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Abstract

Depende ncies are relations between statements of a. program. They indica te the

constrain ts imposed on the order of statement execution, and arc often used for the

evaluutio n, opt imization , vcctorixntion and paral lellaatlon of programs . By means of

dependence analysis , milch work has been done to exploit the parallelism In the loops

in which there arc no dependenci es thllt cross from one iteration of the loop t o anot her.

Only recent ly lUI app roach was prop osed Corexploiting the para llelism available in loops

wit h eross-ltcratiou dependenci es.

The aim of this project is to evaluate inherent parallelism of seque ntial programs

hy IILI'an!>of dependence analysi s. T he thesis firs t introduces the dcfinit; ulIH, concepts

aud hasic dependency analysis algorithms , nnd presents a uniform representation of

depundcnclcs called ;\ dependence graph . Then, using the dependence graph, a general

approach is presented which can be used to analyze the parallelism between loops as

well as between loops and other parts of a program. This approach was implemented

as ;: prognuu called DSA (Dependence and Speedup Analyzer), used to perform the

dcpondonccanalysis and to evaluate the inherent parallelism of Fortr an programs. Ft­

nally, the implementati on of DSA is briefly described and its usc is illustrated by a

series of oxamplcs.
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Chapter 1

Introduction

The need for computing power has been growing steadily in the last two decades.

However, with t he slowing rate of improvements in semiconductor technologies, the

processing abili ty of eingle-ptocessnr systems and sequential processing of programs arc

rcadJing their limits. In tur n, t his has been sti mulating research in multiproc essor

ar chitectures and parallel algorithms.

Milch work in the area of exploiting the parallelism of programs and program con­

version from sequential to parallel Conn has been done on the basisof depend ence

nna.l.ysis. Several experi men tal compiling systems exploiting parallelism in FORTRAN

pr ograms have been developed using dependen ce analysis (2, 3, 7]. However, these sys­

te rns perform paral lelizat lon in a ra ther limited range, often analyzing only the DO

constructe of FORTRAN programs , while the parallel ism between other statements is

ignored. For example, Gu pta and Soffa 118, 19] developed specialised compilation tech­

ni qucs which can be used to detect parall el operations wit hin and between sequential

s tat ements: their work was done for th e Rcconfigurable Long Instruction Word (RLlW)

arch itecture model, and th e increased computa tion speed was obtained by mat ching an

ap plication program to th e part icular RLlW architectu re in st ruct ure and in size. In



mere general approaches, the evaluation and detection of paral lelism should be runchitu­

independent [·17)_ Recently Lilja [32]developed a method cal led cri t iclII tl('I!I~, "llmrl~ rn­

tio to determine maximum possible para llelism for a loop, given unlimited hardware

resources. However, the method cannot deal with pnmllelisra between 100f\~ or between

a loop and th e other parts of a program.

The aim of this research is to usc dependence nnnlysia for cvnluurion of inherent

paralle lism of sequential programs . Dependencies arc relatio ns between statements of II

program. Th ey can be represen ted as a graph, called n pro ,lJTYIITI rJl ~1Iellllf1lwf) grn"h, nnd

arc widely used for perform ing program opt imizations, vectorization , and pnrnllelizntlnn

[20, 31, 3-:1 , 29, 30, 151. It has been shown tha t if the program depend ence p;rnphs of

two program s are isomorphic, then the programs arc st rongly eqnivnlcut ill the sense of

their behaviors [23]. Th is equivalence can be used to determin e t he maximally parallul

execut ion of the program. Such an approach is t he motivation for this work. The r('.sult.s

of th is research can be used in automatic t ransformation of scqncnt iul programs 1,0 their

equivalent para llel forms.

There arc two main contri butions of this research. First , II general app road l to

finding the maxima l possible parallelis m of a sequential program is proposed. Secondly,

the proposed approach is implemen ted as a pro gram called DSA (Dopendenco and

Speedup Analyzer). Th e program performs the dependence analysis and the nvaluntlon

of inherent paralleli sm of FORTRA N programs.

1.1 B asi c Concept s

Dependencies arise as the result of two separate effects . First , a dependence) existJ!

between two st atements S; and Sj if both stat ements access the snmc memory loentlon



(at 1 ( ~ iL<;t one of them must write this location ) and no state ment between Si and Sj

writes this locution . Dependencies of this type are called data dependeneie.~I . T here arc

t hree typo...of data dopondonclcs based 111)Onthe ways in which S. and Sj access the

locu tion. Statement Sj is

• fl()lII-(l(~W~ lIIlellt on Si, if Sj writes 1'1memory locati on and Sj reads it ;

• Ilnti -depellden t on Si' if Si reads a memory loca tion and Sj writes it;

• QutTl td - rlr:pf:n rlcnt QnS i l if S. writes a memory locatio n an d Sj wri tes it again ;

T he memory loca tion can correspond to a scalar variable or an array element.

Secondly , a depend ence exists between ll. statement S and a p redicate B whose value

(d irectly) con trols the executi on of S . Depend encies of this type arc called control

rll:fw "rlclll: ic.~2. For example , ill the seque nce of statements:

51: I F (B) THEN

52: X",Y+W
53: Z=X*A
54: A-C-D
55: Z=E+F

56: ENDIF

'l'he sta t ements 82 , 83, 8 4 and 8 5 are con trol-dependent on the predica te B; in

othor words , 8 2• Sa, 8 4 and 8 5 arc control-dependent on 81, 83 is flow-dependent on

8 2 due to X , 84 is anti -dependent on Sa due to A, and 85 is output-de pendent on $ 3

duo toZ.

Depende nce nnnlysla dete cts the depe ndencies in a progr am. Ferrante (15] has made

all excellent contribution to the analysis of cont rol depe ndencies. Data depen dence

IA fQrlnlll rlefiuition of dntn dcpendcnciell Is glvenln Chll.pter2.
., A formal definition of control dependences is given in Chapter 2.



analysis is more complicate d than control dcpoudou co analysi s hCfallS!! it must take iuto

account d ependen cies created by sub scripted variabl es (army clements) , and rl l i n.~e.~, t.e-.

references to mem ory locatio ns which arc identified by more thanone identifie r (nliaM's

can be created by proced ur e passing mechanisms And data eq uivnlcnces]. Fllr exnmple,

in the foll owing pro grams:

s r . DO r" 1, 10
S2 : A(I) " B(I )

S3: C( I) :D(I)

S4 : B(I ) : A(I+1) +F(I )

S5 : ENDDD

it is easy to sec thnt 8 4 is autl-dop cndont OIL 82 due to 13(1). However, S1 is also

flow-depen dent on 8.1 due to A(l) and A(I+ l) when t he variable 1 incre ases in repented

executio ns of the loop. On t he other Imnd, if Gill an a liasof S , then Sl is all t.i-( II~ IJ('lult~ ll t.

on 82 , and 84 is output -dependent 0 11 SJ due to C '[I} and 13(1).

The speedup f actor, used to measure the inherent pnmllelism of proh'l'I UlIS, is IMillPII

spccdUTI = : ;:;/:"

where T....i41 is th e time of the sequential execution of a pro gram, nnd 1;"'rtlll r l is t1w

time of the max imally parallel execut ion of th e sam n program , i.e., the tune of program

execution with an unlimited numbe r of avail able processors. The spee dup Iu ctor eun

furthe r be 'specialized' as fixed size ,~pr-cdup and .w:aled "pcedTJTJ [Mil. Fhm:l liizc SPI~~ h l l)

indicates howmu ch execut ion time can he red uced oua spccific pnrnllel prm:l:Ssor, while

scaled sp eedup is used in explorin g the computatio nal power of ]lllm llcl l :fllJlpUI~!rS Ior

solving otherwise intractable problems.



From the algorithm analysis point of view, the speedup factor is defined as [13]

~, called " peefll lp of the auernge executi on time.~, or M(~), called average speedup,

where 1'. ami 1~ nrc random varia bles representing the execution t ime on on e and on

1/ processors, respect ively, E(T) is the expected value of T , Til and TD arc random

variables represen ting th e execut ion time of a seq uential algorithm A and a paral lel

nlgorithm B for solving the same problem, and M (T) can be any mean val ue of T ,

il l part icula r the arithmetic mean . It shou ld be no ted that these two definit ions also

provide two methods to calculate t he approximate values of the speed up fact or.

The sta ndard definition of the speedup factor , i.c.,~, is used in thi s thesis

1.0evnluntc the inherent parallelism of programs on the basis of con trol and data de -

pendencie s. Con trol and data depe ndencies of a program represent control and data

Jlowrela tionship.'!which must he respected byany execution of the program , whether

paralle l or seque ntial. By examini ng these depende ncies, we can extract the inheren t

parallelism ill a program nne!evaluat e the speedup factor.

As an illnstrntiou, t he following program call be considered:

5 1: DO 1" 1, 10
52 : C(I) "A(I )-B(I)
53 : D(I )"A(I)tB(I)
~4 : E(I)=C(I) tC(I)

55: Fm"D(I)tD(I)
56 : C(l)=E(I) tF(I)

57: ENEma

t he sta tements 52 to 56 are control-dependent on SI since the value of the loop index

vnrinble J determines whether S, to Soar e executed. S4 is flow-dep endent on S2du e

to el l), 55 isflow-dependent on 53 due to 0 (1), So is output-dependent on 8 2due to

C(l ), S6 is enn-dopcndoae on 84 du e to C(l), 56 is flow-dependent on 84 due to E(l) ,



and 8 6 is flow-dependent on 55 due to F {I). Th CS(' dep e ndencies call h~ rr-preenr.ed liS

a graph, lIS s hown in Flgure 1.1.

flow de pendenc e: F

anti depend ence ; A

OUlput dependence; 0

control Ucpcndence:..

data dcpcrnlcncc:

Pigurc 1.1: Dependence graph.

Assuming thnt a ll arithmetic, logica l or asaignment opcrntion call he (: nlll p l et.( ~ 1 i ll

one u nit of t ime:

Tm i ll , = (10+ 1) * 1+ 10 . (t~'2 + fsl + t:;t + f '~5 + t.~·~)

= lI+ 10. (2+ 2 +2+ 2 +2 )
= III (un its).

If the number of available processors is un limited, the loop ran ln: u nfolded ililu

10groups, an d these 10 groups can be executed ill pa rallel. To find 1~..rnU..h WI' need

only to consider the time to execute one group n.~ nil g roups arc ldenticnl. Si lll'(~ S1

and 8 4 have no dependence re lation with 8J a n d Sr" and nll stntc ments 8-J. tn Sf; li t !'

cont ro l-dependent on 81!then 8 2 and 8 4 can ex ecute in paralle l wlth 8:\ !lUll Sr,. !in is

dependent on 82,84 and Ss, so 86 llI 1ISt execute after 8 2 , S1aw l Sr,.Therefore:

T.....<tl,.., =max (ts l +ts,\, t.~·. +ts 5 ) +t sn
=max (2 +2, 2 + 2) + 2
= fi (units) .

So, the speedu p factor is 18,5 in this case.



1.2 Thesis Overv iew

Th is thrsis is organized into six chapters. Chap t er 2 revi ews the research on dependence

mmly '!'is and alias a nalysis. The a, the concepts and al gorithms related to contro l and

data depend e nce an a lysis as well as a lias ana ly sis arc introduced in detail. Fina lly, a

uniform representat ion of dependencies , the dependence graph , is presented . Chapter

3 is de voted t o the ev aluat ion of inherent parallelism including a brief in t roduction 10

the evaluatio n of T."ri41 nnd a detailed presentation of a general npproach to eva luate

1j".,...1I~1 ' Th is approach is based on the dependence graph of a program and ca n be

used to deal with the paralleli sm between loops and betw een loo ps and o t her blocks of

the p rogram . Chapter 4 desc ribes the implem e ntation of DSA, a program perfor ming

dependence a nalysis and eva luation o f the spe edup Ia c e cr, which uses the algorithms

and ap proach present ed ill C hapters 2 and 3. E xamples and conclusions arc pres ented

in Chapters 5 and G, rcspcctlv ely.



Chapter 2

Dependence Analysis

Research OIl dependence analysis has been conducted over the Inst tweuty yearN. Fer­

m ute 1151m ade an excollcnecont ribution to analys is of cout rol dependencies , uhnructer ­

izing the control structure of programs. Analysis of dntn d ependencies is mo re !Iillien ll

tha n that of control dependencies. It has been shown that the de tection of .Inla I h !o

pendencies amon g subsc ripted variables is .;u Nlt -co mplc tc llrohlc lII l17, 36 ]. Tbe firs t

contributio n to the detecting of data dependence am ong s ubscript ed VIl.riahl(~ ill.lu l"! to

Banerjee [4, 5, 6]. He proposed an inequality which provides a tiufficicnt co ndition fnr

t he existence of da ta dependencies. The Banerjee's incqunli tydoc isiolJ Algori th mcan IN'

usedto deal with more complicated data dependence tcstinA" problems, bu t it t.. U1C1rr

complex and inefficient . Anot her significan t result L'IAllen JUld Kennedy's GCD dccisi ulI

algori thm f3Jderived from the nu mber t heo ry, whi ch aL'IOp rovides "lIlifficient condit io n

fo r t he exis te nce of data depen dencies. Th e CeD decisi on lI.Igo ri th m i... flL'lt IULl I c Ui­

cient for so me spec ial data dependence cases . Therefore, in praet ice, the Ce D dl~:isinll

a lgorith m is usually IISed first . If data ind epende nc e can be found, thunthe t l!ljliuII; p ro­

cedu re is over . Ot herwise, the Banerjee's decision algorit h m is use d to furt h er perfo rm

th e data depende nce testing. A more practical sol utio n co mes Irom Burke and Cyt rn n 'H



hierarchical de pendence testing algorithm [9]. Jt is usua lly used as a test framewo rk

and is combined with other testing algo rithms, such as t he Bane rjee and C CD deci­

sion algo rithms. Due to the inherent int ractability ofdata dependence testing among

subscripted va r iables, r esearch on data d e penden ce iscontinuing [49, 37, 41 , 40,3 3].

Another fac tor which makes data dep endence analysis complicated is t he existence

of ali ases created by p rocedure passing mechanism s and data equivalences. To per­

form datil depe ndence analysis, alias anal ysis is needed firs t. In FORTRAN programs ,

aliases caused by data equivalences arc a lways declared explicitly by the COMMON

and EQU IVAL ENCE s tatements, so detection of such a liases is quite stra ightforward.

Howeve r, IIIl inter-procedural a lias analysis must be performed to find the a liases caused

byproc edure passing mechanisms. Asign ificant wo rk on Inter-procedural al ias analysis

Wl\.~ first done by Ryder [>12). She introduced II, r epresent ation, called the callgraph,

of the control and data flow in programs to investigate inter-procedural co mmunica­

tion. B ur ke and Cytron (0]also proposed somem e thods to identify aliascd arrays, and

to propagate in ter-procedura l information. Further improvement is due to Cooper a nd

Kenned y {10, 11], whopresented a fast algorith m for compu ting inter-procedural aliases

IU~~I'(1 o n an im proved cal l graph, called th e binding gmph. An im proved versionof the

fast a lias analysis algor ithm based on bi nding graph is presented in [38]. The newest

rcsult is due to (30].

The followin g foursect ions of this cha pter discuss the control dependence analysis,

dn1.a de pend-n co analysis, alias analysis, a nd dep endence graph, respective ly.



2.1 Co ntrol Dependence Analysis

To simplify th e discu ssion, it is assu med tha t 1\ prog ram rc rrtains Du ly nSlliglll llt'llt~

use d in the sequence , ~loctioll and it eration constructs. The sequence, eelceuou und

ite rat ion constructs h ave the followin g forms:

• selection: j£ B t hen 8 1 else 82 endif

• iternti on: for i := 1 t o n do S e nddo

wh ere B is a boolea n CX\lrCSSiOD, n is 1\ constant or a variable , lind S . S. and S'}. lin !

assignm ent s tatemen ts, scouencecons tmc ts. sel ection constructs o r i tcrat.iOll ( ·Ol1s tr1l1:t.~.

Th e boolean expression B is called t he brrltlrRcondition of the s election coustmcr.. Till'

boo lean expression i :$ n, wh ich is the! condit ion to con t inue th e Itcrauon, L~ l:nlled lilt'

hrn nch condi tion of t he iterat ion construct.

The control flow graphG of nprogram isa directed g rA!lhG = (N, E ), wheretile NI!L

of nodes, N , is the set of assignmen ts and branch conditions o f sola-tion nnr] itt~ rnli(ln

constructs in the progra m, and the ed ges, E ~ N x N, repres e nt possi ble transfcl'Nof

cont rol betwe en nodes. It is a ssumed in contro l flowgr aphs that nodes whichre p n ')wllL

bran ch cond it ions (t h ey always have t wo nnmcd leceuccceora ) haveIItt,rihll te\ll '1' (t nm)

and F (false ) associa ted with theou t goiug edges. Eneh control flowgra p h is nll11 rnellt.(~ 1

with two special nodes: ENT RY and STOP, w hich rep resent t h e unlque hegilillill/..l ntul

t er mination of program executi on. ENT itY has one ed ge labe led '"1''' olltlloing t.o the:

first statement or t he program and another ed ge labele d"F" oll tgoing to STOP.

The follo wing two definit ions were introduced in [15Jtoget he r with a gl:lJl~ral ldeu uf

analyzing control de pe ndenc ies.

10



Dr.Jinition [Hi). Let G be a contro l flowgra ph. A node v in G is post- dominated by

II no de II ! if eve ry di re etet path from v to STO P (not in cluding v) cont a ins w.

If II is po., t-dllmina tedby 111, 1/1 is called a po&t-do minator of u, Note that this

dr.finitiollof pos t-dominan ce do cs not include the initial nod e of the path. In particular,

II node never post-domlnetos it self.

DeJinition [15). Le t G be II cont ro l flow graph. Let x and y be nodes in G. y is

crm trol.rleTJen dcrlt on x iff:

1. there cxi sts /\ d ir ected pa th p fr om x to y with any node Z orp (excl uding x and

y) po se-domlnetod by y, and

2. x is not post -domina ted byy.

III other words, if y is eon t rol-dep cndent o n x in a control flow gra ph , then the re

must exist at. lel\8t two paths from x to STOP ill the graph; on e includes y and the

other docs no t .

Drjillition (IS]. Le t G = (N,E) be a control flow gr aph. A po3t- do7llinator tree

T = (N,E ) contains the set N of nodes of G, and the s ubset E' of the edges E of G

such that if v is post-dominated byw, or 1/1is a post-dominator of II , the re must e xist

n path from tn to e in 1'.

Defillition [151. Le t T be a post-dominator tree, and 0 and b two no des in T . A

node c ofT is called the common ancc"t vr of u a nd h if T contains twopaths, one from

c to a a ndt he other fr om e to b. A node I of T is called t he lefUlt common ancest or of

n nnd hif:

• I isII co mmon ancestor of a nnd b,and
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• there is no other ( in T such that ( is also n common a ncestor of n am i II, nud

there is a pa t h from I to ( in T.

Given a contro l flowgraph, control dependen cies call be d etcnuinod ill the fnllnwilll!:

three steps [15):

I. Find post-dominators in the control flow graph, and construct t he pos t-cknuinntu r

tree T.

2, Find a set S which consists of alledges (n, II) ill the control How graph sudl t.hat.

there is no p a th from b to a in T (i.e., b docs not post-donunntc a). No te thnt.i ll

this C!lSCthe edge (a, b) must be labeled by "1''' or "P " ,

3. For each edge (a,b) in 5, find the least common ancestor I or a lllUl llill T. It has

been shown [15) tha.t either l is Rcr l is the pa rent of -n iuT.

• If I ~'l a, all nodes in the post-dominator t ree all the path from II tn IJ,inl'liulilll!:

nand b, arc con t rol-dep endent on n.

• If I is the parent or a, all nodes in the post -dominator tree lilt the "atll from

I to b, including b but not I, are control depende nt all 11.

For example, for the fo llowing program:

51: I F (A) THEN
52: Y-X+Z

ELSE
53: P"K-S
54: IF (B) TflEN
55 : V=P+S

ELSE
56 : U..r-z

ENDIF

l'



(a) TIle conenl now graphof t heprogram.

51

(b) The post-do minator trcc cuhe program.

Figure 2.1: T he cont ro l flowgraph and its post-dominator tree.

S7: Q..U

ENDIF
S8: T-Y

thecont rol flow graph and the pos t-domi na tor tree are shown in F igure 2.1. In this

example, 8 = {(ENTRY,SI ), (81 ,8 2), (8 1,83), (84 ,85), (SI" 86)} . Table 2.1shows

thecontro l dependencies that can be determ ined by examining each of the edges in th e

set 8 for thegraphs in Figure 2.1.

2.2 Data Dependence Analysis

Dntn dependencies can be created by sca lar variables and elements of arrays. Data

dependen ce ana lysis consists of globa l data flowanalysis and data d ependence testing.

The global dat a flow analysis is used as a framework of data depend ence testing to

findthe relationshi ps bet ween each pairof scalar variables or clements of an array and

13



Ta ble 2.1: Control depe ndencies for Figure 2 .1.

conuet
(a.b) in 5 Nodes marked dependentOil Lahcl

(ENTRY,SI )

(5/ $2)

(S /,SJ)

(54 ,S5)

(84.S6)

Sf. 58

S2

SJ.54 .57

S5

S6

ENTRY

5 1

5 1

54

S4

to determine the type of po tential dat a depe ndencies. For two sealnr variab les , the

dat a dependence testing is ve ry simple. For arr ay elements, s u bscript analysis must

be performed . The remaining part of this sec tion int roduces the definitions of dntn

depe ndencies , global data flow analys is and arr ay clement data depende nce tcst.ill!-:.

2.2 .1 Definitions

IN(S) is used to deno te the sets of sca lar varia bles and array clements whosevnlues nrc

read by a st atement S . OUT(S) is us ed to denote the set of sca lar variabh!lland nrray

clem ents whose values are modified (o r "written"] by a statement S. Fo r exam ple, for

a st ate ment S :X=Y+Z, OUT(S) = {X} . and JN( 5) = {Y ,Z). No te tha t for 11 10011:

51: DO 1=1, 10
52: X(I)=A (I +l)*B

53: ENDDD

OUT(S2)= {X(I ).X (2).....X (IO)). und IN(S2)={A (2),A(3) • ...A(lI ),1.U}. To aim­

plify the nota tion, we write OUT (S 2) =-[X(I» , and I N (S2) = {A(I+ l ),I,U}.

T he three types of data de pe ndenc ies arc d efincd as follows:

D efinition. Given two statements S; and Sj, 5j is

• flow-dependent on Sl, S .6Sj , if there is a varia b le z such that x E OU1'( Stl n

JN{Sj } and z Ii!OUT(Sk) , for i < k <i :



• (nt H-depende n ! en S. , SiSSj, if there is a va ri able x s uc h tha t x E I N(S;) n

OUT(Sj) end :t ¢ OU T (Sd , for i < k < j;

OU1'(6j) an d :r.f/. OUT(Sk ), fo r i < k < j .

'I'llsim plifythe d iscussion, weo ft en say th at statement Sj is data-dependent VIIS,.

de noted Si~'Sj , if S.6Sj or s ;Jsj or S;6"5; . Also, we s ay that statement Sj is in directly

rlnl tl-tlcpp.n dcnt on S i, denoted Sil::!..Sj , il there arc s tatements Skp ... , Sk. ,n ~ 0, such

Wlum x is II seILhu varia bl e, the de pendenciesdue t o e can b e detected byusi ngdata

flow analys is, which Lq discusse d later. However, if x is an array clement , dependence

t.(~sti llg is complicated byth e fact that differe nt refere nces to array clements may IICCC.'lS

the sameor differen t memory locat io ns. It has beens howntha t thedependence testing

pr oblem at nnngarr-ay cleme n ts is e qu ivalen t to the I n tf'J}cr Lirsear Programming (ILP)

Ilrobleln (36J,which is an Nfs-ecmplcte problem (H, 161.

To sim plifythe data dependence testin g for array cleme nts, the testing is often

lim itedto loops, and thesubscripts of array c lements arc restrict ed to lin earexp ressions

o f the loop index variables. If any one of t he subscr ipts is a nonlinear expression, a

dependence is as.su med to ex ist.

VI:jiliit irJfl [361_ For the fo llowing 10011:

for i.: = L1 to VIdo
for i2 := ~ toU2 d o

for t« := L. to Un do

XIf, (7),I,(l) , ...,1,. (7») := .. . :=X(9 ,(7),,, (7 ), ..,gm(7l)
enddo

15



enddo
e nddo

where 7 istbe vee tor(ir, 12. ....i..) . RIlL; and Vi. i = 1. _.," . nr eron...t n urs, Rud /;' .' J. j =

t, ..., m areknown 6nea r fUDctio ns. ~'O e leme nts of tbeRrr R)' X ere df1'C7I1/I~II~rUlt'r('

exist I nde values ~ , ..., I.. and i;....,~ s u m tha t

L. s I'" t.s VI , ..., !4.. :5 '••' s V•.

If S is enclosed in n loops wi th iudicos 7 =- (i lo ",i ..) , Si deno tes the ill~t lllll:(~ I ,r

5 tor t he itera t ion7. Suppose the stntcm cnte S; lUld5j nr c enclosed ill n hmilli wil.h

indices 7 = (I" ,,,, i~). L et II. vec t or il' = (l/IhVJ2, ...,¢~), Wi e 1<,= , o }, i = 1,2, .•., 11

be ca ll ed a direc tion vec tor. 5J is depen dent on S; WiUl a tlin:t:tion tJCf:lllr 'II,dClIo t,('11

5i6"S j , if the re exist iterations J; = (i'"4,,,·,t..) and 7( =(t;. i; ,....() Imf'h t.lml

sit-I" ..t.16°SJIi7.;; .~l. andthefo llowing illC(lun..l i tiCJ; hold simultancensly:

(I"' I I ~
4\112i;

T h e vector (i'.,4,.... i:)- (~. I;.. , 1.:) iseallcd the din:ct iondi...t flfU'L F\ l rthl'IIII1Jrl',

directi on vecto r lit such that I{I = (=.= • ..,=,< ••,. ,...,.) allll '. ' dcnub~ '<', '= ' Uf

' o', If i = j , we say tha t S; Is IOop.CJl1r1 e..tl-dcpenrlcnt oll i t .sdr.

For examp le , in the following program:

51: DO 1-1, 10
52: DO J . 1,1O
53: A<I ,J) ..-S(I,J)
54: S(I , J) "'A(I ,J-l )
55: C(I ,J )",c U , J - l)
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56: £NOOO
57 : ENOOO

Wc have S.; I . I ) dS~I .~l with direction vector (= , <) and direction distance (0, - 1) due

III ar my A, and denote it as 83°(=.<)84 , a loop-earricd-dependence. 85 is loop-ca rried.

cll~I)(,lldl'll t on itself with direction vector (= , <) and direction distan ce (0, - 1) due to

array C. Also, we have s11
,
ll'J8i1,ll with direction vector (=,=) and direction distance

(O, O) duo to array 13.

A loop-carncd-dopcndo nce means that one sta tement may store a datum into n

locution 011 one itera tion of a 1001l , ami another sta tement may fetch the datum from

or s tore ano ther datum into the location on another it erat ion of the loop, or vice versa.

SII, we say a loop hi II. carry ing dependen('.e loop if the loop contains a loop-carried-

dependence.

2.2.2 Globa l Data Flow Analysis

Global rlata flowanalysis can be considered as the pre-execution process of ascertainin g

and collectiug information which is dis tributed th roughout a.program , generally for the

purpose of nptiruizing the program. It is widely used for code improvements such as

111lal,vsis of live uses, reaching definitions, available expressions, very busy variables, and

Ti le elhuinntiou, or interval, methods and the iter ative metho ds ar e two popular

1I1'llrnadu'll to global flow analysis 11,27, 431. The elimination methods collect the

iufortunt lon hy continuing to partiti on the control Bow graph of the program into sub-

J.!:mphs, called intervals, and replacing each interval by n single node containing the

loru l informat ion for that interval, unti l the graph becomes a single node. The iterative
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methods propagate the infonn ation by initia lizing the dnta flowequation s to snle values

and then itera ting the equatio ns unti! a fixed-po int solution is found.

The elimination methods may seem to out -pe rform the iterative met hods, but, when

some pract ica l issues, presented in [21], arc ta ken into account , t he itcrnt ivc 1lll' thOlIs

arc time compet it ive with t he elimination met hods. In additio n, the elimina tion nlgo-

rithm s ar e usually rather complicat ed to program. The detailed comparison of the lime

complexities of t hese two approaches can be found in [8, 20, 27].

IGldall 's algorithm plays an import ant role in the development tlf the itc rnti vrl1I11{n-

dtlun because it solves the class of data flow an alysis problem ill a unified nnd generul

la tt ice th eoret ic framework [28]. The framework provides 11.convenient vehicle to lllla l ~'1.t ·

t he detai led prop erties of each data flow analy sis problem. Hecht and Ullman refined

the Kildall's algori thm, an d presented a "dept h-first" version of Kildnll's algori t hm [211,

a success ful iterative algorit hm. They intr oduced a dept h-first orde ring algorithm for

the nodes in a cont rol flow graph, and for ced th e nodes to be processed ill tlw order .

They also proved that th eir algorithm will finish a global da ta flow IllinlysL'I before d+2

iterations, where d is the maximum number of retreating ('A9e.~1 in Il cycle-free pa th of

the control flow grap h.

Given a cont rol flow grap h G, for each node 11 of G, in(n] is used to denote its iuput

da ta st ream and out[n] its outpu t data strea m. T heil, Hecht awl Ullman's il.t!rntiv(!

algorithm perform s global data flow anal ysis ill the following two ste ps:

1. To each node n in G assign an integer number rPo.' tordf~r [1t1 and let Oltt[lI]= {].

rPostorder[n] is produced by a dep th-first order ill which t he node 11 is nlwnys

visited before its successors except when the node n and its suceesscr form II

IA£ormaidefinlllono£ ret realiflg edge i., given in Chllplcr >l.
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retreating edge.

2. Perform the following iteration nntil no change is made to any node in G where

fn (x) is a data flow function of the node n (the data flow functions f are different

for the different ap plications of data flow ana lysis, such as Reaching Definition or

Live Uses):

for each node n in G, in order of rPostorder do
in {II]:= {} ;
for each edge (p,n) in G d o

in[n] := in [n] U outlPl
e n ddo;
out[n] := fn(i7l[nJ)

end do;

A more detailed description of t he algorith m and the data flow functions fn (x) is

given in [1, 8, 26, 27, 28, 43].

DSA uses an iteration-recursion algorithm , designed for global data flow ana lysis.

Th is a lgorithm performs a recursive traversal of the control Bow graph of a program in

every iteration until it termina tes. Hecht and Ullma n's depth-firs t ordering algorithm

is also used in this algorithm. These algori thms are described in deta il in Chapter 4.

2.2.3 Array Element Dependence Testing

This part over views algorithms which perform t he subscrip t analysis of th e two clement s

of All array to find the dependence between t he two elements . Allen and Kennedy's ceo
decision nlgcritbm, Ban erjee's inequa lity decision algorithm, and Burke and Cytron 's

hierarchical testing algo rithm arc briefly described in this section. More deta iled infor­

mation call be found in [3, ·t, 5, 6, 9, 17, 36,4 81.
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GO D Deci sion Algori thm

Let 51 and SI be enclosed in n loops fLS follows:

for i . := L . to U\ do
for i2 := 1, to U2 do

for i n := Ln to Un do
S , X (...,/(7) , ...j ,~ .. ,~ X ( ..,g(/) , ..)

e nddo

en ddo
en dd o

where 7 = (i l> .., in) and

Then, the IoU/-up bound malrix LU is defined H..'1:

and the roefficient matrix C of the function f and .q is defined f1.'1:

For exam ple, ill the following program :

51 : DO 1" 1,10
S2 : DO J=2,20
S3: A(20*I +J - 20)=B(J , I)
S4: CU,I) =A(20*I+ J -2U
55: ENDDO

56: ENDOO
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the low-lip bou nd matrix is:

W_(I IO )
- 2 20

lind the coefficient matrix

If S~ is da ta-dependent on 8 1, then there mus t exist intege rs i~, '" i~ and i';, .., t n

such that

!(i;, ...,i~ ) = g(i~ , ...,i~ ) .

That is,

which 1~IUl he rewritt en

T his has an integer soluti on only when the great est common divisor of all the left-hand

coefficients d ivide evenly the integer difference on the right -hand side , that is,

This is t he Allen and Kennedy's aCD decis ion test.

111 pract ice , the aCD test is relatively ineffective , because in most cases the loop

index mul tipliers Ilk = bk = 1, so the ged is 1. However, it is useful in some cases such
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81 : DO 1- 1, 10
82 : X(2-U- . . - X(2- I +1)
83 : EJiDDO

Here gcd(2, 2) = 2, and because it is not a divL'iOC of bo - '10 = I. th('«' m il he' IIlJ

d ata dependence.

Ban erjee's Inequality Decision Algorithm

Ban erj ee's inequality d ecision algo rith m depends 011 the definit ion uf t ht· ptl:'iiti vt' n llt!

negative parts of a number as follows:

Definition (3J. Let t be nil intege r. T he IJO.,itive part of tile inte ger t, I.' . Hlltl lll·!/t1ti ' lf:

part , t-, nrc defined 1\.'1:

t + = { : if t ~ 0o if t -c0

t- = { -t ~f t:S 0
o 1ft> O.

fh is data-dep endent on 51 ani)' if th ere cxi!;t intege rs II' .... i'.. MIt! i';, ..,t.. Iitwll tha t

If . for a direction vector ~ = (l/11t 1/12 , ..., 1P..), a lower boundLI1 and an lIPIM:r hUlllul

UB can be fou nd such tha t , for each term k = 1• ...•u of ti ll: ahove slim:

where:
if t/J",= '_' then:

LB; = (a; - btJ (U",- L",l+ (a", - 6",) L",
UB; =(at - b;)(U", - L",l+ (u",- b",)L",

if 1/J",= ' c' then:

LB: = (a; ·- b", )-(U",- L",- 1) + (a",- b".)L",- b.~

US: =(a; - b", l+(U",- L",- I) + (a", - b",)L",- h",
ift/J",= ' =' then:
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LBk'"= (ak - bk)-(Uk - Lk) + (Uk - bk)Lk
UBi = (Ilk -lJk )+(Uk -Lk) + (Uk- bk)Lk

if Wk = '>' then :
LB: = (Ilk - b1 ) - (UI; - LI; - 1) + (Uk- bl;)L k - bl;

UB: =(uJ;: - b;) +(UJ;: - LJ;: - 1) + (uJ;: - bJ;:)LJ;: - bJ;:.

Sli t/tilling up these quantities gives the lower and upper bounds, so:

ELBt - $ t(tld:.- bJ;:i:) s f:UBt·
J;: ",1 J;:",l i; :]

which call he rewritten as

t LBr s bq -ao:S E vnt·
k :] ,,=.

If il. rnn be shown that if eithe r El;..l LBt · > bo - Uoor Ek=1 vat· < bo - flo, then

the re is 110de pendence under t he constraints of the direct ion vector lV= (l/h.!h , ..,1Pn).

Hierarchical Dependence Testing Algor it hm

Burk e nnd Cytron improved t he ceo and Ban erjee's inequality decision algorithms

hy introducing hiera rchical test ing. Hierarchical dependence testing proceeds from a

gcnornl directi on vecto r ('.') to more specific dir ection vecto rs ('<" '=' or '>'} . If ,

at any step, lUI indepe ndence can be shown, the direction vector needs not be refined

further . Othe rwise, if the direction vecto r contains any' .' element , '",' is refined to '<',

'= ' or '>', and the testi ng cont inues. If the direc t ion vecto r does not conta in any'> '

de ment, the existence of depe ndence is assumed under the constra ints of the direction

vecto r. Thus, the dependence testing is done on a hierarchy of direction vectors.

Such n hierar chy for two nested loops is shown in Figure 2.2.

Consider the prev ious example:

81: DO 1: 1 ,10
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(','j.i-> I ____________
«,'") (=•• ) ( >• • )

/1\ /1". /1".
«.» «.=) «.» (=, » (::. :: ) (= .» (>.<) ( >. =) ( >. »

Fib'1IrC 2.2: Hierarchy of direction vectors for two InoJl'~ '

Figure 2.3: Th e dependence tr ee for the program.

52: DO j "2,20
53 : A(20*hJ-20)=B (J ,I)
54 : C(J,!)=A(20* I+J -2l)

55 : ENDDD
56 : ENDDD

In this example. L 1 = 1, ~ =2, VI = 10, U2 = 20, flO = - 20, (I t = :W, ft~ = I,

bo = --21, bl = 20 and lJ.l = 1. Using Burke and Cytron 's h il~mrdlieal dCpl!lldl!Ill 'I!

testing algorithm as the test framework, and Banerjee's inequality ,lcd siolJ aljl;orie,lull

to test whether there exists an independence nuder the constmints of the direction

vector, we can obtain the dependence tree shown ill Figure 2.3 which lndk-ntos till'

data dependence 8,1084, Moreover, the direction vector (=. <) illdklltm; thut the rlutu

dependence S3CS4 is a Ioop-cerried-dcpondonce.

24



Anot her cont ribution of Burke and Cyt ron [9}is t he lineari zation of array references,

which rol uees the complexity of depende nce test ing. 1£an array A is declare d as

A(L, , U" "" L", U.)

tnen n referenco to an clement A(dJ, , dn ) can he linearized as A'(f (d" " ., dn , Lit ..., Ln _ ll

Uh •.. , Un_I )) , where f (d\ , ..,dr., LJ, ,L n_h UI! " " U,,_,) is the following linear expres-

sion:

.. .-\
I (d" .." d.. L" .." L. _" U" , "U._,) ~ 1+ L:« d; - L;) II(U, - Lj + 1)),

' '''\ .i=\

For the following example:

50 : REAL A(20 , 10) ,B(20, 10) ,C( 20,10)

51: DO 1"1 ,1 0
52: DO J " 2 , 20
53: A(J ,O - B(J, I)
54 : C(J ,I)=A(J - 1 ,1)

55: ENODO
56 : ENOOO

A(J, l ) will be mapp ed to A'(20. 1+ J -20), and A(J - 1,1) to A'(20. 1+J -21).

The dep endence SJo{ ", , < )S~, obviously, must be preserved.

2.3 Alias Analysis

1£two different varia bles II and b refer to t he same memory location, they arc called

alia.'w.~ of one anot her. a and bare ezplici t aliasesif a progra mming language constru ct,

such as Illiioll or equivalence, defines them to (partly) overlap. By contras t, they are

illll/licd aliases if their alias ing is caused via procedure passing mechanisms. The set of

all aliases of x is dr,'d cd by alias( x ). Note that if y is an alias of x, y E alias(x) then

nlsox is au alias of y, x E alias(y),
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Explicit aliases can easily be recognized by analyzing the declaration of n program,

and hence arc not discussed here. The inter-procedu ral alias nnnlysis is hriett~· tmro-

duced to find implicit aliases. A more detailed presentat ion is given in 110, 11, 3Bj.

To simplify the discussion, it is assumed that a procedure IIlUSt. hcgiu with a 111l1-

cedureleader,which (in FORTRAN) consists of the keyword SUBROUTINE followl'cl

by the name of the procedure and a list of formal (or dummy) pnrnmetcrs elldos(~d

in parentheses. A procedure is invoked by a CALL statement which couslsts of t ill!

keyword CALL followed by the name of the procedure and n list of nrguuients clldOSl~d

in parentheses. The arguments are also called ad ulIl parameters. A ylrJbul variable is l\

nonlocal variable which can be referred to in a procedure body without.!Hlssing it l~<; a

paramete r to the procedure. In FORTRAN programs, globa l variables are those which

arc declared by COMMON statements.

For example , in the following program-:

PROGRAM MAIN
COMMON G1.G2,G3

51: CALL P1CG1 .G1.G2)
END

SUBROUTINE Pl(Fl ,F2 , F3}
COMMON G1,G2,G3

52: CALL P2( F1.F2.F3)
END

SUBROUTINE P2(F4, F5, F6)
COMMON G1,02, 03

53 : CALL P1(03. F4. F5)
54: CALL P3 (F5 . F6)

END

SUBROUTINE P3(F7 , F8)

~This Is a. slightly modified example Crom 1381.
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COMMON Gl,G2 ,G3

F7"F8+2
END

there arc three procedures: PI with formal parameters F l , F2 and F3; P2 with formal

parameters 1"4,F5 and F6 ; and P3 with formal parameters F 7 and F8 . These three

procedures arc invoked by CALL statements 81,82 ,Sa, and 54' The actua l paramet ers

nrc Gl , G1, and 02 in 81! Fl ,F2, and F3 in 82 , G3,F4, and FS in 83 , and F5 and F6

in 84• TIJCglobal variables in th is program arc Gl ,G2 and G3. This program will be

used as an example throughont this sect ion.

Inter-procedural alias analysis finds two types of aliases. Type- l aliasin g is caused

by nsing a global varia ble as an actual parameter in a CALL state ment. fo r example,

ill Sll t he global variables G1 and G2 arc used as actual parameters of the procedure

P I. 111 tJli ll case, Gl is an alias of the formal param eters F l and F2 of P I , and G2 is

Fa's nlias. So, Type- 1 aliasing is also ca lled globaH o-f onn al aliasing.

Typc-2 aliasing is caused by using the same variable or alias variables more than

once as nctual paramet ers in a single CALL statement. For example, in 51> 01 is used

t.wo tim es I'IIl the actual parameter in the invocation of P I , so the formal parameters PI

ami /0'2of PI nrc aliases of each other. Type-S aliasing is also called fonn aHo-form al

alia.1ing.

2.3.1 Detect ing Typ e-l Alias es

The binding graph is the primar y data structure to represent the relations between

~Iobal nnd formal variables and to calculat e Type- I aliases.

Dejinili oIl138]. A binding gmph is a pair {3= (No. Eo) , where:

1. NtJis the set of formal param eters of all procedures in a progra m.
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2. ED is a subset of No x No such that an edge (It, h) is ill Etl if there nrc two

procedures PI and PI! such tha t

• J. is one of the formal parameters of 111,

• h is one of the formal parameters of 1"l, and

• J. gets bound to h during an invocntion of 1~ ill 111 '

In the example progra m, the statement S2. CALL P2(FI,F2,F3) , binds FI,1"2,

and F3 to F4, F5, and F6; t he statement Sa, CALL PI (G3, 1",1,1"5), bluds 1",1 ami 1"5

to 1"2 and 1"3; and the statement 54' CALL P3(F5,1"6), binds 1"5end Fa to F7 1\11(1

F8. The binding graph for this example program is shown as f igure 2.4.

Figure 2.4: The binding graph (3 for the example program .

Type-I aliases arc determined in the following t hree ste l>!l:

1. Construct t he binding graph of the program .

2. For each node f of the binding graph , initia lize its alias set, (IlilU(f) , ;~~ follows:

alias(J) := {g I .9 is bound to f} .

3. For each node Ii of the binding graph , propagate th\; tJ ~II.~(J ) sets forward alolll-:

th e directed edges. That is, for each edge (/; . Ii) :

alia s(h) := alitu(fJ) U alia.~(I;) .
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Table 2.2: Typ o-I eltesee for the example program.

Fl
F2
F3
F4
F5
F6
F7
F8

After SWIl 2, (llitt.~(Fl ) = {Gl , G3}, alias(F2) = {GI}, alills(F3) = {G2} and other

flli ft ., S(~t.s arc empty. In step 3, these alias sets arc propagated along the binding graph .

Tlw rcsult of Type -Laliases ls shown ill Table 2.2.

The binding graph is actually a multi -graph since PI may contain several invocat ions

of IJ.l , which may rcsnlt in I. bound to h morc than once. However, for historical

reIlSOIlS, it is st ill referred to I\S II. graph. Moreover, although standard FORTRAN

77 do(~s not allow recursive calls, many other languages, such as C and PASCAL, do.

III t.his CI\.<;(', it is possible that a binding graph contains cycles, or strongly connected

components (SCCs). Therefore, the propagation of aliases in the binding graph should

he more complica ted than tha t in the step 3 above. In fact , the main difference between

[Il l end [:ia}is I.ow to propagate the alia .... sets among secs in step 3. In [11), first, each

s e c is m inced to n single node. Then, the alias sets are propagated along reduced

gmph. Finally, the reduced graph is expanded into the original the binding graph. In

[38],Tarjan 's depth-first search algorithm [46] is used to find s ecs and propagate the

f1 l itl.~ sets along the binding graph at the same t ime. This improvement simplifies the

algorithms. A detailed discussion is given in [U, 3a, 46].
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2.3 .2 Detecting Type-2 Aliases

T}'Pc-2 aliases arc caused by using n.Iias variables Of the sa llie vnriable more t hun tlt l\"l '

as an act ual parameter in a single procedure invoention. For example, in Sl. CALI.

Pl (Gl ,Gl,G2 ), th e variable Gl is used twice as an actnnl par ame ter for PI , lit l F I

and F2 are aliases of ench oth er ; in S3, CALL Pl (G3,1"·I, 1"5), G3 is a T~'PI' -l uliusof

F5, so the formal parameters Fl an d F3 of 1' 1 arc also nlinses.

To detect Typ e- 2 aliases, a set n has been propo sed [381 (culled a 1II0rk ii.•I). ElIl'h

clement of n is a triple (p, fl' h ), ind icat ing thnt the formal pllrnlllt'tt~rs I I nud h of a

proc edure p are aliases of each oth er . When al l Type - I aliases of n prourmn are known,

Type -2 aliases can be determi ned in the following two st l~ P,~ [381:

l. Construc t tile initi al set n of t he program .

For each invoca tion CALL 11(fll , . '. ' n,,), a nd for nil netunl pamllll't,!'I1l

11; and 11" 1 :::; (I i < (l j :$ 11, such t hat fI ; = fl) or fI ; ls lU I 1Ili jL~ of I t } ,

the corresponding forma l parame ters I i and Ii IIf t he proeoluro 11 lIn~

added to n as R trip le (p, I;,I;).

2, Expan d t he set n.

For each triple (1', / 1,12) in n, check cad i Invocauon CALL ,,(ftl, .., fl,,)

ill th e procedur e II, and if there arc 111:1.11111 purametcrs fI ; and Ilj . 1 S i <

j :::; n, such that I I = (Ii aut! h = (/j, t hen find t1w formal 1'1Ir;1I111~tl~r:;

J: an d t; of the proc edur e II and mid the triple (r,',I:,f; ) 1.011.

For the example program, st ep I creates the work list H as shown in F i l!;lIrt~ :.Ui TILI~

Type -d aliases of th e program , ob tained in st ep 2, a re shown ill Table 2,:)' L:om biuilJl!;
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Ta ble 2.3: Typc-2 elinsce for t he example progr am.

F1
F2
F3
F1
F5
1"6
1"7
F8

Ta llie 2.2 with Tahle 2.3 creates the complete aliases for each formal param eter, as

shown ill Table 2.4.

Figure 2.5: The complete work list n of t he example program.

2.4 Dependence Graph

Bnth cont rol and data dependencies ca n be rep resented as a graph , called a dependence

!JHll!lL. The depondoncc graph G of 1\ program is a directed graph G = (N, El, where

tht! set (If nod es, N. is the set of the assignments and bra nch conditions of the selection

and ircrntiou constructs of the program, and t he directed edges, E ~ N X N , represent

both dntn and control dependencies . An edge (S;, 5;) is in E if and only if 5, is data.

dependent or contro l-dependent 011 S;; if SJis control-dependent on Sj, (S;, B;) is labeled

1"(tl1l1') or F(f(ll.~ e), to distinguish t hem from data-dependent edges. A dependence

v;raph also contains the initinl node ENTHY , which, as in control flow grap hs , represents

a uniform beginning of the executio n of the program.
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Tabl e 2..1 : Complete [Type- I and Typ c-f } aliases for th e exaurpleprogrnm.

formal param eter f
F1
1"2
1'3
F,t
1"5
1"6
1"7
1'8

{GI , G3.f~,F3)

(GI ,G 3,Fl ,P 3)
{GI , G2 , G~ , F1 , J'~ J

(Gl , G3, l' " FG)
(01,G3, l' ,t,FG}

{GL,G2 , G3,F-i, 1"5)
{GI,G3, l'S }

{Gl, G 2,03,F7}

For example, in the program shown in Fig ure 2. G(a), S:l, S:11 8.1 nud S1 IIrt' C'tllltrnl-

dependent on 8 \ . Sr. and 8 0 arc con trol-dep endent 0 11 S4' Sf, is dat,a-dept!lltknl, nil Sa

due to P , 51 is da ta-dependent on SG due to U, and S~ i~ datu-depe ndent UII S:l diu' I,u

y. The dep endenc e graph G is shown in Fi g ure 2.6(h).

Sf : IF (A)T HEN
S2: Y",X+Z

ELSE
SJ: P"'M-S
~ . IF(B) THEN
S5: V""P+S

ELSE
.\6: U=Y-Z

ENDIF
S7: Q"'U

END IF
Sa: T=Y

(,j (h)

Figure 2.6: An example progra m nnd it.sdcpcudence graph .

Note tha t this dependence graph is differe nt from the IJmrJ"17n rlerll~7lIIe'IO~ !}lTITIIl a....

defined in [IS). In a.dependence graph, the re are JlO nf /i on TI()IJr..~ used lei slUlllImrbw

t he cont rol cond ition for a node and to group all nodes which hav( ~ the SIUl W .~(!t of
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control cond itions. More information about program dependence graphs can be found

in Jl.5, 7J.
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Chapter 3

Evaluation of Inherent P arallelism

Research in the area o f exploiti ng the parallelism of prognuus hns been eoudueo t lIVI ' [

many years, and several experimental compiling systems exploiti ng pareltettsm in FOIl-

TRAN programs have been developed 12,3 , 7J. Howeve r , these SYlilClllS usunlly exploit

only loop parallelism. Even t he recent contr ibu tions (321cnuuot dcal wit.h pnmlldislII

between different loops or betweena loop end the other parts of 11pnlJ.:rnlll . This chnp-

tel pr esents a new a p proach, which ca n be used to dt~al with parallelism between Inol1~

and between loops an d other parts of 11 program to evaluate t he program's lnhorent

paral lelism. The presented ap proach diffe rs quite significantly from the pn;viulls work.

T he speed u p factor is used to evaluate the pa rallelism of n program. 1\~ define d ill

Chapter 1, t he speedup facto r of a program is

ilTJlX rl U TI = ~~"r iol ,
1 pa ralld

where 1~ <r;...l is the t ime of t he scqncnt ta l execution of t he progr am , nrnl 1~rolM is tlll~

time of the maxi mal ly para llel execution of the smue p rogram. Ohvionsly, 1 ~ffitd 11m!

T""rall.l arc functions of the p rogram as well as its inpu t datil.

Given a p rogram P and its input da ta V, we Call [ec nceptnnlly ] execute the prog ram

P wit h D. In this exec ution , for each selection constru ct ill P, we call determine the
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mille of the boolean expression B (the branch co ndition) which can be TRUE or FALSE.

This val ue isca lled the e%ecuting value of the selecti oncons truct, an d isdeno ted by b. If

thesch..c tlonco nstruc t is nested in nloops with indieesi1 , •• •,i" , l ::5 i j :5Nj, i = l , .. ., n ,

there m e N, x ... x N« executing values for the s ame boolean expression B; all t hese

values ar c denoted by h( i\, ..., in } . The ex ec uting va luesof all select ion constructs of th e

program P with data D are used for calcu lating th e values T"'illl a nd T~arlJJtd '

3.1 Eva luat io n of T ,crial

If II statement S L~ nest ed in n (n ?:0) loops with indices ill ." in, S's sequential cx e-

cutten tim e for tile iteration (ii , ..., in) is den oted by Tm ia/(S,(i h . .. , in)) . It is assumed

that for an assignment sta tement S (with no func t ion invocations), the seria l execution

timedocs uot dep end u pon the ite ration , so T..ro..z (S,(i h . .. ,i n)) = T...io/(S ). theser ial

cxccuu ou time of the s t at ement S,

The scqucn t.ial exec ution times or t he sequenc e, selec t ion and ite ration construc ts

arc as follows «, is t he exec ution time of the b oolean ex pression B in the select ion

constr uc t, and b(i1, ••, in) is the executing value of the select ion con struct) :

. ..;cqucnce:

• .'1eleclion:

{

tb + T..,ia.! (S Il (il,.· .• inlJ,
r • ' • • ifb (i1> .. ., i,,)=Ti
T~"""'I (lfBthenS,elseS2 endlf,(ll1 ...,ln» = t T (5 (0 0))b+ " ,ia.! 2, 11,···, ln,

oth erwise.
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• iteration:

T~",r iGl( for i := 1 t o fl do S enddc , (i .. .., In)) =E T,rr.-..I(S.(i" .., in, i)).

An implement ation of t he evalua tion of T~rrjol is desc ribed in the next,dll\p tl'r.

3.2 Evaluation of TraTalld

The evalu ation of Tporllllel is more complicated than tlmt of 1:"', ;<01 beenusc i t. 1Il1lNt

t a ke into ac count bo th con trol and data depende ncies muong t he statclllt'Ilt.S o f II j.\ivcm

pr ogram. In the pr oposed ap proach , the cont rol and da ta de pendencies are rep roseutod

as a dependence graph, and T""rolld is evaluated on t he basis of this de pendence graph.

For sim plicity, in any depende nce graph G, lilt edge (Si ,~j) is ea 11cd a f:ontn!/Ilf:-

pendence edge if 8j is cont rol dependent on S;. A node 8, i!Jculll'{l 1\11 I F node if Si

co rresponds to a br anch con dition in a select ion cons truct , aw l it is calledu Icopuodc

if S; corresponds to a branch condition in an iteratio n const ruct. Fur thermore, n limit'

is called a control node if it is an I F node, loop uodc . or EN1'IW no de. Not.(~ tlml if

an edge (S" 8J) is a control dependence edge, Sj must. be n control 1lQ( 1(~ . A path Imm

E N TRY to Si is cal led a control path CP; of H; if its all edges (ENTHY,s' I)' (b~,S-;) ,

... , (8'",,8i ) are con t rol depe ndence edges.

For each statement Hi of the program , t; is used to denote theexecution timu cl this

st a tement, a nd T; t o denote the to ta l execut ion time of max imally pnrnlld cx ccutkm

of all stat ements from the beginning of the progra m t o Si [i ncluding So). It is 1\."h'j IlUl,~d

that both t E NT RY ana TSNTRY arc O.
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3.2.1 Evaluation of1i

It can he cbservod that for any given program and any s t atement 5j , if 5 j is data

dependen t or control dependent on anothe r statement 5;, th en 5j must be ex ecuted

after 8. (if S, is go ing to beexecuted at all ). In o t her word s, Tj should be eval uated

after tilt: evaluauion ofT; . This is the basic principle of the pr oposed approach .

Ha stntemcnt Si isnes ted in n (n > 0) loops with indices k""., k n , a logical function

Pi(k l , . .. , kn ) can be define d in such a way th at F;(k l, .." kn ) is TRUE if and only if t he

statement S; is ex ecuted in the it eration (k lo ",k n ) . i.e., t he control path CPo of Sj in

G is 'rRUE; otherwi se F;(k .. ,,,,k,,.) is FALSE.

There nrc two cases to be considered in evaluating 1;,

Cnse One: S; is not in cl uded in any lo op,

ln gener a l ease, e ach node Si ill t he depend ence gra p h has n (II?:0) data dependence

edges (S; ,j ,S;j,j = 1, ... ,n, and one cont ro l depen dence edg e (Si' , S;), as s hown in

Figure3.1(a).

@ (i;)
~ <, r/F ­
:0
~

(. j (bJ

Figure 3.1:The dependence gra ph for node 5;.

III this cnse.

1; = {t;+max{n' l, ,,.•1i,n,Ti') ' if F;; (3,1)
r", other wise.

For example, the progra m shown in t he Figure 3.2(11.) can be ev aluated using the

formula (3 ,1), Let the execu ting value b of B in 52 be TRUE. Then:

3 7



5,.' P:M-S

52: IF(B) THEN

SJ: V=P+S

WE

s" U=Y-Z

ENDIF

Sj .' ""U
Figu re 3.2: The exa m ple pro gram I and iL~ dopendenco HTnllh.

T l=tl•
T 2 =12'
T3 =1, + mum . T 2)==h +m AX(tloh),
T. = T2 = t2, and
T" == 1$+ m u (T. ) =t$+ t2 .

On tbe oth e r band, i f the executing vallle " of n in~ is FAL.."l£:, then:

T .=Ir,

T2 = 12'
T,=T2 = t 2,

T. = 14+ m ax(T2) = I. + ta , nlld
T ,5 =f5 + mu (T. ) = 15+ t. +t 2-

Case T wo: 5; is in t he loop b ody.

Forsi mplicity, the lccp-camed -depeedcncc is limit ed to Il s ing leloop wilh l\ lJonuali7.CI' I

index whidl va r-ies from 1 to N with a u nit incrc rnetlt be tween itel"tioll.Oi. LetS. hl ~

loop-cn rned-de p eedcnt on only one Sj in t his loop (II similar llWroll c:!l(nil he cxtelld l!fl

to more complex loops a nd more nodes Sj 011 which S. is loorl-carril~ I. r1 I~ fwlHh'lIt ; all

implerncntntlcn of the ex tension is dtoscri hed ill th e next ch apter}, !I. Hilllpl(Jt:XfllIlplrl iN

ltSrollows:

so: 00 1" 1 .11
51: ACI) -B(I)
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52: 8(n-A(I+ l)*C(I)

53: ENDDD

5 1 is loop-e a rned-de pendent on 82,8210812
, with distance (-1 ) due to A{l) and

A{I+I) , aIHI 82 is nlso anti-dependent on 81 becaus e of B(l). This program can be

unfolded IL~:

A(1)=8(1)
B(1)o;:;A(2 ).C(1)
,4(2) -B(2)

B(2):A(3).C(2)
A(3) =B (3)

B(3)= A(4).C(3)

A(Jl)-BOO
B(H)-A(H+1)*C(H)

mill the n it can be obser ved tha.t , due to th e enti-depoadcnciee in A (2), A(3 ), .." A(N) ,

the stu tcments canno t be exeeu t odln parallel .

In general ca se, each node So has n (u ;::0) dependence edges (S;,j,S;J, i = I" .,u,

one con trol dependence edge (S; "S;). and nne Io o p-cerr re d-depe ndcace edge (8;, So)

with t he direct io n distance D = (d), 1L'ls hown in Figure 3. 1(bJ. To dealwith the loop-

l'nrried -dc]ll'ndence among the iterations of the loop, T; is re placed by Tj(k) where k is

the loop iteratio n index, k =1, ... ,11.T hen:

" { t, + "'''''IT;.,lkj, ,T,.•lk), T"lkj ,T, (k -ldlJ), !fF,lk) and k > Idl;
1,(k ) = t, + '"""IT;.,lkj,. T,.•I>j, Til>)), If F,( k) and k ~ Idl;

T i , (k), otherwise.
(3.2)

For t he ahove program, F;(k) ,i =1, 2 , is always TRUE because t here is no select ion

ennsrrurt in this program . Then :

l'dl) =t,.
1;(1) = t2 +ml\X(T.( I)) = t l +12 ,
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TI(2) = t l t max (T2(I)) = 2t. + t2,
T2(2) = t2 t max (TI (2)) = 2(t. + t2) ,

r l (3) =tlt m ax(T2(2) ) = 3t l + 2t2,
T2(3) =t2t max(T.(3» =3(t l +f2) ,

TI{N ) = tl t max (T2(N - 1)) = Ntl + (N - 1)1.2 0and
T2{N ) = t1 t max (T.(N )) '" N(1.l t t2)'

T hat is, th e loopcannot be executed in para lle l.

Another example for this case is as follows:

so : DO I-l,N
51 : A(I) - S (I)
52 : B(I) "'A (I-1).C(I)

53 : ENOOO

82 isloop-carried -dependent on5 1, SI JS?, with dist ance (-1) due to A( I) ami A( I-I),

a nd 82is a lso anti-de pendent all SI because of 13(1). Theil :

T.{l) =tl>
T2(1) = t2tmax(Tl(I») = tl + t 2,
T.(2) = t"
T2(2) = t2t m ax(T1(2) , 1W )) =t2 t ll1ax(t"t l) =tl !· t 2
T.(3) =t"
T2(3) =t2t max (1H3) , T1(2)) = t2 t mnx(tl, t .) =tl t ea,

T.(N ) = tit and
T2(N ) = t2+ m nx(T;(N ),1;(N - 1)) = t 2 t lllnx(t lt t il = t . tt'l'

Althoug h 51 and S2 cann ot be executed ill parallel, the loop ecnt ains IiOUIe par­

allelism (whichcan be SCCIl af ter unfolding the loop). This example shows that. tln-

pr op osed a pproach d et ects parallelism existing in loops with loop_f:llrr ied_t1f!II(:Jlcl(:lldl~ .

The correctness of the proposed. app roach call he ver ified by the example shown ill

Figure 3.3 a nd used in [32] to illust r ate the pa rallelism available ill loops . [32J !IIJIJWS

t ha t the loop can be executed in 7N timeunits assum ing that an additio n is executed
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So: DO I"'I ,N
,'il: A(I)=E( I·I)+6
SZ: B(I)=A( WZ
SJ' C(1)=B(I·l)+ X
,':/. D(I)= C( I)+Y
SS; E(I}=B(I)*D(I)

EN DDO

(a) (h)

Ftgurc 3.3: Th e example program 2 and i ts dependence graph.

in one time unit and a mu lt iplicat ion requires three time units. T he re nre two loop-

car ried-data-dependencies in this example, that is, 8 66"51 with the d istance (-1) and

S2{/S.1 with the distan ce (- 1). Let to =0, t . = t3 = t4 =1, and tt= t s =3. T he values

of Fi(k), i:= 1,5 are TRUE as there is noselection construct in the program.

F'or N = 1:

7i( I) =t, = 1,
T2( 1) = 1"2 + runx(TI (1)) =3 + 1=4,
1;( I)=tJ = 1,

14(1) =It + max(T,l(l )) =1 + I =2, and
1H!) = '0 + m",,(1HI),T,i l))

=3 + max{'1, 2) = 7 = 1* 7.

F'orN= 2:

1H2) = II + max(1~( 1» =1 + 7=8,
72(2) =t2T max(T)(2» = 3 +8= 11,
1;, (2 ) = tJ + max(T2(1)) =1 + 4 = 5,
14(2) == t4 + mnx(T3 (2 )) =:1 + 5 =: 6, and
10(2) =''+ m",, (T,(2 ),T,(2))

=:3+ mnx(l1,6) == H = 2.7 ,

III general case, us ing induc t ionon N(N > 1):

T,(N) = 7N - 6,
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T, (N) ~ 7N - 3.
T, (N) ~ 7N - 9.
T4(N) = 7N - 8 , and
T,(N) ~ 7N.

SoTs(N)=7 *N.

3.2.2 Eva luatio n o f Tptl rn!lrl

If the analyzed program consists of /II statements, then af l.cr filldi ng nll T i , i :=l , ", M,

the totalexecution time is:

(3.')

Moreover , if 5, is ne sted in 71 loops with lo op indices ii' .., i n S1\('IL t hat I $ ii ~

For examp le, in t he program shown in Figure 3.3(:\) , sinee fo r ('nell1i ,i = 1, ",u,

1](N) =m""(1](l )... .. 1](N)) . a nd,

T",,,,lI~1 =max(T 1, ···,Ts)
= max(T.{N ), . .. ,T&(N»
= max(7N- 6,

7N - 3,
7 N- 9,
7N-8.
7N )

=hN.

That is, t he same result is o btained as ill 132], bnt using n d iffcn:ut nppruarh .

For the program s hown in Fi gnrc 3 .2(3), if B inS~ is TRUE, Hum:

T,.nllel = max(T" . ,n> = max(t ll lj , tJ + max(tJ, t2 } , t~ ,tr, + I~ J

= max(t J + max (tltI2), t r• +11 ) ,

On the other hand, if B in 52 is FALSE, then:
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Sf: DO J:I,N
S2: A(I)=E(I}+C(I)
.u, B(I)=A(I)tD{l )

'''- C(I)=B(J}+F(J)
ENOOO

S5: DO 1=I,N
-\>- X(I)=Y(WW(I)
S7: W(I)=X(I)+V(I)
.... Z(1)=A( I ) t W(I)

ENODO

(, ) ~)

F igure 3.4: The example program 3 and it s depend ence gr ap h.

1~rt>l1~j :=Jnax (T1, ,,. , T 5 ) :=max (tl,h,t2 ,t "f t2, t s+~ + t 2 )

:= max(t l, l~ + t 4 + ~ ) .

Note th at during the calc u lation of T; by using the formulae (3.1) and (3.2), there

is no restric tion on the positi o ns of statements S" and SiJ, j = 1 , "., n. T he st a t ements

Si, S,' and S'J,j = 1, ,,.,7(, can be lo cated in differen t loops and basic blocks. This

mcuna thnt the prop osed npproach ca n be used to evaluate parallelism between loops

IlS wcllns be tween a loopand other b asic blo cks.

For the program shown in the Figure 3.4 (a), ther e is a dependenc e between the

stu tomcnts in the two loops. Le t II = t~ = O. Sinee there is DO selec tion const r uc t end

110 Joop -carrto d-deea-depcndence in t h e twolo ops, then for i = 1 , .., N :

Tl(i ) = t,=0,
T,l') =1"
T.l (i) =I, +ta•
T~ (i ) = t4+ max(1;(i ), T a(i)) = t2+ t3 -1-t4,

T:;(i) = t~:= 0,
16(i) =1 6,

17(i) = IGf t 7 , and
1i(i) = tl + max(T,(i), Tr (i)) = max(t:l,t6 +Ir) + ta.

That is,for e ACh 1j ,~ := I" .. , 8 , Tj ( l ) = ," == 1j(N) = T i . So:
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So, 00 1- 11"
5/ : A(IFB(I)
52: IF (C(I).O E. O)1HEN
53; B(!)ooA (I·I)" E(1)

ELS<
s" B(I)=A(l+ I)°F(t )

ENOl'
S, .. F(JFG(I)+ H(ij

ENO DO

(>l ,bl

Figu re 3.5: The exam p le program ojand itsdcp endeacc gmllh.

T,..oIld "'= max(T1,." ,T.)
= ml\X(O,4,1~ + ea, t,+ t 3 +1 4, 0, tn , IG+ '1 , IIlllx (I~, l fi +L1) + I~ )

== max(t:z + t~ +t ... mll.'t(t2 .4 +tT) +tl)'

If ee +t1:?: ea, then T,....oIltl = max(t'l + 13+ t .. . t. tt, + tRI. 'l'hnt, is, t ilt) tll'll lnUl1N

can be executed in para ll el, cwn though t here exi ts the dCJlc mlcncc S~OSR h e l Wl"lL t lu-

two loops.

The program shown i n the Figure 3.5(8) ront a illllll liCI«:tion cons tr uct within un

I teratio n coastr uet. Ther e are two lccp-ca rried-dcpcndcncic..., SIdes:. wilh t he IIt.ta nc"C

( -I), and S.6cS I with the distan ce (-I). SnplXlsc dull. N U.cqllnl to oj, a nd Irt r.lu·

execu t i ng valuesol SJ be b(l ) = T , b(2) = F, b(3) = Jo'Alld b(oI)= T . 11len :

T t(1) =t lo

T 2(1)=t2 .
T 3(1) =t3 +max(T 1(1),T, (1 » = t3 +max (t lt t2) ,

T . (I )=T,(I )='"
T a(l) =t s +max(T 4 (1))= ta +t~,

T t(2) = t l +max(T4(1 ))) = t l +t2 ,

T 2(2)=t2 ,

T,(2 )=T,(2)='"
T 4(2)=t4 + max(Td2),T2(2))=t4 + mnx(t . +t" t2) =!l + t;z + t.
T s(2)=t s +max(T 4 (2))=t l +t 2 + t4 +t 5 ,

T, (3)=t, +m",(T.(2)))~ 2',+ t, + ~,
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'12(3) = t:z,
'13(3) = 12(3) = t2,

1 ~ (3 ) = t~ t maxm (3),T2(3)) = t4 + max (2tl + t2 t t4, t2) = 2tl + ta t 2t4
1(,(3) = t.~ + max(1~ (3)) = ts + 2 tl t til + 2t4 = 2t l + t2 + 2t~ + ts,
1i( 1) = tt + max(T~(3)) =tl + 2t l t t'l + 2t4 =3t l t h + 2t4,
12(1) = t2,
1:1(1) = t~ t max (1'r(1), T2(1),TI(3))

=ta t max (3tl + t -zt 2t4. t il, 2tl + til + t t) = 3t l t h + t3 t 2t 4•
14(1) =12(1) =t2,
1;,(1) = ts t max(T4(1)) = t2 + t s.

Therefore:

1'1 = max(Tl {1), ...,1j(1))
= max(tl,t l +t2,2t l tt2t t4,3tl tt'l +2t4 ) = 3t l tt2 + 2t4,

12 =max (T2 (1) , ...,12(4)) =max(t'l,t2 ,t2,~) = t2.
1j = mllx(1j( 1)•. ..•T3(1))

=max(ta + max(th t'l).t'l, t2, 3tl t t'l + t3t 2t4) = 3tl + til tt3 + 2t4,
1:1= max(T4(1), ...•T4(4)) =max (t'l, tl + t'l t t4, 2t1tt'l + 2t4,h ) =2t l +

t'l +2t4,
1}, = mllx(Ts(1) , ...,n (1))

= mnx(t'lttr.. t l+t2+ t4ttS, 2tl tt2 +2 t4+t S,t2+tS) = 2t l t t'l+ 2t4t tS'

So:

1~"r"ll<I = max(1'I, ...•Ts)
= max (3t l + t'l +2t4 , t'l, 3tl t til + t~ + 2th2t l + t2t 2t4,2t ) + til+ 2t4 t ts)
= max(3t l + til t ta+ 2t4, 2t ) + til+ 2t4 + ts).

3.2 .3 D iscuss ion

Program vcctorizatio n and parallcliaati on often uses operations called reduction oper-

(Iti on,~, such as stun or maximum of a vector or dot products. For example, the sum

tlf all array, say A, is such a reduct ion operation. as shown in Figure 3.6(8). On a

parallel machine. the slim can be calculated in parallel in a binary fashion as shown

ill Figure 3.6(b), with time complexity O(tl log2 n). Th e procedure of this calculation
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is equival ent to a transfo rma tion of the loop into O(log2 Il) 100JlS a mi eXec:':n t i lL~ t llm'

loops in parall el.

S""
DO I=I.N

5, : S=S+A(I)

ENDOO

A(I) A(2) A(3) A(4)

\/ \ /
<:>...

A(N·3) A(N· 2) A(N- I) A(N)

\/ \/
<;>..,

(a) -+­(b)

Figur e 3.6: Th e sum of an array and its calculutlon in I!. para llel Ulachillt!.

One of the characteristic s of t he prop osed approach is tbnt the ev nlnation of tlw

speedup is d irectl y performed on t he or iginal program , NO there is no noel for nuy

tra nsformati on of the program. T herefore, the value O(t 1Iop;.,It) cannot be ohlnilled

by using the proposed app roaeh . Fortunately, most vecto r or parallc l machiues Jlfllvicle

inst mct ions to pe rform red uctions (121, and the projlQS('(1 approa ch r-an l·n...i ly rt'I'tll!;ll i:tA'

these reduction operations by dependence annly"is. The refore. it is ....-'mlUl.'C1 llml All

reduction operations can be executed on n paral lel machine ill Il. co nstnnt t jrue, t;lly I,

and t can be used to evalua te T....,.ooIld '
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Chapter 4

Implementation of DSA

A program called DSI\ (Dependence and Speedup Analyzer) was developed and used

to perform the dependence analysis and t he evaluat ion of the inherent parallelism of

FORT RAN programs. Th is chapte r conta ins a brief descrip tion of DSA an d its imple-

mentation.

4.1 Overview of DS A

DSA performs the evaluatio n of the speed up facto r of a program in the following t hree

phases: program analysis, dependenc e ena lyeis and the speed up evaluat ion.

In the program analysis phase, DSA first reads the source Fortran program and

performs its lexical and syntax analysis to collect all the relevant informa t ion about

the progra m. Then DSA performs preprocessing for depen dence an alysis an d speed up

evaluatio n. T his preprocess ing consists of the generatio n of the contro l flow graph,

calculation of IN ana OU7'sets, and alias analysis. The contro l f1.ow grap h is used as

nil intermedia te represen tation of a program for bot h dependence testin g and speed up

cvalunt iou. The IN and OUTsc ts nrc used to detect and determine t he typ es of dat a

dependencies.The ruins a nalysis consists of Inter-procedural and int ra-procedu ral alias

analyses to expose all implicit aliases crea ted by param eter passing, and explicit aliases
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created by equiva lence declarat ions in FORTRAN programs.

After th e program analysis, DSA performs control and data dependence a nalysis

and alias analysis based 00 th e informatio n collected dur ing the program analysis . '1'111'

contro l dependence testing algorithm proposed by Ferr ante [Hil hns been implmlltmtt'd

in DSA. In t he dat a dependence analysis, the itera tion- recursion algorithm for 1110111\1

data How a nalysis is a pplied to datil dependen ce testing for both scnlnr vnriahies II l1d

array elements . Three data dependence testing algori thms, Allen and Keuucdy'a GCD

decision algorithm [3), Banerjee and Wolfe's decision algorithm (,18J, and Burke and

Cytron's hierarchical testing algorith m [OJ, have been implemented in DSA to improve

the accuracy of depe ndence tests. III alias analysis , Cooper a nd Kounody's fas t lutcr-

proced ura l alias an alysis n.Igorithm based on a binding graph 1111, 11, 381is used. lciunlly,

all control and data dependencies arc represented as a dopondouce graph.

In t he speedup evaluation phase, DSA cvalnntes the inherent parnllelistu of II pro..

gra m by evaluating its speed up Iac tor. The control flow grap h nnd tim dr.pt~ lldm ll:()

graph of the program arc used for this evaluation. T he cvnluation of 1~"illl ill per­

formed using the control Sow graph, while t he evaluation of 1~'~U'1 is uased Oil t he

dependence graph. The a lgorlt hrna presented ill Chapter 3 are used tn elllcl\ lllll~ t lu-

speedup of programs.

4.2 Program Analysis

Pr ogram analysis performs lexical and syntax analysis of the program and JlreprOf:('~.;si llJ.:

for depende nce analysis and speedup eva luation. During the lexical and syntux IllJalysill,

the following informati on is collected :
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• Var iab le Table V: Each clement of the Variable Table V is a pair (id,att r),

where i rl is t he name of a variable, and uttr is a collection of att ributes, such as

type and the length of the variable.

• Call Table C: Each clement of the Call Table C is a record which consists of

three items : the line number, the name of the caller, and the invocation of the

procedure. for the example program of Section 2.3, the Call Table C created by

DSA is as follows:

line
3
8

13
14

invocation
Pl (Gl , Gl,G2)
P2(F l, F2,F3)
Pl(G3,F4,F5)
P3(F5 , F6)

• IF Set 1: Each clement of the IF Set 1 is a trip le (c, b,e ), where e,b and e are the

line numbers of the cont rol, the first and the last lines of eaeh selection construct,

respectively.

• Loop Set L: Each clement of the Loop Set L is a quadru ple (c,b,e, v) where c, b

and care tho numbers of the control, the first and the last lines of each iteration

construct , respectively, and 1J is a triple (i,J , 8) where i and I arc the initial and

filial values of the loop control, and s is the increment .

• ST Set T: Eachclement of the ST Set T is a triple (I, t.. t,) where t is the line

number of an executable st atement S, and t. and tp are the execution times for

serial and parallel execution of S, respect ively.

Th e preprocessing of dependence analysis includes the generation of the contro l Bow

graph, finding the IN and OUT sets , and alias ana lysis. The control flowgraph is an



inte rmediate rep resent atio n of th e progra m and is the bnsis for the dependence allaly~is

and speedup evaluation , TILesets IN and OUT nrc IIsL"t1 to detec t datl\ tlt' I}(,lltlt'llt~it's

and to deter mine the types of the tint-a depe ndencies. T he nlias analysis ,11,I.t' rmilU'l;

the aliases produced by the pro cedure passing mechanisms and dat n equlvnh'nvrs ill

FORTRAN programs. T he resu lt of alia'! ana lysis is recorded in t he Alias Sl'lllllSt'tl fm

data de pendence analysis, Since the aliases produced by da ta t'q1\ i va lell(~" s (C( )~ II\I()N

anti EQUIV ALENCE statements) arc explicitly decla red. theS!.' altascs are uhtalJU'd

by di rectly anal vd ng the declarations of t.he progrnrus . T Ill' ullnses 1)("()dlll1'tl by t.Ilt'

procedure p ass ing mechan isms arc obtai ned by lutc r-proccduml alias ana lysis . 'I'he

algor ith ms of inter -procedural alias analysis descr ib ed ill Chapter :.1 are used ill IJSA,

4.2.1 Generation of Control F low Graph

In orde r to im prove t he efficiency of DSA, each nodeof the eonrrol Howgraph !:OW'­

spends to a branch cond ition of n selection or all iter ation cousuuct, lIT tu a Iit~I IIWIIl:t'

of consecutive statements called a bEor),."'; the flow of co ntr ol ente rs the hllJl:k only at.

the begin ning and leaves I\t t he end without a possibility of bfl\uehillj.\" (~xl:I'pl a t lIw

end. TIlt! generation of t he contr ol flow graph of a pro gram consists of tht~ rnllowiuj.(

two ste ps:

• the nodes of the control flow grap h nrc determined by pllr tit.itlllill}l; !.1m PfO}l;TlUlI

into blocks, and th en

• the set of directed edges of the control flow grap h is generute d.

Let the first statement of the block b e called the leader of n hloek. A so urce prog ram

can be par ti t ioned int o blocks by the following two steps:
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• the source program is scanned to determine the set of leaders, and

• for entia leader , t he leader if;combined with a ll followingst atements up to but not

ill(:l ll din~ till! next leader or lip to the end of the program.

III source FOHTHAN programs, the followingstatements arc leaders:

• DO, 11-', As.~igned GO TO , and Compute d GO TO st atements,

• st atements which immediately follow DO, CONTINUE , IF, ELSE, ENDlF, As­

sigucclGO TO , Computed GO TO, GO TO and RETUR N sta tements,

• st at ements which have a label except of FORMAT and CONTINUE statements.

Block leaders call efll,ily be identified by scann ing the source program. After de­

tnrmlning the I'ct of lenders, blocks arc obtained by combining each leader with all

staterucnta up to but 1I0t Including the next leader or the end of the program.

III DSA, a node in the control flow graph is a block (not a st atement) which is

identified by 1\ pair (m ,11), where 111and 11 arc the line numbers of the first lind the last

state ment of the block, respectively. It is convenient to define two functions, LNF and

LNL, which dctc nninc the line number of the first (LNF) and the last (LNL) state ment

of\~l\eh 1I0de of the contro l flow graph. Th ese two functions arc used in the next sect ions

uf this ehnptcr .

DSA Il~S n stnck for block leaders in order to genera te the control flowgraph of

a FORTRAN program ill a single pass. For example, for a FORTRA N DO construct,

the line numbe r 11 of the DO statement is first pushed on the stack . Whell the first

statement of the loop body is processed, its line numbe r 12 is pushed on the stack, and

an edge < il>i'2 > of thc control flow graph is genera ted. When the processing of the
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loop body is over, and the line numb er of the las t st atement of t ilt' loop lnnly is (, .

all dement l is popped from the stack, 1\I1tl/\ 1I0dc It identified by t he pnir (/./;1) is

generated . Note that if there is 110 ot her loop or IF stntcment in the loop hildy, then

1 is 12 ; otherwise 1 is th e leader of the last block ill the loop bodv, Finally, wheu ti ll'

DO END is pr ocessed with line numbe r 14 , 11 is popped from tlu- Iltill'k and tln- l'd~I'S

< 1.. 14 > and < 13 . / 1 > are generated. The other FOHT RAN stnn-muntaart' p rtlt1 'SS11 1

iu n similnr way,

4.2 .2 Calculation of IN and OUT Sets

In a FORTRAN program, t he sets IN and OUT call easily be detonnlned tlnriuA t ill'

syntax ana lysis of programs if S is an assignment, DO , IF, READ , WIUTE, !'l UNT,

or other 1/0 statement. For instnuee, if S ill 1\1l l\.",,<;iglLlllent Htl\tClllt'Ut. , \ = er,w, tlll'

pa rser willadd A to the set OU1'{S) and add 1111 vnriablcs used i n l~;qll' tu t he Net IN(S).

All such upda tes of t he sets OUT end IN can easily he do ne d nrillJ!: syntax analysis.

However, when S is a CAL L statement , or when S contninx OlW or more fuuctiou

invocatio ns. dcter minatlng IN(S) a nd OU1'(S) cunner be done duriu Jl; nnnlysis IIfS , Fu r

exa mple, for a statement CA LL p(X), W(~ may know very lit tle al101ItUw ]If(u:t't1Ute IJ

during syntax analysis of this sta tement: X mny be used to I'm.s a v alue to or fWIIl 1J.

In this case, there arc t hree possibilities: (1) hoth IN(S) !llltl OU'/'(8) sho uld contnin

X, (2) only IN(S) should contain X , and (al only OU'J'(S) should eonrnin X. So, when

S is a CAL L sta temen t or S contains OJ1il or more Iuncrlon invocntious , thu t:a ll:IlIJlt.ioli

of IN (S) and OUT(S) must be performed afte r the synt.ax unalysls is I:tlmplt!ll!ll. hi

DSA, all such sets IN(S) and OU1'(S) arc determined aftr.r the eornpletion of syntux

ana lysis and const ruction of the binding gra ph {J.



DSA essoclatcs two boolean variables def and use with each formal parameter f of

encl. procedure p. def is set TRUEif thew is at least one statement S in the procedure

l' such that f E OUT(S) , otherwise defis set FALSE. Similarly, use is set TRuE if there

is at least one statement S in the procedure p such that f EIN(S) , otherwise it is set

FALSE.

Consequently, after the syntax analysis . if S is a CALL statement, or S contains one

or more function invocations, the values of IN(S) and OU1'(S) can be determined in

two step s: t he first step determines the values of defand use for all formal parameters of

11 11 procedu res ill the program: the second step determines the sets IN(S) and OUT(S)

based on the Ca ll Table and the values of def and use of all formal parame ters.

T he following algorithm is used in DSA to determine the valuesof defand use for all

forma l para meters of u program; in this algorithm, for each node n of the control graph ,

the set SllCl:ellsors(n) deno tes the set of all nodes connected by directed arcs from n.

Al,qoritlim: Calculating def and use for all formal parameters.
Intnu: The Variable Table V, the IN and OUTsets , and the binding graph

P=(N"E,).
Outpllt: T he values of def and use of all formal parameters.

Cor each paramet er f in V d o
usc(f) := FALSE;

def(f) := FALSEi

Cor each statement S do
if f E IN (S ) t he n u"e(f) := TRUEendl f
if f E OU1'(S) t hen def(f) := TRUEe nd if

end do
enddo;
for each nodef in No do

for each h in Successors(J) do
fonllalaUr(h, tusc, !del);
1I.,e(f):= 1I"e(j)V huc;
dof(l) ,= dof(l) V Idol
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enddo
enddo;

procedure formalattr(f, tllef, tll.'ll:) i

be gin
if Successors(f) is em pty then

!use := lLse(j)i
'd,/,~ d,/If)

else
for each It in Suecessor,,(j) d o

forma latt r(lt, tdef, tuse]
enddo;
tIUlC := usc(j) := usc(f) V tusei
'd,/ ,~ d,/If) ,~ d,!!/) V 'd,/

endif
en d;

T he def and use for each of the forma l parameters arc cnlculntcdill till! fnllowillKtwo

steps: (i) the! initia l values of defand us e IUe! set for each formal pnnuuoter f delwlHlill~

on whether or not f is in IN(S) or OU7'(S) of uny statement S of the pm~ralll ; stt~ 1 1

(iil checks thc edges (/J, h) of the binding gmph {J = (Ni l, Bill und uses :~ reeurslvo

procedu re fonnala ttr to update the values of dcHil ) and U'C(JI) ,

For t he example program from Sect ion 2.3 and Its bind ing graph II shown ill lqguro

2..1, the init ial values of def and 1I., e arc : dcf(P7)='1'RUE, u,w:(FB)='1'RUE, lIud all ul/wr

vales of def and use arc FALSE. After calculati ng IU P.und drifor ullnodes ill the 1,IUdillll.

graph f3;;;:; (NfJ ,EfJ ), the final values of defand IMe arc shown in Table 1.1.

For CA LL sta tements, the! sets IN a nd OUT nrc determi ned hy thu folluwill,L!; IlI,L!;u-

rithms:

Algorithm: Finding the sets OUT and IN for CA LL statements.
Input: T he Variable Table V , and the Call Tahir. C of II progmm.
Output: The se ts OUT(S) and IN (S) for each CALL suacment S .



Table 1.1: Tile de/and use values (or the example program of Section 2.3.

formal parameter d,! use
Fl TRUE TRUE

l'2 TRUE TRUE

F3 FALSE TRUE

F4 TRUE TRUE

F5 TRUE TRUE

FO FALSE TRUE

F7 TRUE FALSE

F8 FALSE T RUE

Cor each entry (n , Q, 'J(l1 h ... , a,,)) e C do
for each argument a i in (ai, ...,a n) do

find tile it h formal parameter /1of p in V;
if d'!lf;) t he n DUTIS) ,=DUTIS) ul",l endif;
if lJsc(fj) then IN{S) := IN{S) U{a;} e ndi f

e nd do
e nd do;

The sets IN and OUT for the example progra m of Sccrion 2.3 arc shown in Tab le1.2.

Tab le 1.2: The sets IN and OUT for the example program of Section 2.3.

statementS
5,
5,
5,
5,

4 .3 Dependence Analysis

Dependence nnalyais performs the analysis of control and data dependencies and rep-

resents the dependencies AS a dependence graph used in the speedup evaluation. For

control dependence analysis, DSA uses the Ferrante [15]contro l dependence testing alga-
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rithm. Burke and Cytron's hierarchical testing algorith m [91is used lUI n test framework

of Allen and Kennedy's aeo data dependence testing algorithm [3Jand Banerjee nnd

Wolfe's inequality data dependence testing algorithm is used for dntn dcpcudcnco 11lU\1­

ysis. Banerjee and Wolfe's algorithm [-IS} is used to deal with more coruplleatcd dutn

dependence testing cases, while the aeo testing is used to improve the etliciency of

DSA. Cooper and Kennedy's fast inter-procedural alias analysis nlgorlthtu [10, I I, 3S]

is used for alias analysis. The itemtion-rccncsicn algorith m is also implemented fill"

global data flowanalysis. Since the algorithms were dlscnssnd ill dotnil ill Chap ter 2,

this section discusses only the algorithm for global data. flowanalys is and provides some

details of the Burke and Cytron's hierarchical testing algorithm.

4.3. 1 Global D at a F low Analysis

In DSA, the iterat ion-recurs ion algorithm has been imple mented for glolml dat a lIow

analysis. This section first briefiy introduces the Hecht nud Ullman's llc]lth-fil'Ntnrder-

ing algorith m as it is used in the iteration-recursio n algorit hm. The llJgorithlll l:ollsistN

of an initial part and a recursive ordering part. r..ant(A) denotes the eurdinnlity of tltl!

set A.

Algori thm: Hecht and Ullman's dept h-first ordering lllgorithlll.
Input: A control Bowgraph G with n set or nodes N 1l1II! all Iultlul node nt).
Output: A depth-first order rPostorrler.

for each n in N do vi.~ited{nJ := FALSE e nddo;
i:= card(N);
search(no,i);

pr ocedure search(n, i);
begin

visited!n!:= TRUE;

for each s in Successors(n)do
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if no t visited/nj t he n seareh(s,i) endif
enddc.
rPostorder/n}:= i;
i:= i·t

e nd;

If, for an edge (n, m) in a contro l flowgraph, rPostorder/nj j, rPostorder/m}, the edge

is called 1\ retreatingedgeand it indicates the existence of a loop in G. For rPostoTder, a

node is always visited before its successors except when the node and its successor form

11 retreating edge. Let indegree/n} denote the in-degree of node n in the graph G, and

let retreated.gr./n} denote the number of retre ating edges directed to n. Moreover, let

jDr..qT'Cc/n} = indegrer./n} - retreatedge/nJ. The iteration- recursion algorithm uses jDegre.e

instead of rPostorderto control the order of visited nodes.

The following algorithm determines the data dependence set DD . Each clement of

DD is a triple (Si, Sj, X) where x is one of FLOW, ANTI or OUTPUT and indicates tha t

Sj is e -do pondcnt on SI.

Algorithm: Testing data depend encies.
Input: Acontrol flow graph G with a set of nodes N , an initi al node no, the

sets jDegree, rPo.~torder, DUT(S) and IN(S).
Dllt[lUt: The dat a dep endence set DD.

j := TRUE;

DD,~ { ) ;
while j do

j := FALSE;

for each n in G do v~it/n};= 0 enddo;
irdj(no , {}, {}, j ,FALSE)

enddo;

procedure inlf(n,tin,toIJt,jfag,retreo.tedge);
begin

dpdltype(n,tin,tout,jfag);
if not retreatcdge then
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visit/n} := ui$it/n}+l;
if 1!isit/n}=/Degree/n} then

for each s in Successors(n) do
if rPostorder/n} > rPostorder/s}t hen

irdj(s,tin,tofd ,jlag,TRuE)
else

irdj(s,tin,tout,jlag,FALsE)
endif

enddo
endl f

endif
end ;

p rocedure dpdttype(n,tin,tout,jlag);
begin

tmp :=DDi
for i ; = LNF(n) to LNL(n) do

for each v in OUT(S;Jdo
for each (v' ,j) in tout do

if dp(v,v') t hen
DD := DD U { (S" SJ,OUTPUT)} ;
tout:= tout - {(v',j)}

endif
enddo;
for each (v' ,j) in tin do

if dp(v,v' ) t hen DD := DD u {(S;. Sj ,ANTI)} endi f
endd o;
tout := tout U {(v, ill

enddo;
for each v in I N (S;) do

for each (v', j ) in tout do
if dp(v,v') th en

DD ,= DD U {(S" S;, FWW))
e lse

crror("Thc variable" ,v,"in line" ,i,"has no value,")
endif

enddo;
for each (v't j) in tin do

if dp(v, v') t hen tin := tin - {(v' ,i )} end if
enddo ;

58



tiTI:=tinU{(v, i) }
en ddo

end do;
jl/(lJ:= not (tmp =DD)

end;

III this algorithm, LNF(n) and LNL(n) nrc the functions which determine the line

number of the first (LNF') and th e last (L NL) statement associated with the node n

(sec Section 1.2.1). The formal parameters tin and tout arc used for passing the data

flow sets OUT(S) and JN(S) in control flow graph. The iteration control part and the

recursive traversal part control the procedure of th e global data Howanalysis, while the

procedure dpdttypc performs data dependence testing. The boolean function dp(v ,v ' )

tests the potential dependence between v and v' , checkingif u and v' are the same, or

if they arc aliases of each other, 1;0 make Si and Sj data dependent. If both v and ,/

are de ments of an array, the subscript ana lysis or array element dependence testing is

needed to determine the dependence between them, Array clement dependence testing

Is discussed in the next section.

The iteration -recursion algorithm consists of the iteration control part and the rc-

cursive traversal part , shown in the above algoritbm which tests data dependencies.

For solving other global data Row analysis problems, it is only needed to change the

proeedure dpdttypc in the recursive traversal part. The presented algorithm if> more

emdcnl, than the Hecht and Ullman's iterative algorithm; a formal analysis of the

iternt.iou-rccursion algorithm can be performed by means of the semi-l attice theory

[2·1, 25, 28, 35], lind is given IIIthe Appendix.



4.3 .2 A r ray E lement Depend enc e Testing

T be following algor ithm is used in DSA for t he biM"a rchiml depe ndence tcM.iu~. "1111'

original algo rithm is dueto (9J.

Algorithm: Hierarchical dependence tcsung.
Input : The low-up bou nd matrix LU, t be coefficientmatrix C. the dlrecthm

vec tor V and the posi tion p of the first '. ' ill I' .
Output: A boolean m in e indicati ng the existence of dcpcndonee .

boolean fu n ct ion hicrcht e.•t(L U, C, V. p);
beg in

res ult := FALSE;

if ddtesti ng(LU, C, V) t hen
UP:5 cnrd(V) t h en

for each c in {'<'"=',' >'} do
if not rc..ult then

V~IJ := c;
Ior i oe p+1 to card(V ) do VI i} : :::;;. ' I ' e nddo;
re,'ult := hierchtc..t(L, U, A, B, V, p+I) V mlU lt

e nd if;
hiercht e5t := result

else
hierchtest := T RUE

e nd if
e lse

hierr:ht~ := FALSE

e ndif
end ;

lI i erchtu t is a recursive function, invoked by hierchtc.d(LU,C,lJ,l) with 1) = ( • • . , t ).

In the above algor ithm, th e boolean functio n tlrlte.'1tillg performs Uallerjl~ 's [nequul-

ity decision algorit hm lIS wellas Allen and Kennedy 's CeD dntn dCpC lldmlt: f! t.1!Nllll"

algorithm . Given till! low-up bound matrix LU, t he c:ncflid ent matr ix C flf twn nr-

ray references aud thc direction vector v, ddtc sti fl9 per forms the CGO and Ualll !rjc~ ~'s

inequality t esting. If there is a dat a dcpcnd ecce, dll teJfting returns TRUE, flt.l lf:rw ilil ~
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FALSE is returned. Note that when hiercJi!c.streturns TRUE, the direction vector v can

he analyzed nud 'J in the form (=, ...,=,<,*,...,.) indicates a loop- carr ied -dependenc e.

4 .4 Evaluation of the Speedup Factor

Since the speedup factor of a given program is defined as {;:::;;;; , this section describes

the algorithms implemented in DSA to evalu ate To.rial find TparBlld . T he original idea

and t he!detailed d iscussion of the algo rithms are given in Chapter 3.

To evaluate the speedup factor of a given progra m and to simplify t he implementa-

t io n of DSA, it is assumed that:

1. filly simple ari thmetic or logical operation is executed in t. time units,

2. any store or assign memo ry access operation is executed in t." tim e units,

.3. any I/ O operation takes t iB timc units,

4. nny built-ill mathematical FO RT I-u\N function or library function is executed in

// nmcnut ts,

5. auy st atement which contains function invocation can be executed in the time

units t.o execute its operations plus the t ime units to execute the function.

DSA evaluates T••FlnS an d l~B'<liI.1 using these assu mptions. It should be p ointed

ou t tha t, ill general , it is difficult to estimate th e execution time s of operations because

they depend upon m 1UI}' factors, such as the hardware architecture, data transfer delays

aud so 011. DSA a llows the users to modify the values of tIt tm, l;Qand tl , so users'

(':-;tilillll,('sof execut ion times ClUJ be used .
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4.4.1 Evaluat ion of T scrial

The following a lgorithm is used in DSA to evalua te 1~rrial or 11.prog ram. Th e ovnlunt.ion

is performed using the control flowgraph G of th e program , Th e ST:;It 'F is llsed t tl

calcula te the executio n time of each statement, T he Loo p set,L , a mi IF set / an' lI M'I [

to split the program in to thosequence, selection a nd itera tion roustmcts. Alllhl'se sl't~

are create d during th e program analysis phase,

Al.qorithm : Evalnnting T.~TiRI '

i npul: A contro l f10lY graph C, the ST Set 1', the Loop Set. L , thc~ IF Sl't, I,
Output: T,, "'i~l .

functi o n 7'scrial{n, i, f , (i l , .. ,i ,,));
b egin

l := L NF{n) ;
ifno t (i :S L:S1) t he n

t .<J := 0
else

if (l ,b,c, (i ,i, s)) e L th en
ts:= ts b(n);
for k :=i to f step IJ d o

ts := f s+TBcr illl (suCC(11,TRUE), h,1:, ( i i ' .., i ll, k ))
e nddo;
ts := t.s +T.~crinl(lJucc(u , FALSE), i,i, (i lt .. , i~ ))

e ls e
if (l, b, c ) e J t h en

ts := tsb(n) ;
if b(i1, ..., iu) t hen

ts :""Is + T scr ial ( ...tLf:c(It , TRUE ), IJ, e, (ii' .. , ill) )

else
ts > t.,+ Ts crifll(.<;ucc(u, FALSE),lJ, r:, (i l, .. , ill))

end if;
Is := ts +T"crial(.mcc(sl.lf:e(u , NIL), NIL), i,f)

e lse
is := tsb(f1)+ 1'81! ri fll ( .~ u(.'C( 1I , NIL),i, f ,(ii, " , i ,,))

e ndif
e n d if



endif ;
Tseria t :» t.~

e nd;

T he functio n LNJi'(n ) returns the line number of the t h e first s t a tement o f the block

represe nted by n (sec Section 4.2.1). .succ is the s uccesso r functio n , so th a t succ{n, C)

returns a successora of t he node n with t he conditionC (which can be TRUE or FALSE).

tlllJ(lI) is 1\ Iunnt.ionuso d to calc ulate the T ...;,.,tim e for node II; it j ust sums a ll t, va lues

uf tlie t.riplCl<i (I , t . ,fp) fro m the ST set T as long as the line number l is with in the basic

block n ,

Th is algorith m is defi ned by a recursive func tion Tsc rial(lI,i, I, (il! " ', i u)), where

(il , ..., i ll ) nrc the loop indices; Tscrilli cal culates t he execu tion time of the block nes t ed

in II lo o ps (i l. ... , i.) , be ginning at node n and li ne i, a nd cxtouding to li ne f. T he

algorit h m L~ inv oked by 7scrial(nc. LNF (tln}, maxJinc_no,()), where 110 is the init ial

node o f the con t rol flow graph. It is assumed that LNF(EN7'RY) is o. Whe n the fir st

lineussoclatcd wit h node II is out of soope ito ! , th e algo r ithm ter minates. Th e rest of

thl!algorithm is composed of t hr ee part s for the itera tio n . selection lind t he sequence

struct u r es. Ad ditional explana t ions arc gi ven in Section 3 .1.

4.4.2 Eva luation of T pllralld

A~ ill C hapter 3 , first t he algorit hm to calc ulate T. is presented, and then the cvalunuio n

ur1~roll" iscliSC llsscd.

Evaluation o f 1;;

The formula (3 .2) is ex tended to cover mo re gen eral cas es. It is assumed that S . is

lll!litt'd. inloopa L.,..., Lp , (lata de pendent on Si,l ...., Si ".. co ntrol dependent on St . a nd
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.'ij."

Figure 4.1: The dependenc e graph for lIodl' Sj.

loo p-carriod- deta-d epcndcu t on Sj,I" .., nud Sj,rn, a.<; shown ill Flguro ,1.1. Fur :ml'll a

case , the formula (3,2 ) can be extended into the following al gorithm , TIll! r-vnluatiou

is performed using the dependence gmph G, whiclt c ontains all lnlormntion ahont. t.ht'

co ntrol, data and lo oll-earri cd-dntll.. d epelldeneics. The ST set '1'isused ttl cnleulutc the

execution t ime of e ach statement.

Algor ithm: Evalua ti ng T;.
Input: A dependence graph G r the 81' ScI.1'; for a lIodl~ i, i' is rho ILUdl~

t hat i is con trol- d ependen t Oil , nnd i i , "" i" are the nodus thut i isdatu
dep enden t on, as in Figure .j,I; the executio n time of the uo de i is I; .

Output : 1;.

fun ction T(i , kl , .. . , kl');
begin

if i = ENTRY then
t :=O

e lse
t:=T(i',k l1... , kp )j

if N(k l , " ., kp ) th en
for 1.:= 1 to n do

t := max( t,T(it ,k l , .. , kp»
en d do ;
for each Sj such that Sj6 "S; with D = (til! .. ,(4 ) do

ir kl > abs{rl]) A .. . Akp > nIJH(rlp) then
t := max (t,TU, k ] - (lb.'I(I}I ),"" k p - 1111.'1(,11'))

endif
en d d o;
t :=t tt;

endif
e n dif;
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T := t
end;

TlJ(~ algori thm follows the formula (3.2). First, i t cheeks the control dependence

(~dgt~ (S,', S ;) awl ca lculates 1;. of the statement Si' , iL~ in the lJlhc.rwisc case in the

formula (3.2). Then , if Fi(k l ,..., kp ) is TRUE , the max of 7i , I . ... ,7i,n is calcula ted by

following the data depende nce edges (8;.11Sol ,...•(8 i ,n , S;l. Finally, if the con dition

k , > Illm(d d A.., 1\ kl' > abs(dp) is TRUE, the max of Tj,h ... ,Tj,m is calcula t ed by

following the lonp-carrled-data -dcpcndnnceedges (Sj,l , 5i ) , .. , (5"...Si )'

E val uati on of 7;....~<>11~

Ass1\ming thnt a node " in the dependence graph cor respo nds to !l sta tement Sn, and

that. S.. is nested in uloops where each loop index satisfies (ij, /;. ,sj),i = 1, ...,11,

1i is equnl to IllfLX(1i{vlJ . .. t lJulJwhere IIj = 1, ...,(Ii - ij + 1)/sj , j = 1,..., v . Let

In = nj"'l(fj - ij + 1 ) J.~j ' Au integer k, 1 :::; k :S m, can be converted into 11 v-

dbueusloue l vector (fl l , " " 11,,) using the following algorithm:

A1Yrlrithm: Ma pping.
blrmt: k ,v,Lidx = {(ij , h" ~j), j =1, ..1J } .
Outll1Jt: (VI1... . v. ).

function IIlnpl, iflg(k, II, Lidx);
begin

for i := v t o ldo
t := n;:\{fj - i j +l )fs j ;
v,,=(k - II/' ,
if lllod(k , t )=0 t hen

k:= t
e lse

k := m ocl{k, t )
e ndif

enddo;
muppillY := (vr, .... II~)
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end ;

DSA uses t he follow in g algorit hmto evaluate TpII.oU,'. For clldl 1l0dl~" ill G, first 1.111'

values m aud v are calc ula ted a nd Ml'h k,k = 1• . ..• Ill, is 1lI11PPI'd inio n /' -d illlt'lLSitlllll l

vecto r i dx = (Vll ....V") (using t he map p ing algori thm ab o ve]. "I'he vector jttr is lISt'1!

in eval uati on T(1I,id:I:) , thnt is 1~(!J l! ..• 1/. ). TlW maximal value nf n1l 1~, (III" . " "" ) is

returncd l\s Tp,, ~41I'"

Algori thm : Evalu a t ing TpII~41I.r .

i nput: A depe ndence grap h G= (N,E), tho Loop Set L.
Oulpllt: T pR,oll. ,.

function TIllIra llcl;
begin

t := O;
(or each node n in N do

m:= li
v := O;
Li dx ,=(} ;
for each (c . b.c,(i , f ..~ )) in L do

i f b$ L N P(n) Selhe n
11I:= m t (J - it l)!s;
11:= v +l :
Lidx := Lidx U {(i,f, .... )}

endif
en d do;
for k := 1 to m do

i dx: = m al!ping(k, IJ,JArlx);
t := max(t,T( n, irlx))

errddo
end do:
1'paralld := t

end;

The Iuncri o n LNF(n ) retur n s the lin e nnrnbe,' nf the fir s t stat,t!uwut assod nl.l!d wi t h

the nc de n.



Chapter 5

Examples

Fiveexamples a re shown in this chapter with the ir results produce d byDSA. Three of

these examples ar c example prog ramsin t roduced in Chapter 3, whe re the dep endenci es

and the paralleli sm in t h ese programs were analyzed indeta il. The other two examp les

nrc tnkcn from th e Live rmore Loops [14]. Livermore! Loops is a se r of 24 FORTRAN

programs selected from real ap plication codes, and tim at Lawrence Livermore Na­

tkutnl Laborato ry. These loops ha ve been used ex tensively to evalu ate the performan ce

uf com puter systems for more t han thir ty years. Detailed analysis of these loops is

present ed in [11].

Example 1 ill ustrates the eva luation of parallelis m within a loop which contains IF

statomeuts . Exa mple 2 analyzes the pa ra llelism b etween loops. E xa mple 3 is adopted

from [32]; it is used to co mpare th e results obtained from DSA with [32). T he proposed

approach is fur t her veri fied by Example" and Example 5 , which are taken from t he

Liverm ore Loops [J.l).

III o rder to simplify the discussion, all operatio n times t.,fIJI , tin and tr in Exampl es

1, 2, -I amI I) ar c M:I\IIned to be 1 time u nit.
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5. 1 Examp le I

The! following exampl e program, which corresp onds to t he exam ple progr am ,I of Chnp-

tor 3 shown in the F igure 3.5 (1\), illu strates th e evalun rlon of t he speedup fnctor fur n

sim ple loop containing an IF stat ement.

1 REAL A(O :10), B(lO), CU D)
2 REAL G(10), E(10), F(10), H(10)
3 DO 10 I " I ,4
4 A(I) o:B (I)
5 IF (em .GE.f») THEN
6 B(I) "A(I-1)* E(I )
7 ELSE
8 B(I) "A(Itl) /F(I )+ lO
9 ENDIF

10 F(I}",G(I)+H (I )
11 10 CO/lTINUE
12 END

Let the executing values a rc as fo llows:

5(1)
5 (2)
5 (3)
5 (4)

T he control fiow g raph, generated by DSA , is IL~ fol lows:

node (ENTRY): - >3 (T)->STOP (F)
node (3, 3 ) : - >4 (T)->STOP (F)
no de (4 , 4 ): ->5
node (5,S) : ->6 (1) ->8 (F)
node (6 , 7): ->10
node (8 , 9) : ->10
node (10, 11): ->3
nod e (12 . 12): - >STOP
node (STOP)

In the ab ove cont rol flow graph, each node is dcseribcd as node (ENTRY), node

(STOP),or node (n ,m) wher e n an d n arc the line 1I1111lhers of the pr ogram. Enr:h

edge is indicated by - >. Th e edges with att ri butes (T) or (F) arc associated with tho
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selec tion s tatements. For example, there are twoedges from n ode ( 3 , 3): one to node

(4,4) wit h att ribute (1) , and the other to no de (STOP) . The ST Set T of this program

is us Iollows:

Line ee tp Statement

3
4
5
6
8

10

DO
ASSI GNMENT
IF
ASSIGNMENT
ASSIGNMENT
ASSIGNMENT

Usingt he smile notation as for th e example program ,I in Cha pter 3, to = 0, t J = 1,

After the dependence a na lysis, th e dependence grap h is as follows:

node (ENTRY) : - >3 (T)
node (3 ): - >4 ( 1 )->5 (T )->10 (1 )
node (4): - >6 (0) ->6 (LH-t} - >8 (D)
node (5) : - >6 (T)w>S ( F)
node (6) : -> 8 ( D)
node (8) : - >4 (L )(- t)->10 (D)
node (to) :

In th is dependence graph, cnch node is described as node (ENTR.Y) or n ode (n)

where n is the line number of the p rogram . The edges with attributes (1) and (F)

a r c euntro l-dependence edges with label (T) or (F) , t he edg es with the attribute (D)

dn tu-depcndcuce ed ges, a nd the edg es with the attribute (L) (d) lcop-cerrtcd-dete-

d ep endenc e edges with dis tance (d). For example, nod e ( 6 ) is control -dependent on

node (5) with lab el (1) an d node (8) is control-de pendent on nod e (5) wit h label

( F); node (4) is locp-carrf cd-dnt a -depcnde nt on node (8) with d is tance (-1) and

no de ( 10 ) is data- depende nt on node (8) .

The evaluatio ns or 71, ~...ialo Tp arall.1 an d the speedup facto r of t he pro gr am ar c

sh own as follows:
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T(Em') • {OJ
T(3) • {o}
T (4) .. {1 .3.8.t3}
T (5) .. {2 .2.2 .2}
T ( 6) II {S.2.2 . 16 }
T( 8) "{2 . 7 ,12 ,2 }
t(1 0) II {4 . 9,14 .4}

Ts eria.l .. 39
Tparallel • 16
Spe edup Fa ct or - 2.44

Here , T (i ) = {d l ' ~" . •} meaus that T; ( l }= d h 1j(2) = Ilz,a llll so ou. For courpnreen,

tile result de rived in Chapter 3 is:

Tha t is:

T",,'cUlel = max( 3 . 1+ 2 + 3+ 2 . -1,2.. 1 +2 + 2 . ,1+ 2)
=1Ill\X( lG, H) =16.

The eva.lna t ion of T"ef'* in C ha!llet 3 can be used to wrify the vnlllc o f 1'.m.,, :

T.....ia.I = SI, + 4 (t1+ ta + 11) + 2t, + 2IG
=S . l +4(1+ 2 +2)+ 2 ..3+ 2 ..4
= 39.

So t he speedup factor ill indeed equal to 2.H .

5.2 Example 2

Thi s examp le corresponds to the example prog rAlli a NhoWlJ ill Fi llllrl~ aA(a). It illmr

tra t es the evaluation of pam llellsm be tween loops .

REAL A(10), B(1 0), COO )
REAL 0(10) , £ (1 0), FOO)
REAL X(lO) . YOO), Z(1 0), W(10)
DO 10 1"'1 ,10

A(I)=E(I)+C (I)
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6 B(I)aA(I) * D(I)
7 C(I) "B(I)+F (I)
8 10 CONTINUE
9 DO 20 1 =1,10

10 X( I) aY(I) *W(I)
11 iI(I)=X (I)+Y(I)
12 Z(I ) - A(I)*W (I)
13 20 CONTINUE
14 END

T ile ST Set l ' is 8.-; follows:

Li ne t s t p Stat ement

4 0 DO
5 2 ASSI GNMENT
6 2 ASSI GNMENT
7 2 ASSI GNMENT
9 0 DO

10 2 ASS I GNMENT
11 2 ASS I GNMENT
12 2 ASS I GNMENT

Usillg t he same notation as for th e example progra m 3 in Ch ap ter 3, tl = 0, t 2 == 2,

/ ;1 = 2, t4 = 2, 15 =0 , tG== 2, t T =2, and ~ = 2. The dependenc e graph is:

n ode (ENTR Y) : - >4 (T)->9 (T)
node (4) : - >9 ( 0 ) -> 5 (T ) - >6 (T) - >7 (T)
no de (5) : - >6 (0)->7 (D) - >12 ( D)
node (6) : ->7 (0 )
n ode (7) :
n ode (9): - >10 (T)->l1 (T)->12 (1)
no de (t o): ->11 (D )
node (11) : - >12 ( D)
n od e (12):

T h e values o f 11and the speed up factor of the program as follo ws:

T(ENTRY) Ie {OJ
T ( 4 ) " { a }
T (5) " {2, 2, 2,2 , 2 , 2 ,2, 2 , 2 ,2}
T( 6 ) " {4 , 4, 4,4 ,4 , 4,4 ,4 , 4, 4}
T(7 ) .. {6 , 6 ,6, 6 ,6 , 6 ,6,6 , 6 ,6}
T(9) " { a }
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1 (10) ~ {2,2. 2 .2,2,2 ,2 , 2 .2, 2 }
1(11) = {4,4. 4 ,4,4,4. 4 ,4 ,4,4 }
1( 12) = {6,6. 6 ,6,6 ,6 , 6,6 ,6 , 6}

Tseri a l " 142
Tparal lel " 6
Speedup Fact or '" 23.6 7

Comparing with results of Chapter 3:

Tp<>TAIl'1= max(11 + t;\ +t4,ee +17+ ' 11)
= max(2+ 2 +2,2 + 2 +2)
= 6.

and:

T8erill1=11t . +1O(t2 + tJ + ' 4) + 11'2 + 1O(tr, + Idlll)
=11 * 1+10(2 +2+ 2) +11 * 1+ W(2 + 2+2)
=142.

So , the speedup factor is i nde ed23 .67.

5 .3 Example 3

T his example cor responds to the example program 2 shown ill Fi~lIrc 3.:J(a ), mill is

used to compare with the result pre sented in [321.

REAL A U G), 8 (0:10) . COO), 0(0), E(0 :10)
DO 10 1=1,10

ACI )"'E(1-1)+6
B( I ) =A(1 ).Z
C( 1) "S( I-1)+X
O O )" C(I ) .fY
E (I) "S(I ) . O(I)

10 CONTI NUE

E"
Similarly llS in Chapter 3 nnd in [321:

1. an addition operatio n isexecuted in o ne time unit, and

72



2. a multiplica tion operation requires three time units.

Program analysis produces the following ST Set T :

Line ts t p St at ement

DO
ASSIGNMENT
ASSI GNMENT
ASSIGNMENT
ASSIGNMENT
ASSI GNMENT

The t iming da ta, using the uotut.ion from Chapter 3, arc: to = 0, t1 = 1, t2 = 3,

1':1= 1, 1'4 = 1 and ts = 3. The dependence graph is:

node (ENTRY) : ->2 (T)
node (2) : - >3 (1)->4 (T) ->5 (1) ->6 (1)->7 (1)
node (3): -> 4 ( D)
node (4): ->5 (L ) (-1) ->7 (D)
node (5): - >6 (D)
node (6): - >7 CD)
node (7): - >3 (L)( - 1)

T; and t he speedup factor of the program are as follows:

1(ENTRY) ;; {O}
T(2 ) = {a}
T(3) ;; U ,8 , 15. 22 , 29 , 36 , 43 ,50 . 57 , 64}
T(4 ) ;; {4 , l1 ,18,25,32,39,46 ,53,60 ,67}
T(5 ) .. U ,5 , 12 , 19 ,2 6 ,33 ,4 0,47 ,54 ,6H
T(6 ) .. {2, 6 ,1 3 , 20 , 27, 34 ,41,48 ,55 , 62}
T(7) = {7 . 14 , 21 , 28 , 35 , 4 2 , 49 ,56 , 63 , 70}

Tserial ;; 101
Tparalle l .. 70
Spee dup Factor .. 1. 44

III [321 . 1~r"llrl = 7*N = 7* 10 = 70, while in C1Japtcr3, T,.,rallrl = N * (t5+ t2+ t. ) =

10 ...(3 + 3 + 1) = 70, so the three results a rc tho same .
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5.4 Example 4

The following program is Loop 20 of the Livermore LOllp:-;[H l:

1 REAL G(lDOl). U( 1001) .vuccn , VI ClOal) .vuocn
2 IlEAL X(1001) , XX( 1001) , Y(i DOl) ,Z (l OO!)
3 DO 20 K=l ,N
4 DI=Y(K)- (G(K)/e XX(K)+DK»
5 DN=O
6 IF (01.NE ,O) TIlEN
7 DN=MAX(S , HI N( Z(K)/DI, T»
8 £HDIF
9 X(K) =( (W(K)+V (K) *ON)*XX(K ) +U(K » ! (VX(K) +V( K) _ON)

to X(K+1) ..( X(K) - XX(K» *ON+XX( K)
11 20 CONTINUE
12 END

DSA produces the following dependence graph:

node (ENTRY) : ->3 (T)
node (3): - >4 (T) ->5 (T)->6 (T)->9 (T)-> 10 (T)
node (4 ): -> 6 (0) -> 7 (0 )
node (5): - >7 (0 )->9 (D)
node (6) : - >7 (T)
node (7): - >9 (D)
node (9) ; - >10 (D)
node ( 10): ->9 (L)( - I)

If th e consecut ive executing values for lim: (i arc 1', F , F , 1', T , P , P , 1' , 'J', F , I",

and T, the values ofT&criGI , T""rlll/d and speedup fnutor, fur diffcrnnt vnlucs of N, an~

shown in Table 5.1.

N 12 16 211 24 2K 12 ](1 411

T.."", 97 193 "9 ...~~~... 4' 1 ...~!!. .. 673 7fll) l!M 9(11

••~~~~I~ . 64 II ' 16l! 2211 272 ]24 376 428 4H(l .~]2

Speedup Factor 1.52 I.M 1.72 1.75 1.77 1.1H 1.79 J.HO 1.l10 Ull

It can be observed tha t 1;.... ..U.l = /2 + 13'" N so it is O(N ), us in [141·
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5.5 Exam ple 5

The following:program is Loop 11 of t he Livermore Loops [11}, a par t of a 1-D Parti cle-

in-Celleodc.

1 I NTEGER N,K,IR(100t),IX(tOOl )
2 REAL DEX(1001) ,OEXI (1001)
3 REAL EXUD01 ) ,EXt( l OO 1) ,GRD(1001)
4 REAL RH(100l) ,RX(100l), vX(100 t) , XI ( 1001) ,XX(1000
5 DO 141 K=I,Y
6 VX(K) =O
7 XX(K)=O
8 IX( K)=lNT(GRD(K»
9 XI(K)=FLOAT( IX(K»

10 EX1(K)-EX(IX(K»
11 DEX1(K)=DEX(IX (K»
12 14 1 CONTI NUE
13 DO 142 Kei tH
14 VX(K)=VX(K) . EXI (K)+(DEXl(K) * (XX(K)- XI (K» )
15 XX(K) ..XX(JO+VX( K)+FLX
16 IR(K )=XX(K)
17 RX(K)=XX( K)-IR(K)
16 IR(K)=MOD2N(IR.(K ) , 512)+ 1
19 XX(K)=RX(K) +IR(K)
20 142 CONTINUE
21 DO 140 K"l IN
22 RH(IR(K» "'RH(IR(K) )-R.X(K )+ 1 . 0
23 RH(IR(K)+t) -roHIR(K) +1) +RXlK)
24 140 CONTINUE
25 EnO

A('cordillg to [HI, the first two DO loops can be combined into a single loo p, and the

itera tions of th e loop can be computed in parallel. However, the last DO loop augm ents

l ' lc~IllCllt" of RHindexed indirectly thr ough IR. Since the value of I R is unk nown at th e

rotnpl lc time, the third loop must be executed sequentially . T his makes the program 's

rourplexi ty O(N) , If it is known tha' each clement of IR is augmented at most once,

t.1l1'third loop could be combined with th e first two, and th e it erations of the loop could

he rompntcd ill parallel. So, the complexity would be then 0 (1).
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As indica ted ill Section 2.2.1, in most of th c d at n d epcudenee testing nl~oritlllllM .

the subscripts of arra y clements arc restricted to linear expressions of the loop index

varia bles, otherwise th e existe nce of dependen cies is iWilll11Cl:I. Therefore, for th is pro-

gram , DSA assumes that t here CXL<;tsa da ta depe ndence fWIIl line 22 to lint' 2:1nml

a Icop-cerri cd-daw-dependcncc from line 23 to line 22. The dependence ~rnph is lUI

follows :

node ( ENTRY): - >5 (T)->13 (1) -> 21 (1 )
node ( 5) : - >13 (0) - >6 (1) - >7 (1 )- >8 ('0 - >9 (1) - >10 (1 )-> 11 (T)
node (6) : - >14 (0 ) -> 15 (0)
node (7) : -> 14 (0)->15 (0) -> 16 (0)->17 (0) -> 19 (0 )
node (8 ): - >9 (0) ->10 (0 ) - >11 (0)
node (9) : - >14 (0)
no de (1 0) : - >14 (0)
node ( 11) : -> 14 (0)
node (13 ) : ->21 (0 ) - >14 (T) -> 15 (T) -> 16 (T) - >17 (T) -> 18 (T) ->19 (T)
node (14) : - >15 (0 )-> 19 (0 )
node (15 ): - >16 (0 )->17 (0) -> 19 (0 )
node (1 6) : - >17 (0)->18 (D)- >19 (0)->22 (0)->23 (0)
node (11 ) : - >18 (D)-> 19 (0) ->22 (D) - >23 (0)
no de (18) : - >19 (D)->2 2 (D) - >23 (D)
no de ( 19):
node (21) : ->22 (1) ->23 (T)
n od e ( 22) : - >23 (0)
node (23) : - >22 (L)(-t)

The val ues of T-nat , T~r"ld nnd the !lllCCfluJl facto r for d ilfercmt wl.hu':!! o f N lln ~

shown in Tab le 5.2.

Table 5.2: TlCti"" T",..,,,tctand t he spredll Jl facto r for Loti!' 11.

N 12 16 20 24 211 32 36 40

1;...- III 299 447 '" 743 '" ...I.~? ~ 11117 1335 14113..................
• • •• •~I~ . . .. .. . . .~? ....~?... ...I .~~ ...! ~~. 161 IK. 2 17 24~ 273 3111

SpccdupFac lor 3.08 3.88 4.26 4 .47 4'(i1 4.7 1 4.79 4." 4.119 4.9 3

Again , it can observed that T,..,r..ud= 21 +7. N , Ml il'l corn Jllf~xity is O(N ). Si 'lf:l ~
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WI~ cannot assume that each clement of IR.is augmented at most once , we obt ain t he

Sll/IW m'mlt as that ill [11J.
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Chapter 6

Conclusions

An approach based on dopcudcncc analysis is proposed for the evnlnatlon (If inlw rl'IlL

para llelism of FORT RAN programs. A brief review nf tltl' n~o;l'ardl Oil dt'lWlLdl'IU~I'

analys is and alins analysis is given. A comprehensive dcsedpuou of basil: alj.(tll'iUullN

for dependence analysis is provided which includes Fe rrante's CUlll.roll!t~I)('lltl(~IU:C~ t.t'st..

ing algor it hm, Allen and Kennedy 's ceo, Banerjee and Wolfe's jlJ(!(llmli1.y tC'Sl.illj.( awl

Burke and Cytran's hierarchical data dependence t.c:stiul\" algllfith llllls wdl us (;clOP!'"

and Kennedy's fflst inter-procedural alins llllillysis method. TIH'll a coueisc r(~pres(: lIta­

ticn of dependencies, the dependence graph, is introduced. Bused OIL thl~ dt~pt:lJ( [('llI:( :

graph , a general approach to the evaluat ion of the inher ent parnllellsm (If pruj.!;rllllLS

is proposed . Finally , an implementation of the contro l nud elata dl:p t:llt ll~JI(:t~ !.e's!.illj.!;

algorit hms, inte r-procedural alias analysis algorithms ami 1l1lllPlirOad l to evnluutinu of

a program's inherent para llelism is presented.

The main contributions of this work nrc as follows:

• A general approach to the evaluat ion of the inherent parnlldislIlllvailahlt. orpm­

grams is proposed. The approach can he used to evaluate! ti lt! pnrallulism ill 1001'S

conta ining selection constructs and depnndeneiea between hurutions , Further.
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mere, the proposed approach can be used to est imate the parallelism bet ween

loolls or between [oops and other parts of a program . The proposed approach can

thus deal with parallelism in a very general way.

• A progr am called DSA was developed for perform ing dependence analys is and the

evaluation of inhe rent parallelism of programs.

• A glolml datn flow analysis algorithm, the itera tio n-recursion algorithm , is pre­

scntcd. 1'110algorithm performs a recursive traversal of the control flow graph of

11 program for l\ global data flow ana lysis in every Kildal l's itera tion . TIle advan­

tages of this nlgor lthm nrc that it is easy to implement, and that the cont rol of

the order in which nodes are processed and the transfer of informa tion between

nodes arc mere efficient than in other algorithm s. For a "struct ured" program

t he nlgnrrthm call terminate in 2 itera tions, which is the best bound for iterative

algorit hms .

One to t he limited time, there remain some una ttended problems and weakness of

this project and DSA 's implementation.

First, the efficiency of the proposed approach is ra ther low. The dependencies

between iterat ions ILTC handled by n recursive calculation of loop indices , When the

diHI,ftm:(! of t he dependence is equal to I , t his is equivalent to unfolding t he loop.

Secondly, DSA cannot analyze the parnllelism between procedur es as well as Iunc­

tions. Generally spea king, thc proposed appr oach t an deal with parallelism between

procedures as well as functions, however, DAS assumes t hat two procedures or functions

"lUI be executed ill paral lel only if there is no depende nce between them. Therefore no

para llelism between proced ures which ha ve dependencies can be analyzed .
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Moreover, obtaining the executing values for 1\ given program anti its iuput tllll,/\

may be quite difficult. Although profiling tools and program traces can be used for this

purp ose, there is no tool which can directly extract the exemt.ill~ vahU'1lfor 1\ ~iV('1I

program and its input dat a.

Finally, some features of the FORTHAN language cannot be nnnlyzed by LlSA;

they include adjustab le arrays, external functions used as actua l urguurents of ethur

functions, and so 011. To address these issues, furthur research is needed.
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Appendix A

Iteration-Recursion Algorithms for
Global Data Flow Analysis

T hree di fferent versions of t ile itorntion-r ecnr slon algor ithm arc prc scutcdhcrc. 't'lu-first

version solves th e data flow analy sis problems ns efficiently a.'l t he Hl'(:ht, a mi Ullma n's

iterati ve algorith m. The second version is an impr oved nnd s]J('(:ializt:d version of t he'

first alg ori thm , which is used for llllalyz iu/l; str uctured prognuus. It. n-rminuto s ill IIt I

more t han 2 it era tions, the best hOllnd of Killiall ':.;da ta How frnnmwcrks . Tilt: tinul

algorithm is a combined version of the first and f,he sCl'owl versions, which is 1lI0rt!

efficient t han t he first version.

A.I Background

To facilitate dtscnssion of globa l datn flow anal ysis . till' da taflow p r n h Jt:lll S llTt: 11£1.1'/1 fur-

mulat cd as insta nces of a data flow uual ys is framework, 1 ~f)lIlhi ll i ll g flow gm pll s t rlll:l u n'S

with semi- lat t ice properties [1, 21, 22, 2'1, 28, 351. Thi s sr,d illlJ lntrodnnes t ilt! bl ~~ i t '

concep ts and definition s of da ta flow aual ,Y:iis frm ncwo rk ; a more fl f'tail t~1 df ~"'f:l"ip l.jl) 1l

of these conce p ts and de finitions call he found ill 11, 21 , 25, 351·

A directed 9rall!1 is usually defiflf!d n.... a pair G= (N ,b'), when: N is a lillitf! .~t ! l
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llf" l l~<; (till: 1I111uher of nodes in N is denoted IN]) , and E is a th e set of directed edges.

E c;:; N x N . Anl!dg.~ (1',y) in E is inr.idcnt from r and incident to v ; x is a predece,~or

of !I , unrl 11 iNa successor of r , TIle i ndr-,I/I"r)e of a node x is the number of predecessors

of z , and the f!ll t(lr:,qn~f: of x is the num ber of successors of x. A path Irom a ncde HI to

II lIolh~ Il~ is a sequence of no des (nt, n~ , . . . , Uk) connected by edges (II;,nhl) in E for

I :SI < k - l. The 1J11111 lmgth is equal to the number of edges in the path . A path is

.~11II7Ilf: if 1t ; :/:- Iii for i =Ij . A path is a CUe/eif 711= Tlk and k > 1.

A flow ,I/rtJIJhis lL triple G =(N ,E ,n,, ), where (N ,E) is a directed gmph, and r Io is the

illitinllwrl/:; there is a pat h from 1/0t o every (other) node in N. Th e set of all paths

from 110 to a HOlle i is denoted I'ATH{j).

A semi ·lattice [351is a qui ntuple L=(A,.o , l , ~ , n), where:

1. A is a set [often a power set ],

2. .0and 1 arc distinguished clements of A.

:J. :$ is a rdkxiVl: partial order 011 A,

,I. n is th e meet operation with the following proper ti es:

• n is idempotent, commutative nnd associa t ive,

• a~b iff an h =a,

• n-cb iff a ::;b and a l- b,

• anb:$lI.

• anu =u, ami

• nnl =a.
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A scmi. lnrticc L is dosed. if it is closed lIu.-l.cr rho upernt.ionlllt' l'! n. A Sl'lllll'lll't' J."

I2,P •• . , I" of clements of L is a elwin if :r i +l -< .r , for 1 '$ i < II. Lis IWll1lfkd if fur

each I in L there exists a constant c such that auy chain h'~illlli ll ~ with r I ll\.~ h'II/o1lh

at most c.

A data flow ana!1/.its framework (2.11is a tr iple D~tL , n , F ), whereL.is II hounded

semi-la t tice with the meet operation n, and F is a family I)f functions over L sueh thnt:

1. Each / E F distri butes over n , i.c.. for all ;r alltl y ill L, J(:r n ,,) == /(: 1')n /( u).

2. T here exists an identity function c E F snch that for all r E L , r(:r ) =x.

3. F is closed under composition , i.c., if / E F and H E F then /n E F , wlu-n- for

all x E L, (fgll x) ~ f l.'(x )).

'I. For each x E L there exists a finite subset H ~ F such that :/: :::; n / E fl /(0 ).

The existence of identity f! E F follows from the fact thn t u jlHl g fl\!ll hltlt'k enu Ill'

empty. Closure of F under composition , i.c., for all /,,1/ E F, ffl E 10', follows Irom ti l!'

fact that the concatenation of t wo blocks is also 1\ program block.

Each functio n! E F is monotorwif

(Vx,y E L)[x ~ 11 ~ f( ;r.) ~ / (1/)1,

and a function J E F is di.,tributillc if

(Vx,y E LJlf( x n y) ~ f (x )n 1(,,1I·

Every distributive function is monotone.

r is used to denote the itera ted composition of l , 111111I"> I:. Fur (~adl / E F:
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I is k: M:milllmnd ,A for individual funct ions if for all :T,,, E L and for T > k:

It. IIILo; heel! shown [35] tlmt the k-semihoundncss implies that the contribution of

thr- k-th iteration is constant, and ma ny dasstcnl lntmproceduml problems, such ns

H l~w :h i n l\" Dofinitinn, Live Uses, Availah le Expressions and Very Busy Variables, nrc

I Sl'l lI i~)()lllJdl'd and distributive f21]. A direct result tha t can be ohtuincd is that it

iii ]los,o;ihh' to wm pld,1' da ta flow nnnlysis for th ese classical intruprocedural problems

in li lli' iterutton. In Kildnll's algorith m, every node in a flow graph b visited oucc per

iteration. If the How graph eontaina a cycle, the node should he visited a t least two

ti rnl's !WT eyelc toeomplctc a round tr aversal from a node back to the sumo node. T hat

IllCall1i t hat. tho lower bound of the Kildull's algorithms must he two itcrntrons. It is

also shown [35) t lmt if I is 1 scmiboundcd and monotone. t.hen

('<13:, 11 E L)[J (lI) t 11 n :r n J(x) ].

whirh is equivalent to

(Vf ,!! E P)(Vx ,y E L)[f g(y) ~ g(y ) n f( x ) n e],

Ill T lm li ll 1-(to Ohscrvntio n Gill [2.11_This property is often used in t he proof of dat a flow

IInalYliili algorithms.

An i ll.~tml(:l: 01 n rilltu flow mlaly.~is f ramework (2·1] D = (L, n,F) is a pair 1 =

(G. .\I I. where G=(N,E,Jlo) is a How graph , and AI : N -e F is a function which maps

c.u-h ll(ll il~ ill N to a function ill F .
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A .2 Iter ation-Recursion Algorithms

The original idea for itemtiou-rccursiou ah:orithllls is tukcn frour th t, tla ta UOWlllll:' lnthul

for d ot oct ion of the datn dcpondcncies ill a program. T ill' , IYllalnil' ,h'] lI'llt l t 'lll'll'S Iwl \\""'11

variables can he determined by a recursive al~ori \. hlll for d.•ta How auab"sis. lI tlW t' I '.,r,

its t ime com plexity is high and diffleul r to Ilna lp ;e. To iIllPIO\,\, ti ll' ,·lIki"!l\'.\· lIf this

a lgorith m, t he iterat ion cont rol from traditlonnl itcr nt.ive ulgorlthms is ('II 11111itll'l\ wilh

the recurs ive traversal.

Thr ee iter ation- recursio n elgoritlnus are presented i ll this sr-rtam. 'I'he Il\'d lt. uml

Ullma n's "depth-first" version of the Kiklul l's iterative algori t.hm II. 21] is prt's.'lIl.t',1

first and is compared with t he iteration-recursion algori th ms

A .2.1 H echt and Ullman '8 It er a t ive Al gorithm

T he the Hecht nnd Ullman's itorntivc algorit hm is as follows.

Algori /hm 1: Hech t and Ullman's iterati ve nlg nr-if.lnn.

Input: A part icular ins tance J .; (G, Al ) of da ta f1thV allal }~ is lramrwork
D = (L, n . F). where G = (N,E,71-f] ) is a flow graph wit h A: llllll!'s. 1.....1
N = {1, 2, ...,k} with nodes ordered hy rl'(m '.(/ rrl,~r.

OIl /1m/: The values in[71] find out (lI) for all nodes 7t E N .

for each node n in N d o
ill[n] :=-1;
out[n]:= fn W

end d o;
wh ile there a rc any changes t.o md do

fo r n :=- 1 to kdo
i7l[IIJ:= {} ;
for each p ill PrcrJc r.cH.Wjr.~ ( II ) do

jl/[lI] := iu [n] n out~jJ

e nd do ;
out[tl]:= j,,(in[n])

e n d



cnddo,

Tlw Heclu aud Ullma n's improveme nt to the Kildall's algorit hm is in visiti ng the

1l001(!s of 11flow gruph in tile order determined by rpostorder.This improvement guar-

uutees that a nude 1L .dways visited before its successors except when a node and its

.~llC:(1!SM'~ form a retreating edge. It is because of this improvement that the iterative

l\l~{)rithlll (:11.11 terminate ill less than rl+2 itera tions where d is the number of ret reating

A.2.2 Iteration-Recursion Algorithm One

Let, for each" E N , indeyn!c{lIj be the In-degree of 11, and let retre/l.ted.qe[1I) be the

number of retre ating Cd gCN (m ,1/ ) incident with 11. Let IDcgrcc[n] = inder/ree[f1j -

n!tTl!tJt f!lirJl4It j. In the following iteration- recursion Algorithm One, the JDegree is used

to control t.!J(' order of visited nodes, just like -Postordcr is used in the Heet and UIl-

lIlau '",alp;orithllJ; eonscqnently, the iteration-recursion Algorithm One is as ctficicut as

t.lll~ Hc-ht und UlIIIllUI'S algorithm.

A/guri/hm 2: Itera tion-recursion Algorith m One.

1I11111i: A particula r instance I = (G,M) of data flow analysis framework
D =(L ,n,p) , where G = (N, E,no) is a flow graph with k nodes. Let
N '= {1,2" ..,k} with nodes ordered by rpostord er.

()1/!IJ1lt: T he values ill{n!and oUi(n ) for all nodes It EN.

Ior ench 1/ in N do in[lI] := 1 enddo;
j := FALSE:
whi le not J do

I := TRUE ;

Ior each node n in N do Villi t [lIJ := 0 end do;
ir lif l (flo, ill(floj, j, FALSE)

cnddo ,

procedure irdll (n ,x , Ilag, relrefl tedge);
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b egin
imp := ill[llJ;
ill[n] ~= ill[nJrl .c;
flng := lIng a nd (tllll1 = ill[ull ;
if not rl'trcntcdgl' t he n

vi.~itllll ;= visit [n]+l;
if visil.[n]=fDegret[lI] t he n

outlnJ := fn(in [lI]) ;
for each ,~ in 8fjCCc.~.~{)n(1I) do

if rPQstordcrill]>rP(l.~t(JTflc r\ li] then
ir rlf l (s , (mt[JI] , flng , TRUE)

else
Irrif l (s, tmt["j . fltl,q. FALSE)

endif
e ndd o

en dif
end lf

e nd ;

The iteration control part of Algorithm One is tIWt;IUlll' as ill the l led lt und UlhIHlII'S

algorithm . In the recur sive t raversal par t, the condition 11i.~itfn} = fJ)t:ym'fu} i .~ IIS (', I In

guaran tee that till! nodes arc precessed before their successors, with til!' "Xl:l!ptioll IIf

the ret reating edges.

Comparing this algorithm with the HCI:ht and Ullman 's itcrntive nlgonuun, it i.~

obvious that if the Hecht and Ullman's algorithm tcrminn tes in less than ,l+2 itern ticns,

the Algorith m One will also terminate in t1+2 itera tions bem use both n igor i t. h lll.~ prul ~ ·S.~

the nodes of the flow graph before their successors except for rdn~al.i llg ,~ IW~'1 . In

addition, Algorithm One has two othe r advantages. Oue is that. Pl~"'''iiTJ j( till ' infnrmat.iuJI

bet ween nodes is more efficient, HOt he valuein[u] can he determined h.v iu[u] := in [lt]n:t

rather than hy visiting t he predecessors or n which is the ease in t he Hecht and UlJ,wUl'S

algorithm . The other advantage is that. Al~oritilln One elJlIcontro l t h,~ prOl:,·ssillj.\nrtlt'r

of nodes more efficiently. Th e iterat ion-r ecursion Al~or i tlllil T wo is a f($u ll. of llsing



this udvantnge.

A.2 .3 I terat ion- Recu rsion Algorithm Two

The iterat icu -recursion Algorithm Two is more efficient in data flow ana lysis than

Algorithm One, however, the programs to be processed must. be "structured ", so each

loop ill the program can have only one exit For structured programs , the flew graphs

cun he eoustructcd ill such a way that for each loop condition , t he left successor is

always the loop body while the right successor corresponds to t he loop exit . Algorithm

Two is all improved an n specialized version of Algorithm Dill' which takes advantage

of this repres enta tlou of flow grap hs.

Algorit hm :1: Iteration - recursion Algorithm Two.
hJpld: A particu lar Insta nce I = (G, Al) of data flow analysis framework

D = (L,n,Fl , where G = (N, E,no) is a flow graph with k nodes. Let
N = {1,2, ....k] with nodes ordered by rl'ostoraer:

Output: The values i7l11l] and out(n) for all nodes n E N .

Ior emil 1l in N do ill[nJ := 1 e nd do;
for i :=l to 2do

for each node II in N do vi!litln} := 0 e nddo ;
irdj 2(71o ,in[nn], FALSE)

enddo;

proced ure irrij 2{n,x , rctrcatcdge);
begin

in [n]: = inln]n x;
1I1ll·[I/]: =jn(inlu J);
if not rd rl:uteriget hen

lIi.'1it[lI] := visitln ]+l;
if visit(n}=jDcOTf'..eln] ) t he n

for each s in Successors(n}, from left tv right do
if rPostordcr(71]>rPostQnler{s] then

irdf 2(s, outIn],TR UE )

els e
irrlj2{s,olltln], FALSE)



endif
enddo

endif
endi f

end;

Figure A.I: Flow graph of II. loop in 1\ "structured" progrum.

Figure A.I shows the flow grap h of a 100]1 in a "struct ur ed" prognuu. NOI I(~ II is ti l('

condition node of a loop. T he left brunch is the loop body and t he rip;1L1. lu atu-h is t.11l'

exit from the loop . During process ing of node rr, (m/[aj is pm·;,<;('(l to /J1Il1l1 /1is visltod.

After processing th e loop body, a is visited again along tlw rctn~a t,i ll~ l~dj.(t~ (II,n]. AI

this time , t he values in[aJ end out[a) are assigned again, and (' is selt!dl!d for prnl~('ssi lJJ.!:.

It i~ import ant th at t he value oltt[a] now contain s infcnuutlon from till' loop Itlilly fJ to

dj it is this change of the value out [a) tha t allow in lj2 to mukc two itt!raf,inlls C11l1.y.

Form al ana lysis of Algo rit hm Two can be pe rformed Oil t h(~ IIll.';is uf I,hl' fllllnwi llp;

t heorems. Let. PATHn(j) = {P 11' is the pnt h which Algorit hm Two r" lluws from node

Il.o to node i in th e n-t h itera tion) .

Theorem 1. U p E PATH(j ) and q E I'A'J'1P(j ) and 11is n simplc path ill a llow J,(m ph

and (/ contains every node in 11and one cycle in tho flow graph, dum 1,,(1) t 1'1(1).

In th e following proof, let I~(x) = l,n(Jtn-l( .,J.(x) ...)) il II = (I , ..., 1/! - I , m) is II

pa th of thc flow graph.

Proof. If p E PATH(j ) and q E PATHJ(j) such that 11is n simple pat.h in II flow

95



~tapIJ , and q cont ains every node illTI a nd one cycle ill t he flow grap h, the n there ex ists

a !lodp.l ill the pat h q sueh that q = 1l0...i ...l. ,.j, and Jl = no...i.. .j. That is, there is a

l'drl~lIt. i lJ ~ l:fl~f ~ which is incident to i . Let (I ::.:. ti o . . .i, b = i...i, an d r; = i...j . Accord ing

to thn Aigorit lull T wo, the re must exist un x, passed to i along the retr eating edge,

J,( l) 1" llJ

1, II, !ll J

~ 1, II,!ll nx)

1,11.11. (1))

1",,(1)

I, ll ). 0

Tbcorc nv 2. Let D = (L ,n,P ) be a data flow analys is framework. When Algorithm

Two tcnuinutcs, then for each node j i ll N and for each path p ill PATH(j }, there exist

pat.IJs 1/1, ••., IJr eneh in PA1'1P(j ) such that f ,,(J.) ::: ru ~ i ::; r JII,(l ) if D satisfies the

rnllnwillfl; condi tion:

(VJ ,n E 1")(Vx, 1/ E LllJg(y) >::: g(y) n f( x ) nxJ. (A. I)

/ ' tyltJj: If t ill' condi t ion (AI ) is sat isf ied, for each node j E N and each path n E

1'A'l'JJU ), then ' arc t hree (:a."('8 to consider .

('a Sf' I. II is a simple pa th in the How graph . There exists 11path q E PATJ{l(j)

slwh thn t IJ cont ains 11since Algori thm T wo traverses every edge in the flow grap h. If

1/ is a lso a sim ple path in t he flow graph, then q = 1', an d J"U) :::Jq(l ), Otherwise a

t'ydl\ lIlllst ('xis!. in IJ, so Th eorem 1 can be!appli ed to p and q, and then J"Ul1:Jq(l ).
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CIL'iE'2. p contains cue cycle. T here IlUL'" exist a no de i ill/ , slwh rlmr /' "" ""...1...;...J ­

Let PI -= "0 ..1. P"J =L.i . and :'3 "" I...j . Ther e l..;a 1~ll h f/ e J'JITJf:U) sndl Ihal

q = flO" .i ...i .j conralus I' . Let ql = n D..j. q-~ "" i ..... a lltl q:.\ = i ..j . ..\s ill C lL<;l' I.

1, (1) Ihh~' Ul

1~ 1I~ (f.. (1)))

t 1~1I~1I., (1)) )

I~(J~" , (1))

::: 1,..,(J."ql (l l)

/,.,9,9,(1)

l~m,Ul

1, (1)·

Case 3. I' contains mort' than one cycle. LeI I' = ' 1tI••••• i• •...•i• • ...• i",• ..• j sud, llial

I. = it. Let II "" flO. ·· ·, i • • II' =I•• ..• 4.11"= ~...., i. , ,I'" -= i. , .... j . 1I.ml:r "= " -= I rill i

in (A.l ) bl' and ,r m,,)' be diffcl ,t ), then " can be dt~'Ollll~1 into thfl" ll:llhs "1.
P2 and ~ which contain a smalle r number or cyelt'S tha ll I' .I' N'I'I.

I p(l ) 1 "',1lI

1",-11 11",(/, (1))) )

?:: IJl',~(f,.", (Jp' (l)) n 1"..(/". (1)) n / ,..(l )) hll lllfflll1ll1,firm

1p',u(f p'u(f ",(l ))) n !,. ",(J,..,(Jr/(l) )) n /,..,,,(/,..(1)) /11/ dilj lr ilm lilJlI

/~~,..,,.U) n I,...~,,,,.. (l) n 1,.",,.. (1)

I~ (1) n I~ (l) n 1,,1lI·



H 1'1.7'1 Ilnd IJ:, eontuin only one Of zem cyr.!es, the n there arc fJ l , fJ~ and '13 E

J'ATJ{I(j ) such thnt f,.,(1) ~ fq, (1), fp,(!) ~ !ql(1), and fp,(1) ~ !q.,(lj, as in Cases 2

and I . So, f,.(!) ~ fq,(l) n fq,( l) n f q.,(l) . Otherwise t he decomposition is cont inued

until every 7lj(i = 1, ..., r) contains at most ono cycle, and then !,,(1) t Fll S; i s: T!q,(l)

for'f,(i= 1, •..,r) . 0

J\ (:(:() rd ilJ~ to 'n worcm 2, if the cond ition (A.I) is satisfied , Algorith m Two tcrnri-

IIl l t,l:/i il l two iterations with the correct results of the data flow anal ysis. As indicat ed

enrl icr.muny int rapro ecdum l data flow problems satisfy condit ion (A.1).

A.2.4 It er ation-Recursion Algori thm Three

TIl t' main differclll:e between Algorit hms One and Two is in the way in which t he value

of (mt[lI] iii calculated. T his difference is the major reason that Algor ith m Two is more

d lid l'nt than Algorit hm One. The following algorithm is a combination of Algorit hms

Ow' and Two.

A/.Qorilhm ./: Itera tion- recur sion Algorit hm Thr ee.
bI 7I11t:. r\ particular insta nce I = (0, AI) of da ta flow ana lysis framework

D = (L, n, F ), where 0 = (N, E, no) is a f101V grap h wit h k nodes. Let
N = {1, 2, .... k} with nodes ordered by rtrostordcr.

OlitI lllt: Th e values ill[1I)and Qllt( lI) for al l 71 E N .

for each node " in N do in[n] := ! end do :
f := FALSE;

while not f do
f := TRUE;

for cnch node 11 in N d o uisit[lI) := 0 enddo ;
irrl! 3("o. iu[no],f , FALSE)

end do :

procedure irrff 3(1I,x , f lng, retrentedge);
begin

t lllll :=ill[lI ] j
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in [,,} := in[n ] n r;
01lt[,,] := f ,,(in [ll J);

f lng; = f lng and {f fll l ) =illlll]);
if not retre ntedge t he n

visi t [n]:= visit[l lj+l;
if vi si t [Il ]= f D cgI'Cc[lI j t he n

for each N in $Ul'C:CI< .~(lr;s ( lI) do

if rPo.~ tordf; ~lIl > ,.l'o.~ t oHler{ ....] the n
irrlf 3(.... ,out [Il], f/f l./l. 'l'IUJE)

e lse
i rdf 3( ....,ou/.[1I }, flag. FALRE:)

endif

enddo
end if

endif
end;

In the best case . when all nodes ar c ordered "proper ly" , 1.1w nlgorit.luu t l'fIl:iu al.t's

in 110 1. more tha n 3 itera tions . The worst case is when tht' ulgorithm u-rnuuutos in II+:!

itera tions with the (d+2)* r visits to the nodes , wher e r is t he iuuuber llftlw rl'l,n'fll.illj.\

edges in the flow graph . Normally, the number or till' node s nr a Howgraph is 1Iliwh

greater than the number of nodos incident with retrentiug l~dges. IIIsill'll eaSl~ , ti ll' thill'

spe nt on the (Ii+ 2) .. r visits IS much smaller than t hat Slll' lll, nil other 1~() IIlJl' lla1.iolls.

It call th us be assu med that Algorit hm Three is more efficient thall Alp;nrithlll (Jill ' ,

A.3 Conclusions

Algorithm aile performs da ta flow analysis as cfficieurly as ti ll' U('(;ht. nur! IJlhllalJ's

"depth-firs t" version of the Kilda ll's algor ith m. Algorit hm TWIlnJrnpld'~s the intrupro-

ccdural anal ysis in two i-crations. which is the towerbuund of the Killiall's algurith m

for "st ructured" programs. Algorit hm Three is mere efficient than Algorithru One. All

t hree algorithms arc easy to implement.
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