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Abstract

In digital system design, test pattern gencration requires a considerable amonnt
of computing time. Using a level-sensitive scan design, test pattern generation can
be confined to the combinational circuits. It has been shown that the problem

of test pattern ion for plete. Although

many excellent algorithms have been developed to gencrate test patterns, they

still do not keep pace with VLSI technology. Research is ong

ng in the develop-

ment of parallel processing techniques for test pattern generation, hut there has

been little research into what kind of topology has the greatest potential fo sped
up test pattern generation.
In this work, simulation software was developed for measurement of the speedup,

and three topologies are proposed to explore the paraliclism for antomatic ¢

pat-
tern generation. These topologies are: modificd complete binary tree (MCITA),
autonomous modified complete binary tree (AMCBTA), and squarc array struc-
ture (SQARRAY). The empirical results for these topologies show that a special
topology has the potential capability to speed up test pattern gencration and

super-linear speedup can often result if an autonomous structure is adopted.
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Chapter 1

Introduction

Generating test patterns for testing digital citcuits is a very important aspect of
VLS design. It often consumes a significant portion of the design time. Owing to
techniques such as the widely used level-sensitive scan design[5], the problem of
test pattern generation is reduced to the problem of gencrating lest patterns for
combinational circuits. Even this problem has been shown to be NP complete]17].

There are two basic approaches to solve the automatic test pattern generation

(ATPG) problem: algorithmic test pattern ion and istical, or | 2udo-

random, test pattern generation. In the algorithmic approach, n specific ATPG
algorithm is used to generate n test for each fault in the circuit. Most of these
algorithms can be proved to be complete; that is, they are guaranteed to find a
test for a fault — as long as a test exists. Nowever, this may involve searching
the entire solution space, which is computationally expensive.

Statistical test pattern generation, on the other hand, sclects test patterns
at random, or by using some heuristic, and uses fault simulation to determine
the faults detected by the pattern. Test patterns are sclocted and added to the

test set if they detect any previously undetected faults, until some required fault



coverage measure or computation time limit is reached. This method finds tests
for the casy-to-detect faults quickly but becomes less and less efficient as the easy-
to-detect faults are removed from the fanlt list and only the hard-to-detect faults
remain. In many cases, the required fault coverage cannot be ashieved without
excessive computation times.

An efficient combined method for solving the ATPG problem uses statistical
methods to find tests for the easy-to-detect faults on the fault list and switches
to an algorithmic method to find tests for the remaining hard-to-detect faults.

In cither the combined or the purely method, a significant portion of

the computation time will be spent ing tests for the hard-to-detect faults
algorithmically. Therefore, finding a method to speed up this process should
reduce the overall computation time considerably.

Much research has gone into increasing the efficiency of algorithms for ATPG.
However, the overall goins achieved through these improvements have not kept

pace with i ing circuit size, and ion time is still excessive. Another

approach to reducing computation time is simply to use a faster machine. Parallel-
processing machines are becoming available for general use and are helping to solve

other problems in computer-aided design.

Much research has been done to the test pattern ion problem.
Most of this work concentrates on how to use existing multi-processor systems,
such as the Intel iPSC/2, Network of Sun workstations, or the Links-1 Z8000

based systems, to effectively generate test patterns.

Parallel techniques for ATPG problem can be classified into five major categories[s]:



fault partitioning,

~

. heuristic parallelization,

o]

search-space partitioning,

4, Fotional (algorithine) pactiioning

e

and topological partitioning.

Although some promising results have been shown, much work still remains.

As the devel of microel i hnology 1 sively pow-

erful processors will be used to form special parallel architcctures lo gencrate

test patterns. New archi for the i ion of have to he

studied so as to design a very efficient multi-processor system for ATPG. There-
fore, it is natural to investigate a good interconnection network to speed up the

ATPG process, when many processors are available. This thesis discusses this

problem by proposing several special parallel architectures, and cxamining the

pirical results through si These special architectures are the modificd
complete binary tree (MCBTA), the autonomous modified complete hinary trec
(AMCBTA), and the square array architecture. With these special architectures,
the parallel algorithms discussed in this work were found to achieve lincar, and

speedup. The empirical results also show that AMCBTA

is the best one among these special architectures.
This report is arranged as follows: Chapter 2 and chapter 3 give a survey
of automatic test pattern generation. Chapler 4 shows our cxperimental results

about the faults. Chapter 5 discusses the model for measuring the performance



of a parailel automatic test pattern generation system. Chapter 6 describes all
algorithms used in our simulation software to simulate parallel automatic test
pattern generation systems and evaluate their performance. Chapter 7 briefly

discusses 4 and i hism of two graphs. Chapter 8 and

9.d our three archi designed to solve test pattern generation

problem in parallel. In the conclusion, the results are summarized and some future

work are discussed.



Chapter 2

Conventional ATPG Algorithms

In this chapter, we will review 3 widely used algorithms, the D-algorithm, the
Podem algorithm, and the Fan algorithm. Before this review, the stuck-at model

and the testing problem are described.
2.1 Stuck-at Fault Model & Testing Problem

This section first introduces the stuck-at fault model followed by a discussion of
the testing problem.

2.1.1 Stuck-at Fault Model

Logic gates are realized by transistors, normally cither bipolar transistors or metal

oxide semicond field-effect i (MOSFET, or simply MOS). The tech-

nology families based on bipolar transistors arc transistor-transistor logic (TTL),
emitter-coupled logic (ECL), and so forth. Some logic familics bascd on MOSFET
are p-channel MOSFET (p-MOS), n-channel MOSFET (n-MOS), and compleman-
tary MOSFET (CMOS). Although ECL and TTL are important for high-speed
applications, their integration sizes are limited by the heat gencrated by their
heavy power consumption and by large gate sizes. In contrast, the MOS logic

6



familics are well suited for LSI or VLSI, because higher integration can be ob-
tained than with bipolar logic families. Most LSI and VLSI circuits of today are
implemented with MOS.

A fuull in a circuit is a model at the logic level of the effect of a physical defect
of one or more of its components. Faults can be classified as logical or parametric.
A logical faull is a defect that causes the logic function of a circuit clement or an
input signal to be changed to some other logic function; a paramelric fuull alters
the magnitude of a circuit parameter, causing a change in some factor such as
circuit specd, current, or voltage.

Gircuit malfunctions associated with timing are due mainly to circuit delays.
Those faults that relate to circuit delays such as slow gates ate called delay faulls.
Usually, delay faults only affect the timing operation of the circuit, which may
canse hazards or critical races.

Fults that arc present in some intervals of time and absent in others are
intermittent faulls. Faults that are always present and do not appear, disappear,
or change their nature during testing are called permanent faulls o solid faulls.
Although many intermittent faults eventually become solid, the early detection
of intermittent faults is very important to the reliable operation of a circuit.
However, there are no reliable means of detecting their occurrence, since such a
fault may disappear when test is applied. In this thesis, we will consider mainly
logical and solid faults.

When an input or output of a logic gate is always a fixed voltage, either high
or low, it is said to have a sfuck-al faull. For positive logic, if a node is low, it is

said to be sfuck-al 0; when it is always a high voltage, it is said to be stuck-al .



The most popular fault model used in gate level simulation is the stuck-at

fault. The stuck-at-fault model was originally used as a means of describing

faults in early electromagnetic relay computers. Iowever, the model was also

found to be applicable to diode transistor logic (DTL); this led to its use in small
scale integration (SST) and medium scale integration (MSI) fault modeling. Thus

the model became a standard widely used in the integrated circuit industry[31].

When Roth [32] developed the D-algorithm in 1966, to ically generate test

sets based on the stuck-at-fault model, its continuation was assured. However, as
failure modes in modern VLSI circuits are better understood, its applicability
and usefulness are being challenged [34]. The CMOS stuck open Fault model is

an example,
2.1.2 Testing Problems

To ensure the proper operation of a system, we must be able to detect a fault when
one has occurred and to locate it or isolate it Lo a specific component — preferably
an easily replaceable one. The former procedure is called faull detection, and the
latter 15 called fault locclion, faull isolation, ot fuull diaguosis. These tasks arc
accomplished with tests. A Irsl is a procedure Lo detect and/or locate fanlts,

Tests are categorized as fault-detection tests or fault diagnostic tests. A fault-

detection test tells only whether a circuit is faulty or fault-free; it tells nothing
about the identity of a fault if one is present. A fault diagnostic test provides the
location and the type of a fault and other information. The quantity of information

provided is called the dia ic resolution of the test; a fault-detection test is a

fault di ic test of zero di )

If a test not only detects a fanlt



but also locates the fault, it is a fault di ic test of high di ic resol

Logic circuits are tested by applying a sequence of input natterns that produce
erroncous responses when faults are present and then comparing the responses
with the correct (expected) ones. Such an input pattern used in testing is called
a fesl pallern. Tn general, a test for a logic circuit consists of many test patterns.
They are referred to as a fesl scl.or lest sequence. The latter term, which means
a scries of test patterns, is used if the test patterns must be applied in a specific
order. Test patterns, together with the output responses, are sometimes called
test daa.

If there exists only one fault in a circuit, it is said to exhibit a single faull. If
there cxist two or more faults at the same time, then the circuit exhibits mulliple
Jaulls, Here, we are only concerned with a single fault in a circuit. For a circuit
with I lines, there are &t most 2k possible single stuck-at faults since each line
has at most 2 possible faults: stuck-at-0 and stuck-at-1.

The testing of logic circuits is performed in two main stages: generating test
patterns for a circuit under test (the fes! gencralion stage) and applying the test
patterns to the circuit (the fes! applicalion stage). Thus, the generation of test
patterns is important; however, it is very difficult for large circuits, so most of
the cffort of the past 20 years in this field went into research and development of

ellicient and ical test d

The quality of a test (a set or a sequence of test patterns) depends much on
the fault coverage as well as the size or length of the test. The fault coverage (or
lest coverage) of a test is the fraction of faults that can be detected or located

within the circuit under test. The fault coverage of a given test is determined by



a process called faull simulation, in which every given test patter is applicd to a
fault-free circuit and to each of the given faulty circuits, cach circuit hehavior is
simulated, and each circuit response is analyzed to find what faults are detected
by the test pattern. Fault simulation is also used to produce fuull dictionarics,
in which the information needed to identify a faulty clement or component is

githissed,
2.2 D-algorithm

The first algorithm for ATPG that was proved complete is the D-algorithm in-
troduced by Roth in 1966[4]. The D-algorithm includes a notation and  calculus
with which a single stuck-at fault can be detected at a node in the circuit and
propagated to a primary output of the circuit. This algorithm uses a five-valued
logic, which consists of the logic value 0 and 1, an unknown valuie Y, and two
additional values 1) and 7). A D value significs a value of 1 in the good circuit and
0 in the faulty circuit, and a T value represents a value of 0 in the good circuit
and 1 in the faulty circuit.

Each gate in the circuit has two D-cubes associated with it, the primiline )-
cube of a fault (pdef) and a propagation D-cube (pdc). A pdef is the set of inputs
that produces an error signal on the output of that gate if it contains any fanlt
of the particular type. A pdc specifies the input values necessary to propagatc an
error signal on an input of a gate to the output.

The D-algorithm’s basic operation is the repeated intersection of the D-cubes
necessary to perform the tasks required to test for a specific fault. These tasks

consist of three p fault sensitization, fault ion, and j




Fault sensitization is the process by which the circuit node presumeed to exhibit

the fault is made to produce an erroncous value as a result of the fault. Sensiti-

zation is lisk ifying an input bi for the circuit element

1 by
containing the fault, using the pdef’s, such that the node presumed to exhibit the

fault holds the complement of the fault value.

“The list, of circuit clements closest to the primary outputs that have a /) or
7 on the output is called the D fronticr. The objective of fault propagation is to
advance the 1) frontier to the primary outputs. This process sensitizes all possible
paths from the fault site to the primary outputs. This multiple-path sensitization

is necessary for the D-algorithm to

During fault sensitization and fault propagation, certain circuit nodes are re-
quited to take on specific values, Establishing this value, or goal, on the node by
placing values on the primary inputs is called justification. The primary inputs
that can be used to justify a goal are usually determined by backtracking through
the circuit topology from the node in question to the primary inputs. A whie
is chosen for one of these inputs, and a forward simulation-like process, called
forward implication, is performed to see if this input assignment is consistent
with satisfying the goal. If it is not, a different value is chosen and the process
is repeated. A test is finally generated when the fault sensitized, a path for the
fault to he observed at the primary outputs in sensitized, and all of the goals are
justified.

As an cxample of the D-algorithm, consider the circuit under test shown in
PFigure 2.1. Assume that a test is being generated for a stuck-at 1 fault on node ./.

‘The first step is 1o fill in an initial test cube with a D on node ./, as shown in test

1



A
B
c He .
D
1
2 |
—_—
Figure 2.1: A Circuit for D-algorithm
TestCube [A B C D B F G 01 _J K L
0 n
1 1 X D
2 11 1 A
3 11 0 1 0 Do
4 [ 001 00 D o7
5 1 1.0 X001 00 D o D

Table 2.1: Test Cubes for Justification First
cube 0 in Table 2.1. This value is then sensitized using a pdef for the NOR gate
(test cube 1). Next, all values implied on other circuit nodes by the previuus step
are filled in (test cube 2). The next step is to advance the /) frontier by setting
node i to 0. This implies values on nodes / and /* (test cube 3). The 0 value on
node / in turn implies 0 values on nodes /2 and I/ (est cnbe 4). The final step is
to justify the 0 value on node // by setting input (! to a 0 value (test cube 5).

If the values shown in test cube 1b, Table 2.2, were chosen when sclecting the

12



Test Cube[A B C D E F G H T J K L

ob D
ih X 1D
2b X 1D 11

Table 2.2: Test Cubes for Propagation First

pdef for the initial fault, the implications of that choice would have caused a test
to be impossible, as test cube 2b shows. This problem would have caused the
algorithm to backtrack to the last point a choice was made, pick the alternate
choice, and proceed from there. In the D-algorithm, choices are available at many
internal nodes in the circuit, and more than two choices can be present if there
are gates in the circuil with more than two inputs. This fact greatly increases the
size: of the algorithm's search space and makes backtracking more complex. The
D-algorithm can be implemented as recursive routine that pushes or pops test
cubes off & test cube stack as required for forward progress or backtracking.
Note that justification of two separate node assignments cannot be undertaken

Itancously, because if an i oceurs, it will not be possible to de-

termine which unique assignment caused it. Also, the original D-algorithm does
not specify which process — fault sensitization or fault propagation — is to be
undertaken first or whether justification is to be done in intermediate steps or
deferred until the process ends. These details are left to the implementation. Un-
fortunately, the efliciency with which a test can be generated for a specific fault
depends heavily on the order of these operations, and the most efficient order is

determined by the circuit topology. For example, if in generating a test for J



a

Q:DL

Figure 2.2: A Podem Example

stuck-at-1 in the circuit of Figure 2.1, fault propagation is done before selecting
a pdcf, the unique value of 0 required on node / will be discovered and the pdef
for the faulty gate will be fixed. Test generation can then proceed without the
possibility of backtracking. Finding the most efficient order for operations and
detecting inconsistencies early in the process is the focus of most subscquently

developed algorithms.
2.3 PODEM Algorithm

The Podem (Path-Oriented DEcision-Making) algorithm is an attempt to reduce

the size of the solution space that must be searched. Recall that the D-algorithm

tries to assign a value to each circuit node. Conflicts can arise when values assigned

to different nodes cannot all be justified. Podem trics to climinate these hidden

conflicts by assigning vales only Lo the primary inputs.

The algorithm begins by trying to justify the /) or 77 at the node under test,

14



sitilar Lo the D-algorithm. This justification is done by assigning values to pri-
mary inputs that affect the node in question. These primary inputs are again
found by backtracking through the circuit topology. When an input assignment
is made, a simulation-like process, called forward implication, is run to find all
of the node values implied by the assignment. If this new input assignment is
incompatible with the goal, the complementary value is tried. If the complemen-
tary valuc assignment also conflicts, the algorithm backtracks efficiently to the
previous input assignment. This process results in an orderly search methodology
that will implicitly search the entire input space.

"This scarch methodology can be represented by a binary search tree, as Figure
2.3 shows. After the value at the faulty node is justified, subsequent objectives are
seb up to propagate the /) frontier along a path or paths to some primary output.
The exact order in which this process occurs is again implementation dependent.

The important point is that this strategy of assigning values only to primary

lets the search prune

inputs orders the search space. This
the search tree implicitly and increase efficiency.

‘onsider, for example, the Figure 2.2, a representation of the binary search
space for a ./ stuck-al-0 fault in the circuit under test. This search space was
constructed using the simple heuristic of always first trying the logic value 1 on a
primary input. Since assignment of the value 1 for node /3 in the left-hand subtree
is inconsistent, all solutions that live below /3 in that part of the solution space
can be pruned from the search tree. This ordering of the search space also allows
it to be divided into disjoint sections so that work on the different sections can

proceed simultancously. Note that the processor must have access to the entire

15



Inconsistent
Inconsistent

/
Inconsistent,

Figure 2.3: Podem Search Space Diagram

circuit topology and that only one goal may be justificd at a time, as with the

D-algorithm.
2.4 FAN Algorithm

The Fan algorithm is similar to Podem but includes improvements Lo increase
its efficiency. The major goal of Fan is to reduce the number of hacktracks in
the search tree. This is accomplished using several techniques, including the
consideration of fan-out branches in the circuit as a special case, hence the name
Fan.

To examine this concept, we must define several terms. A frocline is a cirenit

node that has no predecessors (il are part of a fan-out loop. As such, frechines
may have a uniquely assigned value. In Figure 2.4, lincs A through / are examples
of freelines. A bound linc is the opposite of a freeline. Nodes / and K are bound

lines and cannot have unique (independent) values assigned to them. leadlines

16



h ultiple
backtrace

tpaths

Figure 2.4: A Fan Example

are freclines that drive a gate that is part of a reconvergent fan-out loop. Node
I'in the figure is a headline. By definition, headlines can also be assigned values
arbitrarily because they are freclines and can always be independently justified.
They can therefore be treated as primary inputs in the justification process.
Identification of these nodes makes reconvergent fan-out loops much easier to
handle, Once a test is found by treating headlines as primary input, the values
on them can be justified at the end of the test generation process. Fan also uses

a multiple-back dure for fan-out branches buried in the

circuit to reduce the number of backtracks that must be made in the search. For
exanple, if a certain value is necessary at node L in the figure, and this circuit
is part of some larger circuit, a single backtrace could be made along the path
I, = J = (i = A, 3. Values for inputs A and B could be chosen so that the goal
is satisficd with a unique value on nodes / and . Then if the value on A’ cannot

be achieved with the value chosen for /, a significant amount of backtracking in
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the search tree can result. First, with a multiple-backtrace both the £, — ./ — |
and L — K — I paths can be used to determine the value needed at [ to satisfy
the goal. This value would then be set as a requircment for the justification of
the value at node L. This process can increase the Pan algorithm's cfficicncy

significantly in a circuit with numerous buried reconvergent fan-out loops.

Three jonal ic test pattern i Igorithms were dis-

cussed. They can often be used to generate test patterns for very hard-to-detect

faults. Parallelization is one of the methods used to speed up this procedure.



Chapter 3

Taxonomy of Parallel ATPG
Algorithms

As mentioned carlier, techniques to parallelize ATPG can be classified into five
Inajor categories according to Robert’s contribution in [8]: 1) fault partitioning; 2)
heuristic parallelization; 3) search-space partitioning; 4) functional (algorithmic)
partitioning; and 5) topological partitioning. Tables 3.1, 3.2, 3.3, 3.4 and 3.5 in
the following section are taken from this reference. The following sections will
give an overview for each category, and present its advantages and disadvantages,
the type of parallel machine it has been implemented on, and a brief summary of

the reported results.
3.1 Fault Partitioning

Fault partitioning is the simplest way to parallelize the ATPG problem. It first

divides the fault set /" into several subsets [}, i = 1,--+,m, I = U{,[%, and

;0 Iy = 0 where i # j. Every processor P is assigned to generate test patterns
to the fault set /. This scheme is called static faull partitioning.

Static fault partitioning results in each processor having a completely separate
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Table 3.1: Summary of Faull Partitioning

Researchers | Parallel Scalability Major
Machine Results
Srinivas Intel Neauy linear speedup | Demonstrated that ATPG with
Patil, Prith | iPSC/2 for up to 8 processors; | fault simulation is more ellicient
Banerjee speedup falls off after | than ATPG alone, even in paral-
that. lel environment. Fault partitio
ing shows good speedup for up to
8 processors.
Hideo Fuji- | Network Nearly linear speedup for | Verified analysis of optimal gra
wata, To- | of Sun 3/50 | up to5 size for faul itioning system
moo Inoue workstations with experimental results
Susheel Network Uniform  partitioning: | Introduced concept of heuri
J.Chandra, | of Sun 3/50 | nearly linear specdup for | tic parallelization and developed
Janak workstations | 5 processors. two methods uniform and
H.Patel concurrent heuristics.  Demon-

strated uniform partitioning pro-
duces better speedup.




task in that it performs the entire test generation procedure on its own. If the fault
sel is divided carefully, each processor will have roughly the same amount of work
and will finish in about the same time. If this is the case, the communication cost
is low. In practice, it is very difficult to get such a partition prior to exccuting the
APTG algorithms, so dnamic scheduling is used. In dynamic scheduling, each
processor requests a new fault from a master scheduler when it is idle. Dynamic

heduling increases the ications overhead because of requests from idle

processors for new faults.

In ATPG, one test pattern can test several faults at the same tirie. This
implics that the time to generate test patterns for those other faults can be saved
if o test pattern is found for one fault and at the same time the test pattern can
detect those other faults. In static fault partitioning, if one test pattern for fault
i € I, is found and after fault simulation, f;,,---, ;, are found to be detcetable
by the same test pattem, fi,, -, fi, should be removed from /. If fi € F, it
is casy to remove il since the processor itself can do without any communication
with other processors. 1 fi, € [ (i # I), communication between P and 7,
is necessary to remove f;, from . This communication increases the parallel
system’s communication overhead and reduces the possible speedup.

Table 3.1 summaries the current research work using fault partitioning. The

best scalability to date is 8 processors.
3.2 Heuristic Parallelization

As we know heuristics can be used to guide the algorithm to generate test patterns.

Research has incicated that many heuristics will produce a test for a given fault
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within some computation time limit when other heuristics have failed to do s
We can use complementary heuristics to speed up the ATPG in multiprocessor
systems.

Suppose there are k different heuristics. & processors arc used to generate test
patterns, and each processor uses a different heuristic. All the processors compute
a test for the same fault. Once a processor succeeds in generating a test for the
fault, it sends a message to other processors Lo notify them to stop working, Then
all processors begin to work for a new fault.

Heuristic parallelization has the potential to achicve pg-.ater speedups than
the uniform-partitioning method because of possible anomalics in the ordering of
the heuristics for different faults. For example, suppose the time Timit for cach of
five heuristic in the uniform-partitioning method is 10 seconds and only the last
heuristic on the list can generate a test for a specific fault within the time limit,
say in 5 seconds. Then the processing time for the uniform-partitioning method
will be 45 seconds. However, the concurrent heuristic method will find a test for
the same fault in only 5 seconds.

In the heuristic parallelization method, there is no way to ensure that the
search space of each processor is disjoint. That is, cven though the heuristics used
by the processors differ, they might all lead the ATPG algorithm down similar
paths to a non-solution and a test may not be found in the allotted time, even
though one exists. This means that the heuristic techniques cannot be guarantecd
to make all processors work efficiently togethy : to find a test for a single hard-to-
detect fault which takes a large amount of computation time.

Table 3.2 gives a summary of heuristic parallelization. It shows that the
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Table 3.2: Summary of Heuristic Parallelization

I.Patel

Researchers | Parallel Sealability Major
Machine Results

Susheel Network Concurrent heuristics : less | Introduced concept of heuris-

J.Chandra, | of Sun 3/50 | than linear speedup for only | tic paralldlization and developed

Janak workstations | 5 processors two methods : uniform and

concurrent heuristics.  Demon-
strated uniform partitioning pro-
duces better speedup.

speedup is less than linear speedup, for up to at least 5 processors.

3.3 Search-space Partitioning

rch-space partitioning is a

together Lo find a test pattern for a single fault.

to make all

work effici

The search space is divided into sub-search spaces. Given a circuit with N,;

primary inputs, there are 2" possible input patterns. The search space is the

sei which contains all these patterns. A sub-search space is a subset of the search

space. A processor searches one of the sub-search spaces. The sub-search spaces

for the processors are disjoint and are spread as far as possible across the solution

space lo maximize the area of the current search. This organization increases the

chances of finding a valid solution quickly.

"The following is an example which shows one way to partition the whole search

space. Suppose there are 2* processors, the number of primary inputs for a given

cireuit is Ny (i = k). Then the whole search space is 2¥». We can divide it

into 2 sub-search spaces if every processor has an identifier i (0 < i < 2% —1).
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From A, inputs, k inputs are selected. These k inputs can work as processor

identifiers, or identifiers of sub- h spaces, since 2% different values can be used
to represent 2 processors. The whole search space is divided by these 2¢ values.

Without losing generality, the selected k bits urc the first k bits in N, Dits

o e

N

where a; € {0,1}, i = 0, k=1 and  is a unspecified value forming a sub-search

space, This space is assignied to processor 1%, where s = 54! 42", Por cuch 1%,
Po (01 # %), 31 = T 2, 0 =

Otherwise, we have

-1

a2,2', there is al least one i, ), 7

k=1 k=)
si= a2 =Y a2 =
=
This contradicts that s # s;. Therefore the sub-scarch spaces are disjoint.

It is impossible to search the whole space within limited time, for large prob-
lems, because the search space increases exponentially, so a backtrack limit still
must be specified. When the number of backtracks exceeds the limit, the algo-
rithms will give up the search and consider this fault as a hard-to-detect fault.

[13] makes the following obscrvations: First, increasing the backtrack limit on
the uniprocessor implementation does not yield betier results on hard-to-detect
faults, and the parallel algorithm yields bettcr results for an eqnal number of

backtracks. The results are better because the parallel algorithm scarches a lrger

portion of the solution space. Second, the parallel algorithm runs much faster than
the uniprocessor implementation and cxhibits carly lincar speedup in most cases
for up to 16 processors.

Table 3.3 shows the current research for search space partitioning. Onc result
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Table 3.3: Summary of Search Space Partitioning
Researchers | Parallel Scalability Major

Machine Results
Srinivas Intel Neadly linear speedup for up | Introduced efficient search space
Patil, Prith | iPSC/2 to 16 processors. Superlinear | partitioning  using  Podem
Bancrjee speedup in some cascs. algorithm.
Akira Moto- | Links-1 Averaged linear specdup for | Demonstrated good speedup is

ra, Kenji | Z8000-based | up to 50 processors during | possible for large numbers of

Nishimura, | system search space phase. processors using search space
llideo Fuji- partitioning.
wara, Issao
Shirakawa

shows that linear speedup can be had for up to 16 processors. Another shows that
lincar specdup can be had for up to 50 processors. These results are much better

than the results in previous subsections.
3.4 Functional (algorithmic) Partitioning

An algorithm can be divided into independent subtasks that can then be exe-
cuted on separate processors in parallel. This method is referred to as functional
partitioning.

Motohara{11] uses a type of functional partitioning to remove the easy-to-
detect faults from the fault list. This procedure is done before the parallel method
for hard-to-detect faults presented in the previous section is run. The method
begins by dividing the fault list into groups of related faults. Typical related faults
include those along the same path between a fault site and a primary output. After

the fanlt list s divided into groups, each group is sent to a cluster of processors that
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Table 3.4: y of Algorithmic P

Researchers | Parallel Scalability Major
Machine Results R
Intel Neatly linear speedup for up | Demonstrated that ATPG with
iPsc/2 10 8 processors; specdup falls | fault simulation is more cllicicnt
off after that than ATPG alone, even in paral-

Iel environment. Fault partition-
ing shows good speednp for up to
8 processors.

Akira Moto- | Links-1 Linear speedup for up to | Introduced combination of algo-
hara, Kenji | Z8000-based | 10 processors during algo- | rithmic and search space parti-
Nishimura, | system rithmic phase. tioning systems.

Hideo Fuji-

wara, Issao

Shirakawa

includes a test g and a fault simul; The test takes the first

fault and generates a test for it using a Podem algorithm with a limited number
of backtracks. If a test for a fault is not generated within the backtrack limit, it

is idered 2 hard-to-detect fault and is p; d later. If a test is found, it

is sent to a fault simulator node. This node runs a version of a concurrent fault
simulator[33] to determine which other faults the test pattern detects. These
faults are then removed from the fault list.

So far most serial ATPG algorithms developed are difficult to parallelize func-
tionally. In order to efficiently use functional partitioning, a new algorithm for
ATPG must be designed.

Table 3.4 shows that the current algorithmic partitioning systems can reach

linear speedup for up to 10 processors.




Table 3.5: Summary of Topological Partitioning

Researchers

Parallel
Machine

Scalability

Major
Results

Takayama,
Nobuaki
Kamato

Glenn A,
Kramer

Special pur-
pose simula-
tion
processor

Connection
Machine

No results available speedup
falls off after that

Lincar speedup for circuits
with up to 15 - 18 inputs.
Speedup falls off rapidly af-
ter that.

Demonstrated topological parti-
tioning for simulation portion of
ATPG process.

Employs topological partitioning
by mapping one circuit clement
to cach Connection Machine pro-
cessor.  Only current algorithm
demonstrated on massively paral-
lel machine.

3.5 Topological Partitioning

All parallel algorithms discussed so far require each processor to access to the

entire circuit database. This may be a problem for large circuits because each

processor may not have enough memory o hold the entire circuit database. Topo-

logical partitioning tries to divide a circuit into separate partitions and instantiate

cach partition on a different processor. Each processor only processes a partition

of circuit therefore less memory is needed. Since it is a difficult task to parti-

tion circuits so as lo parallelize the ATPG algorithm, no ideal method has been

reported so far. Further work is needed.

Table 3.5 shows the summary of current research systems using topological

partitioning. It is clear that the results are not satisfactory.
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So far, most of the techniques for parallel-processing ATPG use one of the

commercially available networks to provide communication between pro

ars.
Tables 3.1 to 3.5 summarize the previous rescarch work in parallel processing
ATPG. For example, [14] and [13] used the Intel iPSC/2; a network of Sun3/50
workstations were used by [10] and [12). As the number of processors increases,
it is unavoidable that network communication load becomes heavier and heav-
jer. As the limited capacity of the communication network is provided, traflic

jams appear, computation time decreases and the network saturates, Therefore,

in order to permit the computing time to decreasce lincarly, ATPG requires

communication network which can avoid communication conflicts.



Chapter 4

Hard-to-detect Faults

Since massively parallel machines with hundreds or thousands of will
be available in the future, can these machines be used to efficiently solve the
antomatic test patiern generation problem? What is the problem which should

be concentrated on? Some experiments may give us some hints.
4.1 Data from Experiments

Let us first do several experiments.

If we use the PODEM algorithm (implemented by ourselves) with heuristics,
which will be discussed later, we can try to discover what the relationship is
hetween backtrack limits and what percentage of faults are solvcd faulls. Here, a
solved fuult is a fault for which a test pattern is found or its redundancy is proved.

It is reasonable to take the number of primary inputs as a unit of backtrack
limit. For example, C432(23] has 36 primary inputs, the backtrack limit is assigned

as 36, 2 \ 36, cte. The following explains why it is reasonable.

1. Different circuits have different sizes. A test set for a circuit with only 10

logic gates can be generated within a constant backtrack limit k. For a
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Table 4.1: Statistical Data for Circuits

Solved Faults Pereentage(%) |
Gircuit | PI | Gates | Faults | Stepl | Step2 | Stepl | Step 2
C422 36 160 524 471 471 4 45 8 | 98.47
C499 41 202 758 254 | 254 + 196 98.94
C880 60 383 942 872 872 4 44 07.23
C1355 41 546 1574 350 | 350 + 1152 95.42

C1908 | 33| 880 | 1879 || 1369 | 1360 + 459 | 72.85 | 97.28
C2670 | 233 | 1193 | 2747 || 2678 | 2678 + 0 | 97.48
C3540 | 50 | 1669 | 3428 || 3180 | 3180 +96 | 92.70
C5315 | 178 | 2307 | 5350 || 5259 | 5259 + 8 | 08.20
C6288 | 32 | 2416 | 7744 | 6274 | 6274 -+ 1457 | 81.01
C7552 | 207 | 3512 | 7550 | 7073 | 7073 + 12 | 93.68 |

circuit with 1000 logic gates, within the same backtrack limit &, no test
pattern is likely to be found even for onc fault. Hence, it is not a gond
idea to take a constant value as a backtrack limit for all circuits, without

considering the difference between their sizcs.

In combinational circuits, the size of a circuit is strongly related to the

»

number of primary inputs. In other words, to some extent, the number of

primary inputs represents the size of the circuit.

‘We assign the backtrack limit as the number of primary inputs (one unit) and

double the number of primary inputs (two units), respectively, and obscrve the

number of solved faults and percentage of faults. For 10 typical circuits[23], we:
obtain the following 10 groups of data, which are represcnted by Table 4.1,

In those tables, every unit is the number of primary inputs of the circuit under
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test. For example, circuit C499 has 41 primary inputs. Its unit is 41, Here, 499
represents the number of connecting lines in the circuit. The number of faults is a
reduced cquivalent fault set based on equivalence fault collapsing[17]. The number
of faults to be tested can be reduced by combining, for example, indistinguishable
faults into a single set[30). “Indistinguishable faults”, are faults such that there
is 1o test Lo distinguish between them. Therefore, when generating a test for an
u-input AND (OR) gate only (v +2) rather than (21 + 2) faults of the gate need
Lo be tested. A systematic approach that reduces the number of faults that have
to he tested is based on the idea of fault equivalence classes, i.e. such faults that

are covered by a single test set[30].
4.2 Inference from Experiments

In the previous section, some experimental results about automatic test pattern
generation were discussed. Now, we will see what kind of conclusion we can
deduce.

Our data tells us that over 93% faults are solved faults if the backtrack limit
is double the number of primary inputs. For the circuit C6288, over 99% of the
fanlts are solved faults. This fact implies that in a system which contains massive
processors, fault partitioning can work very efficiently to generate test patterns
for most faults. (Why? because most faults are easy to detect). The next stage is

the time to on how to di all to solve the

faults, which are called hard-lo-dclect faulls.
1f there is a system which consists of massive processors, the fault partitioning

method can be used to efficiently solve the test pattern generation problem for
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most of the faults (93% or over), namely, the casy-to-detect faults. There is no

communication problem among processors after cach processor is assigned a subset
of faults. The backtrack limit is double the number of primary inputs, which is a
small integer. This implies that there is no big difference between the amount of
work done by each processor. The test set may, however, contain many redundant
test patterns.

After this first step, the remaining faults are hard-to-detect faults. Any one
of them may require several hours, days or even weeks if onc conventional ATPG
algorithm and one processor are used. It was also shown that current parallel
systems are still unsatisfactory for the solution of the automatic Lest pattern

generation problem.

Therefore, it is time to think about designing a special structure to interconnect

many processors in order to make a group of processors solve the automatic test

pattern jon problem more effectively, for those hard-to-detect fanlts.
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Chapter 5

Model for Measurement

Some kind of a measurement model is important Lo measure the quality of a sys-

tem, or to allow meaningful comparisons of different systems. The measurcment

model must late the essential functionalit

of the system in a quantifiable

manner.

5.1 Model for Measurement

If there is a system which consists of lots of processors and has a specific topalogy
to connect these processors, can the quality of this system be measured? llere
quality means the quality of the system for parallel processing of automatic test
pattern generation.

One criterion for evaluating the quality of a parallel solution to a problem
is how well it scales. There are two aspects which play important rolcs in the
quality of a parallel solution. One is the algorithm, the other is the topology of
multi-processor system.

So far, most research has concentrated on the design of parallel algorithms,

which can be executed by a specific multi-processor system. The measure of the



Phose 1 Phase 2

Clucking Mgorithm Communication
Figure 5.1: Virtual 2 Phase Clock

quality of a paralle] solution is determined by how well the algorithm scales. An
algorithm scales well if the computation time decreases linearly, or nearly so, with
an increase in the number of processors in the system. The speedup of a given

parallel algorithm is defined as the ratio of the time taken by the fastest sequential

running in an equival i to the time taken by the parallel
algorithm on the parallel machine. The goal is to have the algorithm’s speedup
scale linearly with the number of processors.

Since our goal is to design a multi-processor system which has a high per-
formance when generating test patterns, the quality of a parallel solution is how
well the system scales. Analogous to the case for a parallel algorithm, a parallel
system scales well if the computation time decreases lincarly, or nearly so, with
an increase in the number of processors in the system. The speedup of a system
is defined as the ratio of the time taken by the algorithm running in one processor
to the time taken by the algorithm on the multi-processor machine. The goal is
{0 have the system’s speedup scale linearly with the number of processors.

A multi-processor system is a tuple (,C, p;), where P is a set of processors,
and every processor is identical. (! is a set which contains interconnection informa-
tion for the processors. All processors execute their own algorithms synchronously

under the control of a virtual two phase clock (2PC). Figure 5.1 shows the dia-

35



gram of 2PC. It is also required that these checking algorithms have the same time

This is very i since all p work in synchronization
The period of 2PC depends on the lowest spced processor. Since all processors
in P are the same, the greater the time complexity, the lower the speed. A low
speed will cause other processors to wait.

pi € P, pi is the master processor of the system. The master processor is in
charge of coordinating the system. For example, it receives tasks from outside,
and is the first processor to begin to generate test patterns. It decides whether
it is time to stop working because one test pattern has been found to detect a
given fault, or time has run out, or a redundant fault is found. It also should
report the result to the outside. (! determines the topology of a multi-processor
system since a topology depends on the connections amnng processors. If there is
a connection between two processors, it means that there is a wire hetween them
on the physical level. Limitations are needed for (' because it is impraclical to
have many wires to input or output data for cach processor. Later, we will show
that all our multi-processor systems have a 4 connected structure, two for inputs
and two for outputs. This results in a simple and natural layout.

In order to measure the quality of a system, the number of two phase clock
(2PC) steps is used. The number of 2PC steps (N2PC) is counted fo record how
many N2PC are used to find a test pattern, or a redundant fault, or a hard-to-
detect fault. If a multi-processor system can generate all possible 2% values for
any given integer k, a test pattern can be found eventually — as long as it exists,
or a conclusion of redundancy can be reached. Hard-to-detect faults arc those

whose test pattern has not been found within the specified time limit.
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With an increasing number of processors, that is | /* |— oc, every N2PC is

recorded. These data are analyzed to whether a multi-p; system

scales well, which represents the quality of the system.

5.2 Parallel Speedup in Test Pattern Genera-
tion

In 1864, the philosopher Charles Babbage said:

It is impossible to construct machinery occupying unlimited space;
but it is possible to construct finite machinery, and to use it through
unlimited time. It is this substitution of the infinity of time for the
infinity of space which I have made use of to limit the size of the engine

and yet Lo retain its unlimited power.

We may call this Babbage’s thesis. This thesis states that time and space com-
plexily ate related and can be traded for one another. As hardware technology
develops, we can employ the converse of Babbage thesis: use a very large number
of processors Lo solve the Lest pattern generation problem. That is to say, we can
use space to gain invaluable time.

The central issue in parallel and concurrent processing using a large number of
processors is the design of multi-processor systems and parallel algorithms whose
performance can be somehow related to the time complexity of the single-processor
sequential algorithm, 7. Ideally, we require that a parallel algorithm which takes

a problem and uses N processors in time 7y is related to 7} by the relation

Ty = In other words, we hope that a multi-processor system with N
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independent processors should be able to compute the solution of a problem \
times faster than a single processor. This is called ideal specd-up. lowever, in
practice, this speed-up ratio 71/Tx often turns out o be far less than A for the

following reasons:

1. Processors competing for the same communication paths with other proces-

sors or to a shared memory can slow down because of the non-availability

of paths.

2. Since simultancous reading and writing from a file can cause conflicts, the
processors are forced to wait for mutual exclusion,

3. Processors need to be conditionally synchronized when different tasks arc to
be coordinated.

4. The sequential component in an algorithm limits the speed of the total
process; in oher words, if 7, and 7, are respectively the time spent on
serial and parallel components of an algorithm in a single processor, then
the maximum speed-up Sy that can be achicved using N processors in
parallel for the parallel component is given by:

. B 1
Sn< =7rea
where f
We can find that [ is the fraction of ions performed lly. For

example, if [ = 1, where k > 1, then Sy < k, even if N is very large; obviously,

for [ =0, Sy = N. This is called Amdahl’s lam.
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15 Steps

Figure 5.2: One Processor Searches 16 Elements

Towever, the test pattern generation problem is anomalous. To find a test
pattern for a given fault can be considered equivalent to searching a space.
cooperating processors may reach the goal much faster than one processor, even
more than N times faster.

Suppose there is a space which has 16 elements, One processor Py searches
the space according to some heuristics. The goal element can be reached after 15
steps, as shown in Figure 5.2. If four processors, Py, P, P and P, take part in
the search according to the same heuristics, each will search a sub-space, as shown
in Figure 5.3. The goal clement is found by /% after one step. 7}/7} is 15, which
has greater than 4. This means that there is greater than linear speedup, called
superlinear speedup.

This anomaly can also be seen from another point of view. In general, a

problem contains n sub-problems. In order to solve this problem, the processing



od ot
robpod

Figure 5.3: 4 Processors Search 16 Elements

1 Step

elements in a parallel system have lo cooperate with each other Lo solve all of
these 1 sub-problems. But for the test pattern gencration, if a test patlern is
found, all of the remaining computation can be omitted. Therefore, not all of the
sub-problems must be done.

If a circuit has N,; primary inputs, the test patlern gencration problem for

this circuit can be divided into 2¥ sub-probl ling to the representive: at
its primary inputs. Every sub-task is to solve one sub-problem, which is to check
whether the given pattern in primaty inputs can detect the given fault. If one of
the sub-tasks is done and a test pattern is found, all of the remaining unfinished
sub-tasks can be ignored. Again, consider the examples in Figure 5.2 and Figure
5.3. In Figure 5.2, when a test pattern is found, 15 sub-tasks have been done,

which occupies 93% of all sub-tasks. But in Figure 5.3, only 25% of ll sub-tusks
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Fignre 5.4: A Circuit with One Fault

Step [ l» T, In| Status
T | X X X | potential
2 0N X cannot
3 |1 X X | potential
4 1 0 X cannot
5 |1 1 .X| potential
6 1 1 0 cannot
¥ 1 1 1 cannot

Table 5.1: A Process of the Proof of a Redundant Fault

are done when o test pattern is found. Although only part of the sub-tasks arc
done, the test pattern generation problem is solved. This is one of the anomalous
characteristics of the problem.

Hlow about the redundant fault? Should all sub-tasks be done in order to prove

its redundancy? The answer is “No”, again.

Step [, T\ Iy ][ Status
T | Y N V[ potential
2 |X X 0 cannot
3 N XN 1 cannot

Table 5.2: A Process of the Proof of a Redundant Fault
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For example, consider the circuit in Figure 5.4, Table 5.1 and Table

are

two examples which show the process to prove the redundancy of the fault. They

clearly show that: it is possible for the proof of a redundant &

nlt to do only part
of the sub-tasks, if an unknown value \ is used as one of the primary input’s

value. These Lwo tables also show that the different order of assigning values to

primary inputs may cause a different number of sub-tasks to he done. Table

arranges /2, 11, o as the order of assignment. Seven sub-

are done Lo prove
the redundancy. But Table 5.2 selects Jy as the first primary input to have its

value assigned. It requires only 3 sub-tasks to prove the redundancy. In general,

this order of primary inputs is dependent on what heuristics ure adopted. Hence,
it is not necessary for the proof of a redundant fault to do all of the sub-tasks.
Moreover, the heuristics play an important role in deciding how many sub-tasks
should be done.

So far, there s no standard method to measure the speedup of parallel systems
for test pattern generation. 7} /7' is the method widely nscd [13](8].

For the automatic test pattern generation problem, we may cxpect a multi-
processor system to gencrate a test pattern for a given fault very quickly if the

test pattern exists and there arc enough processors which are interconneeted. For

example, there is a circuit with ' primary inputs. To det

s possible s

fwlt, there are 2V different patterns which can be fed to the circuit. The

different patterns form a pattern sct. This pattern set is called the stareh-spaer
because ATPG algorithms always try to scarch this set so as to find a pattern
which can detect the given fault. [f there is a multi-processor system which

contains 2¥*+! — 1 processors, which are connected to form a complete hinary

42



tree, then, within A steps, a test pattern can be found if it exists, or a redundant
fault can be proved if there is no test pattern for the given fault.

In practice, it is impossible to have such a system since 2" is a huge number

when N is a little bit large, say N > 20. Therefore, the problem is how to
usc limited resources, or processors, to find a test pattern in the search-space as
quickly as possible. More exactly, the problem of exploring linear speedup is to

design & topology Lo connect given N’ processors and a protocol to make these N

proc

ors communicate with cach other so as to find a test pattern or prove its

redundancy N times faster than when one processor is used.



Chapter 6

Algorithms

This chapter introduces all the algorithms used in our simulation software. "Their

time complexities are also discussed.

6.1 Parser Construction

To generate test patterns, first of all, circuits have to be analyzed. The desc
of circuits is written in a netlist format[23]. This section discusscs the grammar
rules of the netlist format; the format is described in detail in Byron [23]. Bascd

on the grammar rules, a parser can be developed dircctly.
6.1.1 The Grammar Rules

The description of the netlist format from Bryan(23] is a list of descriptions of logic
gates. The description of a logic gate is called a nads since cach gate, or primary
input, or fanout branch is considered as a node. Using the form of YACC[36], we

can use the following grammar rules to represent thesc:

circuit : node_list
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node_list : node
| node_list node
A virenit is a list of nodes, denoted by node_lisl. A nodelist is described in a
recursive way. A nods forms a nodelisl. A node_lis! followed by a node also forms
a node_lisl.
From the metlist format, nodes can be classified into three types: primary
inputs, fanout branches, and logic gates. They have different formats.
Primary inputs have the format:
address name INPT fanout ZERO faults
Fanout branches have the format:
address name FROM name faults
Logic gates have the format:

address name type fanout fanin faults fanin_line

Here, fype represents the type of the gate, for example, AND, NAND, OR, etc.

Using grammar rules, a node can be written as:

node : address name INPT fanout ZERO faults
| address name FROM name faults
| address name type fanout fanin faults fanin_line
Since we adopted the reduced equivalent fault set, which is based on equiva-
lence fault collapsing|23], there may be some nodes labeled no fault, some labeled
stuck a0, some stuck_at_1, some labeled both. Therefore, the grammar rules of
Jaults can be described as
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faults
[
| s.a1
| S_AL0S_A_L

| S_.A_1S_A0

The complete grammar rules can be listed as follow:

circuit : node_list

node_list : node

node_list node

node : address name INPT fanout ZERO faults

address name FROM name faults

address name type fanout fanin faults fanin_line

address : integer
name : STREAM
| N_ZERO
| ZERD
type : AND
| NAND



OR

=
S
=

| NXOR

| BUFF

fanout @ integer

fanin : N_ZERO

faults

)
h
.
i
°
)
h
.
i

©»
h
.
I
©
h
S
;
°

fanin_line : address_list

address_list : address

| address_list address

integer : ZERO

| N_ZERO
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Here, the address should be an infeger, The inliger is a zero or a non_zero
value. The namr can be a zero, or non_zero value, or a string of characters. The

Janin and the fanoul are integers. The funin cannot be zero since cach logic gate

must have at least one input. A logic gate has several inputs, whose addrosses are
put in the fanin_line field.
With each grammar rule, actions may be associated to be performed cach time

the grammar rule is recognized in the input process|36]. Then the netlist format

can be analyzed, and the needed data structure can be constructed.
6.2 Compiler Driven Simulation

In a mults processor system, there are a lot of processing clements, we call them
checking processing elements (CPE), which simultancously do the same task,
checking whether the given trial test pattern can, or cannot, or is possible to

detect a given fault. In order to do this job, every CPE docs its work in two steps:
1. simulate the logic circuit
2. check the result

In simulation, there are two basic classes of simulators, compiler driven and

table-driven event-directed. The earliest simulators were of the former type, but

most modern ones are of the latter type since they allow for more versatility in

handling delays as well as a reduction in simulation time. In our casc, the comp
driven method is adopted. In our systems, all processors work synchronously
under the control of the virtual 2 phase clock (2PC). For the worst case, the

table-dri‘ en event-directed method has to simulate all log; n the circuit,

48



since every gate is active, This situation has to be considered when we calculate
the time period of virtual 2 phase clock. In a synchronous system, the period
of 2PC is the time for the worst case. If table-driven event-directed method is
used, processors in the best cases have to wait for processors in the worst cases.
In other words, the saved time is wasted because the faster processors are idle
in order to wait. If the compiler driven method is adopted, it is much easier to
estimate the time period of 2PC since every processor runs the same executable
code. Therefore, the compiler driven method is more suitable for our case.

Compiler driven si ion first 1 the description of circuit into a list

of logic gates, which is called the machinc crceutable gale lisl, which is arranged

according to the machine creculable order. This machine executable order guar-

antees that the circuit simulation can be done by each logic gate in the

list one by one according to their order in the list. This subsection first introduces

the circuit levelizing algorithm which it the description of circuit into a

machine executable ordered list. Then the si ion algorithm will be discussed.

Forming machine executable gate list

In any logic circuit, cach logic gate can be assigned a level value. The level value
decides when the logic gate can be simulated. For example, there are two logic
gates Gi; and (7, which have level values kg, and kg, respectively. The order of

simulation for (7; and (i satisfies the following restrictions:

; must be simulated before (7.

L 1f ke, < ke,

2. 1 ke,

;,» (/v and (7, can be simulated in any order.
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8. If ki, > kg, (i must be simulated after (7).

It is clear that the level value of each logic gate imposes a partial order on the

simulation.

The following circuit levelizing algorithm assigns each logic gate a level value:
1. Assign all primary input lines . and feedback lines y the level value 0,

2. For any element not yet assigned a level value, assign this clement and it

output lines a level value as defined by

=14 mar(h,

ki)
where ki is the level value of element i, and clement ¢ has inputs from
elements iy, i, -+, ij.
To implement this levelizing algorithm, the following algorithm was designed. For
convenience, each primary input is considered as a special logic gate.
1. Find all primary inputs, assign a level value 0, and put them into an assigned
queue;
2. While (the assigned queue is not empty)
(a) Get one logic gate (/ from the assigned queuc;
(b) For (each logic gate (7, driven by (7) do

i, If (G, already has been assigned one level value) Skip;
ii. If (at least one of the logic gates which drive €/, has not heen

assigned a level value) Skip;
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jii. Otherwise, all logic gates which drive (7, have been assigned a level
value
A Assign ks, = 1k mar(kiy gy b))

B. Put ¢/, into the assigned queue;

Suppose the number of logic gates in a circuit is 71, the maximum number of
fanin is /i, and the maximum number of fanout is f,. Now the complexity of the

algorithn can be analyzed.

step 1: In the worst case, after m steps, all the primary inputs can be found.

Therefore, the Lime complexity is O(1).

step 2: Each logic gate will be entered, only once, into the assigned queue, so

this while statement will be executed m times.
step (a): Constant time is required for it.
step (b): for statement will run J, times.
step i: It needs Constant time.
step ii: /; time is required to do this judgment.
step iii: It is clear that it is constant time.
step A: O(/i) time is needed.
step B: It is constant time.
The total time needed is:

O(m) +m(C+ [(C+ [i+C + [i 4+ C)) = O(m) + O(fi fo) = O([:fom)
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For all circuits, each logic gate has a limited number of fanin and fanout. It can
be assumed that they ate less than a constant (. Hence, the time complexity is
O(m).

After levelization, any sorting program can be used to put all the logic gates
in a special order. That is, if kg, < k,, (/i is before (/).

In VLSI circuits, there are many logic gates. Tt is worth using an cconomic
sorting method to rearrange these gates. Quicksorl is onc of the widely wsed

methods since it has a best-case time O(nlog 1) [35]. It also has a worst

ase
time O(n?) [35]. /leapsort can sort these data within time O(nlog n) 35, but it
needs a little bit more space. Bither of them can serve the purpose.

After sorting, an ordered gate list ¢ lormed. This list is called a machine

caceutable gale lisl.

Simulation Algorithm

Based on the machine executable gate list, the circuit simulation hecom

and direct.

From head to tail, for each logic gate in machine exceutable gate list, do

1. Get all its input values;

2. Simulate the logic gate based on *he five value logic {0,1,.X, ), 7J}.

Suppose the maximum fanin among all logic gates is k. To simul

Joggic

gate, k steps may be needed to fetch input signals. Since the machine excentable
gate list contains 1 logic gates, the time complexity of the simulation algorithm

is O(km). In practice, the fanin of a logic gate is a limited value, say 4 or a little
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Figure 6.1: Ineffective Logic Gates

more. The maximum fanin can be considered as a constant value. Therefore, the
time complexity of simulation algorithm is O(1n).

This machine executable gate list can be made smaller if a fault, which should
be detected, is given. In a circuit, some logic gates do not affect the test pattern
generation for a given fault.

For cxample, the logic gate K in Figure 6.1 does not affect the test pattern
generation for the fault shown in the figure. Therefore, gate /' can be deleted
from the machine executable gate list, making the list smaller. Hence, simulation
time can be saved.

o reduce this list, another algorithm is needed. Here, we describe it in natural
language, it is trivial to code it in a programming language. First, two concepts

are defined.

A Jault transferring galeis a logic gate such that, if at least one of its inputs
carries a faulty signal, then its output is also a faulty signal.
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A useful gate is a logic gate, which diives at least one uscful signal and its
inputs are all useful signals.
At the faulty point, the faulty signal must be propagated forward and wseful

signals propagated backward,

Based on these definiti the al lescribed.

can be . Beginning from
the faulty point, a fault transferring signal can be propagated forward. All fault
transferring gates can be labeled. Also beginning from the faulty point, a useful
signal can be propagated backward. All useful gates can be found. Those gates,
which are neither fault transferring gates nor useful gates, can be deleted from the
machine exccutable gate list since they do mot affect the test pattern generation
for the given fault.

The penalty is that the changing of a fault causes the changing of the cxe-
cutable gate list. As we know, our goal is to solve the problem for hard-to-detect

faults. This may necessitate that the simulation be exccuted many times. There-

fore, it is still worth doing so because simulation becomes quicker.
6.3 Checking Trial Test Patterns

After the simulation, we use the following checking algorithm to check whether

the trial test pattern can detect the fault.
1. If all primary outputs are 0 or 1, it cannot detect the given fault.

2. If at least one primary output is ) or T, a test pattern for the given Fault

is found.



3. Blse, there is no 1) either 1. And there is at least one X in the primary

outputs. Do
(a) Set an empty set which is used to contain any logic gate which is found
can possibly propagate the fault to primary outputs;
(b) If the logic gate which has a stuck-at fault, has the value D, D or X,
put it into the set;
(c) While the set is not empty, Do
i. Get one logic gate from the set
ii. If the logic gae is a primary output gate with value X, return a
POTENTIAL_TEST.PATTERN flag, which means that the input
patiern has the possibility to detect the fault. As discussed before,

the input pattern is a potential test pattern.

iii. If the logic gate is not a primary output gate, put into the set all
those logic gates which are driven by the logic gate, have value D),
T or X, and have not been in the set before.

(d) Tf the set is cmpty, return a NOT.TEST_PATTERN flag, which means

that this input pattern is impossible to detect the fault.

Suppose the maximum fanout in the circuit is &, and a circuit contains m logic

gates. We can analyze the time complexity of the checking algorithm.

step 1: In the worst case, all gates are primary outputs, . gates are needed to

be checked. Therefore, the time complexity is O(in).



step 2: To check the result, m gates may have to he scanned. The tim

plexity is still O(in).

step 3: After step 1 and step 2, the result is obvious. It can be thought as

constant time.
step (a): Constant time is required for it.
step (b): It is still constant time.

step (c): Since every gate may be put in the test sel, the While statement may

be executed m times.

step i: It needs constant time.

step ii: Clearly, it is constant time.

step iii: k steps are needed becausc the logic gate may drive k gates.

step (d): Constant time.

According to the structure of the algorithm, the total time is:
O@m)+O(n) + C + C+C 4 m(C A4 Cp k) + C = Okm)

In practice, the fanout of a logic gate is a limited value, Therefore, we cn

take / as a constant. Hence, the algorithm has O)(m) time

6.4 Heuristics

Heuristics are very useful to speed up the test generation since the test patiern

generation problem is NP-complete in general. llere, we use the testability mea-
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B

component  f———m——

Figure 6.2: Diagram for a Component

sure of Stephenson and Grason[17] as the heuristics to generate a test pattern for

a given fault.

A register transfer level circuit can be assumed to be a network of components

., adders, registers, multipl llers) i d by unidirectional

(e

links. [n gencral, a link may be many conductors carrying more than one bit of

information; however, to simplify our discussion we assume here that every link
has a single conductor. A link is a signal line carrying logic values 0 and 1.

A controllability value (¥'(s) and observability value 0Y'(s) ranging from 0
to 1 are assigned to cach signal line x.

Cousider the component illustrated in Figure 5.2. The expression used to

calelate () for output = is
CY(E) = CTF x = 3 CV ()
"=t
where CTF is the controllability transfer factor of the component and 1 is the
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number of inputs of the component.

The concept of the CTF is used to account for the potential dim

shing of con-
trol information as it is propagated through the circuit. The CTF of & component
must represent the ability to control output of the component by applying input
values. Itis defined by the following equation, depending only on the input-output

relation of the component:

CrE =1~

where V.(0) and

(1) are the numbers of input values for which ontput =
output value 0 and 1, respectively. The CTF of a component. ranges hetween 0
and 1. It takes the maximum value 1 when the component has a uniform input-

output relation, and decreases to 0 as the degrec of uniformity decrcases. It

"
example, the CTFs for a NOT gate and an XOR gate are L, since N(0) and N(1)

are equal. On the other hand, the CTF of an n-input NAND gate is

Consider again the component diagrammed in Figure 5.2. The expression used

to calculate O)'s for each input .r, is

OY () = OTF # 0¥ (=)

where OTF is the observability transfer factor of the component. Not that
input observability is assigned the same value.
The OTF of a component must represent the case of propagating a fault value

through the component. It is expressed as

orr=1y
7
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where NS, is the number of input values for which output resulting from changing
the input value of #, are different. 'S; also means the xumber of input values that
can sensilize a path from #; to the output of the component. The OTF measures
the probubility that a faulty value at any input of the component will propagate
1o its output. The values of OTF' also vary between 0 and 1.

As discussed before, controllability transfer factor (CTF) is used to account

for the potential diminishing of control i on as it is d through
the circuit. The CTF of a component represents the ability to control the output

of the component by applying input values. The observability transfer factor

of the the ease of ing a fault value through the
comporent. It also measures the probability that a faulty value at any input of
the component will propagate to its output.

So Lo forward a faulty value to output, we can use the observability measure

to get the “most potential” logic gate which makes the fault be propagated to

primary outputs as early as possible, In the backward ion of
values, the controllability measure is used to gain the “most potential” primary
input. which makes the test pattern generation terminate as early as possible.
From the discussion of testability, we can find that it is suitable to select a logic
gate which has the greatest observability in the £ frontier as the element with the
“most potential”, and to select a primary input located on the most controllable
Jath from the selected logic gate. From a given logic gate, we always select a logic
gate which has the greatest controllability among its input gates. All these gates
form a path. This path will terminate at a primary input. This path is called /e

most controllable path.
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From another point of view, the selection of primary inputs can also depend
on the worst controllable pafh. Similar to the most controllable path, the worst
controllable path begins from a logic gatc and ends at a primary input. Bach gate
on the path is chosen because it has the least controllability among all logic gates
which drive a gate, which is already in the path.

The worst llability path is the e of the most Habili

path. Since there is no way lo guarantce the most controllability path is really
the best or the quickest path to generate a test or prove a redundant fanlt, the
complementary method may be better for some situations. They may rule out
some fruitless search space quickly. This quickness can also accelerate the test
pattern generation. The selection of this least controllability hecomes comple-

mentary heuristics. Later, these 1 y heuristics will he used in onr

autonomous architecture to generate test patterns.
6.5 Expansion of Trial Test Patterns

To generate a test pattern for a given fault, first all primary inputs are assigned
unknown value X', which means that it may be a value 0 or 1. This pattern
works as the first Irial lext pallern. A recursive method can he used o define a

trial test pattern:

Suppose a circuit has Ny, primary inputs /1y I,

P

LN Np X, s a trial test pattern, where X, means that the

primary input /; has the unknown value X.
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2. Suppose ayy -1, | X4 41 -y is a trial test pattern, where a;
means that the primary input /, has a value ¢ and « € {0,1, '},
After simulation and checking algorithms, it is found that this

pattern is a potential test pattern. Then, we can say that
Wy Oy g

and
Wty Ly - g

are Lwo trial test patterns.

A potential test pattern yay. - a, may contain several X values. The task of
our expansion algorithm is to select one and assign it 0 and 1, therefore two trial

test patterns arc generated.
1. Set a temporary sct empty;

2. 11 the logic gate which has a stuck-at fault, has the value D, or J put it

into the set; otherwise, it is .\’ ding to the lusion of the checking

algorithm. We take this gate as the most potential forward node /I

. While the temporary set is not empty, Do

(a) Get one logic gate from the temporary set
(b) For all of the logic gates driven by it,

i. If the logic gate outputs ) or D), put it into the set if it has not

been there before.



ii. If the logic gate ontputs 0 or 1, skip.
iii. If the logic gate outputs X, comparc it with the gate fbeled hy
PEN,
A. Ifit is more suitable according to the observability value, change
the PN flag to this gate.

B. Otherwise, keep the /’

flag unchanged.

4. Beginning from the gate labeled /’/"N, DO

(a) If the gate is a primary input, this input is assigned 0 and 1 separately.

Therefore, two trial test patterns are formed.
(b) ifitis not a primary input, select the most suitable gate in all the gates

which drive it according to their controllability valuc. Goto step 4.(x).

It is not difficult to show that the time complexity of this algorithm is O(u) if
the maximum fanin and the maximum fanout are considered as constants. Step
3 may be executed i times. Step 3.(b) may be run My, times. Step 4.(a) and
4.(h) may be executed Aljyuu times as well. Therefore, the time complexity of

this algorithm is O(in).
6.6 Detection of Redundant Faults

If a fault is redundant, it can be detected after whole scarch space is searched. In

a multiprocessor system, a fault is proven redundant if all processors arc idle in

the same phase clock. If in any clock phase, some processors are idle and some:

are busy, then some subsearch space is being scarched. Therefore, it s possible
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that there are some test patterns. If all processors are idle during the same phase
clock, cach processor has no potential test pattern in its local memory, nor in its
input ports; there arc no potential test patterns to be generated. Therefore, all

processors are idle during next phase clock. This implies that full space has been

scarched.

To detect whether all processors are idle during one clock phase, a special

processor is designated. When this processor is idle, it sends an idl . 'relion
signal 1o its children. The idle detection signal contains the time when it is
sent and flug space for processor, Suppose there are n processors, the flag space
contains n flags. Bach processor corresponds Lo one flag in the flag space.

When a processor receives an idle detection signal, it checks whether it has
been idle since the time specified in the idle detection signal. If it is idle, it sets
the flag in the flag space. Ifit is not idle, it resets the flag. Then it sends this idle
detection signal to its children.

After a period of time, this idle detection signal is received by the designated
processor. IT all the flags in the signal are set, it knows that all processors have
been idle since that time, and consequently the fault is found redundant. This is
the protocol we uses to prove the redundancy of a fault.

"This chapter discussed all of the algorithms relating to the si in detail.

“These algorithms have been used in the code for the simulations described in the
later chapters. They lay the foundation for the methods described in the following

chapters.
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PartIII

ATPG and 4 Connected
Architecture
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Chapter 7

Four Connected Topology

‘This chapter defines the 4 connected structure, and discusses some of its charac-

Leristics.
7.1 4 Connected Structure and Examples

A 4 connected structure is a graph. If a node is denoted by o, its four ports are
represented by rg, 0y, 03, and vy, vy and oy are two input ports And v, and

are two output ports. Bach input port is fed from one output port of a node, and

cach output port is connected to only one input port of a node. A 4 connected
structure can be defined formally. In following definition, we use 1/ to represent
the node set, 1/ the port set, and £ the connection set. If v € V, v; denotes one
port of the node ¢ Sometimes, there are several nodes, for example, .y, . In

order to distinguish their ports, we use i, #;,, and =;, to denote one of +'s port,

one of y's, and one of ='s.

Definition Given a finite node set 1", a 4 connected structure (4CS) is a directed

graph derived from ', ( = (1", ) where V" and £ are derived from the



finite node set 1",
V= {1 € 1)
ECy xy!

12 satisfies the following conditions:

1. If v € V', then there exist four nodes .r. .z, w € V', (some of them may
)i

Ey (0n0ti) € By (5i00t0) € Ey and (w,000) € F. Here ipd, ¢ (0.1},

be the same node). The ports of » have following relations: (i

and /.0, € {2.3).
2.1 () € B and (v, p,) € I, then i, = g,

3.1 (i, 00) € 12 and (g, 04) € I, then =, =

Condition 1 says that each n € \/ has 2 inputs, v, m, and 2 outputs, vz, . Bach
input port, vy or u, is fed by onc and only one output port, and cach output
port, 1, or 1y, feeds one input port. Condition 2 guarantces that cach output is
connected to only one input. Condition 3 ensures that cach input is fed by only
one output. Followings are two examples of four connected structures,

Example 1 A directed graph (/) = (V/', I

is given by the sets
v ={0}
V= {00,0,,04, 04}
15 = {(04,04),(02,0,)}

It is clear that (7, is a 4 connected structure (4CS). Figure 7.1 is a diagram, which

represents the graph ;.
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Figure 7.1: The Diagram for Graph in Example 1

Figure 7.2: The Diagram for Graph in Example 2



Example2 A graph (i = (17, ) is given by the sels
V= {0.1.2.8)

V= {0004 022 O T Ty Lo L 202,

£ = {(02230). (0. 1) (L 20)- (L0022 1) (20 30)(B ). (3. 20))
1t is not difficult to verify that (i is a 4CS. Later, we will find that (i forms a

square array architecture. The diagram of (i; can he represented by Figure 7.2,

7.2 Characteristics of 4 Connected Topology

7.2.1 4CS naturally supports parallel ATPG

As discussed before, to generate a test pattern for a given fault, we first. chock
whether a trial test pattern can detect the fault. 1fit can detect the fault, a test
paltern is found. If it is shown that Uhe test pattern cannot detect the fuult,
it will lose its status as a potential test for the fault and be abandoned by our

ATPG parallel algorithms. If we cannot decide whether this

trial Lost pattern
can or cannot detect the given fault, it becomes a potential test pattern. We
will expand this potential test pattern to two new trial test patterns by guessing
the best potential primary input and sctiing the input 0 and 1, respectively, as
discussed in the previous chapter. Thus, during one virtual 2 phase clock period,
each processing element may accept onc trial test pattern and generate two trial
test patterns. Two output ports of a processing clement provide the thronghways
for these patterns. In this model, these two potential test patterns can flow out
of the node without any delay or traffic jam. Since a traffic jam is avoided, no

situation arises where some processors cannot send potential Lest patterns out to
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other idle processors because the bus which delivers these patterns is busy. A
network with this property is said to be saluralion-frec.

llere, we note another characteristic. Each processor has two input ports,
but in cach cyele, a node can only process one input. Therefore, the other input
has 1o be stored in somewhere. Every node has its own memory o store these
unprocessed inputs. This memory provides a sclf-balance characteristic. Tn our

algorithm, a trial test pattern may be aborted because it is impossible to generate a

test pattern after applying the checking algorithm. Therefore, there is no potential
ftest pattern sent out. This may make some of the ’[s in some subtree idle. The

topology itself has several ways to make them busy again: it can
L. fetch trial test patterns from the memory of the P/,
2. reccive trinl test patterns from ’Ls connected to its input ports.

These characteristics are very useful. All our designed architectures are 4
conected structures. Therefore, they have the properties of saturation-free and

selt-halance. These properties will be shown in later chapters.
7.2.2  Isomorphic 4CS systems

In drawing a diagram for 4 connected multi-processor systems, we have complete
freedom to draw them in arbitraty positions or shapes. There are no restrictions

on the

7 of the vertices o on the length or even the shape of the edges. These
drawings, although constrained by the connectivity of the nodes, are very much
frec-form. We are also free to choose an entirely different representation for the

graph. But this freedom presents us with some other difficulties. If a graph
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Figure 7.3: Two Isomorphic Ciraphs

is presented in different ways, how can we determine if the presentations really
represent the same graph, or the same topology in our 4 connected multi-processor
system?

Mathematicians use the term isomorphisin to w the “Tundamental o

ity” of two objects or systems. That is, the objects really have the same math-
ematical structure, and only nonessential features like object names might bhe
different. For graphs, “fundamentally equal” means the graphs have essentially
the same adjacencies and nonadjacencies. To formalize this concept further, we

use the following definition to define when two graphs (/) and (7, are isomorphic:

Definition Two graphs (/, = (V. I) and (i = (Vy, I4;) are said 1o be isomor-
phic when there is a bijection o : V; — Vy, such that (a(r).0(y)) ¢ 1y il

and only if («.y) € k. The bijection o is said to be an isomorphism.
For example, consider the two graphs shown in Figurc 7.3. An isomorphism
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Figure 7.4: A Non-planar 4-connected Graph

between (/) and (/2 is determined by the function o : V'((7}) -~— 1'((72) where

a=e.  a)=r  a()=u

alj=s  old=

o olg)=t
It is clear that o is & one-to-one and onto function. An isomorphism from (i3 to
(i1 is given by 0=, the inverse of .

Unfortunately, the geaph isomorphism problem, that is: gircn lwo graphs

Gy (VB and Gy o= ()

is there a

) are Gy and Gy isomorphic,

one-to-one and onto function [ 2 \; — Vy such thal {u.v} € Ey if and only

i /() S(r)} & 27 s an open problem[27). 1t means that, so far, there is
no eflicient algorithm to solve the graph isomorphism problem. This problem re-
wains open even if €y and (7, are restricted to regular graphs, bipartite graphs,
line graphs, comparability graphs, chordal graphs, or undirected path graphs(27).
However, it is solvable in polynomial time for planar graphs[20]. Here it is worth
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Figure 7.5: A Subdivision of A4

have planar structure,  For ex-

mentioning that NOT all 4 connected systen
ample, Figure 7.4 shows an array structured 4 connected multi-processor system.
The subgraph of this structure can be drawn as a subdivision of Ky, as shown
in Figure 7.5. According to Kuratowski's Theorem[28], a graph (1 i planar if
and only if G; contains vo subgraph homcomorphic with Ky or Ko, this array
structured 4 connected multi-processor is not planar. Kuratowski’s theorem also
implies that a planar graph and a unplanar graph are not. isomorphic.
Therefore, so far, we have no efficient algorithm to detect whether two 4 con-

nected multi-processor systems are isomorphic or not. When we design a parallel

system, we should pay attention Lo this problem so as to avoid designing isomor-

phic configurations.

The concept of 4 connected structure and some characteristics have been dis-

cussed. Their properties will be helpful in the design of special multi-processor
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systems Lo solve the automatic test patiern generation problem. From the next
chapter, we will begin to discuss several special structures designed for automatic

test patlern generation.
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Chapter 8
ATPG Using MCBTA

In this chapter, we first introduce the Modified Complete Binary Tree Architecture
and its parallel algorithm. The data from experiments with this architecture,
showing their speedup, are presented. After that, an autonomons MCBTA, and

the results of some experiments with it are aiso discussed.

8.1 MCBTA Architecture and Parallel Algo-
rithm

8.1.1 Architecture and Algorithm
CBTA and Parallel Algorithm

In a complete binaty tree with height 4, every internal node has exactly two

children, a left subtree and a right subtree. The distance from the oot node to

any leaf node is k. Figure 8.1 shows a 3 complele binary I, denoted 3 CIBT.
We construct a processing architecture, called the complete binary tree archi-

tecture(CBTA). Suppose every node in k- CBT is a processing clement (1°1:) which

is also often called procrssor, every edge is a connection between Lwo processars,

one culput line to the input of another. Every I’/ has two output lines and
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Figure 8.1: Complete Binary Tree Architecture

onc input line, which arc denoted as Oy, O and /, respectively. All PIs work
synchronously. Data from each PIZ are sent to both its left and right subtrees.
Parallel algorithm 1 can generate all possible & bit values in k CBTA within /
steps.

Parallel Algorithm 1:

set root /[ store vector XNy Xy
sel all other non_root /s to contain no vectors;
EVERY I’/ DOES SIMULTANEOUSLY
EVERY STEP DO
input vector = vector from /;
if ( input vector is non_data ) do nothing in this step;
/* otherwise input vector has the form ay - a;Niyy -+ Xi ¥/
if(i==k)ua-a; is one possible value;

clse



send @y a 0N e+ Ni to P comnected to O
send ;@i LN e+ Ni to 'l comected to Oy
It is obvious that this parallel algorithm which runs on k CBTA can generate

all possible k bit values with k steps since each step determines one bit.

Modified CBT (MCBTA) and Parallel Algorithm

It is impractical for a circuit with many inputs, say m inputs, to use m CBTA to

generate all possible values since 2"*+' — 1 I’Is have to be used. It is nec

ary Lo

use a fixed height & CBTA to generate all possible values for 1 bits (m = k). We

modify CBTA to get a modified CBTA (MCBTA) with these propertics. First,
every I} is expanded to have a local memory and two inputs, fy and /. Second,
two output lines of every leaf processor are connccted to one internal processor and

itself, we designate such output lines as feedback lines or feedback connections.

For example, lcaf node 11 in Figure 8.2 is connected to infernal node 2 and itsclf.

In a later section, an algorithm is discussed to gencrate such connected MCBTA
structures. Figure 8.2 shows the MCBTA for the CBTA shown in Figure .1. ‘This
network is 4-connected, and is obviously planar, making it an excellent candidate:
for VLSI layout. Figure 8.3 is its layout using the Hl-tree algorithm|6].
To generate test patterns using this architecture, parallel algorithm 1 must b

modified slightly; we designate this as parallel algorithin 2.
Parallel Algorithm 2:

set toot P store vector Xy Xy -+ X,

set other non_root /’ks empty;

EVERY PJ; DOES SIMULTANEOUSLY
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Figure 8.2: Modified Complcte Binary Tree Architecture

Figure 8.3: Layout of MCBTA using H-tree




EVERY STEP DO

receive vectors from ly and /;

put them into memory according to some strategy';

input vector = get one vector from its memory;

if ((input vector is non_data ) do nofsing in this step;

/* othervise input vector has the format ay---a, N,y -+ Ny */
if (i ==m ) aya;is one possible value
else

send ay -+ 4;0Nipa -+ Xy to the processor connected Lo Oy

send -+ 1N,y - oy to the processor connected Lo ()
One of the drawbacks of using the MCBTA configuration is that the ontput

can be a bottleneck for the whole system. That is, when several [’/

generate
their possible values at the same step, how can these data he output? In general,
one P’I£ is specified to take charge of communicating with the outside. Thercfore,
all results have to be sent to this /”/2. Then, this 1’12 will send them outside step
by step. This /7 forms a bottle-neck of the system. Fortunately, for automatic

test pattern generation, this is not the case since one suitable pattcrn is suffici

for ATPG.

'For every P’[, some strategy has to be adopted to store data.
lines, /y and /1, two inputs may possibly be fed at the same time. Si
PIZ can only process one input vector, one vector has to be stored in m
later. The strategy used (o store these vectors decides the size
structure is used, MCBTA is similar to using a breadth-first algorithm to gene:
values. Consequently, a large (possibly huge) amount of memory is needed for every 17
store potential values (test vectors with undetermined values, .X). If a stack structu
MCBTA is similar to using the depth-first algorithni, local memory can be greatly save
this consideration, it is most preferable to adopt the stack structure.
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An Algorithm to Generate MCBTA Structure

To design an algorithm to generate the topology of a MCBTA, each node needs

an identifier, called lubel. Each node is labeled based on following rules:

Each node is located on a special layer [ which is defined as the distance

from the root node to the node.

Root node is labeled as 0.

~

‘The left-most node on layer [ is labeled as i + 1 if the right-most node on

layer / —1 has label i.

Bach node except the left-most node on layer ! is labeled as i + 1 if its left

&

node has label 7.

According to these rules and characteristics of modified complete binary tree,

a node i located at jth position of / layer has the relationship,
i=2-1+4j (j=01,-,2'-1)

In order to connect these nodes, following rules can be used:

. 1fnode i = 2/ — 1+ j is not a leaf node, its two outputs are connected to

node & and node k -+ 1, where & = 2% — 14 2j.

X

. The left-most leaf node and the right-most leaf node have labels 2“~' —1 and
22, where L is the number of layers in the MCBTA. Both of them connect
one of their output ports to one of their own input ports, and connect their

another output port to the root node.
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3. For any leaf node which is neither the left-most nor the right-most leal
node, one of its output ports is connected to onc of its own input ports.
Its another output port is connected to one node according to the rule: For
I=12---.L—1and j =0,2.4,-+-,2' = 2, node 2" — 1 + j is fed by leal
node 2%=! 4 24=1=1 4 (j — 1)2%~!, and node 2/ — L+ j - 1 is fed by leal node

2h=t g bty (j - 1)28 1.

ATPG Algorithm using MCBTA

In this section, MCBTA is used to generatc a test pattern. We modify algorithm
2 to parallel algorithm 3. The time complexity of each step depends on the
algorithm for circuit simulation, the algorithm for checking whether the tried test
pattern can detect a given fault, and the algorithmn for expanding a potential test
pattern. As discussed in chapter 6, all of these algorithms have Lime complexity
of O(N), where NV is the number of gates in a circuit. Hence, the time complexity
of this parallel algorithm in each step is O().
Parallel Algorithm 3:
set root 712 store vector Xy .y -+ .X,, with undecided-flag;
set other non.root s empty;
EVERY /’/2 DOES SIMULTANEOUSLY
EVERY STEP DO
receive vectors from Iy and /;

if (any of them has a detected-flag )

// assume this vector has the form ay -+, Xiyy -+

set detected-flag; // the test pattern is already found.
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send ;- @, X,y +++ Xy to processors connected by Op and Oy
else
put them into memory according to some strategy?;
input vector = get one vector from its memory;
if (input vector is non_data ) do nothing in this step; /* idle status */

X ¥/

/* otherwise input vector has the form a; -« a; Xipy o

simulate the faulty circuit with the input vects

check whether the fault can be detected by a; -+ a; Xy -

switch result of checking )

case DETECTED:
set detected-flag;
send ay - ;Xig -+ Nn to processors connected by Op and O
break;

case UNDECIDABLE:

') send nothing to Oy and O, %

it (i

else
use heuristics to select the primary input
with the most potential ability %;
/* suppose Ny, is this primary input */

send ay -+ ;0N X, to the processor connected by Oy;

send ay -+l Xiga -+ Ny to the processor connected by Oy;

“Refer o the explanation in the parallel algorithm 2.
#Refer to the simulation algorithm in chapter
"Refer to the section about checking trial test patterns in chapter 6
®In general, there should not be the UNDECIDABLE case since all primary i
ed value 0 or 1. For the program completeness, it is still considered a possibility.

specil
“Refer to the expanding algorithm in chapter 6.
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break;
case CAN.NOT_DETECTED:
send nothing to Oy and O;
break;
In order to output the result of ATPG, one ontput port should e defined for
the whole architecture, which can report whether the MCBTA has gencrated a
test pattern, whether it is generating a test pattern, or whether it has found that

the fault is und ble. We lish this by ling the function of the

root node, denoted by 1/0 1212 1/O P has the following functions; it:
1. receives commands from outside the network.
2. sends commands to internal /s,
3. outputs computing results to outside.

These duties make it a special PL2.

MOCBTA is a 4 connected structure. Following from the discussion in chapter
7, this structure has the self-balance property and is saturation-free.

We can also claim that MCBTA has ()(log* n) output time delay.

Suppose the number of processors is 1, then the height of the MCBTA is log 1.
If one II2 finds that the fault can be detected, it will send the result to Lhe root
node, which can then output the result. In the worst case, ()(log? i) steps are
needed to propagate this test pattern. This can be shown as follows:

Before the proof, we introduce the concept of lrocl. Every processor can be
labeled with a value which is called its /rocl. This value is defined by the following
rules:
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1. The root processor has leocl 0.

2. A processor has leocl |-+ 1, if its parent processor in the complete binary

tree has fooel [,

The longest path from a processor to the root processor determines the output

time delay. MCBTA itself has one important characteristic: every path from an

inner processor to the root processor contains one of two feedback connecting

lines:
1. the left-most leaf processor —» the oot processor
2. the right-most leal processor —» the root processor

"Phe longest path in the architecture begins at a leaf processor. Each time to reach
o lower lovel inner processor, h steps have to be taken, where 4 is the height of
this subtree rooted from this lower level inner processor. For example, in Figure

8.2, one of the longest paths is

Ply— Py — PEy— P By — Pliy — Pl — PEy

v 2 5

The length of this path is

=1+2+3

from Iy to PEy, 1 step; from PEy to 1’12y, 2 steps; from P [y to P [y, 3 steps.
In general, the length of the longest path in a MCBTA from one processor to

the root processor has

Sh= %mv ~1) = O() = O(log? 1)

=t
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edges. Bach edge causes one time delay. Here, it is worth mentioning that (he
parallel algorithm 3 first checks whether patterns in two input ports contain a test
pattern. If there is a test pattern, it will be sent dircetly to two output ports Oy
and 0y. This guarantees that each edge causes only one time delay and the test
pattern can reach at the 1/O PE as quickly as possible. Therefore, MCBTA has

O(log® n) output time delay.
8.1.2 Empirical Results and Analysis

To evaluate the performance of MCBTA, every processor uses a parallel algorithm
with the same heuristics as discussed before. At first, MCBTA contains only one
processor. The speed of this MCETA forms a basis for speed comparison. As
more and more processors are put into MCBTA, the ratio of this basis speed and
the current MCBTA's speed determines the speedup of the current MCBTA.

MCBTA is a complete binary tree. The number of processors in MCBTA is
2841 — 1, where  is the height of tree. For /= 0, 1,2, 3, and 4, we can construct
5 MCBTA multi-processor systems.

Five very hard-to-detect faults in the circuit €432 were submitted Lo cach
system. Empirical results were gained and are shown in the Fignre 8.4 and Figure
8.5.

Four of these very hard-to-detect faults arc proved to be redundant by Lhese
multi-processor systems”. Their specdup curves are shown in Figure 8.4,

One of the 5 very hard-to-detect faults was found to be detectable, and its

test pattern was generated. Figure 8.5 shows the speedup curve for the fanlt. Tt

“the method to prove the redundancy was discussed in Chapter 6, section 6.6
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Figure 8.4: Speedup for 4 Redundant Faults in MCBTA
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Figure 8.5: Speedup for an Irredundant Hard-to-detect Fault in MCBTA
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iis very interesting to note that there are super-lincar speedups, that is, speedup
i greater than the number of processors, when the number of processors is 3, 15,

and 31, respectively.
8.2 Autonomous MCBTA Architecture

All processors in MCBTA use the same heuristics to guess the “best” undecided
input so as to find a test as early as possible. We call such a MCBTA a pure
MCBTA. Testability is one of the most widely used heuristics since it is considered

1o be an inherent property of a circuit, and is determined entirely by its structure

[17). This allows estimation of circuit testability before test jon. Because
of the approximate nature of the analysis, most testability analyses results have
poor accuracy.

If some complementary heuristics are also used by some processors, a mixed
heuristic MCBTA can be formed. It is quite possible that a test pattern can be

found much faster than a pure MCBTA.
8.2.1 Architecture

Il several processors form a pure MCBTA, one /y, one /,, one Oy, and one (), are
opened to outside. We call sucha MCBTA a pure MCBTA module, or autoromous
MCBTA module. Figure 8.6 shows one pure MCBTA module which consists of 3
processors.

It is called an autonomous module because it has two characteristics. First, one
module has only one policy to select the most potential undecided input. Second,

there are cyeles within the module. This property has the potential ability to find
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Figure 8.6: A Pure MCBTA

Ou O

a test pattern early, or to get a stop conclusion quickly, in case the selecting policy
is the most suitable one for a given fault.

Figure 8.7 is an autonomous MCBTA (AMCBTA). From the overview, it has

the same topology as a pure MCBTA. The difference is that it consists of au-
tonomous modules instead of processors and cach module uses one of the two

heuristics as discussed in section 6.5.
8.2.2 A Parallel Algorithm

The parallel algorithm for AMCBTA is exactly the same as the parallel algorithm
for MCBTA, as discussed in last section, parallel algorithm f in scetion 8.1.1.
The output time delay of AMCBTA is O(log® ). Suppose u is the number of

processors in the system. Since cvery module centains three pro

ors, we cin
use a k AMCBTA (k = log %) to generate test patterns. Ifone PF finds that

the fault can be detected, it will send the result to the host nodule, which can



Figure 8.7: Autonomous MCBTA

inform the outside. In the worst case, (J(4*) steps are needed to propagate this

test pattern. The explanation is similar to that for MCBTA discussed previously.
8.2.3 Empirical Results and Analysis

To cvaluate the performance of an autonomous MCBTA, we use the same simu-
lating method as for MCBTA. At the first, AMCBTA contains only one module.
The speed of MCBTA with only one processor is still a basis speed. As more
and more modules are put into AMCBTA, the ratio of basis speed to the current
AMCBTA’s speed determines the speedup of the current AMCBTA.

AMCBTA is a complete binary tree. The number of processors in MCBTA is
48241 — 1, where K is the height of tree. For k = 0, 1, 2, and 3, we can construct
4 AMCBTA multi-processor systems, which contain 3, 9, 21, and 45 processors,
respectively.

Five very hard-to-detect faults in the circuit C432 were submitted to each
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Figure 8.8: Speedup for 4 Redundant Faults in AMCBTA
system. Empirical results were gained and are shown in the Figure 8.8, .9, and
8.10.

Again, four of these very hard-to-detect faults are proved Lo be redundant by

these multi-processor systems®. Their speedup curves are shown in Figure 8.8,

The 1 b " of the ic test pattern goi ion problem
appears on only one fault.

One of the 5 very hard-to-detect faults is found to be detectable, and its test
pattern is generated. Figure 8.9 and 8.10 arc the speedup curves for the fanlt, It is
amazing that there are super-linear speedups too, when the nuinber of processors
is 9, 21, and 45, respectively. And they are even better than the results in Figure

ch

8.5. Since complementary heuristics'’ are used, they eliminate the fruitle

space quickly. The redundancy is proved much more quickly than in MCBTA.

Srefer to Chapter 6, section 6.6
“refer to Chapter 5.
10refer to Chapter 6, section 6.4
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Figure 8.1, 8.12 and 8.13 show the mapping between modules and heuristics

used in our experiments. There four notations are defined:

BB -~ Best llability and Best observability

BW —- Best controllability and Worst observability

WB — Worst llability and Best ility

WW - Worst controllability and Worst observability

Each module is assigned one heuristic at randoin.

Comparing experimental results between MCBTA and AMCBTA, we can con-
clude that AMCBTA has better linear speedup than MCBTA, and it also has
greater super-linear specdup than MCBTA has. Therefore, at least for this cir-

cuit, AMCBTA is much more attractive than MCBTA.



Chapter 9
ATPG Using Square Array

This chapter introduces another system: square array architecture. Experimental

results will also be presented for this architecture.

9.1 Square Array and Its Parallel Algorithm

9.1.1 Square Array Architecture

A square array system consists of #* processors, called n* SQARRAY. In an n*
SQARRAY, each row or column contains 1 processors. Iach processor has Lwo
input ports ( /y and /; ), and two output ports ( () and (), ).

Figure 9.1 shows the symbol for one processor. Every output (), is connected
to its right neighbor’s input port /y. The right-most processor will connect its Oy
to the /, of the left-most processor on the same row. Every output (); is conneeted
to the input port /; of its neighbor below. The lowest processor in a column will
connect its output O; to the input /; of the processor at the top of the columa.
Figure 9.2 is a square array system, which consists of 3% processors.

Here, we may ask whether SQARRAY and MCBTA are isomorphic. We say,

they are not. As we discussed in chapter 7 section 7.2.2, a SQARRAY is a non-
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Figurc 9.1: The Symbol for a Processor in SQARRAY

Figure 9.2: SQARRAY with 9 Processors
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planar 4-connected geaph. 1t is clear that MCITA is planar sinee it can be casily
floorplaned on a plane without any intersection. A non-planar graph and a planar

graph are not isomorphic'.

9.1.2 Completeness of Squarce Array

Theorem Given any integer n, n* square array system can generate all 28 possible
values, where J s an integer.
Proof From the topology of a squarc array system, if there is a hinary

value by, +++ , iy Nicict, -+, Vo Uirough a horizontal connceting line from

processor Il 4o PL,, byeyy + o+ by 0, Niciay -+, N can be generated at the

PE,. If the connecting line is a vertical line, by_y, --+ , by_, 1, N, & N
can be generated at the /1.

For convenience, in the same row, we call the left-most processor as the neigh-
bor of the right-most processor. In the same column, the top-most procossor is
considered as the neighbor of the lowest processor. Bach processor is therefore
connected directly to all of it nearest neighbors.

For any 1, 0 < v < 2%, » can be represented by a & bit binary number v o,
Phezy -+, v, Then, we can find a path from Ky to PE, (0< ¢ < u* ). We say
that Pliy, PE;,_,, Pl _y, -+, PE;, is a path which generates v_y, oz, -+,
is the 1’17 to the right of /[y if vy = 0. Otherwise, 'L, | is

vy whete PIE,

the PE below PEyif veey = 1. Bor PE;,_,, (j = 2, k), if oy, = 0, PP, is

the PE to the right of PI,_,,,; il me, =1, Pk, _, is the Il below 'k, .

ey

Irefer to chapter 7, section 7.2.2



For example, in Figure 9.2, "By, By, PEy, Pz, Pl is a path from By to
17 F, which gencrates 0110, o
This theoremn guarantees that SQARRAY will find a test pattern for a given

fanlt il it exists.
9.1.3 A Parallel Algorithm

In this section, SQARRAY uses the same parallel algorithm as MCBTA and AM-

CBTA, as discussed in chapter 8. The time complexity of this parallel algorithm

in one step is O(N), since the checking algorithm, the simulation algorithm, and

the expanding algorithm all have O() time complexity.

In SQARRAY, the ontput time delay is O(y/i1). Suppose n processors are
used, we construct a (v/i)* SQARRAY. If one P# finds that the fault can be
detected, it will send the result to the host processor, which can tell the outside.
If any (! finds a test pattern, this pattern can be propagated to the left-most
processor within /7 steps since there is a path to connect all processors on the
same row. Similarly, this pattern can also reach the top-most processor within
/it steps. Therefore, within /i + /17 time step, the test pattern can arrive at
the corner of left and top, which is the processor in charge of communicating
with outside. Hence, we say that ((y/77) steps are needed to propagate this test

pattern.
9.1.4 Ewmpirical Results and Analysis

To evaluate the performance of a square array system (SQARRAY), First, we let

the system contain only one processor. The speed of this SQARRAY forms a
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Figure 9.3: Speedup for 4 Redundant Faults in SQARRAY

basis speed. As more and more processors are put into SQARRAY, the ratio of
basis speed and current SQARRAY s speed determines the speedup of the current.
SQARRAY.

When the size of SQARRAY was assigned as 1(1%), 4(2%), 9(132), 16(4%),

25(5%), 36(6%), and 49(7?), we got the specdup curves shown in Figure 9.3,
Again, five very hard-to-detect faults in the circuit C432 were submitted to
each system. Empirical results were gained ar.d arc shown in the following curves.

Again, four of these very hard-to-detect faults were proved to he redundant

by these multi-processor systems. Their speedup curves are shown in Figire ¢
They are quite close to lincar speedup.

One of the § very hard-to-detect faults is found to be detectable, and its test
pattern was generated. Figure 9.4 is the speedup curve for the fault. There
are super-linear speedups when the number of processors is 4, 16, 36, and 49,

respectively. Compared with Figure 8.5 and Figure 8.9, Figure 9.7 is better than
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Figure 9.6: Speedup in Compl y SQARRAY (4 redundant faults)

the curve in Figure 8.5 but is inferior to the curve in Figure 8.9.

If we compare the results with MCBTA, we can find that SQARRAY has hetter

speedup than MCBTA, and it also has superior super-lincar specdup relative to

MCBTA, at least.

For this example, if we use complementary heuristics for cach pros

or, e
the performance be improved?

Curves in Figure 9.6 are obtained fromi the simulation.

These curves tell us that co.iplementary heuristics can speed up the processing

for some faults, and they can also produce extreme super-linear speedup relative

to the use of a single heuristic.
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Conclusion and Discussion
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A major barrier to the full exploitation of the capabilities offered by VLSI is
the problem of the increased cost of testing the complex devices immediately after
fabrication. The need to test devices results from imperfections in the fabrication
process producing a wide range of defects in the devices; for example, pin-holes
in the gate oxide, shorted or open interconnect lines (polysilicon, diffusion and
metal), contact hole defects, crystalline defects on the wafer, ctc. There may a'so
he some design faults, such as a gate output having insufficient drive capability

for its output capacitance, which may not be identified by the simulator, unless a

post layout simulation is performed; although simulation may have been used ex-

1 1

is an i

tensively many design faults may go undetected since si
process hased on an abstract model.

Attempts to reduce the costs of testing have been made by developing more

leorith

sophi by p ing test

cated gate level test

athigher levels of abstraction, by ing parallel ete.

i
The results of these work still show that developments in the solution of the
testing problem do not keep up with the pace of the development of VLSI devices.
This wplies that much more work should be done in this field.

One method is to study the types of architecture which can powerfully support

ATPG algorithms, or study what kind of connection among processors can most

i

ly speed up ic test pattern

In this report, we proposed three interconnection methods to speed up test
pattern generation. The experiment results show that for a redundant fault, the
squarc array structure has more linear speedup than MCBTA if the same heuristics

are used. For an irredundant fault, SQARRAY more likely reaches super-linear
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speedup than MCBTA does. If autonomous MCBTA is used, even for redundant
faults, super-linear speedup can occur. For an irredundant fault, the specdup
reaches incredible values. For example, when the number of processors is 21, the

speedup is greater than 3500, a factor of about 170 These results are even hetter

than SQARRAY, showing that autonomous methods are more attractive {
pure methods.

Of course, we have no way to guarantee super-lincar speedup for every fault.
Complementary heuristics can often enhance super-lincar speedup. In an archi-

tecture, what kind of combination of heuris

c information most likely reaches

super-linear speedup? This is one of the interesting problems which will be inves-

tigated in the future. Is it possible to implement these parallel processing systems
on a single VLSI chip? 1f so, how? What are the bounds for arca, tine, and area

time squared? These are exciting problems to he researched. The key to these

problems is how to design a very elegant checking algorithm so as to implement
it on a small area, and how to solve the storage problem for circuit description
since a VLSI circuit contains so many logic gates. Once these problems are solved,
automatic test pattern generation will be much less expensive than nowadays. As

well, similar algorithms can be developed for many other NP-complete problems.
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