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Abst ract

Functional associations of xylem vascularization, calcium transpor t, and water

nux were studied in Ly~o)per8;~cn esculentum Mill. -Tiny Tim- . Xylem

format ion of th e pedicel and fruit was traced from the emergence of the n orBI

primordia thrcugb to the development of matur e Iruit. Berberine hernl-sulph ete,

an apoplastieally mobile dye, was used to fellow water movements through the

xylem systems of intact stems and trusses. 4SCa was used to identify areas or

calcium localizat ion wi'.hin the plant and correla ted With transpira tion rates

measur ed for the selected plant parts .

Water now and calcium distribut ion in the plant were not uniform and the

patt ern was dependent on the extent or xylem vascularization. Leaves, sepals,

and th e smallest immatu re Iruit «30 mm3), which were all well supplied with

xylem, shewed the great est accumulations or calcium. F ruit in this class also

showed tbe highest tr anspiration rat es. In cont rast, calcium eonecnt retion was

lowest in matur e Iruit , which also had the lowest proportion of xylem

vascularization and lowest tran spiration rates.

T hese findings bear on th e mecha nism of induction or blossom end rot , a

phytopatbological condition regarded as a calcium-deficiency disease or to matoes.

The suggestion that th e deticiency might tirst occur in very small fruit a_'~ a result

or th eir early, rapid increase in volume is not supported by the present dat a which

demonstrate that sucb (ruit, due to high water nux and transpiration rate,

accumulate large amounts or calcium. T be dist al port ion or larger Cruit may

become calcium deficient because apoplastic water does not reach the Car blossom

end of these fruit.
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Chapter 1

Introduction

1.1. F lo ra l Develop m en t

Th e inlloeoscenre or the tomato 1l,yrop~rR i ro Ti t8cutt ntum Mill.] o rigina tes

as an elong ate d vegeta tive apex. T he ap ex is r leuencd. as is typical or

infku cseencc initiation. and the first flower is Iorm od (rom this I lau cncd dome ,

T he iudivld ual parts of t he Ilower are for med lo series, beginning wit h t he

develo pment o r sepals a t the outer mar gin and progressing to tb e ce nter wh ere

carpels arc formed. Usually Iive or occas ionally six sepal primordia develop

thr ough merist em atie ac t h'ily, Independent oreac h othe r, at the periph er y or the

n nlt ened apex, a nd Corm a helix around th e apex margin. The sepa ls aris e in a

clock-wise direction, res ulting in a circle aroun d the apex dome (Saw hney and

G reyso n 1072). T heir growth is mo re ra pid on t heir abax ial sides so tha t t he t ips

incline towards each othe r as the y elongate and parti ally enclose th e cavity

beneath them. All er sepa l dirterentiatio n , a circle or indep endent mer iste ma t ic

regions develop altern at e to the sepa ls and grow into the petals, in a simila r

fashion to the sepals. The steminal wh orl th en develops opposite to the calyx and

alternate with th e corolla. Each primordium or the sta minat e wborl consists or

homogen eous ti ssue, whic h as th e t issue grows, becomes dirreren tiated into t he

d ist inct par ts or anther a nd rilament. The rour th whorl or rive or six primord ia



develops ink! th e fused carp els of th e gynoeeium. The placenta on the axillar y

wall of each ~arpel enlarges so that it, with the dl'veloping ovules and j l'lIy-lih

mesoearp , fills th e loeules of the carpels . Ovules ere att ached by their funiculus

directly to the placent al tissue in a series of rows. T he end rcsult of th is procew is

a pentamerous or hexamerous, bypog eucus, ecuncmcrpbt c, bisexual Ilower

(Haywar d 1038).

Subsequent Ilcwers arise as lat eral bud s from th e preceding Ilcwcr a nd

develop in 8 similar Cashion, until 8 helicoid- cyme results, usually of five to seven

Ilcwera . The first Ilower to grow hM a development al advantage over th e second,

and th e second over th e third to th e end c t the truss. Ord ina rily, no raore than

two I lowere or an inflorescence are open sim ulta neously. Because or t his

pr ogressive development , a single cyme may have small Cruit, Ilowers, and buds at

th e same time (Cooper 1027).

1.2. Xylem Development

Xylem differentiation within t he flower bud begins at the inner side or a

tr ace ptocambium near the base of the bud . It adva nces acropetally towards the

bud tip and baeipetelly tb rougb the bud base to connect to the existin g xylem or

th e vegeta tive stem. The patt ern is similar to that of a vegetative bud {Jacobs

and Morrow HJ57). Several vertic al files of tracbeary clements may he initiated at

the isolated locus before on" extends to connect with the xylem ot the vegetative

stem. Th e upward differentiating tile may not directly conned with the

downw ard difterentiating tile. The two st rands of xylem are then joined lat erally

by the ditt erentiati on oi the Iew intervening procam bial cells to torm a short

chain of connecting xylem cells (Jacob! and Morrow Ig&7).



Th e rir"t x)'I"/ll t be.ne to Ior rn ·'I.t the base (,f th e n OWN bud IS the

I,r,, ' uxy!l·m. whic h matures before t he n OWN bud hs elongate d . /\~ the cel ls

:vlj :ll'f"nl Iht' rr f,lm ylt"1n,·"It"nd durin g bud t"1" np;al ion, the non-li,·ing t r:l.('hear y

,lirrNI' fll ialf"!'tlllrinll;IHI,I f·lo. .niP t illn and matun -s afl t r lh i.. p r()('t~s is fini,.;hl'<l.

T hf·U·rnrt". the eh-ments .,f Ihr met axylcrn are not dl'!'l ro~·etl b~· ..t retehing and

l'l'r"isl in the mature inOor('S('en('t'. In t ilt' event of largt' see onda rr growth. the

mr-tnxylem lI!ill:1l1>' becomes ncn-Iunetional. However, in most flower bUrlll and

pNlk el!i, it remains 11..'1 the w it' wate r-conducting tissue (E!illu IgSJ I.

T he protoxylcm usua lly co ntains rela tively few trachcary eleme nts, and a

I:u ge proportion of perenehyma celts, T he metaxylem is a more complex tissue

whose t raeheary element s a re g4.'n4.'rally wider and art' eeeornpe nied by fibres

along wit h pu('n('hym.l cells. Th e high prcpor t ice of cel ls with seconda ry eell

wall, gives t hf: mctaxylt'm a more compa ct and sturdy appeara nce than the

protox ylem (Eu u 1053).

Oe ee nor . l development is complete, • eontin ucue cylinde r of met uylem

occurs thr ough the length of the pedice l, whi('h is for med by the bun dles of vesseb

and tracheids and eells of fibres and xylem parenchyma. It ea elcses th e inte rna l

phloem and pith and i, bordered by the extern al phloem, all of whieh is

surrounded by cortex. T his xylem reac hes t he eeceptsele or poi nt of a tta chment

to the n oral pa rts . Trace, diver ge into th e sepals, perels, antheu, and gyncecium.

Eac h sepal usu ally htwl as maey t races as a luf of t he ' arne pla nt . T ract'! then

bree ch into th e eorclt e, from the metaxy lem cylinder, u, uaUy one to each pet .t.



A l'inr;lt' xylt'm tr a ce t r.avels th r leng th of till' starnen. Several x ~'I\'11I l,un lllt", m,,~'

fr ed into the ClH llt'I~: l hr l)"pira l numbe r is th ree l rar~ 10 eaeh ra rpl" wilh smnll

b-an ehos ron nr r linll:Ihr r lHpt'lIary'syste m 10 t he e vuh-s. Th r-rr- ar r- :I 1~ l't r:mds

of s yk-m Ira d in!!:In Ihf' ~lil; lll :l.IElIau 11:(;')3).

t raeheids. fibres. and parr nr h>'m a (' rll~. Th e l r3('hr :lfY' t'! l'nu'nb (n 'ssl'!s and

t racheids] are th e watcr -eonduetlng porti ons of Ih ill li"'~lJ ('. \'rs.~ t·ls c(lnsbl Ilf

series of individual cells, t he vessel element s, whose end walls are partl y (If

completely dissolved at later stnges o f c('11 rnnturntion, 1I1l1 ~ Iormlng ti lt' lo ng Opt'n

ve sse ls (see Zimmerma nn 108.1). Th e tr acheiti s a rc uSlla lly muc h longl'r t han

vessel elements and connect across cell walls with bordered pits . Both typt'll nf

cells have seconda ry wa ll t hickenin gs that ena ble t hrm to retain their shape wh r-n

dead , des pite th e pressure or the surro und ing cells (Alon i )gS7).

1.3 . Wate r Tra nsp ort into end thro ugh t he Xyl em

Th e rat e and di rect ion of wate r flowth rough vessel elements and t raeheids

is depe nde nt on water potentia l Water potential isexp ressed as the combined

effects of osmotic, turgor , and matrix pot enti3ls . Osmoti c polential ill a funct ion

of solute concent rat ion and is measu red ag:linsl a reference pote ntlal of pure

water at atm ospheric pressure . This refere nce is t&~en to he rero, therefore the

osmot ic pote ntia l of an y solut ion i.~ always negativ e. The more concent ra led a

solutio n, tbe lower its osmotic pote ntiel. Pr essu re poten ti al is the result of t urgor

pressures within cells, balancin g the d ifferenc e between th e osmotic and total

wat er potential, and tr anspirati onal pulls witb in vu culllr channels. Th e matrix



I'0tl!lllioll or adhesionor water to SUrraCI'S such as c('11 walls is typicnlly n('gligibll;'

inside the plant that is not in 3 water stressed condition. Hence, water movement

is dir('ctional and is defined by the magnitude or the gradient of water potr-ntink

wa\f'f Il IW Il)'S moves toward tho region of lowest potentia l [see BOYl'r I g~ .'i l .

Till' fMc of water nux across the roo t or the plant and in the xylem

Irnchcnry elements of the stern is determined by the root pressure during periods

of darkness and lowwater stress and the ra te of tr anspiration from the surface of

the plant during the day (see Marschner 1086).

Soil solution, which contains dissolved ions, diffuses into the cortica l cell

region an d travels epoplestically through th e cell walls of the cortex. Symplastic

movement through plasmodesmata into endodermal cells must also occur, as

water passage thr ough th e apoplast is blocked by the suberin-impregnated

Cesparten band surroun ding the endoderma l cells (see Clarkson 1084, Peterson

1088). Once across the barr ier , ions are released again into the apoplast of the

stele. Secondary and tertiary wall building of the eadodermal cells 01mature

root! may destroy the attachment of the plasmalemma and the Casparian ba nd,

opening small apoplastic channe ls in the plane of the endodermal cells to allow ion

passage (Sanderson 1083). T hill nux of ions into the stele results in lowered ion

concentra tion of the cortex relat ive to tha t of the stele and establishes an osmotic

gradient across this region Jrom cortex to ste le. Th e water potential of the cortex

is then higher th an in th e stele and causes water to diffuse into it. T his diffusion

ill!lurricicnt to establish a substan tial hydrostatic pressure in the stele, resulting in

water now up tb e xylem elements 01the stem (Barn lQ66). This gradient results



in th e phen omenon of foot Il r('S~ure which RI,)IH' is insuHicit' llt to rnusv Ilw

movement of wat er t hro ugh thl.'plant ..... it hout th e gfl'Rtt'T ('!fl'rl s of t f n n~ l' ir a t io l1

trorntbe plant sur face.

Tr rm-pim t lon crea tes a negative prrl'.~ ll t (' within tilt' \' .':-'~I' I I' lt'll1t'll l , ;\n,1

tra chcids due to cvnporatlon Irom !t'lln 's an" ('1l\1~t'~ wat er I" 11l'J I1l11. ',1 In-m til t'

lower stern 10 t he evapora ting surfaces such M l<'fll'{'S and sepals. 111'11('<', lin

increase in the t ranspiration rat e enhances both the upt ake and the trlll\slo(,l\lion

of mineral elements in the xylem (see Marschne r (QS6). T he rate of lran spiution

ISdependent on sevl'!ra l fact ors, such as lim e of day, relative humidit y, age of tile

ph' Il ~ , and solut e concentr ation o f the absorb ed soil solution. Lean s cr t-ate the

greatest t ranspirational pu ll and more th an YO% of t his tran spiration is stomatal.

T ranspirati on r ates and movement of mineral elements are much higher during

the day th an du ring the dark peri od, due to th e opening of stomata for g:L'!

exchange in photosynthe sis and energy avail ability for the wate r phase cha nge.

Short te rm declines in the translocation rates of minerals at the onset of darkness

reflect the change from transpira tion to root pr essure-mediated volume now in t he

xylem [Crosser IOB8). An increase in the relati ve hum idity of t he environment

will decrease t ranspi ration rates from the plant surface as the water potential

difference between the p lant tissue and the atmosphere decreases. Similarly , an

increase in solu te concent ra tion of the soil solution decreases its osmot ic pote ntial.

However , soil solutions a re rare ly so concentrat ed that they inh ibit transpi ration

from tbe leaves (see Boyer }OS5). In seedlings and very young plants , the effects

of trans piration are small because leaf surface a rea is small: water upta ke and



transpo rt to the shoots is dete rmined primarily by the too t pressure [see

Mnrsehner HI86).

1. 4 . T rans p ort or C a lci u m

Unlike the majo rit y or mineral element s, calcium is tran slocated in the

xyh-m rnthor than the phloem. The concentra tions (i f all solutes except calcium

nrc severa l times greate r in the phloem exudate than in t he xylem exudate . The

rate of upta ke and trans port in the cytoplasm is th erefor e severely restrict ed and

it is the only mineral nut rient other than boron th at exists mainly outside the

cytop lasm in the apcplas t , Ca lcium transport has been exami ned in stems of

Nieotia'la L. [Hocking lOBO) and in the peduncles of lupins, Lupin u8 albuIIL.,

(P ate et af. 1074) and ca lcium is considered a xylem-mobile minera l with t race

amounts , if any, found in the phloem. Redlctrecer studies have shown th at

eelclum docs move into phloem tissue but it is Dot translocated (Biddulph et al.

10S0j and thus only negligible am ounts are ever pr esent in phloem exudates.

Ca lcium phosphate is precipitated inside the sieve elements in the presence of high

phosphat e levels and a high phloem sap pH oC7.5 to 8.5. Most sieve elements

have a filament ous protein aceous content referred to as 8. p-prot ein , the

appearance of which coincides with the onset of tra nsloeation witb in the phloem.

It has been suggested tha t contraction and oscillation of th ese filaments propel the

Iluid or the sieve t ubes (MaeRobbie t971). T he p-proteina have been shown to be

sensitive to calcium similar to acti n-like str uctural protein s (Kleinig d al. 1(71) .

Actin is known to be sensitive to calcium concent rations (Williamson 1075) which

may be anoth er reason Cor calcium exclusion from sieve elements.



Calcium is lIu'r d ofe limited t o tmns locntion in the xylem and u s mtl\'{'nwnt

is a function of hot h m&.~~ now of weter a nd ion exchnnge rcnctions on the willis

o f lrllrh('afr elements. 8 1'11 and Bid dulph (10M ) pos t ulated thnt eale ium ions on

entry to the xylem were adsorbed onto nl'gal l\'I'I~" r h :'lfll;l·\1 ~ilt'S hn i n~ tll(' illlll'f

walls of the H 'SSI'lS . Upward movemen t t hrough rho H._ Sl'I would occur IL~ a

transfe r 01calcium Irom o ne exchange site 10 the other. Th e rut e (I f calcium

asce nt would depend on th e degree of trnns pirati ona l tension inside th e V('s.'l(·ls.

Increasing transptrattcnat pull would resul t in tester w!Ill'r now throu gh the xylem

and a laster translocation o f calcium, presumably b('(' nuse t he ions wo uld ha ve

t ra velled far ther before being rea dso rbed at anot her ('xchange site (E lIull('rt I06fl).

The! mob ility of calcium is also promote d by other d ivalent earlons tha t compete

wit h calcium for adsorptio n on th e exchange sites. T he high er the concent rntion

of these cations, the faster t he moveme nt or calcium t hrough th e xylem [Milliknn

a nd Hanger IQBB), Also, neu tr alizat ion of the calcium ionic charge by chelat ion

with mal ic or cit ric acids a llows Ireer movemen t of calcium thr ough the plant

(Millika n and Hanger HI65),

1 .5. Function of Calcium

Calcium is a relat ively larg e divalent cat ion wit h a hydrated ion ic radius of

0.412 nm. It rea dily ente rs t he apopl ast a nd is bou nd in an exchangeab le form to

cell walls lind the exterior s urface of the plasma mem brane (see Mnrs chller IQsa l.

Moot or its activit y is related to prov iding stable bu t reversibl e inter molecular

linkages, predominantly in the cell walls and at tbe plasma me mbra ne. T hus, a

high proporti on of to ta l cal cium in plant t issue is locat ed in th e cell walls in



('f)n t ra.~t to other mncronutric nts . In t he midd le lamella, it is bound to carboxy lic

groups of poln.:lIa clu ronic a rid [pectin] where it ma)' co nlain up to 50% of the

tnl:al plant eeleium (Arm~ t rnn K lind Kirkb y 1970). In bot h the middle lamella and

" l!\Sma memb rane, ealeiu m regu l at~ mem brane permt'a bilit)" a nd strengt hens eell

Willis. In I('a\"('$ r('('('iving a high level o f eelcium du ring growt h , a !3.rge

propo rtion o f peeue material exis ts as calcium peete te. 'I bis makes the tissue firm

and highly resist ant to dl'gradation by polygalacturonas e (Cassells and 80 ulass

1976). The proportion of ca lciu m pectate in th e cell walls is also of impo rtan ce

for t he ripening of frUits . Rign ey and W ills (I9SI) showed th at during to mato

frui t developm ent , th e calci um content of the cell walls increases up to th e fully·

grown green stage, and subsequently d rops just befo re the onset of ripening and

sortl'!ning of the ti ssue . Simul taneo usly, a shift in the bindin g st age of calcium

cce urs in which wate r- solu ble calcium is rever ed ove r we ll-boun d calcium.

Co mparisons betwe en normally-ripeni ng tomatoes and t he nonr ipening rin

mutan t shows th e impor tan ce of calcium for fr uit Iir ma ess and its solubilization

for fruit ripening. rin mutants sbow an increase of bou nd calcium dur ing fruit

maturation, whereas in ot her cultivars tb e ec e teet o f bound ca lcium dec lines.

Th is decline is assoc iated with an incr ease in polygalacturonase activit y (Poovaiab

1910).

Calcium ste biluee cell membr an es by brid~ng phosphate and carb oxylat e

grou ps of phcephollplde and prot eins at memb rane surfac es (Legge d at. 1982).

As a dival ent cati on , it reacts with negatively charg ed I"hosph.le groups of the

phos pholipids in memb ranes and stabili zes th em. C alcium enab les membrane! to
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Iunct ion lISba rriers a g:lill" ~ uncontrolled permention processes. Selecti ve ion

uptake at th e plas m nlemmn is mediated by calcium [Epstein HIIlI). Til l'

Iu ndnment al toll' of calcium in mem brane st nhilit y wns demon smted hy vnn

Com ( l fJ G~ ) . 11"11" Induced un inerensed ll'ak!tg<,of low-molecular-weight sil lu lt·~ .

mainly pota ssium ions, h om cellsof calcium-deficient tomato fr uits. Pot:\.~si\l lll

ions are antagonistic to the function of enlciu m bf'r(l.us{'of th c ir I'0tt' nti:l li n

repl ace calciu m on its bind ing site if eaki um co ncen t rations a rc low, whleh .....0 11111

increase cell permeability (sec Bangerth Hl79). Increased res pi ration rate of the

ca lcium-def icient ti ssue also results from 10..... calcium as II cons-qeenc c of ]eakagr

of respir ato ry subs trates from vacuo les \0 th e respiratory enzy mes in th e

cy toplasm [Ilangerth eI al. ID72j. T his leakage due to calciu m drficic ncy is

simil ar to the characteristics of tissue senesce nce. C ut carnation nOWl'n

ex pe rience a 70% declin e in ATP-dependent up take of calciu m into mieroscmnl

vesicles dur ing post-harvest development Paliyat h and Thompson (I Q881suggClll

t ha t the inh ibition of ATP-dependen t calcium upta ke into veslele co uld be t he

result of lip id membrane change! that would allow calcium ion leaka ge into t.he

cytoplasm a nd thereby facilitate senesc ence.

A pa rticu lar disease cond ition of tomato, blossom end rot (BER), illustrates

th e importance of ca lcium movement and t h e conseq uence o f its deficiency in the

p la nt . ~ t he name implies, the co ndition is charact er ized by the ap pearance of

ex tensive, b rownish -black lesions on the distal end o f the developing frui t. S p urr

(1050)described the cells o f affected fruits as appea ri ng to be in ean advance d

sta te of diso rganization": cells of the necroti c tissue collapse, the cytoplasm
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coa g ulates, and the nuclei a re of abnormal shape. Van GOO f (1068) suggeste d that

BEn is II symptom of loeel ca lcium deficiency, which would increase ion

pl'rml'ahilily of cell membra nes, and could aeeount for tissue necrosis. BER is

ind uced un der rendi tions th at arfect the move ment o f calcium and/oT water to

the fruit (A rmslrong and Kirkby 107 0, Shayk ewich ellll. 10i l , Ward 1073,

Wi('fsum 1U66). Fo r rumple, application of nitrogen Iertihaer rna)' o r may not

(':\115(' mm, dependin g on the chemica l form used. Application of am monium

dur ing fruit ing induces BER (Taylor and Sm ith 1057) , because or induce d

resistance t o water nuxtha t reduces the calci um content of tbe fruit (Pill et at.

1078). Conversely, application of nHf.ateresul ts in a higher o rganic acid con tent

of th e plant, Chela tion of c alcium ions by t hese acids increases both mobility and

co n centrati o n orcalcium in t he xylem sap (sec Ha.ng er 1070).

Environ mental effects and physiologica l processes also affed di str ibuti on

and deficiency of ce lelum in t he tomato. Gerard and Hipp (1068) r ep orted th at

an increase in relati ve humid ity reduced th e incidenc e of BER in tomatoes, and

th a t a reduction in lear transpirat ion enhance d calcium movement ink! the fruit.

Bradfield and Gutb idge (1084 ) foun d that ca lcium inta ke into the t o mato fru it

was greate r when ni ghts we r e humid rather than dr y end nutrient so lution d ilute

ra t her than concen t ra ted. P ositive root pressure at night apparently promot es

tr a nsport o f calcium into t iss ues and organs that ha ve restri cte d tra nspirat ion .

This study WAS motivated by the obser vation t hat the extent o f xylem

eo neentration varie d within and amo ng pla n t organs. In pnr t icular, xylem is

red uced in th e ebseissioe zo ne of t he pedicel . Because calcium, an essential plant
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minornl. tan D£'supplied to var-iousvla nt pnrts onl,- through tho apul'la...t , tIll'

hnothf'$is of a potential restrjc t jon to apol'] ~ti (' water n o\\' eo u ld be t esfrd hy

tr:'ld nl!'; t hl"developmen t. of xyll'm within thl"fl OWN lind fruit, ohsrninv; wntcr

flow pnttoms through inl:\\"t pla nt segments nnd £,,, rtl'la ti l1F; this with thv :'Ifl ' :'IS " r

form of lJER. Pr evious work s uggests th at much of Ihl' W:'Ih'T suppl il'd tothe

fruit arr ivos,'ia the phloem, l's lwl"lal]y during the pnrty ra...t growth plm,'iI'

(Wolterbcck et ai, lQS7, 110 et al. IllS;) . Presumably, deficiency of enleium

should ariseat this time . The following stud)' att empts to rorre!all"the <':drnt 10

which xylem patt ern and transpi ration rai l'Sinfluence cnlclum coueenreatlon,

specifically within huit rnnglng in age h om lime of polfinatjon to maturity,
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Chapter 2

Materials and M ethods

T omato plan ts, Ly ropcrllicon neu lenlurn Mill. - T iny T im - were gro.....n in a

3:1 mix tu re of peat based pott ing soil end verm iculite a t p1l6. The pla nts were

maintain ed At a n ll\'t'fllge or 65~ relat ive humid ity under nuor escenl la mps

(Syh-nnj a, lncnndcseont fluorescent 30W , 80 /IE s·1 rn-:!) with dai ly 16 h light 8 h

dark per iods. They we re wate red daily IL!l requir ed and lertiliaed with Hoagland 's

solation (Appt'ndi x Al o nce eve r y rour da )'s.

2.1. E s tablishment or Xyl em Pat tern

F loralprimordia and innorescences of varioWi ages wereexcisedIrom

lo lIl&to planta. T bese w ere boiled in g5 % elbano l Lore move pbot05ynthetk

pigments, rebyd r.W, th en clea red by autoda vinl!:(15 mie. liquid cycle ) in 10%

KOH. LipiD a nd cell wan ma te rial we re stained by autodavi ng (15 m in. liquid

~ycleJ in a 1:1:1 solutio n o( glyeerol, 85 % la~lie add, a nd 0.1% c:hlorazo l black E

(Allied Chtmica l Co.N ew York , N.Y., CJ . No. 30235, Lot 140). This p repara t ion

is a modif ieerion of Brundretl el al. (IQS4). Pedicelewere longit udinall y bisected

to disce rn the xylem pattern a n d whole rruits w ere sliced longit ud inally into 3 mm

thiek d isb . P lower bu d. were s tained without d issection . The plant p a rts were

mounted in a 1:1 rat io o r glyc:eroland water and observ ed with light m ieroeecpy .
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~lorphom(' l rk An:'l.lpi~ W:\.~ used to est imate ); ~It'm ~ IU fllrt· lU I' :\' rd ati n ' I" totnl

su rreee .1('& (T olh 1082). MI' :L~urt'ml'nl ~ WPI I' 1111111' {rum p hOIOl tll )l hs uf l' 1" I'l.f l'11

and stained f:L. m('nl ionn"dl !<I'1l:!.1!'and fruit d i.~ k".

no ted. F lo" ," "i ll' \\ a.- t,,.t illl;lh -d by a 1I1t":l-" Uf l 'lI ll' nl IIr It'lJi:1h Inun I', ..li.·,·\

altarhmC'nl point to the "l'palt ip"', and eonvbined "'i th:l. ,li:u lIl'l", 1IU' :L_u t "lIU' 1I1 " I

th e nower a C10M th e middle of the o vary. M r:\.'u u'lIl l'nb were takr-n h um

enla rged pho togra phs of Ilowcr bu ds and fru it. The patter n and dist rilJlll ioll o f

xylem were studied h om the primo rd ial st age through to the drnlop mt'n l o f

m atu re fr uit . T he ptcsenee or absen ce of a pedicel a hsdssio n zone W :L. ('llrn ·l:tlt>t1

w it h the size of th e Ilcwer. Leal a bscission zones w("re :liso eleared a nd ~ t ll. i lwd in

the above manner lor use 3.~ a comparison with pcdieel abM'ii'....ion w nt'S.

S t rurt ura l difCerenr C'S 01 abscission zones 01 the leaf Andt he fruit wo uld ~u gg(>St

possible lund ional dirrere oce! between th e two. Ves-'Iel member length~ and

d iameters withi n tb e abscission eone and t he proximal and dulal por t ions of th e

ped icel were measu red from photographs o f tbe tissue .

Pedieels lor estimatio n of t be xylem t iu ue cross-~tional area .....ere

h arvested on a weekly basis hom two days following anthl!9isto matu rity at eight

we eks. A single pedicel was sect ioned ror eee h week. T issues were d ehydra t ed in

an etha nol-butan ol series and embe dded in paraffin wax lor seelionin g (Jense n

1962).

Seria l microtome cross-sections of 40 I'm tbickn ess wen made from the
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proxima l to the distal end of each pedicel. The;e were stained with phlorog tueinel

nlHIIICI , mounted in 1% CMCIO, (DOH Chemicals Ltd. P oole, E nglRnd)II. non-

f(~intJ lIs :VpIC'OIlS mounta nt w ith a rcfracti ve index of 1.3C, prior to

I'lifl'''TIlic'roswp)· . The photographed sections wr-re projected onto a digitizi ng

appnrntus lind cross-sect ionala reas or to ta l pedicel and xylem were' measured in

2.2 . Dil"ltribution or Fluorescent Tracer

Th e alkaloid berberi ne is an apoplas t ical1ymobile dye (SlTuggcr 1938) that

dot's nol now th rough the symplast ir the ti ssues are lell int act. Th e dye use d in

theseexpe riments was berberine hemi-sulphata (Sigma, No. B-3376, Lot

JiiF·025QI which fluoresces bright yellow un der W epifl uoreeeence. The dye is

carried a long the tr anspir ation st ream and was used to show the proportion or

xylem th at funct ioned as water-conductin g tissue (Dixon and Peterson 19SQ).

Plant stem portions with attached trusses were cut and their ends immersed

into 0.03% berber ine berni-sulpbate in 0.05 M pbosphate bull er at pH 6. They

were then left und er lamps (Sylvania , Inca ndescent fluorescent 3OW, 80 pE s· 1

m·2) in a n environment of 20.5 00 and 65% relative humidity for 3 h respectively .

Diameter or the Irutt W8.S measur ed and Cruit color W/l!I not ed before immersi on of

stems in dye to judg e its ripeness and devel opmental stage. Hand erose-sections

were made or th e proximal, middle , and distal porti on or the fruit and

immediately photogr aphed to observe the position of the dy e and extent oC

lmpreguetlce nJong the Cruit xylem vsseuleture. Photographa were also taken or

the pedicel and se pal hand sections. The pedunc les of fruit with their sepa ls
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the tra nspi rat ion stream and d ye path w ay. The cut ends remaining afh' r M'l l:l ]

excisio n were eonted wit h pet roleum ;1·11;.: to pH'n -nl water loss thr ough t h (,~ I'

ends. A fluoroseenre sta ndard was mad " usmg n h:lI'IIl11I'}"\ OIllI '11'r with a d ~' ( '

concent r -ation (If 0 .0:11';' and solut ion dept h (If 0.1 mill. TIlt, ll ll':\.~url'd nU l .rps rI ' lLt' \ '

at 6.3x was 20.6 . All re lative Iluor escenco values were measured fit t h l ' S:U\lI'

magnification a nd dye concen t ratio n as t ho sta ndard . Obst' H atiun'l wvn- malh'

with a Zeiss P ho toscope III using a Zeiss filler ·187718 wit h maximum t ransmission

betwee n anS··&25lim. T he phot oscope was equipped with UV t'p iOunfl'Sf(' lu'l' and

an attached Zeiss PMl photom et er head for the quant ita t ive rluoreseeecc

compa r -isons. Pl uorcscc nee va lues of th e stained, wet mounted t issue at e

represented as "r elative Iluorcscenee un its ".

2.3. Distribution or45Ca

T o mato p lant ste ms wit h intact Infl orescen ces and leaves were excise d lind

the st e m ends im mersed into Hoagland 's Nut rien t Solut ion cont aini ng 0.5 9 MJlq o r

45Ca per 50 mls or nutrj ent so lution. The rorm of eelelum used was CaCI2 lind

referen ces to ca lcium a re to the ion. These plan t portions were maintai ned for

four d a ys at 21 °C and 65% relat ive humidity un der rlucr eseentlempe (Sylvllnill.,

Incandescent Iluor escent 3OW, 80 pE 5. 1 roo'll with a diur nal 16 h light An d 8 h

dark pe riod. Leaves, pe tioles , pedieels, sepals, rru iu , flowers, and flower bud s

were th en excised and weighed separat e ly. T he fruit was cut into proxim al and

distal hal ves and each weighed . Fruit w it h a fresh weight of less thnn 0 .0 1 g wer e

Icrt wh ole. Th ese fruit ere referr ed to as "whole" in fur th er compar ison s . T he
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do.~l~ t 10 the fruitin g truss. In eech ease the pet iole WIIS that of the leaf used in

the analys is . f lm.... N s and Ilower buds were Idt intact and inc luded s l' p/l I~, pet al s,

Il.nll ll·rs , an d fJ\'ary . Each por tion w3.5 oven- d ried a t 60 orfor ·1·.) dr,}"s unt il no

ehnnge in w r-ight cou ld 01' measured. The driod sam ples were then ashed at 65 0

°c !or :16 h . All.acid extract of the B!3h in 50 % lIel was then oren-d ried at 60 aC.

Th e rema in ing residue was redissolved in 200 ,.1of watcr. Ten m15 of liquid

scintillatio n fluid was added to this solution a.nd th en scintillat ion counted

between 200 and 750 kev . Plant porti ons prepared in the above mann er but

without 4SC ll. labt'lin g were used as control s a mples. Scintilla t ion counts were

converted to disint egrat ions per minut e a.nd anal ysis was based on these values.

Co nversions hom dpm to emclescalcium were as follows:

_ I dpm = 60 d ps

_I dpa = 1 Bq

_1480 Bq= 1 pgCa

_ 1 ,.g Caj 40.08 = 1smol Ce

T he re sulting prool Ca represents the am ount at labeled calcium added to

t he nutr ien t solution. The nutr ient solution contained 12S«m ol unlab eled

calcium. The totnl amount of calcium in th e beginn ing of th e experiment

repr esent ed the sum of the labeled and unla b eled calcium, C alcium was assumed

to he absorbed from the solut ion at a const an t rat io of labeled to unlab eled, 80 the

tots! amo u n t of ealeium in eacb pla nt part is the product of smol labeled Ca

tim es the ratio ot lab eled tc total calcium at tbe beginning at the experiment .
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Two measu rements of the largest frui t diamet er were made at right 8n gh's

and the volume of eaeh fruit was est imate d on the assump tion that the fruit. is

C'Henlill. lly IIsphere lEhrt't sod 110 HI86a). Volumes were rst im,'lll' \l belen- and

after the four day experimen tal period and till' incrrnsos of I-Illumt· ""Nt'

calculated as t he dirrercnccs bet ween their volume s dunng th is tune . Hclativo

increase o f volu me is the di llerence in volu me ove r t he four 0:1)' perioddivided hy

t he origin al volum e.

f rui t or va rious ages were ha rvested , weighed , and their dia mete rs

measured . They were main tained at 20°C and 65 % relative humidity rcr a n hour

and weig hed at the end o f tha t time. T he d ifference in weight was equal to th e

tr anspir a t ion ra te or eecb buit . Water in take by the Iruit is equnl to growt h of

th e rrui t p lus t he amount of wate r transpired. To estimate total water int ak e, the

units oCgrowt h measured over four days, an d the units of t ranspiration meas ured

in hours were standardized by mul t iplying t ransp irat ion per hour by Q6. The

amount oCtra nsp iration in Q6 hours by II Cr uit of a particular volume WItS ad ded

to the a mo unt o r growtb in Icur days of a Cruit oCtbe same volume. Th e

epidermal surface of the fruit, sepa ls, and leaves was examined for the presence of

stomat a .

An analysis of varia nce or t he calciu m content or th e plant part group s .....1'..1

used to confirm th e hypoth esis of unequal means among leaves, sepals and Cruit of

diffl!rcnt ages. Significan t differences in tb e calcium conte nt or t be remaining

plant pa r t group s were sho wn wit h a New rnan-Keuls multip le range test. Lin ear

regression illustrated the relationships amo ng calciu m content, relative growth,
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t ranspi ra tion, and fruit volume. T ests were done using SpssX and Minit ab a nd

gra phs were draw n ..... ith SpssGraphks.
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Chapt er 3

Result s

3.1. Estebllahmene or Xylem Pattern

Floral buds of various ages were examined 10 follow the stnges of xylem

development. Inflorescences, at an early singe of development (wit h n toh.lll'Ili!i1h

of 0.4 mm), showed no t race of xylem vessels but the young lonves ( I nun in

length) surround ing the lntlcresecneee were supplied br cont inuous and con nected

sh ands or xylem (Figure I, AI. T he elements developed first in th e proximal

portion of the pedi cel and advanced as single stra nds acropt'tally tow ard the "l'pAI

tips of tbe bud (Figu re I , B). T racheary elements appeared in sepals of buds thll.t

were 0.3 10mlong and were often present singly, some were acn-con tinucus

(Figure 2, AI. Continuous strands of vl'S5elsrunning th rough the pedieel, sepa" ,

and petals and which were connected to tbe main noral axi" were first seen in

buds 0.6 10m long (Figure 2, B). T he absc ission zone wa.sevident in buds 0.8 mm

long. Th e vessel elements that fir, t developed wit hin the pedicel were short

relative to othe r vessel clements of matur e vegetat ive t issue Andwere twist ed or

crooked in shap e (Figu re 3, A). At bud malur ity , longer vessel members,

t racbeids , And fibr es developed alongside th e crooked vessel membe rs. At ne wer

matu rit y and du ring fru it development, only two areas remained composed Mllely

of short, erooked tracheary elements: the pedicel abscission zone a nd the xylem
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of the fruit ecre Il". ding to th e ovules . Stu bby vessel members in the pedicel,

"o rdered o n t he proximal a nd distal sides b)" elongate d vessel member s, w ell' used

10 illi'nl ity t he pedieel ab~isston roue . Th e mean I('nglb of th ese stub by "eMel

members at th .. nbsci<..<;jon zone wa.~ 0.020 rom .....i t h a rang e trom OJXK! rom to

0.01; mm compared with the ves sel members of the proximlll and distal poriions

thai lI.vcraged OA mm. T he mean width of th e stubby vessel members was 0.012

rom and did not dirter in widt h hom the vessel membe rs proximal and distal to

th e abscission zone. T he short vessel members were present Ior the du rat ion 01

frllit development, forming an irregular ring orstrands separated by parencbyma

cells. Hence, the abscission zone had less xylem relat ive to th e portions of t he

ped icel proximal and distal to it (Figure 3, B). This reduction in xylem at th e

abs cission zone WAS a consistent feature of all pedleele sect ioned and sta ined with

phlorogluci nol ant.!HCI from two days arte r ant bl-sis to fruit maturi ty (Figure 4).

Th e pedleel seeuened two days dter antbesis was designated as week 0 in t' igure

4. The values for th e proporti on or xylem to total pedicel cross-section al areas ror

th e proximal and distal portions or each pedicel were chosen from sections

app roximately 0.5 m m from th t abscission zone. T he proport ion of xylem was

greatest in th e proximal segments with a mean or 50% for all pedteels , and

somewha t less for t he dista l segments with a mean of 40% . Corres ponding va lues

for xylem a t the abscission zone for the same pedicels ra nged from 4% to 13% .

Xylem tissues of the leaf abscission zone and t he zone of attachment of th e

pedicel with the fruit were composed primarily of fibr es and tracheids. Xylem of

the ped icel extended to th e point or att achment of the sepals and fru it where the



FIgure 1: A. Floral primord ia. No xylem vessels apparent B. Entire
inflorescence. Traeb eary elements advancing acropetnlly toward

nower bud tips. Stained ..... itb 0.1% ehlorazol blnek Eo

A :: 116x B :: 116 x
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Figure %: A. Entire letlcreseeeee with tUfbeary elements r('lfh i n~

the tip of the largest bud. B. Xylem tissue of th e pedicel and
sepals of a bud . No abscission lo ne is evident . Stained with

0.1% chloraaol black E.

A " l1 &x B = 116x
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Figure 3: A. Enlarg ement of traeheary elements through the pedicel
of a bud. Elemen ts are relatively short , but no absciss ion zone
is evident . B. Whole pedicel illustrating decreased xylem at the

abscission zone. Stained with 0.1% chlorazol black E.

A = 290x B .. 1 8 . 75 >:
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Figure 4.: Percent orxylem relative to total cross-sectional arNl
in the proximal, dista l, and abscissionnl segments or pediccls

aged two days alter anth esis( Oweeks) to eight weeks.
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majority of it extended into the sepals 10 form a continuous net pntn-ru with

venation similar to thai of a Il'lIf [Figure 5, 1\). A main mid-vein Iornu-d and

vessel elements branch ed l nt('r nll ~' to the sepa l edge to connect with stm nds of

xvlom run ning along the ~ ('plll llt'r iphl'r~" T Ilt' venafion W:L~ r0I11111.'\I ' , wit h no

blind ends. Approximately ·1'2"[, or the surtece :HI'a .,f the elenn-d und ~I:l i lll'd

sepals was xylem tissue. The s ylom vasculatu re of the ova ry. lind lan-r th ,' fruit,

was I~! extensive relative to orga n size. Sma ll frui t 1< S mill diaUWIt'r l

conta ined approximately 26% xylem tissue per fru it disk sUffar(' nrea. Xylem

tissue comprised approxi mately 11% of the surface area.of cleared nnd stnincd

disks of larger tr uit f> 10 mm diameter ), T tachcary elements exte nded from th e

circle of xylrm in the receptacle tissue at the fruit' s proximal point of attac hment.

T he majority of it passed through pedicel t issue directly to the ovules. Remaining

branches of th e xylem spread along the frui t walli n the proximal rruit half and

th en bran ched further into th e dista l half. Typically, t he fruit wall conta ined

t hree to five ar ms of xylem th at reached from th e proximal to the distal end of

th e fruit within the fruit wall. Here th ey converged 8.!1 two bundles into th e style.

Alt er fertilizati on, th e ovary wall began to swell and the style excised, leaving

broken ends of xylem a t the d ist al end of t he frui t (Figur e 5, B). Generally , the

xylem of the fruit wall W8.!l continuous with no blind ends except for t hese two

broken bundles . The distal porti on of the fruit appeared to be poorly supplied

with xylem relative to the proximal half primarily because the maj ority of th e

xylem vessels of the fruit lay within th e placent al tissue where th ey branched

dire ctly to the ovules (Figure 6, A), The xylem of the placenta was composed

solely of short and crooked vessel members (Figur e 6, B).



Figur e 5: A. Xylem patte rn of the sepals. B. Longitudinal median
section of pedicel, sepals, a.nd fruit illustrat ing xylem a.t the
distal portion of the fruit . Age- one week after fertilizat ion.

Stai ned with 0.1% ehlorazol black E.

A :: l Ox B " 7 5x
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Figure 8: A. Median section of fruit illustr ating tbe
concentration or xylem in the placental tissue. B. Tra cheary
elements of tbe placenta leading to the ovules. Sta ined with

0.1% chloraeol black E.

1\ = 5.6 )( B s 11 6)(
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3.2. Dil!ltribution of Fluorescent Tracer

The pedicel xylem was heavily sta ined with berbe rine bemi-eulphet e and

late ralleakage of the dye resulted in all cells conta ining lignin to be stained.

Figure 7 illust rates the exte nt 01 dye passage along the pedicel and the reduction

of xylem at the abscission zone. At the point where the sepals attach to the

pedicel, t he dye trave lled into bot h the sepals and the Cr uit (Figure 8). T he

propor tion 01 berberine herni-sulphate that entered the fru it concentrated in t he

ple A ~_ll tal tissue of the prox imal half of the (ruit (Figure 8, B). The mean

fluorescence per unit sur face area of the proxima l fruit ha ir was 28.S, whereas the

mean of the dista l fruit halt was 13.9 (relative fluorescence units). The dista l Iruit

ha ir contained less relat ive Iluoreseeuce per unit suereee area than the proxima l

fruit hilI!. Spots oCdye were rarely seen in the fruit wall. No dye was observed in

the tar blossom end of any Cruit . This pattern ot berbe rine distribution was

consistent in all small and large green fruit , but mature ripe fruit showed DO dye

uptake. Removal or the sepals from around t he fruit caused a significant ly

greate r a mount of dye to travel into the fruit (mean rela tive Ilucr escence of 63.6)

compared with fruit wit h their sepals intact (mean relat ive Iluc reeceace of 42.6),

(F= 16.61, p=0.0I5) .

3.3. Distribution or 4SCa

Frui t used in t he following analyses were assigned to one of two classes:

those th at weighed 0.05 g (30 mm3
) or less (hereinafter referred to as - very sma ll

fruit -) and those that weighed more tha n 0.05 g.



Flgure 71 P roximal ( A) abscissional(a) and dista l (C) pedieel
cross-sed ions illustr ating decreased xylem at the abscission zone.

Stai ned with 0.03% berbe rine bemi-sulphat e.

A " 1 3x B " 1J)( c '" 1Jx
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FIg ure 8 : A. C ross-sec t ion of sep al illustrat ing xylem vessels.
B. Cress-section o f the proximal en d of the fru it. Yellowspots

indi cate be rberine-stained xy lem. Stained wi t h 0.03% berber ine
hemi-sulpha te.

l OOx B " ~ , 6 x
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T he ]('3 \' C:; (n= 13), inflorescences (n=I&), and huil (n= 5.j) ou tomat o plant

sterns diHNenl iAlly accumulated calcium (Table I). The fIldiollctiv it},coun ted in

th e ](' [\\" (' 8 , [t he grea test aceum u lnt ors]. was 508 times great er th nn till' dis t:al !lntr

of fruit we ighing mort' th an 0.05 g fw,h weight . Whol(' fruit weighing It''''s than

0.01 g (n=8), acc umnlnted sign lficanfly more cnleium per fff·sh wt'ighl l-t .2x I06)

th an did medium and lar ger lrui t ranging from O.S g-7.5 g (2.:lxlOr., n= ·16),

(F~68.58 , , <0.001).

Ana lysis of variance of th e nine plant par t groups shewcd a signilicant

dillerence in ca lcium acc umula.tio n between leaves and all other tlsaues (F = 1.15.

p<O.OO l ). Frui t greate r than 0.5 g accumu lated the least calcium (F= 37 .lg ,

p<O.OO l ); other maximum nonsign illcant ranges are ind icated in T able t ,

P roximal halves of frui t always ccnutncd more calcium than distal halves , but th e

d ifference was not signiricant (F =4.05, p=O.06).

C alcium upt ake in to the fru it was dependant OD th e total water intake by

the fruit (increase of volume plus treuspir eticual loee]ov er the four day

experim ental period (Figur e g). Regression enelyeis on 0= 30 fruit gave th e

following equati on:

y ~ -4.74xlo' + 3.2'x lO' (Xj

Y = radioact ivit y of calci um and X = to ta l water intake

The regression coefficient is r = 0 .89



Plant
" arls

"
T.ble I : Mean tSC a dpm values o f plant par ts.

Mean Maximu m NODsipificant
Ca ld um(d pml Rangn
eX ! I s.e .m .foll

,....r
S t"(lll l

Flowe r Dud
F1ow er

Whol{'rr uit <O ,Olg

Ped ice l

Pe tiole

P roximal Frui t Half
Distal Fruit HaIr

3 .2xl07! 1.7xI07 (13 )
; .5xl~6.;I IOs (5-11

7.4 x l06! 1.8xIO& (11)
7 . 4x 1~ 1.3x106 (4 )

4 .2x I06~ 1. Ix l06 (8 )

3. Ix I06! 1.5x lOS (54)
3 . h. J06~3 .6xlOS (4 )

1. 6xI06.!5 .8xIO~ (46)

6.3 x lOt.! 2 .5x IOt (46)

A
D
B
B
C
C

C

D
D
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Fruit with a large volume in crease accumulat ed signirieantly more calcium

over the experimental per iod (F=1l3.0, p<O.OOl).

Calcium accumulation compared to th e fruit 's increase in volu m e was

constant lor all fruit grea ter than 30 mm3 in volume and 0.05 g in fresh weight.

However, Irui t emafler than 30 mm3 or 0.05 g accumulat ed, on avera ge, 7.5 times

th e calcium per increase in volum e than did fruit larger than 30 mm 3. The meaD

calcium accumu lation relative to growth fot a very small fruit was l.lxlO4

dpm/volume increase compared to the const ant value of 1.3xIW dpm/vollim e

change (Ot fruit between 0.5 g and 7.5 g or 325 mm3 and 6600 mm3 tC5pcctivc ly.

Logari thmi c transformati on of the X axis var iable allowed any variabili ty o f

calcium content among very small Cruit to be visually obvious. Figu re 10

illustrat es the difference between ca lcium a ccumulati on relativ e to vo lume

increase for fruit less tba n 30 mm 3 compa red with huit larger tha.n 30 mm3.

Tr anspirati ona l losses per unit Iruit surfa ce ar ea were also greatesllor vcr),

small Iruit «30 mm3) where cuticular eondueteuee was 0.18 mg/h compared to

th e mean cuticular condu ctance 0 1 0.002 mg/b for Iruit ranging from 321)mm 3 to

6600 mm3 (Figure 11). Fruit less th an 30 mm3 showed an exponenti a l wat er lOS'!

per unit area that averaged DOt imes more tha n larger fruit h om 32 5 mm3 to 6600

mm3. Fruit between 30 mm3 and 321)mm3 sbowed an intermediat e rate 01 water

loss. The mean tr anspir ation rat e or0.002 mg/ h lor tbe larger fruit represents a

constant rate 01 water loss per unit surface area lor all these Iruit .

Over tbe lou r day experimen tal period , the increase 01 Iruit volum e relative



Fig ure 11 : Callum (dpm) r-elat ive to total rruit water intake
over thefour Jay experimental period,
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Figure 10 1 Calcium (dpm) rela t ive to gr owth over the four day
exper imental p er iod for all fruits tested.
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F 1su re 11: Cuticular ecedueteeee or rruit relative to th eir surrace .reL
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to initia l volume W&!l grea test ror (ruit less than 30 mm3 and WA.97 times greater

than med ium and large sized fru it ranging from 325 mm! to 6600 mm3, T he

mean relative growth incr ease of very small fruit «30 mm3) was 3.6xl0·1 g over

the experimental time, whereas th e mean growth increeae of fruit (rom 325 mm!

to 6600 mm! WAS 5,lJxl O· 2 g over the same period (T able 2). Logarithmic

tran sform ation or fruit volume illu strates that a const ant slope exists ror th e

relatio nship betw een rel a tive incr ease orvolume a nd f,u it volume (0=54), (Figur e

12):

Y = relat ive increase orvolume and X = fru it volume

The regressio n coe fficient is r = o.gg

The total amount of water cntering an expa nding fr uit equals the increase in

volume plus tr anspira tic nal losses. The amount or calcium in each fruit rela.tive

10 its t ot al wat er accumul at ion over the four day experimental period was

independen t of fruit volume. Th e ratio of calcium to water intake was consistent

fot all fruit sizes. Very small fruit , less th an 30 mm 3, did accumulate less calcium

per total water influx tha n larger fruit but this was not a significant difference

(Tabl e 2)-

Th e growth and amount of calcium accumulated by a fruit wa.salso

depende nt on its position on a truss , The first (most proximal or closest to t he

main plant ste m) fruit on a truss, accumu lated significantly more calcium than
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Figure 12: Relative volume increase compared to initial fruit volume.
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the most distal fruit of the same tr uss (F= 13,92 p=O.Ol). The Iruit in between

these two extremes accumulated less calcium with each position away from the

fi rst fruit. The amount of calcium accumulated is related to the Cruit position

(Figure 13):

Y = 2.15xIOs• 2.7Oxl0 4X

Y = rsdioaetiv ity of ca lcium and X = truss position

T he regression coefficient is r = 0.81

The above equat ion was for a single truss with eight fruit. Variability in

dprn counts between t russes cba nged t he value 01 the y-iu tercept , however , the

linear relationship remained the sa me.

A similar relationship existed fot the increase in volume over the

experimental period and fruit position tor the same truss of eight fruit (Figure 14):

Y = increasein volume and X = truss position

The regression coefficient is r = 0.82

The change in volume of the first fruit was significantly greater than all

others of the truss and declined to the most dista l fruit (F=15.34, p=O.OO8).

HoweverI as a proportion of growth relative to size at the beginning of tbe



Figure 13: Ca lcium content relative to fruit position Along
the truss. Fruit #1 is the most proximal.



' '(1 _ ._ .

o

55

FruilPositiononTruss



F lgu re 14: Increase or volume relative to rruit position along
the t russ. Fruit # 1 is the most proximal.
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experim ent , th e cbange in volume was relatively CODstant for all fruit of th e lrUS9

larger tban 30 mm3 or 0.05 g. Th ese very small fruit grew the fast est compared

to ot hers on t he truss even though they were th e most distal from th e plant stem

(Figure IS). Th e proportional growth of th e remaining fruit was app roxima tely

equal, r egardl ess of their truss position. Figure IS illustrat es th e general hend of

increase in volume relat ive to initia l size Icr the dinere nt fruit along tbe tru ss.

Data of t be ca lcium conte nt and volum e increase of th e remaining fruit of tru sses

are listed in Appendix E.

The Iru it epidermal surface lacked stoma ta , but stomata were present on

both su rfaces of leaves and sepals. T he ab axial surface of the leaves contai ned.th e

highest mean stomatal density 0145/m m2 and an adaxial mean 0IO/mm2. The

mean Dumber or stomata on the abaxial side or the sepals was 24/mm2 a nd

fJ/ mm2 OD the adaxia l side. Pedlce ls cont ained II. mean of 3/ mm2 on th eir

epidermal surfaces.



Figure 151 Relative growth o r rruit compared to th eir position along
th e truss. Fruit #1 ls the most proximal .
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Chapter 4

Discussion

The development orxylem tissue within the primo rd ia of t he tomato

inflorescence throu gh to fruit malurity affects the mode of water and calcium

supply to the pedicel , sepa ls, and fruit. The exten t orvasc ularization within t hese

organ s plus effects 01 tra nspiration dete rmine the site'Swhich accumulate calcium .

T he inflorescence 01 the tomato differenti ates from the vegetat ive apex and

develops in the manne r detailed by Sawhney and Greyson (1072). At flower

matu rity, a complete ring orxylem vasculatu re extends thr ough the pedicel to the

recept acle, where it branc hes to the sepa ls, pet als, ant hers , and t he ovary tissues.

An abscission zone in the middle or the pedicel is indicated by a dramatic decline

in xylem tissue cross-sectio nal a rea. Th e dat a presented here show that the

abscission zone xylem is composed of short , irr egular vesse l members tha t pers ist

for the dur ation of frui t development . Withi n the abscission zone, vessel

members, tr acheids, and Fibers of the metaxylem and seco ndary xylem rail to

develop as th ey do in the proximal and dista l portions on either side or th e

abscissio n zone. Jensen a nd Valdovinos (lg 67) described the anato my or the

absciss ion zone of t he tomato flower at anthesis and not ed that vascular tissue is

continuous t hrough t he zone, but did not desc ribe the xylem tissue or its relativ e
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amounts with in t he pedicel. Hudak (l OS7) no ted tha t th e xylem in the Ilb sl' is.~ ion

lo ne WlLS sigIljfieantly less than the proximal and dist al pedicel portions. T he

xylem patt ern was com parab le to tha.t of the pedicel o f t he mango (Barnell 1039)

in which th e amount of xylem was decreased and the cylinder of vascular tissue

was broken into an irreg ular ring of xylem st rands at t he abscission zone. Baird

and Webst er (107Q) noted th at xylem vessels are unusuall y small or absent from

the abscission zones o f most fruit and conside red the tone as a region of abrupt

structu ral transition . AJoni (I OS7) studied the irregul ar vascular attac hment site

between the xylem of II. leaf and stem of the palm Rhapis cue/sa . At th e node

between t he leaf and plant stem, the vessel sys lem of th e lear con nects to the

vessels of t he stem via narr ow traehelds. Th e tr acbclds in the node region

presumably protect t he vessels of the stem from cavit at ion when the leaf drops

ell. Lee (19g9) pro posed lh at the abscission zone in the tomato pedicel resists

water now through t he xylem and transfers th e dem and for wal er by the fruit to

the p bloem, thus linki ng wate r and dry matter influx to the fruit .

Generally, the pr esence of a Iluoreseent dye such as berb erine hemi­

sulphate, can be detec ted in smaller quan tit ies th an can non-fluorescent dyes

(O'Brien and McCull y 1991), making a ny wa ter passage thr ough the xylem

obvious. If transpir a tional tens ions are high or suelion is applied to the end of the

stem, berbe rine herni-sulpha te flows with th e water path ways and therefore will

indicate fundional wa ter-conducti ng vessels and trach eids (Dixon and P eterson

199Q). Generally, berb erine stains lignin and suber in in plant tissues (Drundr ett d

al. Iggg). However, t he dye tends to bleed later ally throug h vessel elements and



stnin cells in which th e dye was not ear-led, ma king qu antification of wat er­

conducting vessels and tracheids impossible. In every section, xylem vessels and

tr nehcids were stained pills any cells containing lignin (Figure 7), Th e technique

(,' st:l.i" ing Iunet lonnl xylom is presently being refined (peterson, pers. comm.]

Ik rlll'rine hemi-sulphate is preferable to a phloroglucinol and lI el stain because

the latt er sin lOS Ior a vnriety or polysaccharides besides lignin, whereas the

presence or berbe rine illustrat es areas or water now- th e dye sta ins lignin

wherever it t ravels with the water. T herefore. berberine sta ining is useful to show

npoplast ic continuity through the length of tbe pedicel.

T he xylem tissue or the fruit concentrated within the placent al region.

Th ese tr acheary elements were stained with berberine because of water movement

to the ovules. Even though xylem existed in the distal fruit por t ions, dye did not

pass to the blossom-end of the fruit. The vessels eith er did not function as wat er­

conducti ng passageways or, more probably, transpira tional water losses Irom the

fruit were insurricient to draw dye to the distal end, As the fruit surface lacks

stomata, tra nspirat ion must be cut icular, A significantly greater amount of dye

t ravelled into the fru it when sepals were removed before the ste m ends were

immersed in dye. T his supports the idea that tran spira tional pull and amount or

water loss from the sepa ls diverts water and dye into th e sepals rat her than

allowing it to continue from the pedicel into tbe fruit . wi ersum (1066) immersed

tomato tr usses into a solution containing th e dye, Light Green, T he dye tra velled

apopla.stically, staining the vasculatur e of the pedicel and calyx but abruptly

ended with in the tissue or the receptacle. Dye was rar ely detected in veins of tbe
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(ruit wall. Wiersum did not confirm whether or not th e majority of dye flowed

throu gh th e placenta l tissue to t he ovules. The results of thi s the sis support the

view t hat little a poplasti c wat er now appears to enter the fruit . In these

experiments, the presence of ber berine heml-sutpb ete correla ted with the

observation of gr eatest xylem concentration withi n th e pla cental t issue.

Ehr et and Ho (lOSSa) have shown that th e hydrauli c conduc tance or xylem

sap din ers among th e pedicel, pedicel-fruit juncti on, and (ruit tissu es. Pr essurized

water forced thr ough th e xylem trachealYelements showed a restri ction to xylem

now tha t increased in the sequence of pedicel < pedicel-fruit junction < fruit. A

low hydraulic conducta nce implies either a low amount of xylem wat er tr ansport ,

some form of restri ction to now within t he vessels, or few vessels to transport

water. The fruit cont ains less xylem per cross-sectional area t han docs the

pedicel, and has a low tr anspiration rate, therefore it may he speculated that

water within th e pedicel is primarily at tracted to the sepals that exhibit a high

transpirati on rat e. Measurements of water pot ential gradi ents within th e tomato

plant showed th at a resistan ce to water now exists between th e pedicel and

tomato fruit (Lee d al. 1989). T his observation may partly be th e consequence of

the short, crooked vessel members t hat characte rize the xylem vasculature of the

pedicel-Irui t ju nct ion . However , it is not expected that vessel members with

simple perforation plat es would greatly impede water now.

The organs of th e toma to plant accumulate radioact ive calcium to different

extents. Leaves contai ned more labeled calcium per wet weight th an all other

plant parts examined. Developing and mature leaves contained a greater



proportion of xylem v ('$.<;l' 1 strands than did flowers or fruit and were well supplied

with etomete on both sides. These charueteristics would cont ribute to a high

trnn~pirat ionnl ('npltrity, ther eby draw ing calcium into the leaf in the

tmnspirntiun strea m. Armstrong and Kirkhy OgjOI noted that tomato plants

grown in a. high humidity environment (Q5t:'V RJI. ), showed a marked dirrerence in

calcium distributi on relative to plants in a lower humidity (50% R.II.). In high

humidity , the level of calcium in the young leaves was very low and calcium

accumula ted in the stems. T herefore, duri ng periods of high humidity and hence

low tran spiration, calcium tended to accumulat e in stems instea d of leaves.

Whole flowers and buds, both of which have intact sepals, and sepals taken

separately, all accumulated relatively large amounts of calcium . Th is was

expected , since sepals have stomata on both surfaces and are well supplied with

xylem vessels.

The pediccla a.nd petio les accumulated less calcium tha n did leaves, sepals,

buds, and Ilcwere. These organs represent vascular passageways and the

occurance of calcium in the pedicela and pet ioles is dependen t on trans pira.tional

pull of xylem water plus ca lcium exchange on negatively-cha rged sites of the

xylem vessel surfa ce (see Hanson 1084). Because of late ral leakage from xylem

vessels (see Hanger Illi g), some calcium was absorbed by tbe pediccls and petioles.

Considerably more calcium was expected to accumulate in organs whicb

ma intained a greater transp ira.tional pull on tbe xylem wate r.

T he tomato fruit contained the smallest amount of ca lcium per wet weight
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rclalive to all oth er p lant parts samp led. Th is patter n Wl\S consisten t for 11 11

rcpl ieate trusses Rod was co rrelat ed to the r el ative amounts or xylrm v aseulnt u re.

As ptevlnuvly deserlbcd. h uH arf' poo rly supplied with xylem rvlative to pl'lIi<'l'1,

sopnl, and lent. The proximal fruit half ronsislt'ut!)' eontnlnod mon- cnh-ium p N

unit wet weight th an the dist al half (Tllblt' I ). In a study involving r-nleium

dis t ribution within plants gro wn at various salinities, Ehret anti 110 ( HI~lIhl :l. 1~1

observed a lower calcium co ncent ration in the disla l hair ort hc Iruit rl' lalivt· t o

the proximal half. T hey not ed that removal of sepals produced IIIl inerensed

incidence or HER and sugges ted tha t the sepa ls draw water to ward th e rrutt

becaus e of their high transp ira tiona l cxpneil.ies. However, t he presen t rt'llult!l

show that sepal removal res u lts in an increased now (If dye in to the f r uit Sep al

t ran spirat iona l pull enhances water now across the pedicel, a nd water now wo uld

be d iverted into the sepals rather t han inlo th e fruit .

Developing Flower buds, flowe rs, and fr uit receive significantly less calcium

t han mature leaves or the same pla n t . It has previously been recogn ized tha t

ca lcium is not significantly tr anslocat ed from older tissues to younge r plant parts

eve n under calcium st ress conditions (see Han ger I1no). When calciu m is

abu ndant in the sap, the distribut ion of the ion will be closely related to the r atc

of trans piration a nd calcium will move prima rily into transp ir ing leaves (see

Clarkson 1984). Once it enters the led , muc h of th e calcium alJsorb<'d by leaf

cells will be bound by oxalic acid, generated during nitrate redu ction . Allplicatiun

of calcium to the soil and to the fol iage or plan ts docs not inc rease calcium

co ncentration in the fruits , because it becomes bound as calciu m oxa.late due to



the hig h oxalic acid con lent o r leaves a nd sterns (Evans and Tr oxler HI53).

Grow t h in organ s such ,IS fruit s and transpiring leaves influence calcium

distribution. W!wn I.u g(' quan t.iticso f calcium are absor bed thro ugh th e xylem of

tI)(' ro...l , the co neent rn tion difft'fe nlia l bet.....ecn loaves anrl Iruit is minimal,

1I11 h" lIgh the r at io ehanges diu r nally. Ca lcium no.....s to transpiring leaves heeausc

or ur-gatlve t rnn spiratl onal pull during the day, and to fruits an d meristern tissues

IIInight when the pull of trnnspi ration decreases and root pressur e increas es.

Organs with lo w tran spiration rates, su ch &3 mer istems and frui t , accumulate

needed calcium (rom xylem sa p delivered by roo t press ure during the night

fllradrirld and Guttridge Ig84). Howe ver, an alt ernati ve exists to acquir ing

calcium . Growing point s, such as meri stems and fruit , undergo new wa ll synthesis

nnd t hereby cr eate epo plastlc b inding sites (ma inly cell wall carboxyl group s) that

rjm r elease the calcium bound to exch a nge sites OD the x)'lem vess el wall s (see

Clllr kson W84) . Th is may explain why prefere ntial ca lcium tr an sport in the da rk

period into meris terns and frui t is Dot limited to intact plants with root pr essure

but is also observed in isola.ted shoots although at & lower level o f calcium influx.

The distribution of ca lcium usually la vers leaves but in low transpiration

enviro nments , thc diffe rential between leaves a nd Iruit is less (van de Geijn and

Smc uklcts 10SI).

Fruit gene rally contain less calci um than leaves. Tomato fr uit co nt ain a

higher percentage of ci tr ic acid in the ir cell sap tban stems and leaves. Organic

acids generated in the respiration of young shoo ts would be ut ilized in th e

synt h esisof pr oteins, whereas fr uit have a low protein synthesis and the refore low



utilization of organic acid s. T h e chela tio n cllpa cit)· of <'itric ad d rnn in lt,rrl'rl'

with cal cium assimilatio n {Eva n s and Troxler HI53). Fr uit must a1"11 mninta in low

membrane permeabilit y and influ'c of l\.1'~im i l:\t (·~ and mi nemls int o lilt' l'xl' nnd inll;

cctl.

Th e growth of a tomato fr uit, following the fir ~ t fou r days aftef llntlwsis, is

('\;~cn ti ll. ll)· the aecurnulntion o f wate r in ('lIst ing cells. Most of th (' ecll d h';sion in

the peri carp l akes place durin g the firs t week a ne r nntl ll'sis [Dnvles and C!)l'kin p:

HIB.'i). In this study , ca lcium was prcport icna l tc the incr ease in fruit. \'ollll1l1' nVI' f

the four day period . F ru it th a t grew th e Iastes t Juring the ('X 1)('riulI'liI nl pl'rind ,

tha t is those in which wate r in t ake was greatest , aeeurnulnted t he l1lost rnlciur u.

The in crease of calcium as a p ro port io n or growth was consta nt for all fr uit

regardle ss of deve lopme ntal s t a ge, excep t for t he very sm all fr u it. Po r Ir nit Inrgl'r

than 30 mm3, ca lcium was tr a nsported into the fruit as n rons tant pro portio n o f

volume increase or wa te r flow into th e fruit. Very sma ll fruit , however .

accumulated a disproportiona te ly larg e amount of calci um rela tive lo th eir

increase in volume during the experim ent al pe riod. Thill t rend can be eXlllaine d

by co nsider ing transp ira tional rates for these frui t. T he surfac e area per volume

ratio of sma ll fruit was great er than th at of larg e fruit , but water [nSf; per unit

surface area ot fruit was constant exce pt lor fru it less th an 30 m m3 in site. Very

sma ll rruit lost a disproportio nate amou nt of water tr om their su rface. T his

excessive wa te r loss acc ounte d for the larger pr oporti on of ca lci um th a t entere d



B'
t hese fr uit . GNard lind I hpp ( l Q68) re por ted a stmilar relatjonsh jp between

l ra.n~pirat ion fat e end fruit weight. T r a nsl"it2t ion of small fruit was seve ral tim es

tha t of la rgrt Ir uit in II high air temreret ere. low r..lati ve humidit~· env ironment ­

eonditi o ns eond ueiee 10 high tran~piration . In It. stud}' in\'oh'ing tr anspirat jon

t :l t f'!; of tomato fruit grown in di fferent nutrient s:llilJiti l'S, Ehret and 110 Og86a)

showed thal fru it 1l'SS th a n 5 g rr ('Sh weight bad a disproIX,rtiona tl"l:s largt' rate of

water loss .....hen ecmpe red to la rger fr u it grown in the sa me sa lini ty. However,

t he increased tr anspirat ion rate of small fruit re lative to larger fr uit pe r unit

s urface ar ea WM consisl e nt.

R a pid wa te r loss from ver-y small fr uit might be exp lained b)' the structure

of the c ut icle a nd fruit epiderm is. The fruit sur face lack s stom a ta, hu t on the

v<'ry youn g Cruit , triehc mes ex-end from the epid ermis (Wilson an d Ste r ling 107S)

t hal a re later deb iseed fr om the fruit s u ereee. T hese t ricbomes would [ncrease t he

su rlaee a rea or ver1 young frui t , Ind wo uld not have bee n accou nted fo r in

surreee a.rea ca lculations. Iethe t richo m e. lose werer to Ihe air , then tbe

increas ed surface art" rel, tive to volume would sUft' to increas e the

lr l n8pi ratiooaJ s urface of the fr u it Ind result in greater water loss for v e ry sma ll

fruit. G ent'rally , lhe eu t iele of th e tom ato fruit lea hom ogenous coveri n g of wax

and cut in over t he epide rmal ce lls of tb e fruit whleh prevent wat er loss a nd ion

leakag e b orn t be fruit s urface (Martin an d Juniper 1070). Wilson and S terlin~

(1075) sh owed th at the c uticle o f full siz e, green fruit is much less homog enous

t haD tb e cuticle or ripe fruit and i! partly com posed of irregular , globu la r masses,

II may be speculated that the cut icle of very yo ung fru it is similarly irr egular
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and/ or incom pletely dirrr Trnlilllr d. a nd ma y ('r>1l1 rih utt' tn l' x (' l'~~ i l'l' \\ a h'r In:<~ .

Also , the cuticle of immatur e fruit is significa ntly t ll iUllt'T tha n that nr matur e,

ripe frllil. A ~ l('a d)' InI'11.'(\""(' in eutic le weight pH unit surfuce area occ urs dllr in ~

fruit development t hnt results in a seve ral Iold inl 'n ':lS!' in r tllkh · r h it'l\lll'~'

!It't W('rn gr ee n and ripe fr uit (8nkl-r et uf. HI~ :! ) thus , l l~·rt·'L~in jl; tht' r ail ' ut water

loss as the fruit matures.

When total water intake is measured ns the increase in volume plus

tra nsptrauo nellosses , these v<.>r )' sma ll fruit did not :\('('1I11l1l1:\11'signlficnutly It's."

calciu m per total water than fruit la rger th an 30 mm3. This calcium

acc umulati o n was ditl't 11r t rl lltcJ to lotal wa ter intah and WM ind"p l'lll!l'llt o (

fru it size or developmental stage. An increase in total water inhke to the fru it

resu lted in an increased accumulat ion 01labeled calcium in the huil. ClilriUIll M

a pr oporti on of tota l water , includin g the t ranspitationalIosscs. was a consta nt

percent of volume, regardless or fruit site. Because calcium travels along the

transpirati onal stream in th e xylem , and its rate of tr anslocation incre ases with

inc reased levels of tr anspir ationl it w as expected thAt the greater the lnrlux of

wa ter into a huit , the great er the a mount of calcium carried with it. Calcium

transport is not completely depende nt on wat er nux, however, if water movement

into the (ruit is at a consta nt rate, t hen translocation of calcium into the fruit

would also follow at a consta nt rat e , and remain so for the duration o f fruit

dev elopment. Bangertb (lQ7Q) con cluded tha t calcium trav elling to above gro und

organs is t ranslocated primarily as a functi on of wate r now and transpir ation rate

rather than as fL consequence of phys iological requirement for the mine ral.



T here is considerabl e evidence that during the enrly fasl growlh pha se of

tomato fruit, most or th e water , minera ls , and all /lssimila tes travel mainly via the

phlo-m ralher than tho xylem. Wu!tl'tbl' l'k tI of . ( Ifl~il have calculated that the

plilm'm rnnt r i hlll~ g.,"'(, or the water an d OSC'" or Ihe Iotn l dry matter. 110 ~I af .

lIflX7)ca leulntod that gO";' or t he waIN which enter s the tomato ffllil ar r-ivesvla

the phlo em. It has ther efore ber n argued that high phloe m import induces BER

in young fruit, and that a high growth ra te or sma ll fruit is correla ted with a low

calcium content [see Hanger lQ7g, Wir rsum 1066), This is not supported by the

present data, wh ich show tbat \"Cry small fruit experienced the Iastest volumetric

growt h . The growth of all the fruit over the four day period appe ared as A

typira l sigmoida l growth curve without th e inilia llag phase , V ery small Fruit

grew exp onentiall y com pared to larger o nes whose growt h tapered once the fruit

reached more th aa 325 mm3in size. Tbe great incr ease in volume of Irui t less

than 30 mm3 re presents the greater amoun t of water intake by these fruit . These

very small h ui t also accumulated more calcium relat ive to their increase in

volume than Ir uits of a larger size. The ealeium content relative to volume

increase for lar ger fruit declined sharply and th en remained constant. Therefore

apoplastic wat er delivery was expected to be constant. The fruit continued to

grow, but the deereesed calcium accumuJation suggests that much of the water

cnter ing the rr uit may be contr ibuted by the phl oem. The high calcium content

of thes e very sma ll fruit may he partially explained by the observati on that these

fruit h ave a greate r proportion of xylem vsaeula tur e than older and large r fruit.

An Inc reased supp ly of xylem elements and a high transpiration rate wou ld

increase both water nux and calcium uptake. Th illwould indicate that at very



cui}' 51ag es or developmen t the npoplast lc pa thw ay signirirnntly cout tihut es Itl

t he delivery of wat er to th e fruit , Hardhnm (HJ'6) noted th nt, ill jll'n.~, the

paUl'rn of cnh-iu m d i~lrihll l inn i ~ dir ectly l l'h li'd In the l':tltHn o( vnsr-ulnr

supply, Organs wlth low tmusplrntjon suc h as [ruit Inay ohtaln 1Il1'tl' water via

the phl oem than ure xylem. howl'H'r this 1\(' 1' \1 not Ol'fl'SS:Hily induce BEH :l~

suggest ed in a review b)' Bangcrth (IOiU) . Sufricil'nl apopl astic wnter ente rs Iht,

tomato Ir uit to avoid OER. The fruit has... two mod es of water SII1'Ill)', the lo:y\l'ltl

and the phloem , and the relntive C'onlribu tions of ench are drpl'ndl'nl on

transpi rati on rate, xylem content, and dev elopmental slllgl'. A probable

explanation for t he discre pancy in results shown here com pared to published

observations on cnleium uptake is that the published rrsul ts only included h uit

that bad passed the early post-auth csis pe riod wh en transpiration per unilllrea o r

tbe fruit surface was st ill very high.

G rowth over tbe experimenta l pe r iod was influenced by fruit position along

the truss. In many cases, the most proximal fru it develops first, with eac h fruit

following in sequen ce as a lateral primord ial hud from th e preceedlng developing

f lower. Hence, the most proximal (ruil is often t he largest , with a gradua.l decline

in fruit size for th e remaining fruit along the tru ss (Oang(>rthand Ho 1084).

Increase in size would therefore be gteetest in the first fruit with gradua l decl ine

in size to the fr uit most distal along the t russ. However , growth relative to initilll

volume at the beginnin g of the experimental time was independ ent of b u it

posit io n. The perce nt growth of each fr u it was e ither con stant or not sign ificantl y

dirrerent for &11 fruit or a truss with some variability between tru sses. Fr u it less
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than 30 rnrn~ did not follow this t rend b ut grew disproportio nately compared to

others o r the sa me truss even though thes e fruit were on en the mos t dista l o n the

P ositinn or the rruit along the truss influenced the total amount of ca lcium

uptake into th e fruit. T he most proximal Iruit on the truss accumulated mo re

calcium than th e last fruit (most distal o n the tru ss]. This is explained by th e

movemen t of calciumin the t ranspiration al strea m. Calcium is transported

through the ped uncleof the tr uss along th e water now transferring from on e

xylem vessel exchange site to another. The Iirst pedicel that the water enco unters

will be th ai of t he most proximal fruit. G rowing fruit, witb their expanding cell

wall su r faces, pr ovide new exchange sites tbat act as a sink for calcium.

Therefo re, calcium will first bind to reese sites and wben th ese sites are sa t u rated,

it will be carried through the xylem strea m to th e next binding site. This pr ocess

would r esult in the most proximal fruit con~dantly being the first to receive

incomin g calcium. Russell and Morris (10 82) not ed that the prelereed pathway

for mov ement of solutions ill along the m ost direct vascular connect ion. The most

proxim al fruit is in a more direct positio n to acquire calcium transported through

the vasc ulature tban are the more distal fruit. DiUerences among fruits of th e

' arne trusswas noted by Bangerth and Ho (1084) who concluded that the

induct io n sequence of the Ilcwers and therefore fruit on th e truss, affected th e

sink acti vity or tbe fruit with t he first-induced fruit baving a gr-ate r sink act ivity

than th e later- induced fruit. Th ey suggested that tbis trend may be tbe result of

the incr eased cell number in pr oximal frui t or th e presence of an increased
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amount o r the ho rmone indolacctic add to a ll rat I assimilates. It is

understan ..dableh ow nn incr eased cell number of t he proximal rrllil ~ could

contribu te toa gr cntor nnmhf' r of eell wnll rl ' r l'plor sitos fur enleium ,lntinF;: rl 'll

expansion .

The incidence of the I'alciull\ deliciency disease, BEH, is IlrilJHlfily inrlucnced

by the wa ter sta tu e of the plant. T he xy l~m is its solt' rll..~S:lgt'W l\Y fur long

d istance trRn~port lind the peuem of xylem concen tration of the leaves, sl'p a ls,

and fruit influences ealcium distrib utioo within th ese organs, Thc defieu-ncy

disease ari ses at th e blossom end of the fruit, wher e the supply of vasculature i.

less relafiv e to t he proximal port ion and be cause o f the generally low

tr anspira.tion rat e of fruit relative to other or gans. The maj ority of xylem

vasculature passes to the ovules rat her than t.oth e distal end or the frnit, V l'ry

sma ll fruit (30 mm 3) that exhibited a high growth ra te did not represent the

initia.lsta.ge of BER induct ion, contrary to suggest ions in th e literature. Th e very

sm all fruit accum ulated signirictLntly more calcium per relati ve increase in volume

tban larger fruit . This incre ased amount or calcium reflect ed the mode of

transport of this mineral. Fut growing rruit may create increased numbers or cell

wall receptor sit es for calc ium as cell walls extend to accommodate the expending

ce lls. 'Iberercre, BER sho uld not be induced during the rast growth phase but

following it, when the crea tion or sites on n ew cell walls declines and when t he

tr anspiration rat e per unit area drops to a. constant value.
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Chapter 5

C on cl u s ion

T he first t ruce of xylem tissue within the flora l bud pri mord ia exists in buds

o.a IIIIIl long. T Il(' abscis!'!on zone of the pedice l is first present in bud s 0.8 rom

long and is composed of st ubby vessel elements with out trecheids o r xylem fib res.

The abscission ZO Il(' xylem does not undergo furthe r development , but is

malnteleed to fru it matu rity as an area with weak vascular connections and

potentia l for xylem wate r now restriction.

Much of the xylem water flowing th rough th e pedicel or an inta ct truss is

divert ed into the sepals ra th('r th an entering th e fruit. T he extensive vascula r

system a nd presence of stomata. result in higher tra.nspiu .t ional pull of wat er by

the s('pals relative to the fruit.

Th e distribution of ca lcium errectivcly followed th e a reas of xylem

concentration and high tr anspirati on rate. Fru it acc umulate d the least calcium of

all organs examined and t his tren d parallels thei r relatively poor xylem

vll.Sculat ure and low transp iration rate. Very small fruit d id not exhibit a

tendency for calciu m de ficiency as may ha ve been expected from their rapid

Increase of volume. These fruit showed a high tra nspirat ion rate and greater



amount (If l .d r hl vaseulstu re rcb nvc 10 l ar~t'r frUll , C Rlr iu l1l d .'fir i,'nr i,':<sh..ul.l

be indue ed Iollo....ing rhe f:\St growth pb,,-" l"or th e Ieuit , .....hen tra nsl,i ral Kln Ancl

growt h r:t.lt" deeline, lIi~h r:tl M-of I r:\ n ~pi r alilln end ~';!'Ill"i :'ll (' <l b i ~h 1('\"t"I.~ Clr

calc ium aceum ulanon "Iljl;gf"!; l th :!.f :tpopl a."l k W:ll,' r IlIAr p la~' :'I. m:'l.j" r r.. I,' in 11ll'

\"I' t)' ta rlr ~ I :t gr:; or fru it development .
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Appendix A

Hoagland's Nutrient Solution

A.t. Macron ut r teDu

10 ml 1 M Ca(N03)2

IOml 1 M KN0 3
2 ml 1 M MgS0 4
.. ml 1 M KHzP04
2 ml Fe EDTA 0.5 g/I OO ml

A.2 . Micr onutrtenta

2.86 g Boric Acid
1.81 II; MnCI2
0.11. Z.CI,
0.05 ~ CuCI2
O.O'lg NazMo04

• Dissolve miercnu t rienta in 11 water.

• Add the 28 ml or the mecronutr ient solution to 2 ml or the
micronutrient solution.

• Dilute these 30 ml in 2 I water.



Appendix B

Perc ent Oecee-eeeelonal Ar ea orXylem or th e ? roxlmal ,
Abscisslonal and Distal Portlool or Pedlcels Aged Two Days
arte r Anthesls 0 W eeks to Elgbt Weeki, Stained with
Pblorogluc1nol and HOI

Ag e Pr oximal AbscissioDlll Dist nl

47.6 ..• ·12.2
43.5 7.' 3H)
50.0 ' .5 41.7
41.2 8. 1 38 .0
50... 10.1 35 .5
52.3 12.6 -t5.3
40.0 3.' :J2.2
50.1 7.8 28.9
Sg.8 11.7 ·U 6



Appendix C

Dat a or Frui t Volume, Iner eeee of Volume, Relative
Increase or Vol ume end u Ca per Increas e of Volume

900.0
0.7

12.4
10.0
4.6

2525.0
30.9
0.7

325.0
585.0
500.0

0.7
0.7

ZOOO.{\
2500.0
1710.0
3250 .0
3610 .0
1562.0
600.0

0.7
·lOflO.O
4050 .0
2275.0
2 187 .0
'l'2flO.O
1500.0

Volume Increase Volume/ Volume

imm J )

82.5 O.<Kl17
0.3 0 .<1286
4.0 0.3226
3.7 O.3~

1.8 0,3804
111.3 D.O-HI

6.0 0.2223
0 .3 0.4286

56.3 0.1731
72 .5 0.1230
67.5 0.1350
0.3 0.4286
004 0.5711

120.0 O.04H
113.8 0.0455
103 .8 0.0603
122.5 0.0377
l3O.0 0.0354
Og.8 0.06-12
73. 8 0. 12211
0.4 0.5711

131.3 O.o:t~ 1

130.6 0.0 3:!2
10000 .O 0 ,0170
106.3 0,0 ·186
110.0 n.orsn
08.6 0.OU,')8

4[,Ca/Volml1r
(dpm mm-31

501,9
6855.2
216·1.8
705.7

1000,1.6
2227.1
8 105.2

206.17.8
156R 6
I ~H3 .0

1358.0
2824.0
Oa·I.1. 2

BOO.'
&18.5

IO,.3 .g
BIO!;.a
1587 .8
1367.1

1782'"
3n'l3.5
20!lCHI

/\71 .8
7."\6.0
>12/1.7
~tl l /)

1111I.:'



'"
'\ I' I"' II,IIX( " -ontinucd

\' ohnnl' Volum e \ 'o\ulll r ! Yohlm l' ~ " Cal Volume
1111 111:'\1 tll lfn J ) Idpmj mmJ )

l :r ,iJ.o ' 2.S O ,~,Nl ;I'! .U
0.7 0 3 0.3;;71 85 $.0 .0

esoo.o 1·1.; .0 O.O'l20 1O.""IR.7
IU"IO O J37.!; 0.0278 86(1,6
Si.:'O.O uo.o 0.025. WO:.!. I
2MXJ,O IJ I.3 O.OH 5 34U
2825 .0 11R8 0.0420 20 1.1
2000.0 I IG.... O.O-H2 558.6
tooo,o 131.3 0.0328 405.1
1715.0 102.5 0,0508 1628,0
2517.0 115.0 O.O.JS1 1530 .1
3265.0 122.$ 0.0375 2624.8
5100 .0 131.5 0.0270 000 .•
S-IOO.O 140.0 0 .0250 564.5
3750.(, 130.0 0.0341 1313.6
3500 .0 125.0 0.0351 sso.o
2870.0 1 18. 8 0.0414 2565.•
2100.0 117.S 0.0-135 17201.8
2200.0 108.8 O.o-t04 1608 .6
1800 .0 102 .S 0.0560 2242.&
2550.0 113.8 0.0·U6 1940,S
2800.0 117.5 0,0420 560 .7
2100 .0 107,5 0.0512 1520.8
1380.0 07.5 0.0706 2271.3
3210.0 122.5 0.0375 8811.8
3400.0 130.0 0.0381 2115.1
58S.0 70.0 0.1197 2850.5
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Appendix D

Data or W ater Lose per 1I0ur, S u rtate An a,
and Volume or Fruit

Waterloos
1m, hoi)

3.3
t.7..,
1.7
I.,
1.8
' .5
2.'
2.0
1.3
I..
I.,

I.'
1.5
t.7
' .8
2.'
3.3
2.3
2.S
2.C
' .S
3.2
I..
I.,
0 .7

Surface area
(m m2)

1804.6&
1460.14
l ·i3·H2
1460,82
1436 .00
1236.61
1052.00
1312.28
1356 .57
1240.11
1049.70
1025.24
908.74
864i.6S
810.40
644.22
235.06
201.06
166.08
156 .26
110.60
07.12

110.85
92.20
25.34

4.37

S7t16.ss.
5203.60
5107.10
5~1 .36

5115.70
4088.0ot
3208.07
4778.01
460S.87
4037.71
3107.56
3083.00
2072.18
230UO
220lUKI
1537.18
338.01
268.02
2OU 7
183.42
12U S
89,01

100.11
83.35
12.00
0.86

Water l()l;s/ SurraC{,llft:'ll.
fmgmm·2 u·l )

0.0018
0.0012
U.001 5
0 .0012
0,0011
0 .0015
0.0021
D.OCH t
0.0015
').0010
O,()O13
O.()O16
o.cxu..
0.0017
O.OOfl:l
0.0075
0.0102
O.OI&<f
0.0138
0.0160
0.0217
O.O-tR3
0.0289
0.0152
0.06...·'1
0.1602



App('ndix D eont mued
"

\\'at ~r 10S'j

lm, /hl

1.1
0.'
0.'
0.3

Surface area
fmmZ,

5.118
2.32
U l
I A~

1.38
0.33
0.25
0.16

Water IoM/Surra~e a,..

Im, /mm'/h)

0.1830
0.2155
0.2618
0.2060



Appendix E

Da ta or T r Ull1 Numb~r, Co r r e!lpon dl nl F r ui t Posit ion,
C a lciu m Accumu lation an d In ercaaf: or Volu me.

Truss # Position u Ca v otume In ("tNI.~ ('

(dfm l (mm3 1

, 41890 82.5
3 17508 1.8

• 865• -to
5 2028 3.1
8 203·1 0.3
I 247760 111.3,

58 156 8.'
3 88231 56.3
4 0018-1 72.5
5 "66< 67.5
8 8833 0.3
7 533.1 0.3
8 700 0.<
I 06 105 120.0, 05385 113.8
3 108308 IOJ.8
I 24075.- 122.5, 200420 130.0
3 1349V7 08.8
< 1314 54 73.8
5 2060 0.4



"
ApJlend ix E continued

Tr uss # Position ·~('A Volume Incr ease

(dp m l Imm3)

S I 270490 131.3
S 2 lUoog 130.6
S 3 802 'H 100.0
S , 8783 0 106.3
S S 0174 2 110.0
S • 48058 08.6
S 7 5382 7 12.5
S 8 214 5 0.3
8 I 153515 145.0

• 2 224208 140.0

• 3 119566 137.5
7 I 03 168 131.2
7 2 664 44 110,4
7 3 2388S 118.8
7 • 38277 111.2
8 1 32 1543 122.5
8 2 175060 115.0
8 3 166061 102.5

• 1 1238 10 137.5

• 2 70023 140.0

• 3 170763 130.0

• • 116255 125.0

• S 30'638 118.8

• • 202666 117.5

• 7 184508 IOS.8
10 1 220866 102.5
10 2 220727 113.8
II 1 274067 130.0
II 2 l0897 1 112.5
II 3 "883 117.5
12 1 IlU·t53 IOi .5
12 2 2214-18 sr.s

"
3 HlU.'j32 70.0
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