ZHENJIE CHEN

Dependence Analysis and Evaluation
of Inherent Parallelism of Programs

by

Zhenjie Chen

A thesis submitted to the School of Graduate Studics

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Scicnee

University of Newloundlgsid

December 1995

St. John's Canada

L R

Acauisitions and

B\hholhégue nationale

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ota 2= Ontano
Kif Y

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington

Yourtio. Vot elrence

Our e N réerence

L'auteur a accordé une licence
irrévocable et non exclusive
permettant & la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-13886-0

Canadid

Abstract

Dependencies are relations between statements of a program. They indicate the
constraints imposed on the order of statement execution, and are often used for the

Inati imizati ization and ization of By means of

dependence analysis, much work has been done to exploit the parallelism in the loops
in which there arc no dependencies that cross from one iteration of the loop to another.
Only recently an approach was proposed for cxploiting the parallelism available in loops
with cross-iteration dependencies,

The aim of this project is to evaluate inherent parallelism of sequential programs
by means of dependence analysis. The thesis first introduces the definitions, concepts
and basic dependency analysis algorithms, and presents a uniformn representation of
dependencies called a dependence graph. Then, using the dependence graph, a general
approach is presented which can be used to analyze the parallelism between loops as
well as between loops and other parts of a program. This approach was implemented
as & program called DSA (Dependence and Speedup Analyzer), used to perform the
dependence analysis and to evaluate the inherent parallelism of Fortran programs. Fi-
nally, the implementation of DSA is briefly described and its use is illustrated by a

series of examples.

Acknowledgments

1 wish to express my thanks to my supervisor, Prof. Wlodek M. Zuberek, for his

guidance, interest, suggestions, paticnce and financial assistance during wy studics at

University of 1 learned a lot from onr numerous discnssions.

He has contributed significantly to the quality of this thesis.

I also wish to thank my other instructors: Prof. John Shich, I'rof. "Tony Middleton,
Prof. Krishnamurthy Vidyasankar, Prof. Caoan Wang and Prof. Xiaobu Yuan.

1 am very grateful to the administrative and technical staff who have helped in one

way or another in the preparation of this thesis. Special thanks are due to Ms. Elaine

Boone, Mr. Michael Rayment, Mr. Nolan White, Mrs. Pa

cia Murphy, and Mrs.
Jennifer Cutler for their help and assistance.

I would like to thank Dr. Siwei Lu, Dr. Jian Tang, Mr. Hao Chen, Ms. Xi Lu, Mrs.
Zhenggi Lu, Mr. Donald Craig, Mr. Zhihong Ynan, Mr. Yaguang Chen and Mr. Ming
Tan for their valuable comments and suggestions.

I would also like to thank many others not named here who provided enconragement,
and assistance during my graduate studies.

Finally, I would like to thank the School of Graduate Studies and the Department,

of Computer Science, for providing, together with Dr. W.M. Zuberek, financial support,

during my studies.

This thesis is dedicated to

my parents

for their support and g h hout my ed:
and to
my wife, Bing Mi, and daughter, Xiaoyue Chen,

for enduring the hardship of the past three years.

I

Contents

1

N

Introduction 1
1.1 Basic Concepts e 2
1.2 Thesi8OVEIVIEW:: & « woavinens % % v v & so%ws % 8 % & & 9903 i & 7 8 Wle 7
Dependence Analysis 8
2.1 Control Dependence Amalysis . .« . v oo vt et 10
2.2 Data Dependenre Analysis oo 13
221 Defimitions's o v ooevie w00 nb v e o s ne e e 11
2.2.2 Global Data Flow Analysis. 17
2.2.3 Array Element Dependence Testing 19
23 Alias Analysiso i i 25
23.1 Detecting Type-1 Aliasescov v v vvvvinnnn 27
2.3.2 Detecting Type-2 Aliases 30
24 Dependence Graph 31
1| ion of Inh F 31
3.1 Evaluation of Tyeriat « + + + + + v v v e 35
3.2 Evaluation of Tpgratter + v« v v v v v o v v e i s e 36
321 Evaluation of Ty onon ws o ¢ ¢ wmnimssi o 4 5 5 oioioe 5 % 4 # 5 37

v

3.2.2 Evaluation of Tparaltet « + « v v v o v oo oo v 42

23 DISGUEEION » & wisran & 5 % warsses ¥ © @ WaBD S ¥ & B EEE E 8§ 45

4 Implementation of DSA 47
Ll OVERvIeW OFDSA: o vovovrs o & o w ssesans 0 6 % o o s % & ® pesEn § @ v a7
4.2 IPrORFRIEARALTES « o oo 5 & v wsnemn 5 0 @« S 6 5 W 0 RS ¥ 8 8 48
4.2.1 Generation of Control Flow Graph 50

422 Caleulation of INand OUTSets 52

4.3 Dependence ADRIYSIS oo « « v vvrois o v v v v eee v e B e s 6 s e 55
4.3.1 Global Data Flow Analysis 56

4.3.2 Array Element Dependence Testivg oo oo v v u o u s . 60

4.4 Evaluation of the Speedup Factor L. 61
441 Evaliation of Therist + voovo v % ¢ o oimeioe 5 % 6 stosi 6 v vy 62

442 Evaluationof Tooauar, 95 6 % 5 8 da65 % 85 6 6@a 5 85 v n e 63

5 Examples 67
DL ExRmplel o o v onpn b B B A @R E R F PR LEVE Y 8 S0 4 8 8 wens 68
52 Example2 70
68 EXAIPIES o v sovuvcs o v v comen % 5 @ @ e 5 ¥ @ SRR 6 8 % e 2
Gl BXATPIOA 5 o vnvn 5 S SR G S S D TORRG B L ¥ OVEE B S E e 74
5.5 Exampled ..o 75

6 Conclusions 78
Bibliography 80
Appendix 87

A
A.

A

1
2

e

-R ion A i for Global Data Flow Analysis
BaekEFOHie! « » » & » oroomonw v 6w 00w ¥ 8 © ¥ RGN & 8 S 8 BRI
Iteration-Recursion Algorithms
A.2.1 Hecht and Ullman’s lterative Algorithm
A2.2 Iteration-Recnrsion Algorithm Oneo

A2.3 Iteration-Recursion Algorithm Two

A24 Iteration-Recursion Algorithm Three

Vi

87

o
91
92
ol
98

99

List of Tables

2.1

2.3
24

4.

5

4.2

Contral dependencies for Figure 2.1, oo oo e
Type-1 aliases for the example program., .. 29
Type-2 aliases for the example program. 31
Complete (Type-1 and Type-2) aliases for the example program. 32
The def and use values for the example program of Section 2.3. 55
The sets IN and OUT for the example program of Section 2.3. 55
Tieriaty Tharatier and the speedup factor for Loop 20. 4
Tieriaty Trarattet and the speedup factor for Loop 14. 76

viL

List of Figures

21
2.2
23
24
25
26

3.

3.2
33
34
35
3.6

L

>

Dependence graph.ot e 6
The control flow graph and its post-dominator tree. 13
Hierarchy of direction vectors for two loops. 24
The dependence tree for the program. 24
The binding graph 3 for the example program. 28
The complete work list Q of the example program. 31
An example program and its dependence graph. L 32
The dependence graph fornode S;. o 37
The example program ! and its dependence graph. 38
The example program 2 and its dependence graph. A1
The example program 3 and its dependence graph. 43
The example program 4 and its dependence graph. A1
The sum of an array and its calculation in a parallel machine. 46
The dependence graph fornode S;. 64
Flow graph of a loop in a “structured” program. 95

Vil

Chapter 1

Introduction

The need for computing power has been growing steadily in the last two decades.

However, with the slowing rate of i in icond hnologies, the
ability of single-p systems and it ing of are
reaching their limits. In turn, this has been sti ing research in
and parallel
Mnuch work in the area of iting the ism of and program con-

version from sequential to parallel form has been done on the basis of dependence

aualysis. Several experimental compiling systems exploiti ism in FORTRAN

have been using analysis [2, 3, 7]. However, these sys-

tems perform parallelization in a rather limited range, often analyzing only the DO

of FORTRAN while the llelism between other is

ignored. For example, Gupta and Soffa [18, 19] developed specialized compilation tech-
niques which can be used to detect parallel operations within and between sequential
statements; their work was done for the Reconfigurable Long Instruction Word (RLIW)

architecture model, and the increased computation speed was obtained by matching an

application program to the i RLIW i in structure and in size. In

mure general approaches, the evaluation and detection of parallelism should be machine

independent [47]. Recently Lilja [32] developec a method called critical dependence ra-

tio to possible ism for a loop, given unlimited hardware

resources. However, the method cannot deal with parallelista between loops or between
a loop and the other parts of a program.

The aim of this research is to use dependence analysis for evalnation of inherent

llelism of i D dencics arc relations between statements of a

program. They can be represented as a graph, called a program dependence graph, and

are widely used for ing program optimizations, ve ization, and

20, 31, 34, 29, 30, 15]. It has been shown that if the program dependence graphs of

two are i ic, then the are strongly

lent in the sense of

their behaviors [23]. This equivalence can be used to determine the maximally parallel
execution of the program. Such an approach is the motivation for this work. The results

of this research can be used in i ion of ial to their

equivalent parallel forms.

There are two main contributions of this rescarch. First, a gencral approach to
finding the maximal possible parallelism of a sequential program is proposed. Secondly,
the proposed approach is implemented as a program called DSA (Dependence and
Speedup Analyzer). The program performs the dependence analysis and the evalnation

of inherent parallelism of FORTRAN programs.
1.1 Basic Concepts

Dependencies arise as the result of two separate effects. First, a dependence exists

between two statements S; and S; if both statements access the same memory location

(at least onc of them must write this location) and no statement between S; and Sj
writes this location. Dependencies of this type are called data dependencies'. There are
three types of data dependencies based upon the ways in which S; and Sj access the

location. Statement Sj is
® flow-dependent on S;, if S; writes a memory location and S; reads it;
e anti-dependent on S;, if S reads a memory location and S; writes it;
® output-dependent on Sy, if S; writes a memory location and §; writes it again;

The memory location can correspond to a scalar variable or an array element.

Sccondly, a dependence exists between a statement S and a predicate B whose value
(dircetly) controls the execution of S. Dependencies of this type are called control
dependencies?. For example, in the sequence of statements:

S1: IF (B) THEN

52: X=Y+W
83: Z=X*A
54: A=C-D
86: Z=E+F
S§6: ENDIF
The statements Sz, S, Sy and S; are control on the predi B; in
other words, Sy, S3, Sy and S are control dent on §). S is flow-d dent on

Sy due to X, S is anti-dependent on S due to A4, and S; is output-dependent on S;
due to Z.
Dependence analysis detects the dependencies in a program. Ferrante [15) has made

an excellent contribution to the analysis of control dependencies. Data dependence

'A formal definition of data dependencies is given in Chapter 2.
A formal definition of control dependencics is given in Chapter 2.

analysis is more complicated than control dependence analysis because it must take into

account dependencies created by subscripted variables (array clements), and aliases, i

references to memory locations which are identificd by more than one identifier (alinses

4 i 1

and data

can be created by passing). For example,

in the following programs:

S1: DO I=1,10

S52: A(1)=B(I)

S3: C(I)=D(I)

S4: B(I)=A(I+1)+F(I)
S§5: ENDDO

it is easy to see that Sy is anti-dependent on S due to B(l). However, Sy is also
flow-dependent on S; due to A(I) and A(I+1) when the variable I increases in repeated
exccutions of the loop. On the other hand, if Cis an alias of B, then Sy is anti-dependent.
on Sy, and S is output-dependent on S3 due to C(I) and B(I).

The speedup factor, used to measure the inlerent parallelism of programs, is defined

Turriat

Tharatter

specdup =
where Tieriar is the time of the sequential excention of a program, and Tharauet i the
time of the maximally parallel exccution of the same program, i.c., the time of program
execution with an unlimited number of available processors. The speedup factor can
further be ‘specialized’ as fized size speedup and scaled speedup [15]. Fixed size speedup

indicates how much exccution time can be reduced on a specific parallel proc

or, while
scaled speedup is used in exploring the compnutational power of parallel computers for

solving otherwise intractable problems.

From the algorithm analysis point of view, the speedup factor is defined as [13]

£, called speedup of the average esccution times, or M (%), called average speedup,

where 7% and 7}, are random variables representing the execution time on one and on

p processors, respectively, E(T') is the expected value of 7', T4 ard T? are random

variables ing the ion time of a ial

A and a parallel
algorithm B for solving the same problem, and M(T) can be any mean value of 7',
in particular the arithmetic mean. It should be noted that these two definitions also
provide two methods to caleulate the approximate values of the speedup factor.

The standard definition of the speedup factor, ie., %::;ﬁ, is used in this thesis
to evaluate the inherent parallelism of programs on the basis of control and data de-

pendencies. Control and data dependencies of a program represent control and data

flow relationships which must be respected by any exccution of the program, whether

parallel or ial. By ining these d dencies, we can extract the inherent
parallelism in a program and evaluate the speedup factor.
As an illustration, the following program can be considered:

S1: DO I=1,10

S2: C(I)=A(I)-B(I)
s3: D(D)=A(D)+B(I)
G541 E(1)=C(1)#C(T)
s5: F(I)=D(I)*D(I)
S6: C(I)=E(I)+F(I)
S7: ENDDO

the statements S, to Sg are control-dependent on S since the value of the loop index
variable / determines whether S; to Ss are exccuted. Sy is flow-dependent on $; due
to C(1), Sy is low-dependent on Sy due to D(1), S is output-dependent on S, due to

C(l), S5 is anti-dependent on S; due to C(I), s is flow-dependent on S; due to E(I),

and S is flow—dependent on S5 due to F(I). These dependencies can be represented as
a graph, as shown in Figure 1.1.

flow dependence: F
anti dependence: A
output dependence: O
control dependence: .
data dependence:

Figure 1.1: Dependence graph,

in

can be

Assuming that all logical or
one unit of time:

Tyeriat = (104 1) % 1+ 10 * (Es, + ts, + ts, + b5, + ts,)
=11+10+2+2+2+2+2)
= 111 (units).
If the number of available processors is unlimited, the loop can be nnfolded into
10 groups, and these 10 groups can be executed in parallel, To find Tharaue, we necd
only to consider the time to exccute one group as all gronps arc identical. Since Sy
and S, have no dependence relation with Sy and S5, and all statements Sy to Sg are
control-dependent on), then $; and S can excente in parallel with Sy and S5. S is

dependent on Sy, Sy and S5, so g must cxceute after Sp, Sy and S5, Thercfore:

Tyarattet = maX(ts, +ts, » sy + tsg) + s
=max(2+2,2+2)+2
=6 (units).

So, the speedup factor is 18.5 in this case.

1.2 Thesis Overview

“This thesis is organized into six chaptexs. Chapter 2 reviews the rescarch on dependence
analysis and alias analysis. Then, the concepts and algorithms related to control and

data dependence analysis as well as alias analysis are introduced in detail. Finally, a

uniform repr ion of d lencies, the ! graph, is ed. Chapter
3 is devoted to the evaluation of inherent parallelism including a brief introduction to
the cvalation of Tseria and a detailed presentation of a general approach to cvaluate
Tyaratiet: This approach is based on the dependence graph of a program and can be
used to deal with the parallelism between loops and between loops and other blocks of
the program. Chapter 4 describes the implementation of DSA, a program performing

dependence analysis and evaluation of the speedup factor, which uses the algorithms

1 e n

and are

and approach presented in Chapters 2 and 3. E:

in Chapters 5 and 6, respectively.

Chapter 2

Dependence Analysis

Research on dependence analysis has been conducted over the last twenty years. Fer-
rante [15] made an excellent contribution to analysis of control dependencies, character-
izing the control structure of programs. Analysis of data dependencies is more difficult
than that of control dependencics. It has been shown that the detection of data de-
pendencies among subscripted variables is -;n NP-complete problem [17, 36]. The first
contribution to the detecting of data dependence among subscripted variables is due to
Banerjee [4, 5, 6]. He proposed an inequality which provides a sufficient condition for
the existence of data dependencies. The Banerjee’s inequality decision algorithm can be
used to deal with more complicated data dependence testing problems, but it is more
complex and inefficient. Another significant result is Allen and Kennedy’s GCD decision
algorithm (3] derived from the number theory, which also provides a sufficient condition
for the existence of data dependencies. The GCD decision algorithm is fast and effi-
cient for some special data dependence cases. Therefore, in practice, the GCD decision
algorithm is usually used first. If data independence can be found, then the testing pro-
cedure is over. Otherwise, the Banerjee’s decision algorithm is used to further perform

the data dependence testing. A more practical solution comes from Burke and Cytron’s

testing ithm [0]. It is usually used as a test framework

and is combined with other testing algorithms, such as the Banerjee and GCD deci-
sion algorithms. Due to the inherent intractability of data dependence testing among
subscripted variables, rescarch on data dependence is continuing [49, 37, 41, 40, 33].
Another factor which makes data dependence analysis complicated is the existence
of aliases created by procedure passing mechanisms and data equivalences. To per-
form data dependence analysis, alias analysis is needed first. In FORTRAN programs,
aliases cansed by data cquivalences are always declared explicitly by the COMMON
and EQUIVALENCE statements, so detection of such aliasesis quite straightforward.
However, an inter-procedural alias analysis must be performed to find the aliases caused
by procedure passing mechanisms. A significant work on inter-procedural alias analysis

was first done by Ryder [42]. She introduced a representation, called the call graph,

of the control and data flow in programs to i i inte
tion. Burke and Cytron [9] also proposed some methods to identify aliased arrays, and
to propagate inter-procedural information. Further improvement is due to Cooper and

for ing int dural aliases

Kennedy (10, 11], who presented a fast al,
based on an improved call graph, called the binding graph. Animproved version of the
fast alias analysis algorithm based on binding graph is presented in [38]. The newest
result is due to [39].

The following four sections of this chapter discuss the control dependence analysis,

data depend-nce analysis, alias analysis, and dependence graph, respectively.

2.1 Control Dependence Analysis

To simplify the discussion, it is assumed that a program contains only assignments
used in the sequence, selection and iteration constructs. The sequence, selection and

iteration constructs have the following forms:
» sequence: 51;S2
e selection: if B then S) else Sy endif
e iteration: for 4 :=1to n do S enddo

where B is a boolean expression, n is a constant or a variable, and S, S and S are

q sclection constructs or iteration constructs.
The boolean expression B is called the branch conditions of the selection construct.. The
boolean expression 7 < n, which is the condition to continue the iteration, is called the
branch condition of the iteration construct.

The control flow graph G of a program s a directed graph G = (N, E), where the sot
of nodes, V, is the set of assignments and branch conditions of selection and iteration
constructs in the program, and the edges, £ € N x IV, represent possible transfers of
control between nodes. It is assumed in control flow graphs that nodes which represent
branch conditions (they always have two immediate successors) have attributes 7 (2rue)
and F (false) associated with the outgoing cdges. Each control flow graph is augmented
with two special nodes: ENTRY and STOP, which represent the wnique beginningg and
termination of program execution. ENTRY has one edge labeled “I™ outgoing to the

m

first statement of the program and another edge labeled “I™ outgoing to STOP.
The following two definitions were introduced in [15] together with a general idea of

analyzing control dependencies.

Definition [15]. Let G be a control flow graph. A node v in G is post-dominated by
a node w if every directed path from v to STOP (not including v) contains w.

If v is post-dominated by w, w is called a post-dominator of v. Note that this
definition of post-dominance does not include the initial node of the path. In particular,
a node never post-dominates itself.

Definition [15]. Let G be a control flow graph. Let z and y be nodesin G. yis

control-dependent on z iff:

L. there exists a dirceted path p from z to y with any node 2z of p (excluding z and

) post—dominated by 3, and
2. zis not post-dominated by y.

In other words, if y is control-dependent on z in a control flow graph, then there
must exist at least two paths from z to STOP in the graph; one includes y and the
other docs not.

Definition. [15]. Let G = (N,E) be a control flow graph. A post-dominator tree

T'= (N,E') contains theset N of nodes of G, and the subset E' of the edges E of G
such that if v is post—dominated by w, or w is a post-dominator of v, there must exist
apath from w tov in T

Definition [15]. Let T be a post-dominator tree, and a and b two nodes in 7. A
node ¢ of T' is called the common ancestor of @ and bif 7" contains two paths, one from
¢to a and the other from ¢ to b. A node ! of T is called the least common ancestor of

aand bif:

@ [isa common ancestor of a and b, and

o there is no other /' in T such that {' is also a common ancestor of a and b, aud

there is a path from £ to! in T.

Given a control flow graph, control dependencies can be determined in the following

three steps [15]:
1. Find post-dominators in the control flow graph, and construct the post-dominator
tree T
2. Find aset S which consists of all edges (q,b) in the control flow graph such that

there is no path from b to a in T (i.e., b does not post-dominate a). Note that in
this case the edge (a, b) must be labeled by “T™ or “F™”,
3. For each edge (a,b) in S, find the least common ancestor { of @ and b in 7', It has
been shown [15] that either is a cr ¢ is the parent of @ in 1.
e Iflis a, allnodes in the post-dominator tree on the path frorm a to b, including
aand b, are control-dependent on a.
o Iflis the parent of a, all nodes in the post-dominator trec on the path from

Lto b, including b but not I, are control dependent on a.

For example, for the following program:

s1: IF (A) THEN

s2: Y=X+Z
ELSE
§3: P=M-S
S4: IF (B) THEN
85: V=P+§
ELSE
s6: U=Y-2
ENDIF

©
& B
®

(4) The control flow graph of the program. (b) The post-dominator tree of the program.
Figure 2.1: The control flow graph and its post—dominator tree.
87: Q=U
ENDIF
88: T=Y
the control flow graph and the post-dominator tree are shown in Figure 2.1. In this

example, § = {(ENTRY, S1), (S1,52), (S1,83), (54,85), (S4,56)}. Table 2.1 shows

the control ds dencies that can be d ined by ining each of the edgesin the

set § for the graphs in Figure 2.1.
2.2 Data Dependence Analysis

Data dependencies can be created by scalar variables and elements of arrays. Data
dependence analysis consists of global data flow analysis and data dependence testing.
The global data flow analysis is used as a framework of data dependence testing to

find the relationships between each pair of scalar variables or elements of an array and

13

Table 2.1: Control dependencies for Figure 2.1.
control

(ab) in § Nodes marked dependent on Label
(ENTRY.S1) §1.88 ENTRY T
(51.82) §2 S T
(81.83) §3.84,87 S1 F
(54.55) S5 S84 T
(54.56) S6 S4 F

to determine the type of potential data dependencies. For two scalar variables, the
data dependence testing is very simple. For array clements, subscript aualysis must
be performed. The remaining part of this section introduces the definitions of data

dependencies, global data flow analysis and array element data dependence testing.
2.2.1 Definitions

IN(S)is used to denote the sets of scalar variables and array elements whose values are
read by a statement S. OUT'(S) is used to denote the set of scalar variables and array
clements whose values are modified (or “written”) by a statement S. For example, for

astatement S :X=Y+Z, OUT(S) = {X}, and IN(S) = {Y,Z}. Note that, for a loop:
Si: DO I=1,10
s2: X(I)=A(I+1)*B
S3: ENDDO
OUT(S2)={X(1),X(2),...X(10)}, and IN (S2)={A(2),A(3),...A(1L),LB}. To sim-
plify the notation, we write OUT(S2) = [X(I)}, and I N(S2) = {A(1+1),1,8}.
‘The three types of data dependencies are defined as follows:

Definition. Given two statements S; and Sj, S; is

® flow-dependent on S;, S;88;, if there is a variable z such that = € QUT(S;) N
IN(S;) and z & OUT(Sk), for & <k < j;

14

o anti-dependent on S;, S3S;, if there is a variable z such that z € IN(S) N

OUT(S;) and z ¢ OUT(S), fori< k < j;

o output-depersdent on S;, S,3°Sj, i there is a variable ¢ such that z € OUT(S) N

OUT(S;) and = ¢ OUT(Sy), fori< k <j.

"To simplify the discussion, we often say that statement S; is data-dependent on Si,
denoted S;6°S;, if S;65; or S;8S; or Si8°S;. Also, we say that statement S;is éndirectly
data-dependent on S;, denoted S;AS;, if there are statements Sy, ..., Sg,,n = 0, such
that 58" Sk, ASk 6*Siy A ... A5, 0™ S;

When isa scalar variable, the dependencies due to z can be detected by using data
flow analysis, which is discussed later. However, if z is an array clement, dependence
testingis complicated by the fact that different references to array clements may access
the same or different memory locations. It has been shown that the dependence testing
problem among array clements is equivalent to the Jnteger Linear Programming (ILP)
problem [36], which is an NP-complete problem [44, 16].

"To simplify the data dependence testing for array clements, the testing is often
limnited to loops, and the subscripts of array elements are restricted to linear expressions
of the loop index variables. If any onc of the subscripts is a nonlinear expression, a
dependence is assumed to exist.

Definition [36]. For the following loop:

XA LD, o fin(D) 1= e = X1 D 2(T) o 9 (1))

enddo

15

enddo
enddo

where 7 isthe vector (i1, i3, ...in), all L; and Uj,i = 1,.., n. areconstants, and JigJ =
1,...,7n arc known linear functions, two elements of the array X are dependent iff there
exist index values i, ..., 4, and iy, ..., i, such that

W) =0T, o fnlT) = (T,

LS iy SUs, wln S ipin <Un

If S is enclosed in 7 loops with indices T = (i, in), ST denotes the instanee of

S for the iteration . Suppose the statements S; and S; are enclosed in 72 loops with
indices T = (i1, .., in). Let avector ¥ = ($1,¥2, .)y ¥ € {<,=,5},i =1,2,...,n

be called a direction vector. S; is dependent on S; with a direction vector W, denoted

564,55, if there cxist iterations Tj = (8.0 dy) and Ty = (i}, igynivs) sch that

sf

e {50, and the folloving inequalities bold! siml ly:

jon
¥at,
bt
The vector (i, iy, ..., i) = (i) » 79, s in) is called the direction distance. Furthermore,
S; is loop-carried-dependent on S;, denoted S;6°S;, if S is dependent on S with a
direction vector ¥ such that ¥ = (=,=, .,=,<, %%, %) aud ‘¢’ denotes ‘<', ‘=" or
*>' If i = j, we say that S; is loop-carried-dependent on itsell.

For cxample, in the following program:

s1: DO I=1,10

§2 D0 J=1,10

§3 A(1,3)=B(1,3)
s4: B(I,J)=A(1,J-1)
§5: c(1,3)=c(1,J-1)

16

S6: ENDDO
§7: ENDDO

We have S§"55{" with dircction vector (=, <) and direction distance (0, —1) duc
to array A, and denote it as S3d(= <) S, a loop-carried-dependence. Ss is loop-carried-
dependent on itself with direction vector (=, <) and direction distance (0, ~1) due to
array C. Also, we have S§"V55{"" with direction vector (=, =) and direction distance
(0,0) due to array B.

A loop-carried-dependence means that one statement may store a datum into a
location on one iteration of a loop, and another statement may fetch the datum from
or store another datum into the location on another iteration of the loop, or vice versa.
So, we say a loop is a carrying dependence loop if the loop contains a loop-carried-
dependence.

2.2.2 Global Data Flow Analysis
Global data flow analysis can be considered as the pre-execution process of ascertaining
and collecting information which is distributed thronghout a program, generally for the

purpose of optimizing the program. It is widely used for code improvements such as

sis of live uses, reaching definitions, available expressions, very busy variables, and

data dependencies.

The climination, or interval, methods and the iterative methods are two popular
approaches to global flow analysis [1, 27, 43]. The climination methods collect the
information by continuing to partition the control flow graph of the program into sub-
graphs, called intervals, and replacing each interval by a single node containing the

local information for that interval, until the graph becomes a single node. The iterative

methods the i i ializing the data flow ions to safe values

by ini
and then iterating the equations until a fixed-point solution is found.

The climination methods may seem to out-perform the iterative methods, but, when
some practical issues, presented in [21], are taken into account, the iterative methods
are time competitive with the climination methods. In addition, the climination algo-

rithms are usually rather complicated to program. The detailed comparison of the time

of these two hes can be found in [8, 26, 27].

Kildall’s algorithm plays an important role in the development of the iterative algo-
rithm because it solves the class of data flow analysis problem in a unified and genceral
lattice theoretic framework (28]. The framework provides a convenient vehicle to analyze
the detailed properties of each data flow analysis problem. Hecht and Ullman vefined

the Kildall’s algorithm, and presented a “depth-first” version of Kildall’s algorithm [21],

a iterative i They i duced a depth-first ordering for

the nodes in a control flow graph, and forced the nodes to be processed in the order.
They also proved that their algorithm will finish a global data flow analysis before d4-2

where d is the i number of ing edges' in a cycle-free path of

the control flow graph.
Given a control flow graph G, for cach node n of G, in[n] is used to denote its input
data stream and out[n] its output data strcam. Then, Hecht and Ullman’s iterative

algorithm performs global data flow analysis in the following two steps:

1. To each node 7 in G assign an integer number rPostorder(n] and let out[n] = {}.
rPostorder[n] is produced by a depth-first order in which the node n is always
visited before its successors except when the node » and its suceessor form a

1A formal definition of retreating edge is given in Chapter 4.

18

retreating edge.

o

. Perform the following iteration until no change is made to any node in G where
fu(z) is a data flow function of the node n (the data flow functions f are different
for the different applications of data flow analysis, such as Reaching Definition or
Live Uses):

for each node n in G, in order of rPostorder do

infa] = {);
for cach edge (p,n) in G do
in[n] := in[n] U out[p]
enddo;
out[n] := fa(infn])
enddo;

A more detailed description of the algorithm and the data flow functions f,(z) is
given in [L, 8, 26, 27, 28, 43].

DSA uscs an iteration-recursion algorithm, designed for global data flow analysis.
This algorithm performs a recursive traversal of the control flow graph of a program in
every iteration until it terminates. Hecht and Ullman’s depth-first ordering algorithm

is also used in this algorithm. These algorithms are ibed in detail in Chapter 4.

2.2.3 Array Element Dependence Testing

"This part overviews algorithms which perform the subscript analysis of the two elements
of an array to find the dependence between the two elements. Allen and Kennedy's GCD

decision algorithm, Banerjee's incquality decision algorithm, and Burke and Cytron’s

| testing algori are briefly d d in this section. More detailed infor-

mation can be found in (3, 4, 5, 6, 9, 17, 36, 48].

GCD Decision Algorithm

Let Sy and S; be enclosed in 7 loops as follows:

for i,:= L, to U, do

for i,:= L, to U, do
for iy := Ly to Up do _
S: X S,) XCovo(D),)
enddo
enddo
enddo

where T = (i1, ..., in) and

Fi,.) = o+ 3 b
&=l

n
ao+ Y ok, glin,
=

Then, the low-up bound matriz LU is defined as:
Ly U
= L, Uy
Lo Uy

and the coefficient matriz C of the function f and g is defined as:
ay by
C= a by

_—
For example, in the following program:

S1: DO I=1,10

52: DO J=2,20

§3: A(20%I+J-20)=B(J,I)
S4: C(J,1)=A(20%1+J-21)
s5: ENDDO

S6: ENDDD

20

the low-up bound matrix is:

and the cocfficient matrix

—=20 -21
C= 20 20
1 1

If S is data-dependent on Sy, then there must exist integers iy, ..., i, and 4, ..., 1

such that
FGemnin) = 9l i)-
That is,
LA LN
a0+ Y iy, = bo+ Y by
k=1 k=t
which can be rewritten
D "
> (axiy — biix) = bo — ao.
k=1
This has an integer solution only when the greatest common divisor of all the left-hand
cocfficients divide evenly the integer difference on the right-hand side, that is,
ged(ay, ... an, by, ...y bn) | bp — ao.

This is the Allen and Kennedy’s GCD decision test.
In practice, the GCD test is relatively ineffective, because in most cases the loop
index multipliers ax = by = 1, so the ged is 1. However, it is useful in some cases such

as

21

st: DO I=1,10
s2: X(2+1)=. . .=X(2+I+1)
s3: ENDDO
Here ged(2,2) = 2, and because it is not a divisor of by — g = 1, there can be no

data dependence.
Banerjee'’s Inequality Decision Algorithm
Banerjee’s inequality decision algorithm depends on the definition of the pesitive and
negative parts of a number as follows:

Definition [3]. Let t be an integer. The positive part of the integer ¢, ', and negatine
part, t~, are defined as:

o[t 20
“lo ift<o

o -t ift<0
“lo ift>o.

5, is data-dependent on S only if there exist integers i), ..., 1, and ..., i, such that
S 2
3 (axiy — bit) = by— .
=t

If, for a direction vector ¥ = (1, %3, ..., ¥a), & lower bound LB and an upper bound
UB can be found such that, for each term k = 1, ..., n of the above sum:
LB* < iy~ biiy, < UBY*

where:
if Yy = '#' then:
LB} = (a; = b¢)(Ux = L) + (ox — be) L
UB; = (af = b¢)(Ux — Li) + (o = be) L
if Y = ' <’ then:
LB = (ag = b))~ (U — L = 1) + (@ — b)) Ly = by
UBE = (aff = be)*(Ug — Li — 1) + (ax — be) L — b
if Y= ' = then:

22

LBE = (o = b)~(Us = Li) + (0 — b} L
UB§ = (ax — be)* (U — L) + (ax — b) Li
if g = ' >' then:
LBY = (ax = bi)" (U = Li = 1) + (@ — be) Ly — by
UBZ = (ax = bp)* (U = L — 1) + (ax — be) L — b

Summing np these quantities gives the lower and upper bounds, so:
LS B " L
D LBY* < 3, ~ biy) < S UBY
k=1 = k=1

which can be rewritten as

n 5
S LBY <by-ag< Y UBY
fet =1

I it can be shown that if either $3_, LBJ* > by — ag or Sf, UBP* < by — aq, then

there is no dependence under the constraints of the direction vector ¥ = (v, %g, ..., ¥n).

Hi hical Dy di Testing Algori

Burke and Cytron improved the GCD and Banerjee's inequality decision algorithms

by i testing. testing proceeds from a
general direction vector (‘+') to more specific direction vectors (‘<’, ‘=" or >'). If,
at any step, an independence can be shown, the direction vector needs not be refined
further. Otherwise, if the direction vector contains any ‘+’ element, ‘#’ is refined to *<’,
‘="or *>', and the testing continues. If the direction vector does not contain any ‘+'
clement, the existence of dependence is assumed under the constraints of the direction
veetor. Thus, the dependence testing is done on a hierarchy of direction vectors.

Such a hierarchy for two nested loops is shown in Figure 2.2.

Consider the previous example:

S1: DO I=1,10

()

(%) (=*) (>.*)

(<>) (=) (<>) (=>) (==)(=>) (>.<) (>=) (>>)

Figure 2.2: Hicrarchy of direction vectors for two loops.
k=byag=-1

(* %) -198<=k<=198

(=

£
0<:

-18<=k<=-1 =k<=

Figure 2.3: The dependence tree for the program.

52: DO J=2,20

83: A(20%1+J-20)=B(J,I)
s4: C(J,1)=A(20%I+J-21)
§5: ENDDO

§6: ENDDO

In this example, Ly = 1, L, =2, Uy = 10, Uy = 20, ay = =20, ay = 20, ay = |,

by = —21, by = 20 and b, = 1. Using Burke and Cytron’s hicrarchical dependence

testing algorithm as the test framework, and Banerjee's incquality decision algorithm

to test whether there exists an i under the ints of the direction
vector, we can obtain the dependence tree shown in Figure 2.3 which indicates the
data dependence S385;. Morcover, the direction vector (=, <) indicates that the data

dependence S385; is a loop-carried-dependence.

24

Another contribution of Burke and Cytron [9] is the linearization of array references,
which reduces the complexity of dependence testing. If an array A is declared as
ALy 2 Usy oo L 2 Uy)
tixen a reference to an clement A(dy, .., dn) can be linearized as A'(f(dy, ..., dn, L1, ..., Ln-1,
Uty ooy Unc)), where £(d1y cey iy Ly oo Loty Uy ooy Un_) s the following linear expres-

sion:
n i-1
Sy eyl Ly oy Ly Uty oy Unt) = 1 30((di = i) IIl(Uj = Lj+1)).
i=1 J=

For the following example:

S0: REAL A(20,10),B(20,10),C(20,10)

si: DO I=1,10

82: DO J=2,20

83: A(J,1)=BQJ,T)
S4: €W, D=AJ-1,1)
85 ENDDO

§6: ENDDD

A(J, 1) will be mapped to A (20 [+J —20), and A(J - 1,1) to A'(20% I +J - 21).

The dependence S3d(=,<)S4, obviously, must be preserved.
2.3 Alias Analysis

If two different variables a and b refer to the same memory location, they are called
aliases of one another. @ and b are ezplicit aliases if a programming language construct,
such as union or equivalence, defines them to (partly) overlap. By contrast, they are
implicit aliases if their aliasing is caused via procedure passing mechanisms. The set of
all aliases of z is dew.vied by alias(z). Note that if y is an alias of z, y € alias(z) then

also z is an alias of y, = € alias(y).

25

Explicit aliases can easily be ized by analyzing the declaration of a program,

and hence are not di: d here. The ints dural alias analysis is briefly intro-

duced to find implicit aliases. A more detailed presentation is given in [10, 11, 38].

To simplify the discussion, it is assumed that a procedure must begin with a pro-
cedure leader, which (in FORTRAN) consists of the keyword SUBROUTINE followed
by the name of the procedure and a list of formal (or dummy) parameters euclosed
in parentheses. A procedure is invoked by a CALL statement which consists of the
keyword CALL followed by the name of the procedure and a list of arguments enclosed
in parentheses. The arguments are also called actual parameters. A global variable is a

nonlocal variable which can be referred to in a procedure body without passing it as a

to the d In FORTRAN global variables are those which
are declared by COMMON statements.
For example, in the following program?:

PROGRAM MAIN
COMMON G1,6G2,G3

S1: CALL P1(G1,61,62)
END

SUBROUTINE P1(F1,F2,F3)
COMMON G1,62,63

S2: CALL P2(F1,F2,F3)
END

SUBROUTINE P2(F4,F5,F6)
COMMON G1,62,G3

S3: CALL P1(G3,F4,F5)

S4: CALL P3(F5,F6)
END

SUBROUTINE P3(F7,F8)
This is a slightly modified cxample from [3].

26

COMMON G1,G2,G3

F7=F8+2

END
there are three procedures: P1 with formal parameters F'1, 2 and F3; P2 with formal
parameters [’4, F'5 and F°6; and P3 with formal parameters /7 and F8. These three
procedures are invoked by CALL statements S), Sy, S3, and Sy. The actual parameters
are G1,Gl,and G2in Sy, F1,F2, and I3 in Sy, G3, FF4, and F5 in S3, and F§ and 6
in Sy. The global variables in this program are G1,G2 and G3. This program will be
nsed as an example throughont this section.

Inter-procedural alias analysis finds two types of aliases. Type-1 aliasing is caused
by using a global variable as an actual parameter in a CALL statement. For example,
in S, the global variables G1 and G2 are used as actual parameters of the procedure
PL. In this case, G1 is an alias of the formal parameters F'1 and F2 of P1, and G2 is
F3's alias. So, Type-1 aliasing is also called global-to-formal aliasing.

Type-2 aliasing is caused by using the same variable or alias variables more than
once as actual parameters in a single CALL statement. For example, in Sy, G1 is used
two times as the actual parameter in the invocation of P1, so the formal parameters F1
and 72 of P1 are aliascs of cach other. Type-2 aliasing is also called formal-to-formal

aliasing.
2.3.1 Detecting Type—1 Aliases

The binding graph is the primary data structure to represent the relations between
global and formal variables and to calculate Type-1 aliases.

Definition [38]. A binding graph is a pair § = (Nj, Eg), where:

1. Np is the st of formal parameters of all procedures in a program.

27

2. Ep is a subset of Ng x Ng such that an edge (fy, f2) is in Ejy if there are two

procedures p; and p, such that

e fy is one of the formal parameters of p;,
® f is one of the formal parameters of p,, and
© fi gets bound to f; during an invocation of p; in py.
In the example program, the statement S, CALL P2(F71, I'2, I'3), binds 11, F'2,
and F3 to F4, F5, and F6; the statement Sy, CALL P1(G3, F'4, [°5), binds /4 and I75

to F2 and F3; and the statement S;, CALL P3(F5, F6), binds F*5 and 76 to "7 and

F8. The binding graph for this example program is shown as Figure 2.4.

® ® 6
& &
® ®

Figure 2.4: The binding graph g for the example program.

Type-1 aliases are determined in the following three steps:

1. Construct the binding graph of the program.

2. For cach node f of the binding graph, initialize its alias set, alias(f), as follows:
alias(f) :={g | g is bound to f}.

3. For each node f; of the binding graph, propagate thu 5(f) sets forward along

the directed edges. That is, for each edge (f;, f;):
alias(f;) = alias(f;) U alias(f;).

28

Table 2.2: Type-1 aliases for the cxample program.

formal parameter f alias(f)
1 {GT, G3}
F2 {G1,G3}
F3 {G1,G2,G3}
I {G1,G3}
F5 {G1,G3}
e {G1,G2,G3}
r1 {G1,G3}
8 {G1,G2,G3}

After step 2, alias(F1) = {G1,G3}, alias(F2) = {G1}, alias(FF3) = {G2} and other
alias sets arc cmpty. In step 3, these alias scts are propagated along the binding graph.
The result of Type-1 aliases is shown in Table 2.2.

The binding graph is actually a multi-graph since p; may contain several invocations
of py, which may result in f; bound to f, more than once. However, for historical
reasons, it is still referred to as a graph. Morcover, although standard FORTRAN
77 does not allow recursive calls, many other languages, such as C and PASCAL, do.
In this case, it is possible that a binding graph contains cycles, or strongly connected
components (SCCs). Therefore, the propagation of aliases in the binding graph should
be more complicated than that in the step 3 above. In fact, the main difference between
[11] and [38] is Low to propagate the alias sets among SCCs in step 3. In [11], first, each
SCC is reduced to a single node. Then, the alias sets are propagated along reduced
graph. Finally, the reduced graph is expanded into the original the binding graph. In
38], Tarjan's depth-first search algorithm [46] is used to find SCCs and propagate the
alias scts along the binding graph at the same time. This improvement simplifies the

algorithms. A detailed discussion is given in [11, 38, 46].

29

2.3.2 Detecting Type-2 Aliases

Type-2 aliases are caused by using alias variables or the same variable more than once

as an actual in a single cati For example, in S1, CALL
P1(G1,G1,G2), the variable G1 is used twice as an actual parameter for Pl, so F1
and F2 are aliases of each other; in S3, CALL P1(G3, F4, F5), G3 is a Type- 1 alias of
F5, so the formal parameters F1 and I3 of P1 arce also aliases.

To detect Type-2 aliases, a set € has been proposed [38] (called a work list). Each
clement of Q is a triple (p, f1, f2), indicating that the formal parameters f, and f, of a

procedure p are aliases of each other. When all Type-1 aliases of a program are known,

Type-2 aliases can be determined in the following two steps [38]:
1. Construct the initial set Q of the program.

For cach invocation CALL p(ay, ...,), and for all actual parameters
a;and aj, 1 < a; < a; < n, such that a; = a, or a; is an alins of @y,
the corresponding formal parameters f; and f; of the procedure p are

added to 2 as a triple (p, fi, f;)-
2. Expand the set Q.

For each triple (p, f1, f) in 2, check each invocation CALL q(ay, ..., az)
in the procedure p, and if there are actual parameters a; and a;, 1 <1 <
J < n, such that f; = a; and fy = aj, then find the formal parameters

i and f of the procedure g and add the triple (', f;, f;) to Q.

For the example program, step 1 creates the work list (2 as shown in Figure 2.5. "The

Type-2 aliases of the program, obtained in step 2, are shown in Table 2.3. Combining

30

Table 2.3: Type-2 aliases for the example program.

formal parameter f| _alias(f)
—F1 F2,F3
F2 {F1,F3}
F3 (F1, 72}
F1 {Fs, F6}
F5 {F4, F6}
6 {F4, F5}
F7 {F8}
8 {r7)

Table 2.2 with Table 2.3 creates the complete aliases for each formal parameter, as

shown in Table 2.4,

Figure 2.5: The complete work list € of the example program.

2.4 Dependence Graph

Both control and data dependencies can be represented as a graph, called a dependence
graph. The dependence graph G of a program is a directed graph G = (N, E), where
the set of nodes, N, is the set of the assignments and branch conditions of the selection
and iteration constructs of the program, and the directed edges, E C N x N, represent
both data and control dependencies. An edge (S, 5;) is in E if and only if S; is data-

or control-d on §;; if 8, is control-dependent on S, (S;, S;) is labeled

them from data-d dent edges. A d !

T(true) or F(false), to disti
graph also contains the initial node ENTRY, which, as in control flow graphs, represents

a uniform beginuing of the execution of the program.

31

Table 2.4: Complete (Type-1 and Type-2) aliases for the example program.

formal parameter f alias(f)

71 {GT, G3, F2, F3)
F2 {G1,G3, 11, '3}
F3 {G1,G2, Gy, F1, F'2}
Fd4 {G1,G3, 5, G}
F5 {G1,G3, 14, 6}
F6 {G1,G2, G, #4, I'5)
F7 (G1,G3,'8}

rg {GL,G2,G3, F'7}

For example, in the program shown in Figure 2.6(a), Sz, Sy, Sy and S; are control-

dependent on S;. S; and Sg are control-dependent on 8y, Sy is data-dependent on Sy
due to P, S; is data-dependent on Sg due to U, and Sy is data-dependent on Sy due to
Y. The dependence graph G is shown in Figure 2.6(b).

S1: IF (A) THEN

S2: Y=X+Z
ELSE
3 P=M-S
Si: IF(B) THEN
Ss: V=P+S
ELSE
S6: u=YZ
ENDIF
§: QA
ENDIF
Ss: T=Y
(a) (h)

Figure 2.6: An example program and its dependence graph.

Note that this dependence graph is different from the progrum dependence: griph as

defined in [15]. In a dependence graph, there are no region nodes used to summarize

the control condition for a node and to group all nodes which have the same set. of

32

control conditions. More information abont program dependence graphs can be found

in [15, 7).

Chapter 3

Evaluation of Inherent Parallelism

Research in the arca of iting the ismm of programs has been 1 1 over

many years, and several systems iti ismin IFOR-

TRAN programs have been developed [2, 3, 7]. However, these systems usually exploit
only loop parallelism. Even the recent contributions [32] cannot, deal with parallelism
between different loops or between a loop and the other parts of a program. This chap-
ter presents a new approach, which can be nsed to deal with parallelism between loops
and between loops and other parts of a program to evaluate the program’s inherent
parallelism. The presented approach differs quite significantly from the pru‘vimm work.

The speedup factor is used to evaluate the parallelism of a program. As defined in
Chapter 1, the speedup factor of a program is

Tiyeriat
Tyaralte’

speedup =

- where Tyeriar is the time of the sequential execution of the program, and Zhapie is the
time of the maximally parallel exccution of the same program. Obvionsly, Tyeriar and
Tyarattet are functions of the program as well as its input data.

Given a program P and its input data D, we can (conceptually) exceute the program

P with D. In this exccution, for cach selection construct in P, we can determine the

34

value of the boolean expression B (the branch condition) which can be TRUE or FALSE.
"This valueis called the ezecuting value of the selection construct, and is denoted by b. If

the selection construct is nested in nloops with indices iy, «..,in, 1 < 45 < Ny, j =

3 Ty
there are Ny x ... x N exccuting values for the same boolean expression B; all these
valiies are denoted by b(iy, .y in). The executing values of all selection constructs of the

program P with data D arc used for calculating the values Tyriar and Tparatter.
3.1 Evaluation of Tyyiu

If a statement S is nested inn (n 2 0) loops with indices i), .., i, S's sequential exe-
cution time for the iteration (iy, ...,i,) is denoted by Tyeriar(S, (it +--y in)). It is assumed
that for an assignment statement S (with no function invocations), the serial exccution
time does not depend upon the iteration, s0 Tieriar(S, (i1, +-uyin) = Teeriat(S), the serial
exceution time of the statement S,

The sequential exccution times of the sequence, selection and iteration constructs
arc as follows (#, is the exccution time of the boolean expression B in the selection

construct, and b(iy, ..., in) is the executing value of the selection construct):
» sequence:
TLieriat($13 52, (it in)) = Tseriat ($1) (1, wnin)) + Tueriat (S, (ity oy in))-
® selection:

to + Theriat (St (it oo 1»,):
=T

Trialif B then S, else S endif, (i, o)) ={ Ly o szh(;‘)

uthexwxs&

35

o iteration:

Taerialfor i:=1tondo § enddo, (i, . tn)) = 3 Tariat (S, (ity o imo).

=

Ani ion of the cvaluation of Tyeriq is described in the

ext chapter.
3.2 Evaluation of Tparque

The evaluation of Tpaater is more complicated than that of Tyeriar because it must
take into account both control and data dependencies among the statements of a given
program. In the proposed approach, the control and data dependencies are represented
as a dependence graph, and Tyerattet is evaluated on the basis of this dependence graph.

For simplicity, in any dependence graph G, an edge (S;, Sj) is called a control de-
pendence edge if Sj is control dependent on S;. A node S; is called an [I” node if Sy
corresponds to a branch condition in a selection construct, and it is called a loop node
if S; corresponds to a branch condition in an itcration construct. Iurthermore, a sode
is called a control node if it is an IF node, loop node, or ENTRY node. Note that if
an edge (S;, S;) is a control dependence edge, S; must be a control node. A path from
ENTRY to S;is called a control path CP; of S; ifits all cdges (ENT'RY, S}), (5),5,),
<y (S S:) are control dependence edges.

For each statement S; of the program, t; is used to denote the exeeution time of this

statement, and 7} to denote the total ion time of imally parallel

of all statements from the beginning of the program to S; (including S;). It is assumed

that both ¢gyrry and Tpnray are 0.

3.21 Evaluation of T;

It can be observed that for any given program and any statement Sj, if S is data

{ lent or control di dent on another Si, then Sj must be executed

after S; (if Sj is going to be executed at all). In other words, T; should be evaliated
after the evaluation of 73. This is the basic principle of the proposed approach.

If a statement S is nested in 72 (n > 0) loops with indices ki, ..., kn, a logical function
Fi(ky, .., kn) can be defined in such a way that F;(ky,..,k») is TRUE if and only if the
statement S; is execnted in the iteration (K, ..., ka), ie., the control path CP; of §; in
G is TRUE; otherwise (K, .., ky) is FALSE.

There are two casces to be considered in evaluating T,

Case One: §; is not included in any loop.

In general case, each node S; in the dependence graph has n (n > 0) data dependence

edges (S;;,5),5 = L,...,n, and one control dependence edge (Sy,S;), as shown in

N e

® T®

(@ (b)

Figure 3.1(a).

Figure 3.1: The dependence graph for node S;.

In this case:

oo titmax(Tyy o, T Ty), iF;

fis { 7, "7 otherwise, (1)
For example, the program shown in the Figure 3.2(a) can be evaluated using the

formula (3.1). Let the executing value b of B in S, be TRUE. Then:

37

Si: P=MS

§2: IF(B) THEN

§: V=P+§
ELSE

Si: U=Y-Z
ENDIF

8. QU

Figure 3.2: The cxample program | and its dependence graph.

Ty =t,

Ty =ty

T3 =t3 + max(Ty, T3) = t3 +max(t1, 1),
Ty=T, =ty and

Ty =ts+ max(Ty) =15+ to.

On the other hand, if the execnting value b of B in S, is FALSE, then:

Ti=t,
Tr=t,
Ty=Ty =ty

ty+ max(Ty) =ty + ta, and
Ts =ts+ max(Ty) =15+ tq +1h.

Case Two: S; is in the loop body.

For simplicity, the loop- ied islimited to a single loop with a normalized
index which varies from 1to /V with a unit increment between iterations. Let S, be
loop-carried-dependent on only one S; in this loop (a similar approach can be extenced
to more complex loops and more nodes Sj on which S is loop-carried-dependent; an
implementation of the extension is described in the next chapter). A simple example is
as follows:

s0: DO I=1,K
st: A(D)=B(I)

s2: B(I)=A(I+1)*C(I)
83: ENDDO
1 is loop-carried-dependent on 52, $2'6512, with distance (-1) due to A(l) and
A(I+1), and 52 is also anti-dependent on S1 because of B(l). This program can be
unfolded as:

A1) =B(1)
B(1)=A(2)+C(1)
A(2)=B(2)
B(2)=A(3)¥C(2)

B(3)=A(4)*C(3)
AD=301)
B(N)=A(N+1) *C(N)
and then it can be observed that, due to the anti-dependencios in A(2), A(3), ... A(N),
the statements cannot be executed in parallel.
In general case, each node S; has n (n > 0) dependence edges (S;35:),5 =1,...,n,
one control dependence edge (Sy,S;), and one loop-carried-dependence edge (S;, S;)

with the dircetion distance D = (d), as shown in Figure 3.1(b). To deal with the loop-

carri among the i ions of the loop, T; is replaced by T;(k) where k is
the loop iteration index, & =1, ...,n. Then:
ti + (T3 (K), oy Tin(K), Ty (), T3 (K = |d])), if Fi(k) and & > |df;
Li(k) =4 t: + max (T3 (K), ..., Tin(k), Ty (K)), if Fy(k) and & < |d;
T (k), otherwise.
(3.2)

For the above program, Fi(k),i=1,2, is always TRUE because there is no sclection
construct in this program. Then:
()=t
(1) =tz +max(T3(1) = t; +tz,

39

Ti(2) =t + max(Ty(1)) =2 + 1,

B(2) =ty + max(T3(2)) =2(t +),
T,(3) =t + max(Ty(2)) =3t + 2t
T,(3) =t + max(fy(3)) =3(t: +t),

Ty(N) =t + max(Ty(N - 1)) = Nt; + (N - 1)tz. and
T(N) =ty + max(Ty(N)) = N{t, +1t).
That is, the loop cannot be executed in parallel.
Another example for this casc is as follows:

S50: DO I=1,N

Si: A(D=B(I)
S2: B(D)=A (I-1)*C(I)
83: ENDDO

S, isloop-carried-dependent on Sy, S}653, with distance (-1) dueto A(1) and A(I-1),

and §, is also anti-dependent on §; because of B(l). Then:

h(1) =t,

Ty(1) =ty + max(Ti(1)) =t + ta,

Ni(2) =t,

B(2) =t;+ max(1i(2), T1(1)) =t + max(t,ti) =t “ 12
Ti(3) =ty

1,(3) = to+ max(1i(3), Ti(2)) = to + max(ti,t1) =t + t2,
5{N) =t), and
Ty(N) =ty + max(Ti(N), TN — 1)) = ta +max(ty, b)) = t) +to.

Although S1 and 52 cannot be exccuted in parallel, the loop contains some par-
allelism (which can be scen after unfolding the loop). This example shows that, the
proposed approach detects parallelism existing in loops with loop-carried-dependencies.

The c‘orrectncss of the proposed approach can be verified by the example shown in
Figure 3.3 and nsed in [32] to illustrate the parallelism available in loops. [32] shows

that the loop can be executed in 7V time units assuming that an addition is exccuted

40

S: DO I=IN

Si; A(=E(I-1}+6
8 B()=A()*Z
S C()=B(-)+X
S DI)=C()+Y
Ss; E()=B()*D(1)
ENDDO
@ ®)

Figure 3.3: The example program 2 and its dependence graph.

in one time unit and a multiplication requires three time units, There are two loop-
carried-data-dependencies in this example, that is, S5dS, with the distance (-1) and
Sy8°8y with the distance (-1). Let tg =0, ¢, =t3 = t4 =1, and t = t5 = 3. The values

of [3(k),i = 1,5 arc TRUE as there is no selection construct in the program.

For N
Ti(l)=t =1,
Ty(1) =ty + max(T3 (1) =3 + 1 =4,
(1) =ty =1,
Ti(1) =ts + max(T3(1)) = 1 + 1 =2, and
T5(1) =t + max(T3(1), Ty(1))

=3+ max(1,2) =7=1%7

For N=2:

T1(2) =t + max(T5(1)) = 1 + 7=8,
T5(2) =t + max(T1(2)) =3 +8=11,
T3(2) =ty + max(T(1)) =1 +
T3(2) =ty + max(T3(2)) = 1 + 5= 6, and
14(2) = ts + max(T2(2), T4(2))
=3+max(11,6) =11 = 247,

In general case, using induction on N(N > 1):
Ty(N)=T7N -6,

41

Ty(N) =7N - 3,

T5(N) =7N -9,
Ty(N) =7N -8, and
Ty(N) =N,

So Ts(N) =7 % N.
3.2.2 Evaluation of Tparaltet

If the analyzed program consists of M statements, then after finding all T3,i=1, ..., A,
the total execution time is:
Tharalter = Ilgisu,f,m)» (3.3)
Moreover, if $; is nested in n loops with loop indices iy, ..., i, such that | < 4; <
Njy§ = Ly m, then T3 is equal to max(L}(ir, -oryin)y L < i1 € N1y eon 1 S i € N

For cxample, in the program shown in Figure 3.3(a), since for each 75,i =

T(N) =max(Ty(1), ..., Ty(N)), and:

Toaratter = max(Ty, .., T5)
- T5(N))

That is, the same result is obtained as in [32], but using a different approach.
For the program shown in Figure 3.2(a), if B in S; is TRUE, then:

Tharattet = max(Ty, ..., Ts) =max(2y,ty ta + max(ts, o), ta 15 +b)
= max(¢; +max(t),b), t5 -+ ta).

On the other hand, if B in S, is FALSE, then:

12

: DO =N
A=ED+C()
(1)*D()
C=BU)+()
ENDDO
: DO IsIN
XM=Y (1y*W()
W(=XD+Y(D
Z()=A*W()
ENDDO

@ (b)
Fignre 3.4: The example program 3 and its dependence graph.
Tyoratter = 102X (T, T5) = max(ty by t2, tg +t2, 85+t + £2)
=max(t,ts + t4 +1).

Note that during the calculation of 7} by using the formulae (3.1) and (3.2), there
i no restriction on the positions of statements Sy and S;j,j = 1,..,n. The statements
Siy Sy and Si;j = 1,..,m, can be located in different loops and basic blocks. This
means that the proposed npproach can be used to evaluate parallelism between loops.
as well as between a loop and other basic blocks.

For the program shown in the Figure 3.4(a), there is a dependence between the
statements in the two loops. Lett; = 5 =0. Since there isno selection construct and
no loop-carried-data-dependence in the two loops, then fori= 1,..,N:

h()) =t =0,

Bi) =t,
B(i) =tr+1s,

hi) = r:’+ t7, and
1y(i) = ty + max(Ty(i), Ty (i) = max(ts, te +tr) + tg.

That is, for each T3, 5 =

L8, Tj(1) = .= Ty(N) = T, So:

13

S: DO I=IN

St AEBM

S IF(CI.GE.0) THEN

Si: B=A(-)EM
ELSE

Si: B)=A(+1)*F(T)
ENDIF
S F@=G0+H®)
ENDDO

(@ ®
Figure 3.5: The example program 4 and its dependence graph.
Tparatter = max(Ty, .., Ty)
=max(0, tg,t + ta, ta+ 3 + 14,0, to, g + t7, max(ty, 26 +17) + ty)
= max(tz + s+ tq, max(ta, g+ t7) +ty).

If te +17 > tg, then Tpppeue = max(ty + ty+ta, tg +t7 + ty). That is, the two loops
can be executed in parallel, even thongh there exits the dependence S,88x between the
two loops.

The program shown in the Figure 3.5(a) contains a selection construct within an
iteration construct. There are two loop-carried-dependencies, $,8°S3 with the distance
(-1), and 5,6°S; with the distance (-1). Suppose that N is equal to 4, and let the

executing values of §; be b(l) = T, b2) = F, 4(3) = F and b{1) = 7". Then:

2 +max(7y(1), T2 (1)) = t5 +max(t;, ty),
T(l) = Ty(1) = ta,

T5(1) = ts +max(Ty(1) = t2 +1s,

T3(2) = t1 +max(Ty(1)) =ty +t2,

T5(2) = t2,

T(2) = T5(2) = ta,

T4(2) = ta +max(77(2), T2(2)) = ta +max(t) +ty,t2) =t +tz +1y
T(2) = ts +max(Ty(2)) = t1 +t2 + ty+15,

Ti(3) =ty +max(T5(2))) = 2t +t2 +1,

“

T5(3) =12,

175(3) = T(3) = tz,

T4(3) = t4 + max(T1(3), T2(3)) = ts + max(2t; + t2 +14,82) = 2t; + to + 245
15(3) = t5 + max(T3(3)) = t5 + 2t; +tp + 2t4 = 2t) + bty + 24 + 15,

Ti(1) =t + max(Ty(3)) =t + 2t + t2 + 2ts = 3t + 12+ 28,

ta,

ty + max(Ti(4), T2(4), T1(3))

3+ max(3t) + ty + 24y, 15, 2t + to + 1) = 3t; +ta -+ ta + 28y,
Ty(1) =T(4) = ta,

Th(4) = tg + max(Ty(4)) = tp + 5.

Therefore:

T = max(7y(1), ..., Ty (4))
= max(ty,) + g, 2t; + by + £, 3ty + tp +2ty) = 3ty + 1 + 24,
Ty = max(Ty(1), .., 1p(4)) = max(tz, ta, t2, t2) = t2,
s = max(T3(1), ..., T5(4))
= max(ty + max(t), t2), ta, t2, 3t + ta + t3 + 2ts) = 3ty +p +t5 + 20y,
'y = max(Ty(1), .., Ta(4)) = max(ts, t1 + ta +ta, 21 + 2 + 204,12) = 2t +
ty + 21,
T = max(T(1), ..., T5(4))
= max(ty+ts, by +ta-+ts+ts, 2t +ta+ 2ty 5, taHg) = 2ty Hia+ 2y +t5.

So:

Tharaties = max(Th, ..., Ts)
= max(3t) + tg + 24, t2, 38 + b2 + ta + 204, 28y + tp + 24,28y + to + 24 + t5)
= max(3; + tg + ty + 2by, 2ty + ty + 2ty +15).

3.2.3 Discussion

often uses ions called reduction oper-

Program vectorization and
ations, such as sum or maximum of a vector or dot products. For example, the sum
of an array, say A, is such a reduction operation, as shown in Figure 3.6(a). On a
parallel machine, the sum can be calculated in parallel in a binary fashion as shown

in Figure 3.6(b), with time complexity O(t; log,n). The procedure of this calculation

45

is equivalent to a transformation of the loop into O(log, 1) loops and exceuting these
loops in parallel.
Al AQ) AQ) A@) ... AN-3) AN-2) AN-1) AN)

5=0
DO I=LN % b % 4
Si: S=S+AQ) \ / \ /
ENDDO T o s ¥
S
(@) ©®)

Figure 3.6: The sum of an array and its calenlation in a parallel machine.

One of the characteristics of the proposed approach is that the evalnation of the
speedup is directly performed on the original program, so there is no need for any
transformation of the program. Therefore, the value O(#; logy n) cannot be obtained
by using the proposed approach. Fortunately, most vector or parallel machines provide

instructions to perform reductions [12], and the proposed approach can easily recognize

these reducti ions by di d analysis. Thercfore, it is assumed that all
reduction operations can be executed on a parallel machine in a constant time, say 2,

and t can be used to evaluate Tparqiter-

46

Chapter 4

Implementation of DSA

A program called DSA (Dependence and Speedup Analyzer) was developed and used
to perform the dependence analysis and the evaluation of the inherent parallelism of
FORTRAN programs. This chapter contains a brief description of DSA and its imple-

mentation.
4.1 Overview of DSA

DSA performs the evaluation of the speedup factor of a program in the following three
phases: program analysis, dependence analysis and the speedup evaluation.

In the program analysis phase, DSA first reads the source Fortran program and
performs its lexical and syntax analysis to collect all the relevant information about
the program. Then DSA performs preprocessing for dependence analysis and speedup
cvaluation. This preprocessing consists of the generation of the control flow graph,
caleulation of IN and OUT sets, and alias analysis. The control flow graph is used as
an intermediate representation of a program for both dependence testing and speedup

cevaluation. The IN and OUT sets are used to detect and determine the types of data

d and int; dural alias

dependencics. The alias analysis consists of int

analyses to expose all implicit aliases created by parameter passing, and explicit aliases

47

created by equi ions in FORTRAN

After the program analysis, DSA performs control and data dependence analysis
and alias analysis based on the information collected during the program analysis. The
control dependence testing algorithm proposed by Ferrante [15] has been implemented
in DSA. In the data dependence analysis, the iteration-recursion algorithm for global
data flow analysis is applied to data dependence testing for both sealar variables and
array elements. Three data dependence testing algorithms, Allen and Kennedy's GCD
decision algorithm (3], Banerjee and Wolfe's decision algorithm [18], and Burke and
Cytron’s hierarchical testing algorithm [9), have been implemented in DSA to improve
the accuracy of dependence tests. In alias analysis, Cooper and Kennedy's fast. inter-
procedural alias analysis algorithm based on a binding graph [10, 11, 38] is used. Finally,

all control and data d ies arc d as a d d

graph.
In the speedup evaluation phase, DSA cvaluates the inherent parallelism of a pro-

gram by evaluating its speedup factor. The control flow graph and the depend

graph of the program are used for this evaluation. The evaluation of Tyeriq is per-

formed using the control flow graph, while the cvaluation of Tharaun is based on the

graph. The in Chapter 3 are used to caleulate the

speedup of programs.
4.2 Program Analysis

Program analysis performs lexical and syntax analysis of the program and preprocessing
for dependence analysis and specdup evaluation. During the lexical and syntax analysis,

the following information is collected:

48

o Variable Table V: Each clement of the Variable Table V' is a pair (id, attr),
where id is the name of a variable, and attr is a collection of attributes, such as

type and the length of the variable.

e Call Table C: Each clement of the Call Table C is a record which consists of
three items: the line number, the name of the caller, and the invocation of the
procedure. For the example program of Section 2.3, the Call Table C created by

DSA is as follows:

invocation
P1(G1,01,62)
P2(F1,F2,F3)
P1(G3,F4,F5)
P3(F5,F6)

IF Set I: Each clement of the IF Set [is a triple (c, b, €), where ¢, and e are the
line numbers of the control, the first and the last lines of each selection construct,

respectively.

Loop Set L: Each clement of the Loop Set L is a quadruple (c, b, e,v) where ¢, b
and ¢ are the numbers of the control, the first and the last lines of each iteration
construct, respectively, and v is a triple (i, f, s) where i and f are the initial and

final values of the loop control, and s is the increment.

ST Set T Each clement of the ST Set T is a triple (I,t,,1,) where [is the line
number of an exccutable statement S, and t, and t, are the execution times for

serial aud parallel exceution of S, respectively.

The preprocessing of dependence analysis includes the generation of the control flow

graph, finding the IN and QUT sets, and alias analysis. The control flow graph is an

49

intermediate representation of the program and is the basis for the dependence analysis
and speedup evaluation. The sets JN and QUT are used to detect data dependencies

and to determine the types of the data dependencics, The alias analysis determines

the aliases produced by the passing mechanisms and data equivalences in
FORTRAN programs. The result of alias analysis is recorded in the Alias Sets used for
data dependence analysis. Since the aliases produced by data equivalences (COMMON

and EQUIVALENCE statements) are explicitly declared, these aliases are obtained

by dircctly analvzing the ions of the The aliases produced by the
procedure passing mechanisms are obtained by inter-procedural alins analysis. The

algorithms of inter-procedural alias analysis described in Chapter 2 are used in DSA.
4.2.1 Generation of Control Flow Graph

In order to improve the cfficiency of DSA, each node of the control flow graph corre-
sponds to a branch condition of a selection or an iteration construct, or to a sequence
of consecutive statements called a block; the flow of control enters the block only at
the beginning and leaves at the end without a possibility of branching exeept at the
end. The generation of the control flow graph of a program consists of the following

two steps:

e the nodes of the control flow graph are determined by partitioning the program

into blocks, and then

o the set of directed edges of the control flow graph is generated.

Let the first statement of the block be called the leader of a block. A source program

can be partitioned into blocks by the following two steps:

50

® the sonrce program is scanned to determine the set of leaders, and

o for cach leader, the leader is combined with all following statements up to but not

incinding the next leader or up to the end of the program.
In source FORTRAN programs, the following statements are leaders:
® DO, 1i, Assigned GO TO, and Computed GO TO statements,

® statements which immediately follow DO, CONTINUE, IF, ELSE, ENDIF, As-

signed GO TO, Computed GO TO, GO TO and RETURN statements,
o statements which have a label except of FORMAT and CONTINUE statements.

Block leaders can easily be identified by scanning the source program. After de-
termining the set of leaders, blocks are abtained by combining cach leader with all
statements up to but not including the next leader or the end of the program.

In DSA, a node in the control flow graph is a block (not a statement) which is
identified by a pair (1, 7), where m and n are the line numbers of the first and the last

C1 of the block, ively. It is ient to define two functions, LNF and

LNL, which determine the line number of the first (LNF) and the last (LNL) statement
of cach node of the control flow graph. These two functions are used in the next scctions
of this chapter.

DSA uses a stack for block leaders in order to generate the control flow graph of
a FORTRAN program in a single pass. For example, for a FORTRAN DO construct,
the line number [, of the DO statement is first pushed on the stack. When the first
statement of the loop body is processed, its line number [is pushed on the stack, and

an edge < [, I > of the control flow graph is generated. When the processing of the

51

loop body is over, and the line number of the last statement of the loop body is ly,
an clement { is popped from the stack, and a node n identified by the pair (I, k) is
generated. Note that if there is no other loop or IF statement in the loop body, then
1 is lp; otherwise ! is the leader of the last block in the loop body. Finally, when the
DOEND is processed with line number Iy, /) is popped from the stack and the edges

<,y > and < Iy, I > are generated. The other FORTRAN statements are procossed

in a similar way.
4.2.2 Calculation of IN and OUT Sets

In a FORTRAN program, the sets IV and OUT can casily be determined during the

syntax analysis of programs if S is an assignment, DO, 1F, READ, WRITE, PRIN'T,

or other I/O statement. For instance, if S is an assignment statement A = eapr, the
parser will add A to the set OUT(S) and add all variables used in ezpr to the set IN(S).
All such updates of the sets OUT and IN can easily be done during syntax analysis.
However, when S is a CALL statement, or when S contains one or more finction
invocations, determinating IN(S) and QUT/(S) cannot be done during analysis of . For
example, for a statement CALL p(.X), we may know very little abont the procedure p
during syntax analysis of this statement; X may be used to pass a value to or from p.

In this case, there are three possibilities: (1) both IN(S) and OUT(S) shonld contain
X, (2) only IN(S) should contain X, and (3) only QUT(S) should contain X. So, when

S is a CALL statement or § contains one or more function invocations, the calenlation

of IN(S) and OUT(S) must be performed after the syntax analysis is completed. [n

DSA, all such sets IN(S) and OUT(S) are determined after the completion of syntax

analysis and construction of the binding graph /.

DSA associates two boolean variables def and use with each formal parameter f of
each procedure p. def is set TRUE if there is at least one statement S in the procedure
p such that f € OUT(S), otherwise def is set FALSE. Similarly, use is set TRUE if there
is at least one statement S in the procedure p such that f €IN(S), otherwise it is set
FALSE.

Conscquently, after the syntax analysis, if S is a CALL statement, or S contains one
or more function invocations, the values of IN(S) and OUT(S) can be determined in
two steps: the first step determines the valucs of def and use for all formal parameters of
all procedures in the program; the second step determines the sets IN(S) and OUT(S)
based on the Call Table and the values of def and use of all formal parameters.

The following algorithm is used in DSA to determine the values of def and use for all
formal parameters of a program; in this algorithm, for each node n of the control graph,
the set Successors(n) denotes the set of all nodes connected by directed arcs from n.

Algorithm: Calculating def and use for all formal parameters.

Input: The Variable Table V, the [N and OUT scts, and the binding graph
B = (Na, Eg)-

Qutput: The valucs of def and use of all formal parameters.

for cach paramcter f in V do
use(f) := FALSE;
def(f) := FALSE;
for cach statement S do
if f € IN(S) then use(f) := TRUE endif;
if f € OUT(S) then def(f) := TRUE endif
enddo
enddo;
for cach node f in Ny do
for cach k in Successors(f) do
formalattr(h, tuse, tdef);
use(f) := use(f) V tuse;
def(f) := def(f) v tdef

53

enddo
enddo;

procedure formalatir(f, tdef, tuse);
begin
if Successors(f) is cmpty then

for each & in Successors(f) do
formalattr(h, tdef, tuse)
enddo;
tuse := use(f) := use(f) V tuse;
tdef := def(f) := def(f) V tdef
endif
end;

The def and use for cach of the formal parameters are caleulated in the following two
steps: (i) the initial values of defand use are set for cach formal parameter f depending
on whether or not f is in IN(S) or OUT(S) of any statement S of the program; step
(ii) checks the edges (f1,f2) of the binding graph B = (Nj, By) and uses a recnrsive
procedure formalatir to update the values of def(f,) and use(f,).

For the example program from Scction 2.3 and its binding graph /4 shown in Figure
2.4, the initial values of def and use are: def(F7)=TRUE, use(F§)=TRUE, and all other
vales of def and use arc FALSE. After caleulating use and def for all nodes in the binding
graph fi = (Np, Ep), the final values of def and use are shown in Table 4.1,

For CALL statements, the sets IN and QUT arc determined by the following algo-

rithms:

Algorithm: Finding the sets QUT and IN for CALL statements.
Input: The Variable Table V, and the Call Table C of a program.
Output: The sets OUT(S) and IN(S) for each CALL statement S.

54

‘Table 4.1: The def and use values for the example program of Section 2.3.

formal parameter | def use
F1 TRUE | TRUE
F2 TRUE | TRUE
F3 FALSE | TRUE
F4 TRUE | TRUE
F5 TRUE | TRUE
F6 FALSE | TRUE
F7 TRUE | FALSE
F8 FALSE | TRUE

for each entry (, 4, p(a1, . an)) € C do
for cach argument a; in (ay, .., as) do
find the ith formal parameter f; of p in V;
if def(f;) then OUT(S) := OUT(S) U{a;} endif;
if use(f;) then IN(S) := IN(S) U{a;} endif

enddo
enddo;

The sets /N and OUT for the example program of Section 2.3 are shown in Table 4.2.

Table 4.2: The scts /N and OUT for the example program of Section 2.3.

statement S| _IN(S) | OUT(S)
S G1,G2 Gl
5 F1,F2,F3 | F1,F2
S G3,P4,F5 | G3,F4
8 F6 F5

4.3 Dependence Analysis

55

Dependence analysis performs the analysis of control and data dependencies and rep-
resents the dependencies as a dependence graph used in the speedup evaluation. For

control dependence analysis, DSA uscs the Ferrante [15] control dependence testing algo-

rithm. Burke and Cytron's hicrarchical testing algorithm [9] is used as a test framework

of Allen and Kennedy's GCD data dependence testing algorithm [3] and Banerjee and

Wolfe's i lity data d d testing. i is used for data dependence anal-
ysis. Banerjee and Wolfe’s algorithm [48] is used to deal with more complicated data
dependence testing cases, while the GCD testing is used to improve the efficieney of
DSA. Cooper and Kennedy's fast inter-procedural alias analysis alggorithm [10, 11, 38]

is used for alias analysis. The iterati i Igori is also impls 1 for

global data flow analysis. Since the algorithms were discussed in detail in Chapter 2,
this section discusses only the algorithm for global data flow analysis and provides some

details of the Burke and Cytron's hierarchical testing algorithm.

4.3.1 Global Data Flow Analysis

In DSA, the iteration- i ithm has been impl d for global data flow
analysis. This scction first briefly introduces the Hecht and Ullman’s depth-first order-
ing algorithm as it is used in the iteration-recursion algorithm. The algorithm consists
of an initial part and a recursive ordering part. card(A) denotes the cardinality of the

set A

Algorithm: Hecht and Ullman’s depth-first ordering algorithm.
Input: A control flow graph G with a st of nodes N and an initial node 7.
Output: A depth-first order rPostorder.

for each n in N do visited/n] := FALSE enddo;
i := card(N);
search(ng,i);

procedure search(n,i);
begin
visited[n] := TRUE;
for each s in Successors(n) do

56

if not visited/n] then search(s,i) endif

I, for an edge (n,m) in a control flow graph, rPostorder[n] ; rPostorderfm}, the edge
is called a retreating edge and it indicates the existence of a loop in G. For rPostorder, a
node is always visited before its successors except when the node and its successor form

a ing edge. Let indegreefn] denote the in-degree of node n in the graph G, and

let retreatedgefn] denote the number of retreating edges directed to n. Moreover, let

fDegreefn] = indegreefn] - [n]. The iterati i ithm uses fDegree

instead of rPostorder to control the order of visited nodes.

The following i ines the data d d set DD. Each element of
DD is a triple (S;, Sj,z) where z is one of FLOW, ANTI or OUTPUT and indicates that
S; is z-dependent on S;.

Algorithm: Testing data dependencies.

Input: A control flow graph G with a st of nodes N, an initial node ny, the
sets fDegree, rPostorder, OUT(S) and IN(S).

Output: The data dependence set DD.

f = TRUE;

DD:={}

while f do
[i= FALSE;
for cach n in G do wvisitfn] := 0 enddo;
irdf{no, {}, {}, f,FALSE)

enddo;

procedure irdf(n,tin,tout, flag,retreatedge);
begin

dpdttype(n,tin,tout, flag);

if not retreatedge then

57

visit[n] := visit[n]+1;
if visit[n]=fDegree[n] then
for each s in Successors(n) do
if rPostorder[n] > rPostorder[s] then
irdf(s,tin, tout, flag, TRUE)
else
irdf(s,tin,tout, flag,FALSE)
endif
enddo
endif
endif
end;

procedure dpdttype(n,tin,tout,flag);

begin
tmp := DD;
for i := LNF(n) to LNL(n) do

for each v in OUT(S;) do
for cach (v', 4) in tout do
if dp(v,v') then
DD := DD U{(S;, S;, outpuT)};
= tout = {(v)}

enddo;
for each (v',) in tin do
if dp(v,v') then DD = DD U{(S;, S;, ANTI)} endif
enddo;
tout := tout U {(v,4)}
enddo;
for each v in IN(S;) do
for each (v,) in tout do
if dp(v,v') then
DD := DD U{(S;, Sj, FLOW)}
else
error(“The variable” v, “in line” i,“has no value.”)
endif
enddo;
for each (v, j) in tin do
if dp(v,v') then tin := tin — {(v', 5)} endif

enddo;

58

tin = tin U {(v,4)}
enddo
enddo;
flag := not(tmp = DD)
end;

In this algorithm, LNF(n) and LNL(n) are th;: functions which determine the line
number of the first (LNF) and the last (LNL) statement associated with the node n
(sce Section 4.2.1). The formal parameters tin and tout are used for passing the data
flow sets OUT'(S) and IN(S) in control flow graph. The iteration control part and the
recursive traversal part control the procedure of the global data flow analysis, while the
procedure dpditype performs data dependence testing. The boolean function dp(v,v')
tests the potential dependence between v and v', checking if v and o' are the same, or
if they are aliases of cach other, to make S; and S; data dependent. If both v and v
are elements of an array, the subscript analysis or array element dependence testing is
needed to determine the dependence between them. Array element dependence testing
is discussed in the next section.

The iteration-recursion algorithm consists of the iteration control part and the re-
cursive traversal part, shown in the above algorithm which tests data dependencies.
For solving other global data flow analysis problems, it is only needed to change the
procedure dpdttype in the recursive traversal part. The presented algorithm is more

cfficient than the Hecht and Ullman’s iterative algorithm; a formal analysis of the

iterati i i can be d by means of the semi-lattice theory

[24, 25, 28, 35], and is given mx the Appendix.

59

4.3.2 Array Element Dependence Testing

The following algorithm is used in DSA for the hicrarchical dependence testing. The
original algorithm is due to [9].

Algorithm: Hierarchical dependence tesiing.

Input: The low-up bound matrix LU, the coefficient matrix C, the direction
vector V and the position p of the first ‘+’ in V.

Output: A boolean value indicating the exi: of d it

boolean function hierchtest(LU, C, V, p);
begin
result := FALSE;
if ddtesting(LU, C, V) then
if p < card(V) then
for each cin {'<'\'='/>'} do
if not result then

<
p+1 to card(V) do V[i] := '*' enddo;

for
result := hierchtest(L, U, A, B, V, p+1) V result
endif;
hierchtest := result
else
hierchest := TRUE
endif
else
hierchtest := FALSE
endif
end;

hierchtest is a recursive function, invoked by hierchtest(LU,C\v,1) with v = (*, ..., +).
In the above algorithm, the boolean function ddtesting performs Banerjec’s inequal-

ity decision algorithm as well as Allen and Kemnedy's GCD data dependence

Losting
algorithm. Given the low-up bound matrix LU, the cocfficient matrix C' of two ar-
ray references and the direction vector v, ddtesting performs the GCD and Banerjee's
inequality testing. If there is a data dependence, ddtesting returns TRUE, otherwise

60

FALSE is returned. Note that when hierchtest returns TRUE, the direction vector v can

be analyzed and v in the form (=,...,=,<,*,...,*) indicates a loop-carried-dependence.

4.4 Evaluation of the Speedup Factor

Since the speednp factor of a given program is defined as %"m;ﬁ, this section describes
the algorithms implemented in DSA to evaluate Tyeriat and Tparanier. The original idea
and the detailed discussion of the algorithms are given in Chapter 3.

"To evaluate the speedup factor of a given program and to simplify the implementa-

tion of DSA, it is assumed that:

any simple arithmetic or logical operation is executed in #, time units,

[

. any store or assign memory access operation is exccuted in ¢, time units,

any 1/O operation takes #;, time units,

any built-in mathematical FORTRAN function or library function is executed in

ty time units,

any statement which contains function invocation can be cxecuted in the time

@

units to exccute its operations plus the time units to execute the function.

DSA evalnates Tyeriat and Tparauer using these assumptions. It should be pointed
out that, in general, it is difficult to estimate the execution times of operations because
they depend upon many factors, such as the hardware architecture, data transfer delays
and so on. DSA allows the users to modify the values of t,, tm, ti, and ty, so users’

estimates of exceution times can be used.

61

4.4.1 Evaluation of Tyeia

The following algorithm is used in DSA to evaluate Tyeriq of a program. The evaluation
is performed using the control flow graph G of the program. The ST set 7' is nsed to
calculate the exceution time of cach statcment. The Loop set L, and IF set [are used
to split the program into the sequence, selection and iteration construets. All these sets
are created during the program analysis phase.

Algorithm: Evalnating Tyeriat-
Input: A control flow graph G, the ST Set 7', the Loop Set. L, the I Set /.
Output: Tyeriat.

function Tserial(n, i, f, (it,viv));
begin
l:= LNF(n);
ifnot (i< ! < f) then
ts
else
if (I,b,e, (i, f,5)) € L then
ts = tsb(n);
for k :=ito f step s do
ts := ts+ T'serial(suce(n, TRUE), b, ¢, (iy,..., 1w, k)
enddo;
ts = ts + Tserial(suce(r, FALSE), i, f, (i1, vy in)
else
if (I, b, ¢) € I then
ts := tsh(n);
i€ b4, yiy) then
ts := ts + Tserial (suce(n, TRUE), b, ¢, (i, ..., 1))
else
ts 1= ts + Tserial (suce(n, FALSE), b, ¢, (i1, ..., 1))
endif;
ts := ts + T'serial(suce(suce(n, NIL), NIL), 1, [)
else
ts = tsb(n) + Tserial (succ(n, N1L),, £, (if, .., %))
endif
endif

62

endif;
Tserial := ts
end;

The function LNF(n) retiurns the line number of the the first statement of the block
represented by 7 (see Section 4.2.1). succ is the successor function, so that succ(n, C)
returns a successor s of the node n with the condition C' (which can be TRUE or FALSE).
tsb(n) is a fanction used to calculate the Tyeriat time for node n; it just sums all £, values
of the triples (, #,,t,) from the ST set T as long as the line number is within the basic
block 7a.

This algorithm is defined by a recursive function T'serial(n, %, £, (i, ..., iy)), where
(i1, ..., 3) are the loop indices; T'serial calculates the exccution time of the block nested
in v loops (i1, -..,4), beginning at node 7 and line i, and extending to line f. The
algorithm is invoked by Tserial(ng, LNF(n), maz.line_no,()), where ng is the initial
node of the control flow graph. It is assumed that LNF(ENTRY) is 0. When the first
line associated with node n is out of scope i to f, the algorithm terminates. The rest of
the algorithm is composed of three parts for the iteration, sclection and the sequence

structures. Additional explanations are given in Section 3.1
4.4.2 Evaluation of Tparatet

Asin Chapter 3, first the algorithm to calculate T; is presented, and then the evaluation

of Tharattet 8 discussed.
Evaluation of 7}

The formula (3.2) is extended to cover more general cases. It is assumed that S is

nested in loops Ly, ..., Ly, data dependent on iy, ..., Sin, control dependent on Sy, and

63

Figure 4.1: The dependence graph for node §;.

loop-carried-data-dependent on Sj,1,..., and Sja, as shown in Figure 4.1, For such a
case, the formula (3.2) can be extended into the following algorithm. The evaluation
is performed using the dependence graph G, which contains all information about. the
control, data and loop-carried-data-dependencies. The ST set 7' is used to caleulate the
excention time of each statement.

Algorithm: Evaluating T;.

Input: A dependence graph G, the ST Set T; for a node i, #' is the node
that i is control-dependent on, and 4y, ..., i, are the nodes that i is data
dependent on, as in Figure 4.1; the exceution time of the node i is #;.

Output: T;.

function T'(3, ky, ..., ky);

begin
if i = ENTRY then
ti=0
else

ti= Tk, oo ki
if Fy(Kky, . kp) then
for £ tondo
= max(t, T(ie, k1, . kp))
enddo;
for cach S such that $;8°S; with D = (dy, ..., d,) do
if by > abs(di) A ... Ak, > abs(dy) then
t:= max(t, T(j, ki - abs(dy), .., k, - abs(d,))
endif
enddo;
=t4Y
endif
endif;

64

T:=t

end;
The algorithm follows the formula (3.2). First, it checks the control dependence
edgge (S, ;) and caleulates Ty of the statement Sy, asin the otherwise case in the
T

formula (3.2). Then, if F5(k,, .. kp) is TRUE, the max of Ty, ..., Tin is calculated by

following the data dependence edges (S, i), . (Sijn, ;). Finally, if the condition
ky > abs(dy) Ao A ky > abs(dy) is TRUE, the max of Ty, ..., Tjm is calculated by

following the loop-carried-data-dependence edges (Sj,1, Si), vees (Sjmr Si)-
Evaluation of Tparaiin

Assuming that a node n in the dependence graph corresponds to a statement S,,, and
that S, is nested in v loops where cach loop index satisfies (ij, fj, 8;),§ = 1,..,v,
T; is equal to max(Zi(vy, ..., w)) where v; = 1,..,(f5 —ij + 1)/s5, 5 = Ly v. Let
m =M (f; =i + 1)/s;. Aninteger k, 1 < k < 7, can be converted into a v-
dimensional vector (vy,...,v,) using the following algorithm:

Algorithm: Mapping.

Input: k,v, Lidz = {(ij, f;,8;), 5 = 1,0}
Output: (vy,...,v,).

function mapping(k, v, Lidz);

begin
for i:=v to I do
t= L2V = i+ /53
vii= (k= 1)/t

if mod(k,t) = 0 then
ki=t

else
k:=mod(k, t)
endif
enddo;
mapping 1= (0, ..., vy)

65

end;

DSA uses the following algorithm to evaluate Tparanet. For each node i in G, first the

values m and v are calculated and cach &,k =

., m, is mapped intoa v dimensional
vector idz = (i, .vy) (1sing the mapping algorithn above). The vector ids is nsed
in evaluation T'(n,idz), that is Ty(w, -, »,). The maximal valne of all T}, (v, 1) s

returned as Tharattel:

Algorithm: Evaluating Tharaticl-
Input: A dependence graph G = (W, £), the Loop Set L.
Output: Tparalict-

function Tparallel;

begin
t:=0;
for each node nin N do
mi=1

Lidz = (};
for cach (c, be, (3, £,9)) in L do
ifb< LNF(n) < cthen

mi=mx*(f —i+1)/s;

vi=v4l;

Lidz = Lidz U{(, f,)}
endif

tom do
rnapping (k, v, Lidz);
t :==mazx(t,T(n, idz))
enddo
enddo;
Tparallel := t
end;

The function LNF(n) returns the line numbe.: of the first statement associated with

the node n.

66

Chapter 5

Examples

Five examples are shown in this chapter with their results produced by DSA. Three of
these examples are example programs introduced in Chapter 3, where the dependencies
and the parallelism in these programs were analyzed in detail. The other two examples
are taken from the Livermore Loops [14]. Livermore Loops is a ser of 24 FORTRAN

programs selected from real application codes, and rin at Lawrence Livermore Na-

tional Laboratory. These loops have been used ly to evaluate the perf

of computer systems for more than thirty years. Detailed analysis of these loops is
presented in [14].

Example 1 il the luation of llelism within a loop which contains IF

statements. Example 2 analyzes the parallelism between loops. Example 3 is adopted
from [32]; it is used to compare the results obtained from DSA with (32]. The proposed
approach is further verified by Example 4 and Example 5, which are taken from the
Livermore Loops [14].

In order to simplify the discussion, all operation times 2, tn, tio and ¢; in Examples

1,2, 4 and 5 are assumed to be 1 time unit,

5.1 Example 1

The following example program, which corresponds to the example program 4 of Chap-
ter 3 shown in the Figure 3.5(a), illustrates the evaluation of the speedup factor for a
simple loop containing an IF' statement.

1 REAL A(0:10), B(10), C(10)
2 REAL G(10), E(10), F(10), H(10)
3 DO 10 I=1,4
4 A(I)=B(I)
IF (C(I).GE.0) THEN
B(I)=A(I-1)*E(I)

B(I)=A(I+1)/F(I)+10

El
F(I)=G(I)+H(I)
10 CONTINUE
END

Let the exccuting values are as follows:

5(1) : T
5(2) : F
5@3) : F
5(4) : T

The control flow graph, gencrated by DSA, is as follows:

node (ENTRY): ->3 (T)->STOP (F)
node (3,3): ->4 (T)->STOP (F)
node (4,4): ->5

node (5,5): ->6 (T)->8 (F)
node (6,7): ->10

node (8,9): ->10

node (10,11): ->3

node (12,12): ->STOP

node (STOP)

In the above control flow graph, cach node is described as node (ENTRY), node
(STOP), or node (n,m) where n and m are the line numbers of the program. Each
edge is indicated by ->. The edges with attributes (T) or (F) are associated with the

68

selection statements. For example, there are two cdges from node (3,3): one to node
(4,4) with attribute (T), and the other to node (STOP). The ST Set 7" of this program

is as follows:
Line ts tp Statement

3 1 0 DO

4 1 1 ASSIGNMENT

5 2 2 IF

6 3 3 ASSIGNMENT

8 4 4 ASSIGNMENT
10 2 2 ASSIGNMENT

Using the same notation as for the example program 4 in Chapter 3,t =0, ¢, =1,
ta =2ty =3ty =4and t5 =2

After the d d analysis, the d d graph is as follows:

node (ENTRY): —>3 (T)

node (3): ->4 (T)->5 (T)->10 (T)
node (4): ->6 (D)->6 (L)(-1)->8 (D)
node (5): ->6 (T)->8 (F)

node (6): ->8 (D)

node (8): ->4 (L)(-1)->10 (D)

node (10):

In this dependence graph, each node is described as node (ENTRY) or node (n)
where n is the line number of the program. The edges with attributes (T) and (F)
are control-dependence edges with label (T) or (F), the edges with the attribute (D)
data-dependence edges, and the edges with the attribute (L)(d) loop-carried-data-
dependence edges with distance (). For example, node (6) is control-dependent on
node (5) with label (T) and node (8) is control-dependent on node (5) with label
(F); node (4) is loop-carried-data-dependent on node (8) with distance (—1) and
node (10) is data-dependent on node (8).

The evaluations of Ti, Tiyeriaty Tparattet and the speedup factor of the program are

shown as follows:

69

T(ENTRY) = {0}
T(3) = {0}

T(4) = {1,3,8,13}
T(5) = {2,2,2,2}
T(6) = {5,2,2,16}
T(8) = {2,7,12,2}
T(10) = {4,9,14,4}

Tserial = 39
Tparallel = 16
Speedup Factor = 2.44
Here, T(i)={d,,d;, . ..} means that T}(1) =), 7}(2) = dy, and so on. For comparison,
the result derived in Chapter 3 is:
Tharatter = Max (3t + bz + by + 24y, 2 + o + 24 + 1g).
That is:
Toarattet =mAX(3+14+2+3+ 254,25 142+ 214 2)
= max(16,11) = 16.
The evalnation of Tyerigt in Chapter 3 can be nsed to verify the valie of Typia:
Toeriat = 5t + 4(tz+ t3 +15) + 24, + 2t

ol A1+2+2) 42434221
9.

So the speedup factor is indeed equal to 2.44.
5.2 Example 2

This example corresponds to the example program 3 shown in Figure 3.4(a). It illus-
trates the evaluation of parallelism between loops.

REAL A(10), B(10), C(10)
REAL D(10), E(10), F(10)
REAL X(10), Y(10), 2(10), W(10)
DO 10 I=1,10
ACI)=E(D)+C(1)

O e

70

6 B(I)=A(I)*D(I)
7 C(I)=B(I)+F(I)
8 10 CONTINUE

9 DO 20 I=1,10

10 X(I)=Y(I)*W(I)
11 W(I)=X(D+Y(I)
12 Z(I)=A(1) *W(D)
13 20 CONTINUE

14 END

The ST Set T'is as follows:

Line ts tp Statement

4 1 0 D0
5 2 2 ASSIGNMENT
6 2 2 ASSIGNMENT
7 2 2 ASSTGNMENT
9 1 o
10 2 2 ASSIGNMENT
1 2 2 ASSIGNMENT
12 2 2 ASSTIGNMENT

Using the same notation as for the example program 3 in Chapter 3, #, =0, t;=2,
by =2t =214=0,1=2, ¢ =2, and {y= 2. The dependence graph is:

node (ENTRY): ->4 (T)->9 (1)

node (4): ->9 (D)->6 (T)->6 (T)->7 (T)
node (5) : ->6 (D) ->7 (D)->12 (D)

node (6) : ->7 (D)

node (7) :

node (9): ->10 (T)->11 (T)->12 (1)
node (10) : ->11 (D)

node (11) : ->12 (D)

node (12) :

The values of 7; and the speedup factor of the program as follows:

T(ENTRY) = {0}

T(4) = {0}
T(5) = {2,2,2,2,2,2,2,2,2,2}
T(6) = {4,4,4,4,4,4,4,4,4,4}
T(7) = {6,6,6,6,6,6,6,6,6,6}
T(9) = {0}

T(10) = {2,2,2,
T() = {4,4,4,
T(12) = {6,6,6,
Tserial = 142
Tparallel = 6
Speedup Factor = 23.67

Comparing with results of Chapter 3:

Tparatet = Max(ly + ta +14, te +17 + ta)
=max(2+2 +22+2+2)
=6.

and:

Tyeriat = 111 +10(t2 +ta + 14) + 1182 + 10(ts + 17+ tx)
=1L 1+10(2+2+2)+ 10 * 14+10(2 +2+2)
=142,

So, the speedup factor is indeed 23.67.
5.3 Example 3

This example corresponds to the example program 2 shown in Figure 3.3(a), and is
used to compare with the result presented in [32].

REAL A(10), B(0:10), C(10), D(10), E(0:10)
0010 I-1,10
A(I)=E(I-1)+6
B(I)=A(I)*Z
C(I)=B(I~-1)+K
D(1)=C(I)+Y
E(I)=B(I)*D(I)
10 CONTINUE
END

COND OB WN R

Similarly as in Chapter 3 and in [32):

1. an addition operation is executed in one time unit, and

72

2. a multiplication operation requires three time units.

Program analysis produces the following ST Set T

Line ts tp Statement

DO

ASSIGNMENT
ASSIGNMENT
ASSIGNMENT
ASSIGNMENT
ASSIGNMENT

Noaswn
W ewe e
[N

The timing data, using the notation from Chapter 3, are: 4 =0, &) =1, t; = 3,
ty =1, t; =1 and #; = 3. The dependence graph is:

node (ENTRY): ->2 (T)

node (2): ->3 (T)->4 (T)->5 (T)->6 (T)->7 (T)
node (3): ->4 (D)

node (4): ->6 (L)(-1)->7 (D)

node (5): ->6 (D)

node (6): ->7 (D)

node (7): ->3 (L)(-1)

15 and the speedup factor of the program are as follows:

T(ENTRY) = {0}
0.

T(2) = {0}

T(3) = {1,8,15,22,29,36,43,50,57,64}
T(4) = {4,11,18,25,32,39,46,53,60,67}
T(5) = {1,5,12,19,26,33,40,47,54,61}
T(6) = {2,6,13,20,27,34,41,48,55,62}

T(7) = {7,14,21,28,35,42,49,56,63,70}
Tserial = 101

Tparallel = 70
Speedup Factor = 1.44

In [32], Tharattet = T+ N = 710 = 70, while in Chapter 3, Tyarauet = N * (t5+ 12 + 1)) =

10 * (3 + 3 + 1) = 70, so the three results are the same.

73

5.4 Example 4

The following program is Loop 20 of the Livermore Loops [14]:

REAL G(1001), U(1001),V(1001),VX(1001),H(1001)
REAL X(1001),XX(1001),Y(1001),2(1001)
DO 20 K=1,N

DI=Y(K)-(G(K)/(XX(K)+DK))

DN=0

IF (DI.NE.O) THEN
DN=MAX(S,MIN(Z(K) /DI, T))
ENDIF
X(K)=C(W CK)+V (K) *DN) *XX (K) +U (K)) / (VX (K) +V (K) *DN)
X (K+1)=(X (K) -XX (K)) *DN+XX (K)
11 20 CONTINUE
END

-
SomNoamwLe

DSA produces the following dependence graph:

node (ENTRY): ->3 (T)

node (3): =>4 (T)->5 (T)->6 (T)->9 (T)->10 (T)
node (4): ->6 (D)->7 (D)

node (5): ->7 (D)->9 (D)

node (6): ->7 (T)

node (7): =>9 (D)

node (9): ->10 (D)

node (10): ->9 (L)(-1)

If the consecutive exceuting values for line 6 are T, 1, ', T\, T, ', I\ T, T', I', I',
and T, the values of Tyeriat, Tparatier and speedup factor, for different values of N, are

shown in Table 5.1.

N 4 8 12 16 20 24 28 2 36 40
Toenal 97 193 289 385 481 577 613 769 865 96l
Trarattet 64 116 168 220 272 324 376 428 480 532

Speedup Factor 1,52 1.66 172 175 177 178 179 180 180 1K1

1t can be observed that Tparaue =12 + 13 % N so it is O(N), as in [14].

7

5.5 Example 5

“I'he following program is Loop 14 of the Livermore Loops [14], a part of a 1-D Particle-

in-Cell code.

FOO®N® OB WK

INTEGER N,K,IR(1001),IX(1001)

REAL DEX(1001) ,DEX1(1001)

REAL EX(1001),EX1(1001) ,GRD(1001)

REAL RH(1001) ,RX(1001), VX(1001) XI(1001),XX(1001)
DO 141 K=1,N

VX(K)=0

XX(K)=0
IX(K)=INT(GRD(K))
XI(K)=FLOAT(IX (K))
EX1(K) =EX(IX(K))
DEX1(K)=DEX (IX (K))

141 CONTINUE
DO 142 K=1,N

VX (K)=VX (K) +EX1 (K) + (DEX1 (K) * (XX (K) -XI(K)))
XX (K)=XX (K) +VX (K)+FLX

IR(K)=XX(K)

RX (K)=XX (K) -IR(K)

IR(K)=MOD2N(IR(K),512)+1

XX (K)=RX(K)+IR(K)

142 CONTINUE
DO 140 K=1,N

RH(IR(K))=RH(IR(K))-RX(K)+1.0
RH(IR(K)+1)=RH(IR(K)+1)+RK(K)

140 CONTINUE

According to [14], the first two DO loops can be combined into a single loop, and the

it

ons of the loop can be computed in parallel. However, the last DO loop augments

elements of RH indexed indirectly through IR. Since the value of IR is unknown at the

compile time, the third loop must be executed sequentially. This makes the program’s

complexity O(N). If it is known tha' cach element of IR is augmented at most once,

the third loop could be combined with the first two, and the iterations of the loop could

be computed in parallel. So, the complexity would be then O(1).

75

As indicated in Section 2.2.1, in most of the data dependence testing algorithms,
the subscripts of array clements are restricted to linear expressions of the loop index
variables, otherwise the existence of dependencies is assumed. Therefore, for this pro-
gram, DSA assumes that there exists a data dependence from line 22 to line 23 and
a loop-carried-data-dependence from line 23 to line 22. The dependence graph is as
follows:

node (ENTRY): ->5 (T)->13 (T)->21 (T)

node (8): ->13 (D)->6 (T)->7 (T)->8 (1)->9 (T)->10 (T)->11 (T)
node (6): ->14 (D)->16 (D)

node (7): ->14 (D)->15 (D)->16 (D)->17 (D)->19 (D)

node (8): ->9 (D)->10 (D)->11 (D)

node (9): ->14 (D)

node (10): ->14 (D)

node (11): ->14 (D)

node (13): ->21 (D)->14 (T)->15 (T)->16 (T)->17 (T)->18 (T)->19 (T)
node (14): ->15 (D)->19 (D)

node (15): ->16 (D)->17 (D)->19 (D)

node (16): ->17 (D)->18 (D)->19 (D)->22 (D)->23 (D)

node (17): ->18 (D)->19 (D)->22 (D)->23 (D)

node (18): ->19 (D)->22 (D)->23 (D)

node (19):

node (21): ->22 (T)->23 (T)

node (22): ->23 (D)

node (23): ->22 (L)(-1)

The values of Tyeriat; Tparatier and the speedup factor for different values of N are

shown in Table 5.2.

Table 5.2: Tyerigt, Toarauter and the speedup factor for Loop 14.

N 4 8 12 16 20 24 28 32 36 40
Terial 151 299 447 595 743 891 1039 1187 1335 1483
Tarael 49 77 105 133 161 189 217 245 273 301

Speedup Factor 3.08 388 4.26 447 461 471 479 484 439 493

Again, it can observed that Tparane = 21 + 7 % N, so its complexity is O(N). Since

76

we cannot. assume that each element of IR is augmented at most once, we obtain the

same result as that in (14].

7

Chapter 6

Conclusions

An approach based on dependence analysis is proposed for the evaluation of inherent
parallelism of FORTRAN programs. A brief review of the research on dependence
analysis and alias analysis is given. A comprehensive description of basic algorithms
for dependence analysis is provided which includes Ferrante’s control dependence test-

ing algorithm, Allen and Kennedy's GCD, Banerjee and Wolfe's inequality

ing and

Burke and Cytron's hi chical data dy

ing algorithm as well as Cooper
and Kennedy’s fast inter-procedural alias analysis method. Then a concise representa-
y T

tion of d lencies, the d 1y graph, is i fuced. Based on the d {

graph, a general approach to the evaluation of the inherent, parallelismi of progeams

is proposed. Finally, an i of the control and data dependence testing

algorithms, inter-procedural alias analysis algorithms and an approach to evalnation of
a program’s inherent parallelism is presented.

The main contributions of this work are as follows:

o A general approach to the evalnation of the inherent parallelism available of pro-

grams is proposed. The approach can be used to evaluate the parallelism in loops

selection and d between iterations. Further-

78

more, the proposed approach can be used to estimate the parallelism between
loops or between loops and other parts of a program. The proposed approach can

thus deal with parallelism in a very general way.

o A program called DSA was ped for s analysis and the
of inherent ism of
e A global data flow analysis algorithm, the iteration-recursion algorithm, is pre-

sented. The algorithm performs a recursive traversal of the control flow graph of
a program for a global data flow analysis in every Kildall’s iteration. The advan-
tages of this algorithm are that it is easy to implement, and that the control of
the order in which nodes are processed and the transfer of information between
nodes arc more cfficient than in other algorithms. For a “structured” program
the algorithin can terminate in 2 iterations, which is the best bound for iterative

algorithms.

Due to the limited time, there remain some unattended problems and weakness of

this project and DSA’s implementation.

First, the cfficiency of the proposed approach is rather low. The dependencies

between iterations are handled by a recursive calculation of loop indices. When the

distance of the dependence is equal to 1, this is equivalent to unfolding the loop.

Sccondly, DSA cannot analyze the parallelism between procedures as well as func-

tions. Generally speaking, the proposed approach can deal with parallelism between

procedures as well as functions, however, DAS assumes that two procedures or functions

can be exceuted in parallel only if there is no dependence between them. Therefore no

between which have ies can be analyzed.

79

Moreover, obtaining the executing values for a given program and its input data
may be quite difficult. Although profiling tools and program traces can be used for this
purpose, there is no tool which can directly extract the executing values for a given
program and its input data.

Finally, some features of the FORTRAN language cannot be analyzed by DSA;
they include adjustable arrays, external functions used as actual arguments of other

is needed.

functions, and so on. To address these issues, further rese

80

Bibliography

[1] Aho, A. U., Sethi, R. and Ullman, J. D., Compilers: Principles, Techniques and

Tools, Addison-Wesley, 1986.

Allen, F., Burke, M., Charles, ., Cytron, R. and Ferrante, J., “An Overview of the

=

PTRAN Analysis System for Multiprocessing”, Journal of Parallel and Distributed

Computing, 5, 617-640, 1988.

Allen, R. and Kennedy, K., “Antomatic Translation of FORTRAN Programs to

=

Vector Form”, ACM Trans. on Programming Languages and Systems, 4, 491-542,
1987.

Banerjee, U., I d Analysis for Su ing, Kluwer Academic Publish-

ors, 1988,

Banerjee, U., “An Introduction to a Formal Theory of Dependence Analysis”, The

=

Journal of Supercomputing, 2, 133-149, 1988.

Banerjee, U., Eigenmann, R., Nicolau, A., and Padua, D. A., “Automatic Program

=

Parallelization”, Proceedings of the IEEE, 2, 211-243, 1993,

=

Baxter, W. and Bauer, H. R., “The Program Dependence Graph and Vectoriza-
tion”, Proc. 16-th Annual ACM Symp. on Principles of Programming Languages,
1-11, 1989.

81

[8] Biswas, B. and Bt harjee, G. P., “A C ison of Some Algorithms for Live
Variable Analysis”, International Journal of Computer Mathematics, 8, 121-134,

1980.

[9) Burke, M. and Cytron, R., I Dependence Analysis and Parallliza-

tion”, Proc. SIGPLAN'86 Symp. on Compiler Construction, 162-175, 1986,

(10] Cooper, K. D. and Kennedy, K., “Interprocedural Side-Effect Analysis in Linear
Time”, Proc. SIGPLAN’88 Conf. on Programming Language Design and haple-

mentation, 57-66, 1988.

[11] Cooper, K. D. and Kennedy, K., “Fast Interprocedural Alias Aualysis”, Proc. 16-th
Annual ACM Symp. on Principles of Programming Languages, 49-59, 1989,
[12] Davies, J. R. B., “Issucs in Compiler Performance”, lu: Performance Evaluation of

Supercomputers, Elsevier Science Publishers B. V. (North-Holland), 51-68, 1988,

[13] Ertel, W., “On the Definition of Speedup”, In: Proc. PARLE'94 Purallel Archi-
tectures and Languages Europe (Lecture Notes in Compnuter Science 817), Springer

Verlag, 289-300, 1994.

[14] Feo, J. T., “An Analysis of the Compntational and Parallel Complexity of the

Livermore Loops”, Parallel Computing, 7, 163-185, 1988.

[15] Ferrante, J., Ottenstein, K. J. and Warren, J. D., “The Program Depende:

Graph and Its Use in Optimization”, ACM Trans. on Progrumming Languages
and Systems, 3, 319-349, 1987,

[16] Garey, M. R. and Johnson, D. S., Computers and Intractability: o CGuide to the
Theory of NP-Completeness, Freeman, 1979.

82

[17) Goff, G., Kennedy, K. and Tseng, C., “Practical Dependence Testing”, Proc. ACM
SIGPLAN’91 Conf. on Prog ing L and I ion or SIGPLAN

NOTICES, 6, 15-29, 1991.

(18] Gupta, R. and Soffa, M. L., “Compilation Techniques for a ble LIW

Architecture”, The Journal of Supercomputing, 3, 271-304, 1989.

[19] Gupta, R. and Soffa, M. L., “Region Scheduling: An Approach for Detecting and
Redistributing Parallelism”, IEEE Trans. on Software Engineering, 4, 412-431,
1990.

[20] Hiranandani, S., Kennedy, K. and Tseng, C. W., “Evaluating Computer Optimiza-
tions for FOTRAN D", Journal of Parallel and Distributed Computing, 21, 27-45,
1994,

[21] Heeht, M. S. and Ullman, J. D., “A Simple Algorithm for Global Data Flow Anal-
ysis Problems”, SIAM Journal of Computing, 4, 519-532, 1975.

[22] Horwitz, S., Demers, A. and Teitelbaum, T., “An Efficient General Iterative Algo-
rithm for Data Flow Analysis”, Acta Informatica, 24, 679-694, 1987.

(23] Horwitz, S., Prins, J., and Reps, T., “On the Adequacy of Program Dependence
Graphs for Representing Programs”, Proc. 15-th Annual ACM SIGACT-SIGPLAN
Symp. on Principles of Programming Languages, 146-157, 1988.

[24] Kam, J. B. and Ullman, J. D., “Global Data Flow Analysis and Iterative Algo-
tithms", Journal of ACM, 23, 158-171, 1976.

[25] Kam, J. B. and Ullman, J. D., “Monotone Data Flow Analysis Frameworks”, Acta
Informatica, 7, 305-317, 1977.

83

[26]

[27]

(28]

[29]

30]

131

32]

(33]

51]

Kennedy, K., “A Comparison of Two Algorithms for Global Data Flow Analysis",

SIAM Journal of Computing, 5, 158-180, 1976.

Kennedy, K., “A Survey of Data Flow Analysis Techniques”, In: Program Flow
Analysis: Theory and Applications, Englewood Cliffs, NJ: Prentice Hall, 5-54,
1981.

Kildall, G., “A Unified Approach to Global Program Optimization™, Proc. ACM

Symp. on Principles of Programming Languages, 194-206, 1973.

Kuck, D. J., Muraoka, and Chen, S. C., “On the Number of Operations Simultane-
ously Executable in Fortarn-Like Programs and Their Resulting Speed-up”, IEEE

Trans. on Computers, 12, 1293-1310, 1972.

Kuck, D. J., Kuhn, R. H., Leasure, B., Padua, D. A., and Wofe, M., “Dependence
Graphs and Compiler Optimizations”, Proc. 8-th Annual ACM Symp. on Principles

of Programming Languages, 207-218, 1981.

Kulkarni, D. and Stumm, M., “Lincar Loop Transformatios in Optimizing Com-

pilers for Parallel Machines”, Australian Computer Journal, 27, 2, 41-50, 1995.

Lilja, D. J., “Exploiting the Parallelism Available in Loops”, IEEE Computer, 27,

2, 13-26, 1994.

Li, Z., Yew, P. and Zhu, C., “An Efficient Data Dependence Analysis for Parallel-

lizing Computers”, IEEE Trans. on Parallel Distributed Systems, 1, 26-34, 1990.

Mahjoub, Z. and Jemni, M., ing and F izing a Static Conditional

Loop”, Parallel Computing, 21, 2, 339-347, 1995.

84

[35] Marlowe, T. J. and Ryder, B. G., “Properties of Data Flow Frameworks”, Acta

Informatica, 28, 121-163, 1990.

[36] Maydan, D. E., Hennessy, J. L. and Lam, M. S., “Efficient and Exact Data Depen-
dence Analysis”, Proc. ACM SIGPLAN’91 Conf. on Programming Language and
Implementation or SIGPLAN NOTICES, 6, 1-14, 1991.

[37] Maydan, D. E., Hennessy, J. L. and Lam, M. S., “Effectiveness of Data Dependence

Aualysis”, International Journal of Parallel Programming, 23, 1, 63-81, 1995.

[38] Mayer, H. G. and Wolfe, M., “IterProcedural Alias Analysis: Implementation and

Empirical Results”, Software-Practice and Ezperience, 23, 1201-1233, 1993.

[39] Mohd-Saman, M. Y. and Evans, D. J., “Inter-procedural Analysis for Parallel

Computing”, Parallel Computing, 21, 2, 315-338, 1995.

[10] Psarris, I., Klappholz, D. and Kong, X., “On the Accuracy of the Banerjee Test”,

Journal of Parallel and Distributed Computing, 12, 152-157, 1991

[11] Psarris, K., Kong, X. and Klappholz, D., “The Dircction Vector I Test”, IEEE

Trans. on Parallel Distributed Systems, 14, 1280-1290, 1993.

[12] Ryder, B. G., “Constructing the Call Graph of a Program”, IEEE Trans. on Soft-
ware Engincering, SE-5, 216-226, 1979.

[13] Ryder, B. G. and Paull, M. C., “Elimination Algorithm for Data Flow Analysis”,
ACM Computing Surveys, 18, 277-316, 1986.

[44] Schrijver, A., Theory of Lincar and Integer Programming, John Wiley & Sons,
1986.

85

[45] Sun, X-H. and Zhu, J., “Shared Virtnal Memory and Generalized Speedup”, Proc.,

8-th International Parallel Processing Symposium, Cancun, Mexico, 637-643, 1994.

[46] Tarjan, R., “Depth-First Search in Linear Graph Algorithms”, SIAM Journal on

Computing, 2, 146-160, 1972.

[47] Tripathi, S. K., “On Detecting Parallelism in Software”, The Journal of Systems

and Software, 1,2, 133-135, 1986.

[48] Wolfe, M., “Automatic Vectorization, Data D { and Opiimizations for

Parallel Computers”, In: Parallel Processing for Supercomputers und Artificial

Intelligence, 409-440, 1989.

[49] Yang, Y., Ancourt, C. and Irigoin, ., “Minimal Data Dependence Abstractionsns
for Loop Transformations: Extended Version”, International Jowrnal of Parallel

Programming, 23, 4, 359-388, 1995.

86

Appendix A

Iteration—Recursion Algorithms for
Global Data Flow Analysis

Three different versions of the iterati enrsion algorithm are prese: here. The fiest

the Heehl

version solves the data flow analysis problems as efficiently and Ullman’s
iterative algorithm. The sccond version is an improved and specialized version of the
first algorithm, which is used for analyzing structured programs. It terminates in no
more than 2 iterations, the best bonnd of Kildall's data flow frameworks. The final

algorithm is a combined version of the first and the second versions, which is more

efficient than the first version.
A.1 Background

To facilitate discnssion of global data flow analysis, the data flow problems are often for-

mulated as instances of a data flow analysis framework, combining flow graph structures

with semi-lattice propertics [1, 21, 22, 24, 28, 35]. This section introduces the basic

concepts and definitions of data flow analysis framework; a more detailed deseription

of these concepts and definitions can he found in (1, 24, 25, 35].

A directed graph is usually defined as a pair G=(N,£), where N is a finite set

87

nodes (the munber of nodes in N is denoted |N|), and E is a the set of directed edges,
L5 C N x N. Anedge (2,y) in E is incident from z and incident to y; x is a predecessor

of y, and y is a successor of z. The indegree of a node @ is the number of predecessors

of z, and the outdegree of z is the nnmber of successors of z. A path from a node n, to
a node 7y is a sequence of nodes (ny, ny,...,my) connected by edges (1;,n41) in E for
1 <1<k~ L The path length is equal to the number of edges in the path. A path is
sample i g # n; for i # j. A path is a cyele if ny = ny and k > 1.

A flow graph is a triple G=(N,E\ny), where (N,E) is a directed graph, and ng is the
initial node; there is a path from ng to cvery (other) node in N. The set of all paths
from 2 to a node j is denoted PATH(j).

A semi-lattice [35] is a quintuple L=(4,0,1, ,M), where:
1. Ajis a set (often a power set),

2. 0 and 1 arc distingnished clements of A,

3. <is a reflexive partial order on A,

4. Mis the meet operation with the following properties:

e Nisi ive and

axbiff anb = a,

a=<Db iff axb and asb,

arb=a,

e and =0, and

afl=a.

88

A semi-lattice L is closed. if it is closed under the operation meet M. A sequence ry,
22+, Tn of cloments of L is a chain if a1 < & for 1 € i < n. L is bownded if for
cach z in L there exists a constant ¢ such that any chain Loginning with bas longth
at most c.

A data flow analusis framework [24] is a triple D=(L, M, F), where L is a bounded

semi-lattice with the meet operation M, and 7 is a family of functions over L such that:

. Each f € I distributes over M, i.e., for all z and y in L, f(z M) = f(x)N f(y).

~

There exists an identity function ¢ € F* such that for all z € L,e(«)

@w

F is closed under composition, i.c., if f € I7 and g € I then fg € I*, where for

allz € L, (fg)(=) = flg(=))-

. For each z € L there cxists a finite subset H C I7 such that 22 = f € Hf(Q).

The existence of identity ¢ € I follows from the fact that a program block can be
empty. Closure of FF under composition, i.c., for all f,g € I, fg € I, follows from the
fact that the concatenation of two blocks is also a program block.

Each function f € I is monotone if
(Va,y € L)z Xy = f(=) 2 fW)],
and a function f € I is distributive if
(Vz,y € L)[f(zNy) = f(=) 1 ().

Every distributive function is monotone.

f* is used to denote the iterated composition of f, and f° =¢. Vor each f € [*:

8¢

= o Pt el
[is k semibounded for individnal fanctions if for all z,y € L and for r > k:
Fr(a) = M) 0).
It has been shown [35] that the k-semiboundness implies that the contribution of

the k-th iteration is constant, and many classical intraprocednural problems, such as

Reaching Definition, Live Uses, Available Expressions and Very Busy Variables, are

1 semibounded and distributive [21]. A direct result that can be obtained is that it
is possible to complete data flow analysis for these classical intraprocedural problems
in one iteration. In Kildall’s algorithm, cvery node in a flow graph is visited once per
iteration. If the flow graph contains a cycle, the node should be visited at least two
times per eycle to complete a ronnd traversal from a node back to the same node. That
means that the lower bound of the Kildall's algorithms must be two iterations. It is

also shown [35] that if f is 1- semibonnded and monotone, then
(Va,y € L)[f () = ynan f(z)),
which is equivalent to
(Vf.9 € F)(Va,y € L)[foy) = 9(y) N f(z) N],

according to Observation 6 in [24]. This property is often used in the proof of data flow

analy rorithms.

Au instance of o data flow analysis framework [24] D = (L,M,F) is a pair [=
(G, M), where G=(V,E,no) is a flow graph, and M : N — I is a function which maps
each node in N to a function in F.

90

A.2 TIteration-Recursion Algorithms

The original idea for iteration-reenrsion algorithms is taken from the data flow algorsthm
for detection of the data dependencies in a program. The dynamic dependencies between
variables can be determined by a recursive algorithm for data low analysis. However,
its time complexity is high and diffienlt to analyze. To improve the efficiency of this
algorithm, the iteration control from traditional itcrative algorithms is combined with

the recursive traversal.

Three iteration-recursion algorithm:

¢ presented in this section. The Heeht and

Ullman's “depth-first” version of the Kildall’s iterative algorithm [1, 21 is presented

first and is with the iterati cursion algorithms.

A.2.1 Hecht and Ullman’s Iterative Algorithm

The the Heeht and Ullman’s iterative algorithm is as follows.

Algorithm 1: Hecht and Ullman’s iterative algorithm.

Input: A particular instance I = (G, M) of data How analysis ramework
D = (LN, F). where G = (N, B,mq) is a flow graph with nodes. Let
N ={1,2,..., k} with nodes ordered by rPostorder.

Output: The values in[n] and out(n) for all nodes n€ N.

for cach node n in NV do

for n:= 1 to k do
in[n h
for each p in Predecessors(n) do
infn] := infn] Mout[p]
enddo;
outn] := fy(in[n])
en

91

enddo;

The Heeht, and Ullman’s improvement to the Kildall's algorithm is in visiting the
nodes of a flow graph in the order determined by rPostorder. This improvement guar-

that a node 1. -dways visited before its successors except when a node and its

anf
smccessor form a retreating edge. 1t is becanse of this improvement that the iterative
algorithm can terminate in less than d+2 iterations where d is the mmber of retreating
cdges.

A.2.2 Iteration-Recursion Algorithm One

Let, for cach n € N, indegree[n] be the in-degree of n, and let retreatedge[n] be the

= indegreeln] -

wmber of retreating edges (m,n) incident with n. Let fDegree
retreatedgefn]. In the following iteration-recursion Algorithm One, the fDegree is used
to control the order of visited nodes, just like rPostorder is used in the Hect and Ull-
man’s algorithm; consequently, the itcration-reenrsion Algorithm One is as efficient as
the Heeht and Ullman’s algorithm.

Algorithin 2: lteration-recursion Algorithm One.

Input: A particular instance [= (G, M) of data flow analysis framework
D = (LN, F), where G = (N, E,ng) is a flow graph with & nodes. Let
N ={1,2,...k} with nodes ordered by rPostorder.

Output: The valnes in[n] and out(n) for all nodes n € N.

for cach n in N do infn) := 1 enddo;
FALSE;
while not f do
TRUE;
for cach node 7 in N do visit[n] := 0 enddo;
irdf1(ng, in[no}, f, FALSE)
enddo;

procedure irdf1(n, z, flig, retreatedge);

92

flag := flag and (tmp = infn]);
if not retreatedge then
isit[n]-+1;
=fDegrec|n] then
Sulinal);
for cach s in Successors(n) do
if rPostorder{n] >rPostorder|s] then
irdf (s, out[n], flag, TRUE)
else
wdf1(s, out[n), flag, FALSE)
endif
enddo
endif
endif
end;

The iteration control part of Algorithm One is the same as in the Hecht and Ullman's

algorithm. In the recursive traversal part, the condition visit/n] = fDegreefn] is used to

guarantee that the nodes are sed before their with the exception of

the retreating edges.

Comparing this algorithm with the Hecht and Ullman’s iterative algonthm, it is

obvious that if the Hecht and Ullman’s algorithm terminates in than d+2 iterations,
the Algorithm One will also terminate in d+2 iterations becanse both algorithms process
the nodes of the flow graph before their successors except for retreating edges. In
addition, Algorithm One has two other advantages. One is that, passing the information

between nodes is more cfficient, so the value infn] can be determined by inn] := infnjrix

rather than by visiting the predecessors of 7 which is the case in the Heeht and Ullman's

algorithm. The other advantage is that Algorithm One can control the processing order

of nodes more efficiently. The iteration-recursion Algorithm Two is a result of using

93

this advantage.
A.2.3 Iteration-Recursion Algorithm Two

The iteration-reenrsion Algorithm Two is more efficient in data flow analysis than

Algorithin One, however, the to be must be , 50 each
loop in the program can have only one exit For structured programs, the flow graphs
can be constructed in such a way that for cach loop condition, the left successor is
always the loop body while the right successor corresponds to the loop exit. Algorithm
‘Two is an improved and specialized version of Algorithm One which takes advantage
of this representation of flow graphs.

Algorithim 3: lteration-recursion Algorithm Two.

Input: A particular instance / = (G, M) of data flow analysis framework
D = (L,N, F), where G = (N, E,no) is a flow graph with & nodes. Let
N ={1,2,....k} with nodes ordered by rPostorder.

Output: The values infn] and out(n) for all nodes n € N.

for cach n in N do in[n] := 1 enddo;
fori:=1to2do
for each node n in N do visit[
irdf2(ng, infng), FALSE)
enddo;

0 enddo;

procedure irdf2(n, z, retreatedge);
begin
inn] = infn) N z;
outln] = fu(infn]);
if not retreatedge then
visitn) = visit[n]+1;
if visit[n)=fDegree[n]) then
for cach s in Successors(nj, from left to right do
if rPostorder[n] >rPostorder{s] then
irdf2(s, out[n), TRUE)
else
irdf2(s, out[n], FALSE)

91

Figure A.1: Flow graph of a loop in a “structured” program.

Figure A.1 shows the flow graph of a loop in a “structured” program. Node a is the
condition node of a loop. The left branch is the loop body and the right branch is the
exit from the loop. During processing of node a, outfa] is passed to b and b is visited.
After processing the loop body, a is visited again along the retreating edge (d,a). At
this time, the values in[a] snd out[a] are assigned again, and ¢ is selected for processing.
It is important that the value out[a] now contains information from the loop body b to
d; it is this change of the value vut[a] that allow irdf2 to make two iterations only.

Formal analysis of Algorithm Two can be performed on the basis of the following
theorems. Let PATH"(j) = { p | p is the path which Algorithm Two follows from node
ng to node j in the n-th iteration }.

Theorem 1. If p € PATH(j) and q € PATH(5) and p is a simple path in a flow graph
and g contains every node in p and one cycle in the flow graph, then fo(1) = f,(1).

In the following proof, let fo(2) = fin(fin-1 (o fi(®).)) if p = (L,.ym = 1,m) is a
path of the flow graph.

Proof: If p € PATH(j) and q € PATH!(j) such that p is a simple path in a flow

95

graph, and g contains every node in p and one cycle in the flow graph, then there exists
a node i in the path g such that g = ng..i..o...j. and p = ng...i...j. That is, there is a
retreating edge which is incident to i. Let @ = ng...i,b = i...i, and ¢ = i...j. According
to the Algorithm Two, there must exist an z, passed to i along the retreating edge,

such that fo(fo(fa(1))) = fe(fa(1) M), So:

Hll) = full)
felfa(1))

Y

Jelfa(1) Nz)
fe(fo(fa(1))
Fera(1)

= fl). O

Theorem 2. Let D = (L, M, I7) be a data flow analysis framework. When Algorithm
‘Two terminates, then for cach node j in N and for each path p in PATH(j), there exist
Paths 1,y cnch in PATH(j) such that f,(1) = N1 < i < rf, (1) if D satisfics the

following condition:
(Vf,g € F)(Vz,y € L)[fg(y) = 9(y) 1 f(z) Na]. (A1)

Proof. 1f the condition (A.1) is satisfied, for cach node j € N and each path » €
PATH(j), there are three cases to consider.

Case 1. pis a simple path in the flow graph. There exists a path ¢ € PATH?(j)
such that g contains p since Algorithm Two traverses every edge in the flow graph. If
« is also a simple path in the flow graph, then ¢ = p, and f,(1) = f,(1). Otherwise a

cycle must exist in g, so Theorem 1 can be applied to p and g, and then f,(1) = f,(1).

96

Case 2. p contains one cycle. There must exist anode i in psuch that p = ng...r...i...).

Let py = ng..t, p = i...i, and 73 = 1...j. There is a path ¢ € PATH(j) such that

q = ng..i...i...j contains p. Let q = ng..i,qp = i..i, and gz = i...j. Asin Case I,

Soi(1) % fa (L) o (1) = fozn (1), a0 fragaqr (1) = fosgzar (L), 502

H) = fupn D)
Sl (D))
Il Sy 1))
s (1))
Fra(fazai (1))
Sz (1)
Sosazan (1)

= f)

] "’ " Y [}

hg

Case 3. p contains more than one cycle. Let p = ng, ..., 1q, ...,

Ty eeey Ty -ory J SUCH Lhat

ta = iy Lt D =10y ' = Yoy " = By B = ey a7 = = [(1)

in (A.1) (" and p" may be differ it), then p can be decomposed into three paths py,

p2 and py which contain a smaller number of cycles than p does.

fr(d)

v

]

S (1)

Sy (for (Fy (1))

S (o (i (L) 1 fore(fyr (1)) 1 fir (1))

Sy fpr (Fyr (L)) 1V fyvmn (e (fyr (1)) 1 fyor(fre (1))
Sypgprgt (L) 1V fypmgrg (1) 11 frpge (1)

S ()1 fpa(1) 1 £ (2)-

by assumplion

by distribution

If g, pe and py contain only one or zero cyeles, then there are gy,q, and g3 €
PATH(5) such that. f5, (1) = fo, (1), f»(1) = far(L). and fu(1) = fo (1), as in Cases 2
and 1. S0, fo(1) = fuu (1) M f(1) 1 fou(L). Otherwise the decomposition is continued

until every pi(i = 1, ...,) contains at most one cycle, and then f,(1) = M1 < i < rf,, (1)

for q,(i = 1,...,7). o
According to Theorem 2, if the condition (A.1) is satisfied, Algorithm Two termi-
nates in two iterations with the correct results of the data flow analysis. As indicated

carlior,many intraprocedral data flow problems satisfy condition (A.1).
A.2.4 Iteration-Recursion Algorithm Three

"T'he main difference between Algorithms One and Two is in the way in which the value

of out[n] is calenlated. This difference is the major reason that Algorithm Two is more

cffi

cient than Algorithm One. The following algorithm is a combination of Algoritt
One and Two.

Algorithm 4: Iteration-recursion Algorithm Three.

Input:. A particular instance I = (G, M) of data flow analysis framework
D = (L,N, F), where G = (N, E,no) is a flow graph with k nodes. Let
N = {1,2,....k} with nodes ordered by rPostorder.

Qutput: The values infn] and out(n) for alln € N.

for cach node n in N do in[n] := 1 enddo;
f = FALSE;
while not f do
f = TRUE;
for cach node 7 in N do visit[n]
irdf3(no, inng], f, FALSE)
enddo;

0 enddo;

procedure irdf3(n, z, flag, retreatedge);
begin
tinp = inn];

98

infn] Na;
Fulinfnl);
flag and (tmp = in[n]);
if not retreatedge then
visit[n] = visitln]+1;
if visit[n]=fDegree[n] then
for cach s in Successors(n) do
if rPostorder{n] >rPostorder{s] then
irdf3(s, out[n], flag, TRUE)
else
irdf3(s, out(n], flag. FALSE)
endif
enddo
endif
endif
end;

In the best case, when all nodes are ordered “properly”, the algorithm terminates
in not more than 3 iterations. The worst case is when the algorithm terminates in o -+2
iterations with the (d+2) =r visits to the nodes, where 7 is the mumber of the retreating
cdges in the flow graph. Normally, the number of the nodes of a flow graph is much

greater than the number of nodes incident with retreating ed, In sneh cases, the time

spent on the (d + 2) + 7 visits 15 mnch smaller than that speut. on other computations,

1t can thus be assumed that Algorithm Three is more cfficient than Algorithm One.
A.3 Conclusions

Algorithm One performs data flow analysis as efficiently as the Heeht and Ulbnan’s
“depth-first” version of the Kildall’s algorithm. Algorithm Two completes the intrapro-
cedural analysis in two iterations, which i¢ the lower hound of the Kildall’s algorithm
for “structured” programs. Algorithm Three is more cfficient than Algorithim One. All

three algorithms are casy to implement.

99

	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Title Page
	006_Copyright Information
	007_Abstract
	008_Acknowledgements
	009_Dedication
	010_Table of Contents
	011_Table of Contents v
	012_Table of Contents vi
	013_List of Tables
	014_List of Figures
	015_Chapter 1 - Page 1
	016_Page 2
	017_Page 3
	018_Page 4
	019_Page 5
	020_Page 6
	021_Page 7
	022_Chapter 2 - Page 8
	023_Page 9
	024_Page 10
	025_Page 11
	026_Page 12
	027_Page 13
	028_Page 14
	029_Page 15
	030_Page 16
	031_Page 17
	032_Page 18
	033_Page 19
	034_Page 20
	035_Page 21
	036_Page 22
	037_Page 23
	038_Page 24
	039_Page 25
	040_Page 26
	041_Page 27
	042_Page 28
	043_Page 29
	044_Page 30
	045_Page 31
	046_Page 32
	047_Page 33
	048_Chapter 3 - Page 34
	049_Page 35
	050_Page 36
	051_Page 37
	052_Page 38
	053_Page 39
	054_Page 40
	055_Page 41
	056_Page 42
	057_Page 43
	058_Page 44
	059_Page 45
	060_Page 46
	061_Chapter 4 - Page 47
	062_Page 48
	063_Page 49
	064_Page 50
	065_Page 51
	066_Page 52
	067_Page 53
	068_Page 54
	069_Page 55
	070_Page 56
	071_Page 57
	072_Page 58
	073_Page 59
	074_Page 60
	075_Page 61
	076_Page 62
	077_Page 63
	078_Page 64
	079_Page 65
	080_Page 66
	081_Chapter 5 - Page 67
	082_Page 68
	083_Page 69
	084_Page 70
	085_Page 71
	086_Page 72
	087_Page 73
	088_Page 74
	089_Page 75
	090_Page 76
	091_Page 77
	092_Chapter 6 - Page 78
	093_Page 79
	094_Page 80
	095_Bibliography
	096_Page 82
	097_Page 83
	098_Page 84
	099_Page 85
	100_Page 86
	101_Appendix A
	102_Page 88
	103_Page 89
	104_Page 90
	105_Page 91
	106_Page 92
	107_Page 93
	108_Page 94
	109_Page 95
	110_Page 96
	111_Page 97
	112_Page 98
	113_Page 99
	114_Blank Page
	115_Blank Page
	116_Inside Back Cover
	117_Back Cover

