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ABSTRACT

Theoretical models of habitat selection generally assume that organisms

behave optimally, that population density co rrelates with resource abundance, and

that increasing de nsity reduces habitat qu ality. My purpose was to dete rmine

whether current models could exp lain the d istribution of Atlaouc Pufrins (FralercuJa

arctica) breeding on Great Island, Newfound land and, ifnot, to propose a modelthat

could. Theoretical models have rarely been applied to explain the distributio n of a

colonially-nesting species that may gain fitness benefits from increasing density.

I used breed ingsuccess as a representative measure of fitness that I compared

among three habitats, maritime slope, maritime level, and inland slope, sampled ilt

three locations, north, east and south on Great Island in 1992 and 1993. Based 011

results o f previous studies, I predicted thai distance from the shore edge of the

colony, slope, and aspect would be the most important habitat variables that

discrimina te habit at quality for puffinson Great Island.

Nest density was highest in maritime slope and lowest in inland slope habitat

and was best predi cted by distance from the shore edge of the colony. Breeding

success, as measured by the prop ortions of burrows that fledged chicks, was highest

in maritime and inland slope habitats and lowest in maritime level habitat and was

related to distance from the edge and slope. Aspect was an important predictor of

timing of breeding but was not significantly related to breedi ng success. Thus. it



appeared that preferred areas were dose to shore, while optimal areas were on

slope'S.

High breedin g success and nest den sity in maritime slope habitat was

predic ted by current habitat selection models, but high success at low dens ity in

inland slope habitat was not. Breeding success increased with density within

habitats, also contrary to model predictions. Current mode ls proved unable to

explain the distribution of puffins if breeding success was used as the sale measure

of fitness. A cost-benefit model is proposed that acknowledges habitat related fitness

costs that are not accounted for by typical measures of breeding success. Un ique

cost-benefit ratios for different habitats can exp lain observed patterns of dispe rsion

and breed ing success.
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Chapt er 1

INTRODUCTION

1.1. Habit at selection theory

Hab itat select ion theory attempts to predict the spatial and te mporal

distribution of organ isms (e.g., Fretwell 1972) using the econo mics of individua l

fitness (Fisher 1930). Theories explicitly or implicitly assume that individuals will

select places to live that maximize fitness (Fretwell and Lucas 1970, Rosenzwe ig

1981, 198 5, 1991, Holt 198 7, Morris 1989, 1991). Two initial, density-dependent

mode ls, ideal-free and ldeal-despotlc distribulion s, proposed by Fretwell and Lucas

( 970), inco rporated principles of optimal foraging and intraspec ific competition

(Svardson 19 49, Kluyver and Tinbergen 1953 , Emlen 1966, MacArthur and Pianka

1966, Brow n 1969). "Ideal" indiv iduals have perfect knowledge of their environme nt

(e.g., food supply in different habitats) and incu r no costs in sampling or moving

among hab itats. Mode ls assume that habitat quality declines with increasing

co nsume r den sity due to factors such as increased predat or activity and competition

for food (Fretwe ll and l ucas 1970). In an idea l-free distribution, individuals can

freely choose and move among habitats, and sho uld distribute themselves such tha t

mean fitness is the same across habitats (Fig. ta; see also Parker 1970, 1974).

Alternately, fitness w ilt not be equal across habitats if established individuals arc

"despotic" and can maintain higher fitness in a preferred habitat by exclud ing others

(ideal-despotic distribu tion; Fig. 1b). Higher fitness in a preferred habitat does not



result from differences in competitive ability between established and recruiting

individuals (see lom nicki 1988), but only to the collective effect of territorial

behaviou r by established individuals. All individuals are assumed to have equa l

competi tive abilities in both ideal-free and ideal-despotic models.

Although some of the assumptions of these initial mode ls were unr ealistic

(Fretwell and l ucas 1970), ideal-free and ideal-despotic models provided useful

predictions for habitat selection studies te.g.,Pierotti 1982 , Morris 1989, Halama and

Dueser 1994) and a framework for further theoretical development. Subsequent

elaborations of these mode ls have conside red limited knowledge and perceptual

ability of "non-ideal" individ uals (Stephens and Krebs 1986, Beletsky and Orians

1987, Orians 1991, Englund 1993), sampling and movement costs (Ro senzweig

1974, Chamov 1976, Morris 1987a, Pulliam and Danie lson 1991 , Englund 1993),

variation in deg ree of density-dependen t depress ion of habitat quality (Morris 1987b ,

198B), interspecific compelition ll awlorand MaynardSmith 1976, Rosenzweig 1986,

1991, Morris 1988), predation (Charnov et al. 1976 , Sih 198n. interference

(Sutherland 1983), and effects of spatial and tem poral scale (Istock and Weisburg

1987, Morris 1987a,c, 1991, Orians and Wittenberger 1991, Halama and Dueser

1994), Theories typically assume that population dens ity corre lates with resource

abundance and highest densities will oc cur in preferred habitats (Rosenzweig 1991).

Conslderatton of habitatspeci fic demographic rates revealed that resource ab undance

and consumer den sity may be decoupled , creating situations wher e densities can be



FIGURE 1. Comparison between ideal-free and ideal-despot ic distributions (after
Fretwell and l ucas 1970). Lines B1 and B2 indicate basic fitness values for
two habitats of different q uality, Hl and H2. First settlers 10 Hl and H2 will
reap fitness benefits B1 and 82, respective ly. Fitness-density curves plo t
realized fltness as a function of den sity. Differences between realized fitness
and basic fitness in eac h habita t increase as densi ty increases, depicting
declining fitness for individuals using a habitat as population density
increases. Assuming that individua ls will choose the habitat where fitness
rewards are greatest, and that they have perfect know ledge of the rewards to
be obtained, we can predict how individua ls will d istribute themselves at
different population levels. First settlers to an area will choose on ly H1
because initial fitness (81) is higher there than in H2 (82). In an idea l-free
model (a), where there is no resistance to settling individuals (i.e., no
territoriality), individuals will continue to settle in Hl until de nsity becomes
high enough to reduc e rea lized fitness in Hl to B2, at which point pote ntial
fitness in H2 equals that in Hl, and individu als will begin 10 seU!ein H2. As
de nsity increases further, individua ls will distribute themselves so as to
maintain eq ual fitness ben efits in the two habitats (e.g., W1 _ W2 in the two
habitats at densities 01 and 02). Note that fitness is equ al across habitats and
de nsity is greater In ihe higher Qua lity habitat. In an ideal-despotic model (b),
new settlers face territorial resistance from established individuals. Penetrating
this resistance entails a fitness cost to settling individuals, and results in a
perceived fitness (dashed lines) that is less than the rea lized fitness obtained
after an individual succeeds in settling in a habitat. Because we assume thai
this cost is related only to the territorial behaviour of established individuals,
it is the same in both habitats and increases as the density of established
individuals increases. The pattern of settlement as popula tion increases is
similar to that predicted under an ideal-free model except that individuals
choose the habitat where the per ceived rather than the actual fitness is
greatest (this poses some concep tual pro blems w ith the model - see
Discussion). For example , at a given popu lation, individuals will dtsutbcte
themselves in the two habitats at den sities D1 and 0 2 such that the perce ived
fitness in the two habitats is the same. However, realized fitness will be
higher in Hl than in H2 (W1 > W2). Note that in going from an idea l-free
to an ideal-despotic distribution, a t a given pop ulation size, de nsity in 1-11 has
dec reased and density in H2 has inc reased. In effect, territorial behaviour has
prevented some individual s from settling in Hl and forced them into H2.
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higher in "sink" (Iow-quality ) habitats. maintained by immigrati on from "source"

(high-quality) habitats (Lidicker 1975, van Horne 1963, Holt 198 7, Pulliam 1968).

Habitat selectio n is often modelled in relation 10 foraging behaviour and food

availability, but pred ictions of habitat selection models can he generalized and

applied to the distribution of animals with respect to any vmying and limited

resource. Applied to breeding habltat, most habitat select ion mode ls predict that all

individualswithin a particular habitat will experience equ al succe ss. Ifan Ideal-free

distribution is operat ing, ind ividual breed ing success w ill besimilar across habitats

and nesting density will reflect differen ces in hab itat qua lity. Unde ran ldeal-despcuc

distribution, breeding success will va ry among habita ts and density wi ll reflect

differences among habitats as well as do minance behaviour by individua ls (see Fig.

11.

The prediction that a ll individuals within a habitat will experience equal

fitness is unlikely to be realized (Fretwe ll 1972 , Davies 1982, Parker 1962, Begu n

1984, Pulliam 1989 ). Ind ividual var iation is a constant feature of studies of

repro ductive performance (e.g., Clutton-Brock 1968, Newton 1989) and studies

quote d in sup port o f free distrib ution models show consis tent ind ividual differences

within habitats (Parker and Sutherland 1986).

Attempts have been ma de to incorporate individ ual differences into habita t

selection models. Pulliam and Danielson (1991) modified the id eal free distributio n

to include persistent d ifferen ces in the quality of ind ividual bre eding sites (idea l



preemptive distribution). In th is model. individuals sett le in the habitat with the best

unoccupied' site and occupation of lower quality sites does not depress the qualit y

of better sites, thus ma intaining individual differences in reprodudivesuccess within

habitats. Parker and Sutherland (Parker 1982. Sutherland and Parker 1985 . Parker

and Sutherland 198 6) incorporated individual differences in competi tive abil ity into

their pheno type-limi ted ideal free models (see also Iom nickl 1988, 1992). Within

a habitat, individuals gain di fferent fitness ben efits accord ing to their competitive

abilities. Habitat se lection by a particular individual is affected by habitat quality and

consumer density as in othe r models, and also by that individual's ability relative to

the abilities of othe r compe titors. Thus, unlike other mod els whic h, given the same

circumstances, predi ct the same habitat choices for all ind ividuals, phenotype-limited

ideal free mode ls may pred ict different choices fo r individuals with different

competit ive abilities .

Parker and Sutherland (1986) have shown that consideration of individ ual

differences in competitive ability can alter the pred ict ions of ideal-free models .

Contrary to pred ict ions of the ideal free model of Fret well and lucas . phenotype­

limited idea l free models predict that, if individuals interfere with each other, the

most competitive ind ividuals will obta in the best sites and average benefit s will be

highe r in the best sites. The relationship between densit y and habitat quality is mom

difficult to predict because it depends on the range o f competitive abilities in the

population, on how density effectsinte rference, and on the way interference affects



benefits of different competitors. Thus, although they may approximato real

conditionsmorecloselythan simpler models of PretwellandLucas,the conjplexlty

of interacting factors and the varietyof posstblepredictions of phenotype-limited

idealfree models makesthemmore difficult to test(Parker andSuthedand 1986).

Theabove modelsincorporatestaticmeasures ofindividualabilityand Illness.

Partridge(1978) suggestedthathabitat relatedfitness may be dynamic, increasing ,1S

an irdividaalgains experience in a particularhabitat. This mayexplain ptastlcuv in

habitat choice exhibited by young birds and increased site lenaclty shown by

experiencedand successful breeders (Partridge 1978). Shealsoraisedthe important

problem that if there is competitionfor preferredhabitats, and if animals Ihal can

obtainanddefendsites in preferred habitat have higherfitness than those excluded,

then comparisons between habitats will be confounded by original differences in

fitnessof individuals thatoccupythose habitats (e.g. Coulson 1968).

A major assumption of habitat selection models, that averagefitness in a

habitat declines with increasing consumer density, has not been challenged.

Althoughmany researchers haveexamined potential benefitsof colonial breeding,

communal roosting, and foraging in flecks (see reviewin Willen berger and Hunt

1985), theoretical models have net been applied 10 explain habitat selection in

situations where fitness benefits mayincrease with density. Fretwell and Lucas

i1970,Fretwell 1972) concluded that a positive relationship between fitness and

density probablyoccursonlyat lowdensities (followingAllee et al, 1949) andneed



not be conside red in most circumstances . This is an im portan t assumption to

conside r in the investigation of a colonial-breeding seabird.

1.2. Seabird breeding biolo gy

Seabirds are part icularly interesting animal s for investigations of habitat

selectio n theory. The maj ority of seabird species (98%) nest in co lonies, a much

higher proportion than any other type of bird (lack 1968). Breed ing and foraging

habitats are distin ct, mea n ing that separate habitat choices must be made for those

activities. The separatio n of feeding and breeding habitats si mplifies the ana lysisfor

selection of breeding habitat, although fitness components related to foraging

contribute to breedi ng success and may complicate the interpre tation of nesting

habitat differences. Relationships between fitness and nesting density within habitats

depend on a va riety of costs and benefits associated with colonial breed ing. The

balance of costs and benef itswil l determine whether fitness declines with increasing

density as assumed by habitat se lection models.

1.2.1. Benefits of colonia l nesting

1.2.1.1. Availabili ty of food and nest sit es

Nesting in colon ies may be advantageo us if nest sues within co mmuting

distance of food supp lies a re limited (Lack 1968, Snapp 19 76, Birkhead and Furness

1985). Many species, inclu ding those of the Alcidae family to which puffins belong,



are awkward on land, making them h lghlvvu lnerable to predation. Such species arc

limited in the ir choice of nest sites to isolated islands or cliffs th.ll Me inacce ssible

to terrestria l predators (l ack 1968, Monlevecc hi 1977, [ehl an d Mahoney 19 B7).

Some species place their nes ts in sec ure locations in bu rrows or crev ices, and .uc

nocturnal on their colonies to further reduce risks from avian preda tor s. Obta ining

a safe nest site may provide a net be nefitw hen balanced against the obvious costs

of sharing limited hab itat (Alexander 1974, Willenberge r and Hunt 1985). Other

factors are needed to explain why nesting b irds aggregate more than is ll l!n~5SilrY

within ava ilable habita t (Hoo gland a nd Sherman 1976, Gochfe ld 1980).

1.2 .1.2. Predator def ence

Colo nial nesting enha nces predator defence through vigilance, mobbing and

swamping tactics (Kruuk 1964, Horn 1968, Lack 1968, Willen be rger and Hun11985)

and dense aggregations provide cover through "selfish he rd" effec ts (Hamilton 197 1).

These tactics are more effective in largergroups and w hen birds ale synchronou s in

thei r breed ing activities (see be low). Higher numbers of young produced pe r pair

in large co lonies than in small colon ies have been repor ted for a numbe r of species

(Tenaza 1971). This may result ind irectly from social facilitatio n lead ing to greater

breed ing synchrony and thus more effective predator defense at lar ge co lo nies

(Darling 19 38), il may be attributab le to differential effects of p redation and

dis turbance at small co lonies which have a greater proportion o f perip heral ne sters



10

than large colonies Ilenaza 1971), il may be due 10 a higher proportion of

inexpe rienced breed ers at small colonies (lack 1954), and il may be a result of o ther

factors such as food availab ility, habi tat quality, and Interspecific com petition (see

Hatch and Hatch 1990).

1.2.1.3. Info rmation cent re

Birds may benefit from nesting in colonies if they gain information on the

loca tion of food that they would not otherwise obtain (Horn 1968, Ward and Zahav i

1973, Emlen and Oemong 1975). Evidence that a seabird colony may ope rate as an

info rmation centre was provided by a study of two Common Tern {Srerna hirundOl

colonies in upstateNew York(Wahz 19B7). In thisstudy unsuccessfu l foragerswere

more likely 10 follow others than successful foragers, birds that had returned with fish

were more likely 10 be followed than those that did not, birds departed the colony

synchronous ly and towards similar feeding areas, and birds that arrived at feeding

areas in groups were more successful at finding food than solitary birds, In other

studies there is littledirect evidence to suppo rt the hypothesis (Gaston and Nettleshfp

1981, Willenbergerand Hunt 1985).

1.2.1.4. Social facilitation

Social stimulation may enhance territorial behaviour and pair co-ordination

(Nelson 1978) and is required by some species in order to breed successfully
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(Coul son and Dixon 1979). As menti oned above. socia l slimul.ll ion may Increase

bre ed ing sync hrony, which may be advantageo us as an aid to predato r defence , but

a lso may be a d isadvantage if it increases co mpetitio n for temporall y limllcd

resour ces (Wittenbe rger and HunI1985). Social facilitation ca n function only wh ere

birds can communicate with each other, and in large colonies will be limited to

smaller, interacting subgroups (Coulson and Dixon 19 79, Burger and Shisler 19110,

Goch feld 1980, Wanless and Harris 1988).

1.2. 1.5. Ot her benefits

Othe r potentia l adva ntages to co lon ial nesting include increased acce ss \0

mates, and greater opportunity for extra-pair copulations, kleprcparosntsm, and

cannibalism (Hoogland and Sherman 1976, wttt enbe rger and Hunt 1985).

1.2.2. Costs of co lon ial nesting

1. 2.2.1. Competition for food

Ashmole (1963) suggested thai comp etition for food and dep letion of prey

could reduce reproductive outpu t at large colonies. Such an c{{ect has been

imp licated in a numb er of studies but has yet to be demo nstrated . Birkhead and

Furne ss (198 5) found that colo ny size was nega tive ly co rrelated with the num be rs or
cc nspeclfics breedi ng at other co lonies within a species foraging ra nge, and also
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found a significant relationship between colony size and available foraging area.

These re lationships can be explain ed by the distribution of colony sites and do not

necessa rily imply competit ion for food (Caims 1989). Fledging weights have been

negatively correlated with colony size of Atlantic Puffins (f ralercu fa amica) (Ga ston

1985) and Thick-billedMurres (Ur i,..lomv ial (GaSIOfl et al. 1983. Furness and Barrell

1985), and growth rates, (IOOging weights, and breeding success have been

negativel y correlat ed with population size in other spec ies (Hunt et al. 1986 ), Hunt

et al. (1986) distinguished between populationsize (numbersof a particular species

at a co lony), co lony size (numbers of all species at a colony), and effective colo ny

size (numbe rs of those species whose diets were expec ted to ove rlap), and found no

relationsh ip betwee n reproductive performance and co lony size or effective colony

size. They concluded that Jood d epletion was not occurring and that the effect of

population size could bestbe expla ined by an interference mechanism oper ating

when spec ies foraged together in dense aggregations . Prey dep letion was ind icated

by the results of a study by Bitt et al. (198n who found lower dens ities of prey fish

in bays where Double-crested Corrncranu IPha/acrocoraxauritus) were feed ing than

in adjacen t bays. Competition for food is most likely 10 affect spec ies that feed

inshore or nearshore in large concentratio ns. Compeutlon co uld vary within a

colony in a density-dependant manner if individuals that nest together, feed together.
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1.2.2.2. Competition for nest sites

Inte rspec ific co mpetition limits nesting distributions and, ultimately, has

contributed to theevolution of habitat partltlooing amongspecies(Bclepal'sk i i 1957,

Hilde n 1965, Klopfer and Hailman 1965, Lack 1968, Bedard 1969, Trtvelpiecc ,1110

Vo lkman 1979, Knudtson and Byrd 1982. Squibb and Hunt 1983. Birkhead and

Neuleshlp 1987, Olsthoom and Nelson 1990, W allace et ill. 1992). If nest sill'Saro

limite d, competitive exclusio n w ill narrow the range of choices available to spec ies

less able to com pete. Competition betwee n Manx Shearwaters (Pu((illus puffillu s)

and puffins on Skomer Island resulted in the exclusion of some puffins from bu rrow s

and lowered breeding success of both species in areas where they shared bu rrow s

(Ashcroft 1979, Harris 1984). Expandi ng Common Murre (Uria ,la/gel pop ulations

wi ll oust othe r species , includ ing puffins, {rom their habitual nesting sites and force

them into marginal locations or d isplace them altogethe r (Bclopol'ski i 1957 , Tuck

1961 , Williams 1974),

Intraspecific co mpetition ca n also prevent potentia l breeders from oblaining

a nest site, as exemp lified in Rowan's (1965) accoun l of Great Shea rwarer s (PlIffinU5

gravis) on Nightinga le Is land, whe re as many as 200,000-300,000 eggs pe r year we re

de posited on thp.groun d by birds unab le 10 secure burrows. Ak ids, such as pu ffins,

are a lso terr itor ial, defen ding only a small a rea, and site ho lders can ex clude othe r

birds from breed ing fNett leship 1972, Manuwa l1974a, Harris 1984, Birkhead 1985).

The range of hab itats a species is adap ted to nest in, the types of sties avai lable at a
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specific location, and the presence of competing species interact to limit a bird',

choice of nesting site.

1.2.2.3. Oth er costs

Other potential costs 10 nesting in colo nies include conspicuo usness to

predators , compe tition for males, kleptoparasitism, physica l interference , cucko ldry,

likelihood of misdirected parental care, intraspecific brood parasitism, intraspecific

killing of young, and transmissionof ectoperasttesordisease (Hooglandand Sherman

1976, Birkhead 1985, Witten~rger and Hunt 19851.

The relat ive Importance of various costs and benefits 10 colonia l nesting will

differ among species and depen d on the mixture of species lnteracnng at a particular

location. Selective action of these factors will help differentiate highquality from

low qualit y sites within a colony,

1.2.3. Factors affect ing inlra-colony variation in breeding success

1.2.3.1. Site cha racte ristics

wnhln colon ies, nesl sue qua lity and the hab itat choices birds make are

affected by social and environmen tal factors (Klopfer and Hallman 196 5, Rowan

19&5, Buckley and Buckley 1980, Burger and Shisler 1980, Potts et al. 1980,

xharlto nov and Seigel-Causey 1988, Podolsky and Kress 1989). Higher quality sites

provide protection against environmental stresses (Dexheimer and Southem 1974,
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Montevecchi 1978, Potts et a1. 1980 , Burger and Goc hfeld 198 7, Ha rris and wantess

1988, Sto rey el al. 1988, Clark et al. 1990, Seddo n and van Heez ik 1991, Stokes and

Boer sma 1991, Thomp son and Furness 1991 , Aebischer 1993, Chaste! ct .11. 19!)]1,

reduce risks of pred ation and kleptoparasitism (Cullen 1957, Neulesh!p 1972,

Birkhead 1977, Montevecchi 1977, Galbra ith 1983, Ewins and Tasker 1985, Enuus

and Verbeek 1989, Ande rson and Hodurn 1993), limit intraspecific harassment,

predation and cannibalism (Davis and Dunn 1976, Parsons 1976, Montevccc hi ilnd

W ells 1984 , Revi lle 1991, Schaffner 199 1), and satisfy requirements of physiological

and behavioural adapt ations for nesting (Nelson 1978, Gaston and Nettleship 1981,

Birkhead et at. 1985). If limited, nigh quali ty nest sites a re a valuable commod ity

and indiv iduals possessing them expend energy 10 defe nd and mainta in them, forcing

some ind ividua ls to nest in marginal locations or not at all (Rowan 1965, Manuwa l

1974a, Birkhead 1978, 1985, Harris 1984, G reenwood 1987, Nelson 1987, Harris

and Wanless 1989, 1990, Hatch 1989). When the qu ality of a sue is defined by its

physical characteristics, its location is stab le and changes on ly as environmental

condit ions change. When a site's quality depe nds on social factors, its location is

re lative and changes as socia l structures change within and betwee n seasons. The

interactio n of physical and social factors makes il d ifficult to define nest site qu ,llity

independ en tly of b reeding success at any particular site (but see Polls et al. 1980 ).
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We can infer that seablrds exhibit preferences in thei r selection of nest sites

from the sequence in which birds use different types of sites during seasona l re­

occupation of a cotonv and during colony formation and expansion (Burger and

Shisler 1980, Pieroui 1982, Coulson and Thomas 1985, Storey and li en 198 5, Jehl

and Maho ney 198 7, Porter and Coulson 1987, Kharitonov and Seigel-Causey 1988).

The density of nests found in different hab itats also can reflect habitat preferences

(Manuwal 1974b, Vermeer 1979, Hartis 1980, Wa lanuki 1985, Schramm 1986,

Wilson and Manuwal 1986, Sklepkovych and Montevecchl 19891, unless densi ty is

constrained by physical characteristics of the hab itat which limit the availabil ity of

nest sites or other resources requ ired for nesting (Hilden 1965).

1.2.3.2. Nest ing density

Many studies have found correlations between nesting density and breed ing

success. For alcid species such as puffins or murres, positive correlations be tween

nesting density and breed ing success are associated with high risks of predation

INeltleship 1972 , Birkhead 1977, Harris 1980, Harchwel l 1991) and are absent

where predati on is minimal (Ashcroft 19 79, Harris and Wanless 1988). Dense

groups gain protection from predators through predator swamping, increased

synchrony, and defensive behaviour. In contrast, reproductive success is often

unrelated or negatively correlated with nesting densil y in gull species due to intra­

spec ific aggresstcn and predation (Vermee r 196 3, Patterson 1965, Davis and Dunn
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1976, Parsons 1976 , Pierotti 1987 , Pierroti and Murph y 1987, Spaans ct al. 1987,

Bukacinskaand Bukaclnska1993}. For such species, the costsof terrnorfulnv can be

equal to or greater than the benefits accrued by defending a site in a preferred

habitat. Alcids have behavioural adaptations (or high density nesting which

minimize costsof defendinga nestsite (Birkhead 1978, 1985, Taylor 1984). Benefits

of enhanced predator defence minus low costs of territoriality may result in net

bene fits for alcids nesting at high density .

1.2.3.3. Timing and synchrony

Breeding synchrony and l iming have been correlated with nesting densttv in

several studies (Birkhead 1977, Monlevecchi et al. 1979, Burger and Shisle r 1980,

Gochfeld 1980, Hatchwell 199 1), although some stud ies have found no relal",onship

between them (Vermeer 1963, Harris and Wan less 1988). Breeding success is often

cor related w ith timing and thus indirectly with nest dens ity, although benefits vary

depend ing on the kinds of predation or other pressures operatin g on individuals <11

a particular colony. Early breeders are often more successful than late breede rs

(G rant 1971, Neulesh lp 1972, Davis and Dunn 1976, Manuwal 1979, Birkhead and

Nettleshto 198 1, Gaston and Nettleship 198 1, Ryder and Ryder 198 1, Pierotti 1982,

Boersma and Ryder 1983, Coulson and Thomas 1985, Harris and Birkhead 1985 ,

Shaw 1986, McNe il and Leger 1987, Ollason and Dun ner 1988, Wan less and Harris

1988 , Mills 1989 , Hatchwell 1991, Harris et at. 1992, Smith and Carlile 1992).
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Selective effects of predation on early or late breeders can result in highest success

rates for pairs nesting al peak periods (Kruuk 1964 , Patterson 1965, Nisbet 197 5.

Hcnr and HUn! 19 76, Parsons 1975). Retancnshlps between timing of breed ing and

success also can depend on, and be modif ied by, temocra l patterns and changes in

foodavailab ility (Emlen and De mong 1975, Hatch 1990 , Regehr 1994).

1.2.3.4. Age and experlence

The influence of age and experience on l im ing of breeding and success has

been repeatedly de monstrated in seabirds (0 1la500 and Dunner 1978, 1986, 1988,

Lloyd 1979. Haymes and Blokpoel 1980, Hunt 1980, Ryder 1980, Coulson and

Thomas 1965, Ne lson 1986, Reid 1988, Woolle r e t at 1968, 1989 , 1990, 1992,

Bradleyet at. 199 1, Hamer and Furness 1991, Croxall et Olio 1992, Emslie et al. 1992,

Pugesek and Wood 1992 , We imerskirch 199 2, Aebtsch er 1993)and can offset e ffects

of habitat o r locat ion beca use older , more exper ienced birds du bette r regardless of

where the y nest (Ne lson 1978, 1988 , Ainley et al. 1983, Cou lson 1988, Thomas and

Coulson 1988 , Mealhre l et a!' 1993). Sile tenacity also increases with age and

successful breed ing (Coulson and Dixon 1979, Cou lson and Thomas 1980, Harris

1984, Hudson 1985, Gaston 1992), suggesting that familiarity and skills gained by

successfully breed ing at one site constitute fitness benefits that outwe igh po tenll al

bene fits and costs of moving to alternative, possibly bette r sites. Breeding success

is often higher in the centre than on the edge of a colo ny or group due to the re lative
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d istribution of experienced and inexperienced birds (Coulson 1968, 1988, Nelson

1978, Coulson and Dixon 1979, Ainley et al. 1983, Coulson and Tho mas 1985,

Porter and Coulson 1987, Thomas and Coulson 1988), although differential effects

of predation are also important (Paterson 1965, Tenaza 1971, Dexheimer and

Southern 1974, Montevecchi 1978, Reid 19881.

1.2.3.5. Colony formation

An important considera tion relevant 10 habitat studies is the fact thatth e age

and spatial structure of a colony is not fixed but changes from year 10 year and

du ring a single season Oohnson 1941, Burger and Shisler 1980, Kharitonov and

Seigel-Causey 1988, Aebischer and Wanless 1992. King et at 1992, Murphy nt al.

1992, Williams and Rodwell 1992l . The seasonal ontogeny of a colony affects its

structure and the relative success of birds nesting in different sect ions. Experienced

breeders gene rally return first, forming nuclei around which the colony or subgroups

withi n the co lony grow (Burger and Shisler 1980, Kharttonov and Seigel-Causey

1988). New breeders recruit more frequently into periphera l areas, and much or the

difference in breed ing success betwee n central and perip heral nesters can be

explained by differences in age and breed ing expe rience (Nelson 1978, 1988, Ainley

et a l. 1983, Coulson 1988), althoug h when high quality nest sites are limited, the

possession of a good site can also affect success. The strong site tenacity exhibited

by most seabird species, as well as the fact 'ha l young, unsuccessful or divorced
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breeders ten d to change nest sites more frequently than older, success ful pairs affects

the dynam ics of co lony formation and the resultant co lony structure (Gaston and

Neltles hip 1981, Hatch 1987, Ollason and Dunne! 19881. The fluidity of co lony

structure is especially appa rent during periods of expa nd ing or declin ing popula tions

and when population demography is changing (Davis 1975). When a colony is

contracting, peripheral nesters may be the oldest, most successful individuals

remaining in a formerly densely occ upied area. This may explain the situation on

Dun where puffins nesting in sparseareaswere on averageolder than those in dense

parts of the colony (Harris 1980).

1.3. Puffins on Great Island

Atlantic Puffins, like o ther members of the Alcldae, have compactly shaped

bodies with short w ings ada pted for w ing-propelled, underwater pursuit of prey. For

nesting they typ ically excavate burrows in the soil in which they incu bate a single

egg and feed their ch ick un til fledging. Prey broughl to nestl ings is mostly fish and

is carried conspicuous ly, held crossw ise in the bill. Chicks make the ir own way to

sea w hen they a re capab le of flight, usually fledgi ng du ring the night to red uce risks

of predation (Lockley 1953, Harr is 1984 ),

In this study I invest igate the distribution of puffins within the ir largest

breeding co lony in the western Atlantic INellleship and Evans 1985). Popu lations

breed ing on Great Island nave probably increased th is ce ntury followi ng reductio n
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of human exploitation, although Nettleship suspected a decreas e of 25 to 35%

between 1969 and 1979 due 10 fisheries impacts on cepetlu (M,1f1otus vil/cst/s),

puffins' primary summer prey (Brown and Neuleshlp 1984 , Nenleshtp and Evans

1985, Nettleship 1991). Estimates of decl ining populations were based on chan ges

in numbers of burrows counted in a li mited sample area and may not representthe

entire colony (Cairns and versccor 1980).

Great Island is an appropriate study site becau se habi tats are easi ly

distinguishedand previous workhas documented differences in breedingsuccess and

nes ting density in di fferent habitats (Ne ttleship 19 72). Puffins nesting in slope hab itat

had higher breeding success than those in level habitat, and body mass of males was

larger in slope than in level habitat (Nettleship 1972). Burrow density was also

higher in slope habitat (Nettleshlp 1972), and the effects o f habttat and density may

have been confo unded (Harris 1984). Density in one study area on Great Island was

explained primarily by distance from the cliff edge (part r2 _ 0.66 ) plus soil depth

(part r - 0.12), and only minimally, though significantly, by angle of slope (part r
- 0.03) (Nettleshtp 1972). Breeding success as we ll as density may have been more

related to distance from sho re than slope beca use level habitat occurred farlher from

shore than slope habitat Harris (1980) also round that breed ing success was higher

and males tended to be larger in dense than in sparse nesting areas on Dun.

Differences between dense and sparse areas on Dun we re not related to slope.
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Nettleship(1972) attributed differencesin breedingsuccess in slope and level

habitats 10 higher egg and chick predat ion and kleptcparaslttsrn by Herring Gulls

(Laws argentatus) on level habitat. He hypothesized thai higher egg mortality

resulted from puffins on level habitat flushing more frequen tly from their burrows

during pan ic flights initiated by gull alarm cries, displacing eggs towards the burrow

ent rance whe re gulls could obtain them. Chick morta lity was exp lained by two

factors: chicks on level habitat we re fed less frequen tly, and hungry, expe rimenta l

chicks spent more lime near burrow entrances where they were vulnerable to gull

predation than well-fed chicks. Adults returning with fish we re robbed more

frequentl y by kleptcpa rastuc gulls on level than on slope habitat , probably because

they have difficulty taking off from level ground (Nenles hlp 1972). Predat ion on

adu lt puffins was not considered by Nettleship althoug h Great Black-backed G ulls

(l.arus mar;nus), a major predator at other colonies (Harris 1980 , 1984 ), also breed

on Great Island.

Although not investigated on Great Island, weat her and so il drainage affect

liming of breed ing and qua lity of nest sites in different locations within a puffin

colony (Hornung and Harris 1976 , Harris 1980, 1984) . In arctic and sub-arctic

co lonies such as Great Island, southern expos ures, where the soil thaws ear lier in the

spr ing, and areas thai are better drained are better nesting sites than colder , poo rly

drained sites (Hornung and Harris 1976, Harris 1984).
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Inclement weather and commercial fishing may lowe r puffin breed ing success

on Great Island and elsewhere by reducing the availability of capel!n or other

important prey species (Nettleship 1972, 1991, lid 1981, Brown and Nettleslup

1984 , Barrett et al. 1987) . Recently, cold er sea surface temperatures app ear 10 have

changed the availab ility of prey for nesting seabirds (Mon tcvecc h i and Myers 1992),

resu lting in high variab ility in re productive success among spec ies and at different

colo nies in Newfoundland (Montevecchi et al. 1992, Neuman 1994, Rege hr 1994).

Adverse en vironme ntal condi tions can accentua te d ifferences in re productive

perfor mance of experienced and inexperienced breeders and favourable conditions

may minimize those d ifferences (Hatch 1990, Murphy et a l. 1992). Pe riods of

increased stress shou ld result in greater d ifferences in reproductive success between

expe rienced and inexpe rienced breeders and betwee n pre ferred and marginal

habitats, facilitating tests of habitat selection models.

1.4. previous applications of habitat se lect ion theory to breeding seab ird s

To my knowledge, theoretical models have bee n cons ide red in only one study

of a colon ial-bree ding seabi rd (Pierotti 1982) . Similar breed ing success for Herr ing

Gulls nesting at different de nsities found in that study offered superficia l agreement

wi th pred ictions of an ideal-free distribution (Pierotti 1982). However, becau se

He rring Gulls are terr ito rial, distribution would not have bee n "free", an d similar

success across hab itats probably resulted from a ba lance of cos's and benefits for
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unequal , de spotic competitors (see Pierotti and Anne ll 1994) rather than a free

dlsntb uuon of equal compe tito rs (see Parker a nd Suthe rland 1986).

Although no t addressed in other stud ies, it is useful to consi der whic h habitat

select ion mode ls best acco unt fo r documented patterns in breedi ng performance of

puffins on Great Island. W ithin some alcid colonies, consistent differences in

breeding success between areas or habitats (Neltleship 1972, Harris 19841 and

positive cc rre'etlon s between breeding density and success(Birkhead 1977, Harris

1980, Hatchwell and Birkhead 1991) agree w ith predictions of an ideal-despotic

model (Fretwe ll and lucas 1970). Higher breeding success and bur row density in

slope tha n in level habitat found by Nenlesh ip (1972) for puffins o n Great Island is

a good exa mple. The fact that puffins are territo rial also fits the premi se of that

model. However, larger males in slope habi tat suggests that birds are assorted

accord ing to differen ces in co mpetitive abil ity. As we ll, distance from the edge of

the colony , soi l de pth, so il drain age , slope, and aspec t, have been shown to be

importan t factors influencing breed ing success.density, and timing of nesting puffins.

These factor s probably interact at a variety of spatial sca les within a colony, creating

d ifference s in nest site quality both w ithin and betwee n hab itat categories (e.g. , slope

and level). Thus, from what we know about puffins in gene ral and on Gre at Island ,

the distrib ution of puffins nesting on Great Island may be best ex plained by some

blend of ideal despotic (Fretwe ll and Lucas 1970), phe no type- limited idea l free

(r'nrker and Suther land 1986), and idea! pree mptive (Pulliam and Danie lson 1991 )
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mod e ls. My goa l wi ll be 10 disti ll thi s eclectic mixture into a manageable fo rm.

Bear i" mind thai a ll these mode ls assume that aver age fitness with in a hab ftat

dec lines wi th increasing consumer de nsity. Th is assumption remains to be evaluated.

1.5 . Aims and pr edict ions

My purpo se is 10 determine whet he r cu rrent habitat se lect ion models COIil

exp la in the d istrib ut ion of puffins on Greal Island, and, jf not, to propose a mo del

that can . Fie ld studies were conducted 10: 11determine if differences between s lope

and level hab itats fou nd by Nettles hip (1972) pe rsist through time ; 2) sepa rate effect s

of slope an d d istance from the edge o f the co lony by dete rmin ing wh ich physic al

variab les di scrimin ate hab itats for pu ffins; 3) dete rmine the re lationshi p between

bu rrow den sity and breeding success with in a nd between habi tats; 4) determ ine

w he the r de nsity ca n be used as a measu re o f habit at prefe rences; and 5) evaluate the

relative importance of diffe ren ces d ue to vari at ion in ind ividua l compe titive abi lity

or ne st site q uality and d ifferenc es due to broad er habita t charac teristics.

approached the field stud ies w ith certa in predic tions in mind based on the result s of

previou s stud ies, known weather patte rns at G reat Island , and an ticipating reducti o n

in the avai lability o f food for puffins be cause of cold sea surface tem per at ures. This

allowed me to answe r specific qu esti ons re q uired to meet my ob jective . My

pred ictions were:
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1) The most important habitat variab les that d iscriminate habitat quality for puffins

on Great Island arc distance from the shore edge of the colony, slope, and aspect.

Breed ing success and densi ty will be highest close to shore . on sleeper slopes , and

OIl so uth o r west (ad ng aspects. Aspect may be important tc breed ing pu ffins for two

rea sons: insolation creates more favourab le the rmal en viron ments at south than north

aspec ts, and prevailing wind d irection creates better flight conditions on windwa rd

than on leeward aspects. Wind may also effectthermal e nvironments at Greal Island

becausecold windsare fromthe north and east andwarm windsare from the south

and west (Atmospheric Environment Service, SI. John'S). Prevailing wi nds we re

wes terly during the 1992 and 1993 breedin g seasons (Atmospheri c Environme nt

Service, St. John 's). I( insolation is the dom inan t (actor, timing and breeding success

shou ld follow a south-north gradient. wher eas if prevai ling w ind direct ion is most

importan t, they shou ld followa west-e ast gradient.

21 Burrow density will be related to the same habitat variab les that contribute 10

breed ing succe ss and will reflect habitat preferences.

3) Timing of breed ing is cons trained by when burrows thaw and d:y in the spring

and 50 will be related to habi tat variables in the order : aspect, slope, and dista nce

(rom the shore edge orthe co lony.

4) Previou s stud ies have shown that risks of predation and kleptopa rasitism are

grea ter whe re den sity is low and on level ground 50 I predict thdt breed ing success
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will be related 10 habitat variables in the order: distance from the edge, slope , and

asp ect.

5) More bi rds will lay eggs and hatch and fledge chicks in slope habitatthan in level

habitat, and on south and west sides than on north and east sides of the island.

6) Due 10 the higher energy demands of brooding and provisioning chicks than

laying and incubating eggs (Ricklefs 1983), I predict that greater differences in

re produc tive performance between slope and level habitats and between south ,Uld

north locations will occur du ring the nestling period than the incubation period.

To test these predictions, I investigated thevarlabllttvin breeding performance

of Atlantic Puffins nesting in different habitat s and locattons on Great Island ill 1992

and 1993 . I used the two habitats, maritime slope and maritime level, ldemtrted by

Nettlesh!p ( 972) plus a third, inland slope, Idemlrted by Catms and Verspoor (19flO).

Including inland slopes, which tended 10 be farthe r from shore than level habitat,

he lped to di stinguish effects due to slope and distance. I sampled birds nesting on

the north, east, sout h and west sides of the island. I assumed thatth ere was a greater

proportion of expe rienced breeders in 'optimal', slope or sou th and west areas than

in ' margina l', level or no rth and east <areas, and I would no t be able to separate

effects of age or experience from those related to position or habitat. J expected that

b irds nesting in inland slope habitat should exhibit intermediate success du e to the

interaction of nesting on slope and being farther from shore than those in maritime

level habitat.
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I used propo.tions of burrows that interco nnected as a measu re of interfer ence

amo ng burrowing pu ffins to help eva luate the prooil..1ion thai burrow density re flects

hab itat prefeeeoces. II is possible thai burrow density is unrelated to hab itat

preferences and is simplya function of topography and the volumeof soil available

(or burrowing (Hanis 1984, Harris and Birkhead 1985). Ifthis wasthe case, I would

expect that the freq uency with which birds w/?re dig ging into eac h oth er 's burrows

would be similar across densities. Ahernatively, if density is related to habitat

preferences, then interference should be higher at higher densities.

I compared variation within and between areas to assess the relative

contributions of individual and habitat differences and to evaluate hab itat selec tion

models that assume equal com petitive ab ility amon g individuals. I used breedin g

success as a measure of fitness tha t incorpora les both individual and hab itat

compon ents. Thiswas acceptable because the componen ts ate complemen tary, l.e.,

ind ividuals with higher fitness sho uld occur in preferred habitats, and I need o nly a

re lative measure of habitat quality. Relationships between success in 199 2 and

1993 were analyzed to help de termine the importance of individual fitness. Birds

that successfull y fledged chicks in 1992 were expected to be more succes sful in 1993

than birds that failed in 1992. Success per burrow was used as a rep resentative

measure of individua l success, assuming that most birds retained 199 2 nest sites in

1993.
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Causes of egg and chick mortality were assessed 10 evaluate previous

explanations for obse rved differen ces in breeding success between slope ;1110 level

habitats . Rates of chick growth, feed ing. and kleploparasili!>l11we re measu red in th is

study and will be repo rted elsewhere (Rodw ay unpubl.).



Chapter 2

METHODS

2.1. Study site

Great Island (47"11'N 52n46'W) is part of the W itless Bay Ecological Reserve

and lies approx imate ly 2.4 km off the southeast shore of the Avalon Penin sula in

southeast insular Newfound land (fig. 2). The island is about 1200 m long and

ranges from abou t 150 10 700 m wide. Eastward tilting of underlying strata results

in topography on Great Island aligned north to south with most slopes fadng eas t

and west, some facing north, and few facing south. Steep, grassy slopes above a

precipitous, rocky shoreline change 10 level or gent lysloping, per imeter grassy areas,

Rubus-grass meadows, and a central forested area. North-south running rid ges create

steep interior slopes covered with forestor grass. The island has been descr ibed in

detail by Nettleship (1972). forested area has cont racted and perimeter grassy and

meadow habitats have expanded since the time of Nettleship's study U. Reddick,

Bauline East, Nf , pers. comm.). Changes are especia lly obvious on the sou thern en d

and along the east and north sides of the island where dead snags are abun dant. The

activities of nesting birds, part icularly puffins and Herr ing Gulls, have probab ly

contributed to habitat changes (Harris 1984). Nine seabird species are known to

breed on the island, including an estimated 52,000 pa irs of Atlantic Puffins, 2,770

pairs of Herring Gulls, and 80 pairs of Great Backed-backed Gu lls (Cairns et a l.
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1989). Puffins nest in grassy, pe rimeter areas with enough soil to suppo rt burrows

and on inland slopes as far as 200 m from sho re.

2.2. Sampling methods

The study was conduc ted from 20 May to 28 August with three subsequent

vis its on 3 1 Augu st, 7 September and 26 September in 1992 , end (rom 4 June 10 30

August with an add itional visit on 6 September in 1993. The popula tion sampled,

and to which t wished to make inferences, was the nesting population of puffins on

Great Island. A stratified, centered start, systematic sampling scheme (M'l<low an d

Mado w 1944, Madow 1949, 1953) was used 10 insure adequate rcprcsonr.ntcn 01

diffe rent parts of the colony. ThE> scheme was designed a priori, before the colony

had been visited, and was considered unbiased. Samples were stratified bv habitat

and location . rdefined level habitat the same as Nettleship « 15'" hut changed the

criteria for slop e hab itat (from> 30° to > 15" in order to include the entire colony

in the sampling po pu lation. This angle was appropriate to distinguish hahu.us

because , w ith no wind , puffins have difficulty taking flight from slopes < 15" but not

from steeper slopes (pers. obs .j. Tile extent of different habitats was measured along

transects laid out eas t to west every 100 m across the island (Fig. 2), Transects were

marked eve ry 5 m and sample plots we re placed at 30 m intervals, or at the closest

5 m mark thai fell within a particular habitat.
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FIGURE 2. location of transects used 10 distr ibute sample plOI$ on Great Island in
1992 and 1993 .
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In 1992. three plots containing 20 burrows each were established for each

habitat type and grouped by location on the north, eas t end south sldes of the island.

1was un able to include the west side of the island becau se it was rmpracncat to walk

there on a regular basis. The sample of burrows in each plot was obtained by

selecting all burrows occ urring within con tiguous 1 m~ sectio ns, until 20 burrows

were identified. Sections were examined in a predetermined sequence in .111

expand ing radius froma measured point along a transect. This selectiontechnique

avoided potential biases cause d by choosing burrows that looked occupied or were

easier to access. Standard criteria were used 10 define a burrow . An entrance was

called a burrow if its tunn el extended more than 50 e m and did not co nnect w ith

anothe r entrance within 100 c m. If it d id con nec t w ith another e ntrance within 100

em, the two (or more) ent rances were called a single burrow. In rare C.1SCS, nmnols

less tha n 50 cm w ere call ed burrows if they co ntaine d obvious nest cu ps, eggs or

chicks.

Puffins a re extreme ly sensi tive to disturbance an d will read ilydesert their nests

(Lockley 1934, Harris 1984). To minimize disturban ce, in 1992 burrows wer e

checked once d uring incub at ion 10 dete rmine if an egg had bocn laid, then every

four da ys from just before hatching until nea r fledgin g, whe n the interva l was

shortened to tw o days to obtain fledging da tes. If burrow s were longer tha n an arm's

reach, access hatc hes we re d ug on the first visit until e ither an egg was found or the

burrow was ver ified as e mpty. Chicks were measured on each visit during the
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nestling period (Rodway unpub1.). Ashc roft (1979) foun d that this visiting regime

caused no reductic -; in productivity when compared to undisturbed controls. I

estab lished control plot s of 20 burrows adjacent to eac h study pl ot. Those burrows

were checked late in the nestling period and were fol lowed 10 fledging to provide

comp arisons for productivity and liming. Bree d ing success in study plo ts was

measured by the proportions of eggs la id, chicks hatched, and chicks fledg ed per

burrow, and by the p roportions of chicks hatched per egg laid (hatching success),

chicks fledged per chick hatched (fledging success), and chicks fledgedper egglaid

(breeding success). Chicks fled ged pe r burrow was compared between study and

control plots.

In 1993, becau se of the effects of disturbanc e in 1992 (see Results), burrows

in both study and co ntrol plo ts were first checked late in the nestling period. An

additional sample of 19 5 burrows was d istributed along the same transects measured

in 1992, again stratified by hab itat and location. I placed new plots on the north,

east, and west sides and not on the south side of the island in 1993 because much

of the remaining colo ny area at the south end of the island that was not sampled in

1992 was fragile peat that was easily e roded. Those burr ows were checked once

during incubation to d etermine ifan egg had been laid, and once near the end of the

nestling period to estimate bree ding success. Fledgin g rates in 1993 were estimated

by subtracting the pe rcent mor tality observed in 1992 for simila r sized chicks from

the total number of ch icks observed in plOISwhen they we re chec ked in 1Q93. This
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technique assumed that chick mortality near the end of the nestl ing period was

stmnar in the two years, a nd may introduc e a bias if fee d ing conditions d iffl'red

between years. However, an y bias would like ly be small be cause man y chicks were

already near fledging whe n burrows were checked in 1993 , and mainly small, late­

hatched c hicks died after this date in 1992 .

Timing of hatching and fledging in 1993 were determined in a feeding

observation plot (Rodway unpub l.) established in ma ritime le vel hab itat on th e south

side of the Island. All-day feeding watches were cond ucted e very four davs

throughout the nestling pe riod, and two-hourwatches during the peak feeding period

in the morn ing were conducted ever y second day during the hatching period. Chicks

we re assumed to be one da y old when I observed the first feed d elivered 10 Ihc

burrow (Harris 1984 ). Wh en chicks approached fledging age (Netl lcship 1972,

Harris 1984, Rodway unp ub l.), bu rrows were checked at on e 10 two day Inte rvals10

de termine actual fled ging dates .

2.3 . Habit at variab les and burrow charac teristics

For each plot I mea sured slope, aspect, and closest distance to the edge of

puffin colony along the shor e (he reafter referred to as "d istance from edge"). Habftat

measurements we re taken when plols wer e first c hecked d uring Jun e of 19 92 and

1993. Because the edge of t'te co lony did not always correspond 10 the edge of the

vege tation , I defin ed the edge of the colony to be at the first puffln burrow
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encounte red, w hen moving from ihe sh ore towa rds the in terior , within a 5 m

perpendi cular di stance e ithe r side of a measurement line. Dis tance from edge was

measured along the groun d, thus including surface contours, 10 the nearest 0.1 m

using a 30 m tape. Measurements were taken to th e edge of the colony at shore

even if sections of unused habitat intervened (e.g., some n esting areason inland

slopeswe resepa ratedfrom colony alongthe shore by stretches ofmeadow o r forest

habitat wh ich were not currently being used by p uffins for nesting). Slo pe was

measured to the nearest d egree using a Silva Ranger com pass and a prot ractor

aligned with a plu mb. Aspect was estima ted to the nearest degre e by s ighting

directly down slop e with th e com pass.

Burrow cha racteristics were recorded: burro w length to the nearest 0 .1 m,

numbers ofconnectingentrances fo r burrows in ma in study pl ots, bu rrowde nsi ty for

each plot , tempe ratures o f empty burrows in or n ear most study plots, and nest

chambe rs catego rized as wet or d ry in a ll burrows that held eggs in study p lots in

1992. Burrow d ensity at each plot was determined by co unting the number of

burrows in a 4x4 m area or in the area used to obtain the 20 sam ple b urrows,

w hichever was lar ger. Empty bu rrow temperatures were m easured on 6· 10 June

1993 in or near study plots at north, east, and south location (N - 54) and on 27

August 1993 in study plots at east and south locations (N - 1 2), Temperatures were

taken at a distance of abo u t 50 cm infoa b urrow w ith a Yellow Springs Instru ment

flexible thermo pr obe (series 400). Measurements were take n in th e afternoon on



:17

cloudy days 10 reduce poten tial biases caused by daily changes in temperature . A

nest was categorized as wet if standi ng wate r was ever recorded in the nest du ring

the period I was checking bu rrows to determine hatching dates and measure ch icks.

2.4. Analyses

2.4.1. Cate gorical variables

Confirmatory analyses were performed on the effec ts of categorical

explanatory variables (e.g., location and hab itat) on continuous response variables

(e.g., burrow density). Specific compar isons 10 lest predictions te.g., thatburro w

dens ity will be higher at south and west locations than at north and east locations)

were analyzed as planned comp ar isons using contrast matrixe s (Wilkinson 1990).

However, planned comparisons among group means we re not elwavs appropriate

because some of my question s requi red non-or thogonal contrasts (Hays 1988). III

those cases, effects were first tested using ANaVA followed by Tukey HSD post-hoc

tests.

logi t models were used to analy zedichotomous measures o fbree dingsucc ess

(e.g., egg laid or not laid) in relatio n to year, type of plot, lo cation, and habi tat

categories. Legit-model ana lysis is a specia l application of hie rarchica l, log-linear

mode ls. It provides an ANOVA-like, conurmatory ana lysis for asymmetrical inquiry

of cross-classified, categorica l data, where one of the variables is de fined as a

response variable (Fienberg 1977, Kennedy 19B3). In this case, response varia bles
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are the dich otomous measures of breeding success, egg laid or no t laid, chick

hatched or nol hatched, ere. These types of mode ls are appropriate for analyzing

COUnl data where the response variab les are poisson (Norusfs 199 0). The saturated

logit-model (Kennedy 1983) in anexample with eggs laid (or not laid) per burrow (E

wit h i leve ls - 1,2) as the response variable and locat ion (Lwith ; levels - 1,3) and

ha bhat (H w ith k levels - 1,3) as exp lanatory variab les is given by,

whe re Fii~ is the observed frequency in ce ll oi». u is the genera l effect equal to the

averageof the logs of the frequencies in all cells, A;EI is the effect of eggs laid, Ail; is

the effect of location, A ~H~ is the effect of habitat, A ~E;'l" AlkEj'Hkl AikLj' Hl and

A I;,l: E, ·l/""" ~ are effects due to first- and second- order interactions, and €'iA is the e rror

equal 10 the difference between observed and expected freque ncies in ce ll (i,j ,h).

l ambda parameters were estimated from fitting the model , and represe nt incremen ts

or decreme nts from the general leve l u for pa rticular comb inations of leve ls of the

d ifferent variables (Norusls 1990). For example,

where 111 is toe e ffect of being in co lumn i.
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In logit-mode l analysis, only interactions involving the respon se vertabtcs are

o f inte rest. 'Main effects' of explan ato ry variables are given by the interacti on tcnu

o f that variab le w ith the response variable (Kennedy 19881. Higher o rder inte ract ions

can be interpreted in a fashion similar to interactions in muhi-way ANQVAs (Elliot

1988). A 'null-legit model ' can be de fined that includes al l first-order term s for

ind ividu al variables plus all interaction terms that do not includ e the ((' SP Oil S!"!

variable (Ken nedy 1988). The null-leg it mode l for eggs laid per burrow is given by,

Null hypotheses of no effects due to explanatoryvariables were tested by evaluating

the goodness-or-fit of null-legit models. If null -Iogit models fit observed data, then

ev ide nce was not I -esentto reject null hypotheses in favour of alterna te hypo theses.

Spe cific alternat ive hypotheses were tested by co mparing goodness-of-fites timates

of null-lo gtt models with those of mode ls thai include 'main e ffects' or higher

interactio ns involving the response variable (Kennedy 1988 ). The mode l to test the

e ffects of locatio n is given by,
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Predicted mode ls for eggs laid, c hicks hatched and ch icks fledged in study

burrows lake similar fOf"ms.

wher e XI represents levels of one of those response variables. That is, for the mode l

that best fits the data , the expecte d freq ue ncy in cel l.li,j,kl is best account ed for by

adding theeffectsof the interactionsof the particular response variable with location

and w ith habitat fa the nu ll-legit model. The second-o rder interaction effects of the

response variab le by location and habitat we re nul expected 10 be impor tant. All

logil models contained the terms from the null logit model in order to control for

irrelevant . poten tially contaminating d ifferen ces in cell freque ncies due to factors that

do not involve the response variable (Kennedy 1983). Estimates of lambda

parameters we re used to eva luate the importance of the d iffe rent levels of each

explanatory variable . ;"'ull hypotheses of no differences in particula r levels were

tested with z-tests, Null hypotheses were rejected at the 5'%. lev e l if z > 1.96

(Norusis 1990). Since lambdas sum to zero across leve ls of each va riable, one test

was requir ed for interactions between dicho tomous response and explanatory

variables and 2 tests were required for inte ractions between dichotomous response

a nd trich otomous exp lanatory va riables. Thus, the numbe r of z-tests required

co rresponded to the degrees of freedom for the term be ing eva luated . A per
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comparison alpha rate of 5% was accepted because contrasts were based on .1 priori

questions and because the number of tests did not exceed available degrees of

freedom (for a similar justi fication in re latio n 10 error ra il'S for planned, or thogonal

comparisons in ANOYA models see Hays 1988).

Like lihood ratio tests (Gl
), compa ring obse rved and expected freq uencie s,

were used to test hypot heses (Hays 1988). Likelihood ralio chi-squares we re used

in preference to Pearsonian chi-squares because of their additive proponles and

resultant usefulness for comparing component chi -squares in try ing 10deter mine the

most parsimonious model that fils the data (Kennedy 1983). Tests for individual

terms were given by the change in G1 between two models that differed only hy the

inclusio n or exclus ion of that term. Terms were adde d in a prede termined,

hierarchica l seque nce: Type of plot (where approp riate), Location , then Habitat ,

because 1 wished to test the effects of Habitat after Location and Type or plot had

been cons idered (see Hays 1988 for a discussion of an hierarchical upp rooch to

testing hypotheses using linear regression mode ls). Partial compo nents we re also

inspec ted and lead to similar conclus ions as hierarchical components. This indicated

that there was little corre lation among explana tory variables and the orde r of entry

into the mode l did not affect changes in goodness-of-fit estimates due to particular

variab les.

The criterion for rejec tion of nu ll hypotheses was a goodness -of-fit estimate

for the null-Iogit mode l with a probability of less than 5% when compa red 10 the
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theoret ical chi-squaredislribulioo. A to lerance level of 5", (or Type I error was also

used 10 lest hypotheses for individua l effects. Using ihe theo retica l chi-square

distribution for rests was considered acceptable if at least 80"'" of expected cell

frequencies were greater than five (Hays 19881. If low cell frequencies were a

problem, tables were collapsed by hab itat and by location, 10 give two conde nsed

tables w ith adequate cell frequencies. Results from the collapsed and originaltables

were co mpared . Likelihood ratio ch i-squares and Pea rsonian chi-squa re were also

com pared, wh ich, if they lead to the same conclu sions, gave some assura nce that

sample sizes were adequ ate to evaluate the chose n mod el (Clegg and Eliason 1987).

The same types of diagn ostics for residuals used in regression anal ysis can be

used in logit-model ana lysis. If a model adeq uately fits the data, stand ardized

residual s should be independent, no rmally dis tributed and within limits of ± 1.96

(Norusis 1990). Normal plots of standardized residuals and plots of standardized

residua ls against observed and expec ted frequencies were examined for normali ty

and independence from the model. Tables of standard ized residu als were inspected

for outliers. Residuals from all analyses were deemed accepta ble. l ogit-mode l and

residua l analyses we re co nducted using SPSS"(Norusis 1990) and SYSTAT (Wilkinson

1990) stat istical packages.
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2.4.2 . Continuo us variables

Null hypotheses of no effects due fa continuous, habitat variables we re tested

using multipl e linea r regression. Aspect had 10 be transformed from a circula r sca le

to a linear scale 10 be included in linear models. This was accomplished by

assigning minimum (0) and maximum (160) values to opposlrc directions and giving

symmetrica l values increasing from 0 to 180 to each hemisphere. Because co mpass

directions are arbitrary, this was done fOUT different ways, assigning 0 at north,

northeast, east, and southeast direc tions. To lest hypotheses involving aspect, the

d irectional scale which bes t appro ximated a linear relat ionship wilh the depen den t

variab le bein g teste d was e ntered into the regression model.

Variance within and between plots for each measure of breeding successwas

partiti oned using ANOVA. This required no special essumprlons as long as

inferences to the population were not attempted (Hays 1988). Mean values per plot

(e.g . mean number of eggs laid per burrow in each plot) were used 10 provide

continuous response variables and meet assumptions (or regression models testing

predicted relationshipsbetween measuresof breeding successand habitat variables.

Using mean values means that variation w ithin plots was not considered and that

reported proporti onsof variance accounted for by habitat variables did not include

w ithin-plot di fferences,

As with log-linear models, terms were entered into a model in a

predetermined, hierarchical sequence to determine the contrib utions of indi vidual
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pred idor v~riables (Hays 19881. Tolerance for Type I error was set at 5'- , Residuals

were inspected to insure that assumptions or normality and homoscedes ncnv were

san. 'led . Means are quoted ± 1 SO unless otherwise stated.
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RESULTS

3.1. Burrow cha rac terist ics

3.1.1 . Burrow densit y

Burrow density in study plots varied from 0 .16to 2.00 bur rows/nr' . Mc.1Il

den sity was highe r at south (0.96 ± 0.29 burrows/m1; N .. 6).1Ild west (1.3 I :!:0.5 0

burrow s/ml; N - 15) locations than at north (0.87 ± 0.56 burro ws/OIl; N .. 14) .mel

east (0.7 1± 0.25 burrows/ml; N .. 11) locations Iplannedcomparison: F,.•4 .. 5. 70,

P .. 0.023 ). Results of z-wav ANOYA ind icated significant effects due to habita t

(Fw .. 5,38, P - 0 ,009 ) and the interaction of ha bnat by location ( Ffo, l~ .. 2,77,

P .. 0.026 ; Fig, 3). Across habitats, mean burrow density ranged (rom .1 high of

1.20 ± 0.52 burrow vm" in maritime slope (N _ 19),10 0.92 ± 0.45 burrow s/or' in

maritime leve l (N .. 15), and a low of 0.74 ± 0.4 1 burrows/m1 in inland slope (N

- 12) habitat. Differences between maritime slope and inland slope were sign ificant

(Tukey: P - 0.00 9). The effect of habitat varied across locations, d iffering most

between nor th and east locations (Fig. 3).

Distan ce from edge, slope , and aspect we re expe cted to be imporlan t

exp lanatory variab les for burrow de nsity. This mode l exp lained 3 1".&, of the variation

in burrow de nsity and suppor ted effects by di stance (rom edge and aspec t (Tahle 1).

Exploration of density data revealed that the relationship betwee n burrow

de nsity and d istance from edge was better desc ribed by a log function than a linear
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FIGURE 3. Interaction of habitat andlocation (or density of Atlantic Puffin burrows
on GreatIsland.
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TABLE ! . ANOVA 5um mary for multiple re grl'SSion of de nsity 01 All.lnlic Pulfin bu rrows on Greal

Island on distance from the shore edge of the colony, slope, and aspect. V.lri.lb lt>swere added

hierarchically In the order listed,

Stolndard M<oo

'''''''' coefficien t sqUilre dJ

Pred icted linear model

DiSli nce 0.2<) -0.441 2.189 11.8] 0 ,00 1

"""" 0.00 0.051 0.034 0.18 0.614'- 0.11 0,]40 1.257 6.79 o.ou
Fullmodel 0.] 1 1.160 6.28 0.001

Residual 0.185 <2

Non-linear model

log distaoce 0.35 ] .966 24.63 0.000

Piecewise slope" O.OS 0.175 1.1)') 0 .](,(,

"'POd 0.01 0.29] 1.82 0 .185

Full model 0.43 0.957 s B-1 0.00 1

Residual 0.161 <0

• Aspect coded from southeast - 0 to northwest - 180; see Methods.

b Breakp oln l for piecewise r",gresslo ll was at 2 7 Q
,
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function (Fig. 4). A plot of density against slope showed that burrow density peaked

at slopes between 20 and 30 0 and the relationship was best fitted with a piecewi se

linear regression line (Wilkinson 1990). Using the log of distance and a piecewi se

term for slope in the predicted model significantly inc reased explained variance from

31 to 43% (F1,40 - 8. 10, P - 0.001) and indicated that distance from edge, but not

slope or aspect, was a good predictor of burrow density Hable l ).

The effects of hab itat and distan ce were confo unded beca use the three habi tats

were at consistently different distances from the shore edge of the colony. To

separate these effects r tested the relationship between de nsity and distance from

edge within each habitat. The relationship between density and log distance held

within maritime slope (r - 0.29, Ft, !I " 6.97, P - 0.0 17) and maritime level

lrl _ 0.51, FI ,1j - 13.80, P - 0.003l habitats, bu l I was unable to reject a null

hypothesis of no effect due 10 distance for inlan d slope habitat (r2 _ 0 .01,

F"IO - 0.07, P - 0.797) .

3.1.2. Burrow length and interference

Burrow length ranged from 20 to 280 em and differed by location

(Fw o " 6.29, P < 0.000 1)and habi tal(Fl,sso - 15 .03, P < O.OOO ll . Mean burrow

length was greate r at sout h (83 ± 25 Cmi N - 123) than at north (75 ± 20 em; N

- 203; Tukey pairwise comparison: P .. 0,01 1), east (76 ± 27 em; N _ 166; Tukey:

P .. 0.025), and west (68 ± 16 em; N .. 70; Tukey: P < 0 .00 1) locations. Maritime



FIGURE 4. Comp arison of burrow density and mean number of ch icks fledged per
burrow in relation to distance from the shore ed ge of the co lony, slope, and
aspect for Atlantic Puffins nesting on Great Island in 1992 and 1993.
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leve l habitat had longer burrows (86 ± 31 em; N .. 187) than inland (74 ± 17 em;

N - 167: Tukey: P < 0.00 1) and marit ime (69 ± 16 em; N - 208i Tukey: P <

0.00 1) slope habitats. Propo rt ions of burr ows wi th in terconnecting entrances were

higher on maritime slope (38%; N .. 120) than on maritime level (18%: N .. 120;

X2, .. 12.04, P .. 0.00 05) and inland slope (18%; N ... 120; X}I .. 10.95, P ..

0.0009) habitats. I cou ld detec t no difference across locations in the propor tions of

burrows wit h interconnectin g entrances (X2
2 .. 2.73. P .. 0.255 ).

Mean burrow length per plot declined with increasing burrow de nsity (r1 ..

0.12, FI,4... 5.9 1, P .. 0.019; Fig. 5), and numbe rs of interconnect ing en trances in

main study plots increased with density (r l
.. 0.49, F1•16 .. 15,20 , P .. 0.00\ ; fig .

5).

3.1.3. Burrow temperature

When I first visited Great Island on 9 May 1992, many burrows, especially

on nor th facin g slopes, were blocked with ice. Burrow temperatures in the second

week of June 1993 varied from 4.0 to 10.2 "C and differed by location ( F 2,~ , .. 4.19,

P .. 0.0 21) and not by hab itat (Fl, SI - 1.13, P .. 0.332). Mea n temperatures were

7.3 ± 1.5 DC at south (N .. 20l , 5.9 ± 1.1 "C at east (N - 101, and 7.0 ± 0.9 "C

at north (N - 24) locations. Differences were significant between south and cast

locations (Tukev pairwise compar ison: P .. 0.017). Samples paired by location 011

the north and east sides of the island showed that burrow temperatures average d
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slig ht ly higher in mariti me slope (7.4 ± 0.8 ± "C; N .. 11) than in merntmc level

(6.4 ± 0.9 °e ; N .. 17) hab itat in the same area ( F ,.l~ .. 9.10, P .. 0.006), Burro w

temperatures d iffered by aspe ct (F).4~ - 7.74 , P .. 0.0003), and we re higher o n south

faci ng slopes (8.3 ± 1.3 uei N .. 10) than on nor th (6.7 ± 1.4 "C; N .. , 7; Tukc y:

P - 0,002), east (6.7 ± 0.5 /le; N .. 17; Tukev: P .. 0.001) and west (6.2 ± 1.0 "C;

N - 10; Tukey: P .. 0.001) facing slo pes,

Temp eratures measure d in a small sample of empty burrow s on the east and

sou th sides of the island on 27 August 1993 were slightly h igher at so uth IOC.11io ns

w ith westaspect (12.8 ± 0.9 DC; N .. 6) than at east locations with east aspect (11.9

± 0 .4 °e; N .. 6; F1.IO - 5.56, P .. 0 .040).

3.1 .4 . Nest flooding

Rainfall in July 1992 reco rded at St. Joh n's (139.9 mm) was almos t d ouble the

So -veer ave rage (75.3 mm; Atmospheric Enviro nment Service, 51.Jo hn 's). Mos l (97 .8

mm ) of the monthly tota l fell du ring the fir:.t 10 days of July whe n most puffi n ch icks

we re hatch ing (see Timing of breed ing). Flood ing in nest chambers was recor ded ill

35% of all bu rrows con tain ing eggs. Many ot her bu rrows had wettunnels but nest s

rem ained d ry. Propo rtions o f nests th at flood ed we re similar at nor th (35 %, N ..

40) , east (31%, N - 48), a nd sou th (39% , N .. 49) locations (X 1
l .. 0 .6 0,

P - 0.74 0) . Differences in the proport ion of burrows Ihat had wet nes ts in maritime

slo pe (42%, N .. 43), maritime leve l (38 %, N .. 48), and inland slope 126'%" N -
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46) habitats were not significant (X1
1 .. 2.63, P - 0.2(9). Burrows closer to the clif f

ed ges in maritime slope and maritime level habita ts received more run off and

seepage water in heavy rains.

The degree and duration of flooding differed among plots. Only plots in

maritime slope and maritime level habita t at the south end of the island retained

enough wate r 10 floal eggs in nest cha mbe rs. Eggswere floa ting, some for m ore than

a week, in six nests in the maritime slope plot a nd one ne st in the maritime leve l

plot duri ng the second week of July. We t burrows in other plots dra ined better and

dr ied faste r.

Rainfall was also above ave rage in June (185.7 mmJ and July (140.4 mm)

1993 (3D-year <overage (or June was 83.4 mrnl, most of wh ich fell in the last week

of June and first week of July (18 1.8 mm).

3.2. Timin g of breeding

3.2.1. Hatching and estimated egg-laying dates

In 1992, mean hatch ing dales we re 3-4days earlier at south than at north and

east loca tions (planned comparison: F1•74 - 5.19, P .. 0.026 ; Table 2). Differenc es

ac ross habitats were not significant (FV 1 .. 2.06 , P - 0.135). Distributions of

hatching dates were positively skewed and dispersion to the right was greater at east

than at south locations (X2
1 - 3 .9 1, P - 0.048 ; Fig. 6; chi-square tests compa ring

location s, habitats, and years we re performed on the propor tion of chicks hatchi ng
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more than one week after median hatch dates). Distributions did not difh.'f

s ignificant lybetween so uth end nor th loca t ions (Xl , • 0.48, P .. 0.489). D ispersion

o f hatch ing dates was greater in maritime slope and inla nd slope habitats than in

maritime level habitat (Table 2, Fig. 7J, though differences were signific ant on ly

betwee n level and maritime slope (XlI _ 4.37, P .. O.037).lnd n ot bctweenlovol

and inland slope (XlI - 3.69, P - 0.055) habita ts. Hatching dates in 19 93 wore

similar to the o verall av e rage in 1992 (means: Fl.11l - 1.36, P - 0.246, Tilllie l;

dis tributi ons: X2
4 .. 5.18, P .. 0.270, Fig. 8). Sub tracting a n incuba tion pe rio d of 42

days(Nettteshlp 1972, Harris 198 4) (rom hatching dalesgivesesttmatcdmedi anegg­

laying d ates of 26 and 27 May in 1992 a nd 1993, respectively,

Results of ANOVA ofhatc hingda te byplo t revealed Ih"t 88 % of the venancc

in hatc h ing dates was within plots. Thus, habitat variables, llMt p rinwil y

distinguished pI01S, we re not expected to acco unt (or a large pr oportion of th e

variance in hatc h ingdates. Regressiono f d ate of h atching on burrow density showed

no sign ificant trend(r 2 - 0.01, F, ,14 - 0.4 1, P - 0.526). The pre d icted m odel thilt

Included aspect, slope, a nd dista nce from edge accounted for a sign ificant p ropor tio n

o f lhe va riance in hatch ing dates (Table 3). Aspect made the only s ignifican t

con tribu tion to the fit o f the mo del.

Analysis of the re lationship between hat chi ng date and aspect, s lope , and

di stance from edge was re peated using mean hatc hing dat e per plo t as lhc d ep endant

value. Thi s reducedsample size b ut elimi nated th e high variabi lity within pl ots. The
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TABU J . A NOVA 5urnnwy '« multip le regrrssions 01l im i ng ind syndrony d~hi ngdMes of

Atl¥JliCPuffin chicks on Gre.al Islvd in 1991 on a spect,~ope. and d istance from !heshore edge o f

lhe colonv. Vambles~ ad ded hlera rchlalfy in lhe orde l" listed .

Stmrd Mean

Source coeffICient sq uare df

Indivklual ha tching d alll'

Aspecl' 0 .07 .().257 19 5.2 5.3 6 0.023

51"" 0 .0 3 0.196 11 0 .8 3.0 4 0.085

Distance 0. 01 0.108 18 .2 0 .5 0 0.-182

Full mode l 0 .1 1 108.1 ] 2.9 7 0.038

R~~r 36 .4 72

Mean hatc h in&dales pel' plot

"- 0 .5 11 .., 61 28 .91 37. 8 7 0.002

51"" 0 .] 2 D.58O 16 .13 21.0 8 0.006

Distil/lCl! 0 .0 2 .201 1.U 1.4 8 0.178

FuUmodeJ 0 .92 lS.'4\ 20.13 O.(X))

Resid~1 0.77

Range 0' h .alChlng d ales pel' p Ial

A, p<d 0 .3 7 -0.612 22 2.2 12 .25 0.017

51"", 0.42 0.657 249 .5 13 .76 0.014

Distance 0." .0.315 3 1.7 1 .75 0.244

Full mode l 0 .85 16 7.8 9 .25 0.017

Residual 18.\

• Aspecl coded from east - 0 10 west _ 1110; se e Methods.
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pred icted m odel acc ounted for 92% of toe va riance in mea n hatchin g dates (Ta~lc

3). Aspect and slo p e mad e significan t conmbuitcns to exp lained variance. The

effect of slo pe was p ositive , hatching dates b e ing later in Sleeper slo pes {Tab le )).

Aspect wasan alyzed separate ly 10addressthequestio n ofwhe therpre-....l iling

wind direction orinsolationcontributedmost 10 limin g of bre eding. Aspect graded

on an east-west basis accou nted for 58"fo of the varia nce in mean hatching dales

amongplots (F,.l - 9. 62,P - 0,017)compared lo1 8 °,~ acco un tedfor bvuorth-scmh

co d ing ( F l .~ - 1.54, P .. 0 .2 54), Ha tching te nded to be ea rl iestat west and latest

at east aspe cts.

App arent d iffe rences in synch rony be tween plots co u ld be a spuriou s effect

due to diffe rences in the nu mbers of chicks hatche d in th ose p lots. Range of

ha tc hingda tes within plots w as nots ignificant ly correlated with the nu mbero f chicks

ha tched in a plot(r _ 0.48, P .. 0. 1B8), ind icating that other factors comrfbu ted [0

ha tc hing synchrony. Aspect and slo p e accounted for a significant proportion of lhc

va riance among plo ts in the range o f hatching dates <Table 3), As with tim ing of

ha tch ing, slope was positive ly related 10 the rangeof h at ching dates. Range tended

to be sma ller in p lo ts with weste rly aspect than in plots with e asterly aspects.

Burr owdensi tywas notsign iflcantly re latedto therange of ha tchingd ates(r - o.on,

Fl.? - 0.57 , P .. 0 .476).
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3 .2.2. Fledgingdates

Fledging was earlie r lF1,120 - 5.96, P .. 0 .016) and more synchronou s

(XIS - 13.30, P - 0.021) in control plots then in study plo ts in 1992 (Tab le 2; Fig.

8). Differen cesbe tween control and study plotswe re more pronounced at north and

e ast and not appa rent at south lo cations (Table 2; Fig. 6). This indicated that the

e ffectof disturbance varied at differentlocations. To lest th is idea, I calculated the

difference between mean fledging dales in study a nd contro l plots for each paired

sample (Table 4). Results of ANOVA showed no significant effect of location on

d ifference in mean fledging dates between study and control plots (r2 .. 0.32,

F2,6 " 1.40, P - 0 .319). Howeve r, inspection of d ifference s in paired plo ts (Table

4 ) revealed that th e differenc e at plot SE-70 was an exception 10 the general trend

of greate r differences between study and control a t north and east than et south

locations. Ifplot 5E·70 is excluded from the analysis, results of ANOVA support the

hvpothe sfs ihatth e effectof daunbance was more pronounced at north and east than

at south locations (r2
- 0 .72 , F1,5 - 6.33, P .. 0.043). Excluding plot 5E-70 may be

justified because only two , early-hatching chicks survived to fledging our of 12 eggs

laid in the study p lot at SE·]a. Thus, the effects o f disturbance may have been

severe at that plot but did not result in later fledgin g dates because all later chicks

died or d id notha tch (see below). Theeffect ofdistu rbance d id not varysignificantly

across habi tats, w hether p lot 5E·70 was exclu ded (r2
- 0.01, Fl,l - 0.03, P .. 0.972 )

or not (r 1
- 0.06, Fl,6 " 0 .20, P .. 0.82 1). Fledgi ng dales in 1993 did not differ
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significantly from those in contro l plots in 1992 (means: F1•101 - 0 .02, P _ 0.902;

Table 2; distributions: X2
4 - 3.85 , P - 0.4 27; Fig. 8).

Earlier hatching at south than north and east locat ions may have been

responsibl e for the diff erenti al effects of di sturbance acro ss location s noted abovo.

Nests at which chicks hatched later wou ld have recei ved mor e Vi5ils during

incubation , and thu s more disturba nce10 incubating adults, than ne sts where chicks

hatched ea rlier. I recorde d whether an egg was war m or cold and w hether an adull

was encoun tered on each visit to a burrow. The number of visits on which a warm

egg was found was greate r at north (2.2 ± 0.2 vlsns) than at east (1.8 ± 0. 2 visits)

and south (1.3 ± 0.2 visits) locations (f ,•126 .. 5.35, P - 0 .006 ). The same was uue

for the number of times an tncubarlngadulr was encountered (1.9 ± 0.2 OIl nor th, 1.3

± 0.2 at east, and 1.0 ± 0 .1 at sou th locations; F2•114 - 10. 18, P < 0.000 1).

Ch icksat south loca tions fledged earl ier, on average, than chicks ill norm and

eastlocattons (F2•m - 4.48, P - 0.013 after effects due to Type of plot had been

constdered: Table 2, Fig. 6). I was unable to detec t an effect of habue r on fledging

date (F2,116 .. 1.0 1, P - 0 ,367; Fig. 7). Differences in dist ributions of fledgi ng dales

among locartons and habttats in study and contro l plOIS (Tab le 1; Fig. 6 and 7) were

not significant (X2
2 < 1.8, P > 0.4 forall comparisons). Gr eater variation in fledging

than hatching da tes (F46,75 .. 3.32, P -c 0.0001) made it more difficult to detect

trends.



TABLE 4. Differe nces betwee n mean fledging da tesofAt lant ic Puffin chicks in study

and control burrows for each set of paired plots on Great Island In 1992.

Mean fled g ing dale

[dil )1 afler JO June (Nl] Difference

Plot l ocation Habitat Study Control (days)

2£-120 North Maritime slo pe 63 .3(6) 51.8 (8) 11.5

2£-65 North Ma rit ime leve l GO.3m 51.3 (6) ' .0

5[·70 North In land slo pe 52.0(21 54.6 {51 ·2.6

Sf·28O fa.\! Mar itime slop e 66 .6 ln 58.6 ell) ' .0

5[·2 30 East Ma rit ime level 58 .8(4 ) 57.S (3) 1.3

7£·220 [a sl In land slo pe 60.9 (8) 51.9 (6) '.0

10E-5 South Mari time slope 51 .2 (6) 54.4(12) -3.2

9W·20 Soulh Ma r itime leve l 52 .0 IS) 49.6 (l O] 2.4

9[·95 Soulh In land slo pe 54 .J IG) 53.9 (l l) 0.4

64
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Type of plot w as included as a dum my variable (Hays 1988) in regression

models re lat ing tim ing of fl edging to burrow density and 10 distance from edge,

slo pe,and aspect, in order to contro l (or the observed difference in lim ing between

study and control p lots in 1992. Burrowde nsitywas not related (0 date of fledg ing

(part ial r - 0.00, F1•119 .. 0 .01, P - 0.915). The p redicted model including the

thr ee habitat variab les accountedfor 14'- of the variation in fled ging dal es[Table 5).

Proportion of variance with in plots was 77% , Ifme an fledging dale per plot was

used as the depend ant measur e, the predicted mode l accou n ted for 66% of the

va riation between plots, with aspect again making th e onlysig nifican t contribution

afte r the effect of typ e of plo t had been acco unted for (Table 5). As withhatching

dates, fledging tend ed to be earlier at west thaneast a spects.

Ranges of fled ging date s were similar in stud y and con trol plOIS(r - 0.01,

F' .16 .. 0.0 9, P .. 0 .765) an d type of plot w as not in cluded in regression models.

Wea kcorrelationbe tween nu mbers of chicks fledged in a plot and range offled ging

dates (r _ 0.27, P _ 0.271) again indicated thatothe r factors in fluenc ed synchrony.

Burrow de nsitywas not sign ificant ly related to range of fledging dales (r - 0.02,

Fl , , ! .. 0.0 3, p .. 0 .861), Slope accounted fOf a significan t propo rtion of the

variance in renge o f fledging dates among p lots (Tab le 5). The effect of fhc ov erall

m odel incl udingaspect, slo pe, and distance from ed ge failed 10 reac h significance

(Table 5), A better model would include only th e effect of sto pe (r - 0.34,

F,.1S " 7.7 9, p .. 0 .(014). As with hatching dates, the range of fledging dates te nded
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TAB LE 5. ANQVA summary for mu lt iple regressions of lim ing and synchrony of f ledg ing dales of

AII:mt icPulfin chlcs-son Great Island in 1992 on type ofp lol, aspect , slope, and dis tance from the

shore edge cf the cclonv , Variables were added hierarchi cally in the orde r listed.

Standard

Source coc fl'icient square df

Individua lliedg ing dates

Type of plot 0.05 579.6 6.'10 0.013

Aspect' 0 .05 -0.231 65 1.6 7.19 0.006

Slope 0.01 0. 105 116.7 1.29 0.259

Distance 0.03 -0.214 306.5 3.38 0.068

Full model 0.14 413.6 4.5 6 0.00 2

Residual 90.6 117

Mea rl fledging dales per plot

Type of plot 0.25 93.2 9.27 0.010

Aspect 0.30 -0.547 11 1.4 11.09 0.00&

Slop£< 0.07 0.26 2 24.9 '4' 0.14 1

Distance 0.06 ·0.356 23.1 2.30 0. 155

full model 0 .68 63.2 6.29 0.006

Residual 10.0 12

Range of fledging deres per plot

Aspect 0.07 -0.257 67. 1 1.43 0.253

Slope 0.30 0.sS8 309.5 6.60 0.02]

Distance 0.03 ]1.4 0.67 0.428

Full mode l 0.'10 136.0 2.90 oms
Residual 46.9 13

• Aspect coded from east _ 0 to wes t _ 180; see Methods .
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to be great er in steeper slopes.

3,3 . Breeding success

3.3 .1. Egg-laying

Eggs were laid in 76% of burrows in 1992 and 87% of burrows in 1993

(Tables 6 and 7). Differences between years were sign ificant {XlI " u.95,

P .. 0.008l, even if plots on the west side of the island, which was no t sample d in

1992, we re excluded (X1
1 .. 6.2 1, P .. 0.0 13). In 1992, frequencies of eggs laid per

burrow we re lowest at the north end of the island and were similar across habitats

(Table 6, Fig. 9). Propo rtions of burrows with eggs were similar across loca tions and

were lowest in in land slope hab itat in 1993 (Table 7). The null-Iogil model was the

mosl parsimonious model flttothe data in bo th years (lY92 :G I
R .. 9. 14, P - 0.33 1;

19 93: G2
8 - 9.77, P .. 0.28 2), Ther e was no evide nce (0 support interaction effects

o r main effects of location and habitat, although z-tests of lambda values ap proache d

significance for nort h location in 1992 (z .. -1.94, P - 0.052) and we re significant

for inland slope hab itat in 1993 (z .. -2.4 1, P - 0.0 16).

Data from 1992 and 1993 were comb ined to increase sample size for tests of

re gression mode ls for numbers of eggs laid per bu rrow. Year was included as a

d ummy varia ble to con trol for d ifferences between years . Most (91%) of the variance

in numbers of eggs laid per burrow was w ithin plots. Differences between plots in

th e mean numbe r of eggs laid pe r bu rrow were positively related 10 burrow densi ty
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FIGURE 9. Inleraction of habitat andlocation for measuresof breedingsuccess of
Atlanlic Puffinson Great Islandin 1992.
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(part r - 0 .20, Fw .. 5.04, P .. 0.034) after di(ferenc~ between yed~ wer e

cons idered . Eggs laid per burrow declined with increasing distance (rom the edge

of the colon y and, contrary 10 predictions, with increasing slope {l,lb lc 81. Aspt.'t1

did not add significan tly 10 explained variance .

3.3.2. Egg mortali ty

The major ity of eggs that faik rl to hatc h in 1992 were abandoned in tho nest

(Table 9, Fig. 10). Fifty-nine percent (N - 61) of IhoSI?that did not hatch wert'

abandoned or had disappeared by the first week in July when I began checks for

hatching. Those burrows had been disturbed only once before that (tn ble 9).

Proportions of remaining eggs that were abandoned afler two disturbances to

incubating adults (39 "10, N - 36) were less than that afler three o r more disturbances

( 58~. N - 191. but differences were not signific.ant (Xl . - 1.8 1, P _ 0. 178). t

suspected that digging access hatches on the first visil may have contributed 10 nest

dese rtion, but hatctnng success did not differ in burrows that required access ha tches

(57%, N _ 82) and those that did not (53"". N _ 55; Xl , - 0.28, P _ 0 .596).

Most abandoned eggs were later removed by puffins cleaning out their

burrows. There was also no evidence that puffins flush and kick eggs out of their

burrow when distu rbed. I never found a warm egg disp laced from the nest cham ber

during my visits. Puffins standing around generally flushed at my approach, but

incubating birds tended 10 stay in the ir burrow, and birds stand ing at the en trance
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TABLE 8. ANOVA summary (or m ull iple ll.'gressioos of mean nwnber 01Atlantic Puffin eggslaid per

burrow on Great Island in 1992 al'ld 1993 on distance from lhe shore edgeof the colon y, slope ,.nd

aspect . Year was i"duded as <I dummy variable 10 control (Ot differences between years, Vari.1bles

were added hi«archically In the order listed .

Source

Standard

coe ffic ient square dl

Predicted line ar mod el

YN f 0.10 0.029 ], 22 0 .09 4

Distance 0.20 .(IAn 0.059 6.56 0.02 ]

51.". 0.19 .0 .453 0.058 6.44 0.02 4

'-'-' 0 .01 0.)29 0 .021 2.33 0 .149

f ull mode l 0 .56 0.04 2 4.51 0.015

Residual 0.009 ..
• Aspect coded (rom SOUltlt',ut - 0 to norlh~ - 180; see Methods .



TABLE 9. Fate of Atlanl ic Pumn eggs tbar failed to hatch in study plots

in 1992 .

No. of prior

Dale visits Abandoned Coee Tolal ("' I

5·6 July 28 36 (59)

9-10 July 13 13 (211

13-14 )uly 7 (11)

17· 18 July 3(5)

21·22 July 2(3)

TOlal ("to) 51 (84) 10 (16) 61 (lOOl

73
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FIGURE 10. Fate of Atlantic Puffin eggs on GreatIslandin 1992.
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of their burrow, especially on level ground, would often dive back down their

burrow rather than atte mpt to flyaway. Records we re kept of the presence of adults

in burrows during burrow inspections 10 determine how frequently they flushed

when di sturbed. Adults were encountered in 85% of 382 burrow inspections in

which there was a war m egg in the nest. Adults were like ly prese nt in many of the

remaining 15% beca use I did not explore burrows further once a warm egg was

found. There was no significant difference in the frequency that adults were

encountered with warm eggs in maritime level (93%), inland slope (85%), and

mar itime slope (78 %) hab itats (X2
z - 0.86, P - 0.651>.

3.3.3. Hatch ing

Hatching success (per egg laid) was measured on ly in 1992 and averaged

56"10 (Tab le 6). A significant component chi-square allowed me to reject ihe nu ll­

legit mode l (Tab le 10). The best model explainin g observed hatch ing frequencies

included main e ffects of locat ion , though this mode l d id no t (it the data we ll (Gi l, ­

10.70, P _ 0.098). Success was much higher on the eas t (z - 3.15, P - 0.002 )

than on the north (z _ -1.31, P - 0.190) and so uth (z - -1.84, P - 0.066) sides of

the island (Table 6). Although differe nces by habit at were no t significant (Table 10),

proportions of egg s hatched were co nsistently lower in level habitat than in maritime

slope habitat (Fig. 9). The trend across habi tats differed by location with inland plOIS

having highest success in the ees t and south and lowest success in the north (Fig. 9).



76

TABLE 10. Summary of log it-model anal ysis of the (req uency of Atlantic Puffin chicks

hatched per egg laid and per burrow on Great Island in 1992. Terms were ackled

hierarchically in the order listed .

Source G'

Per egglaid

df G'

Per burrow

df

Null-logit 22.72

Doe to l· 12.02

Doe to H 2.43

Doeto L' H 8.27

• l - location; H - habita t.

0.004

0.003

0.297

0.082

23.43

11.79

1,]7

10.27

0.003

0 .003

0.503

0 .036
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The component chi-square for the interaction effect of location by habitat was

significant whe n pro port ions of chicks hatched pe r burrow were considered tr eble

10). Thus, the best model in this case was the saturated mode l. Partial components

supported a main effect by location but not by habitat The modifying effects of

habitat on the trends by location were most apparent at inland pIOIS. Slgnfflc.uu

interactioneffects were found at the inland plOIS on the north (z .. ·3.11, P .. 0.002)

an d east (z _ 2.32, P .. 0,021) sides of Ihe island and in the leve l plot nttbc north

en d (z .. 1.99, P .. 0 .047).

Proportion of variance within plots was 85% for hatching successand 88%

for chicks hatched per burrow. The re was no significant relalionship betwe en

bu rrow dens ity and mean hatch ing success (r - 0.12, F'.1 - 0.96, P ... 0.3(0) or

mean number of chicks hatched per burrow (r1 ... 0.04, FI •1 .. 0.32, P .. 0 .592).

Distance from edge, slope and aspec t a lso had no significant effect on mean hatching

success (r ... 0.52, Fl .5 .. , .79, P .. 0.266) and mean number of chic ks hatched per

bu rrow (r! - 0 .29, FJ,s - 0.68, P .. 0.599). Aspect made the most substantia l

co ntributions to samp le variance in mean hatching success (pari r1
.. 0.4 4,

Fl.! .. 4.59, P - 0.087 ) and mean num ber of chicks hatched pel bur row (part

r1 ... 0.24, F"s _ , .70, P _ 0.2 49), w ith success higher et cas t than wes t aspects .

Hatch ing success was related to nest floodin g. Eggs hatched in 67% (N .. 89)

of dry burro ws and 33% (N ... 48) of wet burrows (Xl, .. 14.66, P .. 0.00 01; Tnhlc

11). Propo rtions of eggs that hatched from nests that flooded in heavy rains d lffcrcd
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TABLE 11. Numl::len 01Atlanlic Puffin eggs that hatched in ~ .mel dry burrows in sludy plots on

Great Island in 1992.

PI'" l ocation' Habitat'

2E·12 0 MS

2E-65 Ml

5E·70 IS

5(·280 MS

5E-230 Ml

7E·220 IS

10E-5 MS

9W-20 Ml

9E-95 IS

t etat

Hatch

"

w~

Not h ~'c h

"

u

60

Do,

"

• N _ north, E - east, S - south; MS - maritime slope, Ml - ffi,)ri!ime lewl. IS - inl....d , 1''1110,
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among location s and habitats. Eggs hatched in 73% (N - 48) of wei burro ws at east

location compared 101 4% (N .. 40) at north and 16% (N - 49) at south locations

(X2
Z " 15.72, p .. O.0004 iTable 11). Hatching success in wei burrows was higher

in maritime slope /500;." N .. 43) than in maritime level (l7%, N - 48) habitat

(Xl
l .. 4.50, P .. 0.034) and was intermediate in inland slope habitat (33%, N ..

46) . There were no sign ificant differences in hatching succe ss in dry burrow s across

locations lXl
1 - , .85, P .. 0.398; Table 11) or habitats (X II - 0.39, P .. 0.824 ).

Seventeen percent (N .. 76) of eggs that later hatched were co ld on at least

one check; one late-hatching egg was cold on six checks. Hatching success was

high est on the east side at plots in maritime slope (73%, N _ 151 and inland slope

(89"1n, N - 18) habitats, both of which re tained wate r for short pe riods of time

compared to plots in the same habitat s on the north and sout h sides. None of the

eggs that were floating in burrows at southe rn plots subseque ntly hatched .

3 .3.4. Chick mortality

Many chick s that failed to fledge were found de ad in burrows in 1992 (38%,

N ... 47; Fig. TO)and 1993 (BO%, N - 40) . Early hatching chicks (1-8 July) had

higher surviva l than late hatching chicks (after 8 July) in bo th 1992 and 1993 (X2
2 ...

10.89 , P ... 0.004 ; Fig. 11) even though cap elin we re not see n in puffin food loads

until 8 July in 1992 a nd 6 July in 1993 (Rodway unpubl.l. Disturbance may have

con founded this relation ship but chick survival was nat related to the number of
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limes incubat ing adulls were disturbed before hatching (X', _ 0.41, P _ 0.815 ).

Much (67%) of the ea rly mortality was assoc iated with nest flooding . The propo r1ioo

of chicks that died in the first two weeks of July 1992 was higher in wet bu rrows 16

of 8) than in dry burrows (3 of 58; X', - 30.62 , P c 0.00011.

I observedHerringGulls eating two dead,muddy purfin chicksfrom my !otudy

plot during all-dav watches in 1993. I saw no livechicks taken from study burrows,

but inci dent al observations of Herring an d Great Black-backed Gu lls killing nca r­

fledging and fledging puffin chicks were freq uent . Gulls ca ught chicks Ih,l\

approached the entrance of their burrow during the day or as they were fledging ill

the night. Most depredated chicks found in 1992 were probab ly caught while

fledging (77% of carcasses had wing lengths ? 140 mm, N - 47; sec Neulcshlp

1972, Harris 1984, Rodway unpubl.I. l\.iore depredated fledglings found in ihc

vid nity of main study plots in 1992 (N - 34) were on inland slope 168'1.)lhan on

level (26" ) and maritime slope (6") habitat.

3.3.5. Fledging success

Fledging success (per chick hatched) was measured on ly in 1992. Success

was highest in plots at south locations and was generally higher in maritime slope

plots <Table 6; Fig. 9). Differences due to location or habitat were not significant

when the full contingency fable was anal yzed (Null-logit: G2
e - 11.49, P - 0.176),

althou gh z-tests of lambdas showed a significant effect rcr plOISat the south end
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Island In 1992.
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(z .. 2.36, P .. 0.Q19), Analyses of tables that we re collapsed to increase expected

ce ll freque ncies gave similar results (Location: G1
2 .. 4.94 , P .. 0 .084 ; Habitat: G1

J

- 2.21, P - 0.332) and likelihood ratio and Pearsonian chi-squareslead to the same

conclusions.

W ithin plot variance for fledging success was 87 %. There was no significan t

re lationsh ip between mean fledging success per plot and burrow density (r - 0. 19,

F1,1 .. 1.65, P .. 0.240) or distance from edge, slope and aspect (r1 .. 0.7 1,

F1,5 .. 3.99, P - 0.085)when all plotswere considered. Fledgingsuccessat plot 5E·

70, discussed earlier, had a large influence on the results of analyses. On ly three

eggs hatched and two chicks fledged at that plot, giving a relatively high es timate fo r

mean fledgi ng success . Density acco unted for 33% of the variation in mean fledg ing

success (F, ,~ - 2,97, P - 0.136) and the model includi ng di stance from Edge, slope,

and aspect acco unted for 86% if plot 5E·70 was exclud ed (Table 12). Distance from

edge exp la ined most of the variance; slope and asp ect contrib uted little.

3 .3.6 . Breeding succe ss

Bre edi ng success (chi cks fledged per egg laid) averaged 34% in study plots in

1992 (Tab le 6). Assum ing similar num be rs of eggs laid in contr ol plots as in study

plots prov ides an estimate of 55% (or blee d ing success in co ntrol plots. Success was

higher in 1993 (Xl, _ 34.58 , P < 0.0001), averaging 68% (Table 7). I was unab le

to reject the null-le git mode l for the co nt inge ncy table of b reeding success by
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TABLE 12. A NOVA sumnwy (Of multiple regressions of rneiln numbe r of At lantic Puffin ch icks

fledged per chick h.llched in 199 2, and per egg laid in 1992 and 1993 on Great Islandon dis'ana

from the §hare edge of the co lony, slope, ilnd aspect . Year was included as a du mmy vari able 10

conlrol fOfdiffe rences be(_~rJ. VMiabJeswere~ hiefatch ically in the o rder Iisled .

Standard Mean

Source coef ficient squa,e df

Mean number of chicks fledgedper chick hatched'

Distance 0.76 .a.884 0.247 22.45 0.009

SI""" 0.05 .0 .227 0.014 1.27 0.3 23

Aspecl~ O.OJ 0.312 0.00 9 0.82 0.4 16

f ull mode l 0 .86 0.090 7.88 0.0 ]]

Residual 0.0 11

Me"n number of chicb f1~gtod p@regg laid

Y.M DAD 0.426 16.] 8

OiSfance 0.12 -0.449 0.128 7.26

SI""" 0 .11 0.4] ] 0. 120 6.82

Asoect 0.0 1 0.068 0.005 0.19

fu ll model 0 .6< 0.1 70 6.5)

Residual 0.026 15

• Excluding plot 5£-70; see le)(t.

~ ,,"specl coded from soulhedsl _ 0 10 nort hwest _ 180; see Me lhOlls.

0.001

0.016

0.019

0.6 76

0.00 3
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location by hab itat in 1992 (C2
8 - 7.51, P - 0.483), even though success in

maritime slope habitat was 76% higher than in maritime level habitat (Table 0, Fig.

9). The null-Iogit mode l was also the most parsimonious model fit \0 the data in

1993 (contin gency tab les we re collapsed to maintain adequate cell frequencies:

fledge by location: G l
2 - 0.70, P - 0.7 04; fledge by habitat: c -, - 2.36,

P - 0.30n.

Data from 1992 and 1993 were combined to increase sample size (or tests of

regression mod els relating mean breeding success 10 burrow density and distanc e

from edge, slope, and aspect. Year was included as a du mmy variable to rnntro l for

di fferences between years. Wi thin plo t variance was 8 1%. Burrow density W,\S no!

significantly related to mean breeding success (pari ~ - 0.05, F1, 17 - 1.69, P ..

0.211) after differences between years were considered, Distance from edge and

slope but not aspect added significantly 10 explained variance after effect of year was

accounted for (Table 12).

3,3.7. Chicks fledged per burrow

The proportion of burrows that fledged chicks in growth study plots averaged

26"10 co mpared 10 an average of 42% in control plots in 1992 (Table 6). Differences

between contro l and study plots were similar across habitats (F2.~ .. 0 .10, P .. 0.9 08)

and locations (F1.4 - 2.17, P .. 0,230), although differe nces tended 10 be lower em

the east than on the north and south sides (Table 6, Fig. 12). Legit-model analysis
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WiI!> carried out on the four-dimensional contingency table of fledge by type of plot

by location by habitat. The composi te component chi-square for the null-legit model

was significant at the 0.005 level (Table 13). Partial components for third- and

second-orde r interactions were not significant, but all first order interactions made

significant contributions 10 the fit of the model. Thus, the final model included main

effects of type of plot , location and habitat (C2
12 .. 10 .16, P - 0.602l. Z-Iests for

lambdas showed significant, positive deviations for sout h locatio n and for maritime

slope habitat, and significant dec rements from average for north location and for

maritime level habitat (Tables 6 and 14).

Chicks fledged per burrow was higher in 1993 than in 1992 (Xl, _ 26.96 ,

P < 0 ,0001 i Table 7). Success in 1992 study plots was almost twice as high in 1993

as in 1992 (XlI '" 12.81, P ... 0.0003). Numbe rs of chicks fledged from burrows in

1992 control plots was also higher in 1993 (Xl , ... 6.47, P ... 0.011 ) and was similar

to that in new plots (Xl, ... 0.75, P - 0.387 ). Analysis of the four-dimensional logit·

mode l for the frequency of chicks fledged per burrow in 1993 yielded significant

main effects due to type of plot, location and habita t (Table 13), There was no

evidence of effects due to inte ractions; the mode l includi ng main effects fit the data

well (G1
12 ... 13.62, P ... 0.326 ). Differences in 1993 between 1992 study and

control plots suggest a residual effect of the disturba nce to study plots in 1992, as

study and co ntrol plots from 1992 received the same treatment in 1993, Results

were similar to those observed in 1992: the highest proportion of chicks fledged per
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TABLE 13. Sum m¥Y of logil-model ~n.llysis of the frequency of Atlantic Puffin chick ~ fled),,,,,' pt'f

burrow on Greall sland in 1992 alld 1993. Terms were oJdcIed hierarchic.lllv in lhe orOC'f l i~lod .

1992 1993

Source C' d' C' d'

Null-Iogit 35.70 17 0.005 44.J5 U.OOO

Due to T' 9.79 0.002 4.43 o.eas
Due ioL 7.87 0.020 6.24 0.044

Due lo H 7.88 0.020 20.48 0.000

rxee r-r 2.36 0.]07 0.53 0.767

Due to T"H 0.42 0.811 1.70 0.427

Due loLoH 5.21 0.266 7.39 D.ll7

Dueto T"l "H 2.10 0.717 4.00 0.406

• T _ Typeof plot; l _ location; H - habitat.
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FIGURE 12. Interaction of habitat and location for mean number of Atlantic Puffin
chicks fledgedper burrow on Great Island in 1992 and 1993.
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TABLE1-4. L:lmbda est im.ll!S tind 1-I6Is on lambd.lSforeffec:lsof Type of ploI, locil tiOll¥ld Holbil.ll

on the rreque ncy of Allant ic Puffin ch icks fledged per burrow on C rl'31 ls13nd in 1992 .:mel 1991.

Type of plol l ocation Habit;)l

Study Control North fast South Slope l evel Inl Jru!

1992

Lambda -0.169 0.169 -0,204 0.026 0 .176 0.199 ·0 .160 -o.Q!?

-2.699 2.899 -2.] 8S 0. )18 2.06 7 2.511 · 2.110 -0. 10:1

0.004 0.""" 0.017 0.750 0.OJ9 0 .012 o.on 0.702

1993

l~"'" -0.115 0.115 -0.166 ·0.0 01 0.169 0.071 -0,3 11 0.2H

-2.104 2.104 -] .215 .a.OIB 2.2) ) 0 .996 " .IIS 1.128

0.018 0 .018 0.0 13 0.493 O.OU 0.160 0.000 0.001



89

burrow occurred at sou th locatio n and in inland slope and maritime slope habitats

(Tables 7, 14, Fig. 12).

Data from 1992 and 1993 were comb ined to test regression models for

numbers of chicks fledged per burrow. Proportion of variance w ithin plo ts w as87%.

Mean number of chicks fledged per bur row was related to burrow den sity (part

r1 .. 0.09, Fw " 6.19, P - 0.01 7) after year and type of plot were considered.

Distance from edge, slope, and aspect were significant pred ictors of fledge per

burrow after adjustments were made for differences due to year and type of plot

(Table 15).

Plots of respons e against explanatory variables revealed thatthe relationship

between mean numbe rs of chicks fledged per burrow and distance from edge was

described better by an log funct ion than a linear function (f ig. 4). The plot against

slope showed that fledge per bu rrow peaked at slopes between 20 and 30 0 and the

relationship was best fittedwith a piecew ise linear regression line (Wilkinson 1990).

Using the Jog of distance and a piece wise term for stope significantly increased

explained variance from 58 to 66% (f ,,Jll .. 8.70, P - 0.005). I be cont ribution of

aspect was not significant when non-linear te rms for distance and slope were

conside red (Table 15). Plots of burrow densi ty against distance from edge , slope,

and aspec t took similar forms as those for fledge per bu rrow (Fig. 4).

I analyzed the relationship betwee n mean number of chicks fledged per

burrow and burrow den sity within each habitat to address the assumption of habitat
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TABLE 15. ANOVA summary for multiple regressions of mean number of At lantic I'u fl in chtcks

fledged per burrow in 1992 and 1993 on Great Island on distance from the sho re edge of the (OrOIlY,

slope, 311d aspect. Year and type of plot were included as dummy variables 10control lor differences

between years and between study and control plots. Variabl'lswere added hier,JrchiCilllyin the order

listed.

Standard Mean

Source coeffi cient square df

Predicted linear model

Vear 0.24 0.402 22 .33 0.000

Type of plot 0.08 0.066 3.&4 0.03 5

Distance 0.10 -0.309 0.157 8.72 0.005

Slope 0.11 0.353 0.189 10.50 0.002

Aspecl" 0.05 0.229 0.072 4.08 0.050

Fullmodel 0.58 0.158 9.02 0.000

Residual 0.018 40

Non- linear mode l

Year 0.24 0.40 2 27 .16 0.000

Type of plot 0.08 0.066 4.43 0.Ql9

Lcg dlstance 0 .16 0.264 17.80 0.000

Precewlse slope " 0.095 6.42 0 .00 1

Aspec t 0.0 1 0.008 0.54 0 .467

Full mode l 0 .66 0.136 9.19 0 .000

Residua l 0.015 38

- ---

• Aspect code d from southe ast _ 0 to northwest - 180 ; see Methods.

b 8reakpoint for piecewise re gression was at 25 ".
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selection models that fitness or produ ctivity dec reases with increasing dens ity.

Number fledged increased significan tly with density within inland slope habitat

(r2 - 0.27, F
"

IJ .. 4.71, P .. 0.049) and nonsignificantl y with in ma ritime slope

(r2 _ l1.0S, F l , IS - 0 .84, P .. 0.373) a nd leve l (r2 - 0 .05 , F1.1l _ 0.63, P .. 0.442)

habitats (Fig. 13). Relation ships were equally well described, in terms of variance

explained , by linear and logarithmic functions.

3.3.8. Relationship s betw een success per burrow in 1992 and 1993

Frequency of chicks fledged in 1993 was higher from bur rows that fledged

chicks in 1992 than from those that did not for all burrows (78 vs. 39%;

Xli " 48.65, P < 0.000 1) and for burrows known 10 have contained eggs in 1992

(81 vs. 36%; X2
1 - 22.97, P < 0.000 1). Proportions of burrows w here chic ks

fledged in 1992 that were successful in 1993 were similar al north (60%), east (74%),

and south (60%) locations (X2
2 - 0.6 1, P - 0.73 6). Burrows in maritime level

habuatrhat were successful in 1992 were less likely 10 be successful in 1993 (65%)

than those in maritime (88%) andinland (78"10) slope habitats, altho ugh differences

were not significant (X2
2 - 5.37, P - 0.068). Differences we re significant if only

control plots we re considered (53 vs. 68 and 61"10, respecti vely; X1
2 - 7.9 1,

P - 0 .019). Burrows thai did not fledge chicks in 1992 we re more likely to fledge

chicks in 1993 in inland slope (53%) than in maritime slope (33%) and level (31%)

habitats (X2
1 - 9.18, P - 0 .0 10), and were less likely 10 fledge chicks in 1993 at
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per burrow andburrow density in different habitats on Great Island in 1992
and 1993.
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no rth (31%) than at east (42%) and so uth (46%) locations, but d ifferences by locat ion

we re not significant (X2
2 - 4.04 , P - 0 .133). Burrow s thatn ever contained eggs in

1992 fledged chicks in 1993 more frequent ly from inl and slope (57%) than from

maritime slope (24%) and level (8%) habitats (Xl
2 - 7.90, P - 0.019), and from

south (64%) than (rom north (20%) and east (17%) locations (X2
2 .. 7.86,

P - 0.020 ),



Chapter 4

DISCUSSION

4.1. Effect s of d isturbance

The visiting regime used to check burrows in study plots in 1992 red uced

breed ing success and de layed fledging. Hatching did not appear 10 be delayed by

disturbance (see Sealy 1984) as hatching da les we re similar in und isturbed plots in

1993 and overa ll liming was similar in the two years. Differences between 1992

study and control plots persisted in 1993, sugges ting residual effects at least one

season following disturbances. Nu mber and limin g of visits in 1992 were simililr 10

those used by Netueshfp (19721and Ashcroft (1979) and show n by Ashcroft10 cause

no redu ction in numbers of chicks fledged per bu rrow as compared 10 und isturbed

contro ls. Marked reduct ion in breedin g success attributed to the conservative visiling

regime used in this study has not previously been reported, although ~ 1 1~CC5S

reported by Nettleship (972)was similar to that found in study plots in 1992 (Table

16).

Puffinsfrequent lydesert thei r nests followingdislurbanceduring the egg. laying

or incubation pe riod (Lock ley1934 , Kartashev and Myrberget citedin Ashcroft 1979.

Komeyeva cited in Nettleshtp 1972 , Harris 1984) . Disturbance to lncuba ung or

brooding adults near hetchlng time sometimes ca uses de sertion (Harris 198 4) hUI

chick survival after hatch is gene rally h igh and is not red uced by subsequent

disturba nce (Ashcroft 1979. Harris 1984, see also 8ertram 1988). Egg dese nlon
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following visits early in the breedi ng cycle is the main reason reponed for reduced

breeding success caused by observer disturbance in other burrow or crev ice-nesting

alcldspec ies (Thoresen 1964, Manuwa l 1974b, l eschner 1976, Sealy 19 76 , Summer s

and Oren! 1979, Cairns 1980, Pierce and Simons 1986, Wilso n and M,l n uw.11 1986,

Walanuki 1987, Bertram 1988, Gaston Pol al. 1988, Piau ct OIL 1990,Cotmark 1992),

Disturbance resulted in retarded chick development, probably due to delayed

hatchi ng, of Tufted Puffin (Fratercu/a drrhara) ch icks in Alaska (Pierce an d Simons

1986).

Results of different studies suggest that puffin's reactio ns 10 disturb ance may

vary at different colonies (Evans and Nettleship 1965). Hatching and breeding

success averaged 75 and 65% on Hornoy (Barrett et al. 1987), following a visiting

regime similar to that used on Great Island. Ashcroft's (t97 Q \ visiting regime on

Skomer Island was the same as that used in this study except that she also included

vtslts at the beginning of the season to determine egg-laying. l aying did nc r appear

to be affected by early inspections and hatching and breeding success ave raged 77

and 73 %, respectively. Similar disturbance on the Isle of May lowered hatching

success to 59% and breeding success to 55 %, compared to 74% in burrows

disturbed on ly once during incubation and then not again until auer chicks had

hatched (Harris 1984). Hatching and fledging success on Great Island in 1969

(Neltleship 1972 ) were similar to thai observed in 1992 using similar lnspoctton

regimes. Reasons for observed differen ces between colonies are unknown hut may
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relate to threats of predation, food supply, or hab ituation to disturba nce . Birds

already stressed by food shortage may be mote likely 10 abando n breeding efforts

when d isturbed. Effectsof disturbance may bias inte r-colony compa risons especially

if visiting regimes differ te.g. Ne ttleshlp 1972).

Effectof disturbance on breedingsuccesswas similaracrosshabitats, and thus

was independent of burrow de ns ity and any differences in age, expe rience or fitness

of breeders that may be associated wi th pos ition in the colony at a partic ular location

(Coulso n 1968 , 1988, Coulson a nd Thomas 1985).

Compa ring results (rom d ifferent type s of clot s in 1992 and 1993 provides

some insight into possib le liming and causes of increased failure in disturbed plots.

ShnJlar numbers of chicks fledged per burrow in 1993 from 1992-control p lots and

new p lots estab lished in 1993 suggested that a single check for eggs durin g the

incubation period did not increase desertion. Measures of breeding success der ived

from inspect ing burrows once du ring incubation and not again until after chicks have

hatched are typically high (73 10 93%) du ring years of adequate food supply (Harris

1984, Barrell e t al. 1987, Harris and Bailey 1992). In 1992, 36 (26%) eggs were

deserted or had disappeared whe n 1made the first check for hatching chicks, which

followed a single check for eggs during the incubation period. Hatching success

would have been typical (74%) if remaining, attended eggs had hatched. I suspect

that visits near hatching were responsible {o r additiona l egg desertion and may have

contributed to delayed chick growth.
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Certain reco mmenda tions for future studies of puffins on Great Island follow

from the obse rved effects of disturbance in th is study. Dete rmining proportions of

bu rrows in which eggs a re laid provides estimates (or num bers of pairs initial ing

breeding efforts and is a valuable statistic for comparative analyses of breeding

performance and fo r popul ation monito ring. Numbers of eggs laid can be measured

by a single check of burrows in the latter ha lf of th e incuba tion period. A sing le

check wilt missa proportion of eggs lostbefore inspection and some replacement

cl utches, w hich will bias success rates upwa rds , but should provi de da ta compa rable

among years and locations. Estimates of breeding success can be obtained by

subsequent visitsafter chickshavehatched. Timing of breedtng cenbe roughly back­

da ted from fledging dales or more accurately from hatching dales determined by

observations of fi rst feedings asused in 1993.

4.2. Timing of bre eding

Estimated median egg-laying dales in 1992 and 1993 were about one week

later than those estimated by Netdeship (1972) in 1968 and 1969. Delayed

phenology may have been associatedwith oceanographic cond itions (Birkhead and

H arris 1985, Astheimer 1986, Ainley and Boekelheide 1990, Murphy el al. 19911.

Sea-surfacetemperaturesw ere lower and timing of capelin spawning in the vicinity

of Great Island was oyer one month later in 1992 and 1993 than in 1969 and 1970

(Maunder 1971, J, Carscadden, DFO, 51.John's, pers. ccmm.j. Puffin s may have
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responded 10 envir onmental or physiological cues (Perrins 1970, Winkler and

welte rs 1983, Toft et al. 1984, Marlin 1987, Monaghan et a!' 1992, Bolton et al.

1993) or have been constrained by in sufficient female nutrient reserves required to

produce eggs (lack 1968, Drentand Oaan 1980, Winkler 1985, Areese and Smith

1988 , Safin a et a1. 196 8). Changes in food ava ilability we re probably respon sible for

dela yed laying and extreme ly tow product iv ity by Black-legged Kittiwake s (Rissa

tridactyla) (Regehr 1994) and Herring Gulls (Rodway unpubt.l on Great Island in

1992 and 1993 compared to previous years (Maunde r and Threlfa1l 1972 , Pierotti

1982). Mo re eggs were laid and overall prcducnvtry was higher in 1993 than 1992

(or pu(fins and kittiwakes, suggesting thai food shortage was less severe in 1993 than

1992. If birds were cons trained by inadequat e nutrient reserves, I would have

expected egg-Jaying to beea rlier in 1993 than 1992. Similar phenolog y in the two

years for both species suggests that egg-laving was timed by other proximate cues .

Hatching was earlier al south than north and east locations in 1992. This was

expected if south is a preferred location and puffins are distributed accord ing to

competitive abilities (see below). An alternati ve explanati on is that timing was

constrained by burro w and soil cond itions in the spring (Hornung and Harris 1976 ,

Harris t 984) . Many burrows on north-facingslopes were blocked with ice on 9 May

1992 and burrow temperatures were higher at south than north and east locations

in early June 1993 . Median hatching dates in 1968 and 1969 were only three days

earlier than the median at so uth location in 1992, Egg-laying was estimated to begin
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on 9 May in 1968 and 1969 (Nellleship 1972) and on 19 May in 1992 an d 1993.

Greater difference between first than median lay dates suggests th at laying was more

synchronous. at least {or the fi rst half of the egg-laying period, in 1992 and 1993

than in 1968 and 1969. Comparing proportions of eggs laid 4 10 7 and 8 10 11 days

before median dates in the two study periods supports this idea (XlI " 8.84, P ...

0.003 ; data calc ulated from Fig. 8 in Nettleship 1972), Birds prevented from laying

early by froze n burrows co uld result in such a comp ression of lay dates.

Aspect was Ihe most important predicto r of hatch ing and fledging dates,

supporting the idea that spring soil cond itions influenced pheno logy. Earlier l iming

at south locations and west aspects suggests that prevailing wa rm winds as well as

insola tion he lped thaw and warm bur rows. Factors that affected liming were

different than those that affected prod uctivity. Timing was no t related to burrow

densi ty ordis ta nce from edge, and was negatively re lated to slope, while produ ctivity

measures were related to de nsity, d istance from edge, and, positively, to slope . This

suggests that timing was governed by e nvironmenta l cond itions unrelated to foraging

or other abilities of ind ividual birds. Puffins have a prot racted breeding seaso n and

are often the ea rliest species to lay within a colony (Harris 1984, Birkhead il':ld Harris

1985). Geog raph ic and latitud inal d ifferences as wel l as within co lony di fferences

in phenology a re gene rally associated w ith spring te mpe ratures and liming of spring

thaw for puffins taelcpct'skn 1957, Harris 1984 , Harris and Birkhead 1985) and

othe r boreal or arc tic species (Sealy 19 75, Kilpi 1992, Williams and Rodwell 1992),
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although effects of nest accessibility and prey availability may be confou nded

(Birkhead and Harris 198 5).

Greater dif feren ce s between locations in fledg ing than in hatchin g dates offers

support for an ideal despotic di stribution and for the predic tion that the stress of

provisioning chicks will accentuate differences between higher and lower quality

birds, but differences appeared primarily due to levels of disturbance in study plots.

Differences across locations for fledging dales in conlrol plots were similar to

differences in hatching dates in study plots.

Hatchin g and fledging dales did not diffe r ac ross habitats. This is similar to

Nett leship's (1972 ) find ings for maritime slope and level habitats. Contrary to what

Nettleship found, hatching synchrony was greater on level than on slope habitat,

though burrow density was lower on level than slope habitat. This contrasts w ith

greater synchrony at higher densities noted for rnurres (Birkhead 1977) and larid

species (Patterson 1965, Gochfeld 1980). Puffins on level habitat are more

vulnerable to predation and kleptcparastttsrn (Nettleshlp 1972) and protection or

swamping tactics such as increased synchrony (l ack 1968, Wi ttenberger and Hunt

1985) may have higher benefits there than on slope habitat. Perhaps puffins have

adjusted their timing on level habitat during a period of increasing gufl population s

INett leship 1972 , Pierotti 1982, Cairns et al. 1989) since Nettleshlp's study. Harris

(1980) found no di fference in synchrony for puffin s nesting at high and low densities

with different predation risks, but nests were very sparsein his low density areasand
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increased synchrony probablyconferredHule benefit. Social facilitat lonto increase

synchrony may also have been lacking in such sparse g roups (Darling 1938,

Gochfeld 1980).

4 .3. 8reeding succ ess

4.3.1. Egg-layinK

Proportion s of burrows w ith eggs were h igh and were s imilar to those

reported at Brit ish colonies during periods of normal produc tivity (Ashcroft 1979,

H arris 198 0, 1984 ). Numbers fou nd in this study may under-estimate total eggs laid

because some eggs may have been lost beforeburrowswere checked. Estimates on

G reat Island also may be biased downward compared 10 those o f Harris (1980)

because I included all burrows and Harris included onl y those with signs of

o ccupation . I found thai s igns suc h as fresh digging or droppings at the entrance 10

bu rrows we re not good ind icators of occupancy. Entrance s to many burrows rhar

co ntained eggs and fledged chicks were obscured by grass and showed no ob vious

signs of habitation throughou t the season, while others that never contained eggs

looked persisten tly occup ied.

l ower proportio ns of burrows with eggs suggests that (ewer birds in itialed

b reeding efforts in 1992 th an in 1993. This may have be en a re sponse to food

supplyas productivity of puffins, kitt iwakes, and Larus gulls w as lowe r in 199 2 than

1993. Ashcroft (197 9) no ted simila r variation in thr ee years on Skomer Island and
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thought that reduced egg-layingwas associated with poor springfeedingconditions.

However, lower numbers of eggscorresponded with much later laying in her study,

which I did not observe on Great Island. Inter-year varia tion of the magnitude

recorded in this studyis co mmon in surface-feed ing species such as kittiwakes and

is probably related 10 climatic and oceanographic conditions and foodavailability

(Hatch and Hatch 1990, Murphy et .11.1991, Neuman 19 9 4, Regehr 1994). For

d iving species like puffins, proportionsof pairs laying eggs a re typica llyhigh (Gaston

and Nett leship 1981, H arris 1980) and less responsive to fluctuations in prey

availabi li ty (Hatch andHatch 1990).

Proportion sofburrowscontainingeggsshowed noconsistent trendsby habitat

or location. Proportions did increase with burrow density, and decrease with

increasing distance from edge and slope. Harris (1980) a lso found that greater

proportions of burrowscontained eggs in dense than spa rse nesting areas. The

negative effect of slope reflected lower proportions of eggs laid in mariti me slope

habitat in 1992 and in inland slope habitatin 1993. Lower numbers ofeggs laid on

steeper slopes was opposite to predictions. Reasons for this trend are unclear,

especiallyconside ringtha t chickproductivitywaspositively re lated to slope,but may

include abandonment of burrows on steep maritime slopes because of increasing

erosion, and grea ter prop o rtlcns of new, unoccupied burrows on inland slopes (see

below).
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4.3 .2. Hatching

Hatch ing success w as most affected by di sturbance and environrnemal

con ditions. Unseasonably he avy rai ns caused burr ow flooding and resulte d in

abandonment and fail ure of some eg gs. H igh er hatc hing success observed at cas!

loc ation and in marit ime slo pe hab itat was related to the degree and duratio n of

bu rrow floodin g. Pu ffin eggs can proba bly withstand temporary period s of flooding

and cooling, but not extend ed perio ds (seeSealy 1984 , Gasto n and Powell 19119,

Ast heimer 1991). Soil drain age varied across sites,but not in a predictab le man ner

in re lation to the h abitat ca te gories used in this study . This Indicate s thet ana lyses

based on cate gories used here and by Neuleshtp (19 72) may (ail 10det ect effects of

important factors suc h as drainage patterns. I expecte d slopes ne ar sho re 10be well

drain ed but flooding was mo st seve re and persistent atihe pl ot in maritime slope

habit at at the south end of th e island. Slope, rocksubstrate, so il typeand depth, and

burrow arch itecture probably contrib uted to drainage patterns (Stokes and Boersma

1991, Thompson a nd Furness 1991).

Surv ivalof small chicks was a lso reduc ed in wet burrow s. Mean temperatures

in July 1992 and 1993 were 3 "C cooler than 3O-year ave rages (Atmosp heric

Environment Servic e, SI. John's), Tem peratures were most depressed early in July

when most chicks were hatching and may have exacerbated effects of floo ding.

Exc essive rainfall and colder temperatures hav e been associated with poor breeding

success in a numb e r of studies, ca using di rect mortality of eggs and young and
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possibly red ucingprey availab i l ity and foraging efficiency (Neltles hip 19 72 , Vermeer

19 76, Kona rzewski an d Taylor 1989, Baird 19 90, Mu rph y et a l. 1991, Stokes and

Boe rsma 19 91, Thom pson an d Fum e ss 199 1, Norma n er al. 19 92, Chaster e t al.

1993),

Overallhatch ing success in 1992 wasth e sameas Nettlesh ip (1972)observed

in 1968 unde r similar weathe r cond itions and disturbance level s (Table 16).. Th at

inclement weathe r re d uced success in two out of four years of st udies of puffins on

Great Island suggests that it m ay be a common contrib utor to breeding fallure. In

study plotsat eastlocation, which we re well d rained,hatching success in 1992 was

simi lar 10 that recorded in slo pe habitat in 19 69 (Nett leship 19 72) and to average

va lues repo rted (or Brltlsh an d Norweg ian colonies (Ashcroft 1 979, H arris 1980,

Barrell et al. 1987). Thus, dra inage panerns affect breeding success and should

influence ha bitatqua lity and the habitat choices birds m a ke. Difference s in succ ess

between slo pe and le vel hab itat support this id ea but hi ghest hatching success and

low est fledg ing success at east locatio n sugges t thai other factors are mo re jmpc r tant

de te rminants of pre ferred and optima l habitat than soil d rainage .

Most eggs that failed to hatch were aba ndoned in the nes t and re moved la ter

by puffins cleaning cu t the ir burrows . J s uspected th at mos t of th e eggs t hat

disa ppeared had also been abandoned and had been cleaned ou t before the burrow

was checked. Herr ing Gulls regular ly patro lled puffin habitat a nd were observed

eat ing abandoned eggs that h ad bee n cleane d out o f burrow s, but th ere was no
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ind ication that the y preyed on viab le eggs . Chicks that die in the nest a re also

rem oved by paren ts (lid 1981, Anker -Nilsscn 198 7; this stud y).

I found no evidence that puffins flu sh out of burrow s in pani c fligh ts or

di splace eggstowardsthe en trance of thei r burrow s when dist urbed as repor ted by

Ne ttlesh tp (1972) and Baird (1990). The majorilyof adultsrema ined in their burrows

w hen disturbed. Harris (1984 ) noted that after breeding has been initiated, puffins

th at are standing outside b urrows tend to dive back down their b urrows when

di sturbed rather than flyaway. This was especially true on level habitat on Crear

Island and mayrefl ect the rel ative p redatio n risks of withdrawing to the safety ofme

burrow o r attempting 10 escape. Purfins gam protecucn from aerial predators by

nesting in burrows anditwo uld seem maladaptive for incubating birds 10flush from

their eggs everytime aggregationsof off-dutyandnonbreeding birdsflush off nesting

slo pes in response to freque nt gull alarm cries. Invasion by a terrestrial predator

(e.g., humans) may elicitan escape response and explain obser vations reported by

Nettleship (1972) and Baird (1990), thou gh this was not observed during my

investigations. O bservations of eggs that are displaced and depredated afte r they

have been abando nedcould confuse interpretations. Also, in longer burrows puffins

freq uently place eggs towards the entrance (Lockley 1934, pe rs. obs.) which could

be misinterpreted as displacement.

Nettleship (1972 ) att ributed habitat differences in hatchingsuccess to greater

displacement and subseque nt predation of eggs in levelthan slope hab itat. Though
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not significant in this study, differences in hatching success between ma ritime level

and maritime and inland slope habita ts (15%), were similar in magnitude to those

between level and slope habitat (19 %) observed by Neuleshtp. If eggs are not

displaced from burrows, how do we explain consistent differences between habitats?

Desert ion is the commonest cause of hatching failure even in the absence of hum an

d isturbance (Harris 1984). Given de men t weather and abunda nt food, egg

abandonment may result from adult mor tality or lack of coordina tion between mates.

On Great Island, Great Black-backed Gulls catch most puffins on the ground and

hunt almost exclusivelyon level or genllyslopinghabitat where they catch adults at

their burrows (pers. nbs.j. Predation on ad ults was not sufficient to account for

redu ced hatching success, but greater adult mortality would change the de mograp hy

of the nesting popu lation as well as make level habitat less attract ive to prospect ing

birds. The net result would be a higher propor tion of young, inexperienced breed ers

and less competitive ind ividuals on level tha n on slope habitat. I have no dat a to

evaluate this idea, bul the low attendance o n and the high frequency of panic flights

from level habitat (Nettleship 1972, Evans 1975, pers. obs.) is consistent wi th a

perceived predation threat (Harris 1960l. Her ring Gulls are not a threat to ad ult

puffins and freely mingle with them, while Great Black-backed Gulls are the only

serious predator of adults on Great Island and elsewhere (Lockley 1934, Brooke

1972, Flegg 1972, Evans 19 75, Harris 1980, 1984) and are given a w ide berth by

puffins on the ground (pers. obs.j.
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4.3.3. Fled ging

Fled ging success of puffins typically exceeds 90% when food is no t scarce

(Ashcroft 1979 [note that estimate of 74% in 1974 reported by Ashcroft in Table 6

is probably an error and should read 94 % given figures for hatching and breed ing

success], Harr is 1980, 1984, Barrett et 011. 1987). Most chic k monalnv normally

occurs du ring the first to days of life (Harris 1964 ), When food is less availab le

nestling mortality can be extreme and protracted (lid 1981, Harris 1984, Anker­

Nilssen 1987, Barrell et 011.1987, Barrett and Rikardsen 1992).

Fled ging success in d ifferent habita ts and locations on Greal lstand has ranged

from 21 to 8 1% (Nenleship 1972, Brown and Nettleshlp 1984, this study). Highest

success occu rred 011south location in 1992 and in maritime slope habita t in 1968 ,

1969, and 1992 . Chick survival did not ap pear affected by disturbance in 1992 and

the most likely cause of mortality in all years was directly or indirectly linked 10 food

supply (Nettleship 1972, Brown and Nertlesblp 1984, Netueship 1991, Rodway

unpubl.). Most chicks that failed to fledge in 1993 were found dead in the ir

burrows. Fewer were found in 1992, but differences between years were prohab ly

due to the fact that I was better able to document the fate of chicks during all-day

watches in 1993. Proportions of chicks that died in their burrows were probab ly

higher than results indicated because some dead chickswere cleaned out of burrows

by adult puffins or washed out during he avy rains, Starvation appeared to be the

primary cause of death (Rodway unpubl.),
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Breeding success in 1993, in burrows subjected 10 minima l distu rbance, was

similar 10 thai reported by Ashcroft (1979) on Skomer Island, and was in the lower

range of values reported by Harris (1980, 1984, Harris and Bailey 1992) on St. Kilda

and the Isle of May. If I assumean average hatching success of 75% in 1993 , then

fledging successwasprobablyclose to 90%, and couldbe considered normal in that

year. As notedabove, foodshortageappeared less severe in 1993than in 1992 and,

judging from numbers of eggs laid and c hicks fledged, may not ha ve had a major

impact on puffins in 1993 (Table 16). Reduced success in 1992 may refl ect more

difficult feeding conditions. Inclement weather may have affected prey availability

and contributed to low success in 1968 (Nettleship 1972) . Success in 1968 was

simila r 10 1981 when capelin were less availab le (8rovln and Nettleship 1984,

Nettleshlp 199 1). Food also may have been limiting in 1969 because fledging

success in 1969 was lower than in 1992 in both slope and level habitats (Nettleship

1972) and fledging masses were highe r in 1992 and 1993 than in 1968 and 1969

(Table 16; Rodway un publ.).

In 1992, fledging success was prima rily related to distance from edge and no t

10 slope . This may have been true in Neuleship's study as we ll because slope habi tat

was generally closer 10 the shore edge of the co lony than level hab itat. However,

beth distance from edge and slope were important predicto rs of breedi ng success a nd

numbers of chicks fledged per bu rrow in 1992 and 1993. Higher numb ers of ch icks



110

fledged per burrow on marilime and inland slope habitats than on level habitat in

, 993 implies an advantage to puffins nesting on slope habitat.

Nettleship (1972 ) found that puff ins nesting further from shore en level grou nd

suffered greater kleptoparasitism by gulls than those nesting close to shore on slope.

He hypothesized that high rates of kleptoparasitism reduced chick provisioning on

level habitat and resulted in increased predation of chicks thai, when hungry,tended

to spend more time near burrow entrances whe re they were accessible 10 predatory

gulls. Data from 1981 are not consistent with this idea. Proportionsof prematurely

disappearing chicks that may have been taken by gulls was lower, and proportions

of chicks foun d dead in burrows was higher in 1981 when food was less available

than in 196 8·69 (Brown and Nenteshtp 1984). I also found mat kleptoparasitism

increased w ith distance from the shore (Rodway unpu bl.l. However, highest rates

were on in land slope and not on level habitat. Fledging success was not related to

klept oparasitism at a particular study site, and provisioning rate was positively related

to kleptopara sttlsm because birds delivering the most food to their chicks were a lso

kleptoparasltlzed most frequen tly.

Differ ences in the quality of nesting birds offer an alternative explanation (or

variation in success ac ross habitats and locations. Starvation was the main cause of

chick mortality in 199 2 and 1993, and appea red to be d ue to the inability of parents

to provision chicks adequately (Rodway unp ubl.l. Provisionin g skills increase with

age and experien ce in some species (Ryder 1980, Burger 1988, Nelson 1988) and
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differences in numb ers of chicks fledged by location and habitat may be expla ined

by grealer propo rtions of young, inexperienced, and less capable birds at north and

cast than at south locations and in level than in slope habitat. Higher correlation

between burrow success in 1992 and 1993 in slope than in level habitat adds

support to the idea that established, skilled breeders were more common in slope

habitat. Also, in burrows that were not used for breeding in 1992 , chicks were more

likely to fledge in 1993 al south than at north and east IDeations, and in slope than

in level habi tats, This suggests that burrows in more successful areas were more

auractlve or that birds thai were recruiting to those areas in 1993 were of higher

qua lity (see Porter and Coulson 1987, Parler 1988, 1990). Greater success for early­

hatch ing than late-hatching chicks may also be a functio n of the quality of nest ing

birds (see Introduction).

4.4. Effecl of stressful conditions

I hypothesized that stressful conditions wou ld redu ce the success of

inexpe rienced breede rs or breeders in 'marginal' habitat more than that of

expe rienced breede rs or breede rs in 'optimal' habitat. I assumed an ideal despotic

distribution with higher quality individuals occ upying preferred habitats. The study

anticipated a reduced supply of prey, especially capehn, that wou ld add a stress 10

birds attempting to raise chicks. Differences in reproductive performance we re

expec ted to be most pronounced during the nestling phase due to the relative



112

energetic costs of egg-laying and raising young. Observations of prey being

delivered by puffins and by other nesting species suggested uiat ccpettn was less

available to breeding seab irds during the 1992 and 1993 seaso ns than in more

typical years (Maunde r and Thre lfall 1972, Pieron i and Annett 1987, Nettleship

1991, Regehr 1994, Red way unpub1.). Thus, cond itions we re app ropriate for testing

the predictions made .

Analyses of results from study plOISin 1992 gave li ll ie evi dence 10 support

pred ict ions. Numbers of eggs laid were lower in the no rth than in the east or south,

but differences we re not significant. Proportion s of burrows with eggs we re similar

ac ross habitats. Hatch ing success differed significantly by location and was highest

on the east side and similar on the north and south sides. Maritime level habitat had

consistently lower hatching success than maritime slope habitat. This trend agreed

with prediction s, but d ifferences we re not significant. Fledging success and breedin g

success diffe red as pred icted across locations and habitats, but lack of significance

in statisticaltests again prevented inferences to the popu lation. These results suggest

possible Type II errors. The effec ts of disturbance likely contributed to Type 11 error

by effectively reducing sample sizes.

Compa ring eggs laid per burrow in study plots with chicks fledged pe r burrow

in study and control plots provides a re liable interpret ation of relative changes in

reproductive performance over the season and a mea ns to eva luate predictions .

Numbers of chicks fledged per bur row in study and cont rol plots in 1992 and 1993
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differedsignificantly acrosslocationsandhabitats. Results allow inferencesthat more

chicks were produced per burrow at south and west tha n at north and east location s

and in maritime and inland stope than in maritime level habitats. The proportions

of burrows contain ing eggswere determined on init ial visits to study plot s and were

not biased by d isturbance. The lack of differences observed in proportions of eggs

laid across locations and habitats may reflect low costs of egg productio n

(Montevecchi and Porter 1980, Birkhead and Harris 1985). Subsequent differences

in chick productlon suppo rt predictions that most fai lure should occur dur ing the

nestling phase, and that greater differences in reprod uctive performance between

slope and leve l habitats and between north and south locations should occur during

the nestling period than the incubat ion period, due to the increased stress of

provisioning chicks .

4.5. Burrow density

Hab itat select ion theory gene rally predic ts higher dens ities in preferred

habitats, and in optima l habitats if d istribution follows an ideal despotic model

(Fretwell and l ucas 19 70). Higher burrow dens ity and prod uctivity at south and west

locations and in maritime slope habitat suggest that these are preferred and opti mal

sites and agrees with an ideal despo tic distribution . H igher productivit y and low er

densi ty in inland slope than maritime level habitat does not fit predictions . Burrow

density was prima rily related to distance from edge while bu rrow productivity wa s
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related to distance from edge and slope . This suggests that preferred sites are close

to the shore edge of the colony and optimal sites are on slope.

Decreasing density wi th increasingdistance from Ihe shore edgeof the colony

may reflect patterns of colonization. Puffin populations on Greet Island have

increased this century (Ne ttleship and Evans 1985). Changes in vegetation indi cate

co lony expansion has occur red from the shore inland . New burrows are being dug

in ta ll herbaceous vegetation and under live trees towards the interior of the island

(pers.obs.). Olde r, e roded areas have been and are being abandoned. Numbers of

burrows in Nettleship's main study area decreased 25% between 1969 and 1979

(Cairns and Verspoor 1980 ). Puffins are known to colonize, e rode and abandon

nest ing areas over periods of 50- 100 years (Harris 1984 ).

Higher burrow den sity on slope than le ,·.:1ground is typica l of alcd colonies

(Richa rdson 196 1, Nettleshtp 1972, Evans 1975, Wilson and Manuwal1 986, Gaston

1992). It is probab ly a function of prefe rence, because alc tds have high wing loading

and find it difficu lt to become airborne from level ground, and physlcalllmttattons

imposed by the volume of soil available for burrowing at different slopes (Harris

198 4, Harris and Birkhead 1985). Burrow density peaked at slopes of 20 to 30" on

Great Island. It is possible that the colony is shifting from the steepest slopes

becau se of burrow erosion Ipers. obs.l. Rhinoceros Auklets (Ccrorhinca mono ccrafcl)

have shifted from steep to more mode rate slopes on Protection Island, Washington,

possibly due to erosion or vegetation changes (Thompson et al. 198 51. Harris (1984)
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noted thai slopes between 20 and 40 0 were most stable and could support higher

burrow densiti es tha n sleeper slopes or level areas .

Burrow density and all measures of breeding perfo rmance except hatching

success w ere highest at westerly aspects. Even though most relation ships w ere not

significa nt, the co nsistency of those relat ionships suggest that aspect plays a role in

defining preferred and optimal habitat for puffins nesting on Great Island. Possible

influence of warm west winds on liming of breeding have been discussed above.

Facing prevailing w inds may also be attractive to pu ffins on Great Island beca ....se

flight condit ions improve with onshore winds and deteriorate with offshore winds.

This is true on Grea t Island because interior areas are highe r in elevation and more

forested than perimeter areas where most puffins nest, thus creating wind shado ws

in leew ard parts 01 the colony. Wind direction may not be important on colonies

with level topograph y. Puffins have great difficulty becom ing airborne even from

moderate slopes if wind is blowing offshore, dow n the slope . Onsho re winds allow

them to take flight from level ground (pers. obs.). The advantages of possible ene rgy

savings and of avo iding predators are apparent

Burrow den sity and mean numbers of chicks fledged per burrow showed

similar relationships to habitat variables (see Fig. 4), altho ugh the significance of

those relationships varied. This suppor ts the assumption that burrow density reflects

habitat preference . The measure of chicks fledged per burrow inco rpo rates the sum

of factors contributing to breed ing performance in a particular season. Burrow
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density can be cons idered a longer term indicator. The importan ce of slope ,15 ,1

determinant of burrow productivity bUI not of density may ind icate a temporal lag

betwee n these two indicators as the co lony expands into inland slope habitat. If true

this means that inland slope habitat is not saturated and dens ity there shou ld

increase. Productivity increased with dens ity on inland slopes (see Fig. 13), and 1

wo uld expect birds to saturate local areas befo re dispersing. This has not occurred

and large areas of inland slope have been colonized at low density. Increasing costs

al higher densities could offset benefits and acco unt for the observed dispe rsal (set'

be low).

Greater burrow interference, as measured by numbers of interconnecting

entrances , at higher burro w densities and in maritime slope habi tat also suppor ts the

assumption that density reflects habitat preference and is not solely a funct ion of

physical factors. Greate r interference occurred in spite of shorter burrow length

which would act to reduce numbers of intercon nections at higher de nsities.

4.6. Individual ~ifferences

Basic models of Fretwell and l ucas (1970; Fig. 1) assume that individuals

experience uniform success within habitats. Most of the variation (77·9 1'%,) in

measures of reprodu ctive performance was within plots, suggesting that inherent or

acquired differences in ability due to age and experien ce of individua ls and/or

differen ces in site qu ality within habitats contribute most 10 breed ing success and that
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between habitat differences are less important. The higher probab ility that chicks

fledged in 1993 from burrows that were successful than from those that were

unsuccessful in 1992 also indicates that di fferencesin the q'lal ity of individual birds

or nest siteswere important determinants of breedingsuccess.

4.7. Evalua tion of habit at selection model s

Basic modelsof Fretwell and Lucas0970 ; Fig. 1) make three assumptions that

were not satisfied in this sfudy : indi viduals did not experi ence uni for m success w ith in

habitats; successdid not parallel density acrosshabitats;and success within habitats

did not decreasewith increasing density. The first two violations pose little problem

for current models: individual differences in the quality of birds or nest sites are

assumed by phenotype-limited and preemptivedistributions (Parker and Sutherland

1986, Pulliam and Danielson 1991); and nonparallel differences in dens ity and

successin the three habitats could be modelledusing a modified version of an ideal

despoticdistributionthat incorporatedqualitativedifferencesbetween habitats (Morris

1988),plusdifferences between habitats in the costsof territorial resistanceIe.g.,Fig.

14). However, the positive relationshipbetween breeding successand densitywithin

habitats found in this study is difficult to accommodate with current density­

dependent habitat selection models. No mechanism exists in current models to

explain dispersion from preferred habitats if within-habitat fitness increases with

density and remains higher than in alternative habitats. Saturation of preferred
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FIGURE 14. A possible example of a modified ideal despot ic model that co uld
account for observed differences across habitats in Atlantic Puffin burrow
density and mean numbers of chicks fl edged pet burrow. Success (W1) is
similar in maritime slope (MS)and inland slope (IS)hab itats and lower (W2)
in maritime level (MLl habitat, and de nsity is highest in MS and lowest in IS
habitat The model depicts quantitative and qualitative differences (Morris
1988) among habitats, and lower costs of territorial resistance in level than in
slope habitats due to differences in the average competitive ability of
individualsoccupying each habitat. Perceived fitness (see Fig. 1) is the same
in all habitats. The model assumesa negative relationship between density
and fit'less, which, if breeding success is used asa measure of filness, wasnot
observedin this study.
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habitat could cause birds to colonize other areas, but habi tat saturation does nol

appea r to be occur ring, at least not on inland slopes. This suggests that breeding

success is not a complete measure of within-habitat fitness and that other factors

need to be considered. I propose an alternative cost-benefit model that can expla in

thedistribution of puffins breedingon Great Island,and can accommodatea positive

relationship between breed ing success and burrow de nsity.

4.8. A cost-benefit model

Cost-benefit models have proven useful in microeconomic theory for

understanding the decisions made by consume r.", and producers. In biology, they

have been app lied 10 territorial behaviour and, in optimality theory, to foraging

behaviour and habitat selection. Current models of habitat selection depict fitness

costs and benefits for a particular habitat by a single fitness-densily curve (e.g.,

Fretwell and lu cas 1970; Fig. 1). Density-dependent reduction in fitness assumes

Ihat costs increase more than benefitsas dens ity increases. The relationship betwee n

costs and benefits is unlikely to be constant in most populations and habitats

(Fretwell 1972, Davies and Houston 1984). Also, costs and benefits may be

measurable in the same currency and additive (e.g., both cont ribute to breeding

success) or measurable in different currencies and non-additive Ie.g., benefits

contribute to breeding success and costs contribute 10 risks of future mortality)

(FretweI1 1968, 1970, 1972, Pulliam and Caraco 1984). Ultimately, all measures
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affecting futu re reprod uctive poten tial contribute to fitness, but many tests of hab itat

se lection theory are short term and use breedi ng success or energ y gain ,15

representative measures. Consideration of costs and benefits that are nol

immediately reflected by chosenmeasuresis Ihen useful. Retaining separatecost and

benefit functions in habitat selection models, as was common in models of

territo riality (Davies and Houston 1984), may allow greater flexibil ity and predic tion

by acco mmodat ing fitness components measured in differen t currencie s or at various

temporal scales.

Figure 15 presents a graphica l model incorporating d istinct cost and benefi t

curves 10 exp lain the distribution and breedin g success of puffins in three habitats on

G reat Island. It depicts densltv-dependenr increases in costs and benefits within

habitats and differences in cost-benefit relationships between habitats (Fig. 15a). I

have drawn benefit curves on Figure 15a similar to derived curves for productivi ty

(i.e., numbers of chicks fledged per burrow; see Fig. 13), thus measu ring fitness

be nefits in units of chicks produced per year. Note, howeve r, thai what I have

drawn as a fitness bene fit curve is actually a net bene fit curve with respect to

breed ing success. Breedin g success is affected by a variety of habitat related costs

and benefits, which could be modelled sepa rately. Within a habitat, puffins incur

density-depe ndent costs related to territorialdefense and burrow erosion and benefi ts

such as enh anced protection from predators and greater socia l stimulation. These arc

additi ve costs and benefits and the ir sum defines the shape of the ben efit curve for



FIGURE 15. Cost-benefit model for habitat selection of Atlantic Puffins on G reat
Island. a) Fitness costs (dashed lines) and benefits (solid lines) for three
habit ats, maritime slope (M5l, maritime level (Ml), and inland slope (IS). In
this study, fitness benefits reflect breeding success and fitness costs reflect
hab itat-related mortality during or afte r fledging. Costs and benefits are not
add itive for breeding success and inc reasing costs do not redu ce breeding
success, Dolled lines ind icate fitness benefits (W) at saturation densities (D)
in each habitat. b) Net fitness benefits in the three habitats. Costs and
benefit s are additive for net fitness. Subtracting cost curves from benefit
curves in (a) yields net fitness benefits shown in (b). At saturation densities,
expected net fitness benefits equal zero. Phenotypic and preempti ve
d ifferences maintain average fitness above zero. Average fitness in each
habit at equa ls the area unde r its net fitness-density curve Ie.g., shaded area
for inland slope habitat) divided by the number of individuals occupy ing the
hab itat at its saturation density. See text for further exp lanation.
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breeding su ccess. I have drawn net b enefit c u rvesfor breeding success because that

is wh at I m easured . Interestin g expe riments could be designe d to asse ss the rel a tive

we lgbtsof di fferent costsa nd benefits that affect breed ingsuccess with in habitats and

account for the shape of productivity -densit y curves.

The relative value of different cost-benefitcomponents determinesthe shape

of cost and benefit curves for each habitat. Increasing densit y confe rs benefit s of

predator pro tectio n in all hab itats, bUI swamp ing and vigilance behaviour is pro bably

less effective on level than slope habi tat because it is harder for puff ins to escape

fro m level ground. Thus individuals in level habi tat gain less benef it as density

inc reases th an ind ividuals in slope habitats . Such differen ces are re present e d in

Figure 15a by a depressed benefit cu rve for le vel co m pared to slope habitat. Chi cks

fled ging from nests far from shore in in land s lope habitat that have to m a ke the ir way

thr ou gh ta ll mead ow grasses and fore st fac e highe r risks o f predation than th ose

ne sting at shore in maritime slope habitat tpers. o bs.). Th is is a cost that is not

accounted by normal mea sures of breeding s uccess. It can be represen ted by s h ifted

or steepened cost curves for habitat s further from sh ore (Fig 15a). In creasing cost

curves assu me increased predator att raction as prey density increases .

Benefi t curv es in Figu re 1Sa increase w ith de nsi tyand there is no mecha nism

10 explain dispe rsion from the habit at with th e highes t success if on ly the

re la tionships between breeding success and density are considered. Consideration

of costs th at are n ot add itive for br ee ding s uccess, such as chick mortality d uring
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fledging, does pr ovide a mechanism 10 exp lain dispersion panems andaccount fo r

puffin d ensities in diffe rent hab itats, As dr awn in Figure 15a, costs and benefitsa re

not ad ditive (or breeding success and increasing costs do not reduce b reedin g

success. They do, however, decrease net fitness benefits. Subtracung cost curves

from be nefitcurves resu lts in net fitness benefit curves shown in Figure 15b. This

makes sense i f we th ink of ne t fitness in terms of fut ure reproducing of fspring:

breedi ng success contributes to , and chic k morta lity during fledging subtracts from ,

future reprcdu ct ng offspring. If individuals are behaving optima lly, the i r h<lbita l

choice s should maximize net fitness benefits. OUf understanding of their b e haviou r

maybe poor if weconsideronly certain compo nenls(e.g., breedin g success) and fail

10 account for o ther Impor tant costs and benefits that contribute to net Inn ess te.g.,

Fretwe ll 1%8) .

The mod el de picted in Figure 15 assumes ind ividual d ifference s with in

habitat s, allows increasing success with density. and ca n explain higher success a t

lower density b y differe nces in cost and b enefit cu rves, In dividua l differences with in

habita ts areattributed to individ ualquality andex perience as wel l as siteq ua lityand

thusthe model lncorpo ratesaspecuct bo th phenot ype-limit ed(Pa rkerand Su therland

1986) and preemptive (Pulliam and Dan ielson 1991) di stributions. Cost-benefi t

curves are probably u nique for individu als (see the sta te-depe ndent theories b y

McNama ra and Hous ton 199 0), and m odels a t that re solutio n could p rovide a

framew ork for explaining individ ualdiffe rences an d choices made by non-breeders .
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Elaborate mode ls migh t inciude both additive and n on-additi ve components.

fr etwellian fltn essdensttv curves (Fig.1) show net benefits andare a special caseof

an add itive cos t-benefit model. Benefits and cos ts may inc rease, de crease, or vary

with in creasing density .

A numbe r of simple, testable predictions are possible fro m a cost-benefi t

habitat selection model. As in other models (see Fig. 1), individua lswill initially

exploit whichever hab itat offers the large st net fitn ess be nefit, and will move into

newhabi tats whenever expected netbenefits in th e first habitat equal expectednet

benefits in the new habitat (Fig. 15b). Shifts in distribution can occur a t certain

populat ion level s if ne t benefits are Incre aslng mote with density in a new habitat

than in an already settled habita t (alsosee models incorpo ratingAII~'s principle in

Frelwell and Lucas 1970 ). Habit ats will be saturated whe n expec ted bene fits equal

expecte d costs and ne t fitness benefits e q ual zero . Individuals w ill choose not to

breed if theire xpected costsexceed expec ted benef its. It w illihen pay them to defer

breedin g until sites beco me avai lableor the y gain compe titiveskills. Bree d ing will

beadv a ntageous when available sites or in creased skillschange the ccst-be nefl t ratio

in the ir favour. Behav iour of floater popula tions (allowing rem oval experiments

could b e explai ned in this mann er Ie.g., Krebs 19 71, Man uwal 1974a). Although

expecte d benefits (or a settlin g individual in a satu rated ha bitat eq u al zero,

pheno ty pic and preempti ve differences (se e Pulliam and Danielson 1991) maintain

average fitness above z ero. Ave rage fitness in a saturate d habitat would e qualt he
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area under the net fitness benefit c urve for that habitat, divided by the number of

ind ividuals occupying the habitat (Fig. 15bl.

Net fitness curves d rawn in Figure 15b resembl e fitness-density cu rves

incorporating Allee's principle drawn by Fre twell and l ucas (1970, Fretwell 19721,

in wh ich fitnes s first increases and then decreases wi th increasin g density. A mod el

using Allee-type curves pred icts similar patterns fo r dispe rsa l into habita ts tha t arc

being settled as the cost-benefit model presen ted here . How ever, the re arc m ajor

dif ferences in the concep tual approach and in other predictions of the two mod els,

Ideal free models of Fretwell and Lucas, both Allee and non-Allee, assumecertain

pop ulation levels and ask how they willbed ispersed among available habitats . In

thes e mode ls there is no reason why individu als will not continue setutn g in suitab le

hab itats unti l the fitnes s benefits of a ll individuals are reduced 10zero , or lhe re te of

pop ulation lnoease, r - O. If there are poten tial benefits to be obtained , il will pay

an "ide al- indiv idua l to settle rather than refrain from breeding. Thus, these mod els

are unable to predict at w hat level or density breedin g popu lalions w ill stabilize . In

a co st-benefi t mode l that incorporates individual dif ferences in ab ility and in site

qua lity, I do predict that individuals will settle until ex pected net fitne ss benefits (or

the next settler equal ze ro. This however does no t redu ce the benefits o f aU

ind ividuals to zero, an d does pred ict densities at w hich habitats are saturated and

aro und which breed ing populations will stab ilize.
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An explicit cost-benefit model appears useful for investigating breeding

distributions of colonial species which in cur obvious ben efits and costs with

increasing density (Alexander 1974 , Birkhead 1985, Witten berger and Hunt 1 985).

It improves on alternate mode ls follo wing Fretwell and Luca s (1970) by

1) decoup ling dens ity and fitness and explaining higher succ essat lower de nsit ies

without in voking the con cept of sourc e and sink habitats, 2) pred ict ing a habitat's

saturation density based on a balance of fitness costs and benefits (sa turation density

is responsive to c hanges in cost-benefit rat ios and differs (rom carrying capa city),

3) avoiding the need to postulate d if(erences between perce ived (w hich is d ifficult

( 0 measure} and realized fitness for dispe rsing indi vidua ls in a despotic mo del,

4 ) introducing a mechanism 10 pr ed ict fleeter pop ulations and defer red breeding

based on decisio ns made by non-breeding indiv iduals rather than on passi ve

e xclusion by co m petito rs, and 5) allowi ng consider ation of costs and benefits

measurab le in d ifferent currencies and at different scales . It may have br oader

appl ication 10habitat sele ction and foraging theories, especially when overall fitness

is not measured and components are non-ad d itive for representative measures . The

d ifficulty of measu ring som e comp onents poses problems for an exp licit cost-b ene fit

approa ch (Birkhea d 1985) and its app licabilit y remains to be tested.
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