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Abstract

~ sp. BPG-8 was isolated from oil rich soil in

Newfoundland and found to utilize numerous aromatic compounds

as sources of carbon and energy. Chemical analysis of cell

wall composition which included amino acids, sugars, and fatty

acids showed complete homology with~ erythropoUS.

Identical profiles for acid production and growth on various

substrates occurred. G~owth of the isolate on phloroglucinol

occurred in the pH range 5-8; with substrate and temperature

optima of 8.0 mM and 25aC, respectively. Phloroglucinol

induced cells when fed phloroglucinol or resorcinol produced

1,:2,3,5 -tetrahydroxybenzene and 1,2,4 -trihydroxybenzene,

respectively. Cell-free extracts of cells grown

phloroglucinol contained a phloroglucinol hydroxylase that

also hydroxylated resorcinol. Dioxygenases present in the

induced cells carried out the ortho-cleavage of 1,2,3,5-

teerahydroxybenzene while meta-clevage of 1,2,4-

trihydroxybenzene appeared to be constitutive. Cell-free

extracts a-Iso showed inducible activity for the metabolism of

acetopyruvate with the accumulation of formate in the

supernatant. Tentative degradative pathways for phloroglucinol

and fortuitous resorcinol metabolism are discussed. This is

the first reported case in which phloroglucinol is metabolized

by an oxidative rather than a reductive pathway. The
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oxidations of 1,.2,3,5 - tetr.:::.liydroxybenzene and 1,2,4 ­

trihydroxybenzene produce superoxide radicals that may have

potential deleterious effects on cellular integrity. It has

been shown that both superoxide dismutase and catalase retard

the auto-oxidation of these molecules by hindering their free

radical reaction mechanism with superoxide. A non-inducible

NAD(P)H dependent reductase appeared to convert the 2-hydroxy­

1,4-benzoquinone back to 1,2,4-trihydroxybenzene; although

similiar effects not found for 1,2,3,5-

tetahydroxybenzene, These novel findings suggest that

constitutive non-pathway enzymes may participate in

stabilization of intermediates. Partial purification of the

phloroglucinol hydroxylase was performed using ammonium

sulfate percipitation, ion exchange chromatography, and gel

filtration. The pH, temperature, and substrate optima for

phloroglucinol hydroxylase were 7.0, 25oC, and 68.0 tlM for the

substrates phloroglucinol and resorcinol. NADH+H' was the

primary reductant and FAD stimulated the hydroxylase activity

by 300 \. :rhe enzyme had a native molecular weight of 155,000

daltons and an apparent Km of 8.3 J.lM and 12,5 pM for

phlorglucinol and resorcinol respectively. Chloride ion along

with numerous metal ions appeared to inhibit phloroglucinol

and resorcinol hydroxylase activities. This is the first

reported case for the partial purification of a phloroglucinol

hydroxylase.
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Chapter I: Review of the literature

1.1 General

Microbial degradation of aromatic compounds is very

important to the earths' carbon cycle. The pyrolysis of

organic material from ,1atural or anthropogenic sources

produces many aromatic compounds that are relatively

recalcitrant to degradation (Dagley, 1971). If the carbon

became locked ins;de these products eventually it would be

exhausted from the biosphere. The benzene nucleus of many of

these products furnishes some of this inertness because of its

resonance structure stability (Gibson and Subramanian, 1984).

Some soil microbes can produce mono- and dioxygenases that are

able to insert oxygen within this benzene nucleus, thus making

it more amenable to degradation and subsequent utilization as

a carbon and energy source (Gibson and Subramanian, 1984).

The importance which microbes play in the economy of the

earths carbO!I may be circumvented by man-made compounds. The

problems of microbial fallibility and molecular recalcitrance

have serious consequence to the health of the global ecosystem

and its inhabitants. Halogenation of the benzene nucleus, a

feature of many modern pesticides, presents a novel situation

for many soil microbes (Cork and Krueger, 1991). It is

important to realize that production and application of such

chemicals should be shaped by its biodegradability in the

prevailing environment.



It has been shown that many of these man·made compounds

may be degraded partially or completely by both microbial

conzortia and single microbes. This is a testament of the

versatility and power microbes employ when presented with a

novel carbon source. This is not to concede that microbes are

infallible, since thE~re are numerous cases in which

degradation of toxic compounds is incomplete, producing

intermediates that may be more toxic than the original

compound (Reineke, 1984).

An overview of the degradatory processes will be

presented to illustrate our current understanding of microbial

degradation as it pertains to aromatic metabolism.

1.2 Degradation of Benzenoid compounds

1.2.1 ArolDaticl, Polycyclic Aromatics and Lignin

The aerobic degradation of the aromatic nucleus whether

it is unsubstituded or substituted with various groups

(aliphatic, hydroxyl, amino, or halogen) involves two basic

mechanisma-. The first mode of oxygenated cleavage of the bond

between adjacent carbon atoms that carry hydroxyl groups is

known as ortho-cleavage and the associate metabolic pathway is

recognized as the ,B-ketoadipate pathway (Stanier and Ornston,

1973) (Fig. 1.1). The second mode of oxygenated clf.~avage k.nown

as meta-cleavage and it occurs between two carbon atoms, only

one of which carries a hydroxyl group; the other carbon may be



unsubstituted or substituted with anything but a hydroxyl

group (Bayly and Barbour, 1984). Meta·cleavage occurs when the

hydroxyl groups are ortho or para to each other with the

respective sequences called the meta and gentisate pathways

(Bayly and Barbour, 1984).

Many aromatics are metabolically altered to produce two

common intermediates such as catechol and protocatechuate.

Ortho-cleavage produces ciS,cis-muconate and {3-carboxy­

cis, cis-muconate from catechol and protocatechuate,

respectively (Stanier and Ornston, 1973) Metabolic

convergence of the separate branches leads to three common

intermediates: (J-ketoadipate enol-lactone, l1-ketoadipate, and

,B-ketoadipyl-coA which undergoes thiolytic cleavage to produce

succinate and acetyl-coA (Stanier and Ornston, 1973) (Fig.

1.2). Catechol 1,2-dioxygenase and protocatechuate 3,4­

dioxygenase have molecular weights of 95, 000 daltons (two

associated ferric ions) and 700, 000 daltons {eight associated

ferric ions} respectively (Gibson and Subramanian, 1984;

Stanier and Ornston, 1973). The lactonizing enzymes for

cis, cis-muconate and l3-carboxy·cis, cis-muconate which

eventually pr.oduce (J-ketoadipate are subject to independent

regUlatory control and are not antigenically related. They

have sharp enzymatic specificity, are stable at 60°C, and have
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Pig. 1.1. The central reactions of the p-ketoadipate pathway
in bacteria. A, protocatechuate oxygenase; 8, catechol
oxygenase: c, p-carboxymuconate lactonizing enzyme; D,
muconate lactonizinq enzyme; E, y-carboxymuconolactone
decarboxylase; F, muconolactone isomerase; G, p-ketoadlpate
enol-lactone hydorolas8; H, p-ketoadipate succinyl-CoA
transferase; I, p-ketoadipyl-CoA thiolase; J, succinate and
acetyl-CoA (modified trom: stanier and Oroston, 1973).



equal molecular weights of 190, 000 daltons (Stanier and

Ornston, 1973) . Muconolactone isomerase and y.

carboxymuconolactone decarboxylase have enzyme

specificity, differ in external charges, are subject to

independent controls, are antigenicaUy unrelated, and both

have a molecular weight of 93,000 daltons (Stanier and

Ornston, 1973\.

The ,s-ketoadipate enol·lactone hydrolase induced by

protocatechuate and catechol have molecular weights of 21,000

and 24,000 daltons, respect.ively; however the exist.ence of

mutants of Acinetobacter in which either t.he synthesis of one

or the other enzymes is specifically affe;cted suggest that the

enzymes are coded by different structural genes. ,s~ketoadipate

succinyl·CoA transferase are induced by growth wit.h 13­

ketoadipate, aromatic acids, and sat.urated dicarboxylic acids

(Stanier and Ornston, 1973).

Regulation of the ,I3-ketoadipate pathway and the ancillary

initial reactions all seem to be inducible. During the

metabolis~ of catechol in Alcaligenes~ the primary

aromatic compound, cia,cis·muconate, or muconolactone act as

inducers; whereas protocat.echuate, l3-ketoadipate or /3.

ketoadipyl·CoA act as inducers during protocatechuate

degradation (Stanier and Ornston, 1973).

Meta-cleavage of catechol and protocatechuate produce (z­

hydroxy·muconate semialdehyde and (z·hydroxY-'Y~carboxy-muconic



semialdehyde respectively (Dagley, 1975; Dagley, 1971). The

end products from meta-cleavage of catechol are formate,

acetaldehyde and pyruvate, while formate and two molecules of

pyruvate are produced from meta-cleavage of protocatechuate

under similiar conditions (Bayly and Barbour, 1984) {F'ig.

1.21.

The catechol and protocatechuate ort.ho- and meta-cleavage

pathways differ in the mode of enzyme induction, number of

substrate inducers, and substrate specificity (Bayly and

Barbour, 1984; Stanier and Ornston, 1973). The meta pathway is

regarded as being able to degrade a wider spectrum of aromatic

compounds obligatory to enzymes with broade): substrate

specificity and induction patterns (Bayly and Barbour, 1.984).

The meta and the gentisate pathway degrade a wider spectrum of

aromat.ics that include phenolics, polycyclic aromatics,

steroids, and alkylbenzoic sulfonates with Pseudomonas,

Acinetobacter, ~, Alcaligenes, and~ being the

predominant genera (Bayly and Barbour, 1984).

Degradation of various aromatics such as m-cresol, 3­

hydroxybenzoic acid, salicylic acid, anthranilic acid, {3­

naphthol, and xylenol produce alkyl substituted gentisate and

gentisate as intermediates (Bayly and Barbour, 1984; Chapman,

1972) (F'ig. 1.3). The important aspect of the gentisate

pathway are cleavage of the aromatic ring by a dioxygenase to

form maleylpyruvate which Is isomerized to fumarylpyruvate
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Fiq. 1.2. The ortho- and meta-cleavage pathways tor

dissimilation of protocatechuate (1) and catechol (2). The

structure intel1llediates )-6 are shown: J. a-hydroxy-y­

carboxymueonic semialdehYde; 4. P-carbolCy-cis,cis-muconate; 5.

c!s,cis-muconate: and 6, n-hydroxymuconic semialdehyde. The

stuctures of p-ketoadipate and the end products are not shown:

7, p-ketoadipatel 8, formate; 9, pyruvate: 10, succinate; 11,

acetyl-CoAl 12, acetylaldehyde; A, ortho pathway; B, meta

pathway. (modified from: stanier and Ornston, 1973).
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Fig. 1.3. The gentisate pathway for the degradation of m­
cresol, and 2,5- and J , S-xyleno1-

Key to compoundG: Rio ~ .. H; XIX. Ill-cresol; XX, )­
hydroxybenzylalcohol; XXI. 3-hydroxybenzaldehyde; )­
hydroxybonzoat.; XXIII, gentisate; XXIV. lIIaleylpyruvate; XXV,
maleic acid; XXVI, O-aalic acid; XXVII, fumarylpyruvate;
XXVIII, tUfllarate; XXIX, L-malic acid.

lIIethy~Le~zyH1'al~h~l ;CH] ~x;~x. 3~h~~~~;;~~~~etXhilb;~~~~~~~~;: ~
XXII, J-hydroxY-4-llethylbenzoate; XXIII. 4·llIethylgent1sate;
XXIV, 5-mllthyl-maleylpyruvate; XXV, citraconic acid.

R... CHp R1 • H: XIX, J,S-xylenol, XX, J-hydroxy-s­
methy:' ",enzylalcohol: XXI, 3-hydroxy-5-methylbenzyaldehyde;
XXII, J-hydroxy-5-methylbenzoate; XXVIII, 3-methylgent!sate;
XXIV, 6-methyl-maleylpyruvate: XXV, citraconic acid.

Key to enzyllIes: A, methylhydroxylase: 8, alcohol
dehydrogenase: C, aldehyde dehydrogenase: 0, 6-mono-oxygenase:
E, qentisate 1,2,-dioxygenase; F, maleylpyruvate hydrolase: G,
maleate hydratase; H, isomerase: J, fumarylpyruvate hydrolase;
K, fumarase (Reproduced with permission from Marcel Dekkar
Inc., Bayly and Barbour, 1984).



which is then hydrolysed to fumarate and pyruvate (Bayly and

Barbour, 1964). Fumarate is subsequently converted into L­

malic acid by a fumarase. Maleylpruvate may al,£;o be converted

into maleic acid and pyruvate by a maleylpyruvate hydrolase.

Maleic acid is subsequently converted by a maleate hydratase

into D-malic acid (Bayly and Barbour, 1964).

Bacteria, filamentous fungi, yeast, cyanobo.cteria,

diatoms and other eukaryotic algae have been shown to oxidize

polycyclic aromatics (PAH) that range in size from naphthalene

to benzo[a]pyrene (Cerniglia, 1984). The fate of PAWs in the

environment is influenced by physicochemical factors of the

PAH's, environmental factors of the biota, and microbial

factors (cerniglia, 1984). It has been recognized that high

PAH concentrations have been associated with higher levels of

cancer in humans (Leahy and Colwell, 1990; Cerniglia, 1984).

Difference between prokaryotic and eukaryotic

transformation of PAH's are quite significant (Gibson and

Subramanian, 1984; Jerina and Daly, 1974). Prokaryotes produce

a ili-dihydrodiol from the incorporation of two atoms of

oxygen within the PAM's, whereas fungal e:nzymes produce an

arene oxide through the action of the cytochrome P-4S0 system

and the incorporation of one atom of oxygen within the PAW s

(Gibson and Subramanian, 1984) (Fig. 1.4). The arene oxide can

either undergo an non-enzymatic rearrangement (NIH shift) to

a phenol which is later conjugated, or reacted with iln epoxide



hydrolase

,.
form the ~-dihydrodiol (Gibson and

Subramanian. 1984; Cerniglia II ill .. 1982). The ili.-Napthalene

dihydrodiol produced by bacteria is oxidized by a NAn'·

dependent dehydrogenase to produce a catechol-type molecule

which then undergoes either ortho- or meta-fission, which

eventually lead to complete mineralization of the PAH (Gibson

and Subramanian, 1984) (Fig. 1.5),

Lignin biodegradation is important to the earth's carbon

cycle since lignin is second only to cellulose in abundance

(Kirk and Farrell, 1987). Lignin also protects most of the

earths cellulose and hemicellulose from enzymatic hydrolysis

(Kirk and Farrell. 1987). Lignin is found in higher plants

including ferns, and biochemically arises f::-o... the free

radical copolymerization of three precursors: p-coumaryl

alcohol, coniferyl alcohol, and sinapyl alcohol which are (1-0-

4 linked (Kirk and Farrell, 1987) (Fig, 1,6). The structural

features of lignin suggest that the degradation must be

extracelluar, nonspecific. and nonhydrolytic (Blanchette.

1991; l<irk. and Farrell, 1987),

Lignin is not biodegraded anaerobicalJ.y and it appears

that neither rapid nor extensive bacterial degradation occurs

under aerobic conditions. The degradation of lignin by

Streptgmycetes spp, has been suggested (Kirk and Farrell,

198?; Kirk, 1984); however numerous studies seem to suggest

that this may be incomplete or nil (Pometto and Crawford,
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Piq. 1 .... Reactions utilized by mammals for the transformation

of aromatic hydrocarbons: I, aromatic hydrocarbon; 2, arene

oxide; 3, phenol; 4, .t.IArJ.§-dihydrodiol: 5, glutathione

conjugate: 6, sulfates and glucuronides: 7, mercapturic acids:

A, cytochrome P-450: B, epoXide hydratase: C, NIH shift: 0,

glutathione transferase (Reproduced with permission from

Marcel Dekkar Inc., Gibson and SUbramanian, 1984).
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Fiq. 1.5. proposed pathway for the degradation of naphthalene

(a pOlycypl!c aromatic) by bacteria: 1, naphthalene; 2, c1s­

naphthalene dihydrodiol; 3, 1.2-dihydroxynaphthalene; 4, cis­

o-hYdroxybenzalpyruvate; 5, salicylaldehyde: 6, salicylic

acid; 7, gentisic acid; 8, catechol; 9, respective ring

fission products (Reproduced with permission from Marcel

Oek}':ar Inc •• Gibson and sUbramanian, 1984).
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1986; Petty and Crawford, 1985; Crawford tt il.. 19831.

The white-rot basidiomycetes, notably Phanerpcha,pre

chrvsosporium degrade lignin more completely and rapidly than

any other microbial group (Kirk and Farrell. 1987; Kirk,

1984) . They seem to invade the lumens of wood cells where they

secrete enzymes such as ligninase, Mn-peroxidase, phenol­

oxidizing, and H~Ol-producing enzymes. The lignin degradation

process seems to follow an enzymatic combustion process which

resembles a nonspecific enzyme-catalyzed burning (Blanchette,

1991; Kirk and Farrell, 1987). This leads to a potpourri of

divergent reactions that is unmatched by any other enzyme

system (Kirk and Farrell, 1987). Depolymerization is

kinetically favoured because ligninaae oxidizes its substrate

by one electron and subsaquently produces unstable cation

radicals which elicit a variety of non-enzymatic reactions

(Kirk and Farrell, 1987) (Fig. 1.7). It is also clear from the

structure of lignin that its conversion to water and carbon

dioxide is thermodynamically favourable.

1.2.2 Anaerobic degradation of Aromatic.

Ecosystems are common in sediments, al imentary tract of

animals, and in industrial activities that produce anoxic

systems (Evans and Fuchs, 1988). Therefore different

mechanisms for the detoxification of aromatics must exist

because oxygen is limiting (Young, 1984). The anaerobic
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Fiq. Schematic structural formula of lignin.

Polymerization of the three precursor alcohols (shown at the

lower rignt) produces lignin. The precursor alcohols have the

various R-groups: R,=R2"""H: p-coumaryl alcohol; R,=OCH3• R2",,"H:

coniferyl alcohol: R,=R2=OCHl : sinapyl alcohol. The numbers 2­

16 refer to the number of component alcohols (Reproduced with

permission from Ann. Rev. Microbial., Kirk and Farrell, 1987).
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Fig. 1.7. -Plethora of products produced during the oxidation

of 13-0-4 model compound by ligninase/H20 2o A, A-ring cleavage;

B, a-ring cleavage, while numbers refer to products produced

during oxidation of 13-0-4 model compound by ligninase/HlOl "

(Reproduced with permission from Ann. Rev. Microbial., Kirk

and Farrell, 1987).
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metabolism of aromatic compounds may occur by photosynthetic

phosphorylation, denitrification, sulfate reduction,

fermentation, and methanogenic fermentation (Harwood and

Gibson, 1988; NO%llIma and Maruyama, 1988; Krumhoh:: !:.t. Al .•

1987; Bak and Widcile, 1986; Healy and Young, 1978).

Photosynthetic phosphorylation occurs in several species

of the purple nonsulphur Rhodospirillaceae family (Evans and

Fuchs, 1988). Species such as RhodopseudpIDO'li!§.~ and

RhodopseudoIDonas~ can metabolize compounds such as

benzoate, m· and p-hydroxybenzoate, and phloroglucinol (Evans

and Fuchs, 1988; Harwood and Gibson. 1988). These species

obtain their energy from light and use simple aromatic

compounds as carbon sources. The photometabolism of benzoate

suggests that the aromatic ring becomes fully reduced wit.h the

incorporat.ion of six hydrogen equivalent.s t.o form

cyclohexanecarboxylate. The subsequent. react.ions would be

analogous to fatty acid ,a-oxidation (Evans and Fuchs, 1988).

During the photometabolism of phloroglucinol, it is reduced to

dihydrophloroglucinol and subsequently cleaved to 2-oxo-4­

hydroxyadipate (Evans and Fuchs, 1988; Whittle Sl.t. y., 1976).

The ring cleavage mechanism and enzymatic reactions of this

pathway are still uncertain.

The metabolism of nitrate-reducing bacteria suggests that

the oxidation of aromatic compounds is coupled with the

exergonic reduction of nitrate to nitrogen or ammonia (Evans
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and Fuchs, 1988). Energy is derived mainly from electron

transport phosphorylation, and carbon is supplied from the

aromatic degradation. The anaerobic nitrate metabolism of

phthalate and other aromatics suggests that there may be a

reduction and hydrolytic cleavage of the aromatic ring

followed by ,a-oxidation (Aftring and Taylor, 1981)

Sulfate reducers couple the oxidation of organic

compounds with water to the exergonic reduction of sulfate to

sulphide. Electron transport phosphorylation supplies the

energy for the sulphate reducerEl, while the carbon is derived

from aromatic degradation. The genera associated with sulfate

metabolism of aromatics include Desulfovibrio, Desulfococcus,

Desulfonema, and Desulfosarcinia (Evans and Fuchs, 1988).

Although there have been reports of aromatic degradation by

sulfate reducers, along with the associated sulfate reduction

to hydrogen sulphide, no pathway has been published (Bak and

Widdle, 1986)

Microorganisms that derive their energy from substrate

level phosphorylation, and employ organic compounds as

electron donors and acceptors, are fermentative. Some genera

include CoprOCOCCIlS, Strept.0coccus, ~, and

Eubacterium all of which degrade compounds such as

phloroglucinol and various phenolic compounds (Krumholz and

Bryant, 1986; Schink and Pfenning, 1982; and Patel II ill·,

1981). Krumholz U 2.1.., (l98?) isolated an EUbact.erium
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~~ that degrades gallate, pyrogallol, and

phloroglucinol to acetate, butyrate, and carbon dioxide.

Formate or hydrogen was used as an electron donor to

catabolize these aromatic substrates (Evans and Fuchs, 1988).

The degradation of aromatic compounds also occurs in

methanogenic consortia which include fermentative, acetogenic,

and methanogenic bacteria. Methanogenic consortia depend on a

syntrophic relationship in which the fermentors degrade

aromatics into metabolizable products for the methanogens

(Evans and Fuchs, 1988). Numerous aromatic compounds seem to

be degraded by a reduction of the aromatic ring followed by a

hydrolytic cleavage and (3-oxidation to aliphatic compounds

such as acetate, formate, and various carboxylic acids (Evans

and Fuchs, 1988).

1.2.3 Halogenated Aromatics and Pesticide Compounds

The emergence of the chemical industry during this

century has lead to the introduction of many halogenated

compounds .into the environment either through point source or

dispersed pollution (Haggblom, 1990). The relative novelty of

these compounds in the environment and the lack of time for

microorgansims to develop adequate degradative enzymes through

a evolutionary process has lead some to believe that this may

be the reason for their recalcitrance (Haggblom, 1990; Reineke

and Knackmuss, 1988). There is also an argument that numerous
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halogenated compounds have been exposed to microbial

populations since early in the earths history and therefore

halogenated compounds should be degradable (Haggblom. 1990;

Reineke and Knackmuss, 1988). Some halogenated compounds have

been shown to be totally degraded or transformed while others

are not degradable suggesting that microorganisms may have not

had enough time to utilize these specific compounds. The

biodegradation of the halogenated areneB can only be

considered complete when the carbon skeleton is converted into

intermediary metabolites and its organic halogen is returned

to the mineral state (Haggblom, 1990; Reineke and Knackmu9s,

1988; Reineke, 19841. Incomplete biodegradation may lead to

dead-end metabolites that are sometimes more toxic than the

initial substrate.

The biodegradation may occur by cometabolism or by

modified basic metabolic sequences such as the ,B-ketoadipate

(Haggblom, 1990). Elimination of the halogen may occur before

or after ring cleavage by aerobic and anaerobic processes

(Reineke and Knackmuss. 1988).

Displacement of the halogen by a hydrogen may occur

anaerobically in a methanogenic consortia that consist of a

dechlorinating bacterium, benzoate oxidizing bacterium, two

butyrate-oxidizing bacteria, two HlMconsuming methanogens

{Methanospirillum ~, Methanohacteriym sp. J, and a

sulfate-reducing bacterium (DesJllfgyibrio sp.1 (Haggblom.
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1990; Reineke and Knackmuss. 1988j Reineke, 1984). It appears

that one or more of these organisms cross-feed the

dechlorinating bacterium. The reducing power required for

reductive dechlorination may be provided by acetogenic

oxidation of benzoate. One third of this hydrogen was shown to

be consumed by reductive dechlorination, while two thirds was

utilized by the methanogen. These communities may degrade

mono- and polyaubstituted chlorinated aromatics to methane and

carbon dioxide. Reductive dechlorination was observed with

2,4,S-trichlorophenoxyacetic acid (2,4,5-T), chlorophenols.

and 1,2 , 4-trichlorobenzene. Even pentachlorophenol (PCP) was

completely dechlorinated by a mixture of 2-chlorophenol (2­

CP), 3-CP, and 4-CP-acclimated slu::1ges (Reineke and Knackmuss,

19881 (Fig. 1.8).

Aerobic dehalogenation of the halogenated aromatics may

occur by displacement of the halogen by a hydroxy group,

oxygenolytic cleavage of the halogen-carbon bond, and chlorine

elimination from nonaromatic intermediates (Haggblom, 1990;

Reineke a.!ld Knackmuss, 1988; Reineke, 1984) (Fig. 1.9).

Displacement of the halogen by hydrogen utilizes water instead

of oxygen as the hydroxyl donor, with dechlorination

proceeding via hydrolytic cleavage of the carbon-chlorine

bond. This has been reported for numerous genera which include

Arthrobacter, Micrococcus, Pseudomonas ,

Flavobacterium, and RbodococcYs. Pentachlorophenol. 4-
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iodobenzoate, and 4-bromobenzoate have been dehalogenated by

this process (Reineke and Knackmuss, 1988; Reineke, 1984).

oxygenolytic cleavage of the halogen-carbon bond has

initiated fortuitous dehalogenation by specific dioxygenases.

corkco
CI~CIco

F19. 1.8. Proposed pentachlorophenol degradation pathway by a

mixture of halogenated acclimate sludges (Reproduced with

permission from Ann. Rev. Microbicl., Reineke and I<nackmuss,

1988) •

~OCOOH~ ~OeOOt1_ prolocalechuale pathways

~.r,ct'c..~
co 'OM

Fig. 1.'. Hydrolytic dechlorination of 4-chloroben:toate by It

Micrococcus spp. (Reproduced ....ith permission from Ann. Rev,

Microbicl .• Reineke and Knaokmuss, 1988).
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Fig. 1.10. oegradi!l':.ion pathway for 2-fluorobenzoate by a

pseudomonad. A, 2-fluorobenzoate: B",e, 2- and 6:'fluoro-l,2-

dihydro-l,2-dihydroxybenzoate, respectively; 0, catechol: E,

6-!luorocatechol: F, 3-oxoadlpate pathwayr a, 2-tluoro­

cls,cis-muconate (dead-end product) (Reproduced with

permission from Ann. Rev. Microbicl., Reineke and I<nackmuss,

1988) •

Dehalogenation of 2-fluorobenzoate occurred When fluorine was

non-enzymatically removed from the 2-fluoro-l, 2-dihydro-l, 2­

dihydroxY'benzoate to produce catechol (Reineke and J<nackmuss,

1988) (Fig. 1.10). Oxygenolytic elimination from a ili-

dihydrodiol produced by dioxygenation was shown to account for

the initial dehalogenation of 4-halophenylacetates by a

Pseudomonas sp. strain CBS) (Reineke and Knackmuss, 1988).

chlorine elimination may occur in non-aromatic
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in\:ermediates atter ortha-cleavage of the chlorocatechol.

Chloride is eliminated spontaneously after the carbon-halogen

bond has been labilized through isomerases or reductases to

form maleylacetate (Haggblom, 19901 Reineke and Knackmuss,

1988) (Fig. 1.11).

6~ ¢r~ 6~ b~
I ~ CI I/- ell".. (I CI 1,.-.: eM. •

"
I" I" I" l"-

cr- q- ,~"0- D~ I
/- " 1:1 ...-::: Co Ct ...-::: t:>l.

1-'" 1-'" 1-'" 1-'"

~~" -~ "1~ ""~-

f-"
MQOC_CM"'CH_CO_C"'_COOII IOOOC_C .. CM_CO_C... _COOOl

FiC). 1.11-. Degradation of chlorocatecho!s to maleylacetates by

a~ strain 813. A, chlorocatechoIs; B, chloro-cis-

cis-muconates; C, cycloisomerlzation products; D,

maleylacetates and chloro-maleylacetates (Reproduced with

permission from Ann. Rev. MicrobiaL, Reineke and J<nackmuss,

1988) •
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1..3 Phloroglucinol

1.3.1 Genera.l Desoription

Anhydrous and dihydrated phloroglucinol have melting

points of 219°C and 115°C, respectively. Phloroglucinol is a

colourless, odourleas, sweet tasting compound with a pKa of

7.97 and 9.23 at :<lODe (Robern, 1965). Its aqueous solution

gives a violet colour with ferric chloride, reduces Fo:.hlings'

solution and precipitates gold, silver, and platinum from

solutions of their salts (Robern, 1965) . Alkaline solutions of

phloroglucinol absorb oxygen from air but not as pronounced as

pyrogallol or 1,2,4-trihydroxybenzene. The ultraviolet,

infrared, and nuclear magnetic resonance spectra are

consistent with the phenolic structure of phloroglucinol at

neutral pH I however it as been shown to have six

interchangeable prot.ons (Erlenmyer §.t. al., J q36) .

Phloroglucinol was first prepared by the heating of the

monosodium derivative of ethylicmalonate, forming an ester of

phloroglucinol which on hydrolysis yielded phloroglucinol

(Jordan, lB97) . Subsequent synthesis involves the reduction of

trinitrobenzene with tin and hydrochloric acid, with the amine

being neutralized by boiling in water for one day (Clarke and

Hartman, 1929).

phloroglucinol occurs in most plants as part of the

complex tannin molecule or as the dihydrochalcine glycoside

phloridizin (Robern, 1%5). It does not exist in the free
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form, but a significant component of seeds, leaves and bark of

many trees contains the phloroglucinol moiety (Robern, 1965;

Robinson, 1962). It naturally exists as a component of several

plant polymers such as flavanee, anthocyanins, catechins,

lignin precursors and their intermediate degradation products

(Krumholtz and Byrant, 1986; Robinson, 1962). Phloroglucinol

occurs in nature in the A-ring of f·lavonoid compounds and

other plant phenolic compounds and may arise from the

microbial degraoation of these compounds (Walker and Taylor,

1983). It has also been suggested that the breakdown of

natural products such as coal yield phloroglucinol {Robern,

1965; Mathur, 1971). The pentahydroxy flavone quercetin was

also shown to be biotransformed to phloroglucinol and

protocatechuate by~ l.2ti and Bradyrizobium strains

(Rao ~ y., 1991).

1.3.2 Aerobic and Anaerobic Degradation

The degradation of phloroglucinol may be accomplished

by aerobic. and anaerobic microorganisms. Wagner (1914), and

Gray and Thornton (1928) isolated microorganisms from soil and

feces that could utilize phloroglucinol. Species of

Brevihacterium, pebaromyces, PSPlldomonas

Arthrobacter and Penicillium have been shown to degrade

phloroglucinol (Nakagawa and Takeda, 1962; Harris and Rickets,

1962; Robern, 1965; Mathur, 1971). Jamieson tl Al.. (1970),
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ar.d Robern (1965) suggEsted that the phloroglucinol molecule

is converted into a dihydrophloroglucinol (1, 3-dioxo~5­

cyclohexanel which later spontaneously loses a water to form

a resorcinol molecule (Fig. 1.12). This resorcinol molecule is

subsequently converted into a 1,2,4-trihydroxybenzene which

later undergoes ertha-cleavage to produce .B-ketoadipate.

Interestingly resorcinol hydroxylation to 1,2,4-

trihydroxybenzene by a~~ suggested that both

ortho- and meta-cleavage enzymes may operate in the cleavage

of 1,2,4-trihydroxybenzene (Chapman and Ribbons, 1976 ai

Chapman and Ribbons, 1976 b),

Phloroglucinol has also been shown to produce pyrogallol

through a hypothetical resorcinol epoxide (Walker and Taylor,

1983) (Fig. 1.13}. The pyrogallol then undergoes ort·.o-

cleavage to produce a 2-hydroxymuconate. Similarly,

Groseclose and Ribbons (1981) stated that rasorcinol may be

hydroxylated to a pyrogallol intermediate which is later

cleaved by ortho-enzymes to produce oxalocrotonate.

Phloroglu~inol has also been suggested to act as a

substrate/effector for the purified orcinol and resorcinol

hydroxylases from a Pseudomonas put ida ORC (Ohta tt li.,

1975). This has interesting implication because it suggests

that phloroglucinol may be metabolized through a 1,2,3,5­

tetrahydroxybenzene intermediate.
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Piq. 1.12. A.erobic degradation of phloroglucinol by a

~ species. The pathway includes: A, phloroglucinol:

5, dihydrophloroqlucinol: C, resorcinol: 0, 1,2,4­

trihydroxybenzene; E, ,I3-ketoadipate pathway (trom: Blackwood

II Al., 1970).
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Pi9. 1.13. Proposed pathway for the catabolistl of

phloroghrc:inol by lllnilim.l..2lAni. The pathway includes: A,

phloroglucinol; 8, resorcinol epoxlde: C, pyrogallol; 0, 2-

hydroxymuconate: E, oxalocrot:onate; F, vinylpyruvate; G, 4-

hydroxy-2-oxovalerate; H, pyruvate; I, acetaldehyde (modified

from: Walker and Taylor, 1983).
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Leatham II ll. U983}, also showed that a Phanerochaete

chrysosporium may degrade numerous mono-, di-, triphenols and

cause the ring cleavage of the catechol intermediates.

phloroglucinol was not shown to be degraded by this pathway;

however it has been suggested that the symmetrical meta

substituted hydroxyl groups make this molecule relatively

recalcitrant to degradation (Chambers tl li., 1963\.

Trichosporon~ has also been implicated in the

degradation of many phenolic compounds, however phloroglucinol

metabolism was not suggested (Neujahr and Varga, 1970).

Krumholz and Bryant (1988), Krumholz tt li.. (1987),

Krumholz and Bryant, (19861 have shown that~

Qxidoreducens anaerobically reduces phloroglucinol to the

dihydrophloroglucinol, which subsequently undergoes hydrolytic

cleavage to produce a 3-hydroxy-S-oxohexanoate {Fig. 1.141.

The phloroglucinol reductase was later purified and

characterized (Haddock and Ferry, 1989).

Qxjdoreducens was also shown to contain an inducible

pyrogallol-phloroglucinol isomerase (Krumholz and Bryant,

1966). Samain II 21.., (1986) stated that ~

acidigallici may convert numerous trihydroxylated aromatic

monomers into phlo1.og1ucinol as a transient intermediate from

which th,;ee moles of acetate are formed. The degradation of

phloroglucinol by~ acidigallici has been shown to

follow a similiar pathway as that of~ Qxidoreducena



Piq. 1.14. Proposed pathway for enerqy metabolism of qallate

and phloro91ucinol by EUbacttriup oxidoreducens. The compounds

represented are gallate (II, pyroqallol (II), phloroglucinol

(III), dihydrophlor091ucinol (IV). HOHN (V), J~hydroxy-5-

oxohexanoyl-coA (VI), J-hydroxybutyryl·coA (VII) • crotonyl-CoA

(VIII), butyryl·CoA (IX), butyrate (X), acetoacetyl-CoA (XI),

acetyl-CoA (XII), acetyl phosphate (XIII), and a.cetate (XIV) •

(Reproduced with per-Ission froll ASM, Krumholz n 1.1., 1987).
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however the associated pyrogallol-phloroglucinol isomerase was

shown to be stimulated and restored by a 1,2. 3,S~

tetrahydroxybenzene (Brune and schink. 1990) (Fig. l.IS).

A~ species PelS, ~hich is a rumen strain. has

been shown to possess a phloroglucinol reductase with a

molecular weight of 130,000 (Patel n SU., 1981). However, the

phloroglucinol from Enbi'ctprium oxJdoreducens had a moleculllr

weight of 78,000 (Haddock and Ferry, 1989).

I

"".J jCO'.

Fiq. 1.15. Proposed phloroglucinol pathway tor acetate

f:>rmation from trihydroxybenzenoids in ~

acidigallici. (Reproduced with permission from ASH, Drune and

Schink, 1990).
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Numerous other rumen strains, belonging to the genera

Streptococcus and~ have been shown to anaerobically

degrade phloroglucinol (Tsai and Jones, 1975). Anaerobic

photometabolism of phloroglucinol by the purple non-sulphur

bacterium RhodopseudoIDonas~ also occurs (Evans

1977; Whittle fi .5Ll., 1976). It appears that the

phloroglucinol is reduced to the dihydrophlorglucinol, in

which the subsequent ring cleavage reaction involves

hydratation and oxidation to 2-oxo-4-hydroxyadipate. This

organism was also shown to degrade diverse aromatic compounds

by both aerobic and anaerobic metabolism, although the authors

do not mention phloroglucinol as a possible metabolite

(Harwood and Gibson, 1988). Similiar pathways for the

degradation of dihydroxybenzoates through resorcinol, its

reduced product 1,3-cyclohexanediol, and ring cleavage

metabolite 5~oxocaproic acid have been suggested (Kluge g,t

.a.l .• 1990).

1.3.3 Pha1;)Daceut.ic Effects of Phloroglucinol Derivatives

phloroglucinol and its derivatives have been reported to

have both antiviral and antimicrobial activity. Tada :..t. U.

(1990), have reported the isolation and structure of

antimicrobial compounds chines!n I and chinesin II from

flowers of~ chinense L. Numerous antimicrobial

acylphloroglucinola such as aspidin, u11ginos1n, humulon. and
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lupuion have also been isolate from higher plants (Tada II

,al" 1990). A 2, 4-diisobutyrylphloroglucinol was shown to

inhibit numerous pathological bacteria such as StaphlylQcOccus

~. Staphylococcus ~. Mycobacterium ~'

~~, Micrococcus ~, and yeast such as

~~. This compound was also shown to be active

against vesicular stomatitis virus (VSV) , and herpes simplex

virus type I (HSV-I), but was not active against polio virus

type I (Tada gl al.., 1990).

Chan ~ li. (1989), isolated novel phloroglucinol

derivatives from the plant ~ sessiliflora with

inhibitory activity against HSV-I and HSV-II in Yi-UQ. The

active component diacylphloroglucinol named

sessiliflorene, which lost inhibitory activity during i..n~

studies. Phloroglucinol derivatives from~~

were shown to have strong activity against HSV·I during in

Y.i.U:2 studies (Arisawa ~.ill., 1990). Ishiguro ~ ll. (1990),

isolated a new antibiotic sarothralin from~~

Thunb. whi:h was shown to contain phloroglucinol and fulicinic

acid moieties.

Three new euglobals isolated from juvenile leaves of

~~ were shown to inhibit the activation of

Epstein-Barr virus (Takasaki & i!J.., 1990). The structure of

the euglobals was based on an acylphlorglucinol·monoterpene

structure. Inhibitory effects of a series of 3-nitro·2,4,6-
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trihydroxybenzamides on the Epstein-Barr virus early antigen

induction suggests that these compounds might be novel

inhibitors of tumor production (Honda ~ 21., 1991).

Chan and Westley (1991), have recently shown that

phloroglucinol and its derivatives either synthesized or

isolated from~ sessiliflora may be useful in the

treatment of human immunodeficiency virus (HIV) . The

phloroglucinol derivatives were shown to have the core

phlorglucinol trihydroxylic structure, with either an increase

in protons in the hydroxyl group or in the nonsubstituted

positions. Nakane II U. (~991), suggest that the

phloroglucinol derivatives mallol:ochromene and mallotojaponin

inhibit reverse transcriptaae in HIV, The mode of inhibition

was competitive and non-competitive with the template primer

and the triphosphate substrate dTTP respectively.

Arisawa tt.e.l. (1990). showed that two phloroglucinol

derivatives isomallotolerin and isomallotochromanol were

cytotoxic. Ariaawa II li. (1990), have shown that a variety of

phloroglucinol derivatives, isolated from the pericarps of

~~ were cytotoxic against human larynx, lung,

and carcinoma cells. They were also toxic towards mouse

melanoma, and leukaemia cells.
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1.4 Aromatic:: Degradation and Transformation by the Genue

RhodOCOCCUB •

The genus~ has a nutritional spectrum and

catabolic flexibility that is as diverse as the pseudomonads.

The nocardioforrns which include ~, assimilate

aromatic compounds by progressive hydroxylation of the

aromatic ring followed by cleavage by specific dioxygenases to

central metabolic intermediates (CaL.l, 1988). Sometimes they

resemble eukaryotes in the ability to oxidize by epoxidation,

however they do not conjugate metabolites.

Hensel and Stra',lbe (1983) have isolated a Rhgdgcoccus sp.

PI tha'l;" utilizes phenol as a carbon and energy source via the

j3-ketoadipate pathway. Straube (1987) characterized the phenol

hydroxylase which was found to have a pH optimum of 7. 9 and

temperature optimum of 20°C. This enzyme may hydroxylate

numerous aromatics. The metabolism of lignin-related compounds

and the bioconversion of anison (4,4-dimethoxybenzoin) was

shown for a~~ (Andreoni tt ll., ~991).

In the presence of the yeast extract the (R, 5) -anison was

converted into the pure (lR,2R) -1,2-bis(4-

methoxyphenyl)ethane-l,2-diol. The presence of this highly

steroselective dehydrogenase may have industrial applications

in that pure compounds may be obtained from racemic mixtures.

The deg::-adation of non-aromatics such as dioxane,

tetrahydrofuran, and numerous other cyclic ethers by
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~ species suggest that the catabolic pathway

consists of an initial 2-hydroxylation followed by several

oxidations (Bernhardt and Diekmann, 1991). Dickel and

Knackmuss (1991) have shown a Rhodococcus sp. QT-!, isolated

from contamination resulting from explosives production could

utilize both 1,3-dinitrobenzene (1,3-DNB) and 4-nitrocatechol

(4-NC) as a source of nitrogen. They state that 1,3-DNB is

hydroxylated to the dihydrodiol by an initial 3,4­

dioxygenation, followed by the spontaneous 1098 of nitrite by

rearomatization. The 4-NC may lose another nitrate via an

oxygenolytic reaction to form 1,2,4 -trihydroxybenzene which

may be subject to dioxygenase cleavage (Chapman and Ribbons,

1976 a; Chapman and Ribbons, 1976, b). Grund II al. (1992),

suggests that during naphthalene degradation in Rhodococcus

sp. strain B4, salicylate and gentisate are produced.

The degradation of 2-methylaniline and its chlorinated

isomerEJ by~ rhodochrous strain CTM was co­

metabolized in the presence of ethanol (Fuchs II 21., 1991).

The degr~dation of 2-methylaniline proceeds through a

dihydrodiol with subsequent elimination of ammonia to produce

2-methylcatechol. Ortho- and metawcleavage of 2-methylcatechal

produces 2-methylmuconic acid and 2-hydroxy-6-oxoheptadienoic

acid, respectJ.vely. The 3-chloro-2-methylaniline and 4-chloro­

2-methylaniline proceeded through a similiar pathway except

that the meta-cleavage of 4-chloro-3-methylcatechol produced
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a dead end metabolite 2-hydroxy-S-chloro-6·oxoheptadieno";'c

acid. Ortha-cleavage of 4 -chloro- 3 -methylcatechol and 5-

chloro-)-methylcatechol produced 3- or ';-chloro-2-

methylmuconic acid with subsequent elimination of chlorine

(Fuchs .c.t. S!.l., 1991).

Janke ~ e.1. (1988) I suggested that the degradation of

various monochlorinated aromatics in pre-adapted cells of

different aromatic utilizing Rhodococcus species occurs in the

presence of glucose. Ihn ~ 21. (1989), and Janke J:..t. dl.

(1989), showed that non-growth substrates such as 2-

chloroaniline, 3-chloroaniline, 3 -chlorophenol, 4-

chlorophenol, and ] -chlorobenzoic acid proceeded through the

3- or 4-chlorocatechol with the pr<;lduction of dead end

products such 2-chloro-cis, cis-muconate or cis·4-

carboxymethylene - but· 2 - en-4 -olide.

Engresser n.e.l. (1988), state that 3-trifluoromethyl-

benzoate may be co-met'lbolized by Rhodococcus

rubrgpertinctus N657. Other halogenated and methylaeed 1,2­

dihydroxy-..2-hydrcbenzoates (DHB) exhibited activity as

measured by Michaelis constants (K",) and relative maximum

turnover velocities (V_.onl ) of a ORB-dehydrogenase. The K., and

v...._.....1 for catechol-l,2-dioxygenase also showed similiar

activity, however the 3-trifluoromethyl- (TFM) -catechol had a

Kj of 0.02 pM , even though 3·TFM-catechol bound tightly to

the enzyme. It apparently did not cleave the 3-TFM-catechol.
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Pentachlorophenol (pcp) and other polychlorinated phenols

utilized by the genus Rhodococcys. Rhodococcus

chlorophengl ieus PCP-l dechlorinates PCP through hydroxylation

and reductive dechlorination (Haggblom tt ll-. 1989;

Apajalahti and salkinoja-Salonen, 1987). Haggblom i:..t. .ill.

(1988), also state that polychlorinated phenols may be

dechlorinated by the RhodgcQCCUB species CP-2 and Rhodococcus

species CG-l through hydroxylation and reductive

dechlorination.

RhodQcoccyS species which are widely distributed

throughout nature may playa role not only in biodegradation

of chlorophenols but also biotransformation. Transformations

of chlorinated-phenolic compounds through O-methylation has

been shown for the genus~. Allard ~ u. (l985)

showed that a Rhodococcus species methylated 3,4,5­

trichloroguaiacol (3,4, 5-TCGl and 4,5, 6-trichloroguaiacol

(4,5,6-TCG) to 3,4,5-trlchloroveratrole (3,4,5-TCV) under low

substrate conditions. Pot high substrate conditions 3,4,5-TCG

was transformed to 3,4,5-trichloro-2,6-dimethoxyphenol and

sUbsequently methylated to 1,2,3 -trichloro-4, 5,6-

trimethoxybenzene. Rhodococcus chloropbef+91icus PCP-l

selectively methylate the hydroxyl group flanked by two

chlorine substituents (Haggblom II y., 1988l. The molecules

2,3, S, 6-tetrachlorohydroquinone, 2, 3, 5-trichlorohydroquinone,

and 3, 5-dichlorohydroquinone l,~re methylated to 2,3,5.6-
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tetrachloro-4-methoxyphenol, 2,3, 5-trichloro-4 -methoxypheno!,

and 3, 5~dichloro-4-methoxyphenol respectively. It appears that

the methyl donor is probably S-adenosylmethiolline with o~

methylation being constitutively expressed (Haggblom Jll. .el.,

1988; Neilson ~ 21., 1988). Haggblom tl ll. (l989) found

several strains of the genus~ which first

hydroxylated trichlorophenols to chlorocatechols, which were

subsequently methylated to chloroquaiacols and

chloroveratroles.

The reaction rates of these transformations

significantly slower than the degradation rates, and it has

!::>een suggested that the methylation reaction could act as a

detoxification mechanism (Haggblom ~ sl., 1988; Allard tl

gl., 1985). Perhaps methylation in the genus Rhodococcus is

the start of a rudimentary conjugation process so often found

in eukaryotic organisms.
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1.5 Research Objectives

Research on PG metabolism was initiated to elucidate if

PG could be metabolized by a novel mechanism. Phloroglucinol

seems to be metabolized predominantly by the reductive pathway

in which dihydrophloroglucinol and resorcinol (l, 3­

dihydroxybenzene) are produced (Blackwood II li., 1970). The

conversion of dihydrophloroglucinol to reso;.cinol by the

spontaneous loss of water seemed unrealistic because the

chemical conversion rate is slow to account for the

efficient utilization of PG. Hydroxylation of the

phloroglucinol would produce a 1,2.3, S-tetrahydroxybenzene

that may be cleaved by ortho- or meta-cleavage enzymes. The

reductive pathway may therefore be eliminated saving the

mic1'.::organism the energy expense of producing a phloroglucinol

reductase and resorcinol hydroxylase.

The objects of my research were: (1) to characterize the

unknown strain and identify it t.o the genus level; (2) to

investigate the metabolic pathway for the degradation of

phlorogluc_inol and compare it to other pUblished pathways;

0) to examine any additional pathways utilized by this

isolate that may be associated with the degradation of

phloroglucinol; (4) to attempt to isolate and characterize the

first enzyme in the phloroglucinol degradation pathway.
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Chapter II: Taxonomic Characteristics of the BPG-8 Isolate a8

a Rhodococcus species and its Utilization of Various

Aromatics.

2.1 Introduction

Similiarities between Brevibacterium, Arthrobacter, and

Bhodococcus make their identification extremely difficult,

Inconsistencies exist in the identification scheme for

coryneform and nocardioform bacteria (Seiler, 19BJ; Goodfellow

and E-irollz, 1982); however various studies have been

undertaken to clarify this problem (Goodfellow ~ .5!.l., 1982;

Suzuki and Komagata, 1983).

The taxonomic characterizat ion of the genus~

also has a long history of a confused and redefined pedigree

(GoodfelloW and C!-"oss, 1984). Previous studies characterized

the strain as a~ sp. BPG-8 (Acharya, 1966). The

Rhodgcocclls genus encompasses a wide variety of morphological

traits, but the defining principles are based on the cell

envelope c.omposition (Goodfellow ~ U., 1982).~

spp. have no distinct morphological features other than the

ability of many st:rains to form hyphae and fragment into rods

and cocci (Goodfellow, 1966). The timing of the fragmentation

process is influenced by environmental parameters that affect

the growth rate. Characterization by genetic studies has been

hindered by the slow growth of the genus~ and their
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tendency to clump and form coenocytic structures (Goodfellow,

1986) .

The catabolil.: diversity of the~ genus includes

compounds such as alicyclics. aromatics, polyaromaticB,

pryridines, steroids, and numerous carbohydrates (Goodfellow,

1986). BhgdgcQCCIJS spp. also has the ability to transform

numerous xenobiotics, pesticides, and detergents (Goodfellow,

1986). These abilities may be useful in the characterization

of the isolate.

In this chapter I describe a Rhodococcus BPG-6 species

isolated from soil that is able to mineralize numerous

aromatics. Emphasis is on phloroglucinol (PG; 1,3,5·

trihydroxybenzene) metabolism. Detailed aspp.cts of PG

metabolism by this species have not been studied previously.

This chapter describes the taxonomic characterization of the

strain and initial studies on its metabolic characteristics.

These studies were pertinent before detailed metabolic studies

could be implemented.

2.2 Materials and Methods

2.2.1 Sourctl of organ1sm. A loop of soil suspension in

physiological saline was streaked on agar plates containing

basal salts. PG crystals placed in the lid of the inverted

petri dish formed the sale source of carbon and energy. Pure

cuI tures were obtained by sUbculturing isolated colonies on
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the same medium lOr. Patel, unpublished work). Pure colonies

were then transferred to trypticase soy agar (TSA) plates and

slants for storage at 4oC.

2.2.2 Growth condit-lons. The basal salt medium contained

(g/ll: (NH4 1,SO" 0.5; MgS04 .7 H,O, 0.1; KH1 PO•• 6.8; 0.1 mIll

trace elements according to (Bushwell and Clark:, 19761; and

0.001% yeast extract. The pH was adjusted with 1 N NaOH to

the required values. The concentration of the PG utilized for

growth rang!!d between 0-16 roM while the other aromatics were

tested at 8 mM. The inoculum was prepared by growing the

bacterium in basal salts medium containing 8.0 mM PG for 18

hours. CUlture flasks (250 mIl containing so ml of basal salt

medium was inoculated to give an initial optical density

reading of 0.2 at 600nm. The bacterium were grown in 250 ml

dark brown coloured flasks to minimize photodegradation of the

PG. Controls for the photodegradation were similar

experimental treatments except the inoculum consisted of

bacterial _cells boiled for 5 min.

Colony characteristics and physiological tests, which

included acid production and carbohydrate utilization, were

performed according to 0' Brien and colwell (1967), and Smibert

and Krieg (1981). Sensitivity to antibiotics was analyzed

using antibiotic discs (Oxoid Ltd., Basingstoke, Hampshire,

England) placed on nutrient agar plates. The follo....ing
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antibiotics were employed: penicillin G, 10 U; streptomycin,

10 1191 chloramphenicol, 30 /l91 erythromycin, 5 Jig (LD), 15 jJ.9

(HD); tetracycline, 30 p.g; rifampin, 5 U; methicillin,S U;

and bactracin, 10 U.

2.2.3 Preparatjon of cell free extracts. Two grams of

pelleted and washed cells (3X) were suspended in 3 ml of 20 mM

phosphate buffer containing 1 mM eOTA, 1 mM 2-mercaptoethanol,

and 15\ glycerol. The suspension was ice cooled and sonicated

{Braunsonic 2000, Canlabl at maximum power for 3 minutes with

gaps of 30 seconds to cool the probe and samples. The

disrupted cells were then centrifuged (20,000 x g, 30 minI in

a Sorvall RC-3 centrifuge. The supernatant formed the source

of cell-free extract and was free of any cells as determined

by light microscopy and plating 0.1 ml of extract onto TSA

plates.

2.2.4 BJ:tzyme assay. PO hydroxylase was assayed according to

the methoQ. of Patel !It.li., (1981) under aerobic conditions.

One enzyme unit was defined as the amount of enzyme required

to oxidize 1 p.mole of NAD(P)H per min. Specific activity was

defined as enzyme units per mg protein.

2.2.5 Analytical methods. Protein in cell extracts was

determined by the methods of Lowry II g. (1951) or Bradford
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(1976). PG concentrations were determined by the colorimetric

method of Jayasankar and Bhat (1966), The absorbance of the

solution containing PG was read at 534 om and compared against

a standard curve of PG. Microscopic investigation, which

included light, scanning electron microscopy 158M), and

transmission electron microscopy (TEM) of the growth cycle of

the bacterium was carried out (Krulwich and Pate, 1971;

Krulwich U M., 1967). Bacterial cells were fixed for 1 hour

at 4°C in Karnovsky's fixative in 0.1 M Sorensen's phosphate

buffer, washed and post-fixed in osmium tetroxide in

Sorenson's buffer for 1 hour at 4°C. and dehydrated through a

graded series of ethanol. TEM preparations were embedded in

Spurr's resin, and the thin sections were stained with uranyl

acetate and lead citrate and examined with a zeiss EM 9A TEM.

SEM samples were grown on glass coverslips, washed in

phosphate buffer (pH 7.0, 50 mM), and critical point dried

from liquid carbon dioxide in a Polaron E 3000 apparatus. The

coverslips were attached to aluminum stubs, gold coated, and

examined \dth a Hitachi 8570 SEM at an accelerating voltage of

20 KV.

Cell wall analysis for sugars, amino sugars, and amino

acids were prepared according to the method of Bousefield ~

ill. (l9B5); with the exception that sugars that were

acetylated were detected by gas chromatography and mass

spectrophotometry (GC-MS). Amino sugars and amino acids were
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detected using a Beckman amino acid analyzer. A comparison of

the fatty acid profile of the unknown to those in a database

which included species of Corynebacterium,

Mycobacterium, ~, Caseobacter, Breviba~teri\lm,

Arthrobacter, and RbodoCQCCUS was performed using gas

chromatography with a flame ionization detector I autosampler,

integrator, and a computer database. This was done by

Microcheck Inc. Northfield, Vermont, USA.

2.3 Results

2.3.1 Bacterial isolate. On trypticase soy agar the isolate

produced circular, raised, white mucoid opaque colonies that

contained Gram positive, nonmotile, strict aerobic bacteria.

The bacterium was catalase positive and oxidase negative. Both

the strain and~ erythrooolis ATCC #4277 were

susceptible to all the antibiotics except methicillin. When

the unknown was compared with a standard R..:.. erythropolis there

was lOot homology for acid production and growth on the

numerous SUlbstrates routinely examined for the identification

of an organism (Table 2.1 and Table 2.2).

The organism had a distinctive rod and coccus growth

cycle that was dependent on the nutrient status of the

organism. coccal growth occurred during nutrient limiting

conditions while rod growth was associated with nutrient rich

conditions (Fig. 2.1, Fig. 2.2, and Fig. 2.3). To
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different.iate the~ sp. BPG-8 from other genera

eXhibiting similar characteristics, a cell wall analysis

showed that the ~I.i. sp. BPG-B had meso-diamino-pimelic

acid and arabinose in the cell wall (Table 2.3). Comparison

between the fatty acid profile with the best match from the

7000 computer profiles suggested that the unknown was probably

B... erythropoUs (Table 2.4). No match could be found for any

species of Corynebacterium, Mycobacterium, ~.

Caseobacto<>r, Breyibacterium, and Arthrobacter

2.3.2 Growth conditione. The optimal conditions for growth of

the Rhgdgcoccus sp. BPG-B in the basal salt medium were 25oC,

pH 5.0-8.0, and B.O mM PG (Fig. 2.4). Darkened brown flasks

helped to minimize the PG photodegradation and no growth

occurred when the substrate was eliminated from the media. PG

was almost completely utilized when the increasing biomass of

the isolate reached approximately 15 JJ.g protein/ml (Fig. 2.5).

Values were corrected for PG photo-oxidation (maximum 1.5 roM) •

2.3.3 Growth on different substrates. The strain could also

utilize various other aromatic compounds when grown at a

concentration of 8.0 mM (Table 2.5). Maximum biomass occurred

with 1,2, 4-trihydroxybenzene and protocatechuate (], 4­

dihydroxybenzoic acid), while numt.rous other aromatics failed

to promote growth of the strain or caused inhibition.
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Experiments were performed to find out if degradation of

PG was inducible in the isolate. Trypticase soy broth or Pa

induced cells were washed and later suspended in a medium

containing PG. Only the PG induced cells had increased biomass

yields suggesting that induction may be important to PG

utilization. PG hydroxylase was detected in the PG grown cell

extract by the method of Patel tt li. (1981). When the cells

were grown on substrates such as glucose, succinate, and

pyruvate no induction of PG hydroxylase was detected by the

enzymatic assay (Table 2.6) .
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Table 2.1. Compa.rison of acid production by the isolate

RhodQcocSiuS sp. BPG-B and R.... erythropolis (REl ATCC #4277.

Acid Production

Substrate BPG-8 'E Substrate sPG-a RE

o-glucose maltose

glycerol adonitol

sorbitol arabinose

trehalose cellibiose

ribose galactose

fructose glycogen

inositol inulin

saccharose melezitose

D-arabitol rhammose

esculin xylose

mannitol erythritol

starch gluconate

lactose salicin

melibiose D-raffinose

L-sorbose D-mannose

substrate .concentration a mM; pH 7.0; 25°C; 24 hours growth;

N=3. + : acid production; - : no acid production.
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Table 2.2. comparison of substrate utilization by the isolate

Rhodocpcclls sp. BPG-a and B.... erythropolie (RE) ATCC #4277.

Substrate Utilization

Substrate BPG-a RE Substrate BPG-B RE

D-glucose lactose

glycerol glycine

sorbitol malonate

trehalose mannitol

GLAmine rhammose

D-salicin benzoate

inositol citrate

D-alanine melezitose

L-asparagine testost.

L-PHI!: ethanol

L-proline

L-arabinose lactate

galactose acetate

L-serine pyruvate

gluconate fumurate

GLAmine, _ glucosamine i L-PHE, phenylalanine; testost.

testosterone; substrate concentration 8 mM; pH 7.0; 25°C; 24

hours growth; N-3. acid production; - no acid

production.
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Table 2.3. Qualitative identification of soil isolates using

cell wall analysis for the determination of the meso diamino­

pimelic acid and arabinose.

Isolates Rod/Cocci Meso-diamino Arabinose

Soil iaolate

RhgdgcoCCUB

eryt.hropolis

Rrevibacterium

cycle pimelic acid present

nd

~

Arthrobacter

g!~

nd nd

+, present; nd, not detected. See Materials and Methods for

details.
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Table 2.4. Fatty acid profile of the Rhodococcus sp. BPG-8

with the best match R. erythropplis as determined from a

computer profile of 7000 isolates.

Fatty acid

14 :0

15:0

16:1

16 :0

17:1 180-9

17:1 B

17 :0

18: 1 i80 F

18:1 cis-9

18 :0

19:0

20: 0

BPo-a soil is?late

Mean %

25

1

25

1

R. erythropolis

isolates

Mean \" (range)

6 (5·8)

(3-G)

(3-4)

22 (19-25)

1 (1-2)

3 (2-5)

1 (1-2)

:2 (1-3)

19 (15-2':;)

1 {1-21

4 (0-8)

3 (0-5)

* iso-9,iso-F, B. cis-9 are derivatives of the specific fatty

acid type. See Methods and Materials for details.
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Table 2.S. Growth of Rhodocgccus sp. BPG-8 on various aromatic

substrates as determined by biomass yield.

Biomass yield (protein, ~g/ml)

Substrate Sub. .... Suce.

pyrogallol 15 ± 0.5 NT

1,3,5 - trichlorbenzene , ± 3.0 20 , 2.'

1,4-dichlorobenzene 5, 3.0 20 , 3.5

Phloroglucinol 18 ± 0.8 NT

Resorcinol 6 ± 0.3 NT

1,2,4 -trihydroxybenzene 21 , 2.0 NT

Protocatechuate 25 , 1.6 NT

Acetylsalicylate 6 , 2.5 21 , 1.5

3 -HydroxyBenzoate 25 ± 3.0 NT

Quinate 2' :t 2.5 NT

Or.cinol , ± 2.0 NT

Naphthalene 6 t 2.5 23 , 1.7

2,4 -dichlorophenoxyacetate , , 1.5 2 , ..,
Venezuelan crude oil 30 ± 4.5 NT

Para -aminobenzoic tlcid , , 1.0 20 , 2.7

2,4 -dichloronaphthalene 0 0

2.4 -dichlorophenol 0

4 -chlororesorcinol

Reaction conditions: 8.0 mM substrate (sub.) supplemented with

6.0 mM succinate (suce.), 2S G C, pH 7.0. Mean ± st. dev., N·3.

NT: not tested.
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Table 2.6. Inducibility of Phloroglucinol hydroxylase in the

soil isolate~ sp. BPG-8.

Growth Substrate

PG

PG + succinate

PG + pyruvate

PO + glucose

Succinate

Pyruvate

Glucose

specific Activity

0.052 ± 0.05

0.048 ± 0.03

0.056 t 0.05

0.047 t 0.06

0.0

0.0

0.0

Specific acL.vity: ~moles of NAnH oxidized/min/mg protein.

Growth conditions: substrate concentration 8 mM, pH 7.0. 25°C,

Mean ± st. dev" N=3.
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(el with complete utilization of the peptone.
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:piq. 2.2. Scanning electron micrographs (SEM) of the

morphological types of the RhodococcYS sp. BPG-S isolate.

Micrographs A and B illustrate the coccal and rod shape under

nutrient poor and rich conditions. See Materials and Methods

for details concerning preparation.



A

Fig. 2.3. Transmission electron micrographs (TEM) of the morphological types of the

Rhodococcus sp. BPG-8. Micrographs A, B, and C illustrate the rod shape, coccal shape

and the transition state between rod and coccus, respectively. See Materials and Methods

for details concerning preparation.

~
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2.4 Dil!leu.l!lion

The distinctive rod and coccus cycle suggested that the

isolate could belong to one of a limited number of genera.

The identification of meso-diaminopimelic acid and arabinose

in the cell wall, along with the fatty acid comparison

profile, suggest that the unknown is a~ species.

The loot phenotypic homology between control R... erythrgoolis

ATCC #4277 and the unkn' wn for both acid production and growth

with the pertinent carbon sources showed that the unknown was

probably fL. erythrgpol i B.

Numerical analysis of the accumulated data seemed to

confirm the classical chemical analysis t.hat suggested that.

the isolate belongs to the genua RhodQCoccus (Whalen, 1991).

In the simple maeehing coefficient. and Jaccard coefficient.

analysis the isolate clustered with &... ;rvthropolis at 90," and

84," similiarity rea~ctively (Whalen, 1991).

The isolate was shown to degrade numerous aromatic

compounds which is characteristic of some~ species

(Janke ~~., 1988: Nagasawa ~ .i.l.., 1990). The ability of

the genus~ to utilize numerous aromatic compounds,

notably PG has not been thoroughly studied. Gram positive

cells utilizing PG, seem to be limited to a small number of

organisms which include Mycgbacter1 pm species (Brune and

Schink, 1990), Streptgcoccus J22Yi.A,~ (Taal and

Jones, 1975), and~ addigallici {Sarnain II il.,
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1986) . Physical parameters such as temperature, pH, and

substrate concentration seemed to have a significant effect on

the PG metabolism by the RhodococcyS sp. BPG~8 isolate.

Growth was optimal at 8.0 roM PG, however higher concentrations

were increasingly toxic to the o;:ganism, while lower

concentrations decreased growth by limiting the carbon source.

RhodococcYS sp. BPG·8 had a wide pH range between 5-8 and a

temperature optimum of 250C. The decrease in growth at higher

pH's is probably caused by suaceptibility of the pa molecule

to alkaline conditions since some yellowing of' the media

occurred. This color change was minimized by excluding

manganese (which catalyses PG oxidation) from the trace

e!emsilt solution. The temperature optimum probably reflects

the enzyme stability of the degradating enzymes in the

metabolic pathway of PG degradat.ion. However, t.he rumen

st.rain CoprococcuB sp. is known t.o have a temperature optimum

of 300C (Patel tt y., 1981). while the enzyme PG reductase

from Eubacterium oxidoreducens G-41 has a temperature opt.imum

of 400C (Haddock and Ferry, 1989).

PG was shown to disappear as growth increased. The

growth on PG seemed to be inducible since trypticase soy broth

grown cells, and not PG grown cells, showed lower growth

values. This was verified by using a cell-free extract of the

RhodocgccuB sp. BPG-8 strain grown on various substrates and

assaying for PG hydroxylase. The organism was able to grow on
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a number of other aromatic substrates when induced on PG. This

showed that the enzymes pathways associated with their

degradation may be related. However numerous substrates,

notably catechol which is a common intermediate of numerous

pathways of aromatic metabolism, did not support growth. This

could possibly be caused by an inefficient uptake system

(Groenewegen tl d., 1990; Thayer and Wheelis, 1982) or from

a lack of an adequate enzyme system. Other possible

intermediates could include: 1,2.4 - trihydroxybenzene, 1,2,3­

trihydroxybenzene, or even a 1,2,3, 5-tetrahydroxybenzene

(1,2,3, 5-THB) .

The metabolic pathway of PG biodegradation by this strain

will be further investigated in later chapters. Molecular

mechanisms involved in this process will be compared to known

aerobic and anaerobic mechanisms of PG utilization.
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Char~er III:: Metabolic Pathway for Phloroglucinol Degradation

and Resorcinol Biotransformation by Rhodococcus sp. BPG-B.

3.1 Introduc:t:!..,n

Phloroglucinol (PG) is a constituent of flavonoids such

as anthocyanlns, catechins, quercetin, and chalcones (Rao II

ill.. 1991; Robinson, 1962). It is released from these

compounds by fungi and bacteria that contain adequate

enzymat.i.r: systems for cleaving PO from these complex

structures.

The degradation of PG may occur aerobically and

anaerobically in prokaryotes, as well as in eukaryotes.

Bacteria such as~ (Hang, 1967), Arthrobacter

(Mullakhanhai and Bhatt, 1966), Flavgbacterium (Bennett! and

Schlesser, ~950) and Mycobacterium (Bernheim, 1956) have been

shown to aerobically utilize PG. It has also been reported

that a marine alga may degrade PG (Craigie II sl.., 1965) as

well as fungi such as~ simpliciasimum (Patel II

gl., 1990~, ~~ (walker and Taylor, 1983), and

yeast such as Trichosporon~ (Neujahr and Varga, 1970) .

Anaerobic degradation of PG can occur in photosynthetic

organisms such as RhodppsE!lIdompnu gelantinosa (Evana, 1977)

as well as anaerobes such as Streptgcoccus t!2Y.i.!i (Tsai and

Jones, 1975) J Butyrivibrip species (Kriahllamurthy ~ gl.,

1970), Eubacterium oxidgreducens (Krumholtz II Sll., 1987),
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~ acidigal lid (Brune and schink, 1990; Samain tl

ll .. 1986), and~ species (Patel U g., 1981).

This chapter reports a~ sp. EPG-B isolate that

is able to lltilize PG as a source of carbon and energy.

Resorcinol also seems to be transformed by the PG grown cells.

This is believed to be the first reported case of PG

degradation by a~ species, and a novel tentative

pathway for the degradation of PG and the biotransformation of

resorcinol is described.

3.2 Materials and Methods

3.2.1 Source of organism. The organism tentatively named

~ gpo BPG-a was isolated by the procedure outlined

in Chapter 2. PG induced cultures were obtained by

subculturing isolated colonies on both liquid and solid

minimal salts medium supplemented with PG. Pure PG induced

cultures were lyophilized in 20 % glycerol and stored at

-20°C.

3.2.2 Growth conditionu. The minimal salt medium contained

(giL) :(NH4)~SU4t 1.0; MgS04.7 H20, 0.5; KH2P04, 6.a, 0.1 mIlL

trace elements (Bushwell and Clark 1976), and 0.001% yeast

extract. The Rhodococcus sp. BPG-8 isolate was grown under the

optimal conditions of 8 mM PG, 25°C, and pH 7.0 (Armstrong and

Patel, 1992). The inoculum was prepared by growing and
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subculturing RhodoCOCCIlS sp. BPG-8 cells in PG and suspending

them into 4. X 250 ml of minimal salt media to an optical

density of 0.2 at 600 nm. The bacterium was grown in one litre

dark brown flasks to an optical density of approximately 0.1

at 600 om and aseptically transferred to 18 liters of sterile

minimal salts media in a fe".:menter. The fermenter was sparged

with sterile air (200 litreel hour) during the growth process.

3.2" 3 preparation of cell free extracts. Two grams of washed

pelleted cells were resuspended in 3 ml of 20 mM phosphate

buffer containing 1 mM EDTA tethylenediaminetetracctic acidl,

1 mM 2-mercaptoethanol, and 1St glycerol. The suspension waa

ice cooled and sonicated (Braunsonic 2000, Canlabl at maximum

power {or 3 minutes with gaps of 30 seconds to cool the probe.

The cells were subsequently broken by a French pressure cell

(SLM Aminco Inc.) at 846 kg/cm1
• The disrupted cells were then

centrifuged (20, 000 x g, 30 min) in a Sorvall RC-S centrifuge

(Dupont instruments). The supernatant formed the source of

cell-free _extract and was free of any viable cells as

determined by light micros.::opy and by plating a loopful onto

trypticase soy agar plates (TSA).

3.2.4 Analytiea~ method... PG hydroxylase and resorcinol

hydroxylase were assayed according to the methods of Patel .w;.

ll', (1981), and Neujahr and Gaal, (1975). A total of 3 ml
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reaction mixture contained {in ~molesl: potassium phosphate

buffez', pH 7.2, 270; NAD(P)H, 0.6; PG, l.0; and dilute cell-

free extract, 0.2 ml or partially purified extract 0.1 ml. The

reaction was initiated by adding PG to the reaction mixture

while the blank contained no substrate. Appropriate controls

were included to check for endogenous oxidation of NAD (p) H.

Disappearance of NADIP}H at 340 om and 25°C was measured using

a Shimadzu UV-260 Recording Spectrophotometer. One enzyme unit

was defined as the amount of enzyme required to oxidize 1

IJrnole of NAD(P)H per min. Specific activity was defined as

enzyme units per mg protein. Protein was measured according to

the method of Bradford (1976).

The l,2,3,5-tetrahydroxybenzene (l,2,3,S-THB) and 1,2,4­

trihydroxybenzene dioxygenase activities were illustrated

spectroscopically by the disappearance of their X-max at 283

and 290 nm, respectively. Appropriate controls were performed

with substrate alone and boiled enzyme extract with the assay

system consisting of a total of 3 ml containing (in pmoles) :

potassium.phosphate buffer, (pH 7.0),270; 1,2,3,S-THB, 0.02;

1,2,4-trihydroxybenzene, 0.1; and dilute cell-free extract,

0.2 mI.

The acetopyruvate hydrolysis (total volume 3 ml) reaction

mixture contained (in pmoles) : potassium p~osphate buffer, pH

(7.0),270; acetopyruvate, 1.0; and cell-free extract, 0.2 mi

(1.43 mg/ml protein). The reaction was initiated by adding
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acetopyruvate to t.he reaction mixture, while the blank

contained no substrate. Utilization of substrate was shown by

the decrease in absorbance at 287 nm (Chapman and Ribbons,

1976 a}

Oxygen consumption by cell-h'ee extracts and whole cells

in the presence of different substrates was determined using

a Clark oxygen electrode (Patel tl U., 1990). Formate

production was measured by the method of Barker and Somers,

(1966); while pyruvate measured its 2,4-

dinitrophenylhydrazone derivative (Friedemann and Haugen,

1943). Acetic acid was measured enzymatically with the

Boehringer Mannheim kit (Cat.. No. 148 261).

3.2.5 Isolation of metabolic intermediates. Metabolite

intermediates (51) were obtained by growing BPG-B in B mM PG

and by centrifuging the cells (20,000 x g. 30 min) in a

Sorvall RC-S centrifuge. The supernatant was acidified to pH

2.0 with concentrated Hcl. The clear acidified liquid was

evapor~.ted- to 100 ml and extracted in four volumes of ethyl

acetate. The organic phase was evaporated to dryness and

acetylated in acetic anhydride and pyridine at room

temperature for 12 hours (Hellou ~ 5!l., 1969; Hellou and

Payne, 1967). The acetylated products were compared against

the authentic acety1ated standards and analyzed by GC-MS. Ge­

MS was performed using a Hewlett-Packard mass selective
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detector, series 5970, a Hewlett-Packard 5890 gas·liquid

chromatograph, and a Hewlett-Packard Series 300 data system,

using a CP-Sil seB column (25 m X 0.2 mm Ld.) (Hellou ~ ll.,

19891. A temperature program, starting at lOQ"e for 1 min and

then increasing to 2SQ"C at SOC/min, was employed.

Induced cells (50 mg dry wt.) were uniformly suspended

into 10 mt of KH~P04 buffer (50 mM, pH 7.0, 2S"C) and

inoculated with PG. and resorcinol at a concentration of 40 roM

and allowed to react for approximately 20 min, The cells were

removed by centrifugation (20,000 x g, 30 min) using a Sorvall

RC-5 cent1' tfuge and the supernatant acidified to pH 2. a with

concentrated Hel. The clear liquid was subsequently extracted

with ethyl acetate and dissolved into 0.5 ml of methanol. The

methanol solution (50 Ill) was spotted on Kodak chromatogram

sheets (13181 silica gel with fluorescent indicator, Eastman

Kodak Co. Rochester N.Y. 14650) and developed in a benzene:

methanol: acetate (45:8:4) solvent system (Randerath, 1963).

The spots were visualized under ultraviolet light and compared

against aythentic standards. The spots were then gently

scraped off the chromatograms and again extracted into ethyl

acetate. Then it was evaporated and dissolved into methanol.

The methanol extract was then analyzed by ultraviolet

spectrophotometry and comr:>red against the authentic

standards.

The 1,2,3,5 M THB was synthesized by the method of Baxter
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and Brown (19671. its structure confirmed by melting point.

MS, FT-IR, UV. and carbon NMR (Ragan. 1978).

3.3 Results

3.3.1 Isolated Intermediates. The isolated intermediates as

determined by GC·MS showed that the ac'!tylated aromatic

compound of 1,2.4 ·trihydroxybenzene was detected in the

acidified supernatant; of the resorcinol fed PC induced

Rhgdococcus sp. BPG-8 cells (Table ).1). GC-MS spectra of the

PG extract had high molecular weight molecules that could not

be discerned. However, these may have been the polymerization

products of the Quinones of 1.2.3,5-THB which readily form

polymers (Corbett. 1970). Interestingly. a product was formed

with the identical GC-MS spectral pattern for both the

acetylated l,2,3,S-THB standard and experimentally detected

product. Catechol, another possible intermediate, could not be

detected by GC-MS.

Experiments using PG induced~ sp. BPG-8 cells

detected 1,2,4-trihydroxybenzene when PG induced cells were

fed resorcinol. However, a peculiar product appeared with

peaks at 283 om and :<.73 nm when these cells were fed PG (Table

3 .2). The Rf value and UV profile was identical for a 1,2,3,5·

THB that was in equilibrium with its oxidized derivative 2,6·

dihydroxy-l, 4 -benzoquinone.

Conversion of resorcinol into 1,2,4 -trihydroxybenzene was
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detected by ultraviolet spectrophotometry (Fig. 3.1) . This was

confirmed by GC-MS analysis of the acetylated product (Table

3.1l .

3.3.2 Oxygen Utilization. Substrate oxidation as measured by

oxygen utilization by PG induced cellwfree extract or whole

cells was performed. OXYi?'en consumption was observed in the

presence of PG. 1,2,3,5-THB, 1,2,4-trihydroxybenzene,

resorcinol, acetopyruvate. acetate, and pyruvate (Table 3.)1.

Intermediates such as catechol and ,i3-ketoadipate showed no

oxygen consumption.

3.3.3 Enzymatic Studies. PG hydroxylase and resorcinol

activities were detected in both the cell·free and partially

purified extract (Table 3.4). The hydroxylation of PG did not

occur until air was introduced into the cuvette with the

partially purified enzyme (Fig. 3.2). When cell-free extract

replaced the partially purified extract a peak formed at 285

nm and then disappeared subsequently (Fig. 3.3). When PG was

added to PG induced whole cells (1.43 mg protein), an

extracted product exhibited the same spectral pattern as the

authentic l,2,3,5-THB and its oxidized product (Fig. 3.4).

Dihydrophloroglucinol detected by uv-

spectrophotometry or by GC·MS as its 2.4-dinitrophenyl­

hydrazone in the medium, nor could this reaction be shown to
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be reversible.

The spectral peak at :283 om for 1,:2,3,5 -THB shifted to

288 om with the subsequent extinction of this peak occurring

over 30 minut.es (Fig. 3.Sl, The 1,2,3,5~THB (C.2 }lmol)

ut.ilized approximately equimolar amounts of oxygen (0.18 t.

0.04 }lrnol, Nc)l. This reaction could only be shown with PO

induced ce11- free extract. When 1.2,4 - trihydroxybenzene was

reacted with cell-free extracts or who1.e cells of PG induced

Rhodococcus sp. BPG-8, a peak was formed at approximately 308

om (Fig. 3.6). The 1,2,4-trihydroxybenzene had an initial peak

at 290 om with a peak forming at 345 om for both the 1,2.4­

trihydroxybenzene alone and with boiled extract controls. This

peak is due to a chemical reaction between the 2­

mercaptoethanol component in the enzyme extract and the 2·

hydroxy-l,4-benzoquinone (the oxidation product of 1,2, >1­

trihydroxybenzene) (Redfearn 1965).

Attempts to synthesize 2,4-dihydroxy-2,4-hexadiene~I,6·

dioic acid and 2,4-dihydroxy-6-oxo-2,4-hexadienoic acid, the

cleavage e..roducts of 1,2,3,5-THB and 1,2,4~trihydroxybenzene

respectively, were unsuccessful due to the extreme lability of

these molecules.

The formation of equimolar amounts of formate (B rn."1) was

detected for the PG-grown cells, but not fer cells grown on

succinate (Fig. 3.7). Activity for acetopyruvate was detected

from PG induced cell-free extract as opposed to glucose grown
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or boiled cell-free extracts (Fig. 3.8). Acetate (1.02 p.M) and

pyruvate (1.03 p.M) were detected in approximately equimolar

concentrations when acetopyruvate (1.0 ,:1M) was added to the

cell-free extracts. Acetate and pyruvate were not detected

with the boiled or succinate cell-free extracts.

Pyruvate as its dinitrophenylhydrazone was detected in

culture filtrates of PG, but not in filtrates of succinate

grown RhodQCOCCUS sp. SPG-B. The succinate control produced no

pyruvate while PG grown cells showed significant increases in

pyruvate at 24 hours growth (0.6 mM) (Fig. 3.9). The RE values

(0.23) and UV peaks (455 om) were identical for both the

authentic and detected derivatized pyruva\ i: (Fig. 3.9).

The novel tentative degradation pathway for PG and the

fortuitious biotransformation of resorcinol are illustrated

for the Rhodococcus sp. BPG-B (Fig. 3.10).
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Table 3.1. Detection of intermediates in culture filtrates of

Rhodococcus sp. BPG·8 grown on PO or resorcinol.

Metabolites Retention time Mass spectra

Standard Isolated Standard Isolated

1,2,3,S-THB 16.2 16.2 270,227,171 270,227,171

143,129,87 143,129,87

7. 7.

Resorcinol 7.' 7.' 194,152,110 194,152,110

82,53 82,53

1,2,4-Btriol 15.1 15.1 252,210,168 252,210,166

151,126,97 151,126,97

69 69

Catechol 6.' N/O N/o N/o

N/D: not detected; 1,2,3,S-THB: 1,2,3,S-tetrahydroxybenzene:

1,2,4-Btriol: 1,2,4-trihydroxybenzene; Retention time {min).
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Table 3.2. Comparison of the aromatic standards and extracted

intermediates of PG and resorcinol metabolism by induced

RhzI~ sp. BPG-B.

Controls Detected

Intermediate Rf's Peak (nm) Rf's Peak(nml

Phloroglucinol 0.50 268 0.50 268

Resorcinol 0.78 275 0.78 ·275

1,2,3, 5~THB 0.13 283 0.13 283

2,6-D-l,4-Bq 0.00 273 0.00 273

1,2,4-Btriol 0.65 ?90 0.65 290

2 v H-l,4·8q 0.00 260 0.00 260

1,2,4-Btriol: 1,2,4-trihydroxybenzenei 1,2,3,5-THB: 1,2,3,5-

tetrahydroxybenzene. 2,6-D-l,4-Bq: 2,6 -dihydroxy-l, 4-

benzoquinone; 2-H-l,4-Bq: 2-hydroxy-l,4-benzoquinone. TLC was

performed_using a benzene:methanol:acetate (45:8:4) solvent

system. Adsorption spectra of the compounds were obtained in

methanol.
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Table 3.3. OXygen consumption by cell-iree extracts and whole

cells of PG-grown~ sp. BPG-8.

Specific Activity

Substrate Cell-free extract Whole cells

Phloroglucinol 0.026 ± 0.006 0.190 ± 0.035

Resorcinol 0.014 ± 0.002 0.093 ± 0.020

l,2,3,S-THB 0.034 ± 0.003 NT

1,2,4-Btrlo1 0.006 :I: 0.001 NT

Catechol 0.00 0.00

Acetopyruvate 0.025 t. 0.07 0.069 :I: 0.006

p-ketoadipate 0.00 0.00

Acetate 0.048 :l:: 0.07 0.110 , 0.010

. Pyruvatn 0.029 f: 0.03 0.080 ± 0.010

specific Activity: p:mol O~ utilized/min/mg protein. N-3, Mean

st. dev., NT: not tested. l,2,4-Btriol: 1,2,4­

trihydroxybenzene"/ 1,2,3, 5-THB: 1,2,3, S-tetrahydroxybenzene.
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Table 3.4. Specific activity of phloroglucinol hydroxylase and

resorcinol hydroxylase in cell-free extracts of~

Bp. BPG-8 grown on PG.

Specific Act.ivity

Enzyme

PG-hydroxylase

Resorcinol

hydroxylase

NADPH

0.052 ± 0.03

0.026 ± 0.05

NAD"

0.069 ± 0.05

0.030 ± 0.06

specific Activity: ~mol NAn(P)H oxidized/min/mg protein.

N=3, Mean ± st. deY.
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protein) from RhodoqQCCUS sp. BPG-8. Reaction mixture as
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rlq. 3.2. spectral changes observed during enzymatic oxidation

ot phlor091ucinol by partially purified enZYlIIe extract (0.15

1119 protein) from~ sp. BPG-S. Reaction mixture as

outlined in Materials and Methods except 2 I'M FAD, and 50 "g­

ot catalase were added to the partially purified enzyme
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respectively.
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Viq. 3.4. spectral changes observed during enzymatic oxidation

of phloroglucinol by phloroglucinol induced whole cells of the

~ sp. BPG-a. Peak at 283 nm and 273 mn correspond to

the 1,2, J, 5-tetrahydroxybenzene and the 2. 6-dihydroxy-l, 4­

benzoquinone respectivelY. Boiled and succinate grown ce1111

shewed no spectral change.
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Piq. 3.5. spectral changes observed during enzymatic oxidation

of 1,2,3,5-tetrahydroxybenzene by cell-free enzYlll8 extracts

(0.15 mq protein) from Rhodococcus sp. BPG-B. The numbers

1,2,3,4,5 correspond to 0,0.5,5,10,20 minutes, respectIvely.
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1'1go 3.6. Spectral changes observed during enzymatic oxidation

of l,2,4-benZAnetrlo1 by cell-free extract (1.43 mg protein)

trom Bh040coccus sp. BPG-S. Reaction mixture 8S outlined in

Materials and Methods. The numbers 1,2,3,4 correspond to

0,5,10,20 minutes, respectively.
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r1q. 3.7. Accumulation ot formate in the supernatant of whole

cells of~ sp. BPG-8 grown on phloroqluclnol and

succinate. Washed phloroglucinol induced cells (4.5 mg

protein/mil were initially suspended to give an absorption at

600 nJ!l of 0.20.
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ri9. 3.8. Enzymatic breakdown of i'lcetopyruvate by cell-tree

extracts (1.43 1D9/1D1 protein) of~ sp. BPC-8 qrovn

on PG and glucose. Reaction mixture as outlined in Materials

and Methods.
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Pig. 'J.9. Accumulation of pyruvate and total ketoacids in the

supernatant ot whole cells ot RhodQcgccys sp. BPG-8 grown on

phloroglucinol lind succinate. Washed phloroqlucinol induced

cells are initially suspended to give an absorption at 600 nm

ot 0.20. In both cases 4.5 mq protein per assay was used.
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Fig. 3.10. Proposed pathway tor phloroqlucinol catabolism and

the fortuit.oUB resorcinol biotranetonation by~ sp.

BPG-8. The pathway is: CA) phloroqlucinol .. (8) 1,2,3,5­

tetrahydroxybenzene .. IC) (2. 4-dihydroxy-2, 4-hexlld!sne-l . 6 M

di01c acid) .. (Dl (2,4-41hydroxy-6-0XO-2,4-hexadienoic acid)

.. (E) acetopyruvate + (F) fOnllate .. (G) acetate + (H)

pyruvate. (J) Resorcinol .. (I) l,2,4-trihydroxybenzene .. (D)

• (E) + (F) • (0) + (H).
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3.4 Discussion

The product detected by GC-MS and TLC and UV

spectophotometry when PG was fed to induced whole cells, was

probably 1,2,3,S-THB. Interestingly, Patel II ll. (1990),

suggested that a fungus Penicillium simplicissimim may degrade

PO through a 1,2,4 -trihydroxyhenzene intermediate, while

Walker and Taylor (1983), suggested a 1,2, 3-trihydroxybenzene

(pyrogallol) intermediate was involved in the aromatic

cleavage of PG. Brune and Schink (l990), sta::ed that in

~ acidigallici, PG is reduced to the

dihydrophloroglucinol which then undergoes hydrolytic cleavage

to form 3-hydroxy-S-oxohexanoate.

Activity for PO hydroxylase and resorcinol hydroxylase

were also detected using cell-free extract. The PO hydroxylase

suggests that the PG is hydroxylated to 1,2,3,S-THB and not

reduced to the dihydrophloroglucinol (1,3-dioxo-S~

hydroxycyclohexanel (Patelll al., 1981). The 1,2,3,S-THB and

its oxidi~ed derivative were detected in cell-free extracts

incubated in the presence of PG using TLC and UV

spectrophotometry. The partially purified NAD (p) H dependent PG

hydroxylase, in the presence of PG, formed a peak at 275 nm

which is characteristic of 2,6 -dihydroxy-1, 4 -benzoquinone, not

dihydrophloroglucinol. Apparently PG is hydroxylated to a

1,2,3, 5-tetrahydroxybenzene which will be readily oxidized to
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its quinone if the 1,2.3,5 -THB dioxygenaae is absent. The pa

reductase that was partially purified by Patel II ai. (19811

would function both aerobically and anaerobically, however the

partially purified PG hydroxylase isolated from~

BPG-8 would only function aerobically. Brune and Schink l1990)

suggest that l,2,3,5-THB acts as a cosubstrate rather than an

intermediate in the anaerobic metabolism of PG in~

acidigallici; however this was not observed in this study.

When resorcinol was fed to the PG induced~ sp.

BPG-a the first product detected was 1,2,4-trihydroxybenzene.

Chapman and Ribbons (1976 a) and Chapman and Ribbons (1976 bl

also showed that when~~ was grown on

resorcinol the first product detected 1,2,4-

trihydroxybenzene. This is believed t.o be a fortuitous because

Rhgdococcus species portrayed Ubiquitous biotransformation,

growth on resorcinol was small, and resorcinol was not part of

the Rhodocgccus sp. BPG-8 PG degradation pathway.

Interestingly, phenolic hydroxylases may hydroxylate numerous

substrates at reduced efficiency (Straube, 1987; Ohta and

Ribbons, 19761.

Rhodococcus sp. BPG-a ortho-dioxygenase activity for

1,2,3,S-THB was dependent on PG induction. The ch3racteristic

increase and subsequent decrease in W spectra was simi1iar to

the crtho-cleavage of pyrogallol by Azotobacter~

(Groseclose and Ribbons, 1981). This is further supported by
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the equimolar consumption of oxygen and 1,2, 3·THB, similiar

specif ic activit iea, and the format ion of ketoacids

hypothesized to be 2,4. -dihydroxY-2, 4-hexadiene-l, 6-dioic acid

and 2,4. -dihydroxy- 6 ·oxo· 2,4 -hexadienoic acid (Walker and

Taylor. 1983; Groseclose and Ribbons, 1981; ChApman and

Ribbons, 1976 a; Chapman and Ribbons, 1976 b).

The cleavage of 1,2, 4-trihydroxybenzene by cell- free

extract of PG induced~ sp. SPG-S. with the

formation of a product with a peak at 308 nm is in some

respects simi liar to the meta-cleavage of 2,3,5·

trihydroxyto!uene by L.~ (Chapman and Ribbons, 1976 al .

The absence of the ertho-cleavage enzymes and the lack of

formation of maleylacetate from 1,2.4. - trihydroxybenzene

suggests that PG-induced RhodococcyS sp. SPG-a may carry the

meta-cleavage enzyme for 1,2,4-trihydroxybenzene. The latency

of this conversion as compared to 1,2,3,5-THB dioxygenase

suggests a fortuitous transformation. It can be speculated

that because Rhodococcus sp. BPG-8 grows well on 1,2,4-

trihydrox~benzene there may be some basal meta- dioxygenase

activity for this intermediate. Interestingly the RhodococcyS

sp. BPG-8 seemed to have both ortho- and meta-cleavage enzymes

which is comparable to .e.~ which carries out both ortho-

and meta-cleavage of 1,2,4-trihydroxybenzene (Ohta tt 2.1.,

1'975; Chapman and Ribbons, 1976 a, bl.

No oxygen uptake occurred in the presence of IJ-
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ketoadipate for both whole cells and cell·free extract.s of PC

induced Rhorlgr;occus sp. BPG-8. The accumulation of formate in

the supernatant of PC grown cells of Rhgdococcus sp. BPa·S

along with the enzymatic activity for acetopyruvate metabolism

suggest that the meta-cleavage product of 1,2,4­

trihydroxybenzene lr.otably 2, 4-dihydroxy·6-oxO-2. 4-hexadienoic

acid) loses a formate to form the product acetopyruvate. The

products of the hydrolysis of acetopyruvate gave equimolar

concentration of both pyruvate and acetate similiar to E.

~ (Chapman and Ribbons, 1976 a; Chapman and Ribbons, 1976

b). Accordingly pyruvate was shown to accumulate in PG, and

not succinate grown or boiled RhodococcyS sp. BPG-S cella.

Proposed is the following tentative pathway:

phloroglucinol 1. 2, ] , 5 - tet rahydroxybenzene (2.4-

dihydroxy-6-oxO-2, 4 -hexadienoicacid) -> (2. 4-dihydroxy-6-C'xo­

2.4-hexadienoic acid) -> acetopyruvate + formate -> acetate.

pyruvate -> TCA (Fig. 3.10). Proposed is the tentative

resorcinol biotransformation pathway: Resorcinol -> 1,2,4-

trihydroxybenzene (2,4 -dihydroxy- 6-oxo-2, 4 -hexadienoic

acid) -> a.cetopyruvate + formate -> acetate + pyruvate -> TeA

(Fig. 3.10).
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Chapter IV: Protective Mechanisms Employed by the Rhodococcus

sp. BPG-8 to minimize quinone formation

4 _'. Introduction

The metabolism of non-toxic aromatic compounds has the

potential to produce toxic intermediates that may be lethal to

the integrity of cellular components. Some of these toxic

intermediates include quinones that may be formed from the

auto-o;<idation of the parent hydroquinone (Miller .!:.t. y"

1986) . The auto-oxidation of hydroquinones produces superoxide

anion radicals (02 -') that may lead to conditions of oxidative

stress (Chesis .!:.t. il. I 1984).

The cellular activation of quinoid compounds is usually

centered on redox processes which include electron transfer

from cellular flavoproteins to produce superoxide radicals.

This process is known as redox cycling (Gant ~ li., 1966 i

Gant II .e.l., 1968). Also a 1,4-reductive addition to qUinoid

compounds by cellular nucleophiles such as glutathione

produces glutathionyl-quinone conjugates which also

participat.e in redox cycling (Ollinger ~ li., 1990; Miller tt

ll.. 1966). Redox cycling and reductive addition may cause

changes in cellular biochemical pathways which lead to

cellular deficiency and death (Ollinger g,t. li., 1990; Miller

§.tu., 1986).

It has also been implicated that deoxyribonucleic acid

(DNA) may be damaged by the auto-oxidation of polyphenols such
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as 1.2.3,5~THB and l,2.4-trihydroxybenzene through some

unknown reactive species (Ka",anishi tt ill .. 1989; Kawanishi ""

J!l., 19861. This interactioa has been implicated in the

mutagenic and carcinogenic activities of benzene and its

metabolites such as phenol. catechol, hydroquinone, and 1,2,4­

trihydroxybenzene (Schwartz tt al., 1985; Chesis~.t. sl .. 1984:

Greenlee §.t. al., UBI; Timbrell and Mitchell. 1977).

In chapter three it has been shown that 1,2.3, 5-THB and

l,:il,4-trihydroxybenzene are formed during the respective

transformation of PC and resorcinol by PG induced cell-free

extracts of a~ sp. BPG-B. This chapter i'nvestigates

the potenti&l protective mechanisms this organism may employ

to reduce the tuxicityof the oxidation product. of 1,2,3,5-THB

and 1,2 ,4-trihydroxybenzene.

4.2 Hated_ls and Methods

4.2.1 Materials. Superoxide dismutase (SOD), catalase, bovine

albumin (BSA) , 1,4 -benzoquinone, 1,2,4 .

trihydroxybenzene, and NAD(P)H were obtained from Sigma Chern.

Co. (5t.- Loius, MO, USA). Solvents and t.hin layer

chromatograpy plat.es (TLC, silica gel G) were purchased from

Fisher Scientific (Pittsburgh, PA, USA). The 2,6-dihydroxy­

1,4 -benzoquinone and 2-hydroxy-1, 4-benzoquinone was produced

from the oxidation of 1,2,3,S-THB and 1,2,4-trihydroxybenzene

respect.ively, and the purity of 1,2,4-benzene was determined

by TLC and W (ultraviolet) spectrophotometry.
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4.2.2 Source of organism. Optimal growth parameters were

described earlier (Chapter 2). The organism was taxonomically

characterized and subsequently identified as a~ sp.

BPG-8 (Chapter 2) (Armstrong and Patel, 1992).

4.2.3 1\."1:1.1'1t1<:81 :Icthods. Detection of 1,2,3,S-THB and 1,2,4­

trihydroxybenzene ....as performed using TLC and ultraviolet (uv)

spectrophotometry. The. solvent system for TLC detection of

intermediates was benzene:dioxane:acetic acid (60:36:4)

(Randerat.h, 1963) . Acetylation of 1,2,4-trihydroxybenzene was

performed in acetic anhydride and pyridine at 2S"C for 12

hours. Gas chromatography-mass spectra (GC-MS) analysis was

performed on a Hewlett~Packard mass selective detector as

out.lined in chapter J (Hellou II li., 1989). The oxidized

product of 1,2,4-trihydroxybenzene (2-hydroxy-1,4-

benzoquinone) was detected by uv-spectrophotometry (Kawanishi

II s!l., 1989; Corbett, 1970). T'~'= 2-hydroxY-1,4-benzoquinone

was also reduced to the 1,2,4-trihydroxybenzene by the

addition of equimolar amounts of sodium dithionate. Protein

was measu:z:;ed according to the method of Bradford (1976), using

bovine serum albur:lin as a protein standard.

A Clark oxygen electrode was employed to examine the

auto-oxidation of 1,2, 3,S-THB and 1,2,4 -trihydroxybenzene in

the presence of cell-free extract, SOD, and catalase. The

reaction mixture contained 1. 7 ml of KH2 PO, (50 roM, pH 7.0,

25°C), 0.1 ml of 1,2,3,5-THB (1.42 mg/ml) or 1,2,4-
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trihydroxybenzene (1.25 mg/mll, 0.1 ml of cell- free extract

(4.8 mg/ml protein); 0.1 ml of SOD or catalase (l.0 mg/ml

protein) .

4.2.4 Preparation of cell- free extract. Cell- free extract was

prepared from PG and succinate grown RbodoCQCCLJS sp. SPG-B

according to the earlier report (Patel §t. tl., 1390) Cells

were broken using a French pressure cell (SLM !Iminco Inc.) at

846 kg/cm~, washed (3X) and centrifuged (20,000 x g, 30 min.

SOC). Approximately 2. a 9 of wet packed cells was added to 3

ml of enzyme stabilization buffer, minus 2-mercaptoethanol

(Patel II 91 .• 1990).

4.2.5 Biochemical assays. Activities of cata1.:::.::::: and SOD were

determined according to Worthington (1988). Catalase specific

activity was defined as 1 IJrnol of H~O~ decomposed per minute

per mg protein at 25°C and pH 7.0. SOD specific activity was

defined as the amount of enzyme causing half the maximum

inhibition of nitroblue tetrazolium (NBT) reduction per Ing

protein ae- 25°C and pH 7.8. Reductase assay was similiar to

the diaptorase assay except that 3 mM N-ethylmaleimide, a

known inhibitor of diaphorase was added (Worthington 1966).

Reduct.?se specific activity was defined as the reduction of 1

Jlmol of 2,6-dichlorophenolindophenol (DCPIP) per minute per mg

protein at 25°C and pH 6.5.

The effects of cell-free extract on the auto-oxidation of
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1,2.:l,S-THB (h max 273 nm, estimated extinction coefficient:

15.0 X 10 1 W1cm- l ) and 1,2,4-trihydroxybenzene (h max 487 om,

estimated extinction coefficient: 1.02 x 101 W1cm>l) were also

examined using a Shimadzu spectrophotometer. The 487 om peak

was more amenable to measure oxidation rates because

interference due to UV-absorbing materials such a.s DNA or

protein was minimized. The conversion of 1,2,3,5-THB and

1,2,4-trihydroxybenzene to their respective oxidized products

were defined as the increase in ~moles of 2,6-dihydroxy-l,4-

benzoquinone or 2-hydroxY-l,4-benzoquinone per min per mg

protein. The reaction mixture contained 2.8 ml KH 2PO. (50 roM,

pH 7.0, 25°C), 0.1 ml of 1,2,3,5-THB (1.42 mg/ml) or 1,2,4­

trihydroxybenzene (1.25 mg/ml), or 0.1 ml of cell-free extract

(4.8 mg/ml protein), SOD (1 mg/ml), catalase (l mg/ml), BSA (1

mg/ml) .

The reduction of 2, 6-dihydroxY-l,4-benzoquinone, 2­

hydroxY-l,4-benzoquinone and 1,4-benzoquinone by a NAD(P)H

dependent reductase was also performed. Specific activity was

defined as 1 /tmol of NAD(P)H oxidized per min per mg protein

at 25 Q C at11:l. pH 7.0.

4.3 Results

The 2, 6-dihydroxy-1, 4-benzoquinone and 2-hydroxy-1,4­

benzoquinone were shown to absorb maximally at 273 nm (Fig.

4.1, Fig. 4.2) and 260, respectively. The 2-hydroxy-1,4-

benzoquinone had another major peak at 487 nm. The auto-
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oxidations of 1,2,3,S-THB and 1,2,4-trihydroxybenzene

retarded by cell-free extract of~ sp. BPG-8 grown

either on PG ur succinate (Table 4.1, Table 4.5). In contrast.,

boiled cell-free extract had no effect. Moreover, SOD and

catalase significantly lowered the auto-oxidation rate of

1,2,4-trihydroxybenzene to almost. zero {Table 4.2l. The

specific activities of SOD, catalase, and quinone reductase in

the cell-free extract were quite high (Table 4.3).

Reductase activity was quantified because a NAD(P) H

dependent reductase was found to convert 2-hydroxy-l,4­

benzoquinonOO! to 1,2 , 4-trihydroxybenzene (Table 4.4). Cell-free

extracts of PG grown cells exhibited oxidation of both NADPH

and NADH in the presence of l,4.~benzoquinone and 2~hydroxy­

l,4-benzoquinone. Cell-free extract of succinate grown cells

showed similar results.

The formation of l,2,4-trihydroxybenzene as a reduction

product of 2-hydroxY-1,4-benzoquinone was demonstrated by

spectral changes (Fig. 4..2) as well as by isolation and

confirmation of the acetylated 1,2, 4.-trihydroxybenzene by Ge­

MS ar.alysis (Retention time: 15.1 min, mass spectrum:

252,210,168,151,126,97,69) .

In a reaction mixture containing SOD, catalase, and cell­

free extract the reduction of 2-hydroxY-1,4.-benzoquinone did

not occur (Fig. 4.3). However, wh"!n either NADPH or NADH were

added immediate conversion of the 2 -hydroxY-1, 4. -benzoquinone

to 1,2,4.-trihydroxybenzene occurred. The conversion of 2,6-
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dihydroxY-l,4-benzoquinone to 1,2,3,S-THB never occurred.

When catalase and SOD, individually or in combination

were added to the reaction mixture, containing 1,2,4­

trihydroxybenzene reduced oxygen consumption occurred (Fig.

4.4). The formation of H20. during the auto-oxidation of 1,2,4-

trihydroxybenzene was also investigated using catalase or

cell- free extract. Oxygen was released when catalase or cell-

free extract was added, suggesting that H.O. may be formed

during this reaction. SOD released negligible amounts of

oxygen (Fig. 4.4). Results presented in Fig 4.4 shows separate

experiments to measure the auto-oxidation 'of 1,2,4-

trihydroxybenzene. The oxidation of 1,2, 4 w trihydroxybenzene

was slowed with PG grown BPG-8 cell~free extract, SOD,

catalase, or SOD and catalase; in which each treatment lowered

the oxidation rate of 1,2,4 - trihydroxybenzene to 0.02, 0.003,

0.038 and 0.00 ~moles of oxygen/min, respectively. The

oxidation rate of 1,2, 4-trihydroxybenzene alone was 0.28

pmoles oxygen/min. The oxidation of 1,2,3,S·THB to 2,6·

dihydroxY-l,4-benzoquinone showed a similiar, but weaker

response rrable 4.5). The oxidations of 1,2,3,5~THB and 1,2,4~

trihydroxybenzene were strongly dependent upon the pH of the

reaction mixture (Fig. 4.5).
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Table 4.1. Effect of RhodoCOCCY5 sp. BPG-8 cell-free extract

on the oxidation of 1,2,4-trihydroxybenzene to Z·hydroxY-l,4­

benzoquinone.

specific Activity

Cell- free ext.

Boiled

Native

·succinate

2.01 ± 0.12

0.32 ± 0.06

·Phloroglucinol

1.79 ± 0.12

0.42 ± 0.03

·Cell-free extracts of cel":'_ grown on succinate or PG.

Specific activity: Increase in J{mol 2-hyctroxy-l,4­

benzoquinone per min per mg protein. Mean ± at. dev.,

N:>3. Reaction conditions outlined in Materials and Methods.
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Table 4.2. Oxidation vf 1,2,4-trihydroxybenzene to 2-hydroxy­

1,4 -benzoquinone in the presence of different proteins.

Specific Activity

Protein BSA SOD CAT SOD/CAT

Boiled 3.18 ± 0.06 1.32::t 0.12 1.02 ± 0 OJ 1.09 ± 0.09

Native 2.46 ± 0.02 0.:21 ± 0.06 0.38 ± 0.03 0.00

specific activity: Increase in f1mo1 2-hydroxy-l, 4-benzoquinone

per min per mg protein. BSA:bovine albumin;

SOD:superoxide dismutase; CAT:catalase. Mean ± st. dev., N..J.

See Materials and Methods for reaction conditions.
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Table 4.3. The detection of different enzyme activities in

phloroglucinol induced cell-free extract of Rhodococcus sp.

BPG-8.

Specific Activity

Enzyme

Boiled

Native

CAT

o. a

467

SOD

o. a

Reductase

0.0

0.14 *(0.07)

Specific activity of catalase (CAT) was defined as one J.Lffiol of

H20 2 decomposed per min per mg protein at 25°C and pH 7.0

Specific acitivity of superoxide dismutase (SOD) was defined

as the amount of enzyme causing half the maximum

inhibition of NBT reduction/mg protein at 25°C

and pH 7.8. Specific activity of the reductase was defined as

the reduction of one J.Lmol of DCPIP per min per mg protein at

25°C and pH 8.5. * Activity was determined with NADPH as

opposed t~ NADH. See Materials and Methods for reference to

reaction conditions.
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Table 4.4. Reduction of 1,4-benzoqulnone, 2-hydroxy-l,4­

benzoquinone, 2, 6-dihydroxy-l, 4-benzoquinone by cell-free

extracts of~ sp. 8FG-8.

Specific Activity

NADPH

NADH

a-quinone

0.20 :t 0.04

1.08 ± 0.22

a-quinone

0.48 t 0.12

3.77±O.14

THBax - quinone

N,D.

N,D,

Specific Activity was defined as one IImol of NADOnH oxidized

per min per mg protein at 25°C and pH 7.0. B-quinone (1,4­

benzoquinone); H-quinone (2-hydroxy-l,4 benzoquinone); THBcx­

quinone (2, 6-dihydroxy-l,4-benzoqulnone). N.D. not detected.

Mean ± st. dev" N",3. See Materials and Methods for reference

to reaction conditions.



102

Table 4.5. The effects of various treatment.s on the auto­

oxidation of 1,2,3,5-THB to 2, 6-dihydroxy-l,4·benzoquinone.

Quinone Conversion Rate Total time

Treatment (~mol/min) (min)

pH 4 0.12 694.0

pH 5 9.3 9.0

pH 7, cis 13.3 6.3

pH 7, A 20.0 4.2

pH 7 29.0 2.9

Catalase (100 J.lg) and SOD (100 J.lg) were added to the reaction

mixture (C/S). The reaction mixture was made anaerobic {lI) by

bUbbling nitrogen within the cuvette for 2 min. Reaction

conditions as outlined in Materials and Methods.
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J'iq. 4.1. spectral pattern of the auto-oxidation of
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1,2,3,5-THBI.
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Fig_ ".2. Ultraviolet spectrophotometric examination ot the

NAD(P)" dependent cyclic conversion of 2-hydroxY-l,4­

benzoquinone to 1,2. 4-trihydroxybenzene byeeU-free extracts

of~ sp. BPG-B (0.48 mg protein). The purity ot the

1,2,4-trihYdroxybenzene was checked by TLC-UV and GC-MS.
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Pig. 4 .... Auto~oxidation of 1,2,4-trihydroxybenzene to 2­

hydroxy-I,4-benzoquinone and the release of oxygen upon

addition of catalase and enzyme extracts (4.8 mg protein/_I)

of PG grown~ sp. BPG-8. All treatments were

standardized with 0.1 mq protein. Hean ± st..dev., N-3.

Reaction conditions as outlined by Materials and Methods.
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:rig. 4.15. Simplified schematic diagram of the protective

mechanisms employed by~ sp. BPG-8 during- 1,2,4·

trihydroxybenzene metabolism. ortho-cleavage enzymell provided

protection tor the auto-oxidation ot 1,2,3,5-

tetr...hydroxybenzene.
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4.4 Dillcussion

The metabolism of PG and resorcinol by PG induced

RhodococcYS sp. BPG-B produce l,2,3,S-THB and 1,2,4­

trihydroxybenzene as intermediates, respectively. It has been

suggested that polyphenol auto-oxidation may cause DNA damage

through the production of a superoxide radical (Kawanishi U

Bl,.. 1989; Chesis tl Ai., 1984). The auto-oxidation of

1,2,3,S-THB and 1,2,4-trihydroxybenzene appears to be

catalysed by the production of superoxide radicals during

their conversion to their respective quinones (Ollinger II

.ill., 1990; Buffington g,t. ll., 1989). Therefore, RhodococcYS

sp. BPG-8 must employ protective mechanisms to prevent the

auto-oxidation of 1,2,3,S-THB and l,2,4-trihydroxybenzene.

Meta- or ortho-cleavage of 1,2,3,5-THB or 1,2,4­

trihydroxybenzene is one potential method employed to

alleviate the potential toxicity of the 1,2,4­

trihydroxybenzene (Chapman and Ribbons, 1976 a, Chapman and

Ribbons, 1976 h). Low efficiency constitutive meta-cleavage

appeared to function for 1, 2, 4-trihydroxybenzene; while

1,2,3, 5-THB elicited a high efficiency ortho-cleavage pattern.

Cell-free extracts of eitl":.:!r PG-grown or succinate grown

Rhodococcus sp. BPG-8 cells inhibited the fOrTl'ation of 2­

hydroxy-I, 4 -benzoquinone from 1,2,4 -trihydroxybenzene. Chapman

and Ribbons {1976, al and Chapman and Ribbons (1976, bl also

suggested this for .f. ~, but they provided no

explanation. Simi liar but less pronounced effects occurred
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during the auto-oxidation of 1,2,3, 5·1H9. SOD and catalase

together perhaps hinder the auto-oxidation by the conversion

of the superoxide radicals to oxygen and hydrogen peroxide.

SOD and catalase activities were quite high in thp cell-free

extracts of~ sp. BPG-8. Ollinger tl il. (1990)

suggest that superoxide radical removal by SOD may prevent the

initiation of a free radical chain reaction between various

hydroquinones and the superoxide radical.

The spontaneous production of H20 2 upon auto-oxidation of

1,2.3, 5-THB and 1,2, 4-trihydroxybenzene can be demonstrated by

the release of oxygen upon introduction of pure catalase or

cell-free extract. However, introduction of SOD did not bring

about the release of oxygen. Fridovich (1972), Fridovich

(1975), and Fridovich (1977) suggested that superoxide

radicals may spontaneously dismutate because the Buperoxide

radical is not stable relative to the products of hydrogen

peroxide and triplet oxygen. SOD mediated and spontaneous

dist:,utation of the superoxide radical probably occurs

simultaneously (Winterbourn llll., 1989; Winterbourn g,t 21,.,

1981) .

Other investigators (Butler and Hoey, 1986; Fridovich

1976) have suggested that the removal of the superoxide

radical causes the equilibrium to shift towards the oxidized

product. The opposite phenomena occurred for the auto­

oxidation of 1,2. 4-trihydroxybenzene resulting from the

removal of the superoxide radical which eliminates a possible
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free radical chain reaction wit.h l,2.4-trihydroxybenzene

(Ollinger II Al .• 1~'90; Buffington tt Al .• 1989). The same

effect.s may have occurred during the auto-oxidation of

1,2,3.5-THB; however the decreased stability of this molecule

relative to 1. 2, 4-trihydroxybenzene may have produced copious

amounts of superoxide radicals which. in essence, swamped the

SOD/catalase protective mechanism. Brune §.t. li. (1992).

suggest that 1,2,3, 5-THB oxidizes to its quinone immediately

upon exposure to air. The increased stability of :2,6­

dihydroxY-l,4~benzoquinone relative to 2-hydroxY-l,4·

benzoquinone is a result of a lower reduction potential to its

parent. hydroquinone. The increase in the hydroxyl electron

donating groups (inductive effect) of the 2,6-dihydroxY-l,4­

benzoquinone causes these differential stabilities.

The 1,2,3,S-THB and 1, 2, 4-trihydroxybenzene

intermediates that are cleaved in the degradation sequence of

PC and resorcinol, respectively. The auto-oxidation products

of 1,2.3,S-THB and 1,2,4-trihydroxybenzene, respectively 2,6­

dihydroxy-1. 4 -benzoquinone and 2-hydroxy-l, 4 -benzoquinone are

dead end mQtabolites (Chapman and Ribbons, 1976 a, Chapman and

Ribbons, 1976 hI. Conversion of 2-hydroxy-1,4-benzoquinone to

1,2,4-trihydroxybenzene is dependent upon a specific NAD(pIH­

dependent reductase. Both 1,4-benzoquinone and 2-hydroxY-l,4­

benzoquinone had greater activity for NADH which suggest that

it may be a NADH dependent reductase. Spain and Gibson (1991)

suggest that 1,4 -benzoquinone is converted to the hydroquinone



112

by a NADPH-dependent reductase. Moreover, 2-hydroxy.l,4­

benzoquinone could be reduced to 1,2,4 -trihydroxybenzene by

sodium dithionite or sodium borohydride (Chapman and Ribbons,

1976 a). Enzymes that might be involved in this reduction of

2 -hydroxy-I, 4 ·benzoqulnone include diaphorase, NADH cytochrome

bs reductase, NADH-ubiquinone oxidoreductase, or NAD(P)H­

cytochrome P-450 reduc'.:ase (Chesis ~ li., 1964; Winterbourn

1981). This chapter suggests that there is a reducta3e that

will convert the 2-hydroxY-l,4-benzaquinane to 1,2,4­

trihydroxybenzene. Interestingly, no reductase specific for

2,6-dihydroxY-l,4-benzoqulnone could be detected.' Apparently

1,2,3,S-THB, as opposed to 1,2,4-trihydroxybenzene, is

efficiently removed by a specific ortho-cleavage diooxygenase.

It appears that 1, 2,4-trihydroxybenzene may be prevented

or retarded from being oxidized to 2-hydroxy~1,4~benzoquinone

by SOD and catalase or by the interaction with cell-free

extract (Fig. 4.6) (Chapman and Ribbons, 1976 a). Th€. 2­

hydroxy-1,4-benzoquinone that is formed may be converted back

to the 1,2, 4-trihydroxybenzene by a specific reductase.

Cleavage e.o.zymes of l,2,4-trihydroxybenzene may also alleviate

this potential toxicity by removal of this intermediate,

however 2-hydroxY-l,4-benzoquinone may still be seen (Chapman

and Ribbons 1976 a).
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Chapter V: Partial Pl<rification and Enzymatic Characteristics

ot the Rhodococcus sp. BPG-8 Phloroglucinol Hydroxylase.

5.1 Introduction

Oxygenases participate in numerous degradation and

biosynthesis pathwal'S which catalyze the incorporation of

oxygen into the substrate. The major classes of oxygenases,

such as the monooxygenases (mixed-function oxygenases) and the

dioxygenases, catalyze the incorporation of one and two atoms

of dioxygen within the substrate, respectively (van Berkel and

Muller, 1991). The monooxygenases reduce the other atom of

dioxygen into water.

Monooxygenases that contain flavin as a prosthetic group

may be divided into internal and external categories. Internal

flavin-dependent monooxygenases transform the substrate by

hydroxylation, followed by decarboxylation in which the

substrate serves as the electron donor (van Berkel and Muller,

1991; Flashner and Massey, 1974; Nakazawa ~ ll., 1912),

External flavoprotein monooxygenases are a class of

inducible - enzymes that utilize pyridine nucleotides

external electron donors by the insertion of one atom of

dioxygen within the substrate. Approximately 25 external

flavin·dependent enzymes have been isolated and (partially)

characterized (van Berkel and Muller, 1991; Ohta ~ li.,

1975). They can be divided into two subclasses which either:

(1) cause hydroxylation of substituted aromatic substrates
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(van Berkel and Muller, 1991; Krug and Straube, 1986; Ohta U

U., 1975); (2) or the peroxide oxygenation of either

nucleophilic and electrophilic substrates (van Berkel and

Muller, 1991; Itagaki, 1986; Trower tt el., 1985).

Reductive attack of FG seemed to be favoured by aerobic

(Blackwood, fi A1,., 1970, Jamieson II Bl., 1970), anaerobic

(Patel II gl., 1990, Krumholz ~ g., 1987, Patel .u .s1l.,

1981, Schink and Pfenning, 1982) and phototrophic bacteria

(Whittle tl ,gl.. 1976) with no mention of the possible

hydroxylation of PG by a specific monooxygenase.

In trie previous chapter evidence was presented for the

hydroxylation of PG by the novel PG hydroxylase isolated from

a Rhodgcoccus sp. BPG-B. In this chapcer the partially

purified PG hydroxylase will be compared to similiar

hydroxylases as w('ll as to PG reductases.

5.2 Materials and Methods

5.2.1 Cell Material.~ Bp. BPG-8 was isolated and

stored by the procedures outlined in chapters two and three.

The minim~ salt medium contained (g/ll: (NH.1 1SOp 1.0; MgSO•. 7

H20, 0.5; KH1 PO.. 6.8, 0.1 mIll trace elements, and O,OOlt

yeast extract. The Rhodococcus sp. BPG~8 isolate was grown

under the opcimal conditions of 8 mM PG, 25°C, and pH 7.0.

Growth conditions ",'ere similiar to those described in chapters

two and t.hree. Thirty grams of pelleted and washed cells were

suspended in 60 ml of 20 mM phosphate buffer containing 1 mM
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ECTA, 1 mM 2-mercaptoethanol, 15\ glycerol, and 0.1 roM

phenylmethylsulfonyl -fluoride (PMSF) (pH 7.4). The suspension

was ice cooled and sonicated at minimum power to uniformly

disperse the cells (Braunsonic 2000, Canlabl. After

sonification the cells were lysed by a French pressure cell

(SLM Aminco Inc.) at 646 kg/cm2
, The disrupted cells were then

centrifuged (20,000 x g, 40 min) in a Sorvall RC-S centrifuge

(Dupont instrumentsl. The supernatant obtained formed the

source of the hydroxylase.

5.2.2 Partial Purification of Phloroglucinol Hydroxylase. All

procedures were performed under aerobic conditions at SoC. All

buffers contained 20 mM potassium phosphate, 1 roM EDTA, 1 rnM

2 -mercaptoethanol, 15\ glycerol, and 0.1 mM PMSF (pH 7.4)

(buffer A). Buffer A was found to stabilize and optimize PG

hydroxylase activity (Acharya, 1986). After centrifugation of

the disrupted cells, the cell-free extract (25 Inl) was

precipitated with 1.2 ml of 10 \- polyethyleneimine (PEI) which

was efficient at removing nucleic acid and residual lipids.

The PEI was added slowly over 15 min, then centrifuged (20,000

x g, 20 min).

The clear supernatant (26.2 ml) was used directly for

ammonium sulfate fractionation from 0-40 \- and 40-80 \-. The

active fraction which was contained in the 40-80 \- fraction

was resuspended in 15 ml of buffer A and dialyzed for 12 hours

in 5 I of buffer A at 5°C. The dialysate (15 mIl was applied
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to a 1. 5 x 30 em DEAE-Sephacel column, equilibrated and then

washed at 15 ml/h for 20 h with buffer A. The PG hydroxylase

was eluted using a 500 ml linear gradient of potassium

phosphate buffer (20 111M-SOO mMl containing 1 mM EDTA, 1 mM 2­

mercaptoethanol, 1St glycerol, and 0.1 mM PMSF (pH 7.41 at 20

ml/h. The most active fractions (37 mll were pooled and

precipitated with a 40-80 \: ammonium sulfate fraction and

resuspended in 15 ml of buffer A and dialyzed for 12 hours in

5 1 of buffer A at SoC.

The dialysate (15 ml) was sequentially applied to a

Sep:1adex G-200 and G-100 column (1.5 x 40 em) equilibrated

with potassium phosphate buffer A. Approximately 2.0 ml

fraction were collected. Active fractions OI26-H) and (nS-lll

from G-200 and a-lOa columns respectively were pooled and the

protein was precipitated by ammonium sulfate. The precipitated

protein was redissolved in 15 ml of buffer A, and dialyzed

against buffer A (51) for 12 h. The dialysate was applied to

a column (l X 5 em) packed with reactive Red Agarose 120 type­

1000 CL (Sigma) and equiilibrated with buffer A. Various

treatments- which included adding of FAD (2IolM) , catalase and/or

SOD (50 ng), and PG/resorcinol (1 Iolmole) were performed.

5.2.3 Analytical methods. phloroglucinol hydroxylase and

resorcinol hydroxylase were assayed according to modification

of the methods of Patel II SIl., (1981), and Neujahr and Gaal

(1975) as outlined in chapter three. The assay buffer also
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contained FAD (2 /AM), and catalase (50 og) .

Native molecular weight was determined using a 1.5 X 40

em Sephadex G-200 and G-IOO (superfine) gel filtration columns

(Philrmacia). The Sephadex G-:200 column was calibrated with

ovalbumin CMr= 43,000), bovine serum albur.lin (Mr- 68,000),

collagenase CM.", 101, 000), alcohol dehydrogenase (M... 150, 000),

and catalase (Mr" 230,000). The Sephadex G-IOO column excluded

the st,;ndards alcohol dehydrogenase and catalase.

Physical parameters such as temperature (lO"C-)7 0 C) I pH

(6.0-B.0), substrate concentration (0-1.0 pm), FAD

concentration (0-4 p.M), and the amount of protein (0-25 J/.g)

were examined for PG hydroxylase and resorcinol hydroxylase.

The effect of various substrates (8 mM) on PG and resorcinol

hydroxylase activity were examined (Table 5.7) . The effects of

the inhibitors, sodium azide (l mM) and arsenic (1 mM) were

also examined. The following reaction mixture (3 mll contained

(in t-tmoles): potassium phosphate buffer, pH 7.2,270; NAD(P)H,

0.6; PG, 1.0; and partially purified extract (0.1 ml). All

experiments except those involving FAD or otherwise mentioned

had 2 tLM of FAD, and 50 ng of catalase added to the reaction

mixture.

Metal ions such as zinc, nickel, ferrous and ferric ions,

magnesium, calcium, copper, manganese, cobolt, and mercury

(0.5 mM) were examined for the ability to inhibit the PG

hydroxylase and resorcinol hydroxylase using the optimal

conditions determined from experiments described above.
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Various cofactors (eyt.c, FAD, FMN, ATP, ADP, AMP) at a

concentration of 2 ~M and enzymes such as SOD (SO ng) and

catalase (50 og) were added to the reaction mixtures. The

effect of storage temperature (~20oC, 4°C, 25°C) along with

the thermostability (5°C-60°C) of the PG and resorcinol

hydroxylases were examined.

5.:3 Results

5.3.1 Partial Purification of Phloroglucinol Hydroxylase. The

purification procedure for PG hydroxylase from extracts of

~ sp. BPG-B, after growth on PG, is summarized in

Table 5.1. Activity for resorcinol hydroxylase mirrored the

elution patterns for PG hydroxylase. At no point could these

two activities be separated. The highest specifi.c activity

obtained for PG hydroxylase with PG and resorcinol as

substrates were 0.48 and 0.16 ttmo1e of NADH oxidized per min

per mg protein, respectively. The elution profiles for PC

hydroxylase for DEAE-Sephacael, Sephadex G-200, and sephadex

G-100 columns are shown in Fig. 5.1, Fig. 5.2, and Fig. 5.3

respective-ly. Affinity chromatography seemed to have no effect

on the binding of the PG or resorcinol hydroxylases (Table

5.2). Factors such as SOD, catalase, and FAD were utilized to

enhance the binding of the hydroxylase to the affinity column.

5.3.2 Enzyme characteristics. Gel filtration chromatography of

the native PG hydroxylase was performed and gave an estimated
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molecular weight of 155, 000 dar tons (Fig. 5.4). This seems to

verify previous molecular weight estimates utilizing crude

enzyme extracts (Acharya, 1986). The PG hydroxylase was eluted

in the void volume when applied to superfine sephrdex G-100.

PG hydroxylase activity, with substrates PG or resorcinol

was adversely affected by increases in temperature as

determined by their storage temperature and thermostability

profiles (Table 5.3, Table 5.4). The effect of various

cofactors on the activity of the partially purified extract

was examined (Table 5.5). FAD and cytochrome c seemed to

enhance the PG and resorcinol hydroxylase activities.

Increasing the amount of FAD affected the specific activity of

the partially purified PG hydroxylase and resorcinol

hydroxylase (Fig. 5.5, Fig. 5.6).

Most metal ions seemed to suppress the activity of PG and

resorcinol hydroxylase (Table :l.6). The effect of various

substrates on the activity of the PG and resorcinol

hydroxylase was investigated (Table 5.7). Apparently numerous

phenolic aromatics, chlorinated aromatics, benzoquinones, and

metabolic -poisons had no effect on the activity of these

hydroxylases . Inhibitors such as sodium arsenic and sodium

azide did not affect the hydroxylase activity. The effect of

increasing concentration of chloride ion on the specific

activity of the partially purified PG and resorcinol

hydroxylase is shown in Fig. 5.7, and Fig. 5.8. Apparently

increasing chloride ion concentration seemed to decrease the

1
1
j

I
l
j

I
j

j
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activity of the hydroxylases.

The specific activity of PG hydroxylase in a growing

culture of~ sp. BPG·B peaked at approximately 18

hours, however activity significantly decrease after this time

(Fig. 5.9). The pH, substrate, temperature optimum for both

the P(,; and resorcinol hydroxylase from~ sp. spG-a,

when 2 p~l of FAD and 50 ng of catalase was added to the

reaction mixture were 7.0, 68 J.lM, and 25°C respectively (Fig.

5.10, Fig. 5.11, Fig. 5.12). The apparent V...~ values for PG

and resorcinol were 0.48 and O. 28 ~mole of NADH oxidized per

minute per mg protein respectively (Fig. 5.13). The apparent

K,. values were 8.3 J.lM and 12.5 J.lM for PG and resorcinol

respectively (Fig. 5.13).

When FAD was excluded from the reaction mixture,

identical optimal pH (7.0) and temperature (25°C) profiles

occurred. The optimal substrate concentration for PG and

resorcinol were 6S IlM, and 125 J.lM respectively (1-'i9. 5.14).

The apparent K", values, when PG and resorcinol were added to

the reaction mixture, were 12.5 J.lM and 16.7 J.lM respectively,

while the 'ftpparent V'"." values were 0.16 and 0.09 J.lmole of NADH

oxidized per minute per mg protein respectively (Fig. 5.15).

The oxidation of NADH increased arithmetically with increasing

protein concentration (Fig. 5.16).



Table 5.1. Purification steps for the partially purification of phloroglucinol

hydroxylase.

Treatment. Total Total Total Total Purification

volume protein E.U. Activity fold

Crude extract 25.0 24S 7.23 0.030

PEl ppt. 26.2 241 7.58 0.031 LO)

~S04 ppt. (40-80%) 15.0 ,OS 6.95 0.065 2.2

DEAE-Sephacel 37.0 11.8 5.35 0.450 15.0

~SO. ppt. (80%) 15.0 11.2 S.30 0.470 J.S.7

Sephadex G-200 15.0 2.29 1. 09 0.48 16.0

NH4so. ppt.. (80t) 15.0 2.21 1. 03 0.47 IS.7

Sephadex G-100 12.5 2.20 1.05 0.48 16.0

Polyethyleneimine : PEl.

~_.~._. ......._--'...........,_~.~_. __ . ~~._'0' f • • ",~ '"¥aP
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Table 5.2. Ability of reactive red agarose to bind the

partially purified Rhodococc!1s sp. BPG-8 phloroglucinol

hydroxylase and resorcinol hydroxylase.

Treatment

E:n~. alone

Enz +FAD

Enz +PG/RES

Enz +PG!RES+FAD

Enz +PG!RES+FAD+CAT

Enz. +PG!RES+FAD+CAT+SOD

Phloroglucinol

hydroxylase

Resorcinol

hydroxylase

partially purified cell-free extract (Eoz.). Various

treatments included adding FAD (2IolM). catalase and/or SOD (50

09), and PG/rel!lorcinol (l plllOle).
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Table 5.3. Effect of storage "temperature on the stability of phloroglucinol

hydroxylase and resorcinol hydroxylase from Rhodococcus sp. BPG-B.

Percentage Activity

Time (days) PG hydroxylase RES hydroxylase

-20 o e '"C 25°C -20 o e 4"C 25°C

100 100 100 100 100 100

100 95

100 80 0 100 85

100 28 0 100 30

10 100 0 0 100

20 100 0 0 98

30 98

60 93 0 0 92

90 95 0 0 93

Enzyme was stored in a -20 G e, and soc fridge, and a water bath at 25°C.
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Table 5.4. Thermostahility of the phloroglucinol hydroxylase

and resorcinol hydroxylase from~ sp. BPG- 8.

Temp. (Oe)

"
20

25

"
30

35

37

40

45

60

PG-hydroxylase RES-hydroxylase

Activity Activity

100 0.48 100 0.28

100 0.48 100 0.28

100 0.48 100 0.28

100 0.48 100 0.28

96 0.46 93 0.26

73 0.35 57 0.16

'4 0.26 39 0.11

" 0.07

0.02

The enzyme was equilibrated for two minutes at the desir€d

temperature using a Shimadzu water bath com'lected to the

Shimadzu spectrophotometer. specific activity wao then

measured at 2S"C as described in Materials and Methods. It was

also expressed as the percentage of total specific activity.
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Table 5.5. Effect of various cofactors on the activity of the

partially purified~ $p. BPG-a phloroglucinol

hydroxylase and resorcinol hydroxylase.

Treatment PG Hydroxylase RES Hyd:o:-oxylase

Activity Activity

0.16 100 0.09 100

FAD 0.48 300 0.28 311

FMN 0.16 100 0.08 .,
CAT 0.16 100 0.09 100

sao 0.16 100 0.09 100

FAD+CAT 0.48 300 0.27 300

FAD+CAT+SOD 0.48 300 0.27 300

eyt. c 0.19 n, 0.10 111

{3-carotene" 0.16 100 0.09 100

ATP 0.17 105 0.09 100

ADP 0.16 100 0.09 100

AMP 0.16 100 0.09 100

FAD: flavin adenine dinucleotide (2~M); FMN: flavin

mononucleotide (2JlMl; CAT: catalase (50ng); SOD: superoxide

dismutase (Sang); cyt.c: cyl'ochrome-c (2J4M); ATP, ADP, AMP:

adenosine triphosphate, adenosine diphosphate, and adenosine

monophosphate respectively <2J.lM each), A ,a-carotene was

isolated from~ sp. BPG-B. N..3.



126

Table 5.6. Effect of metal ions on the specific activity of

the partially purified phloroglucinol hydroxylase and

resorcinol hydroxylase.

PG hydroxylase RES hydroxylase

Metal ion Activity , Activity ,

0.48 100 0.28 100

Zinc sulfate 0.19 40 0.10 36

Nickel sulfate 0.26 54 0.12 43

Ferric sulfate 0.26 54 0.15 53

Ferrous sulfate 0.22 46 0.13 46

Magnesium sulfate 0.22 46 0.23 "
Calcium sulfate 0.45 94 0.26 93

Copper sulfate 0.13 27 0.05 ,.
Manganese sulfate 0.38 7' 0.21 75

Cobalt sulfate 0.32 66 0.16 57

Mercury acetate 0.00 00 0.00 00

specific activity .....as measured as described in Materials and

Methods. It was also expressed as a percentage of the total

specific activity. All metal ions were added at a

concentration of 0.5 mM. N-3.
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Table 5.7. Effect of various substrates on the activity of the

partially purified hydroxylase from~ sp. BPG-B.

Specific Activity

Substrate Alone PG"tsubstrate Res+substrate'

Phloroglucinol 0.48 NA NA

Resorcinol 0.28 NA NA

4 -Chlororesorcinol 0.10 0.48 0.28

1,3,S-TCB 0.00 0.48 0.28

2,4-DCP 0.00 0.45 0.28

3,S-DCP 0.00 0.45 0.26

3,4~DCP 0.00 0.45 . 0.26

a-quinone 0.00 0.48 0.28

1,2,4-Btriol 0.00 0.48 0.28

Pyrogallol 0.00 0.46 0.28

4 -methylcatechol 0.00 0.48 0.26

catechol 0.00 0.46 0.26

3 - hydroxybenzoate 0.00 .. 0.28

3,5-di-OH-Bz 0.00 .. 0.27

O-cresol 0.00 .. 0.28

M-cresol 0.00 .. 0.28

P-cresol 0.00 0.48 0.28

1,3,S-TMeB 0.10 0.48 0.28

1,2,3,5-T!!.B 0.00 0.48 0.28

Ouinate 0.00 0.46 0.28

1,3,5-TCB, l,J,S-trichlorobenzene; Dep, dichlorophenol; B-

quinone, 1,4-benzoquinone; 1,:2,4-btriol, 1,:2,4-

trihydroxyb~nzene; 3,S-di-OH-Bz, 3,S-dihydroxy benzoate;

l,3,S-TMeB, 1,3,S-trimethyoxylbenzene; l,.2,J,S-THB, 1,2,3,5­

tetrahydroxybenzene. NA, not applicable. All substrates were

tested at an 6 mM concentration.
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(M,. 150,000), and catalase (Mr· 230,000). Linear regression

analysis was perforllled to obtain the plot.
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riq. 5.10. Effect of pH on the specific activity of the

partially purified phloroglucinol hydroxylase and resorcinol

hydroxylase isolated froa Rbodococcus ap. BPG-a.
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Temperature rC)

p19• .s.12. Effect ot temperature on the specific activity of

the partially purified phloroglucinol hydroxylase and

resorcinol hydroxylase isolated fro. BhodococCU' .p. BPG-a.
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5.4 Discussion

The mineralization of PG involves the reduction to the

dihydrophloroglucinol via a PO reductase in many organisms

(Krumholz ~ 21., 1:187; Schink and Pfenning, 1982; Patel U

al., 1981; Mathur, 1971). The evidence for a possible

hydroxylation of PG to 1,2,3,S-THB has received little

attention. Partial purification of the PG utilizing oxygen

dependent enzyme suggests that the enzyme is a hydroxylase and

not a reductase. It has been suggested that phenol hydoxylase,

resorcinol hydroxylase, and orcinol hydroxylase may accept PG

as a substrate I effector molecule in~ sp. PI and

~~ ORC (Straube, 1987; Ohta and Ribbons,

1976). However, during their studies, their organisms never

utilized PG as the growth substrate.

The purification of PG reductase from~

oxidoredllcf:ns G-41 suggested that a NADPH-dependent forward

and NADP'-dependent reaction of PG

dihydrophloroglucinol occurred (Haddock and Ferry, 1989). The

inducible partially purified PG hydroxylase would only

func".ion with a NAD(P)H-dependent forward reaction and no

reverse reaction was observed. The preferred energy cofactor

was NADH, nat NADPH, as suggested for ather isolated PG

reductases (Haddock and Ferry, 1989; Patel ~ Al., 1981).

The PG reductase purified from~ oxidoreducens

G-41 was shown to be colorless and free of any flavins
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(Haddock and Ferry, 1989) I while the partially purified PG and

resorcinol hydroxylase from Rhodocgccus sp. BPG-8 was

stimulated in the presence of FAD. Neujahr (1991) suggests

that; r."J) is noncovalently linked to a Trichospgrpn cutaneum

phenol hydroxylase and therefore is easily displaced during

purification. This could explain the differences in the

apparent V..... and K,. values when FAD was excluded from the

reaction mixture containing the partially purified hydroxylase

from~ sp. BPG-8.

The temperature and pH optima of the purified PG

reductase from Eubacterium oxidoreducens G-41 were 400C and

7.a (Haddock and Ferry, 1989). This differed significantly

from the partially purified PG hydroxylase from Rhgdocpccus

sp. BPG-8.

Chloride anions were shown to inhibit activity of the

partially purified PG hydroxylase. This is consistent with

simi liar results for other phenolic hydroxylases (van Berkel

and Muller, 1991; Neujahr, 1991). Halogen ions may be

competitive inhibitors of the enzyme NAn/P)H binding site (van

Berkel and Muller, 1991; Neujahr, 1991). Patel llll., (1981)

suggest that PG reductase from Coprococcus sp. Pe15 is

stimulated in the presence of chloride anion.

Phloroglucinol hydroxylase was extremely thermo-unstable

with an apparent native molecular weight of 155,000 daltons

which is similiar to phenol hydroxylase from Trichosporon

~ (148,000 daltons) (Neujahr, 1991; Neujahr and Gaal,



146

1973). lnterestly the native u"lecular weight of resorcinol

and orcinol hydroxylase from~~ ORC was 68.000

daltons (van Berkel and Muller, 1991; Neujahr, 1991; Ohta and

Ribbons, 1976). Haddock and Ferry (1989) found that the

purified PG reductase had a native molecular weight of 18,000

daltons.

The PG and resorcinol hydroxylase in the present case

could not be separated. suggesting that they are the same

enzyme with broad substrate specificity (van Berkel and

Muller, 1991; Neujahr, 1991; Batie e.t al., 1987; Straube,

1987: Ohc.a and Ribbons, 1976). Both tbe PG and resorcinol

probably behaved as substrate/effectors, with PG hydroxylated

at a higher efficiency. Effectors convert the oxygen into H~Ol'

instead of hydroxylating the substrate. This was verified by

the detection of the uncoupling effector product H20 2 ; and the

increased efficency of NADH oxidation wnen catalase was added

. to the reaction mixture (van Berkel and Muller, 1991; Neujahr,

1991). The catalase converted the "201 to oxygen and H10; thus

rejuvenating the expended oxygen and allowing it to aqain

react with the PG hydoxylases.

Stadtman (1992) suggests that "102 production and ferric

ions are catalysed by mixed function oxygenaBes (MFO) and

metal catalysed oxidation (MeO) systems which react and

oxidize enzymes making them more amenable to intracellular

proteases. The introduction of substrates, EOTA, catalase/SOD,

may inhibit this mechanism by blocking this interaction.
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Chapter VIl General Discussion and Conclusions

The metabolism of PG and the fortuitous metabolism of

resorcinol may be helped by constitutive enzymes such as

catalase, SOD, and NAD(P)H specific quinone reductases located

within the ~§ sp. BPG-8. These enzymes appear to

stabilize intermediates and also increase enzyme efficiency

during the mineralization of PG and resorcinc.l,

The effects are more pronounced in the conversion of

resorcinol to 1,2, 4-trihydroxybenzene by the PG induced

Rhadococcus sp. BPG·8. Interestingly resorcinol was never

found to be an intermediate during PG mineralization. The

efficiency of the conversion of resorcinol to 1,2,4·

trihydroxybenzene in the presence of catalase was increased

because of the elimination of H201 and the regeneration of

oxygen (Fig. 6.1) (Daghy, 1971). The same effect could apply

to PG; however it has been shown that PG is converted into

1,2,3,5-THB at a greater effiency. This increased cf.Hency

suggests that PG may be the preferred substrate, while

resorcinol may behave as an effector and a substrate.

The conversion of resorcinol to 1,2,4-trihydroxybenzene

presents another problem to the PG induced Rhodococcus sp.

BPG-B. The stability and equilibrium of 1,2,4­

trihydroxybenzene favours the 2-hydroxY-l,4-benzoquinone, a

potential toxic dead-end product that produces superoxide

radicals during its formation. Therefore the Rhodococcus sp.
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BPG-8 must employ various protective mechanisms to first

stabilize ~, 2,4-trihydroxybenzene and also convert the 2-

hydroxy·l, 4 -benzoquinone back: to 1,2, 4-trihydroxybenzene.

O
lUyme'FADH2"SUbSlrale~EIlZ)'me'FADH2+SUb.itralc

0, tNADlPl r- 0,

Hf) AO{PlH2 ~ H:zOz

__~_Jm:yme'FAD'SUbsttalC-+=!"EnIYmt'FAD+ SubSlIllc
El'lzyme·FAD T

1,2.3,s·TclJahydrOll.ybenzcne Phloroglucinol
1,2,4-Trihydrolybenzenc Resorcinol

Pig. 6.1. Schematic diagram of the substrate/effector function

of phenolic hydroxylases (modified from: Dagley, 1971).

It was shown that a non-inducible NAD(P)H 2-hydroxY-l,ll-

benzoquinone reductase converted the quinone back to 1,2,4'"

trihydroxybenzene. Catalase and SOD within the RhodococcYS sp.

BPG-8 seemed to stabilize 1,2,4-trihydroxybenzene by the

elimination of a possible free radical reaction with the

8uperoxide radical produced during the formation of 2-hydroxy·

1,4 ·benzoquinone. The crude cell-free extract had the same

effect as adding catalase and SOD to the partially purified
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cell-free extract.

Stabilization of the l,/',4-trihydroxybenzene only to

produce a product that would not be further metabolized would

in essence create a situation no better that the quinone

formation scenario. Rhodococcus sp. BPG-8 would deplete both

energy and carbon, with the inevitable production of the

daughter quinone and superoxide radical.

It was shown that~ sp. BPG-8 may grow on

l,2,4-trihydroxybenzene, and thus may have enzymatic capacity

to utilize such a substrat'~. The slow conversion of 1,2,4-

trihydroxybenzene to '1 product that resembles the meta­

cleavage product 2.4 -dihyjroxy-6 -oxo~2. 4 -hexadienoic acid may

reflect a constitut"\.ve activity for 1,2,4-trihydroxybenzene.

It has been shown that 2,4-dihydroxy-6·oxO-2,4-hexadienoic

acid may be converted into acetopyruvate and subsequently

acetate and pyruvate during the mineralization of PG. Albeit

the slow conversion of 1,2,4-trihydroxybenzene into 2,4·

dihydroxy-6-oxo-2,4-hexadienoic acid allows the PG induced,

resorcinol fed~ sp. BPG-a to fortuitously utilize

resorcinol through the PG pathway. However, this is quite an

expensive energy expenditure because the slower the conversion

of 1,2,4-trihydroxybenzene to 2,4-dihydroxy-6-oxo-2,4-

hexadienoic acid, the more NAD(P)H must be ut.ilized to

stabilize the 1,2,4-trihydroxybenzene. This is reflected in

the low growth yields for resorcinol as opposed to PG fed

RhodococcllS sp. BPG-a.
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The conversion of PC to 1,2,3. 5-THB also presents

possible problems for the~ sp. SPG-B. The 1,2,3.5-

THB also has the tendency to form v.;lrious quinones with the

subsequent production of superoxide radicals. The production

of possible 2,6-dihydroxy-l,4-benzoquinone specific

reductase was not found suggesting that conversion back to

1,2,3,S-THB may not be possible. The effect of catalase and

SOD seemed to have some effect on the oxidation rate of

l,2,J,S-THB to a possible 2.6-dihydroxY-l,4·benzoquinan, thus

appearing to minimally stabilize the 1,:2,3, S-THB. The 1,2, J. S·

THB was relatively more unstable as compared 1,;.0 -the 1,2,4-

trihydroxybenzene, Perhaps the increased production of

superoxide radicals during 1,2,3. 5-THB oxidation s ....amped the

SOD and catalase protective mechanisms. This would, in

essence, stimulate the free radical chain reaction bet....ee~

1,2,3,5 -THB and the superoxide radical.

The protective mechanisms employed to st.abilize 1,2,3,5·

THB in contrast to 1,2,4·trihydroxybenzene did not. seem to be

as critical. When 1,2,3,5-THB was added to the crude ·_~ll·free

extract, cleavage to 2,4 -dihydroxY-6 ·oxo·2, 4 ·hexadienoic acid

occurred with such high efficiency that the production of the

oxidized product was never detected. This suggest.s that PC may

be the preferred substrate for hydroxylation, while resorcinol

may be another substrate PG hydroxylase utilizes.

The application of catalase and SOD seemed to stabilize

both the PC and resorcinol hydroxylases. Stadtman (1992)
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suggests that enzyme degradation follows a two-step mechanism

in which the enzyme is oxidized to a catalytically inactive

form by HzOz or ferric ions, which make it more amenable to

intracellular proteasQs (Fig.6.2). He suggests that MFO and

Meo systems are involve in the production of HzOz and ferric

ions. It appears that introduction of catalase and SOD may not

only stabilize the polyhydroxylated intermediates such as

1,2,3, 5-THB and 1,2, 4-trihydroxybenzene. but also help prevent

the oxidation and subsequent proteolysis of the BPG-8 PG and

resorcinol hydroxylase .

(DT. --{o
C.UI.....SOO

HAD(P)H
FerrIc Ions
D

."."-Lr-::------,

Fig. 6.2. The tva-step mechanism of enzyme degradation

(Reproduced with permission from American Academy tor the

Advancement of science, Stadtman, 1992).



152

The production of superoxide radicals by the polyphenols

1,2,3,S-THB and 1,2,4-trihydroxybenzene suggests possible

pharmalogical applications. It would be interesting to see if

1,2.3, 5-THB would have anti-viral applications during in Y.i..t..l:Q

and i.D tix.Q studies. similiar phloroglucinol derivatives have

been implicated as having anti-viral and even anti-tumor

function as outlined in chapter 1. I would speculate that such

a function is a product of superoxide production with its

associate deleterious affects on cellular material. Perhaps

viral infected cells or tumor cells. as compared to normal

cells, have weakened protective mechanisms against superoxide

generating molecule such as l,2,3,S-THB. It would be

interesting to test this hypothesis.
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