A PARALLEL ALGORIT

VORONOI DIAGRAM

i OF CONSTRUCTING A

{YPERCUBE CONNECTED

PUTER NETWORKS

WENMAO CHAI

A Parallel Algorithm of Constructing
A Voronoi Diagram on Hypercube

Connected Computer Networks

By

‘Wenmao Chai

A thesis submitted to the School of Graduate Studies
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
Memorial University of Newfoundland

St. John's Newfoundland Canada

Contents

-

)

Acknowledgment viii
Abstract ix
Introduction 1
1.1 Parallel Computation Models 4
1.1.1 Parallel Random Access Machines §
1.1.2 Processor Networks 7

1.2 Literature Review of Parallel Algorithms for Constructing Voronoi

Diagram ; 13
Hypercube Connected Computer Network and Its Funda-
mental Operations 18
2.1 SIMD Hypercube Connected Computer Network . 18
2.2 Fundamental Operations on llypercube Connected Computer
Network WIRERIA R R ¥ B AT R % & % RS .22

22F MEXITOI vocvvmnns ¢ % 5 % sl W & 9 REORE A 24

Ranking . . e e 25
Concentration R 29

224 DIt erocun 0 5 ® w wosmonen m v v wm o 32
2.2.5 Generalization s A5 s 0 33
2.2.6 Merging and Unmerging . . 38
T Sortinen vetind B E © N SO 4 5 8 R B g 8 S 41
2.2.8 Random AccessRead wisios % % v w BB
2.2.9 Random Access Write 50
210 Precede vnenns o % 5 % o mn 0w ven e e s 55
2201 SUIMMATY © o o\ ovee e eee et 56

3 A Parallel Algorithm for Constructing Voronoi Diagrams on

a Hypercube Connected Computer Network 60
3.1 Definition and Features of Voronoi Diagram 61
3.2 Convex Hull and Inversion Transform 63
3.2.1 Convex Hull 63
322 Inversion Transform wahnay 64

3.3 A Parallel algorithm to construct a Voronoi Diagram 64

3.3.1 Parallel algorithm for constructing the 3-d convex hull 73

3.3.2 A parallel algorithm to test external faces and internal

33.3 A parallel algorithm to construct a spherical Voronoi

diagram B 82

334 A parallel algorithm to locate points on a spherical
Voronoi diagram B 87

3.3.5 A parallel algorithm to add new faces to the convex

polyhedron 92
3.4 Summary 96
4 Conclusion and Discussion 99

4.1 Parallel Algorithm to Construct a Voronoi Diagram in L (L..)

on a hypercube connected computer network . .

4.2 Optimal Parallel Algorithms to Construct Voronoi Diagrams . 103

List of Figures

Parallel Random Access Machine
Mesh with 1 = 16 PrOCESSORS - « « « « + + + oo et
Cube-connected cycles network with d = 3 and n = 24

ABStar . e e

A d-pancake Y T Geitssd

Block diagram of an SIMD computer

16 processor hypercube e e
Voronoi diagram e s
Inversior: e o

Relation between 3-d convex hull and 2-d Voronoi diagram . .
The algorithin of constructing a Voronoi Diagram
The algorithm of a three dimension convex hull merge.

The two dimensional analogy

The algorithm of external and internal face test

The algorithm for constructing spherical Voronoi Diagram

10
11
12

3.9 Representationof chain. s W E VR 89

3.10 The search algorithm for points location 93
3.11 The algorithm for adding new faces of convex polyhedron . . . 96
4.1 Voronoi diagram in L, metric, L. 102

List of Tables

2.1
22
2.3

24

Example to compute maximum in an SIMD hypercube 26
Program for SIMD Maximum 27
Example to compute ranks in an SIMD hypercube 28
Program for SIMD ranking procedure 30
Example to concentrate in SIMD hypercube 31
Program for procedure to concentrate records 32
Example to distribute in an SIMD hypercube 33
Program for procedure to distribute records 34
Example to generalize in an SIMD hypercube 35
Program for procedure to generalize records 37
Program for SIMD Reversing 39
Bitonic sort into nondecreasing order Co... 40
Tterative bitonic sort for n, a power of 2 1
Power of 2 bitonic sort (nondecreasing order) 42
Power of 2 bitonic sort (nonincreasing order) 43
Example of & random access read 46

vi

217 Algorithm for a random access read 48

2.18 Example of an arbitracy random access write 52
2.19 Algorithm for an arbitrary random access write 54
3.1 The Algorithm of C: ing 3-Dimensional Space Convex

Hull oottt 73

vii

Acknowledgment

T would like to take this opportunity to express my sincere thanks to
my supervisor, Dr. Cacan Wang. He stimulated my interest in the field of
computational geometry. His constant encouragement and guidance during

the course of my study and research led to the completion of this thesis.

Last but not the least, I would like to give my thanks to my husband,
Zhenpen Young, for his love and help throughout the composition of this

thesis.

Abstract

Computational geometry is a branch of computer science concerned
with the design and analysis of algorithms to solve geometric problems. The
Voronoi diagram of a set of n points (called sites) is a well known structure
in computational geometry. In the Voronoi diagram, each point is surrounded
by a convex polygon enclosing that territory which is closer to the surrounded
point than to any other point in the set. Voronoi diagrams are useful in
solving geometric problems such as proximity problems and the Euclidean
minimum spanning tree problem. Voronoi diagrams also have applications

in diverse areas like biology, visual perception, physics, and archeology.

There exist many methods to construct Voronoi diagrams on a sin-
gle computer. Two of them are proposed by Shamos and Brown. In 1975,
Shamos applied two-dimensional Voronoi diagrams to obtain clegant solu-
tions in computational geometry, such as finding the nearest neighbor and
construction of minimum spanning trees. Shamos described an O(nlog i)
time sequential algorithm to construct the planar Voronoi diagram for a set
of planar points. The strategy he used in the serial algorithm is divide-and-
conquer. In 1979, Brown demonstrated an interesting linkage between the
Voronoi diagram and the convex hull. He presented an O(n log) algorithm
for constructing the Voronoi diagram, by transforming the problem of con-

structing a planar Voronoi diagram for an n-points set to the construction

ix

of a convex hull of n points in 3-dimensional space via a geometric transfor-

mation known as inversion.

Due to the nature of some applications in which geometric problems
arise, fast and even real-time algorithms are often required. Here, as in
many other areas, parallelism seems to hold the greatest promise for major
reduction in computation time. The idea is to use several processors which
cooperate to solve a given problem simultaneously in a fraction of the time
taken by a single processor. Therefore, it is not surprising that the interest

in parallel algorithms for geometric problems has grown in recent years.

Based on Shamos’s and Brown's methods, several parallel algorithms
to construct Voronoi diagrams have been presented. Some of them are im-
plemented on parallel random access machines. Some of them are run on
processor networks such as mesh, cube-connected cycles, stars and pancakes.
We will discuss them in the literature review. With the development of com-

and i networks have

become popular. The most popular processor interconnection topology today

is undoubtedly the hy; be. Hypercubes have several advant First,
the number of nodes in a hypercube grows exponentially with the number
of connections per node, so that a small increase in the hardware at each

node allows a large increase in the size of the computer. Second, the number

of alternative paths between nodes increases with the size of the hypercube,

which helps relieve i Third, efficient algorithms are known for rout-
ing messages between processors in a hypercube. Finally, and today most
importantly, a large corpus of software and programming techniques exists

for hypercube.

The hypercube is one of the most versatile and efficient networks yel
discovered for parallel computation. In this thesis, a single instruction mul-
tiple data stream hypercube connected computer network is chosen as our
parallel computation model. In a hypercube connected computer network,
local computations as well as message exchanges are taken into considera-
tion when analyzing the time taken by the processor networks to solve a

problem. Based on Nassimi and Sahni's paper fundamental operations on
it o

p! d. The cor-

percube connect networks are
responding programs are also given. Based on Brown's approach, a parallel
algorithm to construct Voronoi diagrams are developed. Our algorithm runs

in O(log? n) time on an O(n)-p p puter net-

work. Our algorithm has several advantages. First, our algorithm is based
on Brown's method which transforms the problem of construction of a planar
a Voronoi diagram for an n-point set to construction of a convex hull of »
points in three dimensional space. Compared with the parallel algorithms
which are based on the divide-and-conquer approach used by Shamos, our
algorithm can be used to solve two computational geometry problems: con-

structing 2—dimensional Voronoi diagrams and 3— dimensional convex hulls.

Second, comparing with Chow's methods which runs on a O(n) processors
CCC (Cube-Connected Cycles) model has O(log' n) time complexity, our

algorithm has better time complexity. Third, ing with Chang-Sung

Jeong's algorithm which runs in O(v/A) on an v/l x /i mesh, our parallel
computation model is more general because most other popular networks can

be easily mapped onto a hypercube.

xii

Chapter 1

Introduction

Programming computers to process pictorial data efficiently has been
an activity of growing importance over the last 40 years. These pictorial data.

may come from many sources. We distinguish two general classes:

1. Most often, the data are inherently pictorial, such as the images aris-

ing in medical, scientific, and Weather maps

received from satellites in outer space are a good example.

»

Alternatively, the data are obtained when a mathematical model is used
to solve a problem and the model relies on pictorial data. Examples
here include computing the average of a set of data (represented as
points in space) in the presence of outliers, computing the value of a

function that satisfies a set of constraints, and so on.

Regardless of their sources, these computations may include the oper-
ations of identifying contours of objects, “noise” removal, feature enhance-

ment, pattern recognition, detection of hidden lines, and obtaining intersec-

tions among various At the foundation of all th
are problems of a geometric nature, that is, problems involving points, lines,
polygons, and circles. Computational geomelry is the branch of computer

science d with designing efficient for solving

problems of inclusion, intersection, and proximity, to name but a. few.

Until recently, these problems were solved using conventional scquential
computers, computers whose design more ot less follows the model proposed
by John von Neumann and his team in the late 1940s. The model consists of
a single processor capable of executing exactly one instruction of a program

during each time unit. C built ding to this digm have

been able to perform at tremendous speeds. However, it seems today that
this approach has been pushed as far as it will go, and that the simple laws
of physics will stand in the way of further progress. For example, the speed

of light imposes a limit that cannot be surpassed by any electronic device.

On the other hand, our appetite grows continually for ever more pow-
erful computers capable of processing large amounts of data at great speeds.
One solution to this predicament that has gained credibility and popularity

is parallel processing. Here a computational problem to be solved is broken

into smaller parts that are solved simultaneously by the several processors of
a parallel computer. The idea is a natural one, and the decreasing cost and
size of electronic components have made it feasible. Lately, computer scien-

tists have been busy building parallel and developing algorith

and software to solve problems on them. Onc area that has reccived its fair

share of interest is the develop of parallel algorithms for 1

geometry.

The Voronoi diagram is a mathematical concept attributed to math-
ematician Vorono [1]. Voronoi diagrams have been well studied in com-
putational geometry since the work of Shamos [2] partly because of their
applications in solving geometric problems such as proximity problems and
the Euclidean Minimum spanning tres problem, as well as their applications
insuch diverse aress as biology, visual perception, physics, and archeology

B

There exist many methods to construct Vorinoi diagram on a single
cerputer. Two of them are proposed by Shamos and Brown. In 1975,
Shamos applied two-dimensional Voronoi diagrams to obtain elegant solu-
tions in computational geometry, such as finding the nearest neighbor and
coustruction of minimum spanning trees. Shamos described an O(nlog)
time sequential algorithm to construct the planar Voronoi diagram for a set

of planar points. The strategy he used in the serial algorithm is divide-and-

congquer. In 1979, Brown demonstrated an interesting linkage between the
Voronoi diagram and the convex hull, He presented an O(n logn) algorithm
for constructing the Voronoi diagram, by transforming the problem of con-
strucling a planar Voronoi diagram for an n-points set to the construction
of a convex hull of 1 points in 3-dimensional space vic a geometric transfo:-

mation known as inversion,

In this thesis, the hypercube connected computer network is chosen
as the parallel computation model. Based on Brown's approach [4] which
transforms the problem of construction of a planar a Voronoi diagram for an
11-point set to construction of a convex hull of 1 points in three dimensional
space, a parallel algorithm to construct Voronoi diagrams will be developed.
In this chapter, after we introduce parallel computation models, we will re-
view parallel algorithms to construct Voronoi diagrams. Finally, the outline

of the thesis will be given.

1.1 Parallel Computation Models

In order to review the parallel algorithms to construct Voronoi diagram,

we first review some existing models of parallel computation in this section.

1.1.1 Parallel Random Access Machines

In parallel random access machine (PRAM), a common memory i used
as a bulletin board and all data exchanges are exccuted through it. Any
pait of processors can communicate through this shur:d memory in constant
time. As shown in Fig. 1.1, an interconnection unit (1U) allows each processor
to establish a path to each memory location for the purpose of reading or

wiiting.

The processors operate synchronously and each step of a computation

consists of three phases:

1. The read phase, in which the processors read data from memory;

2. The compule phase, in which arithmetic and logic operations are per-

formed;
3. The write phase, in which the processors write data to memory.

Depending on whether two or more processors ate allowed to read from
and/or wiite to the same memory location simultaneously, three submod-

els of the PRAM are identified:

1. The exclusive-read exclusive-write (EREW) PRAM, where both read
and write accesses by more than one processor to the same memory

location are not allowed.

S

Interconnection
Unit

(1)

PRN

T7T T77

Processors Shared memory

Locations

Figure 1.1: Parallel Random Access Machine

2. The concurrent-read exclusive-write (CREW) PRAM, where simulta-
neous reading from the same memory location is allowed, but not si-

multaneous writing.

3. The concurrent-read concurrent-write (CRCW) PRAM, where both

forms of simultaneous access are allowed.

1.1.2 Processor Networks

In a processor network, an i d set of p to

solve a problem by ing local computations and exchanging messages.

Several of the most widely used networks. are outlined below.
1. Mesh or Two-Dimensional Array
A two-dimensional network is obtained by arranging the n proces-
sors into an m x m array, where m = /. The processor in tow
j and column £ is denoted by (j, &), where 0 < j < m — 1 and
0 < k< m-1. A two-way communication line links (j, k) to its
neighbors (j +1,k), (j = 1,k), (j, & + 1), and (j,k — 1). Processors on
the boundary rows and columns have fewer than four neighbors and
hence fewer connections. Such a network is also known as the mesh
or the mesh-connected compuler (MCC) model. Fig. 1.2 shows a mesh

with n = 16 processors.

Column Number

[1 2 3
Row
Number
o

Figure 1.2: Mesh with n = 16 processors

2. Cube-Connected Cycles

To obtain a cube-connected cycles (CCC) network, we begin with a d-
dimensional hypercube, then replace each of its 2¢ corners with a cycle
of d processors. Each processor in a cycle is connected to a processor in
a neighboring cycle in the same dimension. See Fig. 1.3 for an example
of a CCC network with d = 3 and n = 2%.d = 24 processors. In the
figure, each processor has two indices i, j, where i is the processor order

in cycle j.

»

Stars and Pancakes

Star and pancake are two interconnection networks with the property
that for a given integer 7, each processor corresponds to a distinct per-

mutation of y symbols, say {1,2,..,7}. In other words, both networks

connect n = p! processors, and each processor is labeled with the per-
mutation to which it corresponds. Thus, for = 4, a processor may
have the label 2134, In the star nelwork, denoted by S, a processor
v is connected to a processor u if and only if the label of u can he
obtained from that of v by exchanging the first symbol with the i**
symbol, where 2 < i < 7. Thus fory = 4 ,if v = 2134 and u = 3124,
wand v are connected by a two-way link in Sy, since 3124 and 2134
can be obtained from one another by exchanging the first and third

symbols. Fig. 1.4 shows S;.

26 36
1

T

YRR

31 21 23 33

Figure 1.3: Cube-connected cycles network with d =3 and n =24

3142 2143 a

Figure 1.4: A d-star

3412 2143

Figure 1.5: A 4-pancake

In the pancake nelwork. denoted by P, a processor v is connected
to a processor u if and only if the label of u can be obtained from that
of 1 by flipping ihe first i symbols, where 2 < i < 3. Thus for 7 = 4,
if © = 2134 and u = 4312, u and v are connected by a two-way link in
P, since 4312 can be obtained from 2134 by flipping the four symbols,

and vice versa. Fig. 1.5 shows P,

1.2 Literature Review of Parallel Algorithms
for Constructing Voronoi Diagram

In 1980, Chow in her Ph.D thesis [5] proposed three parallel algorithms

for ing Voronoi di Her were based on Brown's

method [4]. By using the inversion technique, she transformed the construc-
tion of the 2 — d Voronoi diagram to the construction of the 3 — d convex
hull. The computation models she used were CREW PRAM and COC par-
allel computer networks. On the CREW PRAM model, her algorithm runs
in O(log®) time with O(n) processors. On the CCC model, one of her algo-
rithms runs in O(log' 1) time and uses O(n) processors, and the other runs

in O(klog® n) time and uses O(n'+1/*) processors, where, 1 < k < log.

In 1986, Mi Lu [6] presented a parallel algorithm to construct the
Voronoi diagram of a set of planar points. The algorithm is based on Brown's
approach [4] and has O(y/7 log) time complexity on O(y/11 x \/i1) MCC with

constant storage per processors.

In 1988, Preilowski and Mumbeck [7] ted a time-optimal parallel

algorithm to compute Voronoi diagrams. The algorithm runs in Ologn)
time using O(n®) processors on a CREW PRAM. This result is time-optimal
because the sorting problem can be reduced to the Voronoi diagram problem.

The authors showed how their algorithm can compute all edges of the Voronoi

diagram in O(1) time with O(n*) processors.

In 1988, Levcopoulos, Katajainen and Lingas [8] gave a parallel algo-
rithm for computing the Voronoi diagram of a planar point set within a square
window W. The algorithm uses multilevel bucketing and runs in O(log n)
average time on CRCW PRAM with (s /log 1) processors when the points

are drawn independently from a uniform distribution.

In 1989, Evans and Stoj ic [9] d an O(log®n) algorith

for constructing the Voronoi diagram of a set of n points on CREW PRAM.
On the CRCW PRAM model the algorithm runs in O(log?n) time. The

algorithm uses Shamos’s divide-and-conquer method [2].

In 1990, Chang-Sung Jeong [10] gave a parallel time optimal algorithm
which runs in O(y/#) on an /i x /i mesh. The algorithm is based on
the divide-and-conquer approach used by Shamos [2]. The set of points is
sorted by r-coordinate and divided in half into two sets L and R by a vertical
separating line [such that points in L are to the left of / and points in R
are to the right of [. Recursively, the Voronoi diagram Vor(L) and Vor(R)
are computed for the sets L and R, respectively. The two diagrams are
then merged, resulting in Vor(L U R). Vor(L) is the Voronoi diagram of L,
Vor(1) is the Voronoi diagram of R and Vor(LU R) is the Voronoi diagram
of LUR.

In 1992, S.G AKI [11] presented parallel algorithms that compute the
Voronoi Diagram of p points on the star and pancake network computers.
For an n-star or n-pancake with p = n! processors, given p planar points
stored in the processors such that each processor holds one point and has a
memory of constant size, the Voronoi diagram of these points can be found

in O(n" log? n) time.

In this Chapter, we review parallel computation models and parallel
algorithms of constructing Voronni diagrams. The most popular processor
interconnection topology today is undoubtedly the hypercube. The hyper-
cube is one of the most versatile and efficient networks thus far discovered

for parallel computation [12) because:

b

o In a hyp , using ons per processor, 2! processor may
be interconnected such that the maximum distance between any two
processors is d. While linear array, tree, Mesh and Mesh of trec use

a smaller number of ions per the i distance

between processors is larger.

Most other popular networks are easily mapped into a hypercube, In
particular, the n-node hypercube can simulate any O(n)-node array,

tree, or mesh of trees with only a small constant factor slowdown [12].

Hypercube has the advantage of being a well studied network. Efficient

algorithms are known for routing messages between processors in a

15

hypercube. A large corpus of software and programming techniques

exist for hypercubes [13].

o A hypercube is completely symmetric. Every processor's interconnec-
tion pattern is like that of every other processor. Furthermore, a hyper-

cube is completely d ble into sub-hypercubes (i.c., hypercubes

of smaller dimension). This property makes it relatively easy to imple-

ment recursive divide-and-conquer algorithms on the hypercube [14].

In a hypercube connected computer networks, local computations as well
as message exchanges are taken into consideration when analyzing the time
taken by the processor networks to solve a problem. When designing an
algorithm for a processor network , the routing of messages from one pro-
cessor to another is the responsibility of the algorithm designer. In Chap-
ter 2, we will introduce the parallel computation model used in the thesis.

Based on Nassimi and Sahni’s paper [15], several fundamental operations

b

on hyp connect networks are described. The gi
programs are also given. All those operations will be used in chapter 3. In
Chapter 3, Based on Brown’s method, we will develop a parallel algorithm

to construct Voronoi di Our algorithm runs in O(log®) time on an

O(n)-p hypercut d network. Our algorithm is

based on Brown's method which transforms the problem of construction of a
planar a Voronoi diagram for an n-point set to construction of a convex hull

of i points in three dimensional space. Comparing with the parallel algo-

16

tithms which are based on the divide-and-conquer approach used by Shamos,
our algorithm can be used to solve two computational geometry problems:
constructing 2—dimensional Voronoi diagram and 3— dimensional convex
hull. Comparing with Chow's methods[5] which runs on a O(n) processors
CCC (Cube-Connected Cycles) model has O(log"n) time complexity, our
algorithm has less time complexity. Comparing with Chang-Sung Jeong’s

algorithm(10] which runs in O(y/) on an i x /i mesh, our parallel com-

putation model is more general. Most other popular networks can be easily

mapped onto a hypercube[12].

Chapter 2

Hypercube Connected
Computer Network and Its
Fundamental Operations

In this chapter, the SIMD hypercube connected computer network will

be defined. Some fund 1 ions on it will be described and corre-

sponding programs will also be given.

2.1 SIMD Hypercube Connected Computer
Network

According to Michael J. Finn's [16] taxonomy of computer architecture,
parallel computers are divided into two categories, single instruction mul-

tiple data streams (SIMD) and multiple instruction multiple data streams

18

(MIMD). A block diagram for a SIMD computer is given in Figure 2.1.

As can be seen, an SIMD consists of n ing el ts(PE’s).

The PE’s are indexed 0 through n —1 and may be referenced as PI(i). Each
PE has its local memory. The PE's are synchronized and operate under
the control program. PE's may be enabled or disabled so that the common
instruction for any given time-unit is executed only on enabled PE’s. This
enabling and disabling of PE’s can be done without the use of separate con-
trol lines for each PE as long as each PE knows its own index [17]. The
PE's are connected together via an interconnection network. Different in-
terconnection networks lead to different SIMD architectures. In this thesis,

hypercube connect SIMD computers are considered.

Assume that n = 2% and let iy_; - +io be the binary representation of
ifor i € [0,n —1). Let i”) be the number whose binary representation is
i4-1* - db4175ih1 * + G0, Where 7, is the complement of i, and 0 < b < d. That

is, i is obtained by complementing the b'th bit of i's binary representation.

In the hypercube model processor i is to iM,0<h<d

Fig. 2.2 shows an example of n = 16 processor hypercube.

The hypercube is an excellent (and popular) choice for the architecture
of a multipurpose parallel machine. In this thesis, we choose the SIMD

hypercube connected computer networks as our parallel computation model.

1/0
¥
1/0 4
| Control Program
l ‘ Unit Memory
l P! Processing
Element 0 Data
e Memory
| Processing
i ¢ Element 1 [~ 7| Data
Memory
| < Processing
Element n- 1[5] Data
l Memory

Inter-
connection
Network

Figure 2.1: Block diagram of an SIMD computer

20

Figure 2.2: 16 processor hypercube

21

2.2 Fundamental Operations on Hypercube
Connected Computer Network

In this section, based on Nassimi and Sahni's paper[15], several funda-

mental ions on hypercub d computer networks are descrip-
tively discussed. The derivations and the ding programs are also
given after the description of each jon. All those operations will be

used in chapter 3. Therefore, this section can be considered as the prepara-
tion for chapter 3. Only operations which are used will be discussed. Based
on this, some very basic operations, such as data accumulation and consecu-
tive sum on hypercube connected computer network, will not be mentioned

in this section. For more details, [18] would be a good reference.

Before the fund: 1 ions on b d

networks are introduced, some programming notation used is given as follows:

L. The notation i*) is to represent the number that differs from i in exactly
bit b. The square brackets ([]) are used to index an array and the
parentheses (*()') are used to index PEs. Thus Ali] refers to the i"th
element of array A and A(i) refers to the A register of PE i. A[f](i)
refers to the j'th clement of array A in PE i, The local memory in each

PE holds data only (i.c., no executable instructions). PEs need to be

22

»

able to perform only the basic arithmetic operations.

There are a separate program memory and a control unit. The con-
trol unit performs instruction sequencing, fetching, and decoding. In
addition, instructions and masks are broadcasted by the control unit
to the PEs for execution. An insfruction mask is a boolean function
used to select certain PEs to execute an instruction. For example, in
the instruction
AG) = AG) 41, (o = 1)

(io = 1) is a mask that selects only those PEs whose index has bit 0
eqial to1,

Interprocessor assignments are denoted using the symbol * «—, while
intraprocessor assignments are d.ioted using the symbol * :=". Thus

the assignment statement:
B(i®) — B(i), (72 = 0)

on a hypercube is executed only by the processors with bit 2 equal to 0.
These processors transmit their A register data to the corresponding

processors with bit 2 equal to 1.

A d-dimensional hypercube can be partitioned into windows of size
2% processors each. Assume that this is done in such a way that the

processor indices in each window differ only in their least significant k

23

bits. As a result, the proccssors on each window form a subhypercube

of dimension k.

2.2.1 Maximum

Assume that a dimension d hypercube is partitioned into subhypercubes

(or windows) of dimension k, where P = 2/ and W = 2. If I = iW + ¢
(0 < ¢ < W) is a processor index, then processor is the ¢'th processor in
window i. This processor is to compute the maximum element of all elements,

where, 0<i< P/W, 0<qg< W.

The maximum relative to the whole size W window are obtained as

below:

1. If a processor is in the left 2¢~! subwindow, then its maximum is un-

changed.

2. The maximum of a processor in the right subwindow is its maximum
when considered as a member of a 2~! window compared to the max-

imum of the A values in the left subwindow.

Table 2.1 gives an example maximum computation . The number of
processors and the window size W = 2* are both 8. Line 0 gives the initial
A values. The maximum in the current windows are stored in the § registers

and the maximum of the A values of the processors in the current windows

24

are stored in the T registers. We begin with windows of size 1. The initial
S and T values are given in lines 1 and 2, respectively. Next, the S and 7'
values for windows of size 2 are obtained. These are given in lincs 3 and .
Line 5 and 6 give the S and 7' values when the window size is 4 and lines 9
and 10 give these values for the case when the window size is 8. The program

in table 2.2 is the resulting procedure. Its time complexity is O(k).

2.2.2 Ranking

Associated with processor, i, in each size 2¢ window of a hypercube s
a flag selected(i) which is true iff this is a selected processor. The objective
of ranking is to assign to each selected processor a rank such that rank(i) is
the number of selected processors of the window with index less than i. Linc
0 of Table 2.3 shows the selected processors in a window of size cight with

an +. The ranks to be computed are shown in line 1.

The ranks of the selected processors in a window of size 2¢ can he
computed easily if we know the following information for the processors in

cach of the size 2¢~! subwindows that comprise the size 2* window:
1. Rank of each selected processor in the 2¢~! subwindows

2. Total number of selected processors in each 2¢~! subwindow

If a processor is in the left 2! subwindow then its rank in the 2¢

25

PE
line

Table 2.1: Example to compute maximum in an SIMD hypercube

26

procedure SIMDMarimum(A, k.
{Compute the Maximum of A in
begin
{Initialize for size 1 windows}
8(3) := AQE); T(7) = AGi);
{compute for size 2+! windows}
forb:=0tok-1do

ndows of size 2%}

begin
B(®) — T(i);
8(i) = B(i), (S(5) < B(i) and i, = 1);
() = B, (7)< B

end;
end; {of SIM D Marimum}

Table 2.2: Program for SIMD Maximum

window is the same as its rank in subwindow. Ifit is in the right subwindow,

its rank is its rank in the subwindow plus the number of selected processors

in the left subwindow. Line 2 of Table 2.3 shows the rank of each sclected

processor relative to subwindows of size 4. Line 3 shows the total number of

selected processors in each subwindow.

Let R(i) and (i), respectively, denote the rank of processor i (if it is

a selected processor) and the number of selected processors in the current

window that contains processor i. The strategy to connt ranks in windows of

size 2* is to begin with R and S for windows of size one and then repeatedly

double the window size until reaching a window size of 2. For windows of

size one, it is given:

Table 2.3: Example to compute ranks in an SIMD hypercube

28

RG) = 0

7 1 if i is selected
$:

0 { 0 otherwise

Lines 4 and 5 of Table 2 give the initial t and values. Lines 6

and 7 give the values for windows of size 2. Lines 8 and 9 give these for
windows of size 4, and lines 10 and 11 give them for a widow size of 8. The
ranks for the processors that are not selected may now be set 10 00 10 get the
configuration ofline 1. The procedure to compute ranks s given in Table 2.4,
This procedure is due fo Nassimi and Sahi (15] and its complexity i rendily

seen to be O(k).

2.2.3 Concentration

In a data concentration operation, it begins with one record, (4, in cach
of the processors selected for this operation. The selected processors have
been ranked and the rank information is in a field R of the record. Assume
the window size is 2%, The objective is to move the ranked records in cach
window to the processor whose position in the window cquals the record
rank. Line 0 of Table 2.5 gives an initial configuration for an SIMD cight
processor window. The records are shown as pairs with the second entry

in each pair being the rank. It is assumed that the processors that are not

29

procedure rank(k);
{Compute the rank of selected processors in windows of size 2*}
{SIMD hypercube}
begin
{Tnitialize for size 1 windows)
R(i) = 0;
i sclected(i)
then S(i)
else S(i) :

{Compute for size 2"*' windows}
forb:=0tok—1do

begin
(i) = S(@);
R(3) = R(E) + T(i), (3 =1);
3 S(@i) = S() + T()
R(i)':= o, (not selccled(i));
end; {of rnk}

Table 2.4: Program for SIMD ranking procedure

PE
line %
0 |(-) (B,0) (o) (D,1) (E,2) (-, 00) (G3) (H, 1)

0 1 2 3 4 5 6 7

1 [(B,0) (D,1) (E,2) (G,3) (H,4) (o) (hoo) (- o)
2 |(BO) (o) (o) (D,1) (E,2) (- o0) (H4) (G,3)

3 |(B,0) (D,1) (- 00) (o) (H,4) (o) (E2) (G,3)

Table 2.5: Example to concentrate in SIMD hypercube

selected for the concentration operation have a rank of co. The result of the
concentration is shown in line 1. Let B, D, E, H be represented individal

records.

Data concentration can be done in O(k) time by obtaining the agrec-
ment between the bits of the destination of a record and its present location
in the order 0, 1, 2, -+, k — 1 [15]. For example, let us seck agrecment on
bit 0. Examining the initial configuration (line 0), it can be scen that the
destination and present location of records B, G and H disagrec on bil 0.
To obtain agreement, these records with the records in neighbor processors
along bit 0 are exchanged. This gives the configuration of line 2. Examining
the bit 1 of destination and present location in line 2, it can also be scen

that records D, E and H have a disagreement. Exchanging these zecords

31

procedure concentrate (G, k);
{Concentrate records G' in <lected processors. 2* is the window size}
{Itis the rank field of a recczd}
begin
for b:=0tok—1do
begin
F() « G(i);
G(i) — (i), ((G(i)-R # oo and (G(i). R)y # i)
or (F(i).R % oo and (F(i).R), #is)));

end;
end; {of concentralc)

Table 2.6: Program for procedure to concentrate records

with their neighbors along bit 1 yields line 3. Finally, let us examine bit 2 of
the destination and present location of records in line 3 and determine that
records E and G need to be exchanged with their neighbors along bit 2. This

results in the desired final configuration of line 1.

2.2.4 Distribution

Data distribution is the inverse of data concentration. It begins with
records in processors 0, -+, 1 of a hypercube window of size 2. Each record

has a destination D(i) iated with it. The destinations in each window

are such that D(0) < D(1) -+ < D(r). The record that is initially in proces-
sor i of the window is to be routed to the J(i)'th processor of the window.

Note that r may vary from window to window. Line 0 of Table 2.7 gives

\PE 0 1 2 3 4 5 6 7
line

0 ((A,3) (B,4) (C7) (- 00) (-00) (o) (o) (o)
1 () (00) () (A,3) (B4) () (he0) (C,7)
2 [(A,3) (hoo) (- o0) (e0) (o) (Bi4) (C7) (- e0)

3 | oo) () (A8) (-y00) (- 00) (B,4) (C,7) (o)

Table 2.7: Example to distribute in an SIMD hypercube

an initial configuration for data distribution in an eight processor window of

an SIMD hypercube. Each record is d as a tuple with the second

entry being the destination. Line 1 gives the result of the distribution.

Since data distribution is the inverse of data concentration, it can be
carried out by running the concentration procedure in reverse [15]. The
result is the program in Table 2.8. Lines 2, 3, and 1 of Table 2.7 give
the configurations for the exsmple following the iterations b = 2, 1, and 0,

respectively, shown in Table 2.8,

2.2.5 Generalization

The initial configuration for a generalization is similar to that for a

data distribution. It begins with records, G, in processors 0, -+, r of a

33

procedure dislribute (G, k);
{Distribute records G 2* is the window size}
begin
for b := k-1 downto 0 do
begin
(M) — Gi);
G(3) & 1G), (GG)-D # 00 and (GG).D)s # i)
or (F(i).D # oo and (F(z).D), # #)));
end;
end; {of distribulc)

Table 2.8: Program for procedute to distribute records

hypercube window of size 2%, Each record, G(i), has a high destination
((#).11 associated withit, 0 < i <r. The high destinations in each window
are such that (/0).// < G(1).0l < -+ G(r).H. Let G(~1).1l = 0. The
record which is initially in processor i of the window is to be routed to
processors G(i —1).11, (i — 1)1l + 1, -+, G(i).H of the window,0< i <r.
Note that » may vary from window to window. Line O of Table 2.9 gives an

initial jon for data in an eight processor window of

an SIMD hypercube. Each record is represented as a tuple with the second

entry being the high destination, Line 1 gives the result of the generalization.

Data generalization is done by repeatedly reducing the window size
by half [15]. When the window size is halved, it should be ensured that all
records needed in the reduced window are present in that window. Beginning

with a window size of eight and line 0 of Table 2.9, each processor sends its

34

~JPE
line
0

1

0

1

2

3

4

5

6

(4,3)
(A4,3)
(-)
(- 0)
(4,3
©n
©n
(4,3)

(B,4)

(B,4)
(4,3)
(- 00)
(- 20)
(8,4)
()
(-)
(B,4)

(A,3)

()]
(A, 3)
(- 00)
(- 00)
©n
(A, 3)
(4,3)
(4,3)

(B, 4)

(-)
(A,3)
(-)
(+y20)
(-1 00)
(B,4)
(B, 4)
(B,4)

(4,3)

(- 00)
(B, 4)
(4,3)
(+20)
(- o)
()]
@)
@

(B,4)

(- 00)
©n
(B,4)
(B,4)
(B,4)
(-)
() 00)
(B, 4)

©n

(+00)
@
©7)
(<7
(€
() 00)
(- 00)
(4]

(- 00)

Q = = Q0

=

Table 2.9: Example to generalize in an SIMD hypercube

record to its neighbor processor along bit 2. The neighbor processor receives
the record in /. Line 2 shows the /” values following the transfer. Next, some
[7sand G's are eliminated. This is done by comparing the high destination of
arecord with the lowest processor indexin the size four window that contains
the record. If the comparison succeeds, then, the record is not needed in the
size four window. Applying this elimination criterion to line 0 results in the
elimination of no G'. However, when the criterion is applied to the /s of line
2, I'(4) is climinated and the configuration of line 3 will be given. At this
point each window of size four has all the records needed in that window.
The records are, however, in both F and G. To consolidate the required

records into the G's alone, the following consolidation criterion is used:
replace Gi(i) by F(i) in case F(i).H < G(i).H

i.c., of the two record: in a PE, the one with smaller high destination survives.

Applying the consolidation criterion to lines 0 and 3 results in line 4.

Next, records are transferred along bit 1. The F values following this
transfer are given in line 5. Following the application of the elimination cri-
terion, the /' value of line 6 is obtained. The (i values are unchanged. When
the consolidation criterion is applied, the G values are as in line 7. Line 8
shows the /' values following a transfer along bit 0. The elimination criterion
results in line 1. Procedure generalize shown in Table 2.10 implements the

generalization strategy just outlined.

36

procedure generalize (G, k);
{Generalize records G. 2* is the window size}
begin
for b :=k—1 downto 0 do
begin
{Transfer to neighboring window of size 2"}

F(i) — G(i);

{Elimination criterion}
G(i).H = 00,(G(i).1 <i—is1.0);
FQ).H = oo, (P(i).H < i —ip1.0):

{Consolidation criterion}
G(i) = FG),(F@).H < G(i).11);

end;
end; {of generaliz

Table 2.10: Program for procedure to generalize records

37

For a natural number i, i,_,, is the number obtained from i by flipping

all the bits in the binary representation of i from the nth to the mth place.

2.2.6 Merging and Unmerging

Given two sorted sequences cach stored in a hypercube of size n/2, their
merging can be done in O(log n) time. Merging two sorted sequences can be

done by bitonic sort.

A bilonic sequence is a nonincreasing sequence of numbers followed by
a nondecreasing sequence. Either (or both) of these may be empty. The
sequence has the form &y > 32 -+ > 2 £ x4y < - ++ £ T, for some £,
1 < k < n. Thesequences 10, 9,9, 4, 5,7,9; 2, 3,4, 5,87, 6, 4,3, 1; and

11, 2, 5,6, 8, 9 are examples of bitonic sequences.

A bilonic snrt is a process which sorts a bitonic sequence into either
nonincreasing or nondecreasing order. Suppose we are given two sorted se-
quences y < 1w < Sy and wy < wy; < -ov < wp. First reverse one

of sequences. This can be done in Ologn) time by doing the reversing

procedure.

Suppose we have a revising sequence {vq,vy,- -, v}, we get sequence
{1,021, - Lvg,m}. By concatenating two sequences to obtain the bitonic

sequence 1y 2 vy = 20 Twy Swp s SWm = 2y D D3

38

procedure SIMDRevising(A, k);
{The sequence is stored in window of size 2" } {Revising all the elements in
windows of size 2¢}
begin
forb:=0tok—2do
A = AG)
end; {of SIM D Revising)

Table 2.11; Program for SIMD Reversing

< p4r <0 < @, wheren = [+ m. The resulting bitonic sequence is then
sorted using a bitonic sort to obtain the desited merged sequence. So, for
example, if it is desired to merge the sequences (2, 8, 20, 24) and (1, 9, 10,
11, 12, 13, 30), the bitonic sequence (24, 20, 8, 2, 1, 9, 10, 11, 12, 13, 30)
should be first created.

Batcher’s bitonic sort [19] is ideally suitable for implementation on
a hypercube computer. Batcher's algorithm to sorl the bitonic sequence

1,7+ -,y into nondecreasing order is given in Table 2.12.

Example: Consider the bitonic sequence (24, 20, 8, 2, 1. 9, 10, 11, 12,
13, 30). Suppose we wish to sort this into nondecreasing order. The odd
sequence is (24, 8, 1, 10, 12, 30) and the even sequence is (20, 2, 9, 11,
13). Sorting these, the sequences (1, 8, 10, 12, 24, 30) and (2, 9, 11, 13, 20)
are obtained. Putting the sorted odd and even parts together, the sequence
(1, 2, 8,9,10, 11,12, 13, 24, 20, 30) is given. After performing the [n/2]

compare/exchanges of step 3, the sorted sequence (1,2, 8,9, 10, 11,12, 13,

39

Step 1: [Sort odd subsequence] If n > 2 then recursively sort the
odd bitonic subsequence zy, &3, 73, -+ into nondecreasing
order

Step 2 [Sort even subsequence] If n > 2 then recursively sort the
even bitonic subsequence 3, &, g, - - - into nondecreas-
ing order

[Compare/exchange] Compare the pairs of elements ;
and ;4 for i 0dd and exchange them in case 2; > w41

Slep

Table 2.12: Bitonic sort into nondecreasing order
20, 24, 30) is obtained.0

When 1 is a power of 2, the recursion in Table 2.12 can be unfolded to
obtain the comparing/exchanging algorithm of the program in Table 2.13.
In cach iteration of the while loop, each sequence element is paired with
exactly one other sequence element that is a distance d from it. The pairs
are formed from left to right. To obtain a nondecreasing sequence each com-
paring/exchanging causes the smaller element of the pair to move to the left
position. If a nonincreasing sequence is desired the smaller element is moved
to the right. Table 2.14 shows an eight element bitonic merge that results in
a nondecreasing sequence and Table 2.15 gives an example that results in a
nonincreasing sequence. The examples assume the elements to be sorted are
stored in processors of a hypercube with one element per processor. As can be
seen, the elements that form each of the pairs for the comparing/exchanging

be neighb Hence each iter-

tion are in p that are hyp

40

procedure BilonicSori(n);
{Sort the bitonic sequence iy, -+ ..}
{n is a power of 2}
begin
d=n/2
while d > 0 do
begin
compare/exchange elements d apart
d=d/2;

end;
end; {of BilonicSort}

Table 2.13: Iterative bitonic sort for », a power of 2

ation of the while loop of the program in Table 2.13 takes (1) time on a
hypercube. The total time to sort an n element bitonic sequence is thercfore

O(log n).

Given a sorted sequence of clements so that part of the elements belong
10 a set A (thus the remaining belong to /) and each element knows the
corresponding rank in A or 7, permute the sequence to return each A and
7. This can be done by running the merging algorithm in reverse order

Therefore, Unmerging can be done in O(log n) time.

2.2.7 Sorting

To sort n elements using bitonic sort, we begin with sorted sequences of
size one. Adjacent pairs of these form bitonic sequences that are sorted (in

parallel) to obtain sorted sequences of size two. The sorting is done such

41

1 1230 7 6435 2
|

Table 2.14: Power of 2 bitonic sort (nondecreasing order)

Table 2.15: Power of 2 bitonic sort (nonincreasing order)

43

1 I 0 d

that the size two are ing and

sequences (i.e, the first, third, fifth, ... , sequences are nonincreasing and the

der are nondecreasing). C ly every pair of adjacent size two

sequences forms a bitonic sequence of size four which can be sorted using
bitonic sort. The size four sequences are also sorted alternately into nonin-
creasing and nondecreasing order. Continuing in this way, we can obtain a
sorted sequence of size n after logn bitonic sorting steps. Note that if the
sorted sequence is to be in nondecreasing order, then the last bitonic sort
step should sort the first and only resulting sequence into this order. The
total time for the sorting is O(log? n).
Example: Sorting following sequence
camfhapdgjlkbeio
into nondecreasing order and that a < b < - < o < p. The pairs (c n),
(m £), (h a), (p d), (g §), (1 k), (b) and (i o) are bitonic sequences that are
sorted by using bitonic sort to obtain the sequence:
ncfmhadpjgklebio
Note that the odd pairs were sorted into nonincreasing order while the even
ones were sorted into nondecreasing order. Next let us consider the adjacent.
sequences of length four. These are (n cfm), (ha d p), (j g k1) and (e bi o).

Since each is a bitonic sequence, it may be sorted using bitonic sort. The

result is:

44

nmfcadhplkjgbeio

Once again the odd are sorted into noni ing order while the

even ones are sorted into nondecreasing order. Two bitonic sequences of
length cight, (n mfcadhp)and (1kjgbeio),are given. Sorting them

will give the sequence:
pnmhfdcabegijklo

Sorting it into nondecreasing order results in the sequence:
abcdefghijklmnop

a

2.2.8 Random Access Read

In a random access read (RAR), some of the processors of the hypercube
wish to read data from other processors of the hypercube. Let A(i) be the
PE from which processor i wishes to get data. The data to be obtained is
D(A(3)). Tn case PE i does not wish to read data from any other PE, then
A(i) = oo. Line 0 of Table 2.16 gives the A values for an example RAR
in an eight processor hypercube. Note that in an RAR, several processors
may read from the same PE. An RAR can be done in O(log? 1) time in an n
processor hypercube using the algorithm of the program shown in Table 2.17

18]

Peal $5300% wopuel & jo aidurexy 91z A[qe],

1os ®aw) (9 (Was) (Wav ((Mas) &) (&)a 1) ((va'o) et
(9) (o) ((Wa'9) ((Wa'v) ((Wa'o) ((e)a's) ((Ba'1) ((Ma'e) =zt

az[eIaua3 ((Wa's) (wa's) ((va‘e) ((e)a‘z) ((e)a‘z) ((Ua‘o) 1t
((2)a‘'s) ((w)a‘e) ((e)a‘z) (()a‘o) ot

ajesjudu0d ((2)a‘e) ((a'z) (e)a'n) ((Va‘o) 6
(()a‘e) ((Ma‘z) ((e)a'n) ((Ma‘o) 8

amquistp (L'g) (v'z) (£'1) ('0) L
(1'g) (¥'2) (£'1) (10) 9

21e13u9010> (s'2'e) (e%'2) (ze'1) (o'T'0) ¢
(s'2's) (ev2) (2'c') (or'0) ¥

ques € (4 0 £
108 (19'0) (rz'o0) (1e'z) ('v2) (o%) Gu'e) (GTe) (e 2
(vrg) (vo'eo) (es) () () (P'e) (r'e) (Fo'w) 1

v £ o L L 1 © £ 14 0

L 9 Lt ¥ € z 1 0 dogs

ad

46

Step 1:

Step 2

Step 4:

Step 4:

Step 5

Step 6:

Step 7

Step 8:

Step 9

Each processor « creates a triple (A(a),a, [lay) where
[lag is a Boolean entity that is initially true.

{Sort] Sort the triples into nondecreasing order of the read
address (a). Triples with the same read address are in
nondecreasing order of the PE index ¢. Furthermore,
during the sort, the [lag entty of a triple is set to false
in case there is a triple to its right with the same read
address.

[Rank] Processor with triples whose first component # co
and whose third component (i.c., flag) is truc are ranked.

Each processor b that has a triple (A(a), a,true) with
A(a) # oo creates a triple of the form (/(h), A(u), b)
where R(b) is the rank computed in the preceding step.

[Concentrate] The triples just created are concentrated.

Each processor ¢ that has a concentrated triple
(7(b), A(a), b) creates a tuple of the form (¢, A(a)). Note
that since ¢ = R(h) this tuple is just the first two com-
ponents of the triple.

[Distribute] The tuples ate distributed using the second
component as the destination address.

Each processor /(a) that receives a tuple (¢, A(a)) cre-
ates the tuple (¢, D(A(a))).

[Concentrate] The tuples created in the preceding step
are d using the first as tke rank.

47

Step 10:

Step 11:

Step 19:

Step 19

Each processor ¢ that received a tuple (c, D(A(a))) in the
last step also has a triple of the form (R(5), A(a), b) that
it received in Step 5 (notice that ¢ = R(b)). Using this
triple and the tuple received in Step 9 it creates the triple

(b, D(A(a))-

[Generalize] The tuples (b, D(A(a))) are generalized using
the first component as the high destination.

Each processor that recaved a tuple (b, D(A(a))) in
Step 11 also has a triple (A(a),q, flag) that it at ob-
tained as a result of the sort of Step 2. Using informa-
tion from the tuple and the triple at creates a new tuple
(a, D(A(a))). Processars that it did not receive a tuple
use the triple they received in Step 2 and form the tuple
(@-).

[Sort] The newly created tuples of Step 12 are sorted by
their first component.

Table 2.17: Algorithm for a random access read

48

Consider the example of Table 2.16. In Step 1, each processor creates a
triple with the first component being the index of the processor from which
it wants to read data; the second component is its own index; and the third
component is a flag that is initially true(t) for all triples. Then, in Step 2
the triples are sorted on the first component. Triples that have the same first
component are in increasing order of their second component. Within each
sequence of triples that have the same first component only the last one has
a true flag. The flag for the remaining triples is false. The first components
of the triples with a true flag give all the distinct processors from which data

is to be read.

Processors 0, 2, 3, and 5 are ranked in Step 3. Since the highest rank
is three, data is to read from only four distinct processors. In Step 4, the
ranked processors create triples of the form (R(b), A(e),b). The triples are
then concentrated. Processors 0 through 3 receive the concentrated triples
and form tuples of the form (¢, A(a)). Because of the sort of Step 2, the
second components of these tuples aze in ascending order. Hence, they can
be routed to the processors given by the second component using a data
distribution as in Step 7. The destination processors of these tuples are the
distinct processors whose data is to be read. These destinaiion processors
create, in Step 8, tuples of the form (c, D(A(«))) where ¢ is the index of the
processor that originated the tuple it received. These tuples are concentrated

in Step 9 using the fixst component as the rank.

49

In Step 10, the receiving processors (i.c., 0 through 3) use the triples
received in Step 5 and the tuples received in Step 9 to create tuples of the
form (b, D(A(a))). The first component is the index of the processor that
originated the triple received in Step 5. Since the triples received in Step 5 are
the result of a concentration, the first component of the newly formed tuples
are in ascending order. The tuples are therefore ready for generalization
using the first component as the high index. This is done in Step 11. After
this generalization we have the right number of copies of each data. For
example, two processors (4 and 5) wanted to read from processor 7 and
we now have two copies of D(7). Comparing the triples of Step 2 and the
tuples of Step 11, we see that the second component of the triples tells us
where the data in the tuples is to be routed to. In Step 12 we create tuples
that contain the destination processor and the data. Since the destination
addresses are not in ascending order the tuples cannot be routed to their

using a distribute. Rather, they must be sorted by

destination.

2.2.9 Random Access Write

A random access write (RAW) is like a random access read except that
processors wish to write to other processors rather than to read from them.
A random access write uses many of the basic steps used by a random access

read. It is, however, quite a bit simpler. Line 0 of Table 2.18 gives the

50

index A(i) of the processor to which processor i wants to write its data D(i).
A(i) = oo when processor i is not to write to another processor. Observe
that it is possible for several processors to have the same write address A.
When this happens, it is said that the RAW has collisions. It is possible to

formulate several strategies to handle collisions. Three of these arc:

1. Arbitrary RAW of all the processors that attempt to write to the
same processor exactly one succeeds. Any of these writing processors

may succeed.

»

Highest/lowest RAW of all the processors that attempt to write to

the same processor the one with the highest (lowest) index succeeds.

3. Combining RAW all the succeed in getting their data to

the target processors.

Consider the example of line 0 of Table 2.18. In an arbitrary RAW any
one of D(0), D(2) and D(7) will get to processor 3. One of D(1) and 1)(5)
will get to processos 0. And D(3) and 1(4) will get to processors 4 and 6,
respectively. In a highest RAW D(7), 1(5), D(3), and D(4), respectively,
get to p 3,0, 4, and 6, respectively. In a lowest RAW D(0), (1),

D(3) and D(4) get to 3,04,and 6, respectively. In a combini

RAW D(0), D(2), and D(7) all get to processor 3. Both D(1) and 1)(5) get
to processor 0. And D(3) and /)(4) get to processors 4 and 6, respectively.

51

2jum ssa00® wopuel Lrerjiqre ue jo ajduwrexy :gI'Z IqRL

anquisp [CROIED) @ e)aw) (1*()a’e) (0(s)ao) s
arenuadn0d (e'(v)a‘e) (@'(e)a‘'y) (1°(2)a‘e) (o'(s)a‘o) s
(g SQ 9) (2 En ¥) (1" EQ €) Q.EQ ‘0) v
yuer €
yi08 (1*(9)a ‘o) :.Sn 9) :,:5 ¥) (1 EQ e) (['@)a‘e) (F(o)a‘'e) (- ?.E ‘) (SH()a‘e) z
G'a‘e) G9)a‘e) Gs)ao) G'(va‘e) ('e)ay) ('@a'e) G(are) Ga‘'s) 1
v € oo 0 9 v £ 0 £ 0
L 9 S ¥y € z 1 0 dars
ad

The steps involved in an arbitrary RAW are given in Table 2.19 [15].
Let us go through the example in Table 2.18. Each processor first creates
triples whose first component is the index, A(a), of the processor to which it
is to write. Its second component is the data, (), to be written and the
third component is true. The triples are then sorted on the first component.
During this sort the flag entry of a triple is changed to false in case there
is a triple with the same write address to its right. Only the triples with
a true flig are involved in the remainder of the algorithm. Notice that for
each distinct write address there will be exactly one triple with a truc flag.
The processors that have a triple with a true flag are ranked (Step 3) and
these processors create new triples whose first and second components arc
the same as in the old triples but whose third component is the rank. The
triples are then concentrated using this rank information. Since the triples
are in ascending order of the write addresses (first component) they may be
routed to these processors using a data distribute operation. Note that for
Step 6 the third component (i.c., rank) of each triple may be dropped before
the distribute begins.

The complexity of a random access write is determined by the sort step

which takes O(log?) time where n is the number of processors.

A highest (lowest) RAW can be done by modifying the program in
Table 2.19 slightly. Step 1 creates 4-tuples instead of triples. The fourth

53

Slep 1:

Step 2

Step 3:

Step 4

Step 5

Step 6:

Each processor « creates a triple (A(a), D(a), [lag) where
[lag is a Boolean entity that is initially true.

[Sort] Sort the triples into nondecreasing order of the
write address A(a). Ties ate broken arbitrarily and dur-
ing the sort the [lag entry of a triple is set o false in case
thete is a triple o its right with the same write address.

[Rank] Processors with triples whose first component is
not oo and whose third component (i.c., flag) is true are
ranked.

Each processor b that has a triple (A(a), D(a), true) with
A(n) # oo creates u triple of the form (A(a), D(a), R(b))
where R(l) is the rank computed in the preceding step.

[Concentrate] the triples just created are concentrated.

[Distribute] the concentrated triples are distributed using
the first component as the d. stination address.

Table 2.19: Algorithin for an arbitraty random access write

54

component is the index of the originating processor. In the sort step (Step 2)
ties are broken by the fourth component in such a way that the right most
4-tuple in any sequence with the same write address is the 4-tuple o be suc-
ceeded (i.c., highest of lowest fourth component in the sequence). Following
this the fourth component may be diopped from cach 4-tuple. The remaining

steps are unchanged.

The steps for a combining RAW are also similar to those in the program
shown in Table 2.19. When the ranking of Step 3 is done, a version of
procedure rank (Table 2.14) is used, which does not contain the last linc
(R(i) := oo,(not selccled(i))). As a result processor 0 (Table 2.18) has a
rank of 0 and processors 2 and 3 have a rank of 1. During the concentration
step (Step 5) more than one triple will try to get to the same processor.
Procedure concentrate (Table 2.14) is modified to combine together triples
that have the same rank. These modifications do not change the asymptotic
complexity of the RAW unless the combining operation increases the triple
size (as in a concatenate). In case d data values are to reach the same

destination, the complexity is O(log n + dlogn).

2.2.10 Precede

Given two sorted lists A = (a1,az,..., @) and B = (by, byyeeey b)), we
define the predecessor of «; as the least element {; in /3 previous to «; in the

sorted list of A and B, i.c. b; < «; < bjyy. If there is no such b;, we assumeiits

55

predecessor is the least element b, in 3. The Precede operation computes,
for each element «; in A, its predecessor in . The Precede operation can be
petformed in the following way: For each element in list B, we assign a flag.
Merging two sorted lists A and 3, we can get a sorted list C. Performing
rank operation, for each element a;, we can get its predecessor in B. The

Precede operation can be done in O(log n) time.

2.2.11 Summary

In this subsection, we provide a summary. In the following, M and W
are powers of 2. They represent the size (i.c., the number of processors) in
a subhypercube. Unless otherwise stated, the size of the full hypercube is

denoted by P

1. Maximum
Task: This works on each dimension k, k = log W, subhypercube of
an SIMD hypercube. The hypercube PE [= il +¢, 0 < g < W is the
¢/t PE in the /'th dimension k subhypercube. This PE in

its § register, the maximum of the A register values of the 0'th though
¢/th PEs in its subhypercube, 0 < g < W,0 < i < w, where w is the

number of subhypercubes of dimension k.
Complexity: O(k).
2. Ranking

56

w

-~

e

Task: Rank the selected processors in each size 2* window of the SIMD

hypercube.

Complexity: O(k).

. Concentration

Task: Let G(i).R be the rank of each selected processor i in the window
of size 2* that it is contained in. For each selected PE, i, the record
G(i) is sent to the Gi(i).R'th PE in the size 2% window that contains
PE .

Complexity: O(k).

. Distribution

Task: This is the inverse of a concentration.

Complexity: O(k).

Generalization

Task: Each record (/(7) has a high destination (/(7).//. The high
destinations in each size 2* window are in ascending order. Assume that
G(~1).11 = 0. The record initially in processor is routed to processors
G(i—1).11 through G(7).l of the window provided that ({(i)./] # .
I G(i)./] = oo, then the record is ignored. The procedure as written

assumes a PE ordering that corresponds to that generally used for

SIMD hypercubes.

L

bl

%

©

Complexity: O(k).
Merging and Unmerging
Task: Given two sorted sequences A and 3, merging is a process that
sorts them into either nonincreasing or nondecreasing order. Unmerg-
ing is the inverse of merging.
Complexity: O (logn). n is the total number of elements in se-

quences A and B.
Sorting

Task: Given an element per processor, after sorting, the elements are

kept in either nonincreasing or nondecreasing order.

Complexity: O (log? n). n is the total number of elements.

. Random Access Read

Task: Each PE in an n processor hypercube reads the A register data

of some other PE in the hypercube.

Complexity: O(log? n)

. Random Access Write

Task: Each PE in an n processor hypercube sends its A register data

to the A register of some other PE in the hypercube.

Complexity: O(log?n).

58

10. Precede

Task: Given two sorted lists /1 = (1.2, ay) and B = (by. by by),
we define the predecessor of «; as the least clement b; in /3 previous
to i in the sorted list of A and B3, i.r. b < «; < byyy. The Precede

operation computes, for each element a; in A, its predecessor in /3.

Complexity: O(logn)

59

Chapter 3

A Parallel Algorithm for
Constructing Voronoi
Diagrams on a Hypercube
Connected Computer Network

ithm for ing Voronoi diag

In this chapter, a parallel al,

on a hypercube puter will be introduced. Firstly, Section 3.1

gives the formal definition and important features of Voronoi diagram which

tial for unds ding the algorithm. Secondly, Section 3.2 describes
two major tools used in the algorithm — the convex hull and the inversion

transform. Finally, the parallel algorithm for ing Voronoi diag

on a hypercube connected computer is discussed in Section 3.3.

3.1 Definition and Features of Voronoi Dia-
gram

< A Voronoi diagram (also called a Thiessen diagram) of a set S of n poinls
is a well known structure which makes explicit some proximity information
about S. More formally, given two points p; € § and p; € S, define /1 (y,p,)
as the half-plane containing p; and bounded by the perpendicular bisector of
pi and p;. Let the intersection of 7 — 1 half-planes be V(i) = Uyy; 1(puv 1),

J =1,.., m, the Voronoi polygon of point ;. V(i) is a convex polygon with

at most n — 1 sides such that any point in V(i) is closer to p; than to any
other point in 5. The set of n Voronoi polygons defines the Voronoi diagrm
of §, Vor(S). Some Voronoi polygons may be unbounded. Vertices of the
Voronoi polygons are called Voronoi vertices and edges of the polygons are

called Voronoi edges. Figure 3.1 is an example of the Voronoi Dingram.

Some important properties of the planar Voronoi diagram are given

below:

1. Voronoi vertices are the center of circles defined through three points

of :S. These circles contain no other point of 5.

2. A Voronoi polygon V(i) is unbounded if and only if p; is a point on the

convex hull of .

3. The straight-line dual of the Voronoi diagram is a triangulation of §

61

Figure 3.1: Voronci diagram

62

called the Delaunay Triangulation. This triangulation of & has the
property that the minimum angle of its triangles is maximum over all

triangulations of §.

IS

. The Voronoi diagram of a set & of 1 points has O(n) vertices and Q)
cdges by Euler's relation, namely v—c- f = 2, where v, ¢, and [denote

the number of vertices, edges, and regions of a planar subdivision.

3.2 Convex Hull and Inversion Transform

3.2.1 Convex Hull

The convex hull of a set of n points is defined as the smallest convex
set which contains all of the points. In the plane, this is a convex polygon of
at most r sides. In the three dimensional space, it is a convex polyhedron.
A convex polyhedron is specified completely by its edges and faces. It is a
crucial observation that the set of the edges of a convex polyhedron forms

a planar graph: if we exclude d ies, it forms a tri lation, that is,

each convex face is a triangle and has three adjacent faces. The convex hull
has only O(n) faces /7 and edges c;; because a planar graph of 1 > 2 vertices

has at most 2n — 4 regions(faces) and at most 3 — 6 cdges [20].

3.2.2 Inversion Transform

Given an inversion center /% and an inversion radius 7, we can transform
point (to point ' by inversion, where Q" isin the same direction as Q@

and | 5¢)' |= 12/ | PQ |. The inversion has the following properties:

1. An inversion transforms a plane which does not pass throuph the in-
Version center (o a sphere which passes through the inversion center,

and vice versa,

o

. The interior of the sphere corresponds to one of the half spaces bounded
by the plane and the exterior of the sphere corresponds to the other

half space.

3. The inversion is involutory. i.c. application of inversion twice yields

the original point.

3.3 A Parallel algorithm to construct a Voronoi
Diagram

In 1979, Brcwn demonstrated an interesting linkage between two di-
mension Voronoi diagrams and three dimension convex hulls. He presented a
O(nlog 1) sequential algorithm to construct the Voronoi diagram, by trans-
forming the problem of constructing a planar Voronoi diagram for n points set

to the construction of the convex hull of 7 points in 3-dimensional space via

64

a geometric transformation known as inversion. Based on Brown's method, a
parallel algorithm for constructing Voronoi Diagram on hypercube connected

computers will be introduced in the following sections.

The parallel algorithm is divided into four steps.

&

Perform the inversion for each of the points in the plane and get a new

set of points in 3-dimensional space.

o

. Construct the 3-dimensional convex hull for the new set of points.

@

Perform the inversion for cach convex face, obtain a sct of spheres which
intersect the zy-plane to form a set of circles, determine the Voronoi

vertices.

-

. Construct the Voronoi diagram

Lemma 3.1 Lel n poinls be distributed on d-dimension a hypereube,
where, n = 2. One point per PE. Inversion for cach poinl can be done in

conslanl. time.

Proof: Let S be a set of n planar points located in the y-planc of 3-
space. Pick a point in 3-space, say Py, for simplicity, (0,0,1), as the inversion
center. Choose r = 1 as the inversion radius. Perform the inversion for cach
point in S, we get a new set of n points 5", Let (i, y,) be coordinates of the

points in S and (x,,,,2) be the coordinates of the points in ', Due to the

65

Figure 3.2: Inversion
property of the inversion, all points of the zy-plane are mapped to a sphere,
say O, with P at the apex. See Figure 3.2

The equation of the line segment Pop is ©

y
Wy

The distance between Fy and p, | Fop | , is :

[yr+l

The distance between Py and - | Pop' | ,is :

(3.1)

66

ErR R
The inversion radius 7 is 1. So we can get:

| Pop |=+*/ | P |

/.I';’, +yitle Vi ry2 (s —1)i=1 (3.2)

Fypis in the same line as Py From Eq 3.1, we can get:

(3.3)

From Eq 3.2, Eq 33, we can get:

= Tp
T (@+yE+1)

zy

=
T @2+
TR+
Therefore, inversion for each point can be done in constant time.
Lemma 3.2 Constructing a 3—d convez hull can be: done in O(log” 1)
lime on an n-processor hypereube connecled compuler nelwork

67

Proof: The algorithm will be described later in section 3.3.1.

Construct the convex hull of the points in S’. All n of the points of 5"
will be on the convex hull because inversion about /% maps all points of the
4y planc o a sphere with /% at the apex. The convex hull has O(n) faces
I Bach face /} of the convex hull determines a plane in the 3-dimensional
space. If we cxclude degencracics, each convex face is a triangle and has
three adjacent faces. Each convex face /i can be represented by three points
through which it passes. Each convex face is stored in a PE. The PE’s index

and PEs in which its adjacent faces are present are known by the PE.

Lemma 3.3 All the Voronoi verlices can be determined in conslanl

time,

Proof: In order to determine the Voronoi vertices, each PE which con-
tains a face of convex hull performs the “reinversion”. Invert faces of convex
hull (with respect to the center of the inversion Py and radius r)and obtain
O(n) spheres which intersect the zy plane in O(n) circles. The equation of

line scguent. Pyp! is :

(3.4)

Because p is on the line /°p’ and p is in the xy-plane.

68

(3.5)

=0 (3.6)

From Eq 3.5 and Eq 3.6, we can get:

Ty =
Ty

Find the center of the circle of the three points corresponding Lo cach face
F,. Let ¢; denote the center of this circle. Each face I of the convex hull
associates with a half-space //; which contains the convex hull and whosc
boundary plane is face /7. If half-space /I; contains /%, then ¢; is a Voronoi
vertex and set flag v; to 1. Otherwise, set »; = 0. (//; does not contain I,
the c; is a farthest Voronoi vertex. We do not consider this situation in the
thesis. For more information about farthest Voronoi diagrams, pleasc scc

Brown’s paper [21].

It stould be explained why the centers of the circles may be the Voronoi
vertices. In order to prove this, it is sufficient to show that these circles cach
pass through three of the n points of S and do not contain any of the other

n—3 points in the interior. Because the inversion is involution, each of these

69

Figure 3.3: Relation between 3-d convex hull and 2-d Voronoi diagram

circles passes through three of the n points of §. If the circle passing through
points pi,pj, and g of S contains another point p; € S in its interior, then
the convex hull of the transformed points S’ will not contain a face pi'p;/py’
because of the presence of point pi'. Therefore, each of the O(n) circles passes
through three of n points of S and do not contain any of the other n — 3
points in the interior. Sec Figure 3.3. Therefore, all the Voronoi vertices can

be determined in constant time.

70

Lemma 3.4. All the Voronoi cdges can be consirueted in O(log® n)
lime

Proof: Each PE containing ¢/, perform RAR to get ¢, Face F; and I,
are adjacent faces.

o I v;=1and v; = 1, then ; is a Voronoi edge.

oo =1land v =

= 0, then v;v; is a Voronoi ray starting at ; in the
direction of v;v;

o Ifv; = 0and v =

= 1, then v;ju; is a Voronoi ray starting at v; in the
direction of v;u;.

Each face has at most three adjacent faces. Constructing Voronoi edges can

be done in O(log? n) time because of the RAR operation.

From Lemma 3.1, Lemma 3.2, Lemma 3.3 and Lemma 3.4, we can get:

Theorem 3.1 Constructing a Voronoi diagram on an n — processor

hypercube connccted computer network can be done in O(log*n) time.
up) 2

The flow chart of the algorithm is shown ix Figure 3.4.

inverse points in xy-plane
to the 3-D sphere

|

construct the 3-D convex hull)

inverse convex hull's faces
to xy-plane
check centers of circles

|

form Voronoi diagram on

xy-plane

Figure 3.4: The algorithm of constructing a Voronoi Diagram

Procedure CH(S);
Pl b

“H(S2);

y :
Pi= M/‘RCL(P., 2);
return P

end

Table 3.1: The Algorithm of C ing 3-Di ional Space Convex lull

3.3.1 Parallel algorithm for constructing the 3-d con-
vex hull

It is clear that one of the main steps for constructing a Voronoi dia-
gram is to construct a 3-dimensional space convex hull. In this subsection,
based on Preparata-Hong[22] method, a parallel algorithm to construct a

3-dimensional space convex hull will be discussed.

Let S = {p1,p2ses i} be a set of n points in 3-dimensional space.

The convex hull of § is denoted as CI/(S). Recursively divide the set
= (piyPayeniu} into two subsets. S = {pr,pa, e Puja} and Sy =
{PnjagsPu}. Let Py be CH(Sy) and Py be CII(S,). Merge Iy and I,
we can get P. The recursive algorithm shown in Table 3.1 Clearly the

merge function is the crucial component of the algorithm.

Let P, P, be two polyhedrons to be merged. If a face of /% or 1 is

still a face of the merged polyhedron P then, the face is an external face,
otherwise the face is an internal face. Let Cy be the circuit of P, and Cp, be
the circuit of /. (' contains edges of Py, which are shared by an internal
face and an external face. C'j- contains edges of P, , which are shared by an

internal and an external face.

Lemma 3.5: To delermine each Jace of convez hull Py (or Pp) is an

erlernal face or an internal face can be done in O(log? n) time.
Proof: The algorithm will be discussed in section 3.3.2.

Lemma 3.6: Construction of the circuils Cpy and Cpy for polyhedron

Py and Py can be done in constant time.

Proof: For each external face of both polyhedron P, or P, check its
adjacent faces. If the adjacent face is an internal face, the edge induced by
two faces is an edge of the circuit. Each face has at most three adjancent

faces. Therefore, constructing 2 circuit can be done in constant time.

Lemma 3.7 : Adding new faces of conver hull CH(S,,S;) along two

cireuils can be done in O(log® n) lime.
Proof: The algorithm will be discussed in section 3.3.5.

Lemma 3.8 : Removal of the internal faces of Py and P, can be done

in constanl time,

4

Proof: For each internal face, check its adjacent faces. Remove the

edges bounding two internal faces. This step can be done in constant time.

From Lemma 3.5, Lemma 3.6, Lemma 3.7 and Lemma 3.8 , it can be

concluded that:
Theorem 3.2 The merge of P, and Py takes O(log* n) time.

Theorem 3.3 Conslrucling a 3-dimensional space conves hull can b
donc in O(log*n) time on an n — processor hypercube conneeled compuler

nelwork,

Proof: The algorithm used to construct a 3-dimensional space convex
hull is shown in Table 3.1. If the “merging” of two convex hulls with at most
n vertices in total, i.c., the construction of the convex hull of their union,
can be done in at most M (1) operations, an upper bound to the number
Ti(n) of operations used by the recursive algorithm is given by the equation
T(n) = 2T(n/2) + M(n). It has been shown (Theorem 3.2) that M(n) is
O(log?n). Therefore, 7(n) is O(log"n) time complexity because of O(log 1)

recursive calls.

The flow chart of the merge procedure is shown in Figure 3.5.

check internal faces

and external faces

l

construct circuits

for two polyhedrons

|

add new faces of new

convex polyhedron

l

remove internal faces

of the polyhedrons

Figure 3.5: The algorithm of a three dimension convex hull merge

76

3.3.2 A parallel algorithm to test external faces and
internal faces

The first step in the 3-dimensional space convex hull merge is to deter-
mine the external faces and internal faces. In this subsection, we will discuss

the algorithm of testing external faces and internal faces.

When considering a convex polyhedron, each convex polyhedron face

I is represented by an equation a;x + fiy + 7z + 6 = 0 with normal vector

< a;,b;,c; > pointing away from the polyhedron, where

Yy

Bi

T

Vi

N

The convex angle formed by faces /; and I}, with normal vector <

ci=

aiybiyci > and < aj,bj,¢; > is cos™! < agy by > - < ajyby,e; > which is
cos™'(ait; + bibj + ¢ic;). Tn the range 0 < 0 < , the function cos ¢ decreascs

from 1 to -1; the inverse function cos™' also decreases as 0 increases. The dis-

tance between two points (i, bi, c;) and (a5, bj,¢;)is \/2(1 = (et + by + 6ucs)),

i

since a? + b2 + ¢ = a;2 + b + ¢;2 = 1. Therefore, cos™'(aa; + bib; + cic;)
decreases as 1/2(1 — (a;a; + b;b; + c;c;) decreases. Now we can conclude that:

Theorem 3.4 The conver angle formed by face F; with normal vector
< ajbiye; > with face I with normal vector < aj, bj,e; > decreases as the

distance between points (ai, by ;) and (a3, b;, ;) decreases.

Consider the half-space bounded by the face [7(i); we denote the
half-space that contains polyhedron P, by I/(P,i). Face Fp,(i) belongs to
convex polyhedron P which is merged by P, and Py, if P lies in the half-
space 1I(Pi). For each face Fip, (i), there exist two planes which are parallel
to Fp,(i) and support polyhedron P, denoted as P L}, (i) and PL}, (i) . For
P L}, (i) and PLY, (i), there exist two faces of polyhedron P, which intersect
at point of tangency with PLj, (7) and PL}, (i) and form smallest angles with
P LY, (i) and PLY, (i), denoted as Fp, (i) and Ff(i). See Figure 3.6.

Duc to convexity, /(i) is an external face if /(i) and /(i) are in the
half-space 11(P,), othecwise, 7, (i) is an internal face. Thus the key point
of testing /(i) to Le an external face is to find /(i) and /7, (7). We have

the following theorem:

Theorem 8.5 Fy, (i) is an celernal face if Fy (i) and Fiy(i) are in the

half-space 1P, i), otherwise, Fp,(i) is an internal face,

The algorithm to test the external and internal faces for polyhedron P

78

3— PLyy () I (i)
4— PLLG I, (i)

;- Fpy (i) 1 (J) p
i 5— PLy) 1)
= Fu(j) 6 PG #1,0)

Figure 3.6: The two dimensional analogy

79

is described as follows. The algorithm for polyhedron P, is similar.

Lemma 3.9: Bach PE conlaining Fp,(j) docs a lransformation. This

can be done in constanl lime.

Proof: Each face F,(j) will be transformed into a point pr,() on the
surface of the unit sphere, where the coordinates of pp,(j) is (a5, b;,¢;) , and

< aj,bjye; > is the normal vector, pointing away from P, of face Fp,(j).

A spherical Voronoi diagram of an n-points set on a sphere is a partition
of the surface of the sphere into » regions: the region j for point pp(j) is the
locus of points on the surface of the sphere which ate closer to pp,(j) than

to any other n — 1 points.

Lemma 3.10: Using {pp,(1),pp(2);-....} as sile points, construc a

spherical Voronoi diagram on the unit sphere. This can be done in O(log? n)

lime
Proof: The algorithm will be presented in section 3.3.3.

Lemma 3.11 : Transform cach face Fp,(i) with normal vector <
aisbive; > inlo two points, (i) and s, (7). This can be done in conslant

time for cach PE.

Proof : For each face of Py, Fp(7), there are two normal vectors

< dj b, i > and < —a;,—b;,—¢; >. These two vectors can be transformed

80

to two points on the unit sphere.

Lemma 3.12 : For cach i, determine the nearest neighbors pp,(i')
and ppy(i") of the points pp,(i') and pp,(i"). This can be done in O(log* n)

time.

Proof: Locate pp () and pp, (i”) on a sphere Voronoi diagram to find
site points pp(i) and pp,(i”). Due to the property of a spherical Voronoi
diagram, pp, () and pp, (i") are nearest neighbors of pp, (') and pyy (i"). Lo-
cating points on a spherical Voronoi diagram needs O(log*n) time. The

algorithm will be discussed in section 3.3.4.

Lemma 8.13 : For cach i, check thal both I,(i) and I}, (i), are
in H(Py,i). if true then Fp (i) is an exlernal face, otherwise V(i) is an

internal face. This can be donc in conslanl lime.

Proof: pp,(i') represents one face of %, say Ffy(i). piy(i") represents
one face of Py, say %4(i). pr(i') and pp (i) represent Ly, (1) and PLY, (i)
which are parallel to face I, (i) and support polyhedron P pyy (i) and
pry(i") are nearest neighbors of the points pp, (i) and pyy (). Duc to The-
orem 3.4, I7%,(i) forms the smallest convex angle with L, (i) and Ff, (i)
forms the smallest convex angle with L}, (i). Due to Theorem 3.5, /(i) is
an external face if /7, (i) and /(i) are in the half-space //(/%, i), otherwise,

Fyy (i) is an internal face. Check that % (i) and /(i) are in the half-space

81

H(Py.i) can be done in constant time.

Theovem 3.6 : The parallel algorithm for lesting the erlernal fuce

and internal face can be done in O(log® n) time.

Proof: The and the time lexity follow from Lemma

3.9, Lemma 3.10, Lemma 3.11, Lemma 3.12 and Lemma 3.13.
The flow chart of the algorithms is shown in Figure 3.7.

3.3.3 A parallel algorithm to construct a spherical
Voronoi diagram

Tn order to distinguish external faces and internal faces, a spherical
Voronoi diagram on the unit sphere shonld be constructed. Based on the
method proposed by Brown(21], a parallel algorithm to construct a spherical

Voronoi diagram on a unit sphere is described here.

Given a set of oints (s, Pz, -\ i), every point p is on the unit sphere,
For each point p; on the unit sphere, there is a plane /’L; tangent to the
sphere at point p;. Let I/ be the halfspace bounded by I’l; which con-
tains the entire sphere. The intersection of n half-spaces /I, form a convex
body say, C. The spherical Voronoi diagram is now obtained by a simple

projection of the edges of this polyhedron to the surface of the sphere. The

is a “radial” jection: the projection of a point p is the point

82

transform faces of one
polyhedron
to points on unit sphere

L

construct sphererical
Voronoi diagram

transform the face of the
other polyhedron to the

points on unit sphere

|

locate points on spherical
Voronoi diagram

|

determine the faces to be
external face or internal face

Figure 3.7: The algorithm of external and internal face test

83

where a line segment connecting the center of the sphere and point p in-
tersects the sphere. This projection maps edges of the polyhedron to arcs
of great circles on the sphere. The vertices of the polyhedron are mapped
to spherical Voronoi points and the face of the polyhedron are mapped to

spherical Voronoi regions.
Lemma 8.14 :All the plancs PL; can be found in constant lime.

Proof: For each PE containing [, (i) with normal vector < a;, biye; >,
find a corresponding point p;, (a;,b;,c;), on unit sphere. Then, the plane
which is tangent to the unit sphere at p;, say PL;, can be obtained. The
equation of the plane PL; is @z + by + ¢;z = 1. This needs constant time

for each PE.

Lemma 3.15 : All the edges and verlices of the conver body C' can be

Jound in O(log? n) Lime.

Proof: In order to find all the edges and vertices of C, each PE con-
taining Fp,(i) does a RAR operation from the PE which contains Fy,(j,.
Fp,(i) and Fip,(j) are adjacent faces. The plane L is obtained from /(i)
and the plane PL; is obtained from /i, (). An edge of C is the intersection
of PL;and PLj.

(3.1)

@z +by+ez=1
4z + biy + ¢z =

84

By examining all the faces adjacent to /(i) in the convex hull P,
we can obtain the vertices of C'. Because each convex polyhedron face is a
triangle, each face has at most three adjacent faces. Therefore, all the edges

and vertices of the convex body C can be found in O(log?n) time.

Lemma 3.16 : All the vertices and edges of a spherical Voronoi diagram

can be found in constant time.

Proof : Connect the vertices of C' with the center of a sphere intersect-
ing the unit sphere. These are the vertices of a spherical Voronoi diagram.
By connecting these Voronoi vertices the arcs of great circles on the sphere
are determined. These are the edges of the spherical Voronoi diagram. This

step can be done in constant time for each PE.

Based on Lemma 3.14, Lemma 3.15 and Lemma 3.16, it is concluded

that:

Theorem 3.7 Coustruction of a spherical Voronoi diagram can be done

in O(log n) time.

The flow chart of the algorithm is shown in Figure 3.8.

85

find tangent planes for site points
on the sphere

find intersection of two tangent
planes of adjacent faces to
obtain the edge of C

l

find intersection of three tangent
planes of three adjacent faces to
obtain the vertex of C

|

perform projection to obtain
spherical Voronoi diagram
vertices and edges

Figure 3.8: The algorithm for constructing spherical Voronoi Diagram

86

3.3.4 A parallel algorithm to locate points on a spher-
ical Voronoi diagram

This algorithm is based on the chain method described by Lee and
Preparata [23]. From a computational viewpoint, any solution to the point
location problem should include two steps: the preprocessing step and the

scarch step. The ing step the data lated

by the search algorithm. The search step locates the query points in the

subdivision.

Since the points are located on the spherical Voronoi diagram, the data
structure postulated by the search algorithm is the spherical Voronoi dia-
gram. For an efficient search, the first thing to be done is to get a represen-
tation of the spherical Voronoi diagram. It is clear that the Voronoi diagram
is composed by a set of monotone chains which are generated at different
levels of the merging step, when Voronoi diagram is being constructed by
divide-and-conquer method. Each chain has its own level and index (the
rank of the chain in the chains of given level). Chains may share common
edges. If an edge ¢ belongs to more than one chain, it then belongs to all
members of a set of consecutive chains. We assign ¢ to hierarchically the

highest chain to which ¢ belongs.

Theorem 8.8 : AMarking the levels and index for spherical Voronoi

cdges can be done in O(log?) time.

87

Proof: Sort the site points of a spherical Voronoi diagram by 0; =
2i/\/2? + y?. For each site point, a binary index is given. Each PE which
contains an edge ¢; of the spherical Voronoi diagram does an RAR to get
the index of the pair of points it is associated with. “bit exclusive or” of two
points, say ¥, is then obtained. The level of the edge ¢; can be obtained by
I; = {log¥|. The index of the edge ¢; is [(2's complement (2)— 24) A (inder
of ¢;’s associaled point) /241, For example, if c; is associated with points
0010 and 0101, “bit exclusive or” of 0010 and 0101 is 0111, |log 0111] = (2)i,
50 ¢; is of level 2. 2'scomplement(2?) — 2% = 2's complement(0100) -0100 =
1100 - 0100 = 1000. (1000 A 0010) (or 1000 A0101) = 0; 50 ¢; is indexed as
0 in the chains of level 2. Therefore, marking the levels for spherical Voronoi
arcs can be done in O(log?n) time because of the sorting operation and the

RAR operation. See Figure 3.9,

Now the search algorithm is discussed. All edges are sorted by their
level as the primary key, their index as the secondary and the y-coordinate of
the endpoint of the edge as the ternary key (endpoint with less y-coordinate
between two endpoints of a chosen edge). All query points are sorted by
their y-coordinates. For each query point, two flags are assigned, denoted as
L(k) and R(k), which are represented by the edges on the left and right side
of the query point. Initially, all query points are assigned the highest level
[logn] and index 0, L(k) « —oo, R(k) « co. Then, for each level i, from

i= [logn] to i =0, the following operations are performed :

88

Figure 3.9: Representation of chain

89

-

o

@

-

o

. All query points have assigned the same level, equal to i. Merge the

query points and the set of edges. This step can be done in O(log n)

time because of the merging operation.

Generalize operation s performed to find, for each query point p, the
corresponding edge ¢ the p should be discriminated against. That is,
the y-coordinate of py is between y-coordinates of endpoints of r. This

step can be done in O(log n) time because of the generalize operation.

. Let ¢ be the corresponding edge for query point py. Depending on

which side of ¢ the query point py lies, compare with cither L (k) or
R(K).
o If i s on the left side of ¢ and ¢ is to the right of L(k) , update
L(k) with c.
o If pi is on the right side of ¢ and c is to the left of /(k) , update
R(K) with c.
This step can be done in constant time for each PE.

1f L(k) and R(k) are bounding the same region, i.c. they have the same
associate point, the query point py is located. This step can be done

in constant time for each PE.

. For unlocated points, py calculates the index of the chain at next level it

should be discriminated. The index is [(2's complement (2-1) ~2=1) A

90

ES

=

%o

(indez of ¢’s associaled point))/2°, This step can be done in constant

time for each PE.

. Unmerge edges and query points (using former indices of query points).

This step can be done in O(log n) time because of unmerge operation.

Perform concentrate operation for the unlocate query points with an-
swer “left” of corresponding edge in step 2. Unlocate query point with
answer “right” will be also concentrated. This step can be done in

O(log 1) because of the concentrate operation.

Since both subsets of unlocate query points are sorted by the new
indices after concentrating. Merging “left” and “right” unlocate query
points by their new indices. Give next level to all unlocated query
points. This step can be done in O(logn) time because of the merging

operation.

Theorem 8.9 : Locating the points on a spherical Voronoi diagram

can be done in O(logn) time.

Proof: From the discussion above, it s clear that the preprocess al-

gorithm can be done in O(log?) time. (Due to Theorem 3.8). The scarch

algorithm needs O(log?n) time because each step in the search algorithm

takes O(log) time and there are log n iterations. Therefore, locating points

on & spherical Voronoi diagram can be done in O(log?n) time.

91

The flow chart of the search algorithm is shown in Figure 3.10.

3.3.5 A parallel algorithm to add new faces to the
convex polyhedron

P, and P are two convex polyhedrons to be merged. 1 is a convex
polyhedron which is ¢btained by merging P and . New faces are the faces
which do not belong to P, and P, but belong to . If we exclude degencracies,
each convex polyhedron face is a triangle. Cj; is the circuit of and (' is
the circuit of P,. The new face is determined by an edge of (' and a node

of Cpz or by an edge of Cp; and a node of Cpy.

In order to add new faces, the first thing to be done is to order the

edges in Cp, and C.

Lemma 3.18: Ondering the edges in Cp, and Cp, can be done in

O(log?n) time.

Proof: The obsetver P, is defined as an observer placed at any point
of P, and oriented Jike the negative z-axis, and observer /| as an observer
placed at any point of P, and oriented like the positive z-axis. The edges
in Cpy are numbered in ascending order so that they form o clockwise se-
quence for an observe P;. And the =dges in Cp; are numbered in ascend-
ing order so that they form & counterclockwise sequence for an observe: /%,

Both sequences are started at the vertices with the largest y-coordinates in

92

Foﬂ all edges by level, index and y-coordinates |

[—— |

’;r each query poirt, assign L(k), R(k), level = log,, index = 0.]

merge query points with same level edges I

i

find corresponding edges for query points]

i

| comparing corresponding edge with L(k) &R(k), and update L(k) &R(k) !

] check L(k) & R(k) bounding the same region J Loop

for unlocated points, caleulate index of ch
and assi dex to the unlocate point:

fu..merge edge & query points

1

' re-sort unlocate points by new indices

Figure 3.10: The search algorithm for points location

93

Cpy and Cpy. Let Cpy()[on] and Chy(j)in] be the vertices at which edges
Cp,(i) and Ciy(j) originate respectively. Then (Cp, (0)[im]. Cry (1)), ..) and
(Cry(0)[im], Cry(1)[m],) are the sequences of vertices of (' and (i, re-
spectively. Due to convexity, the convex angle formed by (('p, (0)[ny], 'y (D)n])
and (Cr,(0)[or], Gy (j)[n]) s clockwise for an observe /%, where i < j; the
convex angle formed by (Cp,(0)(m], Cy (1){r]) and (€, (0[] (o ()] s
counterclockwise for an observer Py, where i < j. Therefore, edges in ('
can be ordered and so can those in (. This can be done by using sorting

algorithm which takes O(log?n) time.

Lemma 319 : For cach edge in Cp (i), find a node of Cp(j)m]
such that the plane determined by Cp, (i) and the node Cp ()] is new fuce.
The same procedure is carvied out for the edges in Cry. This can be done in

O(log™n) time.

Proof: The proof s for each edge in C (i) finding & node of C:p, (j)[|
The proof for each edge in Cjy(i), finding a node of U, (j){m] is sume

If the plane determined by the edge C'y,(i) and the node of (', (j)[n]
is the new face of P then the convex angle formed by the planc determined
by Cp,(i) and Cp, (j)[] and the face bounded by Cp, (i) which belong to I’
is maximum. Let Op, (i, j) be an angle measure associated with edge €/, (i)
and vertex Cp,(j)[ui], as the convex angle formed by the plane determined

by Cpy(i) and Cpy(§)[m] and the face bounded by Cip, (i), which belong to

94

2. In an analogous manner, 0y, (j,i) is defined as the convex angle formed
by the plane determined by C's,(j) and Cp(i)[v] and the face bounded
by Cp,(j), which belongs to P. Let j) be the smallest index such that
Op,(i, j) is a maximum among all 0 (3,7), 0 < j | Cp, |, let i) be the

largest index such that 0, (j, i) is a maximum among all 0p,(j,i), 0 < i <|

Cip, |. For a particular 7, j can be d ined by p ing a

operation which takes O(log | Cp, |) time. It is observed that (), j1),...)
and (i, i1, ...) are nondecreasing sequences. Firstly, j1°7:1/?) can be found;
then in parallel 7¢I/ in the intervals [0, j0°71/2] and [j(ICRI2) | Cp, | ~1)
can be found respectively, and so on. It is straightforward to sec that it takes
log | C'p, | iterations to obtain all j1s. Therefore, for cach edge in Cp (i),
finding a node of Cy(j)[w] such that the plane determined by Cp, (i) and

the node ('3 (j)[1] is new face can be done in O(log’n) time.

Connect Cip, (i)[n] with iy (5)[or] and connect G, (¢)[v2] with Cpy()[un]

to get a new face determined by Cjy (i) and Cp, (j)[vy). Cp(§)[vr] is con-
nected with C'p, (i)[in] and Cp, (§)[vs] is connected with Cp, (i9))[v1] to get

a new face determined by Cyy(j) and Cp, ({0)){vs].
From the above discussion, we get the following Theorem:

Theorem 3.10. : The algorithm of adding new face lakes O (log?n)

time.

95

order the edges in Cp, & Cp,

l

for each edge of Cp (i) & Cpy(j)
find corresponding points

|

construct new faces of convex polyhedron P

Figure 3.11: The algorithm for adding new faces of convex polyhedron
Proof : The correctness follows from Lemma 18 and Lemma 19.

The flow chart of the algorithm is shown in Figure 3.11.

3.4 Summary

In this Chapter, a parallel algorithm for constructing a Voronoi diagram
on hypercube connected computer networks is developed. The algorithm is

based on Brown's method [4] and consists of four steps. The details of the

96

algorithm are shown in section 3.3. One of the main steps of this algorithm
is to construct a 3-dimensional convex hull. Based on Preparata-Hong’s

method [22], a parallel algorithm to construct a 3-dimensional convex hull

is discussed in section 3.3.1. The strategy used in the algorithm is divide-

and-conquer. Recursively divide the point sct into two subscts and then

merge two sub. lyhed: The crucial of the algorith

is the merge function. The merge function is divided into four steps. To
determine the zonvex polyhedron face is an external face or an internal face;
to construct the circuit for each polyhedron which is merged; to add new
faces; and to remove internal faces. The algorithm to determine the external
face and the internal face is described in section 3.3.2. The algorithm to
add new faces of convex polyhedron is discussed in section 3.3.5. In order to
determine the external face and the internal face , the algorithm to construct
a spherical Voronoi diagram and the algorithm of points location ace used.
The algorithm to construct a spherical Voronoi diagram is based on Brown’s
method [21] and is discussed in section 3.3.3. The points location algorithm
is based on Preparata and Lee’s method [23] and is described in section 3.3.4.

Let the algorithm to construct a Voronoi diagram be Algorithm_VD.

Let the algorithm to a3 1 space convex hull be Algo-

rithm_CH. Let the algorithm to determine the external face and the internal
face be Algorithm EI Let the algorithm to a spherical Voronoi

diagram be Algorithm.SVD. Let the algorithm of points location be Al-

97

gorithm_LP. Let the algorithm to add new faces of polyhedron be Algo-

rithm_AN. The time complexity of these algorithms are listed in the following

table.
Name Number of Processors | Time Compl Tocation
Algorithm.VD 90 O(log’ Section
Algorithm.CH O O(log’n i
Algorithm E [0 O(log™n
Algotithm.SVD On O(log™n
Algorithm LP [0 O(logTn)
Algorithm. AN Ou O(log™n)

From the discussion above, it is clear that our algorithm runs O(n) pro-

cessors hypercube connected computer network and needs O(log® 1) time,

Chapter 4

Conclusion and Discussion

A Voronoi diagram is a useful data structure in computation geometry.
In this thesis, SIMD hypercube connected computer network are chosen as
the parallel computation model. In chapter 2, the fundamental operations

on the hypercub d computer network are

In chapter
3, based on Brown’s method, a parallel algorithm to construct a Voronoi

dingram is developed. Our algorithm runs in O(log’n) time on an O(n)-

rocessor h; b d network. Our algorith
P P! P

is based

on Brown's method which transforms the problem of construction of a pla-
nar a Voronoi diagram for an n-point set to construction of a convex hull
of n points in three dimensional space. Comnparing with the parallel algo-
tithms which are based on the divide-and-conquer approach used by Shamos,
our algorithm can be used to solve two computational geometry problems:
constructing 2—dimensional Voronoi diagram and 3— dimensional convex

hull. Comparing with Chow’s methods which runs on a O(n) processors

99

CCC (Cube-Connected Cycles) model has O(log* 1) time complexity, our
algorithm has less time complexity. Compating with Chang-Sung Jeong's
algorithm which runs in O(y/1) on an /it x i mesh, our parallel compu-
tation model is more general. Most other popular networks can be casily
mapped onto a hypercube. Next we will discuss some extension and future

work.

4.1 Parallel Algorithm to Construct a Voronoi
Diagram in L;(L,) on a hypercube con-
nected computer network

It is known that there are many methods to construct a Voronoi dingram
on a single computer. Two of them were proposed by Shamos in 1975 and by
Brown in 1079. Many pazallel algorithms were suggested based on thesc two
methods. Among those panallel algorithms, some are implemented on pro-
cessor networks, some on shated-memory machines. The Voronoi diagrams

for other metrics have also been studied by several researchers.

Given two points g5 and gy in-the plane B2 wilh coordinates (¢(;:)
and (=5, respesiively, the distarice between gy and ;i the T, metsie
is defined as dy(qi,05) = (| & — 2; ' + | yi—y; |[")'/? for p = 1,2,.. and

duoltis 97) = maz(| 2= 2 | ,| i — 15 |). The plane in which the L, melric is

100

the distance measure is denoted by R2. The bisector B,(gi, 4;) of two points
4; and g; is the locus of points equidistant from ¢; and q;, ic. By(gi.g;)
= {r | r € B, d,(r,q:) = dy(r,4;)}. Thelocus of points closer tog; than tog;,

denoted by (g, ;), is one of the halfpl ining g; that is determined
by the bisector By(4i,15), i-e. hp(qi,0) = {r | dp(r, 1) < dp(7,5)}. Given a
set S of points gy, g ..., G, the locus of points closer to ¢; than to = other
points, denoted by V(g:), is called the Voronci region or polygon associated

with q; in the L, metric and is thus given by VZ(q) = Mg hs(ai, 45), the

of all the halfpl ining ¢;. The entire set of Voronoi
polygons partitions the plancinto n regions and is referred to as the Voronoi
diagramV,(5) for the set S in R2. Figure 4.1 is an example of the Voronoi

Diagram in L, metric.

In 1991, Chang-Sung Jeong [24] gave an O(/7) parallel algorithm
on /it x /il mesh d to construct a Voronoi diagram in

Ly(Low) metric for a set of » points in the Cartesian plane.

An O(log® n) algorithm to construct a Voronoi diagram of a set of n
planar points in L(Le) metric on hypercube connected computer network
can be obtained by using Jeong’s [24] method and the fundamental operations

discussed in Chapter 2.

101

Figute 4.1: Voronoi diagram in £, metric

102

4.2 Optimal Parallel Algorithms to Construct
Voronoi Diagrams

1 p(n2) is the processor complexity, {(n) is the parallel time complexity,
and scq(n) is the time complexity of the best known sequential algorithm
for the problem under consideration, then ¢(n) * p(n) = O(seq(n)). If the
product ((n) + p(n) achieves the sequential lower bound for the problem,
then we say the algorithm is optimal. Computing a Voronoi disgram of a
set of points in the plane with a single processor has an €(nlogr) lower
bound. In 1990, Guha gave a parallel algorithm for the rectilinear Voronoi
diagram [25]. The algorithm runs in O(log?n) time and uses O(n/logn)
processors. The computation model is CREW PRAM. In the same year,
Wee and Chaiken presented a parallel Lymetric Voronoi diagram algorithm
[26]. The computation model is CREW PRAM and the algorithm runs in
O(logn) time and uses O(n) processors. Both algorithms are cost optimal in
view of the ((nlog 1) sequential lower bound for this problem. No optimal
parall-l algorithms to construct Voronoi diagram of a set of points on an

interconnection processors network have been found to date.

There are two reasons. The first reason is, in an interconnection pro-
cessors network, local computations as well as message exchanges are taken
into consideration when analyzing the time taken by a processor metwork

to solve a problem. For example, RAR and RAW operations take constant

103

time in a sequential computer but RAR and RAW operations take log? 1
time on hypercube connected computer networks. The second reason is that
the memory is no longer shared, but instead, distributed among processors.

This prevents the implementation of complex data structures.

For future work, one possible solution is to develop morc efficient algo-
rithms for interprocessor message routing. The other possible solution is to
implement complex data structures on interconnection processor networks.
The most important and powerful feature of the PRAM is the common mem-
ory shared by the processors. Not only does the shared memory serve as a
communication medium for the processors, but it allows a direct implemen-
tation of complex data structures, in a manner very similar to the way they
are implemented on the memory of a sequential computer. Therefore, im-
plementing data structures on processor networks is a worthwhile endeavor

that deserves to be pursued.

104

Bibliography

1] G. Voronoi, lles applications des étres continus & la théorie

des formes quadratiques. Deuxiéme Mrhoire: Recherches sur les par-
allélotdres primitifs, Journal fir die Reine und Angewandte Mathe-

malik, 134, 1908, 198-287.

[2] M.1.Shamos, Geometric complexity, Proccedings of the Seventh ACM

Symposium on Theory of Compuling, it New Mexico, May

1975, 224-233.

3] S.Saxena, P.C.P.Bhatt, and V.C. Prasad, Efficient VISI parallel algo-
rithm for Delaunay triangulation on orthogonal tree network in two

and three dis i IEEE T ions on Comp , Vol. C-39,

No.3, March 1990, 400-404.

[4] K.Q.Brown, Voronoi diagram from convex hulls, Information Process-

ing Lellers, Vol.9, 1979, 223-228.

5] A.L.Chow, Parallel algorithms for geometric problems , Ph.D. thesis,
University of Hlnois at Urbana-Champaign, 1980,

105

[6] M.Lu, Constructing the Voronoi diagram on a mesh-connected com-
puter, Procecdings of the 1986Intcrnalional Conference on Parallel
Processing, St.Charles, lllinois, August 1986, 806-811.

[7] W.Preilowski and W.Mumbeck, A time-optimal pacallel algorithm for
the computing of Voronoi diagrams, Lecture Notes in Computer Sci-
ence, No.344, J. van Leeuwen(Editor), Springer-Verlag, Berlin, June

1988, 424-433,

(8] C.Leveopoulos, J.Katajainen, and A.Lingas, An optimal expected-time
paralldl algorithm for Voronoi diagrams, Lecture Notes in Compuler

Science, No.318, Springer- Verlag, Berlin, 1988, 190-198.

9] D.J.Evans and 1.Stojmenovic, On parallel jon of Voronoi di-
agrams, Parallel Computing, Vol.12,1989, 121-125.

[10] C.-S.Jeong, and D.T.Lee, Parallel geometric algorithms on a mesh-
connected computer, Algorithmica, Vol.5, No.2, 1990,155-178.

[11) S.G.AK, K.Qiu, I.Stojmenovic, Computing the Voronoi diagram on the

star and pancake i ion networks, Proccedings of the Fourth

Canadian Conference on Compulational Geomelry, St.John’s, New-

foundland, August, 1992, 353-358.

106

{12] F.T. Leighton, /alroduction lo Parllel Algorithms and Architectures:
Arrays - Tree - Hypercubes , Morgan Kaufman, San Mateo, California,

1991.

[13] Arthur Trew, Greg Wilson,” Past, Parallel, Parallel’, Springer-Verlag,
Berlin Heidelberg, 1991,

[14] Q.F.Stout ing divide-and for image pro-

cessing Journal of Parallel and Distributed Compuling Vol.4, pp95-115.

[15] Nassimi, D., Sahni, S., “Data broadcasting in SIMD computers”, /EEE
Trans. Compuler, vol.c-30, no.2, pp.101-107, Feb. 1981.

[16] M. J. Flynn, Very high-speed computing systems Proceedings of the
IEEF 54, Dec., pp. 1901-1909, 1966.

[17] D.Stevenson, Programming the ILLIAC IV, Camegie-Mellon Unit.
Pittsburgh, PA, Tech. Rep., Nov.1975.

(18] Ranka, S., Sahi, S., “H; be Algorithms with applications to im-

age processing and patter recognition”, Springer-Verlag, New York,

1990.

[19] Knuth, D., “The art of computer programming: Sorting and search-
ing”, vol.3, Addison Wesley, N'Y, 1973.

[20] F. Harary, Graph Theory Addison-Wesley, Reading, MA, 1969.

107

[21]

2]

23]

[24]

f25)

126]

KQ, G tri 1 for fast icalgorithms, Ph.D. thesis,

Department of Computer Science, Carnegie-Mellon University, Pitts-

burgh, Pennsylvania, 1979.

F.P. Preparata and §.J. Hong, “Convex hulls of finite sets of points in
two and three dimensions” Comm. ACM2(20), 87-93 (Feb.1977).

D.T.LEE and F.P.PREPARATA, “Location ofa point in a planar sub-
division and its applications” SIAM J. COMPUT. Vol.6, No.3, Septem-
ber 1977,

C.-8.Jeong, Parallel Voronoi diagram in Ly(Le) meltic on a mesh-

d computer, Parallel Compuling, Vol17, No.2/3, June 1991,

241-252.

§.Guha, An optimal parallel algorithm for the rectilinear Voronoi di-

agram, Proceedings of the Twenty-ighth Aunual Allerton Conference

e ication, Control and Compuling, Monticello, Tlinois, Oc-

tober 1990, 789-807.

Y.C. Wee and S.Chaiken, An optimal parallel L,-metric Voronoi di-
agram algotithm, Proceedings of the Sccond Canadian Conference on

Compulational Geometry, Ottawa, Ontario, August 1990, 60-65.

108

	001_Cover
	002_Inside Cover
	003_Blank Page
	004_Blank Page
	005_Title Page
	006_Table of Contents
	007_Table of Contents ii
	008_Table of Contents iii
	009_List of Figures
	010_List of Figures v
	011_List of Tables
	012_List of Tables vii
	013_Acknowledgements
	014_Abstract
	015_Abstract x
	016_Abstract xi
	017_Abstract xii
	018_Chapter 1 - Page 1
	019_Page 2
	020_Page 3
	021_Page 4
	022_Page 5
	023_Page 6
	024_Page 7
	025_Page 8
	026_Page 9
	027_Page 10
	028_Page 11
	029_Page 12
	030_Page 13
	031_Page 14
	032_Page 15
	033_Page 16
	034_Page 17
	035_Chapter 2 - Page 18
	036_Page 19
	037_Page 20
	038_Page 21
	039_Page 22
	040_Page 23
	041_Page 24
	042_Page 25
	043_Page 26
	044_Page 27
	045_Page 28
	046_Page 29
	047_Page 30
	048_Page 31
	049_Page 32
	050_Page 33
	051_Page 34
	052_Page 35
	053_Page 36
	054_Page 37
	055_Page 38
	056_Page 39
	057_Page 40
	058_Page 41
	059_Page 42
	060_Page 43
	061_Page 44
	062_Page 45
	063_Page 46
	064_Page 47
	065_Page 48
	066_Page 49
	067_Page 50
	068_Page 51
	069_Page 52
	070_Page 53
	071_Page 54
	072_Page 55
	073_Page 56
	074_Page 57
	075_Page 58
	076_Page 59
	077_Chapter 3 - Page 60
	078_Page 61
	079_Page 62
	080_Page 63
	081_Page 64
	082_Page 65
	083_Page 66
	084_Page 67
	085_Page 68
	086_Page 69
	087_Page 70
	088_Page 71
	089_Page 72
	090_Page 73
	091_Page 74
	092_Page 75
	093_Page 76
	094_Page 77
	095_Page 78
	096_Page 79
	097_Page 80
	098_Page 81
	099_Page 82
	100_Page 83
	101_Page 84
	102_Page 85
	103_Page 86
	104_Page 87
	105_Page 88
	106_Page 89
	107_Page 90
	108_Page 91
	109_Page 92
	110_Page 93
	111_Page 94
	112_Page 95
	113_Page 96
	114_Page 97
	115_Page 98
	116_Chapter 4 - Page 99
	117_Page 100
	118_Page 101
	119_Page 102
	120_Page 103
	121_Page 104
	122_Bibliography
	123_Page 106
	124_Page 107
	125_Page 108
	126_Blank Page
	127_Blank Page
	128_Inside Back Cover
	129_Back Cover

