Such simul; are

ly referred to as mized-mode simul; 8).

1.4.3 Functional- and Behavioural-level Simulators

and behavioural-lovel description | and simulators [11] represent

the highest levels of simulation available to cirenit. designes These levels enable

designers to model cireuits in terms of interacting abstract units that, may not even he

capable of fabrication. As such, designers are not limited by the restricted belaviour



of Tundamental circuit devices. In addition, these levels also provide designers a
viable means of quickly exploring alternatives without. becoming overwhelmed with

the impact that design decisions would have on the cireuit at lower levels.

Functional-level simulators are generally closer to the actual hardware represen-

&

simulators. An abstract unit in a functional-level simu-

ation than hehaviour-les

lation wonld accept. input and produce output just like its corresponding hardware
component. However, more flexibility is permitted with respect to how the input is
presented to the unit and how it is processed to produce output. For example, an

adder at the gate-level may consist of several half-adders which adds to numbers by

operating dircetly on their bits. The equivalent functional-level unit would simply

take two integers and add them using arithmetic constructs available in the hardware
description language.

Behaviowral-level simulators go one level higher and permit designers to model

abst,

control processing which may not be realizable in hardware. The purpose
of these simmlators is to give the designer a general overview of the design and to
experiment, with high-level alternatives. The usefulness of design tools and simulators

that operate at this level has been the subject of debate due to the diffieulty in

lating such high level designs into compact, high-performance circuits. However,

advances in silicon compilation have made the translation process casier and more

efficient. In addition, high level simulators are still useful for rapid prototyping, even

il the design is not. actually physically fabri Rapid ping allow desiguers

to study the feasibility of a high level design before actually delving into the tedious,

low-lovel details such as placement and routing.

One of the more popular | for describing, s ing and ¢ ally syn-

18



thesizing circuits at the functional and behavioural level is VHDL [6][1].

1.5 The Purpose of this Report

‘The simulation engine presented in this report provides extensible support for a va-

riety of circuits cach of which may be deseribed at different levels of abstraction.

The class structure is particularly amenable towards the specification of igh-level

functional blocks that can be easily deseribed in C+4 the language used as the

basis for hardware simulation by the impl jon deseribed herein, A user-defined

library consisting of high- and low-level components can he designed and integrated

casily with the core library components. Subsequent. chapters discuss all aspects of

the simulator in detail. These details include implementation concerns with respeet

to the graphical user interface, the simulator engine core as well as the means hy

which these two major components communicate with one another.



Chapter 2

The Simulator User Interface

“I'he intnitiveness and robustness of the user interface used by a software application
can straugly influence the productivity of the people wsing that application. This

chapter focuses on the design and operation of a graphical user interface for a digital

ulator engine.  Details with respect to the chosen platform and implementation
language will also be diseussed and justified. In addition, some limitations of the GUI

will be deseribed and potential solutions to these restrictions will be presented.

2.1 Motivation

The core of the discrete-event. simulator engine described in this paper was previously
designed and implemented as part of an Honours project. Despite the capabilities of
the simulator engine, the implementation was limited from an end user perspective,
One of the biggest problems of the implementation was the user interface — or rather,
the Tack thereof. In order to describe a cutait, the user had to define the entire cirenit

as well as the input signals in a C++ source module. The circuit description, inputs




and simulator engine itsell then had to be compiled. links

i exeented in order

to determine the outputs from the cirenit. The output from the simulator consisted

of time stamps and signal values which were displayed textually rather than graphi-
cally. Consequently, verification of the behaviour of the cirenit was often ditlicult and

tedious. In addition, any changes to the cirenit description or input signals, regard-

less of how small, required ification and subseqs ilation of the soure

code. Needless to say, this technique for cirenit specification and sin

tion seriously

compromised by th the evaluation and practicality of the simulator engine

sell.

In order to get aronnd these problems, a graphical user interface [19] (or GUI),
called DigiTel, was designed and implemented for the simulator engine. ‘The benefits
of such an interface are multifold. Firstly, due to the graphical representation of sueh

an interface, further investigation into the feasibility, practicality and aceuraey of the

simulator engine becomes easier. Instead of verifying the reliabi of the simulator

by examining streams of

tual output, wavefo can be generated and stadied.

Secondly, if the GUI is designed and implemented correctly, it can be used as the

front end for a multitude of circnit si

mulators. This feature wonld make it signifl-

icantly casier to compare the performance and eapabilities of a variety of different

simulator engines. In order to implement. this feature, loose coupling [27] between the

simulator engine and the GUI is necessary. Thirdly, a GUT wonld miake the specifica-

tion of circuits easic 15, thereby making the simulator engine more

accessible to people who may not. be familiar with relatively esoterie concepts such

as source code compilation. An intuitive GUL wonld fac

itate cirenit specifieation
and design, hence increasing the academic and even industrial applications of the

simulator engine.



2.2 GUI Platform and Implementation Language

Unfortunatel viable platform and implementation langnage for any

, the choice of a

software project e often be considered a religions issue at best. Tn selecting a hard-
ware platforn and implementation language for the circuit editor GUI several criteria,
sich as cost, availability and level of support. were taken into consideration. The list

of possible platforms and languages discussed helow is by no means exhaustive, but

they do represent some of the more popular options available.

2.2.1 GUI Platform

Linux [29] was chosen as the operating system/platform upon which the cireuit editor

wonld be developed.  Linux is a freely distributable clone of the UNIX' operating

em which has been ported to a variety of hardware architectures. The operating

stem offers stability, open development, source code availability and a variety of

suitable software development. tools.  Als

t runs on relatively cheap hardware,

Other excellent. UNIX-like operating systems, such as FreeBSD and NetBSD, possess

similar qualifications and were also potential candidates, but it was decided to go

with Linux due to familiarity with this system and accompanying distributions.
As a result of this decision, it was decided that the circuit editor GUI should

run on the windowiug system most prevalent on the UNIX platform, namely, the X

Window System? [21]. As luck would have it, XFree86" is a fracly available and robust.

jemark of X/Open Company, Ltd.
trademark of X cnn sortiumm, Inc.




use UNIX and X for development, the chosen implementation language should be

portable, thereby allowing the GUI to be used with other operating systems should

the need arise.

2.2.2 Implementation Language

The choice of an implementation language is somewhat less clear eut. The most
obvious contender would be C [14] in conjunction with the XIib library. However,

it was deemed that this library was too low-level for rapid appli

ion development.

Another possibility was the use of C++ [28] and the Fresco class library, While it

is higher level than XIib and shows great promise, it still represents, at the time of

mable.

writing, a work in progre

5 henee, its potential usability and stability is questi
InterViews [15], the forerunner of Fresco, was another considered as another possible
option; however, support for this class Tibrary appears to have heen abandoned in

favour of Fresco. Finally, a

ripting language known as Tel/Tk [2][18] was evaluatod

and cventually chose

as the desired implementation language.

Tel (Tool Command Language) is a simple scripting language that, is being de-

veloped by Sun Microsystems® which provides support for common programuing

concepts such as variables, control flow, i and string ipulation. “Tel

S

ripts can be used either as a stand-alone language or they may also be embedded in

C code, thereby interfacing with e

ting libraries and le cade. Tk (Toollit)

extension of Tel which can be used for implementing graphical user interfaces for the

X Window System. Tk provides the programmer with a wide variety of widgets (such

and

as buttons, listhoxes, canvascs which can be i 1 and arranged

4Sun Microsystems is a trademark of Sun Microsystems, Ine.
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in a flexible manner to build a robust GUIL.

Advantages of Tcl/Tk

One of the primary advantages of Tcl/Tk is that the source code is freely available
on the Internet from Sun Microsystems. Consequently, there is no need to deal
with the economic burden nor the administrative overhead of paying for the package

initially and paying again for subsequent upgrades and bug fixes. The author of the

package, John Ousterhont, has adamantly stated that the Tel core and Tk extension
will always be freely available. In addition, neither licenses nor royalties are required
when distributing applications built, with the langut ge.

By making the source code freely available, two other advantages arise. First,

that fact. that Tel/Tk is free has undoubted i dtoits 1 use. The

“Tel/Tk community is estimated to number in the tens of thousands, therefore provid-
ing the new user with a well established user-base to fall back on for assistance and
guidance. This user-base is easily reached via the Usenet newsgroup comp. lang. tcl.
Second, freely distributing the source code leads to open development of the package.
End users are free to fix bugs and make suggestions and enhancements to the existing
Tel core. The existence of a clean, well-documented functional interface to the inter-
nal mechanisms of Tel makes it relatively casy to extend Tel to include features which
are cither too slow or not directly supported in Tel. If the extensions are deemed
useful to the Tel community as a whole, then these extensions may be integrated into
the core in the next release for the benefit of all users.

Programming a GUI can be a very arduous and demanding chore. Tel/Tk helps

make the task easier by raising the level of abstraction for the programmer, thereby

4



making the implementation of user interfaces easier and quicker. Graphical interfaces

written using Tel/Tk typically require significantly loss code than an equivalent i

terface written in C. Tel is relatively easy to learn and provides most of the

one would expect from a general purpose programming language. Since

interpreted scripting language, there is no need for the developer to compile the vode,
This makes rapid prototyping more feasible with Tel/Tk.

Tel/Tk was originally implemented for the X' Window Systeni

runs scamlessly under a wide variety of UNIX platforms, including Linu

time of writing, ports were in progress to other popular operating systems, thereby

cnabling an application written using Tel/Tk to be relatively portable across a variety
of different architectures and operating s

se of sueh an

us, The potential

application is, therefore, quite large.

Disadvantages of Tcl/Tk

Despite the numerous advantages of Tel/Tk, there are also a few shortcomings of

the language which must be taken into consideration when writing seripts. Some

of these problems can be overcome by adopting

iplined program

practices,

while others may be corrected by extension packages, many of which are also freely

available. This scction outlines many of the potential drawbacks of Tel/Tk in the
context of the circuit editor GUI implementation.
Because Tel scripts are interpreted instead of compiled, exeention of the seripts

will obviously be slower than an

i Cor Gt impl ation. However, as

the implementation of the cireuit. o

tor progressed, it was discovered there were only

two situations in which speed played a major factor  the extraction of netlists and

25



movement, of mmltiple cireuit elements. To alleviate the former problem, a feature

ussed in S

known as dynamie nellist identification was implemented and is dis

. The slowness resulting from the latter problem could have been corrected

tion

y movingg only & rectangular outline enclosing the cireuit clements being moved, but

this feature was not, yet implemented an the time of writing. OF course, the option to

rewrite these slow operations in C and build a new Tel interpreter is always possible

should the need aris
Aunother potential problem has to do with the fact that the simulator engine was

already written in C++ and not Tel. By adopting Tel/Tk as the language for the

U1, we must establish some means of communication between the two different im-
plementation languages so that the GUI ean inform the simulator what circuit to

ion results back to the GUI for

the simu

simmlate and the simulator could repor

presentation to the end user. Althongh there are ways of embedding Tel/Tk within

mulator mod-

a Crr application, the decision was made to keep the GUI and the

ules distinet from one another and instead to link them together via a bidircctional

pipe. Communication between the two modules would then tal

place using a well
defined protocol. In addition to solving the inter-module communication problem,
this physical separation of abstractions encourages (indeed, enforces) loose coupling

between the GUI and the simulator engine, thereby resulting in a more flexible and

orthogonal implementation. The details of this protocol are described in Chapter 5.
One of the more serious shortcomings of Tel/Tk is the lack of a rich set of data

structures. The only trne data types in Tel are strings and associative arrays.® The

ring ype

Some prists argue that associative arrays are not trie types in Tel.
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for lists as well. The Ick of aggregate data struetures inereases the need for global
variables as a means of inter-procedural and inter-module communication in situa-

tions where procedural parameters are not. possible. This problons is compounded

by the lack of namespaces which

1 seriously compromise an effective modular de-

sign. As a result, Tel seripts do not seale very well.  However, there are several
possible workarounds to these inherent problems. T order to compensate for the lack
of namespaces, a prefixing scheme was devised for procedures and global variables

which would reduce the potential for clashes be

ween variable and procedure names

across different modules. Also, several extension packages for Tel exist which offer

better support for data abstraction and enhanced scoping. Alternatively, algorithms

involving a rich set of data structures could be written in C and linked with the ‘I'el

coro library.

As mentioned carlier, several freely available extensions to ‘Tel/Tk exist which
help to overcome many of the above problems. However, the decision was made not
to use them due to the relative volatility of Tel/Tk during the implementation of

the circuit editor GUIL. During this time, Tk was undergoing a major vevision from

3.6 to 4.0, which rendered some of the extension packages wnusable due to the many

backward incompatible changes introduced into the new version of Tk, While some

of the extension packages bravely kept. pac

with the numerous changes to the el / Tk
core, other extension packages have adapted more slowly. However, as these packapes
are upgraded to adopt the new features of Tk 4.0 and become more mature, an effor),

may be made to reevaluate and possibly reimplement. the GUI using one of the

extension languag

27



2.3 Overview of the Simulator GUI

At the heginning of this chapter, the importance of the GUI was emphasized from the

e of both the novice user learning about digital circuits to the experienced

pers

user who may wish to explore different event-driven simulation techniques. The GUI

st therefore he casy to use for both new users and experts alike.

This

jon provides a high level description of the GUI as seen by the end user; it
constitutes an abbreviated user’s manual, which describes how the user interacts with
the GUI to layout logic circuits, specify the circuit inputs and generate simulation
output. Some lower level details are also presented to describe the implementation
of some of the top level interface clements. More implementation details, especially
with respect, to internal representations are presented in Chapter 3.

The simulator GUL employs two windows — the circuit editor window (also known
as the main window) and the signal display window. Together, these two windows

provide the necessary functionality which lets the user construct and simulate digital

circnits.  Both of these windows are discussed in further detail in the subsequent

2.3.1 Circuit Editor Window

The circuit editor window serves as the main window of the entire application. Using
the features provided by this window, the user can create, modify, save and load

gate-level e

cuit. diagrams. In order to make the circuit editor easy to use, the main
window adopts a presentation format which has been adopted by numerous other GUI

applications -— it employs a pull-down menu bar, toolbar and workarca arranged as

28



shown in Figure 2.1. By using a GUI layout which

Iready prevalent in industry,
users who have experience with a similar interface layout should find the cirenit editor

relatively easy to use.

Figure 2.1: Circuit Editor Window

Pull Down Menu Menu Bar Workarea Toolbar

[=] digitcl — RS_Latch.dht O

The following subsections briefly describe the user interface

slements which com-

prise the main window display. In particular, an overview will he provided

parding

their purpose, usage and implementation.
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