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Abstract

~ sp. BPG-8 was isolated from oil rich soil in

Newfoundland and found to utilize numerous aromatic compounds

as sources of carbon and energy. Chemical analysis of cell

wall composition which included amino acids, sugars, and fatty

acids showed complete homology with~ erythropoUS.

Identical profiles for acid production and growth on various

substrates occurred. G~owth of the isolate on phloroglucinol

occurred in the pH range 5-8; with substrate and temperature

optima of 8.0 mM and 25aC, respectively. Phloroglucinol

induced cells when fed phloroglucinol or resorcinol produced

1,:2,3,5 -tetrahydroxybenzene and 1,2,4 -trihydroxybenzene,

respectively. Cell-free extracts of cells grown

phloroglucinol contained a phloroglucinol hydroxylase that

also hydroxylated resorcinol. Dioxygenases present in the

induced cells carried out the ortho-cleavage of 1,2,3,5-

teerahydroxybenzene while meta-clevage of 1,2,4-

trihydroxybenzene appeared to be constitutive. Cell-free

extracts a-Iso showed inducible activity for the metabolism of

acetopyruvate with the accumulation of formate in the

supernatant. Tentative degradative pathways for phloroglucinol

and fortuitous resorcinol metabolism are discussed. This is

the first reported case in which phloroglucinol is metabolized

by an oxidative rather than a reductive pathway. The
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oxidations of 1,.2,3,5 - tetr.:::.liydroxybenzene and 1,2,4 ­

trihydroxybenzene produce superoxide radicals that may have

potential deleterious effects on cellular integrity. It has

been shown that both superoxide dismutase and catalase retard

the auto-oxidation of these molecules by hindering their free

radical reaction mechanism with superoxide. A non-inducible

NAD(P)H dependent reductase appeared to convert the 2-hydroxy­

1,4-benzoquinone back to 1,2,4-trihydroxybenzene; although

similiar effects not found for 1,2,3,5-

tetahydroxybenzene, These novel findings suggest that

constitutive non-pathway enzymes may participate in

stabilization of intermediates. Partial purification of the

phloroglucinol hydroxylase was performed using ammonium

sulfate percipitation, ion exchange chromatography, and gel

filtration. The pH, temperature, and substrate optima for

phloroglucinol hydroxylase were 7.0, 25oC, and 68.0 tlM for the

substrates phloroglucinol and resorcinol. NADH+H' was the

primary reductant and FAD stimulated the hydroxylase activity

by 300 \. :rhe enzyme had a native molecular weight of 155,000

daltons and an apparent Km of 8.3 J.lM and 12,5 pM for

phlorglucinol and resorcinol respectively. Chloride ion along

with numerous metal ions appeared to inhibit phloroglucinol

and resorcinol hydroxylase activities. This is the first

reported case for the partial purification of a phloroglucinol

hydroxylase.
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Chapter I: Review of the literature

1.1 General

Microbial degradation of aromatic compounds is very

important to the earths' carbon cycle. The pyrolysis of

organic material from ,1atural or anthropogenic sources

produces many aromatic compounds that are relatively

recalcitrant to degradation (Dagley, 1971). If the carbon

became locked ins;de these products eventually it would be

exhausted from the biosphere. The benzene nucleus of many of

these products furnishes some of this inertness because of its

resonance structure stability (Gibson and Subramanian, 1984).

Some soil microbes can produce mono- and dioxygenases that are

able to insert oxygen within this benzene nucleus, thus making

it more amenable to degradation and subsequent utilization as

a carbon and energy source (Gibson and Subramanian, 1984).

The importance which microbes play in the economy of the

earths carbO!I may be circumvented by man-made compounds. The

problems of microbial fallibility and molecular recalcitrance

have serious consequence to the health of the global ecosystem

and its inhabitants. Halogenation of the benzene nucleus, a

feature of many modern pesticides, presents a novel situation

for many soil microbes (Cork and Krueger, 1991). It is

important to realize that production and application of such

chemicals should be shaped by its biodegradability in the

prevailing environment.



It has been shown that many of these man·made compounds

may be degraded partially or completely by both microbial

conzortia and single microbes. This is a testament of the

versatility and power microbes employ when presented with a

novel carbon source. This is not to concede that microbes are

infallible, since thE~re are numerous cases in which

degradation of toxic compounds is incomplete, producing

intermediates that may be more toxic than the original

compound (Reineke, 1984).

An overview of the degradatory processes will be

presented to illustrate our current understanding of microbial

degradation as it pertains to aromatic metabolism.

1.2 Degradation of Benzenoid compounds

1.2.1 ArolDaticl, Polycyclic Aromatics and Lignin

The aerobic degradation of the aromatic nucleus whether

it is unsubstituded or substituted with various groups

(aliphatic, hydroxyl, amino, or halogen) involves two basic

mechanisma-. The first mode of oxygenated cleavage of the bond

between adjacent carbon atoms that carry hydroxyl groups is

known as ortho-cleavage and the associate metabolic pathway is

recognized as the ,B-ketoadipate pathway (Stanier and Ornston,

1973) (Fig. 1.1). The second mode of oxygenated clf.~avage k.nown

as meta-cleavage and it occurs between two carbon atoms, only

one of which carries a hydroxyl group; the other carbon may be



unsubstituted or substituted with anything but a hydroxyl

group (Bayly and Barbour, 1984). Meta·cleavage occurs when the

hydroxyl groups are ortho or para to each other with the

respective sequences called the meta and gentisate pathways

(Bayly and Barbour, 1984).

Many aromatics are metabolically altered to produce two

common intermediates such as catechol and protocatechuate.

Ortho-cleavage produces ciS,cis-muconate and {3-carboxy­

cis, cis-muconate from catechol and protocatechuate,

respectively (Stanier and Ornston, 1973) Metabolic

convergence of the separate branches leads to three common

intermediates: (J-ketoadipate enol-lactone, l1-ketoadipate, and

,B-ketoadipyl-coA which undergoes thiolytic cleavage to produce

succinate and acetyl-coA (Stanier and Ornston, 1973) (Fig.

1.2). Catechol 1,2-dioxygenase and protocatechuate 3,4­

dioxygenase have molecular weights of 95, 000 daltons (two

associated ferric ions) and 700, 000 daltons {eight associated

ferric ions} respectively (Gibson and Subramanian, 1984;

Stanier and Ornston, 1973). The lactonizing enzymes for

cis, cis-muconate and l3-carboxy·cis, cis-muconate which

eventually pr.oduce (J-ketoadipate are subject to independent

regUlatory control and are not antigenically related. They

have sharp enzymatic specificity, are stable at 60°C, and have
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Pig. 1.1. The central reactions of the p-ketoadipate pathway
in bacteria. A, protocatechuate oxygenase; 8, catechol
oxygenase: c, p-carboxymuconate lactonizing enzyme; D,
muconate lactonizinq enzyme; E, y-carboxymuconolactone
decarboxylase; F, muconolactone isomerase; G, p-ketoadlpate
enol-lactone hydorolas8; H, p-ketoadipate succinyl-CoA
transferase; I, p-ketoadipyl-CoA thiolase; J, succinate and
acetyl-CoA (modified trom: stanier and Oroston, 1973).



equal molecular weights of 190, 000 daltons (Stanier and

Ornston, 1973) . Muconolactone isomerase and y.

carboxymuconolactone decarboxylase have enzyme

specificity, differ in external charges, are subject to

independent controls, are antigenicaUy unrelated, and both

have a molecular weight of 93,000 daltons (Stanier and

Ornston, 1973\.

The ,s-ketoadipate enol·lactone hydrolase induced by

protocatechuate and catechol have molecular weights of 21,000

and 24,000 daltons, respect.ively; however the exist.ence of

mutants of Acinetobacter in which either t.he synthesis of one

or the other enzymes is specifically affe;cted suggest that the

enzymes are coded by different structural genes. ,s~ketoadipate

succinyl·CoA transferase are induced by growth wit.h 13­

ketoadipate, aromatic acids, and sat.urated dicarboxylic acids

(Stanier and Ornston, 1973).

Regulation of the ,I3-ketoadipate pathway and the ancillary

initial reactions all seem to be inducible. During the

metabolis~ of catechol in Alcaligenes~ the primary

aromatic compound, cia,cis·muconate, or muconolactone act as

inducers; whereas protocat.echuate, l3-ketoadipate or /3.

ketoadipyl·CoA act as inducers during protocatechuate

degradation (Stanier and Ornston, 1973).

Meta-cleavage of catechol and protocatechuate produce (z­

hydroxy·muconate semialdehyde and (z·hydroxY-'Y~carboxy-muconic



semialdehyde respectively (Dagley, 1975; Dagley, 1971). The

end products from meta-cleavage of catechol are formate,

acetaldehyde and pyruvate, while formate and two molecules of

pyruvate are produced from meta-cleavage of protocatechuate

under similiar conditions (Bayly and Barbour, 1984) {F'ig.

1.21.

The catechol and protocatechuate ort.ho- and meta-cleavage

pathways differ in the mode of enzyme induction, number of

substrate inducers, and substrate specificity (Bayly and

Barbour, 1984; Stanier and Ornston, 1973). The meta pathway is

regarded as being able to degrade a wider spectrum of aromatic

compounds obligatory to enzymes with broade): substrate

specificity and induction patterns (Bayly and Barbour, 1.984).

The meta and the gentisate pathway degrade a wider spectrum of

aromat.ics that include phenolics, polycyclic aromatics,

steroids, and alkylbenzoic sulfonates with Pseudomonas,

Acinetobacter, ~, Alcaligenes, and~ being the

predominant genera (Bayly and Barbour, 1984).

Degradation of various aromatics such as m-cresol, 3­

hydroxybenzoic acid, salicylic acid, anthranilic acid, {3­

naphthol, and xylenol produce alkyl substituted gentisate and

gentisate as intermediates (Bayly and Barbour, 1984; Chapman,

1972) (F'ig. 1.3). The important aspect of the gentisate

pathway are cleavage of the aromatic ring by a dioxygenase to

form maleylpyruvate which Is isomerized to fumarylpyruvate
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Fiq. 1.2. The ortho- and meta-cleavage pathways tor

dissimilation of protocatechuate (1) and catechol (2). The

structure intel1llediates )-6 are shown: J. a-hydroxy-y­

carboxymueonic semialdehYde; 4. P-carbolCy-cis,cis-muconate; 5.

c!s,cis-muconate: and 6, n-hydroxymuconic semialdehyde. The

stuctures of p-ketoadipate and the end products are not shown:

7, p-ketoadipatel 8, formate; 9, pyruvate: 10, succinate; 11,

acetyl-CoAl 12, acetylaldehyde; A, ortho pathway; B, meta

pathway. (modified from: stanier and Ornston, 1973).
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Fig. 1.3. The gentisate pathway for the degradation of m­
cresol, and 2,5- and J , S-xyleno1-

Key to compoundG: Rio ~ .. H; XIX. Ill-cresol; XX, )­
hydroxybenzylalcohol; XXI. 3-hydroxybenzaldehyde; )­
hydroxybonzoat.; XXIII, gentisate; XXIV. lIIaleylpyruvate; XXV,
maleic acid; XXVI, O-aalic acid; XXVII, fumarylpyruvate;
XXVIII, tUfllarate; XXIX, L-malic acid.

lIIethy~Le~zyH1'al~h~l ;CH] ~x;~x. 3~h~~~~;;~~~~etXhilb;~~~~~~~~;: ~
XXII, J-hydroxY-4-llethylbenzoate; XXIII. 4·llIethylgent1sate;
XXIV, 5-mllthyl-maleylpyruvate; XXV, citraconic acid.

R... CHp R1 • H: XIX, J,S-xylenol, XX, J-hydroxy-s­
methy:' ",enzylalcohol: XXI, 3-hydroxy-5-methylbenzyaldehyde;
XXII, J-hydroxy-5-methylbenzoate; XXVIII, 3-methylgent!sate;
XXIV, 6-methyl-maleylpyruvate: XXV, citraconic acid.

Key to enzyllIes: A, methylhydroxylase: 8, alcohol
dehydrogenase: C, aldehyde dehydrogenase: 0, 6-mono-oxygenase:
E, qentisate 1,2,-dioxygenase; F, maleylpyruvate hydrolase: G,
maleate hydratase; H, isomerase: J, fumarylpyruvate hydrolase;
K, fumarase (Reproduced with permission from Marcel Dekkar
Inc., Bayly and Barbour, 1984).



which is then hydrolysed to fumarate and pyruvate (Bayly and

Barbour, 1964). Fumarate is subsequently converted into L­

malic acid by a fumarase. Maleylpruvate may al,£;o be converted

into maleic acid and pyruvate by a maleylpyruvate hydrolase.

Maleic acid is subsequently converted by a maleate hydratase

into D-malic acid (Bayly and Barbour, 1964).

Bacteria, filamentous fungi, yeast, cyanobo.cteria,

diatoms and other eukaryotic algae have been shown to oxidize

polycyclic aromatics (PAH) that range in size from naphthalene

to benzo[a]pyrene (Cerniglia, 1984). The fate of PAWs in the

environment is influenced by physicochemical factors of the

PAH's, environmental factors of the biota, and microbial

factors (cerniglia, 1984). It has been recognized that high

PAH concentrations have been associated with higher levels of

cancer in humans (Leahy and Colwell, 1990; Cerniglia, 1984).

Difference between prokaryotic and eukaryotic

transformation of PAH's are quite significant (Gibson and

Subramanian, 1984; Jerina and Daly, 1974). Prokaryotes produce

a ili-dihydrodiol from the incorporation of two atoms of

oxygen within the PAM's, whereas fungal e:nzymes produce an

arene oxide through the action of the cytochrome P-4S0 system

and the incorporation of one atom of oxygen within the PAW s

(Gibson and Subramanian, 1984) (Fig. 1.4). The arene oxide can

either undergo an non-enzymatic rearrangement (NIH shift) to

a phenol which is later conjugated, or reacted with iln epoxide



hydrolase

,.
form the ~-dihydrodiol (Gibson and

Subramanian. 1984; Cerniglia II ill .. 1982). The ili.-Napthalene

dihydrodiol produced by bacteria is oxidized by a NAn'·

dependent dehydrogenase to produce a catechol-type molecule

which then undergoes either ortho- or meta-fission, which

eventually lead to complete mineralization of the PAH (Gibson

and Subramanian, 1984) (Fig. 1.5),

Lignin biodegradation is important to the earth's carbon

cycle since lignin is second only to cellulose in abundance

(Kirk and Farrell, 1987). Lignin also protects most of the

earths cellulose and hemicellulose from enzymatic hydrolysis

(Kirk and Farrell. 1987). Lignin is found in higher plants

including ferns, and biochemically arises f::-o... the free

radical copolymerization of three precursors: p-coumaryl

alcohol, coniferyl alcohol, and sinapyl alcohol which are (1-0-

4 linked (Kirk and Farrell, 1987) (Fig, 1,6). The structural

features of lignin suggest that the degradation must be

extracelluar, nonspecific. and nonhydrolytic (Blanchette.

1991; l<irk. and Farrell, 1987),

Lignin is not biodegraded anaerobicalJ.y and it appears

that neither rapid nor extensive bacterial degradation occurs

under aerobic conditions. The degradation of lignin by

Streptgmycetes spp, has been suggested (Kirk and Farrell,

198?; Kirk, 1984); however numerous studies seem to suggest

that this may be incomplete or nil (Pometto and Crawford,
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Piq. 1 .... Reactions utilized by mammals for the transformation

of aromatic hydrocarbons: I, aromatic hydrocarbon; 2, arene

oxide; 3, phenol; 4, .t.IArJ.§-dihydrodiol: 5, glutathione

conjugate: 6, sulfates and glucuronides: 7, mercapturic acids:

A, cytochrome P-450: B, epoXide hydratase: C, NIH shift: 0,

glutathione transferase (Reproduced with permission from

Marcel Dekkar Inc., Gibson and SUbramanian, 1984).
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Fiq. 1.5. proposed pathway for the degradation of naphthalene

(a pOlycypl!c aromatic) by bacteria: 1, naphthalene; 2, c1s­

naphthalene dihydrodiol; 3, 1.2-dihydroxynaphthalene; 4, cis­

o-hYdroxybenzalpyruvate; 5, salicylaldehyde: 6, salicylic

acid; 7, gentisic acid; 8, catechol; 9, respective ring

fission products (Reproduced with permission from Marcel

Oek}':ar Inc •• Gibson and sUbramanian, 1984).
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1986; Petty and Crawford, 1985; Crawford tt il.. 19831.

The white-rot basidiomycetes, notably Phanerpcha,pre

chrvsosporium degrade lignin more completely and rapidly than

any other microbial group (Kirk and Farrell. 1987; Kirk,

1984) . They seem to invade the lumens of wood cells where they

secrete enzymes such as ligninase, Mn-peroxidase, phenol­

oxidizing, and H~Ol-producing enzymes. The lignin degradation

process seems to follow an enzymatic combustion process which

resembles a nonspecific enzyme-catalyzed burning (Blanchette,

1991; Kirk and Farrell, 1987). This leads to a potpourri of

divergent reactions that is unmatched by any other enzyme

system (Kirk and Farrell, 1987). Depolymerization is

kinetically favoured because ligninaae oxidizes its substrate

by one electron and subsaquently produces unstable cation

radicals which elicit a variety of non-enzymatic reactions

(Kirk and Farrell, 1987) (Fig. 1.7). It is also clear from the

structure of lignin that its conversion to water and carbon

dioxide is thermodynamically favourable.

1.2.2 Anaerobic degradation of Aromatic.

Ecosystems are common in sediments, al imentary tract of

animals, and in industrial activities that produce anoxic

systems (Evans and Fuchs, 1988). Therefore different

mechanisms for the detoxification of aromatics must exist

because oxygen is limiting (Young, 1984). The anaerobic
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Fiq. Schematic structural formula of lignin.

Polymerization of the three precursor alcohols (shown at the

lower rignt) produces lignin. The precursor alcohols have the

various R-groups: R,=R2"""H: p-coumaryl alcohol; R,=OCH3• R2",,"H:

coniferyl alcohol: R,=R2=OCHl : sinapyl alcohol. The numbers 2­

16 refer to the number of component alcohols (Reproduced with

permission from Ann. Rev. Microbial., Kirk and Farrell, 1987).
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Fig. 1.7. -Plethora of products produced during the oxidation

of 13-0-4 model compound by ligninase/H20 2o A, A-ring cleavage;

B, a-ring cleavage, while numbers refer to products produced

during oxidation of 13-0-4 model compound by ligninase/HlOl "

(Reproduced with permission from Ann. Rev. Microbial., Kirk

and Farrell, 1987).
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metabolism of aromatic compounds may occur by photosynthetic

phosphorylation, denitrification, sulfate reduction,

fermentation, and methanogenic fermentation (Harwood and

Gibson, 1988; NO%llIma and Maruyama, 1988; Krumhoh:: !:.t. Al .•

1987; Bak and Widcile, 1986; Healy and Young, 1978).

Photosynthetic phosphorylation occurs in several species

of the purple nonsulphur Rhodospirillaceae family (Evans and

Fuchs, 1988). Species such as RhodopseudpIDO'li!§.~ and

RhodopseudoIDonas~ can metabolize compounds such as

benzoate, m· and p-hydroxybenzoate, and phloroglucinol (Evans

and Fuchs, 1988; Harwood and Gibson. 1988). These species

obtain their energy from light and use simple aromatic

compounds as carbon sources. The photometabolism of benzoate

suggests that the aromatic ring becomes fully reduced wit.h the

incorporat.ion of six hydrogen equivalent.s t.o form

cyclohexanecarboxylate. The subsequent. react.ions would be

analogous to fatty acid ,a-oxidation (Evans and Fuchs, 1988).

During the photometabolism of phloroglucinol, it is reduced to

dihydrophloroglucinol and subsequently cleaved to 2-oxo-4­

hydroxyadipate (Evans and Fuchs, 1988; Whittle Sl.t. y., 1976).

The ring cleavage mechanism and enzymatic reactions of this

pathway are still uncertain.

The metabolism of nitrate-reducing bacteria suggests that

the oxidation of aromatic compounds is coupled with the

exergonic reduction of nitrate to nitrogen or ammonia (Evans
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and Fuchs, 1988). Energy is derived mainly from electron

transport phosphorylation, and carbon is supplied from the

aromatic degradation. The anaerobic nitrate metabolism of

phthalate and other aromatics suggests that there may be a

reduction and hydrolytic cleavage of the aromatic ring

followed by ,a-oxidation (Aftring and Taylor, 1981)

Sulfate reducers couple the oxidation of organic

compounds with water to the exergonic reduction of sulfate to

sulphide. Electron transport phosphorylation supplies the

energy for the sulphate reducerEl, while the carbon is derived

from aromatic degradation. The genera associated with sulfate

metabolism of aromatics include Desulfovibrio, Desulfococcus,

Desulfonema, and Desulfosarcinia (Evans and Fuchs, 1988).

Although there have been reports of aromatic degradation by

sulfate reducers, along with the associated sulfate reduction

to hydrogen sulphide, no pathway has been published (Bak and

Widdle, 1986)

Microorganisms that derive their energy from substrate

level phosphorylation, and employ organic compounds as

electron donors and acceptors, are fermentative. Some genera

include CoprOCOCCIlS, Strept.0coccus, ~, and

Eubacterium all of which degrade compounds such as

phloroglucinol and various phenolic compounds (Krumholz and

Bryant, 1986; Schink and Pfenning, 1982; and Patel II ill·,

1981). Krumholz U 2.1.., (l98?) isolated an EUbact.erium



I.
~~ that degrades gallate, pyrogallol, and

phloroglucinol to acetate, butyrate, and carbon dioxide.

Formate or hydrogen was used as an electron donor to

catabolize these aromatic substrates (Evans and Fuchs, 1988).

The degradation of aromatic compounds also occurs in

methanogenic consortia which include fermentative, acetogenic,

and methanogenic bacteria. Methanogenic consortia depend on a

syntrophic relationship in which the fermentors degrade

aromatics into metabolizable products for the methanogens

(Evans and Fuchs, 1988). Numerous aromatic compounds seem to

be degraded by a reduction of the aromatic ring followed by a

hydrolytic cleavage and (3-oxidation to aliphatic compounds

such as acetate, formate, and various carboxylic acids (Evans

and Fuchs, 1988).

1.2.3 Halogenated Aromatics and Pesticide Compounds

The emergence of the chemical industry during this

century has lead to the introduction of many halogenated

compounds .into the environment either through point source or

dispersed pollution (Haggblom, 1990). The relative novelty of

these compounds in the environment and the lack of time for

microorgansims to develop adequate degradative enzymes through

a evolutionary process has lead some to believe that this may

be the reason for their recalcitrance (Haggblom, 1990; Reineke

and Knackmuss, 1988). There is also an argument that numerous
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halogenated compounds have been exposed to microbial

populations since early in the earths history and therefore

halogenated compounds should be degradable (Haggblom. 1990;

Reineke and Knackmuss, 1988). Some halogenated compounds have

been shown to be totally degraded or transformed while others

are not degradable suggesting that microorganisms may have not

had enough time to utilize these specific compounds. The

biodegradation of the halogenated areneB can only be

considered complete when the carbon skeleton is converted into

intermediary metabolites and its organic halogen is returned

to the mineral state (Haggblom, 1990; Reineke and Knackmu9s,

1988; Reineke, 19841. Incomplete biodegradation may lead to

dead-end metabolites that are sometimes more toxic than the

initial substrate.

The biodegradation may occur by cometabolism or by

modified basic metabolic sequences such as the ,B-ketoadipate

(Haggblom, 1990). Elimination of the halogen may occur before

or after ring cleavage by aerobic and anaerobic processes

(Reineke and Knackmuss. 1988).

Displacement of the halogen by a hydrogen may occur

anaerobically in a methanogenic consortia that consist of a

dechlorinating bacterium, benzoate oxidizing bacterium, two

butyrate-oxidizing bacteria, two HlMconsuming methanogens

{Methanospirillum ~, Methanohacteriym sp. J, and a

sulfate-reducing bacterium (DesJllfgyibrio sp.1 (Haggblom.
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1990; Reineke and Knackmuss. 1988j Reineke, 1984). It appears

that one or more of these organisms cross-feed the

dechlorinating bacterium. The reducing power required for

reductive dechlorination may be provided by acetogenic

oxidation of benzoate. One third of this hydrogen was shown to

be consumed by reductive dechlorination, while two thirds was

utilized by the methanogen. These communities may degrade

mono- and polyaubstituted chlorinated aromatics to methane and

carbon dioxide. Reductive dechlorination was observed with

2,4,S-trichlorophenoxyacetic acid (2,4,5-T), chlorophenols.

and 1,2 , 4-trichlorobenzene. Even pentachlorophenol (PCP) was

completely dechlorinated by a mixture of 2-chlorophenol (2­

CP), 3-CP, and 4-CP-acclimated slu::1ges (Reineke and Knackmuss,

19881 (Fig. 1.8).

Aerobic dehalogenation of the halogenated aromatics may

occur by displacement of the halogen by a hydroxy group,

oxygenolytic cleavage of the halogen-carbon bond, and chlorine

elimination from nonaromatic intermediates (Haggblom, 1990;

Reineke a.!ld Knackmuss, 1988; Reineke, 1984) (Fig. 1.9).

Displacement of the halogen by hydrogen utilizes water instead

of oxygen as the hydroxyl donor, with dechlorination

proceeding via hydrolytic cleavage of the carbon-chlorine

bond. This has been reported for numerous genera which include

Arthrobacter, Micrococcus, Pseudomonas ,

Flavobacterium, and RbodococcYs. Pentachlorophenol. 4-
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iodobenzoate, and 4-bromobenzoate have been dehalogenated by

this process (Reineke and Knackmuss, 1988; Reineke, 1984).

oxygenolytic cleavage of the halogen-carbon bond has

initiated fortuitous dehalogenation by specific dioxygenases.

corkco
CI~CIco

F19. 1.8. Proposed pentachlorophenol degradation pathway by a

mixture of halogenated acclimate sludges (Reproduced with

permission from Ann. Rev. Microbicl., Reineke and I<nackmuss,

1988) •

~OCOOH~ ~OeOOt1_ prolocalechuale pathways

~.r,ct'c..~
co 'OM

Fig. 1.'. Hydrolytic dechlorination of 4-chloroben:toate by It

Micrococcus spp. (Reproduced ....ith permission from Ann. Rev,

Microbicl .• Reineke and Knaokmuss, 1988).
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Fig. 1.10. oegradi!l':.ion pathway for 2-fluorobenzoate by a

pseudomonad. A, 2-fluorobenzoate: B",e, 2- and 6:'fluoro-l,2-

dihydro-l,2-dihydroxybenzoate, respectively; 0, catechol: E,

6-!luorocatechol: F, 3-oxoadlpate pathwayr a, 2-tluoro­

cls,cis-muconate (dead-end product) (Reproduced with

permission from Ann. Rev. Microbicl., Reineke and I<nackmuss,

1988) •

Dehalogenation of 2-fluorobenzoate occurred When fluorine was

non-enzymatically removed from the 2-fluoro-l, 2-dihydro-l, 2­

dihydroxY'benzoate to produce catechol (Reineke and J<nackmuss,

1988) (Fig. 1.10). Oxygenolytic elimination from a ili-

dihydrodiol produced by dioxygenation was shown to account for

the initial dehalogenation of 4-halophenylacetates by a

Pseudomonas sp. strain CBS) (Reineke and Knackmuss, 1988).

chlorine elimination may occur in non-aromatic



"
in\:ermediates atter ortha-cleavage of the chlorocatechol.

Chloride is eliminated spontaneously after the carbon-halogen

bond has been labilized through isomerases or reductases to

form maleylacetate (Haggblom, 19901 Reineke and Knackmuss,

1988) (Fig. 1.11).

6~ ¢r~ 6~ b~
I ~ CI I/- ell".. (I CI 1,.-.: eM. •

"
I" I" I" l"-

cr- q- ,~"0- D~ I
/- " 1:1 ...-::: Co Ct ...-::: t:>l.

1-'" 1-'" 1-'" 1-'"

~~" -~ "1~ ""~-

f-"
MQOC_CM"'CH_CO_C"'_COOII IOOOC_C .. CM_CO_C... _COOOl

FiC). 1.11-. Degradation of chlorocatecho!s to maleylacetates by

a~ strain 813. A, chlorocatechoIs; B, chloro-cis-

cis-muconates; C, cycloisomerlzation products; D,

maleylacetates and chloro-maleylacetates (Reproduced with

permission from Ann. Rev. MicrobiaL, Reineke and J<nackmuss,

1988) •
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1..3 Phloroglucinol

1.3.1 Genera.l Desoription

Anhydrous and dihydrated phloroglucinol have melting

points of 219°C and 115°C, respectively. Phloroglucinol is a

colourless, odourleas, sweet tasting compound with a pKa of

7.97 and 9.23 at :<lODe (Robern, 1965). Its aqueous solution

gives a violet colour with ferric chloride, reduces Fo:.hlings'

solution and precipitates gold, silver, and platinum from

solutions of their salts (Robern, 1965) . Alkaline solutions of

phloroglucinol absorb oxygen from air but not as pronounced as

pyrogallol or 1,2,4-trihydroxybenzene. The ultraviolet,

infrared, and nuclear magnetic resonance spectra are

consistent with the phenolic structure of phloroglucinol at

neutral pH I however it as been shown to have six

interchangeable prot.ons (Erlenmyer §.t. al., J q36) .

Phloroglucinol was first prepared by the heating of the

monosodium derivative of ethylicmalonate, forming an ester of

phloroglucinol which on hydrolysis yielded phloroglucinol

(Jordan, lB97) . Subsequent synthesis involves the reduction of

trinitrobenzene with tin and hydrochloric acid, with the amine

being neutralized by boiling in water for one day (Clarke and

Hartman, 1929).

phloroglucinol occurs in most plants as part of the

complex tannin molecule or as the dihydrochalcine glycoside

phloridizin (Robern, 1%5). It does not exist in the free
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form, but a significant component of seeds, leaves and bark of

many trees contains the phloroglucinol moiety (Robern, 1965;

Robinson, 1962). It naturally exists as a component of several

plant polymers such as flavanee, anthocyanins, catechins,

lignin precursors and their intermediate degradation products

(Krumholtz and Byrant, 1986; Robinson, 1962). Phloroglucinol

occurs in nature in the A-ring of f·lavonoid compounds and

other plant phenolic compounds and may arise from the

microbial degraoation of these compounds (Walker and Taylor,

1983). It has also been suggested that the breakdown of

natural products such as coal yield phloroglucinol {Robern,

1965; Mathur, 1971). The pentahydroxy flavone quercetin was

also shown to be biotransformed to phloroglucinol and

protocatechuate by~ l.2ti and Bradyrizobium strains

(Rao ~ y., 1991).

1.3.2 Aerobic and Anaerobic Degradation

The degradation of phloroglucinol may be accomplished

by aerobic. and anaerobic microorganisms. Wagner (1914), and

Gray and Thornton (1928) isolated microorganisms from soil and

feces that could utilize phloroglucinol. Species of

Brevihacterium, pebaromyces, PSPlldomonas

Arthrobacter and Penicillium have been shown to degrade

phloroglucinol (Nakagawa and Takeda, 1962; Harris and Rickets,

1962; Robern, 1965; Mathur, 1971). Jamieson tl Al.. (1970),
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