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The Diels-Alder reaction 01cls -3,s-cycIOhexadiene-1,2·d lol (121) and a number of

lis acyclic derivatives, c is·1,2·diacetoXY-3,5-cyclohexadiene (109), c is·l ,2-bis·

(trlmethylslloxy)-3,S-cyclohexadlene(122)andcis ·1,2-dimetho xy.3,5·cyclohexadJeno(124)

were found to add N-phenytmaleimide In a kinetically controlled manner to yield adducts

that arose mainly by attachment of the dlenophlle to the lace of the diene syn to the

oxygen atoms. Some cycliC derlvatlves 01 121, cls-3a,7a-dihydro-2 ,2·dJmethyl-1,3­

benzOdioxole(114) ,cis-3a,7a-dihydro -2,2-dlmethyl-1,3,2-benzod loxasilole (123)and cfs-2­

ethyl-3a,7a-dihydro-2 ,1,3-benzoboradioxole (125),afforded nearly equal quantities of both

syn and anti adducts. Benzylidene -protected derivatives (2t1l ,3ap,7ap)·3a,7a-d lhydro-2­

phenyl-1,3-benzodioxole (132) and (2«,3a«,7a«)-38,7a-dihydrO-2-phenyl-1 ,3·benzodlollole

(133) also reacted with N-phenylmale lmlde , but they gave predominantly anU-addll1on

prod ucts,

1,3,5-CYf:lohexalrlene·1,2-oxlde (142) and Its more substituted derivatives, 1,2­

dimethyl .1,3,S-cyclohexalriene-1 ,2·oxlde (1488) and 10-oxatrlcyclo(4.3.1.0Jdeea·2,4­

dlene (148b) reacted also with N-phenylmale lmide to give only products that resulted

from addition of the addends to the face ot tha diane anti to the epoxlde oxygen ,

The results obtained have been discussed In the context of the many meortee that

attempt to define the controlling factors Involved In determin ing (syn/ antJ) e-tactet

selectivity of plane.no nsymmetr lc dlenes bear ing an allyllc heteroet om. Sterk: eNects and

stereoelectron lc errecte are Invoked In this study to ralionaJizethe results we report here.

In particular , our contrasting results with the dlel-derived dlenes and the benzene oxides

are consistent with syn·additlon be ing determined by the presence of a favorable



secondaryorbllal lnteractlon between the LUMQ01the dlenophlle and the components

of the highest occupied molecularorbitals thai resideon theallyllcoxygens of tho dlenes.
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INTRODUCTlON TO THEDlEL.S-AUJER REACOON

The first lormal reports of what we now know as the Diels·Alder reectlcn (1 + 2

...3, Scheme 1) appeared in the literature about 100 years ago. Sauer' described how

Zlncke ,2ln 1893, proposed that the formation of perchloro lndenone 4 bVthe pyrolysis of

2,2,3,4,S,S·hexachloro-l-hydroxycyclopent ·3·ene·l-carboxylic acid 5 occurred through

the dimerlzation 01perchlorocyclopentadleno ne 6, with sUbsequent ellmlnatlon 01carbon

mono xide and two atoms of chlorine from the dlmerlc adduct 7 (Scheme 2).

Onlshchenko:l also pointed out that IpalleW had synthesized dipentene 9 by the

dimerl zatlon 01Isoprene 8 In 1897 (Scheme 3).

less than ten years later, In 1906, Albrechf reported a mixed addition reaction at

a t .a-diene with a sUbstiMed alkene (cyclopentad lene and para·benzoqulnone), but he

proposed an Incorrect structure 10 as the product. It was not until over 20 years later, In

1928.' that the pioneer work of Otto Dlels and Kurt Alder resulted In the elucldatlon of the

correct structu re 11 for this product . In tact, they obtained evidence that the addltlon of

t.a-dlenes with substituted alkenes was Indeed a general phenomen on, and so was

discovered the reaction that now bears theIr names.

Since that time the Dlels·Alder reaction has become one of the most Intensively

researched translormatlons In organic chemistry. The total body 01 knowledge

accumulated so far has resuhed In the publication 01 numerous book6u and review

articles. To give the reader an appreciation of the amount 01Interest generated In the

Olels-Alder reaction, especially In the last 10 years, consider the followIng: the 4111

Collective Index (1931-46) of Chem/em Abstracts has 24 listings under the sublect
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heading "Diels-Alder reaction", Underthe same heading of theGeneralSubject Indell of

Volume 113(July-Dec, 1990), ChamlcafAbstractshasalmost250I1s11ngs, encompassing

only a six month span 01the publishedliterature. Thus, ills nol surprising that the Dlels­

Alder reaction has evolved to be one of the most powerful tools employed by the

syntheticchemist.- Its importance restswith its abilityto generatetwocerbon-certon (1

bonds simUltaneously, and up to four stereogenlccentresin one syntheticoperation.

ThusIt Is a convenientmethodof generatinga highly functlonalized slx·memberedring.

The Oiels-Alder reactionis butone memberof a broaderclassof transformations

called cycloaddit!ons.g These transformations are processes wherebytwo (or more)

moleculescondenseto forma ring, with the formationof new a bonds at the expense

01the n bonds of the substrates. Two other examplesare the [2+2] photoadditionot

alkenesand [3+2} dipolaradditions.

The application01 orbital theory by Woodward and Hollman'o to pericycllc

reactions(thosereactionsInwhichthebond-makingandbond-breaking processosoccur

simultaneously, via a cyclictransitionstate~ provided greatInsight Into the mechanism

01 cycloadditions. The use 01frontier orbital theory," in which one IS restricted to

considerationof the molecularorbitalsof the reactantsmostImportant for reactivity,has

ledto the developmentofa simple,concisedescriptionof the reactivity, stereoseleetivlty

and regloselectlvltyof Diels-Alder reactions.

Ithas becomewidelyaccepted,n basedontheconservation oforbllalsymmetry,lO

that the Diels·Alderreecnon Isa concerted,thermallyallowed[4 n. +2 KJ ccnceneaucn

of a dlene 1 and a dlenopnne 2 (SCheme 1). Characteristics of the reaction that ere

excluded are zwltterfonic and bJradlcal Intermediates," Although other directions 01

approachot the addendscan be analyzedby the rules of orbital symmetry,l.e. {4K. +



2ft.), [4ft, + 2ftJ and (4 ft. + 2 ftJ , thereIs still no definiteeKperlmenlai evidence lor

thesetypes 01reactions 01dienesand dlenophiles.

With anytwo reacting partners thereare severalsalientfeaturesof the Dlels·Alder

reactionthat need to beconsidered, and whichwilt ultimatelydetermineits outcome. Not

all of these factorsoperateIn anyone reaction. A shortdescdptionwillbe givenof each

of thesefactors to encompass what Is known eKperimentallyregarding the course of

Dials·AlderreactionsIngeneral.7C In all, there are sevenfactors.

Diane conformation For acyclic 1,3-dlanes, there are many possIble

conformations lhatthecarbonchainmay adoptthroughrotallonabout the

C2-C3 bond axiS.' 2 For l ,s-butadlene, two importantforms areshown as

s-!rans 12 and s-cls 13 (Scheme 4), where k and k, are the rates of

exchange. In order for a Dlels-Alder reaction to occur, the dlene must

adopt thes-cls orientation. If rotationabout the C2-c,bond Is hindered,

as In 14, or restricted, as in 15, the Diels·Alder reectcn mey proceed

slowly or not at aH. CycUcee nee 16obviouslydo nothave thIs problem

as long as both doublebonds are In the samering. In genera', reaction

rates involvingcycHc dienesproceedfaster andwithgreaterstereo- and

regiocontrol thando acyclicdlenes.

10 Substitutionpattelnson dlene/dienophllo Olels-Aider reactions may be

classifiedInto thrlletypes,II dependingon thesubstitution patternson the

dlene anddienophile(Agure1). This classificationIs based on which 01

the fronUet molecular orbitals 01 the dlene and dlenophi1e are most

Important during reaction.Figure1 Illustrates the relallve orbitalenergies

01both addendslor each type of Diels-Alderreaction.



~" '*-#- %- "HO"O

HO"'O HOMO

%-
""'~ { =~

Cas e 1
ne utral

Case 2

normal

*__ , -- W"O

HOMO- - --- ---

Case 3
inverse electron

demand

UJMO

EOG· OCH3. OTMS. R. NR2

EWG · COR, co,R. CHO. CNR, CN, CONR

Figure 1. Orbital energy diagram forneutral. normal. and
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For the unsubstituted scenario (Case 1, 1,3-butadiene and

ethylene) both theHOMO andthe lUMO orbltals for eachaddend are of

very slm~ar energy. Therefore, cycloaddltlon may proceed lil a everlap of

HOMOo_ - lUM 0<llonoplll1O as well as by HOMOlMonopljlO - lUM O-.., If

groups placed on either addend(or both) do not significantly alter the

orbital energies, lhenreactionsof this typeare termed'neutral'Dlels-Alder

reactions.

In Case 2, placement01an electron-donating group (EOG)on the

cneneservesto raisethe orbitalenergy 01the diane. Slmltarly, anelectron­

withdrawing group (BNG) on tha dlenophUewill lowerthe orbllal energy

of the dienophile. As shown In Agure 1, the difference in energybetween

HOMOo_ - lUMD dIOnop/'IIIO' Is less than the energy difference between

HOM0 <llenapllllO • l UMO......, Therefore,cycloadditlon occursInvolving the

former interaction. Such a substitution pattern, common for most (4-+21

cycloadditions, is called a 'normal" Dlels-Alder reaction.

Case3 Is a reversalof the substitution patterns found In Case 2.

Thus, an EWGon the dieneand an EDGon the dlenophile serve to reee

and lower their respective orbital energies. Now the HOMD<hnt>pll11O ­

lUMO_ InteractionbecomesthemoreImportantone. Reactions 01this

type are referredtoas "'nverse-electron-demand" Diels·Alder reactions.

Whilethe substitutionpatternsshown in Case2 andCase3 serve

to enhance the reactivity 01each reactant, It has been predicted that a

normal Dlels-Alder reaction involves a higher degree ot synchronous

characterthan doesthe Inverse-electron-demand reacnon."
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Scheme S. Regiochemical control ofthe Dlels·AIder reaction



liQ Regiose/ectivity The hIgh degree0' regioselectlvityassociated with a

Dlels·Alder reaction when both addendsareunsymmetrically substituted

canbe readily envisionedwhen consIderation Is givento theertecte of the

substituentson the Jt systems.s Structures 17 and 18 (Scheme5) show

the relativecontributions of the localized p-orbltale of the dlene HOMO

when substituted at the 1 or2 posltlons. The viewIs perpendicularto the

molecularplane. A shadedcircle signifies a positive componentof the

wavefunction,andunshaded, anegativecomponent.The sizeof thecircle

signifiesrelativesize of the coefficient. Ukewlse, structure19 gives the

orbital picture of a dienophlle bearing an EWG. It has been shown by

Anh' 31 and others' 3lH1that condensation will occur so as to bring together

the terminiwith the largercoefficients as shownfor A and B In Scheme5.

Thus, the "ortho' product 22 Is obtainedpredominantly from 20 and 21,

whilethe ·para· product 28 predominates In the reactionof 24 and25. In

generalized terms, this Is referred to as the 'ortha-para rule" (Scheme 5).

Iv} stereose/ectivity, the "cis principle", and the Alder 'enaorule' Oneof the

moreImportantfeatures of the Dlels·Alder reaction, and strongevidence

for a concerted, one-step mechanism, Is the high degree 01

stereoselectlvltyInherent to most [4+2) cycloaddltlons. It was recognized

early onthatcis- or trans-substituteddlenophllesreact with dlanes10 gIve

adducls in which the cIs or trans arrangementof the substituenls In the

dlencphlleIsretained. ThisobservalJon wasformulated by Alder and Stein

asthe"cis princIple".H An extensionof this Is the "endo rule". Consider the

reacting partners 28 and 29, which givethe isomerIcadducts 30 and 31
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inthe Diels-Alder reaction of 1.3-butadleneandacrolein
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(Scheme 6). Compound 30 arises from anoriental/on01the substituent

on the dienOphile under the diane, as shownin A (endo) . whereas 31

arisel': fromthe otherorientation, B (exo) (Figure2a). Based on a steric

argument, Inspection01A and Bmightleadonelo predictthat31should

be thepreferredproduct. because Ihosepens altho molecules that are

not bondingare pointingawayfrom eachotherIn 8. However, with only

a lew 6Xceptions,products arising fromA predominate. TIla 'endorute"

callsfor'maximumconcentration"01doublebonds14Inthetransitionstale.

Thiswouldnot onlyincludethe It systems directlyInvolvedInthereaction,

but alsothoseof the activatinggroup(s) on the dienophile.

Amorerigorous8ICplanation invokeslrontierorbitallnteractlons,i.l(l

Figure2b illustrates theHOMQ·LUMOInteractionin the transition slatefor

ena'o-additlon (8) and exo-additlon (b) 011,S-butadlene end butenone. In

theendo orientationthereIsa favorablesacondal)' orbilelloteraetlon,Le.

an in-phase orbital overlap, between portions 01the HOMO and LUMO

other than those at the centers 01 new bOnd lormation. In the exe

orientation,theacyl function is directed awayfromthe diane's 1t system,

so thereIsno secondary orbitaloverlap. Thepteeence 01this secondary

effectservesto lower theactivationenergyleadingto thelransltlonstate

to give products of endo-addlllon. The difference In activation energy

between enda and exo transitlon stales Is qul1e smalt,lS but a 9:1

enda/exoproductrationeeds onlyabout5 kJ/mol difference In energy.

v) Lewisacidcatalysis Lewis acids,suchasAlCI, andSnCI4, accelerate tl1e

rate 01 addition of addends In (4+2] cycloadditlOns1e in which the
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dienophile possesses an allyllc CeO or CaN activating function. In

addition, both regloseleetivlty and slereoselec1ivity are enhanced for the

calalysed versus the uneatalysed reaction. It has been postulated17 thai

the l ewisaclelcomplexes with thecarbonyloxygen, or Imine nitrogen, and

Increases theelectron·wlthdrawlngcapacityofthe substituentgroup(s). As

such, the enorgles ofme frontier orbitals arelowered. and the coefficients

in the LUMQat theprimary reactingcentreserealtered,which enhances

regloselectlvity. Also,thedegreeofsecondaryorbltaroverlapmay Increase

In the endo transillon slate (causing a decrease in the activation energy).

whichIncreases thedifferenceIn theactlvatlon energy leading to theendo

and aXQ transitionstates, to result In enhanced stereoselectlvity.

vQ Medium effects The thermal Dlels·Alder reactIon occurs under a variety

of condlllons. In addition to reactions In traditional organic solvents, [4+2)

cycloaddltlons may take place In the gas phase," In low meltlng fused

satts.l
• and underultra·hlgh pressures" lnconventional solvents. Themost

startlingresults, however, havecome from Dlels·Alderreactions performed

In aqueous medla20 and In solutions 01UC104·dlethyl ether.21

In general. the Influence of the solvent on the reaction rate Is

relativelysmall Ondependent 01the system Investigated), even over a wIde

range of solvent polarity, for both the normal and the Inverse·electron­

demand Diels·Alderreactions.n However,endojexoratiosere both solvent

and temperen.re dependent,II ,22 and gas phase reactions seem to occur

as fast as those In a nonpolar liquid phase."
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Breslow reported In 1980 a dramatic Increase in both the rate and

the enda/axo rallo of some simple Dlels-A1der reactions conducted In

weter" (as opposed to those reactions performed In organic solvents).

Grieco confirmed this unusual solvent effect with more complex

sUbstrates.24 The Increase In rate was thought to be due to the

"hydrophobic effect", which is the tendency of nonpolar species to

aggregate in water solutions so as to decrease the hydrocarbon-water

InterfaCialarea.:lO TwohydrocarbonsurfacescometogetherIn aDlels-Alder

transition state. In water this aggregation must be favored. with a net

decrease In hydrocarbon surface area on going from reactants 10

products. Additionally, hydrocarbon SOlubility Is a function 01 the

hydrophob ic effect. Increased hydrophobic ity decreases hydrocarbon

solubllity , and this should lead to an enhancement 01reacncn rate. This

was indeed found to be the true when reactions were run In aqueous

solutions of UCI or guanldinlum chloride (GnCI).Uthlum chloride Is known

to Increase the hydrophoblc effect of water and GnCI decreases it. Rates

did Increase In solutions of UCI, and they decreased In GnCI solullons .20

Grieco rater postulated that the increase In the rete and the

endo/exo ratio in his systems was the result of micellar catalysis, a mutual

bInding 01reactants in an aggregate.~' Breslow discounted this Idea based

on additonal experlments2~ restating that the rates are due to hydrophob Ic

effects (vide supra). He went on to propose that the Increased endo/axo

ratios in water reactions are due to the hIgh polarity of the medium

Increasing the charge·transfer Interaction that results from secondary
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orbital overlapin the endo nensrtlcn state. Thus, the hydrophobic effect

should alsofavourthe more compactendo transitlonstate.

In a more recent paper, eneco" proposed thai the high internal

solventpressureof watermayalsobe responsible for therateacceleration

by compressing the reactants, in much the same manner as the

applicationofexternalp:essureInultra-highpressureDiels-Alderreactions.

Heobservedthai therates of a numberof Diels-Alder reactionsaregreatly

enhanced when conducted in solutions of 5M UCIO.-dlelhyl ether, a

solvent medium thai possessesa high Internalsolventpressure. Shortly

afterwards, however, Oalle~ provided evidence that suggests that the

incroases In rate In UCIO.-diethylether solullons are due 10 lewis acid

catalysisof the reactionby the U+ lon, whichmay be the first exampleof

catalysis of Dlels-Alderreactions by a weak Lewisacid.

vln SyfHlntJor tr-fac/al se/ectMty In addition to the regioehemlcal and

topological (endo/exe)aspectsof the Dlels-Alderreaction, there Isanother

form ot stereoselectivity. This arises when the two sides,or faces, of the

e-syetemof the dieneor dlenophilearedlfferenllaled.7e Anexampleof this

. -faclal selectivity Is l1Iustraled In Agure 3. The side of the dlene

possessing the group Z is called the syn face, and the opposite side Is

referredto asthe anUface. Whenaddition of adlenophlleoccurs on to the

syn face, the syn adduct A, Is the result. Ukewlse, for snU-faceaddition,

the anti adduct B, forms.The terms syn and anti are relative,and refer to

the mode of addition.$yn/anti or .-faclal selectivitywill be dIscussed in

detail In the fOllowingsection.
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SYN/ANTI OR n-FACIAL SELECTIVITY

"-Facial stereocontrol has long been recognized as an essential element n

asymmetric synthesls.2 In any reaction Involving a planat substrate or Intermediate, in

which there aretNOreactivelaces. two or more enanllomerlcor dlastereomerlcprodUcts

maybe formed. It Isottendesired,bcwever,thatonlyonelace reactIn a stereocontrollecl

manner. This " ,facial selectivitymay also be applied to the DIals-Alderreaction In whiCh

at leastone chlraJor pseudochlralcentreon one 01theaddendscausesone face of the

dlone or dienophlle10react fasler than the other, with the preferential formation of one

product. " ,Faelal slereoeontrolis usually observed inone of twocircumstances: (i)by the

Influenceof a chlralauxiliary orcatalyst In which one lace ofan addend Is blocked In the

transition state; or Qijby the Influenceof a plane-nonsymmetrlc substituent In the allyllc

position of either the diane or the dienophile.

The utility at the first approach as applied to asymmetric: synthesis has already

been weD demonstrated,h espedaly in instances involving chlraJ dienophiles. Thls

treatise will focus on the /7·fadal selectivity arising from the latter case , or, more

specifically, the consequence of heteroatom substitution al the allyllc position of cyclic

plano-non-symmetrlc dienes,

A numberof systems havebeen studied to probe the causative factors Involved

In the " ·faelal selectivity exhibited by dlenes possessing a stereogenlc allyllc centre.

Thesecanbe classified Into twogeneral categories: ~) carbocyclic network, wherethere

Is alkyl, or carbon-based substitution at the allylie position, and ~i) heteroatom

substitution (0, N, S, etc,) of the aliyllc position of cyclic, semlcycllc and acyclic dlenes.
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AJlyJlc AlkylSubstitution

Experimentsperformedby Valentaand coworkersU
,28 demonstratedcompteten­

facial stereocontrol , as shown in Scheme 7, with dlenes 32 and 33. Similarly, the

prostaglandin synthesis by corey" utilized an alkyt substituent at the s-posmon of e

cyciopentaclenemoiety 34 to c2onttol the Oiels·AlderaddlUonas shownIn Scheme8.

In both instances, the adduct obtained was that arising from addition01the dlenophl1e

anti to the sterlcally Inhibit ing aflyllc alkyl group. A more subtle demonstrallon 01 this

sterlc effect is shOwnin Scheme9, In which progressingfrom a dlchloromethylgroup In

35a, to the larger dibromomethyl group In 3Sb, gave enhanced addition 8nU to the

dlhalomethylmOlety.JO

Morerigorous studiesof the etencrequirementsof the Diels·Alderreaction have

been reportedby BurnellandValentaJ 1
•
J

' andalso by paquette" using5-alkyssubstituted

cyclopentadienes. The results are summarized In Scheme 10. There are two notable

features presented In this work. Firstly, the adduct ratios arising from the Diels-Alder

reactions 01dienes 36-39 are strikingly similar, typically BO-B5% in favor of the major

product with a varietyof cencpbnes. Secondly, the results obtained lor etenee36 and

37 Indicated that the methlne hydrogen (Cl -H) Is more stericallydemanding than tile

methylene hydrogens (C3.H) In the Diels-Alder addition. Molecular modelling

calculatlonsJ
& supported this postulate. The possibility 01some sort of uj" Interaction

(vide In(r8) controlling the "-facial selectivitywas not consistentwith the similarity In the

adduct ranee.

A somewhatanomalousresultwas thatshownIn Scheme111nwhich the "double

adduct" 42, formed from the reactionof tetraene40 with OMAD, could only havearisen
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Irom addition of the dlenophile 8yn to the cyclopentadiene substlluent:ll to give

Intermediate 41.

The pIoneerwork 01Paquetteat 01.37 on the isodlcyclopentadlenesystems43-48

atlordedsomeinterestingobservations. Manyexperimentsrevealed that 43 undergoes

Dials-Aiderreactions with various dlenophllesto give only adductsof type 47, i.e., arising

from bondIng to the "bottom",or endo face. of the dIane (SCheme 12). It was clalmecf1

that thIs result could not be due 10a sterleeffect because the Incoming dienOphilemust

approach thernenelace syn 10the largerethanabridge. The cyclopropane derlvallve44

behaved In a similar manner. In contrast, the cvctopentaneanalogue 46 and the gem­

dimethyl 45, gave mainly adduets of type 48.

It has been poetcteted " that these , and similar results, are due to mixing 01the

o orbitals of the norbornyl frameworkwith the'll: orbitals of the dlene. This o/ft interactlon

perturbs the 11:, of the dlene unit, but not the'll:. (or HOMO). For both 43 and 44, this

causes a dlsrotatory lilt of the terminal 1t lobes towards the methane bridge, as shown

In A (Agure 4). (;onversely, the centraltt lobes rotate In the opposite dlrectlon. The net

effectIsa minimizationof closed-shellamibondfngInteractionbetweenthe Jt, of the diane

and the HOMO of the dlenophUe on the enao surlace during dlenophHeapproach, as

shown In C. In contrast, dlenes45 and 48 experiencea conrotatory tilt of the termlnaltt

lobes (8 of Figure4), therebymlnlmlz.lng any antibondlng Interactionson the"top' or exo

surlace during cycIoadditlon, as shown In D.

It should be noted, however, that molecular modelilng calculations by HoukMl

suggestedthat the x-facial selectivitydisplayedby these and other IsOdlcye!opentadlene

systems was due to a comblnallon of torsional and stertc effects. In addition, studies on
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SCheme 11. Diels·A1der reaction of 5-(cycfope ntadieny l)CYclopen ladiene

with dimethyl acetylenedicarboxyrate (E""C02CH3)

43

_u
~x

~CH'
CH,

Scheme12. n-Facial selectivity in the Oials-Alder reaction of

lsodicyclopentadienes
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the cycioadditJon of dienophiles 49 and 50 withvarious dienes indicated thai tho s-taclal

selectivitydisplayedby these substrateswas essentially due to sterie effects.3
-

Other exerrctes of e-taetal selectivity displayed by dlcnos with a carbon-based

allylic substituent are the propellane systems investigated by Ginsburg at a/.·o It was

discovered thai addition of a nitrogen-based dienophUe gaveexclusively a syn adduct 52

with dienes 51 (Scheme 13),while a carbon-baseddienophlle ga'JB exclusively an anti

adduct 53. In contrast, the nitrogen-based ciencptaree reacted soUwith propellanes 54,

10give adducts 55.

The Diels·Alder reaction giving rise to edoucte S2 was considered 10be due 10

secondary orbital overlap between the" system 01the anhydride moiety (with X .. 0)

with the lone-pair orbitals on the nilrogens 01the dienophlle, as shown In Figure 5. The

lone pair orbitals of the Incoming diazo groups overlap favorably with the ". orbitals of

the carbonyls_ This was predicted to occur at distances for which the HOMO""". ­

LUM0doonopl>lo Interaction leading to cycloaddillonhad not become slgnificant.·OtI It should

be pointed out thai addition of the PTAO should experience no such overlap if approactl

Is from the tace of dlene 51 anti to the carbonyls, and, 01course, II the same dlenophlle

reacts syn to dlenee 54. Considering also the anti adduct 53, which arose from the

addition of a carbon-based dlenophlle to 51, it may be reasonably stated that the

secondary orbital Interaction shown In Figure 5 favors syn addition, when possible, and

when not, sterle effects favor anti addItion.

Alfyllc HeteroatomSubstitution

The last decade has witnessed ",n expansion of research efforts directed at

unlOCkingthe mechanism of heteroatom-clirectedn-facial diastereoselectivllyin the Dlels-
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54

Scheme 13, n-Facialselectivityin the Diels-A1der reactionsof propellanes

Figure5. Secondaryorbital overlapin the approachof an azo dienophile
syn to an anhydridebridgedpropellane
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Alder reaction, It was discoveredearly on that an atom other than carbon placedal the

allylic positionof a diane can havea profoundeffecton therelative reactivitiesof the two­

faces01the diane. In some systems,cyclcadolnon takes placepreferenllallyby capture

at the dlenophile on the face of the diane anti to the hetercetcm , while other systems

exhibit the formationof eeductearisingIrom an apparently contrasterlc syn addillons.

The systems that have been studied to date can be classifiedInto four general

categories(Scheme 14): the acyclicdlanesI,wlllch havejree-roteuonof the ellyUc centro,

the semlcyclic species " and 1II. which ere more restricted In their degrees of

conformational flexibility, and the cydic derivatives IV. In which the dlene moiety Is

constrainedwithin a ring and the heteroatom Is held rigidly In place. Examplesand a

discussionwill be presentedto overviewthe Diels-Alderbehaviour 01thesefour structural

types. A review lollows 01the currenttheoriesdealingwith" ·faclal dlastereoseleetlvlty In

cases in which the cycloaddl1lon affordsseemingly contrasterlc products.

TypeI dienes

A note on productdescription should be made at this point. In contrast to acyclic

systems, thestereochemical descriptorssynandantJ,which describe an adduct In torms

of the facialapproachof addends, areadequatefor semlcyclic andcyclic dienesbecause

the heteroatomIs reasonably well fixed In spacewith respect to tho Re and 51faces01

the diene.

Foracyclicsystems,dueto free rotallonaboutthe C,·C2 bond axis (Agure6), the

heteroalommay adopt a number 01conformations with respect to the two faces0' the

dlene. This Is a major problem InInterpreting the "·faclal selectiVity of acyclicdlenes. For

acycl1csystems the goneralpractice is to describe the mode of addition of dlenophlles
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in terms 01 "[ike' and 'unllke", (This Is based on the Seebach.Prelog~ ' conventlon for

describing the relative toptcluesof approach 10the facesof an enanncmer.jReactant

approach to theRe face 01adouble bond with anadjacentRallyllccentreis termed ' Iiko"

addition, and approaChto theSi face Is termed 'unlike' addition, Similarly,for an Schlral

centre, approachto the Rs lace Is 'unlike', and approachto the SI face is ' like' (Figure

7). However,for consistency,many authorsuse apredeterminedpriority,which maydiffer

from the 'normal' convention, for assigning the R or S configuration01the chita! centro

and the Re and 51assignmentsof the diane races." For the purposes of the present

discussion, "like' addition Is termed syn, and 'unllke' Is termedanti. This conventionis

used by other aulhors.4:J.... This does not Imply, however,thai the heteroatomIs In any

fixed position with respect to the otene.

The resultsor cycloadditionsof a number of acyclic dienes containing a chlret

allyllc centre bearinga heteroatomare gIven In Table 1. When a stereogenlccentre Is

incorporatedintothe dianetheproducts of cycloaddJUon arecrastereomerrc, and remain

so becausethe stereogenlccentrestmexistsIn theproduct.Takingentry4 of Table1 as

an example(Scheme15),additionofN-phenylmalelmldeto compound56 resultodIn the

formation of dfastereomers 57 and 56 (both by endo addition) in a 83:17 rene,

respectively, Inwhichthe majoradduct.57 aroseIromsynaddillon, and the minor adduct

56 from anti addition (FIgure6).

Table 1 does not Include all of the many examples of the "-facial selectivity

observed In acyclic dlenes. It Is only meant as an overview (see Ref. 44b for a more

complete reference list). However, several observationscan be made from the data

contained therein.

1. Facial salectMIyIs sensitiveto dJenophlle type (compareentries 5 and 9).
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Table 1 n ·Facially selective Diels-A1der reactions of acyclic dianes

entry diene dienophile lifo synl % anti Rei.

0
1

5 OCH'
Go 73 /27 42b

0
CH,

0
2

5 0TMS
GNPh 801 20 42b

0
;H3 0

3

5 .
Go 82118 42b

0
CH,

e-o-rt
CH, 0

4

)~ GNPh
83 /1 7 42.

0
CH,

56



Table 1 continued

30

enhy diene dienophile % syn/ % anti Rei.

S

~~ ~N~ 88/12 42

0

CH,

6 -{~. ~NPh 100/0 45

0

CH,

E -OCH,OCH,

0

7
..

('H
100/ 0 45

CH,r6 :r: 15/65 46

"" OCH,
CH,
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entry diene dienophile % syn/ 04 anti Ref.

~~,
a

9
.-J(

15/85 421>II NPh

"I<
a

eH,

eH,

~.
co,cH,

10 I~ 27 /73 42b

co,cH,

eH,

11 ) rH

'
37 / 63 47

"" NHC1> ' H

H3 H E

e-o-f'+
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entry diane dienophile % syn/ % anti Ref.

CN
0

12 <N Ph 76 /24 48..~ 0OH
CH20Bn

OCH2CH3

<NPh13

~"
60 /40 49

0

CH,

CH,
0

14

5.~"
<N Ph

18 /82 50

0

CH,

CH,
15 PY ~H~H3

93/ 7 51
~::r:h N
I
~H~H3

CH,
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2. Even highly substitu1ed acylics are able to display high levels 01selectivity

(onlrI856,7. 11-12,15).

3. Allyl1c hetereoaloms other than oxygen are able to rnnuance facial

selectivity (enlries 13·15).

4. Heterodienesalso displayselectivity (entry 15).

5. If strictattontionIs paid to dienophile type, the facialselectivityIs generally

predictable (entries 1-6, 12).

The previously mentioned difficulty associated with the Interpretation01 It·faclal

selectivlty of acyclic dlanes has its basis In the determlnatlon al tha conlormatJon of the

allyllccentre In the transitionslate. Flgur~ 9 lIIuslratosshepossibleconformationsfor an

acyclic diane with an R allyllc centre. Comp lications arise from the necessity 01

determining the relative contributionsand reactivities of 11"3 various conlormers. Is the

hetercatcm aligned "Inside"(Eand F) based onelectronicfactors,or "outside" (8 andC)

as favored on sterle grounds?

Hehre43 suggested thatsyn additionoccursfrom the Rs faceattackot conlormer

C, but no evidencewas givento jusUfywhy thisshould be the preferredconformallon In

the transitfonstate.

Houkand coworkerscalculatedtherelativeenergiesfor some staggeredtransition

statesfor the electrophllic dipolar additionot nitrile oxides to chlralalkyl ethers"52 (They

had shown earlier that the allyllc substituentsare staggered In cycloadditlon transition

s\;.,tes.~ Theyhad determinedthat theallyllc ethersprererthe "Inside"posillon, and alkyl

substltuentsprefer the sterlcally less crowded antJ conlormatlon (Scheme 16).This was

termedthe "Inside alkoxy" effect.Houk argued that when bond lormallonoccurs during

electrophl1lc attack, the " ·bond becomes electron deficient, and "Electron·donor
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Slbslituents on the alkene stabllle the lJansition stale, while eIecWofl.vwlttldrewlng

substituents deslabilize the tral'l$i&lcn state. Whenthe allyl elher Is ri, the CHROR'

group Is electron-withdfOl'.vtng, moe the oCO0fbIlaI OII'erlaps with, and withdraws

eleetro!'ldenSityfrOm, the alkene. orbital . When the CQ is 'lnslde', 1l1snear the plane,

and overlap 01aCo with II Is mlrlmlzed. Now,overlap01 oI6Ctron-donaUng "CH and

oCR orbitalswlth the 1t orbital Is maximized.and thlllransliion slale ls st&bllb:ed",9

Thisgeneralizationagreedweil wlttllhe experimental results obtalood byHoukfor

dipolar additions. However, Franckl2ll arglJedthat 111;.0 would predict the Sllatlal attack

01dlenophiles 10conformar E (oranri addillon). the opposite ollhat observed"" by

Franck and others (see rlf erencesIn Table 1). Franck ,easonec:lInstead that Re 'ace

additionto conlormerB Should " prelerred.M~~ a1sofavoredlhls conIonnatlon,

based on argl.mMts pIA forward by McGarvef" n:l Flemingll tor the eIectrophllk:

alkylation01ester enolatn.

Additionalsupport Ihal lavored B ase remorllikely CXlflJormatiOnin !he triWlSition

stale CM\8 frem lesuttli with kef'r'lenie dienophi1llls (entiel 10 lVld 11, Table 1).

Kozlkowskf"h.5tproposedtha t Icr ICetyklniCdienophllesthe electronwithdrawing group

of the dienophiJe would experience lDavottblll sterle lnlcwaetionl with the outak:le

heteroatom Of~~er 8 (seeFIgurel l a). ThIs Slllric Imllraetlonwould be smallet lor

ethylenic dienophiles. Thepreletred conlormatlon In the translllon state then would be

E (Agure 11b), that in 'MlIch 1M lIeteroatom is ins ide , and the dienophlle would prelar

to add attf1 to the larger Rgroup togive theSllace addition product (or antiaddition, 51

lace olR cenlre).

Meanwhile, DaMenberg and coworkers" modelled the contormationa01aome

(E,E)·ktkoxy.1,a.heudenes (5iHl. Fl(lU'e 10) in the tran Sltion slll es for bothRs and
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59a Rl "' ~

59b "' =CH,
590 '" - CH,
59d '" - CH,CH,

"'=QH

"'-CJCH,
R, =OCH,CH,
R, =OCH,

n
( "'.-.

(a) ~OR

A

Re

Si ~AD "

IT

(b)

Figure 10. Preferred conformation of the allylicoxygenin the transitionstate
ofacydic1,3-dienesuponreactionwithethylenicdienophiles (a)
and withacetytenic dlenophiles (b)

(b)

,,

,~
E

(~
(a)~

A

Figure11. Approach of an acetylenic dienophile to the Re (a) and Si{b)
faces ofan acscsc 1.3-diane
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SI facial approach of ethylene. In all cases Re face app roach 10 an R chiral centre (or syn

addit ion) was Ihe favored transition stale. In additlon, the OR group adopted an enn­

coplanar orientation with respect to Ihe diane (Figure lOa). In this conformation, Ihe

dienophlle may approach syo to the hydrogen (As lace) oranti to thehydrogen (S/lace).

The a1koxygroup prefers 10 be approximalAly in the plane 01the diane In the Iransll10n

stal es for both syn and anti additio ns. The d lenophlle approaches from what would be

th e less hindered side. Dannenb erg's results suggested that the face selectivity is "due

to a combina tion of storie and electronic erects' , although it was unclear what the

elect ronic effects are, and why Ihe OR should prefer an enu-ccpranar orien tation. For tho

reaction with acetylenlc dienop hiles , it was determined that the OR Instead would eneln

a eyn-coplener orientation (Figure 10b), 10 lessen the Interaction betwee n the dlenophile

and the OR in the transition state. This is In acco rd to the postul ate prop osed e8rller.~

Type II dienes

Only two reports have been pUblished to date with the eemlcycnc dienes 01typo

II. Overman and coworkers" reported the synthesis and cycloaddil lons 01 two dlene

systems bearing a chlral allyllc cen tre, the sulfoxide 60 and the alcohol 61e with

derivatives 61b and 61e (Scheme 17). Selected cyeroaddition results with these dienes

with N·phe nylmaleimld e (NPM) and tetracyanoethyle ne (TeNE) are given In Table 2. The

sulfoxide 60 displayed exclusive an ti addition in a numbe r of solvents with NPM. In nearly

every Instance dienes 61a-c also ~howad a rolativaly high deg reo 01 "- Iaclal selectIvity

In favor of the anti adduct in three solvents (toluene, methanol, tetrahydrofuran). Only one

experiment afforded a modest excess 01 the syn addition product (entry 2). The

preference lor anti addition was accounted for by the apparently un favorab le sterlc and/or
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~OA
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61a R'" H
61b A-CH3
61c A-rOOMS

minor major

~,,~"
Ph 0 Ph 0

62a -c 63a-c
SyntoOA AntitoOA

Scheme17. n-Facial selectivity in the Oiels-Alder reaction
of vinylcyclopentenes
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b-~
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~'q3
H

A =='>=~
~J~H

;..;
B

C

Figure 12. Interactionspostulatedin the controlthe n-faclal
selectivityof vinylcyclopentenes
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Table 2. or-Facial selectivity In the Oiels·A1der reactions of v iny~

cyclopentenes (reactions perfonned In toluene. except
where Indicated)

Entry Diene Oienophile %syntoOR %amHo OR

1 60 NPM 0 100

2 61a NPM 64 36

3 61a NPM 20 80

4 61a TCNE 25 75

5 61b NPM 3 97

6 61b TCNE 3 97

7 61e NPM 0 100

8 61e TCNE 31 69

methanol
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electrostatic Interactions thai ecst in the transition stale leading to the syn addition

product (A of FlQUro12). Indeed. it has been cak:ulated tha i the distance between the

dienophile oxygen and the sutloxide oxygen in transition stale B (Figl.l'& 12) Is only

approximately2...A.SI

That diene 61. s.hOwed a small preference lor syn addition with NPM In an apfotle

sokYent (entry 2) may be due 10intermoleCular hydrogen bond ing between the QH group

of the diane and the carbonyl of the dienophlle (C or Figure 12). \Nhon the same reaction

was performed In a prone solvent (entry 3), the K·fael. 1 selectivity reversed. Also,

protection al the alcohol as an ether, which eliminated H·bonding interactions, afforded

mainly, and In some cases exclusively, anti adducta.

The one other $tu~ 01Type It semlcycllc dlenes bearing an allyllc halaraalom

InvolV9dthe placement of ene 01the double bonds In a slx-membered ring. Thisprovided

the molOCU1es with morenexlbllity,and this In tum had an Impact on the Interpretatlonof

the Oiels·Alder behavIOurof the dienes. In total, SIxsubstrates weresyntheSized, 64a-C

and esa-e (Scheme 18). Sellicted results from the publiShed data are given In Table 3.

In neartyaJllnstances JnvoMng the cyclOadditlon 01dlenes~ and 6S.'l-C, the

mafor product obtained was 86a~ {Scheme 181, that arising from the additIOn of the

dienophlle to the face of the diene anti to the allylic oxygen function. Even the

replacement of the allyllc hydrogen at c-3 of 64b-C, w1t1'l a methyl group stili resunedIn

preferential anti addition (compare entries3 and 4 with entries7 and8. Table 3), although

the prcponlcn ofantiadductswassomewhatreduced. The only cases In which therewas

8 prererence for tile formatlon of syn aciducts 67. and 691 (Scheme 18) were those

involving the dlenes 64a and 658, (entries 1 and 5, respectively). However, repeatfogthe

reactions 01these dlene, V1 a polar prcuc SOlvent resulted tn a reversalin th9 syn/antlll'
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64b R-CH3
64< R-TMS
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65a R"H
65b R"CH3
6Se R-ruS
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64a ~c

65a -c
66a -c
68a -c

AnftoOR

67a -c
69a -c

Syn 10OR

Scheme18. n-Facial selectivity in theDiels-Alderreaction
of vinyl cyclohexenes

CH,

Figure13. Steneeffects postulated in thecontrol ofn-taclal selectivity
of vinyl cyclohexenes
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Table 3 2-Facial s&lectivlty In the Dlels·AJder reactions of vinyl­

cydohexenes (reactions performed In benzene except
where Indicated)

Entry Diene Oienophile % synto OR % antiot OR

1 64. NPM 63 37

2 ' 64. NPM 17 83

3 64Il NPM 11 89

4 64c NPM 9 91

5 65. NPM 92 B

6 ' 65. NPM 45 55

7 651> NPM 25 75

B 65c NPM 23 rr

9 64. DMAll 20 BO

10 64c DMAD B 92

11' 64. PTAD 0 100
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facial selectivity (entries 2 and 6). This outcome was very sImilar 10 thai found by

Overman (videsupra).TheresultssummarizedInTable3 havebeenrationalizedIn terms

of sterlc effects alone. For diones 648 and 65a (H versus OH and CH~ versusOH) the

Dlels-Alderreactions with NPM in benzeneshowed preferredsyn addition. HoweverI in

DMF It was postulated lhat hydrogen bonding between the SUbstrateand the solvent

increased the effective size of the hydroxyl group, thereby starlcally hindering syn

approach of the dienophile. For denes 64b and 64c (H versus OCHJ and H versus

OlMS) the facial selectivitywas dependent on the size01the subslltuenton the oxygen.

When H was replaced by CH3 in 65b and 65c (CH3 versus OCH] and CH3 versus

OlMS) , again the formation01anti edcucte was due to stenc effects.IIwas postulated

that the OR substituentwould assumea pseudo-equatorial position.Figure13 Illustrates

the trajectory of approach of NPM to the faces syn and anti to the ORsubstituent. The

outcomeof the reactioncould thenbe Judgedby thesteric lnteracncns betweenthevinyl

hydrogenof thedlenophlleand theallyllc subslituents. It shouldbe notedthat, according

to the VogtJe_ForsterSO model at determining group Volume, OCH3 Is a larger group than

CH3•

Type III dlenes

Theseearbohydrate-deriveddieneshaveonly recentlyreceivedattention.Fraser­

Reid and coworkers had reportedthat furanose derivatives70a81• and 70b81•.~ reacted

with maleic anhydrideto afford products 71a and 7i b, respectively (Scheme19), which

arosetrom cyCloaddilionof the dienophileeXClusively to the face 01thedlene anti to the

allylic oxygen. The facesyn to tho oxygen was postulatedto be sufficlentlyblocked by

the acetonlde group to excludesynaddition.
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70a R=H

70b R· CHpTBDMS
71a R=H

71b R-CHPTBQMS

Scheme19. Additior: 01maleic anhydride to furanose dienes

f ··'(),··aOH,
Ph a .....~

74

.......X(B. ,.OCH,5- " ·:..H a

PH 0 I a

a

a.......:gs." ....aOH,
A

PH 0 H"" "'-':::

75 a a

Scheme20. Addition of maleic anhydride topyranose dlenea
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In twomorerecentandconcurrent publicalions,S2.a:I pyranosederlvallv872WI1,

foundto addmaleicanhYdride,8:l·83 OMAD,RM dimethyl fumarate,'" benzoquinone"" and

naphthoquinone&:! exclusively lrom the face 01the dianeenti to the anomericmelhoxyl

group(I.e., 73, SCheme 20).Theisomericdiell9141!f1. behaved similarly with DMADand

withmaleicanhydride (to afford.for Instance, 7510Scheme201 .

TheseDiels-Alderresultswerealsoattributedto sterlceff&cts inwhich dlenophlles

preferred approachantito Iha axiallyorientedallyllomethoxylgroup,l:iIThis seemed10

override sny syn·directlng effectof the allyllc ~)lygen at C·SIn both 72 and 74.

In an effortto determinethe extent 01ancmerc versusallylicdirectingability for

lI-leeial selectivity, a numberof pyranose dianes78-79 (Schema 21) waresynthesized

and their Dlels-Alder reactionswith malelmJde were examlned,M A summary01these

resulls Is given In Tabla4. AdditIOnof malelmlda to 78 yieldedonly adduct 82, that

arising from approachof the dlonophileanti to bOththe C-l anomencandthe C-3allyllc

oxygens.Reversing the configurations at c-tand at C3 for n alsoaffordedthe anti

additionproduct sa. Reactionof 78, In which methoxygroups at c-r and C-3 areon

oppositesides of the molecule. gave two adducts,84 (syn 10allyllc OMe) and 85 (anti

to a!lylle OMel, In ratio of 81:19, respectively, The inclusion of an addltlonal rnethoxyl

group at C·2 had little effecton the sm/anti ratio obtainedwUh79.

The adducts from the Olels·Alderreactionsof dlanes 7&-79Indicated a strong

tendency 10(dienophlles 10 react anti 10 the anomerlc substituent. In light of the

previously discussedresults obtainedby Francl(5'with dlenes 64a~ and 651-<:, the

lormalJon of only anti adduct, from 76 and T1 was entirelypredictable, The relative

position of the allylleoxygen in B4a~ and 65a--C Is similar10that In 76 and 77. For

dlenes78 and 79, eterlcInteractions betweenthe allylic subslituentsandthe Incoming
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Scheme21. Anomeric VSfSUS altylic heteroatom control
ofn-fecialselectivity of pyranose dienes
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Figure14. Postulated sterle control in then-tacial selectivity
of pyranose dienes
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Table 4. Anomeric versusallyllc heteroatom control
ofn-taclalselectivity of pyranosedienes

Diene Syn toaHylic a Anti to allylica % 510 / % Anti

76 H'COW·· 0 /100

82 H \ rOO
H3CO Q--NH

0

77 ,m% 01100

BnO : ~ a, H
83 BnO NH

0

78 H'CO'(+) ..

~
81/19

84 ' H \ T" 85 ~ ~ 0

H)CO j--NH H3CO NH
0 0

,mm ,m%79

Hco , 1?, ··...T" H,CO ,~1? 0

75 /25

3 : H :. : H
H3CO ';--NH H3CO NH

86 o III 0
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dienophile would also be prodicted to lead to the forma tion of M ti adducts . 'Nhile the

anemoric and aJlylic groups of 78 and 79 areon opposite faceswith respectto the diene

moiety, the anomenc centre is some'Nhat femol e from the reacting centres . That the

products obta ined were the result of mainly syn addition to the attyflc functi on (and hence

anti to the anomerlc grou p) suggested that, for pyranose dienes, the anomeric group

dIrects the " -Iaclal selectivity in the Diels-Alder reaction. The cydoaddition of 80 might

havegiven a better indication of this anomerie-directlng effect. However. reaction of 8D

w;th maJeim ide resulted in the Iso latio n only 0181 (Sche me 2 1).

II has been postul ated that for diane 76 the mole cu le pret ere to adopt e hatf-chalr

conformation (Figure 14) with the anomeric substltuent oriented In the pseudo-axlaf

position as predicted by the anomerlc effect ('H Mlr coupling constants and molecular

mechanics calcu\atlons support this assumption"). It is suggeste d then that diene 76.

InIts groundstate conformation. would seriously encumberthe appro ach of a dlenophlle

syn to the a1lyllc and anemo nc substituent,. For dlene ' 78 and 79 the anomerlc group

acts as a better blockin g agent then the alIyIIc group . The possibility that the

conformations of the dlenes may be differentIn the transition state sholid not be ruled

out, however.

TypeN dlanes

Type IV dlenes (Scheme 14) have a very Import ant structural tenure that makes

them especially well suited as probes 10study heteroatom controlled " ·faclal selectivity.

Not on ly Is the diane constrained In a rigid cyc lic species, but the topo logical placement

01 the heteroalom Is particularly strategic with respect to the diene mo iety In the

moleClJIe. Previous systems had the betercetc m attached to a positio n that Inler1ered
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directly with the activating group(s) on the eiencpnueas it approachedendo and to the

lace of the diane syn 10 the heteroatom5l,$II (see Figure 121). In type IV dienes, In

contrast, the heteroatom Is more remote Irom the activating group(s) on the dlenophlle

as it approaChes thesynface. That theallyllcsubstnuent en TypeIV dianeshasanenact

on the . -faCial selectivityof thesedianes Is quite apparent from the results obtained by

BurnellandValenta» on theDials-Alder reactionof 1,2,3,4,5·pentamelhylcyclopenladlene

(Scheme 10). Another advantage01type IV dianes is that they are plane.nonsymmetrlc,

so they do not suffer from the same conformallonalambiguity as the other dlenetypes

do. Also, because most of the Type IV dieneestudied thus far, Including thoseIn this

report. contain a vertical mirror plane, reactions01these dlenes with a symmetrically

activateddienophlleyieldsymmetricaladducts. Thismakesthe processof elucidatingthe

structures01the adducts easier.

Mostwork that hall beendone on type IVdlenes has involvedcyclopentadJenes.

Examplesfrom the literature will be reviewed, alongwith the theories that havebeenput

forwardto account for It·faclalselectivity. thi s will be followed by a generalsynopsis 01

the cycloadditlonsInvolving1,3·cyclohexadienes IVb and IVc.

5-He!erosubstituted cyclopentadlenes IVa

Unlikemost or the previous examplesIn which the allyllc heteroatomwasoxygen.

a wide arrayor hetercatcms havebeen employedIn the study Ofn:·faclaJ selectiVitywith

cyclopenladienes.A number 01metalsIn thes-pcsnlonhavebeenemployed: mercury.-­

tin.$5ol,lIIl plalinum,850 and magneslum.- Magnesiumand tin dienesadd dlenophllesanU

10the metar;- however. themodes01cycloadditlon to mercuryand platinum dieneshave

not been elucldated.ll!i5·(TrlmethylsllyQcyclopenladJenereacted ant/.ll s-aromopenta-
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Scheme2.3. The endo-syn (96) andendo-anti (97) adducts fromthe
Diels-Alder reaction of 1 ,2,3,4,5·pentachlorocycl~

pentadienewithvarious dienophiles

Table 5 Summary of the addition of various dienophiles to pentachloro 95

XCH=CHY 96 % ef'lCkrSyn 97 % enclo-An1i

maleic anhydride 91 9

benzoquinone 60 40

acrylonitrile 93 17

meytyl acrylate 59 41

vinylacetate 51 49

vinyl bromide 58 42

vinyl chloride 53 47

styrene 38 62

procene 31 69

H'~:...."~ CH,
XCH- CHY

:::> I ""
::,.. ~

98 99

Scheme 24. TheOiels·Alderreactions of a 5-hydroxycyclopentadiene
derivative
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Scheme 25. TheDials-Alder reactionof a thiophene oxide derivative
with various dienophiles

102

Scheme 26. The Dlers~Alder reactions of various 5-heteroatom
substituted 1,2,3,4.5-pentamethylcyclopentadienes (102)

Table6. Summary aftha addition of maleic anhydride to dienes 102

X· % 103 % 104

CI 100 a
OH 100 a
OCH, 100 a
NH, 100 a
NHAc 100 a
SH 55 45

SM. to 90

SCfl,Ph 3 97

SOMe a 100

SOtJoe a 100
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chlorocy clopentadieneM reacted with a number 01dienoph iles, but the con figuration at

the 7-po sili on of the adduct s was not determined . S·Acela:<ycyclopentadleoe 88 with

ethylene gave only 89, the adduct arising from addillon to the lace syo 10 the oxygen llll

(Scheme 22). Also, the 5·hala derivatives see-e . reacted with PTAO'o 10 provide soU

addition prodUcts ate-e . while 90a gave both syn and anti adducts 93 and 94/ '

respectively. OMADgavemore of theanti isomer, but OOb provided ouly 9211 withDMAD

(Scheme 22).

Williamson of af.72 established that 1,2,3,4,s-pentachloro cyclopentadlene 95

reacted with some dienophiles 10 give addition mainly syo 10 the s-chlc rc substituent

(adducts 96), while other dienophl1esyielded mainly the anti addition products 97

(Scheme 23 and Table 5). Jcnee" found that diane 98 also gave only the syn addilion

adduct 99 with several dienophiles (SCheme 24).

Muc h more recently, Naperstkow at BI. '~ determined that 2,5-dimethylthlophene

oxide 100 reacted with a number of dienophiles to give only adducts 101 by addition of

the dienop hlles only to the face of the dlene syn to the sulfoxide oxygen (Scheme 25).

A syetemeue study of betercetcm-crected n-facial selectivity was recently published for

cycicpentactenes by Macaulay and Fallis.... Selected results are summarized In Table 8,

and Scheme 26. Substitution 01 the s-poentcn of 102 with chlorine, oxygen or nitrogen

directed addition of maleic anhydride to the face of the diene syn to tho heteroatom. to

give only 103 while sulfur substitut ion clearly favored addit ion to the snU face to give

mainly 104 .

What rectors determine whether a dlenoph ila will add synor snUto s-netercatcm

substituted cyclopentadienas? With 1,2,3,4,5·pentachlorocyclopantadiena, Wi lllamsonna

claimed a combination of sterlc effects and dipolar attraction controlled the select ivity.
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Figure 15. Anh's postulate
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Figure 16. FUkui's postulate
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Anh
15

env isioned a direct orbital lntera etion between the localized lone pa ir orbitals 01the

heteroatom with tho l UMO of the incoming cencpnne . This secondaryorbilal Interaction

was postulated to guide the dienophile 10 the syn lace of tho dlone (Figure 15). An

alternative view from Fukui's group,le. more recently expanded upon,lei> Invoked the

mixing of low lying 0 orbitals jntc the !t·HOMO, therebycausing a perturbation of the

electrondensity distribution on thetwo 'aces 01the diane. Figure 16 shows th.;;v-erectrcn

density distribution on the syn and anti faces 01 s-cracro- and 5-melhyl·

cyclopentadiene.~ In the 5·me lhyl case , the electron density on both laces 01the diane

was determined 10 be about equal, thereforBthe addition of dienophllos were expected

to be only under steric control. The ctncrc analogue,however, was believed to have Its

ft - electron density biased In favorof the face SV,l 10 the chlorine. A highly electron poor

dienophile would then prefer addition syn to the chlorine, whereas more electron rich

dienophiles would be directed snli.

Kahn and Hehre43proposed an electrostatic modelas the basis for selecllvity. For

dleneswith the general structure shown in Figure 17 (the dlene could be acyclic, semi-

cyClic or cyclic) the lace of the diene bearing a lone pair-containing Substituent, l.e., Ihe

syn face, should have a higher nUcleophiticlty than the snti lace. Thus, "Addillons,

Involving ._, electron-poor dienophileshouldoccur onto the dlene face which Is the more

nucleophiliC",43 II was predicted that eleetrophlles should prefer addition syn to a lone

palr-contalning allyllc SUbstituent, and anil 10an electropositive allyllc substituent. These

generalizations did not take Into account any overriding sterle effects thai might ccrurct

the n:-faclal selectlvity,58.5enor could it account for the an!i facial selectivity displayed by

sulfur substitution on cycJopentadlenes (vide supra) .
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Figure 18. Cieplak's postulate forthepreferred axialattack
of nucleophiles to cyclohexanone

105 Ratia 65 35

106 X • OH, Br, CI,F Ratioca. 57:43

Scheme27. It-Facialselectivity inthecyooaddition reactionsof
adamantyl derivatives
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Basedon a model proposedby Cieplak at a/.rr for the ~ ·facjal selectivityof the

nucleophilicattack on 3·substlluled cyclohexanones and the electrophillc attack on 3.

subslituted·1·methylene cyclohex8l'16s, Macaulay and Fallis'" invoked hyperconJugation

and (} bene-donor ability to explain 1'I: -faclal selectivity. TheCieplak model suggests that

transItion stalestabllizallon occursthrough e-elecncn donation Into the vacant c' orbital

associated with the developing bond. This will arise from hyperconjugation of the

anliperfplanara bond with thee" orbital, For example, cyclohexanone prefersthe axial

approach01nucreopnnea becausetheaC·H bond is a betterelectrondonor than the ec­

e bond (see Figure 18).

Thisproposalcorrectlyaccountedlor the TI:·faclal selectivityobservedIn the Dlels­

Alder reaction of 105 and the photocycloaddltlonof 106, In whIch addition took place

prefGrentially to the facebearIngthe C·5 substltuents (Scheme27). The electroneqatlve

group, X, at G-S(Figure19) causedthe C1·CS and C3-C10a bonds to become better

donors Ihan the C3.C4and C1·09 a bonds. AccordlnglY,lhe morereactivefaceshould

be the one antito the better a donor. Putting this Into the context of the cyctoadditlon

results obtaIned by Macaulay anrt Fallis, this was summarized: 'en the basis of

hyperconjugatlonandthe beneflClallnteractlon withthe incipIentbondone shouldexpect

the cycloadditlonof thecyclopentadienesto display a preferencelor anti addition to the

antiperiplanara bond that Is the betterdonor·....Thecommon atomcombinations, listed

In order of their (J donor abilityare as follows oCO < oeN < oCCI < aCC < oCH <

oCS.79 Thus, in transition stale A (Figure 20), In which a oCO bond Is pined against a

aCC bond, addition would be expected to occur on the face of the diane anti 10 the

better donor, I.e., the oCC, to give the syn adduct 103 (Scheme26). For a aCC bond

versusa aCSbond, transitIonstateB Is stabillzed,and so the antiaddition product 104
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should form. This hypothesis, however, would not predict the result observed on the

addition of OMAD to 90a (Scheme 22). In which the major prod uct was thai which arose

from cycloadditlon anti to the chlorine. The above ranking 01CJdonor ability has .,CH :>

aCCI,therefore addition syn 10 the etIlorlne would be predicted.

1,3·Cyclohexadienes !Vb and lVe

In contrast to the preceding section, very little Inlormallon has been acquired

regarding the . -faclalselectivitiesof prane-nonsymmetrlc 1.a-cycicnexacreneepossessing

heteroatom substltuents. Early reportsof the Dlels-Alder reaction of dlones107allO and

107b81 With maleic anhydridehad assumedthat the dienophile hadaddedto the faceanU

to the oxygens to give adducts 1081 and 108b, respectively (Scheme 26). II was later

reported that the reaction 01 109 with 4-(p·bromophenYO-l ,2,4·1rlazollno·3,5-dlone

afforded 110i~ the structure of 110 was established unequivocally by x-ray analysis

(Scheme 28). However, it Is expected that enda approach 01v',e triazollnedienophlle to

thesynface 01109 would result Inunlavorableelectrostatic Interactions between the lone

pairs on the oxygens of the elenewith those on the nitrogens of the dtencphne. this Is

complimentary, but opposite In effect, to the observations made by Ginsburg,~2,13

Yates and Auksl" had determined thai maleic anhydrlde adds ene/a and syn to

the oxygen.bearlng face 01111to give 112 as the only product (Scheme 28), This result

could be attributed to sterle effects (approach syn to QAc, as opposed to approach syn

to methyl). The dlene 113 was reported to have no laelal selectivity at alt e!;

in a more recent report, details were published that Indicated that dJene'114

reacted with a number of dlenophlles to give adducts of structure 115.... However, it has

also been determlm.d that reactionof 116 with N·ethylmalelmlde yielded both the syn
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addition produc1117 and the antiaddition product 118 , with the anti Isomer being the

major adduct'1 (Scheme29). In anotherexample, 109 was reported to undergoanti

addit ion with 119 to yield 120 after workup.- Dials-Alder -like photochemical additions of

singlet oxygen afforded In only one case anti addition" with derivatives of cfs.s,5·

cyclohoxadiene·1,2-dlol (121), and In other cases both syn and anti adducts were

formed. 1llI

A close relative 01 both diane types IVa and JVb are the benzene oxides IVe

(Scheme 14). These compounds are an elegantmarriage ot c/s·1,2-dlsubstilutecl-3,S.

cvcohexadleneand5-substitutedcyclopentadienes. Th~ dieneunit Is stillconstrainedin

a slx·memberedring, but the relaUve positionof the a11yl1c netercetcm15one that bisects

the molecule, as It does In the cyclopentadlenes. The structures of the Dlels-Alder

adoucte obtaIned from benzene oxides with carbon-based dlenophlles were not

rigorouslyproven.81 In one case, reactionof a benzene oxide derivativewith 4-phenyl­

1,2,4-trlazoline-3,S-dlonewas shownby x-raycrystallographyto providean adduct that

resultedIrom additionanYto theoxygen.82 However, Ithas also beendetermIned thaton

acetone-sensitized excitation,diazomethane added10benzeneoxideto the face8yn to

the oxygen.83

Since the outcome 01 the Dlels-Aldar reactIons of allylically substituted

cyclohexadlenes was ambiguous,it was deemedImportant to determIne if they would

displayit-facialselectivityIn line withthatoune cyClopentadiones. It wasalsohopedthat

the resultswould aid In determinIng the factorsthat control thecontrasterlc additIonsat

dlenophilesto some allyllc-heteroatom.substltuted dlenes.
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DlENE SYNTHESIS

ThemicrobialoxidatIonof benzene byPseudomanssputida (Scheme 30)provides

an efficient source 01 the plane·nonsymmelrlc diane, c/a·3,5·cycloheKsdlene·l, 2-dlol

(121).80'"

This dlel was conveniently derilfatlzed 10 dlenes 109, 114, and 122-125, each

requiring only one synthellc step as shown In Scheme31. Thus, treatment 01121with

either chlorolrlmelhylsilane In pyridine,or acencanhydride In pyrldine, provided ctenee

122 and 109, respectively, In gOOd yields. Trensketauzatlon 01 121 with 2,2·

dlmetho xypropane as the reagent and solvent, with acid catalysis, gave the ecetcnioe

dertvative 114, also in good yiel d. The ' si11conlde- 123 was synthesIzed by addition 01

dlacetoxyd imethylsUane- to a solullon 011 21 In CDCl3 In the presenceof a catalytic

amount of pyrldlne.1M Following the reaction by 'H nmr spectroscopy showed that a

quantitativeconversion of 121 to 123was realized after only ten minutes.Becauseof its

sensitivity to moisture, 123 1.iOuld not be Isolated using standard melhods. However, a

small amount of impure material (ca. 10% yield) was obtained by evaporation of all

volatiles. The Dlels·Alder reaction with 123 wasecrwenlentlyachieved by addition of lhe

dlenophlle to the nmr solvent immediately after123 was formed.

The dimethoxy diene 124 was prepared in a phase-nenster reaction utilizing a

procedure by Merzi5 with dimethyl suUate as the methylating agent. The mcleture­

sensitiveethyl boronate ester 125 was prepared, using a recent literature procedure.­

Addition of lithIum trielhylborohydrlde10 121 In dry tetrahydrofuran (THF) gave 125 1n a

• This reagent was kindly providedby Dr. Jamell C. Orr.
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meager 30'*' yield after work-up. This was used immediately lor the Diels·Alder reaction.

Interestingly, the literature procedure did nol report thaI any of the coro nate esters were

moistu re sensitive .

Schemes 32 and 33 provide an oullIne of the synthetic sequence leading 10

benzylidene·prolecteddienes132 and 133s1arting from 1,4-cyclohexadiene 126.Addition

01one molar equivalent of Br, In the cold to 1 26,~1 lollowed by cis ·hydroxylallonll ll 01

purified 127, gave the dibromod iol 128 in 40-45% yield from 127. Acid calalysed

transacelalization 01128 with a large excess of be nzaldehyde dimeth yl eceter tza gave

approximately equal quantities 01 130 and 131 after fractional recrystallization and

chromatography in a combined yield of 68%,Doubledchydrobrominalion 01130 thon 01

131 with OBU In boiling benzene gave the Cis-phenyl dlene 132 and the trans·phenyl

diene 133, respectively. Diene 133 could net be purified by chromatography or by

distillation (due to decomposition and dimerization, respectively), but 132 could be

purified by chrcmetcqreony."

The synthesisof 132could also be accomplisheddirectly from thedlol dlene 121

(Scheme 34) under equilibratingconditions using one molar equivalent of 129 with pBra'

toluenesulfonic acid fpTsOH) as a catalyst InCDCI~. The 1H nmr spectrum of the product

confirmed that only isomer 132 was produced, Indicating that this is the more stable

isomer. This syntheetswasnot very efficient,giving only a 15% Isolated yield afterrotary

thln·layer chromatography. In addition, the amount 01pTsOH was crucial; too much, or

insufficient mixing on addition of the catalyst, gave rapid elimInation 01water from dial

121 to give phenol.

The synthesesof dlenes 137 and 138were analogous to those of 132 and 133,

Treatment 011~B with apPloxlmately one molar equivalent of para·nitrobenzaldehyda
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Scheme 35. p-nitro benz.ylidene dienes
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dimethyl ecetat tae . gave toughly~ amounts of 135 and 136 after work-up and

chromatography In 60% overall yield. Double dehydrobromlnation gave the c/s·phenyt

diane 137 and the trans-phenyl diane 138 from 135 and 136, respectively (Scheme 35).

The configuration of the phenyl ring lor cis-phenyl dienes 132 and 137 waS

confirmed by nuclearOvertlauserenhancement difference (n.Q.e.d.) experiments. For

example. saturation 01the signal due to the hydrogens on G-3a and e-r a of 132 gave

a significant enhancement (8.5%) of the signal fO( the hydrogen on C·2. U<ewlS8,

salutation ol .the C·2H signal gave a 4% enhancement 01the C·3aH and C-7aH signal,

Previous reports of trans-phenyl dlene 133 had menncner that dlmerizatlon

occurred on attempted dIstillation,· (Scheme 36) but no other details were given. In an

endeavour to confirm this. and In order to determine the product 01the cycloadditlon, a

!rashly prepared sample of 133 was allowed to stand at room temperature overnight as

a neat liquid_AnalysiS of the IH MV' spectrum of the rGsulting sond showed signals lor

residual urveaeted 133 and one dimeric compound. Nuclear Overhauser enhanCement

experimentson the purified dimer Indicated that It had the structure 139, which could

have arisen ontv from eycIoadditlonendo andanti with respect to the diane, and anti with

respectto the dienophile. Dueto the concave shapeof the adduct, saturation of only one

signalwas sufficient10establishall 01the relative stereochemlslly of139.Thus, saturation

01the signal due 10the hydrogenson C-5aand C-l0a gavea significantenhancement

(13%) of the C6a and C-9a hydrogens' signal, and enhancementof the signal of the

hydrogen on C·2 (3%). The absenceof an'Jenhancement 01the C·2 hydrogen signal on

saturation of the sIgnal due 10the hydrogenson C-3a and C·10b aided In the slructure

elucidation and connrmed that eplmerlzatlon 0' the C·2 centre had not occurred. That

eplmerizatlon of the C8 centre had alsonot occurred eittler wassuggested by therather
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sma l enhancement of the e-ahyd roge n signal (2%) upon satur ation of the signal d ue to

the hydJogenson e-sa and C-9a. tf the CS H were ci$ to C-6aH and C-9aH, then a very

large enhancement would have been expected. This oOservation was found to be

consistentwith a number 0 1Olels·Alderadducts from dlenes132, 133, 137, and 138. Few

example, saturation01 the C-3a and e-Ba hydrogen signal 01 167 gave a very large

enhancement of lhe signal due to the hydrogen on C 2. HoweverI the analogous nmr

experiment on 171 gave only a 4% enhancement of the C·2 hydrogen signal.

mene 138 was also found 10dlmerizequite readily. In fact, 138melled (ca. 1SOOC)

and quickly resolidified to reme" at a much higher temperature (ca. 250GC). Heatlng a

larger sample of 138 10 2500C for ten minutes gave a compound which proved to be

Insolubl~ in most conventional solvents. Analysis 01the 'H nmr spectrum of the crude

material showed only one sel 01 signals, eotresponding to dimer 140. Nuclear

Overhauser enhancementexperiments rewaled structural Inlormation that led to the

assigrvnent 01the relative stereochemistry in much the sameway as that fOf 139.

Thebenzene oxides· 142,1438, and148b, W9resynthesizedusing established

literature methods.Reae:tlon of 127 'Nithmeta-ch1Ofoperoxybenzoic acid yIelded141 as

a yellow oil. Verycarefufcrystallization!rom cold helCane was necessaryto obtain pure

material. Double dehydrobromlnatlon with DBU In ether at room temperature provided

benzene olCide 142 (SCheme 37), which displayed a single set of signals In Its 'H nmr

spectrum. Vogel and Gunthe'- demonstratedthat thlli i~ really an average of thesignalS

of benzeneoxide (142) andIts valencetautomer, oxepln(143).Theyalsodetermined that

therelativeamountsof each tautomeric form presentIn sotutlon Is dependenton solvent

• Even though the benzene cdce s 142, and 1488 have been shown to exist mainly In
the form of the oxepln \automers143 and 14981, respectively, the benzeneoxlde
tautomerswin be relerred to only for convenienceand consIstency.
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polarity, with more polarmedia favouringthe benzeneolddelorm. This Indicates that the

dipole moment 101142 Is larger than that lor ' 43, and more polar media are able to

stabilize the former more so than do nonpolar media.

The mor e substituted. and seemingly more stericalty hindered benZene oxides

148aand 148b (Scheme 38). were synthesized In the following manner. Birch reduction

01o-xylene 1448 and Indan 144b gave the substituted 1,4.cydohe xadienes 1458 and

145b, respectively. OXldatlon with the ma gnesium salt 01 monoperoxyphthallc acid

(MMPp) l00provided the mcnc-epcdc es, ,48a and 146b. Purlficallon of 1463 then 146b

by Chromatography. followed by addition 01Slightly less than one molar equivalent 018r2

In the cold, gave the dibromldes 147a and 147b, respectively. FOllowing the procedure

by Paquetteand Barrett,lOl '478 and 147b weredoubly dehydrobromlnaled In ether with

potassium tert· butoxlde, which provid ed 148a and 148b , respectively.

Voge'" had shownthat lor 148a the 148a _ 1498 ecrJilibriom favours the oxepln

tautomer1493, presumabtydue to the eclipsing of the twome1hytgroups n the benzene

oxide form 1498. In contr ast, the 148b _1 4gb equilibrium o f the benzene oxid e derived

IromIndan lies in favourof 148b. This is not SLWPt'lsJng,since a considerable amount of

angle strain wou ld be expected In the oxepin 14gb .

The following section will report the resutts of the cycloaddiUons of dienes 109,

114,121 · 125, 132, 133, 137, 138 and the benzene olddes 142, 148a , and 148b.
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DlElS-ALDER REACOONS

The addition of N·phenylmalelmide to a chloroform sohnton of cl$-3,5­

cyclohexadlene·1 ,2·dlol (121) produced, afterheatingat reflux overnightand evaporation

01 the solvent , a colourless solid In nearly quant itative yield. Analysis 01 the 'H omr

spectrum of thIs sample Indicatedclean conversion of addends10Dials-Aider adducts.

Two sets of slgnalfl, corresponding to amajer and a minor Isomer , wore evident In a ratio

of 95:5. Repeated recrystallization of thecrude productmixture affordedcrystals althe

major Isomer. Thestructureof the majorIsomer 150 (Scheme 39), arising Irom the eoao-

addition of the dienophi le to the diene, syn to the dial unit, was established by x-ray

crystallography (Rgure 21). The structurealtha minor isomer 151, resulting from additIon

of the dienophl le enao and anti to the dlel diene, was also established by x-ray

crystallograph y (FIgure 22). Compound 151 was not isolated from the above Dlels·Alder

reecucn. However , ample quantitIes 01 151 were obtaIned from the acid-calalysed

hydrolysis 0' Dlels-Alder adduct 153 (Scheme 41). The signals In the 'H nmr spectrum

of the hydrolysis product of 153 coincided with the sIgnals due to the minor isomer In tho

IH nmr spectru m of the crude product mixture from the addition 01121 and NPM.

To confirm that the product distribution of the Dlels·Alder addition of 121 and NPM

was roughly independent of the soll/ent, this reactIon was performed In a number 01

solvents. The results are summarIzed in Table 7.* The 150/151 ratio was found 10I/ary

only slightly from solllent to solvent. USing dIelectric constant (t) as an esnmate 01

* All adduct ratios reported In Tables 7, a and 9 were determined by lntegrallon of the 'H
nmr spectra of the crude adduct mixtures.
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Scheme39. Diels-Alder reaction of cs-a.s-cvcrctrexacrene-t.z-cnct
12 1 with N-phenylmaleimide

Table 7. Reaction of dial diane 121 wi th N-phenylmalelmlde In various
solvents (readians heated at reflux. except wher e Indicated)

Solvent E % 5)11150 % anti151 % yield

pyridine D 12 95 5 90
acetone 21 95 5 93
chloroform 5 95 5 93
methanol 33 93 7 BO
benzene 2 92 8 91
DMSO b 47 92 8 87
acetonitri le 38 88 12 94

aBased on mass recovery of adducts, andsamplepurity asdetermined by 'H nmr

b Heated at 80 °c In an oil bath
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solvent polarity, n was originally eKPeCted thai highly polar solvents,which are capable

of strong hydrogen-bond ing interaction s with lhe hydroxyf substituents of 121 , would

increase the effectivesize of the dial oMs. This In tum would cause Increased sterle

interactionsbetweendianeandadienoph~e approachingthesyn faceof the diane. How­

ever, as Table 7 shows there was no correlation betweenthe 150/151 ratio and the

dipole moment of the solve:lt.ObvIously, if polar solvents did coordinate around the

hydroxyl substiluents. this had little ettoetan the relallve reactivity of thesyn lace of 121.

The acetonlde dIane 114 reacted with NPM 10 yIeld adducts 152 and 153 In a

60:40 rallo (Scheme 40). The complete assignment of the lH nmr spectra of both 01

these adducts was done on the basisof chemicalshift and 'H nmr nuclearOverhauser

enhancement difference spedla! data. FOI' example, compound 153 displayed low field

signals at II 7.35 .7.18 and 6 6.17. Thesewere assigned to the phenyl ring 01the

maleJmide moletyand the vinyl portion of the blCydoI2.2.2Jodene unit, respedlvely. The

signalat e 4.32was assignedto the hydrogensonC& and C-8a, which is theChemical

shift thai would be expected for a hydrogen attachedto an ethercarbon. Thesignalat

e 3.53, which eppeatedas a broad multiplet, was due to the bridgehead hydrogensat

C....and e-s.Saturation01this signalenhancedthe intensitiesor those signals at e 6.17,

6 4.32 and 6 2.88. Only the bridgehead hydrogens areposllloned such that th!s result

could be obtaJned. It should be noted that saturation or the bridgeheadhydrogens 01a

numberof adducts gavesimilar results. Thesignal at " 2.88 was thereforedue to those

hydrogensatC·4aand Co7a, a to thecarbonyls 01the malelmlde function. Thehigh field

signals at 6 1.35and 6 1.30 (each with an Integration of 3 hydrogenS) were assigned to

be those due to the methyl groups of the acetonlde unit.
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Witll the hydrogen signals assigned. the assignment of the signals In tho lJC nmr

spectrum of 153 was aIded considerably by the use Of ' H . laC heleronuclear correlation

experiments (HET·CO~R). The carbon signals appearing at 6129.6,rr.i. 40.3 and 36.9

were found to be one-bond coupled 10 the hydrogen signals at 66.17, 64.32, 63.53 and

62.88, respectively. Nearly all adducts synthesized gave 'H nmr andIJC nmr spectrathat

were very similar in appearance 10 thai 01compound 153, and the signal assignments

10rthese weremaee In an analogousfashion.

The stereochemistries of both 152 and 153 were established unequivocally by

nuclear Overtauser effect onterenceexperiments. For compound 152, satcraucn altha

signal due 10 the a-CH3 group gave enhancement (4%) of the signal due 10 the

hydrogens on C-4a and C-7a. SaturaUon01the hydrogen signal due to the P-CH3 group

gave an n.O.e. (7%) to the C-3a and C·8a hydrogens' signal. Furthermore, a smaller

n.O.e. (1.5%) was observed lor the signal due to Ihe hydrogens on c-s and C-l 0 on

saturation 01the C-Sa and c-aa hydrogens' signal. This showed conclusively Ihal 152

must have arisen from endo addition ol lhe ctencphne to the syn face 01dlene 114.

Compound 153 displayed an enhancement (13%)01the C-4aand C-7ahydrogens' signal

on saturation of the C-3a and C·8a hydrogens' signal. Also, saturation of Ihe P-CH3

hydrogens gave an n.O.e. (2.5%) lor t ie C-g and C-10 hydrogens' peak. This indicated

that 153 arose from addition of Ihe dienophile sMo and to me sntl face of diane 114.

Table 8 gives a compilation ol ille 3yn/antl adduct ratios arising from Ihe Olols­

Alder additions of NPM to several dlenes. The structures 01 the sy" and anti adducts

resultlng from dlenes 109, 122 and 124, were determined by derlvatiza~lon ollhe dlol

adducts 150 and 151, respectlvely. The Diels-Alder reaction of dlacelale dlene 109 wllh

NPM yielded a colourless salle' The ' H nmr spectrum of a sample of Ihe crude product
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Table 8. Relative amounts of synandantiadducts obtained, andthe
relative rates,for theDlels·AJdar reaction of 121 and deriva­
tivesIn CHCl3 (reactionsstirred at room temperature except
where Indicated)

Diene X = % syn %anti Rate a

10g b coca, aa 12 0.002

122 Si(CH~, 100 a 0.03

12th H 95 5 0.1

124 CH, 99 1 0.2

123 -Si(CH~~ 60 40 2.7

114 -C(C~ 60 40 > 100

125 -B(CH,C~- 45 55 -
a Raterelative to 1,:).cyclohexadiene (rate" i)

b Heated under reflux
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showedclearlytwo sets of slgnals, COfresponding to a majorand a minor adduct In a

ratio of Ba:12. Oerivatlzatlon 01150 then 151 with ecenc anhydr ide in pyrIdine provIded

the ctecetete analogs 154 and 157, respective ly. Comparison of the ' H nmr spectre 01

purified 154 and 157, and the spectrum obtained from the crude product of the above

addition showed that 154 corresponded to the major Isomer and 157 to the minor

isomer . Analyses of the products from the cycloadditrons Involving dlmothoxy diane 124

and bls(trimethytsilyloxy) diane 122 were performed In the same manner . (Sea also

Schemes 42 and 43.)

The Dials-Alder of diane 122 does deserve special mention . A stirred chtorctcrm

solution of 122, with one molar equivalentof NPM, yielded. after evaporationof the

solvent, a pale yellow solid, which was shown to consist of some unreacted122,

unreecteodlenophlleand the syn Diels·Alderadduct155. No signalscorresponding to

the anti Diels·Alderadduct158 could bedetectedIn the 'H nmr spectrum01 the crude

product.

The'slliconlde' dlenedllrlvative123gavea quantitative conversiontoa majorand

a minoradductin a 60:40ratio on reactionwith NPMIn CDCI3 (Scheme44). Attempted

separatfon01thesetwoadductsby flashchromatographyresultedInthe Isolationofdlol

adducts 150 and 151 In a low combinedyield. However, the lH nmr spectrumof the

adduct mixturedisplayedgood separation01some01thealiphatichydrogen signals01

the Individualadducts. This allowed us 10performn.Q.e.d. experimentsdIrectlyon the

adduct mixture,which gave the following pertinentresults,Saturationof the Signaldue

to the hydrogens on C-3aand c-ea of the minor adduct resultedIn an enhancement

(12%)of the signal due to the hydrogenson C·4a and C·aa, which indicated that the

minor adduct was the anti isomer 161. (Thisn.o.e. resultwas analogous10that found
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lor the an!J·acetonlde adduct 153.} Sal uratlon of the sisnal due to the hydrogens on C4a

and C·7a of the major adduct gav9 a smaller signal enhancement (3':':',) of the signal due

to the hydrogenson C·g and C·l0, which Indicated that the major adduct corresponded

to compound 160, the syn addition product. (ThISn.O.e. result was reminiscent to that

of the syn acetcrace adduct 152.) To confirm the structural assignments for the major

and minor adducts, both of the pure d:o] adducts 150 and 151 were derivatized to the

corresponding 'slliconldes' according to sc hemes 42 and 43, respectively .

TheDiels-Alder reaction of cyclic baronateester125wasdone in a similar fashion

as that for the siliconlde diane 123. Addition of approximately one molar equivalent01

NPM to 125 in COCl3 resulted In clean conversionof the addends to two adducts In a

55:45 ratio (Scheme45). A serles of multiplets at 6 0.7 • 1.1 appearing In the IH nmr

spectrum, and carbon signals at C8. 6 2.5 Inthe 13C nmr spectrum, 01the adduct mlJdure

were entirely consistent withthe spectral data reportedfor otherethyl boronateesters.1
02.1

Without separation of the adducts, n.Q.e.d. experimentsware pelformed on the product

mixture. Saturation or the signal due to the hydrogens on C-3a and G-Saof the major

Isomer gavea largeenhancement (12%)to the signal due to the hydrogons onC-4aand

C-7a. Therefore, the major Isomer was assignedstructure 163, thai arising from endo

addillon of the dlenophlle to the face 01 diana 125 antJ to the oxygens. Ukewlse,

saturallonof thesignal due 10 the hydrogenson C-3aand CBa of the major adductgave

the expected smenerenhancement(3%)of the signal due to the hydrogens on G-9 and

C·10. The minor isomer was then assigned structure 162, resulting from addition of the

dienophileendo and syn to the oxygens of the diane.

The increaseIn the proportion of antJaddition product with the cyclic dlenes 114

and 123 can be anributed to Increasedsterle hindrance experiencedby the dienophlte
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as il app roaches the syn lace of these dienes (see Discu ssion). In an effort to fncrease

these steele demands and promote (he formation of a higher proporti on of anti adducts,

cis·benzyfidine dienes 132 and 137 wefe studied. In contrast, the epimeric trans

benzylidlne elenes 133 and 138 should then decrease the stertc demands and so might

allow syn addition to occur with these cyclic derivatives. The results of the Dlels ·Alder

react ion betwe en otenes 132, 133, 137 , and 138 with NPM are summarized In Table 9.

The Dlels·Alder react ion of both ;32 and 137 with NPM (Schemes 46) proceeded

smoothly to give very similar adduct ratios . As expected , both of these dianes afforded

a marked increase in the proport ion oranti adduct formed . In contrast , however, the

trans·phenyl dltmes 133 and 138 reacted with NPM to give the highest proportion of anti

add ucts of all ctthe cyclIc diene derivatives of 121 stud ied (Schemes 47). The similar ity

in the adduct ranee obtained lor dienes 132 and 131, and, 133 and 138 indicated that

the nitro group on cienee 137 and 138 had no significant long.r angeeleetronic effect on

the " ·facial selectivity 01the Dlels·Alder additions. The relat ive stereoc hem istries of alilhe

ec ducts shown In Schemes 46 and 47 were determined by n.a.e.d. experiments.

The major adduct 165 from elena 132 gave a large signal enhancement of the

sIgnal due to the hydrogens on C.-4aand C·7a (16%) and the signal due to the hyd rogen

on C-2 (18%) on saturation of the signal due to the hydrogens on C-3a and C-Ba. This

result Ind icated that C·3aH and C-8aH were cis to C·2H and also cis to C-4aH and C·

7aH. This cbserveuonwee In accord with endo·addilion of NPM to the dien e 132, anUto

the oxygens. Saturation of the Signal due to the hydrogens on C-3a and C·Ba 01164

gave increased signal lntensily of the signals due to the hydrogens on C·2 (12%) and

those on e ·g and C·l0 (2%). In addition, satura tion of the signa l due to the hydrogens

on C-4a and C-1a gave enhancement (3%) of the ortho protons at 6 1.52 on the phenyl
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Tableg. Relative amounts of synandanliadducts obtained fromthe
Dlels-Alder reaction of various benzylidene protected
derivatives of 121 with N-phenylmaleimide (reactions
performed InCHCI3 at roomtemperature)

Oiene X- V- '\I syn '\l am

132 Ph H 28 72

137 f't>1lNOz H Z1 73

133 H Ph 4 96

138 H f't>1lNOz 5 95
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ring. The spectral jnrcrmenon therefore Indicated Ihal C·3aH a'ndC·BaHwerecis to C·2H

and also cis to C-9H and C·10H, and that C·4aH and C·7aH were cis to the phenyl ring .

This could only have arisen by endo·addition of the dienophile to the syn face of diane

132. Adducts 166 and 167 exhibited similar spectral behaviour 10 164 and 165,

respectively. It is 01inlerest to note that reaction 01150, then 011S1, with 129 (Scheme

48) under equilibrating conditions gave only 164 and 165, respectively,which suggestod

that the relative stereochemistry 01 the substituent at the C·2 position was the

thermOdynamicallypreferredone.

Theminor adduct 168arisingfrom clene 133displayedsignal enhancement(9%)

of the signal due to the hydrogen on C-2 upon saturation of the signal due to tho

hydrogenson C-4aandC-7a. Also, saturationof thesignalduetothe hydrogenson C·3a

and c-Bagave a smaller enhancement (2.5%)to the signaldueto the hydrogens on C·g

and C-l0. The stereochemicalrelationshIp that must have existed was C·2H beingcis to

C-4aH and C·7aH (andconsequentlVC-2H was trans to C·3aH and C-BaH), andC-3aH

and C-8aH were cis to C·9Hand C·l0H. This wasconsistentwith the dlenophileadding

ando andsyn to the oxygenfunctionof diene 133.

For compound 169, the majorIsomer Isolatedfrom dtene133, saturation 01the

sIgnal cue 1':1 its hydrogens at C-4aand C-7a resulted In a large signal enhancement

(14%) of the Jigna!due10thehydrogenson C-3aandC-8a.In addillon,anenhancement

(4%) of the signal due to the hydrogenon C·2 was observed whenthe signaldue to the

hydrogenson c.a and C-lO was saturated. Theseresults coeeepcncedto the structure

shownIn which a cis relationship existsbetween C-3aHand C-BaH, and C·4aH and C­

7aH, andC-2H wascis to C·9H and C-10H. compounds 170 and 171 displayedsimilar

n.Q.e.d. spectrato lhose of 168 and 169, respectively.
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Inlormation regarding the relative reactivities of vario us dienes was obt.tln ed In

addition to the syn:snll product ratios. The relative reaction rales for a numbel of dianes

are shown in Table 8, In whlc:h the rates of reaction In Diels-Alder additionS were

measuredrelative101,3-eyclohexadiene. Theseexperimentswere donecompetitively by

combining one molar equivalent0' each of a pair of dlanes in CDC~ (e.g. 121 and 1,3­

cycloh exadiene. 121 and 109, etc .) with one mol ar equivale nt Of less of NPM. After

slitting overnight, the 'H nmr spectrum of ttle mixture was studied. Based on the

Integration of the signals of the adducts formed and those of any unreacted dienes,a

relativerate was determined using the following formula:' O'lll

I<l\
kB

rag rAJ• log (fAl • lAxll
log IBI- log ((BJ - [Bx))

In which (kA/k B) is the tate 01reaction 01dianeA relative to diane B, [AJand {BJare the

Initial concentrationsof dlenes A and B, and lAx) and [Bx] are the finatconcentraUons

of the add uets derived from A and B. respectively.

Finally, 10 ensure that the kinetically prelened adducts had formed In our Diets-

Alder additions, a number of malof adduets{' SO, 152,154 ,155 , 165 , 167, 169 , and171)

and minoradducts (151, 153 , 157, 159, 164. 168, and 168) wereheated under renux for

ane)({ended period (ca.::::a hours). In noInstance did we find evidencefor theformation

01an isomeric adduct.

The Diels·Alder react ions of benzenecxldes 142, 1488, and 148b with NPMwere

readilyachieved,andthe resultsare summarized InScheme 49. The cycloadditlons were

performed In CHCI) at room temperature, except for 1488, which required refiulC

conditions. All three benzone oxidesdisplayed 'It·laClaldlastereospecificity. In contrast to

the general outcome from the cyctoaddition of 121 and ItS acyclic derivatives, the
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structurally related benzene oxides added the dienoph ile anli to the oxy gen substituent.

Reaction of 148b with N·methylmalelm ide and the sl ericaPy less demanding dimethyl

acetylenedicarbo xyla te sli a proce eded to give sxd usive!y anti addition products (SCheme

49).

The structure of compound 172 was elucidated using n.Q.e.d. spectFOSCOlt
Saturation 01the signal du e to the hydrogens at C 2a and C·5a gave enhancement (6%)

01the sIgna l due to th e hyd rogens at e- ta and C-ea, Indl catlng th at the dienophile addod

snda and anti to the epoxlde oxygen 01142. In light 01 this outcome, and given the

precedent we had established with the dlel derivatives, It was considered prudent to

confirm thle structural assIgnment by x·ray crystallog raphy (Figure 23). The n.Q.e.d.

eKperlments, howover, served as a precedent for the structure determination 01

com po unds 173-175. Unfortunately, the structure o f com po und 178 could no t be

determined using n.O .e. d ifference methods . Howeve r , its structure was determined by

x-ray aystanography, also (see Figure 24).

To confirm that the formation of only anU add ucts that arose from theadd illon s

to 148b was due to kinetic control, rather than thermodynamic control, the following test

w as carri ed out. A ch loroform solution 01174 and N-me thylm alelm Jdewas heated under

reflux l Ot abo ut 2 da ys. U kewise, a solutio n 01 175 and N-phenylmaleim lde were also

heated. In ne ither ca se could any exchange prod uct be dete cted . These resulls ensured

that the Dlels·Alder addit Ions to 14Bb and , presum ably , those 01 142 and 1488 ,

proceeded to give the klnellcally pr eferred add ucts .
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Figure 23. Perspective view of 172. Hydrogen atoms have been

Includedto showrelative stereochemls1ry.

Figure 24. Perspective view 01 176. Hydrogen atoms hav. b een

Included to shOw relative stereochem istry .
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DISCUSSION

TheDiels·Alder addition ofN·phenylmaleimide to dJol121 clearlypro ceeded in a

ccn traeienc mannerI to give very predom inantly the syn addition produ ct . This high

prop ortion of synadductwas formedIn bothnon-polar, polar eprouc, and polarsolvents.

This tact excl uded d irect hydrogen-bond ing Interactions between the reactants as a

con trolUng factor that wouldlacititalesyn additlon. B' Furthermore,this also suggested that

If the effecti ve size of the OH groups were to Increase due to coordinati on with the

solvenl, this wouldnot affectthe ,,·Iacial selectivity,n The cycloaddltions01109, 122, and

124 to give mainly syn adducts did not agree withFranck's po stulate for semlcyclic

dianes; that Is, that the lacial selectivity should be dependent on the size of the

substituent on theoxygens. Indeed,diane 122,which bears the group with thegreatest

potential for sterleinhibitionof thesynapproaChof adlenophlle,gave eXClusivelythe syn

additron prcce c t.

A parallelcannot bepo stulated between theDiels·Alder behaviour in this study

and the results obtained for the cycloaddltlon of acyclic dienes, or with those obtained

for the pyranose systems. Questions regarding the posllfon of the heteroatom with

respe ct tothe dianehavenotyet been resolvedwith theacyclicdlenes. Inthe tarter case,

the presenceof adistal anomericsubstituent seemsto Inhibit stericallysyn-approach of

dlenophiles. As eKpected, the syn·additlon 10dienes 109, 121, 122, and 124 Is most

similar 10the observationsby Woodward, Jones andFallis for cyd opentadienesystems.

Therefore. the Information acquired In this study willbe discussed In the context of the

eKlstlng theories developed for cyclopentadlenes.
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The slower rats 01cycloadditi on for dlenes109,121,122, and 124 relative 101,3­

cyctohexadtenewas at variance with what would be 8l<pected il the electron densityof

the It-system were to be biased In favor of the lacesyn to the oxygens, as suggested by

Fuku17
ll& and Inagakl.7111l This would also excludeany directdonationof electron density

by the oxygens to the It-system. The slower rates may actually be duo to tho

electronegal lvltyof the oxygens, which might withdraw electrondensityby induction from

tho carbon framework. This would account for thehigherrateof 124(CH3 Isan electron­

donating group) relativeto 109 (acyl Is an electronWithdrawing group).However. some

other 'electronic· faclor must be active to facilitatesyn·addillon.

The postulatethattheantisubslltuent Isthecontrolh"lgtectcn or x-facialselectivity

espoused by Macaulay and Fall1s"" and by leNoble7
! alsodoes not agree with the rate

behaviour. Althoughthe electronicnature of the oxygenswould be expected to change

(thereby altering the oCO bond-donor ability) theanti·substituents 01our dlones woro

alwayshydrogens. The aCO bond of dlene 124would be a bettor donor thanthe 000

bond of dlene 109. If the ability of the oCHbond to hypelconjugateand donateelectron

densityremainsconstantfor bothdtenee, then theCleplakmccer" would pred'cta higher

syn/sntJ ratio, and a higher rate of cycloaddition lor ctene109. Thatthe opposite was

true on both counts makes it difficult to extrapolate the results obtained with this modal.

The syo/anti ratio obtained for the boronate dlene125lurther suggested Ihat a bond

donation may not be the controlling force.The planarnatureof boronshould not greally

Increase the amount of steric hindrance on the synfaeaof the diane, relative to 114.If

the boronateA Is consideredto be an electron withdrawing group via the resonance101m

B (Figure 25), then the aCO donor abillty of Ihls substrata would be much reduced

compared to the aCO donor ability of 124. this would predict the formation of a hIgh
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p roportio n at syn adduct. That the react iv ity 01 bo th the syn and 8IIt/ laces was

ap proximately the same indica1ed that a bond d ona tion w as again not operative.

HO'Im'er, the higher percentage of a ntiaddu ct didIn d icateth at theelectronicnaille 01

the oxyg enswas signitieantly alterEd.

Th e higher reaction rale of the cyClic deriva tives 114 and 123 relative 10 1,3­

cyctohexadleneco uldbeatt rlbuled t o thelact thallhe c/s.-3a.7a- dihydro- l,3·benl; o dIoKOIe

ring system wou ld have the cyclohe~adlene moie ty constrained In a ITlOfO planar

conformat ion, thus Increasing there ad lvity o f \heciene. thai the amou nt 01syn adduct

fo rmed is qUileco nsiderably lower for derivatives114 and123 compare d 10their acyclic

cou nterparts124 and122m aybedue 10the increase in sterie h lrnllance Olllhe syn face

of theciere. Compoun d 114, lorexample, m ay adopt conformations A andB (FIgure

26 ). While oonlormerA leav es Ihesyn-Iacerelativelyunencumbered,co nf onnerB~

se riou".Jy Inhibit the approach d a dienophile fromth at d1reetlo n . lIlhe energybarrietIs

low lor the Aoo8 interconverslOn, then a dienophile may have an epproKinately equal

c hanceof encounteri1geither confo rmeras tt approaches the syn ace.

An Incicatlondthe Importance ofsteric ellee1s Intheco ntrolol l'C-fadalseledlYfty

wa s read ily demonstratedwith \hecis-phenyl d ienes 1 32 ancl13 7 . Compound 132 would

be expected 10 adopt eonfo rmetSC and D. Con former D.with the pheny l group o riented

p seudo-axially over thesyn faceor the dlene , would hindersyn -addillon of dleno phllas.

H owever, a significan t propo rtionof molecules must also exist in conformerC allowing

soma syn-addlllon. to givethe result obtained .

It was somewhat surprisingthat Ihe tran s·pheny l dellvatlves133 and138 reac1ed

to givealmost eXClusively an ti edditlon prod ucts. This outcom e maybe rallonallzedIn

terms of the placement01the substituemson the acetal centre In dilleren t conlorm atlons,
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Thephenyl l jng wouldbe expected toprefer to assumeapseuco-ecuetcnerposilion on

thes-m e rrcereo clcxotene ling,as inf , to av oidthe stericcrowding thai mustbe present

in confo rmer E between the phenyl ring and Ihe ally liehydrogens. Conformer F liasIts

acetal hydrogen d ireCtly over the cyconexaolene r ing , which must effectively b lock the

syn·lace ol lhe diane.This Is an exa mple of the controllhat one well situated hyd rogen

alom can have on "·facial selectivity.

Given the tendenc y lor syn·addillo n to 121 and its aescne derlvatlves, il was

somewh at surprising toencounter theexclusiveaddition01dienophiles anUto the oxygen

substituent of t h o benzene oxides 142. 14Ba, and 14Bb. These observation s were

contrary to postulateof Kahnand Hehre*3 statingthat dlenophiles add prelere nllallyto

theface syn to a 101"le·pair-bearing substituent.Ab in itio calculations on 142have shown

thal lhe n -electron density isonly Slightlybia sedIn favor 01the lacesyn to the o xygen.10 3

Therelore, Ills unlikely tha t Iheexcluslvean U facial attachment of dlenophiles arose by

"orbital m ixing" as describedby Fukui and Inagakl.'l1

The anY-additions01dlenophilesto th ebenzene oxideswere, I rowever, not really

Inconsiste ntwith themodel propoSedby Mac aulayand Fallis.... Thismodolwou ld predict

syn-add it ionslnco theoCH bonds and the aCe bonds are belter don ors than the aCo

bond.But thIs modelalso requires thattho o hl;::-,cs be approximately perpend icularto

theplane olthe dia ne.An examinationaltho geometry01the benzene oxidesshowsthat

the oxyg en Is almost perpendicu lar to the plane 01 the diane, and the allyftc A

substltuent sare nearlycop lanar (Figure 27). Eventhoughthe oCH and UCC bonds ere

betteretecfr on-dcn cre, only the aco bond possesses the proper orientation to enable

it tohype rconjugatewlihthe o· oJtheIncipient bond. TheoCH(R) bond Isnot far enough

oUl-of-plane to interactpropertyin thismanner toetabuzeeffect ivelya syn transitionstale.
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It should also be no ted that as a consequence altha relative pos ition of the ollyg f:ln In

the benzene oxides, the approach of a dionophile 10 th e $yo lace would be hindered,

ther efore it is plauSible that the facial selectivity arose due 10stenc ettects alone.

An alternative view of x-facial selectivity for cyc lo pentadienes, cvcio nexecrenes,

and the ben zene oxides Involves the orbital com ponents on the netercatcrns In the

highest occu pIed mole cular orbitals of the molecules as In Figures 28 and 29. (The

highest occupied mo lecular orbital is labelled "ts t HOMO·. The next two molecular

orbitals, the second highest and thethird highest occupied molecularorbitalserelabeted

"2nd HOMO' and "3rd HOMO'. respectively.) Ab initio ca lculations performed onvario us

substrates ge nerated the orbit al pictures sllown In Figures 28 and 29.101 For 5·

hydroxycyc lop entadiene (Flgur'328a) the "t st HOMO ' has a small p-ccmpcneot situa ted

on the oxygen that is out-of-phase with respect to the LUMO of the reacting dicnop hlle .

This antibonding relationship certainly would have a repulsive enecton the dlenophile as

it approaches to the syn face. However, In the '2nd HOMO' a substantially larger

compone nt is on Ihe oxygen that is In-phase with the LUMOof the dienophlle. If the

difference in energy between the "tst HOMO' and the "znd HOMO" Is smal l, then the

attractive effects of the favorable interactIon migh l become more Important than the

repulsive effects of the unfavorable Interactions. Recall from thowork by Jones" that an

OH group at the s-posluonof a cyclopentadiene analogue gave exclusive syn addition .

Likewise, lo r 121 (Figure 28b) in both the "1st HOMO' and the "2nd HOMO' , there are

compo nents on the oxygens that are aligned In-p hasewith the LUMO 01the elercpnne.

In contrast, fo r s-cbtcrocyctcpenteolene (Rgure 29a), which adds preferentially snti, 71a

large compo nent rests on Ihe chlorine In the "1st HOMO " that Is anllbonding with :he

LUMOof the d ienophile. Only in the '3 rd HOMO· Is there a componentthat Is In·phase
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with the LUMO . ln this case, the repulsive Interacti ons musl overwhelm any attractive

Interactions between dlenophile andthe netercatom .

Benzene oxide (142, Figure 29b) is most similar In structure to 5­

hydroxycyclopenladiene In that its oxygen lies in the plane that bIsects the diene.

However, the "1s1HOMO' has a large out-ol·phase component on the oxygen, and

neither the "2nd HOMO' nor the '3rd HOMO' has aco m ponent on the oxygen that is

proper ly aligned In-pha se with the LUMO of the dieno phlle. This Implies that any

electronic lnteraclfon between the dlenophileand the oxygenwould most certainly be

repulsive II the dlenophUe were to approach the syn.face altha diane. Work Is still In

progress to generate orbital diagrams lor other halercetom·substituted plane­

nonsymmetrlc cyclopentadlenesandcyc lohexadienes.

In retrospect, the postulatethat is mostsim ilarwith the aboveproposalwas that

extended by Anh.75 However, Anh took the approach 01 'mixing orbitals' In his

hypothesis. Figu re15 IllustratesbOth a dleneHOMO and localized lone pair orbllals on

the oxygenin thesame orbitaldiagram. ThoselIIustrallons shown In Agures 28and 29

do not Implylocalized lonepair orbitalson thet ete rcetoms. IllStead,thoseorbitalswhich

are shown to be situated on the heteroatoms for a particular molecular orbital (lsi

HOMO, 2nd HOMO, and 3rdHOMO) are compo nents of thet molecolat orbital.

Inconclusion, the resufts obtained in this SlIJdyhaveClearly shown thai allync

hetercatcmsubstitution on1,3-cyclohexadlenewill direct theadditionof dienophlles to

the face of the eene 8yn to the heteroatom. Thls facial select ivity can be nearly

completely reve rsed by etedc effects with appropriate derivatlzatlon. In addltlon, the

hYPolhesl81hat It·faclal selectivitymay be contrcn ed by favorableor IJr'Ifavorableorbital

Interactionsbetween the dlenophWe and thai of the dlene hasalso beenextended.
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EXPERIMENTAL

General

All solvents were purified by dlstlttation. Benzene, dichloromethane, carbon

tetrachloride and dlethyl ether were distilled from calcium hydride (CaH~ . Pyridine was

dried over anhydrous potassium hydroxide (KOH), distilled and slored over KOH.

Tetrahydrofuranwas distilledfrom sodiummelal/benzophenone. Mosl reagentswerenot

purified before use. exceptions were: N.phenylmaleimlde was CfySlalllzed Irom

cyclohexene; PBra·!oluenesulfonlc acid wasdried by refluldngIn benzenewith a Oeen­

Stark apparatus,followed by crystallization; chlorolrlmethylsllenewasdlslJlledfrom CaH2•

Aqueous solutions are Implied for saturatedNaCl, ale. Reactionswere run under an

atmosphere 01 dry nitrogen. and monllored by thin-layer chromatography (flC) .

Commercial TLC plates were Merck 6OF·254. The plates were visualized by UV

fluorescence, orby sprayingwitha soluucnof phosphomolybdic acid, eerie sulfateand

sulfuric acid, followed by heating. Flash column chromatographywas performedon

MerckTypeSOslUca gel, 230400 mesh.Preparative TlC wascarriedoulusingWhelmsn

60A·PK6Fcommercialplates with a 1 mm plate thickness, RotaryTLCwas performed

using the Chromatotron(HarrisonResearch , PaloAlto, California)on pratescoated (2

mm) with Mercktype SO·PF254TLCsilicagel with cetccm sullatebinder, Melllngpoints

(mp) weredeterminedon a Fisher·Johnsapparatusand areuncorrected, Ultraviolet(U'l)

spectrawere run on a Perkln·Elmer 202 Instrument. Inlrared(Ir) spectrawererecorded

on a MattsonFTinstrument.Nuclearmagneticresonance(nmr)spectrawereobtained

on a GeneralElectricGE3QO·NB (3C'O MHz)instrument or aVarian360Instrument.The



107

'H nmt' shifts 01COCI3 solutions were measured relative to a tetramethylsilane IntemaJ

standard, but In other solYents the shiftswere calibrated to a SOlvent resonance. The '3t

shift s are relative to internalso lvent resonance (C~ • & n .D, e,c•• 6 128.0, CID,N

• 6 149.5 and (CHJ ,so • 6 39.5) . Multiplk:ItJes are described by the IOIIowklg

abbreviaUons: s (singlet), d (doublet), dd (dOUble doublet), ddd (doubled doubledoubl et),

m (muttlpJel) , t (triplet), q (quartet). For some carbon resonances lor which rigorous

assignments arenotprovIdedthenumberofattachedprotons (by APT)may beIndicated

In parentheses after the chemical shift. The nmr a&Slgnmenls wore aided by ' H • 'H

correla tion (COSY) ene 'H • nC correlallon (HET.COAR) 2-D spectra, and nucl ear

Overhausereffect(n.O.8.) enhancement measurements,whichalso ledtothe assignment

01stereochemistry. The n.0 .8. measurements were made from sets of interleaved 'H

8Kperiments (16K)of 8 transients cycled 12 to 16 timesthrough the list 01frequencies to

besatt.'aled. The decouplerwas gated on Incontinuouswavemode tor6 secondswith

sufficient attenuation to give a 7().9Q%reduction In Intensity of the irradiated pe ak.

Frequency changes were preceded by a 60 seconddelay. Four scans were used to

equilibratespins belore dala acqutsilion, but a relaxallon delaywas not appliedbetween

scans at the samefrequency. The n.O.e. diflereoee(n.O.e.d.) spectral llS were obtained

from zero-filled 32Kdata tables to which a 1to 2 Hz eKpOnentiallin8*broadeningIunctlon

had beenapplied. The n.O.e. results are reportedIn the following formst: a saturated

signal: enhancedSignal (% enhancement). Mass spectral (ms) data were from a V.G.

Mlcromass 7070HSInstrument. Gaschramatography·mass spectral (GC·MS) data were

obtained on a Hewlett·Packard system comprised of a model 5890gas chromatograph

coupled to a model 5970 mass selective cetectcr. Data for the x·ray structures were

collected using either an Enral·Nonlus CAD-4 dlltraetomeler Of a R1gaku AFC6S
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diffracto meter, and the structures were determined by Dr. M.J. Newlllnds or Dr. J.N.

Bridson of this Dflpartment.

cfs·1,2·DlacetoXY·3,5·cyclohexadlene (109)

To a solution of cls·cyc lohexs-3,5·dlene· l. 2-dlol (121) (0.240 g. 2.14 mmol ,

Aldrich) in pyridine (1 mL) was added acetic anhydride (1 mL). This was stirred at room

tempera ture for ca.2 h, after which time TlC Indicated no starting meteriel was present.

Thesolvent was evaporated on a vacuum pump for C8. 2 h, and chromatography (30%

ethyl acetate/hexane) of the residue gave 109 (0.368 g, 86%) as a c lear, cctc uneee 011;

uv (CH30H ) l mu: 256 nm (e = 3900); ir (film) v.....: 3054, 1740 , 1371 , 1241 ern": l H nmr

(CDCIJ ~ : 2.07 (6H, S), 5.54 (2H, t, J .. 1.2 Hz). 5.67· 5.93 (2H, m), 6.14 (2H, m); 13C

nmr (COCIJ . : 20.7 (31. 66 .8 (1). 125.1 (1). 126.1 (1),1 70 .1 (01; ms ml' (%) : 196 (M' .

1). 184 (31. 136 (131. 112 (601. 95 (981.94 (100). 76 (331. 77 (24). 66 (661.43 (1001. Exset

mass calcd. for C,oHI 20 .: 196.0735; found : 196.0725.

c1s-3a.7a-Dihydro-2,2-dimethyl·l ,3-benzodloxolo (114)

To a stirred solution of 121 (0.200 g, 1.78 mmol), in 2,2·dlmethoxyprOPIUl6 (15

mL), was added pTsOH (10 mg). This solution was stirred at room temperaturefor 1 h

afterwh ich dlchloromethane(50 Inl) was added. This was washed with 0.1M NaOH(SO

mL), saturatedNaHCO, (50mL) and saturated NaCI (100 ml) , dried (MgSOJ and the

solventevaporated.Chromatography al tha residue (30%ethyl acetate/hexane) gave114

as a colourless liquid (0.226 g, 83%): w (CH30 H) l ....: 257 om (e '" 3500); Ir (film)v"...,,:

2987,1379.1209,1 032 em" ; lH nmr (CDCI,) 3: 1.40 (3H, $), 1.43 (3 H, s). 4.66 (2H, t, J

.. 1.7 HZ), 5.87·5.93 (2H. m), 6 .00 (2H, m); 13C nmr (CDCI,) 6: 24 .6 (3), 26 .6 (3), 70. 2
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(1), 104.4 (0), 123 .6 (1), 125.1 (1); rns mtz (%): 152 (M'. 1). 137 (42), 109 (3),95 (100),

94 (96), rr (53). 66 (94). 65 (50), 43 (67). Exact mass caJcd . for C.H. 0 2 (M' ·CHJ :

137.0602; found : 137.0599.

CiS" ,2-Bis(trimethyl$iloxy)03,5-CycIohexadiene (122)

To a solution 01 121 (0.232 g. 2.07 mmoI) In pyridine (2 mL) was added

chlorolrimethylsilane (600 ~L, 4.73 mmoQ. ThIswas stlrred at room temperature tor t h

after which time CCl4 (to mL) was added, and the resultant solid was removed by

lillrallon througha K1mwlpaplug In aPasteur pipette. The fIltralewas concentrated undor

vacuum, and chromatography(10%ethyl acetate/hoKane) altho residuegave122 (O.456

g, 86%) as a clear, colourless Oil; uv (CH30 H) 1.....: 259 om (e .. 40001:Ir (film) v_:

2958,1412,1252,1119,840 em" ; ' H nmr (COCfJ 3: 0.15 118H, s). 4.14 (2H, r,J .. 1.1

Hz). 5.~ • 5.89 (2H. m), 5.94 · 5.99 (2H, ml; I~ (nit (COCl,) 6: 0.2 (3), 68.9 (1), 124.0

(1), 130.4 (I ): ms m/z (%): 256 (M', 21), '91 (10), 167 (2), ' 47 (17), 73 (1001,45 (17).

Exactmass calCd. for C.2H:l<t0,8lr 256.1314; found : 256.1314.

Cls-.3a,7a-Oihydro-2,2-dimethyl-1,3,2-benzodioxasitole (123)

To a solution of 121 (0.14 1 g, 1.26 mmoq in COO 3 (ea. 0.5 mll In an nmt tube

was added pyridine (10 ilL) and dlace toxydlmethylsllane (222 ~L, 1.26 mmol) . The

sonnlon was stirred In the nmr probe (60 MH~, ca. 25GC). After 10 min there was a

quantltat ive con version of the 121 10123 . Tho solvent could be removed under vacuum

to prov Ide a small amount (CB. 15%) of Impure material; uv (CH"OH) 1.......: 260 nm (I: •

3600); Ir (film) v_: 3044, 2962, 2902, 1413, t256 em·l ; l H nmr (COOS> 6: 0.23 (3H. S),

0.27 (3H, 51,4.70 (2H. S), 5.82· 5.90 (2H, m), 5.92 ·5.99 (2H, m); '''Cnmr (CDCIJ 6: ·1.9
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(3), ·1.3 (3). 69.1 (1), 123.2 (1), 128.3 (1); ms mlz (%}: 168 (M\ 90) . 167 (100). 153 (99),

135 (21), 133 (17). 94 (45). 9 1 (40), rr (36), 75 (64), 66 (24),45 (34). Exact masscalcd.

fo r C.H120~1: 168.0606 ; found: 168.0587 ; cared forC ,H lI02SI (M' • Hl: 167.0528; found:

167.0522.

cis-1,2·Dimelhoxy-3,5-cyclohaxadlene(12.4)

In a 250 mL 3·necked Dask, fitted with a stIrring molor and padd le, was added

50% NaOH/H 20 (SO mL) and CH2CI 2 (100 mL). To thIs was added 121 (0.311 g. 2.77

mmol), dimelhylsulfate(2.10g, 16.6 mmoQ,and tetra·n·butylammonlum hydroxide40%

w/ w In H20 (1.0 g). this was stirred for three days at room temperature. Waler (100 mL)

was added, and the organic layer was removed and washed with water (100 mL),

saturated NaHCOa (100mL) and saturatedNael (100mW. The organic layerwas dried

over MgS04 and concentratedunder vacuum. Chromatography of theresidue (30%ethyl

acetate/hexane)provided 124 (0.296g, 76%) as a colourlessliquid; ir (Iilm) Y,...: 2929,

1464, 1122 crrr':w (CHPH) 1..... (It): 262om (t : 2500); 'H nmr(CDCIJ&: 3.44 (6H,

5),3 .81 (2H, s), 5.99 - 6.08 (4H, m); 13Comr(COCIJ&: 56.2 (3),73.9 (t), 124.8(1), 126.9

(1); ms(GC-MS) mlz 1"): 140 (M' , 18), 125 (7), 109 (14), 97 (23), 82 (21), 75 (100), 65

(50),51 (30). Exactmass calcd. for CeH1202: 140.0837; found: 140.0834.

(1R",2R",4S' ,5R}4,S·Dlbromocyclohexane·t ,2·dlol (128)

A 5 litre,3·neckad flask fitted with a stirrIngmotor, and containIng 95%ethanol

(2 L), water (1 L) and MgS04 (60 g), was cooled to -5 to -1O"Cwith the aId 01a Dry Ice/

isopropanol both. To this stlrredmixture, 127'00(30.1 g, 0.125moij In acetone (10 ml)

was added dropwlseover5 minutes. To this solutionwas added KMn04 (20.0 g, 0.125
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mol) In water (1 4 over a perIod of 5 hOurs, making Slife that thetemperature did not go

above -soC. Afterthe KMn04 addition was ccmptete, the reaction was stirred overnight

(CB. 16 h). The brown precipitate 01Mn02was discharged by bubbling S0 21hrough the

sUrfed reaction mixture, atler which the solution was filtered and reduced to a total

volume all L. This was then extracted with CH2CI 2 (10 x 100 ml), and the combined

organic layers were washed with saturated Nael (200 ml) , dried over MgSO. and

filtered. Evaporation of the solvenl and crystallization of the residue from hot CHCf3

afforded 128 (15.1 9, 44%) as an off·white powder: mp 103-105"C; Ir (KBr) " mu: 3380,

2910,1445, 1295, 1060,990cm";'H nmr (C§O§N) 6: 2.16 (IH, ddd.J .. 2.2,12.0,13 ,8

Hz. C-6H,), 2.70 (1H. ddd, J ,. 4.2,4.5, 12.5 Hz, C-3H,), 2.82 (1H, ddd, J "" 2.9,4.5,

13.8 Hz. C·6H.), 2.92(1H. ddd,J "" 11.3, 12.0, 12.5 Hz, C-3H.), 3.98 (1H, ddd.J .. 2.8,

4.2, 11.3 Hz, C.2H). 4.25 (1H, m, W1/ 2 ", 8 Hz.C .1H), 4.39 (1H, ddd, J .. 4.5, 10.7, 12.0

Hz, CoSH), 4.84 (1H, ddd, J .. 4.5,10 .7, 12.0 Hz, C·4HI, 6.60 (2H, broad 5, OH's); 13C

nmr (CsD5N) 6: 41.2 (C·S), 42.9 (CoG), 54.8 (C-4), 55.6 (C-5). 70.2 (C-1), 70.7 (0.2); me

(GC-MS)m/z (%):195 (M+_ /~Br, 14), 193 (M+ _IIBr, 14), 1n (20), 175 (21), 165 (4), 163

(51, 147 (231, 121 (6), 119 (51,113 (131,95 (67),83(14),67 (100), 55 (79),41 (62). Exact

mass calcd. tor CIH.I'BrO (M+- Br - H20): 176.9734; found: 176.9728.

(2«,3ajJ,51',6«,7ap)- (130)and(21l,3ap,5p,61l,7all)·S.6·Dlbromohexahydro-2·phenyl-1,3·

benzodloxole (131)

To a solution of 128 (5.88 g, 21.5 rnmoJ) In dry CH2Cl2 (150 mL) was added

pTsOH (1.03 g) and benzaldehydedlmethylacetal (129) (16.3 g, 107 mmoQas a solution

In dry CH2CI~ (10 mL). This was stirred at room temperature for 2 days, after which the

solutIon was washedwith 20%NaHS0 3 (50 mL), 1M NaOH (100rrL), saturated NaHC03
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(100 mL) al'ld saturated NaCl (100 ml). After drying (MgSOJ and evaporation of the

solvent, hexane (SOml) was added to the residue and the resulting solution was

refrigerated at 0 • -5"C lor a few days. The liquid was decanted lrom the colourless

crystals that formed. Thesecrystals were washedwith hexane(4 x 5 ml ) 10provide 131

(1.n g). Thehexanewashings were combinedwith thedecantedsolution, and this was

concentraled to ca. 5 mL Chromatography of the residue (10% ethyl acetate /hellane),

gavean additionalcrop 01131(0.68 g) afterrecrystallizationfromhexane(total yield: 2.66

g, 34%), and of 130 (2.61 g, 34%).

For 130 : mp63 -65°G; Ir (KBrl v ......: 1412, 1173. 1069, 1011 em"; tH omt (CDCr;)

&: 2.28 (tH, ddd, J = 5.2, 8.0, 15.0 Hz. c.4H,), 2.49 (1H. ddd,J '" 6.0, 6.7,15.5 Hz, e­

7H.) , 2.79 (l H, ddd,J .. 3.8, 5.7, 15.0 HZ,C-4H.) , 2.84 (1H, ddd, J .. 4.8,5.4,15.5 Hz,

C.7H~), 4.24 (1H. ddd, J .. 4.8, 6.7, 6.7 Hz. C.fiH), 4.28 (1H, ddd, J .. 5.3,5.4,6.0 Hz,

C·7a H), 4.37 (1H, ddd, J .. 5.2,5.3,5.7 Hz, C3aH), 4.45 (1H, ddd,J .. 3.8,6.7,8.0 Hz,

C·5H), 5.85 (1H, C-2 H), 7.37· 7 .56 (SH, m)j 13C nmr (CDCIJ 4: 34.4 (C-4), 35.5 (C'7),

48.3 (ca) . 50.8 (C·5). 73.0 (C-7.) , 73.3 (C".), 103.8 IC·2). 126.4 (2 x ArC). 128.4 (1 x

A<c) . 129.3 (2 x A<C), 137.1 (1 x A<c): ms (GC· MS) mlz (%): 384 (3), 362 (6) and 360 (3)

(a" M') , 363 (11),361 (221 and 359 (12) (allM' • H). 159 (10), 157 (8). 105 (100), 79 (96).

78 (48), 77 (76), 67 (67), 51 (39). Exactmass calcd . for C,~Hl~Ngr20.. (M' . H): 358.9283;

found: 358.9293.

For 131 : mp 125· 12T'C; Ir (KBr) vmu:: 2903 , 1459, 1362, 1219, 1107, 1069,976

ern': IH nmr (COCIJ 4: 2.25 (1H, ddd, J = 4.7,8.2, 15.1 Hz, C-4H,) , 2.46 (1H, ddd, J

= 6.2 , 8.0, 15.2 Hz, C-7H.) , 2.78 (lH , ddd , J • 4.5,5.0, 15.2 Hz, C-7H~) , 2.84 (1H, ddd,

J .. 3.9,5.5,15.1 Hz, C·4H.), 4.19 (1H. ddd, J = 4.5,7.4,7.8 Hz, C6H), 4 .33 (1H, m,

C-7aH), 4.39 (1H, m, C-3aH), 4.47 (1H, ddd, J to 3.9,7.4,8.2 Hz, C·5H), 6.17 (lH, 8, C·
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2H), 7.31 ·7.45 (SH, m, AtH): nC nmr (COCI3) 6: 33 ,3 (C-4), 34.5 ~C·7) , 48.5 (C OS), 50 ,8

(C·S), 72 .6 (C·7a), 72 .9 (C-3a), 102.2 (C·2 ), 125.9 (2 x ArC), 128 .3 (1 XArC), 129 .0 (2 x

ArC). 138.9 (1 x ArCI;ms (GC·MSI mlz (%1: 363 (11). 361 (221. 359 (111. 287 (1). 285 (21.

283 (1),201 (3l , 159 (10), 105 (100). 79 (95),67 (66), 51 (an, 41 (55). Exactmass ca red.

for C'3H 1 41 ' Br~Ol (M' . H): 362 .9241; found: 362.9231.

(20,3aP,7aP)-3a,7a-Olhydro·2-phenyt.1,3·benzodloxole (132)

From 121

To a solution of 121 (77 mg, 0.67 mmoQ.and 129 (100pL, 0.67 mmol) in COCI)

(ca. 0.5 ml). was added pTsOH (1.4 mg) In CDCI) (1 mL). and the mixturewas stirred

overnight. The analysis of the 'H nmr spectrum revealed mainlysignals for 132 (but no

other derivative), benzaldehyde anda smallamount of phenol.Compound 132 made In

thiswaywaspurified byrotary thin-layerchromatography(20%CH~CI~/hexane) In a yield

01only 15%.

From 130

To a solutionof 130 (0.36 g, 0.98 mmo9In drybenzene (40 mL) was added CBU

(0.60 g, 3.9 mmo~ also In dry benzene(10 mL). This was refluxed for 16 h, after which

the solution wascooledto room temperatureand decanted Irom thewhite solid that had

formed. Thesolid wasextrllcted withmorebenzene (50 mll, andthecombinedsolutions

. were washed wilh saturated NaHC0 3 (3 x 100 mL), water 100 ml and saturated NaCI

(100 mL). Drying (MgSO.), evaporation of the solvent,and chromatography (10% ethyl

acetate/hexane)of the residueafforded132 (O.106Q, 56%)as a colourless liquid; Ir (film)

v-.: 3044, 2883 , 1459, 1401 , 1292, 1217, 1061,697 em"; ' H nrr.r lCDCI3) 6: 4.66 (2H,

t, J '" 1,6 Hz, C·3aH and C-7aH), 5.84 (1H, C-2H), 5.96-6 .00 (2H, m, C-4H and C·7H).

6.02-6.06 (2H, m, C-SH andC-6H), 7 .32 -7.36 (3H,ml, 7.4S -7.50 (2H,m); n.O.e. results
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ICOCIJ : & 4.66: 5.64 (8.5%), 5.96 ·6.00 (4%); " 5.64 : 4.66 (4.0%),7.46 ·7.50 (3.5%); I~C

nmr (COCIJ e: 71.0 (C·3a and C·1a). 98.2 (C·2). 123.8 (G-S and C-6), 124.1 (G-4and C·

7) , 126.8 (2 )( ArC), 128.2 (2 x ArC), 129.4 (1 x ArC), 136.5 (1 x ArC) ; ms m/z (%): 200

('), 199 (3), 172 (6), 171 (2),154 (39), 143 (') , 128 (81, 122 (4), 106 (35), 105 (90), 94

(100),77 (66), 66 (99), 51 (50),39 (51). 27 (9). Exactmassealcd.lor C,3H1202: 200.0837;

found: 200.0836.

(2« ,3all.7all)-3a ,7a·Dlhydro.2.phenyl· l, 3·be nzod loxole (133)

To a solullon 01131 (1.23 Q. 3.34 mmol) In dry benzene (40 m\ was added OBU

(2.07 g, 13.4 mmoQ as a solutionIn dry benzene (10 mL). This was refluxed for 16 h.

After cooling, the benzene solutionwas decantedfrom thesolidwhIchhad formed.The

solidwaseKtracted withbenzene (50mL), andthetwoorganicextractswerewashedwith

saturated NaHC03 (2 x 100 mL), H20 (100 mll and saturated Neel (100 mll. dried

(MgSOJ andevaporated to give133as ayellow011 (0.490g. 72%),containingnegligible

amountsof starting materials. Compound133 was stable11 refrIgeratedor In solullon;Ir

(film) vmu;: 3043, 2927, t641,1217, 1068 cm·1; 'H nmr (CDCI.J 6: 4.86 (2H, narrowm, C·

3aHand C-7aH), 5.83 (lH, s, C·2H), 5.88 ·5.93 (2H, m), 6.06 (2H.dd, J • 2.8.7.9 Hz,l.

7.34 ·7.38 (3H. m), 7.49 ·7.52 (2H, m); 13Cnmr (CDCI.J 6: 70.6 (e-3a and C·7a),100.2

(C-2),124.7 (1), 124.9 (1), 12$.3 (2 x ArC),128.2 (2 x ArC),129.0 (1 x ArC), 137.4 (1 x

ArC): ms (GC-MS) m/z (%):199 (M· • H, I), 153 (I), 143 (I), 122 (4), 105 ('8) , 9. (58),

78 (100), 66 (54), 51 (28). Exact mass celcd . for CnH1102 (M' . H): 199.0758; found:

199.0749.
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(211,3a',Sp,6l1,7ap). (135) and (2I1,3all,511,ep,7all)-S,6·Dlbromohexahydro·2 .(4.nltro­

phenyl) -1,3 ·benzodloKole (136)

To a stirred solullon 01128 (5.01 g, 18.3 mmoilindry benzene (150 mL) was

addedp·nitrobenzaldehyde dimethylacetal (134) (3.51 g. 17.8mmoQas a solution in dry

benzene (10 mL), followed by pre-driedp·!olulenesutfonlcacid (250mg). After refluxlng

for 16h, lhecoored solution waswashedwith O,1M NaOH(100mL), saturated NaHC03

(100 ml) and saturated NaCI (100 mL), dried (MgSO,J and concentrated.

Chromatographyat theresultingsolid (30%ethylacetale/hexane) gave135 (2.39g. 32%)

as lustrous plates, and136 (2.109,28%) as cubes.

For 135: mp 152- 154"C; Ir (Kar) ~mM: 3074 ,2967, 1611, '1518, 1345, 1084 em";

'H omr (CDCI,J 6: 2 .31 (1H, ddd , J .. 3.5,6.7.15.0 Hz, C-4HPl. 2.53 (1H, ddd, J .. 5.3,

5.3,15.9 Hz, C.7Ha:I. 2.66 (1H, ddd, J .. 3.5,6.7,15.0 Hz, C4HIII, 2.92 (1H, ddd .J ..

5.0,5.0,15.9 Hz, C·7Hp), 4.33 (lH, m, C-6H), 4.38 (1H, m, C-1aH) , 4.45 (1H, m, C·SH),

4.50 (1H, m, C·3aH) . 5.95 (1H, s, C-2H), 7,14 (2H, d. J '" 8.8 Hz), 8.21 (2H, d, J • 8.8

Hz); lH nmr (CsDsN) 3: 2.35 (1H, ddd , J '" 4.6,8.7,15.0 Hz, C-4HPI, 2.43 (1H, ddd, J

'" 5.9,7.8,15.0 Hz. C-7Ha:), 2.79 - 2.92 (2H, m, C-4Ha: and C-7HP),4.35 . 4.43 (2H, m,

C-3aH and C·7aH). 4.46 (1H, ddd, J '" 4.6,7.7,7.8 Hz, C-6H). 4.65 (1H, ddd,J '" 3.9,

1 .7,8.7 Hz, C·5H), 5 .98 (1H, s, C-2Hl, 7 .80 (2H, d, J • 8.7 Hz), 8.23 (2H, d, J • 8.7 Hz);

n.o.e. results (CDCI,J:II 4.38: 2.92 (6%). 5.95 (12%); 115.95: 4.38 (7%),4.50 (6%). 7.74

(3%); 13C nmr (CsDsN) II: 35 .2 (C-4),36.9 (0-7), 50.0 (CG), 52.0 (COS), 73 .7 and 74.8 (C­

3a and C-7a), 102.4 (C·2), 124.0 (2 x ArC), 127.9 (2 x ArC), 145.3 (1 x ArC), 148.6 (1 x

A<C); ms m/z ('J(,): 408 (11), 406(21), 404 (11), 382 (3), 390 (5), 388 (2), 248 (6), 218 (17),

193 (2), 172(3), 1&9(11), 150 (45),135 (10), 107 (30), 95(35), 79 (67), 67 (100), 41 (56).

Exact mass celcc . for C'3H12TVB~lBrNO. (M• • H): 405 .9112; found : 405.9119.



116

For 136: mp 132 · 134°C: lr (KBr) vIM>:: 3106, 2904,1610, 1520, 1351em·';'H nmr

(CDCI~ !: 2.32 (lH, ddd, J .. 5.0,7.6, 15.1 Hz, C·4HM. 2.52 (l H, ddd, J • 6.0. 6.6,

15.5 Hz, C-7Ha:).2.85 (2H, m, C-4Ha:and C·7HP) . 4.27 (l H, ddd , J '" 4.1,6.8,6.9 Hz,

C-6H), 4.35 (l H, ddd, J . 5.0, 5.1, 6.0 Hz, C·7aH j, 4.44 (1H, ddd, J .. 5.0, 5.0, 5.8 Hz,

C-3aH).4,51 (lH, ddd, J '" 3.7,6.9.7.6 Hz, C-SH). 6.24 (l H, S, C·2H). 7.62 (2H. d, J •

8.7 Hz}. 8.22 (2H. d.J '" 8.7 Hz); lH nmr (CsOsN) 6: 2.35 (lH,ddd, J '" 4.4,9.3,15.1 Hz.

C-4HP), 2.47 (lH. ddd , J • 7.3, 9.2, 14.6 Hz, (C-7Ho:), 2.81 (tH. ddd , J = 4.5, 5.8. 14.6

Hz, C·7HP), 2.92 (lH , ddd , J = 4.2,4.4,15.1 Hz, C-4HIl), 4.36 (lH , ddd , J =0 4,4, 4.4,

4.8 Hz, e-3aH), 4.43 (lH , ddd. J '" 4.5,8.3,9.2 Hz, C·SH), 4.48 (l H, ddd , J .. 4.8,5.8,

7.3 Hz, C·7aH) , 4.63 (1H, ddd ,J .. 4.2, 8.3, 9.3 Hz, C-5HI , 7 .69 (2H, d, J ~ 8.7 Hz), 8.26

(2H, d, J '" 8.7 Hz): n.c.e. results (COCI,J: e 4.27: 2.32 (1%),2.52 (2%), 2.85 (5%): 3

4.35: 2.52 (1%), 2.85 (6%), 7,62 (1%); 3 4.44: 2.32 (5%). 2.85 (2%), 7.62 (1%); 6 4.51:

2.32 (1%), 2.52 (1%), 2.85 (5%); 3 6.24: 2.52 (5%), 2.85 (5%), 7.62 (3%); 3 7.62: 6.24

(4%), 8.22 (19%); 13C nmr 6: 32.6 (C-4), 33.9 (C-7), 47.7 (C-6), 50.3 (C·5), 72,7 (C·7a),

73,1 (e-3a) , 100.7 (C·2), 123.5 (2 x ArC), 126.9 (2 x ArC), 145.8 (1 x ArC), 148,1 (1 x

~;~~~:~~~,~~,~(1~,~~,~~,~ ~,~OO,~~,

216 (11), 150 (63), "" (29), 95 (41), '0 (62), 79 (73), 77 (40),67 (100).

(2«,3ap,78P)-3a,7a·Olhydro-2·(4-nitrophenyl)·1,3·benzodio xole (137)

To a solution 01135 (0.524 g, 1.29 mmoO In dry benzene (150 m4 was added

DBU (0.78 g, 5.1 mmol) as a solution In dry benzene (10 mu.This was heated at reflux

for 16 h. After cooling , the solution was decan ted and the white solid remaining was

extracted with benzene (20 m4, The comb ined benzene solutions were washed with

saturated NaHC03 (2 x 100 mll and saturated NaC' (100 ml) , and dried (MgSOJ .
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Evaporation of the solvent, followed by ct1romatography of the residue (30% ethyl

acetate/hexane) afforded 137 (0.161 g, 51%) as lustrous light green plales: mp 141 •

142"C; Ir (Kar) v......: 3047, 2914, 161" 1519, 1349 cm·1; lH nmr (CDC1:J&: 4,73 (2H, I,

J ". 1.1 Hz), 5 .74 (1H, S, C 2H), 5.94 · 6.00 (2H, m, C·4Hand C7H), 6.04 - 6.10 (2H. m,

C-4H a nd C-SHl, 7.64 (2H, d . J = 8.7 Hz), 8.19 (2H, d, J .. 8.7 Hz): n.O,8, resu lts: &

4.73: 5.74 (8.5%), 5.94 - 6.00 (5%); 3 5.74: 4.73 (4.5%), 7.64 (3%); 1~ nmr (COCI:J 3:

71.3 (c.3a and C-7a), 96 .8 (C'2), 123.4 (C-4 and C-7), 123.9 (C-5 and C6l, 124.1 (2 x

ArC), 127.8 (2 xArC). 143.8 (1 xArC), 148.4 (1xArC); ms m/z (%): 244 (M+• " 1), 199

(2), 150 (15), 141 (2), 120 P), 104 (7), 94 (9B),77 (24), 66 (100), 51 (19),39 (29), Zl (5),

Exact mass calcd. tor C13H 10NO. eM" • H): 244.0609; found: 244.0603.

(211,3all ,7all)-3a,7a·OihydrO·2.(4.nltrophenvQ·1,3·benzodloxOIe (138)

To a solution 01dibromlde138 (2.08g, 5.11mmoQIn drybenzene (100ml) was

added OBU (3.11 9, 20.4 mmoQ. ThIs was heated for 16 h, and, after cooling, the

benzene solution was decantedIrom a solid residue. Benzene (20 ml) was USedto

extract this residue, and the combined benzene solutions wore washed with saturated

NaHC03 (2 x 200 rnL)and saturated NaCI{2OO m4, dried (MgSO,J and concentrated.

Chromatography (20% ethyl acetate/hexane) ofthe residue proVided138 (0.526 g, 42%)

ascolourlesscrystals: mp 128-131GC, which formeda Dlels-Alder elmer on menlng; uv

(CH,OH) , _: 202 (• • 10,200),264 (13,300): I. (l<B~ , _ : 3046 , 2IlIll , 1640, 1525,

1355cm'': 'H nmr (COCI.Ja: 5.24(2H,t,J . 1.5Hz,C·3aHande-7aH), 6.23(1H,s, C­

2H), 6.27- 6.31 (2H, m), 6.47 (2H, dd, J '" 2.9,7.9 Hz), 8.04 (2H, d, J '" 8.7 HZ), 8.58

(2H,d,J .. 8.7 Hz); '3C nmr(COOJ a: 70.9 (C-3aandC-7a), 99.2 (C-2), 123.4(2x ArC),

124.2 (1), 125.2 (1), 127.4 (2 x ArC), 144.6 (1 x ArC),148.2 (1 x ArC); ms mlz (%): 244
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1M' • H, ' I, 170 (11, 150 (241, '20 151, 104 1'01, 94 (87), 78 (1001, 66 (921, 51 128), 3.

(36). Exactmasscared. for C, 3H 10NO. (M+·H): 244.0609; found: 244.0589.

(24,3all,5a~ ,6C1 ,8Il,9all,1011,10a\$.1ObA)-3a,5a,6 ,6a,9a, 10 ,lOa, 10b ·Qctahydro·2.8·

diphenyl-6,10·ethenonaphlho(1,2-d:6,7-d'}bls(1,3]d ioxole (139)

A crude, neal portion of 133 (98 mg, 0.49 mmoQwas allowed10 stand at room

temperature overnIght, giving a brown solid the next day. Chromatography (30% ethyl

acetate/ hexane)gave139 (83mg) as theonly product: mp 176 · 179"C; Ir (KBr)v......:

3034, 2943, 1457, 1368. 1224, 1097 (strong). 1066 (strong), 751, 696 em": ' H nmr

(CDCIJ &: 2.35 (1H, d, J '" 9.0 Hz, C·10aH), 2.43 (tH , ddd, J '" 1.6. 3.6, 9.0 Hz, C·5aH),

3.04 (2H, broad 5, CosH and C·10HI, 4.25 (1H. d, J '" 4.6 Hz, C-10bH), 4.41 (2H. S, C·

BaH and C.10aH) , 4.50 (1H, dd, J = 1.7,4.7 Hz, C.3aH), 5.60 (1H, d, J .. 10.1 Hz, C­

4H), 5.80 (tH, ddd ,J .. 1.5,3.9,10.3 Hz, C·5H), 5.83 (l H, s, C·2H), 6.04 (t H, s, C·SHl,

6.17 (lH , 1, J .. 3.2 Hz, C·l 1H and e-1 2H), 7.30 - 7 .45 (10H, m, 10 x ArH); 'H nmr

(CsOsN) 6: 2.48 (2H, broad e, C·5aH and C-tOaH) , 3.03 (2H, m, C·6H andC·10H) ,4.34

(l H, d,J '" 4.7 Hz, C·l0bH), 4.50 (2H, symmetrical m, C-Eia H and C·9aH), 4.59 (lH , d ,

J '" 4.2 Hz, C-3aH), 5.66 (1H, dd, J .. 0.6, 10.4 Hz, C-4H), 5.60 {1H, dd , J .. 2.7, 10.4

Hz, C·5H) , 6.11 (1H, e, C·2H), 6.19 (2H, appar ent l,J .. 3.8 Hz, o.11H and C·12H), 6.30

(1H, e, C-BH), 7.37 - 7.48 (6H, m, 6 x ArH), 7.60 (2H, d , J .. 7.6 Hz, 2 x ArH),7.70 (2H,

d, J .. 7.5 Hz, 2 x ArH); n.O.e. results (CsOsN): 6 2.48 : 3.03 (2.5%), 4.34 (3.5%), 4.50

('3% ),5.80 (5%), 6.11 (3%): , 4.34: 2.48 (1.5%),3.03 (4%), 4.59 18%), 7.70 (1.5%1: ,

4.50: 2.4818.5%) , 3 .03 (2%1,6.30 (2%1, 7.60 (2%): '4.59: 5.66 (1%): '5.68: 4.59 13.5%),

5.80 (4.5%), 6. 11 (2%); & 5.80: 2.48 (1%), 3.03 (1,5%), 5.66 (4%); 13C nmr (COCI:J 6: 33,0

(O-Sa), 34 .3 (C· 10a), 40.9 and 41.3 (C-6 and 0.10) , 71 .7 (C-3a), n .2(C' 10b), 79.1 and
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79.3 (C-6a and C·98), 101.0 (C-2), 104.8 (c.a), 124.1 (C-4), 125 .8 (2 x AtC), 12£,2 (2 x

ArC), 128.3 (2 x ArC). 128.7 (2 x ArC), 129.0 (2 x ArC), 129.7 (Col 1 or C·12), 132.5 (C·5),

133.2 (C-11 or C-12), 138.7 (1 x ArC), 139.2 (1 x ArC); ms m/z (%): 400 (M· , 1),399 (3).

m~~~m~~~w~m~~~*~w~~

(100),94 (27), 91 (36), 71 (34), 66 (12). Exactmasscalcd. for C18H lI03 (M+ • C,HeO):

294 .1255; found: 294.1250 .

(2 11t ,3aa ,Sa p,6a ,6a P,a p,Sa p,1Oll,loal$,1Obll)-3a,Sa,G,Sa,9a,10,1Oa,lOb.Qctahydro·2,8·

bls(4·n!lrophenyl)-6.tc-emencnepbthc (l ,2·d:6,7-d'}bls(1.31dloxola(140)

Compound 138 (60 mg, 0.12mmoQwas heated In a glass vial in an aluminum

block under a stream of nitrogen. Whenthe temperature had attained ca. 25(fC (about

10 min), the glass vial was removed from the block to cool. The 0 11 quickly solidi fied to

a brow n solid; ' H nmr analysis 01a sample clearly showed only one dlmer present , which

was purified by washing the solid with 50% CHCIJCCI. to give 140 (31 mg, 52%); mp

246 - 247"C; Ir (KBr) v.....: 3046, 2952, 1622, 1517, 1349, 1079,729 crrr': 'H nmr (CDCIJ

6: 2.38 (1H, d,J .. 8.9 Hz, C 10aH), 2.47 (1H, broad m, C·5aH) , 3.06 - 3.12 (2H, broad

r.l , C·6H and C·10H), 4.23 (lH, d, J .. 4.8 Hz, C-10bH), 4,45 (2H, narrow m, C6aH and

C·9aH), 4.53 (1H, dd, J .. 1.6,4.5 Hz, C-3aH), 5.63 (1H, d,J .. 10.1 Hz, C-4H), 5.66 (1H,

ddd, J '" 1.4,4 .0,10.4 Hz, C-5H) , 5.90 (1H, s, C·2H), 6.06 (1H, s, C-8H) , 6.20 (2H, broad

m, C·11H and C·12H) , 7,56 (2H, d, J '"' B.7Hz,2xArH), 7.61 (2H, d,J .. 8.7 HZ,2 X

ArH), 8.21 (2H. d, J .. 8.7 Hz, 2 x ArH, overlapped with 6 8.23), 8.23 (2H, d, J '" 8.7 Hz,

2)( ArH, overlapped with 6 8.21) ; lH omr ((CD.J2S0) 6: 2.34 (1H, d, J .. 8.9 Hz), 2.44

(1H, m),3 .04 (2H, m) , 4.25 (1H, d,J '" 4.8 HZ),4.52 (3H , broad m), 5.52 (1H, d,J .. 10.5

HZ), 5.84 (1H, ddd, J '" 1.2,3.9,10.0 Hz), 5.B6 (1H, $), 6.03 (1H. s), 6 .11 (2H, m). 7.60
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(2H, d, J = 8.7 Hz), 7.69 (2H, d, J .. 8.8 Hz). 8.21 (2H, d, J '" 8.7 Hz). 8.23 (2H, d , J ,.

8.8 Hz); n.O.e. resu lts (CDCI;): II 2.38: 2.47 (2%),4. 45 (5.5%); & 2.47: 3.06 ·3.12 (2.5%).

4.45 (4.5%). 5.86 (5%); & 4.23: 2.36 (4%), 3.06 - 3.12 (5.5%), 4.53 (10%), 7.61 (1.5%); II

4,45: 2.36 (16.5%), 2.47 (13%),3.06 ·3.12 (5.5%). 6 .06 (2%), 7.56 (3%): & 4.53: 4.22

(5%), 5.63 (6.5%), 6.20 (1.5%); & 5.63: 4.53 (4%), 5 .86 and 5.90 (13%); & 6.06: 7.56

(2.5%); & 7.57 and 7.61: 5.90 (2%), 6.06 (1.5%), 8.21 and 8.23 (6.5%); ' ~C nmr

( CO.J~Ol &: 32 .2 , 33 .2. 40 .3 , 40.7, 71.4, 77 ,0, 78.8,78.9,99.1, 102.7,1 23.5 (3C), 127.4,

127.8, 130.0. 132.6, and 132 .9 (4 qua ternary aromatlc signals too weak to be resolved);

ms mjz (%): 469 (M' · 1, 2), 459 (1).368 (2). 339 (5), 260 (3), 188 (26), 172 (23), 150

1ll21. 120 (47), 94 1901.76 1' 00). 66 165). 61 (291·

trsnS·4,S·Dlbromocyclohexene oxide (141)

A solution of 127 (10.0 g, 4.17 mmo~ and mets- chloroperoxybenzolc acid (10.0

g, 85%) In CHOla (150 ml) was heated at reflux lor 16 h. The mlxtura was coo led In lc..,

andthe while solid whichhad formedwas filteredand discarded. Thefiltratewaswashed

with20% NaHSOa (100ml), saturated NaHCOa(2 x 100mL) and saturatedNaCI (200

ml), and dried {MgSO,J. The solvent was evaporated to leave a viscous yellow 011.

Recrystalliza tion of this residue from cold hexene afforded 141 (G.97 g, 65%) 8S

colourless crystalS, mp 68-69°0 ; Ir (KBr) v.... : 3005, 1415, 13m , 1009 ern:': 'H nmr

(CDCI;' 6: 2.46 (1H, ddd , J .. 3.2, 6 .7, 16.0 Hz.), 2.65 (1H, dd , J .. 6.3, 16.5 HZ,), 2.90

(lH , ddd ,J '" 3.5.6.3, 16.5 Hz,), 2.99 (lH , dd,J '" 4.5, 16.0 Hz,), 3 .24 (2H, m),4 .20 (lH ,

ddd,J = 6.3,6.3,7.7 HZ,),4 .30 (l H, ddd.J '" 4.6,6 .7,7.7 Hz,); 13C nrnr (CDCIJ. &: 32.3

and 33.3 (2 x CHJ. 47.3 and 48.7 (2 x CHBr), 50.2 and SO.7 (oxirane carbons) ; rna m/z

(%); in (5) and 175 (5) both (M~ • Br), 149 (3), 147 (5), 121 (5), 119 (5), 95 (18), 67
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(100),53 (5), 41 (48). Exact mass caled . lor CeHe
l 18rO and C.H. NSrO {both M' ~ Sri:

176.9738and 174.9759, respectively; found: 176.9742 and 174.9752.

1,3,S·Cyclohexalrlene·1,2-oxide (142) / oxep'n (143)

To a solutIonat 141 (1.07 g, 4.17 mmol) In ether (20 rnL) was added DBU(2.50

g, 16.4mmo')and this was stirred at room temperaturefor 24 h. The reaction mixture

was pouredover saturatedNaHC03 (100ml) , and moreether was added (SO mLl. The

organIc layer was washed successively with saturated NaHC0 3 (2 x 100 mu and

saturaled NaCI (100 mLl,and dried over anhydrous ~C03' Evaporation 01the solvent

gave142 ...143 (0.270 g, 67%) as a yellow liquid; Ir (film) v......: 3028,1609,1431,1072 em"

1; IHnmr(CDCIJ 3: 5.12 (2H.d, J .. 4.5 Hz), 5.8S (2H. ml,6.26 (2H. complex m); '~

nmr (CDCI.,) 6: 107.5, 110.0, 120.2, 122.3, 128.6, 130.7; ms m/z (%): 94 (Mt
, 61),78 (7),

68 (35), 66 (l00 ), 65 (68). Exact mass celco. for OeHeO: 94.0416; found: 94.0420.

I ,S·Oimethyl·7·0xablcyclo[4.1.0]hept-a.ene(1468)

To asolutionolthe magnesiumsaltof60%monoperoxyphthal1c acid hexahydrate

(31.8g) In 95% ethanol (500mL) was added 1,2·dimelhyl·l,4·cyclohexadlene (1458),

(11.1 9, 103mmoJ). After stirringat room temperature10(3 h, H20 (1 L) was added.ThJs

was extractedwIth CHaCI2 (300mL). The organicJayerwas washed with H20 (200mL)

and s8turatedNaCI(200ml) and dried (MgSOJ. Evaporation01the solvent followedby

chromatography(4%acetone/pentane) provided148a (5.49.42%) as an all; lHnmr (GO

MHz, COCI.,) &: 1.3 (RH,s), 2.3 (4H, apparentsl, 5.3 (2H, apparent s).
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tranS-4,5·Dibromo·l,2·dimathylcyclohexene oldde(1471)

To a solution of 1461 (5.4 g, 44mmoQIn CHela(100 mL)cooledto ·SOOC was

addedBr2 (5.S4 Q, 35.2mmol)In CHCI3 (100ml) atsucharateas10ensurelhe solution

did notbecomeorange(2 • 3h). Afteradditionwascomplete, thereactionwasallowed

to warm 10 room temperature overnight. Evaporation 01 the solvent, followedby

crystallization of theresiduefrom hexane, yielded1478(1.59 g, 76%) as fina colourless

needles: mp 82-83"C; Ir (KBr) v.....: 1466, 1384, 1322, 1167. 847,670 cn'': 'H nmr

(CDCI~ II: ' ,32 (3H, s, CHJ, 1.34 (3H,s,CHJ ,2.29 (lH,dd.J .. 8.3,15.4 Hz), 2.61(lH,

ddtJ '" 7.7, 16.1 Hz),2.69 (IH,dd, J .. 6.8, 16.1 Hz), 2.90 (1H, dd,J '" 4.5, 15.4 Hzl,

4.15 (1H, ddd,J .. 6.8,7.7,9.1Hz), 4.26(1H. ddd,J • 4.5,8 .3,9 .1Hzl: l-'C nmr (CDC1:J

II: 19.5and19.9 (2xCH:J.39.9 and40.8(2 x CHJ, 49.6andSO.5(2x CHBt),61.0and

61.9 (oxiranecarbons); msmlz (%):205(50) and203 (51)both M+ · Br. 165 (4). 163(5),

123 (67). 109(51. 95 (12). 95 (121. 81 (' 91. as('I.53(241. '3 (100).

1,2·Dlmethyl.1,3.5-cyclohexalriene-l,2-oxlde (1481) / 2,7·dimethyloxepin(149a)

Following theprocedl,lr&by Paquette andBarrett,Ull to a solullon011478 (2.1.

g, 7.52 mmol)In anhydrousether (SO mL) at DOC was addedpotassIum tet1-butoxlde

(2.009) In 4 equal portionsover1 h. Afterstirringfor anadditional1h, tho elhersolution

was pouredoverHrO(75 mLl. andmoreetherwasadded (25 rnl) . Theorganic layer

wasextracted andwashed withHrO (75mL), saturatedNaHCOa(75mL) and satLllaled

NaCI (75mL)anddried(MgSOJ. Evaporationolthe solventprovided1488..1498(0.754

g, 82%) as a yeJrow Uquid; Ir (1ilm) vll\&I: 3026, 1658,1160, 1078, 743 em': 'H nmr

(CDCIJ a: 1.91 (6H, e, 2 x CHJ, 5.44(2H,eomplelC m), 5.99(2H, distortedI,J .. 3 Hz);

lac nmr (COCIJ3: 21,1 (2 x CHJ, 112.2, 127.5,149.9 (C·2 and C·7); ms mlz (%1:122
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(M· . 43). 107 (8). 91 (14),79 (90). rr (561, 43 (100). Exact mass ealcd. for C.H 100:

122.0731; found : 122.0725.

1Q.OxstricycIO[4.3.1.oldeea.a·ene (148b)

Toa vigorouslysUrred solution of 5,8-dihydrolndan (14Sb)(28.59, 0.237mmoO

In CHCI~ (350 mL) was added Aliquat 336 (1.0 g), and over a 2 h period. a solution of

BO% MMPP (88 g) In H20 (450 ml). This was stirred for a further 2 h. The white solid

which lormed altha Interlace was dissolved by the addition of 1M NaOH (100 ml). The

organic layer was separated , and the aqueous layer was extracted withCHC~ (2 x 50

mL) . The organ ic extre.cts wore combined and washed with H20 (200 mL), saturated

~aHCQJ (200 ml) and saturated NaCI (400 mL) I and dried (MgSOJ. Evaporation of the

sctvent,followedbyChromatography(4% acetone/pentane) alforded 146b(23.9g, 74%),

as a viscous . colourless liqUid ; 'H nmr 60 MHz (CDCIJ 6: 5.3 (2H, broad 5), and 1.3­

2.6 (10H,complex.m) IncludIng a large narrow m at 2,4 (epprcx, 4H), 5.3 (2H, broad s).

trans·3.4 .0Ibromo·10-oxat rlcyclo[4.3.1.0
,•ejdecane (147b)

In8 manner similar 10 that for 146a, 146b (5.00 9, 36.7 mmo~ and Br2 (5.26 g,

32.9 mmo~ were combined to yIeld 147b (B,4S g.87%) as a colourless solid: mp 87­

saoc: ir (KBr) v......: 2955,1415, 1163,1069.933. 656 em" ; 'H nmr (CDClJ 6: 1.42 (1H.

m), 1.59 (3H, distorted seplet), 2.04 (2H, dIstorted quIntet), 2.42 (1H, dd, J = 5.4, 1S.8

Hz), 2.67 (1H, dd,J .. 4.9, 16.4 Hz), 2.82 {lH, dd,J .. 4.2, 16.4 Hz), 3.01 (1H, dd, J ...

4.3, 15.8 Hz), 4.30 (1H, ddd, J = 4.9,6.2,6.6 Hz), 4.•1 (lH, ddd, J =4.3, 5 .4, 6.6 H2):

"cnmr (CDCIJ 6: 19.6,31 .2 and 31.8 (CH2CH2CH~ bridge), 33.5 and 34.6 (C·2and C·

~,Q.O~~~~~.~.Md~,5~1~~;~~~:~~~,~
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(0.7), and 294 (0.4) all M·, 217 (2),21 5 (2), 189 (2), 187 (2), 135 (100), 117 (9), 107 (19),

93 (40), 79 (51), 67 (12), 55 (35). 41 (23).

10·Oxat11cyclo[4.3.1.01deca·2,4·diene (148b)

In a similar manner to that for 1478, 147b (1.20 g, 4.05 mmol) was dOubly

dehydrobrominated with potassium tert-butoxide (1.14 Q) to afford 148b (0.494g, 91%)

as a pate yellow liquid; Ir (film) v.....: 1437, 1271, t 187, 1055, 911, B6EI, 773 em" ; 'H nmr

(COC1J &: 1.20-2.81 (6H, complex m, CH2CH2C H2 bridge), 6.28 (2H,m), 6.46 (2H, m);

13C nmr (CDCIJ &: 18.1 and 29.4 (3 x CH2) , 70.7 (C·1 and C-6). 126.9, 128.3; rns m/z

(%): 134 (M+167), 133 (21), 117 (17), 115 (18l . 106 (2 1), 105 (38) , 79 (43l . 78 (lOO), T7

(39),51 (48). Exactmassealcd. lor CeH,QO: 134.0731; found: 134.0737 .

Dials-Alder reaction of 121: (3au,4«,7a:,7a«,SS·,9R·)- (150) and (3ao1,4«,7«,

7am,SR· ,95·)-3a,4,7,7a·tetrahydr0-8 ,g.dlhydroxy·2·phenyl-4,7-ethano- 1H·lsoindole·1 ,3 (~·

diane (151)

To diane121 (48mg, 0.43 mmol) InCHC~ (5 ml) wasadded N-phenylrnalolmlde

(75mg, 0.43 mmoQIn CHCl3 (5 mL). Thiswas relluxed for 16h, afterwhich lime it was

noted that a precipitatehad formed. Evaporation of the solvent provided a colourless

solid (115mg, 93%). 'H Nmr of a sample showedtwo adductspresentIn a Tallo 0195:5.

Repeated crystallization of theadduct mixture from25%MeOH/ EtOAcprovidedthe pure

major adduct 150.Theminor Isomer was not isolated from theadductmixture,but was

convenientlyprepared as follows: compound 153 (80 mg, 0.28 mmoQwas suspended

in 4MHCi (SO mLI, andthis washeatedunder reflux for 1h. Thematerial disSOlved while

beingheated,but after coolingto room temperature, everything remained In solution. The
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solullon wasextractedwith CHZCJ2 (2 x 50 mlj. and theorganic layerwas washed with

saturated NaHCO~ (25 mL) and saturated Nael (25 mLj, and dried (MgSOJ. and the

solvent was evaporated to provIde 151 as a colou rless solid (37 mg , 53%). This was

crystallized110m 75%ethyl acetate/hexane.

For 150: mp 218.5 • 22O"C; Ir (KBr) " mu: 3423, 2960 . 176B, 1693, 1502, 1392,

1184, 68 9 em" ; 'H nmr (CaDaN)3: 3.61 (2 H, broad s), 3.88 (2H, 5), 3.98 (2H, S),5 .14

(2H,broad s, 2 x OH),B.26 (2H, dd. J ;>3.2. 4,4 Hz, CoSH an d C·9H), 7.31 ·7.36 (t H,

m,ArH), 7.42·7.51 (4H, m, ArHj; laCnmr(C!f;DsN) &: 38.6and 40.8(C-3a and C-7s ,and

C-4and C .7), 63.7 (C-8 an de·9), 127.5 (2 X ArC), 12 8 .6 {1 XArC), 129.3 (2 x ArC) , 132.2

(C·5 and C-6), 133.6 (1x ArC), 179.5 (0.1 and C-3); ms m/z (%): 285 (M+. 26), 267 (4),

226 (8S), 119 (83) , 105(17), 91 (26), 79 (100), 60 (28), 51 (10), 45 (23). Exactmass cared.

for C,sHuN04: 285 .1000; found: 285.0996.

For151 : mp260 - 261"C; It (K8~ Y_ : 3450, 3382 .2901 , 1n5, 1705, 1393 , 1200,

734 em
o

' ; IH nm r {C~OsN) &: 3.31 (2H, s), 3.71 (2H, broad 5),4.29 (2H, 8), 5 .01 (2H,

b roads, 2 xOH), 6.45 (2H, t,J .. 3.7 HZ,C-SH and C-.6HI, 7.30 - 7.33 (l H, m, AtHl. 7.40

· 7.44 (4H, m, ArH); '~ nmr (CsOsN) &: 40.9 and 42 .0 (C-3aand e-7a, and C4 and C·

7),69 .2 (C-8 and C-9), 127 .4 (2x ArC), 128.7 (1 x ArC), 129.3 (2 x ArC), 131.3 {C-San d

C·6), 133.4 (1 x A,q, 177.6 (Co' and C·3): ms mlz (%):265 (M' , 12),267 (3), 226 ~3),

119 {100), 105( 11),91 (25),79(70),60 (31). Exactma s s cared. forC j ,Hl$N0 4: 285.1000;

found 285.0993 .
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Dials·A lder react ion of 114: (3a«,4«,4aa ,7ap,BCI,Ball)- (152) and (3~ ClI . 4 ~ ,4 a ll .

7au,a p, B811)·48,7a,8,8a-tetrahy dro-2,2·dlmethyHI-phenyl·4,8-elhen0-4H· 1,3·dloxoloI4,S­

f1Jsolndo le·5,7-(3aH,6Hj-dione (153)

To a solution of 114 (66 mg,0.41 mmol) In CHCI,t (1 ml), was added N-

phenylmalelmlde rn mg, 0,44 mmol) In CHCI,t (5 mL). This was stirred at room

temperatu refor 24 h. followed by evaporation 01the solvent.The 'H omr spectrum ollhe

crudeproductshoweda mixtureof 152and 153 10 a 60:40ratio, respectively. Separauon

01the o f the adducts by p reparat ive TlC afforded 152 (28 mg, 22%) ~nd 153 (67 mg.

52 %).

For 152: mp 189-190.5OC; lr (KBr) v......: 2981, 2913, 1773, 1501. 1397, f 1B7,1047

em ,I; ' H nmr (CDCIJ &: 1.35 (3H, 5), 1.50 (3H, $).3.48 (4H. s), 4.16 (2H. narrow m) ,e.21

(2H, dd, J • 2.8 , 4.3 Hz), 7 .16 (2H , d , J '" 7 .1 Hz), 7 .32 ·7.45 (3H, m); lH nmr (CaDJ

6 : 1.10 (3H, e. P-CH~, 1.35 (3H, s, u-CHJ, 3 .19 (2H , I,J - 1.4 Hz, C-4aH and C-7aH),

3.29 (2H, broad m , C-4H and C·8 H), 3.60 (2H, I, J '" 1.9 Hz. C-3aH and C-BaH), 5.68

(2H, dd, J "' 3.0. 4.4 Hz, G·9H and C·10H), 7 .04 (l H, m, ArH), 7.18 (2H, m, ArH), 7.41

(2H, m, ArH); n.O.e . results (CeDe>: 6 1.10: 1 .35 (2%),3.60 (7%); &1.35: 1.10 (1%) ,3.19

(4%); , 3 .19: 1.35 (1%1. 3.29 (5.5%); 63.29: 3 .19 (4 .5%1. 3.60 (5.5%).5.6' (5%); '3.50:

1. 10 (1.5%),3.29 (7%), 5 .68 (1.5%); 65.88: 3 .29 (4.5 %), 3.60 (1.5%); 13C nmr (C,Del&:

24.1 (P-CH~, 26. 4 (a-CHJ, 37 ,3 (C-4 and C-8) , 37.9 (C·48 and C-7a), 74.0 (C·Sa and C·

8a), 112 .2 (Co2), 125.6 (2 x ArC), 128 .1 (1)( ArC), 128.9 (2)( ArC), 131.6 (C·gand C·10).

133 .1 (1 x ArCl. In.' (C·5 andC·7); m. mtt:(%): 325 (M' . a). 310 (17).296 (7).267

(22), 239 (17), 222 (31), 119 (55), 99 (4n, 91 (100), 43 (45 ). Exact mass cared. rcr
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For 153: mp 263 .265°C; ir (KBr) v.....: 2988,2889, 1796 ,1711 , 1500 , 1391,1188

em": lH omr (CDCl.J &: 1.31 {3H, 5, ct-CH:J, 1.35 (3 H, s, ~·CHJ ,2.88 (2H, t, J .. 1.4 Hz,

C·4aH and C·7aH). 3.53 (2H, m, C-4Hand C-8H), 4.32 (2H, S,C-3aH and C-BaH), 6.17

(2H, dd, J '" 3 .2 , 4.3 Hz , c. 9H and C·l 0H). 7.18 (2H, d,J = 7.0 Hz, ArH), 7.37-7.47 (3 H,

m, ArH); n.O.e . res ults: 6 1.31: 4.32 (6%): & 1.35: 6 .17 (2.5%); &2.88 : 3.53 (7.5%), 4 .32

(11%); 33.53 : 2 .86 (5%), 4.32 (2%), 6.17 (10%); 6 4.32: 1.31 (:i%), 2.86 (13 .5%),3.53

(15.5%); & 6.17 : 3.53 (9.5%): 13C nmr {COCIJ 6: 24 .8 «l ·C H,,), 25.2 { ~·CH~ , 36.9 (C4

and C·8l. 40.3 (C4 a and C·7a), n .1(C-3a and C as), 109.6 (C-2), 126.3 (2 x ArCl. 128.6

(1 x AtC). 129.0 (2 x ArC), 129.6 rc-a and C-10), 131 .6 (1 x ArC), 176.3 (C·5 and C·7);

ms mlz (%):325 1M', 2), 310 ("4) , 268 (23 ), 239 (19), 222 128), 211 (9), 147 114), 1 ' 9

(100), n (18), 65 (16), 51 m. Exact mass catcd. lor C18H18N04: 325.1313; found :

325.1302.

Dlels-Alder reaction of 109: (3a«,4a ,711 ,7alll.as fl,9R·)- (154) and (3811,411 .7 11,

7all ,8R- ,9S*)-S.9·bls(acetyloxy)-3s,4,7,7a-tetrahVdro-2·phenyl-4,7-ethano-1H-lsolndole­

1,3{2H)·d lone (1S?)

A solutio n ot 109 (0.214 g, 1.09 mmo Q In CHCI3 (25 mL) .....as added 10 N­

phenylmalelmlde (0.190 g, 1,10mmoOin CHCI~ (5 mL), This solution was refluxed for 2

days, and then the solv~nt wasevaporated to give a colourless soUd(0.402g, 99%). The

'H nmr spectrum 01 the residue showed showed the signals for a trace amount of

unreacteddlenophile,and foradducts154 and 157 in a ratio of 88:12, respectively. The

twoadductswere not separated. However, eachwas madeIn thelollowlng manner from

the parent dlol adducts 150 and 151. To syn dial adduct 150 (71 mg,O.25 mmol) In

pyridIne (2 mL) was added acetic anhYdride (1 mL), and the mixture was sUrred
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overnight. Evaporation of all volatiles left a wh lto powder (95 mg). Purlfled 156 was

obtaInedby cryStallizationIrom ethyl acetate(41 mg, 45%). Ukewise, to anti dlol adduct

151 (43 mg, 0.15 mmoQIn pyrid ine (5 mL) was added acetic anhydride (1 ml), and lhe

mixture was stlffl~d overnight. Evaporation of all vclemes lell a whUepowder (56 mg),

which was crystallized (60% ethyl acetate/hexane) to afford 157 (21 mg, 37%).

For 154: mp 235·237 °C ; ir (film) v.... : 2979, 1755, 1712, 13n, 1247 , 1187, 1038

cm·1; lH nmr (CDClJ 3: 2.10 (6H, S, 2 x CH,J,3 .48 (4H, broad5, C 3aH and C·7aH, and

C-4H and C.7H), 4.90 (2H, e. C-BH and C·9H), 6 .30 (2H, ddt J ... 3.0, 4.4 Hz, C·SH and

C·SH), 7.17 (2H,d, J = 7.0 Hz, ArH). 7.36 ·7.48 (3H,m, AIHj; 13Cnmr (CDCIJ &: 20.5

(2 x CH,J.36.4 and 37.9 (C-38 andC-7a,md C·4 andC·7), 64.6 (e-8and C·9), 126 .2 (2

x ArC), 128.6 (1 xArC), 128.9 (2 x ArC), 131.3 (C5 and C-6l, 131 .5 (1 x ArC), 169.4 (2

x CH3COJ, 1n.3 (C-1 and C-3): ms mIt (%l: 369 (M+, 10),327 (24),285 (5), 268 (2),

226 (29), 173 (3),119 (15),91 (13),79 (18),43 (100). Exact mass calcd. for C,.HnNOI

(M+ - C~20) : 327.'1106; found: 327.1081-

For157: mp 235 .S-237" C; lr (film) v.....: 2963,1738, 1711,1376, 1191, 1062 em":

lH nmr {CDCI;,)&: 2.04 (6H, S, 2 XCH:J, 3,12 (2H, s, C-3a H and C-7aH),3.52 (2H, broad

s,C-4Hand C·7HI, 5.15 (2H, s, C·8Hand C·9H) , 6 .35(2H, dd,J = 3.2,4 .2 Hz, C·5H and

CoSH), 7.17 (2H, d, J .. 7.0 Hz, ArHl, 7 .38 ·7.48 (3H, m , AtH); '3C nmr (CDCI;! it : 20.5

(2 x CH:J,36 .5 (C-4and c.7), 4O.S(C-3a andC-7a), 69.8 (C-8and C·9), 126 .3 (2x ArC),

128,8 (1 x ArC), 129.2 (2 x ArC), 130.4 (C-5 and C-6), 131.5 (1 Ie ArC), 169.9 (2 Ie

CH,COJ, 175.6 (C·l andc.3) ; msmlz (%): 369 (M', 10), 327 (40), 285 (7), 226 (43), 143

(10) , 119 (22), 91 (14),79 (25) , 43 (100). Exact masscalcd.lor CroH"NO.: 369.1211 ;

lound: 369.1216.
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Dlels ·Alder reaction 01 122: {3aa,411,7a,7811,as-,9r")·3a,4,7,7a·tetrahydro·2·phenyl-8,9·

bisl (trlmelhylslty~oXY1·4,7-elhano-1H-isolndole·' .3 (m)·dlone (155)

Toa sclullon of diane122 (92 mg,0.36 mmol) In CHela (1 ml) was added N·

phenylmalelmlde (62 mg, 0.38 mmoll In CHCI 3 (5 mL) . This was stirred at room

temperature for 20h, afterwhich lime the solvent wasevaporated, andthe residue was

dried undervacuum for 1h 10yielda pale yellow solid(120 mg). ThelH omr spectrum

of the product showedthe presenceof Dlels-Alderadduct 155and unreactedaddends.

The adduct was nollsolated Irom lhe mixture . However, to dlol adduct 150 (60mg. 0.21

mmoljln dry pyr idine(2 ml.)was addedchlorotrimethylsllane (1mL) andthis wasstirred

for 24 h. Carbon tetrachloride(10mL)was added, andthe reSUlting solid wasremoved

by filtrationthrougha Kimwlpe plugIn a Pasteur pipelle. Concenlfationofthe filtrategave

a colourlesssolid (75 mg, 83%). Crystallization from 25% hexane/eCI . provIded 155: mp

143· 144°C; ir (K8r)Y-.: 3047,2955, 2898, lna, 1710, 1391,1183,898,753 en,-' ; lH

nmr (CDClJ 6 : 0 .17 (18H, s,6 xCHJ, 3 .16 (2H, m, C4H and Co7H),3 .54 (2H, t,J '" 1.5

Hz, C-3aH and C·7aH), 3.72(2H, t,J". 1.5Hz, C-8H and C9H), 6 .17(2H, dd, J =3.3,

4.5 Hz, C·SH and C-6H), 7.17 (2H, d,J .. 7.1 Hz , ArH), 7.35·7.46 (3H, m, ArH); 13C nmr

(COC I,,) a:0.3 (6 xCH:J, 37.9 (C-3aand C·7a), 40.6 (G-4 and C·7), 65.3 (c.a and c-si,

126.4 (2' ArC), 128.4 (1 ,ArC), 129.0 (2 ' ArC), 131.4 (C'5 and C"), 132.0 (1 'ArC),

179.1 (C·1.nd 0-31:ms mjt (%): 414 (M' ·CH" 1), 324 (3),204(1001,147 (10J,119 (41,

73 (51),45 (4). Exactmasscalcd.lor C1.H1IN03S1(M+ - C4H,30SQ:324.1055;found:

324.1066.
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(3aa:,4",,711,7all ,eR'",95"')-38,4,7,7a-TetrahydrO-2.phenyl-B,9·bJs[(Irimelhylsilyl)oxy)-4,7.

elhano·1H·lsoindo le·' ,3(2H)..(jlone (158)

To a scluncn 01151 (33.1 mg. 0.116 mmo~ in pyridine (5 mL) was added

chlorotrlmelhylsilane (1 mL). ThIswas stirredat room temperaturefor 16 h, afterwhich

time carbon tetrachloride was added (10 mL), and the white solid which formed was

removed by fihralJon through a K1mwlpe plug In a Pasteurpipette and discarded. The

filtratewasconcentratedto yield a whiteresidue (40.6mg, 82%). Takingup a portion of

this residue in carbon tetrachloride (2 mLl and then evapo rallng provided an Impure

sample 01158: mp 166 - 171°C: ir (KBr)vlMIl: 3055, 2962, Ina, 1718, 1499, 1385, 1109,

909,843 ern"; 'H nmr (CDCl.i)a: 0.16 (ISH, 5, 6 x CHil, 2.93 (2H, t,J '" 1.1 Hz, C-3aH

WId C-7aH), 3.26 (2H, broad m, C·4H and C-7H), 3 .95 (2H, 5, C·8H and C-9H), 6.32 (2H,

dd, J '" 3.1,4.4 Hz,C-5H andC6H), 7.160 (2H, d, J '" 7.1 Hz, ArH), 7.36 - 7.46 (3H, m ,

ArH); 13C nmr (eDCr,J 3; 0.2 (6 )( CH,J, 40.3 (C-4 and C-7) , 41.2 (C·3a and C·7al , 70. 9

(C..a and C·9) , 126.3 (2 )( ArC), 128.6 (1 x ArC), 129.0 (2)( ArC), 130.3 (C-S and C--6),

131.6 (1 x ArC), 176.7 (C-1 and C-3); ms m/z (%): 414 (M " - CH3, 1),324 (5), 298 (4) ,

204 (100), 189 (3), 147 (14),132 (24), 11e (39), 101 (e), 73 (90),45 (9). Exactmasscalcd.

for Cn HlI N0 3Si (M' • C.H 13OSI) : 324.1055; found: 324.10 78.

Dials-Aider react ion of 124: (3a4,411,711,784,BS·,9R*)- (156) and (3811,411 ,7 4 ,

1all ,8R" ,9S")-3a,4,1,7a-telrahydro·8,g·dlmethoxy-2 ·phenyl .4,7·ethano· 1H.lsolndole­

l ,3(2H)·dlone (159)

To a solution of 124 !67 mg, 0.48 mmol) In CHCI3 (2 rnl) was added N·

phenylma!elmide (59 mg, 0.34 mmol) in CHel, (3 mL). This was stirred at room

temperature for 16 h, after which lime lhe solvent was eIJapOl'ated , and the residue
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obtained was placed on a vecuempump line for C8. 3 h to provideanorange-c:oloured

solid (113 mg). The lH nm r spectrum 01 the residue indicated the presence of two

adducts 156 and 159 (105 mg, 99%) In a ratio 0199:1 , respectively, and unreacted

dlenophlle (8 mg). ThIs yield was tased on the amou nt of unreacted dlenophile in

productmixture.Crystallizational the ctudeproduct from benzenegave156 (28mg); mp

195 · 196°C. Theanti adduct 159 was nol lsolated from tho crude product mixture, but

it wasmade usingthe followingprocedure. To a solullon 01anti dial adduct151 (30 mg.

0.11 mmeQ IndryTHF (10 mLI was addedpotassium hydrlde (50mg,0.42 mmol, 35%

wjw dispersion In mineraI all; previously washed with hexane) as a suspension In THF

(10 rnll and lcdcmetnene (27 J.ll, 0.42 mmoQ . Afterstirring at roomtemperature for 2 h,

50 mL of CHaC~ was added andtheorganiclayer washedwith HaO(100 mL), saturated

NaHCO~ (100 mll a nd saturatedNaCI (100ml) , anddried (MgSOJ and the solventwas

evaporatedto provide 159 (31 mg,94% ), which wasrecry1lalllzed from CHCIJCCI 4•

For 156: 195 .196"C; lr (l<B~ vrnu:2966, 2891, 17 67, 1709,1497, 1371, 11n , 730

ern" ; 'H nmr (COClJ 3: 3.43 (4H,broad s), 3.51 (8H,br oads), 6 .22(2H, dd ,J .. 3.1,4.5

Hz, CoSH andC-tiH ) , 7.19 (2H, d,J '" 7 .1 Hz, ArH),7.36 -7.44 (3H, ArH); lH nm- (CsOsN)

&: 3.V (2H, t, J '" 1.5 Hz,C-BHand C.9H), 3.34 (6H,S, 2 x CHJ , 3.51 (2H, broad m, C·

4H and C-7H), 3.62 (2H,t,J .. 1.6Hz, C-3aHand C-7aH). 6.20 (2H,dd,J .. 3.2.4.6 HZ,

CoSHand C-6H), 7.30·7.33 (1 H, m, ArH), 7.40-7.43 (4H. ArHI: n .c.e. results (CsOsN): &

3.27: 3.34 (2%),3.51 ("%) , 6 .20 (2.5'%): , 3.34:3.27 (3'%),3.51 (5.'%), 3.62 (2.5'%): ,

3.51 : 3.27 (6.5%), 3 .341'%) , 3.62 (6.5%1,6.20 (7.'%); & 3.62: 3 .34 (' %) ; '6.20: 3.27

(1%),3.51 (6.5%); 13C nmr (CsD&N) &: 37.4 (C-4 andc.7) , 38.7(C-3aand C·7a),58.0 (2

x CHJ. 73.9 (C-8and C·9), 127.4{2 X ArCl,128.6 (1x ArC), 129.3 (2x ArC), 131.9 (C-5

andC-6) , 133.41' x A<CI, 179 .0 (Cl and C3); msm!: (%) :313 (M' ,2), 262 (3), 225 (2),
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173 (9}, 165 (9), 151 (10), 134 (23), 119 (82), 103 (32), 88 (100), 73 (86), 65 (58). 51 (57),

45 (65). Exact mass calcd . for C,.H18NO.: 313. 1313; found: 313.1322.

For 159: 220 _223°C; Ir (KBr) v....: 2956, 2876, vrrt,1708, 1498, 1385,uso,723

em,I; 'H nmr (CDCI,,) a: 2.94 {2H, t, J .. 1,4 Hz), 3.47 ISH,S, 2 x CH,,) . 3.60 (2H, broad

m , C-4Hand C·7H), 3.69 (2H, broad s), 6.32 (2H, dd t J = 3.1, 4.6 Hz, C'SH and C·6H),

7.17 (2H. d, J .. 7.0 Hz,ArH), 7.37-7.48 (3H, m, ArH); 13C nmr (CDCI,,) 6: 36.1and 40.9

(C-3a and C-7a,and C-4 and C·7), 58.5 (2 x CH,J,79.2 (Ca and e·9). 126.3 (2 x ArC),

128.8 (1 x ArCI , 129 .1 (2x ArC), 130.2 le·sand C-6), 131 .6 (1 x ArC),176 (C·l and C'2);

msm/z (%1: 314 (M · + 1,0.2),313 (M-, a.OS), 299 (0.6 ), 261 (0, 6), 226 (11), 173 (1), 134

(4), 119 (22), 91 (26),86 {t OOl, 78 (27), n (24). Exactmass ceicc. for CUHI~02 (M>•

C4H 102 '" 10$s of the C-Band C-g brldge wlth H Iransfer): 226.0867; found: 226.0862.

Dlels-Alder reaction of 123: (3a lll,4 a,4a ~,7ap,8 11,8aa) - (160) and (3811 ,4I1,4aa,

7alC,Sp,Sa«)·4a,7a,8.8a·tetrahydro·2,2-dlmethyl-6-phenyl-4,8·etheno-4H·1,3,2-dloxa­

sl1oI0[4.5-lJlsolndole-5,7-(3aH,6H)-dione (161)

To a solutIon 01cls -3,5-cyclohexadiene-1,2-dlo l (121) (0.141 9, 1.26 mmol) In

CDC~ was added dlaeetoxydlmethylsilane (222 Ill, 1.26 mmoQand pyridine (10 Ill).

Aner20min lHnmr Indicated aquantitativeconversion of the starting dlol to 123. To this

wasthen addedN-phenylmalelmlde (0.2179 ,1 .25 mmol) djssol~ed In CDCI3 (0.5 ml),

and the mixture was stirred for 3 h at ea. 25GC. The ' H nmr spectrum 01the solullon

indIcatedthat therewas aquantitativeconversion 01the addends toadducts160 and161

In a ratio of 60:40, respectively. Columnchromatography ctm e adducts resulled In the

isolatIon of the dial adducts 150(0.148 g, 41%) and 151 (54 mg, 15%)_
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Adduc1s 160 and 181 cou ld be synthesized Independently In Ihe following

manner. To a solution 01150 (52 mg. 0.18 mmoij In CsDsN (ca. 0.5 mL) was added

dlacetoxydimelhylsllane(32 ut., 0.18 mmol), 10givea quantitativeconversion to 160after

only 15 minutes. Evaporation of an volatiles yielded 160 as a white powder (63 mg,

100%). Ukewlse, to a warm solution 01151 (23 mg, 0.081mmoij In CsDsN(ca. 0.5 mL)

was added dlacetoxydlmethylsllane (15 11L. 0.085 mmoO. After 25 minutes, 151 was

cleanlyconvertedto 161. Evaporation ofall volatilesleft161as a white powder (28.0 mg,

100%).

For 160: mp 200·205 °C; 'H nmr (CDCI.J 1I:0.26 (3H. a), 0.37 (3H, S), 3.37 (2H.

I,J .. 1.6 Hz, C-4aH and C·7aH), 3.49 (2H, m, C-4H andC·BH j , 4.17 (2H. t, J .. 1.8 Hz,

C·3aH and C-BaH), 6.22 (2H, dd , J .... 3.1, 4.5 Hz, C·9 and C-l0 ), 7.17·7.21 (2H, m,

ArHl, 7.36·7.47 (3H, m, ArHl; 'H nmr (CsDsN) 6: 0.22 (3H, 8), 0.32 (3H, s), 3.59 (2H,

broad S, C·4H and C-8H), 3 .65 (2H, t , J . 1.5 Hz, C-4aH and C-7aH). 4,21 (2H, t, J ..

1.7 Hz, C·3aH and C·8aHI, 6.22 (2H, dd, J • 3.1, 4.4 Hz, C·9H and C·10H), 7.29·7.34

(1H, m, ArH), 7.40 (4H,m, ArH); n.O.'=I. results (CDC1.J: 6 0.37: 3,37 (5.5%); 6 3.37:0 .37

{2.5%l, 3 .49 (6.5%); a 3.49: 3.37 (3%), 4.17 (6.5%), 6.22 (7%); 6 4.17: 3.49 (10 .5%), 6.22

(3%); a 6.22: 3.49 (3.5%); 13C nmr (CSD 5N) a : -i.o (CH:J, -o.t (CH:J. 38 .5 (C·4 and C 8),

39.7 (C-4a AndC-7a), 71.8 (C-3a and C·8a), 127.5 (2 x ArC), 128.8 (1 x ArC), 129,4 (2 x

ArCl, 132.2 (C·9 and C-l0), 133.5 (1 x ArC), 178.9 (C-S and C-7); ms m/z (%0): 341 (M+,

5),326 (1), 193 (2), 179 (1), 129 (1), 116 (100), 101 (81,91 (31,84 (11,78 (4),75 (3).

Exact mass cetcd . for C1.H1aNO.SI: 341.1082; found: 341.1071 .

For 161: mp 220 .225 °C; 'H nmr (CsDsNI 6: 0 .16 (3H, :) , 0.17 (3H, S), 3.22 (2H,

5, C-4aH and C 7aH), 3.67 (2H, broad 5, C-4H and C8H) , 4.46 (2H, 5, C·3a H and C­

BaH), 6.15 (2H, m, C·9H and C·tOH), 7.29 - 7.35 (1H, m, ArH), 7. 23 (4H. m, ArH); lHnmr



'34
(CDCIJ 6: 0.19 (6H, s) , 2 .95 (2H. t, J .. 1.3 Hz, C-4a H and C-7aH) , 3 .54 (2H, broad e,

C4H and C-BH), 4.36 (2H, 5, C-3aH and C-BaH), 6.25 {2H, dd, J .. 3.2, 4.4 Hz, C·gH and

G-10H} , 7.17 (2H, d, J - 7.0 Hz, ArH), 7.3 5 · 7,48 (3H, m, ArH); n.O .e. results (CDCIJ :

60.19: 4.36 (1.5%),6.25 (3%); 6 2.95: 3.54 (13.5%), 4.36 (12.5%); 6 3.54: 2 .95 (2.5%),

4.36 (2.5%), 6.25 (1.5%); 6 4.36: 2.95 (12.5%), 3.54 (14.5%); 6 6.25: 3.54 (3%); 1JC nmr

(CsDsN) 6: -0.6 (CI1J. -0.1 jCHJ . 39.9 (0-4 and C-8), 41.3 (C-48 and C·7a), 76.3 (0 ·3a

and 0 -8a), 127.4 (2 x ArC) , 128.8 (1 x ArC) , 129.3 (2 x ArC), 131 .5 tc -s and C-lO), 133.3

(1 x ArC), 1n.2 (C-5 and G-7); rn a mlz (%): 341 (M +, 2).326 (1). 193 (21. 179 (1), 116

(100),101 (8) ,76 (4), rr (2), 75 (3). Exact mass ceicc. fOf'C,aH " NO. SI: 341.1082; found :

341.1087.

c/S·2·Ethyl-3a,7a·dlhydro-2,1,3·benzoboradloxore (125) and lis Dlels·Alder reaction:

(3alt,4a ,4ap,7ap,8lt ,8alt)· (162)and (3all ,4p,4aa,7a ll,ap,8a lll·2·elhyl.4a,7a.8,8a·lelra ·

hydr0-4,B-elheno-4H·2,1,3·boradioxolo{4,5-fllsoindole-5,7{3aH,6Hj·dlone (183)

To asoluucn 01lithiumtrlethylborohydrlde(0.6mL, 1M In THF)In dryTHF (2 mLI

chilled to O"e was added 121 (60 mg, 0.54 mmol) In dry THF (5 mL), which was also

chilled to DOC. After stirring lor 1 h, H20 (6 drops) was added, and Ihe solvent was

evaporatodunder vacuum to leave a very viscous yellow oil. This was taken up In dry

CH2C12 (10mlland0.5 g OfaSO/50 w/wmixture01MgSO~/Cerile was added, andthen

this was filtered througha slntered·glass funnel. Evaporationof Ihe solventlell 125 (24

mg, 30%), which wasImmediately takenup In dryCOC13 (0.5 mt.): lH nmr (60 MHz)&:

1.0 (5H, m), 4.9 (2H, S), 5.8 (4H, m). To this malerial N.phenylmaleimlde {34.5 mg, 0.20

mmoO was added In dry CDCl3 (0.5 mll, and this solution was stirred at room

temperatureovernight. Afterwards,the 'H nmr spectrumshowedthat the addendswere
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cleanly converted to the Diels-Alder ede cets 162 and 163 ln eo ratio of 45:55, respectively.

Evaporation of the so lvent left a pale vellowpowde r (60 mg) contai ning , from ' H nmr

integration, unreacted dlenophlle (6 mg) and add ucts (53 mg, 100% ). The add'ucls could

not be Isolated Chromatographically ; 'H nmr (COCI,,) [resolved signals fro m 162 In the

mlxlurel6: 3.32 (2H, t, J = 1.5 Hz, C-4aH, C-7aHl , 4.42 (2H, It J .. 1.9 Hz. C-3aH and

C·8aH), 6.24 (2H, ddt J '" 3.1,4.5 Hz, C·SH and C-l0H); 'H nmr (CDCI:'> (rasolved

signals from 163 in lhem !>et:ureJ 6: 2.92 (2H, I, J .. 1.4Hz, C-3aHand C-7aH), 4.54 (2H,

broad 6, W,p '" 6.7 HZ,V3aH and C-8aH), 6.2 1 (2H, dd, J = 3.1, 4.4 Hz, C-9H and c­

lOH); 'H nmr (CDCIJ [other unresolved signals from the mixture ] 6: 0 .75 • 1.00 (10H,

co mplex m, CH2CH:J, 3.57 (broad m, C4H and C·SH for both 162 and 163 ), 7.17 (4H,

m, At), 7.39·7.47 (6H, m, AtH); n.O.e . results: 62.92: 3.57 (4%), 4,54 (11.5%); 33.32:

3.57 (3%1: , 3.5'/ : 2.92 (5%1,3 .32 (6.5 %1, 4.42 (8%1,4.54 (5%1.6 .21 (3.5%1, 6.24 (3.5%1:

64.42: 3.57 (4.5%), 6.24 (1%); 1I4.54: 2 ,92 (12%), 3.57 (4.5%); 3 6 .21: 3 .57 (5.5%) , 4.42

(1%); l~C nmr (COCIJ (resolved signals from 162) 3: 40 ,1 (o. 4a and Cota), 75.0 (C-3a

and C-8a), 13 1.6 (C'S and C-10); " c nmr (CDCl,,> [resolved signals of 163] 6: 37.3 (tr4a

and C-7a), rt.r (C-3a aod C-aa) , 130.0 (C·g and C-10) ; ,'(: nm r (COCI,,> (uI11esolved

signals otmlxture) 3: 2.2 (CH2, mj, 3.3 (CH2, m), 1.5 (2x CHJ . 31.0 (C4 and C-8), 37.1

(C-4 and C-8), 126.0, 129.3, 127.9, 128 .6, 126.7, 129.0; ms of the mixture mIt (%): 323

(W , 101,294 (31, 225 (12), 145 161, 129 (191. 119 (100), 103 (19),78 (38), 64 (15), 54

(36), 28 (40) . Exact mass calcd . for Cj,H,, "BNO.: 323.1328 ; found 323.1310 ; calcd . for

Cl,H, ~l1 BNO. (M+·C:zH,): 294.0937; found :294.0938; calcd . forC,.H"NOt (M·-C.H780tl :

225.0789; found : 225.0783.



136

Dlels-Alder reaction 01 132: (2Ill,3ajl. 4p,4all, 7all,ap,Bajl)- (164) and (2«,3ap ,411,

4aJl, 7ap ,8a:,8a P)·4 a,1a,8,Ba·tetrahydro·2 ,6-diphenyl-4,B·ethe no -4H· l ,3 ,·d laltoi4,5 '1]­

isoindole·5.7.{3aH,6Hj·dione (185)

To a solution 01 132 (82 mg , 0.41 mmol) in CHela (5 mL) was added N·

phenylmalelmide (71 mg, 0.36 mmol) In CHCI3 (2 ml) . This was stirred at room

temperature for 16 h. Integration of the ' H nmr spectru m of the crude product mixture

gavea ralloof adducts of28:72for164 to 165,respectively. Chromatography(50%ethyl

acetate/hexane) 01the eruce prccuct mixtureprovIded 165 (62 mg, 62%). Unfortunately,

the minor Isomer 164 andunreactedN·phenylmalelmlde co-eluled, which gavea pale

yellow solid (58mg). Integrationof the ' H nmr spectrum 01thIs mixtu re showed It to be

com prised of 164 (33 mg, 33%) and N ·phenylm alelmlde (25 mg), which afforded a totat

yield of 95% yield tor the adducts based en the c.mount 01recov ered dlenophlle. Pure

164 was obta ined by careful crystallization of the adduet/N·p henylmalelmide mixture

using 1:1:1 CHCIJethyl acetate /hexane.

To 150 (64 mg . 0.22 mmoQ In CH2CI2 (15 m L) was added a small amount of

pTsO H andb enzaldehyde dimethyl acetal (129) (34 ilL) , and this was stir red fOT 14 h at

room temperature. CH~C'2 (ea. 50 ml) was added and the organic portion was washed

with 10% NaO H (30 m L) and satu rated NaCI (30 mL), dried (Mg SOJ and concentrated

to provi de 184 (78 m g, 93%).

Similarly, 151 (51 mg, 0 .18 mmoQ was suspended InCH 2CI 2 (15 mL) andpTsOH

was added , along with 129 (30 ilL) ; the suspe nded solid dIssolved within 15 minutes.

This was stirred overnight at ro om temperature. Workup gave 165 as a colourless solid

(66 mg, 99%) ,
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For 164: mp 210 · 211.5°C; ir (film) v.....: 2922, 1774, 1712, 1500.1384,1182,

1053,710 em" ; 'H nmr (COe r,,)&: 3.59 (2H, 8, C4aH and C·raH), 3.66 (2H, broade, C·

4H and C·8H), 4.26 (2H, s , C-3aH and C·8aH) . 5 .94 (lH , 8, C.2H), 6,31 (2H , dd, J • 3.1,

4.1 Hz, C·9H and C-tOH), 7.18 (2H, d,J . 7.1 Hz, ArHl . 7.34· 7 .51 ISH, m, ArHj ; ' H nmr

(C~DJ 6: 3.24 (2H. t, J '" 1.6 Hz, C-4aH and C·7aH). 3.73 (2H, broad m, C-4H and C·

BH), 3.60 (2H, t, J .. 2.0 Hz, C-3aH and C-8aH), 5.61 (t H, s, C-2H), 5.67 (2H. dd , J .

3.0 , 4.5 Hz, C·9H and C·l0H). 7.02 (1H, d, J II 7,4 Hz, ArH),7.12 ·7.24 (SH. m, ArH).

7.35 (2H. d, J .. 7.3 Hz, ArH). 7.52 (2H, d. J '" 6.5 Hz, ArH): n.o.e. results (C, DJ : "

3 .24: 3.37 (5 .5%), 7 .52 (3%); 6 3.37: 3.2 4 (4%), 3.60 (4%), 5 .67 (4.5%); &3 .60 : 3 .37 (6%),

5 .6 1 (12%) , 5 .67 (2%); "5.61 : 3.60 (4. 5%), 7 .52 (1.5%) ; " 5 .67 : 3 .37 (6.5%) , 3. 60 (1%);

13C nmr (CDCI,J e : 36.8 (~ and C·8), 37 .9 (G-4a and 0 ·7a) , 74.8 (C-3a and C-8a), 105.8

(C·2), 126 .3 (2 x ArC), 126.4, 128.6, 129 .1, 131 .8 (C·9 and C- l 0 ), 135.9 (1 x ArC), 178.1

(C·S and C-7) ; ms m/z (%): 373 (M+, 10), 372 (12), 344 (43), 32 6 (11), 298 (2), 267 (9),

239 (15), 222 (25), 211 (6), 194 (4), 141(14), 119 (47), 105 (40), 91 (1001, 77 (29) , 65 (151,

5 1 (9). Exact mass cetc d. for C23HI8NO.: 373 .1313; found: 373 .1312 .

For 165 : mp 231 - 234 .5°0; ir (film) v..... : 2896,1778,1711, 1498 ,1395 ,1186,

1065 , 745 cm·1; ' H nmr (CDCI,,) 3: 2.95 (2H, S, C-4aH and C·7aH) , 3.37 (2H, 8, C-4H and

C-8 H), 4 .64 (2H. 8, C-3aH and C-8aH) , 5.66 (1H, 8, 0-2H), 6.30 (2H, dd , J z 3.3. 4.1 Hz,

C-9H and C- 10H), 7 .20 (2H. d, J .. 7.0 Hz, ArH), 7 .35-7.48 {8H, m. ArH); n.o.e. re sults :

"2.95: 3. 70 (12%), 4.64 (15%); 3 3.70 : 2.95 (11%),4.37 (6%), 6 .30 (11%) ; "4.37 : 2.95

(16%),3.70 (13%), 5.66 (18%); &5.66 : 4.37 (2%); &6.30: 3.70 (12%); Ucnmr (CDCI,,) &:

36.6 (C4 and C-8) , 40.5 (C-4a and C-7a ), T7.8 (C-3a and c aa). 103.8 (0 -2), 126.3 (2 x

ArCl, 127 .2 (2 XArC),1 28.3 (2 x ArC), 128.8(1 x ArC), 129.1 (2 x ArC), 129.9 (1 x ArC),

130 .1 (C'9 and C·l0), 131.6 (1 xArC), 176.1 (C '5 and C-7): msm !z (%): 373 (M" 7) , 372
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(11),344 (5).267 (15), 239 (21),222 (25), 211 (8), 194 (3), 147 (15), 119 (SO),105 (76).

91 (100), n (29).65 (13l. and 51 (7). Exact mass caicc.jcr C,3H,~NO~: 373.1313; found:

373.1276;caled. for C2;2H1aN03 (M'·H·COl 344.1287;found: 344.1280.

Dials-Aider reaction of 133; (2a:,3aa,411,4ap ajJ,8C1 ,8aa)- (168) and (211,3811,

4 jJ,4aa,7aft.,8 ~ ,8all) .4a,7a,B,8a·tetrahydro-2,6·diphenyl-4 ,S-otheno-4H.1,3,-dloXQ' 14,5­

t]isolndole·5,7·(3aH,SH)-dlone (169)

To crude 133 (0.392 g, 1.96 mmoQ In CHCI3 (5 mL) was added N·

phenylmalelmlda (0.337g, 1.95 mmo1)in CHC13(5mll, and this was sl1rredovernight.

The 'H nmr spectrumaltha crudereaction mixtureclearlyshowedthe presence01two

adducts In a ratio 01 4:96. Careful and repealed chromatography (50% olhyl

acetate/hexane, then 45% ethyl acelate /hexane) of the crude product gave the elmer 139

(31 mg), recovored N·phenylmalelmlde (00 mg) , adduct 168 (26 mg, 4%), and adduct

169 (0.520 g, 87%). Yields were based on recovered N·phenylmalelmlde .

For 168: mp 232· 234°C; Ir (KBr)v.....: 3056, 2926 . 1n2, 1710, 1598, 1502. 1397,

1191,1086. 74Scm·1; lH nmr (CDCIJ ~: 3.62 (4H, broad s, C-4H. C-4aH, C·7aH and C·

8H) , 4.15 (2H, s, C-3aH and C-8aH), 6.24 (2H . dd, J .. 2.9,3.9 Hz, C·9H and C-10H) ,

6.47 (1H, 5, C·2H), 7.19 (2H, d,J .. 7.2 Hz, ArH), 7.35·7.47 (8H, m, ArH); lH nmr (10%

COCI3 in CCIJ: 3.54 (2H, 5, c.4aH and C·7aH) . 3 .57 (2H, broad m, C-4H and C-8H). 4.08

(2H, e, C·3aH and C-8aH), 6.21 (2H, dd, J .. 3. 1,4 .3 Hz, C-9H andC·10H), 6,41 (1H, II,

C·2H), 7.16 (2H, d.J . 7.2 Hz, ArH), 7.24- 7.42 (6H, m, ArH); n.o.e, results (10% COCl3

In CCIJ: 1I 3.54: 6 .41 (9%); 1I 3.57: 4.08 (8%), 6.21 (6.5%); 1I 4.08: 3.57 (11%), 6.21

(2.5%),6.41 (2%);1I 6.21: 3.57 (7%), 4.08 (2%); &6.41: 3.54 (3%); "c nmr (COCI:J &:

37.1 and 38.0 (04 and C-8, andC-4a and C·7a) , 74.2 (C·3a and C-&\), 106.6 (C·2), 125.5



13.

(2 x ArC), 126.4 (2 )( AtC). 128 .4 (2 x ArC), 128 .6 (1 x ArC), 128.7 (1 x ArC), 129.1 (2 x

ArC), 131.7 (C g and ColO). 1342 (1 x ArC), 139 .2 (1 x AtC). 1782 (C-S and Co7); ms

mlz (%): 373 (M' , 4). 372 (3). 344 (24), 32S (4), 267 (6), 239 (8), 222 (tn. 211 (4), 147

(11). 119 1381. 105 (29). 91 (1001.77 (331. 65 (17).5\ (16).

FOI'169: mp 269·27O"C; r (KBr),_: 3064 . 2969, sm. 1712, 1595, 1497, 1455,

1386.1187, 748 an "; lHnmr (Cocy 6: 2.87 (2H, l,J . 1.2 Hz, C-4aH and C-7aH), 3 .68

(2H. broad 5, C-4Hand c-BH), 4.41(2H, s, C-3aH and C-BaH), 6.10 (t H, s, C-2H). 6.33

(2H. dd, J .. 3.2,4 .3 Hz, e-SH and C·l0H), 7.17 (2H, d , J • 7.0 Hz, 2ArH), 7.31 · 7.47

ISHbroad m, ArH); n.O.e. results: 6 2.87: 3.68 (7%) , 4.41 (5.5%); 63.68:2.87 (5%), 4.41

(5 .5%), 6.33 (8%); 6 4 .41 : 2 .87 (14.5%),3.68 (8.5% ) , 6.10 (2%); II 6 .10: 8.33 (1%); 6 6 .33 :

3.68 (7.5%) , 6.10 (4%); 1~ nmr II; 37.1 (C4 and C-8I, 40.3 (C-4a and Co7a) . 17.9 (e-3a

and Caa), lOS.4 IC·2), 125.8 12 lC ArC), 126.3 (2 x ArCl, 128.4 (2 x AtCl, 128.7 (1lCArCI.

128.9 (1lCArC), 129.1 (2 lC ArC), 130.6 (Cg and C 10), 131.5 (IX p.,q,138.7 (1 x ArC),

176.1 IC 5and C7): msm/z (%):373 (M' ,4), 372 (2), 344 (2).266 (4),239 (7), 222 (17),

211 (4) . 200 (11). 175 (191. 147 (111. 119 (391. 105 (911. 91 (1001. rr (391. 65 (20). 51 (15).

D1e1s·A!der reaction of 137: 12.,3a~ ,4p ,4a ll ,7a ll ,8~ ,8a~). (166) and (2I1 ,3a~,411 .

4a ~ .7a~ ,a« .8a Jl.) "'. ,7• •8.8a·letrahydro-2.(4-nltrophenyl)-6.phenyl-4,8-etheno-4H·1.3·

dloxoI0[4,5'l) lsoindOIe-5,7' (3aH,61'I)-dlone (187)

To 8 solulfon of 137 (0.610 g, 2 .49 mmoQ In CHC13 (20 mL) was added N·

phenylmalelmlde (0.432 g, 2.49 mmoQin CHCl3 (5 ml) . This solution was stirred for 18

h, then concentrated. Integration 01the lH nmr sp&Clrum 01the crude product mIxture

gave an adduct ratio of 27:73 for 166 to 167, respeetlvely. Chromatography (50% ethyl

acetate/hexane) pl'ovIded 166 (0.242 g, 23%) and 187 (0 .665 g, 64 %).
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For 166 : mp 254 · 255OC;Ir (KBr),,-.: 3069 . 2949, In2, 171., 1610, 1527, 1389,

1352,1197, 745 em"; ' H nmr (COCY 6:3.0i6(2H, t, J .. 1.4 Hz.c.aH alld<;.7aH), 3.67

(2H. broad m, C4H and C-8H).4.31 (2H. t,J .. 1.9 Hz. c-3aH and c&H), 6.00 (lH , I ,

G-2H), 6.31 (2H. dd , J .. 3 .0, 4.5 Hz.C-9H and Cl0H), 7.16 {2H, d, J '" 7.0 Hz, ArHl.

7.35 • 7.45 (3H, m, ArH), 7.69 (2H, d. J '"' 8.8 Hz, AtH), 8.26 (2H, d . J ,. 8.8 Hz, ArH);

n.O .e . results: a 3.46: 3.67 (9.5%), 7 .69 (5%): 6 3.61: 3.46 (8.5%), 4.31 (8.S%).6.3t

(12 .5%): 6 4.31: 3.87 (11%), 6.00 (24%), 6 .31 (2.5%): 66.00: 4.31 (5%),7.69 (2%): 6

6.31: 3.67 (10.5%), 4.31 (1.5%); 6 7.70: 3.46 (2%), 6.00 (3.5%). 8.26 (15.5%); lac nmr

(CDCIJ 6: 36 .6 (e-4 and C-8), 37.7 (C-4a and C·7a ), 75.0 (C·aa and C·8a ), 104 .0 (e-2I,

123.6 (2 x ArC), 126.2 (2xArC),l27.t (2 x ArCl , 128.5 (1 x ArC).148.4 (1 xA rC). ln.e

(C.5 and C.7): ms m/z (%): 418 {MO , 19), 417 (3), 389 (77),266 (9), 239 (11), 222 (31),

193 (19), 173 (9). 150 (17). 147 (15), 119 152), 91 (100).77 (20),65 (15). 51 18).

For 167 : mp 237 · 239"C; II'(KBr),,_ : 3067, 2901, 1778, 1712, 1519 en': IH

nmr (coa~ 6: 2.99 (2H, t, J . 102Hz, C3aH and C.7aH), 3 .72 (2H, broad m,C-4H and

e-BH ), 4.44 (2H, S, C-3aH and c-8aH) , 5.74 (1H, S, C2H), 8.26 (2H, del, J ~ 3.1, 4.3 Hz.

C-9H andC10H), 7.20 (2H, d, J .. 7.0 Hz, ArH), 7.39 • 7.49 (3H. m, ArH), 7.62 (2H, d ,

J . 8.8 Hz, ArH),8.21 (2H, d , J • 8.8 Hz, ArH}; n.O,e . results: 6 2.99: 3 .72 (10%), 4.44

112.5%): & 3 .72: 2.99 (5.5""), 4.44 (4%), 6.26 (9%); a 4.44: 2,99 (14%),3.72 (8.5%), 5.74

(20.5%): & 5.74: 4.44 (4%), 7.62 (&X,);& 6 .26: 3,72 (9%),7.62 (2.5%); " C nmr (CDC1~ &:

36.5 (C-a and C-41, 40 .3 (C-4a and C-7a), 76.1 (C-3a and C-8a) , 102,1 (C.2), 123 .5 (21l

ArC), 126.3 (2 x ArC), 128.2 (2 x ArC), 128,6 (1 x ArC), 129.1 (2 x ArC), 130.1 (C-9 and

C 10), 131.5 (1 x ArC), 142.3 (1 x ArC), 148.6 (1 x ArC),175.9 (C-S andC-7): msm jt {%):

418 1M' , 4), 417 (2). <02 (3), 3B9 (9). 298 (2), 256 15}, 239 (11).222 (21).211 (6) , ' 93

(11). 173 18), 149 (14), . 47 (10), 119 (47), 104 (10), 91 (100),77 (28).65 (18), 51 ('3) .
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Olela·Alder reaction () ! 138: (21l,3all ,4«,4aJ!,7ap,Bll,8 aJ!)- (170) and (2«,3sCl.4P,

43«.7aa,Bf!,88..:)-48,7a,8,8a·letrahydro-2-(4·nitrophenyl)·6-phenyJ·4,e·eth€lno-4H·1,3­

diollolo[4,S·fjlsoindole·S,7.(3aH,6H)·dione (171)

To a solution of 138 (0.510 g, 2.08 mmol) in CHCI3 (25 ml) was added N·

phenylmalelmlde (0.358g, 2.07 mmoQ This wasstirred for24 h at room temperature,and

the solvent was evaporated. The lH nmr spectrum of the material displayed two sets 01

signalS for addu cts 170 and 171 In a ratio of 5:95, resp ectively . Chromatography (50%

ethyl acetate/he xane) provided 171 (0.784g, 95%), but the minor component co-eluted

with unreacledN-phenylmalelmlde, which gave a pale yellowsolid (50 mg) consisting 01

170 (33.0 mg, 4%) and unrea cted dlenophl1e (17 mg). Purified 170 was obtained by

crysta llization 'rom CHCI3/ CCI,.

For 170: mp 253 · 254.5°C; ir (KBr) v.....: 3068, 2921, 1776, 1713,1517, 1347,

1196, lOBS, 745 em·' ; 'H nmr (CDC1,J &: 3.61 (2H, t,J . 1.6 Hz, G-4aH and C-7a H), 3.66

(2H, broad 90 , C·4H andC-8H). 4.12 (2H. t, J • 1.8 Hz, e-3aH and C-8aH), 6.26 (2H. dd,

J . 4.5, 3 .0 Hz, C-9H and Co10H), G.50 (tH , s , C·2H), 7.19 (2H, d,J .. 7.0 Hz, ArH), 7.~6

· 7.51 (3H. m, ArH), 7.64 (2H. d, J ., 8.7 Hz, ArH), 8.25 (2H, d, J ., 8.7 Hz, ArH); e.o.e.

results: 6 3.61: 6 .50 (20.5%); 6 3.66 : 4.12 (13%), 6.26 (11.5%); 6 4.12: 3.66 (20.5%), 6.26

(3.5%), 6.50 (2.5%), 7.64 (6%):, 6 .26: 3.66 (10%),4.12 (2%); , 6,50: 3.61 (3.5%), 7.64

(2.5%); 6 7.64: 4.12 (2%), 6.50 (5.5%),8.25 (19.5%); 13Cnmr (CDCIJ 6: 36 .9 (C-4 and

C-8), 37.8 (c-4a and Co7a), 74.4 (C-3a and C8a), 105 .5 (C·2), 123.7 (2 x ArC), 126.4 (2

x ArC), 126 .7 (2 x ArC), 128 .7 (1 x ArC), 129.1 (2 x ArC), 131.2 (Cog a nd C-10), 134 .1 (1

x ArC), 146.0 (1 x ArC), 148.2 (1 x ArC), 117 .9 (C·5 and 0.7); msm/z (%): 418 (M" 10),

389 (65), 266 (7), 239 (6), 222 (25), 211 (6), 193 (15), 147 (12), 136 (10), 119 (52),91

(100), 71 (20),65 (5), 51 (8).
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For 171 : mp 273 · 274"C; If (l<Br) V.....: 3070, 2912, l na, 1706, 1520, 1390 em" ;

'H nmr(CD~2S0) a: 3.12 (2H, e, C-4aH and C·7aH),3.46 (2H, broad e,C4H and C·

SH), 4.56 (2H, S, C-3aH and C-saH),6.13 (l H, S, e-2H), 6.28 (2H, I. J '" 3.8 Hz, C-9H

and C· l0 H). 7 .14 (2H. d, J • 7.2 Hz, ArH), 7.37·7.48 (3H, m, ArH). 7.63 (2H, d , J • 8.6

Hz, ArH), 8.23 (2H, d, J • 8.6 Hz. ArH); lH nmr (CDCl,,)8: 2.96 (2H. s, C-4aHand C·

7aH), 3.75 (2H, broad s, C-4H and c.8H), 4.46 (2H, s, C-3aH and C-8aH).6.14 (IH. e.

C2Hl , 6.36 (2H. I, J '" 3.7 Hz, C·9H and e-l0H) , 7.18 (2H. d, J • 7.5 Hz, ArH),7.39 •

7.48 (3H, m, ArH), 7.58 (2H. d,J '" 8.5 Hz, AIH), 8.23 (2H, d,J = 8.5 Hz,ArH); n.O.o.

results(CDCI,,): 6 2.96: 3.75 (9%),4,46 (16%); .\ 3.15: 2.96 (5%), 4.46 (6%),6.36 (11.5%);

I. 4.46 : 2.96 (17%), 3.75 (11.5%), 6.14 (4%).7.58 (4%); 6 6.14: 6.36 (1.5%), 7.58 (2%);

68.36: 3 .75 (9.5%), 8 .14 (9%);6 7.58: 8,14 (6.5%), 823 (20%); '~ nmr «(CO,JzS0) 6 :

36.9 (C-4and C·S), 40.0 (C·4a and C7a), rrs(C·3a and C·Sa), 103.2 (C·2), 123.6 (2)(

ArC), 126.9 (2 )(ArC), 127.4(2 x ArC), 128.5 (1 x ArC), 128.9 (2 x ArC), 130.5 (C·9 and

ColO),132.2 (1x ArC), 146.4 (1x ArC), 141.7 (1x ArC), 176.7 (C'S and C-7); msm/z (%):

418 (M' , 4), 389 (7),296(5 ), aea (8), 222 1' 8), 174 (24),150 (23), 120 (99),91 (100), rr

(29), 65 (22), 51 (13),

Dlels·Alder reaction of 142: (laR-,2C1,2aa:,5aCl,6C1,6aS*)·l a,2a,sa,6,6a·pentahydrc·2,6·

ethen0-4·phenyl·2H-oxireno[fllsolndole-3,S(411)-dlone (172)

To a solutionof 141 (0.838 g, 3.27 mmol) In dryether (10 mL) was addedDaU

(2.0 g, 13 mmol) in dryether(5mL).This wasstirred atroom temperature lor 24 h, alter

whIch workup of the 142/143 mixture was carried cut as previously dellcrlbed. N·

Phenylmalelmlde (0.584g, 3.37 mmol)was added In CHCl3 (25 mL), andthis scunlcn

was stirred tOt' a further16 h. Evaporation of the solvent left a yellow residue, whose 'H
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nrrv spectrum showed signals fot only one adduct. Chromatography (30%

EtOAC/hexBne ) IoIIc1\oi$d by crystallization (C~.c.H.J afforded 172 (0.274 g. 31% from

141) as a co louries s solid: mp 218 ·21goc; ir (KBr)'II_3035 , 1709. 1498 , 1385, 1195,

726 em·l
; tH nmr (COCY 6: 3.05 (2H. t, J .. 1.8 Hz, C2aH and CSaH),3.27 (2H. m, Co

laH and C-6aH) . 3 .65 (2H, m , C2H and C6H). 5.91 (2H. dd , J - 3.6, 4.6 Hz, C-7H and

C-8H). 7.15 (2H, d, J . 7.0 Hz, ArH), 7.34 - 7.46 (3H, m, ArH); n.O.e. res ults: 6 3 .05:

3.37 (6%), 3.65 (6%); 63.37 : 3.05 (5%), 3.65 (7%); 6 3 .65: 3.05 {5%l. 3 .37 (6%). 5.91

(6%); 6 5.91: 3.65 (6%): 13Cnmr CCCCIa> 6: 3 5.6 (C-2 an d cei , 41.9 (C-28 an d C·5 8),

47.1 (C, 'a and C-68), 126.3 (2 x ArC), 126.5 (v 7 an d C·8), 128.6 (1 x ArC), 128 .9 (2 x

ArC), 131.4 (1 xArC), 178.0 (C-3 and C·5); rna mlz (%): 267 (M·, 35). 239 (2), 222 (5),

173 (22), 147 (4). 119 (32), 91 (100),65 {231 . 51 (11). Ex.'Ct mass calcd. for C.. Ht3NOs:

2671l895 ; found: 267 .069?.

OIels-AJderreaetJon o l1481: (1aR",2a.2a.,sa_,6a ,GaS-)-2a,5a,6,-trihydro-1a,6a-dimeth)+

2,6-e then0-4-ph enyt-2H-oxireno[tjlsolnd cle-3,5( 1aH.4H,6aH)-dione (173)

Toa solution of 14811/ 1 498 (0.129 g, 1.05 mmol) InC~ (50mL) wasadded No

phenylrnalei mlde (0.166 g, 0 .958 mrno~ . This was healed al reb tor 10 h. EvllpOfaUon

of the sotventprO"lkteda residuewhose 'H nmr spectrumshowac:l signals '01' only one

adduct.Chromatography (30%ethyl/acetate) afforded 113 (0.154 g,83%from recovered

dlenophlle) as a colourless soUd: mp 261.262"C; Ir (KBr)v_: 3020, 1709, 1498, 1388,

1195, 726 em"; lH nmr (CDCI,j &: 1.44 (GH, s, 2 x CH,J, 3.13 (2H, I, J '" 1.6 Hz, C·2aH

and C'SaH) , 3.38 (2H, m, C·2H and C-6H), 5.97 (2H, dd , J • 3 .6, 4.5 Hz, C-7H and Co

8H) , 7.15 (2H, d. J • 7.0 Hz, ArHI, 7.37 - 7.47 (3H, m, ArH); n.c.e. r9sults : & 1.44: 3.13

110.5%),3.38 (12%); &3.13: 1.'« (2.5%),3.38 (9.5%); a 3 .38: 1.44 (1%), 3.13 (5%), 5.97
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(8.5%); 6 5.97: 3 .38 (7.5%); lie nmr(Cocy6: 13.8 (2" CH,J. 41.7 (C 2 and C-6I. 42.2

IC2a and e-sa) , 57 .6 (Col li. and e-6al. 126.3 (e 7 and C8), 127.5 (2 x ArC). 128.7 (I It

ArC), 129 .0 (2 lit ArCl, 131.5 (t xArC), 116 .5 to-aandC-S); rnamIl (%):295 (M' . 7). 253

(291. 244 (2). 175 (10), 16t (9), 148 (8), 133 (6), 118 (1t), 106 (77). 105 (76), 93 (19), rr

(28), 43 (100). Exactmasscalcd fo r C1.Hl1 NO, : 295 .1207; fOtXld: 295 .1209 .

Dlels-Alder reaction of 148b with N-phenylmaleimide: (3all,411.4aR'".7aS· ,a. ,su ).

38,4,5, 6,7,8 ,Ba· he pta hydro·2·phe nyl·4a ,7a-epa xy·4.8·elhenocyclope nt(fjlscindote­

1,3(2H,4aH.7aH)-dione (174)

A solut ion 01 148b (95 mg , 0.71 mmoOand N.phenylmalelmlde (120 mg, 0,71

mmoQ In CHC~ (1 mL) was stirred at room temperature for 16 h, and Ihe solvent was

evaporated. The ' H nmr spectrum 01the residue showedsignals fO(only one adduct.

Chromatography (30% ethyl acetate/h exanej prov\ded 174 1157 mg. 72%) as a

colo urless solid: mp 26 1·262"C; It (KBt) 'I "';' 2967 , 17 13, 1384 , 1185 all" ; 'H nrrv

(c:ocy6; 1.74· 1.88 (4H, mJ . 2.03 (2H, m), 3 .26 (2H, t, J • 1.7 Hz, e-3aH and C-8aH) ,

3 .65 (2H, m, C-4H and e-sH). 6.03 (2H, dd, J ,. 3.3, 4.7 Hz), 7.16 (2H, d, J ,. 7.0 Hz,

AtH), 7 .38 - 7.48 (3H, m, ArH); n.O.e . results: 6 1.75 : 2.03 (30%), 3 .26 (13.5%); 6 2.03:

1.75 (10 ,5%), 3.65 (3%); 6 3.26: 1.75 (4%). 3.65 (12%); 6 3.65: 3.26 (5.5%), 6 .03 (11%);

66.03 : 3 .65 (10.5%); " c nmr (CDCI,) 6: 25.0 (1 x CHJ . 25.3 (2 x CH,), 37.4 (C-4 and

Cel, 42 .2 (C-aa and C-aa ),64.2 (C-4a and C·7a) , 126. 3 (2 x ArC), 127.9 (C· l0 andC· l 1),

128.6 (1 x ArC), 129.0 (21<ArC), 131 .4 (1 x ArC) , 176 .3 (C·1 and C·3); ms m/z (%): 307

1M', 74), 279 (5), 262 (5), 251 (3), 224 (3), 187 112),173133), 160 1'7), 134 1'00), 117

(31), 106 (2l1), 9 1 (47), 78 (42), 6S (17), 51 (17). Exact mass calcd. lor C II Hl1NO,:

307 .120 7; found: 307.1 193 .
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Dlals-Aldor reaction of 148b with N-methylmalefmlde: (3811 ,4G1,4aR-,7aS-,BII ,Ba«)·

3a,4,5,6,7.e ,8a·heptahydro·2-methyl ·4a,7a·epoxy -4,8·elhenocyclopent(f]lsolndole­

1,3(2H,4aH,7aH)-dlone (175)

A solution of 148b (0.231 mg, 1.72mmol) and N-methylmalelmlde (O.1i12 9, 1.72

mmol) In CHef) (2 ml) was stirredat room temperaturefor 16 h. The IH nmr spectrum

01 the residue obtained after evaporation of the solvent showed signals for only one

adduct. Chromatography (50% ethylacetate/ hexane) aftha reeleeegave 175 (0.327mg,

77%)as a colourless solid: mp 151.153°C; Ir (KBt) vIM><: 2942, 1711, 1702,1435cm'': ' H

nmr (COCIJ 3: 1.62 · 2.05 (SH. m, 3 x CH:J, 2.89 (3H, 5, CH,J, 3.06 (2H, m, C-3aand

C·Ss), 3.52 (2H, m, C-4H and C·SH), 5.88 (2H, ddt J .. 3.3, 4.6 Hz, C·l0 and C·ll);

no.e. results: approy. 6 2.75: approx. 2.00 (35%),3.52 (8%); nO nmr (ODCIJ 6: 24.4

~~,~~,~2~~~,~~~~~,~~~a~~,~~

4a ande-7a), 127.6 (e-10 andC-l l ), 177.2 (C-l andG-3); msm /z (%): 245 (M' , 16),217

(291, 200 (61, 166 (32), 173 (2), 160 (21), 134 (100), 117 (561, 104 (66),91 (661,76 (68),

65 (31).51 (43),39 (52). Exactmass ealcd. for C'4HnN03: 245.1051;found: 245.1056.

Diels·Alderreaction of 148b with dimethylaeetylenedlcarboxylate: (3aR",4a:,7a,7aS*)·

2,3,4,7·tetrahydro·5,6-bls[carbomethoxyj-3a,7a·epoxy-4.7.etheno-1H-lndene(176)

To a solution of 148b (0.1569,1.24 mmol) In CHCI3 (5 mL) was added DMAD

(150ut, 1.24 mmoij. Thissolutionwas stirredfor 16 h at room temperature, afterwhlch

evaporatron of the solvent provided an orange oil, whose IH nmr spectrum showed

signals lor only one adduct. Chromatography(20% acetone/hexane) yielded a pale

yellow011 that crystallizedon standing (0.344g, 84%): mp 72_75°0; Ir (film) Yll\O,(: 2954,

1717,1635,1435 ,1329,1270,1055 em-I; 'H nmr (CDCIJ 3: 1.60·1.9B(6H, m, ax CHJ,
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3.80 (6H, 5,2 XOCH~, 4.16 (2H, t, J = 3.7 Hz, C·4H and C·7H), 6.32 (2H. dd, J '" 3.5,

4.2 Hz, C·9H andCo10H); 13C nmr (COClJ a: 25.9 (1 x CHJ. 27.2 (2 x CHz),44.9 (C·g

and C·l0), 52.3 (2)( OCHJ, 70.9 (C-3a and C·7a), 131.3 (C-9 and C·l0) . 147.2 (C-5 and

C-6), 166.2 (2 x C=O);msmlz (%0): 276 (15), 244 (93), 219 (34). 217 (SOl . 205 j53), 189

(77),185 (78), 173 (18), 157 (SO), 145 (12), 129 (100), 115 (49), 102 (35),91 (30).77 (601.

55 (15), 59 (55).
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The selected 'H nmr spectra and the 'H nmr n.o.e.c. spectra of dienes and

adduds were arrangedaccordingto the order In which they appearIn the text. For the

inst rument employed, see E»l:perlmental, General.
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