Xl LU

St.

A GRAPHICAL USER INTERFACE

FOR CAD PROGRAMS

@ Xi LU
A thesis submitted to the School of Graduate
Studlies fu partial fulfillhwent of the

requirements for the degree of

Master of Science

Department. of Computer Seience

Memorial University of Newfonndland

Octaber 1995

John's

Newloundlaned

L

Acquisitions and

Bibliothéqyue nationale
du Canada

Direction des acquisitions et

Bibliographic Sewvices Branch des services bibiographiques

395 Welingion Sircet
Ottawa, Ordaro
KIAGNA KIAONE

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Welinglon
Gt (Oniana)

Vot vore reteence

Ot Mowe retrence

L'auteur a accordé une licence
irré ble et non
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exempiaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-17616-9

Canadi

Abstract

e ainn of this project s 1o ontline the design and implementation of graphical

aided design tools. Graphical

entific compute

interfaces for engineering and s

ise
interfaces aire quite iporiant for soplisticared software tools because they simplify

uterface

the wse of the tools and reduee the learning phase. .\ properly designed s

nser throngh the interactions with design tools. clearly inawearing the

el

design decisions and supplying all relevant information which is helpfal in making

ntation and manipulation of mmerieal results is

kg for graphical pro

tided design programs SPICE-PAC

sting compnter

designed and implemented for exi

ionis based on the Athena widget set nuder the X Window

and FIT. The implemen
systen.
The methodology developed during this project is applicable to many other tools.

reducing their development time and simplifying the use of developed programs.

Acknowledgments

Lwish to express my thanks to my supervisor, Dr. WAL Zuberek, for s guidauee,
constrietive suggestions and enthnsiasm.

Lam grateful to the Department of Campnter Scienee for providing the environ-

ment for my M.Se. program. and 1 wonld like 1o thank the systen support stall for

all their help and assistanee that 1 needed during my work on this project

Contents

1 Introduction
1.1 Graphical User Interfaces .

12 X Window System

1387 "ENGIRRIURTG £ « v 2 5 oo 5 6 % % % oo & % & % 5 0 W 5

Lot The OBJOCHive oL 0w e
141 Designing a Graphical Back End Package
12 Standardizing the Interface.
103 High Level Parameterization ... oovu o u ot
Pkl The WIdBOt S6t e v v vve e e oo e e e
L5 Building an Applieation B

15 Overview of Thesis .

2 X Window System and Programming With X

2.1 The X Window System o
2,11 Components of the X Window System SUNR S
D1 NOLOHKIE « v o esemen w5 u masais & B 8 0 wemeeEE 5 6 8
203 Widget Sets ... L

iii

2.1 Client, Server, Display and Sereen
205 N Window Comeopts oo
216 Window Manager . . .o

22 Craphic-User luterface Objeets Widgers
221 X and Objeet Oriented Drogramming . -
222 Widget Coucepts « ..o oot

Athona Widgets: « v o v vwawu s v o ows g

The N/Athena Widget Class Tree

3 The Design of Graphical Interfaces
3.1 Graphical Inte
3.2 SPICE-PAC
e 1 O
3.1 Ontline of the Graphical Interface .. .o 0oL
3.5 Design Guidelines for Graphical Interfaces
3.6 Designing Xt Applications L
3.7 Design Process
3.7.1 Viewpoint Analysis
3.7.2 ldentifying Main Functions
3.7.3 Standardizing the terface
3.7.4 Choosing the Widgets
3.7.5 General Requirements
4 Building the Interface

4.1 Application Resonrce Setting L.

AL RESOUICES o oo e . 38
102 Kesouree File ... L vemene s 4 5 5 5 pemnng o9
113 Resource Specification Syntax T U
L4 Resouree Databaseo 16

AL5 The Resouree File for FIT and SPICE-PACo 7

2 APlCTIIESTEIIE: « » sosmwsers = o m 5 s & 8 v 0 s A8

5 System Lmplementation 51
5.0 Pop up Warnings ... s g gy 9o meas Bl
501 Widget Hierarehy for Pop ap Warningso .o 5l

.2 Widget interactions for the Pop up Warnings

52 Pop up File Sectiono 53
FileMemn . .ooo e a1

Serolled Lists 55

Llessataiel DIVGGEOTION o 0 o & = smvnvmiie w = 8 1 o ssseocosss is 55

Callbaeks 5 55 w6 3 5 5 @ o 5 5 8 5 ¢ SR % AT

60

50 Display Section - . .o 61
S.L1 Display Menu o200 0L 62
A2 DataFiles w0 SR B B R % % N RN W 66

B Ol Untitestmcs i g v 5 5 Jss 5 5 S £ 4 PEVR R 1§ 6 66

A0l Creating Graphical Represenrations00 0. 67
5uLS Traces L. e 67
5.L6 Comparisons of Results 70

5.5 Compiling and Ruming the Progranm
6 Conclusions
Bibliography

Appendices

vi

~1
19

-1

=

List of Figures

Fig.1.1 A standard layout of the GEL

Fig 1.2, A simple example. .

Iig.2.1. Relationship between components of the X Window system.

Figg.2.2. Client, server, display and sereen in X oo

. Abstract data type class hierrehy.,

. X/Athena widget class tree.

o IPERCtIOn WA QUL e o o 0 0 v sominn o 0 5 0 siesn o oo 0

2. Main struetnre of the graphical interface. . 3

3.\ event proc

Figdod. A simple example of the X event loop.

£ig.3.5. Main components of the graphical packnge.

Fig.3.6. Main components of the Display part. I
Figd.7. OSF/Motifstyle GUL . . . oo v vv i i i e e

Fig 3.8, AdoptodisileoF QUL won v s o v o susin & v o sveri v 5 6 0 6

Figodl. Resource example. . ..o

rax in resonree files. ...

Fig4.2. Rosource specification sy

Fig.4.3. A fragmenr of the resonree file for FIT.

Fig.A.

Application steeture ..o L

Fig.5.1. Hicrarchy of widgots for a pop-np warning message.

Fig.3.2. Widget interactious for a pop-up warning message.
Fig.5.3. SPICE-PAC with a warning message. oo
Fig.5.4. Widget hicrarchy for the FILEmem.o

Fig. Widget interactions and callbacks for the #ILE menw. oL
Fig.5.6. FIT with the FILE menu popped up. ..o o0
Fig.5.7. FI'T with the FILE menn and a save warning message popped np. .
Fig. SPICE PAC with a file londed.o

Fig.5.9. Interaction of GUI and the application software.
Fig.5.10. FIT with the DISPLAY menu popped up. .. o000 oL
Fig.5.11. Widget hierarchy for the DISPLAY menn.
Fig.5.12. Widget interaction and callbacks for the DISPLAY menu.

ig.5.13. FIT with the DISPLAY mem popped up for DC analysis.

Fig.5.14. FIT With the DISPLAY menm and the TRACE popped up.

Fig. FIT with DISPLAY memn and a comparison of resnlts popped up.

viii

16

n

a0

A

(i

G1

(1%

il

(i1

64

Tn

Chapter 1

Introduction

1.1 Graphical User Interfaces

wd availability of compnters, especially personal com-

Die to the growing populari

puters. user interfaces are hecoming increasingly important in many applications.

tem is often one of the main features which determine

Sinee the user interface of

andard”™

are becoming a

the usefuluess of a software systew, graplical interfaces

id personal computer systems.

ations

for wor

coic (pictorial) reprosentations of cuti-

User interfaces which rely on windows,

ties, pull-down or pop-up menus and pointing devices are now called graphical s

5). They are characterized by:

interfaces (
1. Multiple windows allowiug different information to be displayed simmltancously

o the us

or's seree,
2. leonic information representation.

A Consmand seleetion via menus rather than a command langnage.

1. A pointing device sueh as 2 monse for making seleetions froma wean or indi

cating an item of interest ina window:

5. Support for geaphical as well as textual information display

Graphical user interfaces simplify using the systems they allow the nser (o cas

switeh from one task to another as well as to interact with the application programs.

1.2 X Window System

o s an inclustry standard software system for graphical appli

The X Window

eations. Oue of the wost important features of X is its unique deviee-independent

architecture, X allows prograws to display information containing text and graphics

on any hardware device that supports the X protocol without modifying, vecompil-

ing. or relinking the application. This device independence, along with X's position

jons to funetion in heterogencons

awndard, allows

s the industry s applic

on sisting of wainframes, workstations.

and personal computers

X provides a powerful platform that allows programmers to develop sophisticated

ed on s network

user mterfaces. portable to any system that supports Xo X is b

rrver model. The Xoserver ereates and manipulates windows in

transparent cliont-

response to reguests from elients, and sends events to notify elients of user input or

tate, Clients ean exeente anywhere <n a network, making X

change in a window

tions.

an ideal base for distributed applic:

X does not support any partienlar interface style, and strives 1o be poliey-free.

Applicatious are free to use the X primitives 1o define their own type of user interfaces.

T he easiest wan forsouser v follow the basie guidelines is tonse a bigher level tool

suehas Nt lntnnsie, Monf or Athena,

1.3 The Requirement

pecd without f

al compmter-aided design software tools

¢ coupledd sium

AC i

1 collection

mpde SPIC

s, s reepired by a partienlar

1 b comnpused in wany different w

I rosults

| numeries

However. it does ot inelude an antpnt madul

arereturned as arravs of dati henee agraphical hack-end with some posi-processing

racting results

capabilities. such as comparing results of different runs. storing aud o

to/from files. and so on, is needed.

ke

FIT s tive program for extraction of device parameters for SPICE-|

s on acirenit simulator (SPICE PAC) rather thau an

cirenit situlators. Ir s b

wlel cquations. The FIT program has some ontput facilitios bur they

plieit set of u

ible and rather insuflicient Again. a graphical back-cnd is ueeded for FUT

1.4 The Objective

The main objective of this project is to design and implement a package for graph-

presentation and manipulation of (muerieal) resnlts for SPICE-PAC and FIT

programs. .\ high level of parameterization is to be attempted to provide Hexibility
ol the package. A simple interactive user interface is to be provided for refinements

ous of the graphics.

1.4.1 Designing a Graphical Back-End Package

e N-windoy

stenn is 10 be used for implementation of a graphical hack-end pack-

Sinee X elients are event-driven. the CAD programs eed a different o

ane

wore suitable for event-driven contral.
Designing a graphical back-end package encompasses three aspeets: application

flow, Tayont policy

and coustraction tools. Understanding the application low and

seleetion of components sueh as menns, conmand buttons, ete. is the first step ol o
design. The nexe step is to determine the interface implementation poliey which, in

this case. is 1o nse the Athena widget set

1.4.2 Standardizing the Interface

Standardizing the v o has many advantages. It provides consis

enl program
strnetnre, miniwmizes user learning time, and streamlines program development.

Fig.1.1 shows an ontline of the main application window. 1t has the Quit button;

the File menu which containg

submenus providing selections for loadung, cditmy,

printing and saving filos: the Analysis menn with subiewns for SP1CE analyses, K11

analyses, and so on; the Display menu containing s dialog display with funetions for

manipulating graphic displays. ‘The display area is used for graphieal presentation of

results of different analyses.

1.4.3 High Level Parameterization

High level of parameterization means that the users can Sen resourees 1o maintan

system wide consistency between applications. Users can change the layont of win-

G

SPILE-PAC,: bﬁt»&!,nsv HUN2Gs2 DHTZ 3 23 AUG 94 GII’JB,EFJ:IXI
euT LISTING "EMENHIRF L TN DEG L

VC!Z?')X?

B O ~1p
VI% &0 ACAL PLECO 1 e s s 1048)
RS11 2 4K
RS2 60 1K
0542 tons 100 2,00 10007 8.0
@25 6 4 100,
REL 73 dox
R 78 1k
St hoor. new aféfu ViFe50 15a1 12 poton e 57 s, 5
JPRINT DE WS) VL3Y Vi)
PRINE TR Y€1) VC5) Ve .
Dfmme e

Fig. L1 A standard layont of the GUL

dows, madify window and s

vle, change the foregronnd and background colors or

seleet a font which seems to be the most readable. Obviously, the nse

1 only ens-
tomize the Athena applications for those resources which are not hard-coded within
the programs.

There are five basic wavs to set resonree values: four of them are external to the

Programs:

L. Ia user resonree file, which is a text file containing resonrce-setting commands.

2. I a elass 1esource file, another text file containing resou

setting commands,

bt these commands apply to one application class only.
3. I the RESOURCE_MANAGER property of the root window.

1l command-line paranieters pa

ssed to the program.

Hard-coded in a program,

@

In this Athena application, resouree values ean be set in the nser vesonree file

= Ndefanlts™ as well as in application default files. sueh as
example. the “Spice” file can contain all resouree-setting commands that apply to

SPICE applications:

spicexlabelString: SPICE-PAC MAIN MENU
spice*widt] 20¢
spicexheight: 225

This file can be placed in any of the resonree file locations such as HOME/ Clus:

Finally, mechanisis for individual widgets are also developed.

1.4.4 The Widget Set

s convenient o have libraries of rontines that

When developiug an application, it

provide typical functions for the application. In this case, the Athena Widget Set is

used. developed concnrrently with the X Window system. The Athena Widgel Set is

intended to provide set of typical interface components.

For the graphical back-end package, the following widget. classes are seleeted from

the Athena set:
o OQuerridShell WidgetClass for pop-ups.
e LormnWidgetClass for layout management.
o BozWidgetClass for layont. management.

o ListWidgetClass for the pop-np aption selection list.

el memn pancs,

o Command WidgetClass for nttons

and field labe

o Label Wadget Class for the menn titks, moessige are
o Feld FEd Widget Class for the field enry.

si Disk Widge Cluss For Il and so o,

1.4.5 Bnuilding an A pplication
oo build an application, the program needs to be decomposed into several patts.
The event=driven organization needs to be implemented: the application resource-

gathering mechanisin needs: to be desied; the application strneture needs to be

ton

built; the pop up warning system needs to be ereated: the pop-up file menn s;

needs o he constrneted and the display window needs to be designed.

Fig 1.2 is o simple illistration of some capabilitics of the CGraphieal Back End

1.5 Overview of Thesis

of appendices.

s organized in 6 chapters and a

This th

stem, basic concepts of object-

Chapter 2 deseribes the features of the X window s
ariented programming and the widget set. Chapter 3 desceribes the idea of the graphi-

s the X window resonrees

i in greater detail. Chaprer 1 discusse

cal nser interface de

discusses

anel the procoess of building the interface layout for an application. Chapte
the implomentation of the graphical nser interface, Chapter 6 preseuts a mmber of

conclusions related to this projeet.

Fig. 1.2, A simple example

Chapter 2

X Window System and

Programming With X

2.1 The X Window System

2.1.1 Components of the X Window System
The X Window System operates with a bit- mapped graphic-display terminal. This
type of terminal allows each individnal pizel on the screen to be accessed and used

: elements used to

to display a specific color or shadle of gray. The pixels are the ba:
construet graphical images o the sereen.

Communication between an X Window-based application (called a client) and a
bit mapped graphic-display terminal is accomplished throngh a special software called

the X server. “The X client makes requests to the X server to receive input from the

creen. “The

terminal’s mouse or keyboard and to produce output on the terminal’s
Nserveris a true server program in the seuse that it acts as an intermediary for any

o

client application that wants to use the resonree of a graphic-display term
Commumication between the client and the server is accomplished wsing a special
communication method called the X protocol. This protocol is a netwaork transparent

protocol that is used to send data between X clients and an X server. Through the

X protocol. an X client can send requests to any server ranning ou any computer

comected to the network and canse its outputs and inputs to be sent o and received
from any terminal to which that server is connected.

From the X client application developer’s point of view, the X protocol is im-

plomented as a series of language: bindings or fanetions lbrarics. “The library that

implements the X protocol for the C programming langnage is ealled Xob. Fig2.

e

shows the relationship between the varions parts of the X Window

Xlib coutains nearly 300 functions to create, move k. sl de

oy win-

ctangles, ares. and pol

dows; to draw line o use fonts, praphic

images, and eursors; aud to exeente a wide variety of other operations.

As can be scen in Fig.2.1, the X library is not the only library that. is used to ereate

an X Window client application. Programmiing with only b has been compared 1o

programming in an assermbler langnage. One can get the basic tasks accomplished in
Xlib, but the amount of cade needed to produce a simple window with some text on
the sereen ean amount to hnmdreds of lines. Becanse of this, another, higher-level,

library is often used in combination with Xlih.

2.1.2 X Toolkit

X Toolkit, or Xt for short (sometimes referred to as Inlrinsic), is aset of funetions that,

X programmers can use to write X Window applications at a higher leve

10

Computer Computer

L

Bit Mapped
Graphic
Display Termunal

Display Termp(at

C program

hecomenan X clent

. <o program. o program 1 Xm -AX

uage Bindings"-Function librarics

Avidget et
tsuach as Motl

Xt or Intmnsics)

Fig2. 1. Relationship between components of the X Window system.

one Nt function call will translate to several Niib funetion ealls. In fact. most of the
more comman XIib fuetion sequences lave their Nt finetion equivatents.

There are hundreds of Xt fanetions to perform typical X operations. (o commu-
nicate input events from specific windows back to the client applications, to deal
with events in the event quene. to perform interelient communication, to ereate and
manage nser interface objeets ealled widgets.

A widget is a colleetion of one or more windows that are Taid out in a way to form
a graphics object. A widgoet definition also contains a set of procedures or fanetions

that are invoked as a result of nser inpnt in the widget's window. Push buttons, seroll

wiens. and dialog boses are all o of widgets.

text hoxe ip!

X Toolkit provides only a few specific widgets to use in (elient) application pro-

splication developer will wsually use aset

ms. Counsequently, when nsing X, the

g

of separately dovelaped widgets voferrod to as u widget sel.

2.1.3 Widget Sets

are common to many GUI

Widget sets are simply collections of graphics
programs. Widget sets are not included in the X Windaw system. “They are available
from MIT (the Athena Widget set). AT 7 (the Open Look widget se1), the Open
Software: Foundation (the Motif widget set), and other developers.

Widget sets provide similar basic types of fanetionalitios. Almost all widlget sets
provide push buttous, labels, text boxes, scroll bars, drawing arcas, menns, and so

re in the form of their Lok and

on. The main differences between the widget, se

feel.

Screen

Display

(server) (Terminal)

Slient, server, display aud sereen i X.
2.1.4 Client, Server, Display and Screen

Whenever X rof

ers to 2 display. it actnally refers to a server. X uses the term display

another name for the server. Sending information to a display means nsing the X

protocol for this transfer.

Whenever X refers to a sereen, it means one of the physical screens on the terminal

controlled by a server. When the server draws on the atisfying an X
protocol request. from some X client application to cause some type of graphics objeet.

to appear on a terminal sereen. Fig.2.2 illustrates these concepts.

ain. in No a client application sends X protocol requests to the display. In

response, the display eanses the graphic-user interface to be drawn on a screen. When

the nser enters information using the mouse or keyboard, input events are sent from
the sereen to the display and the display sends the events to the appropriate client
application.

The elient application is e

xeented within an infinite loop, waiting for input events

from the sereen. The server responds to the requests for services and passes the inpnt

13

events to the

2.1.5 X Window Concepts

Au X window is a reetangnlar section of a rerminal sereen. A window is defined by a

border, a background color or patrern. an X/ Y-coordinate of its origin. a height, and

width. Whenever the X server takes control of a partienlar terminal, it installs a

special window called the root window on the tenminal sere

Auny new windows is installed within the root window as a ehild of the root window,
Each child of the root window can be a simple window or a more complex window

with children of its

awn, I fact, windows displ een in o N

window application form a hicrar

A window is actnally allocated as a dat: hin the X server, "Ihe X

Stretire wi

client holds an identifier of a particular window data structure. “The window de

S ot

actnally becowe visible on the terminal sereen until the eliem tells the server to map

the window.

When the client requests that a window be mapped, the server issues drawing
instrnetions to canse a graphic representation to appear on the sereen.
However, if the window, which is a child of some other window in the window

bicrarchy. is being mapped, it will ot become visible itsell until its parent has boen

mapped. Every ancestor of a window must. e mapped and visible before the ehild's

window can become visible. A window can be

uapped i such noway thit it wil

partially or completely obsenre another window on the ser

Home Paition

ly =)

X increasmg

(origin x

> Simple
v Window

Title Har_Mepg Bar Scroll By_Drawing Area Teat Box
o
oy

Side A Sider

indow

Lig.

pical X Window hicrarchy.

2.1.6 Window Manager

The window manager is an important part of any X Window systen. 10is the window

manager’s responsibility to “manage” the terminal's sereen “reat estate”. This means,
that it is up to the window manager program to decide where and how new windows

are placed on the root window. Typically, window managers also give user

some
additional control to manipulate the windows on the sereen. Most window managers
allow users to move input foens from one location to another, change the size of a

window, and move input foeus from one window to another, Many window managers

also allow wsers to change the stacking order of the windows on the sereen fo make

some previonsly hidden window visible again.

A window manager is just another X elient. However. this elient is given special

privileges that allow it to intereept certain Xlib calls and deal with them internally.

The window manager nses the same Xlib ealls the

any other elient does, but 1
wsnally is developed to work with a specifie widget set. So, in general, the Athena
window manager is nsed with the Athena widget set and the Motif manager is used

with the Motif widget set.

2.2 Graphic-User Interface Objects = Widgets

2.2.1 X and Object~Oriented Programming

X and Athena nse obj

i programming techniques Lo organize and classify
the widgets in a way that will make them more useful to the application develuper.

Tl

¢ object (a widget in this case) is a set of procedures than can be thought. of as #

16

“black box™. 1t will aceept specific inputs, perform operations on those inpnts

procdiee some related ontputs in response.

Same goals of any object-oriented technolog

extensibility.

1 Lo mnprove produetivity by increasing s 5

Althongh the abjects in X are predefined s a specific purpose, there are hooks

into the objeets which allow nsers to “extend” their basic operations with user

supplied code

2, To improve produetivity by inereasing software reusability.
The progranmmer doesn’t have to “reinvent the wheel™; predefined objects are

ereated for the most common fanetions needed in typical programs.

To control the complexity of software.

meet the demands of today's requirements. software systems have become
wore complex than ever before - especially with the needs of graphic-user -
terfaces and database systems. This complexity mmst be controlled so that the

cost of software mamtenance ean be kept to a minimum.

“To control the cost of software maintenance.
The fentures of an object-oriented programming system include:
® Data abstraction
Anabstraction denotes the essential characteristics of an object that distinguish
it from all other kinds of objects and thus provide erisply defined conceprnal
boundaries, relative to the perspeetive of the viewer.

17

Geometric Ohject

[

Lines (1 sided) Angle @ sided) Triangle (3 sided) Quadrangles (4 suled)
- i
Acute Obwse Right Fquilaterat Soseeles Parallelogram

Rectangle Square

Fig. 2.1 Abstract data type elass hierarchy.

o Encapsulation

Encapsulation is the proc

w of hiding all those details of an object that do not

contribute to its essential characteristics.

o Inheritance

Inheritance is a relationship among cla

. wherein one elass shares the strue-

ture or behavior defined in one (single inheritance) or more (multiple ink

tance) other classe

Fig.2.1 shows an instance of an object of type square whicl inherits its own Joeal

copy of all the features of square (such as

ide length) as well as features of type
parallelogram (such as parallel sides), type quadrangle, and so on. IF an instance of

an object of type geometric object I

pecific attributes, an inst

aee of an objeet of

square will inherit the same attributes.

2.

.2 Widget Concepts
A widget is an object - an abstract data type. It is a colleetion of one or more X
windows held together with a geometry for a specific look and a set of procedures

jons. Both Athena and Xt have abstract data ty,

Uit implement. relevant, ope

v of nser interface objects that can be used to aceept input

(widgets) for a wide varic
or supply output for a graphic-user interface.

T s

a widget in the program. an instance of the widget data type is defined as
an objeet that the program can nse. As many instances of a widget can be defined

ce of the widger is

are needed by the application program. Eacl individnal insta

rparate ocenrrence of an object of that widget data type. Each instance has its

own appearance and purpose. which is completely separate and different from every
other ocenrrence of that widget type in the program.

Each widget belongs to a elass of related widgets that is organized into a hierarchy.

When an instance of a widget is defined. it inherits attributes from all of its parents,

grandparents, and other ancestors, all the way up to the root of the hierarchy.

2.2.3 Athena Widgets

The widgets from the Athena widget set which are used in the implementation of the

graphical hack end package:

e Simple Widgets. Each of these widgets performs a specific interface function.
They ave simple becanse they cammot have widget children - they may only be

used as leaves in the widget tree. These widgets display information or handle

A small amount of nser input.

Command - a push button that. when selected, eanses a specifie action to

take place. This widget can displ

a mmlti-line string or a bitmap image.

Grip - a rectangle that, when seleeted, eanses an action to take place.
Label - a recrangle that may contain one or more lines of text or a bitmap
image.

List - a list of text nted in row column format that way be

trings. pr

individually selected. When an element s selected, an associated action takes

place.

Panner - a rectangnlar area containing a shder that may be moved in two

dimensions. Notification of movement may be continnons or discerere.

Repeater - a push button that triggers an action 1 inereasing rate when
selected.

Scrollbar -

rea containing a thumb that, when slid along one

dimension, canses a specitic action to take place. A serollbar may be oriented

horizontally or vertic

Simple - the base class for most of the simple widgets. It provides a rectangular

area with a settable mons

rsor and a distingnished border.

Menus. The Athena widget set provides

ingle paned non-hicearchical pop up

Th

and pull down menus e are three o that may be nsed

to build menus.

Sme - the base class of all mem ent

s, It may be used as a menn entry to

provide blauk space.

20

Box Dialog
Form =—=—__ Viewport
Cantraint € paned
Composite € 1N Tree ro—
OverridShelt SimpleMenu
Shell <<__ ¢ endorShell < TopL
Clock WSl VendorSHell < rangientShell
i Gnp MenuButton
: Libel—— Commad Repeater
Toggle
Lust
Logo
Rect — ilbox
oE [
StripChart
Text ———— Text
SmeRSA
Objeat
SmneLine
TentSre Ascisre
SmeBSB - this memt entry provides a seloctable entry containing a text string.
A bitmap ean be placed in the left and right margins.
SmeLine - this menn entry provides an entry coutaining a separator
line,
o Text Widgets. The Text widget provides a window that will allow an appli-

cation to display and edit one or more lines of text. Options are provided to

allow the user to add serollbars to the window, search for a specific string, and
modify the text in the buffer.

The Text widget i

tion

made up of a number of components. The modulari

of functionality is intended to ease the customization. For most applications,

the 4

ilext widget is general cnongh to meet programmers’ needs. More

21

Hexibility

special foatures, or extra fanctionality can be added by implomenting

a new TextScore or TextSink widget, or by subelassing the Text widget.
Composite and constraint Widgets.
Box — this widget packs its children as tightly as possible in nou-overlapping

TOWS.

Dialog — an implementation of & commonly nsed inforaction widget which

prompts the user for anxiliary fuput such as a filenare.

Form - a more sophisticated layont widget that allows its children to speeify.

their positions relative to other children, or to the edges of the forw.

Paned - allows children ta be tiled vertically or horizontally. Controls are also

provided to allow the user to dynamically resize the individnal panes.

Porthole — allows viewing of a managed child which large as, or larger

than its parent. typically under control of a Panner widget.
Tree — provides geometry management of widgets arvanged in a directed,

clic gray h.

Viewport — consists of a {rame, oue or two scrallbars, and an inner window.
‘The inner window can contain all the data that needs to be displayed. Uhis inner
window is clipped by the frame with the serollbars controlling which seetion of

the inner window is enrrently visible,

2.2.4 The X/Athena Widget Class Tree

tree. This tree shows how

Fig. 2.5 shows the organization of the X/Athena widgot ¢

widgets are organized into related classes. When an instance of a particular widget

is encapsulated into an ocenrrence of a specific object in the prograny. it inherits

attributes and features from all the widget classes that appear above it in the widget

Chapter 3

The Design of Graphical Interfaces

Several computer-aided design software tools have been developed which lack fexible
user interfaces, SPICE-PAC and FIT are two of them. Sinee the user interface of a

stem is often the yardstick by which the system is judged, a flexible, simple and

easy to use interface is an important aspeet of the design. An inte which is

diffienlt to use will, at best, result in numerous user errors. At worst, it will cause

the software system to be disearded, irrespective of its funetionali

A badly designed interface can eanse the user to make unnec

errors. I infe ion is ina ing or i ing way, the user may

misunderstand the meaning of an item of information and initiate a sequence of

unwanted actions. From this point of view, the nser inte

face is an important, part, of

any software

data
e

CAD tool

(numerical results)

Fig.3.1. lnteraction with a GUL

25

3.1 Graphical Interface for CAD Tools

A graphical interface for SPICE-PAC/FTT provides a bridge linking the user with
application programs which can make the nsers more confident, With the graphical

nser interface us

s are in complete coutrol of what they do and when they do it The

organization of the interaction with a GUIL is L1

shown in Fig.

3.2 SPICE-PAC

SPICE-PAC is a simulation package that is wpwardly compatible with the popular

G cirenits sinmlator. It accepts the same cirenit deseription Tanguage (with

only a fow minor exeeptions

and provides the same cirenit analyses as SPICE, b

munber of exte

it also support ous and refinements whiel are ot available in

the original SPICE program. The most important difference between SPICE and

SPICE-PAC

. however, in their internal organizations; SPICE is a program with

one. fixed sequence of operations while SPICE-PAC is a collection of loosely conpled

simulation “primitives” that can be composed in many different ways, as required by
a partienlar application.

This fexibility of SPICE-PAC is ¢uite important in “integrated” applications,

tions in which

applie: it simmlation is combined with other software tools,

for example, optimization methods, s analysis, symbolie simulation, high-

level

s, behavioral) simulation, and so on.

3.3 FIT

IFF1 s an internetive program for extraction of deviee parameters for SPICE-like cir-

imulation-based extractor, so explicit model equations ueed

cuit simulators, FIT i

not be known as they are provided by the cirenit simulation tool nsed, fitting ean

be performed not, only for single devices but for fancrional blocks or whole cireuits

and the same ext)

as well, actor ean be used for a variety of devices and/or dev

al as well as symbolic simulation, so repeated

models. The extractor supports nme:

analyses of linear

il civenit (for frequency domain analyses) can be performed very

efficiently nsing the symbolic fnctions generated from the Coates Howgraph repre-

ion methods are built into the program to

sentation of the cirenit. Several optimi

provide robust as well as efficient, fitting of device characteristics. Flexibility is ob-

ther than the exrr

tained by specification of extraction details in the data sots ra
provedure,

FIT is iterative, simmlation-based and data-driven. The data-driven capability

s well as selective extraction, performed

low

integrated parameter extraction [12]

Different extraction

on subsets of measnwrement data and subsets of paramete
strategios can thus be developed for different types of devices and/or their models in

order to perform the extraction of parameters efficiently.

3.4 Outline of the Graphical Interface

The graphical back-cnd package for SPICE-PAC/FIT cosists of fonr parts. Fig.3.2

shows its general structure,

he Quit part is used to terminate exeention of an application.

‘The graphical back-end

) B

i Edit
T

Fig.3.2. Maiu strneture of the graphical interface.

The Edit part is provided to manipnlate data files; it can load a file from different
directories, edit a file and save or print a file. The edit part can distinguish the
different data files such as SPICE-PAC data files or FUT data files.

The Run part executes the SPICE-PAC/ETT programs, provided that the re-

quired iupnt and ontpnt data files are available.

The Display part displays data created by the SPICE-PAC and FI'T programs.
Araphical results can be presented cither nsing defanlt properties or properties se-
lected by the user (color, line style, text color or text font). Results can he zoomed

in and zoomed out. This part also allows the nsers to trace specific outpnt variables,

compare the resnlts obtained from different analyses. ete.

3.5 Design Guidelines for Graphical Interfaces

One reason why Xt applications are so suceessful is that they follow the graphic-user
interface design guidelines. A short overview of these guidelines follows

Every Xt application should be written in away that gives the user the eontrols

28

needed 1o accomplish a given task. Users will have a feeling of control over an appli-
cation if it is consistent. and gives them the ability to directly manipulate the controls

s of the application. The application must also be flexible and allow

and other obje

versible effects.

on that may have irr

the nser to decide on any i

o Consistency

and

that. similar controls will operate in a similar mann

Consisteney mean

have similar effeets, 1f a Pushbutton in one application has a Label and clicking
that button causes a DialogBox to pop up, any other application that uses

is on a pushbutton Label shonld do the same thing. Consistency

the elli)

also means that the same action will always produce the same result in many

different applications. 1f yon can click-hold-drag the title bar of one application

to move its location on the screen, then any other application that has a title

bar ought to work the same way.

Another factor in the i y of an is of the nser

tion's window. The controls and functions that are used

controls in the applic:
most. often should be presented first. at the top of the application. in a logical
and straightforward order.

Iunetions, which are not nsed frequently, shonld be hidden and only called up

onan as-needed basis.

e Direct manipulation

he experience of direct manipulation is defined as the connection of a nser

action in an application with an observable response from the application. In a

29

direcr-manipulation user fnterface, wsers will experionee the fwmediate visible

results of their actions.

Immediate visible response is the most important aspeet of the diveet mawmp-

wlation exporience. The performane

problems of slow hardware or of poar
program design and implementation can make it diffienlt for a user to concen-
trate on the task for which the X applieation is nsed. No matter how interesting

an application may look, if it i

slow i its operation, it will be practically wseloss

to enstomers.

Flexibilty

ch Xt application should be f

ble with respect. to the way the user chooses

to interact with the application and flexible in allowing the user 1o configure

aspects of the application to fit his personal preferences.

An Xt

application should provide more than one way to get a Lask aceomplished,
s0 the user can choose the method that is most convenient to him. A\ user
may point to a PushButton on a MemBar, use a PulldownMenn. or seleet
a PushButton to canse some action to take place. However, in addition 1o
using the monse to post a memn, the application ean also define @ kevhoard
character that will post the PullDown and another character to activate the

desired option.

As

should also be given some amount of control over the visial appearanee

of his applications. Not all users like »

ligght-Dlne or pink backgronnd; some nsers

may prefer gray PushButtons, while other use

<y like 1o see icons insteard of

Labels on their button widgets, ete.

30

Event quene

ient program

motion_event

XButtonEvent
§-9 XConfigureEvent
Event handler \

XCrossingEvent
Moving the mous XKeyEvent

ar clicking mouse buttons
are X events

XtMainLoop

X event processing.
Explicit control i an important issue for those operations within the application

that have irreversible elfects, Before the user is allowed to destroy an object — elose

afile hefore saving 1he changes. remove a file, or any other similar action the user

should he given a chanee to reconsider the action. In such cases, a DialogBox shounld

Dop up o require a confirmation or to diswmiss the action.

3.6 Designing Xt Applications

N Window applications are event-driven programs. The structure of an event-driven
program can be presented as a loop with a ease stmeture init. In cach exeention of

the loop, an event is fetched from the event qnene and used for selection of an action.

X events are the basic means of communication between a user and an application.

N events are generated as a result of nser input from the keyboard or the monse

shown in

(evemumpn

XNextEvent(theDisplay, &the
swith (theEvent.type)
{

case Expose:
Proc

s when window is exposed
break;
case: ButtonPress:
Process when key was pressed;

breal
case: Keypre

Process wh

break;

Fig.3.4. A simple example of the X event loop.

When au event is received from a client, the X server stores it in an event quence.

Each client application has its own event. quene to hold the events in the liest-in/firsi-

ont (FIFO) order. When the client application needs a next input event from the

nser, it fetehes it from the quene. decides which window (not widget) it belongs to,
utes the windo

and e wtion-

specific code for this event, At this point, the appli

specifie code takes over the processing of the event,
X client application programs arce event driven they are organized as infinte

loops. waiting for inpnt. events, and exeenting actions corresponding Lo these events,

3.

as shown in Fig.3.1.

3.7 Design Process

The first stage in establishing a system data flow is to formulate a model of the

eal world” entities which are

resented in the system.

32

Graphical

Display Part |

Vias

. Main components of the graphical pac]

Fig.
3.7.1 Viewpoint Analysis

tem model, viewpoint structuring is an important stage which

When formulating a sy

imposes a straeture ou the identified viewpoint clusters and represents this in a view-

point stracture diagram. Fig, shows the main components of the graphical back-

6 shows the main components of the Display part.

end package and Fij

3.7.2 Identifying Main Functions

“The next step of the building process is to identify the fuuctions. The descriptions

k

of main funetions which support the layont of a GUI and the corresponding calll
functions are as follows:
o Lunction: CheekFileType.

Input: Path and name of the file.

Display Result

[Ivm] [‘ vieh | | RIER) | vml

LQui! Disy Result Znumilwl Picture Choosi

Vil Vi4az2| Vi423 | V14l VI
De Analysis Ac Analysisf | Noisc Analysis} Linc Style Text Style

V143 [viad
V1432
Zoom out Y Zoom in

6. Main components of the Display part.

Output: Type of the file.

ion EXECUTABLE. DIR

Description: ChecklFileType retnrns an ind ORY

or NORMAL file. based on the type of the file returned by the stat() function.

“This fanetion is system dependent.

Function: FillFileList.

Tugt: File list. that holds file names, Dir Jist that holds subdi
Label widget that holds enrrent pathname and Current which is the current
directory pathname,

Output: None.

Deseription: Fills in the directory and the file lists with the nawes of the

directories and files ina given directory (Current). The Label widget is updated

to the current pathname.
Function: ChangeToParent.
Input: Pathname.

Output: None.

Desceription: Changes the pathname to the parent’s pathname; for example, it

chianges “/dirl /dir2/die3/" to */dirl Jdix2/” .
Funetion: DirCallback,

Input: Widget, Client data and List data.
Output: Noue.

Deseription;: Loads the files in a new directory.

35

o FPunction: GetCurrentDireetory.
Input: Pathuame.

Output: None.

Description: GetCarrentDireetory flls the pathname with the enrrent divectory
name, or with */7 for the root dircetary to indicate a failare. 1 suecessiul, i

appends /" to the pathname.

Funcetion: ReadFitData.
Tuput: "The name of the ontpnt file.

Output:

Deseription: Opens data file and reads the data into diffevent data files. Tn-

termediate data file ch as AC file, DC file are ereated.

Function: Read AC file,

Fugat: "The name of iwpnt file.
Output: None.

Description: Opens the AC file andd reads the data into corresponding array

o Fynction: CreatePicture,

Tnput: Maxi and mini X and Y 1i vilues ol the display

window.
Output; Noue.

ize of the

Deseription: Displags the plot of specilic data according to the
display window, determines the max and min values of the given data, and

36

ale fo

finds the

o Function: |
Tuput: Widger, Closure, CallData,
Output: None.

iable is correet for the current anal,

Checks i the selected v

ilitis correet, atracing window is popped up with the graphical representation

of esults, otherwise & warning message is displayved.

Funetion: Comparevalne.

uput: - Origin X valie, origin Y vale, maxinnm X vabie, maximnm Y value,

Output: None.
Deseription: Displys the values of the same output variable for different

analyses.

3.7.3 Standardizing the Interface

The icdea behind standardizing the user interface is to provide its consistent structure.
i 3.7 shows the OSF/Morif style of the window. As can be seen. the resize

borders are on the ontermost frame of the window (they are placed there by the

OSE/Motil window manager). In the upper-left corner there is a button for the

system menn, followed by an- icon button, and lastly, a min/max button. Below

the application-specific “memt bar™. When an itemn from the

this stem: bar’

memu bar is selected, a memn will pull down beneath it. The “workspace” will hold

additional pop up windows or perl atie display windows.

37

v '
| Syte Applicatin— Name l Teon B‘." ¢
i Ee .
Vol R Vel i
| T :
1 4 1 re=System Menu Apphication Opiions !
R |
bt . :
VTR opon Mem +
' i s
. ¢ Topip Contarner 3
H ' H
I |
' STt L
| |
"= Waorkspicet Canvas) '

|
* '
A R |

Resze Form

Figad 7. OSE/Motifsivle ¢

“The stylo adopted for the back-cud pac

ape is shown in 19 3.8, 1t hasa title bar

in the top of the s

cen anel beneath it a “menn om bar” with Quit, File, Run

and Display items. The “workspace” for file viewing is the static area ander (he

memt bar. This adopted style of the interface reflects the Togieal straeture of Dasic
capabilitios of the programs controlled by the interface,

Program development. is streamlined due to the inter

face Srontines” o “oljects”

which are provided for simplifying the development of interd

s, Moreover, duplis

tion of interface components is eliminared.

3.7.4 Choosing the Widgets

After identifying the main fnctions and standardizing the graphical in

widgets are seleered for the applicarion.

SPICE-PAC (or FIT-S) MAIN MENU

Quit , File | Run Display

Resize

! Popupmenu for |
1 senrching loading, |
'

ing, printing file

Popup menu & container
for

Workspnce

tor file viewing)
displaying grahical results

Fig, Adopted style of GUL
“The Athena widgel set is nsed for the implementation of the interface. The princi-
pal reasou of selecting the Athena widget ser is that it is a cormonly available public

domain set. while Motif is a commercial procuet.

“Phe detailed deseriptions of the widgets nsed in thi

pplication follows.

OverrideWidgetClass

This widget is a member of the cla

ss Shell WidgetClass. 1t is one of the widgets

provided by the Intrins

Its role is to override window manager. 1t is used for
creating pop-nps.

FormWidget Class
“This widget is a member of the class ConstraintWidgetClass. Essentially, it contains
layout policies that are useful for assembling the interface. In this application. it is

nsed for controlling the placement of widgets with respect to other widgets, controlling

resizing of the children and displaying the graphical results.
BoxWidgetClass

This widget is a member of the class CompositeWidgetClas

placing constraints on its children: it lays then ont by Glling in the row Girst, then
contiming down.

ListWidgetClass

This widget is a member of the elass SimpleWidget Class. 1t provides a list of items
and a callback mechanism for selected items.
CommandWidgetClass

This widget is a member of the class Label Widget Cl

Its role is to provide a

callbacl

mechanism for LabelWidget C

L L

“hutton-like" widy
LabelWidgetClass

This widget is a member of the class SimpleWidgetClass. 1t provides a textual label

(ju

tified) or a pixmap in a window. [ts main nse is to provide a message to the nser.

It is used in the menns and in the mes:

e arca.

TextWidgetClass
The Text widget provides a window which allows an application to display and edit
one or more lines of text. Options are provided to allow the users to add serolibar to

iits window, search for a spocific

and maodify the text in the baffer,

3.7.5 General Requirements

The system menn contai

is File, Display and Run items. ‘The file disy

are is
also contained in the main mem. The file can be viewed as well as edited an the same

time.

40

When the user elicks on the Quit butron. a pop up dialog with a warning message

shows up. When the user clicks on the File button. the menn of the file manager
pops up with buttens Load, Save and Print for performing operations on files.
Cancel for closing the file main menu. and Home for going back to the nser’s home
directory.

The

re two lists in the main file menn, one list for files in the enrrent directory.

the other list for subdirectories under the enrrent directory. Whenever the user elicks

the label of the current file

an the file Tist or types in a file vame as current file name.

name changes immediately. Whenever the user clicks on a divectory list. the contents
in file list changes to show the files in the new divectory. When the Save button is
seleeted, the file system saves the enrrent. file. and a warning message “Are yon sure

to change the file?” appears. When the user clicks on Load. the file system loads the

fil

in the file display area. \When the user chooses Print. the enrrent file is printed.

When the user clicks on the Display button, the main menu of the Display
part shows np with a gronp of command buttons for different analyses. a group of

comand buttons for choosing the style and color for graphical presentation of resulis

ud 2 set of buttons for zooming the pietnre. There also is a workspace for displaving

the results, and cons ses. When

pand buttons for comnparing results of different aua

the nser selects comparing resnlts, another display window pops np to present the

graphical results of different ang

Chapter 4

Building the Interface

Setting the application resources and building the application structure arve the

initi

steps of developing a graphical nser interface. The next seetions provide i

detailed deseription of these steps.

4.1 Application Resource Setting

4.1.1 Resources

One of the most powerful features of Xt is the resouree manager, a collection of

mechanisms for getting resonrees from a variety of locations and converting a resouree
to the correct representation for the elient. For example. if we want, 1o set the font for
the Athena Label widget, we can simply set aresouree XtNfont. for the widget Label,
and the resonree manager will perform all operations which are required to use the

required font in strings within this widget.

42

Highlight thickness

X eoordinate for orgin Top shadow color

Button shadow color
Y

for origin Highlight color

=2
T

Height

4
*

Shadow thickness -

Background color

Forcground Color

Width

Figd.1. Resonrce example

ssociated with it thar define

Each wiclget in an X/Athena program has attributes a

are one of the main object-

its look-and-feel. “These attributes, called resources,
oriented features of a widget based-program. Fig.d.1 shows how tlese resonrces are
related (o the PushButton widget.

5. Wid-

s tree organizes all the available widgets into related clas

The wiclgot ¢
wets are gronped together into the same class when they have some attributes in
conmon,

As shown in Fig.2.5, widgets have certain common attributes. These attributes

tree.

e widget elass, which is the root of the widget cl

are stored in the

Whenever an instance of a particular widget is created, it is associated with a copy

all attribntes that are related to the widget elass. These attributes can be changed

cither before orafter the widget is ereated; they ean also be defined in a special file

located externally to the program,

4.1.2 Resource File

specifiod direetly m the sonree

The X Toolkir allows the resonrees of a widget to be

from withis sonuree

code at the time the program is compiled or at exeention timg
file. Using the resonree file the nser can override the defandt look-and-feel of some of

the widgets in an X/Athena program.

A resouree fileis a text file that can e evated with any text editor Wathin the

souree file. the resonrees are specified for one or more widgets within one or i

the resonree file

X/Athena client application programs. Using & very simple svntax,

s o resonree name for a widget instanee ina partienlar elient along with a

specifi

value for that vesource.

resonree file s that we must kuow the

e only requirernent for tHhe wse of
instance names and wnstonee hicearehy of e wedgels o the client's widget istaee
trer,

Using a resonrce file simplifies the souree code of a program. and provides more

and their values for X/ hena cliont appli

itexibility in the speerfication of resoures

cation programs.

4.1.3 Resource Specification Syntax

of

Each line within a resource file specifies a resonree value for a partealar instanee

a widget. a group of widgets that have the same instance name, agronp of widgers

s that all have the sme resonree

that helong to the same class, or a group of wicdge

ol

ation ean be one of two tvpes. With Vhe objeet we

Any abiect in a resouree specifi

e assocte cither aspeeifie elient program or a class of similar. related programs.
T subobjects inaresonree specification show the path throngh the widget instance

e it st be followed 1o gam aceess to a particnlar widget. A sitbobject can

be vither the widget instance name (the second parameter to the widger ereation

funetion) or a class name Cnstanee names always start with o lowercase letter. and

luss wines always start with an apperease leter.)

A object and subobjects i a resonree specification can be separated from one

sanother by cither aperiod (1) or an asterisk (%), Using a period separator is called a
Leght brindeing and vequires that we know the exaer parent instance or class name on
the left a0 " the exact child instanee or elass name on the right. Using an asterisk
separator is ealled a foose binding which allows ns to indieate that any mumber of

wirlgets v appear hetween the parent instanee or class on the loft aud the child

instanee or class on the right.

Fhe Tast ttenn in a resonree specification is the name of the resource. The resonrce

e is followe by a colon, optional white space. and the value of the resource. Any

ouree file is a comment line and

line thay starts with an exclamation point (1) in a e

i ignored.

Asetof precedenee rules is established in X to resolve potential conflicts between

tempt to set the same resonree for the

resouree specifications which a e widget.
Phese rales determine which resource specification is taken into acconnt in the case

ol contlicts. The following rules apply in ascending order:

L The Bierarchy of the instance and class names in a resonree specification nmst

mateh a elient hierarchy exactly or the line is ignored.

Object(. | *)subobject(. | *)attribute:value

Fig.

Resonree specification syntax in resonree files.

“Tight binding takes precedence over loose bindings.

Iustance names take precedence over class names.

Explicit instance or elass name takes precedence over omitted instanee or ¢

names: for example, the specification “*serollbar*backronud™ takes precedence

over the spocification “*backgronnd”.

Left components are more important than right components; for example, the

Ibar*

over “ b

specification “Xterm*background” takes preceden

ons have the same precedenee, their phy

bl

If two resonrce speeil

determines which one takes effect; the specification that appears

precedence.

yutax is shown

Fig.

Resonree specification s

4.1.4 Resource Database

When a client program starts exeenting, one of the first operations within the invo-

cation Xtlnitialize() is to create a resouree database (from different resonree files).

s usually place their resonrce descriptions in the file Xdefanlts” in

Although nse

ions for resonree

their bome directory, Xtluitialize() checks a mumber of other loc

16

infe

for

rmation. The following is ions that are checked, in ascending order.

resonree information:

1. /use/lib/X1L{LANG Japp-defanlts (class). (class) is the class name supplied as

the second parameter to Xtlnitialize(). If the file does not exi

looks for the file /use/lib/X11/app-d The SLANC o

variable is intended for use by clients that have different resources for different

langnages; it specifies a subdirectory for a s language.

XAPPLRESLANGPATH (class). (class) is the class name supplied as the sec-
ond parameter to Xtlnitialize(). If this file does not exist, Xtluitialize() looks

for the file XAPPLRESDIR({clas:

RESOURCE.MANAGER property of the root window. This is a special data

area that can be manipulated by the zrdb utility program. If this data arca

does not exit. Xtlnitialize() looks for the file SHOME/. Xdefaults.

. $XENVIRONMENT. This enviroument variable contains a full or relative path

or a simple file name of a resonrce file.

5. Command-line arguments. One or more -zrm options can be specified on the
command line when starting any X/Athena client.
6. The widget's argument i The resonrces are specified in the argument lists of

the widget creation and updating functions in the source code of the program.

4.1.5 The Resource File for FIT and SPICE-PAC

I summary, there are five main ways to set the values of widget resonrces:

47

In a nser resource file.

. In a class resource file, also called an application defaults file.

In the RESOURCEMANAGER property of the root window. ‘This property is

ereated by the standard X Window progeam called ndb.

In command-line parameters passed to the program.

Inside a program setting the resonrce values,

Ln particular, the file *IFit" contains a fow resonree definitions for the FUI program.
The file “Spice™ contains resonree defivitions for the SPICE-PAC program. Usiug

these files. users

can change the definitions to override the defanlt resonree file whicly
will affect the layont of the nser interface. A large part of these files specilies resonrees
for the color and location of the pop up Display. pop up Help, and so on. These

resource files can be located in the nser’s home directory (SHOME in UNIX parlanee)

or together with other application default files, in /use/lib/ X1 app-defandts, Fig,

shows a fragment of the file *Fit".

4.2 Application Structure

One of the initial steps in developing an application is to build the application strue-
ture. X application structure is fairly well defined, and each client follows this strie-
ture to some degree.

FigA.4 outlines the structure of a typical application program. There are four

header files which are usnally used:

Fit*hackground: pink

Fit*foregroound: white

Fit *border Width: 1
60
am

Fit*Quit*font: bold- 1172 100 100-*-%3

Fi 3 psc
Fit*Quithackground: indianeed

Ascting nsource (o display
Fit®paned. widl

Fit*pancd fcight: 4uu
Fit ok widih: 50
2
salmon

Fig.4.3. A fragment of the resource file for FIT.

inclnde (X11/Intrinsich)
finelude (X11/StringDefs.hi)
#iuelude (Xt/Natouh)

Finclude (Xt/Shellh)

The Intrinsie.h header file contains the itions of the functions XtC

get(). the macros that are used by Xt based class names (XtC) and representation

type names (XtR) nsed in Intrinsic. Xetom.h contains the predefined X atoms nsed
for inter-client communication and selections. Shell.h contains those definitions for
application shells which are the onter windows that all clients have.

“The steps for writing the application are:

1. lnitialize the toolkit (Xtlnitialize()/XtApplnitialize()).

49

2. Create the Widget (XtCreateWidger()/Xt CreateManaged Widget ().
3. Realize the widgots (XtRealizeWidget().

1. Wait on eveuts (XtMainLoop().

#include<stdio.h>
#include<X11/Intrinsich>
#include<X11/StringDefs.h>

#include"

h
Forward Declarations
(lobal Variables
Static definitions
main(arge, argy)
Initialize Toolkit
-XtInitialize

“XtApplnitialize

Build Interface

XtRealizeWidget
XtManageChildren/XtManageChild
XtMainLoop/XtAppMainlLoop

Fig.A.4. Application structure.

30

Chapter 5

System Implementation

‘I'he implementation of the graphical nser interface for FIT and SPICE-PAC consists

of fonr parts: pop-up warning section; the file memy; the analysis section and the

display section, All these parts are described in the sections that follow.

5.1 Pop—up Warnings

5.1.1 Widget Hierarchy for Pop—up Warnings

“Phe first step needed to create a pop-up men is a shell, The override WidgetClass is
usied for this purpose. Since pop-nps allow only one child as a direct descendant, so,
and

in most. cases, the typical approach is to nse one of the container type widge

then add the children to this container. Fig.5.1 shows this hierarchy of widgets.

The function XtCreate Widget is not used in this case. The reason for this is that

each widget contains a part that identifies the pop-np children associated with the

widget. XtCreate Widget does not fit into this structure. Therefore, the Intrinsics

I
Lu..n Menu J nalysis Menu Display Menu

=3 [posy

Fig.5.1. Hierarc

¢ of widgets for a pop-up warning message.

provides XtCreatePopupShell for creating dialog shells.

The next step is to display a warning message. This

e is composed of a

container (to hold the panes), the message, and the panes. Each pane needs a label

of a cailback function that performs an associated action. The warning message

this example uses form WidgetClass as a container, list WidgelClass for the miessi

and command WidgetClass for the panes.

5.1.2 Widget interactions for the Pop—up Warnings

Two callback fuctions, cancelquit-callback and chowcallback, cancelquil-callback,

are nsed in the Quit section, for ca licks

celing the warning message; when the

ou the Cancel button, the pop-np warning message will disappear and the previous

status is reinstated. choucallback s for quitting the application; when the wser elicks

on the OK button, the application is terminated. This is shown in Fig

52

Quit Menu Enuly.\i\ Menu Display Menu

Clic¥ on Quit button T

Text Screen

Quit

the Package Warning

Message

Figg.5.2. Widget interactions for a pop-up warning message.

After ereating the widgets for the Quit seetion and their component interactions

. the look of Quit section with a warning message is shown on Fig.5.3.

5.2 Pop-up File Section

The file wenn displays the files and subdirectories in a given directory. The user can

t files by clicking on the Load button and can save or print

view the contents of te

g on the Save or Print buttou. respectively.

the file by cli

A contents of a given directory: one presents

are used to

T'wo serolled lis

s the files. When a user clicks on any name in

the subdirectories and the other lis

olled list

the subdirectory list, the files in that subdircetory are listed in the file s

(with the subdireetories in the subdireetory serolled list); the label that shows current

SPICE-PNC NAIN MENU

File) wis .) (Disploy)
S
boin

oS Nehuiimpiiememinmpstiviirmiit] | ’

SPICE-PC 2GECII5,05% MUnsGe2' © GATE 3 B3 NUG 94 BT, 13150240

THPUT LTSTERG TEHPERATURE & 27.000 BEG €

The apl):ﬂl{m Wit Fintony
{Rea you ours you vont b quitY

MO PN
V48 043y vd)

1 fFm50 VFase xm.s-xa Fouttn Cic.oPE m‘sns
PRINT 0C :
SPRINT TR V(D V(B Ved) .

3. SPICE-PAC with a warning message.
directory changes to the new direcrory.

When a nser elicl

on a file name, the file mame is shown in the enrrent file label:

the type of the file is also determmod.

The Home button is provided to reset the current direetory to the user’s home

directory.

5.2.1 File Menu

The function Create

file: is nsed to build afile men. [displays the files and suludi

rectories within a given dir

ctory and allows the users to view the contents of text

files in that directory

Al shows its widget hierarchy and Fig,

5 shows 1T with

File memn popped-np,

ol

l,_l._|l._.L.’1 =

LJ‘ (::::‘;;'".f)[...,::::'--:.J (e) (e

File List

Directory List

1. Widget hivrarchy for the FILE men,

5.2.2 Scrolled Lists

OSF/MOTIE provides a fanetion XmCreateSerollList to create a scrollist. In the

Athena widgot set, aserolled list can be made wsing viewport Widget Class. A viewport

s container widget that, allows its children to serolL aronud. viewport WidgetClass

s wsend twiee in the file mem, for listing fle nanes and for listing subdirectory names.

Viewport is also wsed as a contaiuer to hold text WidgetClass to display the context

of the text in the main menn

Files and Directories

of files and subdirectories

L addition to viewing files, lis 1 a given directory need

to be ereated. The function FilllnkileNames reads files in a given dircctory and adds

“Text Sereen Edit Menu Display Moy

e
X

fisuppedy Print_callback

?

l——‘ /

Current Current

File Name Dir. Name

E-Jumr,mmn-

e cargent dir.

he shi up &
pla

Home subdir. name

5. Widget interactions and eallbacks for the FILE memn.

the file names and subdirectory names to these list widgers. The implementation of

FilllutleNomes is shown in Appendix A,

BLE. DIREC-

e determines the type of a file as EXE

The funetion Checklil

TORY or NORMAL file. depending npou the type retnrned by the fanetion stat(). The

snplementanion of Chry e is shown in Appendix B.

5.2.4 Callbacks

le, Save_callback,

There are six eallback funetions to snpport the FILE memn: Qui

shows

Lowd_callback, Print_callback. Selectfile.callbock and Selectdir_callback .

widgel interactions and callbacks for the File meun.

Quit_file: ‘This callback function nses XtPopdown, similarly to other quit functions.

to exit the fileshell,
Save_eallback: "This callback uses the function XawAsciiSave to find ont if the text

buffer has chiamged since the last time it was saved nsing XowAsciiSave or queried

using NawAsciiSourceChanged. "This fanetion returns TRUE if the sonrce has changed

since the last time it was saved or was queried. An internal change fag is reset
whenever the string is queried by X#Get Values or the buffer is saved by XawAsciiSave.

When the nser elicks on the Save button, the Savefile callback function checks
il the file has changed. a pop-np warning message shows up to let the user decide
whether to save the file.

The souree cade of Savecallback is given in Appendix C.

Fig.5.7 shows the final look of FI'T with file mem and the save message popped

np.

15
<

~
7 : Ulbrojast.a o X

Hoemal Flla |

Sratuos
Ritemative;
fird

u-

Hoemal Fide

FIT with the FILE menn and a save warning message popped np.

Load_callbuel: When anser elicks o the Load button. the current file is indicated

shown in Fig.5. XiSetdry

8). Iu the funetion Load-callbac

i the FileOntput area
and N2Sf Values ave combined together to set the value of the FileOntput widget to
indicate the enrrent file name.

Tmplementation of Load_callboek is shown in Appendix D.

Peanteeallbaek: When o nser elicks on the Print button, the file indicated in the
FileOutput areaws printed out. This callback function nses the UNIX system call to
pertorm printing. The file menn disappears after clicking on the Print button.

The implewentation of Print_eallback is shown in Appendix E.

Seleetfile_calthack: AMter selecting a file name from the File List, Selectfile_callback

sets the enrvent file name nsing X1Set Values and XtSetAry.

59

SPTCERRC. 2640103.0% HorSo2 © ONTE ¢ 2 006 94°0T 15280410
TENRITURE * 27,000 OEB.T

ZReracne

“ﬁ

Yo vme.n is-u~x~ ymm 5o TEnbNs
U ey vy
IR 9 Yo

Fig.5.8. SPICE PAC with a file loaded.

ry List, the

Selectdir_callback: Aftor selecting a directory name from the Di

label in Current Directory as well as the contents of File List and Directory List

clhiange to refleet the new direetory. Phis callback funetion nses Filtlnl'ileNames 1o

£l in the two lists with file names and subdivectory names from the new directory

(as shown in Appendix A).

5.3 Analysis Section

interface from the vest of the application is & common sense

Separating the ns

sproach Teading to modular design. 16 the nser interface is sepatated fro e appli

cation program. the two parts ean be modified independently and the user interfaee

ion suftw;

san be enstomized more ca

withont aflecting the appli

Usnally the graphical interface and software tools are linked by a GUI mianager

The Analysis section plays the role of the GUL manager which

v shown fu Fig

dyives and controls the application software. When o user seleets the Run bution.

(1]

. use
interface

Application Software |

9. [nteraction of GUI and the application software,

the tool (FIT/SPICE:

PAC) is initiated. The user can then enter the commands

for FIT/SPICE-PAC to exceute the required analy FIT/SPICE data files are

crented antomatically. Appendix N shows the impl ion of the Analysis.callback

funetion.

5.4 Display Section

“The most important. part of the graphical interface is its display section. The function
Popup_display eroates the layont of the display. It uses form Widget to act as the main

workspace used for graphical presentation of (numerical) the results.

Graphical results of difforent au wed by cor
such as AC Analysis. DC Analysis, Noise Analysis, and o on.
I order to provide some fexibility of graphical presentation, the display section

contains several funetions for choosing line , line width. line color, text color,

and so on. A pop-up dinlog widget to make appropriate selections is ereated using

61

DialogWilg

“The display seetion also provides some zooming capabilities. During viewing the

graphical presentation of mumerical vesnlts, users can seleet zoom-in or zoom_out

options ro make the pictre smaller or Jarger, respeetively, or they ean use X zoom_out,

X_zoom.in or Y_zoom.in. ¥ zoom.out to rescale the picture in one dimen:

Add_trace is another feature of the display seetion. If the nser wants to

the resnlts of only one output variable (rather than all of them), he caun seleet the
Add_trace button and type in the name of the output variable ina pop-up dialog

box. If the name is incorrect. for this analysis, a warning messagge appears o the top

of the dialog box. 1f the name is correc ool with a display

1 pop-up window

of results of the seleeted ontput variable.

Compare._res feature is provided to compare the results obtained from differem
analyses for the same ontput variable, The user enters the name of the output variable

in a dialog box popped up for this purpose.

5.4.1 Display Menu

The function Popup_display display:. the results in a graphical form. 1t also provides
Ll PIAY

ne variable for

the means to trace specific variables and compare the results of the

different analyses. Fig.5.11 shows its widgets hierarchy and Fig.5.12 shows its widpel

interactions anrd callba

62

EEDEmmEnn Gy

Fig.5.10. FIT with the DISPLAY meun popped up.

63

Display

Contuner

Quit displa

Fig.5.11. Widget hie

y for the DISPLAY miem.

G4

Fig.5.12. Widget interaction and callbacks for the DISPLAY menu.

5.4.2 Data Files

Data files are generated by the analysis part following a certain fixed format. Be-

fore displaying, these dara files have to be analyzed. The fanetions Read_fitdata and

Read_fit3file are used for an;

¢ input data files and reading them into corresponed-

nehe as the title areav. the temperature ar

ing array:

w and areays cortesponding (o
the ontput variables). AL those data arrays are then used for graphical presentation
of results.

Implementation of Read fitdata is given in Appendix 1 and Bead fit3file with its

datastructures in Appendix G.

5.4.3 Graphics Context

The X Window em provides a wide variety of fanctions to perform graphies op-

crations. These graphics primitives allow the user 1o draw points, lines, reetangles,

arces, and so on.

Since all graphics operations requite a CC (Craphics Conteet— an important

graphics data strueture), a GC mmst be ereated before a pictu n be drawn. ‘This

GCis used to draw lines, dispiay texts. ete. X stores the graphical information in

the form of pixels that appear on the sereen. This means that il another window is
overlaid on top of the current one. the application program nmst do redrawing when
the hidden area becomes exposed. A drawing exposure event-handling mechanism is

nsed for this purpose. AL the information which is presented on the sereen s also

stored in a pixmap. When an exposed event in the drawing arci ocenrs, the exposed

areais copied from the pixmap back to the sereen. The details are shown in Appendix

66

5.4.4 Creating Graphical Representations

ction. After ereating a picture,

Create Picture s the contral part of the display s

the graphical ropresentation is displayed on the seeen or saved in o bitmap. Create

Picture is the function which reads the data and creares a graphical represenration

on the sereen.

Clrealede_piciure is one of the eallback funetions to ereate a picture for results

ture, Createtrpicture, Createno_picture are

of DC amalysis. Similarly, Createacpi
provided for other aualyses. The basic algorithn of creating a picture is the same,

e by different analyses. lmplementation

the differences are due to the data genes

aof Createde_pieture is piven in Appendlix H.

5.4.5 Traces

single output variable for DC.

Add_Trace is wsed when a user wangs to display

The name of the variable is entered in a dialog box. aud if the

AC or TR analys

wame is correct, anew window is ereated for the graphical presentation of the selected

results: i the name s incorrect, a warning message pops up.

‘The fanetion talkeng creates the dialog box which allows the user to type in the

able name, The implementation of talking is shown in Appendix 1.

The eallback funetion tracing checks if the variable is correet, for the current anal-

It ereates a display window with a graphical resnlt if the variable is correct,

wed. The implement «o of tracing is shown in

otherw ruing m

i
i
i
i

g m:lw =

G8

et Bt

Fig A L FIT With the pispLAY ment and the TRACE popped up.

(2omain) (5 Faonin) (Zomtn) (Costmaus) (tsonoot) (idbchinen)¢ (1

. UL with DISPLAY memt and a comparison of results popped up.

Appendix J.

The funetion Getlitd Value is nsed in fracing to cheek it Gie inpnt variable iz cor-

cotherwise it returns 1 The implementation

reet; it retnrns 0 if the variable is cor

of Getl'it? Value is shown in Appendix K.

5.4.6 Comparisons of Results

red

s for the same ompnt variable can be disy

The results of different anal

separate windows as shown in the left part of Fig.5. 14 In order Lo compare these

70

results. they e also bo displaged in the same window. as shown iu the right part of

Iig.5.

“The fanetion alleingresull creates a pop g display windows; it wses formWadgel

1o ereate the main window for displaying graphical resnlts, and uses comamand Wadget
1o create the Quit and Result battons. The implementation of talking_result is
shown in Appendix L.

The funetion Resullocomparing is the eallback funetion for Result. It displays the

results of the same variable for different, analyses. The souree code of Result_comparing

i piven in Appendix M.

5.5 Compiling and Running the Program

If a0 nser wants to recompile the package, he can nse the make command: Mak:

shown in Appendix O shows the necessary conmands.

Before ranning the system. the nser can prepare the defanlt resonree file (“Fic™ for

the FIT program and “Spice™ for the SPICE-PAC program) or override the defanlt

resonree file to change the layont of graphical nser interface.

In order to run the program, the nser can nse the commands “6t" or “spice”™ to

cente the FI'T or SPICE-PAC graphical nser interface, respectively.

71

Chapter 6

Conclusions

“The main objective of the projeet was to design and implement a package for graphical
presentation ancd wanipulation of wmerical resnlvs for SPICE-PAC and FIT type

applications.

Sever:

I conelnsions related to this project ave as follow:

o The interface ean be developed withont detailed knowledge of the appheation

software Separating the nser interface frome the rest of the application is o

common-sense approach to modular de

pn; the two sep;

modified inclependently, withou, affecting vach othor.

o Mare capabilities snh a slionld le

soming, on seetions, indieated by aomons

provided to improve the flexibility of viewing capabilities.

o The graphical interface and SPICE

SEEY should interact divectly withont

using the intermediate files.

Data sharing is the way to conneet GULand soft

ware applications in this ease. Direet invoeations of relevant procedines of the

72

application program would be a more efficient but also a wore complicated

solution.

s ean be developed for other CAD tools: several “standard”™

- featnres ean be identified (e File seetion or Display section).

o The interface could be generated from “high-level” specifications provided that

well as its translator were available. Desigu of such

ion language as

el the development of its translator conled be the goal

of another interesting projeet in this arca.

et cann ho applied to many similar

The methodalogy developed during this proj

tions. redneing the development time and simplifying the nse of the programs.

Bibliography

(1} B.L. Keller. A Practical Guide to X Window Programming. Vhe CRC Press.,

1990.
[2] €.D. Peterson, Athena Widget Set ¢ Language Interfaee, MUT X Consortinm.

[3] D.A. Young. Window Systems Progranaming and Applications With Nt rentiee

Hall. 1989.

H} EF. Johusou. Power Programming ... Motif. NUS Press, 1991

A. Nye, The Xlib Program:ning Manual, O'Reilly and Associates, 198K,
[6] OSF. OSF/Motif Programming’s Gurde. Prentice Hall, 1990.

{7} WAL Parrette. Motif Progrmming in the X Window System Enoconment,

MeGraw-Hill. Ine. 1992,

8] D. Heller and P, Fergnson. Motif Programming Manual, O'Reilly and Asso

clates, 19941,

Professional. 1995

{9] S.L. Fowler and V.R. Stanwick. The GUI Style Cuide.
-

o
[10] D. Flanagan. Motif Tools, O"Reilly Mi:m-s. 1994

T

[11] 1. Sommerville. Software. Engincering. Addison-Wesley, 1002,

12 WAL Zuberck. SPICE-PAC wersion: 266 An Overview, Technical Report

#8903, Department of Computer e, Memorial University of Newfoundland,

St Johw's. Canada. A1C 557, 1989,

[13] WML Znberek, A Konezykowska, “F . a sinmlation-based parameter ex-

traction program”; Teclmieal Report #9111 Department. of Computer Science,

Memorial University of Newfoundland. St.John’s, Canada A1C 557, 1991.

=

Appendix A : FilllnFileNames

Appendis
in two list wi

shows the implementation of the function FilllnFile Names whi
dgots with fle nan

h fills

il subdirectory names from a given path.

function Fillln|

Names(filewidger. dirwidger. enrrent_path. max_files)

Widget file_widger: where file names go
Widget dirwidger; where dincetory names go
ar current_path j: name of dircetory
iut maxfiles; mar we allow in a hst wdget
begin

file_connt = (;

dirconnt = 0

toralconnt = ()

dirp = opendir(enrrent _path);

il directory NULL then
return file_count;

end if;

dp = readdir directory,

if stremp(enrrent_path.”/") == 0 then
dp = readdir(dirp);

end if;

while directory '= NULL loop
total_connt = totalcount + 1;
file_type = CheekFileCype(path, dp.donume);

if file_type 1 then
dirconnt = div_connt + |
Add file to dirstr =
=i+1:
else
file_connt = filecont -+ 1

Add file name to filestring
j+1s

end

end loop:
Set path to enrrentdirdist:

Set ir list string to dir list
NawListChange(alternative L list, fileliststr, file.connt, O, rrue),

st wew file list string Lo file list
istChange(alternative2 list, homediestr, dircount, 0, TruE);

closedir(dirp);

end FilllnFileNames;

Appendix B : CheckFileType

Appendix B shows the implementation of the funerion CheckFile Type which de-

termines the type of a file as DIRECTORY, EXECUTABLE or NORMAL file.

ion CheekEFile Ty pe(enrrent_path. filename)
current_path{]; the: name of curvent dircetory
ehar filenamel]; the: wame of file

begin

i

char fullname[300];

int. file_type[300];

strepy(enrrent_path. fullname):

length = strlen(enrrentpath):

if pathflength-1] ="/ then
streat(fallname, /")

end if:

streat(fllname, filename):

smation on the file

NORMAL;

t-mode & S_IFDIR =:

DIRECTORY;

‘TRUE then

TRUE then

end if;
return file_type;
end CheekFileType:

-
=]

Appendix C : Save_callback

Appendix C shows the implementation of the function Seve_cullback which saves
the enrrent file.

static void Save_callback(w. client_data, call_data)
Widget w;
XtPoiuter clientdata. calldata;
begin
static String savestring]] = {~The file already
“Da you want to overwrite it?

XtSetArg(args[0]. XtNtextSonree, Lname):
XtGerVales(fileOutput, args, 1);
g reeChanged (name);
if g = TRUE then
Popup warning message : Are gou sure o change 117
NtPopup(saveshell, XiCGrabExelusive);
end if;
end Save_callback:

78

Appendix D : Load_callback

Appendix D shows the sonrce code of the function Load-callback which loads the
enrrent file in the FileOutpnt arca.

static void Load_callback(widget. closure, calldata)
Widget widger:

NtPointer elosure

Ni 'Lh!lh‘lnln‘s!lu(l calldata;

hogin

rtArg(args(0]. Xt Nstring. fulluames);
\(Sx tValues(fileOutpnt. args, 1);
XtPopdown(fileshell);

end Load_eallback;

Appendix E : Print_callback

Appendix E shows the source code of the function Print_callback which prints the
enrrent file.

static void Print_callback(widget. closure. calldata)
Widget widget;
XrPointer closure
XawListReturnStruet *ealldata;
begin

strepy(bnf, “ljpr");
streat(lmf, = ™);
streat(bnf fullnames);
w(bnl);
XtPopdown(fileshell):
end Printcallback;

30

Appendix F : Read_fitdata

Appendix
e input dita G

ows the implementation of the funetion Read fitdata which analvzes
for the FIT program.

static void Read_fitdata(ontput_tile)
FILE outpu_file:
hegin

int res, resl, res2, res3, resd;

hnfl81];

if (fit. = fopen(fildata. "))
printf(“ean't open ﬁm

if (fitl = fopen(datafilel,
printf(“ean’t open :lumhh»

while not. feof(lit) loop
fsets(buf, 81, it); get line form fit and write it into buffer
compare buffer with datatitlel, write into resl
strucmp(buf, “mumber 1 of 47, 15);
compare buffer with datatitle?. write into res?
strncuup(bnf. “number 2 of 47, 9);
compure, buffer with datatitles. write into res
= strnemp(bnf, “mumber 3 of 47, 9);
compure buffer with datatitle. write into resf
= struemp(buf, “munber - of 47, 9);
ifresl == 0 then
for i in 1..30 loop
fgots(buf, 81, fit);
ves = stenemp(buf, “mumber 7. 4);
compare buffer with end line of filedatn
if end == 0 then break: end if;
ifres != 0 then
fputs(buf. datafilel); - put buf into fitt data file
else
brenk;
end if;

res.

Te

end loop;

end if;
felose(filedata);
felose(datafilel);
end while;
end Readfitdata;

81

Appendix G : Read_fit3file

“This appendix show e struetures Fitd_File, Fit3. Value and the Tanetion Read_fi
which opens the file fit#file and reads the data into corresponding arrays.

Fit3_File
struct Fit3_File

char title[81):

char temp[81}:

char name[81):

char res(81);
striet _\Value fit3ovalue[100];
int unn;

} fiedile[10];

Fit3_Value

struct Fit3 \alue
char ua[81]:
Hoar va[100];
} fit3_valne;

Read_fit3file

function Read_fit3file(fit Lfile)
FILE *itlfile:
begin
char name[81). namel[81], name2(81|
char buf[81];
float data[200];
i (fit3 = fopen(“fit3". “r")
printf(“can’t open fit3 ");

iLL then

else
figers(buf, 81, it3);

put the buf into structure fitd-file[k].title
strepy(fit3_file[k] title, buf);
fizets(bnf. 81, fit3);

pub the buf into structure fit:d_file[k].temp
strepy(fit3-filelk].temp. buf);
fgets(buf, 81. fit3);

82

"

fffir.

_value.name
Al e[0)a.

ngs and put then into fit:

fis

. fir3 Alofk].fir3_valne[8].

loop
sean the strung from fitd
fseanf(fitd, %" mame):
since the original data have no spoce between negatioe wumbers,
the functions fseanf and strmnepy are used to separate the numbers
len = strien{name);
if length is greater than 19, there should be 3 data
i=
if len > 19 then
strmuepy (name. (0, 8);

J=i+l
datafj] = strmmepy (name, 9. 10Y;
=i+l

strmmepy (name, 19, 10);
J=j+h

else if len < 9 then

= strmmepy (wame. 0. 8):

clse

n
k=1
fit3_file{k|-wm = maxe/9;
=0

put duta into fit3value
for i in L.fit3_file[k].mm loop
fit3.tile[k]. fin3_value|0].vafi] = data[j];
i=ith

fit3file[k].fit3-valne[8].vali] = datalj];

J=Jth
end loop:

end loop;
ond if
end Read fitsfile;

Appendix H : Create_dc_picture

Appendix H shows the fmplementation of the function Createade_preture wineh
ereates a vepresentation of resuhts for DC analys

function Create.ds
Position orgin.y
begin

Position end.

float max_real.x, minrealx
float tempx, temp.y
initialize

k=10

winrealox = maxorealx = fit1-file{k].6t Lvalue|0].vajo]:
Ly = fitifile[k]fiv] value|H.valo]:
value in file 1

minea
pet min real x value, max re:
for i in Lt Lfile[0].num llmp
ARGt _file]lc].f
min-realx
end if;
if(fit 1 flefk].fitlvalue[0].vali] > alx) then
max_realx = fitLfile[k] it 1 ‘,.1."4[14 \'.x]1|)
end if;
end loop;
get min real z value, maz real x volue i file 2
get man real y value, maz real y value i file 1
et min real y vabe, maz real g oalue o file 2
rangex = maxaealx - minaealx;
range.y

i

waxreal.y - minrealy;

= minrealy
minre

coordinate
coordinate.y
ratex =
ratey = (Origin.y - may

end.y = starl-y;

&l

. anl butmap
angle(XtDisplay(work_space), Picture,

e, 0, 0. 500, 500);
XFillRectangle(XtDisplay (work_space), XtWindow(work_space).
2.0, 0L 500, 500);

sel Juregrownd for fi

Teat_colorf0] has default, color
XSetForegronnd(XtDisplay (work_space), ge2, Text.colo 1{0]);
draw title at the top of wnndow and peture bitmap
XDrawString(XtDisplay(work_space), XtWindow(work-space). ge2,
start fit 1file[kl.title, strlen(fit 16l e(k].title));
NDrawString(XtDisplay(work_space), Picture. ge
ni 10. it 1 filefk].title. strlen(fit Ll
U BTG U oA

et Line color and line

XSetlForegronnd (Nt Displa

NSetLineAutributes(XtDisplay (work_space).
Lineowidth[0], Line_style[0]. NULL, \m.r,),

NDrawRectangle(XtDisplay (work_space). XtWindow(work-spa ce).
e, origin, max.ay. mMax-X - originX. origin.y - max.y):

NSetForeground (XtDisplay (work_space), 2. Text_color] 3]):

llmm sross for lable: of measured data
m;<+zn max. +~ln)

e for frame of the: coordmate
Lim-.w)lur[0));

.\\'(\\'mk pac .\) XtWindow(work_spa co),
origmx-+-10. wax_y+25. “measured” . strlen(“measnred™)):
draw line for lub imulated date in middle of result picture
NDrawLine(XtDisplay(work space). XtWindow(work_space)
, originx+16, , originx-+36, ma
XDrawString(Xt Display(work_space), XtWindow (work.s
o2, originx-+ 40, m 5, “simulated”, snlonl "
draw grad for the result picture
for i in 1 .. fitlfile(k].mm-1 loop
ot Foregronnd (Xt Display(work_space). ge2, Line_color|0]);
lay(work_space), XtWindow (work.space, ge2,
. start.y, +10. end.y);

)¢

NXDrawLine(XtDisplay(workspace), Picture, ge
v, endx-10. endoy):
give label of coordinate
XSetForeground (Xt Display (work_space), ge2, Text_color[2]);
sprint! teh, * %.2g7, coordinatex)
XDrawString(XtDisplay (work-space), XtWindow (work_space).
ged, startx-20, start_y+15, scrateh, strlen(seratch));
sel new coordinate data

85

mmlated™));

star art x-distancex;
start.y = start.y;

end.

X b coradistx;

end loop:

set line attribute for f mulated data
XSetLineAttributes(Xt Display (work.
Line_width[L], Linestylef l} ILL. NULL),
draw first measure data using cross figure
for i in 1 .. fitLfilefkl.onm-1 loop
XSet Foregronnd (Xt Display (workspace)., ge2. Linecolor 1)
tempx + ratex*ielfile{k].fit Lvalue[0]vali]:
- rate_y ¥t Lfilelk]. it value|{ Lvali];

end loop;
draw second measure duta usig cross figure

draw first simulated data
for i in I .. itlfile[klunm-1 loop
\Sv(l«nx-;,muml(\ll)lsph v(work_sp:
calenlate the .y value in the window
tempx -+ ratex*fit Lfilefk.fit value0].valil;
¥ = tempoy - rateoy St file[k[. it value 1],
XDrawPoint(XtDisplay (work_space), XUWindow(wark. space)

L e, Linecolor 1);

i1 ;
..,|.| el];
XtWindow(work_space),

3 tempx -+ r
¥1 = temp.y - rate_y*litLlile|
NDrawLine(XtDisplay(work_sp
B v yexloy;

end loop;
draw the
draw the second simulated data value
XDrawString(X tDisplay(work space). XtWindow(workspace). ez
e, it Lefile]k] Bt Lvaluef2lna, strlen(fi 1filefk]- 61 value]2)na)):
end Create_de_picture;

ond simulated data arroy

L

Appendix I : talking

Appendix 1 shows the sonvee code of talkimg. the dialog handling Tuietion.

function ralking(burton. client dara. calldata)
Widget button;
Xt Pointer clientdata. eall_data;

begin

n=0

rracedialog = XtCreatePopupShell(“TraceDialog”™,
transientShellWidget Class, button, args, n);

u=00

container = XtCreateManaged Widget (“"Container™. form WidgetClass,
trace_dialog, args, n):

n=0:

talk = NtCreateManaged Widget (“dialog”. dialogWidget Class,
container. args, n);

n= 0
NtSetArg(args[n]. XtNfromVert, talk):

N

ok = XtCreateMauaged Widget (“ok™, command WidgetCla

container.

XtAddCallback(ok, XtNeallback, tracing, (XtPointer) talk);

rgg(args[n]. XtNfromVert, talk):

Arg(args(n]. XtNfromHoriz, ok);

n++1

eancel = XtCreateManaged Widget (“caneel™, command WidgetClass,
contaiuer.,

XtAddCallback(eancel, XtNeallback, cancel_trace_dialog, NULL):

XtPopup(trace_dialog. XtCrabNone);

end talking;

5. n);

87

Appendix J : tracing

Appendix J shows the implementation of the finction tracing which checks if the
output variable is correet for the cnrr a display window with
raphical result if the variable os A warniug n

e

static void tracing(widget,closure.callData)
Widpet widget;
NtPointer elosnre, eallData;
begin

ehar buf[81], shell_name[81], container vamef81];
name[81]. space name(81]:

Widget ralk = (Widger) closure;
String viame = XawDialogGetValueString(taik);

check the vatue form different analyst mode
case (Display.Id) is
when 0 do
fag =
when | do
flag = Ge
when 2 do
flag = Getlit3Value(vname);
when 3 do
Hag
default:
it

Getlit Value(vname);

1it2 Value{vname):

Getlit) Value(vname);

(tFit3 Value(viame);
end case;
if it is a correct vabue. popup window showing the result
if flag == 0 then
I

R Trace_Var + 1;

i = TraceV
Trace_ld = i;
XtSetArg(args(0]. XtNsensitive, TRUE);
XtSet Values(Compare sesult, args, 1);
get trace value and disploy 1d
sprintf(shell.name, “IraceShell%d”, i);
ntf(container name, “IraceContainer%d”, 1);
spriutf(spacename, “Trace.space%d”, i);

intf(quit-name, “Quit-trace%d”, 1);
sprintf(quitcallback_name, “quit_t Lmung%tl” i);
ereate new display window which includes quit button

88

else

end

end tracing;

traceshellfi] = XtCreatePovnpShellshell_nan
trausientShollWidget Class, widget,

u):

ich

n=0
traceContainer(i] = XtCreateManaged Widget (container_name,
formWidget Class, eshellfi], args,)
traco_spaceli] = Xt CreateManagod Widget (sps
formWidgetClass, traceContainerfi]. a
if visibility changes, then vedraw the picture
XrAddEvent Handler(tracespaceli]. Visibility ChangeMask.
traceexposing, NULL):
reate quit button, under the display window
XtSetArg(args(n]. XtNfromVert, tracespaceli]):
nti
quit_tracefi] = XtCreateManaged Widget (quit_nanme,
command Widg aceContainer]i
XtAddCaliback(quit trace[i], XtNeallback. quit_tracing,
XtPopup(traceshellfi]. XeGrabNoue):

FALSE,

eshellfl),

warning message shows wp on top of the dialog
printf(“(‘.m‘t et the value”);
sprintf(get the value Try again.”, viame);
XtSet ‘\I‘[.,[dq.h[[)] X¢Nlabel, str);
et Arg(args(L], XtNvalue, ©);
XtSetValues(talk, args. TWO);

89

Appendix K : GetFit3Value

3 Value which checks

Appendix K shows the implementation of the function GetFi
the input varable and retarns O §f the variable is correet, otherwise retuns 1.

Value(valueiame)

value.

res. resl. res2, ress,

emp(valiesame, fit3_file[k].fr3value[2].na):
mp(valnename. fit3_file{k].fit3_vaine[1].ua);
mp(valueime, fit3_file[k].fit3.value[6].u
mp(valuename, fit3_file[k].fit3.value[8].ua):
%) then

Fit3_Value-No

=

= 0 then
it3_Valne_No
judge = 0:
end if,

90

Appendix L : talking_result

Appendiy
dialog for dis

L shiows the sonree code of the function falking_result which haudles the
wing results.

static void talking_result(widget.closnre.callData)
Widget widget
NtPoiuter closure
begin

callData;

Resultld = i
sprintf(shelluame, *ResaltShell%d”, i):
sprintf(containermame, “ResultCo; ner%d”, 1)
sprintf(spacename Result space%d™, i):
sprintf(quitname, “Quitresult%d”, i)
u

tCreatel (shellname,

n.mswnlSlwll\\'ndu ((‘I.m wid args, n);

0;
resultContainer(i] = XtCre
formWidgetClass

eManaged Widgot (container_niame,
resultshol fi]. ars, n);

XtCreateManaged Widger(“resultlabel”, Tabel Widget Class,
resnltContainer(i]. args. n);

n*ll

.um\].m.lgl-d\\'ul;:nl (space_name formWidgetClass,
inerli], args, n);

L
quitresulti] = XtCreateManaged Widget (quit-name,
command WidgerClass, resultContaineril, a
XtAddCallback (quitresnlt]i], XtNealllack, quit_callbac
XtSetArg(args[0], XtNfrom Verf sult
‘(nsm\n,, (L], XeNfromHoriz, qui
2%
u‘sult = XtCreateManaged Widget(“Result” command WidgetClass,
resultContainer(i], args, n);
XtAddCallback(result, XtNeallback, result_comparing, NULL);
XtPopup(resultshellil, XtGrabNone);
end talking

s.on);
resulshell]i]);

91

Appendix M : Result_comparing

M shows the source code of the funetion Result_comparing which dis-
ts of the same outpnt variable for different a

Appendi
plavs the

Ivses.

X
tracedisplay = NXtDisplay(result_space[i]);
tracewindow = NtWindow (resnlt_space(i]):
Compare_ac_valie(40. 280, 300, 10):

ond Resultcomparing;

Appendix N : Analysis_callback

Appendix N shows the source code for the funetion Analysis_callbnek which links

the graplical interfice with an application program.

static void Analy:
Widger w:
XrtPointer clientdara. call-data:
begin

callback(w. client_data. call_data)

chiar run[30};
strepy(rm, “sppac”);

end Aual

03

Appendix O : Makefile

Ihis appendix shows the makefile for FIT.

= e -0)
LIBS = -L/usr/X1IR5/kib -1Xaw -IXext -IXmu -IX¢ -1X11 -lm
lit: fit.c

$(C

-0 it fit.c $(LIBS)

	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Title Page
	006_Copyright Information
	007_Abstract
	008_Acknowledgements
	009_Table of Contents
	010_Table of Contents iv
	011_Table of Contents v
	012_Table of Contents vi
	013_List of Figures
	014_List of Figures viii
	015_Chapter 1 - Page 1
	016_Page 2
	017_Page 3
	018_Page 4
	019_Page 5
	020_Page 6
	021_Page 7
	022_Page 8
	023_Chapter 2 - Page 9
	024_Page 10
	025_Page 11
	026_Page 12
	027_Page 13
	028_Page 14
	029_Page 15
	030_Page 16
	031_Page 17
	032_Page 18
	033_Page 19
	034_Page 20
	035_Page 21
	036_Page 22
	037_Page 23
	038_Chapter 3 - Page 24
	039_Page 25
	040_Page 26
	041_Page 27
	042_Page 28
	043_Page 29
	044_Page 30
	045_Page 31
	046_Page 32
	047_Page 33
	048_Page 34
	049_Page 35
	050_Page 36
	051_Page 37
	052_Page 38
	053_Page 39
	054_Page 40
	055_Page 41
	056_Chapter 4 - Page 42
	057_Page 43
	058_Page 44
	059_Page 45
	060_Page 46
	061_Page 47
	062_Page 48
	063_Page 49
	064_Page 50
	065_Chapter 5 - Page 51
	066_Page 52
	067_Page 53
	068_Page 54
	069_Page 55
	070_Page 56
	071_Page 57
	072_Page 58
	073_Page 59
	074_Page 60
	075_Page 61
	076_Page 62
	077_Page 63
	078_Page 64
	079_Page 65
	080_Page 66
	081_Page 67
	082_Page 68
	083_Page 69
	084_Page 70
	085_Page 71
	086_Chapter 6 - Page 72
	087_Page 73
	088_Bibliography
	089_Page 75
	090_Appendix A
	091_Appendix B
	092_Appendix C
	093_Appendix D
	094_Appendix E
	095_Appendix F
	096_Appendix G
	097_Page 83
	098_Appendix H
	099_Page 85
	100_Page 86
	101_Appendix I
	102_Appendix J
	103_Page 89
	104_Appendix K
	105_Appendix L
	106_Appendix M
	107_Appendix N
	108_Appendix O
	109_Blank Page
	110_Blank Page
	111_Inside Back Cover
	112_Back Cover

