DONALD C. CRAIG

Extensible Hierarchical Object-Oriented
Logic Simulation with an
Adaptable Graphical User Interface

Iy

Donald C. Craig

A thesis submitted o the
School of Graduate Studies
in partial fulfillment of the
requirements for the degree of

Master of Seience

Department of Computer Seience

Memorial University of Newfoundland

1996

Newlonndland

St. John's

Bl e

Bibliothéque nationale
du Canada

and Direction de
Bibliographic Services Branch des services bibliographiques

395 Wl Sweot 395, rue Wellinglon
= Fuomgs
KIA N KIAONS

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

[ep—

Ot Noverttece

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéq
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celleci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-17583-9

Canadi

Abstract

Simulators provide an_ cconomical means of understanding and evaluating the

In addition to being efficient

and real world system:

performiance of both abs

and easy 1o use, modern day simulators must e able 1o cope with the demands of

xtensible so

ng complexity within systems. Simmlators must also be easily

ine;

systems may be studied.

that the hehaviour and performance of a wide variety of

v which inte-

This report, will outline the design and implementation of a ut

grates an interactive, graphical design tool with a discrete event simulation engine

a mieans of combating complesity. Cen-

oriented paradign i

thatt, employs the obj

tral to the simulation technique is the coneept. of local time, in which each entity being

throughout the simulation. Thi

concept

s own notion of Li

simulated maintain:

promoles coniy 3 ion and self-containment thereby facilitating the im-
3 13

imulation domain

plementation of distributed event-diven simulators. Although the

nits, the simulation

described in this report will cousist primarily of digital logi

techniques should also be amenable to the simulation of any discrete event system.

The graphical user interface front-cnd to the simulator engine is designed to be

casy Lo use, hence making the underlying simulator engine accessible to a wide au-

inulator

dience. The implementation of the interface is loosely integrated with th

o the interfa

ibility hotwe

cngine, thereby providing a high degreo fle

imulator can cach operate as distinct, self-contained

Tator itsell. The interface and the
applications. As a result, the simulator engine could be configured to employ a dif-

ferent graphical interface and the graphical interface can be adapted for a variety of

s toxt-based simulator engines.

Acknowledgements

Once again, T would like o thank my supervi

. Dr. Paul Gillard. for his patience

and support over the past three yoars and for contiming upervisor during his

His enlightening di: ions and flexible style

graduate program

both educatio

and enjoyable.

Tam indebted to the Natural Sciences and Eny

necring Research Conneil (NSERC)
for their generous financial support. during the first. two years of my graduate progran.

I would also like to thauk both Mrs. Jane Foltz and Dr. Wiodek Zuberek for
formally approving my admission to Graduate School. In addition, 1'd like to thank
Dr. Zuberek for gently (but firmly) reminding me of my academie responsibilities after

1 had re

ed full-time employment ontside the University prior to the completion

of my thesis. His enconragement contributed to the timely completi

n of this report.

Thanks also go to several other members of the Department. of Computer Seic

incinding Dr. Rodrigue Byrne who made several suggestions for improving an o

lier version of the implementation and Miss Flaine Boone, whose proofreading skills

helped climi; several hical and ieal errors
y

carlier draft of

this thesis. OF conrse, I take full responsibility for any miistakes or oversights remair-

ing in this report.

Finally, I would like to express my 1o the tl Is of individuals

responsible for the development and distribution of robus

and inexpensive soft-
ware tools. Freely available operating systems and software packages such as Linix,
XFree86, Tcl/Tk, ITEX, the GNU C++ compiler and related tools contributed sig-

nificantly to the successful completion of

Contents

Abstract
Acknowledgements
List of Tables

List of Figures

1 Introduction

L1 The Need for Simulation . .00 v cvn i i o
LILL - Advantages of Simulation L
11,2 Disadvantages of Simulation L.
1.2 Classification of Simulation Systems oL
13 Simulation Models <o 5 ¢ ¢ ou s v i d % v & K e d 8 8 Een
L.3.1 Continnous Simulation pr—
1.3.2 Discrete-Event Simulationo 0 0L
1.4 Abstraction Levels for Circuit Simulation
LD Cirenit-level Simulators.o
L2 Logic-level Simulators § R A e SRS S .

(8]

@

L5

143 Fu

The Purpose of this Report

The Simulator User Interface

21

2

o

2

w

2.4

2.5

MO« .+ o oo simis wam o0 sunieis o v woce
GUI Platform and Implementation Language .
221 GUIPIorm <« 5 s s comn s & 5 v

222 Implementation Langiage

Overview of the Simulator GUL
23.1 Cireuit Editor Window -
232 Signal Display Window

Configuration Options and Resonree Database

GUI Limitations

‘GUI Implementation

3.

3.2
33
3.4

3.5

Overview of the Implementation
Pull-Down Menn Modules
Toolbar Modules
Workarea Modules R

Component Modules

3.5.1 Component Creation

3.5.2 Component Representation Areays

353 Component Manipulation
Netlist Modules . . .

36.1 Netlist Creation00 00

ional- and Behavioural-level Simulators

46
16

49

s

)

3.6.2 Netlist Representation Arrays ... 68

863 Netlist Manipulation 6
3.7 Multibox Modules. . ..o oL 5 @ M E % R W H S 81
38 Signal Display Modulos oot 84
390 Miscollaneons Modnlos o ¢ Goom ¢ o i v s 5 8 s 8 8 e 87
B0, SN o0 1« womms o 0 svoion 2 m somse 0w @ wman 4 % temwe oW w we 88
Simulator Engine 89
4.1 Sinulation Using a Global Event Queneo oL 90
411 Drawbacks of the Global Event Queueo ... 91
4.2 Object-Oriented Approach Towards Simulation 95
420 Examples of Digital Sinmlator Designs 9%
1.3 An Alternative Approach Towards Simulation 97
430 The Coneept of Local Time ..« oo oov v v vuna v onn 98
4.32 Distributed Event Quenes L., 99
4.3.3 Circuit Classification and Representation 101
4B CIASEDIBIBIG: & womane & 0 o 5 5 o v @ s § © 8 B 104
135 The Simulation Algorithm oo L 115
System Integration 119
5.1 System Integration Techniques EEEE Y B U ENE 119
5.1.1 Integrating Modules Using Command Pipelines 121
5.2 Advantages of Using Command Pipelines P 123
5.3 Overview of the Interaction Protocols 126
5.3.1 The Component Protocolo oot 127

53.2 The Netlist Protocol 128

5.4 Implementation of the System Integration 130
5.4.1 Step L: GUI Protocol Transmission 130

5.2 Step 2: Simulator Protocol Receptiono oL oL L 133

543 Step 3: Simulator Protocol Transmission 135

544 Step 4: GUI Protocol Recoption . ..o [RE

6 Conclusions 110
6.1 Applicatios. and Future Work R KT
Bibligraphy 145
A Installation Guide 150
Al Extracting the Archive File, 151
A2 Compiling the Simulator Engine 151
A3 Environment Variables 152
A4 Running the DigiTel Circ 153

B Circuit File Format 155
B.1 The component Stanzit oo L 156
B.2 Thepoint Stanza. vvvv v v e v 157
B.3 Thelabel Stanza. WVE BB 6 A B Y S 6 W RS I8

C Simulator Engine Class Dictionary 160
@1 “Thic' Component:ClaRS . « « v v o sonies & % & srarams & & ¥ v o s 161
CA1 PublieMembers L 161

Ch2 Protected Members « . oo v vnmivnentinea s vane s 163

CA3 Privato Memberss o vioiois ninipins ise i n oo = 2 163

€2 The Connector CIamS .. .« cccvonecomonoooeesvonss 164
G Pablie MBS = 2o o s smmia e ses s 5 aman 165
C22 Proteetod Members . o« oo ioeivecaianeecanans 16
C23 Privito Meanhors: o < .oco 2 civie o simin s o oo o moeie o s 166

B3 THEWHETIAEE « wonvse & sooners v ave » i wwses o Saeme w4 166
GH1 Public Mestibetss o+ covaa s s o s sams o s wem & @ 167

2 Prolocted Mombors .. o0 s idlé b e s i 8o wia s 168

Privittes MOMBBER] o ocoiore o ninon s siwie 0 o wivie oo sowim o v 168

G POt ICHSE v« sommais oaimte & wmomis s & ¥ S Y S 168
CAl). PublicMeanbers o ooovionecvnimomimns sisnes 169
€42 Protectod Members o o oo v vveooronsoroees 170
CAI: PAME MR ..o susinis o seison saseis o w sisas ¢ 170

C5 MhelopUt CIRRK - oo 5w s oo 39N SE@E §5ama 5 5 170
G Poblic:Momboth:. .2 z00 0500 & sipiene svsin s seimin o 8 171
Proleeted Bombers oo « s oioe wasie somss < saeis s @ 17

CHI. Privalo Maho®: <550 0 sios & wed o wse 5 T818% 55 172

C6 TheOutput Classot ti e 172
GO1 Puiblie Memheta « o0 o s eanis saws 5 vsims & sowms s o 172
Q62 Protedtold Metibers e & v s v 55 8595 5500 o 173
CB3. Privalo Mombons o soee o s ecne s nioie o 0 oo & simn s 173

C.7 The Runtime.Component Class v vvv e vnn e e e 173
Gl PobBe MG < 55 6 3 os 5 e 6 HER A% EeREE 173

C.7.2 Protected Mombers . .o o v v vvveeioveovenennas 175

C.7.3 Private Members

C.8 The Parser Class
GBI PatilicMomhoew: ooy 324 Smansq 28 b amad 55 42 176
CB2 Protectod NIOmbOs . .o ¢+ » omimiorsin im0 0 sosmmimie s o o 177
CB3 Private MOmbOm | o coconvan s o wscaran o < o 5 amemras s s 178

G “Tho'Sighal CIM..:o5 & & & Vot § § & Vaal s & 5§ SHEEE % 2 180
Gl Puble MOt 25 oo £4 4 6 TR 052 4 5 2981880 4 180
C.9.2 Protected Mombers . . cvocvv i is 181
G038 PrivateMembom! « o o vawin v o vow v s w v v vasenn 4 181

CA0 The LIS Chus «viais s 5 5 o ne et B 5 5 58655 3 €5 Fanes 181
€00 Public Matbein'. « « o wioommeimn o x e vimmm o @ nm s s 182
C.10.2 Protected Men 182
CAUI Private Membent ¢ ¢ soeiwmis s s Swses 4 0 e ek 183

List of Tables

3.0 Pull-down Menu Module Responsibilitieso
3.2 Toolbar Module Responsibilities
33 High-lovel Workneen Modules . .00 ony

B34 Comy . Creation and i jon Moduleso

3.5 Netli

Creation and Manipulation Modules
3.6 Netlist Representation AFySoovten et
3.7 Point Tags for the Circuit in Fignre 39oou..
3.8 Wire Tags for the Circuit in Figare 39o oooon. ...
3.9 Point Array Values for the Circuit in Fignre 3.9
3.10 Net. Array Values for the Cirenit in Figure3.9

311 Multibox Creation and Manipulation Modules

Signal Display Modules . .

313 Miscellancous Module Responsibilities

A.L Files Included in the DigiTel Distribution oo oe o n o
A2 Bovironment Variables Used by Tel/Tk o000

A3 Environment Variables Used by DigiTel

List of Figures

»

22
23
24

ot

Depletion Mode Transistor Pulling Up Capacitive Load
Graph Representing Continnous Bebavionr
Simple Digital Logic Cirenito
Graph Representing Discrote Behaviour ooo oL

Stmlation Model . sas & v pasng 5 ¥ sRsEEEE S evE

Cirenit Biloe WIS, - <4 o s Bame§d ¥ 4 4550558 58 bive

Circuit Eles

Nethst Label DIIOEBOX. o5 5 5w e st % & & & vissensis 5o o il
Signal Display Windowouiinan .

CONRERADIMGE BN o 050 5. 5,500 weisripornise 161 e st emsissios, Gosasios

Invoking the pullmenu_create Procedure
The th_buttons Associalive Afry . .. oo
Establishing Canvas Bindings in tb_set_bindings
Creating Structured Graphics on a Canvas

Primitive Composition of a NAND Gate

3.7

3,

%

39
310
311

312

Tel Code to Build a NAND Gate . oo 0 oo oo
Rotation Equations for Canvas Primitives

Example of a Cireuit Layout00
SPIRE NI oo o wmie o w v w5 8w w o v @ v e 6 o

Traversing and Retagging a Netlist

Sanrce Code Uniting Two Netlists . ..o o v ov e o on o

Digital Simulation Using a Global Event, Quene .

System Overview of a Iierarchical Simulator
Digital Simmulation Using Distributed Event Queues

Representation of a Simple Composite Girenit
Three-di fonal Hi ical Circuit Representation

Component Class Diagramot v

Connector Class Diagram . .

Sending a sigual 1o a Port

Sending a signal to a Wire . .

Class diaggram of a B-input AND gate

Communication between the GUI and Simulator Engine

Tel Seript. Opening a Pipe to an Excentable.

The C+ Program addnum

A 2-input. NAND Gate and its Corresponding Protocol Stanza

Intermodule Communication Between the GUI and Simulator

Example of aCireuit .. .o oo

Example of Input Signal Waveforms . .

92

97
100
103
105
107
111
114

114

121
122
123
128
131

132

5.8 Protocol for the Circuit and Inputs in Figure 5.6 133
5.9 The main() Function of the Simulator Module L 135
5.10 The show_signals() Member Function of the Wire Class 136
5.11 The display_signals() Member Function of the Wire Class 137
5.12 Sample Protocol for an Output. Signal Waveform 137
5.13 Output Signal Waveform Displayed Graphically 138
B.1 Example of a component Stanza 157
B.2 Exampleof a point Stanza 158
B.3 Example of a label Stanza 159

xiii

To my parents

Chapter 1

Introduction

Advances in technology invarinbly lead to the construetion of systems with acldlitional

layers of complexity being wrapped around more primitive but cqually comples sul-

systems. In the future, these sy:

ems may then, in tirn, become sub-systems of

larger, even more complex, super-systems. Simulators provide i means by which

tol

e the

abstract and real world s v be understood and evaluated by dupli

behaviour of these systems through hardware and software. Formally, we can define
simulation as:

.. the process of designing a model of a real system and conducting experi-
ments with this model for the purpose either of understanding lhe behaviour
of the system of or evaluating various strategies (within the limi
a criterion or a set of criteria) for the operation of the system.” [2(]

Simulators must, adapt to increases in- system complexity by permitling users

to simulate a system at several conceptual o

Unfortunately, the design and
implementation of simulators is almost as complex as the systems being simmlated.

As a result, there has been a concerted effort by the softwire compmunity Lo apply

the luest advancements in sofiware technology in an attempt to counteract this

rver inc

ng complexity. Their efforts have lead to simnlators which are casy to

maintain and extend while at the same time preserving their relative effiency. The

is the

adigg currently being wsed Lo i

prominent

objec-oriented [3] paradigm, in which software entities closely model their real world

fully employed to implement a wide

comnterparts. ‘This paradigm has been suce
variely of simnlators ranging from savnill production (2] to air base logistics [20).

coment 1o an existing discrete-ownt, sinn-

This thesis represents a major enha

7] which employs distributed event quenes as its primary mechanism

Tation engine

for event. management instead of the more commonly used global event quene. By

adopting a concept. of lacal time, it will be shown how (he global event queue ma

e sell contained within a

be replaced by several distributed quenes, cach of which

simulation component. The system being simulated can then be decornposed hi

chically i 1 such s thereby ing extensibility and 3
of the simulation system. Details will also he provided regarding how this simulation
tecmigne addresses the need for extensibility and how the simulation entities may

lem so as o avoid needless duplication of effort when

be reused from system to

constricting a new em. The advantages and disadvantages of using a global

quene versus distributed queues will be discussed as the two simnlation technigues

are compared from a design, implementation and philosophical perspective,

cribed

In addition to describing and ing the two simulation strategies des
above, this report will also diseuss the design and implementation issues associated

with providing the simulator engines with a graphical user interface. Such an interface

san be used to layout and conneet. the simulation entities, observe the dynarnics of

the system during simulation and collect variouns reports upon completion of the sin-

ulation for verification or performance evaluation,

ability to observe the dynaic

interaction between components

akes the simulator anideal tool for understanding

the fundamental

subtle aspects of a particuliar design or to teach novice design

behaviour of clementary systems.

Before presenting details about the design and implementation of

quene simulator, this chapter will provide a general overview ol simulation.

need for simulators will be

plained as will the potential problems that 1

through their imprudent 1

Alter dise

ng some different simulation models, a

few practical uses of simulators will be deseribed.

1.1 The Need for Simulation

A simulator is a collection of hardware and software systems wh

are used Lo mimic
the behaviour of some entity or phenomenon. Typically, the entity or phenomenon
being simulated is from the domain of the tangible ranging from the operation of

intograted circuits to behaviour of a ligght aireraft during wind shee

Simulators wiay

also be used to analyze and verify theoretical models which may be Loo difienit 1o

grasp from a purely conceptual e Such phenomenon range from examination of

black holes to the study of highly abstract models of computation. Assuch, simlitons

provide a crucial role in both industry and academin,

Despite the increasing recognition of simlators as a viable anc no el

tool, one must constantly be aware of the potential problems which simulators may

introduce. Many of the problems are related Lo the cornputational limitations of ex-

isting hardware platforms it are quickly being overcome as more powerful platforms

are introduced. Other problems, mfortunately, are inherent within simulators and

y associated with the ems being simulated. This see-

are related to the comple
lion highlights some of the major advantages and disadvantiges posed by modern

duy simulators.

1.1.1 Advantages of Simulation

that they are able to provide

One of the primary advantages of simulator §

with practical feedback when designing real world systems. This allows the designer

to determine the correctness and elliciency of a design before the system is actually

const

wcied. Consequently, the user may explore the merits of altemative designs
without actually physically building the systems. By investigating the cffects of spe-
cilie: design decisions during the design phase rather than the construction phase, the

stent diminishes significantly. As an example, consider

averall cost of building th

the design and fabrication of integrated circuits. During the design phase, the de-
signer s presented with a myriad of decisions regarding such things as the placement

of components and the routing of the conneeting wires. It would be very costly to

actually fabricate all of the potential designs as a means of evaluating their respective
performance. Through the use of a simulator, however, the user may investigate the
relative superiority of each design without actually fabricating the circuits themsolves.
By minicking the behaviour of the designs, the circuit simulator is able to provide

the desiguer with information pertaining to the correctness and efficiency of alternate

dosign

. After carefully weighing the ramifications of each design, the best circuit

ay then be fbricated,

Another benefit of simulators is that they permit

em designers to sty a

problem at several different levels of abstraction. By approaching a system at a

higher level of abstraction, the designer is hetter able to unders

and the behaviours

and interactions of all the high level components within the system and is therefore
better cquipped to comnteract the complexity of the overall system. “This com plexity

may simply overwhehn the designer if the problem had been approached from a lower

level. As the designer better understands the operation of the higher loevel components

through the use of the si the lower level comy s may then he designed
and subsequently simulated for verification and performance evalnation. The entire
system may be built based upon this “lop-down” technique. This approach is often
referred to as hierarchical decomposition [32) ad is essential in any design tool and

simulator which deals with the construction of complex systems. For example, with

respect to cirenits, it is often us

ful to think of a wicroprocessor in terms of its

registers, arithmetic logic units, multiplexors and control units. A sinwlator which

permits the construction, interconnection and sul imulation of these higher

level entities is much more useful than

simulator which only lets the designer build

and conneet simple logic gates. Working at a higher level abstraction also

litates

rapid prototyping in which preliminary

o designed quickly Tor the prrpose

of studying the feasibility and prac

ity of the high-level design,

Thirdly, simulatorscan be used as an effective means for teaching or demonst,

coneepts to students. This is icularly true of simul; that make iutell st

of computer graphics and animation. Such si i

ynamically show thel

and of all the si ed 5

therely

i Lhies ser

with ameaningfl understanding of the system’s nature, Consider again, for example,

simulator. By showing the paths taken by signals as inputs are consumed
by components and outputs are produced over their respective fanout, the student
can aclnally see what is happeiing within the drcuit and is therefore left with a
better understanding for the dynamics of the cirenit. Such a simulator should also

permit stucents Lo speed up, slow down, stop or even reverse a simulation as a means

of aiding understanding. This is particalarly true when simulating cirenits which

contain feedback loops or other operations which are not immediately intuitive upon

an initial investigation.
During the presentation of the design and implementation of the simulator in

this report, it will be shown how the above positive attributes have been or can be

incorporated both in the sirnulator engine and its user interface.

1.1.2 Disadvantages of Simulation

Despite the advantages of simulation presented above, simulators, like most tools,

do have their drawba Many of these problems can be attributed to the com-
putationally intensive processing required by some simulators. As a consequence,
the results of the simulation may not. be readily available after the simulation has

started — an event that may oconr instantaneously in the real world may actually

take hours to mimic in a simulated environment. The delays may be due to an ex-
ceedingly large number of entities being simulated or due to the complex interactions

that occur between the entities within the system being simulated. Consequently,

these simulators are restricted by limited hardware platforms which cannot meet the

computational demands of the simulator. However, as more powerful platforms and

improved simulation techniques become available, this problem is becoming less of a

concern.
One of the ways of conl the joned complesity s to introduce sim-
plifying fons or heuristics into the si engine. While this technique

can dramatically reduce the simulation time, it may also give its users a fal:

ense

of security regarding the accuracy of the simulation results. For example, consider
a circuit simulator which makes the simplifying assumption that a current passing

through one wire does not adversely affect current flowing in an adjacent. wire, Such

an assumption ray indeed reduce the time rquired for the ci

simulator (0 gen-

erate resulls. However, if the user places two wires of a ¢

it too close Logether
during the design, the circuit, when fabricated may fail to operate correctly due to
clectromagnetic interference between the two wires. Even though the simulation may
have shown no anomalics in a design, the circuit. may still have faws.

Another means of dealing with the computational complexity is to employ the
hierarchical approach to design and simulation so as (o permit the designer to operate
at a higher level of design. However, this tech d bl

may i its own

as well. By operating at too high an abstraction level, the designer may tend to
oversimplify or even omit some of the lower level details of the system. IF the level
of abstraction is too high, then it may be impossible to actually build the deviee
physically due to thelack of sufficiently detailed information within the design. Actual

construction of the system will not. be able to occur until the user provid

s low level

o " . b

the system’s With respect. to cirenit, design

and fabrication, work is currently on going in the field of silicon compilers [10] which

7

are able to convert high level designs of circuits and translate them accurately and

utly into low level designs suitable for fabrication.

1.2 Classification of Simulation Systems

It is uselul to classify the system being simulated into two separate categories de-

pencling upon the degree of randomness associated with the behaviour of the system

in nulated environment. For example, consider a simulated system consisting of
aseries of bank tellers who must provide transaction services Lo incoming customers,

a customer’s transaction cannot

The: length of time required for a teller to proe

| I before the simul is started. C such a sim-

nsnally be pr
ulation system must introduce random behaviour to simulate the duration of cach
transaction. During the analysis of a real world banking system it may be discovered
that the time required for a transaction occurs over some well known probability
distribution. Hence the duration of each transaction may be generated from this dis-
tribution. A similar strategy may be adopted for the rate at which customers enter
a bank. Through the introduction of this randomness, the results of a simulation

may never be the same as a previous simulation. A system, such as this one, that

relies heavily upon random behaviour is referred to as a stochastic system [23]. The
results generated from a stochastic system are typically analyzed statistically in order

to make conclusions regarding the behaviour of the system.

Cony vo i deterministic

system ince ly no random
behavionr whatsoever. As such, the simulation 1esults for a given set of inputs will

always be identical. Simulations involving circuit behaviour are examples of deter-

ministic

ystems. Supplying high signals to both inputs of a 2-input NAND gate

will alw:

ys produce a low signal on the gate's output, rdless of where the gate

is located in the circuit’s design hierarchy or when the inputs are recvived by the

gate. In the context of circuit simulation, determin

i simulation is used to verify

that a particular cireuit design is behaving as expected — when the ciren

plied with a given set. of inputs, the civenit produces the expeeted ontputs

con

t time. Although tl

is report will focus primarily upon determi simulation

systems, stochastic nulated with modest. modifications to the

implementation.

1.3 Simulation Models

During the design and implementation of a simnlator, various techniques and strate-

gics may be adopted to madel the behaviour of a given system. Depending vpon the

system to be simulated, some techniques may he more fvourable than others. Faclors
including the level of abstraction and the desired aceuracy and speed of the simulation
should be taken into consideration when designing the simulator engine. "Pradition-

ally, simulators are designed using cither continuous or diser

1 techniques o

simulate a given system.

1.3.1 Continuous Simulation

Continuous simulators [4] are characterized by the extensive use of mathematical

formulac which describe how a simulated compouent responds when subjected 1o

various conditions, For example, consider a cireuit deseribed al the transistor, resis-

e components are well understood

tor and capacitor level. The behavionr of all th
and are governed by several equations which desceribe their respective hehaviours, A

continnous simulator would apply those equations in the context of the components’

envirnment and comectivity and produce a continuons graph which acourately re-
flects how the components would react if they were actually hooked up in reality.

ystem with respect to

The graphs usually reflect, the changes i the state of the

time; however, other relationships may also be demonstrated as well. Unfortunately,
the mathematical equations employed by a continuous simulator can make the sim-
ulation very computationally intensive, especially in the presence of thonsands of

conse-

interconnected elements. As such, continuous simulators may be slow and are
quently only nseful when simulating a relatively small number of components which

are deseribed at 2 low level of abstraction.

As an example of continons simulation. consider a depletion mode transistor

as o pull up for a capac chematic for such a device is

presented in Figure L1 The transient behavionr of the system is governed by the

eqquition ¥ = Viyps(1 - e=t/0Hcu),

Figure 1.1: Depletion Mode Transistor Pulling Up Capaci

Von

During the latter stages of the rising transient, a continmious simulator wounld

produce th

e graph given by Figure 1.

Figure 1.2: Graph Representing Continuous Behavionr

Voo

Vi = V(1 - ¢ D)

1.3.2 Discrete-Event Simulation

Discrete-cvent simulation [31] is nsed to

mulate components wl Iy opes

than comy i 1 by continnons sinmilat

at a higher level of
Within the context of discrete-cvent. simulation, an event s defined as au incicdent

which causes the system to change its state in some way. For

is created whenever a sil I s onlpnt. A suceession of Lhese

events provide an effective dynamic model of the systemn being sinmlated. What sepa-

rates discret t simulation from i simulation is the faet that the events

in a discrete-event simulator can ocenr only during a distinet. anit of time during
the simulation — events are not permitted to ocenr in between time units, Diserete

event simulation is generally more popular than continuous simulation because it is

usnally faster while also providing a reasonably aceurate approxi
hehavionr.
As an example of discrete-event simulation, consider the logic circuit presented in

ire 1.3,

Figure 1.3: Simple Digital Logic Circnit

fis— O

0y

Assuming that the NAND gate has a delay of two time units and the NOT gate

has a delay of one time unit, the above logic circuit will produce the outputs given in

Figgure 1.4 when supplied with the specified inputs
Conventionally, a data structure known as a global event queue is used to process
and manage the events and to activate components as required during the simulation.

“This report will demonstrate an improved technique for event management in which

the global quene is climinated in favour of distributed e

it quenes. The design and

implementation of such a quening system s discussed in detail later in this report.

Monte Carlo si ion is related to discrete-cvent Monte Carlo sim-

ulators usually make extensive rators in order to simulate

of random mumber gen

the desired system. Unlike discrete-event simulators, which are often used to model

"For the purpose of this example, it is assumed that prior to the simulation, both gates are
generating indeterminate outputs. These indeterminate outputs are represented in the diagram by
the horizontal dashed lines.

Figure 1..: Graph Representing Discrete Behaviour

Oip---

Oy |-

deterministic systems, Monte Carlo simulators can be used to effectively model

tems in which probability and nondeterminism plays a major role. As such, Moute

Carlo si are ly used to model stochastic systems. The relationship

between the three types of simulations is displayed in Figure 1.5,

Hierarchical simulation, although not a simulation type by itse

L may e wsed in

conjunction with continuons or discrete even simulators to simplify the simulation pro-

coss,

Hierarchical simulation is a process whereby higher order components delogato

Lo its i The higher level compo-
nents are responsible for activating their respective child components in a meaningfnl
sequence 5o as to model the correct behaviour of the systen. As mentioned earlier,

of the techni used (o

design and simulation is o

pe with the

em. Later

complexity associated with a given sy apters will demonstrate how the

13

mlation Models

Simulation

object-oriented paradigm lends itself very well to the description and simulation of

1.4 Abstraction Levels for Circuit Simulation

“This report will describe the design and implementation of a digital circuit simulator.

Consequently, this section will outline some of the aspeets related to the simulation

of cireuits, including the different. Jevels at which circuit simulators may operate.

C

it simulation provides a means of modelling a circui

s response to a given

set of inputs. The simulator may generate numbers repre

senting the voltages present

at specific nodes of the cir

Jit at cortain times or it may gonerate waveform diagrams

that show the cirenit's output over the duration of the simulation. What is actually

produced as a result of the simulation is largely dependent upon the abstraction level

at which the ci

cuit was d subsequently

1. For example, simulat-

ing a circuit described in terms of transistors and capacitors will conventionally show

how these components interact. at the electric

Lor analog level, wher

simulating a

circuit described in terms of gates, flip-flops and registers will demonstrate the digital

amongst the
Circuits may be deseribed and simulated at sovoral lovels of abstraction [25]. ‘Ulis

section will describe three major absf

ion levels, each of which

ated to the

simulation models described above. These levels are described below in order of

in

creasing abstraction level.

1.4.1 Circuit-level Simulators

Circuit-level simulators [24] are used to model the hehaviowr of a ¢irenit s lowest.

conceptual level. The circuit is deseribed in terms of

apacitors and

tors and their respective i ivity. Cirenit-level simulators TR

extensive detail regarding the interaction of all the components in the eirenit and also

ake into consideration subtleties such as wire resistance and geometrie propertios of

the subcomponents. The end goal circrit level simula Lo produce very detailed
analog which acer ely model the behavi of the cirenit’s devices in
the real world, C I i simulation i are often used Lo

implement circuit-level simulators.

Circuit-leve]

ve

mulations are typically performed in s

ages. Daring,]

first stage, referred to as node-extraction, static analysis of the circuit deseription

15

is performed. From this analysis, information regarding the cirenit’s devices, their

ve attributes and their connectivity is obtained. This information is subse-

resp

be the behaviour

device models that des

as

quently combined with modules known

I level. In order to model the cirenit's behaviour, the

al

of each device on 4 mathes v

simmlator must then solve a system of differential linear equations which is des

from all the information supplied to it during the node-extraction phase.

cenrate results, the technique is very com-

very

Although this method general

mulation speed. As a result, circuit-level

putationally intensive, resulting in poo:

simmlation is nsually not feasible for large designs and is therefore commonly user

simmlate only the most cr:tical subregions of a given circuit.

1.4.2 Logic-level Simulators

i computationally intensive nature of

Logic-level simulators attempt to remedy

tion to the domain of switches

cirenit-level simulators by raising the level of abstra

and logic Instead of 1 analog data, logic-level

simulators simply process logic values; that s, 0, 1 and X. In addition, logic-level sim-

simulation process by assuming that the connecting

ulators traditionally simplify th

wires have negligible resistance.

Logie level simulators can be subdivided into two further categori wilch-level

and gate-level simul . In switch-level si i are promoted to cle-

s of other transistor

mentary switches and very little attention is given to the intricaci

attributes. During the simulation itself, equations governing the behaviour of the cir-

cuit are greatly approximated, thereby increasing the speed at which the simulator

operates. The detail that is inevitably lost as a result of this approach

vital.

Gate-level simulators [9] operate at yet a higher abstraction level. Low level circuit

devices such as transistors, capacitors and resistors are replaced with logic gates such

as NAND, XOR and flip-flops. Cire

s deseribed at this level bear strong resem-

blance to data flow diagrams in which information is passed amongst interconnected

components. Effective use of logic gates permit relatively high-level dosigns to be

ily described and sul ly simulated. Because the ¢ are ine

singly
abstract, more complex systems may be designed and simulated at the gate lovel

rather than at the s

ch level. Traditional gate-level simulators are implemented

using discrete-event simulation: as such, this report will primarily foc

upon cireuits
described at the gate level.

‘There have been several successful attempts Lo merge swite

evel simulators with

simulators that operate at the gate-level and above, thereby allowing the desi

ner (o

have the flexibility and speed of higl

-level simulators, whi

at the same time ret

ning

some of the accuracy i with switeh-level simul. Such simul; are

ly referred to as mized-mode simul; 8).

1.4.3 Functional- and Behavioural-level Simulators

and behavioural-lovel description | and simulators [11] represent

the highest levels of simulation available to cirenit. designes These levels enable

designers to model cireuits in terms of interacting abstract units that, may not even he

capable of fabrication. As such, designers are not limited by the restricted belaviour

of Tundamental circuit devices. In addition, these levels also provide designers a
viable means of quickly exploring alternatives without. becoming overwhelmed with

the impact that design decisions would have on the cireuit at lower levels.

Functional-level simulators are generally closer to the actual hardware represen-

&

simulators. An abstract unit in a functional-level simu-

ation than hehaviour-les

lation wonld accept. input and produce output just like its corresponding hardware
component. However, more flexibility is permitted with respect to how the input is
presented to the unit and how it is processed to produce output. For example, an

adder at the gate-level may consist of several half-adders which adds to numbers by

operating dircetly on their bits. The equivalent functional-level unit would simply

take two integers and add them using arithmetic constructs available in the hardware
description language.

Behaviowral-level simulators go one level higher and permit designers to model

abst,

control processing which may not be realizable in hardware. The purpose
of these simmlators is to give the designer a general overview of the design and to
experiment, with high-level alternatives. The usefulness of design tools and simulators

that operate at this level has been the subject of debate due to the diffieulty in

lating such high level designs into compact, high-performance circuits. However,

advances in silicon compilation have made the translation process casier and more

efficient. In addition, high level simulators are still useful for rapid prototyping, even

il the design is not. actually physically fabri Rapid ping allow desiguers

to study the feasibility of a high level design before actually delving into the tedious,

low-lovel details such as placement and routing.

One of the more popular | for describing, s ing and ¢ ally syn-

18

thesizing circuits at the functional and behavioural level is VHDL [6][1].

1.5 The Purpose of this Report

‘The simulation engine presented in this report provides extensible support for a va-

riety of circuits cach of which may be deseribed at different levels of abstraction.

The class structure is particularly amenable towards the specification of igh-level

functional blocks that can be easily deseribed in C+4 the language used as the

basis for hardware simulation by the impl jon deseribed herein, A user-defined

library consisting of high- and low-level components can he designed and integrated

casily with the core library components. Subsequent. chapters discuss all aspects of

the simulator in detail. These details include implementation concerns with respeet

to the graphical user interface, the simulator engine core as well as the means hy

which these two major components communicate with one another.

Chapter 2

The Simulator User Interface

“I'he intnitiveness and robustness of the user interface used by a software application
can straugly influence the productivity of the people wsing that application. This

chapter focuses on the design and operation of a graphical user interface for a digital

ulator engine. Details with respect to the chosen platform and implementation
language will also be diseussed and justified. In addition, some limitations of the GUI

will be deseribed and potential solutions to these restrictions will be presented.

2.1 Motivation

The core of the discrete-event. simulator engine described in this paper was previously
designed and implemented as part of an Honours project. Despite the capabilities of
the simulator engine, the implementation was limited from an end user perspective,
One of the biggest problems of the implementation was the user interface — or rather,
the Tack thereof. In order to describe a cutait, the user had to define the entire cirenit

as well as the input signals in a C++ source module. The circuit description, inputs

and simulator engine itsell then had to be compiled. links

i exeented in order

to determine the outputs from the cirenit. The output from the simulator consisted

of time stamps and signal values which were displayed textually rather than graphi-
cally. Consequently, verification of the behaviour of the cirenit was often ditlicult and

tedious. In addition, any changes to the cirenit description or input signals, regard-

less of how small, required ification and subseqs ilation of the soure

code. Needless to say, this technique for cirenit specification and sin

tion seriously

compromised by th the evaluation and practicality of the simulator engine

sell.

In order to get aronnd these problems, a graphical user interface [19] (or GUI),
called DigiTel, was designed and implemented for the simulator engine. ‘The benefits
of such an interface are multifold. Firstly, due to the graphical representation of sueh

an interface, further investigation into the feasibility, practicality and aceuraey of the

simulator engine becomes easier. Instead of verifying the reliabi of the simulator

by examining streams of

tual output, wavefo can be generated and stadied.

Secondly, if the GUI is designed and implemented correctly, it can be used as the

front end for a multitude of circnit si

mulators. This feature wonld make it signifl-

icantly casier to compare the performance and eapabilities of a variety of different

simulator engines. In order to implement. this feature, loose coupling [27] between the

simulator engine and the GUI is necessary. Thirdly, a GUT wonld miake the specifica-

tion of circuits easic 15, thereby making the simulator engine more

accessible to people who may not. be familiar with relatively esoterie concepts such

as source code compilation. An intuitive GUL wonld fac

itate cirenit specifieation
and design, hence increasing the academic and even industrial applications of the

simulator engine.

2.2 GUI Platform and Implementation Language

Unfortunatel viable platform and implementation langnage for any

, the choice of a

software project e often be considered a religions issue at best. Tn selecting a hard-
ware platforn and implementation language for the circuit editor GUI several criteria,
sich as cost, availability and level of support. were taken into consideration. The list

of possible platforms and languages discussed helow is by no means exhaustive, but

they do represent some of the more popular options available.

2.2.1 GUI Platform

Linux [29] was chosen as the operating system/platform upon which the cireuit editor

wonld be developed. Linux is a freely distributable clone of the UNIX' operating

em which has been ported to a variety of hardware architectures. The operating

stem offers stability, open development, source code availability and a variety of

suitable software development. tools. Als

t runs on relatively cheap hardware,

Other excellent. UNIX-like operating systems, such as FreeBSD and NetBSD, possess

similar qualifications and were also potential candidates, but it was decided to go

with Linux due to familiarity with this system and accompanying distributions.
As a result of this decision, it was decided that the circuit editor GUI should

run on the windowiug system most prevalent on the UNIX platform, namely, the X

Window System? [21]. As luck would have it, XFree86" is a fracly available and robust.

jemark of X/Open Company, Ltd.
trademark of X cnn sortiumm, Inc.

use UNIX and X for development, the chosen implementation language should be

portable, thereby allowing the GUI to be used with other operating systems should

the need arise.

2.2.2 Implementation Language

The choice of an implementation language is somewhat less clear eut. The most
obvious contender would be C [14] in conjunction with the XIib library. However,

it was deemed that this library was too low-level for rapid appli

ion development.

Another possibility was the use of C++ [28] and the Fresco class library, While it

is higher level than XIib and shows great promise, it still represents, at the time of

mable.

writing, a work in progre

5 henee, its potential usability and stability is questi
InterViews [15], the forerunner of Fresco, was another considered as another possible
option; however, support for this class Tibrary appears to have heen abandoned in

favour of Fresco. Finally, a

ripting language known as Tel/Tk [2][18] was evaluatod

and cventually chose

as the desired implementation language.

Tel (Tool Command Language) is a simple scripting language that, is being de-

veloped by Sun Microsystems® which provides support for common programuing

concepts such as variables, control flow, i and string ipulation. “Tel

S

ripts can be used either as a stand-alone language or they may also be embedded in

C code, thereby interfacing with e

ting libraries and le cade. Tk (Toollit)

extension of Tel which can be used for implementing graphical user interfaces for the

X Window System. Tk provides the programmer with a wide variety of widgets (such

and

as buttons, listhoxes, canvascs which can be i 1 and arranged

4Sun Microsystems is a trademark of Sun Microsystems, Ine.

23

in a flexible manner to build a robust GUIL.

Advantages of Tcl/Tk

One of the primary advantages of Tcl/Tk is that the source code is freely available
on the Internet from Sun Microsystems. Consequently, there is no need to deal
with the economic burden nor the administrative overhead of paying for the package

initially and paying again for subsequent upgrades and bug fixes. The author of the

package, John Ousterhont, has adamantly stated that the Tel core and Tk extension
will always be freely available. In addition, neither licenses nor royalties are required
when distributing applications built, with the langut ge.

By making the source code freely available, two other advantages arise. First,

that fact. that Tel/Tk is free has undoubted i dtoits 1 use. The

“Tel/Tk community is estimated to number in the tens of thousands, therefore provid-
ing the new user with a well established user-base to fall back on for assistance and
guidance. This user-base is easily reached via the Usenet newsgroup comp. lang. tcl.
Second, freely distributing the source code leads to open development of the package.
End users are free to fix bugs and make suggestions and enhancements to the existing
Tel core. The existence of a clean, well-documented functional interface to the inter-
nal mechanisms of Tel makes it relatively casy to extend Tel to include features which
are cither too slow or not directly supported in Tel. If the extensions are deemed
useful to the Tel community as a whole, then these extensions may be integrated into
the core in the next release for the benefit of all users.

Programming a GUI can be a very arduous and demanding chore. Tel/Tk helps

make the task easier by raising the level of abstraction for the programmer, thereby

4

making the implementation of user interfaces easier and quicker. Graphical interfaces

written using Tel/Tk typically require significantly loss code than an equivalent i

terface written in C. Tel is relatively easy to learn and provides most of the

one would expect from a general purpose programming language. Since

interpreted scripting language, there is no need for the developer to compile the vode,
This makes rapid prototyping more feasible with Tel/Tk.

Tel/Tk was originally implemented for the X' Window Systeni

runs scamlessly under a wide variety of UNIX platforms, including Linu

time of writing, ports were in progress to other popular operating systems, thereby

cnabling an application written using Tel/Tk to be relatively portable across a variety
of different architectures and operating s

se of sueh an

us, The potential

application is, therefore, quite large.

Disadvantages of Tcl/Tk

Despite the numerous advantages of Tel/Tk, there are also a few shortcomings of

the language which must be taken into consideration when writing seripts. Some

of these problems can be overcome by adopting

iplined program

practices,

while others may be corrected by extension packages, many of which are also freely

available. This scction outlines many of the potential drawbacks of Tel/Tk in the
context of the circuit editor GUI implementation.
Because Tel scripts are interpreted instead of compiled, exeention of the seripts

will obviously be slower than an

i Cor Gt impl ation. However, as

the implementation of the cireuit. o

tor progressed, it was discovered there were only

two situations in which speed played a major factor the extraction of netlists and

25

movement, of mmltiple cireuit elements. To alleviate the former problem, a feature

ussed in S

known as dynamie nellist identification was implemented and is dis

. The slowness resulting from the latter problem could have been corrected

tion

y movingg only & rectangular outline enclosing the cireuit clements being moved, but

this feature was not, yet implemented an the time of writing. OF course, the option to

rewrite these slow operations in C and build a new Tel interpreter is always possible

should the need aris
Aunother potential problem has to do with the fact that the simulator engine was

already written in C++ and not Tel. By adopting Tel/Tk as the language for the

U1, we must establish some means of communication between the two different im-
plementation languages so that the GUI ean inform the simulator what circuit to

ion results back to the GUI for

the simu

simmlate and the simulator could repor

presentation to the end user. Althongh there are ways of embedding Tel/Tk within

mulator mod-

a Crr application, the decision was made to keep the GUI and the

ules distinet from one another and instead to link them together via a bidircctional

pipe. Communication between the two modules would then tal

place using a well
defined protocol. In addition to solving the inter-module communication problem,
this physical separation of abstractions encourages (indeed, enforces) loose coupling

between the GUI and the simulator engine, thereby resulting in a more flexible and

orthogonal implementation. The details of this protocol are described in Chapter 5.
One of the more serious shortcomings of Tel/Tk is the lack of a rich set of data

structures. The only trne data types in Tel are strings and associative arrays.® The

ring ype

Some prists argue that associative arrays are not trie types in Tel.

26

for lists as well. The Ick of aggregate data struetures inereases the need for global
variables as a means of inter-procedural and inter-module communication in situa-

tions where procedural parameters are not. possible. This problons is compounded

by the lack of namespaces which

1 seriously compromise an effective modular de-

sign. As a result, Tel seripts do not seale very well. However, there are several
possible workarounds to these inherent problems. T order to compensate for the lack
of namespaces, a prefixing scheme was devised for procedures and global variables

which would reduce the potential for clashes be

ween variable and procedure names

across different modules. Also, several extension packages for Tel exist which offer

better support for data abstraction and enhanced scoping. Alternatively, algorithms

involving a rich set of data structures could be written in C and linked with the ‘I'el

coro library.

As mentioned carlier, several freely available extensions to ‘Tel/Tk exist which
help to overcome many of the above problems. However, the decision was made not
to use them due to the relative volatility of Tel/Tk during the implementation of

the circuit editor GUIL. During this time, Tk was undergoing a major vevision from

3.6 to 4.0, which rendered some of the extension packages wnusable due to the many

backward incompatible changes introduced into the new version of Tk, While some

of the extension packages bravely kept. pac

with the numerous changes to the el / Tk
core, other extension packages have adapted more slowly. However, as these packapes
are upgraded to adopt the new features of Tk 4.0 and become more mature, an effor),

may be made to reevaluate and possibly reimplement. the GUI using one of the

extension languag

27

2.3 Overview of the Simulator GUI

At the heginning of this chapter, the importance of the GUI was emphasized from the

e of both the novice user learning about digital circuits to the experienced

pers

user who may wish to explore different event-driven simulation techniques. The GUI

st therefore he casy to use for both new users and experts alike.

This

jon provides a high level description of the GUI as seen by the end user; it
constitutes an abbreviated user’s manual, which describes how the user interacts with
the GUI to layout logic circuits, specify the circuit inputs and generate simulation
output. Some lower level details are also presented to describe the implementation
of some of the top level interface clements. More implementation details, especially
with respect, to internal representations are presented in Chapter 3.

The simulator GUL employs two windows — the circuit editor window (also known
as the main window) and the signal display window. Together, these two windows

provide the necessary functionality which lets the user construct and simulate digital

circnits. Both of these windows are discussed in further detail in the subsequent

2.3.1 Circuit Editor Window

The circuit editor window serves as the main window of the entire application. Using
the features provided by this window, the user can create, modify, save and load

gate-level e

cuit. diagrams. In order to make the circuit editor easy to use, the main
window adopts a presentation format which has been adopted by numerous other GUI

applications -— it employs a pull-down menu bar, toolbar and workarca arranged as

28

shown in Figure 2.1. By using a GUI layout which

Iready prevalent in industry,
users who have experience with a similar interface layout should find the cirenit editor

relatively easy to use.

Figure 2.1: Circuit Editor Window

Pull Down Menu Menu Bar Workarea Toolbar

[=] digitcl — RS_Latch.dht O

The following subsections briefly describe the user interface

slements which com-

prise the main window display. In particular, an overview will he provided

parding

their purpose, usage and implementation.

29

	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Title Page
	006_Copyright Information
	007_Abstract
	008_Acknowledgements
	009_Table of Contents
	010_Table of Contents v
	011_Table of Contents vi
	012_Table of Contents vii
	013_Table of Contents viii
	014_Table of Contents ix
	015_List of Tables
	016_List of Figures
	017_List of Figures xii
	018_List of Figures xiii
	019_Dedication
	020_Chapter 1 - Page 1
	021_Page 2
	022_Page 3
	023_Page 4
	024_Page 5
	025_Page 6
	026_Page 7
	027_Page 8
	028_Page 9
	029_Page 10
	030_Page 11
	031_Page 12
	032_Page 13
	033_Page 14
	034_Page 15
	035_Page 16
	036_Page 17
	037_Page 18
	038_Page 19
	039_Chapter 2 - Page 20
	040_Page 21
	041_Page 22
	042_Page 23
	043_Page 24
	044_Page 25
	045_Page 26
	046_Page 27
	047_Page 28
	048_Page 29
	049_Page 30
	050_Page 31
	051_Page 32
	052_Page 33
	053_Page 34
	054_Page 35
	055_Page 36
	056_Page 37
	057_Page 38
	058_Page 39
	059_Page 40
	060_Page 41
	061_Page 42
	062_Page 43
	063_Page 44
	064_Page 45
	065_Chapter 3 - Page 46
	066_Page 47
	067_Page 48
	068_Page 49
	069_Page 50
	070_Page 51
	071_Page 52
	072_Page 53
	073_Page 54
	074_Page 55
	075_Page 56
	076_Page 57
	077_Page 58
	078_Page 59
	079_Page 60
	080_Page 61
	081_Page 62
	082_Page 63
	083_Page 64
	084_Page 65
	085_Page 66
	086_Page 67
	087_Page 68
	088_Page 69
	089_Page 70
	090_Page 71
	091_Page 72
	092_Page 73
	093_Page 74
	094_Page 75
	095_Page 76
	096_Page 77
	097_Page 78
	098_Page 79
	099_Page 80
	100_Page 81
	101_Page 82
	102_Page 83
	103_Page 84
	104_Page 85
	105_Page 86
	106_Page 87
	107_Page 88
	108_Chapter 4 - Page 89
	109_Page 90
	110_Page 91
	111_Page 92
	112_Page 93
	113_Page 94
	114_Page 95
	115_Page 96
	116_Page 97
	117_Page 98
	118_Page 99
	119_Page 100
	120_Page 101
	121_Page 102
	122_Page 103
	123_Page 104
	124_Page 105
	125_Page 106
	126_Page 107
	127_Page 108
	128_Page 109
	129_Page 110
	130_Page 111
	131_Page 112
	132_Page 113
	133_Page 114
	134_Page 115
	135_Page 116
	136_Page 117
	137_Page 118
	138_Chapter 5 - Page 119
	139_Page 120
	140_Page 121
	141_Page 122
	142_Page 123
	143_Page 124
	144_Page 125
	145_Page 126
	146_Page 127
	147_Page 128
	148_Page 129
	149_Page 130
	150_Page 131
	151_Page 132
	152_Page 133
	153_Page 134
	154_Page 135
	155_Page 136
	156_Page 137
	157_Page 138
	158_Page 139
	159_Chapter 6 - Page 140
	160_Page 141
	161_Page 142
	162_Page 143
	163_Page 144
	164_Bibliography
	165_Page 146
	166_Page 147
	167_Page 148
	168_Page 149
	169_Appendix A
	170_Page 151
	171_Page 152
	172_Page 153
	173_Page 154
	174_Appendix B
	175_Page 156
	176_Page 157
	177_Page 158
	178_Page 159
	179_Appendix C
	180_Page 161
	181_Page 162
	182_Page 163
	183_Page 164
	184_Page 165
	185_Page 166
	186_Page 167
	187_Page 168
	188_Page 169
	189_Page 170
	190_Page 171
	191_Page 172
	192_Page 173
	193_Page 174
	194_Page 175
	195_Page 176
	196_Page 177
	197_Page 178
	198_Page 179
	199_Page 180
	200_Page 181
	201_Page 182
	202_Page 183
	203_Blank Page
	204_Blank Page
	205_Inside Back Cover
	206_Back Cover

