








A Parall el Algorithm of Constructing

A Voronoi Diagram on Hypercube

Connected Computer Networks

By

W e n mao Ch ai

A thesis submitted to the School of GraduateStudie5

in partia] fulfiUmenl of the requirements {or the degreeof

Mu ter of Science

Department of Computer Science

Ml"moriRlUniversity of Newfoundland

St . John's Newfoundl and CaDada



Contents

Ac knowledgment

A b stract

1 Int rodu ct ion

1.1 Parallel Computation Models

1.1.1 Parallel Random Access Machines .

viii

1.1.2 Processor Networks . . .

1.2 Lite rat ure Review cl Parallcl Algorith ms for Constr uct ing Voronoi

Diagram

2 Hy percube Connected Computer Netwo rk a nd It s Pund n-

mental Op erat ions 18

2.1 SIMD Hypercube Con nec ted Computer Net work . 18

2.2 Funda.mental O peratio ns on Hyp ercube Connected Comp uter

Network , 22

2.2.1 Maxi mu m . 2'1



2.2.2 Ranking 25

2.2.3 Concentrat ion . 29

2.2.4 Distr ibution . 32

2.2.5 Generalization . 33

2.2.6 Merging and Unmerging 38

2.2.7 Sorting . 41

2.2.8 Random Access Read .. 45

2.2.9 Rand om Access wr ite 50

2.2.10 P recede 55

2.2.11 Summary "
:\ A Parallel Algorithm for Const ruct ing Voronoi Dia grams on

n Hypercube Co nnect ed C om put er N e t work

3.1 Definition and Feature s of Vorcnc i Diagram

3.2 Convex Hull and Inversion Tran sform .

3.2.1 Convex Hull .

60

61

63

63

3.2.2 Inversion Transform 64

3.3 A Parallel algorit hm to cons truct a Voronoi Diagram 64

3.3.1 Parallel algorithm for constructing the 3-d convex hull 73

3.3.2 A parallel algorit hm to test extern nl faces and inte rnal

faces

3.3.3 A parallel algorit hm to const ruct a spherical Voronoi

diagram

77

82



3.3.4 A parallel algorithm to locate points on a spherical

Voronoi diagram 87

3.3.5 A pa rallel algori thm to add new faces to the convex

polyhedron 92

3.4 Summary

4 Conclusio n and Discussion

4.1 Parallel Algorithm to Const ruct a Voronoi Diagram in 1.1( I" ....)

on a hypercube connected computer network . .

99

100

4.2 Optimal Pa rallel Algorit hms to Constru ct Voronoi Diugruma . lOa

i ii



List of Figures

1.1 Par allel Rand om Access Mac hine

1.2 Mesh with" = 16 processo rs .

1.3 Cu be-con necte d cy cles network wit h d = 3 and n = 24 10

1.4 A 4-st ar

1.5 A -l-pan cake .• . .

2.1 Block diagram of an SIMD compute r

2.2 16 processo r hypercube .

11

12

20

21

3.1 Voronoi diagram 62

3.2 Inversion. . 66

3.3 Relat ion between 3-d convex hull and z-d Voranoi diagram 70

3.4 The algorithm of constr uct ing a Voranoi Diagram 72

3.5 The algorit hm of a three dimension convex hull merge .. 76

3.6 Th e two dimensional analogy 7'

3.7 Th e algori thm or ext ernal and internal face test 83

3.8 The algorithm for constru cti ng spherical Voronoi Diagram 86



;'.9 Representation of chain . al l

3.10 Th e search algorithm for points location 9:1

3.11 T he algorithm for adding new (aces of convex polyhedron . 96

4.1 Voronoi diagram in 1,,\ met ric . 102



List of Tables

2.1 Example to compute maximum in a ll SIMD hype rcube 26

2.2 Program for SIMD Maximum . . 27

2.3 Exa mple to compute ranks in an SIMD hypercub e . 28

2.4 P rogram Icr SIMD ranking procedu re . . . 30

2.5 Example t o concentrate in SIMD hypercu be 31

2.6 P rogra m foe proce dure to concentrate records 32

2.7 Examp le to distribute in an SIMD hypercube 33

2.8 P rogram for pr ocedu re to dist ribute records 34

2.9 Example to generalise in an SIMD hypercube 35

2.10 P rogram for procedure to generalize records 37

2.11 Program for SIMD Reversing 39

2.12 Bitonic sort into nondecreasing order . . 40

2.13 Iterat ive bit onic sort for II , a p ower of 2 41

2.14 Power of 2 bitonic sort [ncndecreaslng order) . 42

2.15 Power of 2 bito nic sort (nonincreasing order) . . . 43

2.16 Exa mple of II. random ac cess read . . 46



2.17 Algorithm (or a. random access read . . 48

2.18 Exampl e o( an arbihary random acceJI write . . . 52

2.19 Algorithm (or an ar bit ra ry random acee.. write • . . . • . 54

3.1 Th e Algorit hm of Conl t ructing 3·DimeJllional Space Convex

Hull

vii



Ack nowledgment

I would like to t ake this opport unity to express my sincere th anks to

my supervisor, Dr. Caoa n Wang . He stimulat ed my interest in th e field of

computat ional g~metry. Hi. const ant encouragement And guidance during

the course of my stud y and research led to the completion of this thesis.

Last but no t the least, 1 would like to give my then ke to my husband,

Zhcnpcn Young , for his love a nd help tb rou ghout the composit ion of this

viii



Abstract

Com p uta tio na l geome try is a branch of comp uter science CO UCC fl ll 'l!

with the design an d analysis of algorithms t o solve geomet ric prubloms . TIll'

Voronoi diagram or a set.5 of II points (called sites ) is a well known st mr-ture

in comput ational geometry . In the Voronoi diag ram , each point is surrounded

by a convex polygon enclosing t hat territory which is closer to t he surround ed

point tha n to any ot her point in the set. Voronoi diag ra ms arc useful i ll

solving geometric problems such as proximit y problem s and the Euclidean

minimum spanning tree problem. Voronoi dingmms also have npplicatjons

in diverse areas like biology, visual perception , physics, and archeology,

There exist many metho ds to construct Varon oi diag ram s on n sill­

gle computer. Two of t hem are proposed by Shamo s and Brown. In 1075,

Shame s appli ed two-dime nsional Vcronoi diagrams to obtain elegant 110111-

tlen s in compu tational geometry , such as finding t he nearest ncighlmr lUll l

construct ion of minimum spanning trees. Sham es describe d an 0(,, 101;11)

time sequ ential algorithm to constr uct t he planar Voronoi diagram for a sd

of planar point s. Th e str ategy he used in t he serial algorithm is divide-and­

conquer. In 1979, Brown demonstrated an int eresting linkage between till:

Voronoi dia gram and the convex hull. He presentc d a n 0(11log " ) algorithm

for constructing t he Voronoi diagram, by transforming the problem of COII­

str ucting a planar Voronoi diagram for an »<pc ints set to the construction
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of II convex hull of " points in a-dimensional space via a geometric tran sfer-

million known as inversion.

Due to the nature of some applications in which geometric problems

arise, fasL and even real-time a lgorithms are oft en required . Here, as in

many ot her areas, para llelism seems to hold the greatest promise for major

reduction in computatio n time. The idea is to use several processors which

cooperate to solve a given problem simult aneously in a fract ion of t he time

taken by II. single processor. Therefore, it is not surprising th at the interest

in parallel algorithm s for geometri c problems has grown in recent years.

Based on Shamos's and Brown's meth ods, several parallel algorithms

to const ruct Voronoi diag rams have been presented. Some of them are im­

plemented on parallel random access machines. Some of them are run on

processor networks such as mesh, cube-connected cycles, st ars and pancakes.

We will discuss t hem in t he literature review. With the development of com­

munlcntion technique and concurrent programming, compute r networks have

become popular. The most popular processor inter conn ecti on topology today

is undoubted ly the hyprl'Cllbc. Hypercube! have several ad vantages. First,

the number of nodes in a hype rcube grows exponentially with the number

of connect ions per node , so that a small increase in the hardwar e at each

node allows a large increase in the size of th e compu ter. Second, t he number

of altern at ive path s between nodes increases wit h the size of the hypercube,



which helps relieve congestion. Third, efficient algorit hms arc known for rout­

ing messages between processors in a hypercube . Finally, and today mod

importantly, a lar ge corpus of softwa re and programm ing techni ques exists

for hypercube .

The hypercube is one of the most versati le and efficient networks yei

discovered for parallel computa tion. In this thesis , a single instru ction IIm!­

tiple data st ream hypercube connected computer network is chosen as our

parallel computatio n model. In a hypercube connected comput er nclwork,

local computations as well as message exchanges arc ta ken into considers­

tion when analyzing the time taken by the processor networks to solve fI.

problem. Based on Nassimi and Sahni's pape r fundamental operations on

hypercube connect comput er networks are descriptively discussed . The COt­

responding programs are also given. Based on Brown's approach, II. par allel

algorit hm to const ruct Voronoi diagrams are developed. Our algorithm rU/IS

in O(log3n) time on an O(ll )-processor hypercube connected compute r net­

work. Our algori thm has several ad vantages. First, our algor ithm is based

on Brown's met hod which t ransforms t he probl-em of constr ucti on of a pla ner

a Voronoi diagram for an n-point set to const ruction of a convex hull or II

points in t hree dimensional space, Compared with the par allel IIlgoriUllns

which are based on the divide-and-conquer ap proach used by Shamos, our

algorit hm can be used to solve two computation al geomct ry problems: con-

st ruct ing 2- dimensional Voronoi diagrams and 3- di mensiona l convex hulls.

xi



Second, comparing with Chow's meth ods which runs on a O(n) processors

CCC (Cube-Connected Cycles) model has O(log· n] time complexity, our

nlgorithm has better time complexity. Third, comparing with Chang-Sung

Jeong's algorithm which runs in O( J'Ti) on an .jil x ..;n mesh, our pa rallel

computation model is more general because most ot her popular networks can

be easily mapped onto a. hypercube.
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Chapter 1

Introduction

Programmin g comput ers to pro cess picto rial dat a efficiently has been

an acti vity of growing impo rtance over the last 40 year s. Th ese pictoeia.l datR

may come from ma ny sources. We di st inguish two gen eral cla sses:

1. Most often, the dat a are inherently pictorial, such as t he images aris­

ing in medical, scientific, and industrial applications. WeAther maps

received from sat ellites in out er space are a good examp le.

2. Alternatively, the data a re obtained when a mat hemat ica l model is IISl'(1

to solve a problem an d the model relies on pict orial d a t a. Exarnpks

here include comput ing the average of a set of data (represent ed as

points in space) in the presence of outliers, computing th e value of a

function that satisfies a set of constrai nts , and so on.



Regardless of their sources, these computations may include the ope r­

ations of iden t ifying contours of objects, "noise" removal, feature enhance­

ment, pattern recogniti on, dete ction of hidden lin es, and obtaining interse c-

tiona among various comp onents . At the foundat ion of all th eseeornp utation a

are pr oblems of a geomet ric nature, tha t is, problems involving points, line s,

polygons, and circles. Cmnplt talional geometry is the br anch of computer

science concern ed with designing efficie nt algorithm s for solving geomet r ic

proble ms of in clusion, in tersecti on, and proximity , to na me but a few.

Until recen tly, the se problems were solved using conventiona l scqIIC/lti(l{

comp uters, computers whose de sign more or less follows the model proposed

by John von Neumann and his t eam in th e late 19405. Th e model consists of

n single processor capa ble of exec uting ex actly one instru ction of a progra m

during each tim e unit . Comp uters bu ilt according to thi s para digm hav e

been able to perform at treme ndous sp eeds. However, it seems today that

this appr oach has been pushed as far as it will go, and tha t the simple law s

of phy sics will stand in the way of further progress. For example, t he spee d

of ligh t imposes a limit that cannot be surpassed by any electronic device.

On the oth er hand, our ap petite gr ows continually fot ever more pow ­

erful compute rs eapeble of pro cessing larg e amounts of da ta at gr eat speeds.

One solution to this pre dicament that ha s gained credibility and popularity

is Il flmUr:! pIYJrr..... illg . Here a co mputa ti onal proble m to be solved is broke n



into smal ler parts that ar e solved simulta n eously by the sev eral proc essors of

a pamllef compltlcr. Th e idea is a. natura l one, an d the decr easing cost and

sizeof electronic compone nts hav e made it feasible. Lately, compu te r scien­

t ists hav e been bu sy build ing parallel compute rs an d devel oping algo rithms

and soft ware to solve problems on them. One Il.rea t hat has received its rair

share of interest is the de velopment of Ilnn/ll r1f//!l nl 'il/lIl1.~ for ccmp ut atioual

geomet r y.

T he Voronoi diagram is a m athematical concepl attributed to math ­

e matician Voronoi [I). Voronoi di agram s have been well studied in COIll ­

putation al geom etry sin ce the w ork of Sh er nce (2J partly because or their

applicati ons in solving geometric problem s such as proximity problems and

th e Euc lidean Minimum spanning tree pr o blem, as well as th eir app lications

in such diverse areas as biology, visual per ception , physics , and archeology

[3J.

T here exis t many methods to const ruct Vor inoi diagram on a single

c':....puter . Two of them are proposed by Shamos and Brown. III 1975 ,

Shamos applied two-dimen sional Voronoi diagrams to ob tain elegant solu­

tions in comput ational geometry , such as finding the nearest neighb or and

constr u ct ion of minimum epenr ring trees , Shemo e described all. 0 (11 logu)

t ime sequential algorithm to con str uct the plana r Voronoi diagram for n set

of planar points. The strategy he used in the seria l algori t hm is divide-end -



co nquer. In 1979, Brown demonstr ated a n interesting linkage betwe en the

Voronaj di agram and the convexh ull. He pr esented an O(n Jogll) algo rithm

for oonst ruc!ing t he Voronoi diagram , by tr ansfor ming the problem of con­

struc ting a plana r Voronoi diagra m for an a-points set to t he cons truction

of a convex hull of 1/ point s in 3-d i men!ion al 8pace viaa.geo metric tran!fo··.....

mal ion kn own as inversio n .

In th is thes is, the hypercub e connected com puter net work is chosen

as the parallel computa t io n mode l. Based on Brown's ap proach [41 which

t ransfoem s the problem of constr uct ionof a plana r a Voronoi diagra m for a n

u-p oint sot to construct io n of a co nvex hull of II p oints in t hree dim e nsional

s pace, a parallel algorith m to const ruct Voronci diagrams will be de veloped .

In this chapte r, a fter we introduce parallel computation m odels, we will re­

view par allel algo rithms t o const r uct Voron oi diagra ms. Finally, t he outline

of the th esis will be given.

1.1 P arallel Computation Models

In order to review t he paralle l algorit h ms to co nstruct Voronoi d iagram ,

we first r eview some exis t ing models of pa rallel computati on in this section.



1.1.1 Parallel Random Acces s Machines

In parallel r andom a ccess m a chine ( PRA M), a common memory is used

as a bulletin b oard and all da ta exchanges are executed through it. Any

pair of processo rs can co mmunicate throu gh this ShH ~d m emory in constant

ti me. As shown in Fig. 1.1, an interconnection unit ( lU) all ows each p rocessor

to establi ~h a p ath to eac h mem ory location for t he pur pose of rending O f

writin g ,

The processors operat e synchronously and each step or a co mpu ta tio n

consists of th ree phllSes :

1. The 1"Cnd phase, in which the processors read data from memory;

2. The com p ute phas e, in which arithmetic a nd logir; o peeafiorrs are per ­

fo rmed;

3. The write phase, in which t he processors w rite dat a to mem ory.

Depending on whether two or mote pr ocessor s ate allowed to rea d Irom

and/or write t o the same memory 10cII.tion simultaneous ly, three submod­

els of t he PRA M are id ent ified ;

1. The exclus ive-rea d exclus ive-write (ERE W) PRAM , where bo th reud

an d write accesses by more than o ne pro cessor to the sa me memo ry

lo cation are not all owed.



Processo rs

Interconnection

Unit

(IU)

Shared memory
Locat ions

Figure 1.1: Parallel Random Access Machine



2. T he concurrent-read exclusive-write (CREW) PRAM, where simultn­

neo us readin g from th e same memor y locat ion is allowed, but not si­

mul ta neous writing.

3. The concurr ent-read concurrent-write (CRO W) PRAM , whe re both

form s of sim ultaneous access are allowed.

1.1. 2 Proces sor N etworks

In a processor network , an int erconn ected set of processors coope rate to

solve a p roblem by performing local compu tations a nd exchang ing messages .

Several of the most widely used network s a re out lined below,

1. M esh or Two-Dim ensiona l Ar r a y

A two-dim ensional network is obtained by arranging the II peoces-

ao rs into an TIl X Tn a.rray, where T1I =..;n, The processor in row

i an d column k is denoted by (j, k), whe re 0 :5 j :5 1/1 - I and

o :5" k :5" m - 1. A two-way com m unicat ion line links (j , k) to its

nei ghbors (j +1,k),U - I ,k),(j,~: + 1), and U,k - 1). Processors on

the bounda ry rows and columns have fewer than four neighbors and

hen ce fewer connectio ns. Such a n et work is also known as t he ,111, .../t

or the mesh-connected commuer (MeC) mode l. Fig. 1.2 shows a mesh

with n = 16 processors.



no.
Number

o

Column Nu mber

Figure 1.2: Mesh with n = 16 pr oeesson



2. Cube-Connected Cycles

To ob t ai n a cube-connected cycles (CeO) network, we begin with a d.

dimensional hy percube, then rep lace each of its 2" corners with a cycle

of d processo rs . Each processor in a cycle is connected to a processor in

a neighboring cycle in thc eeme dimension . See Fig. 1.3for an cxample

of a cec network with d :;;; 3 and II = 2'1.// = 24 processors. In the

figure, e ach processor has two indices i,i , where i is the processor order

in cycle i.

3. Stars and Pancakes

Star a nd pancake are two interconnect io n networks with the proper ty

that fo r a given integer 11. each processor correspo nds to a distinct per­

mutation of '1 symbols, say {I , 2, ..., l}}. I n other words, both networks

connect II = '1! processors, and each processor is labeled with t he per­

mutation to which it correspo nds. Thus, for '1 = 4, a. pr ocessor may

have the label 2134. In the .~ tar nel l/Jo rk. denot ed by S" , a processor

v is connected to a processor u if and only if the label of It can be

obta ined from that of v by exchanging t he first symbol with the iU'

symbo l, where 2 $ i $ 1/. Thus for I} = 4 . if v = 2134 and 11 = 3121,

11 and v are co nnected by a two-way li nk in S,,, since 312~ and 21M

can be obtained from one another by exchang ing the first and thi rd

symbols . Fig . 1.4 shows Sf.
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Figure 1.3: Cube-connected cycles networ k with d = 3 and n = 24
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Figure 1.4: A 4·st8.r

11

2143

243(

3421

1423

4 123



1231 4321

32]4

23]4

4132

1432

2341

3241

1423

4123

3412

Figure 1.5: A 4-p!l.lIcake

2143

III t he IItIll" 'lh IIt/w or/':. denoted by 1-'", a processor v is connected

to a.processor 1/ if and only if the label of 11 can be ob tained from that

of t ' by flippi ng the nrst i symbols, where 2 $ i S 'I. Th us for 'I = 4,

if t' =2134 and u = 4312, n and v are connected by a two-way link in

l It. since 4312 can be obtained from 2134 by flipping the four symbols,

and vice versa . Fig . 1.5 shows Pl'
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1.2 Li t er ature R eview of P arallel Algorithms
for Co nstructing Vo ronoi Di agr-a m

In 1980, Chow in her Ph .D the~ i8 1 5 1 proposed t hree parall el algorit hms

(or const ruct ing Voronoi di agram s. Her algorithms were based all Drown's

meth od \41. By using the inversion tec hnique , she transformed the constr uc­

tion of the 2 - Ii Voranoi diagram to the const ruction of the 3 - ,J convex

hull . The computation model e she used were CREW PRAM and cee per -

allcl computer network s. On t he CREW PRAM model, her algorithm runll

in O(log3 n) time wit h 0(,,) processors. On th e cce model, one of her algo­

rithms runs in O(log"' 71 ) time and uses 0 (11) processors, and t he other runs

in 0( k10g3
,, ) time and uses O(n1+1 /k) pro cessors, where, 1 ::; k $ log II.

In 1986, Mi Lu 161 presented a parallel algorith m to constr uct ti le

Voronoi diagram of a set of planar po ints. The algorithm is based on Brown's

approach {4J and has O(.jii'log ll) tim e eomp lexlty on O(.jIi x v'ii)MCC with

constant storage per processors .

In 1988, Preilowski and Mumbeck {VI suggested a time-optimal pamllc l

algorit hm to comp ute Voronoi diagrams . T he algorit hm run s in O(log ,')

tim e using 0 (11-3 ) proce ssors on a CREW PRAM . T his result is time-optima l

becau se th e sorting problem can be reduce d to the Voronoi diag ram problem.

The authors showed bow their algorithm can compute all edges of the Vcronoi

13



diagra m in 0(1) time wit h 0( 11 4
) processors.

In 1988, Leveepeul oe, Kat ll.jainen and Lingaa [8} gave a. par allel algo­

rit hm for computing t he Voronoi diagram of a planar point set within 8. square

window W. The algorith m uses multilevel bucketing and runs in O( log II)

average time on CReW PR AM with O(I,/ logII) processors when t he points

are drawn independently from a uniform distribution.

In 1989, Evans and Stojmenvoic [9J presented an 0(10g3
,, ) algorithm

for constr ucting the Voronoi diagram of a set of n points on CREW PRAM.

On t he CRe W PRAM model th e algorit hm runs in 0 (log2 n) time. Th e

algorithm uses Shamos's divide-and-conqu er meth od [21.

In 1990, Cha ng.Sung J eong [10/ gave a parallel time optimal algorithm

which run s in O(y'ii ) on an ..fiix ..fiimesh. Th e algorithm is based on

the divide-and-conquer ap proach used by Shamos (21. The set of points is

sorted by or-coordinate a nd divided in half into two sets L an d R by a vert ical

separating line 1 such t ha t points in I~ a re to t he left of I and points in R

arc to t he right of I. Recursively, the Voronoi diagra.m Vo /·(I..) and Vor(R )

arc compute d for th e sets I.. and R, respectively. The two diagrams are

then merged , resulting in V01'( I..U Il ). II 01'( I..) is t he Voronoi diagram of I..,

1"111'(/1) is the Voronoi diagram of Rand Vor(LU R) is the Voronoi diagram

ofl..u /I .

14



In 1992, S.G Akl [11\ presented pa rallel algorith ms that compute the

Voronoi Diagram of I' points on the sta r and pancake network compute rs.

For an u-sta r or n-panca ke with II = ,,1 processors, given /I planar points

sto red in th e processors such th at each processor hl)lds one point. and lias a

memory of constant size, th e Voronoi diagram of these point s can be Iound

in O( n~ log2 ,, ) time.

In th is Chapte r, we review pa rallel computat ion models and parallel

algorithms of const ructing Vcronoi di agrams. T he most popular processor

inte rconnectio n topology today is und oubtedly the hypercub e. The hyper-

cube is one of t he most versatile and efficient networks thus fnr discovered

for par allel computation 112J because :

• In a hypercub e, using (! connecti ons per processor, 2" processor may

be int erconnected such that t he maximum dist an ce between any two

processors is d. While linear a rray, tree, Mesh and Mesh of tree use

a smaller numb er of connec tions per processor, t he maximum distance

between processors is lar ger.

• Most other popu lar net works are easily mapped into a hyp ercube. In

part icular, t he a -node hypercube can simulate any O(II)-node a rray,

tr ee, or mesh oftrees with only a small constant facto r slowdown \121.

• Hypercube has the advantage of being a well studied networ k. Efficient

algorithms are known for rout ing messages betw een processors in II.

15



hypercube. A large corpus of software and programming techniques

exist for hypercubes [13].

• A hypercube is completely symmet ric. Every processor's interconnec­

tion pattern is like that of every other processor. Further more, a hyper­

cube is completely decomposable into sub-hypercubes [i.e., hypercubes

of smaller dimension). This property makes it relatively easy to imple­

ment recur sive divide-and-conquer algorithms on the hypercube (14].

In a hypercube connected computer networks, local comput ations as well

as message exchanges are taken into consideration when analyzing the time

taken by the processor networks to solve a problem. When designing an

algorithm for a processor network, the routi ng of messages from one pro-

cesser to another is the responsibility of the algorithm designer . In Chap­

ter 2, we will introduce the parallel computati on model used in the thesis.

Based on Na.ssimi and Sahni's paper [15), several fundamental operat ions

on hypercube connect computer networks are described. The corresponding

programs are also given. All thos e operation s will be used in chapte r 3. In

Chapte r 3, Based on Brown's method, we will develop a parallel algorit hm

to construct Voronoi diagrams. Our algorithm runs in 0(log3 ») time on an

O(II).processor hypercube connected computer network. Our algorithm is

bued on Brown's meth od which tr ansforms the problem of const ruct ion of a

planar a Voronoi diagram for an n-pcint set to construction of a convex hull

of II points in three dimensional space. Comparing with the para llel elgc-

16



rithms which are based on the divide-end -conquer approach used by Shames,

our algorithm can be used to solve two computational geomet ry problems:

const r ucting 2-dimensional Voronoi diagram and 3- dimensional convex

hull. Compari ng with Chow's metho ds(5) which runs on (\.0 (11 ) processors

CCC (Cube-Con nected Cycles) model has 0( log·11I) time complexity, our

algorit hm ha s less ti me complexity. Comparing with Chang-Su ng Jeong's

algori thm[l O] which run s in O( vn)on a n vn x .fii mesh, our pa rallel CO Il1-

put at ion model is more genera l. Most o ther popul ar networ ks ca n be easily

mapped onto a hypercube{12].
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Chapter 2

Hypercube Connected
Computer Network and Its
Fundamental Operations

In this chapte r, the SIMD hypercube connected computer network will

be defined. Some fundamental operations on it will be described a nd ccr re-

spo nding programs . ilI Ill"> be given .

2.1 SIMD H ypercub e Co nnected Computer
Network

According to Michael J . FInn '. (161taxonomy of computer architecture,

parallel comput ers are divided into two cetegoriea, single instruction mul­

tipl,. data streams (SIMD) and multiple instruct ion multiple data streams
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(MIMD). A block diagram Ior II. SIMD computer is given ill Figure 2.1.

As Cl'IlI be seen, an SIMD computer consists ofu procesaing elemenh(PE's}.

The PE 's are indexed 0 through" - 1 and may be referenced as 1> /o:(i). Eaeh

PE has i'.s local memory. The PE's are synchronized and operate under

the:control program. PE's may be enabled or disabled so that the common

instr uction for any given time-unit is executed only on enabled PE 's. T his

enabling and disabling of PE's can be done without the use of separate con-

t rol lines for each P E as long as each PE knows its own index 1171. T he

PE's are connected together via an interconnection network. Different in-

terccnnection networks lead to different SIMD architectures. In this thesis,

hypercube connect SIMD computers are considered.

Assume th at n = 2" and let ;J _ I , •• io be the binary representation of

i for i E [0, 11 - 1]. Let i (~l be the number whose binary representat ion is

i"_1. . . iH 1r;;ib_1. . . io, where;;; is the complement of ib and 0 :5" < ,I. T hat

is, i (~J is obtained by complementing the b'th bit of i's binary representat ion.

In the hypercube model processor i is connected to processors ; lbJ,0 :5" " < ,I.

Fig. 2.2 shows an example of If = 16 processor hypercube.

T he hypercube is an excellent (and popular) choice for the architect ure

of a multipurpose parallel machine. In this thesis, we choose the SIMD

hypercube connected computer networks as our parallel computat ion model.
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2 .2 Fundament al Op era t ions on Hypercube
Co nne cted Computer Network

In this section , based on Nassimi and Sahni'. paper ll S), several Iunda.

mente! operations on hypercube connected compute r network s arc descri p­

t ively discussed. T he derivations and th e correspond ing programs arc also

given after the description of each opera tion. All those operations will be

used in chapte r 3. Th erefore, this section can be considered as the prepa ra­

tio n (or ehapter 3. Only operations which are used will he discussed. Based

on t his, some very buic oper ations, such as dat a accu mula tion and eonseeu -

l ive sum on hypercu be connected computer net work . will not be mention ed

in this section . For more details, [18] would be a good reference.

Before the fund &mental operat ions on hyp ercu be connected comput er

networks are introduced , some programming notation used i. givena. Icllcwsr

I. The notation ;1.' i. to represent the number that differ. from i in enctly

bit fl. The square bracket. (1)) are used to index an array and the

parentheses ('( )') are used to index PEs. Thus A[ll refers to the i'th

element of array A and A(i) refers to the A register of PE i, A(j](i )

refers to the j'th element of array A in FE i, The local memory in each

PE holds data only [f.c. ItO executa ble instructions). PEs need to be
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able to perform only t he basic arit hmetic operatio ns.

2. There are a separate program memory and II; cont rol unit . The CO il ­

t rol unit performs instruction sequencing, fetching , and decoding. III

addit ion, inst ructions and masks are broadcasted by the control unit

to the PEs Cor execution. An instruc tion III( I...~· is II boolean function

used to select certain PEs to execut e an instruction. For examp le, in

th e in struction

A(i): = A(i) + 1,(i o = 1)

(io = 1) is a mask that selects only those PEs whose index has Illt 0

equal to 1.

3. Interp rocessor assignments are deno ted using the symbol " _" , while

intre processcr assignments are dcaote d using t he symbol" :=". T hus

the assignment statement:

on a hypercub e is executed only by the processors with bit 2 equal to O.

These processors tran smit t heir Ii register data to the correspond ing

processors with bit 2 equal to 1.

4. A d-dimension al hypercube can be partitioned into windows of si?.c

2k pr ocessors each. Assume tha t t his is done in such a way tha t the

processor indices in each window differ only in t heir least significa nt k
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bits. As a result , the processors on each window form a subhypercube

of d imension k.

2. 2.1 M aximum

Assume tha t a dimension d hypercube is pa rtitioned into subhypercubes

(or windows) of dimension k, where P = 2d an d W = 2k
• If f == iW + q

(0 :5(/ ::; W) is a processor index , then processor f is t he q'th processor in

window i, This processor is to compute the maximum element of all elements ,

where, O::; i < P/W , O$ q < W.

Th e maximum relative to the whole size ~v window are obtai ned as

below:

1. If a processor is in the left 2 k- 1 snbwindow, then its maximum is un-

changed.

2. The maxi mum of a processor in the right subwindow is its maximum

when considered as a memb er of is. 2k - 1 window compared to th e max­

imum of t he A values in th e left subwindo w.

Table 2.1 gives a n example-maximum computation . The number of

processors and t he window size IV = 2k are both 8. Line 0 gives the init ial

It values. The maximum in the current windows are stored in the S registers

and th e maximu m of t he JI values of the processors in th e current windows
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are stored in th e T registers. We begin with windows oCsize 1. The initial

S and T values are given in lines 1 and 2, respectively. Next, the S and T

values for windows of size :2are obt ained. The se are given in lines 3 and .1.

Line 5 and 6 give t he Sand T values when the window size is >1and lines 9

and 10 give th ese values for th e case when t he window size i~ 8. The program

in table 2.2 is the resulting procedure. Its time complexity is O{k}.

2 .2 .2 Ranking

Associated with processor, i , in each size 2k window of n hype rcube is

a flag sel~r;led(i} which is tru e iff th is is a selected processor . The objective

of ranking is to assign to each selected processor a I'illlk such that nwk( i) is

t he number of selected processors of the window with index less t han i. Line

o of Table 2.3 shows th e selected prcceesora in a window of size eight willI

an *. The ran ks to be computed are ehcwn in line 1.

The rank s of t he selected processors in a window of size 2k cnn he

compu ted easily if we know t he following informat ion Cor t he processors in

each of the size 2k- 1 subwindcws t hat comprise t he size 2k window:

1. Rank of each selected processor in t he 2k - L subwindows

2. Total number of selected processors in each 2.1:- 1 subwin dow

If a processor is in th e left 2.1:- 1 subwindow then its rank in the 2l
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PE
I 2 3 4 5 6 7line 0

0 2 4 3 1 5 2 8 I A

2 4 3 5 2 8 I S

2 4 3 5 2 8 1 T

2 I 3 3 5 5 8 8 S

4 4 4 3 3 5 5 8 8 T

5 2 4 4 4 5 5 8 8 S

8 4 4 4 4 8 8 8 8 T

7 2 4 4 4 5 5 8 8 S

8 8 8 8 8 8 8 8 8 T

Table 2.1: Example to compute maximum in an SIMD hypercube
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p roc edu re S/MIJMI/J'illlll/ll( ;\ ,~· , SO );
{Compute th e Maximum of rI in windows of size 2k }

be gin
{Initia lize for size 1 win dows}
S(i ) := A(i); 'I'(i) := A(il;
{compute {or size 2 ~+ I windows }
for b := 0 to~' - 1 do
begin

l3( i (~)) __ 'r(i );

S(i ):= H(i), (S( i) < l1(i ) a nd i,. = 1);
,.(;) , ~ HUl, ('I'U) < H(i)) ;

en d ;
e n d; {of S / !II/J AlII.rimum }

Table 2.2 : Program for Sl MD Maximum

window is t he sam e as its rank in subwindow. If it is in the righ t subwindow,

its rank is its rank in the subwindow plus th e number of selecte d processors

in the left subwindow. Lin e 2 of Table 2.3 shows th e rank of each selected

processor relat ive to subwindows of size 4. Line 3 shows the tot al number or

selected processors in each subwindow.

Let H(i) and SU), respectively, denote the rank of processor i (if it is

a. selected processor) and the numb er of selected pro cessors in the current

window t hat contains processor i, The strategy to count rank s in windows or

size 2k is to begin with U.and SO for windows of size one and th en repeat edly

double the window size until reaching a. window size of 2k• For windows or

size one, it is given:

27



,,!,E 0 I 2 3 4 5 6 7
line

0 1 2 00 3 4 H

2 00 0 1 0 00 1 2 R

2 2 2 2 3 3 3 3 S

0 0 0 0 0 0 0 0 R

0 I 1 0 1 0 I 1 S

0 0 0 0 0 0 0 1 R

1 I 1 1 I 2 2 S

0 0 1 1 0 0 1 2 R

2 2 2 2 3 3 3 3 S

10 0 0 1 2 , 3 4 R

1] 5 s 5 5 5 5 5 5 S

Table 2.3: Example to compute ranks in an SIMD hypercube
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lI(i)

S(i )

_ 0

101 if i is selected
1 otherw ise

Lines 4 and 5 of Table 2.3 give the initial Ii and S values. Lines 6

and 1 give the values for wind ows of size 2. Lines 8 and 9 giv e these for

windows of size 4, and lines 10 and 11 give them for a widow size of 8. The

ranks for the processors t hat arc not selected may now be set to 00 to gel t he

configuration of line 1. The p ro cedure to compute ranks is given in Tahle 2.'1.

Thi s procedure is d ue to Nass imi and Sahni [lsI and its complexit y is readi ly

see n to be 0 (.':).

2.2 .3 Co nce ntration

In a da ta concentra tion operation, it begins with one record , r:,in each

of the processors selected for this operation. The selected processors have

been ranked and the rank information is in a field Ii of t he recor d. ASfoumc

th e window size is 2k • The objective i$ to move th e rank ed reco rds in ench

window to the processor whose positi on in the window equa ls the record

rank . Line 0 of Tab le 2.5 gives an in it ial configuration for an SIMD eil;ht

processor window. The records are shown as pairs with the second e ntry

in each pair being th e rank. It is assumed th at the processors tl lal are not
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pro c e du re IlwJ.{k)j
{Com pute the rank of selected p rocessors in windows o( size 2k }

{SIMD hypercub e}
begin

{Initialize for .i 7.e 1 windows)
lI(il ,=0,
if lIrlrclcd(i)

t hen S(i) := 1
else 5 (i ) := 0;

{Comput e (or size zk l wind ows)
fo r " := 0 to ~ - 1 do
b egin

1'(i(·I) -S(i);
lI (i) ,= lI(i) +7'(i) , (i. =1);
S(i) ,=5(i ) + 7'(i);

end :
Il(i) := 00, (no t ...tl rrlcd(i)) ;

cud ; {of ml,k}

Table 2.4 : Progra.m for SIMD rankin g procedu re
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~
line

0 (-,00) (B,O) (-,00) (D, l) (E ,') (-,00) (G, 3) ( 11 ,1)

(B, O) (D, l ) (E, 2) (G,3) (H, 4) (-,00) (-, 00) ( - , ~I

(B ,O) (-, «) (-,00) (D, I) (E,2) (-,00 ) (H,4 ) (G,3)

3 (B, O) (D,l) (-,«) (-,=) (H,4 ) (-, 00) (E, 2) (G ,3)

Table 2.5: Example to concentrate in SIMD hype rcube

selected for the concentration operation have a tank of 00 . The result of the

concentration is shown in line 1. Let D, D, E, 11 be repre sented individ al

records.

Data concentra tion can be do ne in 0( 1.: ) time by obtain ing t he agree­

ment bet ween the bits of the destination of II. record and its present locution

in t he order 0,1,2, " ', k - 1 [151 . For exa mple, let us seck agreemen t on

bit o. Examining the initial configuration (line 0), it can be seen that the

destinat ion and present location of records B, G and H disagree o n bit o.

To obtain agreement , these records with the records in neighbor processors

along hit 0 are exchanged. This gives the configuration of line 2. Exa mining

the bit 1 of destination and present location in line 2, it can also be seen

t hat records D, E and H have a disagreement. Exchanging these records
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proced ure r.rHlet:'drale CO,k);
{Concent ra.te records G' in -..leet ed processors. 2· it the wind OW' size )
{His t he renk fid d ofa ree rd]
begin

fo r b ::::: 0 to k - l d o
beg in

F{,1i ') _ C:(i) ;
G(i) ~ ' "(i), ((G(i).R # 00 and (G(i).R), I i.»

or (I-'(i ).11#-00 and (F(i).Hh #- i&)) );
e n d ;

cud: {of NJIIt1': /I/"" /r.}

Table 2.6: Program for p rocedur e to concentrate records

with their neighbors along bit 1 yields line 3. Final ly, let us examine bit 2 of

th e dcsfination a nd present Ieeat ion oCrecords in line 3 and deter mi ne that

records E and G need to be excha nged with their neighbors along bit 2. This

rel tllts in the desired final configu ration of line 1.

2.2.4 Dis tribut ion

Da ta distribution is the inve rse oCda ta concentration, It begi ns with

records in processors 0, •• ., r of iI. hypercub e window of size 2t . Each record

has a dest inatio n O(i ) associate d with it . The destinations in each window

U C l Uth that 0(0) < D( I) .. • < D{r ). The record that is initially in proces­

sor i of the window ia to be rout ed to t he O(i)' th processo r oC the window .

Note that r may vary from window to window. Line 0 of Table 2.7 gives
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PE
line

0 (A, ') ( B, 4) (C, 7) (-, <X» (-,00) (-,00) (-, 00) (-,<X»

I (-,0<) (-,0<) (-, 00) (A , ') (B, 4) (-,00) (-, 0<) (C, 7)

2 (A , 3) (-, 0<) (-,00) (-,<X» (-, 0<) (D,< ) (C,7) (-,<X»

3 (-,00) (-, 00) (A, ') (-,<X» (-, 00) (B ,<) (C,7) (-, <X»

Table 2.7: Example to distr ibute in an SIMD hypercube

a n initial configuration for data dis t rib ution in an eig ht I)TOr e SSOT wind ow of

an SIMD hypercube. Each. record is represented as a tuple with the second

entry being the destination . Line 1 gives the result of the dist ribution .

Since data d istribut ion is the inverse o f data concent ration, it can be

carried out by running th e conce nt ra tion pr ocedure in reverse [151. Tile

resul t is t he program in Table 2.8. Lines 2, 3, and 1 of Table 2.7 give

th e configurat ions (or the example following the ite rations b ;;;; 2, 1, a nd 0,

respectivel y, shown in Table 2.8.

2 .2.5 Generalization

The initial configuration for a generalization is similar to that (or a

d a ta. dist ri bution . It begins with records, (J , in p rocessors 0, . ., r of II.
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procedure djsl ri~utc (G, k );
{Dist ribute records G. 2k is the window size}
begin

for " ;= k -l downto 0 do
begin

1" (i ( ~ ) ) - ( ,'(i l;
G(;) _ /,'(;) , ((G(;).IJ" co and (G(;) .D)o,, ;.))

odl'( ; ).IJ " cc a nd (l'U).IJ). ,H.)));
end;

end ; {of di."" 'iblllr}

Table 2.8: Program for procedure to distribu te records

hyper cube window of size 2k. Each record, GU), ha s a high destination

(:(i ). 11associated with it, 0 :::; j S;r, Th e high destinations in each wind ow

are such that G(O). l1 < G(I ).1I < . · . 0(1·). 11. Let G(- I ).1I ::: O. The

record which is initially in processor j of th e window is to be routed to

processors G(i - 1)./ / , O(i - 1).11+1, . ", G( i)./f of the window, 0 S; i $ r.

Not e that ,. may vary Crom window to window. Line 0 aCTable 2.9 gives an

initial configuration for data generaliza tion in an eight processor window of

an SIMD hypercube. Each record is rep resented as a. tuple with the se cond

entry being th e high destinat ion. Line 1 gives th e result of the generalizat ion.

Data generalization is done by repeatedly reducing the window size

by half [15]. When th e window size is halved, it should be ensured that all

record s needed in the reduced window are present in t hat window. Beginnin g

with a window .~ize of eight and line 0 of Table 2.9, each processor sends its
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~E
line

(A,') (B,') (C, 7) (-, 00) (-,00 ) (-,00 ) (-,00) (-, oo) G

(A,') (A,3) (A, 3) (A,3) (B, .) (C,7) (C,7) (C,7 ) G

(-,00) (-, 00) (-,00 ) (-,00 ) (A,3 ) (D,.) (C,7) (-,00) F

(-,00 ) (-, 00) (-,00) (-,00) (-,00) (B,') (C, 7) (-, 00) F

(A, ') (B,') (C, 7) (-,00 ) (-, 00) (B, ' ) (C, 7) (-, 00) G

(C, 7) (-, 00) (A, 3) (B,') (C,7 ) (-, 00) (-, 00.) (Il , ' ) F

(C,7) (-, 00) (A, 3) (B,') (C,7) (-, 00) (-, 00) 1-, 00) F

(A,3) (B, ' ) (A,3) (B, ' ) (C, 7) (Il,') (C,7) (-, 00) G

(B, ') (A, 3) (B, . ) (A, 3) (B, . ) (C, 7) (-, 00) IC, 7) F

Table 2.9: Example to generali ze in an SIMOhypercube
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record to itt neighbor pro cessor along bit 2 . The neighbor processor receives

the record ill F, Line 21howl the F nlues following the tran sler. Next, some

""I and G 's are eliminated . This is done by compari ng the high destinalklll o(

a record with the lowest processor indexin th e size four window that contains

the recor d. If the comparilOn succeeds, th e n, tbe record is not needed in the

size four window, Applying this eliminatio n criterio n to lin e 0 results in the

elimina t ion of no G, However, when the cri t erion ill applied to the F 's af line

2, /0'(4) i s eliminat ed and the configuratio n of line 3 will b e given. At this

point each window of size four has all the records needed in that window.

The reco rds are, however, in both F and G. To eoasclidet e the required

records in to the C 'I alone, the following co nsolidation crite rion is used:

replace a (i) by F(i) in cas e F(i).11 < G(i), l1

i.t .,of the tworecord: in a PE, the onewit h smaller highdet t ination survives.

Applyin g the consolidat ion criterion to lin es 0 and 3 results in line 4,

Next, record. are t ransferred along bit 1. The F values following this

t ratllfe r ere given in line 5. Following the applica t ior. of t he elimination cri­

terion, the F vaJue of line 6 is obtain ed. The C val uel arc un changed. When

the cone clideti on criterion is applied, the G values are as in line 7. Line 8

shows th e F value. following a transler along bit 0, The elimination criterion

results i n line 1. Procedur e gClIcmli:e show n in Table 2.10 implements the

generaliza tion st rategy jUlt outlined,
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pr ocedure grll emfi: c (G,k );
{General ize record s G. 2 ~ is the window size }
b egin

for b := k - l down t o 0 do
begin

{Transfe r to neighboring window of siee 2~}

F (i1bl }_ C(i );

{Elimina tion criterion}
G(i) .1f := oo,(G(i).1f < i -ib- l..o) i
F (i).1f ;= oo,( F(i ).1I < i - ib_1..u) :

{Consolidation criterion}
C(il'~ F( i), (F( i).1f < C(i ).II );

e nd;
end; {of gcnemli:c}

Table 2.10: Program for procedure to gene ralize records
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For II. nat u ral numbe r I, jn..,~ is t he number obtained {rom i by flipping

all th e bits in the bin a ry represe ntat io n of i fro m the n t h to the mth pl a ce.

2.2 .6 Merging and Unmerging

Given t wo sorted sequences each sto red in a hyperc ube of size n/2,t heir

merging can be done in O(log n] time . Merging two so rted sequences ca n be

done by bitonic sort.

A bi/tHlic sequo u:e is a. noninc rcasing seq uence of number s foUowed by

a ncn decreaaing sequence, E it her (or both ) o f these ma.y be empty. T he

sequence ha s the for m XI ;::: X 2?: " . ;::: Xk :::; Xk+ l ::;; ' ' ' :5 X n , {or som e k,

1 S ~, :5u. T he sequences 10, 9,9, 4, 5,7, 9; 2 , 3, 4, 5 ,8; 7, 6, 4, 3, 1; and

11, 2, 5, 6, 8 , 9 are ex amples ofbit onic sequences.

A biton lc sort is a process which sorts a bitonic sequence into ei ther

noni ncreasing or nondecreasin g order . Suppose we are given t wo sorte d se-

queneea " 1 :5 112 S . .. :5 VI and 10 , :S It'.! .:5 . . ::5 w"" Firs t reverse one

of sequences. This can be done in O( logn ] t ime by doing th e reversin,9

procedure.

Suppose we h av e a revi sing seque nce {VI, lJ-l, " , VI), we get sequence

( 1". l'l_h ' " • 1'2. 1' l }' By concatenatin g two sequences t o obtai n the hitonic

seque nce 1'1 ?: 111_1 ;::: , .. ?:1'1 ? Ull :::; Wl:5 • • • :5 tum = Xl ?: X2?: • • ?: X k
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procedure SfMDRcvisil1!A.tI ,k )j
{The sequence is stored in window of size 2k I {Re vising a.1Ithe elements in
window s or size 2"j
begin

for b:= 0 to L· - 2 do
A(jli) ) ..... A(j)

end; {af SIMDRcvisi ll g}

'Iable 2.11: Program for SIMD R eversing

~ Xk+1 5 . . . =:; :r~ wher e 11=I + III. The resultin g bilon ic sequence is then

sorted using a. hitonic sort to obtain th e desired merged sequence. So, Ioe

examp le , if it i s desired to merg e the acq ucnccs (2 , 8,20, 24) l\ncl (1, 9, to ,

11, 12, 13, 30), the bit onic sequ ence (24 , 20, 8, 2, 1,9, 10, II , 12, 13, 30)

should be first created ,

Baj cher's Mo nic sort [191 is idea lly suitable for implementation on

a hypercube computer. Batcher's algo r ithm to sort the hitonic sequence

Xl, ' " , xn into ncndeere esing or der is give n in Table 2.12.

Example: C onsider the bitanic seque nce (24, 20, 8, 2, L 9, JO, 11, 12,

13, 30) . Supp ose we wish to s ort this int o nondecreasing order. The od d

sequen ce is (24 , 8, 1, 10, 12, 30) and the even sequen ce is (20, 2, 9, 11 ,

13). Sortin g these, th e sequence s (I, 8, 10, 12, 24 , 30) and (2, 9, 11, 13, 20 )

are ob t ained. Putting th e sort ed odd a n d even parts toge ther, the sequence

(I, 2, 8 ,9, 10, 11,12, 13,24 , 20,3 0) is given. Aft er p erfor ming the lltJ2J

compare jexchengee of step 3, th e sorted sequence (I, 2, 8, 9, 10, 11, 12, 13,
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Shp I: [Sort odd subsequence] If II > 2 t hen recursively sort the
odd bitcnic subsequence X I, X :h X5, • • • into nondecreesing
order

SI'-II fl: [Sort even subsequence] If n > ~ then recursively sort t he
even bitonic subsequence :f2, .1.'4 , .r c" .. . int o nondecrees­
ing order

Hhp tt: [Compare/ exchange] Compa re the pairs of elements .rj

and .£; +1 (or i odd and exchange t hem in case Xi > Xi+ l

Table 2.12: Bitonic sort into nondecreasing order

20, 24, 30) is obt ained .D

When 11 is a power of 2, the recursion in Table 2.12 can be unfolded to

obtai n the comparing/exc hanging algorithm of th e program in Table 2.13.

In each iterati on of t he while loop, each sequence element is paired with

exactly one other sequence element th at is a dist ance (f from it . The pairs

nee formed from left to tight. To obtain a nondecreasing sequence each com­

['aring/ exchanging causes the smaller element of the pair to move to the left

position. If a nonincreasing sequence is desired t he smaller element is moved

to t he right. Table 2.14 shows an eight element bitonic merge t hat results in

a nondecrcesing sequence and Table 2.15 gives an exa mple tha t result s in a

nonincreesing sequence. The examples assume the elements to be sorted arc

sto red in processors of a hypercube with one element per processor . As can be

seen, the elements t hat form each of the pairs for the comparing/ exchanging

opera tion are in processors t hat are hypercube neighbors. Hence each iter-
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procedure IJiloll;CSOr/(II);
{Sort the bitonic sequence ;' 1, · · . .I'Il}
{II is a power of2}
begin

d=JI/2j
while d » 0 do
beg in

compare/ exchange elements d apa rt
d =fl / 2;

end;
end ; {of lJi lull irSorl}

Table 2.13: Ite rati ve bit onic sort for II, It power of 2

arion of the while loop of the program in Table 2.13 lakes 0 (1) timc 011 a

hypercube . The tot al time to sort an " element bito nic sequence is therefore

O(log n}.

Given a sorte d sequence of clements so th at pa rt of the elements belong

to a set A (thu s t he remainin g belong to If) and each element knows the

corresponding rank in A or A, permut e t he sequence to return each A and

A. This can be done by running t he merging algorith m in reverse ord"'f

Therefore, Unmerging can be done in O(log II) time.

2.2 .7 Sor t ing

To sort n elements using bitonic sort , we begin with sorted sequences of

size one. Adjacent pairs of these form bitonic sequences that arc sorted (in

parallel) to obtain sorted sequences of size two. The sorting is done such
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PE

line 0 1 2 3 4 5 6 7 d

o 76 40 1 2 3 5 4

'-=LI:=~- _I )J

1 230 7 6452
~.I '---t:=-.J

1 032 4 5761
I---J 1---1 l---J

3 0 1 2 3 4 5 6 7

Table 2.14: Power of 2 bitonic sort [nondecreasing order)
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line 0 1 2 3

PE

5 6 7 d

o 7 6 4 a I 2 3 5 4

'---<=F.cC[::'-".'.,, ' .J .

7 6 3 5 1 2 3 0 2
~ '-c:::......... l

21 6~ U ~_. ~ 1

3 765 4 3 21 0

Table 2.15: Power of 2 bitoni e sort (ncninereesing orde r]
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that t he size two sequences are alte rnately non-ncreesing and nondecreasing

sequences [I,e, the lirst , third, fifth, ... , sequences are nonincreasing and the

remainder are nondecreasing). Consequently every pair of adjacent size two

sequences forms a bitonic sequence of size four which can be sorted using

bitonic sort. The size four sequences are also sorted alternately into nonin­

creasing and nondecreasing order . Continuing in this way, we can obta in II.

sorted sequence of size 11 after log " bitonic sort ing steps. Note th at if the

sorted sequence is to be in nondecreesing order, then the last bite nie sort

step should sort the first and only resulting sequence into thi s order. The

tota l ti me for the sort ing is 0(log2II).

Exa m ples Sort ing following sequence

c n m Lh e p d g jl k b e i o

into nondecreasing order and tha t a < b < .. . < 0 < p. Th e pairs (c n),

(m f), (h a), (p d) , (8 j), (I k), (b e) and (i 0) are bitonic sequences tha t are

sorted by using bitonic ~ort to obtain t he:sequence:

n c I m h a d a j g k Le b i e

Note th at the odd pairs were sorted into nonincreasing order while th e even

ones were sorted into nondecreasing order. Next let us consider the adj acent

sequences of length four . Th ese are (n c f m), (h a d p), (j g k I) and (e b i 0).

Since each is a bitonic sequence, it may be sorted using bitonie sort . The

result is:
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nmf c adhplkj gb ei o

Once again the odd sequences are sorted into nonlncrensing orde r while the

even ones are sorted into nond ecreasing order. T wo bit onic sequences of

length eight, (n m f cad h p) and (l k j g b e i 0), nrc given. Sortin g them

will give the sequence:

pnmhfd c a b eg ij kl o

Sorting it into nondecrcasln g order results in th e sequence:

a b cd ef g hijklmn op

o

2.2.8 Random Ac cess Read

In a random access read (RAR), some of t he processors of the hyper cube

wish to read data from other processors of the hypercube . Let A(i ) be the

PE from which proceescr i wishes to get data . Th e da ta to be obtained is

D(A(i)) . In case FE i does not wish to read dat a from any ot her PE , then

A(i) "" 00. Line 0 of Table 2.16 gives the A values for an exa mple RAR

in an eight proc essor hypercube . Note tha t in an RAR, several processors

ma y read (rom the same PE . An RAR can be done in 0 (log11l) tlme in lIn 1/

proces sor hyp ercube using th e algorithm of the program shown in Ta ble 2.17

[15J .
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Sl ep I: Each processor f/ crea tes a tr iple (..t{II), II,jlll.'{) where
flag is a Boolean entity th at. is init ially h ue.

Slep 2: {Sortl Sor t the trip les int o nondecrensin g order of ti le read
addr ess lI(fl) . Triples with the sa me read address arc in
nonde creasing order of the PE index fl . Furth ermore ,
during the sort, the l ing ent ry of a tr iple is set to false
in case there is a trip le to its right with t he sa me rend
add ress.

Step~ : [Rank] Processor with t riples whose first component of00

and whose third component (i .r . o JIIlY) is true are ranke d.

Stc114 : Eaeh processor b th at has a t riple ( A(I/),Il,t rue) with
A{a) f. 00 crea tes a t riple of the form (fi(l,) ,A(II), h)
where R{b) is th e rank comput ed in th e preceding step.

Step 5: {Concent ra te] The tripl es ju st created are concentra ted.

St ep 6: Each processor r: that has a concent rate d tr iple
(r( b), A(a ), b) creates a tuple ofthe form ((:, lI{ tt)}. Note
thlLt since c = U(IJ) thi s tup le is just the first two com­
ponents of th e triple.

Sl cp 7: [Dist ribute] Th e t uples are distr ibuted using the seeond
component as the desti nati on address.

Slep 8: Each processor A((I) t hat receives a tuple (I:,A(II)) ere­
ates t he tuple (c, D( A(n))) .

SICI! 9: [Concentrat e] Th e tuples create d in th e preceding step
are concent rat ed using the first component as ti le rank .
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Slcp /0: Each processor c that received a tuple [c, D(A(a») in the
last step aha has a trip le of the form (R(b),A(a),b) that
it received in Step 5 (notice that c = R(b)). Using this
triple and the tuple received.in Step 9 it creates the triple
(1., D(A(n))).

Step f I: [Generalize]The tuples (b, D(A(a))) are generalized using
the first component as the high destination.

Stcp l!l: Each processor that received a tuple (6, D(A(a») in
Step 11 also has a triple (A(a),« ,jlag) that it at ob­
tained as a result of the sort of Step 2. Using informa­
tion from the tuple and the triple at creates a new tuple
(a, D(A(a))). Processe-s that it did not receive a tuple
U5e the t riple they received in Step 2 and form the tup le
(n, - ).

Sfep Ifl: {Sort] T he newly created tuples of Step 12 are sorted by
their first component.

Table 2.17: Algorithm {or a random access read
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Consider the example of Table 2.16. In Step 1, each processor creates a

trip le with the first component being the index of the processor Irom which

it wants to read data; the second component is its own index; end the third

component is a flag th at is initially true(t ) for all triples. Then, in Step 2

the tr iples are sorted on the first component. Triples that have the same first

component are in increasing order oCtheir second component. Within each

sequence of triples that have the same first component only the last one hns

a t rue flag. The flag (or the remaining triples is false. T he first components

of the triples with a t rue flag give all the distinct processors from which data

is to be read.

Processors 0, 2, 3, and 5 are ranked in Step 3. Since the highest rank

is th ree, data is to read from only four di.dinct processors. In Step 4, the

ranked processors create t riples of the form (ll (b), ;1(11 ), 11). The t riples nrc

then concentrated. Pr ocessors 0 through 3 receive the concentrate d tri ples

and form tuples of the form (c ,A(a)). Because of the sort of Step 2, the

second components oCthese tuples are in ascending order. Hence, they can

be routed to th e processors given by the second component using a data

dist ribution as in Step 7. The destination processors of these tuples arc the

distinct processors whose da.ta is to be read. These destina\.ion processors

create , in Step 8, tuples of the form (e, IJ(A(n)}) where c is the index of the

processor that originated the tuple it received. These tuples arc concentrated

in Step 9 using the first component es the rank,

49



In Step 10, t he receiving prccessc ee {i.e., 0 through 3) use th e triples

received in Step 5 &J1d t he tuples received in Step 9 to create tuples of the

form (ii, IJ{A{II))). The tin t component is the indu of t he processor th a t

originated the tri ple received in Ste p 5. Since t he trip les received in St ep 5 are

the result of a concent ra tion, the fin t comp onent of t he newly formed tupl es

arc in ascending order. The tuples are th erefore ready for genera lization

using the first component ... the high ind ex. This it done in Step 11. After

this generalizatio n we have the right number of copies of each dat a. For

example, two processors (4 and 5) wanted to read from pro cessor 7 and

we now have two copies of D(7) . Compa ring th e triples of Step 2 and th e

tup les of Step 11, we see th at the second component of the triples tells us

where the data in the t uple! i. to be rout ed to. In Step 12 we create tuples

t hal a:lntain th e destinat ion processor an d t he data . Since the dest ina tion

addresses are not in u cending ord er th e tu ples cannot be routed to t heir

destinat ion processors u. ing a distribute. Ratb ee, Ihey mull be sorted by

delltinat ion.

2.2.9 Random Access Write

A rand om &CCC'IS write (RAW) is like a ran dom access read except thai

processors wish to write to other processors rat her than to read from them .

A rand om access write uees many of the basic steps used by a random access

read . It is, however, qu ite & bit simpler. Line 0 of Tabl e 2.18 gives the
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index A( i) of the processor to which processor ; wants to write its dat a V(i) .

A(i) = 00 when prcceescr ; i.5not to wri te to ano ther processor. Observe

th at it is j-cesible £Or I5everaJ processors to have the lame write addre" A.

Wh en t his hap pen. , it il s&id that the RAW haa eellisiens . It is pcssjble to

formulat e several st rategiea to hand le collision•. Three of these are:

1. Arbitrar y RAW of aU the processors th at att empt to write to the

same pr ocessor eXll.ctly one succeeds. Any of these writing proc essors

may succeed,

2. H ighes t / lowest RA\V of all the processors that att empt to write to

t he same processor the one with t he highest (lowest ) index succeeds.

3. C om bin ing RA 'V all t he processors succeed in gett ing their data to

th e ta rget processors.

Consider the e:xampleof line 0 of Ta ble 2.18. In an a rbit rary RAW any

one of 0 (0), 0( 2) and 0(7) will get to pr oeessc e 3. One of /J(I) and V(5)

will get to processor O. And 0( 3) and /) (4) will get to processors " and 6,

respectively. In a highe5t RAW D(7), /) (5), D(3), and 0 (4), respect ively,

get to processors 3, 0, 4, and 6, respectively. In a lowest RAW 0 (0), /J(J) ,

D(3) and D(4) get to proeesecrs 3,O,4,and 6, respectively. In a combining

RAW 0(0), D(2) , and D(7) all get to pro cessor 3, Both 0(1) and D(5) get

t o processor O. And 0 (3) and D(4) get to processors 4 a nd 6, respectively.
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The steps involved in an arhit rary' RAW are pven in Table 2.19 (15).

Let us go through the example in Table 2.18. Each processor first creatt'S

tri ples whose first component is th e index, A(a) , of the processor to which it

is to write. Its second component is the data , l1(fl), to be writt en and t he

th ird component is tr ue. The triples are then sorted on the first component.

During this SOT! th e f1. ag entry of a triple is changed to false in case there

is a t riple with th e same write address to its right . Only t he triples with

a t rue f! > ,~ are involved in the remainder of the Algorithm. Notice th nt for

each distinct writ e addren there will be exactly one triple with n t rue nag.

The processors th at have a triple with a tru e flag are ranked (Step 3) a nti

th ese processors create new triples whose first and second components arc

t he l ame as in th e old tr iples hut whose t hird component is t he rank. The

tri ples arc th en concentrated using this rank informa tion. Since the triploo

are in ascending order of th e write add reues (first component) they lila,. be

routed to t hese processors using a data distri bute operation . Note that for

Step 6 the t hird component ( i.e., ran k) of each tri ple may be dropped before

th e distribu te begins.

The complexity of a random access writ e is de termined by the sort J\cp

which takes 0(log2 u} time where 11 is the number of proeesecte.

A highest (lowest ) RAW can be done by mod ifying the program ill

Table 2.19 slightly. Step 1 creates 4-tuples instead of triples. The fourth
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Slip I: Each pr ocessor 1/ creates a triple (A(a), D(a),flag) where
f lfl.fJ is a Boolean entity t hat is init ially true .

,"'!f IJ t.!: (Sort ] Sort t he tr iples into nond eereasing order of t he
write add ress l1(a). Ties a re broken arbit rarily and dur­
ing the sort the flag entry of a triple is set to false in case
t here is a triple to its right with the same write addr ess.

Slfjl ..t: [Rank] Processors with triples whose first component is
not 0;:> and whose third component (Lc., J/'Ig)is tru e are
-anked .

."'lIp f : Each processor bt hl\t has a tri ple (A ((I), D(a), tru e) with
11 ((1) '" 00 creates a. triple of t he form (A((I), D(a), R(b))
where U(II) is t he rank computed in th e preceding step.

S/fl J ,r,; [Concent rate] the triple s jus t created are concentra ted.

,"'!r'JI 'i: [Distribute] th e concentrated trip les are distrib uted using
the first component a.s t he d. , tination addr ess.

Table 2,19: Algorithm Cor an arb itrary rando m access write
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component is the index of the originating processor . In th e sort st ep (Step 2)

ti es are br oken by the fourth compone nt in such a way that t he right mo~l

4-tuple in any sequence with the same write addr ess is th e -t-tuplc to be suc­

ceeded (i .e. , highest of lowest fourth component in the sequence) . Following

t his t he fourth compo nent may be dropped from each -t-tupl c. T he remAining

steps are unchanged .

The 6leps {or a combining RAW are also similar t o th ose in tile program

shown in Table 2.19. When the ranking of Step 3 is done, n version of

procedur e rank (Table 2.14) is used, which docs not conta in t he las t line

(R(i) := oo,(no t $r.lcclc.l(i ))). As a result p rocessor 0 {Table 2. [8) has a

rank of 0 and processors 2 and 3 have a rank of 1. Du ring t he concent ration

step (St ep 5) more th an one triple will t ry to get t o t he sa me processor.

P rocedur e concent rate (Tabl e 2.14) is modified to combine t ogether t riples

t hat have the same rank . Th ese modi fications do not change t he neymptotic

complexity of t he RAW unless t he combining opera tion increases tile lriple

sise [as in a concatenate). In cue rl data values are to rench the SIU liC

destina tion , the complexit y is O( logl " + rilog II).

2 .2.10 P recede

Given two sorted lists A = (111)'11... , II.. ) and IJ "" (I'I,lI~ , . .. , 1J,,), we

define the predecessor of (I i as the least element Ilj in IJ previous to It; in tile

sorted H3t of A and H, i.e. hj :5(I i ::; /Ij+l' If th ere is no such Ilj, we assume its
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predecessor is t he least element b", in Ii . The Precede ope rati on computes ,

(or each element (/i in A, its predecessor in H. The Precede operation can be

performed in th e following way: For each element in list B, we assign a flag.

Merging two sort ed lists A and 11, we can get a sorted list C. Perfor ming

rank operatlcn, for each element (Ii , we can get its predecessor in B. The

Precede operation can be done in O(log II) time.

2.2 .11 Summary

In t his subsection, we provide a summary. In the following, 1"01 and IV

are powers of 2. T hey represent the size (i.e., the numbe r of processors ) in

a eubhypercube. Unless otherwise stated , the size of th e full hyp ercube is

denoted by P.

1. Ma ximum

Task. Thi s works on each dimension k, k = log IV, subhypcrcu be of

an SIMD hypercube. The hypercube PE I = i ll' + '1, 0 :s: q < W is the

r/th PE in the j't h dimension k subhype rcube. Th is PE compute s, in

its 5' register, the maximum of the A register values of the O/th t hough

r/th PEs in its subhypercube, 0 :5q < 1-1',0 ::::: i < w, where "' is the

number of subhype rcubes of dimension k.

Com plex ity: O(q.

2. Ran king
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Tas k: Rank the selected processors in each size 2 ~ window oi the SIMI)

hypercub e.

Comp lexit y: O(!·).

3. Concentration

Task: Let G(i). H be the rank of each selected processor i in the window

of size 2k that it is cont ained in. For each selected PE , i , the record

G(i) is sent to th e G(i) . fl' th F E in t he size 2k window that contains

PE i.

Comp lexity: O(!') '

4. Dist ribut ion

Task: Thi s is the inverse of a concentration.

Compl exity: OU')'

5. G e ner a liz a t ion

Task.: Each record U(i) has a high dest ination ( ,'(i ).II. TIle higl.

desti nation s in each size 2k window are in ascending order . Assume that

G( -1 ).// =O. The record initia lly in processor i is route d to processors

G(i -1 ).11th rough G(i ).11of the window provided that f :{i) . /1 f Q("

If G(i). /1 = 00, then t he record is ignored . The procedu re as wri tt en

ass umes a P E ordering that corresp onds to t hat gener ally used for

SIMD hype rcube s.
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Com p lexity: O( ~,) .

6. Mer gi ng a nd Unm erging

Task : Given t wo sorted sequences A and I) , merging is D. p rocess th at

sorts th em into either nonincreasi ng or nondecreasing orde r . Unme rg-

ing is the inverse of merging.

Com p lexity: 0 (log II). n is t he total numbe r of clem ents in se­

quences A and IJ.

7. Sor tin g

Task: Given a n element per pr ocessor, after sorting, the elements are

kept in either nonincreas ing or nond ecreasing order.

Comp lexity: 0 (log1 1/). n is t he total number of eleme nts.

B. Random Access R ead

Tnsk: Each P E in no " processor hypercube reads t he t1 register da ta

of some other PE in t he hypercu be.

Com p lexi ty : 0( log2
,, )

9. Random Access Writ e

Thsk : Bach P E in an I I processor hypercube sends its t1 register dat a

to the A register of some other P E in t he hypercub e.

Complex ity: 0(log211 ).
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10. P recede

Ta sk: Given two sorted lis ts II :;:; ( <ll, ll l , • .• II ~) and H :;:; ( I' I, I,~ ... .. /,,,l.

we define the predecessor of (I i as the least dement I.) in IJ previous

to Ilj in t he sorted list of A and 13, i.f. "i ~ IIj ~ ")+1' The Preced e

operat ion computes, for eec h demen t (/ j in A, ih predecessor ill lt ,

C omplexity: O(log lI)
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Chapter 3

A Parallel Algorithm for
Constructing Voronoi
Diagrams on a Hypercube
Connected Computer Network

In th if ehe pte r, a parallel al gorithm for wndflldins: Voronoi di agram.

on .. byp ereabe connected computer will be introduced. Fin dy. Section 3.1

giml the Cormal definition and importan t features of Voronoi diagram which

are essential {or undcflh.nding the algorithm. Secondly, Sect ion 3.2 describes

two ma jor tool. used in t he algori th m - t he convex hull and the in version

t ransform. Finally, the par anel alg orith m (or cons tructing Voronoi d iagram s

on a hyp ercube connected comp u te r is di scussed in Section 3.3.
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3 .1 D efinition a nd F e atures of Voronoi Dia­
gram

_ A Vcr onoi diag ram (also called a Thiessen diagrnm j of n se t sor" points

is a well k nown stru. cture which ma kes explic it some proximity infoernntion

about S. MoreCo rmally , given two poin ts l'i E S and IIi E H, de fine lI(pi, /II)

as the half-plane containing I'; and bounded by the perp endicular bisector of

lIi and II). Let the intersect ion orn - I half-planes be V(i) = U jlj 1f("" I')l,

j = 1•..., II, the Voro noi po lygon of point lI i ' I'{i) is a convex polygon with

at most n - 1 sides such that any point in V(i ) is closer to I/i than t o nny

other point in S , T he set o f II Voronoi polygo ns define s the Voronoi d iagra m

of 5, \lor( S). Some Voro noi polygons may be unbound ed . Vertices of the

Vo ronoi po lygons are called Voronoi vertices and edges of t he polygons nrc

called Voronoi edges. Figure 3.1 is a n example of t he Voronoi Diegm m .

Some impo rt ant properties o f the planar Vorono i diagram arc given

b elow:

1. Voronoi verti ces are t he center of circles defined thro ug h three points

of S. These circles co ntain n o ot her poin t of S .

2. A Vcronoi po lygon V (i) is un bounded if and o nly if ],; is a point. on the

convex hull of S.

3. Th e straigh t-line dual of the Voronoi diagram is a tri a ngulati o n of ,r,'
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Figure 3.1: Voron oi diagram
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called the Dclflullay 7'1·iallgul fl f i o ll. Th is tria ngulation of .... has t he

prope rty that the minimum a ngle of its t riangles is maximum over nil

triangulations of S.

4. The Voronoi diagram ofa set S of II points has 0(11)vertices and 0(11)

edges by Euler 's rela tion, namely lJ - C+ J = 2, where I' , r, and! denote

the number of vertices, edges, and regions of a planar subdivision.

3 .2 C onvex Hull and Inversion Transform

3.2.1 Convex HuH

The convex hull o( a set of n points is defined as t he smallest convex

set which contains all cf the points. In the plane, th is is a convex polygon of

at most n sides. In the t hree dimensional space, it is a convex polyhedro n.

A convex polyhedron is specified completely oy its edges and faces. h is n

cr ucia l obse rvation that t he set of t he edges of a convex polyhedron form s

a planar g raph: if we exclude degeneracies, it forms a triangula tion. that is,

each convex (Me is a triang le and has three adjace nt faces. The convex hull

ha s only O(n) faces Fi an d edges C;j because a plana r graph of 11 > 2 vert ices

ha.s at most 211- 4 rcgions( faces) a nd at most 311- 6 edges [201.
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3.2.2 Inv ersion Transform

Given an inversion center Po and an inversion radi us r, we can tr ansform

point {J t o point Q' by inversion, where PoQ'is in th e same direction as ,,;0
and I /~;;:J' 1= ,.~/ 1p;;C} I. The inversion h a s the following pr operties:

1. An inversion transforms a plane whi ch does not pass t hrcur b the in­

ve rs ion cent er to a sphere which passes through the inversion center,

2. The interio r of the sphere corresponds to one of the half spaces bounded

by the plane end th e exterior of t he sphere corresponds to th e other

half space.

3. The inversion is involutory. i.e. application of inversion twice yields

the original point.

3.3 A Parallel algorithm to construct a Voronoi
Diagram

In 1979, Br een dem onstr ate d an interesting linkage between two di­

mension Voronoi diagram s and thr ee dimension convex hulls . He presented a

l1(n log 11) seque ntial algor ithm to constr u ct the Voronoi diagram, by trans­

forming th e problem of construct ing a planar Voronoi diagram for It points set

t o the co nstruct ion of th e convex hull of n points in 3-dimensional space via
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a geometri c transforma tion known as inversio n . Based on Drown's met hod, a

par allel algorithm for const ructing Voronoi Di agram on hypercube con nected

compute rs willbe introduced in th e foll,)wing sections.

The parall el alg orithm is divid ed into four steps.

1. Perf or m the inversion for each oft he p oints in t he plane nnd get a ncw

set of points in 3-dime nsional space.

2. Construct th e 3-dimensional convex hull for t he new set of points .

3. Perform the inv ersion for each convex fac e, obt a in a set of spheres which

intersect the xy-plane to form a set of cirdes , determine the vorouci

vertices.

4. Cons tr uct the Voronoi diagram

Lemma 3.1 IJd 1/ points be di.•/I'i/H1It'I/ (Il l fl -lliml:".~ iflll I I "mlt' '' ·III".,

whe!'!'., n = zI, One point I/CI' PI!:. II/ vcrs i oll jlJl' (;fIf '!' I}/Ji lll ('fill III' 1/'1111' i ll

cOI/.~/ a lll. t ime,

Pr o o f: Let S be a set of II planar poi nts locat ed in the J !I-pla nc or :1­

space. P ick a poin t in 3-space , say Po, for si mplidty, (0 ,0,1), as the in version

center, Choose r = 1 as t he inversion radiu s . Perform the inversion for each

point in S, weget II. new set ofn poi nts S', Let (;r",y, ) be coor dinates or the

point s in S' and (x . , y" z.) be the coordina tes of t he points in ,';'. Due to the
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Z'

Po (0,0,1)

____+..L'-----\--__y'

X'

Figure 3.2: Inversion

property of the inversion, all points of the xy-p la ne are mapped to a sphere,

say 0 , with PIJat th e apex. See Figure 3.2.

The equation of the line segment PoP is ;

;r !J ; - 1
;;; =;;;:= -=1

The distance between 1'0and P. IP;p I •is :

The distnnce between n and j-J - I P~I I •is :
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The inversion ra.dius , i. 1. So we can get :

JJ'~+1J~ + I .lr~ + !J~+('~'- 1)1= 1 (a.2)

P~'1 is in the sa m e line as P~I. From Eq 3.1, we ca n get:

:.e . g. .::.- 1;;=;;= --=1
From Eq 3.2, Eq 3.3, we can get :

z ---'-'-
• - (.r~ + !I~ + I)

y,
Y. = (z~+y; +1)

Therefore, inver sion for each point can be done in constant time.

(:1.3)

Lemma 3 .2 Const ruclill!} (13- 11 CQI l o r ,t h rtll elm be 1/1111'-' i ll O( log:1n)
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Proof; T he algorithm will be described late r in section 3.3.1.

Co nsvmct t h,.,con vex hull of the poin ts in H'. All n of t he poin ts of S'

will be on the convex hull because inversion abo ut Pu ma ps all po ints of the

.T.IJ pla ne to a sp here wit h Pu at the ap ex. T he convex hull has 0(11) faces

I';. Each face I': of the convex hull dete rmines a plane in the 3-dimensionaJ

space . If we excl ude degeneracies, each convex face is a triangle and has

th ree adjacent faces. Each convex face Fi Can be represent ed by three points

th rou gh which it pas ses. Each conve x face is stored in a PE. T he PE's index

and PE s in which its adjacent faces are pres ent a re known by t he P E.

Lem ma 3. 3 till tlu: VQI'Qllo i I!r ,·licc.~ Cflll be determined iii cO/Mla,,1

/im,' .

P roof: In orde r to dete rmine the Voronoi ver tices , eac h P E which con-

rain s a face of convex hull per forms the "reinvers ion" . Inver t faces of convex

hull (with respec t to the cente r of the inversion Po and radius I) aod obtain

0(,,) spheres which intersect th e x y plane in 0(11) circles. The equation of

line segme nt I"" ,l is :

r y .: - 1
- =-;;. =:::.- 1

Because I' is on t he line 1'1"an d l' is in t he xy-pla ne.
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(a.5)

(:1.6)

From Eq 3.5 and Eq 3.6, we ca n get:

Find the center of the circle of the three points corresponding to ouch r1\U l

h Let c; denot e the cente r of this circle. Each face ,,; of t he convex hull

associates with a half-space IIi which contains the convex hull and whose

bound ary plan e is face Fi • If half-space Hi conta ins I ~ " t hen f' ; is II. Voronoi

vertex and set flag Vi to 1. Ot herwise, set " i = O. (1/; docs not cont ain 1'",

the Ci is a fart hest Voronoi vertex. We do not consider this situation in ti le

the sis. For more informa tion about far thest Voronoi diagr am s, please sec

Brown 's paper [211.

It el-ould be explained why the centers of the circles may be the Voronci

vertices. In order to prove this, it is sufficient to show that these circles each

pass throu gh three of the 11 points of S a nd do not contai n any or the ut hcr

11- 3 points in the interior. Because the inversion is involution, each of thcsc
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P,

I'••

~1','
IJ I~

, 1'/'

Figu re 3.3: Relat ion between 3.d convex hull and 2·d Voran oi diagram

circles passes through three of the II points of S . If the circle passing th rough

points l'j./'j, and I'. of S contains anot her point Ill ES in its interior, then

the convex hull of the tr ansformed points 8' will not conta in a face P;'IJ/,Jk'

becnuee of the presence of point PI'. T herefore, each of the O(u) circles passes

through three of /I points of S and do not contain any of the other n - 3

points in the interior. Sec Figure 3.3. T herefore, all the v crcnci vertices can

be dete rmined in consta nt time.
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Lemma 3.4 . ..III lin I' V/'OIW; rr/y l' ,~ /'f ill Ill' ('OII:</ "IIf '/nl i ll O(log~ II)

lim e

Proof: Each P E cont aining (' i , perform RAR to get 1' )" Face I'; and I'~

are adjacent faces.

• If II i = 1 and I I,; = 1, t hen " i/ ',; is a Voro noi edge ,

• If t' ; = 1 and I'j = 0, th en "il',; is a Voronoi ray sta rting at 1'; in the

direction of v;lJj'

• If II ; = 0 and IJ,; = 1, then 1I.i " ; is a Voronoi ray sta rt ing at ",; ill the

dire ction of V.ilJi '

Each face has at most three adjac ent faces, Constructing Voro noi edges can

be done in O( log2 11) t ime because of the RAR operatio n.

From Lemma 3.1, Lemm a 3.2, Lemma 3.3 and Lemm a 3A , we can get:

Theorem 3 .1 Consl/'llclil19 a V01YJrl a i Ilill,lJrIlm (HI 111I 11 - IIf' IW( :HM!I'

hype/"Cllbc CO llllcctca compute /'ne /mol'k CfII l be dill/(: i ll O(It/!i111) tinn-.

Th e flow cha rt of the algorithm is shown iI. Figure 3.4 .
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Figure 3.4: The algorithm or constructing a Voronoi Diagram
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P rocedure C I/ {S),
beg in S\: = {/JI, · · · .l ll ll /1j};
51 := f!JLnn J, · · · ·ll ,, } ;

1', := CI/(Sd, 1'2 := CI/($2);
1' := MERGI~(PIl 1'1);
re t ur n P
en d

Ta ble 3.1: T he Algorithm of Constructing 3-Dimensional Space Convex Hull

3.3 .1 P arallel a lgor i t hm for constr uct ing the 3-d CO))­

vex hull

It is clear tha t one of th e main steps for const ruct ing a Voronoi dia­

gram is to construct a 3-dimc nsional space convex hull . In this subsect ion.

base d on P reparata -Hong[22] method, a par allel algo rithm to const ruct a

3-dimensional space convex hull will be discussed.

Let S = lI'hPh ...,JJ Il } be a set of 11 points in 3-dimcnsional space.

The convex hull of S is den oted as CIf( .';.'). Recursively divide t he set

S = {t'hl12,... , /''' } int o two subsets . ,~' , = {j'I,/ 11, .. ., IILto/ ·lJ } and 81 =

{Pt"n J...,fJ,,}, Let PI be GlI (S,) and P2 be GIf(:i'l)' Merge I', and / '~ .

we can get P. The recursive algorith m shown in Ta.ble 3.1. Clearly ti ll!

merge function is the crucial compone nt of the algorit hm.

Let PI n be two polyhedrons to be merged, If a face of /' 1 or n is
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Ili ll a face of the merged polyhed ron ,J then, the face is an exte rnal face,

othe rwise th e face is a n internal face. Let CI'I be t he circuit of PI and Cp, be

the circuit of P2' U" . contai ns edges of Ph which &fe shared by an internal

(ace and an exter nal (ace. C,'2 conta ins edges of 1'2 , which are shared by an

inte rnal and an exte rnal (ace.

Lemm a 3. 6: Tn dd tl"minc we/, / nIT 0/ CO IIVr.Z huff p. ( 01' 1'2) is flll

f:;rIIT lw / Inn : (J/' 1//1 i,l/en lfll / (u:(' Nil! be dOIlr. ill 0(log2 11) time.

Pro of : Th e algorit hm will be discussed in section 3.3.2.

P ro o f: For each exte rnal race of bot h polyhedron p. or P2' check its

adja.cent faces. If t he a.cIja c:ent face is an inte rna l Ieee, th e edge induced by

two faces is an edge of th e circuit . Each face has at moll th ree adjanc ent

Ieces , The refore, const ructing a circuit can be done in canitant time.

P roof: The algorithm will be discussed in sectio n 3.3.5.

Lemma 3,8 : " ,.,uollnl of /he il1/rl'llal/flces of PI and 1'2 call be rlolle
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Proof: For each interna l face, check its adjac ent faces. Remove the

edges bounding two internal faces . This step can be done in con stant t ime.

From Lemma 3.5, Lemma 3.6 , Lemma 3.7 and Lemma 3.8 , it call be

concluded th at :

Theorem 3 .3 C(l" ,~/ ,,"dj"!1 a .'J-dimr/l ,~i(J1I 1I1 ,~lm(T rnnvcr "" II mil Ilf

dQll e ill O(10g311)tim e Oil all II -111'f)CCS.~ fJI' b,IJW'11'" IIf' rmw r'('/ n l ('r,m/llI lf"

/lei woI'k.

Proo f: T ile algorithm used to con struct a a-dlmensicnel space convex

hull is shown in Table 3.1. If t he "merging" of two convex hulls with at mos t

11 verti ces in to tal, i.e.. the construction of the convex hull ol thei r union,

can be done in at most M(II) operations, an uppe r bound t o the num ber

7'(11) of opera tions used by the recursive algorithm is given by the equ at ion

'l'(JJ) = 2'1'(11 / 2) + .H (n ). It has been show n (T heorem 3.2) th at M(II) is

0(log111 ). Therefore, 1'(n ) is 0(1og 3 n ) time complex ity because of 0(10(;11)

recu rs ive calls.

The flow cha rt of the merge procedure is show n in Figure :L5.
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Figu re 3.5: The aJgorithm of n three dimension convex hull merge
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3.3 .2 A pa ralle l a lgorith m to te st exter na l faces a nd
in t ernal faces

Th e first step in the 3-dimensional space convex hullmerge ill to deter­

mine t he external (aces and internal faces. In this subsection, we will discuss

t he algori thm of testing external faces and interna l faces.

Wh en considering a convex polyhedron, each convex polyhedron Ince

F'i. is represented by an equation 0';,1' + /J,ll + 1'i': + Ii =0 with norma l vecto r

< u;,b;,cj > point ing away from t he polyhed ron, where

°i

1/;= vo1+/1?+1i'

IIi = _ _ 11;_ _ •

Va f + t1?+.,?

>;
Ci = val +til+.../

The convex angle formed by faces Pi. and I'~ with normal vector <

cos- I(n;a j +b;bj +C;Cj ). In the range 0 :50 :5If, th e function cos 0 decreases

from 1 to -I ; the inverse function cos- t also decreases as 0 increases. Th e dill­

renee between two points (U;, llj,e;) and (ltj>bj,ej ) is-V2(1 - (fII. flj + fJJlj -+ 1:,1:; )),
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since fI/ + [1;1 + c,1 ="/ + b]1 +C/ =1. T herefore. cm- l(a;Qi+ b;bj +C;Cj)

decreases a.s -/ 2(1 - (Il,,,,j +b;b,j+ c;ci) decreases. Now we can conclude t hll.t:

T h eor em 3.4 n it. m ,u ler. flngle IOn/ led 6y lace F; willi nor m al »eaor

< Ili. I'i , q > Ifl;'h fll,." Fj wilh normal sector < lI,j,b j , >;j > decn:(Ises IlS " "

/1i.~/ llII rr 'lClwt" II Imil/I" ( II ;, bi.c." fI"d (ab hb ej ) drCI'f(fliell .

Consider th e half-space bounded by t he face ""1'l(;); we den ote the

half-space that contains polyhedro n Pr by II (PI . i ). Face 1'P,( i ) belongs to

convex polyhedron I' which is merged by PI and P2, if 1'2 lies in the half·

SpAce I I (P I , i). For each Ieee /0'1', ( ; ), th ere exist two planes which ar e parall el

to I'i ',(i) and support polyhedron 1'2. den oted as I' 1..1>. (i) and P1..1.,(i) . For

PlJ;\ { i) a nd P1::.,(i ). th ere exis t two faces of polyhedron P2 which intersect

Il.t point of tange ncy wit h PI.h (; ) and 1'1..1>.( ;) and lorm smallest iLJIgles with

1'1.;\ (; ) and P1..1..(i ), denoted as F'~ (i) a.nd ~(;) . See Figure 3.6.

Due to convexity, I-",..( i) is an ex ternal face if F'",(i) and f~(i) are in t he

helf-spece 11(1'1. ; ), oth~,"se. F", (i ) is an intern al face. T hu5 the key point

of tes ting ,.' ..(i ) to Le a n external lace is to find F",..(i) and ~(i). We have

the followin! t heorem:

T heorem .1.5 I"',(i} i.~ a /I c.rle,.,H1 I[ace if Fi.,(i} ami Fr~(i} a loe i ll tJl ~

IlfI fJ-,~pllt·l· lI (P lt i ). /J 1" r l' lI ' i.~r . Fp,(i ) is all iutcrunl face.

The algorithm to test the extern al and inte rnal faces for polyhedron PI
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o
1- Fp,( i)

2- P~ (j)

3- IJ/,i...(j)

4- 1'1·7..(j)

5- P/,j,.(i )

6- PI1/'t(i)

7- · "'1..0)
8- - "I:,(i)

9-- . /-;,.U)
10- -- I" ;~, ( j)

Figure 3.6: The two dimensional analogy
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is described as follows. Th e algorithm for p olyhedron P2 is similar.

Le m ma 3.9 : e,u:l, ' JJ-: r:onla ining F,..U ) doe, a lm ru!o rm,dion. 71,;1'

, "nIl In· Ihlllr ill Cll n ~lfllll timr ,

P roof: Each face ";.,(j)will be transformed into a point IJP'(j ) on the

surface of the unit sphere. where the coordinates of PI.,(i) is (aj ,Uj , ej) , and

< 'lh "i> Cj > is the norma l vector. pointing Away from 1'2 of face F,,,U),

A spherical Voronoi diagram of an n-pcinta set on a sphere is a partit ion

of the surface of the sphere into n regions: th e region j for point PI...(J) is t he

locus of points on the surface of the sphere which are closer to PI'1 (J ) t han

to an)' other II - 1 points .

Lem m a 3 .10: U1<j ~g {,J/'l'( I), p,.,(2 )• .....} ns $ile poinl.f, consl r uel a

"I' /'''-;ro! \'011"'0; Jifl9JT1111 ONlI,e uil sp!lf:re. 11litfcan be done in 0 (log2n )

li/lll

Proof: Th e algorith m _ill be presented in section 3.3.3.

Lemma 3.1l : 7'rrlll,0{011l' each f ace f1>.(i) willi normal sector <

" ;. I' i ' ('; > j" ,o ""0 IJlJ i" I.~. 1I,>,( i ) and Pi',V)· 11ds can be done in conslan l

1;/UI'!IlI'.m'!, I lK

Proof : For each face of Ph I'pl( i ), t here are two normal vectors

< Il i .lii,f'; > and < -Oi,-Ui,-C; ». These two vectors can be t ransformed
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to two points on the unit sphere .

alld PI.,(i") o[ ttic ,)(/iIl18JlI',(i ') f1 1111 I'I ~ (i"). Thi.~ 1"/1II bl' ' /011 1' ill O( log'l u)

tim e.

P roof: Locate 1)/', (i') and I)I~ (i") on a sphere Voronoi diagram to find

sit e points lJp.,(i') and PI,, (i") . Due to the prop erly of a spherical Voronoi

diagram , IJI'll ?) and II". (i" ) are nearest neighbors of 1'1', (i') nntl /'/'. (i" ). I...,·

eating points on a spherical Voronoi diagram needs O(log'lu) thnc. T ile

algorithm will be discussed in section 3.3.4.

Lemma 3. 13 : FO I' raeh i , ehcf~' Jlwl /mlh "'I.,(i) <rill} Fr~ ( i ) ,

i/l Il ( P., i ) . i[ t rue the ll "'",(i) i ,~ 11 11 rrlf/'Iw l [II "", I} l /a,, ",i .~. I';',( i ) i.~ tI,l

i tlfcl'IHlI [ ace. Thi» ell l! be I/o/)e i ll ''1)/)llftlllll i ,III,.

Proof: I),..,(i') repr esents one face of I'.~ , say Fi,..(i) . IJI.,(;" ) represents

one face of Ph say l-'I~,( i) . pl',(i' ) and III',W) represent " /,'t.,(i) and l 'I ' i d i )

which are parallel to face l'I,,(i) an d support polyhedron 1'1' l'I.,(i') and

IJ", (i") are neare st neighb ors of the points 1I1', (i' ) and "I'I(i"). One to T he­

orem 3.4, F~(i) forms t he smallest convex angle with 1'1" ,,(i ) and 1'';\0 )

forms the smallest convex angle wit h PI. j,,(i ). Due to Th eorem 3.5, I' i ~ ( j } is

an external (ace if "'h(i) and l'/~ ( i ) are in t he hal f-space I I ( 1'1 , i.), otherwise,

I'/~ (i ) is an internal face. Check th at fI .,(i ) an d l'/~ (i ) M e in t he half-space
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1/(Pl' i) can be done in constant time .

Theor em 3.6: The III/mild ul.fJol'ifi lt/l fn/' I f.~li ll .tl iln 1'.rIIT/wl fun

fwd i ll/rl'l/lli facr run be dO/l/' it, O(lo g'! II) timr,

P ro o f: The correctness and t he time complexity follow from Lcnunn

3.9, Lemma 3.10, Lemm a 3.11, Lemma 3.12 and Lemma 3.13.

The flow chart ofthe algorithms is shown in Figure 3.7.

3. 3 .3 A par a llel a lgorithm to const r uct. a sp he r ica l
Voronoi diagram

In order to disti nguish exte rna l faces and inte rnal faces, a spherical

Voronoi diagram on the unit sphe re should be const ructe d. Based 0 11 t he

method pro posed by Brown[21], a parallel algorith m to const ruct a epherice l

Voronoi diag ram on a unit sphere is described here.

Given a set of points (PhJ-'2, ....1),,), every point 1/, is on the unit sphere.

For each point II; o n the unit sphere, there. is a plane 1'/ ,; tangent to the

spher e at point ]I i . Let JJ; be th e half-space ho unded by /' /,; which con-

ta ins the entire sphere. T he intersectio n of II half-s paces ff ; form a convex

body say, C. Th e sp herica l Voronoi diagram is now obtained by 1. simple

p roject ion of the edg es of t his polyhed ron to t he surfaee of the sphere. T he

project ion is a "rad ial" project ion: the projection of a point I' is ti le POillt
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Figure 3.7: The algorithm of external and internal face test
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where !l. line segment connecting the center of the sphere end point pin-

te esecte the sphere. Thi s projection maps edges of t he polyhedron to arcs

of gre at circles on the sphere . TILevertices of the polyhedron arc mapped

to spherical Voronoi points and t he face of the polyhedron are mapped to

spherical Voronoi regio ns,

Lemma 3. 14 :AII I/Ic plallcs P I'i mil br ffl ll l/ ll i ll ro ll ,~l fl l/l iiI/if .

Proof: For each PE containing Fi~ ( i ) with normal vector < Ili ,I'i ,I', >,

find a corresponding point Pi, (a" IJi , cl, on unit sphere. T hen, the plane

which is tan gent to the unit sphere at /1;, say PI. ;, can be obtained. The

equat ion of th e plane PL; is a,:t + lim +CiZ = 1. T his needs constant lime

for each PE.

Lemma 3.15: Afl th c cdgr.s and vr.l'iicc.~ af 'h e rmlllc r bmly ( .' ('(i11 II(

fou nd in 0 (1og2 71) t im e.

Proof: In orde r to find all t he edges and vertice s of C, each PE con-

t aining FJ>. ( i) docs a RAR ope ra.tion from t he PE which contain s 1,'1 ~ (j ~ .

F", (i ) and FJ>.(i) are adjacent faces. Th e plane PI,; is obtained Irom r ,'.( i )

and th e pla ne PLi is obtai ned from PI'. (j). An edge of (.' is th e intersection

of P /~i and PLio

{
ajx +bjy + cj;; = 1
f!jx+ "jy +ciz= I
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By exam ining all the faces adjacent to F' ':I(i) in the co nvex hull P2'

we ca n obtain t he ver tices of C. Because each convex polyhedron lace is a

t riangle, cech Iace has at most th ree adjacent faces, Therefore , all th e edges

and vert ices of the co nvex bod y C can be foun d in 0(log2II) t ime.

Le mma 3 .16: Al/ illf-vertices and cd9(" ~ o[a spherical Vorono; JiaglY/lIl

(' (/II (I(: [ml/1I1 ill I:OIIII(alll tim e,

Proof: Connect the ve rtices of C with the center of II.sphe re inte rsect­

ing the unit sp here. Th ese are the vertices of a spherical Vorano i diag ram.

Oy connect ing t hese Vora noi vertices the arcs of great circles on t he spher e

arc determined. These are t he edges of the sphe rical Vorcnoi diagram, This

step ca n be done in constant time for each PE.

Eased on Lemm a 3.14, Lemma 3,15 an d Lemma 3.16, it is concluded

that :

T heo rem 3.7 COII,.II·ucl ioll 01 a sflhcl'icd l'o l'lJ/loi lliugm m cun lJe done

ill 0( log2 11) 1;1IIe.

T he flow chart of the a lgorithm ill shown in Figure 3.8.
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Figure 3.8: T he algorithm for const ruct ing spherical Voronoi Diagram
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3.3 .4 A paralle l algorithm to locate po ints on a spher­
ical Voronoi d ia gram

T his algorit hm is based on the chain meth od described by Lee and

Prep arata 123J. From a computational viewpoint , any solu tion to the point

locati on problem should include two steps: the pr eproces sing st ep and th e

search step. The preprocessing step const ruct s th e data structu re postulat ed

by th e search algorithm. T he search step locat es the query points in t he

subd ivision.

Since the points a re located on t he spherica l Vorono i diagram, the dat a

st ruct ure postulated by the search alg ori thm is the spherical v crcn ol dia­

gram . For an efficient search, th e first th ing to be done is to get a repreeen­

tution ofthe sph erical Voronoi diagram . It is clear that th e Voronoi diagram

is co mposed by a set of mono tone chain s which are gene rated at different

levels of th e merging st ep, when Voronoi diagram is bei ng constr ucted by

IL divide-and-conquer meth od. Each chain has its own level and index (th e

rank of the chai n in t he chai ns of given level). Chains may share common

edges. If an edge c bel ongs to more than one chain, i t then belongs to aU

membe rs of a set of consecu tive chains. We assign c t o hierar chically t he

highest chain t o which c belong s.

Th e or em 3.8 : Mrll'k ing /he l evel., nn d indc:r: [or spheri cal 1'01'0110;

r'llrlr.~ mu fw d fJllr ill O(log~ IJ) fi we.
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P roof: Sort the site points of a spherical Voronoi dia gram by fl; :=

:t;f;;f+!J. For each site point, a bina ry index iRgiven. Each PE which

contains an edge C j of the spherical Voronoi diagram does an RAR to gel

the index of the pair of points it. is essocieted with. "bit exclusive or" of two

points , say lJ!, is then obta ined. The level of the edge ( OJ can be obtained by

Ij := Lloy'l1J. The index of the edge Cj is {(2's mlllp/rmrll/ (2") - 2") A (im/ror

oJ c; 's (l .~soci(llcd Imill l.) Jj21,+ I. For example, if (" j is associated with POillt ll

0010 and 0101 , "bit exclusive or" of0010 and 0101 is 0111, [log 0111J := (2)111'

so ej is of level 2. 2'sCOlll ll /ClTlw /(21) - 2 '1 := 2's cfHll/lln/l rll/(O loO ) -0100 =
1100 ·0100 "" 1000. ( lOOOA OOlO) (or lOOOAOlOl) "" OJ so " j is indexed as

oin the chains of level 2. Therefore, marking the levels for spherical Voranoi

arcs can he done in 0(1og211) t ime because of the sorting opera ti on and the

RAR operat.ion. See Figure 3.9.

Now the search algorithm is discussed. All edges are sorte d hy their

level as the pr imary key, their index as the secondary and the y-coo rdinutc of

the endpoint. of the edge as the te rnary key (endpoint with less y-coonlinat e

between two endpoints of a chosen edge). AU query points are sorted by

their y-coordin ates. For each query point , two flags arc assigned, denoted as

L(k) and R(k), which are repr esented by the edges on the left and tight sido

of the query point. Init ially, all query points are assigned the highest level

rloynl and index 0, I,(k) +- -00, £ilk) +- 00 . Then, for each level i, frorn

i = rfoyn1to i =0 , the following operations are performed:
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1. AU query point s have a ssigned the same level, equal to i. Merge the

query points and th e se t of edges. Thi s st ep can be clone in O( log II)

time bec ause of the merg ing operat ion.

2. General ize operation is performed to find , for each qucry point JIb the

correspon ding edge e t he Ilk should be discriminat ed against. That is,

the .II -coordinate of Pkis between !J-coordinates of endpoints of r , This

step can be done in O{log II) time becau se of t he generali ze operatio n.

3. Let C be the correspo nding ed ge for query point I'k. Dependin g on

which side of c the quet y poin t I'k lies, compare r. with eit her f,(k) or

H(k) .

• If Pt is on the left side of c and c is to t he right ot f,O~ ) , updat e

LO') with c.

• If I'k is 0 11 the right side of c and r. is to th e leet of H(k) , upda te

R(k) with c,

Thi s step can be done in const ant time for each PE .

4. If '~ ( k) and R(k ) are bound ing the same region, i.e. th ey have the same

associat e point, the quer y point Pk is located. Thi s step can he done

in consta nt time fot eac h PE .

5. For unl ocated points , lJk calcula.te:1 t he ind ex of the chain at next level it

should he discrim ina ted . Th e index is [(2'5 cIJlf tJll r;m c1l1 (2;- 1) - 2;- I)A
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(illrlf::r. 11/ c '.'1fiR/weill /cd 1'0inl)I/2 ;. This step can be done in consta nt

time for each PE.

6. Unmerge edges and query points (using former indices of query points).

Thi s st ep can be done in O( log /1) time because of unmerge operati on.

7. Perform concentrat e operation for the unlo ca te query points with an­

swer "left" of corresponding edge in st ep 2. Unlocate query point with

answer "right" will be also concentr ated. This step can b e done in

O(log 11) because of the concent rate operation.

8. Since both subsets of un locate query points are sorted by the new

indices after concentrati ng. Merging "left" and "right" unlocat e query

points by t heir new indices. Give next level to all unlocated query

points . This step can be done in 0 (/0971) time because o£the merging

operatio n.

T heorem 3.9: Loca/ing the points on n spherical Varona; di flgm m

ran b,; /!orle ju O(log' n) lime.

Proof : From the discussion above, it is clear that the preprocess al­

gorithm cnn be done in O(log2 11) time. (Due to Theorem 3.8). Th e search

algorithm needs O(log ' 11) time because each step in the search algorithm

tak es O( log 11) time and t here a re log " iteeetions. Therefore, loca ting points

on a spherical Voronoi diagram can be done in O( log' 11 ) time.

91



T he flow chart of the search algorithm is shown in Figu re 3.10.

3.3.5 A par all el a lgor it h m to a d d new faces t o t he
convex polyhedron

PI and P1 are two convex polyhedr ons to be merged. I' is a convex

polyh edron which is l..<Itained by mergi ng PI and "2' New faces arc t he feces

which do not belong to ". and P1 but belong to P . Hwe exclude degenera cies,

each convex polyh edron face is a tri angle. C"1 is the circuit of p. and (," '2 is

the circui t of P1 • Th e new face is deter mined by an edge of (.'/ '1 a nd a node

of CP1 or by an edge of CP2and a node of C" I'

In order to add new faces, th e first thin g to be done is to c eder the

edges in Cp, and Cr".

Lem ma 3.18: O nlcrillg th e edges ill G'". fw d C /" NW Ii.· // /IIIt in

Proof: Th e observer P1 is defined as an ob server placed at any point

of P 1 and orient ed like t he negati ve a-axis, and observer PI as an observer

placed at any point of PI and orient ed like th e positive a-axis. Th e cdgee

in Gp • are numbered in ascendin g order so that they form a. clockwise se­

quence for an observe P1' And th e edges in C1' 2 are numb ered in ascend­

ing or der so th at they form a counte rclockwise sequence for an o bserve 1't ­

Both sequences are sta rted at th e vertices with th e largest y-ccc rdin ntes in
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sort all edges by level, index and y-eoordinetes

liOrtquery points by ,_coo rd inates

for each query poid , assign L(k), R(k), level e log" . index ::: 0,

merge query points with same level edges

find corresponding edges for que ry points

compa ring correspo nding edge with L(k) &tR(k), and update L(k) &:R(k)-I

check L(k) & R(k) bounding the same regio n

for unlocated poinh, calculate in dex of chain s at next level
It.nd It.IIs i h index to the anlocate '

unmerge edge &:query points

re-sort unlocate poinb by new indi ces

Figur e 3,10: T he search algorit hm for poinh loca.t ion
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CI-'I and C,,,. Let CI,,(i)h l and C,...(j)hl be the vertices at which edges

Cp,(i) and C,,~ (j) originat e respectively. Then (CI'I(O)[.'.l.C ",(l )h l. ...) nnd

(C,,,(O)h l, C,...(1)[,,.j. ....) a re the sequences of vertices of C/" and ( '/', rc­

spec t ively. Dueto convexity, the convex angle formed by (C'I', (Olh l. ("'1 (i)fl'd)

and (C",(O)[t'.j, C"I (j)!uJJ) is clockwise for an observe /~h where j < j; tile

convex angle formed by (C,,,(O)h l.C,,,(i)hJ) and (C",(O)h IJ '",(j)[P,D i ~

counterclockwise for an ob~erver Pit where i < j. T herefor e, edges in ( " '[

can be ordere d an d so can th ose in C' 'l' This can be done by \Ising ~o,t i l1g

algo rithm which takes 0(log2
,, ) time.

Lemm a 3.1 9 : For fad, ra!lr ill C" I(i) . jiml ll IImlf' 4 c /,,(j )[I'd

$/lell I{,al lit e plall c determine d by C1"(i ) uud IIw 1I111!r ' C",(j )h l i.~ Ill'll' j " l'l'.

Th e same pl'Oud,,/'c is (.'(l"rica 01/1jm'lhe e,flleRill ("1 ';, ' '11Ii.• 1"1'" I,,, rim,,· ill

P roof: The proof is for each edge in (.i"1(i) finding u node of ( ."'J(j )[nll.

The proof for each edge in C,,,(i) , finding a. node of C"I(j)\lld is same

If the plane determined by the edge (.'", (i) and t he no c1e of C"'.U)hl
is t he new face of P t hen th e convex angle formed by the plane dett~rmil1 ell

by C",(i) and C,...U)[l)d an d t he face bound ed by C",(i) which belong lo "

is maximu m. Let 0"1(i,j) be an angle measure associated with edge (." 'I(i )

and vertex C",(j){ud, as the convex angle formed by the plene determined

by C1,,(i ) and CI.,U)!"d and t he face bounded by C1,,(i ), which bclofll; to
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1'. In an analogo us mann er, 01',U, i ) is defined as t he con vex angle formed

by the plane deter mined by C,~ U ) and CI',(i)[ lId and th e face bound ed

by (.',',( il , which belongs to P. Let 1'li) be the smallest index such that

fJ/,(i ,1'1i) is a maximum among all O''1 (i ,j), 0 :5 l' I C,", I, let if.i) b e the

largest inde x such that O,~ (j, i ( i ) is a maximum am ong 11.11Op,U,i ). 0 '$ i <I

CO", I. For a particular i , 1'(i) can be determined by performing a ma ximum

opera t ion which takes O (log IC", Dtime. It is ob served th at U(OI,1'(l), ... )

and (i(Il), i(I), ...) ar e nond ecreasing sequen ces. Firstly, j 1IC,.,1/2) can be found ;

t hen in par allel j UC',~I/ ~ ) in the inte rvals [O,.i(lc",I/2)j and [j (lCI-,If2l , I Cp., I - IJ

can be found resp ectively, and so on . It is st raightfo rward to 5~ that it ta kes

log I (."', I iterations to ob tain all j lils. T herefor e, for each edge in CI')(i) ,

finding a node of C,~ (j )[t' ,J such t hat the plane det ermin ed by Cp,(i ) and

the node (.',.,U)[,'tlis new face can be do ne in O (log2n) t ime.

Con nect c.; (i)/n,Jwit_hC"t(j( il)[Vl] a nd conne ct C"I(i ){V21 with Cp.,(j(i»)[V1J

to get l\ new fa ce determined by C1., (i) an d C1.,(j (i)[V,). C",(j) lvJl is con­

nected with C,., (iWlflld and C,,,O )[I.>2) is connected with Cp,(iUI)(v,j to get

a new face dete rmi ned by C{-', (j ) and Cr , (iW)[v,].

From t he a b ove dis cussion, we get t he followin g Theorem:

T heorem 3.10 .: '/1,( n.[gorif/,m of n.ddillg PCI')[ace In.kes 0 (log2n)

timr,

ss



order t he edges in CI~ & C,~

for each edge of C"I(i) & CI~(j)

find correspondi ng points

constr uct new Ieecs of convex polyhedron "

Figu re 3.11: The algorithm for adding new faces of convex polyhedron

P roo f : The ccrrectnee e follows from Lemma 18 and Lemma 19.

The flow chart of the algorithm is shown in Figure 3.11.

3.4 Summary

In t his Chapter, a pa rallel algorithm for constructing a Voronoi diagram

on hypercube connected computer networks is de veloped . The algorithm is

based on Brown 's method [4} and consists of four steps . The details of the
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algorith m are shown in section 3.3. One of the main ste ps of this algorithm

is to const ruct a 3-dimensional convex hull. Based on Preparata-Bong's

method (22], a parallel algorithm to ccnetruet a 3-dimensional convex hull

is discussed in section 3.3.1. The strategy used in the algorit hm is divide.

and-conquer. Rt-curs ively divide the point set into two subseb and then

merge two eub-cenvex-pelyhedron. The crucial component of the algorithm

is the merge funct ion. The merge funct ion is divided into four steps. To

det ermine the :onvex polyhedron face is an external face or an internal face;

to const ruct the circllit (or each polyhedron which is merged; to add new

faces; and to remove internal faces. The algorithm to det ermine the external

face and the inter nal face is described in section 3.3.2. The algorithm to

add new faces of convex polyhedron is discussed in section 3.3.5. In order to

determine the exte rnal face and the internal face , th e algorithm to construct

II. spherical Voranoi dilll ram and the algorithm of poinh locati on a.~ used.

The algorithm to conl t ruct a spherical Voronoi diagram i. based on Brown'.

method 121J and is discussed in section 3.3.3. The poinh loca.tion algorithm

it based on Prepara ta and Lee's method (23J and i. described in section 3.3.4.

Let the algorit hm to construct a. Voronoi diagram be Algorithm_VD.

Let the a lgorithm to const ruct a 3-dimentional space convex hull be Algo­

rit hm_Cll , Let the algorithm to determine the external face and the internal

face be Algorithrn.EI. Let the algorithm to const ruct II. spherical Voranoi

diagram be AIgorit hm.5VD. Let the algorithm of points location be AI-
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gorithm . Ll' . Let the algori thm to add new faces of polyhedron be Algo­

rithm-AN. T he time complexit y of these algorithms are list ed ill th e following

table.

Name Number of P rocessors Time Compl exity Locat ion
Algorit hm .VD O u) O(log u) Sect ion a.a
Algorithm.eH 0( 11

g(:::~
Sect ion :1.3.1

Algorit h m.EI 0 " Seclion :1.3.2
Algorit hm _SVD O(u) o log u Sect ion:! .3.3
Algorit hm.LP O(u O( log II) Section 3.3.'1
Algorit hm_AN 0( 11) o log u) Section 3.3.5

From the discussion above , it is clear that ou r algorithm run s O{lI) p ro­

cessors hype rcube con nected compu ter network and needs O(log:llI) lillie.
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Chapter 4

Conclusion and Discussion

A Voronoi diagram is a usefu l data str ucture in computation geometr y.

In thi s thesis, SIMD hypercube connected comput er network al e chosen as

the pa rallel computation model. In chap ter 2, the funda m ental ope ration s

on the hyperce be connected computer network are discussed . In chapter

3, based on Brown's method, a parallel algorithm to const ruct a. voronoi

diagra m is developed. Our algorithm runs in O{l og3n) time on an O(n ).

processor hyper cube con nected compute r network . Our algorithm is based

on Brown's meth od which transforms the problem of const ruction of a pia­

nar 11 Voronoi di agram for an n -point se t to construction of a co nvex hull

of " points in th ree dimensi ona l space. Comparing with th e par allel algo ­

rithms which are based on the divide-and-conquer approach usedby Shamos,

our algorithm can be used to solve two computa tional geometry problems:

constructing 2-dimensio nal Voronoi diagram and 3- dimensional convex

hull. Comparing with Chow's methods which runs on a. O(n) pr ocessor s
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CCC (Cube-Connected Cycles) model has O(log"' u) time complexi ty, our

algorithm has less time complexity . Com paring with Cha ng-Sung Jeong's

algorith m which ru ns in C?(Jil) o n an .;n x Jil me sh, ou r parallel compu-

t ation model is more gene ral. M ost othe r popula r netwo rk s can be cnsily

mapped onto a. hypercub e . Next we will discuss some exte nsion an d futur e

work.

4.1 P arallel Algorithm to Construct a Voronoi
Diagram in £1(£ 00 ) on a h ypercube con­
nected computer network

It is known that there are ma ny met hod s to con st ruct a. Voronoi diagram

on a single compute r. T wo oft he m were pr oposed by Shamos in 1975 and by

Brown in 1979. Many parallel algor ithms were suggested bas ed on th ese two

methods . Among those par allel algorithm s, some are im plemented on pro­

cessor networks, some on shared -memory machines . The Vorcnoi di agrallls

for other metrics have a.lso been s tudied b l' severa l research ers.

Given two points qi and qj in the plane It~ with coo rdinates (.ti,Yi)

and (:r. j, Yj), respe ctively , the distance be tween 'Ii and IIj in the I. ,. metric

is define d as IIp('I;,I/j) = (I Xi - ;t. j I~ + I Yi - Yj IP)1/1' for II = 1,2, ... an d

doo(q;, q j) =max (l Xi - X j I ,IYi - !Jj lJ. Th e plane in which t he I" . metric is
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the dist an ce measure il de noted by R;. The bisector B,(q., qj ) of t wo points

'I. and '1j il t he locul of points equidistant Cram qi and qjo Le. B , (Qi, '1j )

=(r I r E n;, tlr(r.qi) = d ,,(r,qj }} . The IOCUI of poin ts closer to'l; t han to qjo

denoted by I,,,(t/i ' fh), il o ne oft he halfplanes contai ninr;'li t h at is determined

by the biacetor 1J,,(q;,'lj ). i.e. ",,{'1i,qj) = {r IJ,,( r,qi) s: d,,(r, '1j)} ' Given II.

set S of points tfl , tIJ, ' '' ' 'I .. , the locus of poin ts closer to 'Ii t ha n to " -'l other

points , denoted by V:(q i}, i. called the Vc.ronoi region or p olygon ass ociated

with tli in the I~ I' metric an d is thu s given by VI (t/i) =n i~j h, (qi , qi ) ' th e

inlersecti on of a ll the ha lfplanes containi ng qt. T he entire set of Voranoi

polygons partit io ns the p lan e into n regions &nd is referred t o &1 the Voranoi

diagram V, (S) fo r the l et S in R~. Figure 4.1 il a n example of the Voronoi

Diagram in L, m etric.

In 1991, Ch ans·S u ng Jeong (24J gave &D. O (,fii) parallel al gorithm

on .;n x .,fiimesh-eonnected compu ter t o constr uct a Voronoi di agram in

I' l(l.oo} metric for a set o f n points in the Cutesia n plane .

An O(log3 u] algori t hm to construct I Voron Didiag ra m of a set of n

pIlUlar points in LI(Loo) metric on hypercube con nected compute r network

can be obtai ned by uling J eong's [24)metho d and th e funda men tal op erations

discussed in Chap ter 2.
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Figure 4.1: Voronoi diagram in I~ I metric
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4 .2 O pt im al Paralle l Algorithms to Construct
Voronoi D ia gra m s

I(}, (n) is the p rocessor complexi ty, /(11.) is the parallel time complexity ,

and ""f((u ) is the t ime com plexity of the b est know n sequcntia1 algorit hm

Cor the problem un der cons ideratio n, then t(lI) $l )(n) = O(s eq(n)) . If the

pro duct l(Il) . II(n) achieves the sequentia l lower bound for the problem,

the n we say the algorithm is optima l. Computing a. Veranoi diagram of a

set of points in t he plane with a single pr ocessor h as an G(nlogn) lower

bo und. In 1990, Guha gave IL paral lelalgor rthm for t he rectilinear Veronoi

diag ram [251. The algorith m runs in 0( log2n) ti me and uses CJ(n/iog n)

processors. The computat ion model is CR EW PRA M. In t he same year,

Wee and C haiken p resented a parallel ~ 1 metric Var a noi diagram algorithm

[261. The computation model is CREW P RAM and the algo rithm runs in

O ( loglI) t ime lind useeO(n) processors. Bot h algcrlt hms ate cost optimlll in

vie w of t he U[lIlog 11 ) sequential lower bou nd for t h is problem. No o ptimal

parell-l algo rilhms to cons truct Voronoi di agram of a set o f points on an

int erconnect ion processors n etwork have be en found t o date.

There are two reasons . The lint reason is, in an inter connecti on pro­

cessors net work, lo cal computations 8S well as messa ge exchanges are taken

in lo consideratio n when analyzing the tim e taken by a processo r network

t o solve a. problem. For ex a mple, RA R a nd RAW o perations take co nstant
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time in a sequenti al computer but RAR and RAW operat ions take loS~ II

tim e on hypercube connected computer ne tworks. The second reason is that

th e memory is no longer shared, but instead , distributed among pro cessors.

Thi s preve nh the implementation or complex data st ructures.

For future work, one possibl e solution is to develop more efficient nlgo­

rithm s for interprocessor message routing . The oth er possible solu t ion is to

implemen t complex data st ruct ures on inte rconnect ion processor networks .

The most important and powerful feature of the PR AM is th e com mo n mem­

ory shared by the processors. Not only does the shared memory serve n~ a

communication medium lor the pr ocessors , but it allows a direct implemen ­

t ation of complex data st ructu res , in a mann er very similar to the way they

nrc implemented on the memory of a seq uential computer. Ther efore, im­

pl ementing data structures on proc essor networks is a worthwhile endeavor

th at deserv es to be pursued.
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