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Abstract

Simulators provide an_ cconomical means of understanding and evaluating the

In addition to being efficient

and real world system:

performiance of both abs

and easy 1o use, modern day simulators must e able 1o cope with the demands of

xtensible so

ng complexity within systems. Simmlators must also be easily

ine;

systems may be studied.

that the hehaviour and performance of a wide variety of

v which inte-

This report, will outline the design and implementation of a ut

grates an interactive, graphical design tool with a discrete event simulation engine

a mieans of combating complesity. Cen-

oriented paradign i

thatt, employs the obj

tral to the simulation technique is the coneept. of local time, in which each entity being

throughout the simulation. Thi

concept

s own notion of Li

simulated maintain:

promoles coniy 3 ion and self-containment thereby facilitating the im-
3 13

imulation domain

plementation of distributed event-diven simulators. Although the

nits, the simulation

described in this report will cousist primarily of digital logi

techniques should also be amenable to the simulation of any discrete event system.

The graphical user interface front-cnd to the simulator engine is designed to be

casy Lo use, hence making the underlying simulator engine accessible to a wide au-

inulator

dience. The implementation of the interface is loosely integrated with th

o the interfa

ibility hotwe

cngine, thereby providing a high degreo fle

imulator can cach operate as distinct, self-contained

Tator itsell. The interface and the
applications. As a result, the simulator engine could be configured to employ a dif-

ferent graphical interface and the graphical interface can be adapted for a variety of

s toxt-based simulator engines.
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Chapter 1

Introduction

Advances in technology invarinbly lead to the construetion of systems with acldlitional

layers of complexity being wrapped around more primitive but cqually comples sul-

systems.  In the future, these sy:

ems may then, in tirn, become sub-systems of

larger, even more complex, super-systems. Simulators provide i means by which

tol

e the

abstract and real world s v be understood and evaluated by dupli

behaviour of these systems through hardware and software.  Formally, we can define
simulation as:

.. the process of designing a model of a real system and conducting experi-
ments with this model for the purpose either of understanding lhe behaviour
of the system of or evaluating various strategies (within the limi
a criterion or a set of criteria) for the operation of the system.” [2(]

Simulators must, adapt to increases in- system complexity by permitling users

to simulate a system at several conceptual o

Unfortunately, the design and
implementation of simulators is almost as complex as the systems being simmlated.

As a result, there has been a concerted effort by the softwire compmunity Lo apply



the luest advancements in sofiware technology in an attempt to counteract this

rver inc

ng complexity. Their efforts have lead to simnlators which are casy to

maintain and extend while at the same time preserving their relative effiency. The

is the

adigg currently being wsed Lo i

prominent

objec-oriented [3] paradigm, in which software entities closely model their real world

fully employed to implement a wide

comnterparts. ‘This paradigm has been suce
variely of simnlators ranging from savnill production (2] to air base logistics [20).

coment 1o an existing discrete-ownt, sinn-

This thesis represents a major enha

7] which employs distributed event quenes as its primary mechanism

Tation engine

for event. management instead of the more commonly used global event quene. By

adopting a concept. of lacal time, it will be shown how (he global event queue ma

e sell contained within a

be replaced by several distributed quenes, cach of which

simulation component. The system being simulated can then be decornposed hi

chically i 1 such s thereby ing extensibility and 3
of the simulation system. Details will also he provided regarding how this simulation
tecmigne addresses the need for extensibility and how the simulation entities may

lem so as o avoid needless duplication of effort when

be reused from system to

constricting a new em. The advantages and disadvantages of using a global

quene versus distributed queues will be discussed as the two simnlation technigues

are compared from a design, implementation and philosophical perspective,

cribed

In addition to describing and ing the two simulation strategies des
above, this report will also diseuss the design and implementation issues associated

with providing the simulator engines with a graphical user interface. Such an interface

san be used to layout and conneet. the simulation entities, observe the dynarnics of



the system during simulation and collect variouns reports upon completion of the sin-

ulation for verification or performance evaluation,

ability to observe the dynaic

interaction between components

akes the simulator anideal tool for understanding

the fundamental

subtle aspects of a particuliar design or to teach novice design

behaviour of clementary systems.

Before presenting details about the design and implementation of

quene simulator, this chapter will provide a general overview ol simulation.

need for simulators will be

plained as will the potential problems that 1

through their imprudent 1

Alter dise

ng some different simulation models, a

few practical uses of simulators will be deseribed.

1.1 The Need for Simulation

A simulator is a collection of hardware and software systems wh

are used Lo mimic
the behaviour of some entity or phenomenon. Typically, the entity or phenomenon
being simulated is from the domain of the tangible  ranging from the operation of

intograted circuits to behaviour of a ligght aireraft during wind shee

Simulators wiay

also be used to analyze and verify theoretical models which may be Loo difienit 1o

grasp from a purely conceptual e Such phenomenon range from examination of

black holes to the study of highly abstract models of computation. Assuch, simlitons

provide a crucial role in both industry and academin,

Despite the increasing recognition of simlators as a viable anc no el

tool, one must constantly be aware of the potential problems which simulators may

introduce. Many of the problems are related Lo the cornputational limitations of ex-



isting hardware platforms it are quickly being overcome as more powerful platforms

are introduced. Other problems, mfortunately, are inherent within simulators and

y associated with the ems being simulated. This see-

are related to the comple
lion highlights some of the major advantages and disadvantiges posed by modern

duy simulators.

1.1.1 Advantages of Simulation

that they are able to provide

One of the primary advantages of simulator §

with practical feedback when designing real world systems. This allows the designer

to determine the correctness and elliciency of a design before the system is actually

const

wcied. Consequently, the user may explore the merits of altemative designs
without actually physically building the systems. By investigating the cffects of spe-
cilie: design decisions during the design phase rather than the construction phase, the

stent diminishes significantly. As an example, consider

averall cost of building th

the design and fabrication of integrated circuits. During the design phase, the de-
signer s presented with a myriad of decisions regarding such things as the placement

of components and the routing of the conneeting wires. It would be very costly to

actually fabricate all of the potential designs as a means of evaluating their respective
performance. Through the use of a simulator, however, the user may investigate the
relative superiority of each design without actually fabricating the circuits themsolves.
By minicking the behaviour of the designs, the circuit simulator is able to provide

the desiguer with information pertaining to the correctness and efficiency of alternate

dosign

. After carefully weighing the ramifications of each design, the best circuit



ay then be fbricated,

Another benefit of simulators is that they permit

em designers to sty a

problem at several different levels of abstraction. By approaching a system at a

higher level of abstraction, the designer is hetter able to unders

and the behaviours

and interactions of all the high level components within the system and is therefore
better cquipped to comnteract the complexity of the overall system. “This com plexity

may simply overwhehn the designer if the problem had been approached from a lower

level. As the designer better understands the operation of the higher loevel components

through the use of the si the lower level comy s may then he designed
and subsequently simulated for verification and performance evalnation. The entire
system may be built based upon this “lop-down” technique. This approach is often
referred to as hierarchical decomposition [32) ad is essential in any design tool and

simulator which deals with the construction of complex systems. For example, with

respect to cirenits, it is often us

ful to think of a wicroprocessor in terms of its

registers, arithmetic logic units, multiplexors and control units. A sinwlator which

permits the construction, interconnection and sul imulation of these higher

level entities is much more useful than

simulator which only lets the designer build

and conneet simple logic gates. Working at a higher level abstraction also

litates

rapid prototyping in which preliminary

o designed quickly Tor the prrpose

of studying the feasibility and prac

ity of the high-level design,

Thirdly, simulatorscan be used as an effective means for teaching or demonst,

coneepts to students. This is icularly true of simul; that make iutell st

of computer graphics and animation. Such si i

ynamically show thel

and of all the si ed 5

therely

i Lhies ser



with ameaningfl understanding of the system’s nature, Consider again, for example,

simulator. By showing the paths taken by signals as inputs are consumed
by components and outputs are produced over their respective fanout, the student
can aclnally see what is happeiing within the drcuit and is therefore left with a
better understanding for the dynamics of the cirenit. Such a simulator should also

permit stucents Lo speed up, slow down, stop or even reverse a simulation as a means

of aiding understanding. This is particalarly true when simulating cirenits which

contain feedback loops or other operations which are not immediately intuitive upon

an initial investigation.
During the presentation of the design and implementation of the simulator in

this report, it will be shown how the above positive attributes have been or can be

incorporated both in the sirnulator engine and its user interface.

1.1.2 Disadvantages of Simulation

Despite the advantages of simulation presented above, simulators, like most tools,

do have their drawba Many of these problems can be attributed to the com-
putationally intensive processing required by some simulators. As a consequence,
the results of the simulation may not. be readily available after the simulation has

started — an event that may oconr instantaneously in the real world may actually

take hours to mimic in a simulated environment. The delays may be due to an ex-
ceedingly large number of entities being simulated or due to the complex interactions

that occur between the entities within the system being simulated. Consequently,

these simulators are restricted by limited hardware platforms which cannot meet the



computational demands of the simulator. However, as more powerful platforms and

improved simulation techniques become available, this problem is becoming less of a

concern.
One of the ways of conl the joned complesity s to introduce sim-
plifying fons or heuristics into the si engine. While this technique

can dramatically reduce the simulation time, it may also give its users a fal:

ense

of security regarding the accuracy of the simulation results. For example, consider
a circuit simulator which makes the simplifying assumption that a current passing

through one wire does not adversely affect current flowing in an adjacent. wire, Such

an assumption ray indeed reduce the time rquired for the ci

simulator (0 gen-

erate resulls. However, if the user places two wires of a ¢

it too close Logether
during the design, the circuit, when fabricated may fail to operate correctly due to
clectromagnetic interference between the two wires. Even though the simulation may
have shown no anomalics in a design, the circuit. may still have faws.

Another means of dealing with the computational complexity is to employ the
hierarchical approach to design and simulation so as (o permit the designer to operate
at a higher level of design. However, this tech d bl

may i its own

as well. By operating at too high an abstraction level, the designer may tend to
oversimplify or even omit some of the lower level details of the system. IF the level
of abstraction is too high, then it may be impossible to actually build the deviee
physically due to thelack of sufficiently detailed information within the design. Actual

construction of the system will not. be able to occur until the user provid

s low level

o " . b

the system’s With respect. to cirenit, design

and fabrication, work is currently on going in the field of silicon compilers [10] which

7



are able to convert high level designs of circuits and translate them accurately and

utly into low level designs suitable for fabrication.

1.2 Classification of Simulation Systems

It is uselul to classify the system being simulated into two separate categories de-

pencling upon the degree of randomness associated with the behaviour of the system

in nulated environment. For example, consider a simulated system consisting of
aseries of bank tellers who must provide transaction services Lo incoming customers,

a customer’s transaction cannot

The: length of time required for a teller to proe

| I before the simul is started. C such a sim-

nsnally be pr
ulation system must introduce random behaviour to simulate the duration of cach
transaction. During the analysis of a real world banking system it may be discovered
that the time required for a transaction occurs over some well known probability
distribution. Hence the duration of each transaction may be generated from this dis-
tribution. A similar strategy may be adopted for the rate at which customers enter
a bank. Through the introduction of this randomness, the results of a simulation

may never be the same as a previous simulation. A system, such as this one, that

relies heavily upon random behaviour is referred to as a stochastic system [23]. The
results generated from a stochastic system are typically analyzed statistically in order

to make conclusions regarding the behaviour of the system.

Cony vo i deterministic

system ince ly no random
behavionr whatsoever. As such, the simulation 1esults for a given set of inputs will

always be identical. Simulations involving circuit behaviour are examples of deter-



ministic

ystems.  Supplying high signals to both inputs of a 2-input NAND gate

will alw:

ys produce a low signal on the gate's output, rdless of where the gate

is located in the circuit’s design hierarchy or when the inputs are recvived by the

gate. In the context of circuit simulation, determin

i simulation is used to verify

that a particular cireuit design is behaving as expected — when the ciren

plied with a given set. of inputs, the civenit produces the expeeted ontputs

con

t time. Although tl

is report will focus primarily upon determi simulation

systems, stochastic nulated with modest. modifications to the

implementation.

1.3 Simulation Models

During the design and implementation of a simnlator, various techniques and strate-

gics may be adopted to madel the behaviour of a given system. Depending vpon the

system to be simulated, some techniques may he more fvourable than others. Faclors
including the level of abstraction and the desired aceuracy and speed of the simulation
should be taken into consideration when designing the simulator engine. "Pradition-

ally, simulators are designed using cither continuous or diser

1 techniques o

simulate a given system.

1.3.1 Continuous Simulation

Continuous simulators [4] are characterized by the extensive use of mathematical

formulac which describe how a simulated compouent responds when subjected 1o

various conditions, For example, consider a cireuit deseribed al the transistor, resis-



e components are well understood

tor and capacitor level. The behavionr of all th
and are governed by several equations which desceribe their respective hehaviours, A

continnous simulator would apply those equations in the context of the components’

envirnment and comectivity and produce a continuons graph which acourately re-
flects how the components would react if they were actually hooked up in reality.

ystem with respect to

The graphs usually reflect, the changes i the state of the

time; however, other relationships may also be demonstrated as well. Unfortunately,
the mathematical equations employed by a continuous simulator can make the sim-
ulation very computationally intensive, especially in the presence of thonsands of

conse-

interconnected elements. As such, continuous simulators may be slow and are
quently only nseful when simulating a relatively small number of components which

are deseribed at 2 low level of abstraction.

As an example of continons simulation. consider a depletion mode transistor

as o pull up for a capac chematic for such a device is

presented in Figure L1 The transient behavionr of the system is governed by the

eqquition ¥ = Viyps(1 - e=t/0Hcu),

Figure 1.1: Depletion Mode Transistor Pulling Up Capaci

Von



During the latter stages of the rising transient, a continmious simulator wounld

produce th

e graph given by Figure 1.

Figure 1.2: Graph Representing Continuous Behavionr

Voo

Vi = V(1 - ¢ D)

1.3.2 Discrete-Event Simulation

Discrete-cvent simulation [31] is nsed to

mulate components wl Iy opes

than comy i 1 by continnons sinmilat

at a higher level of
Within the context of discrete-cvent. simulation, an event s defined as au incicdent

which causes the system to change its state in some way. For

is created whenever a sil I s onlpnt. A suceession of Lhese

events provide an effective dynamic model of the systemn being sinmlated. What sepa-

rates discret t simulation from i simulation is the faet that the events

in a discrete-event simulator can ocenr only during a distinet. anit of time during
the simulation — events are not permitted to ocenr in between time units, Diserete

event simulation is generally more popular than continuous simulation because it is



usnally faster while also providing a reasonably aceurate approxi
hehavionr.
As an example of discrete-event simulation, consider the logic circuit presented in

ire 1.3,

Figure 1.3: Simple Digital Logic Circnit

fis— O

0y

Assuming that the NAND gate has a delay of two time units and the NOT gate

has a delay of one time unit, the above logic circuit will produce the outputs given in

Figgure 1.4 when supplied with the specified inputs
Conventionally, a data structure known as a global event queue is used to process
and manage the events and to activate components as required during the simulation.

“This report will demonstrate an improved technique for event management in which

the global quene is climinated in favour of distributed e

it quenes. The design and

implementation of such a quening system s discussed in detail later in this report.

Monte Carlo si ion is related to discrete-cvent Monte Carlo sim-

ulators usually make extensive rators in order to simulate

of random mumber gen

the desired system. Unlike discrete-event simulators, which are often used to model

"For the purpose of this example, it is assumed that prior to the simulation, both gates are
generating indeterminate outputs. These indeterminate outputs are represented in the diagram by
the horizontal dashed lines.




Figure 1..: Graph Representing Discrete Behaviour

Oip---

Oy |-

deterministic systems, Monte Carlo simulators can be used to effectively model

tems in which probability and nondeterminism plays a major role. As such, Moute

Carlo si are ly used to model stochastic systems. The relationship

between the three types of simulations is displayed in Figure 1.5,

Hierarchical simulation, although not a simulation type by itse

L may e wsed in

conjunction with continuons or discrete even simulators to simplify the simulation pro-

coss,

Hierarchical simulation is a process whereby higher order components delogato

Lo its i The higher level compo-
nents are responsible for activating their respective child components in a meaningfnl
sequence 5o as to model the correct behaviour of the systen. As mentioned earlier,

of the techni used (o

design and simulation is o

pe with the

em. Later

complexity associated with a given sy apters will demonstrate how the

13



mlation Models

Simulation

object-oriented paradigm lends itself very well to the description and simulation of

1.4 Abstraction Levels for Circuit Simulation

“This report will describe the design and implementation of a digital circuit simulator.

Consequently, this section will outline some of the aspeets related to the simulation

of cireuits, including the different. Jevels at which circuit simulators may operate.

C

it simulation provides a means of modelling a circui

s response to a given

set of inputs. The simulator may generate numbers repre

senting the voltages present

at specific nodes of the cir

Jit at cortain times or it may gonerate waveform diagrams

that show the cirenit's output over the duration of the simulation. What is actually



produced as a result of the simulation is largely dependent upon the abstraction level

at which the ci

cuit was d subsequently

1. For example, simulat-

ing a circuit described in terms of transistors and capacitors will conventionally show

how these components interact. at the electric

Lor analog level, wher

simulating a

circuit described in terms of gates, flip-flops and registers will demonstrate the digital

amongst the
Circuits may be deseribed and simulated at sovoral lovels of abstraction [25]. ‘Ulis

section will describe three major absf

ion levels, each of which

ated to the

simulation models described above.  These levels are described below in order of

in

creasing abstraction level.

1.4.1 Circuit-level Simulators

Circuit-level simulators [24] are used to model the hehaviowr of a ¢irenit s lowest.

conceptual level. The circuit is deseribed in terms of

apacitors and

tors and their respective i ivity. Cirenit-level simulators TR

extensive detail regarding the interaction of all the components in the eirenit and also

ake into consideration subtleties such as wire resistance and geometrie propertios of

the subcomponents. The end goal circrit level simula Lo produce very detailed
analog which acer ely model the behavi of the cirenit’s devices in
the real world, C I i simulation i are often used Lo

implement circuit-level simulators.

Circuit-leve]

ve

mulations are typically performed in s

ages. Daring, ]

first stage, referred to as node-extraction, static analysis of the circuit deseription

15



is performed. From this analysis, information regarding the cirenit’s devices, their

ve attributes and their connectivity is obtained. This information is subse-

resp

be the behaviour

device models that des

as

quently combined with modules known

I level. In order to model the cirenit's behaviour, the

al

of each device on 4 mathes v

simmlator must then solve a system of differential linear equations which is des

from all the information supplied to it during the node-extraction phase.

cenrate results, the technique is very com-

very

Although this method general

mulation speed. As a result, circuit-level

putationally intensive, resulting in poo:

simmlation is nsually not feasible for large designs and is therefore commonly user

simmlate only the most cr:tical subregions of a given circuit.

1.4.2 Logic-level Simulators

i computationally intensive nature of

Logic-level simulators attempt to remedy

tion to the domain of switches

cirenit-level simulators by raising the level of abstra

and logic Instead of 1 analog data, logic-level

simulators simply process logic values; that s, 0, 1 and X. In addition, logic-level sim-

simulation process by assuming that the connecting

ulators traditionally simplify th

wires have negligible resistance.

Logie level simulators can be subdivided into two further categori wilch-level

and gate-level simul . In switch-level si i are promoted to cle-

s of other transistor

mentary switches and very little attention is given to the intricaci

attributes. During the simulation itself, equations governing the behaviour of the cir-

cuit are greatly approximated, thereby increasing the speed at which the simulator



operates. The detail that is inevitably lost as a result of this approach

vital.

Gate-level simulators [9] operate at yet a higher abstraction level. Low level circuit

devices such as transistors, capacitors and resistors are replaced with logic gates such

as NAND, XOR and flip-flops. Cire

s deseribed at this level bear strong resem-

blance to data flow diagrams in which information is passed amongst interconnected

components. Effective use of logic gates permit relatively high-level dosigns to be

ily described and sul ly simulated. Because the ¢ are ine

singly
abstract, more complex systems may be designed and simulated at the gate lovel

rather than at the s

ch level. Traditional gate-level simulators are implemented

using discrete-event simulation: as such, this report will primarily foc

upon cireuits
described at the gate level.

‘There have been several successful attempts Lo merge swite

evel simulators with

simulators that operate at the gate-level and above, thereby allowing the desi

ner (o

have the flexibility and speed of higl

-level simulators, whi

at the same time ret

ning

some of the accuracy i with switeh-level simul. Such simul; are

ly referred to as mized-mode simul; 8).

1.4.3 Functional- and Behavioural-level Simulators

and behavioural-lovel description | and simulators [11] represent

the highest levels of simulation available to cirenit. designes These levels enable

designers to model cireuits in terms of interacting abstract units that, may not even he

capable of fabrication. As such, designers are not limited by the restricted belaviour



of Tundamental circuit devices. In addition, these levels also provide designers a
viable means of quickly exploring alternatives without. becoming overwhelmed with

the impact that design decisions would have on the cireuit at lower levels.

Functional-level simulators are generally closer to the actual hardware represen-

&

simulators. An abstract unit in a functional-level simu-

ation than hehaviour-les

lation wonld accept. input and produce output just like its corresponding hardware
component. However, more flexibility is permitted with respect to how the input is
presented to the unit and how it is processed to produce output. For example, an

adder at the gate-level may consist of several half-adders which adds to numbers by

operating dircetly on their bits. The equivalent functional-level unit would simply

take two integers and add them using arithmetic constructs available in the hardware
description language.

Behaviowral-level simulators go one level higher and permit designers to model

abst,

control processing which may not be realizable in hardware. The purpose
of these simmlators is to give the designer a general overview of the design and to
experiment, with high-level alternatives. The usefulness of design tools and simulators

that operate at this level has been the subject of debate due to the diffieulty in

lating such high level designs into compact, high-performance circuits. However,

advances in silicon compilation have made the translation process casier and more

efficient. In addition, high level simulators are still useful for rapid prototyping, even

il the design is not. actually physically fabri Rapid ping allow desiguers

to study the feasibility of a high level design before actually delving into the tedious,

low-lovel details such as placement and routing.

One of the more popular | for describing, s ing and ¢ ally syn-
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thesizing circuits at the functional and behavioural level is VHDL [6][1].

1.5 The Purpose of this Report

‘The simulation engine presented in this report provides extensible support for a va-

riety of circuits cach of which may be deseribed at different levels of abstraction.

The class structure is particularly amenable towards the specification of igh-level

functional blocks that can be easily deseribed in C+4 the language used as the

basis for hardware simulation by the impl jon deseribed herein, A user-defined

library consisting of high- and low-level components can he designed and integrated

casily with the core library components. Subsequent. chapters discuss all aspects of

the simulator in detail. These details include implementation concerns with respeet

to the graphical user interface, the simulator engine core as well as the means hy

which these two major components communicate with one another.



Chapter 2

The Simulator User Interface

“I'he intnitiveness and robustness of the user interface used by a software application
can straugly influence the productivity of the people wsing that application. This

chapter focuses on the design and operation of a graphical user interface for a digital

ulator engine.  Details with respect to the chosen platform and implementation
language will also be diseussed and justified. In addition, some limitations of the GUI

will be deseribed and potential solutions to these restrictions will be presented.

2.1 Motivation

The core of the discrete-event. simulator engine described in this paper was previously
designed and implemented as part of an Honours project. Despite the capabilities of
the simulator engine, the implementation was limited from an end user perspective,
One of the biggest problems of the implementation was the user interface — or rather,
the Tack thereof. In order to describe a cutait, the user had to define the entire cirenit

as well as the input signals in a C++ source module. The circuit description, inputs




and simulator engine itsell then had to be compiled. links

i exeented in order

to determine the outputs from the cirenit. The output from the simulator consisted

of time stamps and signal values which were displayed textually rather than graphi-
cally. Consequently, verification of the behaviour of the cirenit was often ditlicult and

tedious. In addition, any changes to the cirenit description or input signals, regard-

less of how small, required ification and subseqs ilation of the soure

code. Needless to say, this technique for cirenit specification and sin

tion seriously

compromised by th the evaluation and practicality of the simulator engine

sell.

In order to get aronnd these problems, a graphical user interface [19] (or GUI),
called DigiTel, was designed and implemented for the simulator engine. ‘The benefits
of such an interface are multifold. Firstly, due to the graphical representation of sueh

an interface, further investigation into the feasibility, practicality and aceuraey of the

simulator engine becomes easier. Instead of verifying the reliabi of the simulator

by examining streams of

tual output, wavefo can be generated and stadied.

Secondly, if the GUI is designed and implemented correctly, it can be used as the

front end for a multitude of circnit si

mulators. This feature wonld make it signifl-

icantly casier to compare the performance and eapabilities of a variety of different

simulator engines. In order to implement. this feature, loose coupling [27] between the

simulator engine and the GUI is necessary. Thirdly, a GUT wonld miake the specifica-

tion of circuits easic 15, thereby making the simulator engine more

accessible to people who may not. be familiar with relatively esoterie concepts such

as source code compilation. An intuitive GUL wonld fac

itate cirenit specifieation
and design, hence increasing the academic and even industrial applications of the

simulator engine.



2.2 GUI Platform and Implementation Language

Unfortunatel viable platform and implementation langnage for any

, the choice of a

software project e often be considered a religions issue at best. Tn selecting a hard-
ware platforn and implementation language for the circuit editor GUI several criteria,
sich as cost, availability and level of support. were taken into consideration. The list

of possible platforms and languages discussed helow is by no means exhaustive, but

they do represent some of the more popular options available.

2.2.1 GUI Platform

Linux [29] was chosen as the operating system/platform upon which the cireuit editor

wonld be developed.  Linux is a freely distributable clone of the UNIX' operating

em which has been ported to a variety of hardware architectures. The operating

stem offers stability, open development, source code availability and a variety of

suitable software development. tools.  Als

t runs on relatively cheap hardware,

Other excellent. UNIX-like operating systems, such as FreeBSD and NetBSD, possess

similar qualifications and were also potential candidates, but it was decided to go

with Linux due to familiarity with this system and accompanying distributions.
As a result of this decision, it was decided that the circuit editor GUI should

run on the windowiug system most prevalent on the UNIX platform, namely, the X

Window System? [21]. As luck would have it, XFree86" is a fracly available and robust.

jemark of X/Open Company, Ltd.
trademark of X cnn sortiumm, Inc.




use UNIX and X for development, the chosen implementation language should be

portable, thereby allowing the GUI to be used with other operating systems should

the need arise.

2.2.2 Implementation Language

The choice of an implementation language is somewhat less clear eut. The most
obvious contender would be C [14] in conjunction with the XIib library. However,

it was deemed that this library was too low-level for rapid appli

ion development.

Another possibility was the use of C++ [28] and the Fresco class library, While it

is higher level than XIib and shows great promise, it still represents, at the time of

mable.

writing, a work in progre

5 henee, its potential usability and stability is questi
InterViews [15], the forerunner of Fresco, was another considered as another possible
option; however, support for this class Tibrary appears to have heen abandoned in

favour of Fresco. Finally, a

ripting language known as Tel/Tk [2][18] was evaluatod

and cventually chose

as the desired implementation language.

Tel (Tool Command Language) is a simple scripting language that, is being de-

veloped by Sun Microsystems® which provides support for common programuing

concepts such as variables, control flow, i and string ipulation. “Tel

S

ripts can be used either as a stand-alone language or they may also be embedded in

C code, thereby interfacing with e

ting libraries and le cade. Tk (Toollit)

extension of Tel which can be used for implementing graphical user interfaces for the

X Window System. Tk provides the programmer with a wide variety of widgets (such

and

as buttons, listhoxes, canvascs which can be i 1 and arranged

4Sun Microsystems is a trademark of Sun Microsystems, Ine.
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in a flexible manner to build a robust GUIL.

Advantages of Tcl/Tk

One of the primary advantages of Tcl/Tk is that the source code is freely available
on the Internet from Sun Microsystems. Consequently, there is no need to deal
with the economic burden nor the administrative overhead of paying for the package

initially and paying again for subsequent upgrades and bug fixes. The author of the

package, John Ousterhont, has adamantly stated that the Tel core and Tk extension
will always be freely available. In addition, neither licenses nor royalties are required
when distributing applications built, with the langut ge.

By making the source code freely available, two other advantages arise. First,

that fact. that Tel/Tk is free has undoubted i dtoits 1 use. The

“Tel/Tk community is estimated to number in the tens of thousands, therefore provid-
ing the new user with a well established user-base to fall back on for assistance and
guidance. This user-base is easily reached via the Usenet newsgroup comp. lang. tcl.
Second, freely distributing the source code leads to open development of the package.
End users are free to fix bugs and make suggestions and enhancements to the existing
Tel core. The existence of a clean, well-documented functional interface to the inter-
nal mechanisms of Tel makes it relatively casy to extend Tel to include features which
are cither too slow or not directly supported in Tel. If the extensions are deemed
useful to the Tel community as a whole, then these extensions may be integrated into
the core in the next release for the benefit of all users.

Programming a GUI can be a very arduous and demanding chore. Tel/Tk helps

make the task easier by raising the level of abstraction for the programmer, thereby

4



making the implementation of user interfaces easier and quicker. Graphical interfaces

written using Tel/Tk typically require significantly loss code than an equivalent i

terface written in C. Tel is relatively easy to learn and provides most of the

one would expect from a general purpose programming language. Since

interpreted scripting language, there is no need for the developer to compile the vode,
This makes rapid prototyping more feasible with Tel/Tk.

Tel/Tk was originally implemented for the X' Window Systeni

runs scamlessly under a wide variety of UNIX platforms, including Linu

time of writing, ports were in progress to other popular operating systems, thereby

cnabling an application written using Tel/Tk to be relatively portable across a variety
of different architectures and operating s

se of sueh an

us, The potential

application is, therefore, quite large.

Disadvantages of Tcl/Tk

Despite the numerous advantages of Tel/Tk, there are also a few shortcomings of

the language which must be taken into consideration when writing seripts. Some

of these problems can be overcome by adopting

iplined program

practices,

while others may be corrected by extension packages, many of which are also freely

available. This scction outlines many of the potential drawbacks of Tel/Tk in the
context of the circuit editor GUI implementation.
Because Tel scripts are interpreted instead of compiled, exeention of the seripts

will obviously be slower than an

i Cor Gt impl ation. However, as

the implementation of the cireuit. o

tor progressed, it was discovered there were only

two situations in which speed played a major factor  the extraction of netlists and
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movement, of mmltiple cireuit elements. To alleviate the former problem, a feature

ussed in S

known as dynamie nellist identification was implemented and is dis

. The slowness resulting from the latter problem could have been corrected

tion

y movingg only & rectangular outline enclosing the cireuit clements being moved, but

this feature was not, yet implemented an the time of writing. OF course, the option to

rewrite these slow operations in C and build a new Tel interpreter is always possible

should the need aris
Aunother potential problem has to do with the fact that the simulator engine was

already written in C++ and not Tel. By adopting Tel/Tk as the language for the

U1, we must establish some means of communication between the two different im-
plementation languages so that the GUI ean inform the simulator what circuit to

ion results back to the GUI for

the simu

simmlate and the simulator could repor

presentation to the end user. Althongh there are ways of embedding Tel/Tk within

mulator mod-

a Crr application, the decision was made to keep the GUI and the

ules distinet from one another and instead to link them together via a bidircctional

pipe. Communication between the two modules would then tal

place using a well
defined protocol. In addition to solving the inter-module communication problem,
this physical separation of abstractions encourages (indeed, enforces) loose coupling

between the GUI and the simulator engine, thereby resulting in a more flexible and

orthogonal implementation. The details of this protocol are described in Chapter 5.
One of the more serious shortcomings of Tel/Tk is the lack of a rich set of data

structures. The only trne data types in Tel are strings and associative arrays.® The

ring ype

Some prists argue that associative arrays are not trie types in Tel.
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for lists as well. The Ick of aggregate data struetures inereases the need for global
variables as a means of inter-procedural and inter-module communication in situa-

tions where procedural parameters are not. possible. This problons is compounded

by the lack of namespaces which

1 seriously compromise an effective modular de-

sign. As a result, Tel seripts do not seale very well.  However, there are several
possible workarounds to these inherent problems. T order to compensate for the lack
of namespaces, a prefixing scheme was devised for procedures and global variables

which would reduce the potential for clashes be

ween variable and procedure names

across different modules. Also, several extension packages for Tel exist which offer

better support for data abstraction and enhanced scoping. Alternatively, algorithms

involving a rich set of data structures could be written in C and linked with the ‘I'el

coro library.

As mentioned carlier, several freely available extensions to ‘Tel/Tk exist which
help to overcome many of the above problems. However, the decision was made not
to use them due to the relative volatility of Tel/Tk during the implementation of

the circuit editor GUIL. During this time, Tk was undergoing a major vevision from

3.6 to 4.0, which rendered some of the extension packages wnusable due to the many

backward incompatible changes introduced into the new version of Tk, While some

of the extension packages bravely kept. pac

with the numerous changes to the el / Tk
core, other extension packages have adapted more slowly. However, as these packapes
are upgraded to adopt the new features of Tk 4.0 and become more mature, an effor),

may be made to reevaluate and possibly reimplement. the GUI using one of the

extension languag
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2.3 Overview of the Simulator GUI

At the heginning of this chapter, the importance of the GUI was emphasized from the

e of both the novice user learning about digital circuits to the experienced

pers

user who may wish to explore different event-driven simulation techniques. The GUI

st therefore he casy to use for both new users and experts alike.

This

jon provides a high level description of the GUI as seen by the end user; it
constitutes an abbreviated user’s manual, which describes how the user interacts with
the GUI to layout logic circuits, specify the circuit inputs and generate simulation
output. Some lower level details are also presented to describe the implementation
of some of the top level interface clements. More implementation details, especially
with respect, to internal representations are presented in Chapter 3.

The simulator GUL employs two windows — the circuit editor window (also known
as the main window) and the signal display window. Together, these two windows

provide the necessary functionality which lets the user construct and simulate digital

circnits.  Both of these windows are discussed in further detail in the subsequent

2.3.1 Circuit Editor Window

The circuit editor window serves as the main window of the entire application. Using
the features provided by this window, the user can create, modify, save and load

gate-level e

cuit. diagrams. In order to make the circuit editor easy to use, the main
window adopts a presentation format which has been adopted by numerous other GUI

applications -— it employs a pull-down menu bar, toolbar and workarca arranged as
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shown in Figure 2.1. By using a GUI layout which

Iready prevalent in industry,
users who have experience with a similar interface layout should find the cirenit editor

relatively easy to use.

Figure 2.1: Circuit Editor Window

Pull Down Menu Menu Bar Workarea Toolbar

[=] digitcl — RS_Latch.dht O

The following subsections briefly describe the user interface

slements which com-

prise the main window display. In particular, an overview will he provided

parding

their purpose, usage and implementation.
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Pull-Down Menu

rface component. is ubiquitous in software applications

The pull-down menn user i

today. 1L is comprised of a row of menu buttons, ealled a menu bar, along the top

of e display ench of which ciated with a pull-down ment. The pull-down

menu (or submenn) is displayed when the user clicks the leftmost mouse button on

the mena button. The user can then drag the mouse pointer to the desired option in

the pull-down menu and release the mouse button to activate the feature.

Pull-down menus offer nsers both familiarity and case of use. As users become

acquainted with the features offered by the pull-down menus, accelerator keys may

be used instead of the monse to activate submenu options. The aceelerator key for a

given option is indicated to the right of the option label in the pull-down menu. In
addlition, the pull-down menu may be activated using the keyboard by pressing the

Alt ke (or equivalent) and the underlined letter of the memu button in the menu

bar. The left and right arrow keys will traverse adjacent submenus while the up
and down arrows can be used to select options within the submenn.  The current
implementation of the cirenit editor offers three pull-down menus: File, Debugging
and Help. By convention, the Help menu button is displayed to the right of the other

menu buttons.

“The File pull-down menu consists of six options, most of which are related to the

loacling ving of circuit descriptions. The New option lets the user create a new
cireuit by erasing any cireuit currently being edited on the display. The Open... option
displays a dialog box which lets the user restore a circuit that had been previously

saved. The Save... feature will sive the circuit in a file previously selected by the



user. The Configure... option displays a dialog box which lets the user modity certain

aspeets regarding the look and behaviour of the GUL The confignrat ion dialog hox is

discussed in detail in Section 2.4. Finally, the Exit option terminates the application.

The Debugging pull-down menu w

used primarily during development. and en-

ables the user to obtain details regarding the internal confi ion of the cireuit

currently being constructed. Information regarding the connectivity and the eirenit

Iso, Lhis menu

deseription itself can be obtained using options present in this memu.

1y bounding boxes of various cirenit. elements in the workarea

can be used to dis

overlap detection is working correetly.

which is useful for verifying tha

The Help pull-down menu presently contains only one option, namely, About...

which displays a dialog box containing the name and version of the application. In

the future, this menu should offer full hypertest help to the user.

t; however, new

At pres

The options offered by the pull-down menu are s

options can be made available to the user relatively easily through the use of a pull-

down menu module written in Tl /Tk. Details describing some of the implementation

ted in Chapter

details as well as how to add new options is pr

‘Workarea

The most dominant part of the circuit editor window is the workarea. which is locatod

e the interctive

a is Lhe region wi

under the pull-down menu. The workar ayont.

v The workarea

and placement of various circuit components and elements takes pla

currently provides support for the placement of components, wires, wire points,”

Wirc points serve primarily s handles which make manipulation of the end pints of wires
casicr for the end user.



and glie hoxes. Examples of each of these clements

solder points, wire point. labe

are provided in Fignre 2.2, All these clements are ereated and modified with the help

of the toolbar, which is deseribed later. The workarea also displays a grid which can

e s by the uwser as an aid for aligning gates and wires. The grid lines may be

turned off using the configiration dialog hox mentioned in Section 24, Along the

sight. and bottom of the workarea are two serollbars which can be used to seroll the

workaren region vertically or horizontally in case the circuit design is oo Large to be

viewed all at. onee,

Figure 2.2: Circuit, Elements

Wire Component Wire Point Label
" o &

Wire Point  Glue Box ~ Solder Point

“The workarea is implemented using the Tk canuas widget which is used to display
2D structured graphies. Primitives such as lines, ovals, and text can be created and

configured in several versatile ways. Like other widgets, keyboard and mouse bindings
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may be applied to the canvas asa whole or to items on the canvas itsell. This feature

of Tk

1 be exploited to provide more feedback for the user, thereby making the

user interface easier to use.  For example, when a toolbar operation is selected, the

bindings on the workarea canvas are changed so that whenever the monse pointer

tion, the civenit clement

enters a cirenit element that will be affected by the ope

will be displayed in a different colour, This makes it  for the user to identify

the target circnit: element.  1f the user, for instance, presses the SOLDER toolhar

button, and moves the mouse pointer over the port of a component, the port will he

highlighted indicating that a soldering attempt will be made when the user pres
the lefimost monse button. I the user moves the mouse pointer over a component
body, however, the component. body will not. change colour.

During the implementation of the GUIL, an atlemipt was made 1o make monse

and keyboard actions on the workarea consistent. To this end, whenever the user

presses the lefimost. mouse button on the workarea, the operation selected from the

toolbar would be performed; pressing the rightmost. mouse button or the Ese k

would terminate the operation. The actions performed whenever the middle maouse

button is pressed depends upon the current. contest. and the operation selocted.

Toolbar

The pull-down menu d 1 for adininistrative tasks, such

ibad eadier is mainly s

as loading and saving circuit descriptions and GUI configmation settings. The actual

creation of circuit elements is carried ont with the help of the Loolbar, from which the

user sclects logic gates o place on the workarea and operations to modify the cirenl.

Unlike the pull-down menu, the toolbar is accessible using the monse only and ot

33



the: keyhoard.

The toolbar is comprised of a vertical column of iconic buttons along the side of
the main window. The user may coufigure the GUIs0 as to have the toolbar displayed
on either the left or right side of the main window. The toolbar provides three major
operations, hence the partitioning of the toolbar into three main blocks.

The first. block of operations relates to Component creation. Using these buttons,
the nser ean quickly ereate and place logic gates on the workarea. Currently, the
software supports the creation of AND, NAND, OR, NOR, XOR, XNOR, BUFFER
and NOT gates. These gates are hardeoded in the current implementation of the
seript. However, liture versions may consult. a library wpon initialization, during
which the cirenit editor will be informed of all the gates and components supported by

the underlying sinmlator engine. These gates and components can then be presented

to the user by the GUL

After single-clicking the appropriate toolbar button with the mouse, the user
moves the monse pointer onto the canvas; the new logic gate will be created and will
follow the mouse as it. is dragged across the canvas. The user can place the component
by clicking the Iefimost mouse button at the desired location on the workarea. The
gite may also be rotated before placement by clicking the middle mouse button;
hitting the rightmoest mouse button cancels the placement and removes the gale from
the canvas. Nore details on the implementation of component creation is presented
in Section 3.5.1.

The second block of buttons contains the Edit operations. Using these features,

r ean move and delete cirenit clements, rotate components, and modify various

attributes of the circuit clements. These operations all behave in a similar manner,
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with the lefimost mouse button carrying out the operation on the seleeted cireuit
clement. and the rightmost monse button terminating the operation. In the ease of

component rotation, the leftmost. and middle mouse huttons

ate the target com-

ponent. 90° counter-clockwise and 90° clockwise, respectively. s connected

to the component, are moved accordingly. This is accomplished by subjecting cach of
the wire points conneeted to the ports of the component to the same rolation matrix
used to rotate the compounent itself.

The GLUE button on the Edit section lets the user glue several cireuit. items to-

gether by holding down the lefumost mouse hutton on the can

and stroking ont. a

bounding box with the mouse. All cirenit. elements which Tie inside the box after the

mou

button is released will be treated as asingle entity. This make

it T Lo

perform an operation on several circuit items simultancously. For example, several

gates and wires conld be glued together and then subsequently moved as

asingleund

This makes manipulation of the civenit much easier than moving each of the elements

individually. The unglic operation will remove the hounding hox, thus enabling the

user to once again manipulate the cirenit. elements as separate units.

The last block of buttons in the toolbar contains the Wire creation and manipu-

lation operations. Using these buttons, the user can create, identify, label and solder

netlists, which are responsible for conn

ing components

1l propagsating signa

The CREATE button changes the monse point

toa wire spool which is used to
layout netlists on the workarea. The lefimost mouse button is used Lo lay down each

of the wire points and the middle mouse button completes the wive. The rightmos

monse button aborts the netlist creation operation and removes all the points just.

created. During wire

cation, rubbe

handing of the wires s nsed so as Lo provide
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the user with immediate feedback of how the current wire will be placed. The user
may coufigure the interface so that only vertical and horizontal (manhattan style)
wires may be drawn. In addition, if the user sets a wire point on top of an existing
wire, an existing wire point or a port, the new point will automatically be soldered to

that. item. These features may be enabled or disabled using the configuration dialog

hox deseribed in Section 2.4.

‘The SOLDER button lets the nser solder two netlists together or solder a netlist
to the port of a component. After pressing this button, the mouse poiuter will
change into a soldering iron on the workarea. Clicking the leftmost mouse hutton
on top of wires, wire points and ports will solder all the overlapping items togother.
All the items under the cursor will be soldered intelligently — the soldering feature
prevents the ereation of cycles in a netlist and prohibits the soldering of two output
netlists together.” The soldering feature can also be used to introduce wire points
along an existing wire. One important feature currently lacking in the circuit editor
is the ability to “unsolder” wires. However, the same end result can be achieved
by introducimg a new wire point next to the soldering point and then deleting the
intervening wire segment.

Once netlists have been created and soldered together, the NETLIST button

an
be used to identify netlists. After clicking this button and moving the mouse pointer
to a netlist element (that is, a wire or wire point) on the workarea, all wires and points

which comprise the corresponding netlist will be highlighted. This feature can be used

to verify the connect

of the circuit since the inter-connections of the circnit may

"Should the need arise to support tristate circuit clements, these soldering restrictions may be
lifted by making minor modifications to the script.



not be immediately obvious based upon vi

al inspection alone. Note that netlist
extraction is not doue cach time the button is pressed. Instead, we rely upon the

dynamic netlist identification feature to identify and tag netlist items as wives aud

points are laid down and soldered. This

is deseribed more fully in Seetion 3.6.1.
Finally, the LABEL button can be used to name the netlists for hoth docsmenta-

tion and simulation purpos

5. Alter pressing this toolbar button, the

r move

mouse pointer to a wire point in the netlist that is to be named and elicks the leftmost

mouse button. A dialog window, as shown in Figare 2.3, is displayed which lots the
user supply a netlist name and specify the orientation of the label with respect. to the
point. After providing a name and orientation, the nser presses the OK hutton, and

a waveform corresponding to the label is

cated in the signal display window, which

is described in Section 2.3.2.

Figgure 2.3: Netlist Label Dialog Box
| Nettisttabel _Ti[-1]
el T —
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Note that only wire points and not the wires themselves can he labelled. Also, the

interface prohibits the user giving two netlists th

SAme

s or single netlist two
names. As a consequence, the user cannot solder together two netlists which lave

already been labelled. The name and orientation of labels may he changed using the
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MODIFY button of the Edit

on of the toolbar, Labels may also be deleted using
the DELETE hutton of the toolbar. After the deletion of the label, the corresponding

wayelorin in the signal display window will also be removed.

2.3.2 Signal Display Window

The second Lop-level window displayed by the GUI npon startup is the signal display

window, presented in Figure 24, The purpose of the signal display window is to let. the

user edit the signals for cach of the labelled input netlists and view the corresponding

ierated from the t simulation. The signal display window is

output signals

broken down into four major sections consisting of the signal waveforms, button bar,
signal times and signal labels.
“The largest portion of the signal display window is devoted to the signal waveform

arca. This sec

tion of the wincdow displays the input/output waveforms which represent

the signals that have travelled along each of the labelled netlists. In addition to

displaying the input. and output signals, this section of the window also lets the user

modify the input signals to be processed by the circuit. To modify a signal, the
user wmoves the mouse pointer to the waveform to be modified and then uses the
leftmost mouse button to pull signals in the waveform high or low. The user may
also “draw™ the input waveform by clicking and holding the leftmost mouse button

and dragging the mouse across the waveform. The signal values for the vaveform

will snap to the diserete signal value st to the mouse pointer as the mouse is
dragged.  Currently, the waveform editor supports three discrete values: high, low

and unkrown; the latter of which is represented by a horizontal line in the middle



Figure 2.4: Signal Display Window
Signal Labels Button Row Waveforms — Signal Times
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of the high and low boundaries. The GUI explicitly prevents the user from direetly
modifying waveforms which are not input signals.
The button bar at the top of the window enrrently contains only lwo huttons, but

it is relatively casy to add extra buttons should the need arise for ex

e funetionality.

These buttons provide access to features which dire

ctly affect the signal display win-

dow and are therefore located here in

cad of in the ¢l

it editor window. When the

user pres

the Simulate button, the application first ensures that, the eirenit is com-

plete (that is, the ports of all the components have been connected Lo anetlist). After

this check, descriptions of the circuit and its input. signals are composed and sent. to
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fed back to the

the simutator engine for simulation. After simulation, the results are

L ontput. waveforms in

UL which then parses the resnlts and displays the subsequer

the signal display window. The Increase Duration button simply adds ten time units

ended further in time,

1 can he ext

to the time line so that signals in the waveform are

pnals cannot yet, be deercased,

Unfortunately, the total duration of the
The signal times portion lies immediately heneath the button bar and runs hor-
izontally, therehy annotating the waveforms beneath it. This portion of the signal

ouly to denote the time of the signal

display window is non-ints and sery
valies heneath it.
The o mal labels section runs vertically down the Teft hand side of the window

and is divided into subsections. each of which represents a labelled netlist in the

eh subsection contains the name and type of the netlist it

cirenit editor window. E

veform immediately to its right. Signals may

g the signal w

reprosents and annota

be rearranged by clicking and holding the leftmost mouse button on the signal label to

be moved and then vertically dragging the signal label to the desired location. After

ponding waveform

«, both the signal label and it cor

the mouse button is rele
will be moved to the new location and all other signal labels and waveforms will be

adjusted accordingly.

s have thre

ypos, inpa, oulpul and un-

In the current implementation, netlist

knowm, the type of each netlist is displayed below its name in the signal labels scetion.

By defalt, all unconnected netlists created by the user are given the type unknoun.

As netlists ave soldered to the ports of components, the type of the netlist changes

tus, For ¢

automatically in the signal labels section to reflect their new type

ple. if the user connec lated netlist to the input port of a component, then the
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word unknown will be replaced by the word input below the label name. The complete

)

rules for netlist type determination are outlined in Seetion 3.6,

Like th» workarea of the cireuit editor, the signal display also employs two seroll-

bars.  However, in addition to serolling the waveforms. these serollbars also seroll

the signal labels or signal times

as the user serolls the ver

al or horizontal seroll-

bar respectively. Hence the signal Tabels and times alws

s fine np correetly with the

waveforms.

2.4 Configuration Options and Resource Databasc

GUI designers cannot, always anticipate the needs and preferences of potential end

use As a result, it is common for user interfaces to be customizable in their look

and behaviour so as to fit the needs of the widest user base possible. The cireuit editor

GUI can be customized via the confignration dialog boy as shown in Figure 2.5, 'his

dialog box is displayed when the user s the Configure... option from the File

menu of the menu bar.

Figure 2.5: Configure Dialog Box

Configure Lol la]
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Currently, only four aspects of the GUI can be configured using this dialog box.

“These configration parameters are selected by pressing the appropriate radio-huttons

in the din'og box.
b

Tool Bar Position This section of the configuration dialog box lets the user change

the location of the toolbar to cither the left or right side of the circait editor

window. Pressing either radio-button moves the toolbar immediately, so that

the user ean evaliate the decision withont. having to first leave the dialog box.

By default, the toolbar is displayed on the left side of the cireuit editor window,

Grid Weight The intensity of the grid which is displayed in the workarea canvas may
e modified to one of three settings so as to increase or decrease the visibility of
the grid lines. The grid lines may also be turned off completely. Once the user

selects the appropriate radio button, the grid intensity is changed immediately

on the workarea, thereby giving the user instant feedbac]

Automatic Solder During netlist creation, when the user sets a point on top of an

i

ing wire, wire point or component port, an attempt will be made to solder
the new point to the overlapping item. 1 this behaviour is unacceptable to the

user, then this feature can be turned off.

Horizontal and Vertical Wires Only The user has the option of configuring the
GUI to prohibit the drawing of slanted lines during netlist creation. If the user is
doing a manhattan style layout, then this restriction would make such a layout

casicr. Note that this only affects netlist creation — the user may subsequently

move wires and wire points which would result in oblique wircs.
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After the user pre:

s the OK button, a file named .digitelre is automatically
updated with the new configuration information in the user's home directory. Henee,
the next time that the user starts the application, all the previous settings will be

restored. If the user selects the Cancel button, the configuration settings will revert

back to what they were before the configuration dialog box was act

wd,

Other aspt

of the GUI can be configured using the N option datubase. Using

this technique, virtually everything from the colour of cirenit elements in the works

req

of the circuit editor to the widths of the signals displayed in the signal display window

can be customized by the user. Unfortunately, it. is not. e

sv 1o nse the option database

to configure the GUL One must be familiar with the widget hieravehy cmployed by

the application as well as be aware of the valid settings each configuration option can

take. All the configurable aspects of the GUI a

stored in the file optiondb. tcl
which contains a procedure that, assigns default values to option names. Any mod-

ifications made to the option values will take effect the next time the application is

run. Alternatively, one can modify an option setting throngh the use of an X resource

database such as the . Xdefaults file. For

ample, if the user wanted Lo change the
colour used to display a wire when it is highlighted, the following line can be added
to the user’s . Xdefaults file:

digitcl.workarea.canvas.wireColourSelected: green

and the option database would have to be re-read by issuing a command such as:

$ xrdb -merge ~/.Xdefaults

When the GUI is restarted, wires will be coloured green as the mouse pointer moves

over them during, for example, a delete operation.
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2.5 GUI Limitations

Despite the potential usefulness and intuitiveness of the interface, some major short-

comings and several minor deficiencies were identified in the current implementation

of the GUL While many of the problems are relatively simple to correet, others may

require non-trivial modifications to the implementation. This scction discusses some

of the major limitations.

Among the limitations, perhaps the most obvious is the current. inability to rep-

resent. cirenit, designs hierarchically - - ci layont can take place at one level of

ircuit,

abstraction only. The addition of hierarchical decomposition would make the ¢

editor more pragmatic in both academic and industrial settings as this would permit
the construetion of eustom libraries containing components which could be easily re-
used in future designs. Hierarchical representation would require the ability for the

user to stroke ont and encapsulate components in a block, in much the same fash-

fon as the ghie feature operates. The us

r would then have the opportunity to save

that. portion of the circuit in

a library of so-called mega-components. During subse-
«quent designs, the user would have the ability to integrate these mega-components

into future designs instead of having to recreate them from scratch, Hicrarchics of

hierarchies conld even be constructed, thereby simplifying the layout process even

more

Another serions problem is the lack of an undo feature, which would let the user
back out. of the last modification made to cither the circuit being edited or to an
input. waveform. This feature, common among many editing tools, would let the user

recover from mistakes made while editing the circuit or waveform. For example, one
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common accident is to use the DELETE operation to remove a glue hox instead of

the UNGLUE operation. After aceidentally deleting all the cirenit elements inside the

ghie box. the user could simply click an undo button which would recover the cireuit

clements deleted during the last opo

[N
While the signal editor is convenient for a relatively small muuber of signals over

a short duration, cditing a g

er mimber of signals having a longer duration can
become enmbersome. For example, there is no way (o easily insert or delete a signal

value or a group of signal values, In the future, thes

deficiencies may be oy

me
by dumping the waveforms in tabular form to a text file which can then be edited

by the nser using a text editor. Once the usc

is finished editing the waveforms, the
signal display would be updated with the contents of the modified text file,

Despite th

strictions, the GUJ in its en

it manifestation provides areliable,

consistent. and hopefully intuitive interface for digital cirenit layout. and simlation,

especially in an acadenic s

etting. The eurrent impl ation provides a reasonahl

foundation upon which further enhancements can be based.
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Chapter 3

GUI Implementation

This chapter provid sight into the internal workings of some of the important

aspects of the GUI deseribed in the previous chapter. In general, details regarding

the code internal data jons and strategies adopted by the

implementation will be deseribed. In particular, information relating to the construe-

s will be revealed. Several code

tion and manipulation of the components and netlis

fragments will be presented so as to illustrate various implementation techniques.

3.1 Overview of the Implementation

As mentioned in the previous chapter, the entire GUI was written using the seripting

language Tel/Tk. The high-level of abstraction offered by this language helped over-

come many of the tedious, low-level imple hurdles 1 I

when developing a GUL Also because there is no need to compile Tel scripts, develop-

ment is reduced to relativel

simple iterations of edit = execute cycles. Conventional

compiled languages, such as C and C++, require much more time consuming edit =



compile = link = execute

The GUI is comprised of appra

about 2200 lines of internal documentation and

5300 lines of Tel seript. U

“autoloading™ feature of Tel. the code was broken down into nearly three doz

seripts or modules as shown in Figure 3.1. A main module n

ed tsim is rosponsible

for calling the appropriate procedures that ereate the cirenit editor window

el signal

display window and basically serves to set the GUI in motion.

When a production release is made, all the seripts are combined into one larpe

ript file; all th

comments ar

stripped out so as o veduce the overall size and

increase the exeention speed of the

ipt.! i order 1o v the production relonse,

several environment. variables have to be s

t, which inform the GUI of the location of

various bitmap files and the location of the simulator engine exeentable. More details

the installation of the production release is presented in Appendis A.

One of the main problems wi

h Tel

s the lack of modular o

mespaces e

mes of global variables or procedures in one module may conllict with the names
of variables in other modules. To get around this problem, a naming scheme was

adopted whereby the names of global variables and procedures were prefixed with

unique strings which help classify the name and make the name unique. For example,

variables and procedures which are dircetly related to components are prefixed with

the string comp_; likewise, variables and procedures related to netlists ave prefixed

with net_. In order to encourage enc

capsulation, abbreviations of prefixes were used

to indicated that a procedure or variable should only be used by other procedures
"Remember that Tel is an interpreted language. Th

for example, have to be identified and ignored each tim
comments, we climinate this extra parsing.

fore iy comments appearing inside loops,
the loop is exeeuted. By eliminating U
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Figure 3.1: Modularization of the GUI Source

Pull-Down Menu:

Miscellaneous:
progress. tcl

file.tcl

configure.tcl optiondb.tcl

utils.tcl
fileslct.tcl
mousewin. tcl

Signal Display:
sigdisp.tcl

Debugging:
debugging.tcl

Simulation:

simulate.tcl

Workarea:

workarea.tcl

attrib.tcl (C | Netlists:

Maulti: cmpcreate. tcl | netcreate.tcl
multidel.tcl cmpdel.tcl netdel.tcl
multiglue.tcl cmpmod . tcl netlabel.tcl
multimod.tcl cmpmove.tcl netlist.tcl

netmove.tcl
netsolder.tcl

cmprotate.tcl
cmputils.tcl
drav.tcl ) netutils.tcl

multimove.tcl
multiunglue.tcl
multiutils.tcl

inside the module in which it is defined. For example, the procedure draw._rotate in
the draw. tcl module can be used by procedures in other modules, but the procedure
dr_rotate_item should only be called within the draw.tcl module, This approach
is not ideal since it is not enforced by the underlying language. However, it does help
to overcome the lack of scope control in the global namespace.

ribe in intimate detail every

Due to space coustraints, it is not possible to



single procedure implemented by the GUI: therefore, only certain high-level aspeets
of the implementation will be elaborated npon in detail during this chapter. The code
contains sufficient internal documentation, so the lack of external documentation in

this report should not present too many problems to those wishing to explore and

understand the internals of the package in greater detail.

3.2 Pull-Down Menu Modules

The modules ible for impl

the pull-down menn and the options that
appear in its submenus are presented in Table 3.1. The use of the menubutton and

menu widgets facilitated the o

ion of the pull-down menn. The procedure dispateh

mechanism is incorporated as a configuration option to entries added to the menu
widget.

The pull-down memn user interface component is created by the pullmenu_create
procedure of the pullmenu.tcl module. This procedure is generic enough to make

the creation and subsequent modification of the m

i bar and its corresponding pull-
down menus relatively simple. An example of the invocation of this procedure is
shown in Figure 3.2. This procedure accepts one list for each pull-down menu to he

created. Each list is comprised of the name of the ment button, the location of

menu button along the menu bar (cither right or left) and u list of menn entrics

which are to be displayed in the ing pull-down menu. Bach of these entries
are sublists which contain the necessary information to create the menn entry.

Note that the ampersand, &, may be used to indicate which character will be

underlined in the text of the menu entry. This character becomes a hot key for
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“Table 3.1: Pull-down Menn Module Responsibiliti

Maodule: Name: Purpose

about.tcl Display a top-level dialog box containing the name and

version information of the application.  Employed by the

Help | About pull-down menu option.

configure.tcl | Displays a dialog hox which lets the user configure varions

aspects of the GUL Employed by the File | Configure... pull-
down menn option.

used 10 hielp in the debugging and veri-

debugging.tcl | Contains procedus
fication of various aspects of the GUL These procedures are
accessible via the Debugging submenu of the pull-down menu.
file.tcl Contains procedures which implement several of the file re-

lated features of the File submenu of the pull-down menu.

pullmenu.tcl Procedures responsible for the construction and manipulation

of the toplevel pull-down menuing systom.

that menu entry. Menu entries along the menu bar can be accessed by pressing Alt

and the menu’s e ing hot. key, thereby di; ing the appropriate pull-down

menu. An entry in a pull-down menu can be invoked by simply pressing the hot key
corresponding to that entry. For example, the key sequence Alt+F X will terminate

the application. The vertical bar, |, is uscd to separate submenu entries from their

corresponding accelerator key sequence. This sequence enables the user to invoke a

feature immediately, bypassing the pull-down menu system altogether. For example,

Ceel+X will also terminate the application, but with one less key stroke than using
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Figure 3.2: Invoking the pallmenu_create Procedure

set menubar [pullmenu_create {
{* &File " left
{command *&New|Ctrl+N" file_new)
{command "&Open...|Ctrl+0* file_open)
{command "&Save...[Ctrl+S* file_save)
{command "S&ave As...|Ctrl+A* file_save_as}
{command *&Configure...|Ctrl+C" config_user_interface]
{command "E&xit|Ctrl+X" file_exit)

the hot key sequence mentioned above.
Pull-down menu entries are not. restricted to exeeuting commands or procedures

as implied by the figure. Entrics may have radio- or check-buttons associnted with

oLher

themn, thercby maintaining state information, or they may invol submenus

(known as cascades), which offer more choices to the user when activated.

3.3 Toolbar Modules

All the procedures which construct and manipulate the toolbar are con

ined in one
module, as shown in Table 3.2.

The toolbar, which is created by toolbar_create, is comprised of one large frme
which encompasses all the buttons and labels contained within the toolbar. “The
buttons themselves are packed horizontally in smaller subframes, "The organization

of buttons on the toolbar is controlled indirectly by the associative array th buttons

which determines how the buttons are grouped. Each element. of the tb_buttons

array contains a grouping of buttons which are rep) ted by alist of sublists of
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Table 3.2: Toolbar Module Responsibilitics

Module Name Purpose

toolbar. tcl This module containg pro

edures for the

reation and manip-

ulation of the toolbar. Procedure:

to establish appropriate

workarea canvas bindings upon button ac

tivation are also in-

cluded in this modn

bitmaps which are displayed in the buttons. For example, the organization of the
Components buttons in the toolbar presented in Figure 2.1 was achieved by the list

gronping shown in Figure 3.3,

Figure 3.3: The tb_buttons Associative Array

set tb_buttons(Components) (
(cmpereate_and
(cmpereate_or
{cmpcreate_xor

cmpcreate_nand}
cmpcreate_nor)
cmpcreate_xnor}
{cmpcreate_buffer  cmpcreate_not)

As with the pull-down menu, new buttons can be easily added to the toolbar

by modifying the tb_buttons array; the bitmaps which appear on the buttons can

be drawn using the )

o

eat bitmap, The location of the toolbar is controlled by
the procedure tbmove which positions the toolbar either to the left or right of the

workarea canvas,

In most cases, several procedures

are invoked when a button is pressed. These

procedures have two major responsibilities. First, they keep the button depressed




until the user has cither completed or aborted the chosen operation. Second. th

establish appropriate canvas bindings on the workarea which carery out the operation

it

selected from the toolbar when the leftmost mouse button is pressed on a i
clement which will be affected by the operation.

In accomplishing this second task, the procedure tb_set_bindings is called for

cach circnit element which is affected by the selected toolbar operation. An ably

ated version of that procedure is presented in Figure 3.4,

Figure 3.4: Establishing Canvas Bindings in tb.set bindings

proc tb_set_bindings (item canvas status button) |
if ($status == "on'} {
$canvas bind $item <Enter> \
“attrib_$item $canvas selected current"
$canvas bind $item <Leave> \
attrib_$item $canvas normal current®
$canvas bind $item <1> \
*${item)_dispatch_${button) $canvas ix ty"
} else {
$canvas bind $item <Enter> ()}
$canvas bind $item <Leave> ()
$canvas bind $item <1> ()

The procedure will invoke the appropriate attrib. procedure, dese

the mouse pointer enters and leaves affected cirenit elements. Pressing the leftmost

mouse button, indicated by <1> in the code Tragment, will di

patch the appropriate

anenl, enrres

procedure to perform the operation on the cireuit

Uy under the monse
pointer.

The actual tb.set_bindings procedure contains some special eases which hanele



the rotation of components (which use both the leftmost and middle mouse buttons)

and multiboxes,

3.4 Workarea Modules

The two modules related to the high-level operation of the workarea are presented in

‘Table 3.3. A number of lower-level sul Inles related 1o e ents, netlists and

multiboses

alsa related 1o the workaren and are presented in subsequent

Table :

High-level Workarea Modules

Madule Name Purpose

attrib.tcl Highligghts and dehighlights workarea cireuit elements (sneh

components and wires) as the mouse pointer enters and
leaves them.

workarea.tcl “This ntodule is responsible for the creanion, configuration and
manipulation of the workarea upon which the components

and netli

are placed, modified and deleted by the user.

"The workarea is ereated by the procedure workarea_create of the workarea. tcl

module. Its basic duti

are Lo create and position the workarea canvas and the hor-

izontal and vertical serollba

s. [t also dispatches another procedure to draw the grid

lines on the canvas using the inte

sity specified in the user’s configuration fle, The
warkazea.tcl module also contains procedures which translate between sereen and

and some data abstracti d which return the workarea




widget and canvas widget for nse

- other modules,

The second mocdule related to the workarea, attrib.tcl. changes the colour and

width attributes of eireuit. clements as the mouse pointer enters and leaves them. This

is done so that the v

ser can easily determine which cirenit element will be affected by

the eurrent operation. All the procedures contained in this module work basically the

same way. The parameters (o these procedures consist of the workarea canvas widget

name, the highlighted status of the element (cither normal or selected) aud the ta

or id

tifier of the cirenit clement to change. The procedures retrieve the desired

colour and width attributes of the cirenit. element. from the resonree database and

then use the itemconfigure canvas widget command to change the wee of all

ks
the canvas primitives which comprise the cirenit clement. For some eirenit elements,

stich #

s wites and points, this op

tion i simple, since they are comprised of only
one canvas primitive, For more complicated elements sueh as gates, the operation

st iterate over all the canvas primitives which compris

e the element and chanpe

the width and colour attribute for each primitive.

A Drief discussion of how structured g

are created and manipulated using

the Tk

wvas is in order. Consider the short, but complete, code feagment. presented

in Figure 3.5. The first. two lines

simply ereate a canvas and place it on the display.
Note that ~borderwidth and ~highlightthickness are called widgel aplions and

control the width of the canvas border and the thickness of the highlight focus ring

surrounding the canvas r

cetively. In Chis partic: i, they are both sel 1o zero,

meaning that the canvas will have no border and no highlight foens ring. “The next

two lines use the create canvas widget command to create two canvas items. These

two commands

1 each other al

cate two short. oblique line segments which inter:



their end points, forming a A in the upper left. region of the canvas.

Figure 3.5: Creating Structured Graphics on a Canvas

canvas .c -borderwidth 0 -highlightthickness 0
pack .c

.c create line 10 0 0 20 -tags x
set id [.c create line 10 0 20 20 -tags x]
.c move x 40 40

.c itemconfigure x -fill blue -width 3

.c move $id -20 0

The create canvas widget command always returns a unique numerie identifier

representing the canvas

tem just ereated, so that the canvas

em may be roferenced
in the future. Tn our code example, the identifier of the first line is returned but

discarded by onr

ipt. The identifier of the second line, however, is saved in the

able id, as it is used later. Also note that.

ach of the line segments created are
wiven the tag x, which may be used in the future Lo refer to both of these canvas
items as u single entity.

The fifth line of the sc

pt. moves all canvas items tagged with x 40 pixels down and
40 pixels to the right relative to their last position. Both lines are moved hecause they
have both been tagged with the x tag when they were created. The sixth line then
modifies the ~fill and -width attributes of both lines to blue and 3 respectively

using the itemconfigure widget command. This has the eff

of colouring both line
segments blue and increasing their width, making them easier to see on the canvas,

Finally, the seventh line moves th

+ canvas item identified by the contents of variable

id (the second line segment created carlier) 20 pixels to the left. The end result of



this

cript is that a V will be displayed at an offset of 30 pixels horizontally

pixels vertically from the upper left corner of the canvas widget.

Note that when this seript. is run, the user will see only the cumulative results of
all the canvas operations; the creation of the A and its subsequent. manipulation will
not be seen. This is because Tk, for efficiency purposes, buflers all the sereen updates

until idle time is available to actually flush the updates to the display. "To actually

see the effect cach liue of the seript has on the canvas, the code soquence “update;

after 1000” can be inserted between cach line. This canses Tk (o flush the updates

to the display immediately and to wait, 1000 1

soconds (one second) so that, (he

user may see the incremental effects of the seript.

3.5 Component Modules

Components represent the clementary functional units of the cirenit and are rep-
resented graphically on the workarea canvas by logic gates. The implenentation

modules related to the construction and subsequent. manipulation of components

presented in Table 3.4.

3.5.1 Component Creation

When the user clicks on a component button in the toolbar, a workarea

canvas bineding

is established which will result in the o

ion of the

ted component. when the
mouse pointer enters the canvas. The components themselvos are composed of several
canvas primitives, such as lines, arcs, rectangles and ovals all of which are tagged with

an identical tag. This

enables all the primitives to be treated

w single entily by
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“Table 3.4: Component Creation and Manipulation Modules

Module Name Purpose

cmpcreate . tcl This module is responsible for drawing and placing the com-
ponents on the warkarea canvas.  Uses the drav_conponent
procedure in the draw. tcl module.

cmpdel.tcl Module to delete components from the canvas. Also ipdates

the netlist arrays by remoaoving deleted port. assignments.

cmpmod. tcl Modify the attributes associated with a component. Cur-

rently. no attributes are supported: but in the future, com-

ponent. transport. delay will be provided.

cmpmove. tcl Move components on the canvas. Procedures must. also move

any wires and points attached to the ports of the component.

cmprotate . tcl Module to rotate components on the canvas. Employs the
draw_rotate procedure in the draw.tcl module.

cmputils.tcl Miscellancous low-level helper procedures related to compo-

nents, such as overlap detection and identification.

draw.tcl Contains the low-level code and helper procedures required

1o draw and rotate components on the canvas. Also cont

code to determine the hounding box of a canvas ivem.

the implemen

For example, consider the construction of the NAND gate presented in Figure 3.6,

The two input ports and one output. port are rectangles; the three wires leading

from the ports to the component hody are single line segments; the component body
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adjacent. to the two input ports is comprised of three line segments: the component

body adjacent to the output port is an are and the NOT cirele is an oval primitive.

ote that it is important for the midpoint of the ontside edpe of a port reetangle to

coincide with the intersection of two grid lines. This is so wirve points, which are also

created at intersecting grid lines, may be soldered to the port.

Figure 3.6: Primitive Composition of a NAND
1 20 30 10 50 (G0 il

U

20

These nine primitives are all tagged with a nnique alphanumeric
by the procedure dr_generate.tag. The tag consists of the string comp, lollowed by
the type of the gate which, in turn, is followed by the serial number for that gate. All
these elements of the tag are separated by underscores. Therefore all the primitives
comprising the eighth NAND gate will be tagged with the string comp nand 8.

The Tel procedures which build all the gates are contained in the dras.tel mod-

ule. As an example of such a procedure, consider the code

The colour and width variables are all determined from the resonree datab:

dr_wires_not procedure draws and tags all the wires connecting the ports o the

component body and the NOT circ]

+at the end of the gate. “The dr_ports procedure



draws the ports of the component; input ports

are represented by green rectangles

and ontput ports by red rrtangles. The ports of a componet are given additional
tags to identify them as special parts of a component which can be connected to
netlists. The parameters of both of these procedures consist of the component tag

and the coordi

s of the primitives they are to construct.

Note that all the canvas primitives which

up a component are given the tag
component. T'his tag permils the implementation to quickly distinguish a component
primitive from a netlist primitive on the canvas and lets the implementation identify

components during operations which have components as their targets.

Figure 3.7: Tel Code to Build a NAND Gate

.c create line 40 010 0 10 40 40 40 \

-fill $colour -tags *component Stagname® -width $width
.c create arc 20 0 60 40 -start 270 -extent 180 -style arc \

-£ill $colour -tags *component Stagname® -width $width
dr_wires_not $tagname \

{110 10 5 10} (10 30 530} {70 20 75 20}) {60 1570 25}
dr_ports $tagname \

{input (05 5 15) {0 25 5 35}) (output (7515 80 25})

In order to reduce code duplication, one procedure is responsible for prodicing

both NAND and AND gates, depending upon its parameters. Therefore, the actual

sonree code for constructing gates isa little more complicated than that presented in

Fignre 3.7, Currently, the interface is

mited to creating the vight gates mentioned
in Chapter 2. Tn order to extend the GUI to support other gates or higher level
deviees such as decoders: and multiplexers, the draw.tel module will have (o be

modified accordingly 1o support the conss

ruction of the new devic sing the canvas
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primitives.
Upon construction of the gate, it is immediately moved from its origin in the upper

left of the canvas to the enrrent loeation of the mouse pointer on the canvas, Bocause

anvas updates are buffered. the user will not notice the gate heing deawn initiatly i

the upper left corner of the canvas before it is moved to the current mouse location,

A binding is

blished so that the motion of the mouse will cause the component o

move across the canvas, The GUI emplo

gridded placement. so that. the component

will move in discrete stej the can

erve their alignment with

AT

10 pre

the canvas grid lines. This makes it. easier to place and align the components. e

syncl motion of the with the monse is broken: when the user pre.

the leftmost mouse button which affixes the component ta its current. position on the

cany.

3.5.2 Component Representation Arrays

The associative array draw_parans is nsed to store varions attribntes related (o

component. [t is indexed by a component. tag and a component attribute. The

attribut

s currently supported are canvas, colour, width and orient. Ior e

mple,

if the orientation of the component. with tag comp_nand.8 is currently 180 degrees,

then the value of the array element drav.params(comp.nand_8, orient) will b 180.

The canvas attribute indicates in which canvas the cornponent. vesides. “This attrilute

ts for futnre extensibility of the GUI, in which rmultiple views of & eirenit. over

several different canvases may be possible. ‘The colour attribute stores the colour o

be used when drawing the primitives; by default, they are black. The width attribute
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inelicates the ontline thickness to be used when drawing the primitives which make

5 by defanlt the widths are set to one pixel. The default values

up the cornpone

for the initial colour and width of a component can he changed using the option

database. The orient attribute, as alluded to above, stores the enrrent rotation of

the e Surrently, the ori jon of a must be one of 0, 90,

180 or 270. The purpose of the drav.params asso

tive array is to cut down on

the number of global variables required by the draw. tel module and to reduce the

ymber of parameters which st be passed among procedure

Another array, cmp.coord is used to store the location of the component on the

canvas. 11 too, is indexed by the unique tag name of the component. and contains
the canvas coordinates of the center of the component.. In retrospect, the cnp_coord
array conld have been merged with the draw_parans array, so as Lo limit pollution of

e global nanespace.

3.5.3 Component Manipulation

Components are manipulated by selecting an operation from the toolbar and then
clicking the leftmost. mouse button on the target component. In order to make the
for the user, trans

selction of the component, ea arent hounding boxes are placed

on top ol components when they are created. These bounding boxes make components
casior o grab by providing a greater area on the canvas which can be clicked on by
the user. Without. these bounding hoxes, the user would have to click on the thin

outline of the primitives of the component in order to perform the desired operation.

Each component has two types of bounding boxes, cadl, . vhich are tagged with
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the unique tag name of the component as well as special tags identifving them as
bounding hoxes. Oue bounding box covers the entire component body and its ports,

whereas the second bounding box only encompasses the component body. Together.,

these two b

boxes prevent from lapping with one another
and ensure that if a wire overlaps a component, it does 5o only at the ports of the
component.

Moving and Deleting Components

Deleting and moving components is rel

tively simple using ‘Tel/Tk. The only difli-
cult aspect is updating any wires which are connected to the component. When the
user seleets a component. to move or delete, all the wire points which are attached to

the ports of the are d ined I

5 Lhe 1 utility y

cmp_get_point_ids. I the user is deleting the component, the intern

sentation is updated using the netlist utility procedure net_list_remove_port which,

in effect, di the ports of the from their respective netl;

The

canvas delete command is then used to remove the component from the wor

the user is moving a component, then a binding is established which calls the canvas

move command to adjust the location of the component as the user moves the monse,

The end points of any wires which are connected 1o the ports of the component

are moved in harmony with the component. itse ing the netlist utility procedure

net.do.move_point.



Rotating Components

Rotation of components presented a challenge since Tel/Tk does not dircctly sup-
port the rotation of canvas primitives. Thercfore, each primitive which comprises a
component had to be rotated individually nsing rotation matrices represented mathe-

matically by the equations shown in Figure 3.8. The xp and yp variables represent the

linates of the primitives as ined by the canvas coords command while xc

and ye represent, the center of rotation, which is simply the center of the component.

as determined by the emp_coord array.

Figure 3.8: Rotation Equations for Canvas Primitives

set dr_roteq(x,0) ( expr $xp }

set dr_roteqly,0) ( expr $yp }

set dr_roteq(x,90) { expr $xc + $yc - $yp }
set dr_roteqly,90) ( expr $xp + $yc - $xc }
set dr_roteq(x,180) { expr 2 * $xc - $xp )
set dr_roteq(y,180) { expr 2 * $yc - $yp )
set dr_roteq(x,270) { expr $xc - $yc + $yp }
set dr_roteqly,270) { expr $yc + $xc - $xp }

The procedure drav_rotate is the main procedure responsible for rotatiug a com-
ponent. This procedure simply iterates over each of the primitive canvas items of a
component and invokes the procedure dr_rotate_item which makes use of the trans-
formation equations Lo rotate cach of the primitives. The arc primitive present in
the AND and NAND gates had to be treated as a special case by this procedure. As

with deleting and moving a the wires toa have to

be adjusted so as to stay connected to the ports of the component.



3.6 Netlist Modules

In the context of this application, a netlist is defined as a collection of wires and points

which are logically equivalent during the conrse of a simula

. The modules which

create and maintain the netlists in the workarea canvas are presented in Table 3.5.

Table 3.5: Netlist Creation and

ipulation Modunles

Module Nawe

Purpose

netcreate.tcl

netdel.tcl

netlabel.tcl

netlist.tcl

netmove.tcl

netsolder.tcl

netutils.tcl

Contains all the procedy

S5 10C0S

-y for the creation of wires

and

re points on the workarea. Supports rubber band

as well as gridding of wires and wire points.

Procedures for deleting wire points and wires.

T for disp

wing a dialog box for the

purposes of letting the user label a poit on a netlist.

This module contains several miscellancous procedures which

manipulate netlists as a whole. Operations such as identify-

ing, splitting and w

ting netlists are contained in this mod-

ule.
Procedures for moving wires and wire points.
Contains all the procedures necessary for soldering netlists

together. E:

entially, these procedures conneet overlapping

her,

ports, points anc wires toge

Several miscellancons procedures which ere

e and manipn-

late individual wires and wire points.




3.6.1 Netlist Creation

After selecting the netlist CREATE button from the toolbar. a procedure namned

the leftmost

net_set.point isinvoked Lo createa wire point cach time the user pres

Upon creation of the wire point, represented

mouse hutton on the workare;
an the workarea by 2 polygon primitive in the shape of a small diamond, a wire scg-

ment, is drawn from the wire point to the current position of the mouse pointer. A

hinding is ereated which cuses nd point. of the newly created wire to follow the

motion of the monse, effectively “rubber banding” the wire, Wire points are snapped

er to align

to the nearest. intersecting grid lines on the workarea so as to make it eas
cireuit elements with one another.

Before actually laying down a wire point, net.set _point first cusures that the

point. is not. being placed inside the body of a component. Then, if the user interface
lins been configuredd to perforin automatic soldering, the procedure will also atterapt
(o solder the newly created point to any ports, wires or other wire points that overlap

with its position. The net-set_point | intains two lists ining the

canvas identifiers of the wires and wire points created during the current netlist ere-

tion. Th

ation oper e lists are consulted to delete the last wire and wire point from

the workarea canvas should the user press the BackSpace key. Likewise, these lists

are also used to delete all the wir created should the user decide to

and wite points

abort. the create operation by pressing the Esc key or rightmost mouse button.

Netlist clements consist of wir

gments and wire poinl

il cach are tagged with

the nawnes wire and point, rospectively, Both netlist clements also rec

ive the tag

netlist which serves to distinguish them from components. In addition, all netlist
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elements which comprise a single netlist ave tagged with a unigue name which serves

to identify the netlist as a single entity. The format of this netlist tag name consists
of the string net1ist. followed by the sequence number of the new netlist. This is
similar to the tagging mechanism used for components. For example, all the wires and

wire points of the fourth netlist

rated by the user would be tagged with the string,

netlist_4. Netlist tag names are ge by the lure net_list | id.

Dynamic Netlist Identification

By tagging cach element of a netlist with a unique name, netlist extraction bhecomes

much easier and fast

+ This feature, known as dynamic netlist identificalion, involves

the tagging and retagging of netlist clements

s they are eveated and modified by the

user so as to reflect the new netlis s the user

reales a new netlist, the
points and wires comprising the netlist are tagged with the nnigue netlist mame, 7 the
user solders two netlists together or splits two netlists apart, then the nethist tags are

updated accordingly. In effect, uetlists are “extracted” while they are bing cereated

and modified, thus the need for expensive netlist ach time

the user wishes to simulate the circuit. Further details regarding the soldering and

splitting of netlists and the subsequent retagging are presented in a later subsection.

In addition to permitting easier netlist extraction, dynamie netlist ident | on

also serves to lelp enforce many of the restric

jons with respect to netli

layont..
Because such restrictions can be identified quickly, the GUI can prohibit. potential

layout crrors in

actively. For example, using dynainic netdist identification, the GUI
can determine in constant, time whether or not. the user is attempting to introduee i

cycle in a netlist.
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Using dynamic netlist identification, it is very simple to implement a feature which

will let thy single netlist. Users

user see all the wires and points which comprise
can highlight an entire netlist by using the NETUIST toolbar button. This procedure

creates a binding which is triggered whenever the user moves the mouse pointer inside

plementation extracts the

a netlist clement, as shown previously in Figure 3.4. The

ue netlist tag name from the netlist element and changes the colour attribute of

all the

s on the canvas having that tag name. The netlist is dehighlighted when

the monse pointer leaves the netlist element,

3.6.2 Netlist Representation Arrays

In order to internally represent. the netlists and their corresponding component con-

neetivity, the Tel/Tk seript employs several global associative arrays. The array

names, their indices and their contents are shown in Table 3.6. Notice that all asso-

ciative arrays which are indexed by point identifiers are prefixed with pnt, whereas
associative arrays indexed by netlist tag names are prefixed with zet.

As an example of how netlists are represented internally, consider the incomplete

cirenit displayed in Figure 3.9. Remember that all newly created canvas items are

assigned unigue numerie identifiers so that they may be referenced later on. However,
for clarity, capital letters will be used to represent point identifiers, integers will

represent the identifiers of wire segments and lowercase letters will represent. port

identifiers (that is, the identifiers of port rectangles). A shaded port indicates that

the port has heen connected to the overlapping point. The sans serif font represents

netlist labels placed on the workarea by the user via the Netlist Label dialog box; the



Table 3.6: Ni

sentation Array

Array Name | Array Index Array Contents

pat_coord | point identifier | (r.y) coordinates of the point.

pnt_wires | point identifier | List of wire identifiers adjacent to the point.

pntport | point identifier | Canvas identificr of the port. conmected 0 the
point. (if applicable).

pnt-label | point identifier as identifier of the textual label for the

point. (if applicable).

net_ports | netlist tag name [ List of ports connected to a netlist. Pach ol

cment, of the list is a pair consisting of a porl
type and the point identifier connected to the

port.

netmame | netlist tag name | The textual name of the netlist as assigned Dy

the user via the Netlist Label dialog bos.

numeric identifier assigned to this text label by Tk will e represented by the notation
id(label).

The tags for cach of the points and wires for this cirenit are shown in ‘Tables 3.7

and 3.8 respectively. Note that all points have hee given the point tag and all wires
have been given the wire tag. Also note that in addition to the netlist tag, all
wires and points have been given a special uedist identifier tag name which serves to

indicate to which netlist the wire or point, belongs.
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Figure 3.9: Example of a Circuit Layout.
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Point Arrays

“The four point. arr

s representing the circuit are shown in Table 3.9. The purpose

of the pnt_coords array is fairly straightforward; it allows the implementation to
quickly accoss the coordinates of the conter of the diamond-shaped polygon used to
reprosent, wire points on the canvas. By storing these coordinates, the implementation
relieves itsell from having (o recalenlate the center of the point based upon the canvas

coordinates of the polygon. 1t also makes the implementation more resilient to change

should a different shape be used to represent, the wire points.

The pnt_wires array contains the identifiers of all the wires adjacent to a given
wire point identifior in the netlist. Consequently, the degree of a point can be deter-
mined by simply finding the number of lements in the pnt_wires list that corresponds

(o the point. Tn Tel, this can be accomplished with a call to the 1length list proce-

dure. For example, $pat_wires(G) is {4 5 6); hence 1length $pnt.wires(G) is
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Table 3.7: Point Tags for the Circuit in Figure 3.9

Point Identifier List. of Tags
A { point netlist netlist.0 }
B { point netlist netlist.1}
c { point netlist netlist.2}
D { point netlist netlist 0}
E { point netlist netlist.1}
F { point netlist netlist.3 }
G { point netlist netlist.3}
n { point netlist netlist 3}
7 { point netlist netlist.3}
J { point netlist netlist.2 }
K { point netlist netlist.4 }
L { point netlist netlist.3}
L M { point netlist netlist 4 }7

three, so point. G has degree three.
The pnt_port array is used to associale a point with a component. port. when the

two have been conne

ed by the nser. This array is consulted when the user moves .

point which is Ltoa port. T this situation, the ar

maps the

point identifier to the corresponding port identifier to which it is comnected. From

this, the implementation can de

nine the unique tag name of the component. which
is to be moved in unison with the point. The array is also nsed to map identifiers

in the revers

irection when the user 1moves a component, attached Lo one or wore

71



“Fable 3.8: Wire Tags for the Circuit in Figure 3.9
Wire Identifier L of Tags

1 { wire netlist netlist.0 }
2 { wire netlist netlist.1}
3 { wire netlist netlist.2 }
4 { wire netlist netlist.3}
5 { wire netlist netlist.3}
G { wire netlist netlist.3 }
7 { wire netlist netlist.3 }
8 { wire netlist netlist.4 }

wire points. The procedure net_port_point doos this mapping by linearly scamning

Notice that if a point is not connected to a

the elements in the pnt_port array

component.port, then the pnt.port clement corresponding to the point, is undefined.

Also, il a component. is deleted, then the appropriate elements of the pnt_port array
nust be updated to “disconnect” the points from the ports of the deleted component.

The pnt_label array provides an easy way for the implementation to quickly

aceess the identifier of the textual label canvas item which names a point and its

corresponding netlist. Given the identifier of the point. the text label canvas item

associated with that point can be obtained. thereby allowing the label to e subse-

quently maodified or deleted by the implementation. Note that because each netlist

can only have one name, the number of elements set in the pnt_label ar ot

exceed the muuber of netlists in the cireuit. With respeet to the sample cireuit of

Figure 3.9, there are five netlists. therefore, the pnt_label array can have no more

.y
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Table 3.9: Point Arrav Values for the Civenit in Fignre 3.9

Point Identificrs | pnt_coords | pnt_wires | pnt port
A 180 250 1 -
B 180 270 Y
4 180 350 a4
D 230 250 1 “

E 230 270 8 b
r 210 260 4 3
(& 360 260 4506

n 360 330 67

1 10 330 7 :I
J -0 350 ki

K 500 340 8

L 520 260 b

M 520 340 8

than five elements set. Also, if one point in a netlist. has been given a label, then
no other point in that ne
already has a label (Outl), the points F, G, I and 12 which belong to the same
netlist as L, cannot be given labels. Consequently, the elements in the pnt label
array corresponding to these points are not set. 1f none of the points in a netlist have

their corresponding pnt_label set, then the netlist is unnamed. °|

the netlist determined by the points A and D,

There are times when the implementation needs to know the identi

T

pnt._label

id(In3)

id(Outl)

Uist may be Tabelled. For example, hecase wire point. 1,

i the ease with




two points at the end of a given wire segment. During carly development, this was

achieved using an array which was indexed by a wire identifier and stored the two

point. ide associated with the wire. However, this hecame too clumsy to main-

tain because (his array would have to be kept consistent with the contents of the

pnt_wires array. ‘Therefore a simple anxiliary procedure named net.wire_points

was written which accepts a wire identifier and scans the pat_wires array to deter-

mine the identifiers of the two end points of the wire. Although thi

the code became much more maintainable. A similar associative array, which was in-

dexed by a port identifier and returned the identifier of the wire point connected to
it (if the port was connected), was replaced with the procedure net_port_point, as

deseribed above.

Netlist Arrays

uit are shown in Table 3.10. This table also

The net

s arrays representing the ci
includes a column showing the points associated with cach of the netlists. Notice,

however, that these points are not stored in any array by the implementation. Instead,

as de

bed earlier, all the elements comprising a netlist (wire segments and wire

are cach tagged with a unique tag name as they are created and manipulated.

The net_ports array, which maintaius a list of port/point pairs for cach netlist

mine the n

d primarily to doo

ist type. Using the netlist type, the
GUI ean prevent the user from making mistakes during the design of the cireuit, For

example, netlist (ypes are used to prevent the user from soldering two output netlists

together and from direetly modifying the signal values of an output netlist on the

sigmal display. The type of a netlist is determined by the following rules:

™



Table 3.10: Net Array Values for the Cirenit in Figure 3.9

Netlist Tag Name | Points in Netlist net_ports net_name
netlist.0 AD {input D}
netlist.1 BE {input £}
netlist.2 cJ - In3
netlist.3 FGHIL {output '} {input /} Outl
netlist.4 KM

1. If the netlis

isolated (that is, none of its points are connected to ports) then

the netlist type is unknown. For example, net1list. 2 and netlist 4 from the

previous example are of unknoun type.

~

If the netlist is connected to one or more input. ports and is not connected to s

output ports, the netlist Lype is inpul. For example, netlist_0 and netlist 1

are input netlists.

@

IF the netlist is connected to an outpnt port then the netlist type is output. Note

that in this ease, it is irrelevant how many conneetions, il any, the netlist has

to input ports. In the example, netlist_3 is the only output netlist.

In order to implement the above rules, the net_ports array maps a given netlist

tag name to a list of port/point pairs which represent the port. types to which the

netlist is conmected and their corresponding point. identifliers, Whenever this list. is

modified in any way, it is re-sorted so that an ontput pair, if one exists in the list,

is always placed at the beginning. This way, the type of the netlist is always kept al.

the front of the list and can therefore be extracted in constant time. IF the netlist has




no corresponding net_ports array element, then the type will be unknown.

‘The net_name array, which contains the textual name of the netlist as scen by

the user, serves as a liaison hetween the cireuit editor and the signal display window.

This name serve:

s a key which is used to identify signals waveforms in the signal

display window. Like the net_ports array, the net_name array is also used to prevent

the user from making mistakes during circuit layout.  For instance, this array is

consulted in order to prevent the user from trying to give a single netlist two names

and from soldering together two netlists which have both been previously labelled.
‘I'he net_name array is also used to prohibit the user [rom giving two separate netlists

the same name,

Note that it is aceeptable for a netlist to have no corresponding entry in cither

the net_ports or the net_name array. In this

e, the netlist is simply an isolated

netlist which has not been labelled by the user.

3.6.3 Netlist Manipulation

Like components, the wires and points of netlists can be manipulated by selecting the
desived operation from the toolbar and then clicking the leftmost mouse button on
the target wire or point. This scetion will deseribe how the GUI implements moving,

deleting and soldering of netlist elements.

Moving Netlist Elements

The user may move wires or wire points by activating the MOVE button on the

toolhar and elicking on the desired item and dragging it across the canvas. If the user
clicked on a point, then the procedure net_prepare_point.move is invoked which
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determincs if the point is conneeted to a component port. Ifit is, then the procedure
prepares the component attached to the point for simultancous movement; otherwise,
only the point itself will be moved. If the user clicked on a wire, then the procedure
net_prepare_wiremove is invoked. This procedure determines the identifiers of the

two end points of the wire and ensure

that the end points of the

not attached

to any ports. If the wire is attached to a component, then the GUI will not. permit.

the user to move the wire.?

The motion of the mouse is then bound to the procedure net_do.move which

moves the selected wire or point by calling the utility procedure net_do_move. point.

This procedure move

a point, and any labels attached to it, while simultancously

stretching or shrinking all wires to which the point is connected. When moving a

net_do_move calls net_do_move_point lwice every time the mouse is moved

once for cach of the two end points of the wire.

Deleting Netlist Elements

Deletion of netlist clements is more complicated due to the variety of potential cir-
cumstances which may arise. The procedure net_delete_point takes care of point,
deletion by first determining if the point to be deleted has degree two. If so, then

the point and its adjacent wires will be deloty

ed and the two points adjacent to the
deleted point will be joined together. Note that deleting a point. of degree two does
not change the netlist conncctivity; therefore, the netlist tags remain unchanged.

If the user is deleting a point with degree one or degree greater than two, then

wonld have
conneeted 1o hoth

2Moving & wirc connerted to n e the
to consider the possibility of moving tws separ s il the wir
compaents, This dtiatiod hob YL 16 16 Kogueniania by L U,

5



throngh all the wires connected to the

the net_delete_point procedure will cycle

them. In addition, the identifiers of the deleted wires are removed

point and delet

from the entries of the pnt_wires array corresponding to the points adjacent to the

it point hiad degree one before the deletion, then that

deleted point. [T an adjaces

point. will be removed. The deletion of a wire is handled similarly by the procedure

net_delete_wire.

two or more netlists results

“The deletion of a wire point or a wire which conneets

S Must oceur so as

in netlist. splitting. Consequently, retagging of the netlist dlemen
Lo implement. the dynamic netlist identification strategy. Tn order to retag the split

alled for cach new netlist

netlists, a simple traversal algorithm was written which is

ereated as a result of the split. For example, in Figure 3.10, consider the deletion of
the point. indicated by the arrow in the netlist on the left. After the point is deleted,
the netlists shown on the right are produced, cach of which have had their rospective

elements uniquely retagged. Note that the deletion of the point caused the deletion

of an adjacent. point. which had a degree of one.

Figure 3.10: Splitting a Netlis

l netlist1
netlist.0 netlist.2
netlist 0
Before Point. Deletion After Point Deletion



The retagging of the netlist elements in cach of the result

ing netlists is performed

by the procedure net_list_traverse as shown in Figure 3,11 The arguments to this

procedure include the identifier of the point at which the tr

raversal is (o start (pid)

and the old and new netlist tag name (nid1 and nid2, respectively). The procedure

performs a depth-first traversal starting at the supplied point and retags all netlist

clements that had the tag nid1 with the new tag nid2.

Figure 3.1

Traversing and Retagping a Netlist

proc net_list_traverse {canvas pid nidl n
upvar $done visited
global pnt_wires

if ($pid == "*) (
return
}
set visited($pid) 1
$canvas dtag $pid $nidl
$canvas addtag $nid2 withtag $pid

# Adjust ‘pnt_port’, ‘pnt_label’, ‘ne
# and 'net_ports’ arrays. (Not shown

foreach wid $pnt_wires($pid) (
$canvas dtag $wid $nidl
$canvas addtag $nid2 withtag $wid
set adjpnt [net_get_adjacent_poin
if (! [info exists visited($adjpn
net_list_traverse $canvas $ad
$nidl $nid2 visited

id2 done} |

t_name’
here.)

t $pid $wid]
) 1)
jpnt \

Note that traversing a netlist afl

cially considering the interpretive nature of Tel. However

79

it ias been split is somewhat expensive, espe-

it was discovered during



development that, occasionally traversing and retagging a subsct of the netlists was

preferable over inually ing all the netlists cach time the user wanted to

highlight. ne or simulate the cirenit. Such extractions almost inevitably lead to

a traversal of all the netl

Soldering Netlist Elements

“The soldering operation resulls in an action opposite to that, performed by the deletion

operation - - instead of splitting netlists, soldering unites two or more netlists. Uniting

two netlis

is much simpler to implement than splitting two netlists. To unite two

netlists, one of the netlists is retagged with the tag name of the other. For example,
Lo unite netlists net1 and net?2, we simply assign the tag net2 to all netlist elements
which have the net1 tag and then remove the net1 tag. This can be performed by a

12

two line procedure as shown in Figure

Figure 3.12: Source Code Uniting Two Netlists

proc net_list_unite (canvas nidl nid2)} (
$canvas addtag $nid2 withtag $nidl
$canvas dtag $nidl

# Adjust ‘net_name’ and ’‘net_ports’ arrays
# as appropriate. (Not shown here.)

The main procedure responsible for soldering netlists is net_start_solder. In

order to solder nef

ts, the procedure identifies all the points, wires and ports which
overlap with the location where the soldering iron was activated on the workarea

canvas, This list of items i

sorted with points first, ports second and wires last.
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Then, a loop is executed in which an attempt is made to solder the first item i
the list with cach of the successive list items via calls to procedures of the form
net_connect_*_to_* where # is one of point, port or wire. depending npon the
types of the two items being soldered. A point identifier representing the junction

point for the soldering is returned by the net_start_solder procedure.

As ioned sarlier, the i

prohibits the user from peeforming sol-

derings that will create cycles or other inconsistencies in the netlists. Most of these
consistency checks can be done quickly because of the dynamic netlist identilication
feature, Furthermore, as a visual aid to the user, the implementation fills in the ports

of components when they are soldered to a point. luputs ports

re filled in o green

colour and output ports are filled red. In addition, if the resu

soldering point

has a degree greater than two, the implementation creates a soldering dot (@) at the

Jjunction point to help express the connectivity. This dot will be deleted if the degree

of the point falls below three during subsequent manipulation of the netlist.

3.7 Multibox Modules

Multiboxes, which are synonymous with the glue boxes mentioned in Chapter 2, let.
the user group together several circuit clements and manipulate them as a single
entity. The modules which implement. multiboxes are shown in Table 3.11.

Multiboxes are displayed as rectangle ontlines on the workarea canvi

they are

created with the GLUE button on the toolbar. After the user pre

s this button, o

binding is created which calls the procedure multi_create_new when the clicks

the leftmost monse button on the canvas, This procedure

creates an anchor point on
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ble 3.11: Multibox Creation and Manipulation Modules

Module Name Purpose

multidel.tcl Module to delete a multibox and all the cirenit elements con-

tained within.

multiglue.tcl Create the multibox on the sereen by letting the nser stroke

out a bounding box around all the cirenit elements 1o he
contained within the multibox.

multimod.tcl Module to modify the size of a multibox on the canvas,
multimove.tcl Moves all the civenit elements contained within s multibox.
multiunglue.tcl | Removes the multibox from the canvas. This module does
not delete the items within the multibox.

multintils.tcl Miscellancons ntility procedures for the w

multiboxes.

the workarca canvas for the mmltibox. Another binding is then

ed hetween

the motion of the mouse and the procedure multi.do_set which extends the multibox

from the anchor point to the eurrent. position of the monse. When the user releases the

mouse button, the ereation of the mult completed by invokin

Jox the procedur

multi_stop which deletes the multibox if it had no area.

esizing the rectangle of an existing multibox is performed by the MODIFY toolbar

button. The implementation will identify monse clicks on cither the

s or cormers

of an existing mmltibox. If th

ser clicked on an edge, then the other three edpe

will act as anchors and the s el edge may be dragged horizontally or vertically.

If the user clicked on a corner, then the opposite corner will ac
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the selected corner may be moved diagonally. During modification of multiboxes, the

o 15 10 redee code duplication.

same Lo procedures described above are rensed s

ts cither the MOVE, DELETE or UNGLUE button from the

When the user sele

toolbar, the implementation must. consolidate all circuit elements enclosed within

aso that each of the multiboxes and their contents may

bonnding boxes on the workare:

ting filled transparent

The GUI accomplishes this by cr

e treated as a single ent

rectangles on top of each of the bounding outline rectangles currently on the workarea

canvas. As i reslt. whenever the mouso pointer moves over a multibox during one of

these three operations, the entire multibox outline will be highlighted instead of the

contained

individual cirenit. elements contained within. Hence, the cirenit elements

inside the multibox cannot be direetly accossed by the user.

Moving all the cirenit elements in a multibox is achieved by tagging all enclosed

sed wire

components and multiboxes with the name multi_tag and by adding all encl

binds the motion of the

points to a list of points. A binding is then established whic

wouse with the movement of all these tagged cireuit elements and the wire points in

the wires corresponding Lo these

the point list. By moving the points individually

points will also be moved. IFa wire amultibos, then one end point will move,

whereas the othier will remain stationary. thereby creating a rubber banding offect.

Duriug the implementation of multibox movement, several issues had to be resolved

reparding cirenit elements which do not lie entirely inside the selected multibox. For

example, il a point attached to a component port lies inside the multibox, but the

component. itsell straddles the outline of the multibox, then the point will not be
moved by the GUL

Deletion of a multibox and its contents is handled by iterating over cach of the
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ed inside the selected multibox and then invoki

circnit elements conta 2 an apy

priate delete procedure to remove the element from the display. unglue feature

ngle and its corre-

ted by deleting the selected multibox re

trivially implen

1 the canvas, leaving the enclosed cirenit eleme

sponding transparent rectangle fr

maltered.

3.8 Signal Display Modules

The signal display modules are responsible for ereating and manipulating the
forus which are proseuted in the signal display window. Bach Tabolled netlist. of the

(ly one wavefor

i this window. The modules respon-

tod by o

sible for its implementation are outlined in Table 3.12.

Table 3.12: Sigmal Display Modules

Module Name Prrpose

sigdisp.tcl Contains dures the signal dis-

play window. This module also contains several utility pro-

dow which can e

play

cedures related to the

invoked by other modules,

ible for transmitting the signal inputs

respor

simulate.tcl

nit description to the simulator engine for simulation,

The resultant ontput signals are then read and displaye

the signal display window.




“The Tk eanvas widget was used to implement. the signal labels, signal times and

signal waveforms subwindows of the signal display window. By using cany the

implementation was able 10 take advantage of the flexibility and accuracy of the

placement. of the contents of these windows ing ideal alignmeent and

synchronization. "The implementation of the sigdisp.tcl module is too lengthy to

ity. only the procedural inter

deseribe in detail in this chapter; therefore, for bre

of this module will be discussed.

The sig-draw.signal procedure i

esponsible for displaying a signal and takes,
as parameters, the signal name and a list. containing time/value pairs; the latter

parameter is optional, I the procedure is invoked with only the signal name then the

duration of the signal and its valnes will be set. according to pre-defined defaults, as
established in the resonrce option database. I the calling procedure supplies a list of

time/value pairs, then a waveform that corresponds with the clements of the list will

be displayed. Each element in this list consists of two items, the signal value and the

time al which the signal ocenrred. 1t is only necessary for the list to contain signal

I

wsitions; the intervening gaps will be filled in accordingly. For example, a signal

which is initially unknown, but then falls low after three time units, and then

s

liigh after four more time units is represented by the list {{0 X} {3 0} {7 1}}. If

the specified signal i

already present on the signal display, then its waveform will be

madified according to the signals in the list.
"The sigdisp. tcl module also contains two procedures which can be used by client
cade to delete signals in the signal display window — sig.delete, which accepts the

name of the si

P

nal to delete and sig.delete.all which has no paramcters. The

implementation calls sig-delete whenever the user deletes a netlist label or a wire
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point which had a netlist abel attached to it. The signal representing the netlist is
removed from the display and the window is resized if necessary. The sig.delete all

procedure is invoked when the user wishes to delete the current cirenit amd starl a

new one. All the

gnals in the display will he removed, (hereby rostoring the signal
display to its original state.

Two other procedury

., sig rename and sig-type affect the labelling of the signals.

The sig_rename procedure accepts the original signal name and its new name and will

change the name of the signal in the signal disy

This procedure is called when the

user changes the name of a netlis

Tabel via the Netlist Label dialog box. The sig type

procedure accepts the name of a signal and an optional parameter indicnting the new

type of the signal - cither input, output or unknown. If the latter parameter is not
supplied, then the procedure simply returns the current type of the specilied signal.

Otherwise, the type of the signal is

anged 1o the specified type. This procedure

is called when the user makes an adjustment to a netl

which resul A clange

to the existing netlist/port association. For example, if the user solders an ontput,

port to a labelled netlist, then the type of the signal representing the netlist. must

be changed to output in the signal display window. By doing, this, signal lypes are
automatically updated in the signal display as the netlist connectivity changes.

The simulate.tcl module is more closely related to the integration of the simu-

lator engine with the GUL As a result, the description of this module will he deferred

until Chapter 5.



3.9 Miscellaneous Modules

Throughout. the course of the implementation, several small utili

written which were not directly related to the aforementioned modules. Tl

¢ procedures were

e mod-

are presented in Table 3,13,

‘Table 3.13: Miscellaneous Module Responsibilities

Module Name

Purpose

fileslct.tcl

mousewin. tcl

optiondb. tcl

progress.tcl

utils.tcl

Contains procedures for creating a file selection dialog box.
This module will contain procedures that display help mes-

ach of

sages regarding the actions that will be carried out by

This module

the three monse buttons in a particular contex
is not yet. currently implemented.

Contains the single procedure startup_init which initial-

fault attributes for

izes the configuration option database. D

soveral widgo

are established by this procedure,

Create and update a progress bar. The progress bar is used

during time

cousuming operations — as the operation nears

completion, the bar grows longer.

General purpose utility procedures used by the GUL

Several of the procedures in these modules ser

to extend existing Tel/Tk func-
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tionality while others implement so-called “mega-widgets™ which au

ing widget set provided by Tk, Indeed. two of these modules, fileslct.tel aml
progress.tcl, are generic enough to be integrated into applications completely un-

related to this project.

3.10 Simulation

This ¢

apter has deseribed the implementation of seve spects of the cirenit edi-
tor GUL Oue important note to make at this point is that the GUL maintains and

validates structural information only it is pl

unaware of the behaviour of

any of the components it ereates. Therefore, apart. from the different graphieal repre-

sentation, a 2-input NAND gate is treated ¢

ety the same by the GUIas a 2-input

XOR gate despite the very different behavio

bited by these two comy

xl s,

+ the GUI 1

t be interfaced with a

In order to “give life" to a cire

lator

engine which can take the structural information

el Uhe input signals provided by
the GUI, simulate the circuit aud then return resultant output waveforms to the GUI

for display. The simulator engine itself is the topic of the follow




Chapter 4

Simulator Engine

Chapter 1 presented an overview of simulation with special emy u the si

of computer hardware, Numerous techni for the description and of

hardware have heen devised and implemented. Quite often, the technique adopted
depends largely upon the desired level of abstraction at which the simulator engine

is to operate. Some simulators aceept low-level hardware descriptions and produce

output. which is based upon well known mathematical principles that govern the

s tran:

hehaviour of circuit elements such stors and capacitors. At the other end

of the speetrum, high-level simulators process hardware d¢

iptions represented by

or hehavionral abstractions and generate si results which represent

the behaviour of the em at this higher level. Typically, due to the often radical

that exist between different levels of hardware abstraction, many simulator

differen

engines operate at only one level of abstraction. Other simulator engines are more
flexible and attempt to accommodate descriptions at a few adjacent abstraction levels,

This chapter will focus upon describing and simulating hardware at the digital



or gate-level using a discrete representation of tin

e. What sey s this sinml;

engine from other conventional digital simulators is the concept of local time. Each

hardware component resides in its own temporal domain and is affected only by ad-
jacent components. As will be shown, this concept makes it possible to both deseribe

and simulate b

of this approach with traditional

digital simulator designs will be discussed. Another important the

1 emphiasized by

this chapter is the adoption of the object-oriented programming paradigm to design

and implement t! mulator engine. Adherence to the principles of this paradigm
significantly facilitated the design of the simulator engine and resulted in an imple-

mentation which is easy to maintain and extend,

4.1 Simulation Using a Global Event Queue

The traditional approach towards gate-level simulation employs a global event quene

which communicates directly with every component that participates in the simu-

lation [9][12]. The queue is typically implemented as a linked list where cach node

represents a moment in time. Each node of the eve

1L quene contains a pointer 1o a
chain of events which have been scheduled by the simulator to ocenr at that partic-
ular time. These events often consist of a pointer to the component which is Lo be

simulated and an indication of what action L

nponent must take.'

As events are 1 and are liated

events are

scheduled further ahead in time in the event quene, This sc

rdnling of events rep-

resents how signals are propagated within the cireuit.  the global event quene is

This action usnally takes the form of the component hei
input signal or to make a chango in its internal sta

required 1o process

B inan
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responsible for caching the outputs of # component and then feeding it to the cor-
responding fan-out components when the appropriate time node of the event quene

s e renched during the simulation. The simulation rans wntil the event quene

has been exhansted or until the time alloted for the simulation has expires ig-

nure 4.1 shows the relationship between a global event quene and the cirenit that it is
simulating,
As can bo seen from the figure, this method of simulation partitions the problem

into two separate entities. The global event quene maintains all the sinmlation in-

formation; the circuit, representation contains all the connectivity details. It will be
demonstrated in subsequent sections how these two separate entitics can be effectively

merged info a distributed strueture which maps naturally onto the wires of the circuit

domain,

4.1.1 Drawbacks of the Global Event Queue

Despite the relative success of this simulation strategy, it still has several shorteom-

le

imulations. Some of the problems are

s, especially it the contest, of large

related to the separation of the circuit r ion from the si ion while other

problems manifest themselves as a It of the global nature of the event queue,

Later sections will describe how replacing the global queue with a series of distributecd
quenes cam help to alleviate several of these problems.

A global event. quene has no hardware equivalent. In the context of the implemen-

tation, the global event quene is an artifact which has no counterpart in an actual

cireuit. As a result, the implementation must beud the concept of a circuit so as to



Figure -4.1: Digital Simulation Using a Global Event Quene
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accommodate this technique for hardware

imulation. While this argument. may be

dismissed as a purely philosophical issue, it doc:

hiave merit, especially when consid-
cring the translation of an abstraction into an implementation. The fewer artifacts

an i s i mimicking the abstr

chion, the easier it hecomes Lo

1 and iate the i ion.
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Two goals of software engineering and design are to decrease: the coupling between

ess within function-

unrelated mocdules while at the sane time increasing the cohesiven
ally equivalent modules. Many purists may argue that the two tier approach towards

digital simulation design serves to decrease the coupling between the simulator and

the cirenit representation thereby making the software more resilient to change. This

assumption, however, is based upon the premise that the cireuit representation and

artificial.

its simulation are two disparate entities. However, this separation is purely

simulator

Instead, it conld legitimately be argued that a design which combines the

ses Uhe i of the i ion, since

and the cirenit, representation in
the two concepts are intimately related.
The importance of hierarchical representations of an abstraction was emphasized

it Hi hical ion and

in Chapter 1 as a means of combating

subsequent, simulation of cireuits using a global event quene is potentially very con-
voluted as a result. of the pervasive nature of the queue. Because each event in the

quene contains a reference to the component to he simulated, it becomes very difficult

1o represent, circuits hierarchically without, compromising the autonomy of th

level subcomponents of a component. One possible workaround to this problem is to

place event. quenes at. each level of the hierarchy and to devise a strategy whereby

all the quencs can be synchronized with one another via a top-level event queue.

‘This may involve changing the concept of an event at the uppermost level of the

simulation; instead of containing references to components and signals, events would

imstead contain roferences to other event quenes. Needless to say, this concept of a

global meta-event quene serves to only compound the problem of complexity rather

than resolve
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Related to the hierarchical representation and simulation of the cirenit is the po-

tential need to distribute large scale simulations over several ditferent processes or

even over several processors. Due to the global nature of the event quene, distribu-
tion of such a simulator would be very diffieult. This may require the introduction of

a process or a machine which is dedieated towards the synchronization of the event

quenes at each distribution point. Unfortunately. this introduees several problens.
For example, il the synchronizing process was running on aseparate machine, then

that machine wonld undoubtedly act as a bottleneck during the course of the simu-

lation sin

every other distribution node partaking in the simulation would have to

communicate with it. Worse, if the machine performing the global synehronization

went down, the entire simulation would be compromised.

Part of the blame for the proliferation of simulators which rely upon global event

quenes can be traced back to the languages with which they were implemented. Sueh

languages tend to be structural in nature and provide only primitive support. for true
data abstraction and no support for inheritance or run-time binding. As a result of the

relatively weak encapsulation support, the temptation to introduce global entities into

an implementation is very strong, Subsequent soctions will demonstrate how eirenits

may bhe simulated without the need for a global event. quene by encapsulating some

of the necessary simulation information within the circuit, entities themselves. Al the

isl.

clements required for the simulation map direetly onto analogons entities which ¢

in the real world. Central to the implementation described by this chapter will he

the adherence to the principles of good object-oriented analysis and design.
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4.2 Object-Oriented Approach Towards Simulation

With all the excitement. generated over the past several years regarding the potential

panacea derived from the creation of rensable software modules, several attempts

have been made to modify existing algorit] and implementations so that they
adopt a decidedly more object-orientedd flavonr [13][16]30]. Digital circuit simulation

is trend. Unfortunately, as will be demonstrated

hiss proven to he no exception Lo 4

section, such attempts tend to be somewhat naive in their approach and

amount. to nothing more than a translation of the global event quene to

the reatm of objocts.

4.2.1 Examples of Digital Simulator Designs

Many of the exis milators adopt very similar approaches towards the classifi-

cation of circuit elements, as will be discussed in a subsequent section. Where many
of the simulator designs starl o deviate, however, is in the arca of component inter-

conmeetivity and si ion. Many of the i ions still enforce the need for

& separation between Lhe representation of the cireuit and its ensning simulation.
For example, DOSE [16] provides the anticipated classes for components, input

ports and output. ports upon which a discrete event-driven simulator may be based.

1t also supports the notion of composite components for the purposes of hierarchi-
cal modelling. However, the class library also introduces an independent simulator
object which is composed of three other objects; namely, a component manager, con-
nection wanager and event scheduler. The interaction between these three objects

essentially provides the necessary support for event-driven simulation. One major
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drawback to this technique is chat the pervasive nature of these three objects tends

1

to make the le:

s and more doy upon global entities to

provide them with inputs and to propagate their ontputs. This dependence ean seri-

ously compromise the ability to distribute the simulation and can make hicrarchical

modelling unwicldy.

A second approach [13] is somewhat similar to above, yet. provides better support

em overview of its architeeture is presented in Fig-

for distributed simulation, A

ure 4.2. As can be seen from the figure, the architecture ereates a clear separation.

between the simulation support subsystem and a model representing the entity be-

ated hierarchical event handling

ing simul, This simul. impl a sophis
mechanism. If an entity receives an event it is unable to handle, the event. is propa-
gated to its parent. However, the concept of a “global simulation control manager”™

is still required for the purpose of phase change notifications. In addition, the system

supports the concept of a madel entity class which contains event lists. These models

may be nested, thereby giving rise to the concept of multiple event lists. The litera-

5 are dis

ture is carcful to point out though, that “[if] event, lis ibuted, the models

are r ible for synchronizing them.” Consequently, the iumplementation still per-

petuates the concept of global time and emphasizes the nec Ly for synehronization

cral machines,

when the simulation is distributed over se

Subsequent sections will discuss the design and implementation of a simulator

engine which is largely asynchronous in natare. Concepts such as global time and
global event queues will be abandoned in favour of local time and distributed event,

queucs.
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Figure 4.2: System Overview of a Hierarchical Simulator
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4.3 An Alternative Approach Towards Simulation

"This section describes a different and possibly more intuitive approach towards the
design and implementation of a digital simulator. This implementation builds upon
the simulator engine described in (7). While the simulator engine works primarily at
the gate-level of abstraction, it should be noted that the engine can conccivably be
adapted to oprrate at higher levels.?

In general, the heart of the simulator engine is comprised of a distributed queuing

cl in which each intains its own local time. In this manner,

all the are relatively and are infl d only by adjacent
y ly by adj;

e to the inherent discrete representation of time, simulation at the lowest circuit-level, which
requires a continuous representation of time, is not immediately realizable by this simulator enginc.
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incoming queues. This technique provides a means by which the simulation of a

circuit may be integ | with

ion, thereby climinating the artificis

distinction between the two. The concepts behind local time and distributed event

queucs arc elaborated upon in the fllowing subscctions.

43.1 The Concept of Local Time

The notion of local tine is contrary to the i traditional hes in

which all components are kept at the same point. along the time line during the ent.

conrse of the simulation. Synchronization of all the in such asinbator
is enforced by a global quene that must. invade the autonomy of all the components
being simulated. By assigning the components the ability to manage their own local

time, the components are not subject to the whins of an overburdened global event

quene. As will be shown later, the concept of local time mikes it possible to cleanly

represent and simulate a circuit hicrarchically.

The idea of local time is also exploited by the Chandy-M algorithm [5] as a

means of ing asyncl distributed simulation in a parallel
Their ivation for ing a local time s is justified by their need Lo
li the potential bottleneck introcduced by a global entity which synchronizes

all the simulation components:

“We do not wish to use any global variables nor do we want to use a single
process to drive the simulation because it will prove to be a bottleneck. Our
approach is totally asynchronous; every process maintains its own local clock
and there is no global synchronization mechanism such as a global clock.” [5]

In some respects, the simulation algorithn deseribed by this fon is similar to

the Chandy-Misra algorithm; however, the algorithm has bee

aclapted Lo rm in a
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uniprocessor, sequential instruction environment.,

One of the ramifications of the concept. of local timeis that during the course of the

sinmlation, some components will be further advanced along the time line than other

components. Indeed, it ble that some components may complete their

5 even

contribution to the simulation before other components have even received any input

atall. This fact, creates an opportunity for memory recovery during the course of the

sinmlation. For example, consider the case where a relatively large subcomponent,
has consumed all of its inputs and has successfully generated all of its outputs. At
this point, the subcomponent is only wasting memory since it can no longer affect the
onteome of the simulation, hence it can safely be destroyed. New subcomponents can

subsequently he ereated and attached to the cirenit. Through careful implementation,

it may be possible (o take advantage of this fact. to simulate circuits which are too

large to fit into memory all at once. Although the current implementation of the

simulator engine does not support. this strategy, it still seems theoretically plausible.

4.3.2 Distributed Event Queues

Local time contributes to the preservation of the autonomy of components diring

ion. However, in any simulation, components still require some means of

with other Ideally, the method of interaction between

should be intuitive and should not introduce bottlenecks into the simula-

components

tion by relying upon the presence of a global mechanism. For this reason, distributed

event. quenes were introduced to help maintain the autonomy of a component by

encouraging interactions amongst. adjacent components only. As with local time, dis-
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tributed event queucs are also amenable to the hierarchical representations of civeuits,

Figure 4.3 shows

asimulation in progress which employs distributed event queucs.
The circuit, is identical to that presented in Figure L1 but the global event quene has

been climinated. Instead, the event quene has esseatially heen distributed thronghont

the cirenit representation. These distributed quenes are analogous to wires in actual

circuits, in that they serve as the conduils in which signals pass from one compouent

to other components in its fan-ont therehy connecting components togetl

Figure 4.3: Digital Simulation Using Distributed Event Queues
Wire
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In addition, these distributed quenes also maintain a history of the events (or

signals) which have travelled along them during the cour:

of the simulation. Henee,
when a component is being simulated, it may query its input. wires (via its ports) lo
obtain the value of the signal which occurred at local time of the component. I the

input signals are not available in the quene at the reg

e Lime, then the component,

3A component may also he connected Lo i

therefore allowing feedback loops Lo be sinlated.

100



will ol be permitted to simulate. As demonstrated by the figure, it is necessary for

since the local times of

the event. quenes Lo maintain a history of their signal values

the components Lo which they are attached may vary significantly.

serve the dual

ribe how distributed event quenes s

The following subsections d

itating the simulation of a circnit. Details

function of expressing connectivity and fc

ssentation and ¢

with respect Lo cireuit rep ss design strategi

depth.

4.3.3 Circuit Classification and Representation

Clirenit representation presents many challenges for the designers of simmlator s

ware; e potential complexity of ciranits only serves to componnd this challenge.

T

celion provides the necessary infrastructure and insight upon which our subse-

quent. cireuit cass design will he based.

One of the major goals of onr circuit repr ionis to enable the ion of

the hierarehical nature of cirenits so as to help offset. the inherent complesity associ-

cuit design. By allowing to be las a site of

ated with ¢i

subcomponents, it becomes casier to construct higher level components by conneet-

ing together rdimentary components whose behaviours are more easily understood.

‘These high level components may then become subcomponents of even larger, more

powerful cirenits.  Hierarchical representations also present the possibility for dis-

tributing the dreuit and its subsequent simulation over several machines. A second

goal of our representation is to model real world cireuits as closely as possible by

limiting the mumber of artifacts introduced into the representation. By modelling

101



circuits

as closely as possible to their real world counterparts, we must also consider

incorporating support for simulation into our representation.  As will be discussed

later, the distributed quenes facilitate this objective.

The process of “discovering the classes and objects that form the voeabulary of the
problem domain” constitutes the analysis phase of the object-oriented pavadigm 3],

Several similar clas:

ication schemes have been adopted by many objeet-orientod

approaches with respect to cirenit representation. Generally speaking, objeet-oriented

implementations classify cirenits in accordance with real world eirenit. entities sueh

as components, por sifieation strategy ellectiv Les i

mapping of software classes onto analogons elements in the domain of veal world
circuits, thereby leading 1o a better understanding of the resulting implementation
by others.

With respect to ¢i

renit representation, the coneept. of ereating a base component

h all other functioning components can be derived seems to be a com

stralegy the

. Aspects shared by mponents
are factored out and placed into a base dass. All subsequent components aml other

functioning units are then derived from this base class, therel

v inheriting the con-

. Most implementati

also provide support. for nesting compone

one another, thereby permitting hierarchical decomposition of cirenit representations.

A base dass representing ports is also popular; from this class,

il output

port class may then be derived. Because thi

approach to classification is relatively

natural and, indeed, almost intnitive, the sitnnlator engine that forms the focns of

this report adheres to a similar classification

pproach with respect to

et repre-

sentation.



Figure 4.4: Representation of a Simple Composite Cirenit.
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The rwepresentation of a circuit will be discussed in the context of a specific ex-

ample. Figure 4.4 prosents an clementary circuit which has three input ports and

one output port. This is composed of two nested components, cach of which
have (wo inputs and one ontput; and a wire which connects these two subcomponents

together. The primary classes emerging from this example are components, ports and

“The intended roles of these classas are as follows:

e C A ent s the I block of the circuit. Tt may exist

as an independent fundamental unit or as a higher level unit which indirectly

delegates functional —

e Port: Ports connect components vertically to adjacent hicrarchies and horizon-

tally to adjacent wires. Ports can be thought of as connecting components to
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the “external world.”

® Wire: From a purely representational viewpoint, wires serve to conneet together

components at the same hicrarchical level via the components” ports. From

a simulation perspective, they are the distributed quenes and a

archivers.”

In order to more vividly convey the hierarch

potential of this representation,

consider the three-dil i ierarchy pres 1 in Figure L5 Thi

cirenit is
identical to the one presented in Figure 4.4, except that it is Gilted slightly so as (o
make the distinction between hierarchical levels more obvious. OF particular interest
is the mechanism by which components lower in the hierarchy communicate with
entities higher in the hierarchy. In the figare, for instance, note that the ports of
the lower level components do ot communicate directly with the wires at the top
level. Instead, the ports of the subcomponents interface with the ports of the top

level component, which, in turn, communicate with the wires

L the top level. This
mechanism helps to preserve the encapsulative nature of the top level compaonent. and

all its subcomponents.

4.3.4 Class Design

provide the behaviour that this model
stage in the softwai : process just before the implementation phase; the quality of

the design quite often d ines the ibili 1 and maintainabili

of the ensning implementation. Becanse a bad design can serionsly compromise the
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fiical Circuit Represcutati

Figure 4.5:

Level 1

integrity of the i fon, it is i ant that the design phase not

be treated lightly.

‘To aid in the discussion of the design of the simulator enginc, several Booch di-

agrams [3] will be presented which highlight many of the important classes of the
simulator architecture and the relationships among them. Booch diagrams illustrate
the major aspects of a design through the use of several well-defined icons and adorn-
ass diagram, the most important icon is the “dotted cloud” which

ments. In a

symbolizes a class; lines connecting two class icons together suggest an association

between the two classes

By applying various adornments, such as arrows, circles and

squares, to the end points of an association line, the designer may specify the type of

association that exists between the two classes.

With respect to object-oriented design, there are two fundamental relationships

which will be of particnlar interest to us, namely, the is a kind of relationship and

the is a part of relationship. Two classes which exhibit the is a kind of association
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are potential candidates for inheritance. For exawple. a dog is a kind of mammal,
therefore it would be natural for a Dog class to inherit from a Mammal class; thereby
causing the Dog class to acquire all the attributes of the Mammal class. This type

of ionship is also 1

v called specialization/ generlization. T

is a part

of relationship, however, suggests that an aggregation association exists between two

classes, whereby one instance of a class can contain an instanee of another class,

For example, biologically, a spleen is a part of a dog consequently, it is aceeptable

to encapsulate a Spleen class instance inside an instance of the Dog class so as to

express this i A ssociations are also referved (o as whole /part

lationships. The followi ions will make extensive use of these relationshi

and others, when describing the varions assoc

ions between ¢f

ssos in the don

of circuit representation and simulation.

The Component Class

Figure 4.6 shows the Booch diagram for the Component class and many of its re-

lated classes. The Ce class itselfl is 1 by the dotted cloud icon in

the center of the diagram. The icon shows that this class has two data members
(local_time and delay) and two member functions (simulate () amd process()).!
The local.time data member contains the current local time of the elass and the
delay data member contains the transport delay of the component, which is initial-
ized when the component is constructed. The simulate () and process () member

functions are primarily responsible for the simulation aspeets of the component; th

“Actually, the Component class contains more than these data members and member functions.
However, only the data members and methods which are of particular interest, are usually displayed
in a Booch diagram.




details will be deferred until Section 4.3.5.

Figure 4.6: Component Class Diagram
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two adjacent classes named

Next, looking above the Component class, there are
|.List and O_List. They arce both associated with the Component class by a line with
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a filled circle at the Component end and a filled rectangle at the |List/O_List cnds.

These two cla

s represent the list of input. ports and output ports for the component.

The filled circle symbolizes a containment. ov aggregation relationship. Because the

input and output port lists ave part of a component, this relationship is justified. The
filled rectangle implies that. the aggregation is a physical containment. as opposed o

Al containment,, we are ensured that

pointer/reference contaimnent. By using phy

the lifetimes of the input and output port lists during the sinnlation will be the same

as the lifetime of the enclosing component. The two small numbers adjacent. to the

end points of each of the lines

signily the nality of the relationship. Tn other

words, each component contains one input. port list. and one output. port list.
Note that the IList and O.List class icons each have a solid rectangle in their

v Lwo elas

respective upper right regions. This adornment. inclicates that thes e

actually instances of a parameterized class.” The dotted lines with the arrow heads

emanating from the |.List and O_List classes indicate that thes

were

1 from the List ized classes. This parameterized cla

provides
rudimentary support for a generic linked list structure which can be manipulated in a
type-safe manner. The text inside the solid rectangles of the |_List and O_List classes

represent the actual to the List ized class; the text inside (the

dotted rectangle of the List ¢

ss represents the formal arguments. As with parameter

passing in dural languages, an iation is blished between the formal

arguments and the a

tual argaments. In the context of this specific example, a

correspondence between the Port * actual argument and the Type for mal argument. is

n our i i ized classes are i using the C1 4 template mechi-
nism.
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classes which contain pointe

created, thereby transforming | List and O_List into lis

tion to oceur, the |_List and O_List

at, in order for the ins

. Note

o Port objec!

shown

classes both require the services of the Port class. This using relationship is

cle on the

by the solid line emanated from the Port class and ending with a hollow ¢

1 List/OList classes.

Finally, we foeus on the classes immediately below the Component class in the

figure, These classes represent, some of the lowest-level units of the component library,

such as 2-input. And and Or gates and a 1-input Not gate. They are related to the

Component class by a solid line with an arrow pointing towards the Component cl

‘This is an inheritance relationship -~ an And gate is a kind of component, hence, we

can derive And from Component. Note that each of the low-level gates contain their

own process () method, thereby overriding the virtual process () member function

in the base Component cla
“The gates are also related (o the Input and Output classes via several aggregation

are used to

relationships, similar to the ones ioned carlier. These

illustrate the number of input and output ports contained within cach component.

For example, a 2-input Or gate contains two inputs and one ontput. Therefore, as

the cardinality in the diageam shows, the Or gate physically contains two objects

instantiated from the Input class and one object instantiated from the Output class.

On the surface, it may seem as though each component maintains two different sets

s and two different sets of output ports — one such st is inherited from

of input por

, and another set is created from its aggregate data members

its ha

» Component c|
when it is construeted. However, this is not true. Remember that the Component

contains two lists which store pointers to Port objects and not Port objects themselves.
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The Port objects are actually created by classes derived from the Component class. As

such, when a derived component

s instantiated constrnetor will add pointers to its

input/output ports to the corresponding port. lists it inherits from the base Component

class. In this way, the bas

» Component class can have a generie mechanism which can

traverse input and output ports, even thongh it doesn’t know in advance how many

such ports its derived will have. This s is then inherited by all

of its derived clas:

ses instead of having to be duplicated in cach one.

The Connector Class

Now that we have provided a means by which functional units of the circuit may

must dev

be created, we ng

» a strategy by which these uni

§ may communicate

with one another and with their external inputs and outputs. As alluded to earlier,

between will be handled by the Port and Wire classes.
However, instead of simply creating these classes independently from one another,

we note that both these cla:

ses have a common underlying theme; namely, they are
responsible for connecting entities together. Hence, it is natural to think of ports and

wires as being kind of connectors, since ports connect, components o the external

world and wires connect two or more components together, Therefore, we create a

common base class called Connector from which we subsequently derive the Port and

Wire 5. These derivatiol 1.7,

are illustrated in Figu

The Connector cla

con

ins two virtual member functions, get_signal() and

send_signal(). These methods are responsible for obtaining and transmi

1 s

respectively, hence providing the necessary Facilities for inter- and intra-component,

signal flow. Note that the Connector class itsc

I does not actually define these methods.
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Figure 4.7: Connector Class Diagram
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cialized classes derived from it to ally implement

Instead, it relies upon the s

the semantics of the two methods. Virtual functions which cannot be implemented

by a base class due to its high level of abstraction are commonly referred to as pure

ms. Because the Connector class contains pure virtual functions, no

virtual funct

5. A class which cannot have instances is

stantiated from this ¢

objeets can be i

5 As can be seen from the diagram, abstract base class

lod an abstract base

UNote that even though objeets may not be instantiated from an abstract base class, it is perfectly
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icons are adorned with the letter A enclosed in an inverted triangle. Objects may

be instantiated from classes derived from an abstract base class provided that the

derived class defines all the pure virtual functions of its base class.

To the left of Connector in the figure is the fan_out class. Because connectors are

for connecting 1 together, they must maintain a list of all the

components to which they are connected for the purposes of s

propagation and

vertical hicrarchy traversal. The fan_out ¢ is associated with the Connector class

by a physical aggregation relationship - each Connector ¢lass pli

list of pointers to components. The fan_out class acquires its list handling capabilitios

Dby instantiating from the List parameterized class and by using the Component class.

The propagate () member function of the Connector class traverses the components

in the fan-out list and sends Component::simulate () messages Lo each of L

The Wire class, as mentioned earlier, is derived from the Connector class. It

whicl ieterized class

physically contains a signals antiated from the List pi

using the Signal class. The Wire class overrides the get_signal () and send_signal ()

methods. The get_signal() method simply traverses the wire’s linked list of time

ordered signals searchi fied time and ret

& for a signal which occurred at a spe

the signal. The send_signal () method of the Wire class adds a specified signal to its

linked list of signals and then attempts to propagate it to all components in its Fan-out

list using the propags ) method it inherited from its base Connector
class.

The Port class is derived from the Connector class. “This class overrides hoth

valid and indeed necessary in many circumstances, to ereate pointers Lo these base
that a derived class pointer can he assigned to a pointer to its public hase class withont
the foundation upon which polymorphism is based.
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the get_signal () and send.signal() methods of its base class. In addition to the
derivation relationship between the Port class and the Connector class, an aggrega-

also exists between these two classes. Unlike previous containment

tion relationshiy
associations, the filled rectangle has been replaced with a hollow rectangle. This
adornment. suggests containment by pointer (or reference) — the Port class contains
a pointer to a Connector class. This pointer is referred to as the Port’s external con-
nector. Becanse a pointer Lo a base class can legitimately point to any of its derived

her another Port class or to a

classes, this external Connector pointer can point to
Wire class.

‘This pointer containment. relationship is required for the hierarchical transmis-
sion of signals throughout the circuit. Both the get_signal() and send.signal()

methods of the Port class exploit this relationship so as to vertically traverse the |

hical repres jon during si ion. The get_signal() method of the Port
class travels recursively up the hierarchy via the external connectors until it encoun-
ters a wire, at which point the get_signal() method of the Wire class returns the

requested signal from its signal list. Similarly, the send_signal() method of the Port

class transmits a signal out via a series of external connectors until a wire is encoun-
tered, at which point the send_signal() method of the Wire object stores the signal
and propagates it. The send_signal () method of the Port class then propagates the
signal to all components in its fan-out. The two send.signal() methods of the Port

and Wire classes are presented in Figure 4.8 and Figure 4.9, respectively.

Note that the abstract class adornment is still present on the Port class. This

is becanse the Port class is still too generie to he used for obje stantiation. \We

prevent instantiation of the Port class by making its constructor protected, therehy
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Figure £.8: Sending a signal to a Port

void Port::send_signal (Signal sig)
{
external->send_signal (sig);
propagate() ;
)

Figure 4.9: Sending a signal to a Wire

void Wire::send_signal(Signal sig)
{

add_signal (sig) ;
propagate() ;

implying that only derived cla constructor, These derived el

s may call

be used for inst

Finally, the Input and Output classes are derived from the Port ¢f;

Beeanse

the constructors for these two classes are public.

components may include input and

output port objects as part of their representation. The only major point of note here

is that the Input class redefines its send_signal () message to display an error instead

of sending a signal, hecause input ports can only receive signals, not send Chem.

By using various combinations of cla

ses derived from the Component class and
Connector class, it is possible to build arbitrary blacks of logic. For example, consider

the construction of a 3-input AND gate using two 2-input. AND g

es. Such a gate
would contain three input ports, one output. port, two instances of 2-input AND pates
and a wire. The constructor would then be responsible for connecting all the ports

and wires together in some meaningful fashion. A Booch diagram representing i
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Seinput AND gate is presented in Figure 4.10.

Figure 4.10: Class diagram of a 3-input AND gate

bed above inte to sim-

is how the clas

The only issue left to add

behind the si i gori are dis

ulate a cireuit. The issed in

the next section.

4.3.5 The Simulation Algorithm

In simplistic terms, the simulation algorithin amounts to nothing more than a depth

first. traversal of the af¢ joned th i ional hierarchy of in

which sigs

als are propagated both horizontally across the same hierarchical lovel and

vertically through different. hierarchical levels. One of the primary differences between

this approach and the classical event-driven approach is with respect to when events

are propagated. In the global quene approach, events are entered into a sorted event.
list and are propagated later; whereas in the distributed queue approach, events are

entered into an entity’s output queue and are propagated immediately, if possible.
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The algorithm itsell

in motion when the top-level component receives a

simulate() message. The semant

of this me:

ge are fa

et forward and

can be

ummarized with the following pseudo-code:

Component::simulate () /¥ Same for all components ¥/
while (component inputs are ready at local lime) do
increment local Lime of component
process inputs at local time - [

done

Note that i

important that the local time of the component. be ineremented

before the process () method is called. If this

not. done, then the local time will

never he incremented in cases where feedback is present in the cireuit. des

iption.

This wonld result in a non-terminating simulation.

Because the process() method is virtual, the ag

ions Liken by the second fine of
the while loop depend upon whether the component overrides the process () method

it inherited from the C base

(5 which are sedd of sub-
Comy lich are composed of sul

components do not typically provide their own process() method. I

ead, they

simply inherit the same method as defined in the Component hase The be-

haviour of the process() method in this

S0 s

o traverse Uhe input, port

of the

component and to send simulate() mess

ages Lo all the embedded subeompononts,
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s demanstrated by the following psendo-code:

Component::process () /* For high-level components */
for each (input port of component) do
for each (component in fan-ont of port) do
simulate component
done

done

Henee, the defanlt behaviour of the process () method is to essentially descend the

A

their inputs.

representation hicrarchy, informing low

level components to proce

component. which contains no subcomponents and does not override the process ()

virtnal function of the base Component class is effectively treated as a null compone

sinee it s not capable of producing output.”

Consequently, components which are located at the lowest level of the hierarchy
(that is, components that do not contain snbcomponents) should provide their own
process () method, thus overriding the process() method in the base class. In this
ease, the process () method will typically employ the method Port::get_signal() to

abtain the input. signals that occurred at the current local time of the component.

The process() method then performs some logic or caleulation based upon these
inputs and then sends the new signals to the output ports of the component using

the method Port::send_signal(). An example of such a sequence of operations is

A trivial modification to the sinmlator engine could detect nall components during run-time and
i a diagnostic error message when they are encountered during the simulation.




demonstrated by the following psendo-code:

Component::

rocess (1) /* For low-level components '/
get inputs from inputs ports av time £

calculate outputs based upon inputs

send oulputs to output ports with timestamp £+ delay

Note that. when adding a new low-level component. that roquires its own process ()

method to an ¢

isting component. library, there is no need to add a new case label to
a lengthy switch statement. Lo ensure that the correct process () function is invoked

for the new type of component. The vi n-mechanism will invoke the

tual functi

correct process () method for the component at run-time.

The implementation of the simulator engine, is for the most, pa

independent. of

the GUI 4

ssed in the previous chapter e sinulator engine may be ran withont
the GUI and vice versa. This feature results in loose coupling, and therefore makes
both the GUI and the engine reusable as separate antonomons modules in their own

right. Details concerning the integration of the GUI and the simulator engine are

presented in the n
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Chapter 5

System Integration

Chapters 3 and 4 described the implementation of a GUI for digital circuit layout and
a simulator engine for digital circuits, respectively. These two software entitics can

vach operate as stand-alone applications; unfortunately, they are cach limited in their

Tunctionality. The GUI layout ication has no i
and the simulator engine has a very primitive interface by which users must tediously

deseribe the cirenits and their inputs textually and then decipher the textual signal

outputs after simulation. This chapter describes how these two separate entitics have
Deen integrated together to form a single application from the perspective of the end
user, therehy providing the benefits of both software units. The advantages of this

highly modular approach towards system integration will also be discussed.

5.1 System Integration Techniques

In order to integrate the GUI and the simulator engine, we must devise a means

whereby they may communicate with one another. In essence, we want the GUI to



be able to send the input signals and civeuit deseription to the simulator engine and

we want the simulator engine to be able to transmit. the resnltant output sig

hack

to the GUI for presentation in the signal waveform display window. As a result,
the chosen communication mechanism must support. bidireetionalism between the

two software units. Adding to the difliculty of integration is the fact that the GUI

was written entirely in Tel/Tk while the simulator engine w:

s implemented in Cri,

Hence, linking the two modules together in the conventional s

is not. an option,
since a relocatable object module cannot he generated for "Tel seripts.

One integration strategy would be to embed the Tel seript into a C program,
devise a functional interface between the C program and the Cit simulator and then

to link the resulting object modules together. However, this method was ro

because it is somewhat complicated and because it may contribute to obsenring the
distinction between the layout editor and the simulator engine. As will be justifiod
later, preserving the relative autonomy of the GUI and the simulator engine con-
tributes significantly to the potential reusability of cach unit.

After weighing some of the options, it was decided that a command pipeline: should
be used as the fundamental conduit of information transfer between the GUI and the

simulator engine. Using a pipe, a simple protocol could e developed by which the

GUI and simul engine would i with one another. In addition, the

only means by which the GUT and the simulator would interact with each other

s
via the pipe, thereby encouraging loose coupling between the two modules. A simple,
high-level overview of the system model showing how the pipe enables interaction

between the GUI and the simulator engin

5 pre « in Figure 5.1, The numbers

located in the small nodules of the figure represent. the four stages of the interaction
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s are disenssed in detail in Section 5.4.

between the two modules, These

Figure 5.1: Communication between the GUI and Simulator Engine
Cirenit. Description
Input Signals

CGraphical User
Interfa
(Tel/Th)

BIDIRECTIONAL PIPE

Output. Signals

OF particular importance is the bidirectional nature of the command pipeline,

Many software applications already employ pipes to achieve communication between

two or more separate software modules.  However, that communication is usually

one softavare module produces ontput which is then manipulated and

supplied as the input to another application over vhe pipe. At this point, the latter

application cannot send information back through the pipe to the original module.

tion as

This may severely limit the functionality and flexibility of the software applic:
awhole. A bidirectional pipe, however, makes it possible for two or more applications
Lo operate as peers. In such a situation, all of the modules have the ability to send

data to and receive data from one another. This makes it possible to achieve more

flexible bol ally on the context of several modules operating in parallel.

5.1.1 Integrating Modules Using Command Pipelines

Before disceussing the specific de of how a command pipeline is used to enable the

GUI and the simulator to communicate with one another, a brief overview of pipes

and small example of their operation is presonted.
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Consider, for example. a situation in which a Tel seript wishes to send two numb

to a subprocess which will add these two numbers and then send back the sum.! Such
a Tel seript is presented in Figure 5.2. Because the first character of the first argument

to the open command is a vertical bar, commonly referred 10

pipe symbol, the open
command will actually exeente the program given by the test following the pipe

character (addnum) as a subprocess. A command pipeline is opened to that process;

the standard input and standard output of the subprocess are tied to the file identitier,

£4d, returned by the open command. Whenever the subprocess veads from standard

input it is actually the

ading information put into the pipe by the Tel seript

file identifier. Likewise, any information that the subprocess attempts to displs

standard output will be inter

opted by the “Tel seript throngh the file identifier.

Figure 5.2: Tel Seript Opening a Pipe to & table.

#!/usr/local/bin/tclsh

set fid [open *|addnum® *r+"]
puts $fid "18"; puts $fid 24"
f£lush $fid

set result [gets $fid]

close $fid

puts "The sum is $result®

Open pipe to executable.
Send two numbers to add.
Flush the output buffer.
Read back the sum.
Close the pipe.

Output the sum.

The subprocess, addnum, invoked by the above Tel seript can be written in any

language, either interpreted or compiled. The only assumption made by the
"

i

TThis example may not be as contrived as one might think. seripts are interpred, i
is naturally going to excente more slowly than a compiled binary. As It if one is ovaluating
a convoluted expression that involves numerous iterations ancl time u:mlmuu,,, control fluw, then
sending the raw data down a pipe to an exccutable for processing and then reading te esall back
wiay actually be faster than performing the entire evaluation in native
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he

of the: subprocess is that. it take two numbers from standard input and produ

ndard ontput. Such a program, wrilten in C++, is

s of these two immbers on s

s in the same

prosented in Figire 5.3, Assurning that. the compiled addnun binary

direetory as the Tel seript, the end user need only run the Tel seript; the addnun

cuted transparently to the nser.

inary will be

Figare 5.3: The C++ Program addnun.
fiinclude <iostream.h>
int
main()
{

int num_1, num_2, result;

cin >> num_l; cin > num2; // Read the two numbers.

result = num_l + num_2; // Evaluate result.
cout << result; // Print the result.
return 0; // Execution successful,

5.2 Advantages of Using Command Pipelines

seem that integrating two applications together via a command

pipeline would be difficult to implement and unwieldy to administer. Instead of

developing a single application which shares all the nece: ¢ information internally,

the designer must instead maintain two separate applications, and ensure that they
are both able to understand each other’s protocol when it comes time for the two soft-

ware unils to share information. Despite this apparent drawback, there are several
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noticcable benefits from thi

rategy.
From a purely software engineering perspective, splitting the implementation into

two separate units enforces

ry Toose coupling between the two applications, thereby

making cach of the units more autonomous and cohe

. The two software units do

not even share a single glabal variable between thew,

L rosult, significaut.

wnges

can be made in one module without adversely

cting the other. By making the

two units separate, we only share as much information as

necessary between them
via the command pipeline. Had the two modules been tightly bound together, the

temptation to share numerous data

ructures between them would he v

v strong.

Subsequent changes to these data

netures wonld have reperenssions that would

cate the entire fmpl ation. By modularizing the GUL and the

simulator engine, the effects of radical implementation changes in one module do not.

usually extend into the other module, henee localizing the impact. of the changes.

By creating a clear implementa

ion d

inction between the GUILand the simulator

engine, it becomes much easier to remove one of

the modules and replaee it with

another that has

similar capabilities. For example a different. GUIL written in an
entirely different language may be placed on top of the existing simulator engine,

The two will still be able to communicate with one anothe

s long as the new GUI

provides the simulator engine with the necessary details regarding the structural

design of the

reuit and can pa

the outpit. wavelorm results geners

by the
simulator engine.

Alternatively, instead of replacing modules, we could augment. the system rela-
tively seamlessly by adding new modules. For example, if one were doing a compir-

ison of two different discrete-cven simmlators, the

une GUI conld be employed to
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| matter Lo enhance the GUI to invoke

invoke cither of the simulators. It is a tri
one of several possible simulator engines2 OF conrse, any new modules added to the
environment would have to he made to conform with the four phase communication
process deseribed in Section 5.4.

Anotl

advantage of rigidly partitioning the GUI and the simulator engine into

tavo distinet lications is that it it a framework by which the two units

may eventually communicate with each other at the socket level. This could lead

to several henefits since this implies that the GUI and the simulator cugine do not,

nece

rily have to be running on the same machine. For example, several people

om wsing

conld conceivably be working on the design of a different cireuit subs

imulator engine they all

different. GUIs on very limited graphics terminals. The

ssible to all.

use, however, conld be running on a ligh-powered machine which is ac

information to the so-called “simulation

The trausmission of the structural circui

srver” would be transparent to the end user. With socket support. forthcoming in

the Tel core, this option of distributing the GUILand the simulator engine over several

miachines will become realizable. OF course, an efficient distribution of the GUIL and

simmlator engine over several machines would have to take into consideration the
potential communication delays inherent within any network. Similarly, effectively
distributing the circnit representation over several machines for simulation would
necossitate an intelligent partitioning of the circuit’s subcomponents in such a way so

as to minimize network traffic between machines.

Note that if doing continuous simulation at. the transistor level, the GUI will require changes
to support. the drawing of transistor symbols on the workarca canvas and the signal display would
I pted (o support, continuous waveforms.




5.3 Overview of the Interaction Protocols

The protocol for the previous example was very trivial  the Tel seript supplisd two
integers to the pipe. the C++ program read the two numbers and returned the sum

back to the Tel program via the pipe. This section will explai wore sophisticated

protocols required by the GUI and the simulator engine to interact. with one another.

A specific example will be presented in the next seetion to help clarily the details
regarding the protocols.
Because Tel cannot yet handle binary data, the stream of information transforved

hetween the GULand the simulator is pure ASCII text. The information trans

red
through the pipe is broken down into individnal stanzas. ‘The stroeture of each stanza

is composed of a slanza header and a stanza body. The stanza header can be thonght

of as represent

g single enti

such as a component. or a sig

and cons

a single word followed by a colon. The stanza body contains attribute/value pairs

which serve to qualify the entity. Such attributes include the type of the component

or the list of values and times for a signal. Within cach line of a stanza bady, a colon
must be placed after the attribute, thereby separating it from its value and each line
of the stanza body must be indented by a tab character so that it can be distingnished
from a stanza header line. There are no restrictions placed upon the order of the lines

in the stanza body, but all attributes must be specified. An example of the generic

format of cach stanza is as follows:

header } Stawa Header
altribute v value,
Stanza altribute »: value,

Stanzi Bocly

attribute ,: value,,
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This textual protocol formad is very easy to parse using Tel and C++. This format

isalso quite simple to extend - if an entity requires another attribute, then another

Jine mply added to the stanza body and the module parsing the stream is modified
accordingly to parse the new attribute line. A textual data stream, as opposed to a
binary stream, also aids tremencously in- the debugging process.

tion between the GUI and the simulator engine is comprised of two

The inler

mjor protocols; namely, a component protool which transfors the fictional wnits
from the GUI to the simulator engine and a netlist protocol which transfers the con-
neclivity information from the GUI to the simulator. The netlist protocol is also
responsible for transforring input. and output signal values back and forth between
the GUI and simulator engine. These two protocols form the basis of discussion for

the next two subsections,

5.3.1 The Component Protocol

“The header of a component stanza consists of the word component. Each component.

stanza has three attrib The type attril

the type of th

aceeptable values include one of and, nand, or, nor, xor, xnor, buffer or not. The

id attribute is used to distinguish among several components of the same type. Its
value is a sequential serial number assigned Lo the component by the GUL The port

attribute is used to expre

lie connectivity of the cirenit in the context of its adjacent
netlists. The value of this attribute is a list of integers, each of which represents a

netlist. connected to

h port of the component. Therefore the number of integers

in this list will be the same as the number of ports. The ports of a component
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are sequentially ordered by the GUI, with the input ports usually mmbered before
output ports. The position of the netlist numbers determines to which port the netlist
is connected.

For example, consider the NAND gate in Figure 5.4 The two input ports are
numbered 1 and 2, and the output port is numbered 3. This mmbering is done
internally by the GUI and is usnally of no consequence to the end user. Netlist
number 32 is connected to port 1, netlist 13 is comected to port 2 and netlist. 18 is

connccted to port 3. If this NAND gate was assigned the

ial number 7 by the GUI,
then the stanza representing this component. would be as shown helow the NAND

gate in Figure 5.4.

Figure 5.4: A 2-input NAND Gate and its Corresponding Protocol Stan

1
,% "
48

2

component :
type: nand
id: 7

ports: 3213 48

5.3.2 The Netlist Protocol

The netlists comprising a circuit are represented by stanzis with the headers input,

output or internal, each of which represent a different type of netlist. An input
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netlist is defined to be a netlist which is connected only to the input ports of one

or more n output netlist is defined to be a labelled netlist which is

-omponents;

counected tothe output port of a component. (an output netlist may also be connected
Lo one or more input ports).* An internal netlist is the same as an output netlist,

except that it has not been labelled by the user. Netlists which are not connected

to the ports of any component are not transmitted by the protocol. The nunber of

attributes each netlist has depends npon the netlist type and which module (either

the GUI or the simulator engine) is generating the protocol. All three netlist types
have an id attribute whose value is the netlist mimber as assigned by the GUI.

The GUI can ge

ate stanzas representing all three netlists as part of its pro-

tocol to the simlator engine. Only the id attributes of the internal and output
netlists are specified. The input netlists, however, cach contain an additional at-
tribute called values. The value of this attribute consists of a Tel-like list of inpnt
signal values and the times that the signals occurred. The list takes the form of
{to w} {t; v} ... {t, va}, where ¢ represents the time of the signal and v represents
its value - cither 0, 1 or X. Inorder to minimize the amount of data being transferred
through the pipe, only the changes in the input signals are actually transmitted by

the GUI to the simulator engine.

Alter ing the circnit i and initializing the input netlisls accord-
ing to the stanzas received from the GUI, the simulator engine then simulates the
cireuit, thereby producing signals on the output netlists. The output netlists are then

traversed by the simulator engine. Stanzas representing each output netlist and their

"Il
cirenit.

nput and output netlists are analogous as the primary inputs and primary outputs of the
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corresponding identifiers and signals values are transmitted back to the GUI along the
pipe for presentation. The format of the output stanzas produced by the simulator
engine is identical to that of the input stanzas produced by the GUL Again, only

changes in output signal values are reported by the simulator engine so as (o

the volume of information sent along the pipe.

Examples of the stanzas ising both the 1t and netlist s

presented in the next section which provides more implementation details regarding

the communication between the GUIand the simulator engine.

5.4 Implementation of the System Integration

This section discusses the details pertaining to the implementation of the interction

between the GUI and the simulator engine. As first introduced in Figure 5.1, the

interaction takes place in four different steps; these steps are presented in greate
context and in more detail in Figure 5.5. The GUI handles two of these steps and
the simulator engine handles the other two. The subsequent sections will deseribe the

implementation of these four stages in the context of a specifie example.

5.4.1 Step 1: GUI Protocol Transmission

The first step involves the GUT transmitting cornponent. and netlist protocols o the

simulator engine. These protocols describe the structire and connectivity of the

cnit to be simulated and also provide the simulator with Che inpnt signals o be fed

into the crcuit during lation. The Tl for extracting the

circuit description is callel simulate which resides in the module simulate.tcl.
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Figure 5.5: Intermodule Communication Between the GUI and Simulator
User Presses the GUI (Tel/Tk)
Simulate But.ton (4)

Parse and Display the

Output Sign:

Extract the Circy
And Input. Signals

t. Description

@ |
smit. Deseription . Transmit
and Signals to the Pipe Output, Signals
Simulator Engine to the GUI
@ !
Pars Circuit D Simulate Collect the

and Input Signa
Build 2 Runtime Component

Simulator (C++)

the Cireuit —>  Output Signals

This procedure translates the component, netlist and input waveform information
available on the workarea canvas and signal display window of the GUI into the com-
ponent. and netlist protocols described earlier. The stanzas comprising this protocol
ate then passed through the command pipeline opened by the simulate procedure
and transmitted to the simulator engine.

For example, consider the circuit of Figure 5.6 and its corresponding input wave-
forms in Figure 5.7, both of which have been specified by an end user via the GUL Note
that the italic numbers in the circuit diagram represent the netlist numbers that iden-
tify the input, output and internal netlists connected to the component ports; they

are presented as an aid to understanding the component protocol described helow

131



and do not appear to the end user on the GUIL

Figure 5.6: Example of a Cireuit

The stanzas representing the components, and the input, output and internal
netlists are coalesced into the stream of data presented in Figure 5.8. Note that only

the input netlists actually have corresponding signal values; the ontput and internal

iers. These stanzas are then

netlists are represented only by their respective ide

transmitted to the simulator engine through the cornmand pipeline.
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Figure 5.8: Protocol for the Circuit and Inputs in Figure 5.6 and Figure

input:
id: 3
values: {0 0) {1 1} (3 0} (4 1} (5 O} {6 0}
input:
i 2
values: {0 0} {2 1) (3 0) {4 1) (5 0} (6 0}
input:
id: 1
values: {0 0} {2 1) (5 0) {6 0}
output :
i 4
internal:
id: 0
component :

component:
type: nand
id: 1
ports: 0 14
end

5.4.2 Step 2: Simulator Protocol Reception

During the second step, the simulator engine must parse the stanzas it receives from

the GUI, construet the corresponding circuit and then simulate it. The two major C++

madules involved in this step are parser .cpp and rtcomp.cpp. The former module
implements a class that provides support for reading the stanzas the simulator engine

receives and then identifving the headers and the attribute/value lines in their bodies.

This module makes heavy use of the second module, rtcomp. cpp, which stands for

runtime ‘This module i a high-level class which is
7 gl

built. during runtime as the parser module interprets its input stream.
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From a design perspective. a mntime component. is « kind of component, so

we derive the Runtime_C class from the C

thereby onabling

the Runtime_Component to inherit all the features of its Das

« Component ¢lass. The
Runtime_Component module extends the functionality of its base elass by providing

member fanctions which create th

ubcomponents and top-level ports which com-
prise the circuit to be simulated. In many cases, these member funetions are simple

wrappe:

around the port and component constructors themselve

Continuing our example from the previous subsection, the stanzas shown in 1°

ure 5.8 are received by the parser of the simulator engine. As the par

h

oF processe

of the stanza headers and their respective bodies individually, it invokes the appropri-
ate methods of the Runtime_Component to create the necessary entities of the vircuit.

First, the primaty input and primary ontput. netlists of the civeuil, are constructod

from the input and output stanzas transmitted by the

UL Internal netlists are sim-

ilarly constructed. For the input ne

<, the input vectors of the input stawza body

are also parsed and placed in the input netlist wire quenes, Then, as the component

stanzas are read, the subcomponents compris

ng the civenit are ereated. Note that

the netlists are transferred to the

nulator engine before the components hecause Uhe

constructors for components accepl, as parameters, netlists.” Therefore, the we

s

must be constructed before the subcomponents

an be buill,

After construction of all the netlists and subcomponents, the simulate() me

sage is sent to the runtime ¢

mponent by the main() program, therveby simulating the

newly constructed runtime component. All the resultant, ontput, signals are collected

More accurately, the component constructors accept. references Lo Connector abjects i parani-
cters, which are then connected to the ports of the components.
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from the output. netlist wire queues which are then transmitted by the simulator en-

gine to the GUI for visual presentation in the signal display window. The main()

function of the simulator engine is presented in its entirety in Figure 5.9. The mech-
anism by which these outpnt signals are gathered and transmitted back to the GUI

is deseribed in the next. subsection.

: The main() Function of the Simulator Module

int main()

Runtime_Component component;
Parser parse;

if (parse.ckt(component) != 0)

return -1;
component.simulate () ;
component . show_outputs () ;
return 0;

54.3 Step 3: Simulator Protocol Transmission

In order to transfer the output signals from the runtime component to the GUI, the
simulator module must retrieve all the signal values oa cach of the output netlists of
the runtime component.  As seen from Figure 5.9, this is accomplished by the mem-
ber function show_outputs(), which Runtime.Component inherits from its basc class
Component. This member function simply iterates over all the output ports of the
runtime component and sends each of the output ports the message show.signals(),

which they inherit from the Port base class.
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As with the get.signal() and send.signal() member functions deseribed car-

lier, the show_signals() measages eventually reach the output ports’ vespeetive wires,
causing the show_signals () member function of each of the wires to he invoked. This
Wire member function is presented in Figure 5.10. The function simply sends, to stan-

dard output, the output stanz header, the id attribute followed by the identifier of

the netlist as well as the values attribute.

Figure 5.10: The show signals() Member Function of the Wire Class

void Wire: :show_signals() const

i<
cout << "output:" << endl;
cout << "\tid: * << get_name() << endl;
cout << "\tvalues: *;
display_signals()
cout << endl;

}

It then calls the member function display.signals() to actually retrieve and

display the values of the signals and the times that they oceurred during the simn-

lation. This function is presented in Fignre 5.1 and simply amounts to 1 traversal
of all the signals on the wire. The output operator, <<, has been overloaded by the
Signal class to output the signal time and value enclosed in braces. Note that only

the changes in the ontput signals are sent Lo s

dard ontput. by this method.
In the context of our particular example, because the circuit had only one output,
signal, only onc output stanza is sent to standard ontput by the simulator engine.

The stanza representing this output waveform is presented in Figare 512, Note that,

136



Fignre 5.11: The display_signals() Member Function of the Wire Class

void Wire::display_signals!) const

List_Iterator<Signal>  sigs(signals);

Signal

sig_val rev_val = SIG_X;

int = signals.num_elements();
boolean first = TRUE;

while ((sig = sigs()) != 0)

{
num --;
if (first || sig->get_value() != prev_val || num
cout << *sig;
prev_val = sig->get_value();
)
first = FALSE;
)

the time and value of the first signal is {- X}. This represents the initial time and

initial value of the ontput signal. Because of the command pipeline established by the

GUI, all the output signals that the simulator engine gencrates on standard output,
will be picked up by the GUI, parsed and then displayed graphically. This final step

is described in the next subsection.

Sample Protocal for an Output Signal Waveform

Figure 5.1

output :
id: 4
values: (_ X} {1 1} (3 0) (4 1} (5 0} (6 1} (7 1)
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5.4.4 Step 4: GUI Protocol Reception

Once the simulator engine has finished executing and has transmitted the output
signals back to the GUI, the simulate.tel module of the GUI takes control again.

The sim_process_outputs procedure of this module is invoked to parse all the sig-

nal times and values it reccived from the simulator engine. For each output netlist,
sim_process_outputs calls the sig_draw_signal procedure of the sigdisp. tel mod-

ule to display the corresponding output waveform in the signal dis

window. Upon
completion, the file identifier for the command pipeline is closed and the GUI will
once again respond to input from the end user.

In the example from the previous section, the waveform corresponding Lo the
protocol in Figure 5.12 is shown in Figure 5.13. After examining the wavelorm, the
user may change the input signals or the circuit itself and then re-simulate the cirenit,

achicved.

until the desired output waveform s

Figure 5.13: Output Signal Waveform Displayed Graphically
1 2 3 4 5 6 7

In summary, the GUI may be thought of as the structural subsystem of the entire

e interconnected

architecture, in that it provides the means by which components

and structurally defined by the user. The simulator engine

o may e thought, of

as the functional or | | since it is ible for mirroring, the

circuit description provided by the user and injecting each of the components with
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behavioural and functional semantics necessary Lo give life to the cireuit.
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Chapter 6

Conclusions

"This report. has discussed the design and implementation of 4 complete environment

for designing and simulating simple digital circuits at the logic level,

dopling

sound design principles and by employing a high-level user interface toolkit, an in-

tuitive front-end GUI was implemented for the layout component. of the app!

The creation of the GUI has dramatically increased the accessibility of the underly

simulator engine by enabling the user to interact with the cirenit graphically

nstead
of textually. The GUI also enables relatively complicated cirenits to be ereated and

simulated, therehy providimg a more efficient. means for verifying the: correctiess of

new simulator engines.

The simulator engine described in this report employs distril

el event. quenes

for the purposes of event notific:

nand signal propagation ins

conventional single global event quenc. By using distributed quencs, the
more accurately represents its counterpart. in the real world. The implementation of

the simulator strategy was facilitated by the object-orien

o paraigan, T support



for lation, inheri and poly: hism provided by this paradigm made
the implementation more natural and more resilient to change. The component class

library was designed to be extensible; consequently, a viable foundation has been

established upon which additional circuit elements can be derived and incorporated

into the simulator engine, resulting in a more comprehensive component class library.

By cleanly separating the GUI from the simulator engine and having them com-

and reuse of the two software

municate via a |l I pipe, future

modules is realizable. In addition, a new GUI or new digital simulator engines can

be added relatively seamlessly to the environment, provided they cach conform to a

mntual protocol for the purpose of information sharing, The clear distinction between

the GUI and the simulator also makes it

the implementation of one
of the modules without adversely affecting the other. The partitioning of the two
modules may also serve to help distribute the exeeution of the software over several

chines.

6.1 Applications and Future Work

With respect to potential uses of the software, the current implementation has aca-

demic merit and may be useful in an introductory course on digital logic. From a

Tes tive, the GUI can be used to give a common interface for other sim-

ch perspe

ulator engines, thereby providing a uniform envi in which the g
of several different digital simulator engines may be compared. However, despite the

potential benefits and applications of the GUI and simulator, there are still several

improvements which can be made to enhance the functionality and practicality of
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both modules. Some of these enhancements could lead to industrial applications of

the software.

In the context of the GUL perhaps the biggest drawback is the lack of hierarchical
support in the circuit layout editor. While the simulator engine itself does support
arbitrary nesting of components, the GUI, nnfortunately, still forces the user to adopt
aflat view of the circuit being designed. Onee hievarehieal support is implomented for

the GUI, the existing protocol between the GUI and the simulator would have to he

enhanced to support the multi-level nature of the cirenit design. An

er limitation

is the lack of component configurability from the GUL For example, the GUI does
not yet have the ability to let the user specify the number of inputs for a logic gate.
For the most part, the user is restricted o using two input gates. Also, the end
user shonld be able to speeify the component delay using the GUIL One final minor
enhancement is to have the GUI report. all of its dingnostics and error messages to 2
separate modal dialog hox. Currently, most, diagnostics are sent Lo standard output,
which is usually hidden by the circuit editor window. By presenting the dingnosties

in a separate window, or maybe even

asubframe of the main window, the warning
and crror messages generated by the GUI will become more obvious to the user.
There are still some internal issues left to resolve with respect to the existing GUI
code base. For example, as the implementation progressed, the prefixing convention
for procedure and variable names became more difficult W maintain. Also, the re-
quired proliferation of global variables and arrays in the source code compromised the
level of encapsulation between Tel modules. In the future, a possible rewrite of the

GUI using an Tel/Tk extension language with better numespace control and more

effective code sharing support may be possible. However, tie disulvantage with nsing
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is that they may not always keep pace or be compatible with the

extension packagoes

latest, re of the Tel/Tk core from Sun Microsystems.

With upcoming releases of the Tel core supporting nonblocking 1/0, it may be
possible to make the simulation interactive. This would permit the user to pause and
maybe even reverse the simulation while it is in progress, for example. It may also

be possible to animate the simulation itself, thereby demonstrating to the user the

s, hence making the circuit behaviour more Incid.

propagation of signals along netli
With the rise in the popularity of the Internet and the World Wide Web, one
future project. might, he to rewrite the simulator engine using the Java programming

language and to then integrate it with the Tel/Tk GUL This would enable anyone

with a Java compliant web browser that has the appropriate Tel/Tk bindings to
download and execute the GUI and simulator directly over the Internet. How this
would actually be accomplished depends largely upon how the two languages can be
integrated with one another.

From the point of view of the simulator engine, there are many enhancements

mple,

whiich would increase the potential usefulness of the engine. For ¢ ro delay

components are not yet. feasible with the current state of the implementation. In
theory, however, it does seem possible to implement zero delay clements in a dis-

tributed quene simulator. If a component sends a signal to one of its output wires

that conflicts with an existing signal on the wire at the same time, the component
would not update its local time. If the output signal does not stabilize, then after

a given number of oscillations, the simulation will be terminated with a diagnostic,

indicating a possible flaw in the circuit design.

Like the GUI, the circuit i I by the si engine restricts
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the number of inputs of the basic logic gates to two. A more go

e mechanism

for specifying the number of inputs to these gates would contribute signifienntly to

the extensibility of the engine. This can be achieved by supplying the appropriate

component constructors with an array of connector references instead of passing the

connector references individually. The addition of a clock ela

would also nprove the

simulator engine, s

ice it would fa

ate the eyeation of synchronous cirenits. When
queried by a component which has a clock input, the elock objeet. wonld return the
signal value that would oceur at the time requested by the component. in accordanee
with the frequency of the clock.

These enhancements would serve to inerease both the academic and industrial
viability of this software package and may even serve as the foundation upon which

wore generic quening simulators may be bused.
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Appendix A

Installation Guide

This appendix provides information related to the installation and use of the civeuit

editor GUI (hereafter referred to as DigiTel) and the simulator engine, as describid in
this report. These instructions are valid at the Lime of writing, bl may not. he valid

for subsequent releases of the software. At the time of w

ng, the current. version of
DigiTel is 0.1.0 and should be considered a bela release.

These installation instructions assume that the target machine is ronning a recent
release of the X Window System (Version 11), on a UNIX-like operating system.

Tel 7.4 and Tk 4.0 (preferably patch level 3) must also have been installed on the

target machine before DigiTel can be nsed.! A Gi+ compiler is also required so
that the simulator engine can be compiled. Version 124 of the GNU gzip com-

pression utility must also be available on the machine so that the archive. file ean he

decompressed before being extracted. The standard complement. of UNIX ntilit,

will also be required. The package may be installed and used without rool. privileges,

TAlthough later versions of Tcl/Tk have been ported to other won-UNIX operating systems,
DigiTel has not yet been tested on any of them.




A.1 Extracting the Archive File

1 single compressed archive file called digitcl-010.tar. gz

“The distribution includ

which can be extracted using the command:
$ gzip -dc digitcl-010.tar.gz | tar xvf -

This will ereate a directory called digitc1-010 and all the relevant files will be placed

in that directory. These files and subdirectories are deseribed in Table A.1.

Table A.1: Files Ineluded in the DigiTel Distribution

Files Description

README A text file with instractions on how to install and use DigiTcl.

digitcl | The Tel/Tk seript, for the DigiTel GUI cirenit editor.

cktsim/* | The C++ sonrce and Makefile for building the simulator engine.

Eitmaps/t Bitmaps and mouse cursors required by the DigiTcl.

A.2  Compiling the Simulator Engine

Inorder to simulate circuits, the simulator engine must be compiled. The GNU C++
compiler, version 2.7.2, should be able to successfully compile the engine. Unfortu-
nately, there aze known template instantiation problems associated with version 2.6.3

of the same compiler,



To compile the simulator engine, simply change to the cktsim directory and (ype
make. If there were no errors during the compiling and linking, a digisim executable
should be created in the direetory. This binary will be excented as a subprocess by

DigiTel — there is no need to run the executable direetly.

A.3 Environment Variables

Before DigiTel can be used, the appropriate shell variables must be set and exported

to the environment. Some of these envi variables may be required by the

underlying graphics toolkit, Tel/Tk (see Table A.2), while others are required by

DigiTecl, itsclf (see Table A.3). The standard PATH enviromment. vaviable may also he

modified for user convenicence.

Table A.2: Environment Variables Used by Tel/Tk

Environment Description

Variable

TCL.LIBRARY | Set to the location of the Tel library files. It is not nec

ssary Lo

this cnvironment variable if tclsh was compiled with the library
path pre-configured in its binary.
TK_LIBRARY | Sct to the location of the Tk library files. Apain, it is not necessary

to set this environment variable il wish was compiled with the

library path pre-configured in its bi

y.




Table A.3: Environment Variables Used by DigiTel

Environment Description
Variable
DIGISIM Set. to the location of the simulator engine compiled carlier. An

absolute pathname should be used.

DIGILIB b

t. to the location of auxiliary bitmap and cursor files required by |

the cireuit editor. Again, an absolite patimame should be used.
DIGIUSER | Set to the Incation of the working directory to be used by digitcl.

When loading or saving cireuits, the contents of the directory in-

ed by this environment, variable will be presented in the file

tion dialog box.
PATH This standard environment variable should include the location of
the wish binary. 1t may also contain the location of the digitcl

script.

A.4 Running the DigiTcl Circuit Editor

Once the simulator engine has been compiled and the environment variables have
been set, the DigiTel cireuit editor may be started by typing digitcl while in the
digitcl-010 directory. For convenience, the full path of the digitc1-010 dircctory
may be added to the PATH environment. variable, thereby letting the user exceute the
seript while in any directory.

If the location of the wish excentable was not included in the user’s PATH or if

the installed wish binary is not actually named wish, then the circuit editor must he



invoked by specifying the full path of the wish binary and providing the pathname

of the digitcl seript as an argument. For example:

$ /usr/local/bin/wish4.0 ~/digitcl-010/digitcl

If the DIGIUSER environment variable was not set. then the contents of (he direc-

tory that was current when digitcl was invoked will he presented in the file selection

dialog box. The file selection dialog hox is displayed whenever the ctivates the

Open..., Save... or Save As... options of the File pull-down menu.

Unfortunately, a Makefile that installs the distrilution files in standard directo-

ries does not yet Any changes to the locations of the files will have to be made

in accordance with the installation information provided above.  In particular, the

environment variables have to e modified appropriately when moving the location

of the DigiTel script, the simulator engine executable or the anxiliary files

required

by DigiTel.



Appendix B

Circuit File Format

“This appendix describes the file format used to store cirenits created by the dreuit

ons. When the

several editing ses

editor GUL thereby achieving persistence acros

nser saves a cirenit to a file using the Save... or Save As... options of the File pull-down

ment, all the details relating to the location of the wire points and the placement

and orientation of the components are stored in the file. The netlist labels as well

re also saved in the file. After

as the signals values on each of the labelled netli

sions using the

a cireuit is saved, it may be restored during subsequent. editing
Open... option.

In order (o save ¢ ircuit de:

nits to a file, a iption langnage which accurately

reflects the detailed structure of the

uit was devised. This deseription language i

similar in style to the component and netlist protocols described in Chapter b, since

they both adopt a stanza format. for the circuit. description. Unlike the component

and netlist protocols, however, the circuit file format is much lower level and contains

detailed structural information relating to the placement of components and wire



points.
The language which describes the physical favout of the cirenit is composed of

three types of stanzas; namely component. point and label stanzas. Each of these

stanzas are described in subsequent. sections.

B.1 The component Stanza

There is one component stanza for each component. in a circuit. Stanzas representing

components have four attribute

namely, type, coords, orient and ports.

The type attribute, as in the protocol itted Lo the si

engine, represents the type of the component. Cu

rent aceeptable valies for this
attribute include and, nand, or, nor, xor, xnor, buf fer ornot. The coords at.tribute

stores the coordinates of the center of the cornponent. on the eanvas as a pair of inte

coordinates. These coordinates are obtained from the cap_coord global array in the

GUI ion. The orient y; stores the orientation of the component
and may be set to one of 0, 90, 180, or 270, cach of which represents the number

of degrees of rotation. Finally, the ports attribute specifies to which wire points the
"y P 1

ports of the component are comected. The value of

attribute Tel-like list

which consists of pairs of clements. The first. ¢ Lis a4 concatenation of the port

type, cither input. (1) or ontput (o), and the sequence number of the port. The second

element of each pair is the identifier of the wire point to which the port is attached.

An example of a component stanza is presented in Figure 13,1,
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Figure B.J: Example of a component Stanza

component:

type :
coords: 320 190

orient: 0

ports: {i000 211} {i001 213} {0000 205}

B.2 The point Stanza

, there is exactly one point stanza for each wire point.

As with the component st.

on the workarea canvas. Each point stanza has four attributes; namely, id, coords,

adjent and net.
The id attribute represents the uique numeric identifier of the point. on the
workarea canvas. [t serves as a means by which the point can be referenced by other

zas in the eircuit des

iption. The coords attribute, like the coords attribute of

the component stanza, stores the coordinates of the wire point on the canvas. These

coordinates are obtained from the pnt-coord global array of the GUI implementation.

i ad j cnt attribute stores the identifiers of all the points that are adjacent to the

point. The final attibute, net, stores the identifier of the netlist to which the point

stored in the it file so that

belonged when the circuit wa ved. This valie

tion does not have to take place when the circuit i ored by the user.

Note that there is no need tostore the identifiers of wires in the cireuit file since each

of the wires can e reconstructed from the adjacency lists of cach point. An example

ol apoint ented in Figure B.2.

-
o
<]



Figure B.: ample of a point Stanz

point:
id: 205
coords: 360 190
adjent: 222 254 201
net: 5

B.3 The label Stanza

Ench label stanz represon

s a netlist that has been labelled by the user. Again,

there are four attributes associated with each Label st

wan, They are name, point,

anchor and values. Each of these attributes are discussed helow.

The name attribute simply specifies the name that the user

pied Lo the netdist
in the Netlist Label Dialog box. It is composed of astring of chavacters. “The point
attribute indicates to which point. the label is attacked. Remember that to libel a
netlist, the user must label exactly one wire point that. is a member of that netlist;

the point attribute stores the identifier of the point that was seleeted by the us

to label the netlist.  The anchor attribute specifies the location of the abel name

relative to the point. Tt may be sel to one of n, ne, e, se, s, 8w, w, nw or ¢; where n
is north, s is south, w is west, e is cast. and ¢ i center. The values atbribute stores

the list of signals that were associated with the netlist. Note that if the netlist is an

input netlist, then this list of signals was specified directly by the user. IF the netlist

is used for output, then the signal list

as generated as the result of a simulation,
As with the netlist protocol described in Chapter 5, the signal list takes the form

{to vo} {ti w1} ... {tu va}, wh

L repre:

nts Lhe time of the signal and o represents

its value -

cither 0, 1 o

Only th

changes in the signal value: pally stored.
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An example of a label stanza is prosented in Figure B.3.

Figure 1B.3: Example ol a 1abel Stanza

label:
name: Q'
point: 208

values: {0 X} (21} {50} {10 1}

From all of these stanzas, it is possible for the GUI to reconstruct the entire

physical rpresentation of the cireuit on the workatea canvas when the user restores

the circuit from the file using the Open... option of the File pull-down menu.



Appendix C

Simulator Engine Class Dictionary

This appendix provides an overview of all the C++ classes used by the simulator

as described in Chapter 4. Each of these cla

s employ a well defined functional

interface which together provide a

small but powerful foundation that forms the basis

of a distributed, hierarchical cireuit simulator. These

ses have heen shown Lo he

in the description and simulation of the following types of cirenits:

simple, atomic components, such as a 2-input. AND gate,

o components comprised of other nested for example, a threc-input

AND gate constructed using two 2-input. AND gates and a wire and

o components which contain feedback loops, such as an RS-Lat

By using object-oriented techniques such as encapsulation and inhe

anee, aflex-

ible, intuitive approach to digital logic hardware simulation is possible; objects in-

stantiated from clas

s in the library bear close

mblance to their corrosponding
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real world counterparts. The class library also provides support for a runtime compo-
nent and an clementary parser which together can be used to interface the simulator
engine with a graphical user interface.

The following sections contain a description of each class and the corresponding

public, protected and private data members. In addition to the member functions

described below, most of the classes also contain a public method to display diagnostic
information regarding the current, state of an object instantiated from the class. For

s deseribed below are not. discussed.

brevity, destructors for the ¢

C.1 The Component Class

The Component class acts as an abstract base class upon which all specific hardware

components must be derived. The objects instantiated from these derived classes

contain all the elements and functions to process input siguals and produce appropri-

ate output signals. If the contains its purpose is Lo pass

signals it receives to its encapsulated subcomponents.

C.1.1 Public Members

e List<Port *> IList, OList: These two members maintain linked lists of
input. and output ports respectively as required by the component. Each clement of
the linked list. is a pointer to a Port object, which is described in detail in a subsequent
section. These linked list of ports are used extensively during the simulation in
order to coordinate the processing of inputs and outputs and to access lower levels

of the component hierarchy built during the construction of the circuit. Because a
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component. communicates with the external world via

its ports, the port lists

are
made part of the public interface of the Component class. Note that this is one of

the few instances in the implementation where public access is granted to the data

members of a class.

® void process(ckt._time time): This is a virtnal method which implements

the B

of the For high lovel comy s, (that is, con-

ponents which are

composed of subcomponents) this funetion seans over all the port

pointers in the aforementioned input port list and activates all the subcomponents

which are connected to these input port

. Components at. the lowest level of the havd-

ware hierarchy, however, must override this virtual function to provide the specific

functionality of the component.. For te would examine

ample, & 2-input. NAND

[ both

its two inputs signals at the specified Lime and produce a low outpnt ouly
inputs arc high.

® void simulate(): This function is employed by all classes derived from the

Component class, regardless of the hierarchical level of the component. This method

first determines if all the inputs for the component are ready at the loeal time ol

the component. If so. then this method will increment. the local fime and invoke

the process () member function to trigger the componen

Lo constme its inputs and

produce appropriate outputs. The simulate() method is called recursively as control

travels down the three dimensional component. object. tr

® void show.outputs(): In order to determine the results of the simulation, this

function must be called. This method

simply traverses the ports in the outpnt, port.

list of the component and displays all the signal values and limes thal are stored in

the output wires connected to each of the ports.
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C.1.2 Protected Members

© Component (ckt.time delay, const char *name): Thisis the constructor for

It ace

the component, class. s a timing value which represents the transport delay of

the component, and astring representing the name of the component. The constructor

simply it

the delay time, name and local time of the component. This member

ismade prot

ed 0 a8 to prevent objects of type Component from being instantiated.

Ouly objects derived from Component which have public constructors may actually

b ereated.
o ckt_time get.delay(): Thisis a simple accessor function which returns the

transport delay of the component. It is

commonly used by the process() function
of low-level components to determine how much time to add to output signals when

generating outputs.

C.1.3 Private Members

® boolean inputs_are.ready(ckt_time time): This is a helper member func-

tion that is used exclusively by the simlate() member function. When a component

receives the simulate () message it mus

irst determine if all its inputs are ready for
its local time. The inputs.are_ready() wmethod serves this purpose by sending the
get_signal() method to all input ports in the input port list. If all the inputs arc
awilable at the specified time, this method returns TRUE and the simulate () method

can contine; otherwise it returns FALSE.

o ckt_tine delay: The simulator engine uses the transport. delay model when

simulating cirenits, The delay data member is used to represent this delay. Note
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that, like the process() function, it is only necessary for coinponents at the lowest

level of the hierarchy to define a delay time since the delay of higher level components

is dependent upon the delay time of its subcomponents

o char *name: This member is used to store the name of the compon

useful for identifying the ] when debugging the simul; engi

o ckt_time local.time: Due to the distributed quer

sproach adopted Dy the

sinulator, it is possible for several components to e at ditforent times during (he

simulation. This data member represents the location of the component along, the

temporal range of the simulation. Ouly the simulate() method needs o access (

member, hence it is made private.

C.2 The Connector Class

The Connector class is an abstract base class ibl

et

with other and for i with the external world. This

class maintains a linked list of components which is represes

tive of the fan-out list

of the connector. This class is also used as a basis for signal communication diring

the simnlation process. That is, whenever a compon

wishes Lo get. or send a signal,

it must do so through a connector. This class serves as a fonndation

spon which two

other classes,

ncly Wire and Port are derived. The Port ¢

s, in Lurn,

abstract base class for the Input and Output ¢l

. These clas e i

detail in subse

164



C.2.1 Public Members

o Signal get_signal(ckt_time time): T a pure virtual finction which

is respousible for retrieving the signal which oceurred at the time specified by the

parameter. The Wire and Port classes actually define the behaviour of this member

function. Consequently, the description of its implementation will be presenl

later sections.

© void send.signal(Signal sig): Like get.signal() above, this too is a pure
virtual funetion. Its major purpose is to propagate an output signal from a component

fan-out list. The details of this finction will be discussed in

10 the components in its
further detail in the sections pertaining to the Wire and Port classes.

© show.signals(): Again, this is a pure virtual function. Upon invocation, this
function will display all the signals that. have passed through the connector during
the course of the simulation. It is defined by the Wire and Port classcs.

® void connect(Component &cmp): This method adds the specified component

Lo the list of components in the fan-out list of the connector. It makes use of the add

member function of the generic

e const char *get_name(): Each connector has a name which serves to identify

that. connector. This function simply retur

a pointer to that name. It is used p

by the Runtime_Component class when constructing a cirenit from its protocol

deseription.
o void propagate(): This method is invoked during simulation. Its purpose is to
iterate over the components in the fan-out list and to send each of them a simulate ()

message, thereby foreing the components to consume their inputs (when possible) and



to produce outputs. These ontputs are subsequently propagated in the same manuer.

C.2.2 Protected Members

® Connector(const char *name): The constructor for the Connector class simply

accepts a string which is usad to initialize the name of the connector. This name can

be retrieved later using the get_name () accessor function.

C.2.3 Private Members

® List<Component *> fan_out: As described above, each connector

ponsibe

for propagating the signals it receives to the components to which it is conneeted. "T'he
fan_out member is simply a linked list of pointers to components in the fan-ont of

the connector. This list is traversed whenever the connector receive

« propagate()
message.

® char *name: Like the Component class, this data member simply stores (he
name of the connector for debugging purposes. 1t is also used 1o identify connectors

during the construction of runtime components.

C.3 The Wire Class

The Wire class is used primarily to connect two components wogether. During the

course of a simmlation, the Wire class also caches all the e

nals hat, have |

throngh it. Queries by an Input or Output port for a signal mmst eventually be an-
swered by a Wire object. Similarly, all signals sent by an Qutput port. must. eventiually

be reccived by a Wire object. The Wire class is derived from the Connector cliss.
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C.3.1 Public Members

® Wire(const char #*name): The Wire constructor accepts a name which repre-

sents the wire and passes it Lo its base class, Connector for initialization. An initial

is then added to the wire’s signal list by the constructor using the add_signal ()

sign
member function.
e Signal get.signal(ckt_time time): During simulation, components must be

able to obtain the value of a signal that travelled along the wire at a specified time.

The get_signal() method performs this task by traversing its linked list of signals
for the correct signal. Clecks are made during the search to ensure that the client
code is nol attempting 1o look for a signal which has not yet occurred.

e void send.signal(Signal sig): When the Wire object receives this message,

it adds Lhe @l Lo its signal list by calling its add_signal() member function. It

then attempls to propagate the signal to all the components in its fan-out list by
invoking the propagate() method of its base Connector class.

® void show_signals(): This method will display an output stanza header and
the signal values and times currently residing on the wire by calling the private
display.signals() function. Itis invoked indirectly by the show_outputs() member

function of the Component class after a simulation has heen completed.

® void add.signal(Signal sig): This method will append the specified signal

to the signal list. maintained by the The implementation of this function ensures
that the signal is in time-order with respect to the last signal in the signal list; il
not, then a diagnostic warning will be displayed. This function is used during the

initialization of the wire and by the send_signal() member function. It is also used
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by the Runtime_Component class to add the initial signals to the prim;

input wires

during the construction of the component.

C.3.2 Protected Members

The Wire class has no protected members.

C.3.3 Private Members

o List<Signal> signals: This private member acts as o repository for all the

signals which have been transmitted through the wire during the conrse of the sinm-

lation. It is simply a linked list of Signal objects.

® void display.signals(): This helper method employed by show_signals()

iterates over the signal list and displ

the wire. Only the changes in signal values are actually displ

® void replace(Signal sig): This function is used to replac

list with the specified signal. It is intended for use during the simulation of zero-delay

clements but is not used by the eurrent implementation.

C.4 The Port Class

The Port class is yet another abstract base class which forms the fonndation for

both the Input and Output classes. The Port class provides the means by which

components communicate with the al world, After construction, each input.
port will know its external feeding connector and each output port. will know which
external connector (o feed. As mentioned earlier, a linked list of input and ontput
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ports is maintained in the public h component. These ports control
signal flow to and from the component. The Port class is derived from the Connector

class.

C.4.1 Public Members

o Signal get_signal(ckt time time): Quite simply, this method retrieves the
signal which oceurred at the specified time from the connector which feeds it by
sending a gt signal() message to the ports encapsulated external connector. The

get_signal() method will recurse throngh higher-level ports until a wire is reached;

at which point, the signal list of the wire will be traversed and the desired signal, if

found, will be returne

e Signal send.signal(Signal sig): This method is used to transmit the spec-
ified sigmal to the external connector of the port by sending the send_signal() mes-
sage to the external connector. As with the get_signal() method, send_signal()

will recurse through higher-level ports until the destination wire is reached. The sig-

nal will then be added to that wire. This method also propagates the signal to all the
components in the fan-ont of the port by invoking the propagate () member function

which it inherited from its base Connector class.

o void show.signals(): This method sends the show_signals() message to the
external connector of the port in order to display all the siguals that have passed
through the port during the conrse of the simulation.  As with the previous two
methods, recursion will oceur until a wire connector is reached, at which point. the

signal list of the wire will be traversed and displayed. This method is called by the



show_outputs () method of the Component class.

C.4.2 Protected Members

e Port(Connector &con, const char #name): This constructor assigns the con-

nector reference to the external protected data member as deseribed next and passes
the name of the port to the base Connector constructor. The constructor of the Port

cla

protected so as Lo prevent actual objects of the

ass from Dein stantiated;

only classes derived from Input and Output can be created.

® Connector *external: This member represents the ex

renal connector Lo which

the port itself is connected, This data member usually points to a port in an hievae-

chical level immediately above the port or to a wire in the same hierarchical love

the port. Note that becanse Wire

and Port are both derived from the Connector class,

external may point to cither a Wire abject or a Port object.

C.4.3 Private Members

The Port class has no private members.

C.5 The Input Class

The Input cl; rived from the Port

and is used Lo

5

immlate an input port
of a component. The input. ports of a component. are all stored in the I List public

member of the Component cliuss and can therefore he nceessd by ontside obj

is the case in the

al world. The primary purpose of an Input object is to permit.

the enclosing component 1o recei ignals from the external feeding connectors in
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ely above the port. The Input object is also responsible for

the hierarchy immedi

notifying all the subcomponents which it feeds to process their inputs.

C.5.1 Public Members

* Inp: &cmp, &con, char #*name): In order to build

nput port for the runtime component, the Input constructor takes a reference to

the component which encloses the input port, a reference to the connector which feeds

or reference and name

the input port. and a name for the input. port. The conne

parameters are passed to the Port base class constructor, thereby connecting the port

mector and storing the name of the port. A connect()

Lo its external source o
message i then sent 1o the external connector with the component reference as a

‘This adds the component which encloses the port to the fan-out list of

paramed
the external connector. The input port is then added to the input port list of the
enclosing component.

e void send.signal(Signal sig): This method overrides the corresponding vir-
tual funetion in the Port class. Because input ports cannot send signals, this function

simply displays an error message indicating that an input port attempted to generate

signal.

C.5.2 Protected Members

The Input ¢ has no protected members.



C.5.3 Private Members

The Input class has no private members.

C.6 The Output Class

The Output class is derived from the Port class and is

sed Lo simalate an ontput
port of a component. The ontput ports of a component are all stored in the 0 List

public member of the Component class and can therefore he ace

sed by autside

objects

s is the case in the real world. The purpose of an Output object is to act

as a gateway through which signals generated by components may be transmitted

to wires connected to the output port. Because

signals may be both written to and
read from an output port, the Output class supports both the get signal() and

send_signal () virtnal methods as dofined by its parent Port ¢

As a result of Lhis

inheritance, the implementation of the Output cl s very Lrivial.

C.6.1 Public Members

o Output(Component &cmp, Connector &con, char *name): Like the Input con-
structor, the Output constructor takes a reference to the component which containg
the output port, a reference to the connector that, the ontput. port. feeds and a name

for the output port. The comector reference and name parameters are passed to the

Port bas

cl

constructor, thereby connecting the port to its external destination
connector and storing the name of the port. The ontput port is then added Lo the

output port list of the enclosing component.
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C.6.2 Protected Members

“The Output class has no protected members.

C.6.3 Private Members

“I'he Output class has no private membes

C.7 The Runtime_Component Class

is used to dynamically build a high-level component

‘I Runtime_Component clis

n of textual data which describes

sed upon an input st

and all its subcomponents

the cirenit, and its input. signals. In the context of this project, the textual stream is

nterface. After

sent, over a command pipeline to the simulator by a graphical us
construction, the cirenit is simmlated and its resultant outputs are sent to standard

eline and then

ontput. The GUI receives these output signals over the command pij

parses and displays them in the waveform editor. The Runtime_Component is derived

from the Component class and is used extensively by member functions of the Parser

class.

C.7.1 Public Members

o Runtine_Component (): The constructor for the Runtime_Component class simply

initializes its base class by invoking the Component constructor with the arguments

CKT.TIME.NULL and with the identifying string "Runtime”. The CKT_TIMENULL pa-

rameter signifies that the runtime component has no delay; its delay is determined



by the transport delays of its subcomponents.

® void create_input(Wire *wire, const char *name): This member fune-
tion simply creates a new input port for the runtime component. The wire parameter
is a pointer to the wire that feeds the input port and the name parameter is the unique
string that identifies the port.

® void create_output(Wire *wire, const char *name): This me

tion, like create_input(),

ates a new ontput port for the runtime component.
The wire parameter is a pointer to the wire to which the newly constructed output
port sends its signals and the name parameter is the unique string that identifies the
port.

e void create_internal(Wire *wire): The runtime component. may contain

internal netlists which are not connected to any of its input or output. ports. ‘Phis

constructor will add the specified wire pointer to a linked |

L which stores all the
internal netlists contained within the runtime component.

e Connector *find_connector(const char #name): "This is a helper function

that scarches for the specified connector name amongst the

nput and output ports

and the internal netlists of the runtime component. [T the search is successful, then

pointer to the corresponding connector is re

ned. This method is used 1

ermine

which wires and ports are to be conne

l o the ports of the subeomponents of the
encompassing runtime component.
e int create.subcmp(const char *t, const char #n, List<char #>io): In

order to create a subcomponent i

idde the runtime component, this method must

it to the

be used. After instantiating the subcomponent, this fanction comeet,

specified input and output ports and to the internal netlists of the runti

omponent
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created earlier. The t parameter indicates what type of subcomponent to create (for

, and so on). The n parameter gives the name

example, 2 NAND gate, XOR g

of tl mponent. which is passed to the component’s constructor. Finally, the io

the names of the to which the

paramel

is connect

C.7.2 Protected Members

‘I'he Runtime_Component class has no protected members.

C.7.3 Private Members

® List<Wire *> internal netlist: This data member is a linked list of wire
pointers which stores the internal netlists of the runtime component. Internal netlists
are wires which are not connected to any of the input or output ports of the runtime
component. Their primary purpose is to connect subcomponents together. New

internal netlists are added to the list by the create_internal () member function.

C.8 The Parser Class

The Parser class provides support. for rudimentary parsing of textual input in stanza

format. With respect to the implementation, this class is used to parse an input

stroam which represents a cireuit description and then build a runtime component

objoct based upon this input stream. The input stream itself is typically sont by a

graphical user interface to the simulator engine. As cach stanza of the inpul stream
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is read and parsed, the wires, ports and components which comprise the runtin

component are constructed and connected together.

C.8.1 Public Members

e Parser(int bufsize): This constructor initializes all the necessary data

bers of the Parser object and allocates a buffer wl

ch is used Lo store

s as Lhey
are read from the input stream. The number of bytes allocated Tor the bulfer is

determined by the bufsize parameter. By default, the bulfer si

is sel 1o 512 hytes,
eboolean ckt(Runtime_Component &cmp): This method acts as the main driver
function which is responsible for reading the stanza headers and then invoking the

correct methods for building the subentities of the runtime comy . s duties

include dispatching the read net1ist() and read_component () methods, which are
described next.
© boolean read.netlist(wire_type t, Runtime Component kcmp): The pur-

pose of this member function is to parse a netlist sta andard in-

za body read from

put and store all the netlist attributes. The t parameter indicates whether the method

is to read an input, output or internal stanza. Afler crealing a new wire repre-

senting the netlist, this method will dispatch the appropriate Runtime Component
member function to create the necessary port or o add the netlist wire Lo Lhe list of
internal netlists maintained by the runtime component. For example, if the method
was requested to read an output stanza, it will dispateh the emp. create_output ()

member function. Upon encountering a value attribute line in an input stanza, the

read-netlist() method will dispatch the read_signals() methad.
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list of

e boolean read_signals(Wire *wire): This member function will pars
signal values and times that follow the values attribute keyword in an input stanza.

As each signal value and time is parsed, they are added to the wire parameter supplied

10 this method. These signals represent, the primary inputs of the circuit.
« boolean read_component (Runtine.Component &cmp): This member function

and constructs the desired

parses the attributes in the body of a component stanza

sts of three attributes. The type

subcomponent. Each component stanza body con
and id attributes are read by the member function read.component_attribute(),

The port. attribute, which lists the names of the connectors

which is deseribed next

hed to the ports of the subcomponent, are read and stored in a linked list of

al

have been

ribul

ngs. Once all the subcomponent’s at and port connector names

identified, they are sent, as parameters, to the runtime component’s create_subemp ()

method.
® boolean read_component_attribute(boolean &c, char *&v): This member

function is used to read the type and id attributes of a component stanza body.

“The hoolean parameter, ¢, is used to ensure that the component attribute was uot
alveady read carlior. The v parameter represents the actual value of the attribute,

This parameter is simply a string which is dynamically allocated and assigned the

appropriate value by this function.

C.8.2 Protected Members

has no protected membe

‘The Parser cl




C.8.3 Private Members

e int get.line(): This private member function reads in a line of text from the

standard input and stores it in the buffer of the Parser object. The line num data

member is incremented accordingly. IF the parser alveady had a line cached as the

result of a prior call to unget_line (), then no line is read in from standavd input
arded as (he en

the line already in the buffer will be i Tine of input.

® void unget.line(): During the processing of the input stream, it is sometinies

necessary for the parser to put a fine back in the input stream when it has read too

stion does thi

far ahead. The unget_line() member fui by leaving the line in the

buffer unchanged and setting the cached data member to TRUE. The function ean

“unget” a line only il at least one line has alre 1 and the cached data

member is FALSE.

e void error(char *err): This member function simply displa

s the supplied

error message, the current line number and current text line to the diagnostic log

stream, cerr. [ is used (o report errors encountered during the parsing of the input

stream,

e char *get_word(const char *delim "): This function implements an
elementary tokenizer for the Parser class. Upon completion, this function will return

the next token in the buffer that is delimited by one of the characters in the delim

parameter. It makes use of a temporary buffer which is dynan

Iy allocated by o

method, if nec

sary. The library function strtok() is used to extract the tokens
from the current line.

e const int line.size: This variable reprasents the size of the buffer to e wsed
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by the parser to store cach line of input. It is initialized by the Parser constructor,

Its value shonld be larger than the length of the longest text line in the input stre

® int line.num: Tl

data member keeps track of the wumber of lines eurreutly
read. When an error is encountered in the input stream. the line number stored in
this variable is displayed to aid in the debugging process.

e char #buffer: This data member stores the contents of the current Tine read
from standard inpnt. It is dynamically allocated by the Parser constructor. The
get_line() member function actually stores the contents of the enrvent fine in the
buffer.

e char *tmp_buf: During ex:

ution of the tokenization function, get word(), a

copy of the line pointed to by the buffer data member is made and stored in tmp buf.

Doing this provides the tokenizer function with a copy of the buffer to manipul;

without altering the original contents pointed to by buffer.

® int cached: Wh

A line is to be placed

k into the input stream by the

unget_line() member function, the cached data member

L to TRUE. ‘This will
inhibit a subsequent get_1ine() invocation from trying to read another line from
standard input.

e int read_one: Upon reading a line of text from the input s

m, this

member is set to TRUE, indicating that at least one line of standard input has been sue-

cessfully read. This hoolean value is consulted by the unget_line () and get_word()

member lunctions,



C.9 The Signal Class

We can think of signals as having two attributes: a value (for example. high, low
or don’t. care) and a time at which the signal occurred during the simulation. The

these two attributes into a single entity. Signals are

Signal class is used Lo aggr

ince these cla

s derived from the Connector clas 'S ALC Te-

frequently used by cla

the transmission of signals thronghout the cirenit during the simulation.

sponsible f

pnals are also used by the Towest level components when it comes time for them

input. signals from their input

inputs. These components take thei

Lo process t

s which are sent to their output ports.

ports anel produce appropri

C.9.1 Public Members

o Signal(Sig.Val val, ckt_time time): The Signal constructor accepts a sig-

nal value (whiich is simply an enumerated type) and the time at which the signal

acenrred. “The corresponding private members of the Signal object are then initial-

ized with these values.

o friend ostream operator <<(ostream %os, const Signal &sig): Thisis
an overloaded operator function which lets the implementation use the standard in-

sertion operator (<€) to display the value and time of a Signal object on standard

output.

ion which returns the

o SigVal get.value(): This is a simple accessor finc

value of the signal.

essor function which returns the time

o ckt_time get-time(). This isasimple ac

at which the signal oceurred.
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e void set_value(Sig-Val newval): This method changes the value of the signal
to the specified value, It is used only by the replace() method of the Wire class and

is intended for future support of zero-delay component simulation.

C.9.2 Protected Members

The Signal class has no protected members.

C.9.3 Private Members

 SigVal value. This is an cmmerated type which contains the value of the
signal. This value can be one of SIG.HIGH, SIG_LOW, SIG.X or SIG NULL. ‘The latter
signal value represents an invalid signal.

e ckt_time t: This data member represents the time at which the sipnal ocenrred.
The ckt_time type is defined to be of type Teag in this particlar implementation.
Two constants, CKT_TIME_INIT and CKT_TIME_NULL represent. an initial time and an

invalid time respectively.

C.10 The List Class

The List cla

provides generic support for linked lists. The template mechanism

of C++ is used to make the generic list typesale.  Auxiliary classes List.Node and
List_lterator are used to store the generie data associated with each node of the Tist
and to support iteration over the elements of a linked list, respectively. The imple-

mentation of these auxiliary cla

; they are therefore not. diseussed in Chis

section.
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C.10.1 Public Members

@ List(): The List constructor initializes the head and tail of the linked list to

the null pointer and initializes the mmber of elements enrrently in the list to zero.

® add(const Type kitem): This member function adds the clement specified by

item to the linked list. Memory for the new item is allocated from the free store

and the clemen nd of the linked The head and tail of the

is appended to the

linked list are npdated accordingly and the internal connter maintaining the number

of elements in the linked list is ineremented by one,

o int num_elements(): This member function returns a connt. of the number of
clements enrrently in the linked list. Because the List class maintaing a count of the
s are added, this member fu

mmber of Tist elements as new iten tion operates in

constant. time.
o int is_empty(): If the linked list contains no elements, this member function

will return non-zero; otherwise, it will return zero.

® const Type #last_element(): Occasionally, an implementation may wish to
obtain the last item in a list. The last_element() member function will return a
pointer to the last clement of the list, or 2 mll pointer if the list is cmpty. This
fanction aperates in constant time since the List class maintains a pointer to the last

member of the list,

C.10.2 Protected Members

“The List class has no protected members.
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C.10.3 Private Members

o List_Node<Type> #*head, *tail: These two dala members store pointers to

the firs

and last elements of the list respeetively

They are updated as new items are
added to the list.

e int count: This data member maintains a count of the number of clements
currently in the list. Its value may be aceessed by the num.elements() member

function,
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