COORDINATION CHEMISTRY OF CROWN THIOETHERS

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

WEIMIN LIANG
The author has granted an irrevocable non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of his/her thesis by any means and in any form or format, making this thesis available to interested persons.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission.

L'auteur a accordé une licence irrévocable et non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette thèse à la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ABSTRACT

This thesis describes the properties of thio-oxa crown ligands and their coordination chemistry. Chapter I briefly reviews the synthesis, conformation and coordination chemistry of crown thioethers. In Chapter II, synthesis and characterization of 1-oxa-4,7-dithiacyclononane ([9]aneOS$_2$) and 1,10-dioxo-4,7,13,16-tetrathiaacyclooctadecane ([18]aneO$_2$S$_4$) are reported. Molecular mechanics calculations are reported on [9]aneOS$_2$ and the molecular structure of [18]aneO$_2$S$_4$ has been determined by X-ray methods. In Chapter III, synthesis and properties of [Pd([9]aneOS$_2$)Cl$_2$] and [Pt([9]aneOS$_2$)Cl$_2$] have been described. Variable-temperature 1H and 13C NMR studies reveal the unusual stereochemical non-rigidity in [Pd([9]aneOS$_2$)Cl$_2$], and the mechanism has been proposed. In Chapter IV and V, the structures of [Cu([9]aneOS$_2$)$_2$][ClO$_4$]CH$_3$CN and [Cu([9]aneOS$_2$)Br]$_2$ are presented together with their electrochemical properties. The results indicate that ligand [9]aneOS$_2$ considerably stabilizes Cu(I) over Cu(II). The synthesis and structure of [Ag([18]aneO$_2$S$_4$)]ClO$_4$ are reported in Chapter VI.
Acknowledgement

I would like to express my sincere gratitude to Dr. C.R. Lucas for his supervision of the work described in this thesis, and for his continued encouragement and helpful discussions.

I am also grateful to Dr. J.N. Bridson for X-ray crystallography and to Dr. L.K. Thompson and his group for their help with electrochemistry and magnetic studies; to Dr. C.R. Jablonski and his group for their help with nmr spectrometry; to Dr. T.B. Grindley in Dalhousie University for his help with molecular mechanics calculations on [9]aneOS₂ and to all friends of mine who have helped me throughout my research.
Table of Contents

ABSTRACT ... ii
ACKNOWLEDGEMENTS ... iii
TABLE OF CONTENTS ... iv
LIST OF FIGURES ... v
LIST OF ABBREVIATIONS .. vi
I. Introduction ... 1
 1.1. Overview of Crown Thioether Chemistry 1
 1.1.1. Development .. 1
 1.1.2. Research Motivation ... 4
 1.1.3. Applications ... 7
 1.2. Syntheses of Crown Thioethers 10
 1.2.1. Preparation of Starting Materials 10
 1.2.2. General Synthetic Methods 14
 1.2.2.1. 1+1 Cyclization Reactions 15
 1.2.2.2. 2+2 Cyclization Reactions 17
 1.2.2.3. Reactions of three or More Substrates with Three or More Substrates (3+3, 4+4, etc.) 19
 1.2.2.3. Specific Conditions for Ring Closure 20
 1.2.2.3.1. Template-Mediated Cyclization Reactions 20
1.2.2.3.2. Use of Cesium Carbonate and High Dilution Conditions ... 21
1.3. Coordination Chemistry of Crown Thioethers 23
 1.3.1. \(\pi\)-Accepting Abilities of Crown Thioethers 23
 1.3.2. Ligand Conformation 27
 1.3.3. Coordination Chemistry of 9S3 29
 1.3.4. The Coordination Chemistry of 18S6 29
1.4. References ... 35

II. Syntheses and Characterization of 1-Oxa-4,7-dithiacyclononane ([9]aneOS\(_2\)) and 1,10-Dioxa-4,7,13,16-tetrathiacyclooctadecane ([18]aneO\(_2\)S\(_4\)) ... 47
2.1. Introduction .. 47
2.2. Experimental Section 48
 2.2.1. Preparation of 1-Oxa-4,7-dithiacyclononane ([9]aneOS\(_2\)) and 1,10-Dioxa-4,7,13,16-tetrathiacyclooctadecane ([18]aneO\(_2\)S\(_4\)) ... 49
 2.2.2. X-ray Crystallography 51
2.3. Results and Discussion 52
 2.3.1. Synthesis .. 52
 2.3.2. Conformation Studies of [9]aneOS\(_2\) 53
 2.3.3. X-ray Structure and Conformation of [18]aneO\(_2\)S\(_4\) 59
2.4. References ... 63
V. Synthesis and Properties of [Cu([9]aneOS₂)Br]₂

5.1. Preparation of [Cu([9]aneOS₂)Br]₂...101
5.2. Results and Discussion..101
5.2.1. Descriptions of the Structure...101
5.2.2. Electrochemistry...106
5.3. References...109

VI. Synthesis and characterization of [Ag([18]aneO₅S₄)]ClO₄..111

6.1. Preparation of [Ag([18]aneO₅S₄)]ClO₄..111
6.2. Results and Discussion..111
6.2.1. Structure of [Ag([18]aneO₅S₄)]ClO₄..111
6.3. References...117
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>[9]aneS, (9S3) Complexes of Third-row Metals</td>
</tr>
<tr>
<td>1-4</td>
<td>[18]aneS, (18S6) Complexes</td>
</tr>
<tr>
<td>2-1</td>
<td>Crystal Data for [18]aneO₂S₄</td>
</tr>
<tr>
<td>2-2</td>
<td>Selected Geometrical Parameters for [18]aneO₂S₄</td>
</tr>
<tr>
<td>2-3</td>
<td>Torsion Angles for [18]aneO₂S₄</td>
</tr>
<tr>
<td>3-1</td>
<td>Crystal Data for [Pd([9]aneOS₂)Cl₂]</td>
</tr>
<tr>
<td>3-2</td>
<td>Selected Geometrical Parameters for [Pd([9]aneOS₂)Cl₂]</td>
</tr>
<tr>
<td>3-3</td>
<td>Ligand Torsion Angles for [Pd([9]aneOS₂)Cl₂]</td>
</tr>
<tr>
<td>3-4</td>
<td>Variable-temperature ^{13}C Chemical Shifts for [Pd([9]aneOS₂)Cl₂] in d₆-DMSO Solution</td>
</tr>
<tr>
<td>4-1</td>
<td>Crystal Data for [Cu([9]aneOS₂)₂][ClO₄]CH₃CN</td>
</tr>
<tr>
<td>4-2</td>
<td>Selected Geometrical Parameters for [Cu([9]aneOS₂)₂][ClO₄]CH₃CN</td>
</tr>
<tr>
<td>5-1</td>
<td>Crystal Data for [Cu([9]aneOS₂)Br]₂</td>
</tr>
<tr>
<td>5-2</td>
<td>Selected Geometrical Parameters for [Cu([9]aneOS₂)Br]₂</td>
</tr>
</tbody>
</table>
6-1 Crystal Data for [Ag([18]aneO₂S₄)]ClO₄.................113
6-2 Selected Geometrical Parameters for
 [Ag([18]aneO₂S₄)]ClO₄..113
6-3 Ligand Torsion Angles for [Ag([18]aneO₂S₄)]ClO₄
 ..115
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1 Conformation I of [9]aneOS₂</td>
<td>55</td>
</tr>
<tr>
<td>2-2 Conformation II of [9]aneOS₂</td>
<td>57</td>
</tr>
<tr>
<td>2-3 Conformation III of [9]aneOS₂</td>
<td>58</td>
</tr>
<tr>
<td>2-4 The Structure of [18]aneO₂S₄</td>
<td>60</td>
</tr>
<tr>
<td>3-1 The Structure of [Pd([9]aneOS₂)Cl₂]</td>
<td>69</td>
</tr>
<tr>
<td>3-2 ¹H NMR Spectrum of [Pd([9]aneOS₂)Cl₂] in d₅-nitrobenzene at 22°C</td>
<td>74</td>
</tr>
<tr>
<td>3-3 The Variable-temperature ¹H NMR Spectrum of [Pd([9]aneOS₂)Cl₂] in d₄-DMSO Solution from 22.2 to 120.0°C</td>
<td>76</td>
</tr>
<tr>
<td>3-4 The Variable-temperature ¹H NMR Spectrum of [Pd([9]aneOS₂)Cl₂] in d₄-DMSO Solution with Free Ligand [9]aneOS₂</td>
<td>79</td>
</tr>
<tr>
<td>3-5 ¹H NMR Spectrum of [Pd([9]aneOS₂)Cl₂] in d₄-nitrobenzene with 10% d₄-DMSO at 120°C</td>
<td>82</td>
</tr>
<tr>
<td>4-1 The Structure of [Cu([9]aneOS₂)₂]⁺ in [Cu([9]aneOS₂)₂][ClO₄]CH₂CN</td>
<td>92</td>
</tr>
<tr>
<td>4-2 The Cyclic Voltammogram of [Cu([9]aneOS₂)₂][ClO₄]CH₂CN in CH₂CN (platinum working electrode, platinum wire counter electrode, and SCE reference electrode) at Scan Rate of 110 mV/s</td>
<td>97</td>
</tr>
</tbody>
</table>
5-1 The Structure of $[\text{Cu}([9]\text{aneOS}_2)\text{Br}]_2$ 104

5-2 The Cyclic Voltammogram of $[\text{Cu}([9]\text{aneOS}_2)\text{Br}]_2$
in CH$_3$CN (platinum working electrode, platinum
wire counter electrode, and SCE reference electrode)
at Scan Rates: 40, 80, 120 and 160 mV/s 107

6-1 The Structure of $[\text{Ag}([18]\text{aneO}_2\text{S}_4)]\text{ClO}_4$ 112
List of Abbreviations

DMF: N,N-dimethylformamide
DMSO: dimethylsulfoxide
SCE: aqueous saturated calomel electrode
E_{1/2}: half potential, E_{1/2} = (E_{cp} + E_{sp})/2
E^0: standard potential

[n]aneS_m (nSm): n, the number of atoms in the macrocycle; m, the number of sulfur atoms in the macrocycle

[9]aneOS_2: 1-oxa-4,7-dithiacyclononane
[18]aneO_2S_4: 1,10-dioxa-4,7,13,16-tetrathiacyclococctadecane

ECEC: E represent an electron transfer process, and C means a chemical reaction following it.
I. Introduction

1.1. Overview of Crown Thioether Chemistry

1.1.1. Development

The era of crown thioether chemistry started over 100 years ago when Mansfeld first reported the synthesis of 1,4,7-trithiacyclononane (9S3) 1 by the reaction of ethylene bromide with sodium sulfide [1]. In 1920 Ray also reported the preparation of 9S3 by the reaction of ethylene bromide and potassium hydrosulfide [2-4]. However, both works were questioned by Bennett and coworkers [5,6]. They used mixed melting point and cryoscopic molecular weight determination to prove that Mansfeld and Ray's products were not 9S3.

In 1934 Meadow and Reid [7] found that reaction of sodium ethanedithiolate with ethylene bromide gives a rubbery malodorous polymer along with a small amount of cyclic compound 1,4,7,10,13,16-hexathiacyclooctadecane (18S6) 2 in
1.7% yield. They expected to obtain 983 but rather they obtained 1856. They also prepared 7,16-dioxa-1,4,10,13-tetrathiacyclooctadecane 3 from the corresponding dimercaptan and dihalide. Coming more than 30 years before the milestone discovery of the oxygen-containing crown ethers like 4 by Pederson [8], 1856 and its potential ligating properties remained unexploited until the work of Black and McLean [9,10] in 1969. Nevertheless, from this inauspicious beginning 60 years ago the chemistry of crown thioethers has undergone explosive development, especially during the last decade.

\[\text{3} \]

\[\text{4} \]

Comparison of thioethers to phosphines suggests that they might have extensive coordination chemistry. In principle, thioethers can act as both σ-donors and π-acceptors. The moderate π-acidity of thioethers (intermediate between that of amines and phosphines) might stabilize low oxidation states of metal ions more than amines, but less than phosphines to yield complexes with unusual reactivity [11].

The volume of work reported for thioether complexes is small compared to that for amines and phosphines. This
reflects the fact that simple thioethers (e.g. Me₂S) bind metals weakly. Their relatively low σ-donor and π-acceptor abilities [12] (compared to those of phosphines, for example), combined with steric encumbrance of the alkyl group, make simple thioethers fairly poor ligands.

The current renaissance of thioether coordination chemistry has been primarily due to the observation that crown thioethers can bind to a range of transition metal ions to form stable metal complexes [11,13-15]. The use of crown thioether ligands to stabilize and study metal-SR₂ bonding is linked to the thermodynamic macrocyclic effect in which macrocyclic complexes are often, but not always [16], observed to be of greater stability than the corresponding linear multidentate thioethers [11,17]. By enforcing coordination of binding donor groups, the crown thioether approach encourages attempts to capture metal ions in a "molecular Dewar" to generate a series of crown thioether complexes incorporating unusual stereochemistries and oxidation states [11].

The aim of this chapter is to describe recent progress in coordination chemistry of crown thioethers, with a view to likely future development and uses. The focus is on the syntheses, conformational analysis and coordination chemistry of 983 1 and 1886 2.
1.1.2. Research Motivation

Several facts have contributed to the rapid growth of coordination chemistry of crown thioethers over the last decade. First, the impetus stems from the role of thioether binding in biological systems such as d-biotin (involving tetrahydrothiophene) [18,19] and blue copper proteins such as plastocyanin and azurin (involving methionine) [20,21].

Research on the blue copper proteins revealed unusual optical, redox, and EPR properties that were suspected of arising from interaction of the copper ion with a thioether group from methionine [22]. The study of the binding of Cu(II) and Cu(I) centres to crown thioethers has led to a greater understanding of Cu-S interactions and the stereochemical preferences of these metal centres [85,86]. The biological activity of blue copper proteins was linked to model systems in which the coordination geometry about Cu(II) is strained [in an entatic state] [23,24] such that the Cu²⁺/Cu⁺ couple occurs at a particularly positive potential, which indicates the Cu(I) is stabilized. The ability of crown thioethers to modify the electronic structure of coordination metal centres is inherent in this approach.

The other stimulus concerns the possible analogy between thioethers and phosphines, which suggests that thioethers might have extensive and industrially useful coordination
chemistry. This possibility spurred the earlier efforts to examine the complexes of macrocyclic thioethers [25,26].

Despite these interests in crown thioethers, arduous synthetic routes to the ligands severely impeded extensive investigation of their chemistry. This is particularly true of 953, the first synthesis of which proceeded in such low yield (0.04%) [27] as to preclude further study. However, advances in synthetic methodology in the last ten years opened the door to work on the coordination chemistry of crown thioethers. Since the cesium salt method was introduced in the cyclization reactions [28,29], these formerly rare and precious ligands are now readily available.

Developments in both organometallic and bioinorganic chemistry focus on the reactivity of metal complexes. This arises in two contexts: (i) practical industrial applications and (ii) fundamental comprehension of how metalloenzymes and metal-containing redox proteins function. Such interest naturally spurs attempts to control the reactivity of metal ions. Experimentally accessible parameters include coordination numbers, stereochemistry, redox potential, and steric accessibility of the metal ion. The properties of metal ions may, in principle, be manipulated by ligand design [14,15].

Complexes of crown thioethers are usually considerably more stable than those comparable acyclic ligands. For this
reason, the growing attention given to crown thioethers has spurred a blossoming of thioether coordination chemistry in general. These macrocyclic ligands thereby provide entry into new chemistry, since corresponding complexes of simple thioethers often defy synthesis [30]. The development of crown thioether ligands, such as the excellent ligand 9S3, also encourages the use of them as coligands in, for example, catalytic applications and cluster chemistry [15].

In addition, macrocyclic ligands can also alter the properties of a metal ion by constricting or dilating its coordination sphere (the macrocyclic constriction effect [31-33]). Both through imposition of those unusual environments comprising predominantly or exclusively thioether coordination and through manipulation of that environment, coordination complexes of thioethers often exhibit unusual properties and reactivities. Crown thioether complexes are ideal systems in which to study the effect on optical and redox properties of geometric deformations of the coordination sphere [11,15].

With the current renaissance of thioether coordination chemistry, crown thioethers, especially 9S3, are now taking their place in the repertoire of progress in inorganic chemistry. In contrast to thioethers, phosphines presently constitute a ligand class of central importance in the chemistry of low-valent transition metals, which in turn have found extensive application in homogeneous catalysis. In some
respects the coordination chemistry of thioethers is now in a similar state of development to that of phosphines before their importance came to be appreciated some 35 years ago.

1.1.3. Applications

The ability of crown thioethers to form stable transition metal complexes indicates that they may have new applications in medicine. Radiopharmaceuticals containing ^{99m}Tc are widely used in diagnostic studies [34] and ^{99m}Tc-based imaging plays a central role in nuclear medicine [35,36]. Myocardial imaging in particular requires complexes of low charge [37]. Because crown thioethers stabilize low oxidation states, typically to produce M^{2+} and M^+ complexes, and are often chemically robust, they have evident application to ^{99m}Tc imaging. Recently reported $[\text{Tc}(9S3)_2]^+$ illustrates the possibility of controlling ^{99m}Tc biodistribution through redox tuning mediated by 9S3 and analogous crown thioethers [38]. In addition, the affinity of crown thioethers for heavy metals, and their disinterest in the biologically important ions such as Na$^+$, Ca$^{2+}$, and Mg$^{2+}$, suits crown thioethers particularly well for sequestering and elimination of toxic ions from living organisms.

Crown thioethers present obvious opportunities as the basis for the extraction of metal ions. The use of crown
thioethers for extraction of Ag⁺, Cu²⁺, and Hg²⁺ has been reported [39-41]. Bolkhuis and coworkers synthesized the functionalized crown thioether 5 [42], which is moderately soluble in water whereas its analog 6 is insoluble. This property could be of practical importance in the extraction of heavy metal ions from aqueous solutions.

![Chemical structures](image)

The synthesis of 5 involved the reaction of 7 with BH₄⁻ to produce a very stable complex with two types of bonding, namely a Lewis interaction, R₂S⁻-BH₄⁻, and covalent addition to the double bond. The Lewis interaction protects the sulfide in the subsequent oxidation step with hydrogen peroxide, which results in the formation of 5 without any oxidation of sulfide [42]. This reaction has been applied quite broadly to
functionalize double bonds by use of borane chemistry without destruction of the sulfide linkages [43].

Despite early interest in the use of thioether-based systems for catalytic hydrogenation of olefins [25,26], relatively little recent work has been devoted to this industrial application. The thioether-based catalytic system clearly deserves more attention, since crown thioethers represent an especially attractive means of imposing and controlling coordination spheres. The catalytic potential of macrocyclic thioethers was explored by Kellogg and coworkers [43-46]. They applied a Ni(0) complex of the chiral crown thioether 8 as a catalyst to the cross-coupling Grignard reaction.

Tetrathiafulvalene (TTF) 9 and its derivatives have attracted great attention lately [47]. Since the discovery of the first "organic metal" TTF-TCNQ (TCNQ = tetracyanoquinodimethane) [48], many TTF derivatives with charge-transfer properties have been reported [49,50]. Recent studies found that the redox properties of TTF change a great deal if TTF is incorporated into a crown thioether system, such as 10 [51]. Sugawara reported a complex of 11 with 2,3-dichloro-5,6-dicyano-p-benzoquinone showing semiconducting properties [52]. Those macrocyclic TTF-based systems present interesting physical properties and have been investigated recently with the aim of making molecular devices, sensors and
1.2. Syntheses of Crown Thioethers

1.2.1. Preparation of Starting materials

Syntheses of crown thioethers require the use of dithiol or \(\alpha, \omega \)-dithiolpolysulfides. Most of the simple dithioles and oligoethylene \(\alpha, \omega \)-dithiolpolysulfides used for the syntheses of macrocyclic thioethers are commercially available now. Herein are presented some of the methods that have been used to prepare these important building blocks when they are not commercially available.

Dithiols can be used to synthesize \(\alpha, \omega \)-dithiolpolysulfides. One of the experimentally simple methods to prepare thiols is the use of thiourea, as shown in scheme
1-1. The reaction involves halides and thiourea to give an iso-thiuronium salt, and hydrolysis of the latter. Earlier procedures included the use of a high boiling solvent (e.g., triethylene glycol) to prepare the iso-thiuronium salt and to decompose it with a high boiling amine (e.g., tetraethylene pentamine) [54]. Later improvement used alkaline hydrolysis to give good yields (55-62%) of \(\alpha, \omega \)-dithiols [54].

![Reaction scheme](image)

Scheme 1-1

Another direct approach to prepare dithiols was reported by Martin and Greco [55]. They allowed alkyl halides to react with sodium trithiocarbonate, which is generated from sodium sulfide and carbon disulfide, and then hydrolyzed the
trithiocarbonate intermediate with acid, as shown in scheme 1-2. A good yield of dithiols (>61%) was obtained by this method [55].

\[
\text{CS}_2 + \text{Na}_2\text{S} \xrightarrow{\text{H}_2\text{O}} \text{Na}_2\text{CS}_3
\]

\[
\text{Cl} + \text{Na}_2\text{CS}_3 \rightarrow \text{C=S} \xrightarrow{\text{H}_2\text{O}} \text{SH} \text{ SH}
\]

Scheme 1-2

Partyka prepared pyridine-2,6-dimethanethiol from alcohols [56]. In this method pyridine-2,6-dimethanol was refluxed with thiourea and 48% HBr solution, and then aqueous

\[
\begin{align*}
&\text{CH}_2\text{OH} &\text{CH}_2\text{OH} \\
&\text{SC(NH}_2\text{)}_2/\text{HBr} &\xrightarrow{(a)} &\text{SH} &\text{SH} \\
&\text{NaOH/}\text{H}_2\text{O} &\xrightarrow{(b)} &
\end{align*}
\]

Scheme 1-3
NaOH solution was added for hydrolysis, as shown in scheme 1-3. This reaction gave a high yield (88%) of pyridine-2,6-dimethanethiol.

Polysulfides with terminal thiols are important starting materials for crown thioethers. The most common method of preparing these compounds from readily available thiols was reported by Buter and Kellogg [57]. 1,3-propanedithiol was reacted with 2-chloroethanol in absolute ethanol in the presence of sodium ethanolate to give 3,7-dithianonane-1,9-diol, which was converted to desired product via the thiourea reaction (scheme 1-4).

\[
\text{Scheme 1-4}
\]
1.2.2. General Synthetic Methods

It is important in the cyclization process to maximize the yield of desired macrocycle by choosing synthetic strategies that inhibit the competing linear polymerization reaction, as illustrated in scheme 1-5. Since the reactants for both cyclization and linear polymer compounds are the same, special conditions must be employed to avoid polymerization. The polymerization process is favoured in reactions carried out with the substrates in concentrated form or without solvent. The 1+1 or 2+2 cyclization reactions are usually slow and are favoured at low temperatures in dilute solutions and by using templates as catalysts. Polymerization can be prevented if cyclization is carried out at concentrations not exceeding 10^{-3} mol/L [58]. Therefore, in order to maximize the cyclization yield, high dilution conditions with template cations are usually used.
1.2.2.1. 1+1 Cyclization Reactions

The most used method for the preparation of crown thioethers is through the formation of two bonds, e.g. 1+1 cyclization (scheme 1-6). With the aid of the template effect of metal ions, this 1+1 cyclization process often gives high yields.

\[
\begin{align*}
\text{[Scheme 1-6]} \\
\text{An early attempt to synthesize 9S3 using the reaction of the disodium salt of 3-thiapentane-1,5-dithiolate with 1,2-dichloroethane gave an isolated yield of 9S3 of only 0.04\% [27]. The use of cesium carbonate in the cyclization reaction, an innovation introduced by Kellogg and coworkers [28,29], has revolutionized the synthesis of 9S3. Slow addition of 3-thiapentane-1,5-dithiol and 1,2-dichloroethane to a suspension of cesium carbonate in dimethylformamide [DMF] gives 9S3 in 50\% yield [59] (scheme 1-7).}
\end{align*}
\]

Similar improvements have taken place in the synthesis of 18S6. Meadow and Reid prepared 18S6 originally in a very low
yield of 1.7% [7]. The application of the Cs₂CO₃/DMF cyclization method, however, gave a yield of 72% on a largescale [60] (scheme 1-8).

This method was also extended to synthesize thiaaza macrocycles. With the internal amine nitrogen protected by a tosyl group, McAuley and Subramanian obtained the 1+1 cyclization product in good yield (59%) [61], as shown in scheme 1-9.
1.2.2.2. 2+2 Cyclization Reactions

The 2+2 cyclization process takes place between four substrate molecules, as shown in scheme 1-10. The reaction can be carried out under high-dilution conditions or with metal ions as templates. Since high-dilution conditions also give 1+1 cyclization products, these two types of cyclizations often happen in the same reaction system. A higher concentration favours the formation of 2+2 cyclization products, but also more polymer is formed [62].

Schröder and coworkers reported that the reaction of 3-thiapentane-1,5-dithiol with 1,2-dichloroethane in the presence of benzyltrimethylammonium methoxide gave the 2+2 addition product, 18S6 with 32% yield [63], as shown in scheme 1-11.

\[
\text{C}_4\text{H}_9\text{CH}_2\text{N(CH}_3\text{)}_2\text{OCH}_3 \quad \text{Scheme 1-11}
\]
If one of the reactants is a rigid molecule, the possibility of 2+2 cyclization is increased [63]. A recent example is the synthesis of crown thioethers in THF/alcohol mixture in the presence of B/Al-alkoxides (Scheme 1-12). This method which requires rigid functional groups such as ketones and alkenes was discovered by Edema and coworkers [64] and gave high yields (52%) of 2+2 cyclization product.
1.2.2.3. Reactions of Three or More Substrates with Three or More Substrates (3+3, 4+4, etc)

The 3+3, 4+4, 5+5, etc. cyclization products are generally by-products either from the high-dilution 1+1 or 2+2 cyclization reactions (Scheme 1-13). These products are isolated by careful chromatography and their yields decrease as the size of ring increases. An example of a 3+3 cyclization reaction is shown by the preparation of 1,4,8,11,15,18-hexathia cyclohexeneicosane [65] (Scheme 1-14).

Scheme 1-13

Scheme 1-14
1.2.2.3. Specific Conditions for Ring Closure

One fundamental problem with the preparation of macrocyclic ligands concerns the orientation of reactive sites so that they give macrocyclic products rather than linear polymers. In general, the process of macrocycle formation is preferred by (1) the presence of a metal "template" ion or (2) high dilution conditions.

1.2.2.3.1. Template-Mediated Cyclization Reactions

Sellmann and Zapf [66,67] discovered the synthesis method involving use of the Mo(CO), moiety as a template which affords 9S3 in 60% yield, as shown in Scheme 1-15. Since the starting complex can be regenerated in the reaction cycle, the synthesis is, in principle, performed catalytically.

Sellmann and coworkers have extended their work on template-mediated synthesis of macrocyclic thioethers [68-70] and have used an [FeII(CO)] fragment for the synthesis of dibenzo-18S6 and a [RuII(CO)] for benzo-9S3 respectively (Scheme 1-16).

\[
\begin{align*}
\text{Mo(CO)}_3(\text{CH}_3\text{CN})_3^+ & \quad + \quad \text{CH}_3\text{CN}/\text{RT}/5\text{h} & \quad \text{BrCH}_2\text{CH}_2\text{Br} & \quad \text{CH}_3\text{CN}/\text{RT}/15\text{min} \\
\text{MO} & \quad \text{CO} & \quad \text{CO} & \quad \text{CO}
\end{align*}
\]
1.2.2.3.2. Use of Cesium Carbonate and High Dilution Conditions

Buter and Kellogg first introduced the use of cesium carbonate to mediate the formation of macrocyclic rings in
Application of this procedure to macrocyclic thioether synthesis greatly diminishes the possibility of polymer formation, with concomitant increase in the yield of the desired macrocyclic products. Use of Cs$_2$CO$_3$ coupled with high dilution gives cyclization of α,ω-dithiols and α,ω-dihalides in high yields (typically >75%). The effect of cesium carbonate fostering formation of macrocyclic rings is called the "cesium effect" [71,72].

The smooth cyclization by the Cs$_2$CO$_3$/DMF route naturally focusses interest on the critical role of cesium carbonate which clearly surpasses that of other group IA carbonates [29]. A template effect seems to be excluded, because even reactants that lack potential donor groups with affinity for Cs$^+$ readily yield macrocyclic products. For example, reaction of 1,10-dimercaptodecane with 1,5-dibromopentane gives 1,7-dithiacycloheptadecane in 90% yield [29]. Recently 133Cs NMR studies have indicated that cesium carbonate is nearly or completely dissociated into free ions in dipolar aprotic solvents. Solvents like DMF solvate cations more effectively than anions and as a result, exceptionally nucleophilic thiolate anions are produced. The term "naked anion" has been used to describe these species [72]. High reactivity ensures low concentrations of unreacted starting materials, and fosters high dilution conditions which in turn favours the desired cyclization products.
1.3. Coordination Chemistry of Crown Thioethers

1.3.1. π-Accepting Abilities of Crown Thioethers

Thioether ligands, in general, are regarded as σ-donors to metal ion centres [12]. However, a wide range of stable transition metal complexes of crown thioethers has now been reported and this has led to much discussion of the π-acceptor ability of these ligands [11-14].

Several lines of evidence impute appreciable π-accepting abilities to thioethers. Coordination by thioethers typically stabilizes low oxidation states of metal ions, and the lower spin state as well. These phenomena derive largely from the π-acidity of thioethers. This effect clearly appears in electrochemical behaviour. For example, in [Co(18S6)]^{2+} and [Co(9S3)]^{2+} complexes, the Co(III/II) couple not only approaches electrochemical reversibility, itself a rarity in cobalt chemistry, but appears at high oxidizing potentials. Comparison with amine complexes is illuminating, in view of the similar ligand field strengths of the two types of ligands. For example, [Co(9S3)]^{2+} undergoes oxidation at +680 mV vs NHE [83], whereas [Co(9N3)]^{2+} (9N3 is the amine analogue of 9S3) does so at -410 mV vs NHE (in water) [118]. Even allowing for the difference in solvent, these two couples differ by over 1000 mV, which indicates great ability of thioethers to stabilize low oxidation states of metal ions.
Magnetic properties further support \(\pi \)-acidity. Quantitatively, \(g \) values reflect \(\pi \)-effects because deviations from \(g_e \) (the free electron value) arise from unquenched orbital angular momentum (from circulation of the \(t_{2g} \) electrons)\([118]\). Delocalization of \(d \) electrons into an empty orbital of thioethers diminishes the unquenched orbital angular momentum, as measured by the orbital reduction factor \(k \), and thereby the \(\Delta g \) value. For example, in Cu(II) complexes of thioethers the \(g_{av} \) values deviate from \(g_e \) by less than those from complexes of Cu(II) with harder donor ligands such as \(H_2O \). For \([Cu(18S6)]^{2+}\) and \([Cu(H_2O)_4]^{2+}\), \(g_{av} \) is 2.07 and 2.22 respectively \([112,119]\).

Stabilization of the low-spin state also indicates \(\pi \)-interaction in a more dramatic fashion. Delocalization of \(t_{2g} \) electron density into empty orbitals of thioethers diminishes electron-electron repulsion and thereby reduces the spin pairing energy. As a consequence, complexes of thioethers, such as \([Co(18S6)]^{2+}\), \([Co(9S3)]^{2+}\) and \([Fe(9S3)]^{2+}\), typically assume the low-spin state \([83,111]\), like those of phosphines.

Electronic spectral data provide further evidence for \(\pi \)-acidity of thioether ligands. Like the \(g \) value, the nephelauxetic ratio \(\beta (\beta = B_{\text{complex}}/B_{\text{free ion}}, B \) is the Racah parameter) also measures the delocalizing effect of the ligand \([109]\). Thioethers allow delocalization of the \(t_{2g} \) electron density into their empty orbitals and thereby exhibit a
greater nephelauxetic effect compared to aza donor atoms. This is manifested in a smaller β value in the thioether complexes. For example, β values for $[\text{Ni}(9S3)]^{2-}$ and $[\text{Ni}(10S3)]^{2-}$ are 0.66 and 0.69 respectively, while in the corresponding amine complexes $[\text{Ni}(9N3)]^{2-}$ and $[\text{Ni}(10N3)]^{2-}$ they are 0.82 and 0.90 respectively [120,121]. The differences in β values reflect greater π-accepting ability of thioethers.

Finally, X-ray structural studies provide direct evidences for π- acidity of thioethers. The single crystal X-ray structure of $[\text{Fe}(9S3)]^{3-}$ shows a centrosymmetric cation with a mean Fe-S bonding distance equal to 2.280(3) Å [82]. This Fe-S bond length is longer than that obtained from $[\text{Fe}(9S3)]^{2-}$ which shows a mean Fe-S bonding distance of 2.250(1) Å [81]. The elongation in Fe-S bonds on going from Fe$^{2+}$ to Fe$^{3+}$ gives direct structural evidence for the π-accepting properties of crown thioethers. Thus, loss of an electron from a formally bonding t_{2g} orbital leads to a decrease in π-back-bonding from Fe+S and to a lengthening of Fe-S bond length. In contrast, in the absence of π- acidity, increasing the cation charge (from 2+ to 3+) and decreasing the ionic radius of the metal centre (from 0.61 Å for Fe$^{2+}$ to 0.55 Å for Fe$^{3+}$ [122]) would be expected to decrease the Fe-S bond lengths on oxidation of $[\text{Fe}(9S3)]^{2-}$ to $[\text{Fe}(9S3)]^{3-}$. A similar observation has been obtained for the trans-
[MoBr₂(Me₈[16]aneS₄)]⁺⁺⁺⁺ couple

(Me₈[16]aneS₄=3,3,7,7,11,11,15,15-octamethyl-1,5,9,13-tetraphiacyclohexadecane) [123]. The Mo-S bond lengths for trans-[MoBr₂(Me₈[16]aneS₄)]⁺ (mean Mo-S 2.502(5) Å) are significantly longer than those in trans-[MoBr₂(Me₈[16]aneS₄)]⁺⁺⁺⁺ (mean Mo-S 2.436(2) Å). These structural results lend strong support to the π-accepting ability of thioethers.

The conventional explanation of π-back-bonding for the third row elements makes use of the fact that they possess empty 3d orbitals, which might have the right symmetry and energy to undergo additional bonding interaction [124,125]. Though this is a fruitful concept, recent theoretical studies cast doubt on it as the sole explanation.

For example, tertiary phosphines, PR₃, have traditionally been regarded as good π-acceptor ligands due to the empty 3d orbitals on the P atom [126]. Theoretical studies by Trogler [127] and by Marynick [128], however, showed that these orbitals are too high in energy to reasonably interact with a metal centre. It is suggested that P-R σ* orbitals function as the acceptor orbitals instead, and this was supported by Orpen and Connelly with structural evidence [129]. Prompted by these calculations, Ziegler and coworkers studied thioethers SR₂, and obtained the similar results. Their calculations suggest it is a low-lying S-R σ* orbital of the thioether that accepts electron density from the metal centre.
These hypotheses remain to be verified experimentally.

In summary, during coordination to metal ions thioethers can act as both σ-donors and π-acceptors. Though they are relatively weak ligands compared to phosphines, both experimental evidence and molecular orbital calculations support the ability of thioethers to serve as π-acceptors.

1.3.2. Ligand Conformation

Structural work on macrocyclic thioethers reveals an interesting property. The crown thioethers generally adopt "exodentate" conformations with their S-donors pointing out of their macrocyclic cavities [73,74]. In contrast, the endodentate orientation is commonly found in oxa and aza macrocycles [75]. This difference in ring conformation originates in the conformational preference of the constituent bonds, and it has an important effect on the coordination chemistry of crown thioethers. Exodentate S atoms necessitate rearrangement from exo to endo conformation before chelation can occur. This change is accompanied by a corresponding enthalpic cost. As a consequence, some crown thioethers tend to bridge metal ions rather than chelate to just one [76]. Not all crown thioethers, however, adopt exodentate conformations. For example, 953 has endodentate orientation of all three S atoms [77].
Crown thioethers commonly manifest these exodentate conformations because C-S-C-C units slightly prefer gauche placement, whereas S-C-C-S fragments strongly prefer the anti conformation [78]. These preferences originate at least in part from the difference in 1,4-interactions at C-S and C-C bonds. As a result, S-C-C-S systems disfavour gauche placement relative to O-C-C-O species. In ethylene-linked crown thioethers, (SCH₂CH₂)ₙ, (n>3), the conformational preferences of both C-S and C-C bonds act in concert to generate "bracket" S-C-C-S-C-C-S units, in which the central S atom marks a corner, as shown in Scheme 1-17. Such bracket units form the fundamental building block of crown thioethers. For example, 12S₄ results from fusion of two such units and has four corner S atoms [78].

![Diagram of conformation preferences](image)

Scheme 1-17. (a) 1,4-interactions in gauche placements
(b) a S-C-C-S-C-C-S bracket unit
1.3.3. Coordination Chemistry of 983

Among the crown thioethers, 1,4,7-trithiacyclononane [9]anes, (9S3) 1, in particular, usually binds facially to metal ions and therefore parallels the coordination of cyclopentadienyl, aryl, and tripyrazolylborate. X-ray structure studies reveal that 9S3 retains its conformation on binding to a metal centre [15,77]. In fact, the enthalpic price for arranging the donor atoms for coordination is paid in the synthesis of the ligand. This retention of conformation confers unique stability on chelating 9S3 complexes. Owing to its powerful chelating ability 9S3 forms a great variety of transition metal complexes, and is now the most extensively studied of crown thioethers. These works have been reviewed by Cooper and Schröder [14,15].

Classified by Periodic Row, the complexes of 9S3 are summarized in Tables 1-1 to 1-3.

1.3.4. Coordination Chemistry of 18S6

A hexadentate ligand can yield either of two isomeric octahedral complexes of meso or racemic stereochemistry (Fig. 1-1) [9,10]. In all encapsulated complexes reported to date, 1,4,7,10,13,16-hexathiacyclooctadecane [18]anes, (18S6) 2
Table 1-1. \([9]\)aneS₃ \((9S3)\) Complexes of First-row Metals

<table>
<thead>
<tr>
<th>Metal Cation</th>
<th>Other Ligands</th>
<th>Complex</th>
<th>Coordination Geometry</th>
<th>Remarks</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr³⁺</td>
<td></td>
<td>([Cr(9S3)_2]^{3-})</td>
<td>octahedral</td>
<td>elemental analysis and electronic spectra</td>
<td>[79]</td>
</tr>
<tr>
<td>Cr³⁺</td>
<td>Cl</td>
<td>([CrCl_3(9S3)]^{2-})</td>
<td>octahedral</td>
<td></td>
<td>[79]</td>
</tr>
<tr>
<td>Mn</td>
<td>CO</td>
<td>([Mn(CO)_3(9S3)])</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[80]</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td></td>
<td>([Fe(9S3)_2]^{2-})</td>
<td>octahedral</td>
<td>X-ray structure data; low spin</td>
<td>[81]</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td></td>
<td>([Fe(9S3)_2]^{3-})</td>
<td>octahedral</td>
<td>Fe-S bond lengths shorter than those in ([Fe(9S3)_2]^{2-}); low spin</td>
<td>[82]</td>
</tr>
<tr>
<td>Co³⁺</td>
<td></td>
<td>([Co(9S3)_2]^{2-})</td>
<td>octahedral</td>
<td>low spin; X-ray structure data</td>
<td>[83]</td>
</tr>
<tr>
<td>Co²⁺</td>
<td></td>
<td>([Co(9S3)_3]^{3-})</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[84]</td>
</tr>
<tr>
<td>Ni²⁺</td>
<td></td>
<td>([Ni(9S3)_2]^{2-})</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[85]</td>
</tr>
<tr>
<td>Ni¹⁺</td>
<td></td>
<td>([Ni(9S3)_3]^{3-})</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[86]</td>
</tr>
<tr>
<td>Metal Cation</td>
<td>Other Ligands</td>
<td>Complex</td>
<td>Coordination Number</td>
<td>Remarks</td>
<td>Refs.</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>---------</td>
<td>---------------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Cu⁺</td>
<td>I</td>
<td>[CuI(9S3)]</td>
<td>tetrahedral</td>
<td>X-ray structure data</td>
<td>[85]</td>
</tr>
<tr>
<td>Cu⁺</td>
<td>PPh₃</td>
<td>[Cu(PPh₃)(9S3)]⁺</td>
<td>tetrahedral</td>
<td>X-ray structure data</td>
<td>[86]</td>
</tr>
<tr>
<td>Cu⁺</td>
<td>AsPh₃</td>
<td>[Cu(AsPh₃)(9S3)]⁺</td>
<td>tetrahedral</td>
<td>X-ray structure data</td>
<td>[86]</td>
</tr>
<tr>
<td>Cu⁺</td>
<td></td>
<td>[Cu(9S3)]⁺</td>
<td>tetrahedral</td>
<td>[3+1] coordination</td>
<td>[87]</td>
</tr>
<tr>
<td>Cu⁺</td>
<td></td>
<td>[Cu₂(9S3)]²⁺</td>
<td>tetrahedral</td>
<td>one 9S3 molecule bridging two [Cu(9S3)] moieties</td>
<td>[90]</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td>Cl</td>
<td>[CuCl₂(9S3)]</td>
<td>square pyramid</td>
<td>X-ray structure data</td>
<td>[83,88]</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td></td>
<td>[Cu(9S3)]²⁺</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[89]</td>
</tr>
</tbody>
</table>
Table 1-2. [9]aneS₃ (9S₃) Complexes of Second-row Metals

<table>
<thead>
<tr>
<th>Metal Cation</th>
<th>Other Ligands</th>
<th>Complex</th>
<th>Coordination Geometry</th>
<th>Remarks</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>CO</td>
<td>[Mo(CO)(9S₃)]</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[91]</td>
</tr>
<tr>
<td>Ru²⁺</td>
<td>Cl; PPh₃</td>
<td>[RuCl₂(PPh₃)(9S₃)]</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[95]</td>
</tr>
<tr>
<td>Ru²⁺</td>
<td></td>
<td>[Ru(9S₃)]²⁺</td>
<td>octahedral</td>
<td>very stable; X-ray structure data</td>
<td>[92-94]</td>
</tr>
<tr>
<td>Rh²⁺</td>
<td>Cl; PPh₃</td>
<td>[Rh(9S₃)]₂⁺</td>
<td>octahedral</td>
<td>EPR; CV</td>
<td>[96,97]</td>
</tr>
<tr>
<td>Rh³⁺</td>
<td>Cl; PPh₃</td>
<td>[Rh(9S₃)]³⁺</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[96-97]</td>
</tr>
<tr>
<td>Rh²⁺</td>
<td>C₅Me₅</td>
<td>[Rh(C₅Me₅)(9S₃)]⁺</td>
<td>octahedral</td>
<td>mixed-sandwich structure</td>
<td>[13]</td>
</tr>
<tr>
<td>Pd²⁺</td>
<td>Br</td>
<td>[PdBr₂(9S₃)]</td>
<td>square pyramidal</td>
<td>X-ray structure data</td>
<td>[98]</td>
</tr>
<tr>
<td>Pd²⁺</td>
<td></td>
<td>[Pd(9S₃)]²⁺</td>
<td>square plane</td>
<td>X-ray structure data</td>
<td>[98,99]</td>
</tr>
<tr>
<td>Pd³⁺</td>
<td></td>
<td>[Pd(9S₃)]³⁺</td>
<td>octahedral</td>
<td>Pd-Sₐₙₐ₁ much longer than Pd-Sₑₐ₂ (by 0.64 Å)</td>
<td>[99]</td>
</tr>
<tr>
<td>Ag⁺</td>
<td></td>
<td>[Ag(9S₃)]⁺</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[100]</td>
</tr>
<tr>
<td>Ag²⁺</td>
<td></td>
<td>[Ag(9S₃)]²⁺</td>
<td>octahedral</td>
<td>EPR; electronic spectroscopy</td>
<td>[81]</td>
</tr>
<tr>
<td>Ag⁺</td>
<td></td>
<td>[Ag₁(9S₃)]³⁺</td>
<td>tetrahedral</td>
<td>trimer; Ag(I) bridged by 9S₃</td>
<td>[85]</td>
</tr>
<tr>
<td>Cd²⁺</td>
<td>I</td>
<td>[CdI₂(9S₃)]₂</td>
<td>octahedral</td>
<td>dimer; two I bridging two [CdI(9S₃)]moities</td>
<td>[101]</td>
</tr>
<tr>
<td>Metal Cation</td>
<td>Other Ligands</td>
<td>Complex</td>
<td>Coordination Geometry</td>
<td>Remarks</td>
<td>Refs.</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-----------------------</td>
<td>-------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Tc$^{2+}$</td>
<td></td>
<td>[Tc(9S3)$_2$]$^{2-}$</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[38]</td>
</tr>
<tr>
<td>Re$^+$</td>
<td>CO</td>
<td>[Re(CO)$_2$(9S3)]$^+$</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[102]</td>
</tr>
<tr>
<td>Pt$^{2+}$</td>
<td></td>
<td>[Pt(9S3)$_2$]$^{2-}$</td>
<td>square pyramidal</td>
<td>X-ray structure data</td>
<td>[103]</td>
</tr>
<tr>
<td>Pt$^+$</td>
<td>Me</td>
<td>[Pt(Me$_3$)(9S3)]$^+$</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[104]</td>
</tr>
<tr>
<td>Au$^+$</td>
<td></td>
<td>[Au(9S3)$_2$]$^+$</td>
<td>Tetrahedral</td>
<td>[3+1] coordination</td>
<td>[105]</td>
</tr>
<tr>
<td>Au$^{2+}$</td>
<td></td>
<td>[Au(9S3)$_2$]$^{2-}$</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[106]</td>
</tr>
<tr>
<td>Hg$^{2+}$</td>
<td></td>
<td>[Hg(9S3)$_2$]$^{2-}$</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[107]</td>
</tr>
<tr>
<td>Metal Cation</td>
<td>Other Ligands</td>
<td>Complex</td>
<td>Coordination Geometry</td>
<td>Remarks</td>
<td>Refs.</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
<td>-----------------------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Fe^{2+}</td>
<td></td>
<td>[Fe(18S6)]^{2+}</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[108]</td>
</tr>
<tr>
<td>Ni^{2+}</td>
<td></td>
<td>[Ni(18S6)]^{2+}</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[109,110]</td>
</tr>
<tr>
<td>Co^{2+}</td>
<td></td>
<td>[Co(18S6)]^{2+}</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[111]</td>
</tr>
<tr>
<td>Cu^{+}</td>
<td>MeCN</td>
<td>[Cu(18S6)]^{+}</td>
<td>tetrahedral</td>
<td>X-ray structure data</td>
<td>[112]</td>
</tr>
<tr>
<td>Cu^{+}</td>
<td>MeCN</td>
<td>([CuMeCN]_{2}(18S6))^{2+}</td>
<td>tetrahedral</td>
<td>two [Cu(MeCN)S] units</td>
<td>[113]</td>
</tr>
<tr>
<td>Cu^{2+}</td>
<td>C_{6}H_{5}Cl</td>
<td>[Cu(18S6)]^{2+}</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[112]</td>
</tr>
<tr>
<td>Rh^{2+}</td>
<td>C_{6}H_{6}Cl</td>
<td>([Rh(C_{6}H_{6}Cl)]_{2}(18S6))</td>
<td>two [Rh(C_{6}H_{6}Cl)S] units</td>
<td></td>
<td>[114]</td>
</tr>
<tr>
<td>Pt^{2+}</td>
<td></td>
<td>[Pt(18S6)]^{2+}</td>
<td>square plane</td>
<td>X-ray structure data</td>
<td>[115]</td>
</tr>
<tr>
<td>Pd^{2+}</td>
<td></td>
<td>[Pd(18S6)]^{2+}</td>
<td>square plane</td>
<td>X-ray structure data</td>
<td>[115]</td>
</tr>
<tr>
<td>Au^{+}</td>
<td></td>
<td>[Au(18S6)]^{+}</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[116]</td>
</tr>
<tr>
<td>Ag^{+}</td>
<td></td>
<td>[Ag(18S6)]^{+}</td>
<td>octahedral</td>
<td>X-ray structure data</td>
<td>[117]</td>
</tr>
</tbody>
</table>
coordinates in the centrosymmetric meso form. This arises from the conformational propensity of C-S-C-C linkages to adopt gauche placement. In the meso isomer all 12 C-E-C-C groups assume gauche placement, whereas in an isomeric racemic structure, only 8 of the 12 do so.

Fig. 1-1

The complexes of 1886 are summarized in Table 1-4.

1.4. Reference

34. Martell, A.E., Inorganic Chemistry in Biology and

82. Blake, A.J.; Holder, A.J.; Hyde, T.I.; Schröder, M., J.

83. Setzer, W. N.; Ogle, C.A.; Wilson, G.S.; Glass, R.S.,

88. Glass, R.S.; Steffen, L.K.; Swanson, D.D.; Wilson, G.S.;

II. Syntheses and Characterization of 1-Oxa-4,7-dithiacyclononane ([9]aneOS₃) and 1,10-Dioxa-4,7,13,16-tetrathiacyclooctadecane ([18]aneO₄S₄)

2.1. Introduction

Crown thioethers have been extensively used in recent years to study transition metal complexes. Among them [9]aneS₃, 1 has attracted special attention [1,2]. [9]aneS₃ is unique in retaining its endo-conformation on binding to a trigonal face of a metal. This retention of conformation confers unusual stability on [9]aneS₃ complexes of metal ions in uncommon oxidation states, such as, for example, Pd(III), Pt(III), and Ag(II) [3-5].
The nine-membered tridentate ligand ring 7-aza-1,4-dithiacyclononane ([9]aneNS₂) 2 and the structures of its nickel and palladium complexes have been reported recently [6,7]. The electronic spectra of its Ni(II) complexes indicate [9]aneS, exerts a considerably stronger ligand field than does [9]aneNS₂. Molecular mechanics calculations have also been carried out for several related nine-membered ring systems [8].

No reports are available on [9]aneOS, 3. Interest in this mixed donor ligand stems from the fact that it contains both a hard O-donor and soft S-donors which could give a coordination environment around metal centres similar to that in metalloenzymes such as blue copper-containing oxidases [9]. Therefore, for possible modelling of the active sites of proteins, we have synthesized [9]aneOS₂ and investigated its complexing properties, and have compared them with those of other nine-membered ligands, such as 1 and 2.

2.2. Experimental Section

All commercially available reagents were obtained from the Aldrich Chemical Co. Inc. or from Morton Thiokol Alfa Products Inc. and were used without further purification. Spectroscopic data were obtained by using the following instruments: IR, Mattson Polaris FT; NMR, General Electric 300-NB; mass spectra, V.G. Micromass 7070HS. Analyses were performed by Canadian
2.2.1. Preparation of 1-Oxa-4,7-dithiacyclononane([9]aneOS₄) and 1,10-Dioxa-4,7,13,16-tetrathiacyclooctadecane([18]aneO₂S₄)

Cesium carbonate (14.5 g, 45 mmol) was dried in an oven at 80°C for 10 h and finely powdered, and then transferred to a 2L three-necked flask equipped with a mechanical stirrer. N,N-dimethylformamide (DMF) (300 mL, from a freshly opened bottle) was deaerated under suction and then transferred to the 2L reaction flask. The reaction mixture was stirred vigorously to keep the cesium carbonate as a fine suspension. The temperature of the reaction mixture was maintained at 80°C. A solution of 2-mercaptoethyl ether (4.9 g, 36 mmol) and 1,2-dibromoethane (6.7 g, 36 mmol) in the deaerated DMF (300 mL) was added from a dropping funnel at the rate of 6-8 mL/h under a nitrogen atmosphere. After the addition was complete, stirring was continued at 80°C for a further 12 h.

At the end of reaction, DMF was removed by using a rotary evaporator. The yellow residue was suspended in 100 mL of water and extracted with 3x100 mL of dichloromethane. The combined extracts were washed with 1.0 mol L⁻¹ aqueous NaOH (100 mL) and then water (2x100 mL), and dried over anhydrous sodium sulfate. After removing the solvent, ethanol (200 mL) was added to the brown viscous mixture and the mixture was filtered.
The filtrate was concentrated to a brown oil by using a rotary evaporator. The product [9]aneO₃S₂ was collected by vacuum distillation, b.p. 85-90°C/0.5 mm.; yield 2.3 g (39%). IR (cm⁻¹, KBr, Nujol): 2910(s), 2854(s), 1462(m), 1407(s), 1359(m), 1294(s), 1272(s), 1190(m), 1119(vs), 1042(m), 911(m), 838(m), 767(w), 674(w), 459(m); ¹H NMR (ppm from TMS internal standard, CDCl₃): 3.95(t, 9.6 Hz, 4H), -CH₂O; 3.07(s, br, 4H), -SCH₂CH₂S--; 2.80(t, 9.6 Hz, 4H), -CH₂S. ¹³C NMR (CDCl₃): 73.7, -CH₂O; 34.6, S.CH₂--; 33.2, (CH₂S)₂. High resolution mass spectral data: calcd for C₆H₁₂O₃S₂: m/e 164.0329 (M⁺); found: m/e 164.0330 (M⁺).

The brown solid separated by filtration was dissolved in hot ethanol (400 mL) and decolourized with activated charcoal. The solution was filtered while hot. A white needle-like crystalline solid ([18]aneO₃S₄) was formed after cooling; yield 0.5 g (8.4%). Recrystallization from dichloromethane afforded colourless crystals suitable for X-ray diffraction. Mp: 124-125°C (lit. 125-126°C [10]). IR (cm⁻¹, KBr, Nujol): 2923(vs), 2855(vs), 1460(s), 1377(m), 1298(m), 1230(m), 1115(m), 1045(m), 1004(w), 942(w), 798(w), 722(w), 705(w), 650(vw). ¹H NMR (CDCl₃): 3.69 (t, 12.6 Hz, 8H), -CH₂O; 2.87(s, br, 8H), S.CH₂CH₂S--; 2.75(t, 12.6 Hz, 8H). ¹³C NMR(CDCl₃): 71.9, -CH₂O; 32.5, S.CH₂--; 31.1, (CH₂S)₂. High resolution mass spectral data: Calcd for C₁₂H₂₄O₃S₄: m/e 328.0658 (M⁺); found: m/e 328.0653 (M⁺). Anal. calcd. for C₁₂H₂₄O₃S₄: C 43.87, H 7.38; found: C 43.94, H 7.31.
2.2.2. X-ray Crystallography

A colourless irregular crystal of $[18]\text{aneO}_2\text{S}_4$, having approximate dimensions of $0.400 \times 0.300 \times 0.200$ mm was mounted on a glass fibre. All measurements were made on a Rigaku AFC6S diffractometer with graphite monochromated Mo Kα radiation and a 2KW sealed tube generator. Crystallographic data are summarized in table 2-1.

Table 2-1. Crystal Data for $[18]\text{aneO}_2\text{S}_4$

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>chem formula</td>
<td>$\text{C}{12}\text{H}{24}\text{O}_2\text{S}_4$</td>
</tr>
<tr>
<td>fw</td>
<td>328.56</td>
</tr>
<tr>
<td>space group</td>
<td>P1 (No. 2)</td>
</tr>
<tr>
<td>a(Å)</td>
<td>7.204 (1)</td>
</tr>
<tr>
<td>b(Å)</td>
<td>10.770 (2)</td>
</tr>
<tr>
<td>c(Å)</td>
<td>5.262 (2)</td>
</tr>
<tr>
<td>α(deg)</td>
<td>99.35 (2)</td>
</tr>
<tr>
<td>β(deg)</td>
<td>92.18 (2)</td>
</tr>
<tr>
<td>γ(deg)</td>
<td>98.08 (1)</td>
</tr>
<tr>
<td>$V(Å^3)$</td>
<td>398.0 (2)</td>
</tr>
<tr>
<td>$ρ_{calc}(g\ cm^{-1})$</td>
<td>1.371</td>
</tr>
<tr>
<td>$μ(\text{cm}^{-1})$</td>
<td>5.66</td>
</tr>
<tr>
<td>$λ(Å)$</td>
<td>0.71069</td>
</tr>
<tr>
<td>R</td>
<td>0.024</td>
</tr>
<tr>
<td>R_w</td>
<td>0.022</td>
</tr>
<tr>
<td>T(°C)</td>
<td>26</td>
</tr>
</tbody>
</table>

$$R = \frac{\sum |Fo| - |Fc|}{\sum |Fo|}$$

$$R_w = \left[\frac{\sum w (|Fo| - |Fc|)^2}{\sum w Fo^2} \right]^{1/2}$$
2.3. Results and Discussion

2.3.1. Synthesis

Bradshaw and coworkers reported the preparation of [9]aneO₃S₂ and [18]aneO₂S₄ by the reaction of bis-(2-chloroethyl)ether with 1,2-ethanedithiol in ethanol under the presence of sodium hydroxide [10]. Their yields obtained for [9]aneO₃S₂ and [18]aneO₂S₄ were 6% and 4%, respectively, which are much less than the yields reported herein.

\[
\text{HS} \quad \text{O} \quad \text{SH} \quad + \quad \text{Br} \quad \text{Br} \quad \xrightarrow{\text{CsCO₃, DMF, 80°C}} \quad \text{[9]aneO₃S₂} \quad + \quad \text{[18]aneO₂S₄}
\]

The use of cesium carbonate, as we expected, improved the cyclization yield greatly. This "cesium effect" has been discussed in chapter I. The yield depends critically upon the rate of addition and temperature. Faster rates and lower temperatures will reduce the yield.

[9]aneO₃S₂ is soluble in dichloromethane, diethyl ether, ethanol, and insoluble in water. [18]aneO₂S₄ is soluble in dichloromethane, benzene, and hot ethanol, and is insoluble in water.
2.3.2. Conformation studies of [9]aneS₂

Conformation studies of medium to large macrocyclic thioethers (≥12 ring atoms) indicate that in the solid state, in the absence of other structural constraints, most of these ligands adopt an exo conformation with the sulfur atom pointing out of the macrocyclic cavity. Cooper and coworkers explained this phenomenon as a consequence of the tendency of the C-S-C-C linkages to adopt a gauche conformation [11]. A maximum number of such gauche arrangements is obtained when the sulfur atoms have positions in the "corners" of the macrocycle. This is in contrast with what is observed for the analogous crown oxoethers, in which the C-O-C-C linkages prefer anti placements, and oxygen atoms are often found on the "sides" of the macrocycle [11,16].

When ring sizes become smaller (≤11 ring atoms), however, flexibility of the rings becomes less and structural constraints take effect. One would also expect 1,4 and 1,5 interactions across the ring to be significant in determining the conformation of the ring.

The single-crystal X-ray structure of metal-free [9]aneS₂ [17] shows it to adopt a [333] endo conformation with C₁ symmetry [18]. Molecular mechanics calculations, however, indicate the [1222] conformations of C₁ and C₂ symmetry are more stable, and these calculation results are supported by electron diffraction
experiments [19-21]. Usually there are some effects such as crystal-packing forces which select a particular conformation during crystallization, even if it is present as a minor component of a mixture of the conformers.

It would be interesting to determine the conformation of [9]aneOS₂, because it is a small mixed-donor ligand. The conformation of [9]aneOS₂ should present a balance of preferences for both S atoms and O atoms in a small ring. Unfortunately, we were not able to obtain its crystal structure because [9]aneOS₂ is liquid. We report here the results of molecular-mechanics calculations (MM3) on [9]aneOS₂ as a free ligand [22].

Conformation I - The calculations indicate that this conformation has lowest strain energy (85.82 kJ/mol), as shown in Fig. 2-1. This model is similar to Dale’s [1222] conformation [13,18], and the [1222] conformation is found with the global minimum energy in [9]aneS₂, too [19,21]. The two sulfur atoms take up exo positions and oxygen atom is in an endo orientation. The S-C-C-S linkage adopts anti placement, which reduces the repulsive force between two S atoms. However, the different orientations of S atoms, with respect to a mean plane defined by the ring, make them unsuitable to chelate metal atoms, and one would expect that this conformation only exists in the free ligand and can rarely be found in the metal complexes of [9]aneOS₂.
Fig. 2-1 Conformation I of [9]aneSO₃
Conformation II - This model is illustrated in Fig. 2-2, and is similar to Dale's [234] conformation. The S-C-C-S linkage has gauche placement, and the C-C-C group adopts anti placement. The three hetero-atoms have a down-down-up (anti) conformation. The MM3 calculation indicates conformation II has the second lowest strain energy and is less stable than conformation I by only 0.950 kJ/mol. Thus, \([9]\text{aneOS}_2\) is able to chelate a metal atom through its two sulfur atoms with little rearrangement by this conformation.

The energetic difference between conformation I and II derives mainly from the possible 1,5 O···H interaction. Such 1,5 interactions were invoked to account for the conformation of \([9]\text{aneO}_2\), which has been shown to adopt a [234] conformation [23,24], but S···H contacts would not be expected to be so significant energetically as O···H interactions.

Conformation III - This conformation (Fig. 2-3) is Dale's [333] conformation and permits \([9]\text{aneOS}_2\) to adopt facial coordination to metal atoms as does \([9]\text{aneS}_2\). The calculations show that conformation III is a little less stable with strain energy equal to 91.977 kJ/mol. Therefore, conformational rearrangement is required for \([9]\text{aneOS}_2\) to act as a tridentate ligand, but not for \([9]\text{aneS}_2\), which is pre-organized for facial coordination [20].

In summary, the calculations show that conformation I is the most stable for metal-free \([9]\text{aneOS}_2\). However, if \([9]\text{aneOS}_2\)
Fig. 2-2 Conformation II of [9]aneOS₂
Fig. 2-3 Conformation II of \([9]aneOS_2\)
chelates a metal atom as a bidentate ligand, conformation II ([234] mode) is the most likely one which [9]aneOS₂ adopts in its metal complexes. In contrast to this, the [333] conformation of [9]aneS₃ dominates its complexes [25]. The difference mainly stems from the different conformational preferences of S and O donors.

Finally we should point out that MM3 calculations do not allow us to reach an unequivocal conclusion about the conformation present. As we see, the strain energies of the conformers do not differ enormously. Nevertheless, these calculations do give us information about values of the various structural parameters of the different conformers, as well as giving an indication of the relative stability (and hence abundance) of various conformers.

2.3.3. X-ray structure and conformation of [18]aneO₂S₄

The unit cell contains one molecule of [18]aneO₂S₄. An ORTEP perspective view of the molecule, indicating the atom-numbering scheme, is shown in Figure 2-4. Selected bond distances and angles are listed in Table 2-2. Carbon-sulfur bond lengths range from 1.807(2) Å to 1.817(2) Å and agree with those found in hexathia-18-crown-6 ([18]aneS₆) and trithia-9-crown-3 ([9]aneS₃). As in the other cyclic structures, the C-C bonds in [18]aneO₂S₄ (1.418(2) Å to 1.503(3) Å) are significantly shorter
Fig. 2-4 The structure of [18]aneO$_2$S$_4$
than the value expected for C(sp³)-C(sp³) linkages (1.54 Å) [11]. They compare well, however, with those for other crown ethers such as, for example, [18]aneO₄S₂ and [12]aneOS₃ [14,15].

Table 2-2. Selected Geometrical Parameters of [18]aneO₂S₄

<table>
<thead>
<tr>
<th>Intramolecular Distances (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>atom</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>S(1)</td>
</tr>
<tr>
<td>S(1)</td>
</tr>
<tr>
<td>S(2)</td>
</tr>
<tr>
<td>S(2)</td>
</tr>
<tr>
<td>O(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intramolecular Bond Angles (deg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>atom</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>C(1)</td>
</tr>
<tr>
<td>C(2)</td>
</tr>
<tr>
<td>C(4)</td>
</tr>
<tr>
<td>S(1)</td>
</tr>
<tr>
<td>S(2)</td>
</tr>
</tbody>
</table>
Table 2-3. Torsion Angles for [18]aneO₃S₄ (deg.)

<table>
<thead>
<tr>
<th>atoms</th>
<th>angle</th>
<th>atoms</th>
<th>angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(1) C(1) C(2) S(2)</td>
<td>174.5(1)</td>
<td>C(2) S(2) C(3) C(4)</td>
<td>71.0(2)</td>
</tr>
<tr>
<td>S(1) C(6) C(5) O(1)</td>
<td>178.6(1)</td>
<td>C(2) C(1) S(1) C(6)</td>
<td>69.3(2)</td>
</tr>
<tr>
<td>S(2) C(3) C(4) O(1)</td>
<td>-73.3(2)</td>
<td>C(3) C(4) O(1) C(5)</td>
<td>-174.0(2)</td>
</tr>
<tr>
<td>C(1) S(1) C(6) C(5)</td>
<td>174.5(1)</td>
<td>C(4) O(1) C(5) C(6)</td>
<td>-179.3(2)</td>
</tr>
<tr>
<td>C(1) C(2) S(2) C(3)</td>
<td>62.1(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The molecule is centrosymmetric as shown in Fig. 2-4. The conformational preferences of both S atoms and O atoms manifest themselves clearly in this mixed oxa-thia macrocycle. All four sulfur atoms are exodentate, and two oxygen atoms are endodentate. Of interest is the fact that hexathia-18-crown-6 has four exodentate and two endodentate donors, too [11]. The torsion angles are presented in Table 3-3. In accord with the predictions of Cooper and coworkers [11], six of eight C-S-C-C linkages adopt gauche placements, while in contrast, all four C-O-C-C units adopt anti arrangements.
2.4. References

22. Molecular mechanics calculations (MM3) were performed by Dr. T.B. Grindley, Dalhousie University.
65

III. Synthesis and Properties of [Pd([9]aneOS₂)Cl₂] and [Pt([9]aneOS₂)Cl₂]

3.1. Introduction

Since the first recognition of a stereochemically non-rigid sulfur chelate complex [PtCl₂(MeSCH₂CH₂SMe)] was reported in 1966 [25], widespread fluxionality in sulfur and selenium complexes has been discovered [11,13]. For complexes of macrocyclic thioethers, however, few examples of stereochemical nonrigidity have been reported [15,20] probably as a consequence of the conformational constraints of the ligand. We report herein the first example of fluxionality involving the oxygen atom in a macrocyclic thioether-ether ligand. The coordination properties of thioether complexes are currently of considerable interest in several areas, not the least of which involve studies of catalytic hydrodesulfurization [26] and of cellular sulfur donor reactions with platinum anticancer drugs [27].

3.2. Experimental Section
3.2.1. Preparation of [Pd([9]aneOS₂)Cl₂]

A solution of [9]aneOS₂ (112 mg, 0.683 mmol) in 10 mL of acetonitrile was added to a solution of cis-PdCl₂(PhCN)₂ (230 mg, 0.600 mmol) in 20 mL of acetonitrile to give an orange solution,
which immediately precipitated an orange solid. The precipitate was filtered, washed with acetonitrile and diethyl ether, and dried in vacuum. Yield 180 mg (88%). IR (cm\(^{-1}\), KBr, Nujol): 2923(vs), 2855(vs), 1488(s), 1464(s), 1378(s), 1299(s), 1124(s), 1055(m), 1018(s), 920(m), 805(w), 722(w), 663(w), 611(w), 508(w). Anal. calcd. for C\(_9\)H\(_{12}\)Cl\(_2\)OPdS\(_2\): C 21.10, H 3.54; found: C 21.20, H 3.60.

3.2.2. Preparation of [Pt([9]aneOS\(_2\))Cl\(_2\)]

K\(_2\)PtCl\(_4\) (125 mg, 0.300 mmol) was treated with [9]aneOS\(_2\) (55.7 mg, 0.340 mmol) in refluxing acetonitrile (50 mL) for 12 h under N\(_2\). The yellow precipitate that formed was filtered and washed with water, acetonitrile and diethyl ether, and then dried in vacuum. Yield 106 mg (79%). IR (cm\(^{-1}\), KBr, Nujol): 2923(vs), 2854(vs), 1461(m), 1377(m), 1281(w), 1229(w), 1127(s), 1056(w), 1019(m), 917(w), 722(w).

3.2.3. X-ray Crystallography

Red orange crystals of [Pd([9]aneOS\(_2\))Cl\(_2\)] were obtained by vapour diffusion of diethyl ether into a solution of the complex in dimethyl sulfoxide. All measurements were made on a Rigaku AFC6S diffractometer with graphite monochromated Mo K\(\alpha\) radiation and a 2KW sealed tube generator. The crystallographic data are
listed in Table 3-1.

Table 3-1. Crystal Data for [Pd([9]aneOS₂)Cl₂]

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C₂H₁₂Cl₂OPdS₂</td>
</tr>
<tr>
<td>fw</td>
<td>341.59</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁/n (No. 14)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>8.464(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>12.199(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>10.384(2)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>105.09(1)</td>
</tr>
<tr>
<td>T (°C)</td>
<td>26</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>1035.2(1)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>ρ_calcd (g cm⁻³)</td>
<td>2.192</td>
</tr>
<tr>
<td>μ (cm⁻¹)</td>
<td>26.32</td>
</tr>
<tr>
<td>λ (Å)</td>
<td>0.71069</td>
</tr>
<tr>
<td>R</td>
<td>0.024</td>
</tr>
<tr>
<td>R_w</td>
<td>0.033</td>
</tr>
</tbody>
</table>

3.3. Results and Discussion

3.3.1. Description of Structure

A PLUTO plot of [Pd([9]aneOS₂)Cl₂] is shown in Fig. 3-1. The bond distances and angles are listed in Table 3-2.

The [9]aneOS₂ assumes a facial coordination mode on Pd(II). The central Pd atom lies 0.0111 Å above the mean square plane consisting of two chloride ligands (Pd-Cl₁ = 2.331(1), Pd-Cl₂ = 2.333(1) Å) and two adjacent sulfur atoms (Pd-S₁ = 2.268(1), Pd-S₂ = 2.258(1) Å). These values compare well with those Pd-S (2.245-2.282 Å) and Pd-Cl (2.3316-2.3326 Å) [1] bond distances.
Fig. 3-1 The structure of \([\text{Pd}((9)\text{aneOS}_2)\text{Cl}_2] \)
Table 3-2. Selected Bond Lengths and Angles in [Pd([9]aneOS₂)Cl₂]

Distances (Å)

<table>
<thead>
<tr>
<th>atom</th>
<th>atom</th>
<th>distance</th>
<th>atom</th>
<th>atom</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(1)</td>
<td>Cl(1)</td>
<td>2.331(1)</td>
<td>S(2)</td>
<td>C(3)</td>
<td>1.817(5)</td>
</tr>
<tr>
<td>Pd(1)</td>
<td>Cl(2)</td>
<td>2.333(1)</td>
<td>O(1)</td>
<td>C(4)</td>
<td>1.421(5)</td>
</tr>
<tr>
<td>Pd(1)</td>
<td>S(1)</td>
<td>2.268(1)</td>
<td>O(1)</td>
<td>C(5)</td>
<td>1.422(5)</td>
</tr>
<tr>
<td>Pd(1)</td>
<td>S(2)</td>
<td>2.258(1)</td>
<td>C(1)</td>
<td>C(2)</td>
<td>1.518(6)</td>
</tr>
<tr>
<td>S(1)</td>
<td>C(1)</td>
<td>1.839(4)</td>
<td>C(3)</td>
<td>C(4)</td>
<td>1.505(6)</td>
</tr>
<tr>
<td>S(1)</td>
<td>C(6)</td>
<td>1.823(4)</td>
<td>C(5)</td>
<td>C(6)</td>
<td>1.510(6)</td>
</tr>
<tr>
<td>S(2)</td>
<td>C(2)</td>
<td>1.816(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bond Angles (deg.)

<table>
<thead>
<tr>
<th>atom</th>
<th>atom</th>
<th>atom</th>
<th>angle</th>
<th>atom</th>
<th>atom</th>
<th>atom</th>
<th>angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)</td>
<td>Pd(1)</td>
<td>Cl(2)</td>
<td>93.12(4)</td>
<td>Pd(1)</td>
<td>S(2)</td>
<td>C(3)</td>
<td>105.9(2)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>Pd(1)</td>
<td>S(1)</td>
<td>88.14(4)</td>
<td>C(2)</td>
<td>S(2)</td>
<td>C(3)</td>
<td>104.7(2)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>Pd(1)</td>
<td>S(2)</td>
<td>177.93(4)</td>
<td>C(4)</td>
<td>O(1)</td>
<td>C(5)</td>
<td>116.7(3)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>Pd(1)</td>
<td>S(1)</td>
<td>178.74(4)</td>
<td>S(1)</td>
<td>C(1)</td>
<td>C(2)</td>
<td>114.1(3)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>Pd(1)</td>
<td>S(2)</td>
<td>88.52(4)</td>
<td>S(2)</td>
<td>C(2)</td>
<td>C(1)</td>
<td>116.4(3)</td>
</tr>
<tr>
<td>S(1)</td>
<td>Pd(1)</td>
<td>S(2)</td>
<td>90.23(4)</td>
<td>S(2)</td>
<td>C(3)</td>
<td>C(4)</td>
<td>117.9(3)</td>
</tr>
</tbody>
</table>
found in other Pd(II) complexes of macrocyclic thioethers [1,27-28].

The oxygen atom is oriented toward the palladium centre above the square coordination plane with an unusually long Pd-O distance (Pd-O = 2.968(3) Å), although similar types of Pd-O interactions have been observed in other Pd(II) complexes. When the apex of the pyramid is occupied by an oxygen atom, in general the Pd-O bond lengths are significantly longer than those in equatorial positions. For example, the axial Pd-O bond distance in [Pd([15]aneN₂OS₂)Cl₂] is 2.779(4) Å [31], and for [Pd(hfac)₂(P(o-tolyl)ᵡ)] [29] and [Pd(hfac)(triphos)] [30] it is 2.797(6) Å and 2.653(6) Å respectively. In contrast, the Pd-O bond length in equatorial site is 2.110(3) Å for [Pd(F₆acac)₂(triphos)]⁺ [32] and 1.98 Å (average length) for the square planar cis-[{Pd(PhC(O)CHC(O)Me)₂}₂] [33,34]. Though the apical Pd-O bond distance found in [Pd([9]aneOS₂)Cl₂] is longer than those values reported for Pd(II) complexes, there is no reason to exclude a subtle Pd-O interaction. In fact, this distance is significantly less than the sum of the van der Waals' radii (3.10 Å) of Pd and O atoms [36], and the existence of a Pd-O bond is supported by NMR studies (vide infra). Thus, the structure of [Pd([9]aneOS₂)Cl₂] is better considered as an intermediate between square-planar and square pyramidal geometry.

It is notable that the unusual [234] ring conformation is
found in Pd([9]aneO\textsubscript{2})Cl\textsubscript{2} (torsion angles are presented in Table 3-3), whereas the [333] conformation dominates all other [9]aneX, (X = N, S) complexes [5]. For all S-N mixed donor [9]aneX, ligands

<table>
<thead>
<tr>
<th>atoms</th>
<th>angle</th>
<th>atoms</th>
<th>angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(1) C(1) C(2) S(2)</td>
<td>31.8(5)</td>
<td>S(1) C(6) C(5) O(1)</td>
<td>45.6(5)</td>
</tr>
<tr>
<td>S(2) C(3) C(4) O(1)</td>
<td>-52.6(5)</td>
<td>C(1) S(1) C(6) C(5)</td>
<td>43.9(4)</td>
</tr>
<tr>
<td>C(1) C(2) S(2) C(3)</td>
<td>81.7(4)</td>
<td>C(2) S(2) C(3) C(4)</td>
<td>-51.0(4)</td>
</tr>
<tr>
<td>C(2) C(1) S(1) C(6)</td>
<td>-126.3(3)</td>
<td>C(3) C(4) O(1) C(5)</td>
<td>143.1(4)</td>
</tr>
<tr>
<td>C(4) O(1) C(5) C(6)</td>
<td>-130.0(4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

in their free forms, molecular mechanics simulation indicates that the [234] configurations are more strained than the [333] forms by about 12-20 kJ mol-1 [5, 6]. The same difference is found in metal complexes [5, 6]. For [9]aneO\textsubscript{2}, however, the [333] conformation is less stable than the [234] form (see Chapt. III) due to different conformation preferences around sulfur and oxygen atoms. Thus, in [Pd([9]aneO\textsubscript{2})Cl\textsubscript{2}] the [9]aneO\textsubscript{2} ring adopts the [234] conformation. Furthermore, this [234] conformation allows the oxygen donor in Pd([9]aneO\textsubscript{2})Cl\textsubscript{2} to
occupy the axial coordination site and form square-pyramidal geometry.

3.3.2. Electronic Spectra

The electronic spectrum of \(\text{Pd([9]aneOS}_2\text{)}\text{Cl}_2 \) in dichloromethane exhibits two main bands - at 250 nm (\(\varepsilon = 7300 \text{ M}^{-1} \text{cm}^{-1} \)) with 277 nm (sh), and at 406 nm (\(\varepsilon = 716 \text{ M}^{-1} \text{cm}^{-1} \)). These absorptions represent the characteristic electronic spectra of square-planar Pd(II) complexes [2]. The band at 250 nm is due to a charge transfer from the chloride ligands to the Pd \(d_{x^2-y^2} \) orbital, while the absorption at 277 nm belongs to a charge transfer from the sulfur bonding orbitals to Pd \(d_{x^2-y^2} \). The weaker band at 406 nm is d-d transfer in nature [3,4].

3.3.2. Variable Temperature NMR studies

The complex is quite soluble in DMSO but less soluble in other solvents, such as nitromethane and dichloromethane.

The \(^1\text{H} \) spectra recorded in \(d_5 \)-nitrobenzene at room temperature are shown in Fig. 3-2. The complicated spectrum is in accord with the rigid structure illustrated in Fig. 3-1, which results in non-equivalent protons in the \(^1\text{H} \) NMR for each of the 12 hydrogen atoms in the macrocyclic ring. These hydrogen atoms present three AB patterns of which two are overlapping.
Fig. 3-2. 3H NMR spectrum of [Pd([9]aneNO$_2$)$_2$Cl$_2$] in d$_4$-nitrobenzene at 22°C
The two resonances in the range 4.61-4.91 ppm are caused by the four protons in the \(-\text{CH}_2\text{OCH}_2-\) group, which occur at a much lower field compared with those of the free ligand (3.95 ppm). Two of the four protons in the \(-\text{SCH}_2\text{CH}_2\text{S}-\) region resonate in the 3.56-3.66 ppm range, while the other two proton signals overlap with the two hydrogen atoms coming from the \(-\text{CH}_3\text{S}-\) group to give the multiple resonances in the area of 3.39-3.49 ppm. The high field multiple signals at 3.00-3.10 ppm are assigned to the two H atoms in the \(-\text{CH}_3\text{S}-\) group. Raising the temperature to 140°C results in no change in the \(^1\text{H} \text{NMR}\) spectra in this solvent.

Since the analysis (above) of this spectrum is consistent with the solid state structure revealed by X-ray crystallography, it would appear that the structure of \([\text{Pd}([\text{9}]{\text{aneOS}_2})\text{Cl}_2]\) in solution remains the same as it is in the solid state.

When dimethyl sulfoxide (DMSO) is used as the solvent, the situation is different (Fig. 3-3). On raising the temperature of the solution from 22°C to 120°C, the two \(-\text{CH}_2\text{O}-\) signals coalesce to a single broad band, and the multiple peaks in the \(-\text{SCH}_2\text{CH}_2\text{S}-\) and \(-\text{CH}_3\text{S}-\) regions also merge into two other broad resonances. The different observations in nitrobenzene and dimethyl sulfoxide solutions indicate a solvent-involved fluxional process. At least four possible mechanisms can explain such an averaging process. These include:

(1) a synchronous or correlated inversion of all three
Fig. 3-3. The variable-temperature 1H NMR spectra of $[\text{Pd}((9)\text{aneS}_2\text{Cl})_2]$ in d$_6$-DMSO solution from 22°C to 120°C
coordinated atoms.

(2) a Berry pseudo-rotation process.

(3) a process that permutes the three coordination sites of the macrocyclic ring over the palladium dichloride moiety.

(4) a dissociation-recombination of ligand

Process (1) can be ruled out, since in such small ring, when three hetero-atoms bind to the central metal, the highly strained structure prevents overall inversion, even though the inversion process is often observed in open chain ligand complexes [7-9] at ambient temperature and involves a low energy barrier ($\Delta G^\circ = 40-70$ kJ mol$^{-1}$) [10,11].

Process 2, on the other hand, seems a plausible route due to a widespread observation of this kind of stereochemical non-rigidity in five-coordinated complexes [21-23,35]. This process would involve a concerted axial-equatorial bond-bending motion that allows the interconversion between square pyramidal geometry and trigonal bipyramidal geometry along a low energy pathway [12], as illustrated in Scheme 3-1.

![Scheme 3-1. Berry Pseudorotation](image-url)

Scheme 3-1. Berry Pseudorotation
from temperature-dependent 1H NMR spectral data and indicates intramolecular ligands exchange in the fluxional process [13,14]. In other words, Berry pseudorotation involves a non-dissociative pathway.

In order to distinguish whether the fluxion in [Pd([9]aneOS$_2$)Cl$_2$] proceeds by a dissociative or non-dissociative mechanism, we added free [9]aneOS$_2$ ligand to the d_6-DMSO solution of the Pd complex. The variable-temperature 1H NMR of this solution is shown in Fig. 3-4. When the solution was warmed, the three ligand resonances (at 2.79, 3.07, and 3.94 ppm) began to diminish. As the temperature continued to rise, the free ligand signals continue to broaden until at 140°C they have almost disappeared, and at the same time the resonances of Pd([9]aneOS$_2$)Cl$_2$ became much broadened. The observations unequivocally indicate the presence of a ligand-exchange process. Thus, the fluxional rearrangement involves a dissociative mechanism that excludes pathway (2).

The fluxionality which averages the methylene protons can also be achieved by a rotation process of the macrocyclic ligand - process (3). Abel and coworkers first reported rotational fluxion of crown thioether ligand which proceeds via a series of correlated 1,4-metallotropic shifts (Scheme 3-2) [15], and similar observations have been reported recently in a series of [9]aneS$_2$ complexes: PtRR'([9]aneS$_2$) [R = R' = Me, Et, CH$_2$CME$_2$]
Fig. 3-4 Variable-temperature 1H NMR spectra of [Pd([9]aneOS$_2$)Cl$_2$] in d$_4$-DMSO with free ligand [9]aneOS$_2$. (a) complex (b) free ligand (c) impurity in the free ligand.
The fluxional process of $[\text{Pd}([9]\text{aneOS}_2)\text{Cl}_2]$, however, is unlikely to involve the 1,4-shift mechanism. First of all, the 1,4-metallotropc shift was believed to be an intramolecular process [15,20], while the fluxional rearrangement in $[\text{Pd}([9]\text{aneOS}_2)\text{Cl}_2]$ proceeds via a dissociative pathway. Second, if $[\text{Pd}([9]\text{aneOS}_2)\text{Cl}_2]$, undergoes a similar 1,4-shift, the oxygen donor occupying the apical position will move to the equatorial position, and at the same time, one of the two equatorial sulfur donors will move to the axial position, as shown in Scheme 3-3. However, this kind of shift is not in accord with the spectral changes observed. In Fig. 3-3, the three types of methylene protons resonate at essentially constant chemical shifts throughout the temperature change from 22°C to 120°C. This indicates there is no apical-equatorial donor changes in the fluxional process, because, otherwise, the 1H resonances should shift. Furthermore, variable-temperature ^{13}C NMR results also
Table 3-4. Variable-temperature \(^{13}\)C chemical shifts for [Pd([9]aneOS\(_2\))Cl\(_2\)] in \(d_6\)-DMSO solution

<table>
<thead>
<tr>
<th></th>
<th>20°C (ppm)</th>
<th>120°C (ppm)</th>
<th>shift ((\Delta\delta))</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>-C'(\text{H}_2)O</td>
<td>76.65</td>
<td>75.35</td>
<td>1.30</td>
<td>1.70</td>
</tr>
<tr>
<td>-C'(\text{H}_2)S</td>
<td>42.71</td>
<td>42.26</td>
<td>0.45</td>
<td>1.05</td>
</tr>
<tr>
<td>-SC'(\text{H}_2)C'(\text{H}_2)S-</td>
<td>40.17</td>
<td>40.06</td>
<td>0.11</td>
<td>0.27</td>
</tr>
</tbody>
</table>

point to the same conclusion. As seen in Table 3-4, changes in \(^{13}\)C chemical shift are very small (only 0.27 to 1.70\%). These observations are consistent with the hypothesis that during the fluxional process the sulfur atoms maintain their equatorial location, and the oxygen atom remains in its roughly apical site.

Solvent apparently plays an important role in this fluxional process. The temperature-dependent \(^{1}H\) NMR spectrum is only observed in dimethyl sulfoxide (DMSO), one of the dipolar aprotic solvents. To further examine the contribution of DMSO to the fluxional process, we added 10\% (volume) of \(d_6\)-DMSO to the \(d_4\)-nitrobenzene solution of Pd([9]aneOS\(_2\))Cl\(_2\). As expected, the fine structure of \(^{1}H\) NMR spectrum was quenched at 120°C by the addition (Fig. 3-5). This observation provides strong evidence for a solvent-assisted fluxional process.

The coordination capability of DMSO to transition metal ions is well studied [16,17]. As an ambidentate donor, DMSO
Fig. 3-5. 1H NMR spectra of [Pd([9]aneS$_2$)$_2$Cl$_2$] in d$_4$-nitrobenzene solution with 10% d$_3$-DMSO at 120°C
forms complexes with many metals by coordinating through oxygen, while for late transition metal ions such as Pd(II), Pt(II) or Ir(III), the sulfoxide ligand is usually bound to the metal through sulfur. For example, X-ray crystal structure determinations of \([\text{PdCl}_2(\text{DMSO})_2]\) and \([\text{Pd(NO)}_2(\text{DMSO})_2]\) reveal sulfur coordination in these Pd(II) complexes \([18,19]\).

Finally, we examine the process (4) - a dissociation-recombination mechanism. After the preceding analysis, this pathway apparently makes itself more acceptable than other pathways. As sketched in Scheme 3-4, this mechanism would be expected to involve solvent nucleophilic attack and a ligand inversion process.

\[
\begin{align*}
\text{Ligand Inversion} & \quad \text{S-O} & \quad \text{H}_3\text{C} \quad \text{S-Pd} \quad \text{Cl} \\
\text{DMSO} & \quad \text{+} & \quad \text{DMSO} & \quad \text{->} & \quad \text{DMSO} & \quad \text{->} & \quad \text{DMSO}
\end{align*}
\]

Scheme 3-4
When the temperature increases, the fluxional process begins with solvent attack. Since there is a open position opposite to the oxygen donor, Pd(II) ion exhibits its preference for Pd-S bonding in this site. DMSO attacks the Pd atom through the sulfur atom and forms an octahedral intermediate. The intermediate is unstable because it has 20 electrons and then quickly lose the O donor to form an 18 electron intermediate. As the temperature continues to rise, the complex decomposes and [9]aneOS₂ molecule becomes a free ligand, and then after the ligand inversion, [9]aneOS₂ recombines with the Pd atom to reform the complex. The inversion taking place in the free ligand state averages all the methylene proton signals in the ¹H NMR spectra, but the life time of free ligand is too short to be detected by ¹H NMR.

This mechanism is fully consistent with the ¹H and ¹³C NMR spectral changes. From Table 3-3 it can be seen that the ¹³C chemical shifts at 22°C and 120°C differ by 0.27, 1.1, and 1.7% for -(CH₂S)₂-, -CH₂S- and -CH₂O- respectively. These changes support the mechanism involving DMSO nucleophilic attack. After solvent attack the O donor is dissociated first, and following that a conformational inversion process may take place that moves the O atom from an endoentate to an exoentate position. A similar conformation change was introduced to explain the observation of fluxionality in [PtRR'([9]aneS₃)] [20]. This is consistent with the observation of the greatest change in the
13C NMR spectrum occurring in the -CH$_2$O- group. Meanwhile, the solvent peak (quintet, 39.50 ppm for d$_6$-DMSO) remains unchanged over the temperature range. This excludes the possibility of the chemical shift changes being due to thermal broadening effects in these 13C spectra, and verifies that the spectral changes originate in the ligand.

The observed structural non-rigidity in [Pd([9]aneOS$_3$)Cl$_2$] may be due to the weak Pd-O bond in the distorted square-pyramidal structure, which could make [Pd([9]aneOS$_3$)Cl$_2$] susceptible to the fluxional activity.

3.4. Conclusion

Although ligand fluxions of cyclic chalcogen ligands have been reported previously [15,20,24], [Pd([9]aneOS$_3$)Cl$_2$] provides, to our knowledge, the first example of ligand fluxion involving a hard O-donor in a macrocyclic chalcogen ligands. Fluxionality with the participation of oxygen atoms is also unknown to date in complexes of acyclic chalcogen ligands. The intermolecular fluxional process involving ligand inversion is different from the reported 1,4-shift mechanism in Pd(II) complexes of crown thioether.
3.5. References

35. Holmes, P.R., Pentacoordinated Phosphorus, Vol.1, ACS
IV. Synthesis and Properties of $[\text{Cu}([9]\text{aneOS}_2)_2]\text{ClO}_4$

4.1. Experimental Section

Tetrakis(acetonitrile)copper(I) perchlorate was prepared by the published method [1]. Other reagents were obtained from the Aldrich Chemical Co. Inc. or Alfa Products Inc. and were used without further purification. Spectroscopic data were obtained using the following instruments: IR, Mattson Polaris; NMR, General Electric 300-NB. X-ray data were collected by using a Rigaku AFC6s diffractometer. Electrochemical measurements were carried out under a nitrogen atmosphere at room temperature by using a Cypress Systems, Inc., CS-1087 computer controlled potentiostat. Solution concentrations were 10^{-3} mol/L in complex and 10^{-1} mol/L in supporting electrolyte (tetraethylammonium perchlorate). Voltammograms were recorded in acetonitrile by using a platinum working electrode, a platinum counterelectrode, and an aqueous saturated calomel reference electrode (SCE).
4.1.1. Preparation of [Cu([9]aneOS₂)₂][ClO₄]CH₂CN

A solution of [Cu(CH₂CN)₄]ClO₄ (65 mg, 0.20 mmol) in 10 ml of acetonitrile was added to a solution of [9]aneOS₂ (65 mg, 0.40 mmol) in 5 ml of acetonitrile under a nitrogen atmosphere. The mixture was stirred at 50°C for 2 h. The resulting yellow-green solution was filtered and left to evaporate slowly. Colourless crystals were collected by filtration, washed well with dichloromethane, and dried under vacuum overnight. Yield 83.5 mg (78.4%). IR (cm⁻¹, KBr, Nujol): 2922(vs), 2655(vs), 2245(m), 1465(s), 1411(m), 1377(m), 1296(m), 1264(m), 1229(w), 1182(w), 1133(s), 1062(vs), 1009(s), 926(m), 847(vw), 818(w), 722(vw), 658(vw), 622(s), 470(vw), 441(w). ¹H NMR (ppm from TMS internal standard, CD₂CN): 3.85(t, 4H, CH₂O), 3.07(s, 4H, SCH₂CH₂S), 2.81(t, 4H, CH₂S), 1.93(m, CH₂CN). Anal. calcd. for C₁₄H₂₇ClCuNO₄S₄: C 31.57, H 5.12, N 2.62; found: C 31.69, H 5.12, N 2.57.

4.1.2. X-ray Crystallography

Crystals suitable for X-ray analysis were obtained by slow vapour diffusion of diethyl ether into a solution of the perchlorate salt of the complex in acetonitrile. All measurements were made on a Rigaku AFC6S diffractometer with
Table 4-1. Crystal Data for [Cu([9]aneOS₃)₂][ClO₄]CH₃CN

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>chem formula</td>
<td>C₁₄H₂₇ClCuNO₂S₄</td>
</tr>
<tr>
<td>fw</td>
<td>532.26</td>
</tr>
<tr>
<td>space group</td>
<td>P2/n (No. 14)</td>
</tr>
<tr>
<td>a(Å)</td>
<td>7.743(2)</td>
</tr>
<tr>
<td>b(Å)</td>
<td>19.515(5)</td>
</tr>
<tr>
<td>c(Å)</td>
<td>15.017(2)</td>
</tr>
<tr>
<td>β(deg)</td>
<td>102.85(2)</td>
</tr>
<tr>
<td>T(°C)</td>
<td>26</td>
</tr>
<tr>
<td>V(Å³)</td>
<td>2212.4(9)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>ρcalcd (g cm⁻¹)</td>
<td>1.599</td>
</tr>
<tr>
<td>μ(cm⁻¹)</td>
<td>15.02</td>
</tr>
<tr>
<td>λ(Å)</td>
<td>0.71069</td>
</tr>
<tr>
<td>R</td>
<td>0.036</td>
</tr>
<tr>
<td>Rw</td>
<td>0.038</td>
</tr>
</tbody>
</table>

graphite monochromated Mo Kα radiation. The crystallographic data are presented in Table 4-1.

4.2. Results and Discussion

4.2.1. Crystal Structure of [Cu([9]aneOS₃)₂][ClO₄]CH₃CN

The ORTEP diagram of the complex cation [Cu([9]aneOS₃)₂]⁺ with atomic labelling for the non-hydrogen atoms is shown in Fig. 4-1. Selected bond lengths and angles are presented in Table 4-2.

The copper(I) ion is coordinated by two pairs of sulfur atoms from two [9]aneOS₂ molecules so that the coordination geometry of the copper(I) ion is tetrahedral. The Cu-S a
Fig. 4-1. The structure of $[\text{Cu}([\text{9}]{\text{aneOS}}_2)]^+$

in $[\text{Cu}([\text{9}]{\text{aneOS}}_2)]^+[\text{ClO}_4^-]{\text{CH}_3}{\text{CN}}$
Table 4-2. Selected Geometrical Parameters for [Cu([9]aneOS₃)]²⁻

<table>
<thead>
<tr>
<th>Intramolecular Distances (Å)</th>
<th>atom</th>
<th>atom</th>
<th>distance</th>
<th>atom</th>
<th>atom</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(1) S(1)</td>
<td>2.302(1)</td>
<td>S(4) C(8)</td>
<td>1.815(5)</td>
<td>Cu(1) S(2)</td>
<td>2.356(1)</td>
<td>S(4) C(9)</td>
</tr>
<tr>
<td>Cu(1) S(3)</td>
<td>2.292(1)</td>
<td>O(1) C(4)</td>
<td>1.418(5)</td>
<td>Cu(1) S(4)</td>
<td>2.345(1)</td>
<td>O(1) C(5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intramolecular Bond Angles (deg.)</th>
<th>atom</th>
<th>atom</th>
<th>atom</th>
<th>angle</th>
<th>atom</th>
<th>atom</th>
<th>atom</th>
<th>angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(1) Cu(1) S(2)</td>
<td>92.99(4)</td>
<td>S(1) Cu(1) S(3)</td>
<td>130.20(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S(1) Cu(1) S(4)</td>
<td>115.10(4)</td>
<td>S(2) Cu(1) S(3)</td>
<td>119.86(5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S(2) Cu(1) S(4)</td>
<td>103.88(4)</td>
<td>S(3) Cu(1) S(4)</td>
<td>93.53(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Torsion Angles for [9]aneOS₃ Ring (deg.)</th>
<th>atoms</th>
<th>angle</th>
<th>atoms</th>
<th>angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(3) C(7) C(8) S(4)</td>
<td>-46.3(4)</td>
<td>S(3) C(12) C(11) O(2)</td>
<td>58.0(4)</td>
<td></td>
</tr>
<tr>
<td>S(4) C(9) C(10) O(2)</td>
<td>-66.9(4)</td>
<td>C(1) S(1) C(6) C(5)</td>
<td>-76.9(3)</td>
<td></td>
</tr>
<tr>
<td>S(1) C(1) C(2) S(2)</td>
<td>-49.5(4)</td>
<td>C(1) C(2) S(2) C(3)</td>
<td>-68.2(3)</td>
<td></td>
</tr>
<tr>
<td>S(1) C(6) C(5) O(1)</td>
<td>60.8(4)</td>
<td>C(2) S(2) C(3) C(4)</td>
<td>97.1(3)</td>
<td></td>
</tr>
<tr>
<td>C(2) C(1) S(1) C(6)</td>
<td>129.8(3)</td>
<td>C(3) C(4) O(1) C(5)</td>
<td>134.2(4)</td>
<td></td>
</tr>
<tr>
<td>C(4) O(1) C(5) C(6)</td>
<td>-141.4(4)</td>
<td>C(7) S(3) C(12) C(11)</td>
<td>-77.0(4)</td>
<td></td>
</tr>
</tbody>
</table>
distances range from 2.292(1) to 2.345(1) Å with an average length of 2.324 Å. These results compare well with those from [Cu(3,6-dithiaoctane)₂]⁺ [2] which varied from 2.280(4) Å to 2.318(5) Å with an average of 2.303 Å and those from [CuL₂]⁺ (L=2,5,8-trithia[9] (2,5)thiophenophane) [3] which range from 2.301(3) Å to 2.392(3) Å with an average of 2.340 Å.

The angles about the copper atom vary from 92.99(4) to 130.20(5)°. The distortions from the ideal tetrahedral angles arise mainly from constraints within the macrocyclic rings. As two coordinated sulfur atoms come from the same ligand, the S-Cu-S angle is compressed to about 93° which is often found in five-membered chelate rings of copper(I) [2-4]. When the sulfur atoms are in different ligand molecules, the S-Cu-S angles are close to the tetrahedral values (except one with ~ 130°) (Table 4-2). These two types of angles are often observed in [2+2] coordination of copper(I) complexes [2,3].

The [2+2] coordination of [Cu([9]aneOS₂)₂]⁺ is different from [Cu([9]aneS₃)₂]⁺ which has [3+1] coordination geometry [5].
The difference can be explained by the preference of copper(I) for soft S-donors over hard O-donors, so [9]aneOS₃ is not able to adopt a facial coordination conformation as [9]aneS₂ does. The macrocyclic ligand has a [234] conformation (Table 5-2), whereas the [333] conformation was observed in [Cu([9]aneS₃)₂]⁺. The three hetero-atoms adopt an up-up-down arrangement and the uncoordinated oxygen atom is orientated away from the metal centre. This conformation is similar to conformation II of the free ligand obtained from molecular mechanics calculations (Chapter II), but differs from [Pd([9]aneOS₃)Cl₂] in which the ligand adopts facial coordination conformation (Chapter III). These observations indicate the [9]aneOS₃ molecule is a considerably flexible ligand. The torsion angles for C-C-O-C in the two copper-bound ligand molecules range from 134.2(4) to 141.5(4)°, is consistent with the preference of oxygen atoms for anti-placement (see Chapters I and II).

4.2.2. IR Spectrum

The IR spectrum shows strong bands at 1062 cm⁻¹ and 622 cm⁻¹ corresponding to the characteristic vibrational frequencies of the perchlorate ion [5]. A band at 2245 cm⁻¹ is typical of ν(C≡N) in the uncoordinated CH₃CN molecule [6].
4.2.3. Electrochemistry

Cyclic voltammetry of \([\text{Cu(}9\text{aneOS})_2]\text{ClO}_4\) (Fig. 4-2) reveals a quasi-reversible one electron wave at +0.607 V vs. SCE, with \(\Delta E_p\) of 0.114 V at a scan rate of 110 mV/s (the ferrocenium/ferrocene potential under the similar conditions was 0.437 V with \(\Delta E_p=0.081 V\)). No other waves appear within the potential limit of the solvent and solutions of the free ligand show no redox activity in the voltage range 0.0-1.0 V vs. SCE under the same conditions.

The observation of a quasi-reversible process instead of a reversible one indicates the likelihood that the \(\text{Cu}^2+/\text{Cu}^1\) redox process is accompanied by a change of coordination number, and this is strongly supported by the independent synthesis of \([\text{Cu(}9\text{aneOS})_2]\text{ClO}_4)_2\). By comparison to \([\text{Cu(}14\text{S4})(\text{OCIO}_3)]^2+\) which is known to adopt pseudo-octahedral geometry [7], \([\text{Cu(}9\text{aneOS})_2]\text{ClO}_4)_2\) probably also is pseudo-octahedral because electronic spectra are very similar (for \([\text{Cu(}14\text{S4})(\text{OCIO}_3)]_2\): 390 nm (8200 M\(^{-1}\)cm\(^{-1}\)) and 570 nm (1900 M\(^{-1}\)cm\(^{-1}\)); for \([\text{Cu(}9\text{aneOS})_2]\text{ClO}_4)_2\): 390 nm (2700 M\(^{-1}\)cm\(^{-1}\)) and 560 nm (280 M\(^{-1}\)cm\(^{-1}\))). Because bond formation/cleavage is typically slower than electron transfer, whereas reversible behaviour requires that electron transfer determine the rate of the redox process [8], it is expected that any change of coordination geometry a
Fig. 4-2. The cyclic voltammogram of [Cu([9]aneS$_2$)$_2$]ClO$_4$CH$_2$CN in CH$_2$CN (platinum working electrode, platinum wire counter electrode and SCE reference electrode) at scan rate of 110 mV/s.
will disturb the reversible process.

Though measured under somewhat different conditions, a series of Cu(II) complexes of thioethers (both linear and macrocyclic ligands) shows redox potentials for the Cu\(^{II}/\text{Cu}^{I}\) couple ranging from +0.46 to +0.72 V vs. SCE [9-11]. The relatively high redox potential of [Cu([9]aneOS)\(_2\)]\(^+\) (+0.607 V vs. SCE) suggests the ligand [9]aneOS\(_2\) considerably stabilizes Cu(II) over Cu(II).

It is notable that octahedral [Cu([9]aneS)\(_2\)]\(^2+\) was reduced in a quasi-reversible fashion at +0.61 V vs. SCE [10] which is almost the same redox value as that of [Cu([9]aneOS)\(_2\)]\(^+\). Recent electrochemical studies reveal that redox processes of the [Cu([9]aneS)\(_2\)]\(^2+/\text{[Cu([9]aneS)\(_2\)]}^+\) system follow an ECEC mechanism rather than a simple electron transfer mechanism. A square ECEC mechanism was proposed to account for the changes in coordination geometry associated with electron transfer [14].

For the [Cu([9]aneOS)\(_2\)]\(^2+/\text{[Cu([9]aneOS)\(_2\)]}^+\) couple, it should be borne in mind that there is one hard O-donor in the [9]aneOS\(_2\) ligand. Since [Cu([9]aneOS)\(_2\)]\(^2+\) probably adopts octahedral geometry like [Cu(14S4)(OCIO\(_5\))]\(^2+\) [7], it is possible that the oxygen donor in [9]aneOS\(_2\) will participate in the redox process, though there is not clear experimental evidence so far to support this. In contrast to the much higher potentials found for complexes with thioethers, typical Cu\(^{II}/\text{Cu}^{I}\) couples with
nitrogen- or oxygen-donor ligands exhibit redox potentials between -0.7 and 0 V vs. SCE [12]. It is interesting to find that the copper complexes of [9]aneS, and [9]aneOS, have almost the same redox potentials. This observation suggests that an oxygen donor might have a similar effect as a sulfur donor in manipulating the redox potential of the Cu\(^{II}/Cu^{I}\) couple in a coordination environment mainly comprising thioethers. This discovery is helpful in comprehending the function of some metal-containing redox proteins function such as, for example, the "blue" copper-containing oxidases [13].

4.3. References:

V. Synthesis and Properties of [Cu([9]aneOS₂)Br₂]

5.1. Preparation of [Cu([9]aneOS₂)Br₂]

A solution of CuBr (72 mg 0.50 mmol; Aldrich Chemical Co. Inc.) in 15 ml of acetonitrile was added to a solution of [9]aneOS₂ (98 mg, 0.57 mmol) in 20 ml of acetonitrile. The solution colour changed from green to light brown and a yellow precipitate was formed. The precipitate disappeared after the mixture was refluxed for 2 h. with stirring. The solution was allowed to cool to room temperature resulting in precipitation of a grey crystalline solid. The precipitate was separated, washed with ethanol, and recrystallized from acetonitrile to give 108 mg (70%) of [Cu([9]aneOS₂)Br₂]₂ as colourless crystals. IR (cm⁻¹, KBr, Nujol): 2923 (vs), 2855 (vs), 1461 (s), 1410 (m), 1378 (s), 1357 (m), 1304 (m), 1261 (m), 1224 (m), 1133 (s), 1004 (m), 923 (m), 843 (m), 813 (w), 781 (w), 722 (w), 665 (w), 613 (w), 474 (w), 440 (m). Anal. calcd. for C₁₀H₁₂OCuBrS₂: C 23.42, H 3.93; found: C 23.58, H 3.93.

5.2. Results and Discussion

5.2.1. Descriptions of the Structure

The ORTEP perspective drawing of [Cu([9]aneOS₂)Br₂]₂ with
<table>
<thead>
<tr>
<th>chem formula</th>
<th>$C_7H_{12}OCuBrS_2$</th>
<th>$V(\text{Å}^3)$</th>
<th>508.1(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fw</td>
<td>307.73</td>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>space group</td>
<td>P1 (No.2)</td>
<td>$\mu_{\text{calc}} (\text{g cm}^{-1})$</td>
<td>2.011</td>
</tr>
<tr>
<td>$a(\text{Å})$</td>
<td>7.808(5)</td>
<td>$\mu (\text{cm}^{-1})$</td>
<td>63.93</td>
</tr>
<tr>
<td>$b(\text{Å})$</td>
<td>8.880(3)</td>
<td>$\lambda (\text{Å})$</td>
<td>0.71096</td>
</tr>
<tr>
<td>$c(\text{Å})$</td>
<td>7.567(2)</td>
<td>R</td>
<td>0.027</td>
</tr>
<tr>
<td>$\alpha(\text{deg})$</td>
<td>92.44(3)</td>
<td>R_w</td>
<td>0.027</td>
</tr>
<tr>
<td>$\beta(\text{deg})$</td>
<td>100.32(3)</td>
<td>$T(\circ C)$</td>
<td>26</td>
</tr>
<tr>
<td>$\gamma(\text{deg})$</td>
<td>99.30(4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5-2. Selected Geometrical Parameters for $[\text{CuBr([9]aneOS}_2)]_2$

Intramolecular Distances (Å)

<table>
<thead>
<tr>
<th>atom</th>
<th>atom</th>
<th>distance</th>
<th>atom</th>
<th>atom</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br(1)</td>
<td>Cu(1)</td>
<td>2.557(1)</td>
<td>Br(1)</td>
<td>Cu(1)</td>
<td>2.392(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>C(4)</td>
<td>1.414(5)</td>
<td>Cu(1)</td>
<td>S(1)</td>
<td>2.338(2)</td>
</tr>
<tr>
<td>O(1)</td>
<td>C(5)</td>
<td>1.410(5)</td>
<td>Cu(1)</td>
<td>S(2)</td>
<td>2.345(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>C(2)</td>
<td>1.437(7)</td>
<td>S(1)</td>
<td>C(1)</td>
<td>1.811(5)</td>
</tr>
<tr>
<td>C(3)</td>
<td>C(4)</td>
<td>1.500(7)</td>
<td>S(1)</td>
<td>C(6)</td>
<td>1.813(5)</td>
</tr>
</tbody>
</table>
Table 5-2 (continued)

C(5) C(6) 1.507(7) S(2) C(2) 1.799(5)

Intramolecular Bond Angles (deg.)

<table>
<thead>
<tr>
<th>atom</th>
<th>atom</th>
<th>atom</th>
<th>angle</th>
<th>atom</th>
<th>atom</th>
<th>atom</th>
<th>angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(1)</td>
<td>Br(1)</td>
<td>Cu(1)</td>
<td>70.28(4)</td>
<td>Cu(1)</td>
<td>S(2)</td>
<td>C(2)</td>
<td>95.9(2)</td>
</tr>
<tr>
<td>Br(1)</td>
<td>Cu(1)</td>
<td>Br(1)</td>
<td>109.72(4)</td>
<td>Cu(1)</td>
<td>S(2)</td>
<td>C(3)</td>
<td>113.5(2)</td>
</tr>
<tr>
<td>Br(1)</td>
<td>Cu(1)</td>
<td>S(1)</td>
<td>104.22(5)</td>
<td>C(2)</td>
<td>S(2)</td>
<td>C(3)</td>
<td>104.3(3)</td>
</tr>
<tr>
<td>Br(1)</td>
<td>Cu(1)</td>
<td>S(2)</td>
<td>99.34(5)</td>
<td>C(4)</td>
<td>O(1)</td>
<td>C(5)</td>
<td>116.4(4)</td>
</tr>
<tr>
<td>Br(1)</td>
<td>Cu(1)</td>
<td>S(1)</td>
<td>120.55(5)</td>
<td>S(1)</td>
<td>C(1)</td>
<td>C(2)</td>
<td>119.8(4)</td>
</tr>
<tr>
<td>Br(1)</td>
<td>Cu(1)</td>
<td>S(2)</td>
<td>126.47(4)</td>
<td>S(2)</td>
<td>C(2)</td>
<td>C(1)</td>
<td>121.5(4)</td>
</tr>
<tr>
<td>S(1)</td>
<td>Cu(1)</td>
<td>S(2)</td>
<td>92.76(6)</td>
<td>S(2)</td>
<td>C(3)</td>
<td>C(4)</td>
<td>114.6(3)</td>
</tr>
</tbody>
</table>

Torsion Angles (deg.)

<table>
<thead>
<tr>
<th>atoms</th>
<th>angle</th>
<th>atoms</th>
<th>angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br(1)Cu(1)Br(1)Cu(1)</td>
<td>0</td>
<td>S(1) C(1) C(2) S(2)</td>
<td>32.3(7)</td>
</tr>
<tr>
<td>S(1) C(6) C(5) O(1)</td>
<td>-60.4(4)</td>
<td>Br(1)Cu(1)Br(1)Cu(1)</td>
<td>0</td>
</tr>
<tr>
<td>Cu(1)Br(1)Cu(1)Br(1)</td>
<td>0</td>
<td>S(2) C(3) C(4) O(1)</td>
<td>67.5(5)</td>
</tr>
<tr>
<td>Cu(1)Br(1)Cu(1)Br(1)</td>
<td>0</td>
<td>C(1) C(2) S(2) C(3)</td>
<td>79.8(5)</td>
</tr>
<tr>
<td>C(2) S(2) C(3) C(4)</td>
<td>-92.5(4)</td>
<td>C(2) C(1) S(1) C(6)</td>
<td>-120.0(5)</td>
</tr>
<tr>
<td>C(3) C(4) O(1) C(5)</td>
<td>-139.1(4)</td>
<td>C(4) O(1) C(5) C(6)</td>
<td>140.1(4)</td>
</tr>
</tbody>
</table>
Fig. 5-1 The structure of $[\text{Cu}([\text{9}]\text{aneOS}_2)\text{Br}]_2$
atomic labelling for the non-hydrogen atoms is shown in Fig. 5-1. The crystal data are presented in Table 5-1. Selected bond distances, angles, and torsion angles are in Table 5-2.

As illustrated in Fig. 5-1, the molecule of \([\text{Cu}([9]\text{aneOS}_2)\text{Br}]_2\) exists as a dimer and is centrosymmetric. The copper(I) centres are in a tetrahedral coordination environment and connected via two inequivalent bromide bridges (Cu-Br = 2.557(1) Å, and Cu-Br' = 2.392(1) Å). They are, in addition, each bonded to two sulfur donors from the macrocyclic ligand with bond lengths: Cu-S = 2.338(2) Å and Cu-S = 2.345(1) Å.

The bond angles around copper(I) deviate from those of standard tetrahedral geometry and range from 92.76(6)° to 126.47(4)°. Of these, the smallest is the compressed S-Cu-S angle, as we have seen previously in the case of \([\text{Cu}([9]\text{aneOS}_2)_2]^+\). The Cu(1)-S(2)-C(2) angle is also reduced to 95.9(2)° owing to constraints in the chelating ring.

Examination of the \(\text{Cu}_2(\mu-\text{Br})_2\) plane reveals a close Cu-Cu distance of 2.852(1) Å and a small Cu-Br-Cu' angle (70.28(4))°. The Cu-Cu distance is shorter than those found in \((\text{NET}_4)_2[\text{Cu}_2\text{Br}_4]\) [1] and \([\text{Cu}_2(\text{triphenylphosphine})_2\text{Br}_2]\) [2] (Cu-Cu = 2.937(3) Å and 2.992(2) Å, respectively), but longer than those of some copper(I)-iodide species like \([\text{(AsPh}_3)(\text{MeCN})\text{CuI}]_2\) (Cu-Cu = 2.779(1) Å) [3]. Mehrotra and Hoffmann suggested that a Cu-Cu distance of 2.83 Å represents overlap populations of 0.32 (bonding energy -0.417 eV) from molecular orbital calculations.
on tetrameric Cu⁺⁺ clusters [4]. Thus, the short Cu¹⁻Cu¹ bond distance may represent a weak copper-copper interaction in the [Cu([9]aneOS₂)Br]₂ dimer.

5.2.2. Electrochemistry

The investigation of redox properties of [Cu([9]aneOS)Br]₂ was undertaken in acetonitrile by using a three-electrode cell system consisting of a platinum working electrode, an aqueous saturated calomel reference electrode (SCE), and a platinum counter-electrode. Solution concentrations were 10⁻³ mol/L in the complex and 10⁻¹ mol/L in tetraethylammonium perchlorate as a supporting electrolyte. The cyclic voltammogram of dimeric [Cu([9]aneOS₂)Br]₂ is shown in Fig. 5-2.

Though the molecule contains two redox-active sites, only a single wave (E₁/₂=0.594 V vs. SCE, scan rate: 110 mV/s) appears in the cyclic voltammogram. This indicates two oxidation reactions in [Cu([9]aneOS₂)Br]₂ may occur at the same potential (E₁ = E₂) according to the result [5]:

\[\text{Cu}^{1+} - \text{Cu}^{2+} \stackrel{E_1^o}{\leftrightarrow} \text{Cu}^{2+} - \text{Cu}^{3+} \]

The electrochemical behaviour of molecules with two or more chemically equivalent and reversible redox centres has been the subject of theoretical and experimental studies [6-9].
Fig. 5-2 Cyclic voltammograms of [Cu([9]aneOS₂)Br] in CH₂CN (platinum working electrode, platinum wire counter electrode and SCE reference electrode) at scan rates: 40, 80, 120 and 160 mV/s.
If sequential electron transfer for both oxidations occurs at the same potential \((E^0_1 = E^0_2) \), the theoretical peak separation for the reversible process should be 42 mV \([10,11]\). Though the separation of cathodic and anodic peaks for \([\text{Cu([9]aneOS}_2]\)Br\(_2\) is about 100 mV, it does not change significantly with increasing scan rate (Fig. 5-2). Thus, the redox reactions in \([\text{Cu([9]aneOS}_2]\)Br\(_2\) can be described as quasi-reversible. The deviation of these from a reversible redox process suggests that these redox reactions are not solely charge-transfer dominated. In fact, electron-transfer reactions coupled with chemical reactions are very frequent \([12-15]\). Thus, the present redox behaviour is better interpreted as following an ECE mechanism (C indicating chemical reactions which either precede or follow the charge transfers E) rather than a simple EE mechanism.

For the dinuclear bridged \([\text{Cu([9]aneOS}_2]\)Br\(_2\), the two stepwise electron transfers (eq. 1) may cooperate with a disproportionation reaction (eq. 2) \([16]\):

\[
\begin{align*}
\text{Cu}^{+} - \text{Cu}^{+} & \leftrightarrow \text{Cu}^{+} - \text{Cu}^{+} \leftrightarrow \text{Cu}^{+} - \text{Cu}^{+} & \text{eq. 1} \\
2\text{Cu}^{+} - \text{Cu}^{+} & \leftrightarrow \text{Cu}^{+} - \text{Cu}^{+} & \text{eq. 2}
\end{align*}
\]

On the other hand, the bond forming and breaking during the charge-transfer process also needs to be taken into account. It is possible that oxidation of the tetrahedral \(\text{Cu(I)}\)
to Cu(II) will be associated with some change of coordination sphere. These structural changes will intervene unavoidably in the charge-transfer process, and therefore contribute to deviation from a reversible process.

5.3. References

VI. Synthesis and characterisation of [Ag([18]aneO$_2$S$_4$)]ClO$_4$

6.1. Preparation of [Ag([18]aneO$_2$S$_4$)]ClO$_4$

A solution of AgClO$_4$·xH$_2$O (20.7 mg, ~ 0.1 mmol, Aldrich Chemical Co. Inc.) in 5 ml of methanol was added to a solution of [18]aneO$_2$S$_4$ (32.8 mg, 0.100 mmol) in 5 ml dichloromethane immediately resulting in a white precipitate. The white solid dissolved after stirring for 30 min. at 50°C. The clear solution was left standing in air to allow slow evaporation of solvent. The resulting white solid was washed well with dichloromethane, and dried in vacuum overnight. Yield 44.1 mg (82.3%). IR (cm$^{-1}$, KBr, Nujol): 2923 (vs), 2854 (vs), 1465 (vs), 1377 (s), 1260 (s), 1141 (s), 1116 (s), 1027 (s), 962 (m), 915 (m), 836 (m), 776 (w), 755 (m), 722 (w), 636 (m), 571 (m), 514 (m), 493 (w), 434 (w). Anal. calcd. for C$_{12}$H$_6$AgClO$_6$S$_4$: C 26.90, H 4.51; found: C 27.08, H 4.56.

6.2. Results and Discussion

6.2.1. Structure of [Ag([18]aneO$_2$S$_4$)]ClO$_4$

A crystal suitable for x-ray diffraction measurements was obtained by vapour diffusion of diethyl ether into a solution of [Ag([18]aneO$_2$S$_4$)]ClO$_4$ in nitromethane. All measurements were made on a Rigaku AFC6S diffractometer with graphite monochromated Mo
Fig. 6-1. The structure of the $[Ag([18]aneO_2S_4)]^+$
Kα radiation and a 2 kW sealed tube generator. The
crystallographic data are presented in Table 6-1.

An ORTEP drawing of the complex cation [Ag([18]aneO₂S₄)]⁺ is
shown in Fig. 6-1. Bond lengths and angles are presented in

Table 6-1. Crystal Data for [Ag([18]aneO₂S₄)]ClO₄

<table>
<thead>
<tr>
<th>chem formula</th>
<th>C₁₂H₂₄AgClO₆S₄</th>
<th>V(Å³)</th>
<th>2023.3(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fw</td>
<td>535.88</td>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>space group</td>
<td>P2₁/C(No.14)</td>
<td>ρ<sub>calc</sub>(g cm⁻¹)</td>
<td>1.759</td>
</tr>
<tr>
<td>a(Å)</td>
<td>9.089(2)</td>
<td>μ(cm⁻¹)</td>
<td>15.39</td>
</tr>
<tr>
<td>b(Å)</td>
<td>18.663(5)</td>
<td>λ(Å)</td>
<td>0.71069</td>
</tr>
<tr>
<td>c(Å)</td>
<td>12.090(2)</td>
<td>R</td>
<td>0.037</td>
</tr>
<tr>
<td>β(deg)</td>
<td>99.39(2)</td>
<td>R<sub>w</sub></td>
<td>0.030</td>
</tr>
<tr>
<td>T(°C)</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6-2. Selected Bond Lengths and Angles
for [Ag([18]aneO₂S₄)]⁺

<table>
<thead>
<tr>
<th>Intramolecular Distances (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>atom</td>
</tr>
<tr>
<td>Ag(1)</td>
</tr>
</tbody>
</table>
Table 6-2. (continued)

![Table 6-2.](image)

The central silver(I) ion adopts a severely distorted tetrahedral geometry. It is surrounded by four sulfur atoms, and the two oxygen atoms do not interact with the metal ion. The S-Ag-S angles in the two five-membered chelate rings, as in the case of [Cu([9]aneOS₃)]⁺, are compressed to 84.59(5)° and 85.16(4)° and the S-Ag-S angles in the two eight-membered metallacyclic rings are open to 137.39(5)° and 139.32(5)°.

The Ag-S bond lengths vary from 2.585(1) Å to 2.603(2) Å with an average distance of 2.594 Å, similar to those reported previously for [Ag([9]aneS₃)Cl] [1] and [Ag₃([9]aneS₃)]³⁺ [3] with
Table 6-3. Torsion Angles

| Ligand Torsion Angles in [Ag([18]aneO$_2$S$_4$)]$^+$ (deg.) |
|------------------|-------------------|
| atoms | angle | atoms | angle |
| S(3) C(6) C(5) O(1) | 72.4(5) | S(3) C(7) C(8) S(4) | 53.9(5) |
| S(4) C(9) C(10) O(2) | -57.0(5) | C(1) S(1) C(11) S(4) | -155.5(4) |
| S(1) C(1) C(2) S(2) | 54.8(8) | C(1) C(2) S(2) C(3) | 75.1(6) |
| S(1) C(12) C(11) O(2) | 74.0(5) | C(2) S(2) C(3) C(4) | -96.1(5) |
| C(2) C(1) S(1) C(12) | 72.4(6) | C(3) C(4) O(1) C(5) | -177.8(5) |
| C(4) O(1) C(5) C(6) | -161.9(4) | C(5) C(6) S(3) C(7) | -158.1(4) |
| C(6) S(3) C(7) C(8) | 68.9(4) | C(7) C(8) S(4) C(9) | 77.9(4) |
| S(2) C(3) C(4) O(1) | -56.6(6) | C(8) S(4) C(9) C(10) | -94.3(4) |
| C(9) C(10) O(2) C(11) | 178.9(4) | C(10) O(2) C(11) C(12) | -164.0(5) |

| Torsion Angles for Free [18]aneO$_2$S$_4$ (deg.) |
|------------------|-------------------|
| atoms | angle | atoms | angle |
| S(1) C(1) C(2) S(2) | 174.5(1) | C(2) S(2) C(3) C(4) | 71.0(2) |
| S(1) C(6) C(5) O(1) | 178.6(1) | C(2) C(1) S(1) C(6) | 69.3(2) |
| S(2) C(3) C(4) O(1) | -73.3(2) | C(3) C(4) O(1) C(5) | -174.0(2) |
| C(1) S(1) C(6) C(5) | 174.5(1) | C(4) O(1) C(5) C(6) | -179.3(2) |
| C(1) C(2) S(2) C(3) | 62.1(2) | | |
average length of 2.60 Å, but shorter than those in the octahedral species of [Ag([18]aneS₆)]⁺ (average 2.742 Å) [2] and [Ag([9]aneS₃)₂]⁺ (average 2.72 Å) [1].

Ligand torsion angles in [Ag([18]aneO₂S₄)]⁺ are listed in Table 6-3, and for the sake of comparison, values for the free ligand are also presented. Significant change is found in two S-C-C-S linkages, which adopt anti placement (174.5°) in the free ligand, but turn to the unfavoured gauche orientation in [Ag([18]aneO₂S₄)] (53.9(5)° and 54.8(8)°). These conformational rearrangements are apparently introduced by the coordination requirements. Interestingly, the two unfavoured anti C-S-C-C (174.5°) placements are still observed in the complex (155.5° and 158.1°), with only minor changes. This indicates, at least for [18]aneO₂S₄, that the ligand has a tendency to preserve its original conformation upon complexation, or in other words, even intrinsic conformation preference and complexation fail to perturb it significantly. This tendency ensures the minimal inversion enthalpy required to form metal complexes.
6.3. References

