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ABSTRACf

Lapillus otoliths of D-group cod (Gadus morhua) were used to detennine the day of

hatching and length at age of individuals collected along the northeast coast of

Newfoundland and on the southern Grand Bank in 1989 and 1991. Spatial pattern in the

distribution of hatch dates was examined for latitudinal trends analogous to those of the

spawning times in the area. Length at age analysis allowed the identification of specific

areas and times where O-group growth was greatest.

Geographic distribution of cod hatching dates is neither consistently synchronous nor

sequential in Newfoundland waters. A homogeneous pattern of hatch date distributions

existed from the northeast coast of Newfoundland to southern Grand Bank in 1989. a

year with average spring and summer water temperatures. In contrast, hatching dates

during 1991, a year with below average spring and summer temperatures, exhibited a

latirudinal progression from south to nonh. Hatching in the eariy pan of a site-specific

distribution resulted in fust~feeding-larvae emerging at me onset of Calanus peak

abundance. These larvae were characterized by a prolonged period of relatively slow

growm. Those which began feeding later maintained rapid instantaneous growth for a

short period. The result was that slower-growing, "early~ larvae were actually larger

than faster growing, "later~ feeding larvae, by the end of their first year. Consequently,

those that hatch early achieve a larger size at the end of one year.
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Chapter 1

INTRODUCTION

1.1 - Overview

The success of a year class can depend largely on the number of fish that survive their

first year of life (Hjort 1914; Pennington 1979; Houde 1987; Bradford 1992).

Undemanding how [he biotic and abiotic conditions are associated with survival of the

Q-group may improve estimates of year class strength. These conditions can be

parameterized if the precise timing of a specific event, such as the hatching period. is

identified. The haU:hing dale may be especially useful because. when combined with

water temperature, critical events such as the time of first feeding and spawning time are

easily calculated. Growth of the Q-group may also play an important role in determining

year class strength because mortality decreases as size increases (peterson and

Wroblewski 1984; McGurk 1986; Houde 1987: Pepin (991). Both survival and growth

of fish larvae have been correlated with food quaJity and quantity (Lasker 1975; Lasker

and Zweifel 1978), especially at the time of first feeding (Frank and Leggett 1986).

Previous efforts to identify the halCh dates of Atlantic cod (Gadus rrwrnUil) in

Newfoundland waters have been inferred from work on adults. Egg hatching times have

been estimated by shifting the entire spawning date distribution forward. Myers et al.

(1994a) calculated hatt:h dare distributions to test whether first feeding larval abundance



coincided with peak: QJJanus nauplii abundance. Templeman's (19S1) estimates of

hatchinS times defined a segment of the sequence in the egg and larval distribution

pattern around Newfoundland. Also primarily inferred from work with adult cod is the

latitudinal cline of o-group size at age. The age-specific size of adult cod is known to

increase from Labrador to the southern Grand Bank (Fleming 1960; May et al. 1965).

There is little infonnation on the geograpltic trends of Q-group growth, but previous

inferences of increasing size from north to south have some empirical foundation

(Templeman 1966: p52).

Because there is little relevant empirical data for o-group cod in Newfoundland waters,

I begin with a review of the peak spawning times and locations believed to be applicable

in this study. The dispersion patterns of eggs and larvae are then applied to detennine

the spatial or temporal origins of post-larva! samples (Templeman 1981; Lear and Wells

1984). Egg and larval transpon in coastal and offshore waters around Newfoundland is

reviewed accordingly. Finally, background on growth throughout the early life history

of cod is given as a basis for discerning the significance and possible source of any

variability between collections.



1.2 - Spawning; Spatial and Temporal Considerations

1.2.1 - Spawning Areas

[n a summary of previous Lilerature, Templeman (1981) defines the upper continental

slope off Labrador as the major spawning ground for what he terms the Labrador·East

Newfoundland stock (2GHI and 3KL. see Figure I.ll. In addition, the eastern edges of

the Belle Isle and Funic Island Banks on the Northeastern Newfoundland Shelf are

identified as major spawning grounds for this stock. This widely accepted and

established view of the most productive spawning locations for cod around Newfoundland

and Labrador has been chaJlenged recently. Hutchings ~l aI. (1993), in a comprehensive

examination of research trawl data from 1946-1992, show that the slope and banks efthe

continental shelf are not the primary location for cod spawning, and instead:

~the relative abundance of spawning individuals on the shelf is highest: (i) off

northeast Newfoundland. (ii) within loolan of the Newfoundland coast from Cape

Freels to Cape Race, (iii) on the central Grand Bank. and (iv) on the St Pierre

Bank. Slope spawning is largely restricted to lhe eastern slope of Hamilton Bank

and Funk Island Bank."

Also in contrast to previous reports is Ute identification oflhe central Grand Bank as Ute

primary area of spawning on the Grand Banks. Helbig el ai. (1992) and Templeman



Figure 1.1 Map of bays, banks and NAFO Divisions mentioned throughout the text.

(1981) reason from Serebryakov's (1968) egg and yearling surveys that the principal

spawning grounds are the Southeast Shoal, as well as the eastern and southern flanks of

the Bank. However, as it tracks the continental slope, the labrador Current passes over



lhese areas malting it possible for Settbryakov's samples to have originated from areas

north of the southern Grand Bank. In brief, cod spawning has been shown to occur over

a wide spatial range in the Newfoundland region, throughout the shelf and along the

slope, as well as areas close inshore (Hutchings ~f al. 1993). While there is no particular

or select spawning ground for cod, the existence of stock-specific spawning sites cannot

be ruled out.

1.2.2 - Spawning Times

The spawning times of cod off Newfoundland and Labrador were recently reviewed by

Myers ef aJ. (1994a). Spawning data spanning 45 years were analyzed to show that

mean spawning times were progressively )acer moving from northern Labrador co

northern Grand Bank. Spawning on the southern Grand Bank may either coincide with

or occur earlier than that on the nonhern portion of the bank. Templeman (1981)

described similar patterns but in more qualitative terms (Table 1.1).



Table 1.1 - Spawning times of cod in the Newfoundland region. Spawning dates are
presented as ranges or as means with one standacd deviation.

AREA

2GHI slope

2GH

Hamilton Bank

Belle Is(e Bank

3K south to Funk Island
Bank

Funk bland Bank

NE Grand Bank

northern Grand Bank

northern Grand Bank (3L)

northern Grand Bank

southern Grand Bank

southern Grand Bank

southern Grand Bank ON and 0)

southern Grand Bank

S2llmo
a Templeman, 1981
b Myers el aJ., 1994a
c Fitzpatrick and Miller, 1979
d Hutchings and Myers, L994

SPAWNING TIME

mainly March-April.

April6+29~

April7±20~

April 20 ± 28 ~

mainly April­
early May.

May 18 ± 36 ~

mainly April - Iune •

mainly April and May c

Iune 9 ± 37 ~

June 6 ± 18.

later tlalfof April­
early June.

last half of May c

May 13 ± 28 and 17 ± 41 ~

MayI9±17.



The temporal trends described by lhese authors are subject to both annual and long-term

variability. Interannual variability for the northern and southern Grand Bank is

stlIistically significant and the northern portion appears to be correlated with temperature

(Hutchings and Myers 1994). More long-term changes in the time of reproduction may

be lhe result of a reduced age structure within lhe cod population. Older individuals of

this bateh·spawning species tend to begin spawning later and spawn for a longer period

lhan lhe younger individuals. Selective removal of older individuals by intensive fishing

over time could result in the earlier and shoner spawning periods observed today

(Hutcttings and Myers 1993).

1.2.3 - Inshore Spawning

Scientific literature from as early as lhe l890's indicates cod spawning around inshore

Newfoundland (Nielsen 1895). More recently, scientific evidence has been accumulating

to suggest that a coosiderable number of cod spawn in coastal waters around

Newfoundland. There have been no reports of either aetuaI or relative abundance of

spawning individuals inshore, but HutChings ~l aJ. (1993) speculate lhat coastal

populations· ...may provide a considerably larger contribution to recruitment than has

previously been believed.·

Based on research gill net surveys from lhe mid·to-Iate 1960s, Hutchings et aJ. (1993)

reported cod in spawning condition (i.e. hydrated females, expected to spawn wilhin



three days) in the inner and outer reaches of St Mary's, Placentia. Trinity and Bonavista

bays, as well as along southeastern labrador and ncar St. Anthony. [n separate studies,

hydrated females (Smedbol L994) as well as -actively spawning- males and females

(Wroblewski ~(aJ. L994) were sampled near Random Island, Trinity Bay.

The temporal sequence of cod spawning events around inshore Newfoundland has not

been accurately detennined. but for each bay mentioned by Hutchings ~{af. (1994), the

percentage of spawning individuals during the May/June sampling period was higher than

during the AprillMay sampling period. Wroblewski ~t af. (1994) documented fish in ripe

or spawning condition on April 22, and from luly 2 to luly 7 a -spawning aggregation­

was identified in Trinity Bay. The abundance of hydrated females and first stage eggs

reported by Smedbol (1994) peaked from the end of lune to the beginning of luly. There

was also evidence that spawning extended into September.

1.3 - Oceanographic Influences on Egg and Larval Transport

Cod eggs and larvae drift passively in the upper 25-30m of the water column (mixed

layer) throughout their development (Wiberg 1948. 1950: Page and Frank 1989). Egg

and larval drift patterns in Newfoundland waters have been inferred from oceanographic

studies (fempleman 1981; Lear and Wells 1984). Satellite-tracked drifter buoys and drift

simulation models, for example, have been used to estimate the spatial and temporal

distribution of eggs and larvae in Newfoundland-Labrador waters (Helbig ~(af. 1992).



This werle: suggested that the path ofeggs and larvae from each postuI.ated spawning area

is very distinctive.

Eggs spawned on the slope off the Labrador Shelf and the slope off the Northeast

Newfoundland Shelf (i.e. me eastern edges of Hamillon, Belle Isle and Funk Island

Banks, see Figure 1.1) are subject to the flow of the offshore branch of the Labrador

Current. Templeman (1981), in reference to these areas, states ~ ... the Labrador Current

turns shoreward as it passes southward and brings large numbers of cod larvae into the

large bays and numerous inlets of eastern Newfoundland...... However, Helbig tf a/.

(1992) demonstrated that the main or offshore branch of the Labrador Current is held

over the slope off the Northeast Newfoundland Shelf and runs onto the eastern and

southern edges of the Grand Banks. Therefore, eggs and larvae in or near the Labrador

current would be forced onto the shelf only with persistent. favourable wind or stonn

conditions (Helbig er aJ. 1992). The inshore branch of the Labrador Current seems to

pass over the Northeast Newfoundland Shelf and through the Avalon Channel rather than

entering the bays of northeastern Newfoundland. The Northeast Newfoundland Shelf is

a more likely nursery ground for eggs and larvae originating from the west or middle

portions of Hamilton. Belle Isle or Funk Island Banks (Helbig er aI. 1992).

Given that significant numbers of cod spawn on the Northeast Newfoundland Shelf

(Hutchings er aI. (993), in an area to the west of the major banks, the fate of these eggs
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and larvae must be considered. Particle drift modelling (Helbig eI aI. (992) suggests that

eggs and larvae spawned over central areas afme shelf would remain on the shelf. Also,

passive drifters originating from other areas of the shelf (e.g. portions to the northeast

of the Northern Peninsula) have the potential [0 enter the larger northern bays, e.g.

White Bay, Notre Dame Bay and Bonavisra Bay.

The southern Grand Banks (NAFO Divisions 3NO), however, are oceanographically

isolated from the Northeast Newfoundland Shelf. The offshore branch of the Labrador

Current runs north to south along the perimeter of the Grand Bank (petrie and Anderson

1983; Loder er al. 1988; Helbig et 01. 1992) without flowing across the bank itself.

There is considerable biological (Templeman 1979, 1981; Frank: et ai. 1992) and

oceanographic data (Petrie and Anderson 1983; Loder et aJ. 1988; Helbig el af. (992)

to indicate that the eggs and larvae found on the southern Grand Banks originated on the

Grand Banks, not the Nonheast Newfoundland Shelf or Slope.

1.4 - Variability in First Year Growth

It has been proposed that an increased rate of early development (Pepin 1989, 199 L) and

larger size at age (peterson and Wroblewski 1984; McGurk L986; Houde 1987; Pepin

1991) are associated with increased survival (Anderson 1988, for a review). As eggs and

yolk-sac larvae drift, the ambient water temperature of the mixed layer is fundamental

to the rate of development. The time required for eggs to hatch (Page and Frank 1989,



II

and references therein) and the number of days until yolk sac absorption (Campana 1989;

Pepin 1991) are inversely proportional to water temperature. The variables influencing

growth or development become more complex and growth rate becomes less sensitive to

temperature after yolk sac absorption (pepin 1991). Variability of larval and postlarval

coo growth rates in situ has been associated with differences in water temperature (Bolz

and Lough 1983; Buckley 1984; Campana and Hurley 1989; Myers et al. 1994a), year

class size (Lett and Doubleday 1976; Lett 1978; Beacham 1980), prey abundance

(Anderson 1982; Suthers 1989) and interspecific competition (Beacham 1981).

Ultimately, identifying conditions conducive to relatively high growth might lead to a

better knowledge of the variability in year class strength.

A combination of factors influencing growth results in increased variability of size with

age because surviving individuals and populations encounter different environmental

conditions as they develop (Campana and Hurley 1989). For example, a larvaI cod can

settle to demersal habitat at a length of 25-35mm (Methven and Bajdik 1994) or, under

other conditions. remain pelagic at 67mm (Anderson and Dalley 1993). The potential

differences between pelagic and demersal environments are likely ro influence growth

(Brett 1979), resulting in variability in size at age. The general consensus seems to be

that temperature and food intake are the two parameters to which first year growth is

most sensitive.
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I.S • Rationale and Objectives

Two assumptions are inherent in studies that estimate hatch dates from the time of

spawning (fempleman 1981; Myers a oJ. 1993). Erst. in directly shifting forward the

entire spawning distribution to represent the hatching distribution. temporal variation

in egg mortality is ignored. Furthermore, shifting the complete spawning range equally,

assumes incubation occurred at a constant temperature throughout the entire spawning

duration. This supposition is doubtful given Ole range of spawning rimes at one location

(Myers et at. 1994a). The work reported here does not require these assumptions

because the hatch date information was directly determined using otoliths. These data

will provide as a first objective. a basis for determining whether hatching times within

a year in the Newfoundland region are synchronous, or whether they follow a latitudinal

trend as documented for spawning times in the area (Templeman 1981; Myers ~(oJ.

1994a). Second. some indication of the variability in hatch dates associated with a cold

year (l991) and an average year (1989) will be ~termined.

Growth rates ace often difficult to evaluate if estimated from age or length frequencies

whictt may be skewed by immigration/emigration, selective mortality, or a prolonged

spawning period (Campana and Hurley 1989. and references therein). On the other

hand, otolith microstructure is very effective in determining daily growth rates (Campana

and Neilson 1985, for a review). Developing a model to describe O*group growth

potentially permits its use as a predictive tool in estimating fish age given length. The
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model's accuracy depends on its flexibility both spatially and temporally, given a variety

of environmental conditions. A growth model may also provide specifics on when food

requirements are greatest by determining when growth rate is maximum. Furthermore,

when growth data are available over geographic or temporal ranges, environmental

conditions conducive for growth may be identified and employed to better predict

survival of the first year class.



Chapter 2

MATERIALS AND METHODS

2.1 - Sampling

Two distinct environments were sampled, a coastal zone habitat along the northeast coast

of Newfoundland and an offshore area, the southern Grand Bank. lnshore (coastal) sites

were Springdale, Halls Bay; Centreville, Bonavista Bay; and Bellevue. Trinity Bay.

Offshore (southern Grand Bank) sites refer to sampling stations in NAFO Division 30.

These diverse areas provide an opportunity (0 compare how contrasting environments

may effect the hatching times and growth of o-group cod. Location of samples sites are

indicated in Figure 2. 1.

Samples from the coastal sites were collected using a 30m beach seine of 7mm mesh.

The seine was deployed perpendicular to the beach. One person was stationary at the

water's edge while the odler walked in a semicircular pam to approximately cover a 90

degree arc, ending back on the beach where the seine was hauled onto shore. All

samptes were collected after sunset to reduce gear avoidance by the cod. The offshore

samples were collected by the RlV Wilfred Templeman using a Yankee 80/104 shrimp

trawl with a cod end of 6.5mm bar mesh. This gear is a bottom trawl but does fish

obliquely in the water column while being reaieved. A complete list of gears and

collection dates appears in Table 2.1.
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Figure 2.1 - Location of collection sites in 1989 and 1991
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Table 2.1 - Summary of Sampling Sites. Dates and Gean

Collection Site Year Collec:tioo Dat. Gear

1989 October 3 30m beach seine
Springdale
49')4'8-N 1991 November 4
55'5T8-W

1989 October 2 30m beach seine
Centrerille
49'OI'I-N 1991 October 28
53'52'2-W

1989 September 26 30m beach seine

Bellevue
4T38TN 1991 September 17. 18, 30m beach

53"44'O-W '9,24,25 seine and a
October I, 2, 3, 4.9m bottom
4,7,8,22 ""wi

1989 September 3.4. 15
Southern Yankee SO/l04
Grand Bank 1991 September 4. 5. 6. Shrimp Trawl
NAFO Di... 30 7,9, 12, 13, 14

All samples were frozen at .20 0 or _70 G C soon after collection, but were thawed for 3

hours before recording standard length and removing me olOliths. A total of 400 fish

were chosen for aging such that the range of SWldard lenglhs for each collection

overlapped as much as possible. Standard length was measured as the distance from the

tip of the snout to the base of the caudal peduncle. length shrinkage during freezing was

not accounted for due to lack of an adequate conversion factor for cod of this size range

(SQ-llOmm). However. 40 to 60mm cod frozen for 3 months, have been estimated to

shrink ca. 2-5% of Slandard length (D. A. Methven. Ocean Sciences Centre, Memorial
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University of Newfoundland. Ale 557; unpublished dala). Shrinkage should be

considen:d if the growth model is to be used as a predictive tool, but should not affect

comparative growth ana.Iysis.

2.2 - Otolith Preparations

lapillus otoliths were dissected from the fish by removing the top portion of the sicuU.

The parietll. ptcrotic. epiotic and supraoccipital bones were removed with an anterior

to posterior frontal section. The utricular vestibule was then visible and could be

identified by the pigmentation on its exposed surface. (This membranous sac of epithelial

tissue contains the lapillus and is located posterior and lateral to the midbrain and medial

to me hyomandibular bone). The vestibule was extracted with forceps. [nsect pins were

used to separate the otolith from me membrane. The otolith was then allowed to air dry_

Each lapillus was mounted on a glass slide using CrystalBond n;:. a thermoplastic glue.

A small drop of glue. approximately lmm in diameter. was placed on the slide and the

otolith was mounted (convex lateral surface exposed) on top of the glue. The slide was

warmed by placing it on a hot plate which allowed the otolith to be set inlO the glue as

level as possible. [[ was necessary lo keep the exposed SUiface of the otolith free of glue

and debris at this stage. The otolith used for aging (either left or right) was randomly

selected as there is no significant difference in the number of increments between the

lapilli of the same fish (Campana 1987; Campana and Hurley 1989).
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To make the daily increments visible, it was necessary to remove the lateral surface of

the lapillus to the midplane of the orolith. This was done by grinding the otolith over

3.0p.m lapping film until rings from the core to me margins of the otolith were

moderately visible. Then. much finer O.3p.m tapping film was used to polish the surface

and make the rings more discemable. Over-grinding, for the most pan, was prevented

by placing a. stripe of IabeWng tape over the edges of the lapping film and gliding the

outer portions of the slide along the tape. This procedure helped keep the slide level

during grinding. A linear (back-and-foIth) movement was used for both grinding and

polishing. Polishing was ceased when increments around the primordia (core) of the

lapillus were discemable. since lhese increment widlhs are lhe narrowest.

2.3 - Ageing The Fish

One of two growth axes was selected for counting. The growth axes were defined by

Secor 6 al. (1992) as •...axes within the microsU'UCture where increment widths are

greatest-. Enumeration started at lhe outer margin of the otolith and ended at the hatch

check (Figure 2.2), counting every discontinuous zone (dark ring) detennined to be a

daily increment. Daily increments were distinguished from sub-daily increments

following criteria set out by Campana (1992). A complete count along the growth axis

was not always possible due to regions of poor clarity caused by confluent increments,

cracks and/or preparation quality. [n this case, counts were made to a check or other

identifiable mark, then the counting axis was shifted to a clearer section. Checks were
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Figure 2.2 - Lapillus otolith prepared for increment counting. Tip of the arrowhead
identifies the hatch check. Body of the arrow runs through a growth axis.
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defined by Bolz and Lough (1983) as -thicker. darker, discontinuous zones-.

All increment counts were made using an Olympus BH-2 microscope at 450 or lOOOx

magnification, depending on the size of the otolith. Generally, lOOOx oil emersion was

used for the perinuclear zone (around the hatch chttk). A polarizing filter, substage

condenser lens, and an apetture diaphragm were h.elpful in distinguishing daily and sub­

daily rings. Refraction proved to be a useful property with the right filter and position

of the condenser. The microscope eyepiece was used to count otolith rings instead of a

monitor because of its higher resolution and field of view. Counts were enumerated

using a hand-held counter which eIiminared bias between sequential counts of the same

otolith. At least three counts were made (or each otolith. If the three counts afthe same

otolith ranged by more than 10 percent of the lowest count, the otolith was eliminated

from the dara set. This criterion resulted in less lhan 5 percent being discarded (13 of

322). Fish from each site were aged in sub-sets of 10-15 to avoid any bias due to

preparation or reading quality, which was expet:ted to improve during the study. All

checks as well as the outer margin of the otolith were included in the increment count.

2.4 - Age Validation

Daily growth increments in larval and postlarval cod otoliths have been validated as

accurate and precise indicators of age in many studies (Radtke and Waiwood 1980;

Bergstad 1984; Dale 1984; Campana and Neilson 1985 for a review; Campana 1989).
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With careful preparation of the lapillus otolith, the discontinuous and incremental zones

become discemable and the daily age from the day of hatching can be determined. The

first distinct ring is deposited on the otolith of cod wilhin 24 hours of hatching (Radkte

and Waiwood 1980; Bergst:ad 1984; Dale 1984).

Because previous reports have not confinned daily increment formation in the lapilli of

cod from Newfoundland waters. it was deemed necessary to validate this point. To

confinn the rate of increment deposition and the timing of hatch check formation, the

number of discontinuous rings on the lapillus otolith of known age larvae were counled.

The larvae from a resident brood stock population were incubaced and hatched at

Memorial Univel'Sily's Ocean Sciences Cenl:l'1!: in Logy Bay. From the day of hatch, five

larvae were taken every three days for eighteen days. The number of post·hateh days

in relation to the increment count are given in Figure 2.3. Lapillus increment counts

were not significantly different from the actual post hatch age of the fish.

To measure the degree of otolith reader bias, a random subsample of fish was aged by

an independent reader. These otoliths were prepared and read initially by the author,

then a second reader, who knew only the specimen number of each fish. The

independent counts were done by an individual who has aged hundreds of G-group cod

(Cynthia Mercer, Fisheries Ecology, Depanment of Fisheries and Oceans, St. John's).

A plot of first and second mean counts shows no significant difference (Figure 2.4).
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Counting the increments around the periphery of the otolith was difficult. Even with the

daily deposition of rings and precise enumeration. the results may be inaccurate due [0

the uncertainty of discriminating between daily and subdaily increments (see Campana

1992). Around the outer one~fourth to one-eighth of the otolith (depending on its size)

there are generally several successive wide, dark bands. Using magnification of lOOOx

or more these bands appeared as composites of narrower. lighter increments.
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!-to-I relationship (...) ties within the 95% interval (-) for the regression (-) of count
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To investigate which were the true daily increments, the outer margins of select otoliths

were photographed using a Scanning Electron Microscope (Figure 2.5). It appears that

the daily increments are indeed the wider, darker increments, a finding in agreement with

the pattern observed in Gulf of Maine cod (Steve Campana, Department of Fisheries and

Oceans. Marine Fish Division, Bedford Institute of Oceanography, P.O. Box 1006,

Dartmouth, Nova Scotia; pers. cemm.).
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2.5 - Statistical Analysis

2.5.1 - Hatch Date Distribution Analysis

The date ofegg hatching was determined by subuaeti.ng the number of lapillus post·hate:h

increments from the dare of coUection. Hatch date frequency distributions were then

plotted for each collection site:. An objective of this study was to detect spatial or

temporal differences in mean hatch dates among the collection sites. However, repeated

use of the data from each site quickly eliminated the available degrees of freedom.

Therefore, in an exploratory capacity, a least significant difference (LSD) criterion was

applied to all possible pair combinations (SolcaJ and Rohlf, 1981). The significance level,

a, was set at 0.05 and the LSD of the mean hatch dates was calculated by SAS statistical

software (GLM Procedure. SAS lnstinne Inc. Version 6.03).

2.5.2 - Length at Age Data

A linear regression was not adequate to describe the standard length at age data due to

frequent pattern of residuals and unequal variance. Given the life history stage of these

individuals, and the previous application of an exponential curve (Campana and Hurley

1989), that was the next model leSted. The residuals from the exponential model also

exhibited pattern and much of the variance was not explained.
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TIle next logical step was to leSt an S-shaped curve fof'" appropriate tiL The Gompc:nz

growth model has been effective in describing fish growth during early life history stages

( Zweifel and Lasker 1976; Pennington 1979; Solz and Lough 1988). The curve may

ta.Ice the integral form:

(Eq.2.1)

where SL is the standard length at any point along the curve, SLo is standard length in

millimeters at time 1 = 0; k is a dimensionless parameter; and g is the rate of decrease

in instantaneous growth (k-g). To stabilize the variance, lhe natural log of the equation

was taken, to give:

(Eq.2.2)

lnSL= 4. + lj(l-e
(-IJ",ge)

)

where flo = InSL at hatching «( = 0); 61 is now the dimensionless parameter; and {jl is

lite rare of decline in inswlIaneous growth. Following the example of Bolz and Lough

(l988), the standard length at hatChing was fixed at 4.01mm. a reliable approximation

of the length at hatch for cod (Fahay, 1983).

Growth of the Q-group cod was considered from two perspectives, relative instantaneous

growth and standard length attained at the end of one year. Both growth indices were
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calculated from Equation 2.2. [nstantaneous growth (% dayol) was detennined by the

product of ~t ill f11 and maximum length (mm) at the end of the first year was estimated

by including 365 as AGE in this equation. As will become apparent in Chapter 3, a

higher instantaneous growth rate does not necessarily result in a larger fish at the end of

the first year. Parameters PI and ~ were estimated using the Non-Linear Procedure of

SAS statistical software (SAS Institute Inc_ Version 6.03). Models were accepted only

if parameter estimates were significantly different from 0 and there was no obvious

pattern in the residuals.

2.6 - Temperature Data

Temperature has long been considered as a detenninate of growth rate in fishes.

However, the relationship is not always directly proportional. or even linear (Brett 1979).

Temperature's effect on growth is further complicated. by its inverse relationship with

asymptotic length (Ricker 1979). Since an objective here is to compare growlh rate and

asymptotic length (at the end of one year) of Q-group cod both spatially and temporally,

the influence of temperature muS[ be considered.

Temperature data were not available from all collection sites in 1989 and 1991. Mean

monthly temperatures from Station 27 (4T33'N SZ"35'W. 4 km east of St. John's

harbour) were chosen to represent all coastal sites. Matched willi the available

tllennograph data at 10 meters from each site, Station 27 mean monthly temperature at
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10 meters was highly correlated (,z = 0.71). A ten meter depth was selected as an

indicator of the average dcp<h at which a Q-group cod would be found, considering did

migrations and changes in habitat during early life history. Temperatures used for the

southern Grand Bank were long-term mean monthly averages of NAFO Division 30

from 19lO to 1982. but 8S percent of the data was recorded after {9Sa (Drinkwater and

Trites 1986).



Chapter 3

RESULTS

3.1 - Halch Date Distributions

The pattern of hatch date distributions among collection sites in 1989 was quite unlike

the pattern in 1991. There was also considerable variability between lite two years for

three of the four sites. These observations will be discussed. accordingly. as differences

among collection sites within a year (spatial variability) and as differences within a site

between yean (sparial variability).

3.1.1 - Spatial Comparisons in 1989

Hatching among all sites in 1989 appeared synchronous (Figure 3.1). The range of

hatching dates for each site was identical when grouped into LO day bins. The mode for

each site. except Bellevue, wa.5 within the Iulian day 180 (June 29) bin. The sample size

for Bellevue was n:latively small but suggested bimod.a.lity, with one peak at day 180 and

one at day 200 (July 19). The mean hatch dates ranged from June 19 on the southern

Grand Bank to July 2 at Bellevue (fable 3.1).
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Table 3.1 - Mean Hatch Dates for Each Site in 1989

Mean IIalch Date Standanl Standard
CoUec:tioo Site (Julian Day) Deviation Error

Sprinldale 1,"",20 (171) 9.4 1.3

CeotrerilJe Iune 27 (178) 8.0 1.2

Bellevue July 2 (183) LO.l 2.1

Southern Grand Bank lune 19 (170) 18.5 2.6

Coastal Sites June 25 (176) LO.l 0.9

The null hypomesis for spatial comparisons was that mean hatch dates between sites were

not different. A [-test was used [0 calculate the least significant difference (LSD)

between two means. Difference in means above the LSD was teoned significant. only

if the variance about the mean was equal (fable 3.2). If the variance between the sites

were unequal. the certainty about the means being significantly different would decrease,

especially if me difference were close: ro me LSD. For example, the mean hatch da[eS

between Centreville and Bellevue differed by 4.82. According to the LSD (4.99) criteria

these sites were not significantly different. However. because the variance of these two

samples was unequal, the LSD was calculated based on reduced degrees of freedom (37.3

instead of 63.0. which would have been used had the variances been equal). Mean hatch

date comparisons will therefore be referred to only as different or not different. A

summary of all possible paired comparisons is given in Table 3.2.
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Table 3..2 - Difference in Mean Hatch Dates in 1989

LSD ­
4.99

CentreviUe Equal Bellevue Equal Southern Equal
Variance Variance Grand Variance

Bank

Springdale 6.8

Bellevue
I--­
CoamJ
Group

yes 11.7 No 0.9

7.8

12.6...:
5.7

No

No

No

No

3.1.2 - Spatial Comparisons in 1991

The sequence of hatch dates in 1991 began at the southern Grand Bank and became later

proceeding northward (Figure 3.2). The distributions overlapped much less than in 1989

(Figure 3.1). The means ranged from May 18 at the southern Grand Bank to August 12

at Springdale (Table 3.3).

Table 3.3 - Mean Hatch Oates Cor Each Site in 1991

Mean Hatch Date Standard Standard
Collection Sites (Julian Day) Deviation Error

Sprin&dale August II (223) 8.2 1.5

Centreville August 1 (214) 6.4 1.0

Bellevue July 6 (188) 16.0 2.5

Southern Grand Bank May 19 (139) 13.5 2.1

Coastal sites July 26 (207) 18.9 1.8
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"The southern Grand Bank sample mean ha1ch date was different from each of the coastal

sites. As in 1989, the offshore cod eggs hatched earlier than the coastal sites. Mean

hatch dates W~ different for aU paired comparisons (Table 3.4).

Table 3.4 - Difference of Mean Hatcl1 Dates for in 1991

LSD- Centreville IEqual Bellevue EQual Southern EQual
6.39 Variance Variance Grand Bank Variance

Springdale 9.3 IYes 36.' No 84.3 No

Centreville 26.8 No 75.0 No-
~ 48.2 Yes

Coaslal 67.9 No
Group

3.1.3 - Spatial Comparisons Between Years

Figure 3.3 illustrates the annual variability of the hatch date distributions for each site

between 1989 and 1991. Each distribution was smoothed by a spline function. The

southern Grand Bank sampte mean halCh date was a month earlier in 1991 (May 19),

relative to the samples of 1989 (June 19). [n contrast, Cenuevi1lc's and SpringdaJe's

peak hatching occurred more than a month later in 1991. with few dates in common with

the 1989 distribution. The less normally-shaped distributions from Bellevue overlapped

substantially between the two years and their means were not different. Figure 3.3 also

shows mean monthly temperature plots associated with each collection site. It was
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apparent that the temperature at peak hatch for the survivors of each distribution except

southern Grand Bank in 1991 was between ~8°C.

3.2 - Spatial and Temporal Variability in Growth

The Gompertz growth model appropriately described the log.. standard length at age data

of G-group cod in the Newfoundland region. Parameter estimates. residual plots. rZ and

error sum of square values are given for each curve in Appendix A. This growth model

was tested with a fixed tengtll at hatch of 4.02 mm. However, the size at hatch may

vary from 3.3 - 5.2 mm and the model's parameters would not be significantly different

from the current parameters. The 95% confidence interval for each parameter would

overlap for any lenglh at halCh within this range. As mentioned in Chapter 2, [Wo

aspects of growth comparisons will be addressed. instantaneous growth rate and

maximum length attained at the end of the first year.

3.2.1 - The Gompertz Curve Fit

A total of 173 fish were aged in 1989. Standard length at capture ranged from 43.2 to

108mm with an age range from 62 to 160 days posl·hatch. The plot of l0&e standard

length at age was well described by a Gompertz growth model (Figure 3.4). More than

99 percent of the variance was explained by the curve InSl= 1.3915 + 3.68(l-~­

O.0l6AG~. with no apparent pattern in the residuals (Appendix A).
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In 1991, 149 individuals were aged. ranging in standard length from 35.8 [0 I L6.7mm,

and in age from 66 to 140 post~hateh days. Despite more variance, the Gompertz model

InSL= 1.3915 + 3.42(l-e(-o·020AGEl) fit the scatter plot adequately (Figure 3.4), with

over 99 percent of lhe variance was explained and no obvious residual pattern (Appendix

A).
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3.2.2 - Spatial Variability in 1989

Fish samples were grouped as coastal or offshore fish (according to site of collection) to

determine if there was geographic variability in growth between the two regions. Figure

35 shows the predicted length at age plot for 1989 coastal and offshore samples using

the Gompem: growth model described above. Over the size range of the fish collected,
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the inshore cod were predicted to be larger at any given age than the offshore cod. The

growth curves are distinct up to about post-hatch day LOOt after which time the curves

begin to merge. The coastal fish seemed to have decreased their rate of instantaneous

growth more sharply than offshore fish, resulting in both groups reaching the same size

by day 130. However, on average, the coastal fish W~ larger at age and had a higher

instantaneous growth rate than the offshore fish. Growth parameten and instantaneous

growth rates for each group are given in Table 3.5.

3.2.3 - Spatial Variability in 1991

Growth curves for coastal and offshore collections in 1991 (Figure 3.6) were not as

homogeneous as in 1989. As well. contrary to the circumstance in 1989. coastal fish in

1991 were much smaller at age than their counterpartS from the southern Grand Bank.

Even though the instantaneous growth rate of the coastal group was higher than me

offshore group (Table 3.5), the coastal length at age curve declined much earlier and

more rapidly than the offshore curve (Figure 3.7). length at age for coastal samples

increased very little after post·hateh day 90. The offshore fish displayed a longer

duration of slower growth. and as a result. were larger than the coastal fish after post·

hatch day 80.
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3.2.4 - Temporal Variability

All fish used in this study were old enough to have passed the point of maximum growth.

i.e. the inflection point of the growth curve. Therefore, length at age points generated

from these fish portray the period of decline in instantaneous growth. It was
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consequently apparent that a relatively high rate of instantaneous growth does not dictate

larger length as the fish ages. Figure 3.8 demonstrates how the relative position of

length at age curves changed as size within each group inrn:ast.d. The coastal fish in

L991 had the highest instantaneous growth (fable 3.5). but after about day 90 they were

the smallest aJ: age of any group. Similarly, the offshore fish from 1991 attained the

largest size at age by day 80, but had the next to lowest growth rate. This is possible

because the growth rate declined at a slower rate (Jj.J.
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Table 3.5 - Growth Statistics ror 1989 lind 1991

Parameteri ~, #, GroWTh Rate SL,... (n"eelioR
Area (%/day) (day.. l) (81m) Point (days)

(S.E.) (S.E.) (+ IS.E.)

Coastal 1991 2.806 0.042 o. Ll~ 66.33 24.4
(0.073) (0.010) (0.087-0.150)

Cflastal 1989 3. (91 0.OZ7 0.0~6 97.49 35.9
(0.0511 (0.002) (0.078-0.094)

5GB 1991 3.477 0.023 0.079 129.77 47.8
(0.079) (O.OOZ) (0.071-0.089)

5GB 1989 3.314 0.020 0.067 LlO.25 40.6
(0.075) (0.001) (0.063-0.070)
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Chapter 4

DISCUSSION

4.1 - Variability in Hatch Date Distributions

Geographic distribution ofcod hatching dates is neither synchronous nor sequential in the

Newfoundland region. There was substantial annual variation in hatch date distributions

between a cold year and an average year (Figure 4.3). Within lhe year of average spring

and summer water temperatures (1989), a homogeneous pattern of haceh date

distributions existed spatially, whereas a cold year (1991) produced a latitudinal delay

in hatch dates from soulhem Grand Bank to northern Newfoundland. A causal effect

between temperature and hatching date cannot be deduced from these results, however.

the hypothesis does deserve consideration because annual variation in the spawning time

of cod has been correlated with annual temperature difference for the NAFO divisions

3L and 3Ps (Hutchings and Myers 1994). Allhougn, the effect of temperature on

spawning time was not unequivocal; the effect differed among spawning areas.

TemperatUre's effect on hatching time also seems to vary geographically. During cold

years, spawning (Hutchings and Myers 1994) as well as hatching (Figure 3.3) on the

Northeast Newfoundland Shelf was delayed, but these events occurred earlier in more

southerly areas (3Ps for spawning and 30 for hatching). The present study indicates that
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the variability in hatching time is due to the spano-temporal fluctuations in spawning time

rather than variation in incubation period. Since peak hatching in all but one instance

occum:d between 6" and SoC. temperature-mediated differences in incubation time are

unli.kely to account for the observed differences in the hatch dates. Furthermore, because

these hatch dates were detennined from individuals that survived to lhe early juvenile

stage, the 6"· SoC range during hatching seems conducive to survival.

Spawning times for each coastal site in 1989 and 1991 were backcalculated from hatching

dates (by subtracting lhe incubation period); each distribution occurred within one

standard deviation of the mean spawning time for division 3L (Figure 4.1). Springdale

and Centreville, in 1991 (Figure 4.lb), were exceptions as both calculated distributions

occurred in the later tail of the observed spawning distribution. Estimated spawning

times of the fish collected from 30 in both years were enrirely within one standard

deviation of the observed mean in the area (Myers ~t aI. 1994a).

Even though backcaJculated spawning distributions of coastal sites fit the observed mean

spawning times in 3L. one cannOl necessarily conclude that 3L is the area in which these

o-group cod were spawned. It is likely however. that these offspring were produced at

a time coinciding with 3L spawning. Given the oceanographic conditions of the

Northeast Newfoundland Shelf (Helbig el at. 1992) and the spawning times ofareas north

of 3L (Myers tl at.1994a), the other logical spawning locations of the samples collected
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in Springdale, Centreville and Bellevue would be areas near the coast or within the bays
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Figure 4.1a Observed(- -) and estimated(-) spawning times in 1989. Observed
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Figure 4.1b Observed(- -) and Estimated(-) Spawning Times in 1991.

The hatch. date distribution of Springdale, Centreville and the southern Grand Bank

appear quite normal for each year (Figure 3.3), suggesting their origin as a single
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spawning distribution. The hatching distributions for Bellevue in each year do not

approximate nonnaIity. In 1989 there is a hint of bimodality and in 1991 there is a peak

followed by a plateau. A study done at another site in Trinity Bay supports lhe idea of

protracted modes of recruitment into the area. There seems to be more than one pulse

of Q-group cod settling in Trinity Bay during late summer and autumn (Pinsent and

Methven, submiued). However, the observed plateau of 1991 may be the result of a

two-week range in coHection times at Bellevue that year. With each successive day of

sampling it is more likely that "late arrivers" will be sampled at a particular site.

Undoubtedly, all recently settled juveniles from one spawning event do not arrive at the

same site during the same day. It is also reasonable to assume that the lag in arrival

times is partIy due to the range of spawning distribution dates. Therefore, fish collected

over several days would result in more variance about the estimated mean hatch or

spawning date.

The degree that the back-ealculated hatch date distribution is normally distributed may

also be an indication of me level of mortality from hatching to the time of collection.

A skewed hatching distribution may result if the risk of mortality for each individual

from hatching to collection was not equal. Obviously, if there is e:ttreme mortality for

any amount of time the hatch dates for fish from this period will not appear frequently

in the hatch date distribution. The site specific distributions in Figures 3.1 and 3.2 are

not intended to represent the entire range and relative frequency of hatch dates for each
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year. These figures are simply an estimate of the hatch date distribution for cod that

survived to the early juvenile stage.

Ifareas within divisions 3K and 3L are considered possible larval habitats for the coastal

fish, estimated first-feeding larval abundance would coincide quite well wilh mean peak

abundance of the copepod, Ca/anus (stages I-IV). First-feeding larval emergence time

can be calculated using Pepin's (1991) equation for yolk-sac stage duration (19.9 days

x eC-o.OI7'I1) and temperatures cr,°C) from Station 27. Calanus abundance in 3K peaks

once in June and again in August. while in division 3L a strong pulse starts in July and

is maintained through to September (Myers et af. 1994b). First-feeding larvae from each

of the coastal sites in 1989 and 1991 emerge during the peak Co/anus abundance in 3L

(Figure 4.2» more so than in 3K. Co/anus abundance on the southern Grand Bank

(3NO) initially peaks in February and then again from June to July (Myers et at. 1994b).

First-feeding larval appearance times. calculated from 30 collections in 1989 and 1991,

fall directly within the June-July window of peak: Calanus nauplii abundance. If copepod

emergence was delayed in a cold year (Le. 1991) (SlEtersdal and Loeng 1987; Ellertsen

et al. 1987; Ellertsen et al. 1989) only the magnitude of optimum feeding times would

change.

Myers et al. (1994a) found that OJlanus abundance was the only biotic or abiotic

parameter correlated with the time of cod spawning in the Northwest Atlantic. However,
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because cod display a latitudinal sequence in spawning times (Myers el aI. 1994a). the

march/mismatch hypothesis ofCushing (1974, L982. 1990) does not explain the spawning

strategy of cod. Match/mismatch regards the time of fish spawning as being relatively

fixed from year-to-yeac to coincide auspiciously with the annual variability of plankton

peak abundance. The coincidence of first-feeding larval cod and CoJanus abundance is

more aptly explained by the match hypothesis of Brander and Hurley (1992), which states

that "...timing of spawning is coupled to timing of plankton production".

The fact that almost every individual fish sampled for this study was detennined to have

started feeding during peak Ca/anus abundance (Figure 4.2) is further evidence to

suppon the match hypothesis of Brander and Hurley (1992). Furthermore. since first

feeding times were calculated from survivors of the Iarva1 stage, the time of first feeding

seems fundamental in Q-group cod survival.
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Figure 4.2. Comparison of yolk-sac absorption (YSA) time and long-term mean peak
Ca/anus abundance. Panel A depicts the yolk-sac absorption time of the coastal fish
from 1989 (-) and 1991 (- -) along with the months of mean peak Calanus abundance
in 3L. Panel B is the yolk-sac absorption time for the southern Grand Bank fish from
1989 (-) and 1991 (- -) compared to the peak Calanus abundance in 3NO.
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4.2 - Comparison or o-Group Growth

Despite the heterogeneity of standard length at age among sample sites. the general fonn

of the Gompertz non-linear growth model was useful in describing the growth of cod

between 2 and 5 months of age. Generally, the model expresses an exp:mential rate of

increase in length at age, coupled with an exponential rate of decrease. However, the

model is not recommended as a predictive tool for estimating age in days from standard

length across large spatial or temporal scales. The spatio-temporal variability in

parameter estimates established from these data (Table 3.5) implies significant error if

one set of estimates were used (0 predict age from a sample collected elsewhere or at

another time. However, if a size-representative subsample from a single collection in

a given year were aged for parameter estimation, the model may be useful in predicting

age from length. The accuracy of the predictions would essentially depend on the

amount of variability in length at age within that single sample.

Sampling at one site over prolonged periods also increases the variabili£y in length at

age. As observed from the hatch date estimates. standard deviation of the mean hatch

date increased if samples used for the estimate were collected over a week or more. The

increased variance was the result of fish arriving at the collection site on sequential days.

If each flSh required equal time to arrive at the site. a lag of 3 days in arrival time, for

example. would translate into a difference of 3 days in hatch dates. This lag would also
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increase variability in length at age. Fish from a wide range of hatch dates are more

likely to experience different abiotic or biotic conditions, causing variability in growth

rates (Brett 1979; Campana and Hurley 1989). Because a range in hatch dates produces

fish of variable size, a size effect on growth is also created. The Gompenz growth

model reveals that instantaneous growth rate decreases exponentially after the inflection

point of the growth curve (Figure 3.8). Therefore. a collection containing a wider range

of fish size results in more variance in growth rate and growth parameters.

In an attempt to explain the variance in length at age and growth rate between

collections, the effect of ternperarure seemed an obvious place to begin. Temperarure's

effect on growth varies with age (Ricker (979). For example, Pepin (1991) concluded

that temperature is less influential on growth after yolk: sac absorption. Since the size

range of the fish used for this study includes life history events which may be affected

differently by temperature, r will examine the stage at which Campana and Hurley (l989)

determined ~. . . temperature exerted its most significant effect. . .• on cod larval

growth, i.e. when growth was most rapid.

The stage of most rapid growth for laNa! cod is at the inflection point given by the

Gompertz model (Figure 3.8). rnstantaneous growth rate at this point is indicated by the

parameter fJl (fable 3.5), because the rate of change is approaching zero. The southern

Grand Bank fish, for both years, were the slowest growing at this point but temperatures
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t:hroughout the year on the Northeast Newfoundland Shelf were colder than on the

southern Grand Bank (Drinkwater and Trites (986). In addition, coastal 1991 fish had

the highest instantaneous growth rate but experienced the coldest ternperarures of any

group until October (Figure 4.3).

Nevertheless, there is a degree of direct association between temperature and maximum

length attained after one year. The southern Grand Bank fish in both years reached

larger lengths at the end of the first year than did the coastal fish. Coastal 1991 fish

exhibited the lowest asymptotic length of any group. However, the southern Grand Bank
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fish of 1991 presumably experienced temperarures colder than the fish from 1989, but

their asymptotic length was larger.

Temperature differences do not appear to adequately explain differences in growth rates

or maximum length reached at the end ofone year. The temperature differences believed

to be experienced by each group of fish are based on regional monthly means. The

Nonheast Newfoundland Shelfand the southern Grand Bank are known to display spatial

and temporal temperature patchiness (Petrie et at. 1991) on small scales. The degree of

this variability and its effect on growth is difficult to assess without knowing the exact

location of spawning and the route leading to the collection site.

An analysis of temperature differences offers no adequate explanation for the variability

in growth or length at age of O-group cod in Newfoundland waters. This leaves the

suggestion that food is a fundamental factor in detennining growth. Consistently, food

abundance has been detennined to influence growth rate (Laurence 1974; Laurence et af.

1981; Hawkins et at. 1985). In this study, however, food consumption was not

monitored and could not be correlated with inStantaneous growth. Instead I examined

the effect of feeding duration on the maximum length attained at the end the first year.

As discussed in section 4.1, estimated first feeding times fOT coastal and 30 sites in both

years coincided well with average Ca/anus peak abundance in the respective areas. This
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match. seems a likely strategy considering that food requirements are maximum during

the period of maximum growth (Campana and Hurley 1989), which is around the

inflection point of the growth curve (fable 3.5). The difference between these coastal

and offshore o-group cod in 1989 and 1991 was the duration of time that they were able

to encounter optimal feeding. Referring to Figure 4.2. it seems as if most of the coastal

larvae in 1991 and the offshore larvae from 1989 were approaching the end of the

Co/anus peak: when their food requirements were greatest (24.4 and 40.5 days,

respectively). The result was an earlier decline in the rate of increase in length at age

soon after peak Co/anus abundance. By the end of che year, the coastal 1991 and

offshore 1989 groups were smaller at age than fish from the other year in the same area.

More favourably, the offshore 1991 and coastal 1989 fish would have had plenty of food

for 50-70 days. These groups showed a relatively slower rate of declining growth and

were larger at the end of their first year. Posltarvae of this size have already begun to

settle (Methven and Bajdik 1994), but are known to continue to feed on pelagic

zooplankton in Newfoundland waters (Lomond 1994) and in the northeast Atlantic

(Bowman 1981; Hop er al. 1994). Therefore, it seems that length at age for cod over

this size range is a function of feeding duration, not simply food abundance on a shorter

time scale. It is also logical to start feeding earlier in order to provide intraspecific

competitive advantage over those arriving later. One would be larger, a more

accomplished predator, and a have better chance of survivaL To paraphrase, the early

bird gets lots of worms.
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In conclusion, identification of cod hatch date diSttibutions provided cont'innation of

times and conditions which were at least adequate for IarvaI and early juvenile cod to

survive. There was significant spatial and ternpor.al variation in hatch dates between the

two years. Neither instantaneous growth rates nor maximum length at age for o-group

cod was found to be associated with mean monthly temperature. Length at age at the end

of the first year was greatest when first-feeding larvae emerged around the onset of the

peak OJ/anus abundance. larger size was achieved by a relatively slower growth ra(C:

oYer a longer period. Identification of Q-group cod which are larger or faster growing

has a practical application because these fish are known to have a better chance

of survival (Anderson 1988; Pepin 1991; Pepin and Myers 1991) and, therefore.

recruitment to commercial fisheries.
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Appendix A

Model Parameter Estimates

Coastal Sites - 1989

Non-Linear Least Squares Summary Statistics
Dependent Variable LNSL

Source OF Sum of Squares Mean Square

6S

Regression
Residual
Uncorrecred Tota!

(Correcred Total)

2 2193.3441 1096.6no
114 1.3692 0.0120
116 2194.7134

115 2.0314 ERRORSS-1.3693

Asymptotic Asymptotic 95 %
Parameter Estimate Std. Error Confidence Interval

Lower Upper

BI 3.1913 0.0513 3.0896 3.2930
B2 0.0270 0.0021 0.0228 0.0312

Asymptotic Correlation Matrix

Carr 8t 82

BI 1 '{).9893
B2 '{).9893 1
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Plot of crowth model ~duals ror the coastal sites in 1989.

A=lobs,B=2obs,etc.

RESIDUAlS
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Southern Grand Bank Stations - 1989

Non-Linear Least Squares Summary Statistics
Dependent Variable LNSL

Source OF Sum of Squares Mean Square

67

Regression
Residual
Uncorrected Total

2 810.2509
48 0.4354
50 810.6862

405.1254
0.0091

(Corrected Total) 49 1.9997 ERRORSS=0.4353

Asymptotic Asymptotic 95 "
Parameter Estimate Std. Error Confidence Interval

lower Upper

81
82

3.3141 0.0747
0.0203 0.0011

3.1639 3.4643
O.OISO 0.0227

Asymp[onc Correlation Matrix

COrT Bl

81 1
82 '().9740

82

'().9740
1
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Plot or crowth modd residuals for the olTshore sites in 1989.

A = 1 obs, B = 2005. de.

RESIDUALS,
,

0.2 ~ A
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Coastal Sites· 1991

Non-Linear least Squares Summary Statistics
Dependent Variable LNSL

Source DF Sum of Squares Mean Square

69

Regression
Residual
Uncorrected Total

2 1828.6987
106 4.0183
108 1832.7170

914.3494
0.0379

(Corrected Tow) 107 4.1115 ERRORSS~4.0183

Asymptotic Asymptotic 95 %
Parameter Estimate Std. Error Confidence Interval

Lower Upper

BI
B2

2.8061
0.0420

0.0731 2.6612 2.9511
0.0102 0.0217 0.0622

Asymptotic Correlation Matrix

Corr

BI
B2

BI

I
-0.9644

B2

-0.9644
I
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Plot 0( growth model residuals tor the coastal sites in 1991.

A = lobs,B=2obs,ete.
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Southern Grand Bank Stations - 1991

Non-Linear Least Squares Summary Statistics
Dependent Variable LNSL

Source OF Sum of Squares Mean Square

Regression 2 863.6681 431.8341
Residual 39 0.4237 0.0108
Uncorrected Total 41 864.0918

(Corrected Total) 40 0.8485 ERRORSS ~0.4238

Asymptotic Asymptotic 95 %
Parameter Estimate Std. Error Confidence Interval

Lower Upper

81 3.4768 0.0192 3.3161 3.6311
82 0.0229 0.0023 0.0181 0.0218

Asymptotic Correlation Matrix

Corr B1 82

Bl 1 -0.9747
82 -0.9747 1

11



n
ftot o( growth model residuals (or the offshore sites in 1991.

A= lobs,B=2obs,ete..
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All Sites Combined - 1989

Non-Linear Least Squares Summary Statistics
Dependent Variable LNSL

Source OF Sum of Squares Mean Square

73

Regression 2
Residual 164
Uncorrected Total 166

3003.1134
2.2862

3005.3996

1501.5567
0.0139

(Corrected Totll) 165 7.7452 ERRORSS=2.2862

Asymptotic Asymptotic 95 %
Parameter Estimate Std. Error Confidence rnterval

Lower Upper

Bl
B2

3.4171
0.0200

0.0527 3.3128 3.5213
0.0008 0.0182 0.0218

Asymptotic Correlation Matrix

CaIT 81

BI I
B2 -<l.9784

B2

-<l.9784
I



,.
Plot of growth model residuals for all sites in L989.

A = 1 obs. B = 2 obs, dc.

RESIDUALS
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All Sites Combined - 1991

Non-Linear Least Squares Summary Statistics
Dependent Variable LNSL

Source OF Sum of Squares Mean Square

75

Regression 2 2690.3323
Residual 147 6.4765
Uncorrected Total 149 2696.8088

1345.1661
0.0440

(Corrected Total) 148 11.6298 ERRORSS= 6.4765

Asymptotic Asymptotic 95 %
Parameter Estimate Std. Error Confidence rnterval

Lower Upper

Bl 3.6872 0.1410 3.4084 3.9659
B2 0.0162 0.0014 0.0134 0.0191

Asymptotic Correlation Matrix

Corr Bl 82

BI 1 -0.9876
B2 -0.9876 I



Plot oC growth model residuals ror all sites in 1991.

A = 1 obs9 B = 2 obs, dc.

RESIDUALS
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