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ADSTn.ACT

A study of net fouling at three geographicallydistinct salmonfarms in southwestern New

Brunswick showed that during the summer production period (May-October). fouling

communities were comprised of common membersoCthe local flora and fauna. These

results were similar to the observations orfocal salmon f..rmers, which suggests the

potential value of theseanecdotes as a source of fouling data, Analyses of relative

abundance showed that the compositionof communitieswas variously influenced by the

timeof year. location. and depth, but not by surface treatment. The applicationofa non­

toxic antifoulingwax to the nets showedno significant impact on species abundance. but

did significantlyreduce accumulatedbiomassthroughout the production period. Also. the

growth form of fouling organismssuggested that algae recruit to nets as spores and

vegetative fragments, and invertebrates recruit as larvae lindjuveniles. The results also

showed that biomass is not a particularlyuseful measureoffo uling for operational

purposes. Resistance to water flowdue to the growth form of organismsis the primary

operational impact of net fouling, and future research efforts should concentrate on

quarnificmion of'this factor
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I . INTRODUCTION

The foulingof aquaculture netsis a persistent operational concern to salmon fanners in

southwestern New Brunswick, and it must be actively managed to avoid a range of

potentially costly consequences. Net foulingcontributes to the fatigue and failureof

equipment, whichin turn leads to theescape of fish, increased incidenceof disease, and

reduced producuonf Smart 1981, Knights 1985, Beveridge 1987)

Considering the breadth of potentialnegative implications, there has been little scientific

interest in net fouling. Publisheddata are sparse(Milne 1970, 1975ab, Lovegrove 1979),

and for southwestern New Brunswickare limited to a preliminary study of the effects of

fouling on dissolved oxygenconcentrations (Bevan 1987), an ad hoc listoffouling

organismsat an experimentalsite (Sutterlin1:1(/1. 1981), and a preliminarysurvey of net

fouling at several commercial farms (Hallc/ al. 1989).

In southwestern New Brunswick, net fouling isconsidered an operational problem during

the annual 'summer production period, which spans from the beginningApriluntil the

end or October. When this study was initiatedin 1988, nels were typically changed on a

calendarbasis. approximately every twomonths. This period became standardized in the

industry following the banning of organotin net entifculants, after whichproducers had to

rely on physical methods to manage fouling. Thechoice of tois period is a compromise



betweenminimizingthe high costs associatedwith repeatedly changing nets, and local

experiencethat foulingis unlikelyto reach operationallycritical levels in this period

The observationsof farmoperators represent a valuableuntapped source of operationally

relevant foulingdata, although descriptionsof organisms tend 10be madein colloquial

terms. Farmers recognizethat the time at whichnets are submerged.and the presence of

antifbulants, affectsbeth the type and quantity offouling organismsthroughout the

production period. They also recognized that similarpatterns of fouling occurred at

approximately the same timeeach year.

Traditionally, the farmersrecognizeseasonalincreases. These observationscan be broadly

summarized as an early spring growth cfvslime"{diatoms], a late spring growth of "sen

grass" (Ulvales) and "brown hair" (Ectccarpales]. a summergrowth of "wire weed"

(hydroids), mussels(My/illl,I·) and "brown grass" (Scytosiphonales], an earlyfallgrowth of

hydroidsand mussels,and a late fallgrowth of hydroids, With regard 10the effects{If

antifbulants, experiencewith highly effective organouncoatingshad established high

performanceexpectationsamongst farmers, The prevailing attitude at the lime Ihisstudy

wa, initiated was, "if an antifoulant allows morethan a surface -sflme", rhcnu isn't

working', A finalanecdotewith potential relevanceto net fouling is the common

observation offarm operators that largequantitiesor "driOweed" regularly become

entangledin aquaculturenets.



This introduction constructs an ecologicaland operational framework within which to

consider theseobservations with respect to net fouling It first presents an overview of

typical benthic colonization :md describes mechanisms involved in the fouling of nets. The

next section outlines the study with respect to the aquaculture industry at the time the

work was conducted. Lastly there is a statement of the specific questions addressed by the

1.1 Fouling Or ganisms

The number of marine plants and animals which have been catalogued as fouling

organismsranges from 2000 (WHOI 1952 ) 10 4000 (Crisp 1974). The most conspicuous

are macroalgac and sessile macroinvertebrates, although typical marine fouling

assemblages also include a variety of microorganisms (Zobell & Allen 1935, Mitchell &

Kirchman 1984), microalgae (Round 197 1. Pync c t crt. 1986), microscopic forms of

rnncroalgnc (Sentences 1990, Vadas ('I af. 19(2 ) and macrcinvertebrates (Osman et "I.

1t)91. Osman & Whitlatch 19( 5). and motile animalswhichshelter amongst and feed on

the fouling (Hidu 1:1al., [98 1; Beveridge. 1987; Underwood & Anderson, 1994 ; Osman &

WhilllllCh. 1995). The precise composition of marine fouling assemblages reflects the

temporal and spatial variabilitytypical of community development processes (Dayton

I(}j\·t Schclternn &. Carlton 1984. Underwood & Denley 1984 . Underwood & Fairweather

19!i9 . Saruclices 19t){). Hurlbut 199 1. Iumer &.Todd 1993. Boero 1994 , Underwood &

Anderson 1( 94)



In temperate western Atlantic waters. a relativelysmall number of mucrcelgae and sessile

macroinvertebrates have been reponed as fouling organisms (Hidu ~'I ai, 198 I, Sutterlin et

al. 1981 , Whittick et al. 1982, Drinnan 1984, Hal1,'f al. 1 9 ~9 ) , In each cascothe species

composition reflects the unique temporal and spatial contexts of the work. Gcncrally. till '

most conspicuous fouling organisms in a reg ion tend to be amo ngs t the most common ,mil

widely distributed members of the flora and fauna (WHOI 1952, Schelrcma & Carlton

1984). Their success at colonizing both natural and anthropogcnic substrates reflects the

typically broad ecological range of their reproductive and surviva l strate gies

1,2 Development of Fouling Assemb lages

Marine fouling assemblages are complex, dynamic systems. Devclcpmcntntly. they

exhibit the same typically broad temporal and spatial variabilityas benthic communitieson

natural substrates (Sutherland & Karlson 1977 . Sousa I919ab, Keough & Downes IlJ ~2 .

Schoener 1984, Sutherland 1984, Underwood & Denley 1984, Hurlbut jl)l)l. Mct'ook &

Chapman 1991, 1993. Anderson & Underwood 1994, Underwood & Anderson 19(4),

much of whichis attributable to the largely unpredictableeffectsufth e biologicaland

physical environment on reproduction. dispersal, scnlemcnt, recruitment, competition,

vigour and mortality(Dayton 1984 . Scheltema& Carlton 1981, Underwood & Denley

1984. Ro ughgardcn et ul. 1988. Underwood & Fairwcarlrcr J'JRI). Snm cliccs IIJlJO,

Hurlbut 1991, Norton 1992, Vadas er at. Il)C)2. Bncro IlJ94. Underwood & Andcrsun

199 4. Anil e/ (I/. 1995) . The body of work 011thesesubjectsis large, lind it is beyond the



scopeof this introduction to attempta comprehensive review, Similarly, it is beyond the

scope of this study to address thesemyriad potential influencesexperimentally. The

Ibllowin!-, presents a brief sequential overviewof key mechanisms involvedin the

development of fouling communitiesup 10 the establishment of settled algal and

invertebrate propagules. Where key points are addressed, a selection of key references are

provided, should the reader wish to explore issues in greater depth.

In a mechanisticsense, the successful establishment of a foulingassemblage requires

severalcondition!'> and processes. There mustfirst bea sourceof material which has the

potemialro he liherated fromits parent population, IImust havethe attributes necessary

to becomeestablished on a substrate(colonisation potential). it must be transported from

its source (dispersal), become attachedto a substrate (attachment), andsurvive sufficiently

lon g III he recorded (recruitment)

1.2.1 Colonizat ion poten tial

A/J.:ne

Algae may colonize as sporesor \ egetetive fragments (Round 1981.

Hut fuu n 19 57. Sarucfices 1990. Fletcher & Callow 1992. Norton 1992, Vadas et ClI.

1(92) For a discussion ofthe energetics and evolutionary implicationsof reproductive

strrncgics sec Santcliccs (1990) .



Vegetative fragments represent a potentially significant source of colonizing matcriul

(Clokie & Boney 1980, Kennelly & Larkuru 1983). Some algae produce specialized

vegetative reproductive structures (e.g. SphaL'l:!aria branchlets (South & whinick 19R7.

Sentences 1990» , and in the case of the rbc dophyte Rhodochonon P",!JIIIWff/I ,

fragmentationis considered to be the principle reproductive strategy [Penrhuuttcr &

Vadas 1978). Vegetative fragments can also be dislodged fromparent populations due III

the actions of waves and currents (Denny 1988, Santetices 19<)0, Fletcher & ('aIl0\\

1992), g razers (Mshigeni 1978 , Fletcher & Callow 19( 2), and disea se {San tclices 19{)()

Material is then dispersed, and omy become established (Fager 1fJ7 1. Round I fJ81,

Kennelly & Larkum 1983, Santelices [990, FJetcher & Callow I fJ!J2. Norton 19Q2j

Specialized reproductive and dispersalstages of macroalgae include gametes and spores

(usually termed zoospores or swarmers in the Cblcro- and Phaeopbyccae. and carpospnrcs

and tctraspores in the Rhodcphyceae) (Fletcher l! / {II. 1984, Hoffman I'lR7, South &

Whittick I fJ87, Santefice s 1990, Fletcher & Callow I lJ92j . Whereas the liberation of

vegetative algal prcpagules can occur throughout the year, reproduction cf'macroatguc in

temperate regions tends 10 exhibit distinct seasonality. Some species are fertile throughout

the year ( H ehre & Mathieson 1970, Whittick 1:1til, 1981J), whereas others exbihit

reproduction in one or more specific seasons (Hehrc & Mathieson I(nO, Mathieson &

Hehre 1983, Hoffman \987, Wniulck vtat. Il)K9)



Jm~rtchrates

Invertebrate prcpaguleswith colonization potential are broadly groupedas

larvae (Crisp 1984) and juveniles(Lane et al , 1982. 1985). Each encompassesa massive

range of'possibilitieswith regard to morphology.behaviour, andenvironmental

interactions, manyof whichhave yet to be investigated experimentally (Underwood &

Denley 19M, Boero 1994,Underwood & Anderson 1994). Like the algae, the production,

release. and recruitment of invertebrate propagulesexhibitsbroad spatial and temporal

variability.due to a wide range of biotic and abiotic factors and their interactions (WHOI

1952.Sutherland & Karlson1977,Sutherland 1984, Underwood & Denley 1984, Harris

1990, Hurlbut 1991, Turner & Todd 1993. Underwood & Anderson1994)

In light cr rheprominenceof musselsand hydroids in anecdotal descriptions of net fouling

in southwestern NewBrunswick, and reports fromthe literature that they are typicalnet

fouling constituents(Milne 1975ab. Sutterlin 1:1al. 1981), it is appropriate to focus here

on aspects of the colonization potentialof the most common musselrecorded, the blue

mussel (A-frlil/l.~ I!tlllli.~ L.) and some typicalexamples of hydroids. In mussels. both motile,

planktonic vchgers (Harris 1990.Lutz & Kermish 19(2 ) andsmall, post-larval juveniles

(Lane et ul. 1982. 1985)have colonization potential.Amongst the hydroids, larval

prcpagules are the primarycolonizationunit. ln thecate genera (e.g. Ohelia). motile. non­

feeding. ptanulae larvae are liberated fromfree-floating.planktotrophichydromedusae

(Brusca & Brusca 1990, Harris 1990). The propagules of athecate genera (e.g. lilhlliaria)

arc motile. planktotrophicactinulaelarvae (Brusca& Brusca 1990, Harris 1990).



1.2.2 Dispt n al

Both macroalgae and invertebratescan bedispersed by passive and active

mechanisms(.lief.' Scheheme&.Carlton1984. Sentileces 1990, Norton 1992). Passive

mechanisms are consideredto account for larger-scale dispersal {Santehces 1990). from

local coastal transport 10 extensioncfbic geogrephic boundaries(Scheltema &.Carlton

\984, Carlton & Hodder 1995). Active mechanisms act inmud i smaller spatial scales, and

are limited primarily to local movementsof motilepropagules (Crisp 1984, Clancy &.

Torrence 1984, Santclices 1990). By contrast. fhere are a wide range cr passtve

mechanisms. including transport of floating propagules (Norton & Mathieson 198J,

Pearlmuuer &.Vadas 1978, Norton 1992). rafting on a variety oro bjccls(Foster &

Whilan 1975. Scheltema & Carlton 11)84, Carhon &.Hodder 19(5). ingestion and

excretion by animals{Buschmann & Santelices1987. Santelices19921.andattachmentto

plants(Carlton &. Scanlon 1985)andanimals(Mathieson 1992)

w ater is either directly or indirectly the dispersal medium for marineorganisms. w ater

transports prcp agules away from 'parent' populations by bulk flow, principally as coastal

and oceaniccurrents (Schehema &.Carlton 1984, Denny 1988, Reed et ul. \988,

Santelices1990, Nono n 1992). Wntercan also transport free-floating (Bonsdorff IIJCJ2,

Nonon 1992) and rafted populations of mature individualsISamelices1990). As sources



of reproductive and vegetative material, free-floatingand rafted populationshavesimilar

coloniza tion potentials to coastalpopulations (Norton & Mathieson1983).

Much of the dispersive successof marine organismsis determinedby the physical lind

physiologicalattributes ofpropagules, and their ability to surviveuntil they become

attached 10a substrate (Crisp 1984, Harris 1990, Santelices1990, Norton, \992) . The

distance prupagules travel whileremainingviable has been termedthe' dispersalshadow'

(Norton ICJ92). Bothmacrcalgae and invertebrates havedeveloped a range of structural

and behavioural adaptationswhichallowthem to extend their dispersal shadows

A lgue

As mentioned,algalpropagules include both fragmentsof dislodgedplants

andspecialized reproductive units (XL''' HotTman 11:187, Samelices 1990). Free-floating

fragments have highdispersivepotential. both in terms of distance and numbers of'species

{Santctices 1990. Norton 1992).For example, John (1974) reported drift dispersal of

A.R'Op"yJlIIIII nodosumover SSOOkm, andCtokie& Boney (1980) recordedapproximately

25% ofthe local flora entangled in a filamentous substrate after a fiveweek exposure

period. This high dispersive potentialis based on the ability of fragments to remain

photosynthetic and physiologicallyvigorous ill a free-floating stale (Norton & Mathieson

1l)83. Bonsdorff' \ <J91). and retain the capability10 re-attachto substrates(Round 1981,

Sruneliccs I<J<JO. Fletcher & Callow 1991). Dispersive capabilities. and therefore

colonizing potential.are further enhanced if detached material can producespores



(Santelices 1990,Fletchu & Callow 1982, Norton 1992). Althou¢l lhe majoril)' of

drifting fonnsare nol consideredcapableofbecomin~ reprGductive (Norton& Malhicsocl

1983).some may eitherbecomefmi le rtl mUll' (Norton 1992), or already bearmature

reproductivestructureswhen theyare dislodged (Semeh ees 1Q90)

In contrast to vegetative fragments, algal spores havepoor dispersive potential.ThL~' haw

a comparatively shan viability(Kain 1964, Jones & Babb 1968, Deysher & Norton 1981),

due to limited food reserves (Kain1964, Santelices 199 0, Nonon 1992), and possess no

knowncapacityfor dormancy (Santelices 1990), Report s ofspore viability range fro m 24

hoursfor Ectocarpus (Baker 197\ in Fletcher & Callow 19(2), to II days for

Elllemmurl'hagametes(Jonesand Babb 1968), and 11 days for onespecies ofboth

(,e/iJium andPorplt,l'ra (Hoffman & Camus j( 89). Most Ire reported to occupythe

lower end of the scale (Santelices1990). For a discussionofalgal sporeviability, ,"-('('

Sanielices (1990)

The prima') ' dispersal mechanisms of algalmicrcpropaguks are drilling. sinking Rnd

swimming [Norton 1992). Driftaccountsfor large-scale dispersals IHonman ]t)R7 , D tenny

1988). althoughthe dispersal shadow is relatively small by comparison to that possiblefar

drifting. fragments. For example,Amslerand Searles (19801reported /',i,feromflrJllta

spores35km from the nearest recorded parent population A~ u flmuion of'velocityand

tlme. the distancesporesdrift is largely determinedby ambientoceanographicconditions

durin,!? and alier their release. water bodies are rypicelly stratified imoregions with

ro



tempora lly and spatially distinct velocityand turbulence patterns (see Denny 1988 ). Ona

smaller spatial sc ale, both the sinking and swimming behaviour s ofspores areaffected by

stratified flowand turbulence, the physicalcharacter ofspores, the physico-chemicalstate

of'thc water, and various bioticand abiotic interaction s (see rel ,jewSantelices 1990)

Ln venebrat es

Like algae, the dispersalpotentialof invertebrates isdictat ed primarilyby

watermo vements, andthe ability oforganisms toremainviable until they arrive at a

suitable subsirate (Day& McEdward 1984. Scheltem.. & Carlton 1984)

Overlong-distances, dispersaltypically involves the passive transportof larvaean d

juveniles (Schellema &Carlton 1984, Seed & Suchanek 1992) . Typically, invertebrate

larval form s, such as aain ulae of'the athecate foulinghydroid Tuhidana(Harris 1990),

andveligers ofMy fUII.I·eduJis(Lutz & Kennish 1992), aredispersedby coastal and

oceanic cu rrents. A potentiallyimportantdispersalmechanism inM edu li.I' is bysso­

pelagic migration (Laneet al. 1982. 1985). Small(:: 2mm long) post-larvalfonns can

repeatedly detach anddisper se using specialised byssus threads . Mussels maylake two

months to attaina length of2mm(Lulz& Kennish1992), which suggesta bysso-pelaglc

drift may account for long distance dispersal(Lane Ifl al. 1982. 198S). Like the transporto f

reproductivealgal fragment s. dispersalcan also involve driftof reproductive' parent'

forms,An example is the thecate hydroid Ohe!il t sp.. which is dispersed over long

distances as free-swimming hydromedusae(Harris 199 0, Brusca & Brusca 1990), which

subsequent ly produce mot ile planula larvae wh ichcolo nizethe substrate {Crisp 1984,

I I



Brusca & Brusca 1990, Harris 1990). Thedispersal ofi nvertebrates over smallerdistances

involves both passive transport bywater, and activeswimming[Scheltema& Carlton

1984. Harris 1990) ,

To survive during dispersal, invertebratelarvae andjuveniles typicallyfeed on plankton

(plankrot rophic) and/or rely on stored food reserves (Crisp 1984, Harris (990). These

mechanisms allow larvae 10 survive for longer periods,and disperse further than algal

spores(Day& McEdward 1984, Harris 1990, LUI1.& Kennish 1992). Another importnnt

adaptation oflarv ae is an ability10 delay metamorphosis until conditionsare suitable

(Crisp 1984). There is alsoevidence that larvae receive nutritionby absorption of

dissolved organics and consumptionof detritus (Bayne [983 , Manahanet at. 19&3, Day

and McEdward 1984 ).

1.2.3 Recruit ment

Recrui tment describes the mechanistic continuumof pest-dispersal

settlement, attachment andestablishment of organisms on substrates (Keough & Downes

1982. Osman I!/ (II. 1992). Recruitment is a descriptive concept which differentiates

belween the organisms which initially settleon a substrate, andthose whichsurvive and

are observed at some later time (Keough & Downes 1982, Sentelices 1990, Hurlbul

199 1), Quantitative studies of recruitmentare rare (Osman et al. J<)92). presumablydue to

the technical challenges ofconducting microscopic sampling inthe field
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The compositionofan assemblageat anymoment in time reflects the encome of a series

of interacting,developmental processes(Underwood& Denley 1984 , Soero 1994 ). For

anyassemblage of organisms, if observationsare time independent and there areno data

on initial set tlement or subsequentprocesses. thensettl ement and recruitment cannot be:

differentiated

AIRa e

The recruitment behaviours of algal spores aregreatly influencedby

hueracrions between thephysicaland behavioural characte ristics of spores, the physical

and chemicalcharacte r of'subs tme surfaces.and thephysical and bioticnatureof the

immediate environment (flelcher~I " I. 1984. Santelices 1990, Fletcher&.Callow 1992 .

Vadaset ot. 1(92).

In the boundarylayer. dir«:tly adjacentto the substrate. the settlingof algal spores is

influenced by thethickness of theboundarylayer. andthe sizeand mobility of spores. The

sinkingrate ofnon-morilespores is related primarily to their sizeand density (Okuda &

Neushul 198 1. Hoffm an lI:. Camus 1989), although shape. the presence of extracellular

mucilage. and degree of aggregation,and the density of the water have been shown to

haw various effects {Coon e (//. 1973. Boney J<175. Amsler & Searles 1980, Okuda &

Neushn! 11)8 \. Hoffm an 1987. Hollinan lI:. Camus i989. see rt' l'; CIl' Saraelices 19( 0)

Motilespores ofgreen andbrown algae may respondact ively to ebioticand biotic stimuli

13



in order to locate a suitable attachmentsite(Sarueuces 1990, Fletcher& Callow 19(1) .

Forexample, spores of Ectocarpns(Muller ' 964 in Fletcher & Callow 1992) and

Enteromorpha (Christie 1973) were reportedto exhibitdiscriminatoryexplcretcry

behaviour beforeattaching to substrates. The most widely reported abioticfactors

involved withsite selection relate to substrate characteristics (.I'CC Santelices 1990,

Fletcher & Callow 1(92).

In general. motile spores are thigmotacticand favor rough rather thansmooth surfaces

(Christie 1973, Foster 1975, Neushel et ul, 1<)76) Motile spores may also exhibit

differential phctctacticity (Baker & Evans 1973, Christie 1973) and chcmotacticity

(Fletcher & Callow 1992). Positive and negative phototacucuy of garnetesandzoosoorcs

have been related to reproductive strategiesand small-scale dispersivebehavioursin the

water column, but these interpretations may overestimate the directionalswimming

abilities of motile spores in open water, where ambientflow and turbulence isseveral

orders of magnitudegreater (Denny1988), Chemotacticity has been related primarily to

gametic auraction processes (Milller, 981), although Amsler & Ncusbel( 1989) also

reponed spore motility along organic and inorganic chemicalgradients. The latter

evidence supports the hypothesis that the settlement of algalspores, like many invertebrate

larvae (Mitchell & Kirchman 1984). involves chemical components of conditioned

substrates (Fletcher & Callow 1992)
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Theattachmentof algalspores typically occurs in two stages; an initial, reversible

attachment, and then permanentbonding(Fletcherct at. 1984 , Santelices 1990, Fletcher&

Callow 1992), Inboth cases, attachment involves production of an extracellular adhesive

Although extracellular polysaccharide mucilage (Chamberlain & Evans 1973, See n &

Dixon (973) appears to play some rolein the initial attachment of spores (Brkten 1975,

Fletcher & Callow 1992), there is substantialevidencethat initial attachment and

orientation of motile spores involves flagell a/substrate bonding, and subsequent flagellar

nbsorptiou/axo nemc retraction (Gunna (II. 1984,Fletcher& Callow 1992), It is likely

thatextracellula r mucilage is responsible for the initialattachment ofr hodophytespores

(Bone y 1'J75, Ngan& Price 1979, Santelices 1990, Fletcher & Callow 1992). After initial

attachment, spores become permanently bondedto the substrate by secreting a

glycoprcteineceous adhesive (Chamberlain & Evans 1973, Callow & Evans 1974. Brkten

1975l whichincreases in strength over timeas it cures (Chamberlain& Evans 197 3.

Bnlten 1975)

Onceattached, spores typically pass rapidly (Fletcher& Callow 1992)through a series of

discretedevelopmental stages as they become establishedon the substrate (Fletcher I!( al.

Illl!-1. Fletcher& Cnltow1992). To summarize.attached spores developa cellwall

(rhri~t i el q73 ), establish polarity (Evans I!/ at. \tlS2) and germinate (Fletcher I!( al. 1984,

Fletcher & Callow 1tl92). A wide range of germination patterns havebeen reported(s('1!

Fletcher & Callow 1991 ). but typically rhizoidnl initials developfrom basal regions of

spores. and shoots or filaments developfrom distal regions. The growth of primal)' and
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secondary rhizoids increases the purchase of plams on substrates. Their character is

influenced by the physicaland chemical character of substrates, particularly topography,

surfaceenergy, andsurfacechemistry. Topographically, the more uneventhe:surface, the

greater the attachmentareaand penetrationby rhizoids (Foster 1975, Neushel et at. 11)76,

Harlin& Lindbergh 1977, DeNicola & Mclmire 1990). Bothsubstratesurface energy and

chemistry of the attachment offoulingorganisms areimportant bases of the antitouumt

industry (see Fischer C!I al. 19 84), and can influence thegrowth form andadhesive

strength of rhizoids (Fletcher 1976,1988 , Fletcher & Baier 1984, Fletcheret al.

l Q84,1985)

The ability of organismsto become established is largely a function of their ability1\\

withstandthe physicalandbiological pressuresthey aresubjected to afterthey huvc

become attached to a substrate , Generally, spores experience high mortality (V"das et /II.

1(92) due to a rangeof abiotic andbiotic factors, including sedimentation. water now,

grazing and environmental exposaretwe Samelices1990, Vadas e at. 1992 ), Both

sedimentation and scour are important sourcesof mortality(Dayton 1(>75, Ncu$hcl <'I "I.

1( 76). bUI the former may also provide nutrients, andtherefore enhancesurvival (Kenelly

1( 83). The dislodgementof propagulesby water is a function nf'watcr velocity, and

substrate and spore characteristics, Typically. spores establishmore successfullyonrough

surface. in lowvelocity flow (Norton 198J.l'car son& Evans 1990. Vadaset ut. [lJn,

For example. Norton andFetter (198t ) reported that SI.I11!a.I'.I'III/I1111101:11/11 propagulcs

exposedto low velocity flowestablished randomly. whereas at higher velocities they were
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found primarily indepressions. Another major source cf mortalityis gruing of attached

spo res (Miller &:Vadas 1984, Watson & Norton 1985.1987) andearly, post-attachment

developmentalforms(Miller& Vadas 1984. Vadas rt al. 1992, Osman & Whitlatch

19( 5) Grazing may be reduced by substr atefeatures which provide shelter (see Vadas el

III. 19( 2). and also influenceherbivorebehaviour (Underwood&:Jemakoff 1981)

Like algae. invertebrate recruitment is influenced by a wide range ofabiotic

and biotic factors (.Wl:' Crisp 1984 , Roberts ~/(/I. 19( 1). In an evolutio narysense. thewide

range ofcomplexresponsesof invertebrate larvae to eevironrne aal cues help them lind

the maS!suitable location for the nexl phase of their life cycle. Notsurprisingly, lheylend

10recruitto the types of habitats occupied byparent populations (Lindner 1984).

Many invertebratelarvae aremonte . and activelyexplore substrates be foresett ling(Crisp

11)74 .1984. Lindner1984). TIle se lection of anattachmentsite (Keough & Downes 1982)

11l11~' he inOueneedby ambient env ironmental factors including now. pressure. light. color.

andsubstrate characteristics (.~l't' Crisp I9 7-1y176. 1984). and various chemical cues

{Cloney& Torrence 19 84, Crisp IQ84. Morse 1(84 ). Like algae. invertebrate attachment

normallyinvolves a temporary. reversible. initial stage. followed bypermanent bonding
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(Crisp 1984,Lindner1984). Initial attachment byvarious mucilagemechanisms(Lilldn~

1984)alJows larvaetoexploreor detachfrom substrates (Crisp 1984. Lindner 1( 84)

Permanent bonding typicallyinvolves thesecretionand hardening. or 'curing'. of an

adhesive (Crisp1984, Lindner 1984)

The initial attachmentof My til/ Is ednhs relies on sticky mucoussecreted by the fo ot

(Lindner 1984, Lutz & Kennish1992). The attachmentisweak, andu more robust

attachment bybysscs threadsoccurs rapidly (Bayne 198:\,Lutz& Kennish 1l)C)2). Bvssal

attachmentcanact as both a temporaryand permanentmechanism(Bayne Il)K3 ). Mussels

canrelease theirbyssalettecbmem. and migrateacross substrates(Lindner 1(84). or

disperse throughthe water column (Laneet al. IQ82. 1985), The actieulac larvae of

athecate hydroids suehas 7'1I"1I/"ria. and the planulae of thecate species likeOhl!/ia,

attachrapidly to substrates bydischargingadhesive nematocystsonmaking ccmact with

substrates {Milllert' lnf. 1976, Lindner 1(84). RobertseI til. (199l) reporlthat the larvae

of 1"rlhlfhrfill and Obeliaspeciesform permanent handswithinone hour. A~ with the

attachment mechanismof mussels, ifconditionsbecome unsuitable.theattachment

structure canbe broken, and the larvae can move on(Ro berts ('I al, 1991)

Thesettlement, attachmentandesteblisbmem ofinvertebratescan be influencedby the

biological and physico-chemical character ofthe sub~tncl c (Crisp 1()84, Roberts t'l </1.

199!, Anderson & Underwood 1994). Established microscopic andmacroscopic formsof

organismscanreleasechemicalswhich arereponedtn stimulate settlement oflarvae



(Lindner 1984, Mitchell& Kirchman 1984, Maki et al. 1988,1989). Typical examples

includethe conditioningof substratesby bacteria (Mitchell & Kirchman 1984) and various

gregariousor rssociative settlement behaviours(Crisp 1984, Lindner 1984) . Physical and

chemical characteristicsofsu rCaces whichare reported to affectlarval recruitment and

subseq uent growth include texture. contour and shape (Crisp 1984), surface energy (.\l!1.'

Rius chof & Costlow 1989), and surfacechemistry (Crisp 1984, Roberts et 01. 1991).

Responses to substrate characteristics are often organism-specific(Crisp 1984, Rittschof

& Costlow 1(89). For example, Roberts (.'1((I. ( 199 1) reported barnacleand bryozoan

larvae favoured wettable surfaces. whereas the settlement of the larvae of the hydroids

II/ hl/far i" and (Jhl.'!iC/ wasindependent of rurfaceenergy. Mussels are widely reponed 10

scule initially on filarncntous substrates(Bayne 1964, Lutz& Kennish 1992, Seed &

Suchanek 1( 92 ). although recent studiesquestion whetherthis behaviour is common

(L\ siak s:Barnard 1(9 5)

1.3 Sl ud~· Baekgeeund

The primary motivation for my srudy was to address the paucity of dala on net

flluling organisms andfouling.mechanisms. but within a clear operational context. At the

time the study was initiated. the salmon aquaculture industry was a majoreconomic

contributor in southwestern New Brunswick. with 54 salmon senfarmsin the

l 'a s ~; lll1 ;ltr Llllddy region, providing gross revenues of approximately $11,000,000 CAD. The
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economic importance of the industry provided a climate where financial support was

availableto investigate issues with operational relevance

In 1988, the use organotin net antifoulantswas banned due to growingconcerns of

environmentalpersistence ofthe most widelyused compounds. Without tin-based net

antifoulams, operators were left with only physical options to manage fouling.

Physical managementof nel fouing is costly and labour intensive, For example, the cost of

net fouling on a typical twenty cage farmin 1988 was approximatelySJ8.000cA D These

additional costs of production came at a time when the internationalover-supply uf'Iarmcd

salmon was narrowingprofit margins To deal with the prohlemof nel fouling, research

was undertaken in two main areas The priority was to investigate the performanceor

several non-toxic net coatings whichwere entering the marketplace, with the hope or

filling the vacuum left by the ban on organotln anufoulams These products were

expensive and untested under local conditions. and the industry was resistant to assuming

their cost until performance could be clearly demonstrated. Oruresc. only Em;y_NcITM, a

non-toxic petroleum-based wax, had received regulatory approval for commercial usc at

the time this study was initiated. There was also interest in pursuing opportunities with the

potential to improve the efficiency of physical net foulingmanagementprograms, One

possibility was the development ofintegrated ncr foulingmanagementstrategies, similar to

those used 10manage many agricultural pests Agricultumlintegrated pcv management

(I PM) strategies are based on the establishment of economic thresholds for pests These

are defined as the level of some pes\ characteristic. for example population size, which has
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negative economic implications on a production system (Sill1982). The characteristic is

monitored. and whenthe economicthreshold is passed, managementstrategies are

implemented. In salmonfarming,the changing of nets on a calendar basis,typically every

two months, was basedprimarilyon logistic considerations, and not the ' fouling state' of

the nets.

It was hoped that investigations of the temporal andspatial nature of net fouling

composition and development would highlightopportunitiesto establisheconomic

thresholds for fouling, and ultimately lead to the developmentof integratednet fouling

strategies. This study wasdesignedto simultaneouslyaddress both these areas of interest.

It was recognized from the outset that the initiative to evaluate ' new' net antifoulants was

the industry priority. As such, thestudy program would haveto deal with the inherent

resistanceof salmonfarmers to these products on economic grounds, and in manyways,

the methodologyfor this study was dictated by this conside ation.

Resistance amongst farmoperators to the use of new antifouling productswas based

primarilyon skepticismof the promotional claimsof manufacturers,and to the prevalence

of adequate cost-effectivefoulingcontrol usingphysical methods.Resistance to change is

,Itypical characteristicof conservative. capital-intensiveindustries (Lambie 1984) such as

fishfllrming, Based on experienceaddressing similarattitudes in agriculture, operationally­

orientated. highly visiblefield trialsof new products produceacceptance (Lambie 1984).

With this aim, trials at three typical operations. whichwould follow a standard two month
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net cleaning schedule, were implemented. Fann staff were also kept fully aware of the

status of the project. To secure tile cooperation of producers, it was also important that

the methodologycause minimuminterference with day-to-day farm operations. As the

field program required periodic boat transport of personnel and equipment to cage sites, it

was important that studyunitswere an appropriate size to be loaded and unloaded from

smallboars. and could be handled without the need lor assistance fromfarm personnel. A

final consideration for the size and placement of study units was the need for high visibility

of field trials to farm operators and their personnel. A preliminarynet foulingstudy (Hall

11(C11. 1989)established that a logistically-appropriate size tor study units was one meter

square, and that the least intrusiveand most visible location was adjacent to the outside

face of predator nets, suspendedverticallyin the water column

Whenthis study was conducted, the banon urganonn antifoulants had created interest in

alternative net coatings, such as Easy-Nett », and the refinement of net fouling

management strategies, However, since then, a number of effective copper-based nel

antifoulants have been introduced, and they arc used UII most salmon farms. Consequently,

there is little current interest in net fouling,and the operational relevance of this thesis is

minimal.
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1.4 Questions

The questions addressedby this thesis arisefromthe stated operational interests of

the aquaculture industry for both performanceevaluations of net antifculantsand

characterizations of the spatialand temporal characterof net fouling

Thecomponents of the thesiswhich deal with the antifoulingperfonnance of Easy-Net"

waxconsider(1) the effect of the coatingon the accumulated biomassand relative

abundance offouling organismsat the endof five, two-month periods. The temporalscale

was chosen to reflect typicalnet changingschedulesof salmonfarmsin southwesternNew

Brunswick. The evaluation includes a standardisedmethodology to assess theeconomic

viabilityof antifoulants with respect to physicalnet management costs. In a broad sense,

theecologicalfocus of this thesis addressesthe generalpaucity of information on net

fouling. It considers: (2) the influencesof geographic location, (3) season, (4) net

treatment,and (5) depth on the accumulated biomass and relative abundanceof fouling

organisms. II also considers the value of(6) the growth formof foulingorganismsand (7)

reproductive status as indicators of colonization strategies and potentials.
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2. MATERIALS AND METHODS

2.1 Stud y Sites

The study was conducted at three coastal salmon farms in the Passamaquoddy

region of southwestern New Brunswick. Canada (Figure I ). Site' was the experimental

farm at the Huntsman Marine Science Center. situated in a smallsheltered cove in lhe

outer reaches of the St. Croix river estuary (#1. Fig. I). Site 2. the Jaill sland site. was a

medium-sized commercial farm located ina sheltered location in the Letang River estuary,

on the northeast coast of the Letang peninsula (#2. Fig.I) . The third site W IIS the Scatarm

Canada Frye Island farm. a large operation located in an exposed cove on the southeast

coast ofF rye Island (#3. Fig.l )

2.2 Study Units

2.2.1 Net frames

The basic study unit was a one meter square frame constructed from 2.25

inch diameter black ABS drainage pipe(Figure 2). 100101holes were drilledat teem

spacing down opposite sides of each ASS frame pipe. Two IDem stainlesssteel eye-holts

were fastened at opposite ends of the top frame member as hanging points. A 4kg piece of

ferrous steel chain was fastened as a weight to the opposite, bottom member.
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Figure I Location of study sites in Passamaquoddy Bay, southwestern \e\\ Brunswick,
Canada. I, HMSC site ( 4 S ~ S' , 67° S') ; 2, Jail Island site (45° .f. 66: -'S' 1.3. Seafarm
Canada Frye Island site (45° 3', 66° 51' )



2.2.2 Net panels

Each net framewas strung with sixteen 25cm by zscmpanels (62Scm~) of

3.ecm (diagonal) knotless nylon aquaculturenettingarrangedin a Rtlll,/flmi.\"t~d ('ompl!!/e

BlockDr:sigll (Little& Hills 1978)(figure 2. Each row was comprised of two annfoulant

treated and IWO untreated (control) panels. Each net panel was comprised of one hundred

(10 x 10) net 'mesh squares'. Net panels were fastened to each other and the frame with

locking nylon wire ties
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Figure 2 A. Illustration of UUllumlll;r:u ('(l mp"'//! Hlm:k configuration of net panels
suspended verticallyin ABS polymer frame (C'• control, T - treatment). B. Enlarged
individual net panel (10 X 10 mesh) showing two row excluded border (.~r:/! 2.4.3)
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2.2.3 Net treatment

Halfof the net panels in each framewere soaked inEasy-Nett wax for

half an hour, drained, and hungvertically10 cure for 48 hours. The product is an air-

cured, petroleum distillate-based, net wax whichis intended to reduce the quantity of

foulingand facilitatenet cleaning. The cured product is benign, and is classifiedby

AgricultureCanadaas a barriersystem,and not an antifoulant (Rex Toxopeus per.~.

CO/l Il1 /. )

2,3 St udy Periods

The field program was conducted from May through October, 1989, 10 coincide

with the period whensalmonidstypically accumulatebody weight most rapidly

(Beveridge 1987), The field program was divided into five overlapping periods (Fig. 3),

each approximately eight weeks in length

STUD\,
M.W : IN'IC : .m.v ,

,W I;llST
,

sErTEMBER
,

OCTOllF.R
PERIOD , , ,

1 .~....~._~~_.-._-~

, ,
l ,....~._~.__......._._._.._., ,
3 ,..._...__.._......._.~. ~ ,
, , ~.........._..._._-_._.
; , , ,..._...._......_...•.•..

figure J Fieldprogram c...mprised of five studyperiods
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1."Sampling Procedu res

To satisfyfundamental requirements for subsequent one-way analyses nf variance,

all sampling Wa5 destructive and timeindependent (Underwood 1981).

1"' .1 In-field sampling

At the end of each study period, frames were recovered from each site, ncl

panelsexcised. placedin polythene bags. and transported in a cooler to the Huntsman

Marine t:.-ienceCenter, In the lab. panels werestretched on a 2Scm by 25cl11

polypropylene tube frame(0.7S" diameter) and placed carefullyin cooled seawater in II

shallow plexiglass lank. This was done to minimize deterioration and handling damage tlf

samples

The plexiglass tank was illuminated frombelow by four40watt fluorescent tubes. from

above by two 600 watt tungsten spot lights. and panels were examined with a lOX

disecting binocular microscope. Deatailedtaxonomic examinations were perormedunder

higher magnification.

2....1 Composition of fouling :nsemblages

The analysis of composition of foulingorganisms WIIS restricted to

macroalgal andsessilemacroinvertebrate components. Constituentorganisms on each

panel were keyed to genus or species. and assigned a relative abundancerating (Appendix

I )
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Taxonomic enotyses

Where possible, macroalgaewere keyedto speciesusing South and

Hooper (1980). Systematics and nomenclature followedSouth and Titrley (1986), and

South ct ul. (1988). Sessilemacrcmvenebrateswere identifiedaccordingto Brinkhurst et

al. (1976), andwith the assistanceof the Bill Hogans of the AtlanticReference Center, St

Andrews,New Brunswick, Canada. Systematicsand nomenclaturefollowedBrusca and

Brusca{1990j

Whenrequired for further study. sampleswere preserved in 5% formalin in seawater (5%

solution 10 minimizedecomposition of ubiquitous micrcinvertebrates,and potentially

deterioration of the algal material (Bill Hogansper.\·. COIIIIII.» . For fine structure, slides

(50% Karc solution) were examined at2 5x and JOOx magnification.

Relative abundan ce

Organisms were assignedsubjective relative abundanceratings (Fletcher

I Q80n.Sunerlinet "I. 1981)of Present, Commonor Abundant, according to the following

visual criteria. A rating of present wasassignedfor at least one occurrenceon a panel (e.g

/~·II1<·/"IIIIIOI],ha. Figure 4), commonwhen there weredistinct aggregations ofa species

(e.g, Sn r:-:dill. Figure4, and SCYIf1.~ipllt}l/. Figure4), and abundant when one or more

specieswere clearlypredominanton a panel(e.g. Pe(w JI/;(/ and Scy'mip/m/l, Figure 5, and

Sm:-:diu. Figure 8 )

29



2.4.3 Accumul.l~ biomass

Accumulaled biomass wasdetermined by sub-samplingand weighing

standardisedsub-units (nodes) from eachpando

Prior to sub-sampling, a perimeter border of two squares was excluded fromeach 10 by

10square net panel to reduce potential 'edge effects' (Foster 1975, Little & Hills 1( 78).

The remaining 36 squares were delineated into 25 nodes, each comprised of the ' cross'

intersect and half the length of each ofthe four perpendicular radiating arms of net twine

Assuch, eachof these nodes represented 1/1101
.. of the two-dimensionalarea of eachnet

panel. Six were selected at random, excised,laid Oat for five minutes on standardized

absorbent paper. and weighed to two decimal places

Accumulated biomassfor nodes was corrected by subtractionof 1/ I IfI'"of the mean

weight of len unfouled, drained net panels. Treated andccmrol data were corrected

accordingly.

2.5 DalllA nll ly~ is

Statistical analyses encompassedChP and Kruskal·Wal1ace [Kruskal & WlI lIilCC

19n j analysesof relative abundance. and univariate ANOVA of biomass data Statistical

analyses were performed using APL+ statistical software (STS( Inc.)
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1.5. 1 An alysis of re lative a bu nda nc e dat a

Relat ive abu ndance d ata were analyzed 10 investigate spatia l and tem poral

variabilityjn the co mposition of net fou ling assemblag es. Prior to a nalyses. relative

abund~nce ratings (App endix I) we re rank-ordered as : Ab sen t -= I , Presem » 1,

C o mmon = 3, and Abundant = 4

Knukal- Walltlce test fif. fite independence

A Krus kal-Wa llace test was app lied 10 lnvestlgate site independence

(K ruskal & Wallace 1952. G oldman & Weinb erg 1985). In cont rast to using Chi2 to test

for site inde pendence, Kruskal-Wellace is more sens itive, particularly to elucida te shifts in

m edian vetoes between sites

Chi-square te.ft,if treatment, tief/tll /llltl .mltl)' f/eri fld effect.~

Where the Kru skal-w aua ce indicated no significa nce betw een sites. data

were poo led across sites and were test ed by Chi: for depth and study period effects .

2.~. 2 An al ys is of bio mas s da ta

Studentized raw data yielde d a skewed distribution with II long uppe r tai l

A 11lg, lra1\l\IOrm gave a near svmetrv , although the distribut ion was rather flat . The ce ntral

Iimil theorem applies. and all raw bioma ss data WIIS log. transformed to stab ilize the

\"ariance ISnedccor& Coc hran 1967 )

31



Test fo r heterogeneity (!( vnnon ce

Standard deviations for eachsire weretested for heterogeneity using

Bartlett's test for homogeneity of variance (Bartlett 1937, Little & Hills 1978)

Table I Randomized complete block analysisfor site 3 log. biomass datil

Source d,f

I . Treatment
2, Residual column effect
3. Depthof panel effect {roweffect)
4. Treatment x Depth interaction
5. Error
6. Total 15

The results of Bartleu's lest for site 3 indicated heterogeneity.

Consequently. the analysis for site three was limited10 a separate randomized complete

blockanalysisfor each study period. The residual column effect(1/2, Table I) is merely an

estimate of error, assuming it has flO obvious biologicalinterpretation. and is included

primarily as a test for proceduralerror. [1was tested for significance againsterror (1/\

Table I ) at a 1% significance level (not significum unless F(2,6) ' 10.921 This ensures

thai with a probability of99%, the residual column effect willnot he erroneouslydeclared

significant for any of the combined paneldllln tor anyone month Where thcre was no
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significance,the residual column effect sum ofsquares anddegrees offreedom were

combinedwith errorto increasethe power of the analysis

Table 2 Analysisof yarian« for site 1 and 2 log, biomassdata

Source df

I. Siudy period
2. Treatment
1 Treatment x Studyperiod irueraction
4, Residual columneffect
5, Residualcolumneffect x Study period 8
6. Depth of panel effect (row effect) 3
1. Depth x Study period 12
8 Treatmentx Depth 3
9, Treatmentx Deplh x Study period I !
10. Error 30
I I.Tota i 79

A s with the randomizedcomplete block analysis. the residual columneITe(;!

IlI·1.Table! ) and its interaction with study period (#5. Table :0 should not be significant

ueless then:are serious errors with theexecutionof the study protocol. Both were tested

a~aillst error (# 10. Table 2) al a 1% significancelevel (notsignificant unless F(residual

I::!J OJ) ' .'..19and F[residualx studyperiod [8.30]) > 3.17). Where there was no

signincunce. both were combined with error to increase the power or the analysis
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Calculatio/l of ('OIljifJe/lCC fi", jr.~

The primeoperational motivationforconducting the precedinganalyses

was to determine whether the antifoulant net treatment reducedaccumulated biomass,ami

whatwas the magnitudeof any effect.Confidence limits werecalculated lor biomassdata

The ' true' or unnensformed percent reduction (p) in biomassWII ;; calculatedby

p ' IOO( I -S j

WhereS = ~. /~•• and~. and Il.are the 'true' meanbiomassfor the antifoulant and

controlrespectively

The estimateof h,(S) = II/W,) . 11I(1l<1given by tiledifference«(1= h. - h. ) betweenthe

meanlog. biomass underthetwo conditions hailoptimumpropertieswhich other

estimators (e.g. the rawdata)do not have. Thecorrespondingestimateof the percent

reduction in biomass(r ) is'

r » IOO( I - cxp(1))

The estimated variance ofb. andb. for sites I and::! is 1/40 the overallerror meansquare

(eachrepresents the meanof 40 values). For site 3, where thereis nocommon error term,

.14



the variancesare 1/200 the sumof the error mean squares (randomizedblocks analyses)

across study periods. The variance of d is the sum of the variances of b. and be.

The( l.a.) percentconfidencelimit for (tI( o) is

Where .(a., v) is the Student's t for a. with I' degrees of freedorn, and Sd is the standard

deviation (Ifd. Confidence limits were calculated for 0. = 99.9% confidencelevel.

Eeanemic decisionrule

Aneconomic decision (integer] rule was appliedto determineif the use of

the antifoulantwould be economically efficacious in light of fouling management costs at

the lime ( 1989 / 1990), Useof the antifoulant is considered worthwhile if:

fc - f. > AID

Where r•.and r. lirethe numberof changes required Ill! }' net to adequatelymanage fouling

with and without an antifoulantrespectively. A is the cost of treating a standard

aquaculture net with Easy-Nettv ($420CDN). and Dis the 198911990 cost of'cleaninga

standard ncr manually ($400CDN). Asr;.and r. are integers. a maximum reasonable value
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for A and a minimumreasonablevalue for 0 were calculated10 make any management

decision arising fromthe analysismore clear cut
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3. RESULTS

3.1 Fouling Organ isms

Fouling assemblages werecomprisedof macroalgae. sessile macrcinvertebrates,

andmicrofouling. The most variedcomponentwasthe macroalgae. witha total of twenty

sevenspecies(Tables3·S). Thesessile macrotnvertebrate componentwas sparse, with one

speciesof bivalve and three generaof hydroids (Table 6) . There werealso a number of

motile invertebrates (Table 6) andvariouslevels ofmicrofouJing(primarily diatoms and

detritus) on all panels

3.1.1 Chlorop hyceae

In total, 13speciesof Chlorophyceaewere recorded throughoutthe five

studyperiods(Table 3). The largest number of speciesin anysingle period was9,

recorded at the end of'the MaylJune period. There was a trendtowardsgreaternumbers

or species ofchlorophytesat site I than at sites 2 and ) (Table3). Themain exceptionwas

August/September whereonlyfivespecieswere recorded atsite I, while four and nine

specieswere recorded at sites 2 and 3 respectively. Also, there was littledifferencein the

llumhcr of speciesat allthree sites at theendof the June/Julyper iod (Table 3).

TIll' most widelyoccurring speciesof chtorophyteswere Ctodopborasertcua(Hudson)

Kuctz.. ('/lal'lolllorp/la lmu m (O,F. Muell.) Kuetz. and RlIi:ocJo/lilllll ripariem (Roth)
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Kuetz.ex Harvey, Ememmorpnaintesnnalts(L.) Link, E. tinxa (L. ) lAgardh, E.

pmlijera (O.FMuell .) l Agardb, and Vivakictuca L. (Table 3)

The least widelydistributed taxa were Spongomorpna aemginosa (L.)Hoek and

'\"HlII}fomorpha sp., which occurredin themiddle threes tudyperiods, Ulothruflacca

(Dillwyn) Thuret in LeJolis occurred onlyin the first period. an unidentified species of

BUdillKia in thethird period at site1. andan isolatedspecimenof Urospora wormskioldii

(Men in Hornem) Rosenv. in thefirst periodat site] (T able3).

3.1.2 Phaecphyceae

A tot al ofnine species ofPhaeophyceaewe rerecorded(Table 4). The

lowest numberof specieswas recorded forthe May/June studyperiod where three species

were recordedat sites I and 2. and two speciesat site3. There was liuledifferencein the

nu mbers of speciesfromthe otherstudy periods(Table4)

1:.:d ll("(1I1I11S .~;fi{· I"osm' (Dillwyn)Lyngbye andPttayelta littaalis (L.) Kjellmanwere the

most widely occurring phaeophytes. Both were recorded at each site ineach studype riod.

l 'ela!rmi Cl/Cr.ll'ia(0. F,Muell .) O. Kuntze andScy/(},\'ip!lolllml1l!l/(aria(Lyngbye) Link

were also widely recorded. althoughonly I' ,.r",w:ia wasfoundon May/June panels. and

not at site J (Table 4)
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In oorarast, four species of phaeophytes exhibiteda distinct periodicity (Table 4).

ChurdJria flaxt tlijorm i.f (Q,f .Muell.) Agardh(Chordariaceae) was recorded from

August/Septemberpanels It sites I and 3 only. Similarly. C /wrda tomt lllosa Lyngbye

(Chordaceae) wasrecorded on JulyfAugust panels at sites I and 3 only, Laminaria sp.

Lamoureux (Laminariacl!ae) was found onlyon JunefJuly panels at site J, DiCtYUfiphtJlI

foellh"llftl(.·eu.~ (Hudson) Grev. (Dietyosiphcnaceae) wassomewhat more widely

distribute d, occurring variously in the middle three studyperiods at sites I and J (Table 4) .

J.I.J Rhodoph ycu c

Sevenspecies of Rhodophyceae were recorded (Table S).The greatest

numberof species(six) was recordedon the August/September panels. The lowest

numberwas recorded for the JulyfAugusl studyperiod. with three species at site J. and

only oneeach at sites 2 and3. Other than theJunefJuly period. greater numbers of specie5

occurred at site I ineach period (Table 5)

The fl101'4widelyoccurring specieswas Polysiphollia jlcxicQllfis (Harvey) F. Collins.

With theexceptionof site 2in the firstperiod(MayfJune). it was recorded at allsites

lhroughoul the five study periods (Table5)

Three species of 1}f111,/~1 '/"(/ (I'. mil/it/fa (Agardh.) Agardh.•P. I/mhifict1li.~ (L. ) lAgardh,.

and one unidentiliedspecies) were variouslydistributed across allperiods (Table 5).
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Scugtliu fly/ ai.lff; (Mont.) Wynne was also recorded for all fiveperiods,primarily at sites

I and 3. AI site 2 il wasfound onlyon the MaylJune andJune/July panels (TableS).

Am"humlliOllella j1(lCf:(t'iO(O .F. Muell.) WhittickandCeramium nodidasum (lJghtfoot)

Oud uzeau, werenot \\.iddydistributed. C.,ItKiIl!(},{/lm was recorded at site 3 andsite 1on

June/July and August/September panels respectively. A,flocro.t:'iO wa s restrictedto site I

August/Seplember panels (Table 51

3.1.4 lnyertebnles

The sessile invertebrate component or the fouling assemblage was sparse in

total numbers of species byco mparison withthe algae(Table 6). Th ere were threespecies

of hydroids. including theathecete n, hil /aria crocea (Agassiz)and B ougai"vi/la

""rtllillr!lL~i.\· (McCRady), and one unidentifiedthecate speciesofOhefia . The solebivalve

was thecommonfouling blue musselMy ti/U.f ('Jllli,f L.

The lowestncrcberofmvertebrate species (2)was recordedforthe May/June period. The

AlI~ust1September periodhad rhe greatest number with four. Theremaining threeperiods

had tbreespecies each (Table 6)

The mostwidelyoccurring invertebrate was "I:cmcea. The species was recorded from all

study periods. although in June/July it didn't occur at site J . andin M ay/June was found

only atsite :!. The other athecate species. H. c"mlim:n~i,~. was the lea st widely distributed
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inverte brate. occurring at onlyone sitefrom each of the MaylJune, July/August, and

August/Septemberperiods. The th ecate Ob elia sp. occurred at allsites inthe final two

periods, and on theJune/July panelsatsites I and2. Thespecies was n OIrecorded for

May/Juneand July/AuguSIperiods (Table 6)

The sole 'hard fouling' species,Myli/ll ,~ edt/li s, was recorded for allbut the first period.

During thesecond period (June/Ju ly) it was not found at site 2, and wa s not recordedon

September/Octoberpanels al site 3 (Table 6).

There werealso a number ofspecies ofmotileinvertebrate recorded, al though by

definitiontheyare not considered constituentsof fou lingassemblages an d are not included

inTable 6, Large numbers ofunidentified species of Coreua. smallamp hipods and

decapcds were recorded throughout thefive periods. Twospeciesof nudibranch

(('m:l ] J!I('fllI l'l{fi'i hrclllc h i" fis Ascanius, and lkl/lkmlOllj.~fl"(mdo,I"II.\· (Jo hnston)) were

observed grazing on hydroids in a ll fiveperiods. Isolated specimens of Iittcrinids

(/.i lf o /'illll spp.). were also found througho ut thestudy

3,2Tempora l and Spatia l Analyses

The abundance of sessile spe cies showedvarying degrees ofgeog raphic, spatial

and temporal variabilhy. including site specificity. dep th zonat ion and seasonal occurrence

(Table 7). Relat iveabundance data tor each study periodare presented in Appendix '

(Tahles AI, I. I ,5).
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A comparison o"total andtreatment Chi] (Chi\nr,\]= 27.78~ Chi]T1IHulr:-'T '" 26.( 4)

indicated no difference inrelative abundanceof constituent species, Therefo re. treatment

and control datawere pooled prior to subsequent depth. studyperiod and site analyses

3.2.1 Depth effec ts

Across allstudy periods. the distributionof green algae W<lS distinctly

influencedby depth (Table7), (' /mJophom .lt·";(""", ( 'hul' /fJl/Il!r/!hu lilllll/l, Nhi:tll'/t lllll/111

rtpanmn.Entennnorphu ill1e.winaliJ, an d Eo /i" :11showed a highlyslgnlncam (I' " 0 ,0(1 )

trend ofdec reasing abundance withdept h (AppendixI . Tables A I,\' A I .~ ) I I/I'll /lIl'lIIm

exhibitedan evenmore significantdepth effect(Jl . 0.000 \ j , Innil studyperiods { I.

tacmca was most prevalenton top row panels

Two species ofphaeophytesalso showed a signiflcrmt trend ofdecreasingabu ndance by

dep th (fCf(J(:tl!1J11.I' xi/iclI/f!.\'II.~ ( P c n o I ) and/'eICl/lJlliafm"d1l ( i' ...-; 0 001) No

Rho dophyceae or invertebrates exhibited depth effects
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Ta ble 7 Analyses of relative abundance of constituent fouling organisms by depth, study
period (Chi2l and site (Kruskal-Wallace). (. , non-signillcantur Insufficientoccurrence: . , p c
IIU5. " .P " l l./ I I; · " , P < U.fIlI I ; o. o. , P < U.OIl1l1)

DEPTH STUDY SITE
CLASS Che PERIOD Kru skal-

(3dl) Ch i~ Wa llace
I;" II/"~ ,'I"'c" 's (4dQ (2dO
~
CIILOROPHYCEAE

(.'J:llfullhunlc~

l'I", lol' llII rrI.,('r'n' " 27.7110. · 13An" 1ll.50"
/ 'h", 'I" lIwff' ha li llum 33.f,II" · 1-4,92"
1I/" : 'H"I",m ""f'f'llTiu m 2l A~ · "

II h'l rc~

lII" I",.cwsp 12.53"
FIIIl'rt lll ll 'ff' /III IJ/I<',"I /IItll ",- 21.17· " 28.29" · 6 ,711·
1:/11I:11 25.f~ ) · " 22.4(,· 0. 9 . 5~"·

l:"./'r"lif,"·u 11 .32 -IllA2· · ..
I ~, ·o '<la/l,,, -I'J. 19....

f hm'/11,,}>,'cllm 6, 71·

PHAEOPHYCEAE
Ilkl ~ " s; llh "n aJ cs

/ lll' '.I'''-'If' II<lUfiWllicu/(l,·",t,. 13J<)"
!::clllc:lrp :llc.,

/",'I'JI'Ufl lU.... i!lI·U/",'/I.,' 11.11(,· · 17,35" 16,(1-1···
/' ''''n'l/lllmora l,,'- NS NS NS

Sc~-l",i l lh"n~ lc'

j',' w/lJ Jt/<I.fitR'1U 211,11-40.· 1-4.H o.
S' :l/fJ"'If'h,mJ,IIIIl'!!I a,.w 211 .117" · 29 .415" ·

rH1OnOrH YCEAE
8~n~i:l lc~

l'o ,." I,I -)"lJlI/lJIlrl/ll 1:'i .III~ '"

f',)I"I'liy,"" SP -IMA4....• 13.750.
Cl'rllm i~l..s
l'IJ/ ' ·_'IloJw"'''.I', '.\"icwrl", -4-1 ,:w....
.\"-" ,Ii,'III' f~l '/I/I-"'." 17,13· · ·

IN"F.RTEBRATES
HYD ROZO A

lI~ d ru id H

(!f>d"lsp IIlUII\· .. •
-,,,1>/1/'1"'"{,,.,,,-,'o -42.1111.... IS.(j-4~"

Bl \ ',\ LYL·\
"rli ~""I ~" ri ; 1

Ih'IIj".',·"uh,' ."J.n ·.. • I ;! . IJ~"
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3.2.2 Study period effect s

The Chi! analysis ofstudy period effects showedsignificance was more

widely distributed than corresponding.depth effects (Table 7). C/mJopJwrcI.\·,'rit"L'1fand

'...7 lQel IJIIIOIp ha Ii/ 111m showed the samedegree of studyperiod effect ( I' c 0,0I). r;

sertceawas less abundant in the first period (App.I, Table AI.I ) than in theother four

periods (App.I, Tables AJ.2-J.5), In corurasr. C./i1/l1l11was generally more prevalentill

the second(June/July) and third (July/AugUSI) periods(App.l, Tables AI,2 & AIJ )

Three species of Ulvalesexhibited various levels of study period effects. Results for

Elll el'ol1wrph " intestinulis werehighly significant (I' < 0,001), primarily due to low

occurrence in the first study period (App,I. Table A1.1). H. ttnzo and Jo:. p/'(ll~rl!rll also

showed significantstudy period effects( I' < 0,001 and I' < 0.0001 respectively), but in

both cases the results are attributable to a relativelyhigh abundance in the last period

(App.1.Table AU),

The study period effect for }.':/(JC({/PII.~ siticnlosus and / 'l.'lafrl/li u.{tl.l"ci" showed the same

significancelevel (I' < 0.01)(Table 6). In both cases, there wasa alternating cyclic trend in

abundance between consecutive periods[App.L, TablesA1.1-1 .5). The results lor

Sc.:I'/o.\"ip!u!II tomemana were also significant (P < 0,001), andalthoughthere was uo

obvious differentialpanem betweenperiods where it occurred (App. l, Fables1\1.2-1 SI,

it was absent from the first study period (App.l, Table AI ,I)
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Two speciesof rhodophytes.,"oJ~flhfJlI;u fkaicaulis and sporelingsof an unidentified

speciesof Porphyra. shewed a highly significantstudy period effects CP < 0.0001). Other

than a few isolated occurrences in the third (July/August) and founh (August/September)

periods, /'orphyrClsp. occurred primarily in the first andlIS! periods (App.I , Tables A1,1

& AI.S),". fle:c, rolllt.~ was rare in the first period. but occurred widely in the ot her four

{App. I. Tables AI.I -I.S)

The hydroids l ithlllu,.;a croc en and Obelia sp. exhibited highly significant study period

effect s ( I' -c0.0001) (Table 7), 7: crocea occurred less abundantly in the first twa periods

(App. l. Tables AI.I& I.2) than in the last three periods (Appl . Tables AI.J- I.5)

Similarly. Ohl!1i" sp. was more commonin the last two periods lApp. I. Tables A1.4&1.5)

than in the first three periods (App.t . Tables AI. I- I.J). Results for M)1i111S edatis were

also highly :;ignilicant(P -c00001). with the species substantially less abundant in the first

and last periods than the middlethree (App. I).

3.2.3 Site dft('u

The Kruskal-Wallace analysis indicated significantsite effects for many

species (Table 7), (·ladlJpll1JllI.~l!'ke" and HlidillWa sp. showed similar degrees of site

effect ( I' ..; 0.0 1) (Table 7).llnd in both cases occurred more abundantly at site I than sites

~ lind J. f l/l' (/ r;" fl h,I'CUIlI showed a less significant effect HI < 0,05). though it exhibited a

similar abundance/site peuem. In contrast. FJIlr:I"rll/wrpha illfl!,will{/Ii.~ (P < 0.05) and E.

/ill: " (P < 0.01). tended tl'loccur moreabundantly at sites I and J than at site 2.
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Amongst the Pbaecphyceae, DiCf)'w,i,J1UJI'.filt·nicll'l1f:1.'/I.' (P < 0.0 I) and F.ctoc(II'I' '' ''·

siliC/llrm/.~ (P < 0.001) also occurred more abundantl y at sites I and J than at site 2. In

contrast. .x:rtOSlIHKNlltHIlellloria was significantly more abundant (P < 0.00 I) al ~Ie J

than at sites I and 2.

Thr ee species of rhodoph ytes exhibited significant sire effects (Table 71. l'orhyru /llIIl imll

(P c 0.00 \ ). PWP"J'I'II sp. (P < 0.0 1) and ,\'mXI.'!ia J~""'i,~ei (P c 0.00 \ ) all occurre d mer e

abundantly at site 1 than at sites 2 and 3

Of the two species of invertebrate having significant site effect s (Ta ble 7). ]i' /lI//" ,.,,,

,·m t,:l.'tI had the highes t significance level (P < 0.00 1) O ther than the occurrence of 1:

cmcc:ual site 2 in the first stud y period . and nol at sires I and J {App.L TableAI . I),

there was no clear difff'<'eniial site/abundance patte-n . A'{I'lihu n lllli.l'(P " 0.0 1) tcnded to

be more abunda nt at site I than at sires 2 and J
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3.3 Gro wth Form and Rep roductive Sta tus

A range of growth forms and reproductive stales was exhibited by fouling

organisms throughout the five study periods (Appendix.2. Tables Al.I-2.5).

3•.1.1 Growth for m

A lg//e'

Two general algal growthforms were recorded (App. 2. Tables A2.1 .2 .5):

thalli clearlyattached to the substrate (Figure 4), and entangled forms (Figure 5), With

densely entangled specimens, it was often difficult to determine whether attachment

structures were present or not (Figure 6), Some species were recorded in only one form,

whereas others occurred as both

Ch lorophyceae

The filamentous chloro phytes Chaetomorpha tinnm. Rhizoctonmm

ripamen. I fmspora wonnskioldii and lJIolllI'ixflacca were recorded only in unattached,

variously tangled forms. Clmloplmm .w/"icl!a occurred 8S entangled, unattached filaments

;n all five periods and as short, basally-attached filaments in the first period.

Sp(J/IglJlJIlJ/l'ha spp. occurred only as basally-attached tufts, and in the one occurrenceof

midil/gill sp.. it was clearly attached to the substrate.
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Fig ure 4 Mixed assemb lage of small, basally-attached green, red and brown macrophytes
A. Emeromorpba sp.. B. Scagetsa pykusei, C. Scytossphontomemana, D. Petalonia
facia

The three species of Emeromorpha were recorded in both forms, although E. mle.~II1KJ/i.~

and E prohfera occurred most commonly as heavily entang led aggregations of thalli

without obvious attachments (Figure 7) In contrast, E. hnza occurred primarily as

basally-attached, short thalli In all cases. the remaining species of Ulvales. (JlI'(] lactuca

and VIvona obscure. were clearly attached
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Ftgure 5 Mixed assemblage of fouling macrophytes comprised primarily of the
Scytosiphonales species Petaknna fasaa (A ) and Scytoapbontomentana ( B)
(Phaeophyceae). and a few Ulvales (Chlorophyceae) (C)

Phaeuphyceae

The typically highly entangled natu re of thalli of both species of

Ectocarpales. Ectocarpus _wlic/llo.'-'Hand Pitayetla lutorahs, and the high prevalence of

surficial microfouling. made it extremely difficult 10 dete rmine whether specimens were
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attached directly to the substrate. There were instances where dense, localised

accumulations occurred (Figure 6), which suggests primarily entangled thalli

Figure 6 Mixed assemblage of entangled chlorophytes and phaeophytes A. Scytosiphon
tomentaria; B. ectocarpoid (?) ; C. Rhizoctonmm rtpartum ; D. Enteromorpha sp.

Of the two recorded species of Scytosiphonales . Petatonia fascia occurred only as basally

attached thalli. In a number of instances P. fascia thalli occurred in entangled aggregates ,

and although holdfasts were not visible. the growth form strongly suggests basal

attachment (Figure 4) Scytostphon tomentana was recorded as both entangled and basally
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attached forms. Like P, fascia , in some cases the attachment status of S. tomentaria was

unclear due to occurrences of dense, entangled aggregat ions (Figures 5 & 6). The

remaining phaeophytes (Chordar iajlagel/iformis, Chorda tomentosa. Dictyosiphon

.(rJeniculaceus, Laminaria sp.) occurred only as basally-attached forms

Figure 7 Assemblage of fouling macrophytes comprised primarily of basally-attached and
entangled Enteromorpha spp (Ulvales) . and the rhodophyte Polystphomaflextcaulis
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Rh od oph ycea e

All reco rded rhodoophytes were attached to the substrate . Porphyra

minicua and the small sporelings of ?orp hyra spp. were basally-attached. In contrast ,

?orphyra umbilicalis had typical centric holdfasts

Ftaure 8 Mixed assemblage offouling macrophytes dominated by the rhodophyte
Scagetio pyknsaet (Ceram iales), with scattered green, brown and red algae
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All species of Ceramiales (Antuhanmionella flo ccossa. Ceramium rubrum. Potysiphonia

f1exicau/is, and Scagelia pylaisaei) were typically basally-attached (Figures 4, 7 & 8), In

situations where the basal regions of thalli were obscured by microfouling accumulations,

the typical erect arborescent or plumose growth form strongly suggested basal attachment.

Figure 9 Typical examples of wirey. dense accumulations of the hydroids Tuhularia
crocca (A) and the more compact Obelia sp ( B)
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Invertebrates

The most common hydroid. Tuhulana crocea occurred most commonly as

dense. wirey aggregations . with the hydrocauli radiating from dense basal zones of

attachment (Figure 9) There was also evidence of lateral rhizoidal spreading from ' parent'

aggregations along adjacent net fibers In contrast , Obelia sp had a highly branched .

arborescent growth fonn (Figure 9). arising from a single basal attachment

Ftaure 10 Accumulations of juvenile Myuiuseduits attached to surface ofa dense
understorey of predominantly entangled, filamentous chlorophytes
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Myfilll.\·eduhswere anchored to nets and other fouling by byssalthreads. In several cases,

relatively large juvenile mussels constituted the outer componentof fouling assemblages,

attached to distal regions of underlyingfouling(Figure10) . This stratified structural

pattern suggests recruitment of juvenilesrather thanspat. Large numbersof juvenile

Mynlus were observedsuspendedin the upper water column at site 3 at the end of the

June/July studyperiod.

3.3.2 Reprcducu ve status

Algae

The majorityof speciesappeared to besterile, but in those that were fertile,

a rangeof reproductive states were observedthroughout the fivestudy periods(Appendix

2, Tables A2.1-2.5)

Chlorophyceae

Specimens from the majority of speciesof chlcrophyteswere reproductive

in one or more study periods (Appendix 2). Members of the Ulvaleswere the most widely

reproductive. The majority of ElI/emlllO/pha illll!.~,jllali.\· plants, from the May/June

period. and E. hnza plantsfrom the September/October period, hadclear, post­

reproductivethalli. The mostwidelyoccurring zoosporicUlvaleswas Lllva lactnca. with

active release recorded during the June/July,August/September. and September/October

periods. zocsporlc specimens of E i/lh·.l"fill{/li.~ wererecorded during the
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August/September period. and £ tnca and £ proWl'fa from the AUl;,'ustiSeptember and

September/October periods.

The filamentous Cladophorales. ClUt.kIfJhrITOse rh;...'tl, ( 'Jra...'Ulil/("1,hr, tinum and

Rhi::oc:/tll 'ill lll r ipa rinm, appearedto be reproductive onlyat theend of the

August/September study period

Phneophyeeae

The only obviously reproductivephaeophytes were /~·" I(Jt. ·(/IPIiS ,I'iIiCIl/m ll.\'

and I'ilaydla IiI((Jrafi.~ . Unilocular and plurilocular reproductive structures were recorded

for P. li lf ora li s throughout the five periods. Both types of structure were recor ded for I·:'

.\·ilic/lI(l.m.~ duringJuly/Au,!,'Ust and September/October periods, Only plurilocular

structures wereobservedfor the other three periods(Appendix2)

RhodophyC'u e

All reproductive rhodophytes were tetraspcric, characterisedby typical

tetrasporic structures. The most widely reproductive rhodcphytes well: l'olp'll"wllifl

.fll!.'(i"' lIIli.~. ( 'l!rtll Jliul1I",hml1l and St'tIXl.'1ill Rl'lui,'MIt.'I. Reproductive /' .flesicmdis plants

were recorded for the last four study periods. ( '. ruhrmn for all but the second study

period. and S. pylai,wlei lor all but the firsl study period {Appendix2), In general.

tetrasponc specimens were larger than sterile individuals
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tnvenehrates

Hydroidswere assumed 10 have reproductivepotentialin all cases where

hydramhs were observed. indicating healthy o rganisms. This was not assumed a sign that

they were actually reproductive at the limethey were sampled. At site2. most specimens

fromthe middle three study periods lacked hydranths, were heavily microfouled, an d

appeared dead. All recorded specimens of A{l'lil liSec.lllli.~ weresmalljuveniles.and it is

assumed theywere nOI sexuallymature

3.4 Biemnss Accumulation

3.4. 1 Heterogene ity of vnrlnnce

Bartl ett's test for homogeneityof variance (Bartlett 1937. Little & Hills

I( 87) indic ated that thestandard deviations fo r allthree siteswere heterogeneous (M =

37 .18, b = 15. ro l = 1.87). An examinationof th e databy siteindicated that heterogeneity

occurred at site3 (M '"25.86. 1;: = 5. £1=0 .6 ). bUI not at sites I and 2 (M =7,39 and M =

1 . 1.2 respectively. k = 5, £1= 06). Consequently the data for site 3 was considered

unreliable. nndrue analysis of'variance of site3 biomass datawas performed independently

10 the study period levelonly (Table8)
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3,4,2 An alysis ervartauce (Sift 3)

The residual columneffect (#2. Table I) was non-significant for each study

period (F < 10.92) and was combinedwith total error (#5, Table I).

Tab le 8 Randomized blocks analysis or site 3 log, da ta with combined error terms
(· .P<Il.\IS: " . P < ll.ll1: • ... P<O .UlIl)

Stutl" Per jud Seu ree S5 DF 'I'
(llM,ly/JIIlle 'r rcanncm n.·a I u. ~.' 2.711

Dcplh .1.XX , 1.2') 7,77
Dcpthx Trcnuucut U.ill , n,21 I ~ I
Error '. B , U, 17

TOTAL (dr, "
(2l JlIil~IJ II I) Trc.l lmcm l.!Y I 1.2') IhD~

Depth H.M , nru 2,27

DCplhx Trc,llnlCll1 n . l i , f1.1 I(, i . IX
Error !l .lIr, , 11.0 1

TOTAL Ui "
(lIJulyfAlIgU51 Treatment 15M I UX 11,% .,

penm 11,.'1 , f1, l i I.~X

Dcpth x Ttcuuucnt u.au , U. lll ItX X

Error n.ut , f1.1 1

TOTAL .-Utl "
(~)AllglIslfScplemb~r Trenmcm t.t xm" I 1.3x I O~' 1.1 x Ill"

D~pl h 1.II'J , U,l l< II ,~K ..
Dcpthx Trcauncm 1I.I Y , 1),11(, I.~'J

Error 1l,14 ,
TOTAL 1( ,1 rs

(.'IScplem bcrIOcto\Jcr Trcntmcnt H..14 I U,H 111J,"

D\:plh 11')5 , u.u 1.'A2
Dcpthx Trcanncm H.I'J , iI,O(, 7,111

Error O.tIi , 1101
TOTAL !.;'i(, "
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The subsequent analysis of variance for site 3 revealed some unusual characteristics in the

data. particularly the patternof treatment and depth effects. and their interaction (Table

8) These peculiarities suggest the results of theanalysisshould be interpreted with

caution, The discoveryof seriousinterference byfish farmpersonnel with the experiment

supports thiscontention.

To summarize. treatment effects for June/July and September/Octoberwere highly

significant (P -c 0,001).July/August effectswere significant (P -c0.01). and May/June and

August/Septemberwere highly non-significant (P > 99.999).

Depth was highly significant for September/October only(P < 0,001). significant for

Augul\t!September (P < 0.01), and nonsignificant for theother periods. The depth x

f/"lmrml' 1II interaction was significant for only June/July and September/October (P < 0,05

ferbeth]

3.4.3 Allal)'siser vnna ucc (siles I & 2)

Neitherthe residual column effect (#4. Table 2) northe residual column

etlect by month interaction (#5, Table 2) were significant. and hence they were combined

with the error teflll{#IO. Table 2) prior to analyses(Tables 9 & 10)
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Site I

The analysis of variance (ANOVA) of site I log. biomass data showed thm

Study Period, Treatment, Treatmenlby Study Period interactions. aridDepth were all

highly significant(P < 0 .001) (Table 9)

Table 9 ANOYA of site I log. biomassdata with combined error, ( ~ . P " U, 1l 5 ~ n , P":IUlI :
·· · . P< UJ1nl )

Smlll:~e SS DF MS

StudyP eriod un , 1.111 16,21
Treatment 2.f~1 I 2 .(,1) 15.II'J
Trc auncm StudyP er iod 1.1(, , n.7'1 1ll.'JU
Dep1h 1,u] ) I .un 11.!l(.
Depth x StudyPerind 1.<)1 12 0 .1(, 2.22
Treatment :" Dep1h «1,<)(1 ) tI . .lll U2
Trcatmenl x Deplh x Study Period n.l l 12 ruu tl.15
Error 2.'m ,,, U,U7

TOI<lI I'J.51 "
Table 10 ANOYA of site z log bicmass data with combinederror. (0, 1" 1I 1l~: ". 1' '-­
um: on.p < IUlIll)

Source SS DF MS

StudyPeriod , 1,71l ](. '111

Tre<ll lllCIU U 4 I 1,14 lUI ..
Trcanucnt .X Stud)' Period 1,(1(, , /I.2lo 2(.4
Deplh 5AlJ .) I,lin 17,')1l
Depth .xSilldy Period KUII 12 !J( ,7 (,-i,l

Trcntmcm x Depth n,04 l ) 1).104 I .n
Trcauncm '< Depth x Study Period IA7 12 o.u 12 2
Error 4,n2 '" u.tu
TOlII I 21Pll 7"



Sile 2

The ANOYA for site 2 (Table 10) shows that study period, depth, and the

study period/depth interaction were highlysignificant (P « 0.00 1). Both the treatment

effect(P < 0,01) and treatment/study period interaction (P c 0.05) were less significant

thanat site 1(Table 9)

3.5 Main Effuts

3.5. 1 Study period effects

Sit e 1

At site I. mean biomassaccumulationwas greatest at the end of the

August/September studyperiod(4,71)and lowest at the end of the September/October

period (4,04) (Figure II ), JunclJuly biomass (4.61)was verysimilarto the

August/September value.

June/July and August/September foulingassemblages were characterised by heavy

nccumulunons ofrelatively densefoulingorganisms (primarilyM,l'/i/II.\·l'(/II/i.~ (App.I .

Tables A1.2 & 1.4), Incontrast.September/October assemblages werecomprised

primarily ot'Iess dense algae andlwdrolds f App.L Table 15)
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Fig.ure II Mean log, mean biomass by study period for sites 1 (HMSC)(SE.:!:: O,()(17j and
2 (Jail lslandl (SE ! 0.078)

Biomass values for May/Jun e and Ju ly/August panels were YCT)' close, a t 4.29 and ~2l:1

respectively. However, the composition of corresponding assemblageswas merkcdly

different May/June panels were fouledprimarilybyalgae(App I. Table AI,I) In

contrast. July/August panelswere heavily fouled with juvenile A-~l'lillls 1:""Ii,1 lApp.I,

TableA U >



Sit~ 2

Thela rgestmean biomassvalue at s ee2 o ccurredon the

Septtmber/Oct oberpanels(log..meanbiomass=: 4 .17)(Fig ure 11). Thelowest value was

recordedfor JundJuly (3.98). although thiswas o nlymarginallylow er than the

July/August meani4 .02). May/Juneand August/September vaJues were 4.15 and4.4 I

res pectively.

Sep tember/Oc tober panelswere heavily fouled by hydrcids (App. l . TableA I.S), the

hydrocauJio f which comprised a relatively dense. proteinaceouschitin complex The

comparatively lighter June/July and July/August panelshad distinctly different fouling

assemblages CApp,I, T abSnA I.2& 1.3) . with the former comprised primarily ofalgae.

whil5lthe tan er bad a combinat ionof hydroids. algilc and smallmusseU_Fou ling for the

two periods withinte rmediate biomassvalues, May/June (4 . IS) and Au~'UstlSeptember

C4A I I, lI'a~ characterised bya mixture of algae and hydroids (App. I . Tables AI.I & 1.4)

J.S.2Trulmen l flTtcts

Overatl. Easy-Ne tnl antifouling wa x reduced biomass accumulanons on

net panels(F igure I ~ ) . The log. mean biomass for treated and control panels at sile I were

-l ~o mul-l,56 respectively.Corresponding site 2 valueswe re 414 and 4.39,
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Figure 12 Mean log. biomass on tre ated (Easy_NcI™) and control panels at sites I
(HMSC) (SE!. O.043)and 2 (Jail b land)(SE ± O,04{})

3,5.3 Trea l me nl/slud)' period effects

For both sites, the trea tment/s tudy period eflect w as significant but to

different degrees (Figures J 3 & 14). At site I. the effect was highly signific ant (p . O.nOI)

(Table 9). The significance level of'the treatment/study period effe ct ill site 2 was0 ,05

(Table 10 )
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Figurt 13 Site [ mean log, biomass for consecutive study periods (SE:!:. 0.095)on
treated (Easy-Neln l ) andcontrol panels

Site 1

Mean log, biomasstreatmeravalueswere lower th an corresponding

con trols for aUstudy periods except Jul y/Augu st (Figure 13). whe re treatme nt (4.37) was

higher than control (4,23) . Th e June/Ju ly period showed both the highest biomass

accumuhuion (Centro: '"5. 15) andthe greatest difference between treatment andcontrol.

with values 0( 4,07 and 5.15 respectively, May/Junetreatment (4 .25 )and control (4.32)

values had theleast difference. Thedifferences bel' ·"c" .reatment andcorresponding
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control valuesfor AugustiSeptember(4.53 and4.89 respectively)and September/October

(3.86 and 4.22 respectively)were similar.

6.0

U'l 5.0

~
S 4.0
iii
tfI 3.0
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~
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0.0
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l- I- l- I-
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l- I- I-- I-- -

Study Period

Figure 14 Site 2 meantog. biomass for consecutivestudy periods{SE ± 0,1J I) on
treated (Easy- NetH1J and control panels
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Site 2

The treatmenteffect was generally less pronounced at site 2 than at site I

(Figure 15), The greatestdifference between treatment andcontrolbiomass occurredfor

August/September panels (4.13 and 4.69 respectively), Treatment values were also lower

than controls for June/July (3.78 and 4.18 respectively) and July/August (4.16 and 3.89

respectively), In contrast, treatment values werenOIseparablefromcorresponding

controls for May/June(4.16 and 4 . 15respectively) and September/Octo ber (4.78 and4,75

respectively)

3.5.4 Dept h effect

At both sites there was a positive relationship between biomassand depth

(Figure IS, Tables 9 & 10).

Site }

Biomassvalues for depths 2 and3 were verysimilar, at 4 ,45 and 4.47

respectively, with the value for depth 4 only slightly higher (4.55). In cont rast, the biomass

value lor depth I (4.05) was substantiallylower .

Site ]

At site2. the differe ncesbetween biomassvalues for depths 1,2 and 3 were

mere pronounced than for sheI (3 .85.4,23 . and4.47 respectively). Values for depths 3

and 4 were very similar. at 4,47and 4.50 respectively.
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Fig. 15 Mean log, mean biomass by depthat sites 1 (HMSC)(SE ±0,060) and 2 (Jail
Isl and) (SE ±0.070).

3.6 Confidence Limit s

The calculation of confidence limits (Table 11) at sites 1and 2 were based on a

va lue of t(a.,40) At site 3, because s~ is based on five distinct error variances (each with

8 df) , confidence limits were calculated with the 'conservative' value or ICa., H)
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Table II % biomass reduction limits for Easy~Netnl antifoulant at thethree study sites
(9 9.9"10confidence level)

Site
Limits for %

Confidence Limits forIn (D) Limits for D Redu ction in
Level Biomass

Lower Upper Lower Upper Lower lJpper

99.9% -0.5744 -0. 1469 0 .5631 0.8634 13.66 43 .69

-0.4901 -0.01 34 0 .6126 1.0135 -1.3 4 38 .74

-0.6588 -0.0 7 12 0 .5175 0.9312 6.88 48 .25

3.6.1 Economic decision rule

The ratio of the average 1990COSl of treating a standard enclosure net with

Ea sy-NetT"' , andthe average totalannual COSI 10 clean untreated net (AID) was 1.05 (A '"

$42 0CDN; D.. $400CDN). Withan average of fourchangesa year (f. ), eac h 25%

red uction in biomass would reducethe number of required netchanges byon e.

Bused on the economicdecision rule (f,. ~ r.> AID), Easy_Netn 1 is economically viable if

the number of required changes is reduced byat least two (f, :::2), representing a 50%

red uction in biomass. Theupper limits for allsites at r~, .: 99.9% confidencelevel were less
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than 50";' (Ta ble I I). T herefore, the use of the antiroulant was deemed econonucally

quest ionable.
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4. DISCUSSION

The results of thisthesissupportthe observationsof salmon farmers. Temporal patterns of

local net fouling organismsweresimilar10 thosereportedbyfarmers, andthe useof a net

antifoulant reduced accumulated biomassthroughoutthe study. althoughit did not

si£!lificantly affect relativeabundance In addition, the results showthatwhile small-scale

spatial variabilitycanoccur innet fouling communities, local environmental conditions

may affectthe character andvigour of communities Morphologicalformandsizecan also

be usedto inferpropaguletype. andrecruitment mechanisms and periodicity.

~ .1 FoulingCemmumty Composition

".1.1 Fouling "rgAnisms

The general types of organisms which were described bysalmon farmers.

namely 'slime" (diatoms). "sea grass" (various chlorophytes), "brown hair" (various

EClocmfJules). "browngrass" (Sc)'/(J'\"ip}w /I fOll ll! lIllf r ia ), "wire weed" Ihydroids]. and

mussels (,t.~I ·'illl .l" t'dllli,l") were wellrepresentedinall fivestudy periods(Appendix I). The

taxaidentifiedare not surprising. Theyare common members of the local flora (South et

ul. ]()8S) and fauna(Brinkhurst If' ul: 1976). andare widelyrecorded asfoulingspecies

(WHOII Q~2. Fletcher 1980a. Tittley & Fletcher1984)

The persistenceof a numberof algae across all study periods(Appendix ') conflictswith

recorded seasonality for correspondingcoastal populations(South& Hooper 1980, South
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& Tittley 1986. South I!/ 01.1988). Thismay reflectthe absence of environmemal

pressures,such as grazing, desiccationand wave exposure, which can influence the

composition of coastal populations (Underwood & Denley 1984, South & Whittick 1987).

These types of pressuresare likely to becomparativelyless extreme on organismswhich

are attached to floating, submergednetpanels than on those colonizing rocky shores

4.1.2 Temporal Pan ems

Therewere alsoclose similaritiesthe between temporal occurrences

patternsof taxa recordedon the net panels(Appendix I) and those describedby farmers

The Ulvalesand Ectocarpaleswere most prevalent in the first two study periodsCSprilll:!.

andearly summer),but in later periodsthe composition was increasinglycharacterizedby

hydroids. musselsand the brownalga&}'/Osipllllll/o/lltJlllaria. Unfortunately.with datu

fromonly one fouling season it was not possibleto compare the apparentlycyclicpatterns

of occurrencesbetween successive years

4.1.3 Treatment ElTects

In contrast to the extremelimitingeffects of organotin antifoulanlson

foulingcommunitycomposition,allreported by farmers,the analysesof pooled relative

abundancedata showed no significant differencein composition betweenthe Easy-Ncr"

treated linduntreated nels, Despitethe lowenergysurfacecharacteristicsufthc wax

promotedby the manufacturer,a widerange of organismswore able10colonizethe

material This suggests that the product will nor gainhroad acceptance in the aquaculture
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industry. This is particularly so in light of the high performance expectations for

antifoulantsby salmon farmerswho consider anything more than an accumulation of

"slime" an indicationof poor performance

4.1.4 Depth Effects

The effect of depth on relative abundance was most pronounced in the

green algae, with a generalt rendof decreasing abundancewith depth (Table 1 &

Appendix I). A particularlypronounced depth effectwas exhibited by Utvolactuca, a

locally common(South et al: 1988), typical splash-zone fouling species (WHOI 1952,

Terry & Picken 1986), At all three sites it occurred most frequentlyon upper panels, near

thesurfuceof'tbe water.

Generally, the verticalzonationof algae on rockyshores is considered to be expressed

overgreater depths than the one meter rangechosen for this study (Round 1981, Lobban

et al. 1985, Luning 1990). At a smallerspatial scale.Fletcher ( 1980a) recordeda distinct

verticalzonation in the relativeabundance of a widevariety of algaein 10cm splash-zone

bandson floatingstructures, Consideringthe potential complexitiesof developmental

processes, and structures of marinecommunities(Underwood & Denley 1984,

Underwood & Fairweather 1989, Vadasl'/ a/. 1992, Boerc 1994),spatial and temporal

scaleshave to be considered whenassessingwhcthe. patternsare typicalcr atypical

(Underwood& Denley1984.Roughgarden /!I ,II. 1988. Santelices1990. Osman et al.

IQ()~ . Boero 1994.Osman & Whitlatch 1995). It mavbe that the type of small-scale
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vertical zonation which was recorded for the net panels is typical of short-term, shallow

fouling assemblages, but a greaternumber of observations may be necessary 10 elucidate

spatial and temporal patterns

The results show that the types offo uling organismsconsidered to be problematic hy

salmonfarmers typically colonize nets which are suspended in the upper one metre. With

respect to the potential for the development of integrated fouling management programs,

thischaracteristic has practical implications, Farmers periodicallyassess the foulingstut e

of nets visually from walkways,hut for the mostpart their anecdotal observations on

foulingcomposition are derived from more thorough examinations of fouting on entire

nets when theyare removed fromthe water IOfcleaning. Below thealgae douunuted

splash-zone, foulingis predominantly invertebrate, and the composition tends to be fairly

uniform al the end of respective IWO month submersion periods. Therefo re. periodic ill

.~i/ll assessments of the upper one meter zone, which would indicate both thecharacter of

algal fouling in the splashzone and invertebrate foulingon lower regions of the net, may

provide sufficient information to be used as the basis lor fouling management decisions

4. 1,5 Study period effects

For the mostpart, patterns of relativeabundance of the algae with respect

to signilicamstudy period effects (Table 7) werenor related to seasonalpaucrns of

occurrence for correspondingcoastal populations (Hehrc & Mathieson IlJ70, Mathieson

& Hehre lC)83, Halfman 1987, Southe/CII. 1988. Whittick et al. 1911{J), For example,
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Euteromorphaintesnnatis was least abundant at the end of the spring study period (end

of June), although on the coast this species is normally abundant at this time, Similarly,E.

lim " and H.pml~(erct were typicallyabundant in the late fall period (end of October), but

had a relatively low abundance rating early in the year, despite records of their local

prevalenceon natural substrates throughout the spring and early summer(South & Tittley

IQ86,South l'/ (I/. 1988). Species of IJ()rp hYHIoccurred quite typically, early and late in

the season (South & Tittley 1986, South ct at. 1988). These results suggest that 'study

period effect significance', with respect to algal relativeabundance, is unlikely to be

related to the vigour of correspondinglocal coastal populations. and their productionof

viableprcpagules. It is more likely to reflect the vagariesof propagule recruitment

intensity and post-recruitment mortalityon community structure (Underwood & Denley

1984, Boero. 1994),and/or inherent limitations of subjective relative abundance rating.

Amongst the invertebrates, three speciesshowed significantstudy period effectswith

respect to relative abundance (Table 7). Allgenerallyreproduce seasonally(WHOI 1952,

Harris 1990, Seed & Suchanek 1992), but exhibitextended dispersal and recruitment

cnpabilities [l larris 1990, Seed & Suchanek 1992). For example. reproduction in

tcmpcruteMI'lilll,\'populations lyp ic ~lI ~' occurs in the early spring and late fall (Bayne

1%4. Seed & Suchanek 19(2). but mussel propagutes are planktctrophic and remain

capableof pelagicdispersal and recruitment for as long as two months (Lane et nl. 1985.

Lutz& Kennish 199::!). With this in mind. the lower abundanceofA~rlilllsin the first and

lustperiods (Apr . 1, Tables AI .I & 1.5) muynot be reflecting variability in reproductive
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output, but pre- andpest-recruitment mortality (Underwood& Fairweather 1989), or

post-emigration densities followingjuvenile pelagicmigration (Lane et ul. 11)81.1985).

Similarly,study period effectsexhibited by the hydroids TumdonoUOC: I.'(/ and Ohdi(/ sp..

may not be solelyattributable to their spring and rail reproductive cycles. Both taxa exhibit

planktotrophic. pelagic dispersal. and recruitmentpatterns willreflect these adaptations

IRoughgarden 1.'1at. 1988. Underwood& Fairweather 1989). These persistentdispersive

capabilities. the ability to become establishedrapidly, and presumably a resilience10post­

recruitmentmortality. all contribute to the prominence of mussels and hydroidsas

particularly troublesome components of fouling on aquaculture nets

4.1.6 Site effects

The Kruskal-wallace analysis is a particularly usefultest ofsite

independence. as it indicatesa directional shift in medianvalues [Undervvcod 1981,

Goldman& Weinberg 1(85 ). In this case it facilitates the interpretation ofsite effects from

the relative abundancedata (Table 7). There was a generalpattern of greaterabundanceat

siteI. but this trend may not reflect the particular suitabihtvof local environmental

conditions tor the development of net fbuhng Therewere some unusual conditionsill the

Jail Island (site 2), which may have affected till!relative abundance and vlgour uf spL'Cics

Site :2islocared downstream from an overflow uft he Letangpulp milleffluentpond. and

there was substantial anecdotal evidence Irom theoperator of the site that the turbiduyof

the «mer and the abundanceof green"weeds" uuddiatom "slime" increased sUhstamially

following periods of high precipitation This suggests thai run-otTfrom the effluent pond
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periodically influenced conditions at the site, although according to the operator there was

no apparent detrimental impaci on fish production and health. Visually,there seemed to be

a generalcorrelation between levels of predominantly diatom microfoulingand a lack of

vigourin variousorganisms. particularly Hmenmmrp!laspp., t'etalomafascia.

,'w.;!1ft\;/HIfJ/I /fJml:lIrUriCl, and the hydroid7ilhll /ur iu croceo. These specieswere

significantly less abundant al site 2 than at sites I and 3. the Ihalliof the algae had necrotic

regions. and many hydroids lacked bydranths The potential effects of microfouling on the

vigour nfntacrofoulingorganisms is unclear. There is evidence lnal benthic diatom

eccumctatonscen stimulate the growth of algal recruits (Huang & Boney 1984)

Conversely. the deposition orsuspended sediments.has been reported to have negative

effects on survival(Dayton 1975. Neushel 1:1 ClI. 1<)76. Santelices 1990) . In contrast to

rhese results. Kennelly ( 1983) reponed positiveenhancedsurvivalin the presence of

sedaucms.hut this conclusion appearsto havea questionableexperimentalbasis (.wt'

Saurelices19901 The contradictoryevidence in the literature of the effectsof

micrllfouling on algal recruitment makesit difticuh to differentiate betweenthe periodic

release ofpulp effluents and rmcrofoulingas tilt possiblecauses of the lower relative

abundauccs and the lack crvigour offonhng organismsat

site ~

4.2 Gr owth Form nnd Reprednetive Status

4.2,1 Gro wth forlll
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Algae

Algal growth form can be a useful indicator of propagule ontology. Small,

early-developmental forms such as basally-anached sporelings (e.g . l~il1<,nl/lllJlph" sp, &

Scagdi u sp. in Fig. 4) are most likely to have recruited as spores or other

rnicropropagutes. More highly developed andentangled forms (Fig. 6), lindsmallthalli

arising from rhizcidal masses (e.g. S' :l'Iw' ipluJII loJllemaria in Fig. 4), arc likely IIIhuve

originated as either spores or entangled 'd rift' fragments (Clokie & Boney 1980, Norton

1(92). The prevalence of entangled algal formsin nil study periods (Appendix 2), and the

common occurrence ofla rge, floating mats of dislodged algae in the Passamaquoddy

region suggest that entanglement of driftingfragments is a significant colonization

mechanism for aquaculture nets. produ .tion of these fragments is largely dependent (In

nvdrcdynamicforces(Denny 1988, Santelices )9{jO), and in light of the extremetidal

forces in the Bay of Fundy (ThursloIl1( 90), sufficient wurer now to dislodgeand disperse

them is likely. Clokie & Boney (1980) make a strong case that coastal waters C1m he the

source of a substantial quantities of algal fragments or a wide variety of species, and

fragments of manyspecies have the capabilityto formattachmentstructures (Iller

recruitment(Round 1981. Kennelly & Larkum 198] . Smucltccs11J9(Jj This

developmental feature makes it dil1icult to ditlcrcntintcbetween plants which originally

recruired as spores or Ilagments

The laucr point is important with regard to the rate ofincrcusc ofhydr odynumicforces on

nets as the~' becomefouled. Size and roughness(surface relief)of lilliling orgunisms



determines drag, which in turn determines resistance to flow, and therefore hydrodynamic

loading (.we Denny 1988, MTD 1992), Increased roughness and, therefore, hydrodynamic

loading are functions of increasing size (Wolfram& Theophanatos 1985, Denny 1988).

Whensubstantialquantities oflar ge, morphologically complex algae become entangled in

nets. loading increases rapidly. In contrast, the development of organisms from

micmpropagules leads to more gradual increases in loading. The importance of these

differential increases in the rate of hydrodynamic loading on the operational implications

of net fouling may be significant. If foulingat a particular location, or at a particular time

of year, originates disproportionately as drifting material,and not micropropagules, then

there may be substantial, pe riodic increases in hydrodynamic loads. If it was established

that this was the predominantcolonization mechanism, it might be worthwhile to consider

a physical barrier 10catch drift algae before they arrive ar the enclosure net.

Anothercomponent of hydrodynamic loading calculations for fouling assemblages is the

morphological flexibility, or compressibilityof constituent organisms (Wolfram&

Thcophanatos l'l8S. MTD 19( 2). Algaeand hydroids are considered compressible to

varying degrees. whereas organismswith rigid calcareousstructures, such as barnacles and

musscts arc incompressible (Wolfram &: Thecphanatcs I()85. MTD 1992). The lower the

degree uf compressibility of an assemblage, the greater the hydrodynamic load (MTD

1I1():l1
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Invert ebrates

Considering the relative incompressibility of mussels, and related

hydrodynamicimplications. ellmassebysso-pelagicmigrationand recruitmentof'juvenile

mussels(Lanect al. 1982,1985) has the potential to rapidly increasethe hydrodynamic

loadingof nets. Observations ofbyssc-pelagic migration at site 3 at the end of the

June/July period, and the size and the attachmentposition ofjuvenilc mussels 10 the

surface of underlying fouling (Fig. 9), suggests this is a locallyactive colonization

mechanism.Similarly, the dense,aggregatedgrowth formof hydroids, particularly

l ulndaria crocea(Fig. 8). suggests that gregariousrecruitment oflnrvne (Harris 199(1)

and localized spreadof basal stolons (Brusca& Brusca 1990, Harris 1990, Roberts ,'/ 1//.

199J) are activecolonizationmechanisms. The typical clumped. erect, wirey growth form

of hydroids, is moderately compressible(MTD 1(92) and, therefore, contributesto a

lesserdegree than mussels to hydrodynamicloading

4,2.2 Repreducrive status

The reproductive status of organicns reflectstheir potentialto produce

viablepropaguleswhichmayrecruit and developinto reproductiveindividuals. The

reproductive state of fouling organisms. whichare attached10nets, will indicate their

colonization potential,but not whethercojoninuion will actuallyoccur. Prnpagulcswhich

are producedby net foulingorganismsmUSI survive the rigoursof dispersal. rec ruitment

and post-recruitment mortality before they becomesulliciclilly well cstnblished to



constitute a fouling problem. When clean nets are placed in the water, they immediately

becomeavailable far colonization bymicropropagules, algal fragments andjuveniles from

the surrounding water. If organismson adjacent nets or other submerged surfaces are

reproductive, they may act as a source of inoculum for clean nets. Also, during net

changing, the local quantity of propagules may increase when mieropropagulesa~d

fragments arcdislodged from nets as theyare removed fromthe water.

Alglli!

As discussed previously, the majorityof algae on study panels were

reproductive in the first and last two periods, althoughseveral were reproductive

throughout the study (Appendix 2), These observations offer a confirmation of the

typically broadreproductivephenology of the majorityof the algae (Hehre & Mathieson

1970, Round 1981, Mathieson & Hehre 1982. Mathieson& Hehre 1983, Lobban et al.

1985. Hoffman 1987, Whittick ct al. 1989, Luning 1990). These algae have the potential

to be the source of prcpagules. but as discussed.the likelihoodof colonizing adjacent

structures cannot bep redic..ted

lnvenetmuos

Both hydroids and mussels represent a potential source of colonists,

uhhoughlike the algae.the vagaries of recruitment make it impossible to predict how

Iikcl ~' thcr ,m' IO infest adjacentstructures. Robertset a!. (1991) report that hydroid

larvae. srcciflcally thoseof Tllhll/aria sp. and ()bt'/ia sp.. recruit rapidlyin the immediate
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vicinity of parem populations. However. both these species have planktotrcphic pelagic

dispersal phases, suggesting they are capableof dispersal over larger spatial scales

(Scheltema& Carlton 1984, Brusca & Brusca 1(90). The reproductive status of hydroids

colle cted from panels during this study was not investigatedand, therefore, it wasn't

possible roassess their potential to colonizeadjacentstructures

Based on the assumption that observed smallmussels were sexually immature (Harris

1990, Seed & Suchanek 1992) , their potential to colonize adjacentstructures was limited

to their ability to detach from substrates and disperse pelagically (Bayne 1964. lillie t'/II/.

1982. 1985). Again, the likelihood of colonization of adjacent structures depends on

largely stochastic juvenile dispersal and recruitment mechanisms. The distancesover which

pelagic dispersal of juvenile mussels occurs is unknown, but appears to be substantial.

Mussels havebeen observed as common members of geographicallyisolated onshore

foulingcommunities on the western Scotian Shelf region oft hc North Atlantic {jJ<'l'x.

oh.\l!I'l' .) .

4.3 Ilioma ss Accumulation

Biomass has become a standardized measure of'uer fouling (Milne 1970, 1 97 ~ah ,

Lovegrove 1979. Sutterlinet at. 1981, Hall erul. 1989). Although as a measure il docs

nat reflect the hydrodynamic impacts nf fculingall nets, it offers the benctus nfbcing easy

to collect. nnd familiar to the aquaculture industry. The industry uses weight for a range of

operational measures k.J!. production. feed), and biomass-based antifoulant evuluutinns

Re,



are likelyto be wellreceived. In addition, the performanceof any antifos-lant with

potential to be adopted by the industry is likely 10be reflectedinbiomassdata. 'Wet'

measures (Milne 1970,1975ab, Lovegrove 1979, Sutterlinet aJ. 1981, Han et al. 1989)

tends to he more variablethan 'dry' measures (Weitzel et at. 1976) because of variability

in the quantity of water retained by the fouling The methodology for this study minimized

this SOUTce of error by blotting of each sample accordingto a standardized protocol.

Although this approach does not strictlycontrol errors associated with the retention of

water. an unpublished commercial study conducted in 1988showed similar variances for

' blotted' wet and oven-drieddry fouling accumulations. There are certainly logistic

advantages to not having to dry large quantities offoulingorganisms in an oven

4.3.1 Experimental design

The randomizedcomplete block configuration of net panels in the net

frame has the advantageof providing data on relatively large 'stable' quantities of material

<Little & Hills 1( 78). Sub-sampling each net panel provided estimates of the mean and

standard deviation of biomassfor each study period andsite.

Based on the expectation or a positive function betweenduration of submersion and

accumulatedbioma~s tWeil zell" at. 1(79). and the somewhat skewed distribution of

studcnrized raw nata. a log, transformation was performed to stabilizethe variance 0.«:.

one tl-m docs not vary with the mean). A subsequent Barlett's test revealed heterogeneous

vnrinncc. whichwas traced to unusual characteristicsof the data for site 3. This was most
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likelyattributableto interference\\ith experimental unitsby farm personnel which was

only discoveredseveral monthsafter the:completion oft ne fieldprogram. Apparenlly fine

farmemployee repeatedlyremovednet framesfrom the water during routinemaintenance

activities. and left them lyinghonzentallyon cage walkways for unknown periods of lime.

The ma:-.ni tude of effects this may have:hadon the foulingcomrnunityis unknown, hUI IIis

likely I-J have been some degreeof desiccation and possibly dislodgmentof or ganisms

which wou ld have affected results, Th is uncertainty made data (rom site ] lInrdi ahlc for

inter-site comparisons.

4.3.2 An alysis oh·ar iance (siles I & 2)

Stud)' peri od eITecls

The underlyingpauem of study period efTeel:. with regard 10biomass

appears10 somewhat reflect the relative densitiesof constiu em organism... Those With

dense morphological features. such as the calcareous shellsof rnulI!lcl 5., and the

chitin/protein hydrocauli of hydroids (Brusca& Brusca 1990, Harris 1?90). have a higher

relative:density than 1Il0S1seaweeds(Denny 19RR. MTD 1(92). The substantial bitlll1u)is

recorded for AugustfSeplember panels at site 1 coincided with heavy mussel fouling

Similarly. the highest accumulated biomass m site .2was recorded for panelstouted

primarilyby hydroids Conversely. the lowes1biomass values forboth sites I and z were

recorded on panels fouled primarily byalgae (Appendix 2) It shculd be noted that this



appa rently density-related pattern was not expres sed consistently. •tnd on many panels

stud y period effects appeared to be the resu lt of'nc cumula tcd bulk, and ll\ll Ilw respective

densit ies of'c onstituenr organisms

Treatment clTcels

Easy-Nett» clearly reduced biomass on nets. This result i:nntraslS markcdlv

with the analysis nfr rentmcm effec ts with respect til relative abundance. whichshowed nil

significance. II seems reasonable 10 inter that this contradiction is 111'.lI'e likely III rd k f:l

limitat ions of us ing visual estimates of reialive abundance than some unnccountcufn!

anomaly in the biomas s data As discussed. low cncrg v su rfaces lend III interfere with both

the recruitment of'micr opropegulcs. lind the cnmng lcmcm and nnuchmeut Ill"seaweed

fragments and juvenile musse ls (Fletcher &. Baie r 1111'4. Callow ('f !II. II1Xb. Sanrcliccs

1990. Vada s 1.'1 (I/. 1992) It is assumed tbutthc lnw-cncrg y surface presente d hy Ihe lIel

wax interfered with the recruitment otpropagulcs. which resulted in the lowe r hhl1lHISS IHI

t reate d than umrea red nets

Tn':Itmcnt/sludy Ill'ritu l t' ffl'c l~

T"~ effect of the treatment on biomass in paniculursI UlJ ~' periods was

more pron ounce d than treatment effects pooled ncross Sludy periods This imlic,lIes Ihal

some organisms we re probably more affected b)' the pn:sence of the net u eutrncm in somu

periods than orbcrs



Si re /

The greatest difference in biomasson the treatment and control panels was

recorded on the JunelJuly panels. where accumulations of the hydroid Tutndanacrocea

were heavie r on control compared to the treated panels [App. I , Table A1.2), This

suggests that the surface propertiesofth e net wax may have had a limiting.effect on the

establishment and lateral spread of the typicalstoloniferous mal of Tuhuknia (HaJI;s

19 lJO, Roberts t' l til. 19( 1), The lower biomasson treated compared to control panels for

<III othe r periods except July/August, supports the contention that the net treatment

imcr tercd withcolonization

su«:

In general. the treatment effect was less pronounced at site 2 than at site I.

Th e grclltcst difference occurred in the August/September data, although there was no

obvious compositional difference between thc treatment and control assemblages (App. I,

TableAI ..J)_Similarly, data for the June/Julyand July/August periods showed some

treatment effect, but nn obvious corresponding difference in composition (App.l , Tables

,.\I,2 & I.J ), The occurrence of marginally higher biomass values on treated May/June and

Seplcmhcr/CkIOhl'r panels shows that the effectivenessof the nettreatment to limit

cotonizutiouand growth was not particularlypronounced at site 2. Questions surrounding

the jll\ICllli"I effects of 011tilow from ,111 effluent pond and/or the presence of heavy
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microfouling on net foul ing organisms make it difficult to interpret the rclmivc ubscncc '.If

treerrnent effects at sire J

Dept h crrecu

S imilar to study period ctlects . the signific am depth effects for hoth sites I

and 2 appea r to reflect the relative density of consti tuent otgnnisrus. Biomassvalues I{II

top row panels. which were fouled prcconnnanuvby algae. were subSI:lI1 t illtl~ ' lower than

for the three lower dept hs, which were fouled prjmnrilyby more dense invertebrates The

ope rational value of these results is limited because the chosen quamitarivcmeasuredocs

net reflect thecharac teristic of fouhng.namely resistance 10 tlow, which cunstitutusthe

grea test operational problem

4,3.3 Economic Anll l)'sis of E:lS)'·NetT'I

Easy -Nett does not appear to reduce biomass sutflcwutly lor there In be

much likelihood thaI produce rs would usc the produc t . The eco nomic decision (in teg.er )

rule ind icated a reduction of at least !iO% in accumu lated biomass wou ld he requir ed lhl

there to be an economic case for using the produ ct. The biomass confide nce inter vals fur

atlthree sites (T able II) showe d that atleast l)9.9"A, ofthe time, the level orhionHlss

reductio n will he lowe r than !i()O/;' T hese results donotmake much of an economic (,;l!SC

for the use of Easy-Nett
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The economicanalysis is based on an assumption that biomassis a reasonable operational

measure of antifouling performanceand, therefore, is a viable basis from which to make

operational decisions. Asdiscussed, biomass is an attractive measure, Data are fairly

straightforward to collect, and the measureis familia r and is used widelyby farm operators

as an operational measure, Unfortunately, biomasshas nor beencorrelated with the

fundamental problemassociated with net fouling. the restriction of'water flow through net

mesh (Milne 1970,1975ab, Bevan 1987, Beveridge 1987)

A more useful measure of fouling would quantify the structural aspects of fouling which

determine resistance 10water flow, This is a keen interest of structuralengineers in the

offshorepetroleum industry(Wolfram& Tbeophanotos [985, MTD 1992), but to date

practical solutions to this problemhave not been found. The behaviourof marine

organismsunder the variableflowregimestypical of coastal waters are immensely

complex(Denny 1988) and attempts to model and correlate resistanceto flow with

morphological strucnrre at the community level have beenunsuccessful. In the offshore

petroleumindustry the measurement of'foulinghas been standardized as a simplemeasure

of increased diameter oflbulcd components (MTD 1992), The product of'the size, percent

cover and rclalivc compressibilityof constituent organisms are summed to generate a

compressed thicknessfigure (l\fTD 1()()2). Thisapproachdoes not account for the

cllll1 l'ihutillrt\11' sur/ace roughness 10 drag. or resistance to flow.Consequently, resistance

til !ll ll\' musthe estimated. and thc valueswhichare used tend to be extremely

conservative1/)(',.\,. ,' 1111111I. Dr. 0, Fowler. Brown & Root plc.). At present, the most
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promisingtechniqueto address theselimitations involves the characterization nfsurnu;e

relief. ASa measure of relative roughness. using various digital image manipulation

techniques It is hoped that eventuallyit willbe possible 10correlate these surfacerelief

'profiles' with a catalogue of'expenmentallvdetermined drag forces for variouscunuuon

types of fouling assemblages

4... A Final Note: fouling predictions

It is increasingly clear that the complcxirv ofhenthic community composirionlind

development requiresubstantial experimentallindanalytical rigor to clucidntceven simple

changes over time. Regardless. many fouling management strategies are based on a belief

that foulingcan be predicted (Richardson &. Seed IlJ90, Osburkov 1992, Zvyagjntscv&.

lvin 19(5). This is not a surprising position considering the potentialoperationalbenefits

of predictingfouling (e.g planningcleaning cycles.and relining structural analyses) II is

bolsteredby the large body of work which considers fouling development to he

ecologicallysuccessional (see Sousa IlJ79ab.1984. Dcan& Hurd IlJRfJ, Schoener I(JR4,

r-.1cCook & Chapman IlJlJI.1993), and that over-time communities P HSS through nseries

of predictable'stablepoints'(.I'l'l' di. I'l ·/I .I-.I';rJ/l til Sutherland& Karlson 1(177, SutherlamJ

1984. Underwood & Denley 1(84) In light of the widelyquestioned validnyotrhcsc

perspectives( .1'(.'(' Sutherland& Karlson 1977. Underwood & Denley jCJK4. Bocru 1'1'14.

C) ]



Underwood & Anderson 1994), care must bet aken not to use operational expediency as

the basis fo r proliferating a belief inempirical predictive capability.
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5. CONCLlISIONS

This thesis has shown thai the sessilemarine organisms which foul salmonaquaculture

nets in southwestern New Brunswick arc common members of the localfuuna and 110m It

showed that both the quantit y and type of organismschanged throughout the summer

production period. and that the greatestbiomass was contributed by invertebrates.

particularlymussels. It also showed that the antifouling wax Easv-Ncrt reduced the

accumulated biomass cf'fouling, but insufficientlylor the industry to usc the product. Thc

net wax did not significantly reduce the relativeabundanceof organisms

The work also showed that biomassis 1I0t a gaud measure of louling, Biomass docs not

reflect the primaryoperational concernof fouling.whichis increased drag en fouled

surfaces. Current research efforts to quantity fouling for operational purposes arc

primarily concernedwith establishing links betweenthe physicalstructure orfouling

communitiesand drag

In addition. the thesishas shownlhat the growth form orne : fouling orglJlli.~ms is HgOlld

indicator of the type of reproductive propagulcs which rc..nril In the nels. The results

showed that algaearc capableof colonizing netsas spores and vegetative lragmerus.

whereas net fouling invertebratesrecruit as Iarvacandjuvcnilcs



Net "}uling patterns reponed by salmon farmers were found to be similar to the patterns

or fouling recorded for the study nets. Thisshowed that farmers have the abilityto

tlistinguish dilTerent types of fouling, andsuggests that the observations of farmers may be

useful to improve net fouling management strategieswithout the need for specialized

assessments. It maybe possible to employ fouling thresholds, which are based on farmers'

observationsof types and levelsoffo uling, as thebasisfor fouling management decisions

However, there has been little interest in the furtherdevelopment of net fouling

management strategiessinceeffectivecopper-basednet annfoulantshave becomewidely

available In this light, this thesis has minimal operational relevance
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Rela1ivt abund ance d.la



T.b le AI.J Relative abundance of maa ofouling organisms at tbeendofsludyperiod I (May/June)on Easy-Net'" trel le:!(T) and unlreated
(C) net panels. suspended verticallyat four depths(P=present: etle esr one occurrence;Cvcommon. distinct aggregations; A"'abundanl:clearly
pfedominant orga nism{s) on panel)
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(em) (IJ.)S) (J5-5O) tSIJ.7S) (75-1001 (1).2S) (25-50) I (SlJ.7~ (75- 1001 (IJ.~SI (25-"1 (SlJ.7S)

TREATMENT T e TC T e TC T C , T C J T e l T e TC T e T C

.
\75-1001

T C

p p
p

p p

C IC

• p

~ I~ ~ I c
p

A A lA A lA A ; C C C C c CiC C IC C

p p p I I

I!
p ip p p

p ip
p i

p p I p P: I
I p p i p p
!

p
p i p
p
p

p c

~
CHLOROPHYCEAE
Clldophonlet

Cladophorauricta
Clt«'~a lin "",

RNzoclO'lIIl"'rlparilim
lIroJportJwonlukioldii

1l104richln
( lfollrri xjlOCCQ

Ulula
,.:,,(t'romorplr(llnrr_nIIlQli.~

F.. linra
f:. proli! , 1'tl
1l/wl la<hl rtJ
lIh'tJrla ullsa. ro

PHA£QPHYCEAE
IrtlJCarp~

EclOCQI'puJJitjCll/(UU.~

Pi/I1,y~lfl1 littOrrJtiJ

Scyto&lpboe.a!n
P"alania!a=ia

RHODOPHYCEAE.....""
rotplr.......""n'a'..
r "'f'h,'1'Usp.

O"'''n'', '' ...

p

C
p

p

p

r
p

A

p p

p p

p ic

I
P IP I
P P P p pi

P I
P C p p



Toblr A l. l rontinlird

ClEraJaiakt
PO~vslplwnJa jl ezi cmJlis
Sc°Kr/ia pyl<lisri

INVERTEBRATES
HYDROZO A

HydroidJI
Bougainvilla carolinensi$
Obdio sp.
Tublilarif' croceo

1(JallblUld)

I I 1 j 3 I •(6.25) I (1 5.!lO) I tso.1!) 05.1llO)

T c I T c IT C T C
i

P Pi

3 (F l')'1E lJlud)

2 i J I •
(2S.50) ! (. 15) 1 0 5.11Ol

T C ~ T C T C

1
(6.25)

T C

P

P P

p

i P P

I p p p

I
(M!)

T C

SITE
D~'.PTH

~tra)

TREA TM ENT

CLASS

0"'"
G rnli$$1



T.b le A1.1 Relativeabundanceof macrofoulingorganisms at theendof study period 2 (June/July)on Easy-Nett treated(1) anduntreated
(C) net panels. suspendedvertically at fourdepths. (Pepresent; at leastoneoccurrence;Cecommon; distinctaggregations; A"abundant: clearly
predominant organism(s) on panel)

SITE : I tH"'sq : - 2fJ an b land) : J(F.,.e llludl
CLA>S DEPTH ; I ,

J I . : . ,
J I . : . , I ' .

Onkr (em) I \"15) ....., t. ' t) P :5-IOO) I ~J5) ...~, \-'''1 P M OOI' (O-J51 (15-_1 t.,t) P '-Ie.)

(im,,~ ~Mcip~ TRJ:ATMENT I T C T C T C T Ci T C T C T C T C ' T C T C T C T C.........
pi P

IClU..OROPHYCEAE
Aerosipltoaaks

SporrIlOMOl'phflSJl- P P P P P P P P P
C'I..wp1tonlft

Cladophora 5'riCtQ C P P P P P P P P P
C'IIOM)I"or pll"filllim P P P P pi p p p p p p p
Rlll :oc I.."; ..,,,riptJl1..... C C P P P C C P P P P P P P P P

UhaJu
'·.:nltf'rlm(JrpJrQinl ts li na/iJ C C p p P P iP P P P P P P P C A C C P P
":,/I"Z" P P

I
p P

I'r;P"<'llffftJ P P
fllvo lact uctl C C P P P P C C P P P

PHAEOPHYCEAE
DkQ -p......... pi p

c l ~
DictyasJpJta.l~"'cw/"u....

p p p p p p p p p p p p p p
ldoutpaln
F.cl<N:tJTPI'S slllnl"DS1I.~ P P P

p
p

P I P
P P P P P P C C C C C C

P1/~1I" /"'",",,II ~ P P P P P P P P P P P P C C P P C C C C C C
Lamla arflJn
lAminarlQsp. I P P

SqI.........aJeI

C IP Irp''''O#tI''f4~'' P P C C C P P P P P pip p p
.'i91(15'pIrotr lomt nIQIIQ P P A A A A A A

C'""Ii","J. ,.



Tt~b/~A I.! cont".lIt d

SITE I (HMSC) 2(Jail blin d) J (fr)'c lalu d)

CLASS DI:PTII ~ 1 :t I J .. : 1 :2 J I .. :I 2 \"
Order (,nil) : ...., <U-!oIO) ,_ 'S} (7....... : ~1SI PS-llOI '_'5) (7S,IOO): to- U\ (U.M) ('le.'5) (K.I~

Gtm'J.mrCits TREATMENT I T C T eTC Te l T eTC T eTC . T e T C _ T e TC

~=CEA£ i 1 'I
Porphyo 1flJnttl lQ P P P ! ~ P I

~~~ 'I IC~~_I..,., .-1111_". I P P P . P
Polpplo_IQJ1.,ri"ndl~ P P P P P P P P , P P P P pi p p P P P
&og~{la pyltJIjtl P P p e e ee l P P

INVERTEBRATES II ' !
HYDROZOA I

" , drolda , j
md,..p. i i ' 'I \. P
7lib " larlQ cra«a P A C AI C Ae A I P P II P P P P P

BIVAL¥tA ,

~{=!:1'1i'" PP 1 C C Cc i I PP P CC C C



Table AI.3 Relative abundanceof macrofouling organismsat the end of study period J (July/August) on Easy_NetTIII treated (T) and
untreated (C) net panels. suspendedvertic.dlyat four depths (Pepresent: at least one occurrence; C=common:distinct aggregations;
A"'Ilbundantclearlypredominantorganism(s)on panel)

CLASS
On;ltr

~

~
CHLOROPHYCE AE

Ac:ros:Ipbolla)tt
Spongomorpna sp. P P P

a .dopbonJes
Cladop/l oro urlcro C C P P P P P P P P P P
ChtNfOln<N]Jho/il/ilm P P P P P P P P P P P p

Rhizodoniumriparium P P P P C C p p C C P P P P P P
Ulvakl

FJl tr ro morpha inlrsonolis C C p p p p p p p C P P P C P P P C P c
£linzQ P P P P P P
E pro l iftro P p P P
l f lvo foctll ctl P P P P
Vh,tlria ooscuro P P P P

PHAEOPHYCEAE
Dict)ooslphoaaln

/)/ clytlJ1phonfiornlculoulJ.< p p p p
Ec:1OW'PaSts
F.cloctUptUsI/ICIlloSlI$ p p p p p p p p p p p C p c p p
PiIO)""lIa/Jrtoroli l p p p p p p p p p p p C P C P P P

LamlDarilJet
Chordafomtnll~<Q p p p p

Sc:ytoaipbouks
Pr ralonlQljt1ccin p p p p p
SQ1a,'iiphon ramtn/aria p p p p

OmIi1l1ltd...



Tabir A U COfI hnurd

SITE I (BM SC) 1 (Jallblud) J (Fr) r b lud)

C'o':r D~~ : ~~5) I (1;Y/l I t~'~ -4 : 1.1 1 s; I (7$-~00): l"~l 1
J ~ I •(I~ I OOl ' (1-15) (1S.SlII (1S-!101 t~'~ (1$o11JOl

Gr"uu~du TRl:A.TId £NT I T e l T c ! T C T Cl y eT C T e l y el y c T c y eT C

RHlXX>PHYCEAE I

,I'
I

I
BlUtliakl IP. It",blljcal b IP

P I
PorpIr.-SP P !Ct n mlaJn

cIP
Polynphotlln J1u icoll/u P P P ! p P P P c P elP , P , c , c ,
ScORrlia pyl ol,...i P

pi

I
INVIERJIBUU S

HYDROZOA",drol_ I ;
Boltgolnvlllo cO'O/i" ..".ris P I
Obr lio sp. i

pie
I

e:Tubu/ortClcrrKtO P P
pi p e p

p
c c e le p c c c c c c

BIVALVI A J, .I , I,u1_Ylrb , I , ,!JoIytjfu.rrr1ltlis C C , , , , , , ,



Table A1.4 Relative abundanceof macrcfculingorganisms at theend of study period4 (August/September) 0 0 Easy-Net'" treated(T) and
untreated ( e ) ne t pane ls, suspended veJ1icaily at four depths [Pe prescnt: at lcasl one occu rrence; Cecommon; dis tinct aggregations;
A- abundant: clear ly predominant orga nism(s) on panel)

SITE ~ _ . IIIIMSQ - - ;-- ~loland)-- : J (Ft)' e h lu d)

CLASS DEPTH : I ,
J I .. : 1

, , .. : 1 .1 1
, •

~:~J .flWci~$ TRJ:An'.C~~T i t~
(lS-!lel (. lSl P S-11lO) I t"15) (U !IO) lM-fS) P S- ltGl l (O-lSl (15-") l.fS) PS- I_)

T C T C T C IT C T C T C T C IT C T C T C T C
M&M I

.1C1D..OROPHYC':1\E IACl"O'lphoaaJa

ISP01l~tJlflorph(l Cl~T1I~ilfmCl • • •
, e

• • •aadopltonln

~ I·
CltJdoph<mJ ~ritta • • C • '.• • • • • •
~'ClItItJI""pJ:.,h"l4m • • I • •
Rlrlzoc lonltt m riporillm • • • • '1 • • e • • •Clro.'JK"a ..wm. <lciClltli i

Vlvaln

•I• . 1•l:·lfl~/'OlJIOt'pha 1r"~$ri(lQf;$ • • • • • • • • • • • p • • • •Io: l 'lf m • • I •,.; ""'''if~rtJ I ·l ·( 11\.·t1lt1(rucQ • p • • I •I
t 'lwJt'Ia ab s('1""

I
•

PHAEOPIfYCEAE
Cbordal1alct

C"<H'(/QrltljlCl/l,lfijormis P • • • •DictJOIipboaalct
/)i cryns;pIrorIjpt tllt;ll loct ll$

~ Ip

I
p

EctocUV" I
EcltlCarptU.linllo.~$ • • • • • e • p

• I •Pi /~.,lItlllntJNJlu • • • • p • • • • p

• I •Styt otfpbollakt
r,toltlnitl/tuna · p • • I p • • • : I p •.V:, 1CJJ1p/tot1 J",,"lf l an a • . 1 p p • · p p · • •

{''''M"td ...



TQhI~ A l, -I t:ont",u~J

SITE '(HMSC) 2 (jail hla..d) J (f"rblud)

CLASS DEPTH I , J .. ~ 1.1 1 1 J I .. : 1
, J •0",,, (tIP) tD-2~ 11l\.501 ,-'" t~~ lllIIl: (0-1~ (1S-50) I (~~5) , I ('I'MOOl I tD-Ul tlS-!IOl t"~'" (750-1118\

Cirn llu ctes TilEATMENT T C T C T C T C I T C T C ,T C T C : T C T C T C T C
RHOOOPHYCEAE

I I
I

.........
pi ir",.pJryralfliniQtQ p p p p p p p

p. .,mbillcoli.l
,

I : p p p p P
Pcwpltyrtlsp. : p

Cr nua We.

I
I

i IAntl fltoMntonr Il Qj1OC:aJ$Q P ,
C" lJnIillm tlOdll /OSllJ'f1 P P P

Ip : pPol.~pltonIQJkcicQlj/iJ, P P P P P P P P p i p p p
SCQKrlfc:PY!tJi.ffi P P I

I
I P

NnRJl:BRATES ! !HYDROZO A
H,dl'Old. i i
8<111K(J/nlliflQCQrofintn$i,~

p ' p i p ' p
p P

O/uIIQ5p. P P P P P P P P P P P P C C
Tllbll ll7rlQCI"DUtJ P P P P PIP C C c I c c c c !P P P P P P C C

BIVALVIA Ip
AaI_,arla

A ! p !Alyt it lt.lttillll.l A A A A A A A P C C C C A A



Table Al.5 Relative abundance cf' maerofb uling organisms at the end or study period 5 (September/October) on Easy·Net™ treated (T) and
untreated (C) net panels. suspended vertically at four depths (Pe present: at least one occurrence; C=common: distinct aggr egations;
A=abundant: clearly predominan t organism(s) on panel)

SITE ~'--i-(ilMSCi--- -- ~ - 2 (Jal l b land) ; JIFry~ lslUld)

CLASS DEPTH : 1 Z ! J .. : l !Z ! J 4 : 1 2 l J j 4
~ -: ~ ~ I~ ~~ : ~ !~ j~ ~I~l ~ ~ l~ l ~~

Gt nll$spedtt TREATMENT I T e TC I T e TC I T e l T C iT C Te l T e T C j T e l T C

A!&M ' I !! ! I
CHLOROPHYCEAE ; ! I I I
c~:':~urlC<"a jP P P Ip P P pi ! P P pi I'

r hat/("" o,:pha lmll~ I P i I j I
Rhm>clolllumnpllnllm I P P ip pCP p ! Pie C P p l P P I

u~~~asp_ _ _ _ ; P p! P P P P I I I I
Enleromorpha lrlll'$l1/lolu I P P P P j P P P P P p iP p i p P P PAC C C ! P P IP
F..lmzQ I C C A A! P CP P P p ! P ! p P P i
~~::/:£::Q t ~~ C P I PP P P PP :P P I PPPP::PP [ I

PH~=~~ !P : I · . I
Ectocal'Jlaln ; i! : i
EclOCtlTPU$sJlic:~lo...._. ; P P P e t c p e e P p ! ! p p p p i p P I· P
p,Jay~I/Q11tI",alt$ I P pCP I c pe e P P 1 i P P P p i P P P

Sc:)1od pboDaIn I ! 1 1 I ;
Ptlalon lalmcla _ , P P P p I p P P , C p ip p p p !
."0'to.v phon lome"tan a I P P P ; PIP P : P ; P P P P I C p iP P

RHOOOPHYCEAE , ! , 1 ! I !
8~" . _ i ! r
PO'~lTQ /III nt tl lQ I P P j P I

~~~~C:~jS 1p p pi i p pi
C""tinlll'd...



DEPTH : 1 I 2 I a I •
(em) : 10-15) (15- 50, I ($lI-1S) (15-1001

TREATMENT I T eT C I T eTC

TrIh/rAt .s continllrd

CLASS
0 .....
(jr nusspr cirs

SITE ; I (HMSC) I I 2t il !" ~:) I ' " .'~"', '.0," I .
(O-U) (15- !IoOl ! I_lll) t 'J5.. lllOl (US) I {15-,., I (_ 1!'1 eta-I_ ,

T C T C i T e TC T C . T C T C T C
Cr .......l.-tft
A ntiIIlDMnIOMIlIJj10«05D
Crrwni ll"'rllJdulosu",
'oI~phonllJ j1rzicPlilis

ScDttrljo py/(Jjui

llM:RUBR.\US
HYDROZOA

H,.druid.
OlwlilJ sp
r" b"/wt lJcrocrlJ

BIVALVlA
AlI I_ ,.. rt a

Mytl (Il.lrJulis

I ·1

P pip pIp P P

P PIP

e P I P P I C P e
P p P P C P I C

p p I p p I

P P

e e
e A

, I
p i p e P P P P P p i p p i p P I P P

I I P

e l e e e e p C P p l
i

P e l p P I P P
A AAAA AAP PC CPP P P

I
I I



Appendix 2

DntriptioDIor growth form aDd n prod Dctivu tatus



T.ble Al. 1 Descriptivesummaryof growth fonn and reproductive s1atusof constituent foulingorgani!ll'ls II the end of the May/June study
period, (Reproductive status: H '" hermaphroditic; P .. plurilocular reproductive structures; S .. sterile; U .. unilocularreproductive structures;
Z - zoos poric)

CLASS

0"'"
firnu..~cir~

Al&M
CHLOROPHYCEAE

O adopbonJes
ChQttomcwplra linllm
('lodopJ,orQ~rlua

Rhiwclonium ,;porill '"
UrmporawonrukiolrJii

Ulotrkbalet
UIOlhri z j1aa:a
u~....
EnI~romorphQ in r,mina/is
£. /irrza
f:'proJil rra
f ll ,·oloclllCtl
Wvorla obsevra

PHAEOPHYCEAE
[ dourpain

f .(;I'1Carpu.t "' /ku/o.,lC'
/'I1Q)lrfla/lfturol h

Sc)'totlpbonaln
f ttalOlliofasclQ

RHODOPHYCEAE
Baoataln

PCNph.Yrosp.

ConlillllCd...

SITES GROWTH FORM REPRODUCTIVE
STATlIS

1,2.3 • long looselyentwinedfIIamenlS a tbort, tiM basally ... tlal;hc:dfllamenu
I • br.mcbcdcntangkd thalli I no anachmcllt points obIened

1.2.3 • loosely eatwincd longthinfiWMnLSAdl:fdll:cnlanglcd clUflIp'
2 . long looscly cnUngl;cd filamcnlS

1.2 -l ooselyc!lunglcd filamenlSI noalLlChll1Cllt poinUDbscr..ed

1;2.3 ·<kllSCcnlanc.1cd 'ggttplioll5&. sca~rcdindividuallh.iJli(l ·I Ocln lonl) S.Z
I · blsaIly·attachcd, loosely entangled soon individuallhalli (I· Scmlonl) S
I . lonl, branched entanl led IhaUi l noanachmc:nt poin1501...erved S

1,2.3 - sattertdsmallblllde5{2·kmcfiameter ) 5
1,2 - lClIltered small blade5( 1.3 cm lonl ) S

1,2,3 • rairl,. evenly di.Iti~~ en\VOalc4lh.1l1iI mixedwith 1'.JIfI " rtJfb I hea~lIy microroulc4 P,S.U
1.2,3 • raid ,. evenly di5lri1:lutcd enWti1c4lha1U I mll<Cd with ",:. ..Jflc"/o nu I heavily microroulcd H,P,S,U

1.2 - !lCIllertdlurcgatlonsoCImIlI, bually .. ltlChcdbladcsl l·lcrn Iong)/ heavily microrOlllcd

1.2,] - scauercdsmall indlyiWi I blades (O.S·2cm IonC)/ l\eaYilymicrorOlllcd





Table AI.I Descriptive sununaryof growthformandreproductive statusof constituent fouling organisms at theendof tbeJune/Julystudy
period. (Reprod uctive status : p .. plurilocular reproductive structu res; S '""sterile; T = tetrasporic; U = unilocular reproductive structures; Z =

zoosporic)

CLASS
0"",
Gfollll$~dt!!<

SITE GROWTH FORM REPRODUCTIVE
STATUS

.A.!&M:
Cm.oROPHYCEAE

AtrwlpbooalC:l
~~omorphasp.

-:::tI,dopboralel
C'/adophura Sl'riUQ

ChQl'lomorphalinum
Rhimdon.ium ripariUffl

U1yales
FJlluomarphainll'SrinaJis

UJva ltu:hJctJ

PHAEOPHYCEAE
DidYOIlpbooalti
DiCtyosiphon!oerliculaUIIJ

[ d otlrpala
F.clocarpussJlicuJOSlJ.f
PiIQ~IIQ I/tlorafis

Llmloarialn
l,iJmlnarlasp

ScytGlfpbonaleli
Pda IOllla!asc;a

SCJI'o'fiphOll!otlllmtarla

Continued ..

J.2 • scattered small (24crn long) highlybranched,tellllCCOUS. basally-attached tufts

1.2.3 • moderatcly lk~ entan gled aggregations &; highly branched loosely entan gled filamenlS I no
attac;hmentpoints observcd

1,2.3 - long 10000ly entwined filaments I no anachmenl poinISOO:sef\:cd
1.2.3 • dense entangled clumps, modcnllc:ly dense entangled aggregations &; 10000..cly enlWined

filaments ' no allachmenl points observed

1,2,3 - various lenghlS{2.IOcml ofbasally-lltlachcd. frcc- noating uncntanglcd thalli & eruangjed
ths:lliwitbno ol:n-iousatt8C~nlpoin lS

1,2,3 · a range of sizes of thal li (2-1Ocmdiame~r)

1,3 -scaueredsman (2-Scm long}basally-attaehcdwireyartIorescc:lI tha1li

1.2.3 - entangled thalliI mind with P.lilturolls I heavily microfouled (sites 2&3)
1.2,3 -aggrega tod entangl ed thal li I mixed with E. sllICIIlosws/heavi ly microfouled{sites 24J)

-i50lated,s maIl(3-Scm).btwdly-att8Chedbl.,;b

1.2.3 - 'lCatterN small (I -3an long) btwdly-attacbc:d$pOfelings & large r (2-Scm)basally.attached
aggregations I larger thal li were somewhat nc:crotkand heavily microfouIed
- long (S-2Scm) basally-altaehcxldcnselyagg.rcgatodthalli
- small ( I-Scm)basally-altllchcd sporelings I smwhal nocrolic and heavilymicrofoulcd.

P,S
P,S,U
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T.ble A1.J Descriptive sumnwy of growth form and reprodu ctive status of ca nstituent fouling organisms at the end of the July/Allgust study
period. (Reproductive status: P ""plurilocular reproductive structures; S ""sterile;T = tetrasporic; U = unilocularreproductive structures)

CLASS

0",er-
c'"'..s~c;~s

SITE GROWTH FORM Rl: PRODUCJ1VI:
STA.TUS

~
Cm.oROPHYCEAE

Ac:rveipboDaks
Spongomorpha $p .

CIodopbo .....
Clado phor DSPrlua

Ch<Jefomorpha /inum
Rhltoclo"J..m rlparill~

""""F.nttromorphQinlemnalifl

E. Jt"za
E.J!I'olipr"
lJ1IJolac:hlco
UlvariGob5CTJro

PHAEQPHYCEAE
Dkt,odp"'oll~

DlCryosipho,,~ntculaceu.frcto<..,,_

EClocarpussiliculosus

Pilnydlo/i/torolis

Lazn!narialn
Chord" tomtn /lMQ

Scytolipbonalu
Perc/oniafascia
St::y toslp}tnn lomenltul a

Continued

1.2.3 - isalatcdsmall (2-4cm)tuftsI all bit distal regionsor thalli heavilymiaofouled

I - dease Cll!angled clumps J no attal;hmell l pol.nu ob5ervcd
1.2.3 -l oosely entangledfilaments I no al1adunc:1l1 poiulSobDentcd
1,2,3 -l oosely entangled filaments I no auaehmcnt pointsoll5c....~
2,3 _thickwirq'cntangiedmats fnoal1aclunentpoinUob5erved
1.2.3 • scattered10000lyetIlangled filaJnc:nlSI no atlaChmenl pointsob5ervcd

1,2.3 - ~'ari0U5 leDgths (5-2km): basally -attaebcd WlCtIUrlglcdr.ha1Ii it unanacbcd cntan glcd thalli
2 - densea~galions o£moderately tong (1G-2Ocm)basally-attachcd entangled lballi

1,2 · scallcfed sroa1l(2-4al1l bBsally-attaebcd thalli
1 - scaucm! clllan,glcd lhalli/ no attachmclll points obsocn'ed
1 _ atlacbcdmoder:ately largc (~-ISem diamelCf) blades
I - scaneml small (3-3cm)bisally attacbcdthalli

- scal1ercdrnodcnltely small (2· lOcm long) basally'attachedunentanaledarborescenlindiv\duals

I - aggtt gatcd.eotanaJcd thalli I m1xcd.with P.ll ttorolis
2.3 - a~en1aJl&lcd thalli l mixcdwi tb P./lrtoral/ s l heavily microfouk:d(site:sl&3)
I -aggregatcdent8flgledtha1li/mi xcd.withE.sillatJOSfls

2,3 · aurq,atcd enlan&lcd thalli / mi>tal wilh E. sJllCIllosus /bcavily Dl.icrofoulod("-ICS 2ll3)

1.3 - isolalCl1.long (20-60cm). basally·attached.. unc:ntang,led thalli

2,3 ·aggregated smaU (2-6cm) tm.aJ1y-altacbc:dthalli I nc:crolic and hc:avilymicrofouied at silt 2
2.3 - various lcnglhs (5-25an) basally-atta<;hed lhaIli bolto entangled&. unentangled

P,S,U
S

p,S.U
S
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T.b le AZ.4 Descriptive summary of growth formand reproductive status of constituentfoulingorganismset the end of'tbe August/September
study period. (Reproductive status: P = plurilocular reproductive structures; R =reproductive (phase/generationundetermined); S ""sterile; T
'" tetraspori c; U -'"unilocular reproducti ve structures ; Z = zoc sporic ; ? = morphological detail obscured by microfouling)

CLASS
0""',
(Jenruspui,s

SITE CROWTII FORM REP RO DtlCTIVE
STATlIS

AI&M
CHLOROPHYCEAE
A("*p~aJa

Sprmgol7forpha (l1''''g1 no,,",

OIdopborala
C/adophO/'Q .w1UQ

ChoefQtrlorpha li"um
Rhizocfon iuMripGrium

Vh' ales
Enl~romOTpha ;ntes(inQlis
F.. li nzQ

1':.profift~Q

U/lIo JaCl llca
WVQrlQ olu cut"Q

PHAEOPHYCEAE
aonllU"iaia
ChQrdarlajfage llfjomliS

Ditl)'odphooaln
Dictyosiphon f oenicu /ac:t IlS

Ectourpaln
F.clOl:a' FUSsi lic u!o,ll/ .f

Pi laydfalitlorll(i s

Conti nuw...

-aggregaled,smalJ (3-km),basally·aUllCbcdtufb; /heavily micmCouJed
• scanercd, small(3-5cm). tmally-attadlcd tufts

1.2.3 • \1oidcly distriblted, loosely entangl ed filaments I no attachment points obIerv«l
U • scattered.Ioosclyen\.3.llg.lcdfilamaJt5
I • scanered,thid.. wireyenlang!cdcJumps:I noattar;;hmenl pointsobserved

1.2,3 · scancrcd,loosely cntal'1s lcd filaments f no anad unCIit points obsc:rvcd

1.2.1 • widelydistribllcd, moderately long(4-Ucm) , basally-anacbcd.entan&1ed thalli
3 - scaaered, moderatcdJy long (4· IOcm). basally attac hed, cnlangled A unattached cnlaflglcd

~"'"
-aggrega ted lllldsca ttcrcd, moder.Ilodlylong (4- IOcm),basally-attaehcd,enlangled&
unat taehcd, cntangledblades

1.3 - a rangcofsco;nercd, moderately small (~·12cmdiamcterJ. allac hcd thal li
3 _scattered" modeately 5lTl3I1(5-lkrn). auae hcd blades

1,3 - scauered.small(2..scmlong ). individual, basally-anacbcd. unentangJed,cord-likclhalii

- scattered, I}-pically-branched.IUIcntangled. basal ly-auaehc:d thalli (3-IOcm long l

J · scaUered, dense, ClItang lcd aeeumulalions
2,3 • scenered,dense,cnlallg.ledarounulalions ' bcary microfouling
J - scane rcd, cknse, enlaflglcd aceu mulations

2.3 • scattered. dense, entangled aa:umulations ' hea")' microfoulin&

P,S
1

P.S.U
1
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Table Al.5 Desc riptive summary of groWlh form ....d reproductive sta tus of constituen t fou ling O' BllIIi5JJIs at the end of the Scpumber/Oc!ober
studyperiod. (Reproductive stalus:P =plurilocularreproductivestructures; S= sterile; T e tetresporic; U= unilocularreproductive urucrures;
Z - zoosporic; ? ... morphological detail obscured by microfouling)

CLASS
0 ....

.. u~~s

srre GROWTH FORM

A!&M
CHLOROPHYCEAE

a adop bora la
Cltuiophoraurl u Q

ell_ '_plt" l,n"",
/f1l/:wdOlJi li lfl ripon..",

U. ....
8 1'dlngj a5p
t:nlt romorplla /fl/eslinali s

,..:I 'flUI
":pro /lj.nI

UIvaIIJdUCQ
UlwmoOOSCUNJ

PHAEOPHYCEAE
tc iou rpllln

1::<:loctJrpus6i/ir:lIfo.<JI.~

Plldytl/ allrtomlis

SC)1 ....p~a1"
p,/aIOflla ! (UC/Q

..it;:ytooiphon lomtn/arla

Co ntinu.d.••.

1,2 . lC3ltcmiIOO5ely~tanglc:d fi lame:nl5

1.2.3 -modc:ntelydcnse.cnlang!edagg.regalions
I -lsolalCld,dl:nsc. cntan &kd aggn.p.tion

1.2 • scal1cm1,.IoQ§ely cnt&ngled fi!amenls
) oscancrod,d.uk gn:en, coarse. cnlanglcdclump5

t . llOl.ud, l nachcd lplCi mao
1,2.3 - long (entanglementpreventeddiRCImc:asllIemenl). t\c.Ivily cntan&Jed, biuaJly-auachcd&:

unallachodthalli
1 .2. ~ • lone , cnlan&!al basally-allllchcd&:.URlIltac hed lhaUI
1.2.3 - 1Ca1lCftd, lhick. all ang led.aggregation.
1.2.3 • ICallcrcd lOO5Cly cnlangled.thaIli
1.3 ·~IIcred.altaehcd llul li~ IOcm di amet.cr1

I • ilOlalod,. modc ntely smal l (4-8cm) basal ly-attaehcd qlCCitn¢ns

I . ·a&&regated cntangled.thalli/ mi7lCd withP. I/IIOTQlis
2.3 - l urcp lCdentanaJed.thalli I mi7lCdwith P. IIIf 0000ib I heavily nUCttlroulcd
I ' 1"~ltd entanglocl lhaJJj/ mi 7lCd wilJtE.$1flt'flIQ!iIIs

2.J • I &&regaled entangled thalliJmi~ wilhE. sillCflICttU.J I heavilymiaorouled

2 - dl:~a~ptions of small (2«m klnJ). bually" lkhed lhalli
1.2.] - scattercd,!ar&er( l -3cm long).basal ly-atathcd,b1 1dcs
1.2.3 -lCIIllcrcd.lo ng ~22'cml. basally-altachcd.WlCnr.anglod thalli tl CxtR:mcly dense Igg~",ljons

Qf lonc interwoven. cntanglcdthalli I beavy mlcrofOlllln&al l ite 2

z
s
s.z
z
s
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CLASS
Order
(j~"ld~d~~

RHOOOPHVCEAE
B...laln
PorpIt,waminialn
IWph yrtt5p

Cenmlaln
Po~V!dphOtrla JI~riro"/j .~

"" 'tttl~lltlP."'W..n

INVt RU u M T ES
HYDPOZOA

H) 'dnHd.
Oh~t'Gsp,

Tllh/trJGcr"<J«lJ

B1VALVJA
A.I..m,aria
A ~lIlI/"~ ~J../b

SITE GROWTH FORM

• KBntmi,. small (4-5cm <hmeler) . ,tulChed IpeltiJnens
- xattcrod, l mall (I -2<;m), bm:Illy....ltJChec1,ell1ft:mely delicate IpOrdi np

1.1.3 . tlWldistinct size classes(2 . 1OC:m & I' .20cm). ll:naor:ous.basally, ' llBCbod. rypia lly
arboraccnt,.a'CCCthal li

U - ....1Icn:d. small (I -)cm) . er«:t . f lumMe lhalU
) • ,"replOd,small (I -3cmI. u ect. plumose IhaIli

1.2,.1 • au: rep ted. modera tcJy srt\311() ·:lc ml. lypical ly IItboresccnl twja ·li1tec:oloniet
1,2.) - dcr ~' wirq< aqn:ptions c:okm lonl l ' bri l htty coI0ur0d hydramN at,lI l ileS

. lIgg n:p lccljuveni les (O, 2~ ,5cm long "alveli ) .tW::hed to net and roul ina

REPRODUCTlVE
STATl'li

s.r

U
S.T
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