PYROLYSIS OF 1-METHYL-2-PHENYLDIAZENE

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

ARTHUR M. COOK

PYROLYSIS OF 1-METHYL-2-PHENYLDIAZENE

@ Arthur M. Cook, B.Sc.

Submitted in partial fulfillment of the requirements for the degree of Master of Science

Department of Chemistry Memorial University of Newfoundland St. John's, Newfoundland, Canada A1B 3X7 Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise, reproduced without his/her/written permission.

L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vandre des exemplaires du film.*

L'auteur (titulaire du droitd'auteur) se réserve les autres droits de publication, ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ISBN 0-315-50464-1

Abstract

The question of whether diazenes lose nitrogen through one or two bond scission has been a subject of study for over fifty years. Using recently available data on azobenzene and previously published Arrhenius parameters for azomethane a kinetic approach was taken to this problem using 1-methyl-2-phényldiazene.

In the first part of this thesis the synthesis and purification of 1-methyl-2phenyldiazene is described.

The next section deals with the construction of the vacuum line and its associated apparatus. The problems with the original design are discussed and modifications which were made to the line are outlined.

In the results section are presented the definition of the rate constant for nitrogen formation and a table of products of reaction, which, with the associated appendices show how the products were identified and measured. The yield-time, order,and Arrhenius plots are then presented for both the unpacked and packed reaction vessels as well as results for experiments in which propone was present.

A summary of the observations is first given in the discussion section. The possibility of direct decomposition of 1-methyl-2-phenyldiazene with no contribution from the chain is next discussed, along with a consideration of the trans to cis isomerization. Both are shown to be implausible, using aguments based on the results obtained.

Based on the effect of propene, the orders of reaction, and the values of the Arrhenius parameters, two mechanisms are then proposed. The simple one is written to show that nitrogen may be formed by a chain reaction as well as by simple fission of 1-methyl-2-phenyldiazene. It is solved to show that it is first order with respect to nitrogen formation. The second mechanism accounts for the products of reaction, and also adds a second chain to the pyrolysis. Speculation on the formation and

reaction of diradicals is then mode. The complete nechanism is then solved to show that it too is first order with respect to nitrogen formation.

Possible Arrhenius parameters of the simple fission of T-methyl-2-phenyldiazene are then proposed based on the propene results. These parameters agree quite well with what Forst and Rice obtained for azomethane and suggest one bond scission of 1-methyl-2-phenyldiazene.

Speculation as to why, in the initial series of propene experiments, no inhibition of the rate of nitrogen formation appeared is then made. The possible role of phenylhydrazone is also considered.

Finally, the erratic behavior of the reaction after the initial series of propene experiments is commented on, and further directions for the study of this reaction are presented.

phenylhydrazone of methanal

Acknowledgements

I first of all wish to express my gratitude to my supervisor, Dr. Don Barton, for kindling my interest in gas phase kinetics and for his advice and encouragement during the course of this work.

I am indebted to the staff of Memorial University's Technical Services Department for their expertise and technical assistance with apparatus and equipment. I would particularly wish to thank glassblowers Mr. Doug Seymour, Mr. Martin Hatswell and Mr. Tom Perks.

The assistance and helpful advice of Mr. Avery Earle in performing the linear regression analysis and preparation of the associated figures was also greatly appreciated.

The encouragement of Dr. Peter Golding throughout this project, along with the use of his lab and equipment is gratefully acknowledged.

I also wish to thank Miss Teresa Barker for typing this thesis and Mr. John Kane for preparation of the figures.

Finally I wish to thank Dr. Keith Winter and the Division of Junior Studies, and the Department of Chemistry, for financial support during the course of this study.

Table of Contents

					•						•						
	bstraet							•								11	
Α	Acknowledg		1													iv	
L	ist of Tab	les (٠٠٠ نيد	r		٠.				٠.				•		vii	
L	ist of Figu	res · `.)	٠			٠.						٠.			ix	
I.	Introduc	tion		٠,٠		٠.		٠		•::			٠.			1	
11	. Experim	ental .			٠,	٠.	٠.		٠.	٠,					٠.	8	
	1. Prep	aration of	1-Methýl-	2-Phe	nyldi	azer	ie an	d P	urif	icati	ion	of l	Pro	per	ne	.,8	
	. a.	Synthesis			. :								٠.			. 8	
		Purificati														. 9	
		Purification														10	
		Purificati														13	
															•		
		nm Line													•>•	14	
	. — a.	Pumping	System			. :					:	. :				14	
	, b.	Toepler P	umps ·			٠.					•					14,	
	c.	Pressure (Gauge	٠,٠				. •				٠.				-20	
	- d.	Reaction	Vessels	.′	٠.,	٠.	٠.		٠.	:						20	
	· e.	Reaction '	Vessel Ove	en .		. ; .				. :		. :				20	
	f.	Gas Chror	natograph		,											22	
	g.	Air Bath		٠								٠				. 23	
	3. Proce															- 27	
	, . a.	Packed Re	eaction Ve	esel			٦	٠.							. 1	27	
		Unpacked							•							28	
		Unpacked					-	10								28	
Ш							•										
ш																29	
		ition of Ra	•		٠.											. 29	
	2. Unp	cked Vess	el .		٠.,	٠.		•	٠.		:	• •		•	•	29	
	a.	Products	:				٠. ٠								5	29	

b. Yield versus Time Plots) .
c. Order Plots	2 .
d. Addition of Propene	2
e. Rate Constant versus Temperature and Arrhenius Plot 45	5
3. Packed Vessel	5*
V. Discussion	5
1. Interpretation of Data	5
2. Rate Controlling Elementary Fission	5
3. Rate Controlling Isomerization	6
4. Chain Reaction	6
a. Simple Mechanism	6 .
	0 4
c. Complete Mechanism	2
	6 '
i) Addition	7
ii) Insertion	
e. Rate Equation for the Complete Mechanism. 66	
e. Rate Equation for the Complete Mechanism,	
5. Comments on the Results with Propene	5
6. Speculation on the Effect of Storage	6
7. Speculation on the Role of Phenylhydrazone	6
8. Comments on Erratic Behavior of Rate of Reaction	7
9. Summary and Suggestions for Future Research	8
References	0
Appendix A	3
Appendix B 8	5
Appendix C	6
Appendix D	0

List of Tables

مسد			14	Page '
Table 1.	Products and mole per	rcent for a sample run at 559.05	К	-31
Table 2	Yield versus time data 559.0 K in unpacked v intercepts.	a for nitrogen and methane at vessel with calculated slopes and		35 '
Table 3.		a for nitrogen and methane at ressel with calculated slopes and		36
Table 4.		ts of nitrogen and methane at ressel with calculated slopes.	· · · · ·	39
Table 5.		ts of nitrogen and methane at ressel with calculated slopes.		40
Table 6.		ts of nitrogen and methane at added in unpacked vessel and th	ле 	42
Table 7:	Examples of normal ar	nd erratic runs at 529.4 K	٠٠,٠١٠	46
Table 8.	formation versus temp	ial fit of the rate of nitrogen cerature with the calculated acti- ential factor in unpacked reaction		47
Table 9.	formation versus temp	ial fit of the rate of nitrogen perature with the calculated acti- ential factor in packed reaction v	vation vessel.	. 53
Table 10.	Mean rate constant for packed and unpacked	r nitrogen formation in the reaction vessels.		54
Table 11.	High resolution mass s for kinetic experiments	spectra of starting material		84
Table 12.	Mass spectra of scan n from spinning band co	umber 104 of 1-mathyl-2-phenylumn.	ldiazene	, 90
Table 13.	Mass spectra of scan n from spinning band co	number 207 of 1-methyl-2-pheny lumn.	ldiazene	· · · 91
Table 14.	Mass spectra of scan n from spinning band co	umber 504 of 1-methyl-2-phenyllumn.	ldiazene	92
Table 15.	Mass spectra of scan n from spinning band co	umber 918 of 1-methyl-2-pheny dumn.	ldiazene	93
Table 16.	Mass spectra of scan n	umber 299 of 1-methyl-2-pheny	ldiazene	

	from spinning band column.	-22223	. 94
Table 17.	Mass spectra of scan number t	940 of starting material.	. 97
Table 18.	Mass spectra of scan number	98 of starting material	. 98
Table 19.	Mass spectra of scan number :	214 of starting material	. 99
Table 20.	Mass spectra of scan number	510 of starting material	· 100
Table 21.	Mass spectra of scan number	89 of condensed fraction	· 103
Table 22.	Mass spectra of scan number	107 of condensed fraction	· 104
Table 23.	Mass spectra of scan number	124 of condensed fraction	• 105
Table 24.	Mass spectra of scan number	129 of condensed fraction	• 106
Table 25.	Mass spectra of scan number	432 of condensed fraction. · · ; ·	107
. Table 26.	Mass spectra of scan number	443 of condensed fraction:	108
Table 27.	Mass spectra of scan number	469 of condensed fraction	. 109 •
Table 28.	Mass spectra of scan number	506 of condensed fraction	. 110
Table 29.	Mass spectra of scan number	936 of condensed fraction	· 111 2
Table 30.	Mass spectra of scan number	1515 of condensed fraction	. 112
Table 31.	Mass spectra of scan number	212 of condensed fraction	· 113
Table 32.	Mass spectra of scan number	275 of condensed fraction	: 114
Table/33.	Mass spectra of scan number	308 of condensed fraction. 🚗	115
-			

List of Figures

	Pa	ge
Figure 1.	Collection apparatus for column effluent	2
Figure 2.	Schematic of initial vacuum line	6
Figure 3.	Schematic of Toepler pumps.	8
Figure 4.	Schematic of switching valves on vacuum line and gas chromatograph.	9.
Figure 5.	Schematic of reaction vessel oven	1
Figure 6.	Schematic of redesigned vacuum line	5
Figure 7.	Yield versus time plots for nitrogen and methane at 559.0 K in unpacked reaction vessel.	3
Figure 8.	Yield versus time plots for nitrogen and methane at 529.4 K in unpacked reaction vessel.	4
Figure p.	Order plot for nitrogen and methane at 559.0 K in unpacked reaction vessel. ${\bf 3}$	7
Figure 10.,	Order plot for nitrogen and methane at 529.4 K in unpacked reaction vessel. $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	8
Figure 11.	Order plot for nitrogen and methane at 559.0 K in unpacked reaction vessel with propene added. $$	1
Figure 12.	Plot of the rate constant for nitrogen formation versus initial ratio of 1-methyl-2-phenyldiazene to propene at 559.0 K in unpacked reaction vessel.	4
Figure 13.	Plot of the rate constant for nitrogen formation versus temperature in unpacked reaction vessel 4	8
Figure 14.	Arrhenius plot for nitrogen in unpacked reaction vessel 4	9
Figure 15.	Plot of the rate constant for nitrogen formation versus temperature in packed reaction vessel/	1
Figure 16.	Arrhenius plot for nitrogen in packed reaction vessel 5	2
Figure 17.	Total ion current of the effluent from the gas chromatograph of the 1-methyl-2-phenyldiazene from the spinning band column.	9
Figure 18.	Total ion current of the effluent from the gas chromatograph of the starting material. 9	6
Figure 19.	Total ion current of the effluent from the gas chromatograph of the consolidated condensed fraction.)2

I Introduction

Rationale for this Research

Diazenes may pyrolyze by breaking two bonds simultaneously,

 $R-N = N-R \rightarrow 2R + N_2$

or, by bréaking two bonds in sequence,

[1A]
$$R - N = N - R \rightarrow R - N = N + R$$

[1B]
$$R - N = N \rightarrow R + N_2$$

The subject, of one or two bond scission of diazenes, was raised in 1020 by Ramsperger (1). In his search for systems which could be used to test new theories of unimolecular reactions he pyrolyzed 1-methyl-2-isopropyldiazene and compared the activation energy of this reaction with those of azomethane and azoisopropane which he had previously studied. He found that the activation energy for the mixed diazene was between the other two values, and therefore concluded that there was two bond seission.

However, the rate measurements were made by monitoring pressure change because at that time the complexity of the stoichiometry was not realized and the difficulty of measuring elementary rate constants was not appreciated. When the elementary rate constants for nitrogen formation from azoisopropane (2) and azomethane (3) were eventually measured the value did not support Ramsperger's results, and so the comparison was invalid. Apprently 1-methyl-2-isopropyldiazene has not been studied subsequently.

In a recent study (4) of azobenzene pyrolysis, the elementary rate constant for nitrogen formation was reported. This result, along with Forst's (5) results for azomethane led to the suggestion of a comparison, similar to Ramsperger's, of azomethane, azobenzene, and 1-methyl-2-phenyldiazene.

Azobenzene

A review of asobenzene pyrolysis in the gas phase shows that only two studies have been completed. In one, referred to above, reference (4), Arrhenius parameters for nitrogen formation were reported to be 10^{16.6} s⁻¹ for the preexponential factor and 278 kJ mol⁻¹ for the activation energy. In the other, Leiba and Oref (8) gave 10^{12.61} and 223 kJ mol⁻¹. The discrepancy seems to be due to problems of stoichiometry and treatment of data in the latter study. A discussion of the discrepancy is found in reference (4).

Azomethane

Since the publication of Ramsperger's plopeering work a number of studies have helped to determine the features of azomethane pyrolysis. The most important results are now reviewed.

- Steel and Trotman-Dickenson (6) measured the rate of nitrogen formation and
 showed that it was inhibited by the addition of propene. They deduced from
 these results that a short chain was present in azomethane pyrolysis.
- (2) Forst and Rice (5) next showed that addition of nitric oxide reduced the initial rate of nitrogen formation to a minimum value relative to that observed for the

[•] Since this project was started a mixed alkyl anyl discene pyrolysis in the gas phase has been investigated (28). The 'Arthenius parameters obtained for t-chayl-2-phenyllarace in a stirred flow system using cycloixexene as a cyriter gas were 200 kJ/mole for the activation energy and 10^{18.8} for the pre-exponential factor. The question to be asked of this study is: Does the use of cycloixexene as an inhibitor; whe de-lementary rate constant? For comments, refer to the Discussion section.

[†] Those in which the progress of the reaction was monitored manometrically are omitted.

uninhibited reaction. Because catalysis as well as inhibition was observed the rate constant was calculated by extrapolating the rate back to zero nitric oxide pressure. The initial rates so calculated gave Arrhenius parameters of 10^{17.3} s⁻¹ for the pre-exponential factor and 232 kJ mol⁻¹ for the activation energy. !*

- (3) Forst and Paquin (7) carried out a comprehensive study of the products, and their rates of formation, for azomethane pyrolysis. A short chain mechanism was proposed, the main feature of which was chain propagation and nitrogen formation by decomposition of the radical CH₃-N=N-CH₂.
- (4) Two reports appeared in the literature (13,14) in which the Arrhenius parameters' differ markedly from those reported in reference (5). Both of these studies involved the azomethane sensitized decomposition of hydrocarbons, in which the rates of azomethane decomposition are extracted from rates of formation of products of hydrocarbon pyrolysis. In the interpretation of the results of the azomethane sensitized decomposition of isobutane a small molecular contribution to nitrogen production is considered,

$$CH_3 - N = N - CH_3 \rightarrow N_2 + C_2H_6$$

(5) Benson (15) estimated the enthalpy of formation of azomethane by using thermodynamic group additivity. The enthalpy change for reaction [2], below, was then obtained. By assuming that the

ethane 1014.38 g-1 199.2 kJ mol⁻¹
propane 1014.78 g-1 202.1 kJ mol⁻¹
isobutane 1013.00 g-1 193.5 kJ mol⁻¹

^{††} A similar study of CD₃N₂CD₃ by D.-R. Chang and O.K. Rice (Int. J. Chem. Kinet. I. 171 (1969)) resulted in a slightly lower pre-exponential factor.

The reported values of pre-exponential factors, A, and activation energies, E, in hydrocarbons for the reaction CH₃N₂CH₃ → N₂ + CH₃ are listed.

$$CH_3 - N = N - CH_3 \rightarrow 2CH_3 + N_2$$
 [2]

activation energy for nitrogen formation in the inhibited pyrolysis of azomethane was equal to the enthalpy change of reaction [2A] and [2B] he calculated the second

$$CH_3 - N' = \hat{N} - CH_3 \rightarrow CH_3 - N = N + CH_3$$
 [2A]

$$CH_3 - N = N \rightarrow CH_3 + N = N$$
. [2B]

$$\cdot N = N \cdot \rightarrow N_2$$
 [2C]

 π bond energy of nitrogen, $-\Delta H$ of reaction [2C], to be 338 kJ mol⁻¹. In his opinion a reasonable upper limit was obtained. His arguments indicate that two bond rupture in gas phase diagene decomposition would lead to a transition state configuration of low energy, less than the weakest bond dissociation energy, represented by reaction [2A] or [2B]. Therefore the enthalpy change of reaction [2A] or [2B] wouldobe greater than the observed activation energy and the value of the second π bond energy would be unreasonable high. Thus, Benson favoured one bond scission.

Special Techniques for Gas Phase Pyrolysis

In this section certain special techniques which have been used in the study of diazene pyrolysis in the gas phase are reviewed, briefly, and some references are given.

(1) Very Low Pressure Pyrolysis

Pyrolysis takes place in a flow reactor at very low pressure. Reactants and products are monitored in the early stages so that secondary reactions are kept to a minimum and unimolecular reactions can be studied directly. A disadvantage is that rate constants are obtained in the low pressure region and RRKM calculations have to be performed to obtain high pressure rate constants. Even so, either the high pressure activation energy or pre-exponential factor has to be known or explanted independently. Application to diazenes is discussed in reference (2).

(2) Laser Powered Homogeneous Pyrolysis .

The use of a pulsed IR laser to provide the thermal energy to an absorbing non-reactive gas, which transfers its energy to the reactive substrate in a flow through reaction vessel, has the advantage that there is no surface component to the substrate reaction. The one reported reaction, azoisopropane, gave the Arrhenius equation of log [k/s⁻¹] = 13.9 - 172 kJ/2.3 RT which the authors suggest, in contrast to some previous findings (16), is for a concerted pathway in the decomposition.

(3). Coherent anti-Stokes Raman Spectroscopy, CARS

This method involves pulsed photolysis, which, in the example cited, is azomethane at 355 nm. After a variable delay, a separate analysing laser system probes the CARS susceptibility of the excited sample volume. Exciting and probing beams provide a time profile of ca. 7 ns and a spectral resolution of 1 cm⁻¹. The results with azomethane indicate that ditrogen has an appearance time of less than 2 ns. This implies that the reaction mechanism involves no diagenyl intermediate[†] having a lifetime longer than 2 ns (17).

Reactions in the Liquid Phase

In the liquid phase, thermolysis of diazenes has been studied by a variety of methods. Some of the more recent studies and the main conclusions drawn are listed below. One bond scission is favoured in the liquid phase.

 Newman and others (19-23) have employed high pressure, to several thousand atmospheres, and solvent viscosity techniques. The volume of activation,

[†] i.e. CH3 - N = N-

 $\Delta V^{\mu}=-RT(\Delta \ln k/\Delta P)_T$ for nitrogen formation was measured. These studies have shown that certain diazenes, termed "one bond scission" initiators ¹¹, have large positive activation volumes (such as 18 to 21 cm³ mol⁻¹ in various solvents for 1-(4-nitrophenyl)-2-triphenylmethyldiazene). Others, termed "two-bond scision" initiators have small activation volumes (+5 cm³ mol⁻¹ for azocumene). Also, attempts have been made to relate the two types to the viscosity of the solvent. Rate constants of "one-bond scission" initiators should decrease as solvent viscosity increases and rate constants of "two-bond scission" initiators should be independent of solvent viscosity.

- (2) A stereochemical approach has been taken by some workers. Thermotysis of some optically active diazenes has produced results, which are interpreted in favour of one-bond cleavage (26). Photolysis Theretain optically active trans diazenes seems to give cis diazenes which react by one-bond cleavage (25).
- (3) The study of secondary deuterium kinetic isotope effects by Seltzer and Dunne (24), using the successive deuteration of the α carbon, indicated one bond scission for unsymmetrically substituted diazenes.
- (4) Both ¹H and ¹⁵N CIDNP spectra have been interpreted in favour of one-bond fission (18).[‡]

Potential Energy Surface

A potential energy surface has been calculated for azoethane (27)-using the MNDO approximation to molecular orbital theory. A stepwise cleavage of azoethane was favoured, energetically, over the concerted mode of decomposition. Also, the

m.

tt. Initiators in the sense of initiating other radical reactions.

[‡] Also, when cisl-cumpt-2-phenyldiazene decomposed in the presence of triphenylmethyl radical a small yield of 1-phenyl-2-triphenylmethyldiazene was obtained, indicating that the phenyl diazenyl radical had been formed.

calculated activation energy for the stepwise cleavage is in reasonable agreement with the experimental measurements.

Objectives

The first objective of this study was to establish the main features of the pyrolysis of pure I-methyl-2-phenyldiazene. The second was to isolate the elementary fission reaction and then to compare the results with the pyrolysis of azomethane and azobenzene, which had just recently been investigated. This comparison would help to clarify the role of one and two bond scission of mixed diazenes. Only the first objective has been achieved.

II Experimental

1. Preparation of 1-Methyl-2-Phenyldiazene and Purification of Propene

a. Synthėsis

The method, essentially, was that described by Iosse and Stopskii (29). One mole of freshly distilled plieny laydrazine¹, 100 mls of diethyl ether, and 0.5 gm of hydroquinone were added to a 600 ml round-bottomed flask fitted with a dropping funnel, thermometer, and a reflux condenser. To this clear mixture was slowly added with stirring 109.6 gm of formalin solution. The temperature during addition was maintained below 5 °C by means of an ice bath. Upon the addition of formalin the yellow solution became turbid; however, after one-third of the formalin solution had been added it became homogeneous.

Upon the further addition of 10 mls of formalin the yellow solution again, became heterogeneous. Stirring was continued for one-half hour after completion of the addition and the reaction flask was removed from the ice bath after the addition was completed. The aqueous layer was separated and then washed three times with 50 mls of diethyl ether. The combined etheral phases were dried over anhydrous potassium carbonate and the ether was removed on a flash evaporator while bubbling nitrogen gas through the solution.

About 125 mls of the slightly turbid oily residue was added to a 500 ml 3necked round-bottomed flack. An equal volume of a four percent solution of potassium hydroxide in ethylene glycol was added and the resulting purple solution was distilled under vacuum at 5 mm.

'The distillation was carried out over three days, and three batches of the same "

[†] Distilled at 110 °C and 2 mm

^{• 35.6%} formaldehyde; 10-15% methanol; water.

fraction were collected. Between collections the reaction flask was vented. The yield of yellow distillate decreased with each distillation giving a total yield of 25%.

b. Purification of Batch A

The procedure, as described above, was repeated and the two lots were combined. The combined lots, designated Batch A, were used for all runs in the packed reaction vessel.

The combined lots were stored over activated molecular sieve and then eluted through an anhydrous magnesium sulfate column with dry pentane. Part of the solvent was removed by distillation on a rotary evaporator. The 1-methyl-2-phenyldiazene was then passed through a silica gel column using dry pentane. Again, part of the solvent was removed by means of a flash evaporator. The remainder of solvent, about one-third, was removed under 2-3 mm lig at 0 °C for five minutes.

Further purification was carried out on a spinning band column. The bleed was enclosed in a bag of dry nitrogen gas and 1-methyl-2-phenyldiazene was distilled at 2 45 C under 8 mm pressure. The first 2 mls of distillate were discarded, the column heater was kept at ambient temperature, and the column was spun as slowly as possible. The distillation was stopped by venting with dry nitrogen gas and the distillate was stored under dry nitrogen gas at 4 C in the dark.

A gas chromatogram of this distillate indicated that the only impurity was aniline, in one percent concentration. Therefore the 1-methyl-2-phenyldiazene was

Column - 6' x 4". 3% OV-17; T = 130 ° C.

^{. 4}Å, dried at 120 °C for 48 hours.

^{† - 5} cm x 1 cm I.D.

^{††} Dried at 120 °C for 48 hours.

^{§ 4} cm x 1 cm I.D.

redistilled on the spinning band column. As before, the first and last 2 mls of distildate were discarded. The pressure was set at 9 mm and the distillate was collected at 47°C. For this distillation the apparatus was wrapped in towels to prevent possible photolysis.

The liquid collected from the second distillation was subdivided into break-seal vials.

A gas chromatogram of the liquid showed that the sample contained 90.57% 1methyl-2-phenyldiazene, with aniline as the only impurity.

c. Purification of Batch B

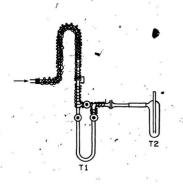
For all subsequent runs the 1-methyl-2-phenyldiazene used was prepared as described below and designated Batch B. Two crops of 1-methyl-2-phenyldiazene were synthesized for this batch, designated Lots 1 and 2, and were purified in the same manner.

After distillation from the reaction lask, the 1-methyl-2-phenyldiszene in methylene chloride was extracted three times with 50 mls of one molar hydrochloric acid and then dried over anhydrous potassium carbonate. Part of the solvent was removed on a rotary evaporator and the remainder by vacuum distillation under 2-3 mm list at 0°C for five minutes.

As with batch A, the 1-methyl-2-phenyldiazene was then distilled on the spinning band column. The bleed was encased in a bag of dry helium and the apparatus was shrouded in a black cape during distillation. As before, the first 2 mls of distillate were discarded and the fraction boiling at 45 °C at 9 mm pressure was collected.

A gas chromatogram of lot 1 showed the presence of 1.7% of an unknown impurity and 1.0% of aniline. A gas chromatogram of lot 2 indicated only 1.2% of

^{*} Column - 6' x'4" 3% OV-17; T = 130 °C.


the unknown impurity. Subsequent distillation on the spinning band column removed all of the aniline but 1.0% of the unknown impurity remained in both lots. The product was subdivided and stored in 5 ml ampoules under dry helium. Further purification was carried out by preparative gas chromatography.

At first, 30 ul portions of the ninety-nine percent 1-methyl-2-phenyldiazene were injected into the gas chromatograph . The column effluent was swept into an apparatus, like that illustrated in figure 1, to separate the 1-methyl-2-phenyldiazene from the other impurities. Appropriate parts of the apparatus were maintained at 90°C to prevent condensation of the effluent. The 1-methyl-2-phenyldiazene was collected in the U-trap as it eluted from the gas chromatograph; the rest of the gas chromatograph effluent was by-passed. To make the preparative gas chromatograph more efficient an 8' x 1/2" 3% OV-17 column was made so that a 50 µl sample could be injected. Ten injections and collections were made, then the trap containing helium was isolated and connected to the additive section of the vacuum line via the O-ring connection. After evacuation, the 1-methyl-2-phenyldiazene was transferred to the U-trap which was maintained at -45 °C with an acetone bath cooled by dry ice. During transfer, the reaction vessel was maintained at less than 200°C, because the 1-methyl-2-phenyldiazene passed through it, and the manifold valve on the back side of the U-trap was open to the pumps to remove any volatile impurities. After distillation the manifold valve was closed, the reactant storage trap was cooled_with liquid nitrogen, and the U-trap was warmed in order to transfer, the 1-methyl-2phenyldiazene to its storage section. After the transfer the distillation was repeated at a maximum 1-methyl-2-phenyldiazene pressure of 1 mm.

7 µl of distillate was transferred to the benzene O-ring section for injection onto the gas chromatograph. If the gas chromatogram of the sample indicated that the

^{*} See Appendix B for discussion.

^{† 8&#}x27; x 14" 3% OV-17 column; T = 85 °C.

Effluent from gas chromatograph .

Nichrome heating coil and Kaowool insulation

Teffon valve with rubber O-rings or all teffon valve

Copper Copper

Glass

O-ring joint

T1 Trap for Diazene

T2 Trap for discarded materials

Figure 1. Collection apparatus for column effluent.

total concentration of the unknown impurity and aniline was greater than 0.01 percent the preparative gas chromatograph procedure was repeated. If the concentration of the 1-methyl-2-phenyldiszene was greater than 99.99% it was transferred back to the storage section ready for use.

A high resolution mass spectrum of a sample prepared in this way is shown and discussed in Appendix A, Table 11.

d. Purification of Propene

Propene (Matheson Research Grade, Min. Purity 69.7%) was introduced into the U-trap of the vacuum line. It was then distilled from a hexane/liquid nitrogen trap (-94°C) to an isopentane/liquid nitrogen trap (-160°C) on the additive storage section. After distillation the U-trap was warmed to ambient temperature and opened to vacuum. The traps were then reversed to collect the propene back into the U-trap. The "backend" of the U-trap was pumped during this distillation to remove any carbon dioxide that may have been present. After distillation the storage section was warmed to ambient temperature and evacuated. Again the slurries were reversed to distill the propene back into the storage section.

The vacuum line, illustrated in figure 2, was assembled in the following manner.

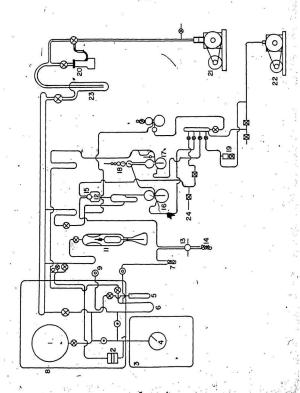
a. Pumping System

A Welch Duo-Seal model 1400 rotary pump was used with a Balzers oil diffusion pump. A vacuum of less than 2 x 10⁻⁶ Torr, as measured by means of a McLeod gauge, was always obtained before a run was started.

b. Toepler Pumps

Two toepler pumps, illustrated in figure 3, were employed in the line. The first collected the non-condensable fraction into a calibrated gas burette with the aid of an automated solenoid valve located at the fullet to the mercury reservoir line. This was accomplished by having three electrical contacts protruding into the toepler pump. One, located above the top float valve, switched the solenoid valve from a venting mode to an evacuating mode. The second lead was located at the top of the reservoir and switched the valve back to the venting mode. The third lead; located at the bottom of the reservoir, was common to the other two.

After the gas was collected and measured the float valve leading to the manifold from the second toepler pump was closed and the gas was transferred to the second pump. After all of the gas was transferred, using twenty strokes of the second toepler pump, the mercury level was raised to the Y of the gas transfer loop.


As illustrated in figure 4, when the gas transfer loop valve was switched, the collected gas was swept onto the molecular sieve column and the float valve below the loop closed. To open this float valve, which was under pressure, after the sample had been chromatographed, it was necessary to set the gas chromatograph valves, as illustrated in figure 4. The helium flow was then stopped and the loop was partially evacuated, allowing opening of the valve.

5 L mixing vessel Mks capacitance manometer Reaction vessel oven Reaction vessel Diazene storage trap U-trap O-ring joint 8 Air bath Line to additive storage section 9' Additive storage section outside of air bath 10 Vent 11 McLeod gauge 12 Loop for CH, and No. .13 6-Port valve on chromatograph' 14 MS column on sample loop of chromatograph 15 6-Port valve 16 Toepler pump 17 Toepler pump 18 Gas burette 19 Automatic toepler pump valve 20 Oil diffusion pump 21 Rotary pump 22 Rotary pump

○ Varian valve, viton seal
 ○ Varian valve, polyimide seal
 ○ Stopēcek
 ☑ Metal valve

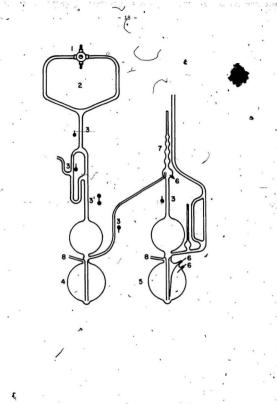
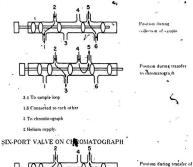

23 Main trap 24 Helium supply

Figure 2. Schematic of initial vacuum line.



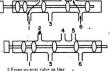

- 1 6 Port valve. Ports 3, 4 to sample collection loop. Ports 1, 6 joined. Port 2 helium supply and low vacuum. Port 5 exit to gas chromatograph. Refer to Figure 4.
- 2 Sample collection loop for CH₄ and N₂.
- 3 Float valve.
- 3' Double float valve.
- 4 Toepler pump, manual.
- 5 Toepler pump, automatic.
- 6 Electrical contacts.
- 7 Gas burette.
- 8 Connections are shown in Figure 8.

Figure 3. Schematic of Toepler pumps.

SIX-PORT VALVE ON LINE IN CH., No COLLECTION

2 From sn-port valve on line

1.6 To molecular sieve column

3 Plugged

sample to chromatograph

Position during evacuation of sample loop · Partial vacuum

During early experiments an auxiliary helium supply was connected at 4.

Schematic of switching valves on vacuum line Figure 4. and gas chromatograph.

c. Pressure Gauge

Measurement of the initial pressure of the 1-methyl-2-phenyldiazene was made using an MKS Baratron 170M-26BM 100 mm head connected to an MKS Baratron 315BH-100 readout module, a 170M-6C Electronic Unit and a 170M-35 Temperature Compensator.

d. Reaction Vessels

- a) The first part of this study employed a pyrex vessel packed with 5 cm pyrex glass tubes which were fire polished on both ends. The vessel had a volume of 980.0 ml and a surface to volume ratio of 1.17 cm⁻¹.
- b) The next set of experiments were carried out in an unpacked pyrex vessel. This reaction vessel had a volume of 1007.4 ml and a surface to volume ratio of 0.547 cm⁻¹.

e. Reaction Vessel Oven

The central part of the oven, shown in figure 5, consisted of an aluminum cylinder, with diameter 0.2 m and length 0.5 m, fitted with an aluminum bottom and lid. The cylinder was made of 0.8 cm stock and the lid and bottom of 2 cm stock. Three heaters of Kanthal wire were wound around the cylinder at the lower and upper ends, and in the middle. These controlled by Variacs, were turned on continuously. A third, outside of these, was controlled by a Thermodyne-Precision relay-connected to a platinum resistance probe. Heaters were insulated from the cylinder and one another by asbestos. Kaowool, a metal can, a second layer of Kaowool, and finally a layer of aluminum foil surrounded the cylinder and heaters. Kaowool was also packed in the space between the top of the lid and the bottom of the air bath, a distance of 10 cm.

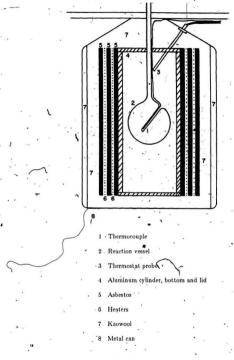


Figure 5. Schematic of reaction vessel oven.

A slot in the lid allowed the thermotouples and platinum resistance probe to extend into the cylinder, and also accommodated the neck of the reaction vessel.

Two chromel-alumel thermocouples were placed in the reaction vessel well after the leads were insulated with glass wool. They were calibrated at the melting points of tin (231.9°C) and of lead (327.4°C), using reference samples which were obtained from the National Bureau of Standards of the United States. The results of calibration are given in the following table.

	٠.	Reference .	TC#1 [†]	TC#2 [†]
Tin	- 100	231.9°C 、	235.2±0.1°C	234.0±0.1 ° C
Lead		327.4 ° C	332.0±0.1 °C	√332.5±0.1 °C

Temperature calculated from data supplied by R.P. Benedict. Fundamentals of temperature, pressure, and flow measurements. 2nd ed. Will. New York. 1977.

Temperatures were obtained by linear interpolation. TC#1 was connected to a Digitec Thermocouple Thermometer and TC#2 was read directly in millivolts and referenced to an ice-water slush bath.

Gas Chromatograph

The reaction products were analysed chromatographically as gas and as condensable (in liquid nitrogen) fractions. The gas chromatograph used was a Varian Aerograph Model 1700 with a thermal conductivity detector. Injector temperature was set at 100 °C, and detector temperature at 200 °C.

The gas fraction was analysed on a one meter 5Å molecular sieve column at C using a flow rate of the carrier gas, helium, of 30 milliliters per minute. The column was activated at 200 °C for sixteen hours with carrier gas flowing through it.

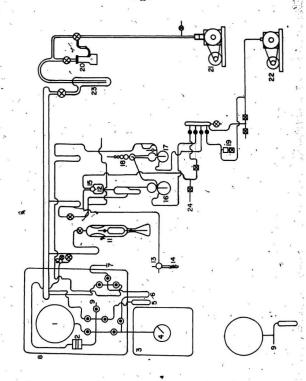
The condensed fraction was analysed on an eight foot by one quarter inch stainless-steel column packed with three percent OV-17 on Gas Chrom W, again using a flow rate of the carrier gas, helium, of thirty milliliters per minute. The column was baked out once a week at 200°C for sixteen hours with carrier gas flowing through it. Temperature programming was used for the condensable fraction: 100°C for seven minutes, then 15°C per minute to 200°C for twenty minutes.

The gas chromatograph was calibrated for nitrogen, methane, benzene, toluene and subsequently for aniline and N-methylaniline.

g. Air Bath

The air bath was a thermostated asbestos box. The temperature was maintained at 105°C to prevent the 1-methyl-2-phenyldiazene and products from condensing in the line.

The design of the vacuum line inside the air bath, flustrated in figure 2, was used for the packed reaction vessel runs. Varian high vacuum valves with polyimide main seals and gaskets were used at the inlet and exit of the reaction vessel to prevent reactant and reaction products from dissolving in stopcock grease and to withstand the high temperatures of the Xir bath. Varian high vacuum valves with viton main seals were used on the helium sweep lines to prevent dissolution of reaction products in stopcock grease. Stopcocks, with silicone grease as lubricant were used elsewhere in the line inside the air bath.


The vacuum line inside the air bath was redesigned, as illustrated in figure 6, for subsequent experiments in which the unpacked vessel was used. These modifications, listed below, were made to alleviate some problems which were experienced with the previous design.

5 L mixing vessel 2 Mks capacitance manometer Reaction vessel oven Reaction vessel Diazene storage trap U-trap 7 Coiltrap Air bath Line to helium supply 10 Vent 11 McLeod gauge 12 Loop for CH4 and N2 13 6-Port valve on chromatograph 14 MS column on sample loop of chromatograph 15 6-Port valve 16 Toepler pump 17 Toepler pump 18 Gas burette 19 Automatic toepler pump valve 20 Oil diffusion pump 21 Rotary pump

O Varian valve, polyimide seal

Stopcock . Metal valve

22 Rotary pump 23 Main trap

- Varian polyimide valves were used in all parts of the vacuum line in which the 1-methyl-2-phenyldiazene was in contact. This prevented dissolution of the diazene in stopcock grease.
- 2. The helium sweep lines were removed because it was found that the condensed fraction was incompletely swept to the collection trap. Because of this, all results of chromatographic analyses of the condensed fraction for the packed reaction vessel had to be discarded. Also, there was apparently some leakage of helium through the valves which affected the analysis of nitrogen and methane.

When the sweep lines were discarded, ports 3 and 4 on the gas valve of the gas chromatograph, figure 4, were plugged. Injector B of the gas chromatograph was then plumbed directly to the first helium supply.

A storage section was added to the line for additives.

3. Procedure

The procedure for the two reaction vessels was different because the vacuum line was modified after the packed vessel was removed. Also, when propene was used as an additive, the procedure was again different. Therefore the procedure for each reaction vessel, and with propene as an additive, will be outlined.

a. Packed Reaction Vessel

During a run, the following sequence of operations were performed. First, the appropriate parts of the vacuum line, illustrated in figure 2, were pumped down to less than 2 x 10-6 Torr. The 1-methyl-2-phenyldiazene was then degassed twice, using liquid nitrogen. It was next warmed to 60 °C by means of hot water, and then introduced into the reaction vessel through the manifold. The pressure was monitored during the course of the reaction using the pressure gauge attached to the reaction yessel.

In order to stop the reaction the contents of the reaction vessel were vented to a U-trap which was immersed in liquid nitrogen. The fraction of products which passed through the U-trap was collected by means of an automatic toepler pump, until no gas remained in the transfer line as measured with an in-line McLeod gauge. The quantity of gas was measured in a calibrated gas burette, and then, with the aid of the second toepler pump and gas sampling valve, injected into the gas chromatograph.

The condensed fraction was warmed and swept, by means of helium flowing at 30 ml per minute for thirty minutes, to a collection trap which was immersed in liquid nitrogen. It was then rapidly warmed to 50 °C and swept into the gas

Degassing is the procedure which involves warming a material to ambient temperature while the section of vacuum line containing the material is closed to vacuum. Then the material is condensed in liquid nitrogen and the section of vacuum line is again evacuated.

b. Unpacked Reaction Vessel

The procedure for the experiments in which the unpacked reaction vessel was used differed from the one just described in the following ways. First, the procedure of sweeping the condensed fraction was abandoned and it was simply distilled from the U-trap to the benzene O-ring trap. The Yapa was then removed and $7 \mu l$ of the condensed fraction were injected into the gas chromatograph. Also, the pressure was not monitored during runs with the unpacked vessel because the pressure gauge was not directly connected to the reaction vessel.

Unpacked Reaction Vessel and Propene

The next series of experiments, for which mixtures of propene and 1-methyl-2phenyldiazene were prepared, were also carried out in the unpacked vessel.

Before use, the propene, as well as the 1-methyl-2-phenyldiazene, were degassed twice in liquid nitrogen. A mixture was then prepared by introducing a measured pressure of diazene into the 5 liter storage vessel; propene was added quickly and the total pressure measured. The mixture was allowed to mix for about twelve hours. A series of runs was then carried out using the stored mixture. Only the fraction which passed through the liquid nitrogen trap was analysed in this set of experiments.

After completion of the main part of this study a number of runs were carried out for which the mixing time was as short as possible, about 30 minutes.

III Results

1. Definition of Rate Constant

To determine the initial rate of the reaction the conversion of reactant, as measured by production of N_o , was kept to three per cent or less.

To determine the amounts of N₂ and CH₄, the non-condensable fraction, the number of moles of total gas was first measured in a gas burette. The gas was then transferred to a gas chromatograph where N₂ and CH₄ were separated on a 5A molecular sieve column. The gas chromatographic response for each gas was measured. Therefore the ratio of N₂ to CH₄ could be calculated. This ratio times the total number of moles of gas gave the amounts of N₂ and CH₄ in moles.

The rate of production of a product was defined as

$$rate = \frac{(product)}{V \times t}$$

where (product) was the number of moles of a product found at the end of reaction time t, in seconds, in a reaction vessel of volume V, in liters.

The apparent first order rate constant was defined as

$$k = \frac{rate}{[MPDA]_i}$$

where rate was the rate of N_2 production expressed in mol Γ^1 s⁻¹ and [MPDA], was the initial concentration of 1-methyl-2-phenyldiazene in moles per litre. The order for the rate of formation of a product was defined as the slope of the plot of $\ln[\text{rate}]$ versus $\ln[\text{MPDA}]_i$.

. Unpacked Vessel

a. Products

Two fractions of products were collected, that which passed through a liquid nitrogen trap and that which condensed. The non-condensable fraction was analysed for nitrogen and methane by the procedure described above.

The condensed fraction was distilled from the warmed U-trap to an O-ring trap immersed in liquid nitrogen, also as described above. There was no apparent residue in the U-trap after distillation. The O-ring trap was then warmed, the seal broken and 7 µl of the liquid was injected onto the gas chromatograph.

Semi-quantitative analysis of the products of the condensed fraction was attempted by injection of a constant volume of the condensed fraction onto the gas chromatograph. By assuming that the condensed fraction was 100 percent 1-methyl-2-phenyldiazene, the total volume of the fraction could be calculated from the number of moles of reactant introduced and its density (See Appendix C which contains a summary of all analytical results).

Identification of the products in the condensed fraction was accomplished by retention time of known compounds and by gas chromatography-mass spectrometry (see Appendix B).

Table 1 lists the products and the mole percent for a sample run. Analysis of the condensed fraction was, in some cases, not sufficiently reliable to be used for kinetic study. In fact no kinetic treatment of the condensed fraction is reported in this thesis.

b. Yield versus Time Plots

Yield versus time plots were made of nitrogen and methane at two temperatures, 559.0 K and 529.4 K. Both series of experiments had an initial 1-methyl-2-

Attempts to detect ethane by mass spectrometry, at the beginning of this study, were not successful. However, in a run carried out after completion of the study, the mass spectrum was consistent with the presence of about one mole percent ethane in the non-condensable fraction.

[.] Of certain runs.

Table 1. Products and mole percent for a sample run at 559.0 K.

Products		Mole %
Nitrogen		50,5
Methane		19.4
Diazenes [†]		10.4
Aniline		7.0
N-Methylaniline	•	5.8
Toluene		0.2

[†] Only one peak appeared on the packed column, but 1-phenyl-2-ethyldiazene and 1-benzyl-2-methyldiazene are separated on the DB-1 capillary column (see Appendix B).

phenyldiazene concentration of approximaely 1.5 x 10^{-4} mol Γ^1 , and, as can be seen from figures 7 and 8 respectively, the yield of products increases linearly with time. Linear regression analysis was performed on both sets of data, and Tables 2 and 3 show that methane curves have small negative intercepts while the nitrogen curves also have small intercepts, one positive and the other negative.

c. Order Plots

Order plots, as defined above, were made for nitrogen and methane at two different temperatures, 550.0 K and 520.4 K. The experiments at 550.0 K were exried out for one thousand seconds to 2.5 percent reaction while those at 520.4 K were carried out for two thousand seconds to 0.50 percent reaction. The order plots are shown in figures 9 and 10. Regression analysis was also performed on these sets of data, Tables 4 and 5, to give the apparent kinetic order for nitrogen and methane at 550.0 K and 520.4 K.

d. Addition of Propene

In order to study the effect upon the reaction of the addition of a radical scavenger (6) propene was added to the reactant at 55%.0 K. Two sets of experiments were carried out with 1.17 percent and 11.0 percent 1-methyl-2-phenyldiazene in propene. All experiments were carried out for one thousand seconds, and the mixtures were equilibrated for about 12 hours.

As can be seen from Table 6, within experimental error, the average first order rate constant for the runs with propene is the same as those without propene.

Order, plots for nitrogen and methane are shown in figure 11. Regression analysis of both sets of data produce the orders shown in Table 6.

Regression analysis was carried out as described by Wentworth (30,31). The equations were written into a Basic program and run on a HP 85A computer.

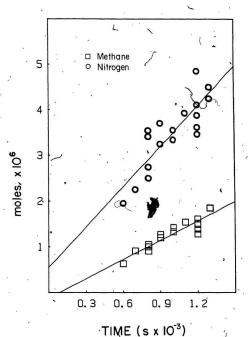


Figure 7. Yield versus time plots for nitrogen and methane at 5590 K in unpacked reaction vessel.

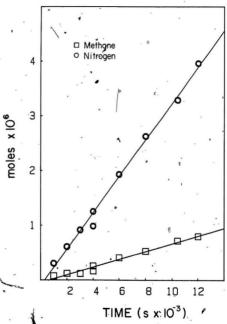


Figure 8. Yield versus time plots for nitrogen and methane at 529.4 K in unpacked reaction vessel.

Table 2. Yield versus time data and calculated slopes and intercepts for nitrogen and methane at 559.0 K in unpacked vessel.

	8 2			Yield versus T	ime*			5
	Time x 10 ⁻² s		15	N ₂ moles x 10 ⁶	`~			CH ₄ moles x 10
•	6.00			1.953				0.6325
	₩7.00			2.253	N.			0.9141
	8.00			3.542				0.9071
	8.00			3.410				1.002
	8.00			2.500				1.002
	8.00			2.744				1.052
	9.00			3.701				1.268
	9.00	9	3	- 3.246				1.198
	10.00 .			3.338				1.422
	10.00			3.550		140		1.326 -
	11.00			3.927				1.539
	12.00			3.463				1.384
	12.00			3.615				1.279
	12:00			3.878				1.485
	12.00			4.109				1.515
	12.00			4.850				1.609
	13.00			4.246			*	1.842
	13.00			4.498				1.848

^{• [}i-Methyl-2-Phenyldiazene], $(1.50\pm0.02)\times10^{-4}$ mol l⁻¹, Temperature 550.0 K Intercept (nitrogen) $(5.5\pm4.6)\times10^{-7}$ Intercept (methane) $(-1.1\pm1.4)\times10^{-7}$

† All errors are standard deviations.

Table 3: Yield versus time data and calculated slopes and intercepts for nitrogen and methane at 520.4 K in unpacked vessel.

	-			Yield versus	Time*			9****
Time				N_2				CH ₄
x 10 ⁻³ s				moles x 10	6 .			moles x 10 ⁷
1.000		•	`*	0.3062	•			0.7830
2.000				0.6100				1.224
3.000				0.9146				1.196
4.000		>		0.9852				1.646
4.000	ž.			1.253			,	2.592
6.000			9	1.930				4.113
8.000				2.625	4.44		100	5.297
10.400				3:287		4		7.190
12.000		4	2	3.596		21 12 12	9.5	8.009

^{* [}I-Methyl-2-Phenyldiazene] (1.56 \pm 0.01) x 10⁻⁴ mol l⁻¹

Temperature 529.4 K

Intercept (nitrogen) $(-3.1 \pm 7.7) \times 10^{-8}$

Intercept (methane) (-4.1 \pm 2.7) x 10⁻⁸

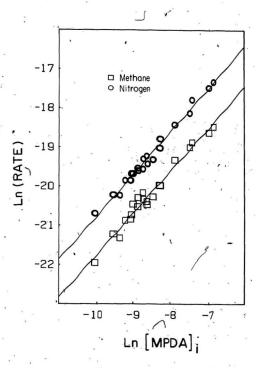


Figure 9. Order plot for nitrogen and methane at 559.0 K in unpacked reaction vessel.

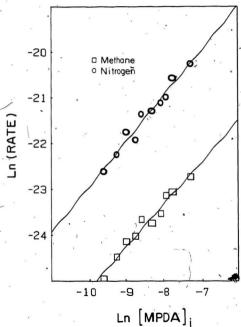


Figure 10. Order plot for nitrogen and methane at 529.4 K in unpacked reaction vessel.

Table 4. Data for the order plots of nitrogen and methane and calculated slopes at 559.0 K in unpacked vessel.

		· Order Plots*	·
$\ln[\text{MPDA}]_i^{\dagger}$	+ 1.	$ln[Rate(N_2)]$	· ln[Rate(CH ₄)]
-9.07 .		-19.85	-20.84
-8.75		-19.56	-20.16
-8.88	1	-19.60	-20.29
-9.01		-19.68	20.46
-8.64		-19.23	-20.39
-8.46		-19.32	-20.27
-8.30		-19.02	-19.97
-8.61		-19.43	-20.47
-8.74		-19.30 (-20.33
-8.89		-19.54	-20.52
-9.05		-19.68	-20.73
-9.23		-19.85	-20.87
-9.39		-20.23	-21.32
-9.55		-20.22	-21.22
-10.06		-20.69.	-21.95
7.88		-18.43	-19.33
-8.29		-18.79	-19.98
-7.50		-18.13	-19.00
-7.43		-17.79	, -18.88
-7.00		-17.48	-18.63
-6.86		-17.33	-18.48

^{*} Time(s) 1000, Temperature 559.0 K

Slope (Nitrogen) 1.09 ± 0.03

Slope (Methane) 1.08 ± 0.04

^{† 1-}Methyl-2-phenyldiazene = MPDA

Table 5. Data for the order plots of nitrogen and methane and calculated slopes

at 520.4 K in unpacked vessel.

ln[MPDA] _i †			Order Plots ln[Rate(N ₂)]		* 1		$ln[Rațe(CH_4)]$
9.60			-22.61	•	-		-24.95
-9.27			-22.24				-24.47
-8.99			-21.75				-24.14
-8.59	2*		-21.36	9			-23.66
-8.31	v.	4.	-21.29			-	-23.74
-8.07			21.11	×		12	-23.53
-7.91			-20.99		• ~		-23.14
-7.28		XI.	-20.26			h (e)	-22.73
-7.75			-20.57		ž		-23.06
-8.77			-21.92				-24.02

^{*} Time(s) 2000, Temperature 529.4 K

Slope (Nitrogen) 0.99 \pm 0.06

Slope (Methane) 0.92 ± 0.08

 $[\]dagger$ 1-Methyl-2-phenyldiazene = MPDA

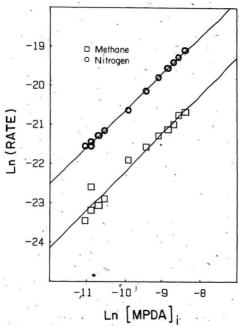


Figure 11. Order plot for nitrogen and methane at 559.0 K in unpacked reaction vessel with propene added.

Table 6. Data for the order plots of nitrogen and methane and the calculated slopes at 559.0 K with propene added in unpacked vessel.

$\ln[\text{MPDA}]_i^{\dagger}$	ln[Rate(N2)]	$\ln[\text{Rate}(\text{CH}_4)]$	k(s ⁻¹ x 10 ⁵)(N ₂)
-10.56 ^{††}	-21.15	-22.89	2.528
-10.71 ^{††}	-21.28	₹ -23.06	2.603
-10.80 ^{††}	-21.44	-23.18	2.679
- 1 1.05 ^{††}	-21.55	-23.45	2.759
-8.37	-19.09	-20.67	2.235
-8.55	-19.27	-20.75	2.211
-8.69	-19.40	-20.99	2.258
-8.84	-19.55	-21.12	2.256
-9.09	-19.79	-21.28	2.278
-9.43	-20.14	-21.57	2.248
-9.93	-20.63	-21.90	2.268
-10.89	-21.55	-22.59	2.364
•			

Time 1000s, Temperature 559.0 K

†† Propene: Diazene ratio was 85.2 to 1 for these runs, all others were in a 9 to 1 ratio.

Slope (Nitrogen) 0.94 ± 0.01

Slope (Methane) 0.98 ± 0.06

 $[\]dagger$ 1-Methyl-2-phenyldiazene = MPDA

It should be noted that the average values of the rate constant for each ratio of propens to 1-methyl-2-phenyldiszene are different. This is also reflected in the order plots for both nitrogen and methane. There does not appear to be a statistical significance to this, however, as the value of the rate constant "k" of the uninhibited runs, within its confidence interval, brackets these two values.

Further study of this effect was made by preparing five additional mixtures of 1-methyl-2-phenyldiazene. These mixtures were equilibrated for about 30 minutes and then pyrolysed, in contrast with the first-two mixtures which were equilibrated for twelve hours before pyrolysis. Also, only the first run for each mixture is illustrated in figure 12. There is an obvious inhibition of the rate of nitrogen formation when the initial mixture is used.

In attempting to understand this discrepancy in rate constants between the sets of experiments, mixtures of propene and 1-methyl-2-phenyldiazene were equilibrated for up to forty-eight hours in the 5 L vessel. These mixtures were then condensed through the reaction vessel at ambient temperature to see if any reaction task place in the mixing vessel. But no appreciable yield of nitrogen or of methane could be detected after that length of time.

One possible explanation could be the formation of the cis isomer of 1-methyl2-phenyldiazene in the mixing vessel. If the cis isomer decomposes rapidly to produce sufficient nitrogen to balance the inhibiting effect of propene on the trans isomer, there would be no measurable effect of adding propene.

It should also be noted that the penultimate propene run at 550.0 K of the second mixture was carried out to 99.7 percent reaction. With one exception, runs (without propene) after this had large rate constants for aitrogen formation. In some runs they were two to four times that of previous runs at the same temperatures.

^{11.0% 1-}methyl-2-phenyldiazene

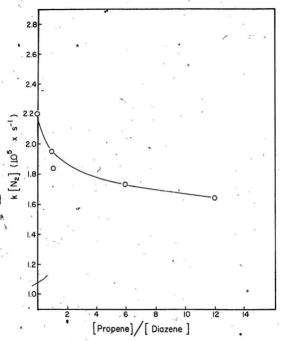


Figure 12. Plot of the rate constant for nitrogen formation versus initial ratio of 1-methyl-2-phenyldiazene to propene at 559.0 K in unpacked reaction vessel.

Also, while the absolute amount of pitrogen was high, the yield of methane was below that of previous runs under identical conditions. This problem persisted for several months, until the reaction vessel was finally replaced by a new, unused, vessel. A possible explanation for this behaviour is found in the discussion section.

A comparison of some normal and erratic runs is given in Table 7.

e. Rate Constant versus Temperature and Arrhenius Parameters

To obtain the best possible values for the Arrhenius parameters each value of the rate constant, k, and the temperature, T, was need to $k = A e^{-E_0/RT}$ by non-/ linear regression analysis.

Figure 13 shows the data fitted to the exponential curve while figure 14 shows the more common plot of in k versus 1/T, using the average values of in k for each temperature. Table 8 is a listing of the data for the exponential fit and the calculated Arrhenius parameters.

3. Packed Vessel

As with the unpacked vessel two fractions of products were collected. Those products which passed through a liquid nitrogen trap and those which condensed. The non-condensable fraction, nitrogen and methane, were analysed as described for the unpacked vessel.

For the condensed fraction, using the procedure of analysis as outlined in the experimental section, it was found after thirty runs that a quantity of material had remained in the copper tubing. This indicated that some of the material had not been swept onto the gas chromatograph and, because it was not known how much of the products had been absorbed in the retained material, the method of analysis was abandoned.

As with the unpacked vessel an Arrhenius plot was made of the data using an

Table 7. Example of Normal and Erratic Runs at 529.4 K without Propene.

Run No.	k x	106 (s-1)(N2)		k x	10 ⁷ (s ⁻¹)(C	H ₄)
121		2.24		7	3.62	
122		2.34		*	3.84	19
123		2.90			4.09	
124		2.89			4.14	
126		2.33			.3.64	
174*		3.20			2.42	
175*		3,36			2.42	
177*		3.05			3.01	:
178*	` .	4.14			1.70	
179* [†]		7.69	,		1.84	
180*	þ	6.56			1.53	
		•	- /		(_

Atter the complete (00.170) reaction with property

 $[\]uparrow\,$ Packed vessel. All others, unpacked vessel.

Table 8. Data for the exponential fit of the rate of nitrogen formation versus
temperature with the calculated activation energy and pre-exponential
factor in unpacked reaction vessel.

Temp(K)	k(s-1 x 105)	Temp(K)	k(s ⁻¹ x 10 ⁵)	Temp(K)	k(s-1 x 105
559.0	2.136	- 559.0	2.872	529.4	0.2025
559.0	2.053	559.0	2.401	529.4	0.1945
559.0	2.259	559.0	2.101	529.4	0.2011
559.0	2.381	559.0	1.924	519.4	0. 0.17
559.0	2.528	559.0	2.291	519.4	0,08807
559.0	1.943	559.0	1.944	519.4	0.08786
559.0	2.233	559.0	2.130	539.4	0.6107
559.0	2.027	559.0	2.296	539.4	0.4895
559.0	2.613	559.0	2.714	539.4	0.5289
559.0	2.401	559.0	2.208	539.4	0.5094
559.0	2.439	559.0	2.308	549.2	1.129
559.0	. 2.459	529.4	0.2239	549.2	1.271
559.0	1.981 .	529.4	0.2343	549.2	- 1.074
559.0	2.327	529.4	0.2901	549.2	1.088
559.0	2.425	529.4	0.2889	549.2	1.161
559.0	2.629	529.4	0.2333	549.2	1.136
559.0	2.752	529.4	0.2198	568.8	4.759
559.0	2.435	529.4	0.2111	. 568.8	4.891
559.0	2.192	529.4	0.2313	568.8	4.388
559.0	2.759	529.4	0.2728	559.0	2.627
559.0	2.169	529.4	0.1964	559.0	2.783
559.0	2.954	529.4	0.1957	550.0	2.828
559.0	2.732	529.4	0.1953		
559.0	2.205	529.4	0.1582		
559.0	2.337	529.4	0.2084		9
559.0.	2.369	529.4	0.2095		

 $A = 4.22 \times 10^{13} \pm 1.68 \times 10^{13} \text{ s}^{-1}$

Ea = $1.95 \times 10^5 \pm 1.83 \times 10^3 \text{ J mol}^{-1}$

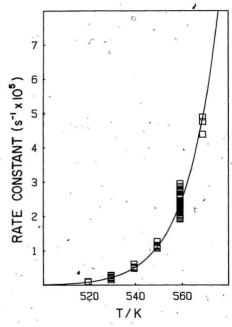


Figure 13. Plot of the rate constant for nitrogen formation versus temperature in unpacked reaction vessel.

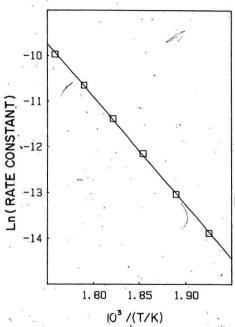


Figure 14. Arrhenius plot for nitrogen in unpacked reaction vessel:

exponential curve and the more common in k versus 1/T straight line fit. As before, non-linear regression analysis was used for each value of the rate constant k and the temperature T to give the best possible Arrhenius parameters.

Figure 15 shows the data fitted to the exponential curve and Table 9 contains the listing of the data with the calculated Arrhenius parameters. Figure 16 is the plot of ln k versus 1/T for the average values of ln k for each temperature.

Definite conclusions from the packed vessel experiments are difficult to reach, because there was a number of mitigating factors. First, the vessel itself had previously been used for surface/volume effects with azobenzene and the surface may have been medical. Second, the 1-methyl-2-phenyldiazene used for these experiments contained 0.43% aniline as the gas chromatographic procedure had not yet been developed for purification. Finally, the viton sealed valves in the original vacuum line may have leaked helium into the gas burette during collection giving higher than expected gas volumes.

For purposes of comparison Table 10 lists the average rate constants for each temperature in both vessels. Except for 559.0 K the table shows that the rate constant for nitrogen formation is larger for the packed versus the unpacked reaction vessel. But the sets experiments at 559.0 K were the first completed and they agree with those in the unpacked vessel. Based on the accelerated rate constants for nitrogen formation that were obtained when the packed vessel was used after the propene experiments it would appear that it also had a surface coating which would make the results suspect.

After due consideration, not withstanding the comments above, for the purpose of discussion it was assumed that, as pyrolysis reactions of azomethane and azobenzene are claimed to be homogeneous (4,5), reactions affecting the rate of nitrogen formation are essentially homogeneous. Also, under certain (obscure) circumstances the surface affects the rate of nitrogen formation.

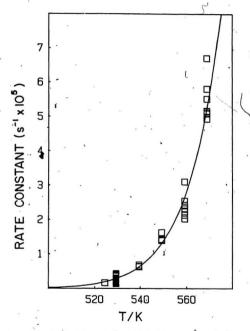


Figure 15. Plot of the rate constant for nitrogen formation versus temperature in packed reaction vessel.

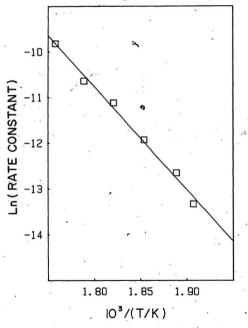


Figure 16. Arrhenius plot for nitrogen in packed reaction vessel.

Table 9. Data for the exponential fit of the rate of nitrogen formation versus
temperature with the calculated activation energy and pre-exponential
factor in packed reaction vessel.

Temp(K)	k(s-1 x 105)		Temp(K)	k(s ⁻¹ x 10 ⁵)
559.0	2.026		539.4	0.6334
559.0	2.136		529.4	0.2412
559.0	- 2.234		529.4	0.2385
559.0	2.426		529.4	0.3412
559.0	2.545	_	529.4	0.2153
559.0	T 3.101		529.4	0.3280
559.0	2.323		529.4	0.2950
568.8	5.519		529.4	0.2882
568.8	5.163		529.4	0.2564
568.8	5.811		529.4	0.2529
568.8	5.104		529.4	0.3596
568.8	6.704		529.4	0.4162
568.8	4.935		529.4	0.4851
568.8	5,147	•	529.4	0.3035
568.8	5.088	ı	529.4	0.2741
524.5	0.1626		529.4	0.3135
549.2	1.428		529.4	0.3596
549.2	1.396		529.4	0.4030
549.2	1.628		529.4	0.3066
539.4	0.6860		- 529.4	0.4369
539.4	0.6478		529.4	0.3330

 $A = 9.12 \text{ x} 10^{11} \pm 3.61 \text{ x } 10^{11} \text{ s}^{-1}$

 $Ea = 1.77 \times 10^5 \pm 1.84 \times 10^3 \text{ J mol}^{-1}$

Table 10. Mean rate constants for nitrogen formation in the packed and unpacked reaction vessels.

3	Temp(K)	No. of Runs-	Unpacked k(s ⁻¹ x 10 ⁵)	No. of Runs	Packéd k(s ⁻¹ x 10 ⁵)
	519.4	3	0.0938 ± 0.0077		1 1
	524.5			1	· 0.4626
	529.4	18	0.2204 ± 0.0335	20	0.3224 ± 0.0700
	539.4	3	0.5003 ± 0.0161	3	0.6557 ± 0.0222
	549.2	-6	1.143 ± 0.064	. 3	1.484 ,± 0.103
	559.0	40 `	2.380 ± 0.275	7	2.340 ± 0.329
	568.8	3	4.679 ± 0.213	8 .	5.434 ± 0.547

IV Discussion

This discussion is intended to account for the following observations:

- (1) The order for nitrogen formation is 1.04 ± 0.04 .
- (2) The activation energy, Ea, is less than that of azomethane or azobenzene.
- (3) The pre-exponential factor, A, is two to three orders of magnitude less than that expected of a simple fission reaction.
- (4) The rate of nitrogen formation is decreased by the addition of propene.
- (5) A variety of products is formed during pyrolysis.

1. Interpretation of Data

There are, possibly, three interpretations of the data for the purolysis of 1methyl-2-phenyldiazene:

- (1) Rate controlling elementary fission.
- (2) Rate controlling isomerization followed by pyrolysis.
- (3) . Chain reaction.

2. Rate Controlling Elementary Fission

Decomposition of 1-methyl-2-phenyldiazene, with no contribution from a chain reaction, could take place through reactions such as:

$$\bigcirc$$
-N = N - CH₃ \rightarrow \bigcirc -N = N· + ·CH₃

or
$$\bigcirc$$
 N = N - CH₃ \rightarrow \bigcirc · + ·N = N - CH₃

or
$$\bigcirc$$
 N = N - CH₃ \rightarrow \bigcirc + N₂ + · CH₃

There are two major arguments against using these as rate determining steps. First, propene should have no effect on the rate of nitrogen formation, in contradiction with the observations. Second, the 1-methyl-2-phenyldiazene would be expected to pass through a "loose" transition state. Such a loose transition state leads to a high pre-exponential factor, normally of 10¹⁶ · 10¹⁷ s⁻¹ (36), which is much higher than the experimental value. Of course these arguments do not exclude a contribution of such reactions.

3. Rate Controlling Isomerization

The second possibility is envisaged as trans to cis isomerization of 1-methyl-2phenyldiazene, which would be rate controlling, followed by pyrolysis. This possibility was seriously considered when the first results using propene, which indicated the absence of inhibition, were obtained. Low values of the pre-exponential factor and the absence of inhibition are expected of isomerization. To reinforce this view, it is known that cir-diazenes are reactive (3). In addition a new study of 2,2' di(isopropyl)-diazene has been published in which a low value of the pre-exponential factor was claimed (16). Hogever, the subsequent results using propene eliminated isomerization as the exclusive mechanism.

4. Chain Reaction

a. Simple Mechanism

The effect of propene seems best interpreted as due to some contribution of a chain mechanism. In addition, the fact that the pre-exponential factor is so low, and that the activation energy is below that of the assumed elementary fission reactions of both azomethane and azobenzene, support this view. Therefore, most of the subsequent discussion is concerned with a chain mechanism.

To facilitate this discussion the proposed mechanism is first presented in its simpliest terms and then expanded upon to accommodate further discussion.

Shown below is a simple mechanism designed to explain certain observations which have been made. The diazene is considered to be symmetrical in this initial

part of the discussion, in the interests of clarity.

[1]
$$D \rightarrow 2R_1 + N_2$$

$$R_1 + D \rightarrow P + R_2$$

[4]
$$R_1$$
 + D \rightarrow R_3

$$[5] \qquad R_1 \cdot + R_2 \cdot \rightarrow R_1 - R_2$$

[6]
$$R_3$$
 + D $\rightarrow P_1$ + R_2

$$[7] \qquad P_1 \rightarrow R_4 + R_5$$

[8]
$$R_4$$
 + D \rightarrow A_4 + R_2
[9] R_5 + D \rightarrow A_5 + R_2

The symbols in the above equations have the following meaning:

diazene -

[9]

- R1 hydrocarbon radical
- hydrocarbon product
- a hydrazine
- Ry diazene radical, R1 N = N R1
- R_3 · hydrazine radical, $R_1 N N R_1$

$$R_4$$
 , R_5 amine radicals, R_1 – N , N – R_1

$$A_4$$
, A_5 amines, $R_1 - N - R_1$, $H - N - R_1$

$$R_1 - R_2$$
 a new diazene

X: diradicals

Reactions [1] and [2] are standard reactions which have often been invoked (4,7,45) to explain the formation of the major products, nitrogen and hydrocarbons. The question of whether reaction [1] is a one or two step process was the original incentive for this study, and will be considered later.

One observation, already mentioned, is that propene inhibits the rate of nitrogen formation, at least when pyrolysis immediately follows mixing of 1-methyl-2phenyldiazene and propene. As propene has been shown to interfere with radiochain reactions (5,6), such behavior would imply that there is a source of nitrogen in
addition to reaction [1]. Reaction [3] or one similar to it has been used (5) to
represent this second source of nitrogen. Reaction [3] would also be the source of the
chain propagating radical, R₁, and thus the rate of nitrogen formation would be
decreased if R₁ reacted with propene.

Reaction [5], a termination reaction in which two different radicals combine, was used instead of the conventional reaction, [10].

$$[10] \quad R_1 \rightarrow R_1 \rightarrow R_1 - R_1$$

The reason for doing this is given in the following paragraphs.

Recall that nitrogen formation is first order, or nearly so, with respect to the initial concentration of 1-methyl-2-phenyldiazene. Therefore, the steady state approximation for the rate of nitrogen formation also should give a rate equation which is first order with respect to the singular property of the steady state.

Considering the mechanism in its simplest terms by omitting amine formation, and using reaction [10] as the termination reaction, the sequence would be

[1]
$$D \rightarrow 2R_1 + N_2$$

$$[2] \quad R_1 + D \rightarrow P + R_2$$

[10]
$$R_{1}$$
 + R_{1} - R_{1} - R_{1}

D, R1', R2' and P were defined above and R1 - R1 is a hydrocarbon product.

By using the stationary state method one obtains the following rate equations for the chain contribution to the rate of nitrogen formation, depending on the order of reactions [1] and [10].

Reaction	Order	Rate Equation for N ₂ Formation Due to the Reaction Chain
[1] [10]	. 1	$\frac{d[N_2]}{dt} = k_2 \left(\frac{k_1}{k_{10}} \right)^{t_2} [D]^{3/2}$
[1] [10]	1 .	$\label{eq:delta_dt} \frac{\mathrm{d}[N_2]}{\mathrm{d}t} \; = \; k_2 \Big(\frac{k_1}{k_{10}}\Big)^{l_2} \; [D]^I$
[1] [10]	2 2	$\frac{\mathrm{d}[N_2]}{\mathrm{d}t} \; \doteq \; k_2 \bigg(\frac{k_1}{k_{10}}\bigg)^{k_2} [D]^2$
[1] [10]	3	$\frac{\mathrm{d}[N_2]}{\mathrm{d}t} \; = \; k_2 \Big(\frac{k_1}{k_{10}} \Big)^{\nu_2} [D]^{3/2}$

As shown above, the orders of reaction [1] and [10] would have to be one and three respectively to give a first order rate of nitrogen formation with respect to the diagene.

But MacPherson (33) has shown that the rate constant for methyl radical recombination in the pressure and temperature range of this study is in its fall off region and therefore should be between second and third order and would also show strong pressure dependence.

In the case of 1-methyl-2-phenyldiazene the other possible termination reactions

[15]
$$\cdot C_6H_5 + \cdot C_6H_5 \rightarrow C_{12}H_{10}$$
.

Both would be second order...

If the data assembled by Holbrook (34) are used for guidance, the rate of decomposition of a molecule of the complexity of 1-methyl-2-phenyldiazene should be first order in the pressure range of this study. Therefore this implies that the combination of the initially formed radicals, 'CH₃ and 'C₃H₅, should not be the termination step of this mechanism.

b. Simple Mechanism with R1, R2 Termination

If however the termination reaction was:

[5]
$$R_1 + R_2 \rightarrow R_1 - R_2$$
,

instead of reaction [10], where R₁, and R₂, represent a hydrocarbon and a diazene radical respectively a first order chain mechanism is obtained.

The stationary state treatment is greatly simplified if the long offain approximation is made at the beginning, and the termination reaction is omitted from the rate equation for R₂. Then, using Mulcahy's procedure (32), the rate equations are written in the following way.

(1) The rate of initiation is equal to the rate of termination;

$$[1] \hspace{0.5cm} 2k_1[D] \hspace{0.1cm} = \hspace{0.1cm} k_5[R_1][R_2], \hspace{0.1cm} \text{and} \hspace{0.1cm}$$

(2) the differential equation for [R2] becomes,

$$[2] \quad \frac{d[R_2]}{dt_4} \ = \ k_2[R_1][D] - k_3[R_2] + k_6[R_3][D] + k_8[R_4][D] + k_6[R_5][D]$$

[†] An example is described by K.J. Laidler in Chemical Kinetics. 3rd ed. Harper and Row, New York, 1987, p. 308.

[11]
$$[R_2] = \left[\frac{2k_1k_2}{k_3k_5} + \frac{6k_1k_4}{k_3k_5}\right]^{k_2}[D]$$

· and substitution of [11] into [3], and rearranging gives finally

$$[12] \qquad \frac{\mathrm{d}[N_2]}{\mathrm{d}t} \; = \; \left[k_1 \; + \; \left(\frac{2k_1k_2k_3}{k_5} \; + \; \frac{6k_1k_3k_4}{k_5}\right)^{k_2}\right]\![D].$$

Equation [12] is consistent with what was found experimentally in the sense that the rate of nitrogen formation is first order with respect to the initial concentration of 1-methyl-2-phenyldiazene. Therefore, the termination reaction apparently involves the recombination of initially formed radical and the diazene radical.

c. Complete Mechanism

The simple mechanisms were based on a symmetrical diazene and were used to show that certain features of the reaction could be explained. For a more complete discussion the following mechanism is proposed for the pyrolysis of the asymmetrical 1-methyl-2-phenyldiazene.

[16]
$$\bigcirc$$
 N = N - CH₃ \rightarrow N₂ + ·CH₃ + ·C₆H₅

$$[17] \quad \cdot \mathrm{CH_3} + \bigcirc -\mathrm{N} = \mathrm{N} - \mathrm{CH_3} \, \rightarrow \, \mathrm{CH_4} + \cdot \mathrm{CH_2} - \mathrm{N} = \mathrm{N} - \bigcirc$$

[18]
$$CH_3 + \bigcirc -N = N - CH_3 \rightarrow CH_4 + CH_3 - N = N - \bigcirc$$

[10]
$$\cdot \bigcirc + \bigcirc - N = N - CH_3 \rightarrow \bigcirc + \cdot CH_2 - N = N - \bigcirc$$

$$[20] \cdot \bigcirc + \bigcirc -N = N - CH_3 \rightarrow \bigcirc + CH_3 - N = N - \bigcirc \cdot$$

$$[21] \quad \cdot CH_2 - N = N \longrightarrow \longrightarrow \quad N_2 \ + \ \cdot CH_2 \ + \ \cdot \bigodot$$

(3) The other rate equations would be:

[3]
$$\frac{d[N_2]}{dt} = k_1[D] + k_3[R_2]$$

[4]
$$\frac{d[R_3]}{dt} = k_4[R_1][D] - k_6[R_3][D]$$

$$[5] \quad \frac{d[P_1]}{dt} = k_6[R_3][D] - k_7[P_1]$$

[6]
$$\frac{d[R_4]}{dt} = k_7[P_1] - k_8[R_4][D]$$

$$[7] \quad \frac{d[R_5]}{dt} = k_7[P_1] - k_0[R_5][D]$$

Using the Steady State Approximation for [4], [5], [6] and [7] one obtains:

$$k_4[R_1][D] = k_6[R_3][D]$$

$$k_8[R_3][D] = k_7[P_1] = k_8[R_4][D] = k_9[R_5][D]$$

Substitution of k4[R1][D] into [2] one obtains:

[8]
$$\frac{d[R_2]}{dt} = O = k_2[R_1|[D] - k_3[R_2] + 3k_4[R_1|[D]].$$

Then rearrangement of [1] into [9]

[9]
$$[R_1] = \frac{2k_1[D]}{k_1[R_1]}$$

by substitution of [9] into [8], then multiplying through by [R2], gives [10].

$$[10] \quad \frac{2k_1k_2}{k_5}[D]^2 - [k_3][\tilde{R}_2]^2 + \frac{6k_1k_4}{k_5}[D]^2 = O$$

Solving [10] for [R2], gives [11].

[22]
$$CH_3 - N = N - \bigcirc \cdot \rightarrow N_2 + \cdot CH_3 + \cdot \bigcirc \cdot$$

[23]
$$CH_3 + CH_3 - N = N - \bigcirc \longrightarrow CH_3 - N - N - \bigcirc$$

[24]
$$CH_3 + CH_3 - N = N - \bigcirc$$
 \rightarrow $CH_3 - N - \bigcirc$

[25]
$$\cdot \bigcirc$$
 + $CH_3 - N = N - \bigcirc$ $\cdot \rightarrow CH_3 - N - \bigcirc$

[26]. •
$$\bigcirc$$
 + CH₃ - N = N - \bigcirc \rightarrow CH₃ - N - N - \bigcirc

[27]
$$\cdot CH_3 + \cdot CH_2 - N = N - \bigcirc \longrightarrow CH_3 - CH_2 - N = N - \bigcirc$$

[28]
$$CH_3 + CH_3 - N = N - O \cdot \rightarrow CH_3 - N = N - O \cdot CH_3$$

$$[29]$$
 $\cdot \bigcirc + \cdot CH_2 - N = N - \bigcirc \rightarrow \bigcirc - CH_2 - N = N - \bigcirc$

[30]
$$\cdot \bigcirc + CH_3 - N = N - \bigcirc \cdot \rightarrow CH_3 - N = N - \bigcirc - \bigcirc$$

[31]
$$CH_3 - N - N - \bigcirc + CH_3 - N = N - \bigcirc \rightarrow CH_3 - N - N - \bigcirc + CH_2 - N = N - \bigcirc \rightarrow CH_3 - N - \square \rightarrow CH_3 -$$

[33]
$$CH_3 - N - N - \bigcirc + CH_3 - N = N - \bigcirc + CH_3 - N - N - \bigcirc + CH_2 - N = N - \bigcirc$$

[34]
$$CH_{1}$$
- N - N

[i3]
$$CH_3 - N + CH_3 - N = N - \bigcirc \rightarrow CH_3 - N - H + CH_2 - N = N - \bigcirc$$

[41]
$$CII^{3} - N + CH^{3} - N = N - \bigcirc \rightarrow CH^{3} - N - H + CH^{3} - N = N - \bigcirc$$

[45]
$$\bigcirc -N + CH_3 - N = N - \bigcirc \rightarrow \bigcirc -N - H + CH_2 - N = N - \bigcirc$$

[46]
$$\bigcirc$$
 N + CH₃ - N = N - \bigcirc \rightarrow \bigcirc N - H + CH₃ - N = N - \bigcirc .

[47]
$$CH_3 - N + CH_3 - N = N - \bigcirc \rightarrow CH_3 - N - H + CH_2 - N = N - \bigcirc$$

[48]
$$CH_3 - N + CH_3 - N = N - \bigcirc \rightarrow CH_3 - N - H + CH_3 - N = N - \bigcirc \rightarrow CH_3 - N - H + CH_3 - N = N - \bigcirc \rightarrow CH_3 - N - H + CH_3 - N = N - \bigcirc \rightarrow CH_3 - N - H + CH_3 - N = N - \bigcirc \rightarrow CH_3 - N - H + CH_3 - N = N - \bigcirc \rightarrow CH_3 - N - H + CH_3 - N = N - \bigcirc \rightarrow CH_3 - N - H + CH_3 - N = N - \bigcirc \rightarrow CH_3 - N - H + CH_3 - N = N - \bigcirc \rightarrow CH_3 - N - H + CH_3 - N = N - \bigcirc \rightarrow CH_3 - N - H + CH_3 - N$$

[40]
$$\bigcirc N + CH_3 - N = N - \bigcirc N - M - H + CH_2 - N = N - \bigcirc$$

[50]
$$\bigcirc N$$
 + $CH_3 - N = N - \bigcirc N$ · $\rightarrow \bigcirc N - H$ + $CH_3 - N = N - \bigcirc N$

[51]
$$\bigcirc -N + CH_3 - N = N - \bigcirc \rightarrow \bigcirc -N - H + CH_2 - N = N - \bigcirc$$

[52]
$$\bigcirc$$
 N + CH₃ - N = N \bigcirc \rightarrow \bigcirc N - H + CH₃ - N = N \bigcirc

There are two important features in the above mechanism which distinguish it from the simple ones. One is the fact that, because the diazene is not symmetrical, there are four abstraction and four termination reactions for each one in the simple mechanism. The other is the increase in number of the reactions which could be referred to as the "amine" chain. These are reactions [31] to [52]. Such reactions concern the fate of the hydrazine radicals, (reactions [23] to [26]), which are formed when CH₃ or · ② adds across the nitrogen double bond. With subsequent hydrogen abstraction from 1-methyl-2-phenyldiazene; (reactions [31] to [38]), they lead to four possible hydrazines.

During this study, in contrast with previous ones (5,7,45), no hydrazines were

found among the products of decomposition. This can be understood in terms of the nature of the possible by draines formed. All would be substituted phenylhydrazine and the rate constant for decomposition of phenylhydrazine itself in toluene is 1.5 x 10° f s² at 559 K (42) which is ten times the rate constant for decomposition of 1-methyl-2-phenyldiazene at that temperature. Therefore reactions [39] to [42] we included to show decomposition of the various hydratines which would be formed. Hydrogen abstraction by these radicals from 1-methyl-2-phenyldiazene will give a series of amines, as well as two kinds of diazene radicals, in reactions [43] to [52].

The presence of amines, as well as the absence of hydrazines, was indeed observed. However, only two of the five possible amines, aniline and N-methylaniline, were detected. Of course, the others may have been unresolved or undetected on the OV-17 or DB-1 columns. Excluding that possibility it seems that two interpretations are apparent. First, N-methyl-N-pheny

d. Speculation on the Formation and Reactions of Diradicals

Reactions [21] and [22] represent two, of the main features of this mechanism. One feature is the production of nitrogen as part of the chain mechanism and the other is that they are the chain propagating steps. Both of these points were discussed in connection with the simple mechanism, and references were given. The justification for writing these reactions is that sitrogen does appear to be formed by a chain reaction as well as, presumably, reaction [16]. What was not commented on before was the fate of the possible readicals formed, methylene and benzyne. Two of the possible reactions of these radicals would be insertion into or addition to 1-

methyl-2-phenyldiazene, as it is the most abundant species present.

i. Addition

Addition reactions of methylene and benzyne* would produce, possibly, four other diradicals, as shown in reactions [53] to [56].

Following Forst's (7) example, it is assumed that each of these new radicals could do one of two-things. Rearrangement would give more complex diazenes. The products would be the same as those of insertion reactions, to be discussed below.

Alternatively they could react with the 1-methyl-2-phenyldiazene to abstract hydrogen, as in reactions [57] to [50].

p-benzyne is shown as a example. For a discussion of methylene and benzyne, please refer to the book Reactive Molecules by Curt Wentrup, John Wiley and Sons, Toronto, 1984.

[†] Only four of the eight possible abstraction reactions shown.

The radicals are the same ones which are formed in reactions [23] to [26].

Therefore no changes in order of reaction or nature of the products is expected.

ii. Insertion

The methylene and benzyne radicals, however, insert quite readily (35). It is assumed that insertion into diazenes is also possible, as suggested by Chang and Rice (43). We also assume that such reactions are possible, and that new diazenes may be formed in this way.

e. Rate Equation for the Complete Mechanism

No mention has been made so far that, in the chain contribution to the proposed complete mechanism of nitrogen formation, the order should be one with respect to the initial concentration of 1-methyl-2-phenyldiazene. To show that it is so, one has to use the same procedure as outlined for the preliminary mechanism.

To simplify the procedure the following abbreviations have been made:

$$R_{3A}$$
 CH_3 — N — N — \bigcirc ; R_{3B} CH_3 — N — \bigcirc ; \tilde{R}_{3C} CH_3 — \tilde{N} — N — \bigcirc ; \tilde{R}_{3C} CH_3 — \tilde{N} — \bigcirc ;

The rate of nitrogen formation is given by

[13]
$$\frac{d[N_2]}{dt} = k_{16}[D] + k_{21}[R_2] + k_{22}[R_2]$$

Referring again to Mulcahy (32) approximations are made that (1) the rate of initiation (R_t) equals the rate of termination (R_t) or

$$[14] \frac{d[R_1]}{dt} = k_{16}[D] - k_{27}[R_2][\hat{R}_1] - k_{29}[R_2][R_1] = 0$$

and

$$[15] \ \frac{d[R_1]}{dt} \ = \ k_{16}[D] = k_{28}[R_2][R_1] - k_{30}[R_2][R_1] \ = \ 0$$

(2) for long chains, the rate of propagation is given by,

and

$$[17] \ \frac{d[R_2']}{dt} \ = \ k_{18}[R_1][D] + k_{20}[R_1'][D] - k_{22}[R_2'] + k_{32}[R_3][D]$$

$$+ \ k_{34}[R_{34}][D] + k_{38}[R_{3B}][D] + k_{38}[R_{3C}][D]$$

+
$$k_{sa}[R_{sa}][D] + k_{sa}[R_{sa}][D] + k_{sa}[R_{sa}][D]$$

+ $k_{sa}[R_{ra}][D] + k_{sa}[R_{sa}][D] = 0$

The other rate equations using the Steady State Approximation are given by:

$$\begin{aligned} & [18] \quad \frac{d[R_d]}{dt} = k_{40}[P_1] - k_{47}[R_4][D] - k_{48}[R_d][D] = 0 \\ \\ & [10] \quad \frac{d[R_d]}{dt} = k_{41}[P_4] - k_{51}[R_5][D[-k_{52}[R_d]][D] = 0 \\ \\ & [20] \quad \frac{d[R_d]}{dt} = k_{33}[P_2] + k_{41}[P_3] - k_{61}[R_6][D[-k_{46}[R_d]][D] = 0 \end{aligned}$$

$$\int_{[21]} \frac{d[R_7]}{dt} = k_{30}[P_2] + k_{42}[P_4] - k_{43}[R_7][D] - k_{44}[R_7][D] = 0$$

$$[22] \quad \frac{d[R_8]}{dt} = k_{40}[P_1] + k_{41}[P_3] - k_{40}[R_8][D] - k_{50}[R_8][D] = 0$$

$$[23] \quad \frac{d[P_1]}{dt} \ = \ k_{3l}[R_3][D] + k_{32}[R_3][D] - k_{40}[P_1] \ = \ 0$$

$$[24] \quad \frac{d[P_2]}{dt} = k_{33}[R_{3A}][D] + k_{34}[R_{3A}][D] - k_{39}[P_2] = 0$$

$$[25] \frac{d[P_3]}{dt} = k_{37}[R_{3B}][D] + k_{38}[R_{3B}][D] - k_{41}[P_3] = 0$$

$$[26] \frac{d[P_4]}{dt} = k_{35}[R_{3C}][D] + k_{36}[R_{3C}][D] - k_{42}[P_4] = 0$$

$$[27] \quad \frac{d[R_3]}{dt} = k_{23}[R_1][D] - k_{31}[R_3][D] - k_{32}[R_3][D] = 0$$

$$[28] \quad \frac{d[R_{3A}]}{dt} = k_{24}[R_1][D] - k_{33}[R_{3A}][D] - k_{34}[R_{3A}][D] = 0$$

[29]
$$\frac{d[R_{3B}]}{dt} = k_{25}[R_1 \hat{J}[D] - k_{35}[R_{3B}][D] - k_{36}[R_{3B}][D] = 0$$

$$[30] \quad \frac{d[R_{3C}]}{dt} = k_{28}[R_1][D] - k_{37}[R_{3C}][D] - k_{38}[R_{3C}][D] = 0$$

By solving for R_3 , R_{3A} , R_{3B} and R_{3C} in equations [27] to [30] respectively and then substituting into equations [23] to [26] respectively one obtains:

$$[31] \quad k_{23}[R_1][D] - k_{40}[P_1] = 0$$

$$[32] \quad k_{24}[R_1][D] - k_{39}[P_2] = 0$$

[33]
$$k_{25}[R_1][D] - k_{4i}[P_3] = 0$$

$$[34] \quad k_{26}[\hat{R}_1'][D] - k_{42}[P_4] \ = \ 0$$

One next substitutes the expressions for R_3 , R_{3A} , R_{3B} and R_{3C} in equations [27] to [30] into equations [16] and [17] to obtain:

$$\begin{array}{lll} |35\rangle & \frac{\mathrm{d}[\mathrm{R}_2]}{\mathrm{d}\,\mathbf{t}} = & k_{17}[\mathrm{R}_1][\mathrm{D}] + k_{19}[\mathrm{D}] - k_{21}[\mathrm{R}_2] \\ & + & \frac{k_{31}k_{23}[\mathrm{D}_1][\mathrm{R}_1]}{k_{31} + k_{32}} + & \frac{k_{33}k_{24}[\mathrm{R}_1][\mathrm{D}]}{k_{33} + k_{34}} + & \frac{k_{35}k_{29}[\mathrm{R}_1][\mathrm{D}]}{k_{35}k_{35}} \\ & + & \frac{k_{37}k_{36}[\mathrm{R}_1][\mathrm{D}]}{k_{37}k_{38}} + & k_{47}[\mathrm{R}_4][\mathrm{D}] + k_{51}[\mathrm{R}_5][\mathrm{D}] \\ & + & k_{46}[\mathrm{R}_6][\mathrm{D}] + k_{43}[\mathrm{R}_7][\mathrm{D}] + k_{40}[\mathrm{R}_8][\mathrm{D}] = & 0 \end{array}$$

and .

$$\begin{array}{rcl} [36] & \frac{\mathrm{d}[\mathrm{R}_2]!}{\mathrm{d}\,t} & = & k_{18}[\mathrm{R}_1][\mathrm{D}] + k_{20}[\mathrm{R}_1][\mathrm{D}] - k_{22}[\mathrm{R}_2]] \\ \\ & + & \frac{k_{22}k_{23}[\mathrm{R}_1][\mathrm{D}]}{k_{31} + k_{32}} + \frac{k_{24}k_{24}[\mathrm{R}_1][\mathrm{D}]}{k_{33} + k_{34}} + \frac{k_{26}k_{23}[\mathrm{R}_1][\mathrm{D}]}{k_{35} + k_{36}} \end{array}$$

$$\begin{array}{lll} + & \frac{k_{38}k_{28}[R_1][D]}{k_{57} + k_{38}} + & k_{48}[R_4][D] + k_{52}[R_5][D] \\ & & & & \\$$

By solving for P_1 , P_2 , P_3 and P_4 in equations [31] to [34] respectively, and substituting into [18] to [22] one obtains:

[37]
$$[R_4] = \frac{k_{23}[R_1]}{k_{47} + k_{48}}$$

[38] $[R_6] = \frac{k_{26}[R_1]}{k_{51} + k_{52}}$

$$[R_6] = \frac{k_{24}[R_1] + k_{26}[R_1]}{k_{45} + k_{46}}$$

[40]
$$[R_7] = \frac{k_{24}[R_1] + k_{25}[R_1]}{k_{43} + k_{44}}$$

[41]
$$[R_8] = \frac{k_{23}[R_1] + k_{25}[R_1]}{k_{10} + k_{20}}$$

By substituting [37] to [41]-into [35] and [36] respectively and making the following substitutions:

$$\begin{aligned} k_x &= k_{17} + \frac{k_{31}k_{23}}{k_{31} + k_{12}} + \frac{k_{33}k_{24}}{k_{33} + k_{34}} + \frac{k_{47}k_{23}}{k_{47} + k_{48}} \\ &+ \frac{k_{48}k_{24}}{k_{48} + k_{46}} + \frac{k_{43}k_{24}}{k_{43} + k_{44}} + \frac{k_{49}k_{23}}{k_{40} + k_{50}} \\ k_y &= k_{10} + \frac{k_{33}k_{25}}{k_{35} + k_{36}} + \frac{k_{37}k_{28}}{k_{37} + k_{38}} + \frac{k_{51}k_{29}}{k_{51} + k_{52}} \end{aligned}$$

$$+ \frac{k_{45}k_{25}}{k_{45} + k_{46}} + \frac{k_{43}k_{26}}{k_{43} + k_{44}} + \frac{k_{40}k_{25}}{k_{40}k_{50}}$$

$$\begin{aligned} k_{z} &= k_{18} + \frac{k_{52}k_{23}}{k_{31} + k_{32}} + \frac{k_{33}k_{24}}{k_{33} + k_{34}} + \frac{k_{46}k_{23}}{k_{47} + k_{48}} \\ &+ \frac{k_{46}k_{24}}{k_{45} + k_{46}} + \frac{k_{44}k_{24}}{k_{45} + k_{44}} + \frac{k_{56}k_{23}}{k_{46} + k_{50}} \end{aligned}$$

and

$$k_{w} = k_{20} + \frac{k_{30}k_{25}}{k_{35} + k_{38}} + \frac{k_{38}k_{25}}{k_{37} + k_{38}} + \frac{k_{52}k_{28}}{k_{51} + k_{52}}$$

$$+ \frac{k_{40}k_{25}}{k_{44} + k_{44}} + \frac{k_{44}k_{20}}{k_{44} + k_{44}} + \frac{k_{50}k_{25}}{k_{46} + k_{50}}$$

one obtains:

$$\begin{cases}
4[2] & \frac{d[R_2]}{dt} = k_1[R_1][D] + k_2[R_1][D] - k_{21}[R_2] = 0 \\
4[3] & \frac{d[R_2]}{dt_2} \leq k_1[R_1][D] + k_{w}[R_1][D] - k_{22}[R_2] = 0
\end{cases}$$

By solving for $[R_2]$ and $[R_2]$ in equations [42] and [43], substituting into [14] and [15] and then rearranging one obtains:

$$[44] \quad [D] \ \frac{k_{27}k_x}{k_{21}}[R_1]^2 + \frac{k_{21}k_y}{k_{21}}[R_1][R_1]^2 + \frac{k_{29}k_x}{k_{22}}[R_1]^2 + \frac{k_{29}k_w}{k_{22}}[R_1][R_1] - k_{16} \ = \ 0$$

$$[45] \quad [D] \ \frac{k_{28}k_x}{k_{21}}[R_1][R_1]' + \frac{k_{28}k_y}{k_{21}}[R_1]^2 + \frac{k_{30}k_x}{k_{22}}[R_1][R_1]' + \frac{k_{30}k_w}{k_{22}}[R_1]^2 - k_{16} \ = \ 0$$

$$\begin{split} & \text{Dividing through by [D] and letting} \\ & a = \frac{k_{27}k_x}{k_{21-}}; \ b = \frac{k_{27}k_y}{k_{21}}; \ c = \frac{k_{29}k_x}{k_{20}}; \ d = \frac{k_{29}k_x}{k_{20}}; \end{split}$$

$$a' = \frac{k_{28}k_x}{k_{21}}; \ b' = \frac{k_{28}k_y}{k_{21}}; \ c' = \frac{k_{30}k_z}{k_{22}}; \ d' = \frac{k_{30}k_w}{k_{22}};$$

$$x = [R_1]; y = [R_1]; and c = -k_{16}$$

one obtains:

$$|46| \quad ax^2 + bxy + cx^2 + dxy + e = 0$$

[47]
$$a'xy + b'y^2 + c'xy + d'y^2 + e = 0$$

rearranging:

$$[48]$$
 $(a+c)x^2 + (b+d)xy + e = 0$

$$[49] \cdot (b'+d')y^2 + (a'+c')xy + e = 0$$

Solving [48] for y, substituting into [40] and then multiplying through by x^2 one

$$\begin{array}{lll} .[50] & \frac{c^2(b'+d')}{(b+d)^2} - & \frac{2e(a+c)(b'+d')}{(b+d)} x^2 + \left(\frac{a+c}{b+d}\right)^2 (b'+d')x^4 \\ & & + & \frac{e(a'+c')}{(b+d)} x^2 - (a'+c')(a+c) x^4 + cx^2 = 0 \end{array}$$

and by rearranging and solving for x one obtains:

[51]
$$[R_1] = x = \pm \left[\frac{+2e(a+c)[b'+d']}{(b+d)^2} + \frac{-e(a'+c')}{b+d} + e \right] \pm \frac{-e(a'+c')}{(b+d)} + e$$

$$+ \frac{2e(a+c)[b'+d']}{(b+d)^2} - 4 \left[\left(\frac{a+c}{b+d} \right)^2 (b'+d') - (a'+c')(a+c) \right]$$

$$= \left[\frac{e^2(b'+d')}{(b+d)^2} \right] / 2 \left[\left(\frac{a+c}{b+d} \right)^2 (b'+d') - (a'+c')(a+c) \right]$$

[52]
$$|\mathbf{R}_1'| = \mathbf{y} = \frac{\mathbf{t}}{\pm} \begin{bmatrix} \frac{2e(\mathbf{b}'+\mathbf{d}')(\mathbf{a}+\mathbf{c})}{\bullet} - \frac{e(\mathbf{b}+\mathbf{d})}{(\mathbf{a}'+\mathbf{c}')} + \mathbf{e} \end{bmatrix} \pm \frac{-e(\mathbf{b}+\mathbf{d})}{(\mathbf{a}'+\mathbf{c}')} + \mathbf{e} \\ + \frac{2e(\mathbf{b}'+\mathbf{d}')(\mathbf{a}+\mathbf{c})}{(\mathbf{a}'+\mathbf{c}')^2} - 4 \begin{bmatrix} \frac{\mathbf{b}'+\mathbf{d}'}{\mathbf{a}'+\mathbf{c}'} \end{bmatrix}^2 (\mathbf{a}+\mathbf{c}) - (\mathbf{b}+\mathbf{d})(\mathbf{b}'+\mathbf{d}') \end{bmatrix}$$

$$\left[\frac{e^{2}(a+c)}{(a'+c')^{2}}\right] / 2\left[\left(\frac{b'+d'}{a'+c'}\right)^{2}(a+c) - (b+d)(b'+d')\right]$$

The expressions for $[R_1]$ or x and $[R_1]$ or y are composed of constants; therefore by substituting back into equations [42] and [43] one obtains:

[53]
$$[R_2] = \frac{k_x[R_1][D] + k_y[R_1][D]}{k_{21}}$$
 and

$$|54|/|R_2| = \frac{k_1[R_1][D] + k_w[R_1][D]}{k_{22}}$$

By substituting [53] and [54] into equation [13] one obtains the rate expression for nitrogen formation:

[55]
$$\frac{d[N_2]}{dt} = \left[k_{18} + (k_x + k_z)[R_1] + (k_y + k_w)[R_1]\right][D]$$

which is first order for nitrogen formation with respect to the concentration of 1methyl-2-phenyldiazene because all terms within the square brackets are constants.

5. Comments on the Results with Propene

There seems to be a difference of opinion regarding the usefulness of unauturated hydrocarbons as chain inhibitors. For example, Forst (5) determined that ethylene and propene had different minimum (or nearly so) rates which were greater than that found with nitric oxide for the pyrolysis of azomethane. Meanwhile others use ethylene (4), cyclohexene (28), propene (6) etc. as inhibitors. Even though the groblem is not resolved, it is interesting to speculate on the effect of propene by assuming that, in Run #223, which was the run with the highest ratio of propene to diazene, an elementary rate constant was measured. The value, Figure 12, is 1.64 x 10⁻⁵ s⁻¹ at 550.05 K. Although we do not yet know the value of the pre-exponential factor in propene, the accepted pre-exponential factor for simple flasion of azomethane is in the order or 10¹⁷. If this value is substituted in the Arrhenlus equa-

tion as a guess one obtains a value of 233 kJ/mole for the activation energy which is exactly the same as Forst and Rice (5) obtained for the NO inhibited decomposition of azomethane!

Because both azomethane and 1-methyl-2-phenyldiazene have the same activation energy (if the speculation has any validity), one bond fission at the methyl end is indicated. This result lends credence to Engel's hypothesis (3) that the more asymmetrical the functional groups of the diazene the more likely there is to be one bond rather than two-bond fission.

6. Speculation on the Effect of Storage

It was unfortunate that the initial experiments with propene showed no effect of inhibitation of the rate of nitrogen formation, and the wrong conclusions were initially drawn. The reason for this phenomenon remains a mystery. However, it is possible that the effect was due to the conversion of a small amount of the diazene to the cis isomer during overnight storage at 105 °C. Cis isomers of diazenes are known to be reactive (3,25). Thus the apparent increased rate of nitrogen formation may have been due to pyrolysis of cis-1-methyl-2-phenyldiazene which by coincidence compensated for the reduction in rate which was caused by propene.

7. Speculation on the Role of Phesylhydrazone

The presence of aniline, sometimes in quite large yields (see Appendix B), indicates that there is another source in addition to the decomposition of the diszene, as outlined above.

The Arrhenius plots of the uninhibited decomposition of 1-methyl-2-phenyldiazene-in both packed and unpacked vessels deserves a comment. Both illustrate excellent fits to the Arrhenius equation but yet, as has been shown, the data were best interpreted by a chain reaction, complicated functions of rate constants. In addition, there may be non-chain contributions to the rate constant. Nevertheless no curvature in the Arrhenius plot is observed even though one might expect it because of the complicated temperature dependence of the rate equation. This seems to show the insensitivity of the Arrhenius quantion to such commoderaties.

It is possible that phenylhydrazone, which was among the reaction products, reacts in the gas phase or on a surface, to give aniline. In solution, during the steps in the synthesis in which phenylhydrazone is converted to diazene, it decomposes partially to aniline and hydrogen cyanide (29). So it seems possible that some of the 1-methyl-2-phenyldiazene isomerizes during pyrolysis, to phenylhydrazone which subsequently decomposes to aniline and hydrogen cyanide.

The difficulty with proposing the above reaction is that no hydrogen cyanide has been found in the reaction products. There may be two reasons. One, it may volatilize when the condensed fraction is warmed to ambient temperature. Another possible explanation may be that it adds across the nitrogen double bond of I-methyl-2-phenfldiazene, as it has been shown (30) that phenylhydrazones readily add hydrogen eyanide.

Hydrogen cyanide has, however, been detected in the products of decomposition of azomethane (37) using mass spectrometry. However the validity of this report has been questioned on the grounds that only a fragment of some larger molecule was observed. In support of this view the electron impact mass spectrum of azomethane has a peak at m/e of 27 (38) which is only 4% of the parent ion peak, while Wacks work (37) shows that peak at m/e of 27 is prominent in the flow through pyrolysis of azomethane using a mass spectrometer as the mode of detection indicating that an ion of m/e 27 is a product of the pyrolysis of azomethane.

8. Comments on the Erratic Behavior of Rate of Reaction

After the initial set of runs with propene, as described in the results section, a reaction of I-methyl-2-phenyldiazene with propene was allowed to go to 99% completion. In most subsequent experiments the rate of hitrogen formation was high while the rate of methane formation was low, relative to the rates observed in the previous experiments, (Table 9).

Surface reactions provide a possible explanation of the erratic behavior, if, during the 90% reaction the reaction vessel became coated (with polypropylene perhaps). Such a surface could provide sites for certain reactions. If reactions [23] to [20] were favored over reactions [17] to [20] an increase in the rate of formation of nitrogen could be observed because the "amine" chain produces three diazene radicals for each one consumed, as opposed to one in the abstraction route. This route would also lower the yield of methane because it consumes a methyl radical. It is interesting to notice the possibility of a branching chain, consistent with erratic behavior and high rate of reaction. Finally it should be noted that the problem of certait behavior was not solved until a clean reaction vessel was installed.

9 Summary and Suggestions for Future Research

Among the results of this study, four important features related to nitrogen formation emerged. The first is the value of the Arrhenius activation energy, which is less than the value which would be expected of elementary C-N bond rupture at either site. The second feature is the low value of the pre-exponential factor, which is two or three orders of magnitude below the value expected of a simple fission reaction. The inhibiting effect of propene represents the third feature. These observations were interpreted by means of a chain reaction. However, the observation that the order is almost unity, which is the fourth feature, is not in accord with the kind of chain reaction which is usually proposed. A different type of termination reaction was suggested in order to account for the low value of the order.

The length of the chain and the relative contribution of the chain cannot be deduced from the results of this study. Thus, the effect of propene is quite small, leading one to believe that the chains are short. Conversely the values of the

[†] It is interesting and confusing to notice that the packed vessel, in which no propene was used seemed to develop the same properties.

Arrhenius parameters differ very much from those expected of simple fission reactions; this leads to the suspicion that the chains are quite long. Alternatively, a different pathway,in addition to the chain, may be available, perhaps through isomerization and pyrolysis of cis 1-methyl-2-phenyldiazene.

That the rate of nitrogen formation for the run with the highest ratio of propene to diazene gives the same activation energy (when the value of the preexponential factor is guessed) as that for azomethane in the presence of nitrous oxide is interesting. A detailed study, in which the determination of the fully inhibited rate of nitrogen formation would be determined, seems to be warranted. Also, a more detailed study of the various products and the kinetics of their formation should better establish the nature of the chain.

And finally a study should be designed which would establish the roles, if there are any, played by cis-1-methyl-2-phenyldiazene and phenylhydrazone.

References

- H.C. Ramsperger, J. Am. Chem. Soc., 1929, 51 2134.
- M.J. Perona et al., Int. J. Chem. Kinet., 1973, 5, 495 and A. Péter, G. Acs and P. Huhn, Int. J. Chem. Kinet., 1984, 16, 767.
- P.S. Engel, Chem. Rev., 1980, 80, 99.
- D. Barton et al., Can. J. Chem. 1983, 61, 1712.
- 5. W. Forst and O.K. Rice, Can. J. Chem., 1963, 41, 562.
- 6. C. Steel and A.F. Trotman-Dickenson, J. Chem. Soc., 1959, 975.
- 7. Y. Paquin'and W. Forst, Int. J. Chem. Kinet., 1973, 5, 691.
- 8. A. Leiba and I. Oref, J. Chem. Soc. Faraday Trans., 1979, 75, 2694.
- M. Page et al., J. Chem. Soc., 1953, 3878.
- 10. G. Chiltz et al., J. Phys. Chem., 1962, 06, 1426.
- 11. O.K. Rice and D.V. Sickman, J. Chem. Phys., 1936, 4, 242.
- 12. H.A. Taylor and F.D. Jahn, J. Chem. Phys., 1939, 7, 470.
- R.M. Marshall and N.D. Page, J. Chem. Soc. Faraday Trans., 1978, 74(8), 2121.
- M.C. Lin and K.J. Laidler, Can J. Chem., 1966, 44, 2927.
- S.W. Benson and H.E. O'Neal in Kinetic Data on Gas Phase Unimolecular Reactions, National Bureau of Standards (United States), 1970, p. 31.
- D.F. McMillen et al., J. Phys. Chem., 1982, 86, 709.
- 17. P.L. Holt et al., J. Am. Chem. Soc., 1985, 107, 2180.
- 18. N.A. Porter et al., J. Am. Chem. Soc., 1977, 99, 1264.
- 19. W.A. Pryor and K. Smith, J. Am. Chem. Soc., 1970, 92, 5403.
- 20. R.C. Neuman and G.D. Lockyer, J. Am. Chem. Soc., 1983, 105, 3982.

- 21. R.C. Neuman et al., Tetrahedron Lett., 1972, 1221.
- 22. R.C. Neuman and G.A. Binegar, J. Am. Chem. Soc., 1983, 105, 135.
- T. Asano and T. Okaga, J. Org. Chem., 1984, 49, 4387.
- 24. S. Seltzer and F.J. Dunne, J. Am. Chem. Soc., 1965, 87, 2628.
 - 25. N.A. Porter and L.J. Marnett, J. Am. Chem. Soc., 1973, 95, 4361.
 - 26. K.R. Kopecky et al., Can. J. Chem., 1976, 54, 2639.
 - 27. J.J. Dannenberg and D. Rocklin, J. Org. Chem., 1982, 47, 4529.
 - 28. G. Martin and S. Costi, React. Kinet. Catal. Lett., 1981, 17(1), 175.
 - 29. B.V. Ioffe and V.S. Stopskii, Dok. Akad. Nauk SSSR, 1966, 175, 1064.
 - 30. W.E. Wentworth, J. Chem. Educ., 1984, 42(2), 96.
 - 31. W.E. Wentworth, J. Chem. Educ., 1964, 42(3), 162.
 - M.F.R. Mulcahy in Gas Kinetics, Thomas Nelson and Sons Ltd (Canada), 1983,
 p. 87.
 - 33. M.T. MacPherson et al, Chem. Phys. Lett., 1983, 94, 430.
 - R.J. Robinson and K.A. Holbrook in Unimolecular Reactions, Wiley, London, 1972, p. 238.
 - N.S. Isaacs in Reaction Intermediates in Organic Chemistry, Wiley, London, 1974, p. 419.
 - S.W. Benson and H.E. O'Neal in Kinetic Data on Gas Phase Unimolecular Reactions, National Bureau of Standards (United States), 1970, p 445.
 - 37. M.E. Wacks, J. Phys. Chem., 1964, 68, 2725.
 - 38. W. Forst and Z. Prásil, J. Am. Chem. Soc., 1968, 90, 3344.
 - 30. W. Miller and J. Plöchl, Ber., 1892, 25, 2057.
 - A. Cornu and R. Massot in Compilation of Mass Spectral Data (2nd ed.), Heyden, London, 1975.

- 41. O.P. Strausz et al., Can. J. Chem., 1969, 47, 3470.
- 42. A.F. Trotman-Dickenson et al., J. Chem. Soc., 1964, 3584.
- 43. D. Chang and O.K. Rice, Int. J. Chem. Kinet., 1969, 1, 171.
- M.A. Koznetsou and A.A. Suvorov, J. Org. Chem. of U.S.S.R., 1982, 18(3), 1884.
 - 45. A. Péter, G. Acs and P. Huhn, Int. J. Chem. Kinet., 1984, 18, 781.

Appendix A

To confirm the identity of the starting material as 1-methyl-2-phenyldiazene a sample of purified material was removed from the line and submitted for a high resolution mass spectrograph, the results of which are listed in Table 10.

The calculated mass of $C_7H_8N_2$ is 120.0687 and what was found was 120.0683. Expected major fragments of the molecule such as $C_9H_8N_2$, $C_9H_9N^4$, and $C_9H_3^4$ were found at 105.0450, 92.0499 and 77.0382 respectively. The calculated masses for these fragments are 105.0451, 92.0500 and 77.0391 respectively.

The above results provide evidence that the starting material was 1-methyl-2-phenyldiazene.

	1			- 04 -	
AV. MASS	AV. INT.	STANDARD	DEV	NO. MEAS-	
AV. MASS	MDD. (%)		(PPM)	UREMENTS	
123.9928	0.40	0.9	7.3	45	
121.0720	0.27	0.9	7.7	. 10	
120.0683	5.23	0.7	6.2	19 *	
119.9948	0.47	1.0	8.0 .	18	
119.0606		0.9	7.4	17	
.116.9953	0.07	1.0	8.4	3	
113.0009	2.28 .	1.0	8.8	19	
106.0487	1.40	1.0	9.8	. 19	
.105.0450	20.26	0.6	5.4	19	
101.0011	0.98	0.5	6.7	17	
95.0104 93.0561	0.54	1.5	15.9	15	,
92.0499	3, 35	0.8	8.2	18	
91.0545	1.26	0.9	9.4	19	
91.0419	0.48	1.0	11.3	14	
88.0171		0.0	0.0	1	
86.9617	0.09	2.1	24.4	4	
84.9648	0.94	0.9	10.2	19	
83.0102	0.06	0.2	2.1	3	
82.0022	-0.26	1.1	13.6	12	
79.0449	0.02	0.0	(0.0	1	
78.0419	3.59	0.7	9.4	19	
77.0382	54.54	0.7	8.5	19	1
76.0304	0.91	0.8	11.0	18	-
75.0225	0.72	0.8	11.1	18	1
75.0034	0.06	0.4	5.3	18	/
74.0150	0.14	0.6	7.5	5	
69.9984	1.27	0.5	6.8	19	
66.0454	0.37	1.5	23.2	10	
65.0399	4.51	0.5	7:3	19	
65.0248	0.56	2.6	40.2	16	
64.0321	1.22	0.6	9.7	18	
64.0196	0.78	0.6	8.8	. 18	
63.0243	1.94	0.5	8.2	18	
63.0113	0.17	0.5	7.3	8	
62.0165	0.66	0.8	12.5	17	-
61.0082	0.39	0.6	9.1	14	
52.0242		2.8	53.8	20	
51.0232	20.02	0.2	4.4	19	Table 11.
50.0144	0.60	0.4	9.9	19	
		0.9	20.6	19	
43.0191	5.46	0.7	17.7	15	
39.0083	4.09	0.9	22.2	17 .	
38.0001	2.46	10.9	23.6	15	
36.9919	0.11	0.0	0.0	1	
31.9741	36.40	1.0	30.6	19	
30.9834	0.48	0.7	21.6	4	
28.9910	0.11	0.0	0.0	1	
28.0093	0.11	0.0	0.0	1	
27.9955	100.00	1.1	39.2	. 19	
27.0154	2.15	1.3	47.1	15	
	NS AVERAGED				
V. STD. D	EV. (PPM) =	. 13.9			1

Table 11. High resolution mass spectra of starting material for

kinetic experiments.

Appendix B

To identify the impurity in the starting material and the products found in the condensed fraction, a sample of starting material from the spinning band column and the vacuum line along with the consolidated condensed fraction of three runs were run on a capillary gas chromatograph with a mass spectrometer as the detector.

Gas chromatograph conditions were:

- (i) 30 m DB-1 capillary column
- (ii) 1 μl injection split 40 to 1
- (iii) injector temperature 100 ° C
- (iv) Temperature program was 70°C for ten minutes then 10°C per minute to 230°C.
- (v) Mass-spectrometry detection was by electron impact.

Figure 17 is the total ion current of the gas chromatograph of the 1-methyl-2phenyldiazene from the spinning band column. The Y-axis is the percent intensity of the peaks based on saturation of the ion detector of the mass spectrometer. The X-axis has two scales. The lower one is the time scale from injection in minutes and the upper is the scan number.

Other than the 1-methyl-2-phenyldiazene there are peaks at scan numbers 504 and 618 with trace peaks at scan numbers 104 and 207. Tables 12 through 15 are the mass spectra of scan numbers 104, 207, 504 and 918 respectively while Table 16 is a representative mass spectra of 1-methyl-2-phenyldiazene, scan number 200.

The peak at scan number 504 has a mass spectrum which matches that of 1-methyl-2-phenyldiazene. It has been assigned to the cis isomer of 1-methyl-2-phenyldiazene.

The peak at scan number 918 also has a molecular ion of 120. Its fragmenta-

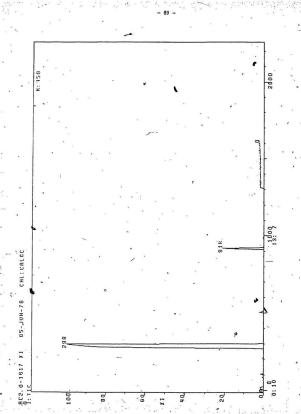
tion pattern, however, does not match that of the diszenes but that of phenylhydrazone (44).

From ref 40, the peak at scan number 104 has been identified as benzone while the spectra of the peak of scan number 207 matches that of diethylene glycol, a likely impurity in ethylene glycol.

Fig 18 is the total on current of the gas chromatograph of the starting material from the vacuum line. As with the chromatograph of the spinning band material there is a peak at sean number 940, Table 17, which matches the mass spectra of sean number 918 of the spinning band material with trace amounts at scan numbers 98, 214 and 510 whose mass spectra are listed in Tables 18 through 20, respectively. The latter three spectra match those of the material from the spinning band column.

Fig 10 is the total ion current of the gas chromatograph of the consolidation of the condensed fraction from three runs. There are peaks at scan numbers 89, 107, 124, 129, 432, 443, 469, 506, 936 and 1515 whose mass spectra are listed in Tables 21 through 30, respectively. There is a trace amount at scan number 212, whose spectra, Table 31, indicates that it is the diethylene glycol impurity. There are also several trace amounts pf material at a numbers greater than phenylhydrazone, scan number 036. The amounts are so small that they could not be identified. The signals could be due to baseline noise.

Peaks at scan numbers 89, 107, 506 and 936 were found in small amounts in the starting material and were assigned to formamidine or hydroxylamine, benzene, etc. I-methyl-2-phenyldiazene, and phenylhydrazone respectively. From ref 40 the peak at scan number 129 was assigned to toluene; the one of scan number 432 to N-methylaniline; the one at scan number 443 to 1-phenyl-2-ethyldiazene; the one at scan number 669 to 1-benzyl-2-methyldiazene; and the one at scan number 1515 to azobenzene. The spectra of the peak at scan number 124 could not be interpretated and, as with the formamidine or hydroxylamine peak, we have no plausible


explanation for its presence among the products of the reaction. A suspicion is that some of the material on the column-was oxidized by air, which is a one percent impurity in the helium carrier gas of the gas chromatograph.

Tables 32 and 33 are mass spectra of scan numbers 275 and 306 which are the I-methyl-2-phenyldiazene peak as it starts to elute from the column and as it apparently stops eluting. The spectra of scan number 275 matches that of I-methyl-2-phenyldiazene from the starting material but the spectra of scan number 306 matches that of aniline as confirmed by ref 40. The non-polar capillary column does not completely resolve the diazene and aniline peaks while the analytical column, which is moderately polar, does.

Another point to note is that the non-polar capillary column separates 1phenyl-2-ethyldiazene and 1-benzyl-2-methyldiazene whereas the packed analytical column apparently does not. From this supposition, the peak cluting after aniline on the analytical column was assigned to N-methylaniline, which is more strongly retained on the moderately polar phase, while the two diazenes were assigned to the same peak.

chromatograph of the 1-methyl-2-phenyldiazene Total ion current of the effluent from the gas

from the spinning band column.

AC2.104 RT 0: 1:27 05-JUN-84 TIC=104 AUTD-GAIN=1 CALGCI BASE INT.=258 B/G SCAN=30 STATUS::E MSN1369 MPDGCMSH1 EI LR DIR

MASS.	%HT.	%HT.	%	ABS	
200	MDD.	BASE	TIC	HT.	
100				12	
38.96	12.02	3.13	6.828	31	
44.07	0.39	0.10	0.220	1	
49.87	13.57	3.53	7.709	35	
50.94	_12.79	3.33	7.269	33	
\$2.02	15.12	3.94	8.590	39	
77.06	15.12	3.94	8.590	39	
78.03	100.00	26.03	56.828	258	-
79.00	6.59	1.72	3.744	17	

°6^H6 urw 78

Table 12. Mass spectra of scan number 104 of

1-methy1-2-phenyldiazene from

spinning band column.

	2.207 LGC1	BA	SE INT	47 05-	B/0	TIC=92 5 SCAN=30 R DIR	AUTO-GAIN=1 STATUS: 1E
-	MASS	WHT.	%HT. BASE	% TIC	ABS		-
51	28.96	33.75		26.471	27	5	C ₄ H ₁₀ O ₃ ;
	30.88	0.00	0.00	******	116		100 .
8	45.13	27.50		21.569	25		CH2-CH2-0-CH2-CH2
		100.00-		78.431	80		OH OH

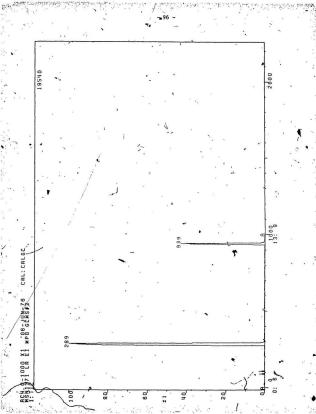
Table 13. Mass spectra of scan number 207 of

1-methyl-2-phenyldiazene from

spinning bandkolumn.

4	ALGC 1		SE INT.			CAN=30	STATUS	5: 1E
		, msi	MI39A L	IPDGCMS#	1 EI LR	TIK		
	MASS	%HT. /	%HT.	· %	ABS			
		MOD:	BASE .	TIC	HT.		cis C7	H ₈ N ₂
		200					mw	120
	38.03	5.56	1.47	2.353	12			1.000
	38.96	. 6.02	1360	2.549	13		N=N	_
	43.07	10.65	2.82	4.510	23		(OY	CH.
	44.07	3.24	0.86	1.373	7		(0)	,
	49.87	8:80	2.33	3.725	19		~	
	50.94	32.87	8.71	13.922	71			
	65.11.	4.17	1.10	1.765	. 9			
	77.04	100.00	26.50	42.353	216			
	78.01	8.33	2.21	3,529	18			65
	105.02	48.61	12.88	20.588	105			*
	110 00	7 44	4 01	7 477				

Table 14. Mass spectra of scan number 504 of


1-methyl-2-phenyldiazene from spinning band column.

	2.918 LGC1	BA			B/G	SCAL			UTD-GA TATUS:	
	MASS	%HT:	%HT.	. %	ABS				•	
	111122	MOD.	BASE	TIC	HT.			2		
		0.5.								
i	26.28	1.04	1.04	0.240	14					
•	27.21	2.83	2.83	0.650	38					
	37.09		2.46		33					
	38.03			1.626	95					
	38.96			6.145	359				a v	
	39.85			0.394	53				C7H8N2	
	40.93			0.582	34				mw 120	
	42.01			0.342						
	44.07			0.205	12			6	N-N=CH	•
	46.60			0.137	. 8			Q_{r}	N-N-CH ₂	
	49.87	4.55		1.044	61.				H	
	50.94			2.585	151				n .	
	52.01	4.40		1.010	59					
	54.09			0.205	12					
	58.98		1.56	0.359			50			0
	-59.45	3/43		0.787						
	59:91			1.078	63					
		1.19		0.274	16					
	62.00			0.616	36		1.0			
	63.05	8.27		1.900	111	***			100	
	64.08	6.41	6.41	1.472	86		,			
		-93.00		21.363	1248					
	.66.10		8.64		116					
	67.06			0.171	10					
	74.04	1.64		0. 377		100				
	75.04	0.75		0.171	10	*				
	77.04			1.814	106					
-	/78.01			0.308	83					
	90.94	6.18	6.18	1.421	1342	9				
				3.406	199					
	93.02									
	105.02	0.97		0.223	. 12					
	117.99			- 0. E05	376					
	118.96	72.73	28.02	6.436	976					
	119.93									
	120.98	4.77	4.77	1.096	64					

Table 15. Mass spectra of scan number 918 of 1-methyl-2-phenyldiazene from spinning band column.

AC2 299 RT 0: 3.59 05 BASE INT. =4095 TIC=1692 CALGCI B/G SCANDIO STATUS: 1E MSN13A9 MPDGCMSB1 EI LR DIR × 485 BASE TIC HT. HT. 25 '30 0.29 0. 29 0.047 12 121.01 26.27 27.21 29.82 2.08 8.96 0.49 2.08 8.96 0.49 0.331 85 1.427 367 0.078 20 30.86 36.11 37.09 0.24 0: 24 0 039 10 0.32 0.32 0.051 13 1.182 37.56 0:63 0. 63 0.101 26 38.03 15.63 15.63 2.489 640 83 38.96 39.85 40.92 42.00 22.27 22.27 3.547 912 2.47 101 0.513 132 2.91 2.91 0.463 119 43.07 40.63 6.471 1664 44.09 0.000 44.60 0.54 0.54 22 45.62 1.03 1.03 42 0.183 48.95 2.34 2.34 0.373 94 37.51 100.00 9.18 49.87 37 51 100.00 9.18 5.973 1536 15.925 4095 52.00 1.462 376 0.78 0.78 0.34 0.22 0.124 , 32 0.054 58.97 .0.22 0.035 9 59.88 9.34 0.34 0.054 14 0.486 125 5.45 13.65 12.09 42.00 5.45 0. RA7 223 63.05 13.65 559 2.174 1.925 495 10.72 65.10 10.72 1.707 439 66.10 1.88 1.88 0.299 .77 71 74.02 10.31 .10.31 1.641 422 . 04 6.64 6.64 1.058 272 04 1.241 319 77.01 100.00 100.00 15.925 4095 77.99 32.82 32.82 5.227 1344 0.88 0.140 36 85.99 0.42 0.42 0.066 17 86.99 0.66 0.66 0.105 27 0.132 34 0.63 88.94 0.63 0.101 26 89.90 1.17 1.17 0.187 48 13.28 2.116 544 of f-methyl-2-phenyldiagene 92.01 3. 10 3. 10 0.494 127 93.05 1.27 1.27 0.202 52 spinning band colum 105.04 100.00 15.925 106.04 15.60 0.32 0.56 15.60 2.485 639 107.04 0.32 0.051 13 119.96 29.47 29.47 4.694 1207

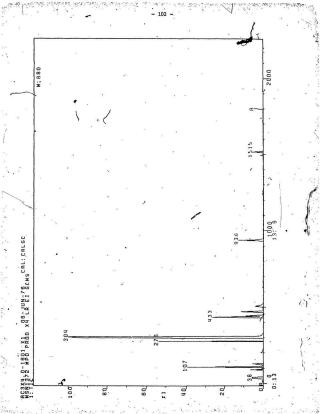
Total ion current of the effluent from the gas. chromatograph of the starting material.

			100	9 7	· 1.0	- 97 -				100
						TIC=2631	Ailen	-GAIN=		1. 1
	C4.940 ALGC1		T 0:12:		TUN-84	SCAN=30		JS: 1E	10000	1. 1
•	ALUL I				D GCMS#		SIMIL	13.16	1	
			,	!	A 00			•		
	MASS	%HT.	· WHT.	% .	ABS -	MASS	%HT.	%HT.	8 .	ABS
		MOD.	BASE	TIC	HT.		MOD.	BASE	TIC	HT.
		1								/
	26.27	1.90	1.90	0.227	78	77.04	24.98	24.98	2.981	1023
	27.21	10:94	10.94	1.305	448	78.01	4.49	4.49	0.536	184
	28.09	0.00	, 0.00	0.000	17	78,96	0.39	0.39	0.047	16
	29.82	0: 42	0.42	10.050		79.92	0.37	0.37	0.044	
	31.96	14.07	14.07	1.678	576	87.00 87.98	0.46	0.46	0.055	19 21
	32.54	0.00	0.00	0.000	0	88.95	0.71	0.71	0.085	29
	37.09	7.81	7.81	0.932	320	89.90	2.59	2.59	0.309	
	38.03	16.21	16.21	1.935	664	90.99	17.19	17.19	2.051	704
	38.96	71.89	71.89	8.579	2944	92.01		100.00	11.933	4095
	39.80	0.46	0.46	10.055	19	93.05	58.22	58.22	6.947	2384
	39.85	5.27	5.27	0.629	216	94.07	2.91	2.91	0.347	119
	40.94	6.94	6.94	0.828	284	103.05	0.29	0,29	0.035	12
	42.02	3.32	3.32	0.396	136	103.05	0.54 .	0.54	0.064	22
	43,07	1.47		0.175	- 60	105.06	3.57	3, 57.	0.425	146
	44.07	2.05	2.05	0.245	84	106.06	0.66	0.66	0.079	' 27
	44.61	0.83	0.83	0.099	. 34	118.85	81.25	81.45	9.695	3327
	45.11	0.24	0.24	0.029	10	119.47	0.27	0.27	0.032	11
	45.62	. 2.03	2.03	0.242	83	119.59	0.32	0.3/2	0.038	
	45.87	0.20	0.20	0.023	8	120.00	100.00		11.933	4095
	45.91	0.22	0.,22	0.026	20	121.04	19.51	19.51	0.085	799
	45.95	0.49	0.49	0.058	10	138.10	0. 71	0.27	0.032	11
	40.44	0.29	0.29	0.035	12	157.92	0.27 0.29 0.42	0.29	0.035	12
e:	46.94	1.05	1.05	0.125	43	183.67	6.43	0:42	0.050	17
	46.18	0.32	. 0.32		13	200.07	- 4			
	46.61	. 2. 93	2.93	0.350	120		,			
	47.09	0.46	0.46	0.055	19					
	48.96	1.32	1.32	0.157	54		C7H8N	2- 1		
	49.87	15.63	15.63	1.865	640		mw 1		1 .	ing.
	50.94	36.73	36.73	4.383	1504		,		1	32.5
	52.01	13.16	13, 16	1.571	539	./	O-N-N=C	H.		
	53.06	1.56	1.56	0.186	64		<u> </u>			
	54.10	3. 49	3.49	0.417	143		н			
	55.12	0.42	0.42	0.050	17			W 2		
	58.98	4.27	4.27	0.510	175					9 9
	59.45	7.01	7.01	0.836	287 512					
	59.91	12.50	12.50	0.154	53	Table 17	. Mass sp	ectra o	1 scan	
	60.95	3.49	3.49	0.417	143			m.o - s	starting	, L
	62.01	7.01	7.01	0.836	287		, number	940 01	starting	
	63.06	21.88	21.88	2.611	896		materia	1	10	
	64.09	19.90	19.90	2. 375	815		materia		0.5	١.
	65.10		100.00	11.933	4095		41			18
	66.10	31.26	31.26	3.730	1280					
	67.06	2. 22	2.22	0.265	91 .					
	68.04	0.39	0.39	0.047	16					
	68.93	0.37	0.37	0.044	15					
	72.18	0.22	0.22	0.026	9	191				
	73.01	0.,54	0.54	0.064	22					
	74.04	3.10		0.370	127					* *
	75.04	2.44	2.44	0.291	100			,		
,	76.06	1.95	1.95	0.233	. 80	100		9	, .	
					12	80 Fe				

			100000000000000000000000000000000000000	100			1		
AC4.98			22 06-J					-GAIN=1	
CALGCI	· BA	SE INT	=31	. B/G	SCAN=	30 /.	STATE	US: 1E,	•
	MS	N1371 1	R EI MP	D GEMS	#5 .			20 1 10 10	
, *		2				14	۶.,		
MASS	%HT.	"HT".	%	ABS .				100	
41	MOD.	BASE	TIC	HT.			100		
				7			(6H6 .	
28.09	0.00	0.00	0.000	0	41				
28.95	74.19	0.56	29.114	23			. 1	w 78 ♠	
31.964	*****		*******		٠,	8 4		(0)	
39.80	87.10	0.66	34.177	27	190			<u>~</u> .	
44.07	29.03	0.22	11.392	9					
68.95	100.00	0.76	39.241	31			3.2	. 100	
91.00	38.71	0.29	15.190	12	V	20		w 5g n	,

Table 18. Mass spectra of scan number 98 of starting material.

ALGC1						STATUS: 1E	
MASS	%HT.	WHT.	%	ABS			
	MOD.	BASE	, TIC	HT.			
27.21	11.89	0.42	7.456	17		SST-500 NOW	
28.09	0.'00	0.00	0.000	0	1	C4H10O3	
28.96	37.76	1:32	23.684	54	17	mw 106	
29.80	13.99	0.49	8.772	20			
30.88	156.64	5.47	98.246	224		CHCHO-CH	L-CH-
31.96	626.57	21.88	****	896	. /		- 1 -
34.10	0.00	0.00	0.000	.0	and the same of th	OH .	OH
39.80	31.47	1.10	19.737	45			
45.13	18.18	0.63	11.404	26			
60.97	100.00	3.49	62.719	143			
68.96	9.09	0.32	5.702	13			
	27.21 28.09 28.96 29.80 30.88 31.96 34.10 39.80 45.13 60.97	ALGC1 BAMS MASS %HT. MDD. 27.21 11.89 28.96 37.76 29.80 13.99 30.88 156.64 31.96 626.57 34.10 0.00 39.80 31.47 45.13 18.18	MASS WHT. WHT. MASS WHT. WHT. 27.21 11.89 0.42 28.09 0.00 0.00 28.96 37.76 1.32 29.80 13.99 0.49 30.88 156.64 5.47 31.96 65.57 21.88 34.10 0.00 0.00 39.80 31.47 1.10 45.13 18.18 0.63	HASS MHT. MHT. % HASS TIM. = 143 MSN1371 LR: EI MF HASS MHT. % HDD. BASE TIC E2.09 0.00 0.00 0.000 0.89.96 37.76 1:32 23.884 0.99.80 13.99 0.49 8.772 30.88 156.64 5.47 98.246 31.96 626.57 21.88***********************************	ALGCI BASE INT. =143 B/6 MSN1371 LR EI MPD GCMSI MASS MHT. WHT. % ABS EZ 21 11.89 0.42 7.456 17. EZ 21 11.89 0.42 7.456 17. EZ 23.69 0.00 0.00 0.000 0 0.88.96 37.76 1:32 23.684 54 0.78 0.00 0.00 0.000 0.000 13.99 0.49 8.772 20 13.89 156.64 5.47 98.246 224 13.19 0.49 0.79 10.00 0.000 0.000 13.96 031.47 1.10 19.737 45 145.13 18.18 0.63 11.404 26 0.79 100.00 0.349 62.719 146	MASS WHT. WHT. WAT. ABS MOS CAN=30 MSN1371 LR EII NPD GCMSH2 MASS WHT. WHT. WAT. WASS ABS MC ASS AND	MASS


Table 19. Mass spectra of scan number 214 of starting material.

MASS	%HT.	%HT.	*	ABS		ut.
	MDD.	BASE	TIC	HT.		
22.14	4.37	0:37	1.736	15		cis-C7H8N2
27.21	7.87	0.66	3.125	27	e e	mw 120
27.22	2.62	0.22	1.'042	9 .		mw 120
28.09	0.00	0.00	0.000	0	~	N=N
28.96	1.17	0.10	0.463	4		COY " "CI
31.96	242.57	20.32	96.296.	832		03
34.10	0.58	0.05	0.231	2		
38.04	2.92	0.24	1.157	10		
38.96	5.54	0.46	2.199	19		
39.80	13.41	1.12	5.324	46		
43.07	11.37	0.95	4.514	39		
44.07	13.12	1.10	5.208	45		
49.88	6.12	0.51	2.431	21		9.1
50.94	27.99 .	2.34	11.111	96		
63.06	5.54	0.46	2.199	19		,
64.08	6.12	0.51	2.431	21		1
. 65,11	6.41	0.54	2.546	22		
77.04	100.00	8.38	39.699	343		
78.01	4.37	0.37	1.736	15.		
105.02	39.94	3.35	15.856	137		

Table 20. Mass spectra of scan number 510 of starting material.

Total ion current of the effluent from the gas chromatograph of the consolidated condensed

· fraction.

		140			II.		
AC 3X4.89 CALGC1	BA	0: 1: SE INT N1372		UN-84 B/G X4 LR		AUTO-GAIN STATUS: 1E	
MASS	%HT.	%HT.	× ×	ABS			
111125	MDD.	BASE	TIC	HT.	~		
22.16	0.94	0.93	0.596	38			
26.29	0.59	0.59	0./376	24		CH ₂ NO	30
27.21	1.90	1.88	1.207	7.7		3	
28, 09	6.33	6.25	4.013	256		mw 45	
28.97	65.66	64.81	41.605	2654		· · · · · ·	
29.81	0.92	0.90	0.580	37		C-NH ₂	
31.97	69.67	68.77	44.145	2816		H	
33.07	1.21	1.20	0.768	49			
34.12	9.08	8.96	5.753	367			
36.11	0.79	0.78	0.502	32		(-1°	
39.81	100.00	98.71	63.364	4042	. ,	_	
44.10	46.04	45.45	29. 174	1861	1 X		
45.11	0.67	0.66	0.423	. 27		*	

Table 21. Mass spectra of scan number 89 of condensed fraction.

	-							-				
	C3X4.107 ALGC1		T 0: 1:		UN-84		TIC=2827		JTD-GAIN		, э.	1
-			5N1372		X4 LR	E	I GCMS	51	A IUS: 1E			
	MASS	WHT.	WHT.	*	ABS							
	*	nuu.	BASE	TIC	HT.							
	22.14	0.22	0.22	0.024	9	100						
	24.29	0.32	0.32	0.035	13	,						
	25.31	2.32	2.32	0.256	.95				C6H6			
	26.28	25.01	25.01	2.762	1024				mw_78	*		
	27.21	24.52	24.52	2,708	1004		6-		mw /o			
	28.09	0.00	0.00	01000	0				0			
	29.82 34.82	0.22	0.22	0.024	9							
	34.95	0.22	0.22	0.024	14							
	36.11	2.86	2.86	0.038	117							
	36.61		. 0.32	0.035	13							
	37:09	30.48		3. 366								
	37.57	9.94	9.94	1.098	407					2		
	38.03	49.50	49.50	5.466	2027						*	
	38.50	2.54	2.54	0.280	104							
			100.00		4095							
	39.41	2.32	2.32	0.256	95	4						. 1
	39.80	0.20	0.20	0.022	8							
	40.94	3.17 0.32	.0.32	0.351	130							
	45.16	0.32	0.32	0.035	13							
	48.01	1.76		-0.194	72							
	48.96	17.97	17.97	1.985	736							
	49.00	0.29	0.29	0.032	12							
	49.87	100.00	100,00	11.043	4095							
No.		100.00	100000		4095							
•	52.01	99.80		11.022	4087							
	53.07	7.79	7.79	0.860	319							
	59.89	1.25	1.25	0.138	51							
	60.95	3.71	3.71	0.410	152				1			
	63.06	4.22	4.22 21.86	0.467 2.414	173 895				-			
	64.09	1.83	1.83	0.202					1			
	71.99	1.07	1.07	0.119	44				1 0			
	73.04	10.55	10.55	1.165	432				1			
	74.06-	32.41	32.41	3.579	1327				1			
	74.19	0.49	.0.49	0.054	20				1			
	75.09	12.50	12.50	1.381	512				1			
_	76.08	29.28	29.28		1199		•		1 .	0	•	5
_	76.35	3.88	3.88	0.429	159				/	,	•	
	77.06 :	100.00			4095				1.			
•	77.38	0.42	0.42	0.046	17		(1			
	78.02	99.49		10.987	4074		Table 22.	Mas	a lanerte	of sca	n numba	- 107
	78.11	0.24	0.24	0.027	10		1 4016 22.	rias	Spectre	or sca	tt ttombe	101
	78.98	49.99	49.99	5.520	2047			of	dondensed	fract1	on.	
	79.92	1.49	1.49	0.165	61				1,			
	206.98	0.22	0.22	0.024	9			. /				, .
								- /				

1

.

AUTO-GAIN=1 STATUS: 1E

C3X4.124			42 06-J			
ALGC1			. =1151			
•	MS	N1372	MPD PROD	X4 LR	EI G	MS
MASS	%HT.	%HT.	%	ABS		
	MOD.	BASE	TIC	HT.		
22.14			0.445	17		
			0.602	23		
			1.622	62		
			0:000	0		
			1.648	63		
	11.03	3.10	3.322	127		•
38.02	2.17	0.61	0.654	25		
- 38.94	3.39	0.95	0.654	39		
39.85	2.78	0.78	0.837	32		
40.93	9.64	2.71	2.903	111		
42.02	65.77	18.49	19.801	757		
43.09	18.07	5.08	5.441	208		
44.13	2.35	0.66	0.706	27		
45.15	1.30		0.392	15	8	
52.01	1.65	0.46	0.497	19		1000
56.13			0.575	22		
	3.56		1.072	. 41 .		
			15.041	575	i	
			0.732		4	
			0.340	13		
67.07			0.759	29		2
68.04	1.56	0.44	0.471	18		~
69.00	2.69	0.76		31		
	0.70	0.20		8		•
83.08 1			30.107			
84.10	55.52	15.60		639		
85.10				32		
03.10		0.70	0.037	36		

Table 23. Mass spectra of scan number 124 of condensed fraction.

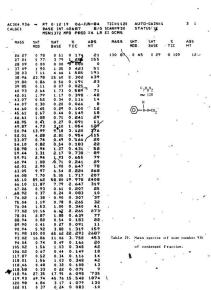
	MS		=2214 IPD PROD		SCAN=128 EI GCMS	STATUS:	1E
MASS	%HT.	%HT.	% TIC	ABS HT.			
	4	CAP .					
26.27	0.59	1.0.32	0.243	13			
28.09-	0.00	0.00	0:000	0			
31.96	10.12	5.47	4. 192	224		C7H8	
37.09	1.76	0.95	0.730	39			
38.03	1.04	0.56	0.430	23		mw 92	
38.96	8.45		3.499	187			
40.94	0.81	0.44	0.337	18		CH ₃	
45.12	2.48		1.029	55		1	
45.62	0.77		0.318	17		[0] .	
46.13	2.62	1.42	1.085	58		~	
49.88	3. 25		1.347	72			
50.94	6.05	3.27	2.507	134	1		
52.02	1.17	0.63	0. 487	85) -		
53.07	1.08		0.449	- 24	•		
60.95			0.730	39			
42.01		. 1.17	0.898		. •		
63.06	6.46	3.49	2. 676			1	
64.10	2.03	1.10	0.842	45			
65.08	10.93	5.91	4.528	242			
66.08	1.90	1.03	0.786	42			
67.05	0.41	0.22	0.168	9			
68.02	0.00	0.00	0.000	9.			
73.01	0.59		0.243	13	•		
74.05	0.72	0.39	0.299	16			
77.74	1.40	0.76	0.580	31			
86.02	0.68		0.281				
87.02	0.54	0.29	0.225	12			
88.97	4.70		1.946	104		-	
89.91	2.53		1.048	56		•	
90.04	0.86	0.46	0.356	19			
90.09	0.72	0.39	0.299	16			
90.16	.0.54	0.29	0. 225	12			
90.26	0.77	0.42	0. 318	17			
90.49	0.54		0.225	12			
	100.00		41.430	2214			
	65.00		26. 927	1439			
93.06-	5.96	3. 22	2.470	132			

Table 24. Mass spectra of scan number 129 of condensed fraction.

							2			(*)	
	AC3X4.438 CALGC1	В	T 0: 5:	. =4095		TIC=1370 SCAN=431 EI GCMS	STATU	SAIN=1		3. i	
		P	5N13/E	HED PROL	/4 LR	EI GCHS	¥.				
	MĄSS -	%НТ. МОD.	WHT.	" TIC	ABS	×			5.		
	25.30	0.44	0.44	0.114	. 18						
	24.28	1.17	1.17	0.304	48						81
	27.21	2.59	2.59	0.671	106						
	28.09	0.00	0.00	0.000	0,						
	29.82	6.35	6.35	1.646	260						
	37.09	1.49	, 1.49	0.386	61		C7H9N				
	38.03	4.30	4.30	1. 114			mw 10	6			
	38.49	0.27	0.27	0.070	11						
	38.96 39.80	0.10	0.10	0.025	575	2000		1 "			
	40.93	1.86	1.86	0.481	76		ര	(
	42.02	1.37	1.37	0.354	56		\\ \psi_{\psi}	1			
	44.07	0.29	0.29	0.076	12.		N				
	45.62	0.83	0.83	0.215	34		H	H.			
	48.95	0.39	0.39	0.101	16			3	90		
Ň	49.87	7.79	7.79	2.019	319	•					
	50.94	18.41	18 41	4.772	754						
	51.48	0.27	0 27	0.070	11						
	52.01	8.06	8.06	2.089	330	98.0	E.				
	52.54	4.69	4.69	1.215	1.92	8					
	53.06	10.92	10.92	2:829	447		Ĭ.			8.00	**
	53.58	8.50	8.50	2.203			-				
	54.10.	1.66	1.66	0.430	68		La-				
	58.75	0.24	0.24	0.063	10	180	•				
	60.94 62.00	1.34	0.59 1.34	0. 348	24 55						
	63.05	4.27	4.27	1.108	175						
	64.08	2.86	2.86	0.741	117			41			
	65.10	10.09	10.09	2.614	413						
	66.10	2.34	2.34		96						
•	67.05	0.76	0.76	0.196	31						
	73,00	0.68	0.68	0.177	85				12 E.		
	74.04	2.32	2.32	0.601	95						
	75.04	1.66	1.66	0.430	68			~			,
	76.04	1.66	1.66	0.430	68						5
	77.02	38.36	38.36	9.944	1571						
	78.01 78.96	11.82	11.82	3.063	484						
	79.92	1.25	15.14	0.323	51				40		
	80.98	0.24	0.24	0.063	10	27					
	89.90	0.78	0.78	0.203	32	Table	25. Mass	spectra	of scan	number	432
	90.97	0.78	0.78	0.203	32						
	92.01	3.05	3.05	0.791	125		of c	ondensed	fraction	1.	
	93.05	0.07	0.07	0.019	3				5	,	
	104.05	6.25	6.25	1.620	256				<		
	105.06	4.69	4.69	1.215	192						
	105.71	0.22	0.22	0.057	. 9.						
		100.00		25.919	4095			1			
.,	107.06	81.27		21.065	3328	3-					-
	108.04	7.42	7.42	1.924	304		×				8
	109,02	0.37	0.37	0.095	. 15	1.4.1	~				

			1			*	9
							- 8
C 3X4. 443	RT	0: 5:5	4 06-31	JN-84	TIC=942	AUTO-GAIN=	1
ALGC1		SE INT.		B/G	SCAN=440	STATUS: 1E	
	· MS	N1372 N	IPD PROD	X4 LR	EI GCMS		
MASS	%HT.	%HT.	%	ABS			
	MDD.	BASE	TIC	HT.			
22.14	0.13	0.12	0.064	5	•		
26.27	1.01	0.98		40		~	
27.21	5.37	5.18		212		CUN	
28.09	0.00	0.00		0		8"10"2	
28.96	0.53	0.51		21		mw 134	
28.98	4.99	4.81		197	/		
29.82	0.38	0.37		15	12		
37.09	0.99	0.95	0.497	39		CH ₂ -	CH2
38.03			1.084	85		~N=N	3
38.96	1.92	1.86		76		[0]	
40.93	1.04	1.00		41		~	
42.02	0.66	0.63		26			
44.07	0.53	0.51		21			
48.95	0.58	0.56		23			
49.87	2.78	2.39		110			
50.94	16.50			652			
52.01	1.44		0.727	57			
55.13	0.38	0.37		15			
62.00	0.86			34			
63.05	1.82	1.76		72			
64.08	2.51		1.263	. 99			
65.10	1.37		0.689	54			
74.05	0.86	0.83		34		*	
75.06	0.89	0.85		35			
76,07	0.76	0.73	0.383	30			
77.05			50.395	3951			
78.02	7.59	7.33	3.827	300			
78.99	0.15		0.077	500			
88.98	0.15		0.166	13			
90.97	2.91	2.81		115			
92.01	1.37			:54			
93.05	0.66	1.32		26			
			21.926	1719	N.		
105.04	43.51			1719			
119.01	. 0. 33	0.32	0.166	13			

Table 26. Mass spectra of scan number 443 of condensed fraction.


/	5			7.0						
1	/									
1										
AC3X4 465		0 6-1		UN-84	TIC=10		AUTO-GAIN			. 5
CALGC1		ASE INT			SCAN=4		STATUS 16			
	. 75	N1372 F	MPD PROD	X4 LR	EI GCMS	1				
MASS	XHT.	WHT.	×	ABS			•			
HASS	MOD	BASE	TIC	HT.			-			
41.55	0 34	0.34	0 121/	14			C8H10N2			
26.27	0.39	0.39	0.150	90			Ew 134			
27.21	0.00	2.20	0.000	90 .						
29.92	0.46	. 0 46	0.178	19				w		
31.96	4.25	6.25	2. 399	25.6			Nex	").		
37.09	95.0	0.29	0.112	12						
38.03	1.88	1.88	0.722	77			CH ₂			
38.96	15.16	15.16	5.820	156			\Diamond		!	
40.94	3.17	3.17	1.218	130		8				
42.02	0.49	0.49	0.187	20		•				
43.07	7.03	7.03	2.699	885						
45,63	0.48	-0.20	0.075	8 .		-	or			
48.94	0.49		0.187	20		5				
49.88	3.61	3.61	1.387	148						
50.94	7.23		,2.774	296			_0	H.		
52.02	3.05	3, 05	1.171	125			N-N	2		
53.08	0.54	0.54	0.206	22		CR.	-fe)			
40.95	0.76	0.76	0.291	. 31			~		-8-	
42.02	1.56	5.84	2.249	240					Acc	
64.09	2.81	2.81	1.078	115						
45.11	37.24		14.291	1525						
66.08	2.08	2.08	0.797	85					2%	
48.93	0.42	0.42	0.159	17						
74.04	1.03		0.394	42						
75.04	0.48	0.68	0.262	28						
76-05 77.04	0.71	0.71	0.272	131						
78.01	1.61	3.20	0.618	66						
78.96	0.29		0.112	12						
87.01	0.29	0.29	0.112							
88.95	3.83	3 83	1.471	157	-					
89.91	1.27	1.27	0.487	52						
		100.00		4095						
92.00	6.62	6.62	2.540	271				-		
93.04	0.63	0.63	0.244	26						
104.04	1.17	0.29	0.112	48						
105.06	0.27	0.27	0.103	11						
117.99	0.32	0.32	0. 122	13						
118.96	34.36		13. 185	1407	Table	27.	Mass spectra	of sc	an nuni	ber
119.95	2.66	2.66	1.021	109						
130.96	0.22	0.22	0.084	.9			of condensed	fract	ion.	
132.00	0.22	0.22	0.084	. 9			~			
134.04	5.76	5.76		536						
1 . 05	0.46	0.46	0.179	19			-			

469

...

2			1				
AC3X4.506		0: 6:4		TUN-84 .			TD-GAIN
CALGC 1		SE INT.			SCAN=50		ATUS: 4E
	MS	N1372 N	1PD PROI	X4 LR	EI GCMS		3
						· ·	
MASS	%HT.	%HT.	%	ABS			
	MDD.	BASE	TIC	HT.			
· prond						•	
22.14		0.42	0.463	17			
26.27			0.272	10			
27.81	38		0.980	36		C.	7 ^H 8 ^N 2
28.49	0,00		0.000	0			w 120
31.96	2.12	0.78		35		-	W 120
37.09	1. 32			450			Cu
37.56	0)99	.0.37		15			N=N CH3
38.03		1.27		52		FOY!	W-IV
38.96	4.50	1.66	1.852	68		(a)	
42.02	0.40	0.22		9	2		
43.07	9.53	3.52		144			
49.87	9.99	3.69	4.112	151			
50.94	29.52	10.89	12.146	446			
52.01	2.78	1.03	1.144	42			
60.95	0.79	9.29	0.327	12			
62.00	0.79	0.29	0.327	*12			
63.05	3.38	1.25	1.389	. 51			
64.08	2.85	1.05	1.171	43			
65.10	2.58	0.95	1.062	. 39			
66.09	0.60	0.22	0.245	9			
68.95	1.19	0.44	0.490	18			
74.66	2.18	0.81	0.899	. 33			
75.06	2.85	.1.05	1.171	43			
76.07	2.05	0.76	0.844	31			
77.05	100.00	36.90	41.149	1511	^		
78.03	4.90	1.81	2.015	74	1		
88.02	0.79	0.29	0.327	12	/		
90.97	(2.25	0.83		34			
92.01	2.12	0.78		32			
93.05	3.11	1.15	1.280	47			
105.04	37.00	13.65		559	-		
106.04	4.04	1.49	1.661	61	•		
119.96	5.82	2.15	2.397	88			
206.94	0.86	0.32	0.354	13			
	00		,				

Table 28. Mass spectra of scan number 506 of condensed fraction.

		3						
AC	3X4. 15	15 R	T 0:19:	51 06.	TUN-84 .	TIC=6	94 AI	JTO-GAIN=1
CA	ALGC 1	В	ASE INT	. =2542 .	· B/G.	SCAN=1		TATUS: 1E
					X4 LF:			
							-	
	MASS	%HT.	WHT.	%	ABS			٠
		MDD.	BASE	TIC	HT.			
						1. +		
	26.28	0.51	0.32	0.241	13	4.	1	
	27.22				. 56	4		
ı.	28.09				64			•
	34.10				24			, .
	37.05				13			
	38.03				. 38			
	38.96				55		C	H ₁₀ N ₂ -
	40.93				- 25	-		182 *
	44.07				7			
	49.87		1.86		75			
	50.94				516 -			
	52.01				26			- /
	62.01							. (0). 1
-	63.05		0.22		36			den N
	64.05							
					36		\odot	- 2
	65.11			0.741	. 40			
- 7	66.08				. 29			
	74.04				14			
	75.06				, 12-			٠.
	76.04							. ;
		100.00			2542		-	
	78.01				153			
A	81.88			0.185	10			*
	83.53				25			
	90.94				19			
١.	93,02	1.49		0.704	38			-
ŀ.	105.00			10.054	543			
t)	106.02				47			
1	115.02			0.389	21			,
ï	127.98				-16 -			
	138.96				19	. "		,
	149.87				11			
	150.92	1,02	0.64	0.481	. 26			
	151.95				150			
	152.98			. 2.259	122 .			
	154.01	1.10	0.69	0.518	. 28 .			
	166.98	1.22	0.77	0.574.	31			
	181.97	20.14	12.70	9.480	512			
	182.94	2.48			. 63	0		
	206.91			0.241	131			
							•	,

Table 30. Mass spectra of scan number 1515 of condensed fraction.

AC3	X4, 212 GC1	BA	SE INT		B/G	TIC=471 SCAN=209 EI GCMS	AUTO-GAIN=1 STATUS: 1E	**
	MASS	%HT MOD.	%HT. BASE	TIC.	ABS HT.			
	27.20 28.09 28.95	1.36 0.00 19.32	0.15 0.00 2.08	1.070 0.000 15.152	0 85		1	
	29.80 30.87	17.95 154.09	1.93	14.082 ******	79 678 13	ě.	с ₄ н ₁₀ о ₃	
ž.	44.07 52.02 59.89	4.55 2.95 2.50	0.49	3.565 2.317	20 13		10°3 mw 106	10
	60.96 62.02	4.55	10.74	78.431 3.565	440	ā	CH2-CH2-O-CH2	-CH ₂
:30	74.07 78.03 88.96	0.45 3.64 2.27	0.39	0.357 2.852 1.783	16 10		ОН	OH
	90.97	2.73	0.29	2.139	12		18	

Table 31. Mass spectra of scan number 212 of condensed fraction.

CAL	3X4 275	B	ASE INT.		B/G	TIC=2337 SCAN=274	STA	GAIN=		1 1
1		M	5N1372 P	IPD PROD	X4 LR	EI GCMS				
	MASS	MOD.	MHT.	TIC	ABS HT.	MASS	MOD.	MHT.	TIC	ABS
	41.55	0.39	0.39	0.058	16	91.84	0.32	. 0.32	0.043	13
	25.31	0.71	0.71	0.095	29	92.03	3.91	3. 91	0.524	160
	26.27,	.8.35	3.35	0.449	137	93.05	1.66	1.66	6.223	48.
	27.21	22.95	22. 95	3.078	940	103.05	0.34	0.34	0.046	14
	28.09	0.00	0.00	0.000	0	104.05	0.46	0.46	0.062	19
1.		. 0. 90	0.90	0.121	37	105.03		100.00		4095
	33.83	0.37	0. 29	0.049	12	106.04		18.56	2.488	760
	33.94	0.34	Ø. 34	0.046	14	119.01	0.71	0 71	0.095	29
	36 41	0.46	0 46	540.0	. 19	119.96	35 . 16	35 16	4.715	1440
	37.09	11 70	11.70	1.568	479	121.01	2.91	2 91	0.390	119
*		2.37	2. 37	0 318	97	. 122.06	0.49		0.065	- 20
	38.03	24.59	24.59	3.297	1007					
	38.50	4.93	4.93	0.661	202					
	38.96	31.23	31.23	4.188	1279					
	39.80	0.15	0.15	0.020	. 6					* *
	39, 85	1.83	1.83	0.246	75					
	40.93	3.13	3.13	0.419	128					-
	42.01	5.18	5.18	9.217	212		c	7 ^H 8 ^N 2		
	44.09	9.22		950.0	- 6			v 120		
	44.60	.0.59		0.079	- 24			0 110		
	45.62	1,22	1.22	0.164	150			CH		
	46.60-	0.27		0.036	11			N-N "3		
	48.01	0.24	0.24	0.033	10		0			
	48:95	4.66	4.66	0.625	191		9 .			
	49.87	49.99	49.99	6.702	2047					
	50.93	99.78	. 99.78		4086				-	
	52.01	14.63		1.961	599			2		
	52.53	10, 54	0.29	0.039	12					
	53.06	1.22	1.22	0.144	. 25					
	58.97	0.61	0.61	0.082	. 25					
	60.94	4.49	4.49	0.059	184					
	42.00	5.96	5.96	0.802	244					
	63.05.		17.97	2.410	736					
	64.08	15.60	15.60	2.092	639					
	65.10	14.02	14.02	1.879	574					
	66.10	1.39	1.39	0.187	57					
	73.00	1.98	1.98	0.245	81.	. Table 12.	Mass	spectra o	f scan n	umber 275
	74.04	10.94	10.94	1.467	448					
	75.04	7.23	7.23	0.969	- 296		01 00	ndensed 1	raction.	
	76 04	8.96	8.96	1.202	367				-	
	77.01		100.00	13.407	4095.					
	78.01	42.49	42.49	5.697	1740					
	86.96	1.93	1.93	0.259	12					
	86.99	0.56	0.56	0.075	53					
	87:98	0.83	0.83	0.111	34					
	88.95	0.83	0.61	0.082	25	•				
	89.90	0.71	.0.71	0.095	. 29					
	90.99		- 14.46	1.938	592					
	91.64		. 6.27	0.036	11					

24 306		T 0 4			TIC=1495		-GAIN=1		5
6C1	B.	SN1372	#PD PROD		SCAN=278 EI GCMS	STAT	US IE		
MASS	XHT.	THT.	TIC	ABS HT.	MASS	XHT.	MHT.	TIC	MES HT.
	0, 35		0 074		95 08	0.46	0 46	0.108	
25 . 31	0 32	0 32	0.085	13	101.99	0. 22	0.22	0.051	1
26.27	1 37	1.37	0.318	56	103.02	0.42	0.42	0.097	1
27.21	4.03	4 03	0.938	165	104.04	0.27	0.27	0.063	1
28.09	0.00	0 00	0.000	0	105 04	8.79	8.79	2.047	36
29.82	0 27	0 27	0.063		106.05	0.81	0.81	0.188	3
30.86	0.02	0.02	0.006	1	118.01	0.83	0.83	0.193	3
34.10	0.29	0.27	0.063	12	119.97	1.86	1.86	0.102	7
36.12	0.27	0 37	0.085	15	130 89	. 0. 32	0.32	0.074	1
37 09	2.95	2.95		121	180.94	55.0	0.22	0.051	- 1
38.03	7.62	7 62	1.774	312					
38.96	20.71	20.71	4.822	848					
39.80	0.12	0.12		5					
39.85	6.15	6.15	1.433	252					
12.02	1.42	1.42	0.330	58					
43.08	1.25	1.25	0.290	51					
4.07	1.25	1. 25	0.290	51			H ₈ N		
56.62	4.32	4.32	1.006	177		· av	93		
6.11	0.61	0.61	0.142	25					
46-61	13.85	13.85	3.224	_ 567		10	3		
47.09	1.17	1.17	0.273	- 48 50		4		-	
19.88	6.25	·6. 25	1.456	256			SH.		-
	10.16	10.16	2.345	416			2		
10.5	7.42	7.42	1.729	304					
53.07	2.34	2.34	0.546	96					
54.10	8.30	8.30		340					
55.12	0.66	0.66	0.154	27					
9.89 60.95	52.5		0.114	103					-
10.54	3.13	3.13		128					
3.06		7: 79	1.814	319					
4.09	4.27	4.27	0.995	175				1	
5.11	37.41	37.41	8.711	1532					
6.09	68.74		16.006	2815					
67.07 68.93	6.64	6.64	0.006	272					
73.01	0.54	0.54	0.125	22					
74 05	2 39	2.39	0.557	98					
76.05	2.20	2.20	0.512	90					
77 05	18.75	18.75	4.367	768	Table 33.	Mart sp	ectra of	scan nut	mber :
20 87	6.72	6.72	1.564						
18.98	0.61	0.61	0.142	25		of cond	lensed fr	action.	
97.01	0.27	0 27	0.063	11					
87.99 88.95	0.24	0.24	0.057	12					
19.91	0 54	0.54	0.125	22					
90 96	2 91	2.91	0.677	119					
00.59	27 35	27.35	6.368	1120					
	00.00		285.65	4095					
94.06	17.95	17.95	4.179	735					

Appendix C

Listed below are the analytical results of each of the kinetic runs. All runs give the initial conditions and the moles of products in the non-condensable fraction. In addition runs 100 to 158 give the calculated moles of products in the condensed fraction as outlined below.

The program below was written in basic on a Tandy 1200 computer to calculate the number of moles of each product in the condensed fraction for runs 100 to 158 in the unpacked vessel. The assumption for this calculation was that the condensed fraction for each run was all starting material.

The inputs for the program where the run number (RONS), the time of the reaction (TIME), the temperature at which the reaction took place (TEMP), the number of moles per litre of 1-methyl-2-phenyldiazene (MPDA), the area of the peaks of products from the agas chromatograph, and the number of moles of nitrogen and methane from the non-condensable fraction.

The volume of liquid 1-methyl-2-phenyldiazene in μ l is then calculated by

$$LMPDA = 120 * 1000 * MPDA/0.9851$$
 (1)

where 120 is the molecular weight of 1-methyl-2-phenyldiazene; MPDA is the number of moles of reactant; 0.9851 is the density of 1-methyl-2-phenyldiazene in gm/ml; 1000 is the factor to convert from ml to µl.

The calibration factors of four products from the gas chromatograph response are then read. The fifth product in the condensable fraction, the mixed diazenes was not available, therefore the calibration factor was estimated by averaging the other four.

The number of moles of each product was then calculated by

$$B(I) = A(I) * C(I) * LMPDA/7$$
 (2)

where B(I) was the number of moles of product; A(I) was the area of the gas chromatograph peak; C(I) was the calibration factor for the product LMPDA as defined above; 7 was the volume of condensed fraction in µI injected onto the gas chromatograph.

Below is a listing of the program and the results calculated for the runs which had data available.

Runs 1 to 75 were done using the packed vessel, volume 980.0 ml and the others were done using the unpacked vessel, volume 1007.4 ml, save for runs 218 to 230 which were in an unpacked vessel of 1,016 ml.

Moles of MPDA reported for runs 100 to 158 listed on the computer print-out are actually moles litre 1.

```
10 REM "MATERIAL BALANCE
20 W = 1
30 READ RUNS.TIME.TEMP.MPDA
31 IF W = 5 THEN LPRINT CHR$(12)
32 IF W = 5 THEN W = 1
50 READ A(1), A(2), A(3), A(4), A(5)
70 READ A(6),A(7)
71 IF TEMP = 250 THEN TEMP = 519.2
72 IF TEMP =260 THEN TEMP = 529.4
73 IF TEMP = 270 THEN TEMP = 539.4
74 IF TEMP = 280 THEN TEMP = 549.2
75 IF TEMP = 290 THEN TEMP = 559!
  IF TEMP = 300 THEN TEMP = 568.8
80 LMPDA = 120*1000*MPDA/. 9851
90 C(1) = 4E-08
92 C(2) = 5E-Ø8
94 \text{ C(3)} = 3E-08
96 C(4) = 3.5E-08
98,C(5) = 2.58E-08
100 FOR .I = 1 TO 5
110 B(I) = A(I) * C(I)* LMPDA/7
120 NEXT I
130 BEN = B(1)*78
140 TOL =B(2) *92
150 ANIL = B(3)*93
160 DA = B(4) *134
170 NMA = B(5) +95
18Ø N2 = A(6) *28
190 CH4 = A(7)*16
200 BC = 72/78*BEN
210 BH = 6/78*BEN
220 TC = 84/92*TOL
230 TH = 8/92*TOL
240 AC = 72/93*ANIL
250 AH = 7/93*ANIL
260 AN = 14/93*ANIL
270 NC = 72/95*NMA
280 NH = 9/95*NMA
290 NN = 14/95*NMA
300 DC = 96/134*DA
310 DH = 10/134*DA
320 DN = 28/134*DA
330 CC = .75*CH4
340 CH = .25*CH4
350 TTC = BC+TC+AC+NC+DC+CC
360 TTH = BH+TH+AH+NH+DH+CH_
370 \text{ TTN} = AN+NN+DN+N2
380 LPRINT"RUN #" RUNS
390 LPRINT
400 LPRINT"TEMP " TEMP ".
410 LPRINT
420 LPRINT "MPDA (moles)" MPDA
```

430 LPRINT

```
440 LPRINT
 450 RCH = TTC/TTH
 460 RCN = TTC/TTN
 470 RNH = TTN/TTH
 480 LPRINT "BENZENE (moles)
                                     "B(1)
 490 LPRINT "TOLUENE (moles)
                                     "B(2)
 500 LPRINT "ANILINE (moles)
                                     "R(3)
 510 LPRINT "N-METHYL ANILINE (moles) "B(5)
 520 LPRINT "DIAZENES(moles)
                                     "B(A)
 530 LPRINT "NITROGEN(moles)
                                     "A(6)
 540 LPRINT "METHANE (moles)
                                     "A(7)
 550 LPRINT
560 LPRINT
 690 W = W + 1
 691 GOTO 30
 710 DATA
 100,600,290.0,1.979E-4,8.4,0,14.85,5.2,6.175,2.584E-6,
0.9011E-6
720 DATA
102,800.5,290.0,1.498E-4,4.3,0.14,29.9,7.25,8.94,3.542E-6,
0.9071E-6
730 DATA
103,900.4,290.0,1.527E-4,5.61,0.15,22.8,5,6,9.92,3.701E-6,
1-268E-6
740 DATA
104,1004.4,290.0,1.513E-4,3.36,1.95,5.1,5.17,8.68,3.33BE-6,
1.422E-6
750 DATA
105,1000.6,290.0,1.518E-4,3.78,0.03,10.0,8.87,6.96,3.55E-6
1.326E-6
760 DATA
106,1100.4,290.0,1.506E-4,5.3,0.18,20.68,9.84,9.3,3.927E-6.
1.539E-6
770 DATA
108,800.5,290.0,1.483E-4,3.96.0.04,23.32,6.09,8.4,3.410E-6,
1.002E-6
780 DATA
109,900.4,290.0,1.502E-4,2.91,0.16,8.64,6.00,6.6,3.246E-6
1.198E-6
790 DATA
1107800.6.290.0,1.486E-4,3.315,0.03,14.4,6.00,7.26,2.500E-6,
1.002E-6
BOD DATA
111,1212.2,290.0,1.485E-4,3.66,0.12,8.12,9.62,9.83,3.463E+6,
1.384E-6
810 DATA
112,800.3,290.0,1.497E-4,3.50,0.10,4.90,6.17,4.68,2.744E-6
1.052E-6
820 DATA
113,1200.2,290.0,1.549E-4,3.42,0.09,8.56,9.97,7.90,3.615E-6,
1.279E-6
```

114,1200.2,290.0,1.503E-4.3,93.0,12.6,48.10,2.9,68.3,878E-6.

830 DATA

1.485E-6

```
84Ø DATA
 117,1200,290.0,.0001561,4.16,0.11,5.25,9.26,11.96,41.098
 15.15E-7
ASM DATA
 118,1200.8,290.0,1.488E-4,5.02,0.17,27.6,8.16,12.32.
4.850E-6.
 1.609E-6
860 DATA
 119,1300.8,290.0,1.478E-4,4.16,0.08,3.86,10.47,9.23,
4.246E-6.
 1.842E-6
870 DATA
 120,1300.9,290.0,1.498E-4,4.26,0.13,11.22,8.66,10.41,
4-49BE-6.
 1.848E-6
88Ø DATA
 121,2001.0,260.0,0.680E-4,0.475,0,1.6,0.48,1.25,0.3047E-6,
0- 04921F-A
890 DATA
.122,2001.2,260.2,0.9427E-4,0.56,0,3.29,0.55,1.42,0.4420E-6,
0.07250E-6
900 DATA
 123,2000.8,260.0,1.244E-4,0.58.0,5.50.1.47.3.99.0.7222E-6.
Ø. 1017E-6
910 DATA
124,2000.7,260.0,1.853E-4,0.63,0,4.68,0.66,2.00,1.071E-6,
0.1536F-6
920 DATA
126.2000.7,260.0,2.457E-4,0.44,0,3.48,0.64,1.68,1.147E-6,
0-1788F-A
930 DATA
127,2000.3,260.0,3.122E-4,0.425,0,1.25,0.44,1.44,1.373E-6,
Ø. 2482E-6
940 DATA
129.2000.5.260.0,3.67E-4,0.54,0,1.75,0.42,0.74,1.550E-6,
Ø. 2767E-6
950 DATA
130,2000.9,260.0,6.916E-4,0.43,0,3.0,0.46,1.55,3.201E-6,
Ø. 4345E-6
960 DATA
131,2000.5,260.0,4.321E-4.0.50.0,11.9.0.36,3.77,2.358E-6.
Ø.3165E-6
970 DATA
132,3000.4,260.0,1.552E-4,1.16,0,7.3,1.2,2.97,0.9146E-6,
Ø. 1196E-6
980 DATA
133,1000.3,260.0,1.564E-4,0.35,0,1.48,0.30,0.50,0.3062E-6,
0-07830F-A
990 DATA
134,2000.2,260.0,1.561E-4,0.525,0,3.01,0:56,1.12,0.6100E-6,
Ø. 1224E-6
1000 DATA
135,4000.4,260.0,1.557E-4,0.80,0,8.61,1.44,4.05.0.9852E-6.
Ø. 1646E-6
```

```
1010 DATA
 136,6000.0,260.0,1.543E-4,1.98,0.985,7.04,2.86,5.98,
 1.930E-6.
 Ø. 4113E-6
 1020 DATA
 137.8000.3.260.0.1.566E-4.2.475.0.06.9.36.4.34.9.54.
 2-625E-6.
 Ø.5297E-6
1030 DATA
 138.10400.3,260.0,1.561E-4,2.94,0.09,22.26,7.06,13.22,
 3.287E-6,
 .719E-6
 1040 DATA
 139.12000.260.1.54E-4.2.80..03.26.18.7.82.15.08.3.596E-6.
 - B009E-6
 1050° DATA
 140,4000.6,260,1.558E-4,1.29,0,6.56,2.34,4.35,1.253E-6,
Ø. 2592E-6
1060 DATA
141.6000.3.250.1.464E-4..90..05.8.64.0.84.3.80.1.464E-64-
.9191E-6
1070 DATA
142,4000.3,250,2.500E-4,.51,0,2.64,.33,1.24,.8900E-6,
.1176E-6
1080 DATA
143,1800,270,2.247E-4,.99,0,1.44,1.5,2.49,2.061E-6,
.4979E-6
1090 DATA
144,1500,270,1.505E-4,.90,0,6.64,1.60,2.93,1.379E-6,
.2154E-6
1100 DATA
145,1800,270,1.508E-4,.99,.03,3.84,1.5,2.85,1.329E-6,
.2635E-6
1110 DATA
154,1800,270,1.696E-4,1.35,0,2.46,2.31,3.68,1.615E-6,
. 4255E-6
1120 DATA
146.1800.280.1.479E-4.3.00..09.9.25.6.57.7.5.3.091E-6.
.9251E-6
1130 DATA
147,1800,280,1.906E-4,3,26,.10,6.05,5.86,8.35,3.875E-6,
.9981E-6
1140 DATA
148,1800,280,1.589E-4,3.18,.06,21.06,6.94,9.68,3.637E-6,
.9053E-6
1150 DATA
155,1800,280,1.598E-4,3.17..09,4.66,5.74,7.32,3.088E-6,
1.147E-6
1160 DATA
156,1800,280,1.969E-4,2.98,.06,3.24,5.75,7.49,3.856E-6,
1.422E-6
1170 DATA
157,600,300,1.431E-4,5.83,.18,3.94,10.72,9.67,4.087E-6,
2.106E-6
```

LEAF 122 OMITTED IN PAGE NUMBERING

1180 DATA 158,600,300,1.690E-4,5.11,.18,3.64,8.00,9.62,4.963E-6, 2.371E-6 1200 END

```
RIIN # 1
```

TEMP-(K) 559.0

MPDA (mol/L) 0.00002318

NITROGEN (moles) 0.3431E-6 METHANE (moles) 0.05640E-6

RUN # 3

TEMP(K) 559.0

.RUN # 4

MPDA (mol/L) 0.0001073

NITROGEN (moles) 3.947E-6 METHANE (moles) 1.159E-6

TEMP(K) 559.0 MPDA (mol/L) 0.0001085

NITROGEN (moles) 4.191E/6
METHANE (moles) 1,228E-6

RUN # 8

TEMP(K) 559.0 MPDA (mol/L) 0.0002339

NITROGEN (moles) 5.734E-6 METHANE (moles) 1.696E-6

RUN # 9

TEMP(K) 559.0 MPDA (mol/L) 0.0001796

NITROGEN (moles) 4.603E-6 METHANE (moles) 1.838E-6 TIME(s) 730.8

TIME(s) 1722.0

TIME(s) 1729.0

TIME(s) 1012.0

TIME(s) 1007.0

```
RUN # 11
```

TEMP(K) 559.0 MPDA (mol/L) 0.00006728

NITROGEN (moles) 2.113E-6 METHANE (moles) 0.5733E-6

RUN # 15

TEMP(K) 559.0 .

MPDA (mol/L) 0.0001556 NITROGEN (moles) 3.658E-6 METHANE (moles) 1.011E-6

RUN # 17

TEMP(K) 568.8 MPDA (mol/L) 0.0001325

NITROGEN (moles) 4.484E-6 METHANE (moles) 0.9220E-6

RUN # 18 TEMP(K)

TEMP(K) 568.8 MPDA (mol/L) 0.0001665

NITROGEN (moles) 5.228E-6 METHANE (moles) 1.640E-6.

RUN # 19

TEMP(K) 568.8 MPDA (mol/L) 0.0001011

MITROGEN (moles) 3.568E-6 METHANE (moles) 0.8130E-6 TIME(s) 1013.0

TIME(s) 1012.2

•./

TIME(s) 613.1

TIME(s) 608.0

TIME(s) 607.3

TEMP(K) 568.8

MPDA (mol/L) 0.00004492

NITROGEN (moles) 1.396E-6

METHANE (moles) 0:5047E-6

RUN # 21

TEMP(K) 568.8

MPDA (mol/L) 10.00004907

NITPOGEN (Soles) 2:003E-6 METHANE (mole -) 0.5362E-6

RUN # 60

TEMP(K) 568.8

MPDA (mol/L) 0.0001435

NITROGEN (moles) 4.300E-6 METHANE (m6Les) 1.057E-6

RUN # 61

TEMP(K). 568.8

MPDA (mol/L) 0.00007249

NITROGEN (moles) 2.256E-6 METHANE (moles) 0.6468E-6

RUN # 25

519.2. TEMP(K)

MPDA (mol/L) .0.0001438

NITROGEN (moles) 1.172E-6 METHANE (moles) 0.08794E-6

TIME(s) 608.9

TIME(s) 608.5

TIME(s) 607.1

TIME(s) 604.6

TIME(s) 5012.

TEMP(K) 529.4

MPDA (mol/L) 0.0001337

NITROGEN (moles) 2.120E-6 METHANE (moles) 0.1813E-6

RUN # 28

TEMP(K) 529.4

MPDA (mol/L) 0.0001604

NITROGEN (moles) 3.459E-6 METHANE (moles) 0.3467E-6

RUN # 29

TEMP(K) 529.4

MPDA (mol/L) 0.0001577 NITROGEN (moles) 5.240E-6 METHANE (moles) 0.6226E-6

RUN # 31

TEMP(K) 529.4 MPDA (mol/L) 0.0001544

NITROGEN (moles) 1.765E-6 METHANE (moles) 0.1418E-6

RUN # 32

TEMP(K) 529.4

MPDA (mol/L) 0.0001530 ·
NITROGEN (moles) 1 702E-6

NITROGEN (moles) 1.702E-6 · METHANE (moles) 0.1103E-6 _____

TIME(s) 7214.5

TIME(s) 11019.8

TIME(s) 15411.5

21 (1)

TIME(s) 3620.0

TIME(s) 3611.5

TIME(s) 3611.5

TEMP(K) 529.4

MPDA (mol/L) 0.0001590

NITROGEN (moles) 1.571E-6 METHANE (moles) 0.1263E-6

RUN # 36

TEMP(K) 529.4

MPDA (mol/L) 0.0001590

NITROGEN (moles) 0.7538E-6 METHANE (moles) 0.07830E-6

RUN # .39

TEMP(K) 529:4 ..

MPDA (mol/L) 0.0001560

NITROGEN (moles) 0.6748E-6 METHANE (moles) 0.04903E-6

RUN # 40

TEMP(K) 529.4

MPDA (mol/L) 0.0001541

WITROGEN (moles) 1.387E-6 METHANE (moles) 0.08669E-6

RUN # 45

TEMP(K) 529.4

MPDA (mol/L) 0.0001604

NITROGEN (moles) 1.377E-6 METHANE (moles) 0.03129E-6

TIME(s) 3615.7

TIME(s) 1815.7

TIME(s) 1809.8

TIME(s) 1814.8

```
RUN # 46
```

TEMP(K) 529.4

MPDA (mol/L) 0:0001854

NITROGEN (moles) 1.309E-6 METHANE (moles) 0.02950E-6

RUN # 47

TEMP(K) 529.4

MPDA (mol/L) 0.0001556

NITROGEN (moles) 1.081E-6 METHANE (moles),0.03477E-6

.RUN # 48

TEMP(K) 529.4

MPDA (mol/L) 0.0001553 NITROGEN (moles) 1.360E-6 METHANE (moles) 0.02806E-6

RUN # 49

TEMP(K) 529.4

MPDA (mol/L) 0.0001668

NITROGEN (moles) 2.862E-6 METHANE (moles) 0.05535E-6

RUN # 50

TEMP(K) 529.4

MPDA (mol/L) 0.0002737

NITROGEN (moles) 4.074E-6 METHANE (moles) 0.1103E-6 TIME(s) 1812.1

TIME(s) 1811.6

TIME(s) 1821.5

TIME(s) 3609.8

TIME(s) 3622.2

TEMP(K) 529.4

MPDA (mol/L) 0.0001585

NITROGEN (moles) 3.846E-6 METHANE (moles) 0.1576E-6

RUN # 52

TEMP(K) 529.4

MPDA (mol/L) 0.0001638

NITROGEN (moles) 3.885E-6 METHANE (moles) 0.1891E-6

RON # 53

TEMP(K) 529.4

MPDA (mol/L) 0.0001576 NITROGEN (moles) 2.703E-6 METHANE (moles) 0.1418E-6

RUN # 54

TEMP(K) 529.4

MPDA (mol/L) 0.0001564

NITROGEN (moles) 3.086E-6 METHANE (moles) 0.1723E-6

RUN # 55

TEMP(K) 529.4

MPDA (mol/L) 0.0001553

NITROGEN (moles) 1.307E-6 METHANE (moles) 0.05804E-6 TIME(s) 7015.6

TIME(s) 7015.6

TIME(s) 7012.6

.

TIME(s) 5019.1.

TIME(a) 5005.2

TIME(s) 1810.9

TEMP(K) 529.4

MPDA (mol/L) 0.0001568

NITROGEN (moles) 5.337E-6 METHANE (moles) 0.3795E-6

RUN # 57

TEMP(K) 529.4

MPDA (mol/L) 0.0001584

NITROGEN (moles) 5.986E-6 METHANE (moles) 0.5333E-6

RUN # 58

TEMP(K) 529.4

MPDA (mol/L) 0.0001619 NITROGEN (moles) 3.050E-6 METHANE (moles) 0.2522E-6

RUN # 59

TEMP(K) 529.4 MPDA (mol/L) 0.0002669

NITROGEN (moles) 2.671E-6 METHANE (moles) 0.2193E-6

RUN # 71 TEMP(K) 529.4

MPDA (mol/L) 0.0003793

NITROGEN (moles) 11.51E-6 METHANE (moles) 1.033E-6 TIME(s) 12010.2

TIME(s) 15011.1

TIME(s) 6504.1

TIME(s) 3010.7

TIME(s) 8204.7

TEMP(K) 529.4

MPDA (mol/L) 0.0007825

in Dir (mol/ b) 0.000/020

NITROGEN (moles) 4.078E-6 METHANE (moles) 0.2445E-6

RUN # 73

TEMP(K) 529.4

MPDA (mol/L) 0.0007155

NITROGEN (moles) 10.60E-6 METHANE (moles) 0.6842E-6

RUN # 74

TEMP(K) 529:4

MPDA (mol/L) 0.0004586

NITROGEN (moles) 6.651E-6 METHANE (moles) 0.2922E-6

RUN # 75

TEMP(K) 529.4

MPDA (mol/L) 0.0007261

NITROGEN (moles) 5.445E-6 METHANE (moles) 0.3725E-6

RUN # 63

TEMP(K) 549.6

MPDA (mol/L) 0.0001536

NITROGEN (moles) 3.313E-6 METHANE (moles) 0.4349E-6 TIME(s) 1806.5

11115(3) 1000.0

TIME(s) 3608.1

TiME(s) 2409.5

8

fime(s) 2406.1

A service reserves

TIME(s) 1510.

TEMP(K) 549.6

MPDA (mol/L) 0.001188

NITROGEN (moles) 20.00E-6 METHANE (moles) 3.271E-6

RUN # 65

TEMP(K) 549.

MPDA (mol/L) 0.001140

NITROGEN (moles) 16.81E-6 METHANE (moles) 2.778E-6

RUN # 68

TEMP(K) 539.4

MPDA (mol/L) 0.0001557 . NITROGEN (moles) 2.252E-6 METHANE (moles) 0.2844E-6

RUN # 69

TEMP(K) 539.4

MPDA (mol/L) 0.001082

NITROGEN (moles) 12.69E-6 METHANE (moles) 1.916E-6

RUN # 70

TEMP(K) 539.4

MPDA (mol/L) 0.Q009150

NITROGEN (moles) 10.46E-6 METHANE (moles) 1.3233E-6 TIME(s) 1206.4

11115(5) 1200.4

TIME(s) 906.1

TIME(s) 2108.5

.

TIME(s) 1810.5

TIME(s) 1804.9

TEMP(K) 559.0

MPDA (mol/L) 0.0001148

NITROGEN (moles) 2.584E-6 -METHANE (moles) 0.9011E-6

RUN # 77

TEMP(K) 559.0

MPDA (mol/L) 0.0001578

NITROGEN (moles) 3.256E-6 METHANE (moles) 1.783E-6

RUN # 78

TEMP(K) 559.0

MPDA (mol/L) 0.0001396, NITROGEN (moles) 3.116E-6 METHANE (moles) 1.554E-6

RUN # 79

TEMP(K) 559.0

MPDA (mol/L) 0.0001220

NITROGEN (moles) 2.870E-6 METHANE (moles) 1.312E-6

RUN # 83

TEMP(K) 559.0 MPDA (mol/L) 0.0001764

NITROGEN (moles) 4.466E-6 (moles) 1.404E-6 TIME(s) 1009.4

TIME(s) 1005.1

TIME(s) 1002.6

TIME(s) 1001.3

TIME(s) 1001.6

TEMP(K) 559.0 MPDA (mol/L) 0.0002110

NITROGEN (moles) 4.210E-6 METHANE (moles) 1.627E-6

RUN # 86

TEMP(K) 559.0

MPDA (mol/L) 0.0002482 NITROGEN (moles) 5.550E-6 METHANE (moles) 2.135E-6

RIIN # 87 TEMP(K) 559.0

MPDA (mol/L) 0.0001816 NITROGEN (moles) 3.684E-6 METHANE (moles) 1.300E-6

RUN # 88 TEMP(K) 559.0

RUN # 89

MPDA (mol/L) 0.0001602 NITROGEN (moles) 4.191E-6

METHANE, (moles) 1.494E-6

TEMP(K) 559.0

MPDA (mol/L) 0.0001375 NITROGEN (moles) 3.304E-6 METHANE (moles) 1.241E-6 TIME(s) 1026.7

TIME(s) 1001.4

TIME(s) 1001.1

TIME(s) 1001.1

TIME(s) 1000.9

TEMP(K) 559.0

MPDA (mol/L) 0.0001174

.....

NITROGEN (moles) 2.867E-6 METHANE (moles) 1.003E-6

RUN # 91

TEMP(K) 559.0

MPDA (mol/L) 0.00009771

NITROGEN (moles) 2.404E-6 METHANE (moles) 0.8697E-6

RUN # 92

TEMP(K) 559.0

MPDA (mol/L) 0.00008360 NITROGEN (moles) 1.658E-6 METHANE (moles) 0.5525E-6

RUN # 93

TEMP(K) 559.0

MPDA (mol/L) 0.00007146

NITROGEN (moles) 1.664E-6 METHANE (moles) 0.6151E-6

RUN # 94 TEMP(K) 559.0

MPDA (mol/L) 0.00004294

HFDA (M81/L) 0.0000428

NITROGEN (moles) 1.042E-6 METHANE (moles) 0.2943E-6 TIME(s) 1001.1

11mE(S) 1001.1

TIME(s) 1000.7

TIMÉ(s) 1001.0

TIME(s) 1000.7

.....

TIME(s) 1000.6 .

TEMP(K) 559.0

MPDA (mol/L) 0.0003776

NITROGEN (moles) 9.933E-6

METHANE (moles) 4.043E-6

RUN # 96

TEMP (K) 559.0

MPDA (mol/L) 0.0002520

NITROGEN (moles) 6.940E-6 METHANE (moles) 2.127E-6

RUN # 97

TEMP(K) 559.0

MPDA (mol/L) 0.0005522 NITROGEN (moles) 13.46E-6 METHANE (moles) 5.647E-6

RUN # 99

TEMP(K) 559.0

MPDA (mol/L) 0.0001484

NITROGEN (moles) 1.953E-6 METHANE (moles) 0.6325E-6

RUN # 202

TEMP(K) 549.8 MPDA (mol/L) 0.0004742

NITROGEN (moles) 4.789E-6 METHANE (moles) 1.748E-6 TIME(s) 1000.4

to a strategy against a figure that the ag

TIME(s) 1000.7

TIME(s) 1000.9

TIME(s) 600.3

TIME(s) 903.3

TEMP(K) 519.2

MPDA (mol/L) 0.0001767

NITROGEN (moles) 1.172E-6 METHANE (moles) 0.09421E-6

RUN # 205

TEMP(K) 568.8

MPDA (mol/L) 0.0001483 NITRÓGEN (moles) 3.939E-6 METHANE (moles) 1.598E-6

RUN # 206

TEMP(K) 559.0

MPDA (mol/L) 0.0005931

NITROGEN (moles) 15.72E-6 METHANE (moles) 6.377E-6

RUN # 207

TEMP(K) 559.0

MPDA (mol/L) 0.0009145

NITROGEN (moles) 25.87E-6 METHANE (moles) 8.192E-6

RUN # 208

TEMP(K) 559.0

MPDA (mol/L) 0.001044

NITROGEN (moles) 29.78E-6 METHANE (moles) 9.454E-6 TIME(s) 7549.6

11145(5) 1040.0

TIME(s) 600.2

TIME(s) 1000.1

. TIME(s) 1000.1

9

TIME(s) 1000.2

```
RUN # 100
```

TEMP. 559

CTIME 600

MPDA(moles) .0001979

| BENIZENE (moles) | 1.157145E-06/
TOLUENE (moles) | 0
| ANILINE (moles) | 1.534251E-06/
| N-HETHYL ANILINE (moles) | 5.486627E-07/
| 114 ZENES (moles) | 6.267871E-07/
| NITROSEN (moles) | 2.594E-06/
| BETHANK (moles) | 9.011E-07/

RUN # 102

TEMP 559

TIME 800.5

MPDA(moles) .0001498

BENZENE (moles) 4.483768E-07 10.UENE (moles) 1.624799E-08 ANILINE (moles) 2.338337E-08 N-METHYL ANILINE (moles) 6.61486ZE-07 NITROBEN (moles) 3.542E-06 NITROBEN (moles) 9.071E-07

RUN # 103

TEMP 559

TIME 900.4

MPDA(moles) .0001527

BENZENE (mol us) 5.9629978—37
TOLLENE (mol es) 1.992781E—88
ANIL INE (mol es) 1.8175972—86
N-METHYL ANIL INE (mol es) 6.8018075—79
DIAZENES (mol es) 7.99847E—87
NITROSENK (mol es) 3.701E—86
METHANE (mol es) 1.266E—86

TEMP 555

MPDA(moles) .0001513

BENZÈNE (moles) 3.538678E-07 TOLUENE (moles) 2.567122E-07 ANILINE (moles) 4.028406E-07 N-METHYL ANILINE (moles) 5-896323E-07 DIAZENES (moles) 4.764315E-07 NITROGEN (moles) 3.338E-06 METHANE (moles) 1.422E-06

MPDA(moles) .0001518

BENZENE (moles) 3.994169E-07 TOLUENE (moles) 3.96247E-09 ANILINE (moles) 7.924938E-07 N-METHYL ANILINE (moles) 4.743552E-07 DIAZENES (moles) 8.200991E-07 NITROGEN (moles) · 3.55E-06 METHANE (moles) 1.326E-06

RUN # 106-

TEMP 559 TIME 1100.4

MPDA (moles) .0001506

BENZENE (moles) 5.556019E-07 TOLUENE (males) 2.358688E-Ø8 ANILINE (moles) 1.625922E-06 N-METHYL ANILINE (moles) 6.28826E-07 DIAZENES (moles) ^ 9.02591E-07 NITROGEN (moles) 3.927E-06 METHANE (moles)

1.539E-06

DIN # 100

TEMP 559

TIME 800.5

MPDA(moles) .0001483

RUN # 109

TEMP 559 TIME 900.4

MPDA(moles) .0001502

BENZENE (moles) 3,042466E-07
TOLUENE (moles) 2,091042E-208
ANTIL'INE (moles) 4,774976E-07
N-METHYL ANTIL'INE (moles) 4,450783E-07
DIAZENES (moles) 5,488968E-07
NITROBEN (moles) 3,246E-06

METHANE (moles)

1.198E-06

RUN # 110

TEMP \$59

TIME 800.6

MPDA (moles) .0001486

BENIZENE (moles) 3.428992E-07
TOLLUENE (moles) 3.87893799E-09
ANIL INE (moles) 1.117134E-06
N-METHYL ANIL INE (moles) 5.430515E-07
NITROSEN (moles) 6.0000025
HETHANE (moles) 1.002E-06

TEMP 559 TIME 1212.2

MPDA (moles) .0001485

BENIZÈNE (moles) 1.550532297E-07
TOLLUENE (moles) 1.5505322E-08
ANIL INE (moles) 6.29515BE-07
N-METHYL, ANIL INE (moles) 6.553932E-08
NITROBEN (moles) 1.79162E-07
HETHANE (moles) 1.594E-06

DIN # 11

TEMP 559 TIME 800.3

MPDA(moles) .0001497

BENIZENE (moles) 3.467143E-07
TOLUENE (moles) 1.302551E-08
ANILINE (moles) 3.8295E-07
N-METHYL ANILINE (moles) 3.145504E-07
DIAZENES (moles) 5.625718E-07
NITROGEN (moles) 2.744E-06
HETHANE (moles) 1.855E-06

RUN. # 113

TEMP 559 TIME 1200.2

MPDA(moles) .0001549

BENIZENE (noles) 3.6975/1E-97
TÜLUENE (moles) 1.2138/1F-98
ANILINE (moles) 6.922293E-97
N-METHYL: ANILINE (moles) 9.49627/2E-97
NITROBEN (moles) 3.615E-96
METHANE (moles) 1.277E-96

```
RIIN # 114
```

TEMP 559

TIME 1200.2

MPDA(moles) .0001503

| SERVENE (mol es) | 1.116.34E=07 | TOLUENE (mol es) | 1.569326E=08 | ANILINE (mol es) | 5.0814616E=07 | ANIENTE (mol es) | 6.35216.2E=07 | OLIZENES (mol es) | 9.337480E=07 | ANIENTE (mol es) | 3.878E=08 | CHETHANE (mol es) | 1.485E=08 | CHETHANE (mol es

RIIN # 117

TEMP 559

TIME 1200

MPDA(moles) .0001561

BENZENE (moles) 4.520215E-07
TÜLLÜENE (moles) 1.494061E-08
N-METHYL ANILINE (moles) 8.322175E-07
DIAZENES (moles) 8.322175E-07
NITROGEN (moles) 4.1095E-06
NITROGEN (moles) 1.515E-06

RUN # 118

EMD 550

TIME 1200.8

MPDA(moles) .0001488

BENZÈNE (moles) 5.199595E-07
TOLUENE (moles) 2.201824E-08
ANILINE (moles) 2.14855E-06
N-METHYL ANILINE (moles) 8.23869E-07
DIAZENES (moles) 7.395439E-07
NITROSEN (moles) 4.85E-06
HETHANE (moles) 1.609F-06

TEMP 559 \ TIME 1300.B

MPDA(moles) .0001478

BENZENE (moles) 4.27987.1E-07
TOLLUENE (moles) 1.029815E-08
ANIL INE (moles) 2.77842E-07
N-METHYL ANIL INE (moles) 6.124897E-07
DIAZENES (moles) 9.425235E-07
NITROBEN (moles) 1.842E-06

RUN # 120

TEMP 559 TIME 1300.9

MPDA(moles) .0001498

BENZENE (moles) 4.442859E-07
TOLUENE (moles) 1.694447E-08
ANILINE (moles) 8.774631E-07
N-METHYL ANILINE (moles) 7.90133E-07
NITROBEN (moles) 4.99E-06
METHANE (moles) 1.948E-06

RUN # 121

TEMP 529.4 TIME 2001

MPDA (moles) .000068

BENZENE (moles) 2, 248358E-08
TOLUENE (moles) 8
ANJLINE (moles) 5, 680862E-08
N-METHYL ANILINE (moles) 3, 816271E-08
DIAZENES (mòles) 1, 988622E-08
NTORREN (moles) 4, 921E-08
THANKE (moles) 4, 921E-08

TEMP 260.2

TIME 2001.2

MPDA (moles) 9.427E-05

BENZENE (moles) 3.674722E-08
TOLLUÈNE (moles) 1.619174E-07
N-METHYL ANILINE (moles) 6.010139E-08
DIAZÈNE Gnoles) 3.15794E-08
NITROGEN (moles) 7.25E-08

RUN # 123

TEMP 529.4

TIME 2000.8

MPDA(moles) .0001244

BENZENE (moles) 5.0224E-080
TOLLURE (moles) 0 3.571765E-07
N-METHYL ANIL INE (moles) 2.228517E-07
DIAZENES (moles) 1.113804E-07
NITROBEN (moles) 7.222E-07
RETHANE (moles) 1.1617E-07

RUN # 124

TEMP 529.4

TIME 2000.7

MPDA (moles) .0001853

TIME 2000.7

MPDA(moles) .0002457

BENZENE (moles) 7.525246E-08 TOLUENE (moles) ANILINE (moles) 4.463839E-07 N-METHYL AMILINE (moles) 1.853263E-07 DIAZENES (moles) 9.577586E-08 NITROGEN (moles) 1.147E-06 METHANE (moles) 1.788E-07

RUN # 127

TEMP 529.4 TIME 2000 3

MPDA(moles) .0003122

BENZENE (moles) 9.236016E-08 TOLUENE (moles) ANILINE (moles) 2.037356E-07 N-METHYL ANILINE (moles) 2.01845E-07 DIAZENES (moles) B. 366744E-ØB

NITROGEN (moles) 1.373E-06 METHANE (moles) 2.482E-07

RIIN # 129

TEMP 529.4 TIME 2000.5

MPDA(moles) .000367

BENZENE (moles) 1.379503E-07 TOLUENE (moles) 3.352959E-07 ANILINE (moles) N-METHYL ANILINE (moles) 1.219328E-07 9.388286E-Ø8 DIAZENES (moles) NITROGEN (moles) 1.55E-06 METHANE (moles) 2.767E-07

TEMP 529.4

TIME 2000.9

MPDA(moles) 6.916001E-04

BENIZENE (moles) 2,070076E-07
TOLUENE (moles) 0
ANILINE (moles) 1.083179E-06
N-HETHYL ANILINE (moles) 1.9327E-07
DIAZENES (moles) 1.93727E-07
NITROBEN (moles) 3.201E-06
HETHANE (moles) 4.345E-07

(961

RUN # 131 TEMP 529.4

TIME 2000.5

MPDA(mples) .0004321

DIIN # 17

TEMP 529.4

TIME 3000.4

MPDA(moles) .0001552

BENZENE (moles) 1.253178E-07
TILLUENE (moles) 0.
ANILINE (moles) 5.914783E-07
N-METHYL ANILINE (moles) 1.1343ZE-07
NITROGEN (moles) 1.1343ZE-07
NETHANE (moles) 1.196E-07

TEMP 529.4 TIME 1000.3

MPDA(moles) .0001564

BENZENE (moles) 3,810374E-08
TOLLUENE (moles) 0
8
ANILINE (moles) 1.208433E-07
N-METHYL ANILINE (moles) 3,510/988E-08
DIAZENES (moles) 2,957781E-08
NITROGEN (moles) 3,062E-07
METHANE (moles) 7,632E-08

RUN'# 134

TEMP 529.4 TIME 2000.2

MPD@(moles) .0001561

BENZENE (moles) 5.704598E-08
TOLLENE (moles) 2.452977E-07
N-METHYL ANILINE (moles) 7.847527E-08
DIAZENES (moles) 5.324292E-08
NITROBEN (moles) 6.1E-07
RETHANE (moles) 1.224E-07

RUN # 135

TEMP 529.4 TIME 4000.4

MPDA(moles) .0001557

BENZENE (moles) 8.670447E-08
TOLUENE (moles) 6.998676E-07
N-METHYL ANILINE (moles) 2.831172E-07
NJEROBE (moles) 1.365976E-07
NJEROBE (moles) 9.852E-07
NJEROBEN (moles) 1.646E-07

TEMP 529.4

TIME 6000

MPDA(moles) .0001543

2.12664E-07

BENZENE (moles) TOLUENE (moles) ANILINE (moles) N-METHYL ANILINE (moles) 4.14276E-07 DIAZENES (moles)

1.141189E-08 5.67104E-07 2.687837E-07 1.93E-06

NITROGEN (moles) METHANE (moles) 4.113E-07

RUN # 137

TEMP 529.4

TIME 8000.3

MPDA (moles) .0001566

BENZENE (moles) TOLUENE (moles) ANILINE (moles)

2.697925E-07 8.175531E-09 7.652296E-Ø7 N-METHYL ANILINE (moles) 6.707532E-07 4.139543E-07 2.625E-06

DIAZENES (moles) NITROGEN (moles) METHANE (moles)

5.297E-07

RUN # 138

TEMP 529.4

BENZENE (moles)

TIME 10400.3

MPDA(moles) .0001561

TOLUENE (moles) ANILINE (moles) N-METHYL ANILINE (moles) 9.265245E-07 DIAZENES (moles) NITROGEN (moles)

3.194575E-07 1,222414E-08 1.814062E-06 6.712411E-07 3.287E-06 7.19E-07

METHANE (moles)

BENZENE (moles) TOLUENE (moles)

ANTI THE (moles) N-METHYL ANILINE (moles) DIAZENES (moles)

NITROGEN (moles) METHANE (moles)

3.001523E-07 4.019897E-09 2.184818F-84 1.042665E-06

7.334972E-07 3.5965-06 B. 009F-07

RIIN # 140

TIME 4000.6

MPDA (moles) .0001558

BENZENE (mples) TOLUENE (moles) ANILINE (moles)

DIAZENES (moles) NITROGEN (moles) METHANE (moles)

1.399007E-07 5.335749E-07

N-METHYL ANILINE (moles) 3.042841E-07 2.220518E-07 1.253E-06 2.592E-07

519.2

TIME ADDO.3

MPDA(moles) .0001464

BENZENE (mples) TOLUENE (moles) ANILINE (moles) 6.603572E-07 N-METHYL ANILINE (moles) 2.49774E-07

DIAZENES (moles) NITROGEN (moles) METHANE (moles)

9.191E-07

9.171628E-08 6.369187E-09

7.490162E-08 1.464E-06

```
RUN # 142
```

TEMP 519.2

TIME 4000.3

MPDA (moles) .00025

BENIZENE (moles) 8.875098E-08
TOLUENE (moles) 0 3.445626E-07
N-HETHYL ANILINE (moles) 1.371824E-07
DIAZENES (moles) 5.024871E-08
NITROGEN (moles) 8.9E-07,
METHANKE (moles) 1.176E-07

RUN # 143

TEMP 539.4

TIME 1800

MPDA(moles) .0002247

____/

BENZENE (#cles) 1.548464E-07 (Objets) (#cles) 8 (Objets) (#cles) 1.689234E-07 (N-METHYL ANILINE (moles) 1.512031E-07 (DIAZENES (moles) 2.05288BE-07 (NITROBEN (moles) 2.061E-06 (METHANE (moles) 4.979F-07

RUN # 144

TEMP 539.4

TIME 1500

MPDA(moles) .0001505

BENZENE (moles) 9. 428484E-08
TOLUENE (moles) 9
AMILINE (moles) 5. 217695E-07
N-METHYL ANILINE (moles) 1. 476653E-07
DIAZENES (moles) 1. 456653E-07
NITROGEN (moles) 1. 3797E-06

NITROGEN (males) 1.379E-06 METHANE (males) 2.154E-07 SECTION AND LONG AND AND SHO

```
RUN # 145
```

TEMP 539.4 T

TIME 1800

MPDA(moles) .0001508

BENZENE (moles) 1.039201E-07
TOLURNE (moles) 3.935366E-09
ANIL INE (moles) 3.023129E-07
N-METHYL ANIL INE (moles) 1.927407E-07
DIAZENES (moles) 1.37728E-07
NITROSEN (moles) 2.535E-07

RUN # 154

TEMP 539.4

TIME 1800

MPDA (moles) .0001696

BENIZEME (moles) 1,593759E-07
TOLUENE (moles) 0
ANILINE (moles) 2,178137E-07
N-METHYL ANILINE (moles) 2,3062181E-07
NITROBEN (moles) 1,615E-06
METHANE (moles) 4,255E-07

RUN # 146

TEMP 549.2

TIME 1800

MPDA (moles) .0001479

BENZENE (moles) 3.088534E-07 10.ULENE (moles) 1.1592E-08 ANJLINE (moles) 7.142234E-07 7.142234E-07 DIAZENES (moles) 5.91849XE-07 NITROGEN (moles) 3.91849XE-07 METHANE (moles) 3.891E-07 97.251E-07

```
RUN # 147
```

TEMP 549.2

TIME 1800

MPDA(moles) .0001906

BENZENE (moles) 4.325172E-07 TOLUENE (moles) 1.658425E-08 ANILINE (moles) 6.0200B2E-07 N-METHYL ANILINE (moles) 7.14549E-07

DIAZENES (moles) 6.802858E-07 NITROGEN(moles) . 3.875E-06 METHANE (moles) 9.98Ø999E-Ø7

RUN # 148

TEMP 549.2 TIME 1800

MPDA(moles) .0001589

BENZENE (moles) 3.517336E-07 TOLUENE (moles) 8.2956Ø5E-Ø9 ANILINE (moles) 1.747054E-06 N-METHYL ANILINE (moles) 6.905925E-07 DIAZENES (moles) NITROGEN (moles) 6.716674E-07

3.637E-06 METHANE (moles) 9.053E-07

RUN # 155

TIME 1800 TEMP 549.2

MPDA (moles) .0001598

BENZENE (moles) 3.526135E-07 TOLUENE (moles) 1.251389E-08 ANILINE (moles) 3.887647E-07 N-METHYL ANILINE (moles) 5.251828E-07 DIAZENES (moles) 5.586754E-07 NITROGEN (moles) 3.088E-06

METHANE (moles) 1.147E-06

```
RUN # 156
                         TIME 1800
MPDA (moles) .0001969
BENZENE (moles)
                         4.084368E-07
TOLUENE (moles)
                          1.027945E-08
ANILINE (moles)
                         3.330542E-07
N-METHYL ANILINE (moles)
                         6.621405E-07
DIAZENES (moles)
                         6.895798E-07
NITROGEN (moles)
                         3.856E-06
METHANE (moles)
                         1.422E-06
 TEMP 568.8
                        TIME AND
1PDA(moles) .0001431
BENZENE (moles)
                         5.807257E-07
TOLUENE (moles)
                         2.241223E-ØB
ANILINE (moles)
                         2.943473E-07
N-METHYL ANILINE (moles) 6.212819E-07
DIAZENES (moles)
                         9.3434ØBE-Ø7
NITROGEN (moles)
                         4.087E-06
METHANE (moles)
                         2.106E-06
                        TIME 600
 TEMP 568.8
MPDA(moles) .000169
BENZENE (moles)
                         6.01133E-07
TOLUENE (moles)
                         2.646867E-08
                         3.211532E-07
ANILINE (moles)
N-METHYL ANILINE (moles) 7.299353E-07
DIAZENES (moles)
                         8.234698E-07
NITROGEN (mples)
                         4.963E-06
METHANE (mbles)
                         2.371E-06
```

TEMP(K) 559.0

MPDA (mol/L) 0.00002604

NITROGEN (moles) 0.6583E-6 METHANE (moles) 0.1160E-6

RUN # 160

TEMP(K) 559.0

MPDA (mol/L) 0.00002222

NITROGEN (moles) 0.5785E-6 METHANE (moles) 0.09700E-6

RUN # 161

TEMP(K.) 559.0 ...

MPDA (mol/L) 0.00001858 NITROGEN (moles) 0.4978E-6 METHANE (moles) 0.08649E-6

RUN # 162

TEMP(K) 559.0 MPDA (mol/L) 0.00001589

NITROGEN (moles) 0.4385E-6 METHANE (moles) 0.06584E-6

RUN # 164

TEMP(K) 559.0

MPDA (mol/L) 0.0002306

NITROGEN (moles) 5.155E-6 METHANE (moles) 1.064E-6 TIME(s) 1000.2

PROPENE : DIAZENE 85.2 : 1

TIME(s) 1000.1

PROPENE : DIAZENE 85.2 : 1

TIME(s) 1000.2

PROPENE : DIAZENE 85.2

TIME(s) 1000.2

PROPENE : DIAZENE 85.2 :

TIME(s) 1000.2

PROPENE : DIAZENE 9 : 1

TEMP(K) 559.0

MPDA (mol/L) 0.0001942

NITROGEN (moles) 4.295E-6

NITROGEN (moles) 4.295E-6 METHANE (moles) 0.9850E-6

RUN # 166

TEMP(K) 559.0

MPDA (mol/L) 0.0001684

NITROGEN (moles) 3.803E-6 METHANE (moles) 0.7748E-6

RUN # 167

TEMP(K) 559.0

MPDA (mol/L) 0.0001448

NITROGEN (moles) 3.265E-6 METHANE (moles) 0.6781E-6

RUN # 168

TEMP(K) 559.0

MPDA (mol/L) 0.0001128

NITROGEN (moles) 2.570E-6 METHANE (moles) 0.5754E-6

RUN # 169

TEMP(K) 559 2

MPDA (mol/L) 0.00008062

NITROGEN (moles) 1.812E-6 METHANE (moles) 0.4314E-6 TIME(s) 1000.2

PROPENE : DIAZENE 9 : 1

TIME(s) 1000.2

PROPENE : DIAZENE 9

PROPERE : DIREERE 9

TIME(s) 1000.2

PROPENE : DIAZENE 9 : 1

TIME(s) 1000.1

PROPENE : DIAZENE 9 : 1

TIME(s) 1000.2

PROPENE : DIAZENE 9 ; 1

TEMP(K) 559.0

MPDA (mol/L) 0.00003759

NITROGEN (moles) 0.5419E-6 METHANE (moles) 0.1750E-6

RUN # 223

TEMP(K) 559.0

MPDA (mol/L) 0.0001135 NITROGEN (moles) 1.418E-6 METHANE (moles) 0.3710E-6

_RUN # 227

TEMP(K) 559.0

MPDA (mol/L) 0.0001123

NITROGEN (moles) 1.467E-6*

METHANE (moles) 0.5315E-6

RUN # 230

TEMP(K) 559.0

MPDA (mol/L) 0.0001138

MPDA (mo1/L) 0.0001138 NITROGEN (moles) 1.599E-6 METHANE (moles) 0.6431E-6 TIME(s) 725.9

PROPENE : DIAZENE 0.992 : 1 :

. .

TIME(s) 736.8

PROPENE : DIAZENE 12:00 : 1

TIME(s) 743.1

PROPENE: DIAZENE 6,107: 1

TIME(s) 750.3

PROPENE : DIAZENE 1.049 : 1

Appendix D[†]

COMMENTS ON DATA TREATMENT BY A.C. AND D.B.

YIELD VS TIME PLOTS

The yield vs time plots were questioned because the intercepts at zero time were not set at zero, as they should be if the yields are equal to zero at zero time. In fact the plots are least squares linear fits to the data which were designed to determine the presence or absence of intercepts. In particular a negative intercept on the yield axis would indicate the presence of an induction period. It was also pointed out that the rate of product formation need not be constant over the yield time periods and that plots of yield divided by time vs time should be extrapolated to zero time in order to obtain the rate at the beginning of the reaction. These points will be discussed with respect to yield vs time data at 529.4 K and at 559.0 K as reported in Tables 2 and 3.

Data at 529.4 K

LINEAR

QUADRATIC

These data are extremely smooth and seem to provide answers to the questions

 The plot of moles of nitrogen vs time appears to be quite linear with an intercept close to the origin. Unweighted least squares fitting gives these results, for both linear and quadratic equations.

INTERCEPT SUM OF SQUARES

OF YIELD RESIDUALS

(-3.06 ± 7.67) × 10⁻⁸

(-1.13 ± 1.42) × 10⁻⁷

9.98 × 10⁻¹⁴

Intercepts are small, errors are larger than the intercepts, and a quadratic

Added after receipt of referee's comments.

equation is not favoured over a linear equation.

2. The plot of yield of nitrogen divided by time as time is shown in the figure. The intercept at zero time is (2.97 ± 0.15) x 10⁻¹⁰. If the mean of all yields, in this set of data, divided time is calculated the result is (3.05 ± 0.24) x 10⁻¹⁰. These are indistinguishable, indicating that the rate at any time within this time period is as valid, as an initial rate, as is the rate extrapolated to zero time.

Data at 559.0 K

LINEAR

QUADRATIC.

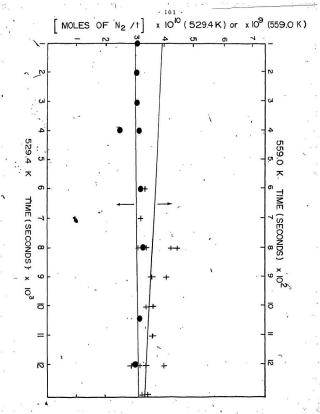
Unfortunately the yields at 559.0 K have an inherent (that is, not due to
analysis) scatter which is obvious in Figure 7. In addition, because of the speed
of the reaction, data near zero time are difficult to obtain. However, the same
treatment was given, with these results.

INTERCEPT SUM OF SQUARES $(5.54 \pm 4.02) \times 10^{17} \\ (-2.20 \pm 2.33) \times 10^{16} \\ (-2.44 \times 10^{-12})$

The presence of an intercept is questionable and there is little to choose between the equations. (However, the quadratic equation does not seem to be realistic because it is concave toward the time axis due to an effort to fit two or three rather fast reactions.)

2. The intercept of the yield of nitrogen divided by time us time is (3.99 ± 0.49) x 10⁻⁹ and the mean of yields, in this set of data, divided by time is (3.51 ± 0.43) x 10⁻⁹. It is possible to conclude that the rate is slightly faster initially than it is later. However, the extrapolation to fero time is long and seems strongly biased by the two or three fast reactions. The assumption was made that all rates over the early time period were equally valid as initial rates.

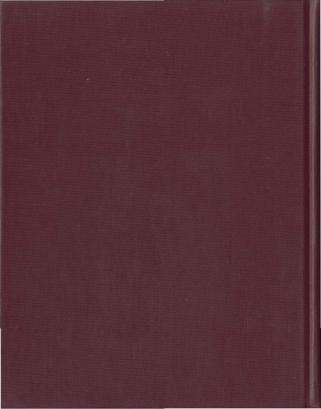
Perhaps more data at 559.0 K could be obtained, especially at shorter time periods.


Order

An additional comment on order may be useful. The order for nitrogen at 520.4 K is 0.09 ± 0.07 and at 559.0 K is 1.07 ± 0.03 . In order to treat temperature dependence, rate constants have to have the same units, so an order has to be selected. Although the mean order is 1.03 ± 0.04 the decision was made to calculate first order rate constants. These may have the advantage of easy comparison with literature values, which are often reported as first order rate constants.

Summary


- The rates throughout the initial period (for example 1200 s at 559.0 K and 12,000 s at 529.4 K) were treated as the initial rates.
- 2. Rate constants were defined by this equation


 $k = \frac{\frac{\text{moles of N}_2/\text{volume}}{\text{time}}}{\frac{\text{time}}{\text{potential concentration of diagrams}}} \text{ seconds}$

